Sample records for gradient materials fgms

  1. A Review on Functionally Gradient Materials (FGMs) and Their Applications

    NASA Astrophysics Data System (ADS)

    Bhavar, Valmik; Kattire, Prakash; Thakare, Sandeep; patil, Sachin; Singh, RKP, Dr.

    2017-09-01

    Functionally gradient materials (FGM) are innovative materials in which final properties varies gradually with dimensions. It is the recent development in traditional composite materials which retains their strengths and eliminates their weaknesses. It can be formed by varying chemical composition, microstructure or design attributes from one end to other as per requirement. This feature allows FGM to have best material properties in required quantities only where it is needed. Though there are several methods available for manufacturing FGMs, additive based metal deposition (by laser, electron beam, plasma etc.) technologies are reaping particular interest owing to their recent developments. This paper presents evolution, current status and challenges of functionally gradient materials (FGMs). Various manufacturing processes of different types of FGMs are also presented. In addition, applications of FGMs in various fields including aerospace, defence, mining, power and tools manufacturing sectors are discussed in detail.

  2. Effect of a Diffusion Zone on Fatigue Crack Propagation in Layered FGMs

    NASA Astrophysics Data System (ADS)

    Hauber, Brett; Brockman, Robert; Paulino, Glaucio

    2008-02-01

    Research into functionally graded materials (FGMs) has led to advances in our ability to analyze cracks. However, two prominent aspects remain relatively unexplored: 1) development and validation of modeling methods for fatigue crack propagation in FGMs, and 2) experimental validation of stress intensity models in engineered materials such as two phase monolithic and graded materials. This work addresses some of these problems for a limited set of conditions, material systems (e.g., Ti/TiB), and material gradients. Numerical analyses are conducted for single edge notch bend (SENB) specimens. Stress intensity factors are computed using the specialized finite element code I-Franc (Illinois Fracture Analysis Code), which is tailored for both homogeneous and graded materials, as well as Franc2DL and ABAQUS. Crack extension is considered by means of specified crack increments, together with fatigue evaluations to predict crack propagation life. Results will be used to determine linear material gradient parameters that are significant for prediction of fatigue crack growth behavior.

  3. Flexoelectric effect in functionally graded materials: A numerical study

    NASA Astrophysics Data System (ADS)

    Kumar, Anuruddh; Kiran, Raj; Kumar, Rajeev; Chandra Jain, Satish; Vaish, Rahul

    2018-04-01

    The flexoelectric effect has been observed in a wide range of dielectric materials. However, the flexoelectric effect can only be induced using the strain gradient. Researchers have examined the flexoelectricity using non-uniform loading (cantilever type) or non-uniform shape in dielectric materials, which may be undesirable in many applications. In the present article, we demonstrate induced flexoelectricity in dielectric functionally graded materials (FGMs) due to non-uniform Youngs's modulus along the thickness. To examine flexoelectricity, Ba0.6Sr0.4TiO3 (BST) and polyvinylidene fluoride (PVDF) were used to numerically simulate the performance of FGMs. 2D simulation suggests that output voltage can drastically enhance for optimum grading index of FGMs.

  4. Structural kinematics based damage zone prediction in gradient structures using vibration database

    NASA Astrophysics Data System (ADS)

    Talha, Mohammad; Ashokkumar, Chimpalthradi R.

    2014-05-01

    To explore the applications of functionally graded materials (FGMs) in dynamic structures, structural kinematics based health monitoring technique becomes an important problem. Depending upon the displacements in three dimensions, the health of the material to withstand dynamic loads is inferred in this paper, which is based on the net compressive and tensile displacements that each structural degree of freedom takes. These net displacements at each finite element node predicts damage zones of the FGM where the material is likely to fail due to a vibration response which is categorized according to loading condition. The damage zone prediction of a dynamically active FGMs plate have been accomplished using Reddy's higher-order theory. The constituent material properties are assumed to vary in the thickness direction according to the power-law behavior. The proposed C0 finite element model (FEM) is applied to get net tensile and compressive displacement distributions across the structures. A plate made of Aluminum/Ziconia is considered to illustrate the concept of structural kinematics-based health monitoring aspects of FGMs.

  5. Functionally Graded Materials Database

    NASA Astrophysics Data System (ADS)

    Kisara, Katsuto; Konno, Tomomi; Niino, Masayuki

    2008-02-01

    Functionally Graded Materials Database (hereinafter referred to as FGMs Database) was open to the society via Internet in October 2002, and since then it has been managed by the Japan Aerospace Exploration Agency (JAXA). As of October 2006, the database includes 1,703 research information entries with 2,429 researchers data, 509 institution data and so on. Reading materials such as "Applicability of FGMs Technology to Space Plane" and "FGMs Application to Space Solar Power System (SSPS)" were prepared in FY 2004 and 2005, respectively. The English version of "FGMs Application to Space Solar Power System (SSPS)" is now under preparation. This present paper explains the FGMs Database, describing the research information data, the sitemap and how to use it. From the access analysis, user access results and users' interests are discussed.

  6. The Influence of Al2O3 Powder Morphology on the Properties of Cu-Al2O3 Composites Designed for Functionally Graded Materials (FGM)

    NASA Astrophysics Data System (ADS)

    Strojny-Nędza, Agata; Pietrzak, Katarzyna; Węglewski, Witold

    2016-08-01

    In order to meet the requirements of an increased efficiency applying to modern devices and in more general terms science and technology, it is necessary to develop new materials. Combining various types of materials (such as metals and ceramics) and developing composite materials seem to be suitable solutions. One of the most interesting materials includes Cu-Al2O3 composite and gradient materials (FGMs). Due to their potential properties, copper-alumina composites could be used in aerospace industry as rocket thrusters and components in aircraft engines. The main challenge posed by copper matrix composites reinforced by aluminum oxide particles is obtaining the uniform structure with no residual porosity (existing within the area of the ceramic phase). In the present paper, Cu-Al2O3 composites (also in a gradient form) with 1, 3, and 5 vol.% of aluminum oxide were fabricated by the hot pressing and spark plasma sintering methods. Two forms of aluminum oxide (αAl2O3 powder and electrocorundum) were used as a reinforcement. Microstructural investigations revealed that near fully dense materials with low porosity and a clear interface between the metal matrix and ceramics were obtained in the case of the SPS method. In this paper, the properties (mechanical, thermal, and tribological) of composite materials were also collected and compared. Technological tests were preceded by finite element method analyses of thermal stresses generated in the gradient structure, and additionally, the role of porosity in the formation process of composite properties was modeled. Based on the said modeling, technological conditions for obtaining FGMs were proposed.

  7. Tranpsort phenomena in solidification processing of functionally graded materials

    NASA Astrophysics Data System (ADS)

    Gao, Juwen

    A combined numerical and experimental study of the transport phenomena during solidification processing of metal matrix composite functionally graded materials (FGMs) is conducted in this work. A multiphase transport model for the solidification of metal-matrix composite FGMs has been developed that accounts for macroscopic particle segregation due to liquid-particle flow and particle-solid interactions. An experimental study has also been conducted to gain physical insight as well as to validate the model. A novel method to in-situ measure the particle volume fraction using fiber optic probes is developed for transparent analogue solidification systems. The model is first applied to one-dimensional pure matrix FGM solidification under gravity or centrifugal field and is extensively validated against the experimental results. The mechanisms for the formation of particle concentration gradient are identified. Two-dimensional solidification of pure matrix FGM with convection is then studied using the model as well as experiments. The interaction among convection flow, solidification process and the particle transport is demonstrated. The results show the importance of convection in the particle concentration gradient formation. Then, simulations for alloy FGM solidification are carried out for unidirectional solidification as well as two-dimensional solidification with convection. The interplay among heat and species transport, convection and particle motion is investigated. Finally, future theoretical and experimental work is outlined.

  8. Predictive Models for Dynamic Brittle Fracture and Damage at High-velocity Impact in Multilayered Targets

    DTIC Science & Technology

    2016-11-01

    layered glass/PC systems,Functionally Graded Materials (FGMs), polycrystalline AlON, and fiber-reinforced composite (FRC) materials. For the first time we...multi-layered glass/PC systems,Functionally Graded Materials (FGMs), polycrystalline AlON, and fiber-reinforced composite (FRC) materials. For the... Composite Lamina with Peridynamics, International Journal for Multiscale Computational Engineering, (12 2011): 0. doi: Florin Bobaru, Youn Doh Ha

  9. Thermomechanical response of metal-ceramic graded composites for high-temperature aerospace applications

    NASA Astrophysics Data System (ADS)

    Deierling, Phillip Eugene

    Airframes operating in the hypersonic regime are subjected to complex structural and thermal loads. Structural loads are a result of aggressive high G maneuvers, rapid vehicle acceleration and deceleration, and dynamic pressure, while thermal loads are a result of aerodynamic heating. For such airframes, structural members are typically constructed from steel, titanium and nickel alloys. However, with most materials, rapid elevations in temperature lead to undesirable changes in material properties. In particular, reductions in strength and stiffness are observed, along with an increase in thermal conductivity, specific heat and thermal expansion. Thus, hypersonic airframes are typically designed with external insulation, active cooling or a thermal protection system (TPS) added to the structure to protect the underling material from the effects of temperature. Such thermal protection may consist of adhesively bonded, pinned, and bolted thermal protection layers over exterior panels. These types of attachments create abrupt changes in thermal expansion and stiffness that make the structure susceptible to cracking and debonding as well as adding mass to the airframe. One of the promising materials concepts for extreme environments that was introduced in the past is the so-called Spatially Tailored Advanced Thermal Structures (STATS). The concept of STATS is rooted in functionally graded materials (FGMs), in which a directional variation of material properties exists. These materials are essentially composites and consist of two or more phases of distinct materials in which the volume fractions of each phase continuously change in space. Here, the graded material will serve a dual-purpose role as both the structural/skin member and thermal management with the goal of reducing the weight of the structure while maintaining structural soundness. This is achieved through the ability to tailor material properties to create a desired or enhanced thermomechanical response through spatial variation (e.g. grading). The objective of this study is to present a computational framework for modeling and evaluating the thermomechanical response of STATS and FGMs for highly maneuverable hypersonic (Mach > 5) airframes. To meet the objective of this study, four key steps have been defined to study the thermomechanical response of such materials in extreme environments. They involve: (1) modeling of graded microstructures; (2) validation of analytical and numerical modeling techniques for graded microstructures; (3) determination of effective properties of variable composition composites; (4) parametric studies to evaluate the performance of FGMs for use in the hypersonic operating environment; (5) optimization of the material spatial grading in hypersonic panels aiming to improve the thermomechanical performance. Modeling of graded microstructures, representing particulate reinforced FGMs, has been accomplished using power law distribution functions to specify the spatial variation of the constituents. Artificial microstructures consisting of disks and spheres have been generated using developed algorithms. These algorithms allow for the creation of dense packing fractions up to 0.61 and 0.91 for 2D and 3D geometry, respectively. Effective properties of FGMs are obtained using micromechanics models and finite element analysis of representative volume elements (RVEs). Two approaches have been adopted and compared to determine the proper RVE for materials with graded microstructures. In the first approach, RVEs are generated by considering regions that have a uniform to slow variation in material composition (i.e., constant volume fraction), resulting in statistically homogenous piecewise RVEs of the graded microstructure neglecting interactions from neighboring cells. In the second approach, continuous RVEs are generated by considering the entire FGM. Here it is presumed that modeling of the complete variation in a microstructure may influence the surrounding layers due to the interactions of varying material composition, particularly when there is a steep variation in material composition along the grading direction. To determine these effects of interlayer interactions, FGM microstructures were generated using three different types of material grading functions, linear, quadratic and square root, providing uniform, gradual and steep variations, respectively. Two- and three-dimensional finite element analysis was performed to determine the effective temperature-dependent material properties of the composite over a wide temperature range. The outcome of the computational analysis show that the similar effective properties are obtained by each of the modeling approaches. Furthermore, the obtained computational results for effective elastic, thermal, and thermal expansion properties are consistent with the known analytical bounds. Resulting effective temperature-dependent material properties were used to evaluate the time-dependent thermostructural response and effectiveness of FGM structural panels. Structural panels are subjected to time- and spatial-dependent thermal and mechanical loads resulting from hypersonic flight over a representative trajectory. Mechanical loads are the by-product of aggressive maneuvering at high air speeds and angles of attack. Thermal loads as a result of aerodynamic heating are applied to the material systems as laminar, turbulent and transitional heat flux on the outer surface. Laminar and turbulent uniform heat fluxes are used to evaluate the effectiveness of FGM panels graded in the through-thickness direction only. Transitional heat fluxes are used to evaluate the effectiveness of FGMs graded in two principal directions, e.g., through-thickness and the surface parallel to flow. The computational results indicate that when subjected to uniform surface heat flux, the graded material system can eliminate through-thickness temperature gradients that are otherwise present in traditional thermal protection systems. Furthermore, two-dimensional graded material systems can also eliminate through-thickness temperature gradients and significantly reduce in-plane surface temperature gradients when subjected to non-uniform surface aerodynamic heating.

  10. Acoustic wave propagation in continuous functionally graded plates: an extension of the Legendre polynomial approach.

    PubMed

    Lefebvre, J E; Zhang, V; Gazalet, J; Gryba, T; Sadaune, V

    2001-09-01

    The propagation of guided waves in continuous functionally graded plates is studied by using Legendre polynomials. Dispersion curves, and power and field profiles are easily obtained. Our computer program is validated by comparing our results against other calculations from the literature. Numerical results are also given for a graded semiconductor plate. It is felt that the present method could be of quite practical interest in waveguiding engineering, non-destructive testing of functionally graded materials (FGMs) to identify the best inspection strategies, or by means of a numerical inversion algorithm to determine through-thickness gradients in material parameters.

  11. Efficient Reformulation of HOTFGM: Heat Conduction with Variable Thermal Conductivity

    NASA Technical Reports Server (NTRS)

    Zhong, Yi; Pindera, Marek-Jerzy; Arnold, Steven M. (Technical Monitor)

    2002-01-01

    Functionally graded materials (FGMs) have become one of the major research topics in the mechanics of materials community during the past fifteen years. FGMs are heterogeneous materials, characterized by spatially variable microstructure, and thus spatially variable macroscopic properties, introduced to enhance material or structural performance. The spatially variable material properties make FGMs challenging to analyze. The review of the various techniques employed to analyze the thermodynamical response of FGMs reveals two distinct and fundamentally different computational strategies, called uncoupled macromechanical and coupled micromechanical approaches by some investigators. The uncoupled macromechanical approaches ignore the effect of microstructural gradation by employing specific spatial variations of material properties, which are either assumed or obtained by local homogenization, thereby resulting in erroneous results under certain circumstances. In contrast, the coupled approaches explicitly account for the micro-macrostructural interaction, albeit at a significantly higher computational cost. The higher-order theory for functionally graded materials (HOTFGM) developed by Aboudi et al. is representative of the coupled approach. However, despite its demonstrated utility in applications where micro-macrostructural coupling effects are important, the theory's full potential is yet to be realized because the original formulation of HOTFGM is computationally intensive. This, in turn, limits the size of problems that can be solved due to the large number of equations required to mimic realistic material microstructures. Therefore, a basis for an efficient reformulation of HOTFGM, referred to as user-friendly formulation, is developed herein, and subsequently employed in the construction of the efficient reformulation using the local/global conductivity matrix approach. In order to extend HOTFGM's range of applicability, spatially variable thermal conductivity capability at the local level is incorporated into the efficient reformulation. Analytical solutions to validate both the user-friendly and efficient reformulations am also developed. Volume discretization sensitivity and validation studies, as well as a practical application of the developed efficient reformulation are subsequently carried out. The presented results illustrate the accuracy and implementability of both the user-friendly formulation and the efficient reformulation of HOTFGM.

  12. High temperature thermo-physical properties of SPS-ed W-Cu functional gradient materials

    NASA Astrophysics Data System (ADS)

    Galatanu, Magdalena; Enculescu, Monica; Galatanu, Andrei

    2018-02-01

    The divertor of a fusion reactor like DEMO requires materials able to withstand high heat fluxes and neutron irradiation for several years. For the water cooling concept of this essential part of the reactor, the most likely plasma facing material will be W, while the heatsink material considered is CuCrZr or an improved version of such a Cu-based alloy. To realize W-Cu alloy joints able to withstand thousands of thermal cycles can be difficult due to the difference between the thermal expansion coefficients of these materials. In this work we investigate the possibility to realize such joints by using W-Cu functional gradient materials (FGMs) produced from nanometric and micrometric metallic powders mixtures and consolidated by spark plasma sintering at about 900 °C. Morphological and thermal properties investigations, performed for typical compositions, shows that the best results are obtained using powders with micrometric dimensions. A resulting 1 mm thick, 3 layers W-Cu FGM produced by this simple method shows a remarkable almost constant thermal conductivity value of 200 W m-1 K-1, from room temperature up to 1000 °C.

  13. Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite.

    PubMed

    Ataollahi Oshkour, Azim; Pramanik, Sumit; Mehrali, Mehdi; Yau, Yat Huang; Tarlochan, Faris; Abu Osman, Noor Azuan

    2015-09-01

    This study aimed to investigate the structural, physical and mechanical behavior of composites and functionally graded materials (FGMs) made of stainless steel (SS-316L)/hydroxyapatite (HA) and SS-316L/calcium silicate (CS) employing powder metallurgical solid state sintering. The structural analysis using X-ray diffraction showed that the sintering at high temperature led to the reaction between compounds of the SS-316L and HA, while SS-316L and CS remained intact during the sintering process in composites of SS-316L/CS. A dimensional expansion was found in the composites made of 40 and 50 wt% HA. The minimum shrinkage was emerged in 50 wt% CS composite, while the maximum shrinkage was revealed in samples with pure SS-316L, HA and CS. Compressive mechanical properties of SS-316L/HA decreased sharply with increasing of HA content up to 20 wt% and gradually with CS content up to 50 wt% for SS-316L/CS composites. The mechanical properties of the FGM of SS-316L/HA dropped with increase in temperature, while it was improved for the FGM of SS-316L/CS with temperature enhancement. It has been found that the FGMs emerged a better compressive mechanical properties compared to both the composite systems. Therefore, the SS-316L/CS composites and their FGMs have superior compressive mechanical properties to the SS-316L/HA composites and their FGMs and also the newly developed FGMs of SS-316L/CS with improved mechanical and enhanced gradation in physical and structural properties can potentially be utilized in the components with load-bearing application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Recent development in modeling and analysis of functionally graded materials and structures

    NASA Astrophysics Data System (ADS)

    Gupta, Ankit; Talha, Mohammad

    2015-11-01

    In this article, an extensive review related to the structural response of the functionally graded materials (FGMs) and structures have been presented. These are high technology materials developed by a group scientist in the late 1980's in Japan. The emphasis has been made here, to present the structural characteristics of FGMs plates/shells under thermo-electro-mechanical loadings under various boundary and environmental conditions. This paper also provides an overview of different fabrication procedures and the future research directions which is required to implement these materials in the design and analysis appropriately. The expected outcome of present review can be treated as milestone for future studies in the area of high technology materials and structures, and would be definitely advantageous for the researchers, scientists, and designers working in this field.

  15. Preparation and characterization of Al{sub 2}O{sub 3}-Ti{sub 3}SiC{sub 2} composites and its functionally graded materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo Yongming; Li Shuqin; Chen Jian

    2003-01-01

    Alumina/titanium silicon carbide (Al{sub 2}O{sub 3}-Ti{sub 3}SiC{sub 2}) composites and its functionally graded materials (FGMs) were fabricated by a powder metallurgy processes and their microstructure and properties were investigated, respectively. The experimental results showed that the Vickers hardness of composites decreased with increasing Ti{sub 3}SiC{sub 2} content while the fracture toughness and strength exhibited the opposite trend. Minimum Vickers hardness (4 GPa), maximum strength (598 MPa) and maximum toughness (11.24 MPa m{sup 1/2}) were reached in the pure Ti{sub 3}SiC{sub 2} material. Strength and hardness of FGMs were evaluated. Observation using an scanning electron microscope (SEM) indicated that the presencemore » of Ti{sub 3}SiC{sub 2} of FGMs inhibited the growth of alumina grains through a pinning mechanism. The study shows that the combination of the layered Ti{sub 3}SiC{sub 2} structure and the fine alumina grains can result in a Al{sub 2}O{sub 3}-Ti{sub 3}SiC{sub 2} composites possessing a high toughness and low Vickers hardness without a sacrifice in the strength.« less

  16. Efficient Reformulation of the Thermoelastic Higher-order Theory for Fgms

    NASA Technical Reports Server (NTRS)

    Bansal, Yogesh; Pindera, Marek-Jerzy; Arnold, Steven M. (Technical Monitor)

    2002-01-01

    Functionally graded materials (FGMs) are characterized by spatially variable microstructures which are introduced to satisfy given performance requirements. The microstructural gradation gives rise to continuously or discretely changing material properties which complicate FGM analysis. Various techniques have been developed during the past several decades for analyzing traditional composites and many of these have been adapted for the analysis of FGMs. Most of the available techniques use the so-called uncoupled approach in order to analyze graded structures. These techniques ignore the effect of microstructural gradation by employing specific spatial material property variations that are either assumed or obtained by local homogenization. The higher-order theory for functionally graded materials (HOTFGM) is a coupled approach developed by Aboudi et al. (1999) which takes the effect of microstructural gradation into consideration and does not ignore the local-global interaction of the spatially variable inclusion phase(s). Despite its demonstrated utility, however, the original formulation of the higher-order theory is computationally intensive. Herein, an efficient reformulation of the original higher-order theory for two-dimensional elastic problems is developed and validated. The use of the local-global conductivity and local-global stiffness matrix approach is made in order to reduce the number of equations involved. In this approach, surface-averaged quantities are the primary variables which replace volume-averaged quantities employed in the original formulation. The reformulation decreases the size of the global conductivity and stiffness matrices by approximately sixty percent. Various thermal, mechanical, and combined thermomechanical problems are analyzed in order to validate the accuracy of the reformulated theory through comparison with analytical and finite-element solutions. The presented results illustrate the efficiency of the reformulation and its advantages in analyzing functionally graded materials.

  17. Accuracy of a Flash Glucose Monitoring System in Diabetic Dogs.

    PubMed

    Corradini, S; Pilosio, B; Dondi, F; Linari, G; Testa, S; Brugnoli, F; Gianella, P; Pietra, M; Fracassi, F

    2016-07-01

    A novel flash glucose monitoring system (FGMS) (FreeStyle Libre, Abbott, UK) was recently developed for humans. It continuously measures the interstitial glucose (IG) concentrations for 14 days. To assess the clinical and analytical accuracy of the FGMS in diabetic dogs. Ten client-owned diabetic dogs on insulin treatment. Prospective and observational study. The FGMS was placed on the neck for up to 14 days. During the 1st-2nd, 6-7th, and 13-14th days from application, the IG measurements were compared with the plasma (EDTA) glucose (PG) concentrations analyzed by a reference hexokinase based method. The application and the use of the FGMS were apparently painless, easy, and well tolerated by all dogs. Mild erythema at the site of the application was found in 5/10 dogs at the end of the wearing period. A good correlation between IG and PG concentrations (rho = 0.94; P < .001) was found. The FGMS was 93, 99, and 99% accurate at low, normal, and high blood glucose concentrations. Mean ± standard deviation difference from the reference method was 2.3 ± 46.8 mg/dL. The FGMS is easy to use and is accurate for IG glucose measurement in diabetic dogs. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  18. Preparation of Functionally Graded Materials (FGMs) Using Coal Fly Ash and NiCr-Based Alloy Powder by Spark Plasma Sintering (SPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, Gen-yo; Kitagawa, Hiroyuki; Hasezaki, Kazuhiro

    2008-02-15

    Functionally Graded Materials (FGMs) were prepared by spark plasma sintering (SPS) using coal fly ash and NiCr alloy powder. The coal fly ash was produced by the Misumi Coal Thermal Power Station (Chugoku Electric Power Co., Inc.), with 80 wt% nickel and 20 wt% chromium (Fukuda Metal Foil and Powder Co., Ltd.) used as source materials. The sintering temperature in the graphite die was 1000 deg. C. X-ray diffraction patterns of the sintered coal fly ash materials indicated that mullite (3Al{sub 2}O{sub 3}{center_dot}2SiO{sub 2}) and silica (SiO{sub 2}) phases were predominant. Direct joining of coal fly ash and NiCr causesmore » fracture at the interface. This is due to the mismatch in the thermal expansion coefficients (CTE). A crack in the FGM was observed between the two layers with a CTE difference of over 4.86x10{sup -6} K{sup -1}, while a crack in the FGM was difficult to detect when the CTE difference was less than 2.77x10{sup -6} K{sup -1}.« less

  19. Thermoelastic analysis of non-uniform pressurized functionally graded cylinder with variable thickness using first order shear deformation theory(FSDT) and perturbation method

    NASA Astrophysics Data System (ADS)

    Khoshgoftar, M. J.; Mirzaali, M. J.; Rahimi, G. H.

    2015-11-01

    Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.

  20. Do sexual risk behaviour, risk perception and testing behaviour differ across generations of migrants?

    PubMed

    Kramer, Merlijn A; van Veen, Maaike G; Op de Coul, Eline L M; Coutinho, Roel A; Prins, Maria

    2014-02-01

    Behaviour and related health outcomes of migrants have been suggested to shift towards the practices of the indigenous population of the host country. To investigate this, we studied generational differences in sexual behaviour between first- and second-generation migrants (FGMs and SGMs) in The Netherlands. In 2003-05, persons aged 16-70 years with origins in Surinam, the Antilles and Aruba were interviewed on their sexual behaviour in The Netherlands and their country of origin. The relationship of generation, age at migration and sexual behaviour was studied by multinomial logistic regression analyses. Generational differences were observed regarding concurrent partnerships, anal sex and history of sexually transmitted infection. Compared with FGMs who migrated at an age >25 years, those who migrated between 10 and 25 years of age were more likely to report concurrency [odds ratio (OR): 1.52, 95% confidence interval (CI): 1.14-2.04], whereas SGMs were less likely to report concurrency (OR: 0.65, 95% CI: 0.43-0.98). FGMs who migrated before the age of 10 were more likely to have had anal sex (OR: 1.90, 95% CI: 1.34-2.71) or a sexually transmitted infection diagnosis (OR: 1.80, 95% CI: 1.20-2.71) than those who had migrated at >25 years of age. Our study shows that not only SGMs but also FGMs who migrated at an early age tend to differ from the sexual patterns of FGMs who migrated at an older age. Generational differences in sexual behaviour could be explained by acculturation and increased identity with the values of the host country.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dag, Serkan; Yildirim, Bora; Sabuncuoglu, Baris

    The objective of this study is to develop crack growth analysis methods for functionally graded materials (FGMs) subjected to mode I cyclic loading. The study presents finite elements based computational procedures for both two and three dimensional problems to examine fatigue crack growth in functionally graded materials. Developed methods allow the computation of crack length and generation of crack front profile for a graded medium subjected to fluctuating stresses. The results presented for an elliptical crack embedded in a functionally graded medium, illustrate the competing effects of ellipse aspect ratio and material property gradation on the fatigue crack growth behavior.

  2. Female genital mutilations - a testimony.

    PubMed

    Youssouf, Samia

    2013-02-01

    In Djibouti, the prevalence of female genital mutilations (FGMs) amounts to 98% and the practice is still in use. When I left, in 1999, I knew I would involve myself in the fight against FGMs and I describe here the outcome of an obstacle course of more than ten years duration. This paper is written on behalf of innumerable women, who could give you a similar account.

  3. A computational fluid–structure interaction model to predict the biomechanical properties of the artificial functionally graded aorta

    PubMed Central

    Khosravi, Arezoo; Bani, Milad Salimi; Bahreinizade, Hossein; Karimi, Alireza

    2016-01-01

    In the present study, three layers of the ascending aorta in respect to the time and space at various blood pressures have been simulated. Two well-known commercial finite element (FE) software have used to be able to provide a range of reliable numerical results while independent on the software type. The radial displacement compared with the time as well as the peripheral stress and von Mises stress of the aorta have calculated. The aorta model was validated using the differential quadrature method (DQM) solution and, then, in order to design functionally graded materials (FGMs) with different heterogeneous indexes for the artificial vessel, two different materials have been employed. Fluid–structure interaction (FSI) simulation has been carried out on the FGM and a natural vessel of the human body. The heterogeneous index defines the variation of the length in a function. The blood pressure was considered to be a function of both the time and location. Finally, the response characteristics of functionally graded biomaterials (FGBMs) models with different values of heterogeneous material parameters were determined and compared with the behaviour of a natural vessel. The results showed a very good agreement between the numerical findings of the FGM materials and that of the natural vessel. The findings of the present study may have implications not only to understand the performance of different FGMs in bearing the stress and deformation in comparison with the natural human vessels, but also to provide information for the biomaterials expert to be able to select a suitable material as an implant for the aorta. PMID:27836981

  4. Dynamic Failure of Integrated Durable Hot Structure for Space Access Vehicles

    DTIC Science & Technology

    2009-08-01

    in nonho- mogeneous solids, which is of the more practical importance, by assuming plane strain conditions. Later on Delale and Erdogan [11], Eischen...12] and Erdogan et al. [13] solved crack problems for non-homogeneous materials under quasi-static loading. With the introduction of FGMs, research on...fracture mechanics of nonhomo- geneous solids gained additional impetus. Jin and Noda [14], Konda and Erdo- gan [15] and Erdogan [16] obtained the

  5. Fracture and fatigue analysis of functionally graded and homogeneous materials using singular integral equation approach

    NASA Astrophysics Data System (ADS)

    Zhao, Huaqing

    There are two major objectives of this thesis work. One is to study theoretically the fracture and fatigue behavior of both homogeneous and functionally graded materials, with or without crack bridging. The other is to further develop the singular integral equation approach in solving mixed boundary value problems. The newly developed functionally graded materials (FGMs) have attracted considerable research interests as candidate materials for structural applications ranging from aerospace to automobile to manufacturing. From the mechanics viewpoint, the unique feature of FGMs is that their resistance to deformation, fracture and damage varies spatially. In order to guide the microstructure selection and the design and performance assessment of components made of functionally graded materials, in this thesis work, a series of theoretical studies has been carried out on the mode I stress intensity factors and crack opening displacements for FGMs with different combinations of geometry and material under various loading conditions, including: (1) a functionally graded layer under uniform strain, far field pure bending and far field axial loading, (2) a functionally graded coating on an infinite substrate under uniform strain, and (3) a functionally graded coating on a finite substrate under uniform strain, far field pure bending and far field axial loading. In solving crack problems in homogeneous and non-homogeneous materials, a very powerful singular integral equation (SEE) method has been developed since 1960s by Erdogan and associates to solve mixed boundary value problems. However, some of the kernel functions developed earlier are incomplete and possibly erroneous. In this thesis work, mode I fracture problems in a homogeneous strip are reformulated and accurate singular Cauchy type kernels are derived. Very good convergence rates and consistency with standard data are achieved. Other kernel functions are subsequently developed for mode I fracture in functionally graded materials. This work provides a solid foundation for further applications of the singular integral equation approach to fracture and fatigue problems in advanced composites. The concept of crack bridging is a unifying theory for fracture at various length scales, from atomic cleavage to rupture of concrete structures. However, most of the previous studies are limited to small scale bridging analyses although large scale bridging conditions prevail in engineering materials. In this work, a large scale bridging analysis is included within the framework of singular integral equation approach. This allows us to study fracture, fatigue and toughening mechanisms in advanced materials with crack bridging. As an example, the fatigue crack growth of grain bridging ceramics is studied. With the advent of composite materials technology, more complex material microstructures are being introduced, and more mechanics issues such as inhomogeneity and nonlinearity come into play. Improved mathematical and numerical tools need to be developed to allow theoretical modeling of these materials. This thesis work is an attempt to meet these challenges by making contributions to both micromechanics modeling and applied mathematics. It sets the stage for further investigations of a wide range of problems in the deformation and fracture of advanced engineering materials.

  6. Non-invasive monitoring of adrenocortical activity in captive African Penguin (Spheniscus demersus) by measuring faecal glucocorticoid metabolites.

    PubMed

    Ozella, L; Anfossi, L; Di Nardo, F; Pessani, D

    2015-12-01

    Measurement of faecal glucocorticoid metabolites (FGMs) has become a useful and widely-accepted method for the non-invasive evaluation of stress in vertebrates. In this study we assessed the adrenocortical activity of five captive African Penguins (Spheniscus demersus) by means of FGM evaluation following a biological stressor, i.e. capture and immobilization. In addition, we detected individual differences in secretion of FGMs during a stage of the normal biological cycle of penguins, namely the breeding period, without any external or induced causes of stress. Our results showed that FGM concentrations peaked 5.5-8h after the induced stress in all birds, and significantly decreased within 30 h. As predictable, the highest peak of FGMs (6591 ng/g) was reached by the youngest penguin, which was at its first experience with the stressor. This peak was 1.8-2.7-fold higher compared to those of the other animals habituated to the stimulus. For the breeding period, our results revealed that the increase in FGMs compared to ordinary levels, and the peaks of FGMs, varied widely depending on the age and mainly on the reproductive state of the animal. The bird which showed the lowest peak (2518 ng/g) was an old male that was not in a reproductive state at the time of the study. Higher FGM increases and peaks were reached by the two birds which were brooding (male: 5552%, 96,631 ng/g; female: 1438%, 22,846 ng/g) and by the youngest bird (1582%, 39,700 ng/g). The impact of the reproductive state on FGM levels was unexpected compared to that produced by the induced stress. The EIA used in this study to measure FGM levels proved to be a reliable tool for assessing individual and biologically-relevant changes in FGM concentrations in African Penguin. Moreover, this method allowed detection of physiological stress during the breeding period, and identification of individual differences in relation to the reproductive status. The increase in FGM levels as a response to capture and immobilization suggests that the measured metabolites are appropriate indicators of adrenal activity in these birds. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Faecal glucocorticoid metabolites and body temperature in Australian merino ewes (Ovis aries) during summer artificial insemination (AI) program

    PubMed Central

    Sawyer, Gregory; Parisella, Simone

    2018-01-01

    Reproductive wastage is a key issue for sheep producers, both regionally and globally. The reproductive output of farm animals can be influenced by physiological and environmental factors. Rapid and reliable quantification of physiological stress can provide a useful tool for designing and testing on-farm management interventions to improve farm animal welfare and productivity. In this study, we quantified physiological stress non-invasively using faecal glucocorticoid metabolites-FGMs analysis and body temperature measurements of 15 superovulated donor merino ewes (Ovis aries) during participation in artificial insemination (AI) program conducted during 2015/2016 Australian summer. We hypothesized that low percentage transferable embryos in donor merino ewes will be associated positively with higher body temperature and/or higher FGMs in these ewes. Temperature humidity index (THI) was calculated and found within high thermal stress range during the two AI trials. Overall, results showed none of the factors (ewe ID, AI trial no., THI or FGMs) were significant for reduced percentage transferrable embryos, except ewe body temperature was highly significant (p = 0.014). Within AI trial comparisons showed significant positive associations between higher FGMs and body temperature with reduced transferrable embryos. These results suggest that Australian merino ewes participating in summer AI trials can experience physiological stress. Prolonged activation of the stress endocrine response and high body temperature (e.g. ensued from heat stress) could impact on ewe reproductive output. Therefore, future research should apply minimally invasive physiological tools to gather baseline information on physiological stress in merino sheep to enable the development of new farm-friendly methods of managing stress. PMID:29381759

  8. Faecal glucocorticoid metabolites and body temperature in Australian merino ewes (Ovis aries) during summer artificial insemination (AI) program.

    PubMed

    Narayan, Edward; Sawyer, Gregory; Parisella, Simone

    2018-01-01

    Reproductive wastage is a key issue for sheep producers, both regionally and globally. The reproductive output of farm animals can be influenced by physiological and environmental factors. Rapid and reliable quantification of physiological stress can provide a useful tool for designing and testing on-farm management interventions to improve farm animal welfare and productivity. In this study, we quantified physiological stress non-invasively using faecal glucocorticoid metabolites-FGMs analysis and body temperature measurements of 15 superovulated donor merino ewes (Ovis aries) during participation in artificial insemination (AI) program conducted during 2015/2016 Australian summer. We hypothesized that low percentage transferable embryos in donor merino ewes will be associated positively with higher body temperature and/or higher FGMs in these ewes. Temperature humidity index (THI) was calculated and found within high thermal stress range during the two AI trials. Overall, results showed none of the factors (ewe ID, AI trial no., THI or FGMs) were significant for reduced percentage transferrable embryos, except ewe body temperature was highly significant (p = 0.014). Within AI trial comparisons showed significant positive associations between higher FGMs and body temperature with reduced transferrable embryos. These results suggest that Australian merino ewes participating in summer AI trials can experience physiological stress. Prolonged activation of the stress endocrine response and high body temperature (e.g. ensued from heat stress) could impact on ewe reproductive output. Therefore, future research should apply minimally invasive physiological tools to gather baseline information on physiological stress in merino sheep to enable the development of new farm-friendly methods of managing stress.

  9. Flash glucose monitoring system may benefit children and adolescents with type 1 diabetes during fasting at Ramadan.

    PubMed

    Al-Agha, Abdulmoein E; Kafi, Shahd E; Zain Aldeen, Abdullah M; Khadwardi, Raghdah H

    2017-04-01

    To assess the benefit of using the flash glucose monitoring system (FGMS) in children and adolescents with type 1 diabetes mellitus (T1DM) during Ramadan fasting. Methods: A prospective pilot study of 51 participants visited the pediatric diabetes clinic at King Abdulaziz University Hospital, Jeddah, Kingdom of Saudi Arabia from between June until and July 2016. The FreeStyle® Libre™ FGMS (Abbott Diabetes Care, Alameda, CA, USA) was used. Hypoglycemia was defined as glucose values of less than 70 mg/dL, while hyperglycemia as glucose values of more than 150 mg/dL for all participants based on our institute's protocol. Results: Participants were able to fast for 67.0% of the total days eligible for fasting, whereas they did not fast on 33% of the days due to either hypoglycemia (15.4%) or non-diabetes-related reasons (17.6 %). None of the participants developed severe hypoglycemia. The mean number of hyperglycemic episodes during fasting hours was 1.29, per day, which was higher than that of hypoglycemic episodes (0.7). None of the participants developed diabetic ketoacidosis (DKA). Glycemic control with mean of estimated hemoglobin A1C reading during Ramadan (8.16 ± 1.64% [pre study]) to 8.2 ± 1.63% [post study] p=0.932. Conclusions: Children and adolescents with T1DM who use the FGMS could fast without the risk of life-threatening episodes of severe hypoglycemia (namely seizure, coma), or DKA during Ramadan. Adequate education and good glycemic control prior to Ramadan are important strategies in combination with the use of an FGMS to achieve better outcome.

  10. Using odor cues to elicit a behavioral and hormonal response in zoo-housed African wild dogs.

    PubMed

    Rafacz, Michelle L; Santymire, Rachel M

    2014-01-01

    Olfactory enrichment, like odor cues, can positively affect behavior, reproductive success, and stress physiology in zoo-housed species. Our goal was to determine if odor cues were enriching to the African wild dog (AWD; Lycaon pictus), a species with a complex social structure and a highly developed sense of smell. Our objectives were to: (1) examine changes in activity levels and stress hormone physiology in response to fecal odor cues from natural competitor and natural/unnatural prey species; and (2) determine whether these odor cues could function as effective enrichment for zoo-housed AWDs. Over a 6-month period, fecal samples were collected from two males (AWD 1: dominant, AWD 2: subordinate), fecal glucocorticoid metabolites (FGMs) were validated using an ACTH-challenge, and hormones were analyzed for FGMs by enzyme immunoassay. Behavioral observations were conducted using scan-sampling, and contact and proximity were recorded. AWDs were presented with three fecal odor cues: LION (competitor), CATTLE (unnatural prey), and GAZELLE (natural prey). Only the GAZELLE cue elicited an increase in activity (10.6%) in both individuals and increased positive social behaviors with higher frequencies of affiliative, submissive, and dominant behavior. AWD 1 demonstrated lower (P < 0.05) FGMs than AWD 2 both before and after all odor cues, and FGMs decreased (P = 0.08) in AWD 2 after all cues. We conclude that exposure to natural prey odor cues may be used as effective enrichment for AWDs, and that changes in stress hormone physiology in response to odor cues may be dependent on social rank in this species. © 2013 Wiley Periodicals, Inc.

  11. The surface crack problem for a functionally graded coating bonded to a homogeneous layer

    NASA Astrophysics Data System (ADS)

    Kasmalkar, Maheendra B.

    In the continuing search for materials which can withstand the grueling requirements of modern day applications, Functionally Graded Materials (FGMs) seem to be a promising alternative to conventional materials. These nonhomogeneous materials offer better interfacial properties by improving bond strength and reducing thermal mismatch. Before putting these materials into application, an important step in the design of FGMs is the stress analysis and fracture characterization. The fracture performance of FGM coatings on homogeneous substrates is the focus of this study. In this study, various internal and surface crack configurations in the coating and the substrate are subjected to mechanical and thermal loads. The analysis is linear elastic. The thermo-mechanical properties of the FGM coating are assumed to vary exponentially with the spatial coordinate. The equilibrium equations are solved using integral transforms. The resulting singular integral equations are solved using numerical integration. The results of interest for this mode I formulation are the stress intensity factors and the crack opening displacements. The effects of the nonhomogeneity parameter and various dimensionless length parameters are studied. One of the most important outcomes of this study is the theoretical proof that "kink" in material property at the interface does not introduce any singularity. In the numerical results it is observed that generally the stress intensity factors tend to increase with material nonhomogeneity. Also, it is observed that the substrate thickness tends to suppress cracking in the coating. In pure thermal loading, the surface cracks may either be arrested or there might be crack closure. The stress intensity factors from different loadings can be added up to obtain the resultant stress intensity factor for multiple loading. Results in this study have wide-ranging applications. They can be applied to thermal barrier coatings on turbine components, combustion chambers, parts of the airframe for the "Space Plane", soil mechanics, bone fractures and many more applications where the material is macroscopically nonhomogeneous. Thus this study solves a basic problem common to a variety of applications in diverse fields.

  12. Design, Manufacturing and Characterization of Functionally Graded Flextensional Piezoelectric Actuators

    NASA Astrophysics Data System (ADS)

    Amigo, R. C. R.; Vatanabe, S. L.; Silva, E. C. N.

    2013-03-01

    Previous works have been shown several advantages in using Functionally Graded Materials (FGMs) for the performance of flextensional devices, such as reduction of stress concentrations and gains in reliability. In this work, the FGM concept is explored in the design of graded devices by using the Topology Optimization Method (TOM), in order to determine optimal topologies and gradations of the coupled structures of piezoactuators. The graded pieces are manufactured by using the Spark Plasma Sintering (SPS) technique and are bonded to piezoelectric ceramics. The graded actuators are then tested by using a modular vibrometer system for measuring output displacements, in order to validate the numerical simulations. The technological path developed here represents the initial step toward the manufacturing of an integral piezoelectric device, constituted by piezoelectric and non-piezoelectric materials without bonding layers.

  13. Combustion Gas Heating Tests of C/C Composites Coated with SiC Layer

    NASA Astrophysics Data System (ADS)

    Sato, Masaki; Moriya, Shin-ichi; Sato, Masahiro; Tadano, Makoto; Kusaka, Kazuo; Hasegawa, Keiichi; Kumakawa, Akinaga; Yoshida, Makoto

    2008-02-01

    In order to examine the applicability of carbon fiber/carbon matrix composites coated with a silicon carbide layer (C/C-SiCs) to an advanced nozzle for the future reusable rocket engines, two series of combustion gas heating tests were conducted using a small rocket combustor. In the first series of heating tests, five different kinds of C/C-SiCs were tested with specimens in the shape of a square plate for material screening. In the second series of heating tests, two selected C/C-SiCs were tested with specimens in the shape of a small nozzle. The effectiveness of an interlayer between a C/C composite and a SiC layer, which was introduced to improve the durability based on the concept of functionally graded materials (FGMs), can be observed. The typical damage mode was also pointed out in the results of heating test using the small nozzle specimens.

  14. Nanoscale Graphene Disk: A Natural Functionally Graded Material-How is Fourier's Law Violated along Radius Direction of 2D Disk.

    PubMed

    Yang, Nuo; Hu, Shiqian; Ma, Dengke; Lu, Tingyu; Li, Baowen

    2015-10-07

    In this Paper, we investigate numerically and analytically the thermal conductivity of nanoscale graphene disks (NGDs), and discussed the possibility to realize functionally graded material (FGM) with only one material, NGDs. Different from previous studies on divergence/non-diffusive of thermal conductivity in nano-structures with different size, we found a novel non-homogeneous (graded) thermal conductivity along the radius direction in a single nano-disk structure. We found that, instead of a constant value, the NGD has a graded thermal conductivity along the radius direction. That is, Fourier's law of heat conduction is not valid in two dimensional graphene disk structures Moreover, we show the dependent of NGDs' thermal conductivity on radius and temperature. Our study might inspire experimentalists to develop NGD based versatile FGMs, improve understanding of the heat removal of hot spots on chips, and enhance thermoelectric energy conversion efficiency by two dimensional disk with a graded thermal conductivity.

  15. Nanoscale Graphene Disk: A Natural Functionally Graded Material–How is Fourier’s Law Violated along Radius Direction of 2D Disk

    PubMed Central

    Yang, Nuo; Hu, Shiqian; Ma, Dengke; Lu, Tingyu; Li, Baowen

    2015-01-01

    In this Paper, we investigate numerically and analytically the thermal conductivity of nanoscale graphene disks (NGDs), and discussed the possibility to realize functionally graded material (FGM) with only one material, NGDs. Different from previous studies on divergence/non-diffusive of thermal conductivity in nano-structures with different size, we found a novel non-homogeneous (graded) thermal conductivity along the radius direction in a single nano-disk structure. We found that, instead of a constant value, the NGD has a graded thermal conductivity along the radius direction. That is, Fourier’s law of heat conduction is not valid in two dimensional graphene disk structures Moreover, we show the dependent of NGDs’ thermal conductivity on radius and temperature. Our study might inspire experimentalists to develop NGD based versatile FGMs, improve understanding of the heat removal of hot spots on chips, and enhance thermoelectric energy conversion efficiency by two dimensional disk with a graded thermal conductivity. PMID:26443206

  16. Tailoring vibration mode shapes using topology optimization and functionally graded material concepts

    NASA Astrophysics Data System (ADS)

    Montealegre Rubio, Wilfredo; Paulino, Glaucio H.; Nelli Silva, Emilio Carlos

    2011-02-01

    Tailoring specified vibration modes is a requirement for designing piezoelectric devices aimed at dynamic-type applications. A technique for designing the shape of specified vibration modes is the topology optimization method (TOM) which finds an optimum material distribution inside a design domain to obtain a structure that vibrates according to specified eigenfrequencies and eigenmodes. Nevertheless, when the TOM is applied to dynamic problems, the well-known grayscale or intermediate material problem arises which can invalidate the post-processing of the optimal result. Thus, a more natural way for solving dynamic problems using TOM is to allow intermediate material values. This idea leads to the functionally graded material (FGM) concept. In fact, FGMs are materials whose properties and microstructure continuously change along a specific direction. Therefore, in this paper, an approach is presented for tailoring user-defined vibration modes, by applying the TOM and FGM concepts to design functionally graded piezoelectric transducers (FGPT) and non-piezoelectric structures (functionally graded structures—FGS) in order to achieve maximum and/or minimum vibration amplitudes at certain points of the structure, by simultaneously finding the topology and material gradation function. The optimization problem is solved by using sequential linear programming. Two-dimensional results are presented to illustrate the method.

  17. Magnetic profiling of the San Andreas Fault using a dual magnetometer UAV aerial survey system.

    NASA Astrophysics Data System (ADS)

    Abbate, J. A.; Angelopoulos, V.; Masongsong, E. V.; Yang, J.; Medina, H. R.; Moon, S.; Davis, P. M.

    2017-12-01

    Aeromagnetic survey methods using planes are more time-effective than hand-held methods, but can be far more expensive per unit area unless large areas are covered. The availability of low cost UAVs and low cost, lightweight fluxgate magnetometers (FGMs) allows, with proper offset determination and stray fields correction, for low-cost magnetic surveys. Towards that end, we have developed a custom multicopter UAV for magnetic mapping using a dual 3-axis fluxgate magnetometer system: the GEOphysical Drone Enhanced Survey Instrument (GEODESI). A high precision sensor measures the UAV's position and attitude (roll, pitch, and yaw) and is recorded using a custom Arduino data processing system. The two FGMs (in-board and out-board) are placed on two ends of a vertical 1m boom attached to the base of the UAV. The in-board FGM is most sensitive to stray fields from the UAV and its signal is used, after scaling, to clean the signal of the out-board FGM from the vehicle noise. The FGMs record three orthogonal components of the magnetic field in the UAV body coordinates which are then transformed into a north-east-down coordinate system using a rotation matrix determined from the roll-pitch-yaw attitude data. This ensures knowledge of the direction of all three field components enabling us to perform inverse modeling of magnetic anomalies with greater accuracy than total or vertical field measurements used in the past. Field tests were performed at Dragon's Back Pressure Ridge in the Carrizo Plain of California, where there is a known crossing of the San Andreas Fault. Our data and models were compared to previously acquired LiDAR and hand-held magnetometer measurements. Further tests will be carried out to solidify our results and streamline our processing for educational use in the classroom and student field training.

  18. The use of functionally graded dental crowns to improve biocompatibility: a finite element analysis.

    PubMed

    Mahmoudi, Mojtaba; Saidi, Ali Reza; Hashemipour, Maryam Alsadat; Amini, Parviz

    2018-02-01

    In post-core crown restorations, the significant mismatch between stiffness of artificial crowns and dental tissues leads to stress concentration at the interfaces. The aim of the present study was to reduce the destructive stresses by using a class of inhomogeneous materials called functionally graded materials (FGMs). For the purpose of the study, a 3-dimentional computer model of a premolar tooth and its surrounding tissues were generated. A post-core crown restoration with various crown materials, homogenous and FGM materials, were simulated and analyzed by finite element method. Finite element and statistical analysis showed that, in case of oblique loading, a significant difference (p < 0.05) was found at the maximum von Mises stresses of the crown margin between FGM and homogeneous crowns. The maximum von Mises stresses of the crown margin generated by FGM crowns were lower than those generated by homogenous crowns (70.8 vs. 46.3 MPa) and alumina crown resulted in the highest von Mises stress at the crown margin (77.7 MPa). Crown materials of high modulus of elasticity produced high stresses at the cervical region. FGM crowns may reduce the stress concentration at the cervical margins and consequently reduce the possibility of fracture.

  19. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications.

    PubMed

    Eliaz, Noam; Metoki, Noah

    2017-03-24

    Calcium phosphate (CaP) bioceramics are widely used in the field of bone regeneration, both in orthopedics and in dentistry, due to their good biocompatibility, osseointegration and osteoconduction. The aim of this article is to review the history, structure, properties and clinical applications of these materials, whether they are in the form of bone cements, paste, scaffolds, or coatings. Major analytical techniques for characterization of CaPs, in vitro and in vivo tests, and the requirements of the US Food and Drug Administration (FDA) and international standards from CaP coatings on orthopedic and dental endosseous implants, are also summarized, along with the possible effect of sterilization on these materials. CaP coating technologies are summarized, with a focus on electrochemical processes. Theories on the formation of transient precursor phases in biomineralization, the dissolution and reprecipitation as bone of CaPs are discussed. A wide variety of CaPs are presented, from the individual phases to nano-CaP, biphasic and triphasic CaP formulations, composite CaP coatings and cements, functionally graded materials (FGMs), and antibacterial CaPs. We conclude by foreseeing the future of CaPs.

  20. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications

    PubMed Central

    Eliaz, Noam; Metoki, Noah

    2017-01-01

    Calcium phosphate (CaP) bioceramics are widely used in the field of bone regeneration, both in orthopedics and in dentistry, due to their good biocompatibility, osseointegration and osteoconduction. The aim of this article is to review the history, structure, properties and clinical applications of these materials, whether they are in the form of bone cements, paste, scaffolds, or coatings. Major analytical techniques for characterization of CaPs, in vitro and in vivo tests, and the requirements of the US Food and Drug Administration (FDA) and international standards from CaP coatings on orthopedic and dental endosseous implants, are also summarized, along with the possible effect of sterilization on these materials. CaP coating technologies are summarized, with a focus on electrochemical processes. Theories on the formation of transient precursor phases in biomineralization, the dissolution and reprecipitation as bone of CaPs are discussed. A wide variety of CaPs are presented, from the individual phases to nano-CaP, biphasic and triphasic CaP formulations, composite CaP coatings and cements, functionally graded materials (FGMs), and antibacterial CaPs. We conclude by foreseeing the future of CaPs. PMID:28772697

  1. A novel method for characterizing the impact response of functionally graded plates

    NASA Astrophysics Data System (ADS)

    Larson, Reid A.

    Functionally graded material (FGM) plates are advanced composites with properties that vary continuously through the thickness of the plate. Metal-ceramic FGM plates have been proposed for use in thermal protection systems where a metal-rich interior surface of the plate gradually transitions to a ceramic-rich exterior surface of the plate. The ability of FGMs to resist impact loads must be demonstrated before using them in high-temperature environments in service. This dissertation presents a novel technique by which the impact response of FGM plates is characterized for low-velocity, low- to medium-energy impact loads. An experiment was designed where strain histories in FGM plates were collected during impact events. These strain histories were used to validate a finite element simulation of the test. A parameter estimation technique was developed to estimate local material properties in the anisotropic, non-homogenous FGM plates to optimize the finite element simulations. The optimized simulations captured the physics of the impact events. The method allows research & design engineers to make informed decisions necessary to implement FGM plates in aerospace platforms.

  2. Damage tolerant functionally graded materials for advanced wear and friction applications

    NASA Astrophysics Data System (ADS)

    Prchlik, Lubos

    The research work presented in this dissertation focused on processing effects, microstructure development, characterization and performance evaluation of composite and graded coatings used for friction and wear control. The following issues were addressed. (1) Definition of prerequisites for a successful composite and graded coating formation by means of thermal spraying. (2) Improvement of characterization methods available for homogenous thermally sprayed coating and their extension to composite and graded materials. (3) Development of novel characterization methods specifically for FGMs, with a focus on through thickness property measurement by indentation and in-situ curvature techniques. (4) Design of composite materials with improved properties compared to homogenous coatings. (5) Fabrication and performance assessment of FGM with improved wear and impact damage properties. Materials. The materials studied included several material systems relevant to low friction and contact damage tolerant applications: MO-Mo2C, WC-Co cermets as materials commonly used sliding components of industrial machinery and NiCrAlY/8%-Yttria Partially Stabilized Zirconia composites as a potential solution for abradable sections of gas turbines and aircraft engines. In addition, uniform coatings such as molybdenum and Ni5%Al alloy were evaluated as model system to assess the influence of microstructure variation onto the mechanical property and wear response. Methods. The contact response of the materials was investigated through several techniques. These included methods evaluating the relevant intrinsic coating properties such as elastic modulus, residual stress, fracture toughness, scratch resistance and tests measuring the abrasion and friction-sliding behavior. Dry-sand and wet two-body abrasion testing was performed in addition to traditional ball on disc sliding tests. Among all characterization techniques the spherical indentation deserved most attention and enabled to measure elastic-plastic properties of uniform and graded structures. In-situ curvature method used for residual stress and elastic modulus measurement was extended from uniform coatings to coatings with compositional/property gradients. Properties of composite and graded materials were measured using the inverse analysis. Conclusions. The specifics of the elastic-plastic response for thermally sprayed coatings were demonstrated. These included the strain dependence of elastic modulus and damage accumulation related to unloading/reloading loop formation. The measurement of elastic-plastic characteristics of composite coatings revealed the mixing and bonding mechanisms unique for thermally sprayed materials. Microstructural and compositional factors governing the frictional vs. abrasion response of carbide-metallic composite coatings were described. The measurement of abrasion resistance and friction sliding properties demonstrated that grading of cermet and ceramic coatings by adding moderate amount of metallic alloys can enhance elastic-properties radically and have a beneficial effect onto the coating performance.

  3. A method for combining search coil and fluxgate magnetometer data to reveal finer structures in reconnection physics

    NASA Astrophysics Data System (ADS)

    Argall, M. R.; Caide, A.; Chen, L.; Torbert, R. B.

    2012-12-01

    Magnetometers have been used to measure terrestrial and extraterrestrial magnetic fields in space exploration ever since Sputnik 3. Modern space missions, such as Cluster, RBSP, and MMS incorporate both search coil magnetometers (SCMs) and fluxgate magnetometers (FGMs) in their instrument suites: FGMs work well at low frequencies while SCMs perform better at high frequencies. In analyzing the noise floor of these instruments, a cross-over region is apparent around 0.3-1.5Hz. The satellite separation of MMS and average speeds of field convection and plasma flows at the subsolar magnetopause make this a crucial range for the upcoming MMS mission. The method presented here combines the signals from SCM and FGM by taking a weighted average of both in this frequency range in order to draw out key features, such as narrow current sheet structures, that would otherwise not be visible. The technique is applied to burst mode Cluster data for reported magnetopause and magnetotail reconnection events to demonstrate the power of the combined data. This technique is also applied to data from the the EMFISIS instrument on the RBSP mission. The authors acknowledge and thank the FGM and STAFF team for the use of their data from the CLUSTER Active Archive.

  4. Olfactory attractants and parity affect prenatal androgens and territoriality of coyote breeding pairs.

    PubMed

    Schell, Christopher J; Young, Julie K; Lonsdorf, Elizabeth V; Mateo, Jill M; Santymire, Rachel M

    2016-10-15

    Hormones are fundamental mediators of personality traits intimately linked with reproductive success. Hence, alterations to endocrine factors may dramatically affect individual behavior that has subsequent fitness consequences. Yet it is unclear how hormonal or behavioral traits change with environmental stressors or over multiple reproductive opportunities, particularly for biparental fauna. To simulate an environmental stressor, we exposed captive coyote (Canis latrans) pairs to novel coyote odor attractants (i.e. commercial scent lures) mid-gestation to influence territorial behaviors, fecal glucocorticoid (FGMs) and fecal androgen metabolites (FAMs). In addition, we observed coyote pairs as first-time and experienced breeders to assess the influence of parity on our measures. Treatment pairs received the odors four times over a 20-day period, while control pairs received water. Odor-treated pairs scent-marked (e.g. urinated, ground scratched) and investigated odors more frequently than control pairs, and had higher FAMs when odors were provided. Pairs had higher FAMs as first-time versus experienced breeders, indicating that parity also affected androgen production during gestation. Moreover, repeatability in scent-marking behaviors corresponded with FGMs and FAMs, implying that coyote territoriality during gestation is underpinned by individually-specific hormone profiles. Our results suggest coyote androgens during gestation are sensitive to conspecific olfactory stimuli and prior breeding experience. Consequently, fluctuations in social or other environmental stimuli as well as increasing parity may acutely affect coyote traits essential to reproductive success. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Convection driven generation of long-range material gradients

    PubMed Central

    Du, Yanan; Hancock, Matthew J.; He, Jiankang; Villa-Uribe, Jose; Wang, Ben; Cropek, Donald M.; Khademhosseini, Ali

    2009-01-01

    Natural materials exhibit anisotropy with variations in soluble factors, cell distribution, and matrix properties. The ability to recreate the heterogeneity of the natural materials is a major challenge for investigating cell-material interactions and for developing biomimetic materials. Here we present a generic fluidic approach using convection and alternating flow to rapidly generate multi-centimeter gradients of biomolecules, polymers, beads and cells and cross-gradients of two species in a microchannel. Accompanying theoretical estimates and simulations of gradient growth provide design criteria over a range of material properties. A poly(ethyleneglycol) hydrogel gradient, a porous collagen gradient and a composite material with a hyaluronic acid/gelatin cross-gradient were generated with continuous variations in material properties and in their ability to regulate cellular response. This simple yet generic fluidic platform should prove useful for creating anisotropic biomimetic materials and high-throughput platforms for investigating cell-microenvironment interaction. PMID:20035990

  6. Tensor spherical harmonics theories on the exact nature of the elastic fields of a spherically anisotropic multi-inhomogeneous inclusion

    NASA Astrophysics Data System (ADS)

    Shodja, H. M.; Khorshidi, A.

    2013-04-01

    Eshelby's theories on the nature of the disturbance strains due to polynomial eigenstrains inside an isotropic ellipsoidal inclusion, and the form of homogenizing eigenstrains corresponding to remote polynomial loadings in the equivalent inclusion method (EIM) are not valid for spherically anisotropic inclusions and inhomogeneities. Materials with spherically anisotropic behavior are frequently encountered in nature, for example, some graphite particles or polyethylene spherulites. Moreover, multi-inclusions/inhomogeneities/inhomogeneous inclusions have abundant engineering and scientific applications and their exact theoretical treatment would be of great value. The present work is devoted to the development of a mathematical framework for the exact treatment of a spherical multi-inhomogeneous inclusion with spherically anisotropic constituents embedded in an unbounded isotropic matrix. The formulations herein are based on tensor spherical harmonics having orthogonality and completeness properties. For polynomial eigenstrain field and remote applied loading, several theorems on the exact closed-form expressions of the elastic fields associated with the matrix and all the phases of the inhomogeneous inclusion are stated and proved. Several classes of impotent eigenstrain fields associated to a generally anisotropic inclusion as well as isotropic and spherically anisotropic multi-inclusions are also introduced. The presented theories are useful for obtaining highly accurate solutions of desired accuracy when the constituent phases of the multi-inhomogeneous inclusion are made of functionally graded materials (FGMs).

  7. Fabrication, Characterization and Modeling of Functionally Graded Materials

    NASA Astrophysics Data System (ADS)

    Lee, Po-Hua

    In the past few decades, a number of theoretical and experimental studies for design, fabrication and performance analysis of solar panel systems (photovoltaic/thermal systems) have been documented. The existing literature shows that the use of solar energy provides a promising solution to alleviate the shortage of natural resources and the environmental pollution associated with electricity generation. A hybrid solar panel has been invented to integrate photovoltaic (PV) cells onto a substrate through a functionally graded material (FGM) with water tubes cast inside, through which water flow serves as both a heat sink and a solar heat collector. Due to the unique and graded material properties of FGMs, this novel design not only supplies efficient thermal harvest and electrical production, but also provides benefits such as structural integrity and material efficiency. In this work, a sedimentation method has been used to fabricate aluminum (Al) and high-density polyethylene (HDPE) FGMs. The size effect of aluminum powder on the material gradation along the depth direction is investigated. Aluminum powder or the mixture of Al and HDPE powder is thoroughly mixed and uniformly dispersed in ethanol and then subjected to sedimentation. During the sedimentation process, the concentration of Al and HDPE particles temporally and spatially changes in the depth direction due to the non-uniform motion of particles; this change further affects the effective viscosity of the suspension and thus changes the drag force of particles. A Stokes' law based model is developed to simulate the sedimentation process, demonstrate the effect of manufacturing parameters on sedimentation, and predict the graded microstructure of deposition in the depth direction. In order to improve the modeling for sedimentation behavior of particles, the Eshelby's equivalent inclusion method (EIM) is presented to determine the interaction between particles, which is not considered in a Stokes' law based model. This method is initially applied to study the case of one drop moving in a viscous fluid; the solution recovers the closed form classic solution when the drop is spherical. Moreover, this method is general and can be applied to the cases of different drop shapes and the interaction between multiple drops. The translation velocities of the drops depend on the relative position, the center-to-center distance of drops, the viscosity and size of drops. For the case of a pair of identical spherical drops, the present method using a linear approximation of the eigenstrain rate has provided a very close solution to the classic explicit solution. If a higher order of the polynomial form of the eigenstrain rate is used, one can expect a more accurate result. To meet the final goal of mass production of the aforementioned Al-HDPE FGM, a faster and more economical material manufacturing method is proposed through a vibration method. The particle segregation of larger aluminum particles embedded in the concentrated suspension of smaller high-density polyethylene is investigated under vibration with different frequencies and magnitudes. Altering experimental parameters including time and amplitude of vibration, the suspension exhibits different particle segregation patterns: uniform-like, graded and bi-layered. For material characterization, small cylinder films of Al-HDPE system FGM are obtained after the stages of dry, melt and solidification. Solar panel prototypes are fabricated and tested at different water flow rates and solar irradiation intensities. The temperature distribution in the solar panel is measured and simulated to evaluate the performance of the solar panel. Finite element simulation results are very consistent with the experimental data. The understanding of heat transfer in the hybrid solar panel prototypes gained through this study will provide a foundation for future solar panel design and optimization.

  8. Microfluidic Synthesis of Composite Cross-Gradient Materials for Investigating Cell–Biomaterial Interactions

    PubMed Central

    He, Jiankang; Du, Yanan; Guo, Yuqi; Hancock, Matthew J.; Wang, Ben; Shin, Hyeongho; Wu, Jinhui; Li, Dichen; Khademhosseini, Ali

    2010-01-01

    Combinatorial material synthesis is a powerful approach for creating composite material libraries for the high-throughput screening of cell–material interactions. Although current combinatorial screening platforms have been tremendously successful in identifying target (termed “hit”) materials from composite material libraries, new material synthesis approaches are needed to further optimize the concentrations and blending ratios of the component materials. Here we employed a microfluidic platform to rapidly synthesize composite materials containing cross-gradients of gelatin and chitosan for investigating cell–biomaterial interactions. The microfluidic synthesis of the cross-gradient was optimized experimentally and theoretically to produce quantitatively controllable variations in the concentrations and blending ratios of the two components. The anisotropic chemical compositions of the gelatin/chitosan cross-gradients were characterized by Fourier transform infrared spectrometry and X-ray photoelectron spectrometry. The three-dimensional (3D) porous gelatin/chitosan cross-gradient materials were shown to regulate the cellular morphology and proliferation of smooth muscle cells (SMCs) in a gradient-dependent manner. We envision that our microfluidic cross-gradient platform may accelerate the material development processes involved in a wide range of biomedical applications. PMID:20721897

  9. HIGH-TEMPERATURE SAFETY TESTING OF IRRADIATED AGR-1 TRISO FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stempien, John D.; Demkowicz, Paul A.; Reber, Edward L.

    High-Temperature Safety Testing of Irradiated AGR-1 TRISO Fuel John D. Stempien, Paul A. Demkowicz, Edward L. Reber, and Cad L. Christensen Idaho National Laboratory, P.O. Box 1625 Idaho Falls, ID 83415, USA Corresponding Author: john.stempien@inl.gov, +1-208-526-8410 Two new safety tests of irradiated tristructural isotropic (TRISO) coated particle fuel have been completed in the Fuel Accident Condition Simulator (FACS) furnace at the Idaho National Laboratory (INL). In the first test, three fuel compacts from the first Advanced Gas Reactor irradiation experiment (AGR-1) were simultaneously heated in the FACS furnace. Prior to safety testing, each compact was irradiated in the Advanced Testmore » Reactor to a burnup of approximately 15 % fissions per initial metal atom (FIMA), a fast fluence of 3×1025 n/m2 (E > 0.18 MeV), and a time-average volume-average (TAVA) irradiation temperature of about 1020 °C. In order to simulate a core-conduction cool-down event, a temperature-versus-time profile having a peak temperature of 1700 °C was programmed into the FACS furnace controllers. Gaseous fission products (i.e., Kr-85) were carried to the Fission Gas Monitoring System (FGMS) by a helium sweep gas and captured in cold traps featuring online gamma counting. By the end of the test, a total of 3.9% of an average particle’s inventory of Kr-85 was detected in the FGMS traps. Such a low Kr-85 activity indicates that no TRISO failures (failure of all three TRISO layers) occurred during the test. If released from the compacts, condensable fission products (e.g., Ag-110m, Cs-134, Cs-137, Eu-154, Eu-155, and Sr-90) were collected on condensation plates fitted to the end of the cold finger in the FACS furnace. These condensation plates were then analyzed for fission products. In the second test, five loose UCO fuel kernels, obtained from deconsolidated particles from an irradiated AGR-1 compact, were heated in the FACS furnace to a peak temperature of 1600 °C. This test had two primary goals. First, the test was intended to assess the retention of fission products in loose kernels without the effects of the other TRISO layers (buffer, IPyC, SiC, and OPyC) or the graphitic matrix material comprising the compact. Second, this test served as an evaluation of the FACS fission product condensation plate collection efficiency.« less

  10. 3D Printing of Materials with Tunable Failure via Bioinspired Mechanical Gradients.

    PubMed

    Kokkinis, Dimitri; Bouville, Florian; Studart, André R

    2018-05-01

    Mechanical gradients are useful to reduce strain mismatches in heterogeneous materials and thus prevent premature failure of devices in a wide range of applications. While complex graded designs are a hallmark of biological materials, gradients in manmade materials are often limited to 1D profiles due to the lack of adequate fabrication tools. Here, a multimaterial 3D-printing platform is developed to fabricate elastomer gradients spanning three orders of magnitude in elastic modulus and used to investigate the role of various bioinspired gradient designs on the local and global mechanical behavior of synthetic materials. The digital image correlation data and finite element modeling indicate that gradients can be effectively used to manipulate the stress state and thus circumvent the weakening effect of defect-rich interfaces or program the failure behavior of heterogeneous materials. Implementing this concept in materials with bioinspired designs can potentially lead to defect-tolerant structures and to materials whose tunable failure facilitates repair of biomedical implants, stretchable electronics, or soft robotics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Strength gradient enhances fatigue resistance of steels

    NASA Astrophysics Data System (ADS)

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-02-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility.

  12. Strength gradient enhances fatigue resistance of steels

    PubMed Central

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-01-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility. PMID:26907708

  13. Microstructure-property relationships and constitutive response of plastically graded case hardened steels

    NASA Astrophysics Data System (ADS)

    Klecka, Michael A.

    Case hardened materials, popularly used in many demanding engineering applications such as bearings, gears, and wear/impact surfaces, have high surface hardness and a gradient in material properties (hardness, yield strength, etc.) as a function of depth; therefore, they behave as plastically graded materials. In the current study, two different commercially available case carburized steels along with two through hardened steels are characterized to obtain relationships among the volume fraction of subsurface carbides, indentation hardness, elastic modulus, and yield strength as a function of depth. A variety of methods including microindentation, nanoindentation, ultrasonic measurements, compression testing, rule of mixtures, and upper and lower bound models are used to determine the relationships for elastic modulus and compare the experimental results with model predictions. In addition, the morphology, composition, and properties of the carbide particles are also determined. The gradient in hardness with depth in graded materials is commonly determined using microindentation on the cross-section of the material which contains the gradation in microstructure or composition. In the current study, a novel method is proposed to predict the hardness gradient profile using solely surface indentations at a range of loads. The method does not require the graded material to be sectioned, and has practical utility in the surface heat-treatment industry. For a material with a decreasing gradient in hardness, higher indent loads result in a lower measured hardness due to the influence of the softer subsurface layers. A power-law model is presented which relates the measured surface indentation hardness under increasing load to the subsurface gradient in hardness. A coordinated experimental and numerical study is presented to extract the constitutive response of graded materials, utilizing relationships between hardness, plastic deformation, and strain hardening response. The average plastic strain induced by an indent is shown to be an effective measure of the representative plastic strain, which is used in order to relate hardness to yield strength in both virgin and plastically deformed materials. It is shown that the two carburized steels contain gradients in yield strength, but constant strain hardening exponent with depth. The resulting model of material behavior is used to characterize the influence of specific gradients in material properties on the surface indentation behavior under increasing indentation loads. It is also shown that the response of the material is not greatly influenced by strain hardening exponent, while a gradient in strain hardening ability only has minimal impact. Gradients in elastic properties are also shown to have negligible influence for a fixed gradient in hardness. The depth of subsurface plastic deformation is shown to increase with sharper gradients in hardness, but is not altered by gradients in elastic properties. The proposed approach is not specific to case hardened materials and can be used to determine the subsurface hardness gradient for any graded material.

  14. Non-invasive cortisol measurements as indicators of physiological stress responses in guinea pigs

    PubMed Central

    Pschernig, Elisabeth; Wallner, Bernard; Millesi, Eva

    2016-01-01

    Non-invasive measurements of glucocorticoid (GC) concentrations, including cortisol and corticosterone, serve as reliable indicators of adrenocortical activities and physiological stress loads in a variety of species. As an alternative to invasive analyses based on plasma, GC concentrations in saliva still represent single-point-of-time measurements, suitable for studying short-term or acute stress responses, whereas fecal GC metabolites (FGMs) reflect overall stress loads and stress responses after a species-specific time frame in the long-term. In our study species, the domestic guinea pig, GC measurements are commonly used to indicate stress responses to different environmental conditions, but the biological relevance of non-invasive measurements is widely unknown. We therefore established an experimental protocol based on the animals’ natural stress responses to different environmental conditions and compared GC levels in plasma, saliva, and fecal samples during non-stressful social isolations and stressful two-hour social confrontations with unfamiliar individuals. Plasma and saliva cortisol concentrations were significantly increased directly after the social confrontations, and plasma and saliva cortisol levels were strongly correlated. This demonstrates a high biological relevance of GC measurements in saliva. FGM levels measured 20 h afterwards, representing the reported mean gut passage time based on physiological validations, revealed that the overall stress load was not affected by the confrontations, but also no relations to plasma cortisol levels were detected. We therefore measured FGMs in two-hour intervals for 24 h after another social confrontation and detected significantly increased levels after four to twelve hours, reaching peak concentrations already after six hours. Our findings confirm that non-invasive GC measurements in guinea pigs are highly biologically relevant in indicating physiological stress responses compared to circulating levels in plasma in the short- and long-term. Our approach also underlines the importance of detailed investigations on how to use and interpret non-invasive measurements, including the determination of appropriate time points for sample collections. PMID:26839750

  15. Gradient Material Strategies for Hydrogel Optimization in Tissue Engineering Applications

    PubMed Central

    2018-01-01

    Although a number of combinatorial/high-throughput approaches have been developed for biomaterial hydrogel optimization, a gradient sample approach is particularly well suited to identify hydrogel property thresholds that alter cellular behavior in response to interacting with the hydrogel due to reduced variation in material preparation and the ability to screen biological response over a range instead of discrete samples each containing only one condition. This review highlights recent work on cell–hydrogel interactions using a gradient material sample approach. Fabrication strategies for composition, material and mechanical property, and bioactive signaling gradient hydrogels that can be used to examine cell–hydrogel interactions will be discussed. The effects of gradients in hydrogel samples on cellular adhesion, migration, proliferation, and differentiation will then be examined, providing an assessment of the current state of the field and the potential of wider use of the gradient sample approach to accelerate our understanding of matrices on cellular behavior. PMID:29485612

  16. Biomimetic Gradient Polymers with Enhanced Damping Capacities.

    PubMed

    Wang, Dong; Zhang, Huan; Guo, Jing; Cheng, Beichen; Cao, Yuan; Lu, Shengjun; Zhao, Ning; Xu, Jian

    2016-04-01

    Designing gradient structures, mimicking biological materials, such as pummelo peels and tendon, is a promising strategy for developing advanced materials with superior energy damping capacities. Here a facile and effective approach for fabricating polymers with composition gradients at millimeter length scale is presented. The gradient thiol-ene polymers (TEPs) are created by the use of density difference of ternary thiol-ene-ene precursors and the subsequent photo-crosslinking via thiol-ene reaction. The compositional gradients are analyzed via differential scanning calorimeter (DSC), compressive modulus testing, atomic force microscopy (AFM) indentation, and swelling measurements. In contrast to homogeneous TEPs networks, the resultant gradient polymer shows a broader effective damping temperature range combining with good mechanical properties. The present result provides an effective route toward high damping materials by the fabrication of gradient structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Modeling Issues and Results for Hydrogen Isotopes in NIF Materials

    NASA Astrophysics Data System (ADS)

    Grossman, Arthur A.; Doerner, R. P.; Luckhardt, S. C.; Seraydarian, R.; Sze, D.; Burnham, A.

    1998-11-01

    The TMAP4 (G. Longhurst, et al. INEL 1992) model of hydrogen isotope transport in solid materials includes a particle diffusion calculation with Fick's Law modified for Soret Effect (Thermal Diffusion or Thermomigration), coupled to heat transport calculations which are needed because of the strong temperature dependence of diffusivity. These TMAP4 calculations applied to NIF show that high temperatures approaching the melting point and strong thermal gradients of 10^6 K/cm are reached in the first micron of wall material during the SXR pulse. These strong thermal gradients can drive hydrogen isotope migration up or down the thermal gradient depending on the sign of the heat of transport (Soret coefficient) which depends on whether the material dissolves hydrogen endothermically or exothermically. Two candidates for NIF wall material-boron carbide and stainless steel are compared. Boron carbide dissolves hydrogen exothermically so it may drive Soret migration down the thermal gradient deeper into the material, although the thermal gradient is not as large and hydrogen is not as mobile as in stainless steel. Stainless steel dissolves hydrogen endothermically, with a negative Soret coefficient which can drive hydrogen up the thermal gradient and out of the wall.

  18. Enhanced protective role in materials with gradient structural orientations: Lessons from Nature.

    PubMed

    Liu, Zengqian; Zhu, Yankun; Jiao, Da; Weng, Zhaoyong; Zhang, Zhefeng; Ritchie, Robert O

    2016-10-15

    Living organisms are adept at resisting contact deformation and damage by assembling protective surfaces with spatially varied mechanical properties, i.e., by creating functionally graded materials. Such gradients, together with multiple length-scale hierarchical structures, represent the two prime characteristics of many biological materials to be translated into engineering design. Here, we examine one design motif from a variety of biological tissues and materials where site-specific mechanical properties are generated for enhanced protection by adopting gradients in structural orientation over multiple length-scales, without manipulation of composition or microstructural dimension. Quantitative correlations are established between the structural orientations and local mechanical properties, such as stiffness, strength and fracture resistance; based on such gradients, the underlying mechanisms for the enhanced protective role of these materials are clarified. Theoretical analysis is presented and corroborated through numerical simulations of the indentation behavior of composites with distinct orientations. The design strategy of such bioinspired gradients is outlined in terms of the geometry of constituents. This study may offer a feasible approach towards generating functionally graded mechanical properties in synthetic materials for improved contact damage resistance. Living organisms are adept at resisting contact damage by assembling protective surfaces with spatially varied mechanical properties, i.e., by creating functionally-graded materials. Such gradients, together with multiple length-scale hierarchical structures, represent the prime characteristics of many biological materials. Here, we examine one design motif from a variety of biological tissues where site-specific mechanical properties are generated for enhanced protection by adopting gradients in structural orientation at multiple length-scales, without changes in composition or microstructural dimension. The design strategy of such bioinspired gradients is outlined in terms of the geometry of constituents. This study may offer a feasible approach towards generating functionally-graded mechanical properties in synthetic materials for improved damage resistance. Published by Elsevier Ltd.

  19. High energy X-ray diffraction study of a dental ceramics–titanium functional gradient material prepared by field assisted sintering technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witte, K., E-mail: kerstin.witte@uni-rostock.de; Bodnar, W.; Schell, N.

    A functional gradient material with eleven layers composed of a dental ceramics and titanium was successfully consolidated using field assisted sintering technique in a two-step sintering process. High energy X-ray diffraction studies on the gradient were performed at High Energy Material Science beamline at Desy in Hamburg. Phase composition, crystal unit edges and lattice mismatch along the gradient were determined applying Rietveld refinement procedure. Phase analysis revealed that the main crystalline phase present in the gradient is α-Ti. Crystallinity increases stepwisely along the gradient with a decreasing increment between every next layer, following rather the weight fraction of titanium. Themore » crystal unit edge a of titanium remains approximately constant with a value of 2.9686(1) Å, while c is reduced with increasing amount of titanium. In the layer with pure titanium the crystal unit edge c is constant with a value of 4.7174(2) Å. The lattice mismatch leading to an internal stress was calculated over the whole gradient. It was found that the maximal internal stress in titanium embedded in the studied gradient is significantly smaller than its yield strength, which implies that the structure of titanium along the whole gradient is mechanically stable. - Highlights: • High energy XRD studies of dental ceramics–Ti gradient material consolidated by FAST. • Phase composition, crystallinity and lattice parameters are determined. • Crystallinity increases stepwisely along the gradient following weight fraction of Ti. • Lattice mismatch leading to internal stress is calculated over the whole gradient. • Internal stress in α-Ti embedded in the gradient is smaller than its yield strength.« less

  20. Protein gradient films of fibroin and gelatine.

    PubMed

    Claussen, Kai U; Lintz, Eileen S; Giesa, Reiner; Schmidt, Hans-Werner; Scheibel, Thomas

    2013-10-01

    Gradients are a natural design principle in biological systems that are used to diminish stress concentration where materials of differing mechanical properties connect. An interesting example of a natural gradient material is byssus, which anchors mussels to rocks and other hard substrata. Building upon previous work with synthetic polymers and inspired by byssal threads, protein gradient films are cast using glycerine-plasticized gelatine and fibroin exhibiting a highly reproducible and smooth mechanical gradient, which encompasses a large range of modulus from 160 to 550 MPa. The reproducible production of biocompatible gradient films represents a first step towards medical applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fabrication of microscale materials with programmable composition gradients.

    PubMed

    Laval, Cédric; Bouchaudy, Anne; Salmon, Jean-Baptiste

    2016-04-07

    We present an original microfluidic technique coupling pervaporation and the use of Quake valves to fabricate microscale materials (∼10 × 100 μm(2) × 1 cm) with composition gradients along their longest dimension. Our device exploits pervaporation of water through a thin poly(dimethylsiloxane) (PDMS) membrane to continuously pump solutions (or dispersions) contained in different reservoirs connected to a microfluidic channel. This pervaporation-induced flow concentrates solutes (or particles) at the tip of the channel up to the formation of a dense material. The latter invades the channel as it is constantly enriched by an incoming flux of solutes/particles. Upstream Quake valves are used to select which reservoir is connected to the pervaporation channel and thus which solution (or dispersion) enriches the material during its growth. The microfluidic configuration of the pervaporation process is used to impose controlled growth along the channel thus enabling one to program spatial composition gradients using appropriate actuations of the valves. We demonstrate the possibilities offered by our technique through the fabrication of dense assemblies of nanoparticles and polymer composites with programmed gradients of fluorescent dyes. We also address the key issue of the spatial resolution of our gradients and we show that well-defined spatial modulations down to ≈50 μm can be obtained within colloidal materials, whereas gradients within polymer materials are resolved on length scales down to ≈1 mm due to molecular diffusion.

  2. An analytical solution for transient flow of Bingham viscoplastic materials in rock fractures

    USGS Publications Warehouse

    Amadei, B.; Savage, W.Z.

    2001-01-01

    We present below an analytical solution to model the one-dimensional transient flow of a Bingham viscoplastic material in a fracture with parallel walls (smooth or rough) that is subjected to an applied pressure gradient. The solution models the acceleration and the deceleration of the material as the pressure gradient changes with time. Two cases are considered: A pressure gradient applied over a finite time interval and an applied pressure gradient that is constant over time. The solution is expressed in dimensionless form and can therefore be used for a wide range of Bingham viscoplastic materials. The solution is also capable of capturing the transition that takes place in a fracture between viscoplastic flow and rigid plug flow. Also, it shows the development of a rigid central layer in fractures, the extent of which depends on the fluid properties (viscosity and yield stress), the magnitude of the pressure gradient, and the fracture aperture and surface roughness. Finally, it is shown that when a pressure gradient is applied and kept constant, the solution for the fracture flow rate converges over time to a steady-state solution that can be defined as a modified cubic law. In this case, the fracture transmissivity is found to be a non-linear function of the head gradient. This solution provides a tool for a better understanding of the flow of Bingham materials in rock fractures, interfaces, and cracks. ?? 2001 Elsevier Science Ltd. All rights reserved.

  3. Dynamic response of porous functionally graded material nanobeams subjected to moving nanoparticle based on nonlocal strain gradient theory

    NASA Astrophysics Data System (ADS)

    Barati, Mohammad Reza

    2017-11-01

    Up to now, nonlocal strain gradient theory (NSGT) is broadly applied to examine free vibration, static bending and buckling of nanobeams. This theory captures nonlocal stress field effects together with the microstructure-dependent strain gradient effects. In this study, forced vibrations of NSGT nanobeams on elastic substrate subjected to moving loads are examined. The nanobeam is made of functionally graded material (FGM) with even and uneven porosity distributions inside the material structure. The graded material properties with porosities are described by a modified power-law model. Dynamic deflection of the nanobeam is obtained via Galerkin and inverse Laplace transform methods. The importance of nonlocal parameter, strain gradient parameter, moving load velocity, porosity volume fraction, type of porosity distribution and elastic foundation on forced vibration behavior of nanobeams are discussed.

  4. Material and shape perception based on two types of intensity gradient information

    PubMed Central

    Nishida, Shin'ya

    2018-01-01

    Visual estimation of the material and shape of an object from a single image includes a hard ill-posed computational problem. However, in our daily life we feel we can estimate both reasonably well. The neural computation underlying this ability remains poorly understood. Here we propose that the human visual system uses different aspects of object images to separately estimate the contributions of the material and shape. Specifically, material perception relies mainly on the intensity gradient magnitude information, while shape perception relies mainly on the intensity gradient order information. A clue to this hypothesis was provided by the observation that luminance-histogram manipulation, which changes luminance gradient magnitudes but not the luminance-order map, effectively alters the material appearance but not the shape of an object. In agreement with this observation, we found that the simulated physical material changes do not significantly affect the intensity order information. A series of psychophysical experiments further indicate that human surface shape perception is robust against intensity manipulations provided they do not disturb the intensity order information. In addition, we show that the two types of gradient information can be utilized for the discrimination of albedo changes from highlights. These findings suggest that the visual system relies on these diagnostic image features to estimate physical properties in a distal world. PMID:29702644

  5. Field-gradient partitioning for fracture and frictional contact in the material point method: Field-gradient partitioning for fracture and frictional contact in the material point method [Fracture and frictional contact in material point method using damage-field gradients for velocity-field partitioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homel, Michael A.; Herbold, Eric B.

    Contact and fracture in the material point method require grid-scale enrichment or partitioning of material into distinct velocity fields to allow for displacement or velocity discontinuities at a material interface. We present a new method which a kernel-based damage field is constructed from the particle data. The gradient of this field is used to dynamically repartition the material into contact pairs at each node. Our approach avoids the need to construct and evolve explicit cracks or contact surfaces and is therefore well suited to problems involving complex 3-D fracture with crack branching and coalescence. A straightforward extension of this approachmore » permits frictional ‘self-contact’ between surfaces that are initially part of a single velocity field, enabling more accurate simulation of granular flow, porous compaction, fragmentation, and comminution of brittle materials. Finally, numerical simulations of self contact and dynamic crack propagation are presented to demonstrate the accuracy of the approach.« less

  6. Field-gradient partitioning for fracture and frictional contact in the material point method: Field-gradient partitioning for fracture and frictional contact in the material point method [Fracture and frictional contact in material point method using damage-field gradients for velocity-field partitioning

    DOE PAGES

    Homel, Michael A.; Herbold, Eric B.

    2016-08-15

    Contact and fracture in the material point method require grid-scale enrichment or partitioning of material into distinct velocity fields to allow for displacement or velocity discontinuities at a material interface. We present a new method which a kernel-based damage field is constructed from the particle data. The gradient of this field is used to dynamically repartition the material into contact pairs at each node. Our approach avoids the need to construct and evolve explicit cracks or contact surfaces and is therefore well suited to problems involving complex 3-D fracture with crack branching and coalescence. A straightforward extension of this approachmore » permits frictional ‘self-contact’ between surfaces that are initially part of a single velocity field, enabling more accurate simulation of granular flow, porous compaction, fragmentation, and comminution of brittle materials. Finally, numerical simulations of self contact and dynamic crack propagation are presented to demonstrate the accuracy of the approach.« less

  7. Gradient isolator for flow field of fuel cell assembly

    DOEpatents

    Ernst, W.D.

    1999-06-15

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions. 4 figs.

  8. Gradient isolator for flow field of fuel cell assembly

    DOEpatents

    Ernst, William D.

    1999-01-01

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions.

  9. Observation of Enhanced Hole Extraction in Br Concentration Gradient Perovskite Materials.

    PubMed

    Kim, Min-Cheol; Kim, Byeong Jo; Son, Dae-Yong; Park, Nam-Gyu; Jung, Hyun Suk; Choi, Mansoo

    2016-09-14

    Enhancing hole extraction inside the perovskite layer is the key factor for boosting photovoltaic performance. Realization of halide concentration gradient perovskite materials has been expected to exhibit rapid hole extraction due to the precise bandgap tuning. Moreover, a formation of Br-rich region on the tri-iodide perovskite layer is expected to enhance moisture stability without a loss of current density. However, conventional synthetic techniques of perovskite materials such as the solution process have not achieved the realization of halide concentration gradient perovskite materials. In this report, we demonstrate the fabrication of Br concentration gradient mixed halide perovskite materials using a novel and facile halide conversion method based on vaporized hydrobromic acid. Accelerated hole extraction and enhanced lifetime due to Br gradient was verified by observing photoluminescence properties. Through the combination of secondary ion mass spectroscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopy analysis, the diffusion behavior of Br ions in perovskite materials was investigated. The Br-gradient was found to be eventually converted into a homogeneous mixed halide layer after undergoing an intermixing process. Br-substituted perovskite solar cells exhibited a power conversion efficiency of 18.94% due to an increase in open circuit voltage from 1.08 to 1.11 V and an advance in fill-factor from 0.71 to 0.74. Long-term stability was also dramatically enhanced after the conversion process, i.e., the power conversion efficiency of the post-treated device has remained over 97% of the initial value under high humid conditions (40-90%) without any encapsulation for 4 weeks.

  10. Multi-functional materials by powder processing for a thermal protection system with self-cooling capability: Perspirable skin

    NASA Astrophysics Data System (ADS)

    Sun, Li

    Aerodynamic heating generated by the friction between the atmosphere and the space vehicle's surface at reentry can enhance the temperature on the surface as high as 1700°C. A Thermal Protection System (TPS) is needed to inhibit the heat entering into the vehicle. Presently, the completely passive thermal protection is used for TPS. The thermal ablation/erosion and oxidization reaction of the current TPS is the major threat to the safety of the space vehicle. Therefore, a new design for TPS with actively self-cooling capability was proposed by bio-mimicking the perspiration of the human body, henceforth called Perspirable skin. The design of Perspirable Skin consists of core material shrink-fitted into a skin panel such as Reinforced Carbon-Carbon (RCC) Composite. The core material contains a very small Coefficient of Thermal Expansion (CTE) compared to the panel material. As temperature increases, the gap between the core and the skin are produced due to the CTE difference. Compressed gas on board the space vehicle will blow out from the gap once the surface temperature reaches a critical value. The cold gas flows over the surface and mixes with the atmospheric air to compensate for the frictional heat. With Perspirable Skin, the highest temperature on the surface is expected to decrease, and we assumed it to be around half of the present temperature. This dissertation focuses on the selection of the core materials and their manufacturing by powder processing. Based on a series of experiments, several results were obtained: (1) the effect of powder mixing on the compaction capability and sintering capability was determined; (2) a flat 3-layered Al 2O3/ZrO2 Functionally Graded Material (FGM) without cracks was fabricated; (3) the factors contributing to the cracks in the multi-layered materials were investigated; (4) an isotropic negative thermal expansion material, ZrW2O8, as well as its composites with ZrO2 were processed by in-situ reaction of WO3 and ZrO2; (5) several CTE prediction models on composites containing ZrW2O 8 were studied and proposed as a better scheme for applying the contiguity of phase; (6) a novel processing technique to produce ZrW2O 8-ZrO2 continuous FGMs was developed; and (7) the thermal and mechanical properties of the various materials were measured. Finally, using finite element analysis (FEA), the complete design of Perspirable Skin has been accomplished.

  11. Robotic Tactile Sensors Fabricated from a Monolithic Silicon Integrated Circuit and a Piezoelectric Polyvinylidene Fluoride Thin Film

    DTIC Science & Technology

    1991-12-01

    gradient will be presented. -Finally, a brief discussion of various piezoelectric materials will be presented, including Rochelle salt, quartz, barium...consideringr a microscopic-level dipole arrangement. The strain induced by ain external force or a tempem at ure gradient changes hie orientation of the...pyroelectric materials, an externally applied temperature gradient can be related to the resulting polarization by a l)yroelectric * constant.1 p (130

  12. Fabrication and microstructures of functional gradient SiBCN–Nb composite by hot pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Min, E-mail: lcxsunmin@163.com; Fu, Ruoyu; Chen, Jun

    2016-04-15

    A functional gradient material with five layers composed of SiBCN ceramic and niobium (Nb) was prepared successfully by hot pressing. The phase composition, morphology features and microstructures were investigated in each layer of the gradient material. The Nb-containing compounds involving NbC, Nb{sub 6}C{sub 5}, Nb{sub 4}C{sub 3}, Nb{sub 5}Si{sub 3} and NbN increase with the volume fraction of Nb increasing in the sub-layer. They are randomly scattered (≤ 25 vol.% Nb), then strip-like, and finally distribute continuously (≥ 75 vol.% Nb). The size of BN(C) and SiC grains in Nb-containing layers is larger than in 100% SiBCN layer due tomore » the loss of the capsule-like structures. No distinct interfaces form in the transition regions indicating the gradual changes in phase composition and microstructures. - Highlights: • A functional gradient SiBCN–Nb material was prepared successfully by hot pressing. • Phase composition, morphology features and microstructures were investigated. • Thermodynamic calculation was used to aid in the phase analysis. • No distinct interfaces form typical of the functional gradient material.« less

  13. Optimal Design of Gradient Materials and Bi-Level Optimization of Topology Using Targets (BOTT)

    NASA Astrophysics Data System (ADS)

    Garland, Anthony

    The objective of this research is to understand the fundamental relationships necessary to develop a method to optimize both the topology and the internal gradient material distribution of a single object while meeting constraints and conflicting objectives. Functionally gradient material (FGM) objects possess continuous varying material properties throughout the object, and they allow an engineer to tailor individual regions of an object to have specific mechanical properties by locally modifying the internal material composition. A variety of techniques exists for topology optimization, and several methods exist for FGM optimization, but combining the two together is difficult. Understanding the relationship between topology and material gradient optimization enables the selection of an appropriate model and the development of algorithms, which allow engineers to design high-performance parts that better meet design objectives than optimized homogeneous material objects. For this research effort, topology optimization means finding the optimal connected structure with an optimal shape. FGM optimization means finding the optimal macroscopic material properties within an object. Tailoring the material constitutive matrix as a function of position results in gradient properties. Once, the target macroscopic properties are known, a mesostructure or a particular material nanostructure can be found which gives the target material properties at each macroscopic point. This research demonstrates that topology and gradient materials can both be optimized together for a single part. The algorithms use a discretized model of the domain and gradient based optimization algorithms. In addition, when considering two conflicting objectives the algorithms in this research generate clear 'features' within a single part. This tailoring of material properties within different areas of a single part (automated design of 'features') using computational design tools is a novel benefit of gradient material designs. A macroscopic gradient can be achieved by varying the microstructure or the mesostructures of an object. The mesostructure interpretation allows for more design freedom since the mesostructures can be tuned to have non-isotropic material properties. A new algorithm called Bi-level Optimization of Topology using Targets (BOTT) seeks to find the best distribution of mesostructure designs throughout a single object in order to minimize an objective value. On the macro level, the BOTT algorithm optimizes the macro topology and gradient material properties within the object. The BOTT algorithm optimizes the material gradient by finding the best constitutive matrix at each location with the object. In order to enhance the likelihood that a mesostructure can be generated with the same equivalent constitutive matrix, the variability of the constitutive matrix is constrained to be an orthotropic material. The stiffness in the X and Y directions (of the base coordinate system) can change in addition to rotating the orthotropic material to align with the loading at each region. Second, the BOTT algorithm designs mesostructures with macroscopic properties equal to the target properties found in step one while at the same time the algorithm seeks to minimize material usage in each mesostructure. The mesostructure algorithm maximizes the strain energy of the mesostructures unit cell when a pseudo strain is applied to the cell. A set of experiments reveals the fundamental relationship between target cell density and the strain (or pseudo strain) applied to a unit cell and the output effective properties of the mesostructure. At low density, a few mesostructure unit cell design are possible, while at higher density the mesostructure unit cell designs have many possibilities. Therefore, at low densities the effective properties of the mesostructure are a step function of the applied pseudo strain. At high densities, the effective properties of the mesostructure are continuous function of the applied pseudo strain. Finally, the macro and mesostructure designs are coordinated so that the macro and meso levels agree on the material properties at each macro region. In addition, a coordination effort seeks to coordinate the boundaries of adjacent mesostructure designs so that the macro load path is transmitted from one mesostructure design to its neighbors. The BOTT algorithm has several advantages over existing algorithms within the literature. First, the BOTT algorithm significantly reduces the computational power required to run the algorithm. Second, the BOTT algorithm indirectly enforces a minimum mesostructure density constraint which increases the manufacturability of the final design. Third, the BOTT algorithm seeks to transfer the load from one mesostructure to its neighbors by coordinating the boundaries of adjacent mesostructure designs. However, the BOTT algorithm can still be improved since it may have difficulty converging due to the step function nature of the mesostructure design problem at low density.

  14. High-gradient permanent magnet apparatus and its use in particle collection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Mengdawn; Ludtka, Gerard Michael; Avens, Larry R.

    A high-gradient permanent magnet apparatus for capturing paramagnetic particles, the apparatus comprising: (i) at least two permanent magnets positioned with like poles facing each other; (ii) a ferromagnetic spacer separating the like poles; and (iii) a magnetizable porous filling material in close proximity to the at least two permanent magnets. Also described is a method for capturing paramagnetic particles in which a gas or liquid sample containing the paramagnetic particles is contacted with the high-gradient permanent magnet apparatus described above; wherein, during the contacting step, the gas or liquid sample contacts the magnetizable porous filling material of the high-gradient permanentmore » magnet apparatus, and at least a portion of the paramagnetic particles in the gas or liquid sample is captured on the magnetizable porous filling material.« less

  15. Effect of the laser heat treatment on the formation of the gradient structures in alloys based on Fe - Cr - Ni system

    NASA Astrophysics Data System (ADS)

    Andreev, A. O.; Bykovskiy, D. P.; Osintsev, A. V.; Petrovskiy, V. N.; Ryashko, I. I.; Blinova, E. N.; Libman, M. A.; Glezer, A. M.

    2017-12-01

    The possibility of producing gradient materials, i.e. materials with pre-set distribution of areas having fundamentally different physical and mechanical characteristics, with the help of laser heat treatment was investigated. Using as an example austenitic-martensitic alloys of iron-chromium-nickel, subjected to cold plastic deformation led to formation of martensite, we show that using laser at the temperature higher than the temperature of reverse martensite transformation leads to the formation of areas of high-strength austenite having predetermined form inside the martensite matrix. Influence of austenite areas geometry on mechanical properties of gradient material was studied.

  16. Preparation and Ablating Behavior of FGM used in a Heat Flux Rocket Engine

    NASA Astrophysics Data System (ADS)

    He, Xiaodong; Han, Jiecai; Zhang, Xinghong

    2002-01-01

    Functionally Graded Material (FGM) is a new kind of nonhomogeneous materials, which composition varies gradually and continuously from metals to ceramics, thus excellence of both ceramic and metal is brought fully into play. The impetus for the development of FGM was to make thermal barrier materials for space shuttles and structure such as combustion chamber, gas vane, air vane, nose cone, fuel valve sheets and piston crown. There are several main techniques for making FGMs including chemical vapor deposition (CVD), powder metallurgy, plasma spraying and self-propagating high temperate synthesis (SHS). SHS Technology is the process by which condensed phases are produced by self - sustaining exothermic chemical reaction. Demonstrated advantages of SHS as a method for the preparation of materials include higher purity of the products, low energy requirements, and the relative simplicity of the process. SHS is particularly well suited to fabricating FGM. Due to the rapidity of the combustion reaction, the initial arrangement of the constituent in the green body is unchanged during combustion. In this paper, TiB2-Cu FGM and homogeneous cermets have been prepared by combing forced compaction with SHS. The experimental results show that process parameters significantly influence the combustion synthesis procedure of Ti-B-Cu system. Optimal process parameters have been gained for preparing TiB2-Cu FGM and cermets. TiB2-Cu FGM by SHS has a continuous distribution in microstructure along its thickness. The macroscopic interface of ceramic/metal joint is elemented. Mechanical properties of TiB2-Cu cermets were investigated at room and high temperature. The thermal stress of TiC-Ni FGM prepared by SHS are simulated at working condition, as well as comparing with a layered TiB2-Cu Non- FGM. Obviously, the TiB2-Cu FGM has the function of distortion and thermal stress relation. TiB2-Cu FGM was tested in the limited wind tunnel simulating the real condition of the heat flux rocket engine. As a result, TiB2-Cu FGM showed excellent resistant ablating properties. There is only a little loss of the mass after heated for 40 seconds in the wind tunnel. Meanwhile no cracks and breakup appeared in the FGM under the sharp thermal shock condition. Key words: functionally graded materials, combustion synthesis, ablation, thermal shock, thermal stress

  17. Gradient Plasticity Model and its Implementation into MARMOT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, Erin I.; Li, Dongsheng; Zbib, Hussein M.

    2013-08-01

    The influence of strain gradient on deformation behavior of nuclear structural materials, such as boby centered cubic (bcc) iron alloys has been investigated. We have developed and implemented a dislocation based strain gradient crystal plasticity material model. A mesoscale crystal plasticity model for inelastic deformation of metallic material, bcc steel, has been developed and implemented numerically. Continuum Dislocation Dynamics (CDD) with a novel constitutive law based on dislocation density evolution mechanisms was developed to investigate the deformation behaviors of single crystals, as well as polycrystalline materials by coupling CDD and crystal plasticity (CP). The dislocation density evolution law in thismore » model is mechanism-based, with parameters measured from experiments or simulated with lower-length scale models, not an empirical law with parameters back-fitted from the flow curves.« less

  18. Lateral Temperature-Gradient Method for High-Throughput Characterization of Material Processing by Millisecond Laser Annealing.

    PubMed

    Bell, Robert T; Jacobs, Alan G; Sorg, Victoria C; Jung, Byungki; Hill, Megan O; Treml, Benjamin E; Thompson, Michael O

    2016-09-12

    A high-throughput method for characterizing the temperature dependence of material properties following microsecond to millisecond thermal annealing, exploiting the temperature gradients created by a lateral gradient laser spike anneal (lgLSA), is presented. Laser scans generate spatial thermal gradients of up to 5 °C/μm with peak temperatures ranging from ambient to in excess of 1400 °C, limited only by laser power and materials thermal limits. Discrete spatial property measurements across the temperature gradient are then equivalent to independent measurements after varying temperature anneals. Accurate temperature calibrations, essential to quantitative analysis, are critical and methods for both peak temperature and spatial/temporal temperature profile characterization are presented. These include absolute temperature calibrations based on melting and thermal decomposition, and time-resolved profiles measured using platinum thermistors. A variety of spatially resolved measurement probes, ranging from point-like continuous profiling to large area sampling, are discussed. Examples from annealing of III-V semiconductors, CdSe quantum dots, low-κ dielectrics, and block copolymers are included to demonstrate the flexibility, high throughput, and precision of this technique.

  19. Representing Matrix Cracks Through Decomposition of the Deformation Gradient Tensor in Continuum Damage Mechanics Methods

    NASA Technical Reports Server (NTRS)

    Leone, Frank A., Jr.

    2015-01-01

    A method is presented to represent the large-deformation kinematics of intraply matrix cracks and delaminations in continuum damage mechanics (CDM) constitutive material models. The method involves the additive decomposition of the deformation gradient tensor into 'crack' and 'bulk material' components. The response of the intact bulk material is represented by a reduced deformation gradient tensor, and the opening of an embedded cohesive interface is represented by a normalized cohesive displacement-jump vector. The rotation of the embedded interface is tracked as the material deforms and as the crack opens. The distribution of the total local deformation between the bulk material and the cohesive interface components is determined by minimizing the difference between the cohesive stress and the bulk material stress projected onto the cohesive interface. The improvements to the accuracy of CDM models that incorporate the presented method over existing approaches are demonstrated for a single element subjected to simple shear deformation and for a finite element model of a unidirectional open-hole tension specimen. The material model is implemented as a VUMAT user subroutine for the Abaqus/Explicit finite element software. The presented deformation gradient decomposition method reduces the artificial load transfer across matrix cracks subjected to large shearing deformations, and avoids the spurious secondary failure modes that often occur in analyses based on conventional progressive damage models.

  20. Fabrication of a porous material with a porosity gradient by a pulsed electric current sintering process

    NASA Astrophysics Data System (ADS)

    Suk, Myung-Jin; Choi, Sung-II; Kim, Ji-Soon; Kim, Young Do; Kwon, Young-Soon

    2003-12-01

    A porous structure with a porosity gradient can be applied to the preparation of continuous FGM, where liquid or chemical vapor of the second phase is infiltrated into the graded pores. It also has applications in skeletal implant materials and ultrafiltration media. An attempt was made to fabricate a porous material with a porosity gradient by means of a pulsed electric current sintering (PECS) process. The present work describes not only the measured value of the temperature difference between the upper and lower part of the specimen, which brings about a gradual change in pore distribution, but also the sintering characteristics of the porous structure obtained by the pressureless PECS process.

  1. Separation of cells from the rat anterior pituitary gland

    NASA Technical Reports Server (NTRS)

    Hymer, Wesley C.; Hatfield, J. Michael

    1983-01-01

    Various techniques for separating the hormone-producing cell types from the rat anterior pituitary gland are examined. The purity, viability, and responsiveness of the separated cells depend on the physiological state of the donor, the tissue dissociation procedures, the staining technique used for identification of cell type, and the cell separation technique. The chamber-gradient setup and operation, the characteristics of the gradient materials, and the separated cell analysis of velocity sedimentation techniques (in particular Staput and Celsep) are described. Consideration is given to the various types of materials used in density gradient centrifugation and the operation of a gradient generating device. The use of electrophoresis to separate rat pituitary cells is discussed.

  2. Spatial gradient tuning in metamaterials

    NASA Astrophysics Data System (ADS)

    Driscoll, Tom; Goldflam, Michael; Jokerst, Nan; Basov, Dimitri; Smith, David

    2011-03-01

    Gradient Index (GRIN) metamaterials have been used to create devices inspired by, but often surpassing the potential of, conventional GRIN optics. The unit-cell nature of metamaterials presents the opportunity to exert much greater control over spatial gradients than is possible in natural materials. This is true not only during the design phase but also offers the potential for real-time reconfiguration of the metamaterial gradient. This ability fits nicely into the picture of transformation-optics, in which spatial gradients can enable an impressive suite of innovative devices. We discuss methods to exert control over metamaterial response, focusing on our recent demonstrations using Vanadium Dioxide. We give special attention to role of memristance and mem-capacitance observed in Vanadium Dioxide, which simplify the demands of stimuli and addressing, as well as intersecting metamaterials with the field of memory-materials.

  3. Designing optimal nanofocusing with a gradient hyperlens

    NASA Astrophysics Data System (ADS)

    Shen, Lian; Prokopeva, Ludmila J.; Chen, Hongsheng; Kildishev, Alexander V.

    2017-11-01

    We report the design of a high-throughput gradient hyperbolic lenslet built with real-life materials and capable of focusing a beam into a deep sub-wavelength spot of λ/23. This efficient design is achieved through high-order transformation optics and circular effective-medium theory (CEMT), which are used to engineer the radially varying anisotropic artificial material based on the thin alternating cylindrical metal and dielectric layers. The radial gradient of the effective anisotropic optical constants allows for matching the impedances at the input and output interfaces, drastically improving the throughput of the lenslet. However, it is the use of the zeroth-order CEMT that enables the practical realization of a gradient hyperlens with realistic materials. To illustrate the importance of using the CEMT versus the conventional planar effective-medium theory (PEMT) for cylindrical anisotropic systems, such as our hyperlens, both the CEMT and PEMT are adopted to design gradient hyperlenses with the same materials and order of elemental layers. The CEMT- and PEMT-based designs show similar performance if the number of metal-dielectric binary layers is sufficiently large (9+ pairs) and if the layers are sufficiently thin. However, for the manufacturable lenses with realistic numbers of layers (e.g. five pairs) and thicknesses, the performance of the CEMT design continues to be practical, whereas the PEMT-based design stops working altogether. The accurate design of transformation optics-based layered cylindrical devices enabled by CEMT allow for a new class of robustly manufacturable nanophotonic systems, even with relatively thick layers of real-life materials.

  4. A review of gradient stiffness hydrogels used in tissue engineering and regenerative medicine.

    PubMed

    Xia, Tingting; Liu, Wanqian; Yang, Li

    2017-06-01

    Substrate stiffness is known to impact characteristics including cell differentiation, proliferation, migration and apoptosis. Hydrogels are polymeric materials distinguished by high water content and diverse physical properties. Gradient stiffness hydrogels are designed by the need to develop biologically friendly materials as extracellular matrix (ECM) alternatives to replace the separated and narrow-ranged hydrogel substrates. Important new discoveries in cell behaviors have been realized with model gradient stiffness hydrogel systems from the two-dimensional (2D) to three-dimensional (3D) scale. Basic and clinical applications for gradient stiffness hydrogels in tissue engineering and regenerative medicine continue to drive the development of stiffness and structure varied hydrogels. Given the importance of gradient stiffness hydrogels in basic research and biomedical applications, there is a clear need for systems for gradient stiffness hydrogel design strategies and their applications. This review will highlight past work in the field of gradient stiffness hydrogels fabrication methods, mechanical property test, applications as well as areas for future study. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1799-1812, 2017. © 2017 Wiley Periodicals, Inc.

  5. Engineering Ferroic and Multiferroic Materials for Active Cooling Applications

    DTIC Science & Technology

    2014-02-11

    large strain gradients (>105 m-1) – nearly 5-6 orders of magnitude larger than what can be achieved in bulk-versions of materials. These large strain...larger than what can be achieved in bulk-versions of materials. These large strain gradients gave rise to unexpected crystal and domain structure...parameters that are more favorable for generating a compressively strained variety of the Zr-rich phases. In this case, akin to what has been

  6. Designing gradient coils with reduced hot spot temperatures.

    PubMed

    While, Peter T; Forbes, Larry K; Crozier, Stuart

    2010-03-01

    Gradient coil temperature is an important concern in the design and construction of MRI scanners. Closely spaced gradient coil windings cause temperature hot spots within the system as a result of Ohmic heating associated with large current being driven through resistive material, and can strongly affect the performance of the coils. In this paper, a model is presented for predicting the spatial temperature distribution of a gradient coil, including the location and extent of temperature hot spots. Subsequently, a method is described for designing gradient coils with improved temperature distributions and reduced hot spot temperatures. Maximum temperature represents a non-linear constraint and a relaxed fixed point iteration routine is proposed to adjust coil windings iteratively to minimise this coil feature. Several examples are considered that assume different thermal material properties and cooling mechanisms for the gradient system. Coil winding solutions are obtained for all cases considered that display a considerable drop in hot spot temperature (>20%) when compared to standard minimum power gradient coils with equivalent gradient homogeneity, efficiency and inductance. The method is semi-analytical in nature and can be adapted easily to consider other non-linear constraints in the design of gradient coils or similar systems. Crown Copyright (c) 2009. Published by Elsevier Inc. All rights reserved.

  7. Edge remap for solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamm, James R.; Love, Edward; Robinson, Allen C.

    We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approachmore » is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.« less

  8. Polychromatic microdiffraction characterization of defect gradients in severely deformed materials.

    PubMed

    Barabash, Rozaliya I; Ice, Gene E; Liu, Wenjun; Barabash, Oleg M

    2009-01-01

    This paper analyzes local lattice rotations introduced in severely deformed polycrystalline titanium by friction stir welding. Nondestructive three-dimensional (3D) spatially resolved polychromatic X-ray microdiffraction, is used to resolve the local crystal structure of the restructured surface from neighboring local structures in the sample material. The measurements reveal strong gradients of strain and geometrically necessary dislocations near the surface and illustrate the potential of polychromatic microdiffraction for the study of deformation in complex materials systems.

  9. Chromatic Properties of Index of Refraction Gradients in Glass.

    NASA Astrophysics Data System (ADS)

    Ryan-Howard, Danette Patrice

    The chromatic properties of index of refraction gradients have been predicted theoretically and verified experimentally. The use of these materials in the design of color corrected optical systems has been investigated and confirmed by the evaluation of two fabricated lenses. A model for the chromatic properties of gradient index materials has been developed. The index of refraction is calculated based on the composition of the material. Since the index of refraction and the conventional Abbe number change as a function of the composition of the glass, a gradient Abbe number and a partial dispersion are defined. Analysis of combinations of ion exchange pairs and glasses result in a wide range of gradient Abbe numbers and partial dispersions. These ranges can be further extended by using glasses which contain more than one exchange ion or by using mixed salt baths. The chromatic properties were measured with a multiple wavelength A.C. interferometer. The gradient Abbe numbers and partial dispersions for a number of samples were calculated. Evaluation of the samples showed that the index and dispersion data correlated well with that predicted by the model. Thin lens formulae for the paraxial axial color and secondary spectrum of a radial gradient singlet with curves were examined. The design of a single element 10x microscope objective verified the applicability of these formulae. The design of a two element 40x microscope objective showed that a six element diffraction limited 40x objective can be replaced with a two element system composed of one homogeneous lens and one gradient lens without sacrificing either monochromatic performance or color correction. A previously fabricated axial gradient collimator and a fabricated Wood element were evaluated. Correlation of the directly measured quantities, paraxial axial color, secondary spectrum and spherochromatism with the values predicted by the model verified that the predicted superior performance of gradient-index lenses can be obtained.

  10. Methods and apparatus for moving and separating materials exhibiting different physical properties

    DOEpatents

    Peterson, Stephen C.; Brimhall, Owen D.; McLaughlin, Thomas J.; Baker, Charles D.; Sparks, Sam L.

    1991-01-01

    Methods and apparatus for controlling the movement of materials having different physical properties when one of the materials is a fluid. The invention does not rely on flocculation, sedimentation, centrifugation, the buoyancy of the materials, or any other gravity dependent characteristic, in order to achieve its desired results. The methods of the present invention provide that a first acoustic wave is propagated through a vessel containing the materials. A second acoustic wave, at a frequency different than the first acoustic wave, is also propagated through the vessel so that the two acoustic waves are superimposed upon each other. The superimposition of the two waves creates a beat frequency wave. The beat frequency wave comprises pressure gradients dividing regions of maximum and minimum pressure. The pressure gradients and the regions of maximum and minimum pressure move through space and time at a group velocity. The moving pressure gradients and regions of maximum and minimum pressure act upon the materials so as to move one of the materials towards a predetermined location in the vessel. The present invention provides that the materials may be controllably moved toward a location, aggregated at a particular location, or physically separated from each other.

  11. Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins

    PubMed Central

    Wei, Yujie; Li, Yongqiang; Zhu, Lianchun; Liu, Yao; Lei, Xianqi; Wang, Gang; Wu, Yanxin; Mi, Zhenli; Liu, Jiabin; Wang, Hongtao; Gao, Huajian

    2014-01-01

    The strength–ductility trade-off has been a long-standing dilemma in materials science. This has limited the potential of many structural materials, steels in particular. Here we report a way of enhancing the strength of twinning-induced plasticity steel at no ductility trade-off. After applying torsion to cylindrical twinning-induced plasticity steel samples to generate a gradient nanotwinned structure along the radial direction, we find that the yielding strength of the material can be doubled at no reduction in ductility. It is shown that this evasion of strength–ductility trade-off is due to the formation of a gradient hierarchical nanotwinned structure during pre-torsion and subsequent tensile deformation. A series of finite element simulations based on crystal plasticity are performed to understand why the gradient twin structure can cause strengthening and ductility retention, and how sequential torsion and tension lead to the observed hierarchical nanotwinned structure through activation of different twinning systems. PMID:24686581

  12. High-Thermal- and Air-Stability Cathode Material with Concentration-Gradient Buffer for Li-Ion Batteries.

    PubMed

    Shi, Ji-Lei; Qi, Ran; Zhang, Xu-Dong; Wang, Peng-Fei; Fu, Wei-Gui; Yin, Ya-Xia; Xu, Jian; Wan, Li-Jun; Guo, Yu-Guo

    2017-12-13

    Delivery of high capacity with high thermal and air stability is a great challenge in the development of Ni-rich layered cathodes for commercialized Li-ion batteries (LIBs). Herein we present a surface concentration-gradient spherical particle with varying elemental composition from the outer end LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) to the inner end LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA). This cathode material with the merit of NCM concentration-gradient protective buffer and the inner NCA core shows high capacity retention of 99.8% after 200 cycles at 0.5 C. Furthermore, this cathode material exhibits much improved thermal and air stability compared with bare NCA. These results provide new insights into the structural design of high-performance cathodes with high energy density, long life span, and storage stability materials for LIBs in the future.

  13. A low-cost gradient system for high-performance liquid chromatography. Quantitation of complex pharmaceutical raw materials.

    PubMed

    Erni, F; Frei, R W

    1976-09-29

    A device is described that makes use of an eight-port motor valve to generate step gradients on the low-pressure side of a piston pump with a low dead volume. Such a gradient device with an automatic control unit, which also permits repetition of previous steps, can be built for about half the cost of a gradient system with two pumps. Applications of this gradient unit to the separation of complex mixtures of glycosides and alkaloids are discussed and compared with separations systems using two high-pressure pumps. The gradients that are used on reversed-phase material with solvent mixtures of water and completely miscible organic solvents are suitable for quantitative routine control of pharmaceutical products. The reproducibility of retention data is excellent over several months and, with the use of loop injectors, major components can be determined quantitatively with a reproducibility of better than 2% (relative standard deviation). The step gradient selector valve can also be used as an introduction system for very large sample volumes. Up to 11 can be injected and samples with concentrations of less than 1 ppb can be determined with good reproducibilities.

  14. The Transition from Stiff to Compliant Materials in Squid Beaks

    PubMed Central

    Miserez, Ali; Schneberk, Todd; Sun, Chengjun; Zok, Frank W.; Waite, J. Herbert

    2009-01-01

    The beak of the Humboldt squid Dosidicus gigas represents one of the hardest and stiffest wholly organic materials known. As it is deeply embedded within the soft buccal envelope, the manner in which impact forces are transmitted between beak and envelope is a matter of considerable scientific interest. Here, we show that the hydrated beak exhibits a large stiffness gradient, spanning two orders of magnitude from the tip to the base. This gradient is correlated with a chemical gradient involving mixtures of chitin, water, and His-rich proteins that contain 3,4-dihydroxyphenyl-l-alanine (dopa) and undergo extensive stabilization by histidyl-dopa cross-link formation. These findings may serve as a foundation for identifying design principles for attaching mechanically mismatched materials in engineering and biological applications. PMID:18369144

  15. The transition from stiff to compliant materials in squid beaks.

    PubMed

    Miserez, Ali; Schneberk, Todd; Sun, Chengjun; Zok, Frank W; Waite, J Herbert

    2008-03-28

    The beak of the Humboldt squid Dosidicus gigas represents one of the hardest and stiffest wholly organic materials known. As it is deeply embedded within the soft buccal envelope, the manner in which impact forces are transmitted between beak and envelope is a matter of considerable scientific interest. Here, we show that the hydrated beak exhibits a large stiffness gradient, spanning two orders of magnitude from the tip to the base. This gradient is correlated with a chemical gradient involving mixtures of chitin, water, and His-rich proteins that contain 3,4-dihydroxyphenyl-L-alanine (dopa) and undergo extensive stabilization by histidyl-dopa cross-link formation. These findings may serve as a foundation for identifying design principles for attaching mechanically mismatched materials in engineering and biological applications.

  16. The Transition from Stiff to Compliant Materials in Squid Beaks

    NASA Astrophysics Data System (ADS)

    Miserez, Ali; Schneberk, Todd; Sun, Chengjun; Zok, Frank W.; Waite, J. Herbert

    2008-03-01

    The beak of the Humboldt squid Dosidicus gigas represents one of the hardest and stiffest wholly organic materials known. As it is deeply embedded within the soft buccal envelope, the manner in which impact forces are transmitted between beak and envelope is a matter of considerable scientific interest. Here, we show that the hydrated beak exhibits a large stiffness gradient, spanning two orders of magnitude from the tip to the base. This gradient is correlated with a chemical gradient involving mixtures of chitin, water, and His-rich proteins that contain 3,4-dihydroxyphenyl-L-alanine (dopa) and undergo extensive stabilization by histidyl-dopa cross-link formation. These findings may serve as a foundation for identifying design principles for attaching mechanically mismatched materials in engineering and biological applications.

  17. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  18. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  19. Superconducting thermoelectric generator

    DOEpatents

    Metzger, John D.; El-Genk, Mohamed S.

    1998-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  20. Methods and apparatus for moving and separating materials exhibiting different physical properties

    DOEpatents

    Peterson, Stephen C.; Brimhall, Owen D.; McLaughlin, Thomas J.; Baker, Charles D.; Sparks, Sam L.

    1988-01-01

    Methods and apparatus for controlling the movement of materials having different physical properties when one of the materials is a fluid. The invention does not rely on flocculation, sedimentation, centrifugation, the buoyancy of the materials, or any other gravity dependent characteristic, in order to achieve its desired results. The methods of the present invention provide that a first acoustic wave is progpagated through a vessel containing the materials. A second acoustic wave, at a frequency different than the first acoustic wave, is also propagated through the vessel so that the two acoustic waves are superimposed upon each other. The superimposition of the two waves creates a beat frequency wave. The beat frequency wave comprises pressure gradients dividing regions of maximum and minimum pressure. The pressure gradients and the regions of maximum and minimum pressure move through space and time at a group velocity. The moving pressure gradients and regions of maximum and minimum pressure act upon the marterials so as to move one of the materials towards a predetermined location in the vessel. The present invention provides that the materials may be controllably moved toward a location, aggreated at a particular location, or physically separated from each other.

  1. Usage of Nest Materials by House Sparrow (Passer domesticus) Along an Urban to Rural Gradient in Coimbatore, India.

    PubMed

    Radhamany, Dhanya; Das, Karumampoyil Sakthidas Anoop; Azeez, Parappurath Abdul; Wen, Longying; Sreekala, Leelambika Krishnan

    2016-08-01

    The house sparrow (Passer domesticus) is a widely distributed bird species found throughout the world. Being a species which has close association with humans, they chiefly nest on man-made structures. Here we describe the materials used by the house sparrow for making nests along an urban to rural gradient. For the current study, we selected the Coimbatore to Anaikatty road (State Highway-164), a 27 km inter-state highway, which traverses along an urban core to rural outstretch of Coimbatore. Of the 30 nests observed, 15 nests were from the rural, 8 were from the suburban, and 7 were from the urban areas. The nests had two distinct layers, specifically the structural layer and the inner lining. In the current study, we identified 11 plant species, 2 types of animal matter, and 6 types of anthropogenic matter, including plastic pieces and fine rope. The amount of anthropogenic materials in the nest formation varied along the gradients. The usage of anthropogenic materials was high in urban areas (p<0.05) whereas it did not differ at the sub-urban regions (p>0.05). A gradual decrease in the usage of plant matter towards the urban area was noticed (p<0.05). This study explicitly documents the links between nest material usage along an urban to rural gradient, in a human associated bird.

  2. A nonlocal strain gradient model for dynamic deformation of orthotropic viscoelastic graphene sheets under time harmonic thermal load

    NASA Astrophysics Data System (ADS)

    Radwan, Ahmed F.; Sobhy, Mohammed

    2018-06-01

    This work presents a nonlocal strain gradient theory for the dynamic deformation response of a single-layered graphene sheet (SLGS) on a viscoelastic foundation and subjected to a time harmonic thermal load for various boundary conditions. Material of graphene sheets is presumed to be orthotropic and viscoelastic. The viscoelastic foundation is modeled as Kelvin-Voigt's pattern. Based on the two-unknown plate theory, the motion equations are obtained from the dynamic version of the virtual work principle. The nonlocal strain gradient theory is established from Eringen nonlocal and strain gradient theories, therefore, it contains two material scale parameters, which are nonlocal parameter and gradient coefficient. These scale parameters have two different effects on the graphene sheets. The obtained deflection is compared with that predicted in the literature. Additional numerical examples are introduced to illustrate the influences of the two length scale coefficients and other parameters on the dynamic deformation of the viscoelastic graphene sheets.

  3. Thermal rectification in thin films driven by gradient grain microstructure

    NASA Astrophysics Data System (ADS)

    Cheng, Zhe; Foley, Brian M.; Bougher, Thomas; Yates, Luke; Cola, Baratunde A.; Graham, Samuel

    2018-03-01

    As one of the basic components of phononics, thermal rectifiers transmit heat current asymmetrically similar to electronic rectifiers in microelectronics. Heat can be conducted through them easily in one direction while being blocked in the other direction. In this work, we report a thermal rectifier that is driven by the gradient grain structure and the inherent gradient in thermal properties as found in these materials. To demonstrate their thermal rectification properties, we build a spectral thermal conductivity model with complete phonon dispersion relationships using the thermophysical properties of chemical vapor deposited (CVD) diamond films which possess gradient grain microstructures. To explain the observed significant thermal rectification, the temperature and thermal conductivity distribution are studied. Additionally, the effects of temperature bias and film thickness are discussed, which shed light on tuning the thermal rectification based on the gradient microstructures. Our results show that the columnar grain microstructure makes CVD materials unique candidates for mesoscale thermal rectifiers without a sharp temperature change.

  4. Minimum maximum temperature gradient coil design.

    PubMed

    While, Peter T; Poole, Michael S; Forbes, Larry K; Crozier, Stuart

    2013-08-01

    Ohmic heating is a serious problem in gradient coil operation. A method is presented for redesigning cylindrical gradient coils to operate at minimum peak temperature, while maintaining field homogeneity and coil performance. To generate these minimaxT coil windings, an existing analytic method for simulating the spatial temperature distribution of single layer gradient coils is combined with a minimax optimization routine based on sequential quadratic programming. Simulations are provided for symmetric and asymmetric gradient coils that show considerable improvements in reducing maximum temperature over existing methods. The winding patterns of the minimaxT coils were found to be heavily dependent on the assumed thermal material properties and generally display an interesting "fish-eye" spreading of windings in the dense regions of the coil. Small prototype coils were constructed and tested for experimental validation and these demonstrate that with a reasonable estimate of material properties, thermal performance can be improved considerably with negligible change to the field error or standard figures of merit. © 2012 Wiley Periodicals, Inc.

  5. Finite element analysis of gradient z-coil induced eddy currents in a permanent MRI magnet.

    PubMed

    Li, Xia; Xia, Ling; Chen, Wufan; Liu, Feng; Crozier, Stuart; Xie, Dexin

    2011-01-01

    In permanent magnetic resonance imaging (MRI) systems, pulsed gradient fields induce strong eddy currents in the conducting structures of the magnet body. The gradient field for image encoding is perturbed by these eddy currents leading to MR image distortions. This paper presents a comprehensive finite element (FE) analysis of the eddy current generation in the magnet conductors. In the proposed FE model, the hysteretic characteristics of ferromagnetic materials are considered and a scalar Preisach hysteresis model is employed. The developed FE model was applied to study gradient z-coil induced eddy currents in a 0.5 T permanent MRI device. The simulation results demonstrate that the approach could be effectively used to investigate eddy current problems involving ferromagnetic materials. With the knowledge gained from this eddy current model, our next step is to design a passive magnet structure and active gradient coils to reduce the eddy current effects. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Acoustic beam control in biomimetic projector via velocity gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xiaowei; Dong, Erqian; Song, Zhongchang

    A biomimetic projector (BioP) based on computerized tomography of pygmy sperm whale's biosonar system has been designed using gradient-index (GRIN) material. The directivity of this BioP device was investigated as function of frequency and the velocity gradient of the GRIN material. A strong beam control over a broad bandwidth at the subwavelength scale has been achieved. Compared with a bare subwavelength source, the main lobe pressure of the BioP is about five times as high and the angular resolution is one order of magnitude better. Our results indicate that this BioP has excellent application potential in miniaturized underwater sonars.

  7. Acoustic beam control in biomimetic projector via velocity gradient

    NASA Astrophysics Data System (ADS)

    Gao, Xiaowei; Zhang, Yu; Cao, Wenwu; Dong, Erqian; Song, Zhongchang; Li, Songhai; Tang, Liguo; Zhang, Sai

    2016-07-01

    A biomimetic projector (BioP) based on computerized tomography of pygmy sperm whale's biosonar system has been designed using gradient-index (GRIN) material. The directivity of this BioP device was investigated as function of frequency and the velocity gradient of the GRIN material. A strong beam control over a broad bandwidth at the subwavelength scale has been achieved. Compared with a bare subwavelength source, the main lobe pressure of the BioP is about five times as high and the angular resolution is one order of magnitude better. Our results indicate that this BioP has excellent application potential in miniaturized underwater sonars.

  8. A new method of determining moisture gradient in wood

    Treesearch

    Zhiyong Cai

    2008-01-01

    Moisture gradient in wood and wood composites is one of most important factors that affects both physical stability and mechanical performance. This paper describes a method for measuring moisture gradient in lumber and engineering wood composites as it varies across material thickness. This innovative method employs a collimated radiation beam (x rays or [gamma] rays...

  9. A new leakage measurement method for damaged seal material

    NASA Astrophysics Data System (ADS)

    Wang, Shen; Yao, Xue Feng; Yang, Heng; Yuan, Li; Dong, Yi Feng

    2018-07-01

    In this paper, a new leakage measurement method based on the temperature field and temperature gradient field is proposed for detecting the leakage location and measuring the leakage rate in damaged seal material. First, a heat transfer leakage model is established, which can calculate the leakage rate based on the temperature gradient field near the damaged zone. Second, a finite element model of an infinite plate with a damaged zone is built to calculate the leakage rate, which fits the simulated leakage rate well. Finally, specimens in a tubular rubber seal with different damage shapes are used to conduct the leakage experiment, validating the correctness of this new measurement principle for the leakage rate and the leakage position. The results indicate the feasibility of the leakage measurement method for damaged seal material based on the temperature gradient field from infrared thermography.

  10. Mechanisms of high-gradient microwave breakdown on metal surfaces in high power microwave source

    NASA Astrophysics Data System (ADS)

    Xie, Jialing; Chen, Changhua; Chang, Chao; Wu, Cheng; Huo, Yankun

    2017-12-01

    A breakdown cavity was designed to study the high-gradient microwave breakdown on a metal surface. The breakdown cavity can be distinguished into an electron emission boundary and a bombardment boundary as there is an evident difference in amplitude of the electric field between the two planes in the cavity. Breakdown tracks on the cavity were studied with an electron scanning microscope. The tracks on the electron emission boundary with the higher electric field were eroded; a component analysis indicates that these tracks contain an emission boundary material. On the bombardment boundary with a lower electric field, two kinds of tracks exist: an erosion track containing a bombardment boundary material and a sputtered track containing an emission boundary material. From these tracks, the mechanisms of high-gradient microwave breakdown on a metal surface have been analyzed.

  11. Temperature and diet effects on omnivorous fish performance: Implications for the latitudinal diversity gradient in herbivorous fishes

    USGS Publications Warehouse

    Behrens, M.D.; Lafferty, K.D.

    2007-01-01

    Herbivorous fishes show a clear latitudinal diversity gradient, making up a larger proportion of the fish species in a community in tropical waters than in temperate waters. One proposed mechanism that could drive this gradient is a physiological constraint due to temperature. One prediction based on this mechanism is that if herbivorous fishes could shift their diet to animal material, they would be better able to grow, survive, and reproduce in cold waters. We tested this prediction on the omnivore Girella nigricans under different temperature and diet regimes using RNA-DNA ratios as an indicator of performance. Fish had increased performance (100%) at low temperatures (12??C) when their diet was supplemented with animal material. In contrast, at higher temperatures (17, 22, and 27??C) fish showed no differences between diets. This indicates that omnivorous fishes could increase their performance at low temperatures by consuming more animal matter. This study supports the hypothesis that a relative increase in the nutritional value of plant material at warmer temperatures could drive the latitudinal diversity gradient in herbivorous fishes. ?? 2007 NRC.

  12. Suppression/Reversal of Natural Convection by Exploiting the Temperature/Composition Dependence of Magnetic Susceptibility

    NASA Technical Reports Server (NTRS)

    Seybert, C. D.; Evans, J. W.; Leslie, F.; Jones, W. K., Jr.

    2000-01-01

    Natural convection, driven by temperature-or concentration gradients or both, is an inherent phenomenon during solidification of materials on Earth. This convection has practical consequences (e.g effecting macrosegregation) but also renders difficult the scientific examination of diffusive/conductive phenomena during solidification. It is possible to halt, or even reverse, natural convection by exploiting the variation (with temperature, for example) of the susceptibility of a material. If the material is placed in a vertical magnetic field gradient, a buoyancy force of magnetic origin arises and, at a critical field gradient, can balance the normal buoyancy forces to halt convection. At higher field gradients the convection can be reversed. The effect has been demonstrated in experiments at Marshall Space Flight Center where flow was measured by PIV in MnCl2 solution in a superconducting magnet. In auxiliary experiments the field in the magnet and the properties of the solution were measured. Computations of the natural convection, its halting and reversal, using the commercial software FLUENT were in good agreement with the measurements.

  13. Stress analysis in cylindrical composition-gradient electrodes of lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Zhong, Yaotian; Liu, Yulan; Wang, B.

    2017-07-01

    In recent years, the composition-gradient electrode material has been verified to be one of the most promising materials in lithium-ion battery. To investigate diffusion-induced stresses (DIS) generated in a cylindrical composition-gradient electrode, the finite deformation theory and the stress-induced diffusion hypothesis are adopted to establish the constitutive equations. Compared with stress distributions in a homogeneous electrode, the increasing forms of Young's modulus E(R) and partial molar volume Ω(R) from the electrode center to the surface along the radial direction drastically increase the maximal magnitudes of hoop and axial stresses, while both of the decreasing forms are able to make the stress fields smaller and flatter. Also, it is found that the slope of -1 for E(R) with that of -0.5 for Ω(R) is a preferable strategy to prevent the inhomogeneous electrode from cracking, while for the sake of protecting the electrode from compression failure, the optimal slope for inhomogeneous E(R) and the preferential one for Ω(R) are both -0.5. The results provide a theoretical guidance for the design of composition-gradient electrode materials.

  14. Material Gradients in Oxygen System Components Improve Safety

    NASA Technical Reports Server (NTRS)

    Forsyth, Bradley S.

    2011-01-01

    Oxygen system components fabricated by Laser Engineered Net Shaping (TradeMark) (LENS(TradeMark)) could result in improved safety and performance. LENS(TradeMark) is a near-net shape manufacturing process fusing powdered materials injected into a laser beam. Parts can be fabricated with a variety of elemental metals, alloys, and nonmetallic materials without the use of a mold. The LENS(TradeMark) process allows the injected materials to be varied throughout a single workpiece. Hence, surfaces exposed to oxygen could be constructed of an oxygen-compatible material while the remainder of the part could be one chosen for strength or reduced weight. Unlike conventional coating applications, a compositional gradient would exist between the two materials, so no abrupt material boundary exists. Without an interface between dissimilar materials, there is less tendency for chipping or cracking associated with thermal-expansion mismatches.

  15. Anisotropic failure and size effects in periodic honeycomb materials: A gradient-elasticity approach

    NASA Astrophysics Data System (ADS)

    Réthoré, Julien; Dang, Thi Bach Tuyet; Kaltenbrunner, Christine

    2017-02-01

    This paper proposes a fracture mechanics model for the analysis of crack propagation in periodic honeycomb materials. The model is based on gradient-elasticity which enables us to account for the effect of the material structure at the macroscopic scale. For simulating the propagation of cracks along an arbitrary path, the numerical implementation is elaborated based on an extended finite element method with the required level of continuity. The two main features captured by the model are directionality and size effect. The numerical predictions are consistent with experimental results on honeycomb materials but also with results reported in the literature for microstructurally short cracks in metals.

  16. Study of the possibility of growing germanium single crystals under low temperature gradients

    NASA Astrophysics Data System (ADS)

    Moskovskih, V. A.; Kasimkin, P. V.; Shlegel, V. N.; Vasiliev, Y. V.; Gridchin, V. A.; Podkopaev, O. I.; Zhdankov, V. N.

    2014-03-01

    The possibility of growing germanium single crystals under low temperature gradients in order to produce a dislocation-free material has been studied. Germanium crystals with a dislocation density of about 100-200 cm-2 have been grown in a system with a weight control of crystal growth at maximum axial gradients of about 1.5 K/cm.

  17. A Novel Microcharacterization Technique in the Measurement of Strain and Orientation Gradient in Advanced Materials

    NASA Technical Reports Server (NTRS)

    Garmestai, H.; Harris, K.; Lourenco, L.

    1997-01-01

    Representation of morphology and evolution of the microstructure during processing and their relation to properties requires proper experimental techniques. Residual strains, lattice distortion, and texture (micro-texture) at the interface and the matrix of a layered structure or a functionally gradient material and their variation are among parameters important in materials characterization but hard to measure with present experimental techniques. Current techniques available to measure changes in interred material parameters (residual stress, micro-texture, microplasticity) produce results which are either qualitative or unreliable. This problem becomes even more complicated in the case of a temperature variation. These parameters affect many of the mechanical properties of advanced materials including stress-strain relation, ductility, creep, and fatigue. A review of some novel experimental techniques using recent advances in electron microscopy is presented here to measure internal stress, (micro)texture, interracial strength and (sub)grain formation and realignment. Two of these techniques are combined in the chamber of an Environmental Scanning Electron Microscope to measure strain and orientation gradients in advanced materials. These techniques which include Backscattered Kikuchi Diffractometry (BKD) and Microscopic Strain Field Analysis are used to characterize metallic and intermetallic matrix composites and superplastic materials. These techniques are compared with the more conventional x-ray diffraction and indentation techniques.

  18. Methods for Fabricating Gradient Alloy Articles with Multi-Functional Properties

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Suh, Eric J. (Inventor); Borgonia, John Paul C. (Inventor); Dillon, Robert P. (Inventor); Mulder, Jerry L. (Inventor); Gardner, Paul B. (Inventor)

    2015-01-01

    Systems and methods for fabricating multi-functional articles comprised of additively formed gradient materials are provided. The fabrication of multi-functional articles using the additive deposition of gradient alloys represents a paradigm shift from the traditional way that metal alloys and metal/metal alloy parts are fabricated. Since a gradient alloy that transitions from one metal to a different metal cannot be fabricated through any conventional metallurgy techniques, the technique presents many applications. Moreover, the embodiments described identify a broad range of properties and applications.

  19. Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient.

    PubMed

    Tan, YerPeng; Hoon, Shawn; Guerette, Paul A; Wei, Wei; Ghadban, Ali; Hao, Cai; Miserez, Ali; Waite, J Herbert

    2015-07-01

    The beak of the jumbo squid Dosidicus gigas is a fascinating example of how seamlessly nature builds with mechanically mismatched materials. A 200-fold stiffness gradient begins in the hydrated chitin of the soft beak base and gradually increases to maximum stiffness in the dehydrated distal rostrum. Here, we combined RNA-Seq and proteomics to show that the beak contains two protein families. One family consists of chitin-binding proteins (DgCBPs) that physically join chitin chains, whereas the other family comprises highly modular histidine-rich proteins (DgHBPs). We propose that DgHBPs play multiple key roles during beak bioprocessing, first by forming concentrated coacervate solutions that diffuse into the DgCBP-chitin scaffold, and second by inducing crosslinking via an abundant GHG sequence motif. These processes generate spatially controlled desolvation, resulting in the impressive biomechanical gradient. Our findings provide novel molecular-scale strategies for designing functional gradient materials.

  20. The notion of a plastic material spin in atomistic simulations

    NASA Astrophysics Data System (ADS)

    Dickel, D.; Tenev, T. G.; Gullett, P.; Horstemeyer, M. F.

    2016-12-01

    A kinematic algorithm is proposed to extend existing constructions of strain tensors from atomistic data to decouple elastic and plastic contributions to the strain. Elastic and plastic deformation and ultimately the plastic spin, useful quantities in continuum mechanics and finite element simulations, are computed from the full, discrete deformation gradient and an algorithm for the local elastic deformation gradient. This elastic deformation gradient algorithm identifies a crystal type using bond angle analysis (Ackland and Jones 2006 Phys. Rev. B 73 054104) and further exploits the relationship between bond angles to determine the local deformation from an ideal crystal lattice. Full definitions of plastic deformation follow directly using a multiplicative decomposition of the deformation gradient. The results of molecular dynamics simulations of copper in simple shear and torsion are presented to demonstrate the ability of these new discrete measures to describe plastic material spin in atomistic simulation and to compare them with continuum theory.

  1. NASA-UVa light aerospace alloy and structures technology program

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Swanson, Robert E.; Thornton, Earl A.; Wawner, Franklin E., Jr.

    1991-01-01

    The general objective of the NASA-UVa Light Aerospace Alloy and Structures Technology Program was to conduct research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures. The following research areas were actively investigated: (1) mechanical and environmental degradation mechanisms in advanced light metals and composites; (2) aerospace materials science; (3) mechanics of materials and composites for aerospace structures; and (4) thermal gradient structures.

  2. Coupling of order parameters, chirality, and interfacial structures in multiferroic materials.

    PubMed

    Conti, Sergio; Müller, Stefan; Poliakovsky, Arkady; Salje, Ekhard K H

    2011-04-13

    We study optimal interfacial structures in multiferroic materials with a biquadratic coupling between two order parameters. We discover a new duality relation between the strong coupling and the weak coupling regime for the case of isotropic gradient terms. We analyze the phase diagram depending on the coupling constant and anisotropy of the gradient term, and show that in a certain regime the secondary order parameter becomes activated only in the interfacial region.

  3. Correlating the internal length in strain gradient plasticity theory with the microstructure of material

    NASA Astrophysics Data System (ADS)

    Zhao, Jianfeng; Zhang, Xu; Konstantinidis, Avraam A.; Kang, Guozheng

    2015-06-01

    The internal length is the governing parameter in strain gradient theories which among other things have been used successfully to interpret size effects at the microscale. Physically, the internal length is supposed to be related with the microstructure of the material and evolves during the deformation. Based on Taylor hardening law, we propose a power-law relationship to describe the evolution of the variable internal length with strain. Then, the classical Fleck-Hutchinson strain gradient theory is extended with a strain-dependent internal length, and the generalized Fleck-Hutchinson theory is confirmed here, by comparing our model predictions to recent experimental data on tension and torsion of thin wires with varying diameter and grain size. Our work suggests that the internal length is a configuration-dependent parameter, closely related to dislocation characteristics and grain size, as well as sample geometry when this affects either the underlying microstructure or the ductility of the material.

  4. Effects of temperature distribution and elastic properties of materials on gas-turbine-disk stresses

    NASA Technical Reports Server (NTRS)

    Holms, Arthur G; Faldetta, Richard D

    1947-01-01

    Calculations were made to determine the influence of changes in temperature distribution and in elastic material properties on calculated elastic stresses for a typical gas-turbine disk. Severe temperature gradients caused thermal stresses of sufficient magnitude to reduce the operating safety of the disk. Small temperature gradients were found to be desirable because they produced thermal stresses that subtracted from the centrifugal stresses in the region of the rim. The thermal gradients produced a tendency for a severe stress condition to exist near the rim but this stress condition could be shifted away from the region of blade attachment by altering the temperature distribution. The investigation of elastic material properties showed that centrifugal stresses are slightly affected by changes in modulus of elasticity, but that thermal stresses are approximately proportional to modulus of elasticity and to coefficient of thermal expansion.

  5. Effect of gradient dielectric coefficient in a functionally graded material (FGM) substrate on the propagation behavior of love waves in an FGM-piezoelectric layered structure.

    PubMed

    Cao, Xiaoshan; Shi, Junping; Jin, Feng

    2012-06-01

    The propagation behavior of Love waves in a layered structure that includes a functionally graded material (FGM) substrate carrying a piezoelectric thin film is investigated. Analytical solutions are obtained for both constant and gradient dielectric coefficients in the FGM substrate. Numerical results show that the gradient dielectric coefficient decreases phase velocity in any mode, and the electromechanical coupling factor significantly increases in the first- and secondorder modes. In some modes, the difference in Love waves' phase velocity between these two types of structure might be more than 1%, resulting in significant differences in frequency of the surface acoustic wave devices.

  6. Interfacial free energy and stiffness of aluminum during rapid solidification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas T.; Martinez, Enrique; Qu, Jianmin

    Using molecular dynamics simulations and the capillary fluctuation method, we have calculated the anisotropic crystal-melt interfacial free energy and stiffness of aluminum in a rapid solidification system where a temperature gradient is applied to enforce thermal non-equilibrium. To calculate these material properties, the standard capillary fluctuation method typically used for systems in equilibrium has been modified to incorporate a second-order Taylor expansion of the interfacial free energy term. The result is a robust method for calculating interfacial energy, stiffness and anisotropy as a function of temperature gradient using the fluctuations in the defined interface height. This work includes the calculationmore » of interface characteristics for temperature gradients ranging from 11 to 34 K/nm. The captured results are compared to a thermal equilibrium case using the same model and simulation technique with a zero gradient definition. We define the temperature gradient as the change in temperature over height perpendicular to the crystal-melt interface. The gradients are applied in MD simulations using defined thermostat regions on a stable solid-liquid interface initially in thermal equilibrium. The results of this work show that the interfacial stiffness and free energy for aluminum are dependent on the magnitude of the temperature gradient, however the anisotropic parameters remain independent of the non-equilibrium conditions applied in this analysis. As a result, the relationships of the interfacial free energy/stiffness are determined to be linearly related to the thermal gradient, and can be interpolated to find material characteristics at additional temperature gradients.« less

  7. Interfacial free energy and stiffness of aluminum during rapid solidification

    DOE PAGES

    Brown, Nicholas T.; Martinez, Enrique; Qu, Jianmin

    2017-05-01

    Using molecular dynamics simulations and the capillary fluctuation method, we have calculated the anisotropic crystal-melt interfacial free energy and stiffness of aluminum in a rapid solidification system where a temperature gradient is applied to enforce thermal non-equilibrium. To calculate these material properties, the standard capillary fluctuation method typically used for systems in equilibrium has been modified to incorporate a second-order Taylor expansion of the interfacial free energy term. The result is a robust method for calculating interfacial energy, stiffness and anisotropy as a function of temperature gradient using the fluctuations in the defined interface height. This work includes the calculationmore » of interface characteristics for temperature gradients ranging from 11 to 34 K/nm. The captured results are compared to a thermal equilibrium case using the same model and simulation technique with a zero gradient definition. We define the temperature gradient as the change in temperature over height perpendicular to the crystal-melt interface. The gradients are applied in MD simulations using defined thermostat regions on a stable solid-liquid interface initially in thermal equilibrium. The results of this work show that the interfacial stiffness and free energy for aluminum are dependent on the magnitude of the temperature gradient, however the anisotropic parameters remain independent of the non-equilibrium conditions applied in this analysis. As a result, the relationships of the interfacial free energy/stiffness are determined to be linearly related to the thermal gradient, and can be interpolated to find material characteristics at additional temperature gradients.« less

  8. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOEpatents

    Balachandran, U.; Dusek, J.T.; Kleefisch, M.S.; Kobylinski, T.P.

    1996-11-12

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials. 7 figs.

  9. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOEpatents

    Balachandran, Uthamalingam; Dusek, Joseph T.; Kleefisch, Mark S.; Kobylinski, Thadeus P.

    1996-01-01

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials.

  10. Numerical Study on Density Gradient Carbon-Carbon Composite for Vertical Launching System

    NASA Astrophysics Data System (ADS)

    Yoon, Jin-Young; Kim, Chun-Gon; Lim, Juhwan

    2018-04-01

    This study presents new carbon-carbon (C/C) composite that has a density gradient within single material, and estimates its heat conduction performance by a numerical method. To address the high heat conduction of a high-density C/C, which can cause adhesion separation in the steel structures of vertical launching systems, density gradient carbon-carbon (DGCC) composite is proposed due to its exhibiting low thermal conductivity as well as excellent ablative resistance. DGCC is manufactured by hybridizing two different carbonization processes into a single carbon preform. One part exhibits a low density using phenolic resin carbonization to reduce heat conduction, and the other exhibits a high density using thermal gradient-chemical vapor infiltration for excellent ablative resistance. Numerical analysis for DGCC is performed with a heat conduction problem, and internal temperature distributions are estimated by the forward finite difference method. Material properties of the transition density layer, which is inevitably formed during DGCC manufacturing, are assumed to a combination of two density layers for numerical analysis. By comparing numerical results with experimental data, we validate that DGCC exhibits a low thermal conductivity, and it can serve as highly effective ablative material for vertical launching systems.

  11. Resistance to forced airflow through layers of composting organic material.

    PubMed

    Teixeira, Denis Leocádio; de Matos, Antonio Teixeira; Melo, Evandro de Castro

    2015-02-01

    The objective of this study was to adjust equations to estimate the static pressure gradient of airflow through layers of organic residues submitted to two stages of biochemical degradation, and to evaluate the static pressure drop of airflow thought the material layer. Measurements of static pressure drop in the layers of sugarcane bagasse and coffee husks mixed with poultry litter on day 0 and after 30 days of composting were performed using a prototype with specific airflow rates ranging from 0.02 to 0.13 m(3) s(-1) m(-2). Static pressure gradient and specific airflow rate data were properly fit to the Shedd, Hukill & Ives and Ergun models, which may be used to predict the static pressure gradient of air to be blown through the organic residue layers. However, the Shedd model was that which best represented the phenomenon studied. The static pressure drop of airflow increased as a power of the material layer thickness and showed tendency for decreasing with the biochemical degradation time of the organic material. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Diffusion pore imaging with generalized temporal gradient profiles.

    PubMed

    Laun, Frederik B; Kuder, Tristan A

    2013-09-01

    In porous material research, one main interest of nuclear magnetic resonance diffusion (NMR) experiments is the determination of the shape of pores. While it has been a longstanding question if this is in principle achievable, it has been shown recently that it is indeed possible to perform NMR-based diffusion pore imaging. In this work we present a generalization of these previous results. We show that the specific temporal gradient profiles that were used so far are not unique as more general temporal diffusion gradient profiles may be used. These temporal gradient profiles may consist of any number of "short" gradient pulses, which fulfil the short-gradient approximation. Additionally, "long" gradient pulses of small amplitude may be present, which can be used to fulfil the rephasing condition for the complete profile. Some exceptions exist. For example, classical q-space gradients consisting of two short gradient pulses of opposite sign cannot be used as the phase information is lost due to the temporal antisymmetry of this profile. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Inferring regional vertical crustal velocities from averaged relative sea level trends: A proof of concept

    NASA Astrophysics Data System (ADS)

    Bâki Iz, H.; Shum, C. K.; Zhang, C.; Kuo, C. Y.

    2017-11-01

    We report the design of a high-throughput gradient hyperbolic lenslet built with real-life materials and capable of focusing a beam into a deep sub-wavelength spot of λ/23. This efficient design is achieved through high-order transformation optics and circular effective-medium theory (CEMT), which are used to engineer the radially varying anisotropic artificial material based on the thin alternating cylindrical metal and dielectric layers. The radial gradient of the effective anisotropic optical constants allows for matching the impedances at the input and output interfaces, drastically improving the throughput of the lenslet. However, it is the use of the zeroth-order CEMT that enables the practical realization of a gradient hyperlens with realistic materials. To illustrate the importance of using the CEMT versus the conventional planar effective-medium theory (PEMT) for cylindrical anisotropic systems, such as our hyperlens, both the CEMT and PEMT are adopted to design gradient hyperlenses with the same materials and order of elemental layers. The CEMT- and PEMT-based designs show similar performance if the number of metal-dielectric binary layers is sufficiently large (9+ pairs) and if the layers are sufficiently thin. However, for the manufacturable lenses with realistic numbers of layers (e.g. five pairs) and thicknesses, the performance of the CEMT design continues to be practical, whereas the PEMT-based design stops working altogether. The accurate design of transformation optics-based layered cylindrical devices enabled by CEMT allow for a new class of robustly manufacturable nanophotonic systems, even with relatively thick layers of real-life materials.

  14. Synthesis of Polycrystalline CdSiP2 in a Gradient Temperature Field

    NASA Astrophysics Data System (ADS)

    Bereznaya, S. A.; Korotchenko, Z. V.; Kurasova, A. S.; Sarkisov, S. Yu.; Sarkisov, Yu. S.; Chernyshov, A. I.; Korolkov, I. V.; Kuchumov, B. M.; Saprykin, A. I.; Atuchin, V. V.

    2018-05-01

    A procedure for the synthesis of a CdSiP2 compound from the initial elementary components in a gradient thermal field has been developed. The phase and chemical composition of the synthesized and recrystallized material is confirmed by the data of X-ray diffraction analysis and scanning electron microscopy with an energy-dispersive system. The polycrystalline material obtained by the developed method will be used to grow bulk nonlinear optical CdSiP2 crystals.

  15. Bending efficiency through property gradients in bamboo, palm, and wood-based composites.

    PubMed

    Wegst, Ulrike G K

    2011-07-01

    Nature, to a greater extent than engineering, takes advantage of hierarchical structures. These allow for optimization at each structural level to achieve mechanical efficiency, meaning mechanical performance per unit mass. Palms and bamboos do this exceptionally well; both are fibre-reinforced cellular materials in which the fibres are aligned parallel to the stem or culm, respectively. The distribution of these fibres is, however, not uniform: there is a density and modulus gradient across the section. This property gradient increases the flexural rigidity of the plants per unit mass, mass being a measure of metabolic investment made into an organism's construction. An analytical model is presented with which a 'gradient shape factor' can be calculated that describes by how much a plant's bending efficiency is increased through gradient structures. Combining the 'gradient shape factor' with a 'microstructural shape factor' that captures the efficiency gained through the cellular nature of the fibre composite's matrix, and a 'macroscopical shape factor' with which the tubular shape of bamboo can be described, for example, it is possible to explore how much each of these three structural levels of the hierarchy contributes to the overall bending performance of the stem or culm. In analogy, the bending efficiency of the commonly used wood-based composite medium-density fibreboard can be analysed; its property gradient is due to its manufacture by hot pressing. A few other engineered materials exist that emulate property gradients; new manufacturing routes to prepare them are currently being explored. It appears worthwhile to pursue these further. Copyright © 2011. Published by Elsevier Ltd.

  16. Ternary gradient metal-organic frameworks.

    PubMed

    Liu, Chong; Rosi, Nathaniel L

    2017-09-08

    Gradient MOFs contain directional gradients of either structure or functionality. We have successfully prepared two ternary gradient MOFs based on bMOF-100 analogues, namely bMOF-100/102/106 and bMOF-110/100/102, via cascade ligand exchange reactions. The cubic unit cell parameter discrepancy within an individual ternary gradient MOF crystal is as large as ∼1 nm, demonstrating the impressive compatibility and flexibility of the component MOF materials. Because of the presence of a continuum of unit cells, the pore diameters within individual crystals also change in a gradient fashion from ∼2.5 nm to ∼3.0 nm for bMOF-100/102/106, and from ∼2.2 nm to ∼2.7 nm for bMOF-110/100/102, indicating significant porosity gradients. Like previously reported binary gradient MOFs, the composition of the ternary gradient MOFs can be easily controlled by adjusting the reaction conditions. Finally, X-ray diffraction and microspectrophotometry were used to analyse fractured gradient MOF crystals by comparing unit cell parameters and absorbance spectra at different locations, thus revealing the profile of heterogeneity (i.e. gradient distribution of properties) and further confirming the formation of ternary gradient MOFs.

  17. The effects of thermal gradients on the Mars Observer Camera primary mirror

    NASA Technical Reports Server (NTRS)

    Applewhite, Roger W.; Telkamp, Arthur R.

    1992-01-01

    The paper discusses the effect of thermal gradients on the optical performance of the primary mirror of Mars Observer Camera (MOC), which will be launched on the Mars Observer spacecraft in September 1992. It was found that mild temperature gradients can have a large effect on the mirror surface figure, even for relatively low coefficient-of-thermal-expansion materials. However, in the case of the MOC primary mirror, it was found that the radius of curvature (ROC) of the reflective surface of the mirror changed in a nearly linear fashion with the radial temperature gradient, with little additional aberration. A solid-state ROC controller using the thermal gradient effect was implemented and verified.

  18. A Simple Temperature Gradient Apparatus To Determine Thermal Preference in "Daphnia."

    ERIC Educational Resources Information Center

    Fenske, Christiane; McCauley, Robert

    2002-01-01

    Explores the dominant factor controlling the distribution of Daphnia. Describes components of a temperature gradient apparatus that can be assembled from materials readily obtainable in the laboratory and hardware stores. Investigates whether the mean depth of Daphnia is determined by temperature. (KHR)

  19. Gradient Tempering Of Bearing Races

    NASA Technical Reports Server (NTRS)

    Parr, Richardson A.

    1991-01-01

    Gradient-tempering process increases fracture toughness and resistance to stress-corrosion cracking of ball-bearing races made of hard, strong steels and subject to high installation stresses and operation in corrosive media. Also used in other applications in which local toughening of high-strength/low-toughness materials required.

  20. Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Runguang; Xie, Qingge; Wang, Yan-Dong

    Shear banding is a ubiquitous phenomenon of severe plastic deformation, and damage accumulation in shear bands often results in the catastrophic failure of a material. Despite extensive studies, the microscopic mechanisms of strain localization and deformation damage in shear bands remain elusive due to their spatial-temporal complexities embedded in bulk materials. Here we conducted synchrotron-based X-ray microdiffraction (μXRD) experiments to map out the 3D lattice strain field with a submicron resolution around fatigue shear bands in a stainless steel. Both in situ and postmortem μXRD results revealed large lattice strain gradients at intersections of the primary and secondary shear bands.more » Such strain gradients resulted in severe mechanical heterogeneities across the fatigue shear bands, leading to reduced fatigue limits in the high-cycle regime. The ability to spatially quantify the localized strain gradients with submicron resolution through μXRD opens opportunities for understanding the microscopic mechanisms of damage and failure in bulk materials.« less

  1. Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction

    DOE PAGES

    Li, Runguang; Xie, Qingge; Wang, Yan-Dong; ...

    2017-12-28

    Shear banding is a ubiquitous phenomenon of severe plastic deformation, and damage accumulation in shear bands often results in the catastrophic failure of a material. Despite extensive studies, the microscopic mechanisms of strain localization and deformation damage in shear bands remain elusive due to their spatial-temporal complexities embedded in bulk materials. Here we conducted synchrotron-based X-ray microdiffraction (μXRD) experiments to map out the 3D lattice strain field with a submicron resolution around fatigue shear bands in a stainless steel. Both in situ and postmortem μXRD results revealed large lattice strain gradients at intersections of the primary and secondary shear bands.more » Such strain gradients resulted in severe mechanical heterogeneities across the fatigue shear bands, leading to reduced fatigue limits in the high-cycle regime. The ability to spatially quantify the localized strain gradients with submicron resolution through μXRD opens opportunities for understanding the microscopic mechanisms of damage and failure in bulk materials.« less

  2. Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction

    PubMed Central

    Li, Runguang; Xie, Qingge; Wang, Yan-Dong; Liu, Wenjun; Wang, Mingguang; Wu, Guilin; Li, Xiaowu; Zhang, Minghe; Lu, Zhaoping; Geng, Chang; Zhu, Ting

    2018-01-01

    Shear banding is a ubiquitous phenomenon of severe plastic deformation, and damage accumulation in shear bands often results in the catastrophic failure of a material. Despite extensive studies, the microscopic mechanisms of strain localization and deformation damage in shear bands remain elusive due to their spatial−temporal complexities embedded in bulk materials. Here we conducted synchrotron-based X-ray microdiffraction (μXRD) experiments to map out the 3D lattice strain field with a submicron resolution around fatigue shear bands in a stainless steel. Both in situ and postmortem μXRD results revealed large lattice strain gradients at intersections of the primary and secondary shear bands. Such strain gradients resulted in severe mechanical heterogeneities across the fatigue shear bands, leading to reduced fatigue limits in the high-cycle regime. The ability to spatially quantify the localized strain gradients with submicron resolution through μXRD opens opportunities for understanding the microscopic mechanisms of damage and failure in bulk materials. PMID:29284751

  3. Gradient Refractive Index Lenses.

    ERIC Educational Resources Information Center

    Morton, N.

    1984-01-01

    Describes the nature of gradient refractive index (GRIN) lenses, focusing on refraction in these materials, focal length of a thin Wood lens, and on manufacturing of such lenses. Indicates that GRIN lenses of small cross section are in limited production with applications suggested for optical communication and photocopying fields. (JN)

  4. Fabrication of high wettability gradient on copper substrate

    NASA Astrophysics Data System (ADS)

    Huang, Ding-Jun; Leu, Tzong-Shyng

    2013-09-01

    Copper is one of the most widely used materials in condensation heat transfer. Recently there has been great interest in improving the condensation heat transfer efficiency through copper surface modification. In this study, we describe the fabrication processes of how copper surfaces were modified to be superhydrophilic (CA ≤ 10°) and superhydrophobic (CA > 150°) by means of H2O2 immersion and fluorination with Teflon. The wettability gradient of copper surfaces with contact angles (CA) changing from superhydrophilic to superhydrophobic are also demonstrated. Unlike previous studies on gradient surfaces in which the wettability gradient is controlled either non-precisely or entirely uncontrolled, in this study, the contact angles along wettability gradient copper surfaces vary with a precisely designed gradient. It is demonstrated that a high wettability gradient copper surface can be successfully fabricated using photolithography to define the area ratios between superhydrophilic and superhydrophobic patterns within a short distance. The fabricated wettability gradient of copper surfaces is expected to be able to enhance the condensation heat transfer efficiency.

  5. Advanced Ceramic Armor Materials

    DTIC Science & Technology

    1990-05-11

    materials, toughened alumina, fiber -reinforced glass matrix composites, and multilayer-gradient materials for ballistic testing. Fabrication and...material systems: Multilayer advanced armor materials consisting of a hard ceramic faceplate bonded to a graphite fiber -reinforced glass matrix...toughened alumina, and fiber - applied studies of advanced reinforced ceramic matrix glass and glass -ceramic composites for ballistic testing. technologies

  6. Broadband absorption with gradient metasurfaces

    NASA Astrophysics Data System (ADS)

    Kwon, Hoyeong; Chalabi, Hamidreza; Alù, Andrea

    2018-03-01

    A metasurface with appropriately designed transverse spatial inhomogeneities can provide the desired phase redistribution in response to an incident wave with arbitrary incident angle. This property of gradient metasurfaces has been used to modify light propagation in unusual manners, to transform the impinging optical wavefront with large flexibility. In this work, we show how gradient metasurfaces can be tailored to offer high absorption in thin absorptive layers, and how to design realistic metasurfaces for this purpose using dielectric materials.

  7. Continuous gradient scaffolds for rapid screening of cell-material interactions and interfacial tissue regeneration

    PubMed Central

    Bailey, Brennan M.; Nail, Lindsay N.; Grunlan, Melissa A.

    2013-01-01

    In tissue engineering, the physical and chemical properties of the scaffold mediates cell behavior including regeneration. Thus, a strategy that permits rapid screening of cell-scaffold interactions is critical. Herein, we have prepared eight “hybrid” hydrogel scaffolds in the form of continuous gradients such that a single scaffold contains spatially varied properties. These scaffolds are based on combining an inorganic macromer [methacrylated star polydimethylsiloxane, PDMSstar-MA] and organic macromer [poly(ethylene glycol)diacrylate, PEG-DA] as well both aqueous and organic fabrication solvents. Having previously demonstrated its bioactivity and osteoinductivity, PDMSstar-MA is a particularly powerful component to incorporate into instructive gradient scaffolds based on PEG-DA. The following parameters were varied to produce the different gradients or gradual transitions in: (1) the wt% ratio of PDMSstar-MA to PEG-DA macromers, (2) the total wt% macromer concentration, (3) the number average molecular weight (Mn) of PEG-DA and (4) the Mn of PDMSstar-MA. Upon dividing each scaffold into four “zones” perpendicular to the gradient, we were able to demonstrate the spatial variation in morphology, bioactivity, swelling and modulus. Among these gradient scaffolds are those in which swelling and modulus are conveniently decoupled. In addition to rapid screening of cell-material interactions, these scaffolds are well-suited for regeneration of interfacial tissues (e.g. osteochondral tissues) that transition from one tissue type to another. PMID:23707502

  8. Creep and Environmental Durability of EBC/CMCs Under Imposed Thermal Gradient Conditions

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming

    2013-01-01

    Interest in SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems for use in high temperature structural applications has prompted the need for characterization of material strength and creep performance under complex aerospace turbine engine environments. Stress-rupture tests have been performed on SiC/SiC composites systems, with varying fiber types and coating schemes to demonstrate material behavior under isothermal conditions. Further testing was conducted under exposure to thermal stress gradients to determine the effect on creep resistance and material durability. In order to understand the associated damage mechanisms, emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation; including electrical resistivity monitoring. The influence of environmental and loading conditions on life-limiting material properties is shown.

  9. Effect of Interface Shape and Magnetic Field on the Microstructure of Bulk Ge:Ga

    NASA Technical Reports Server (NTRS)

    Cobb, S. D.; Szofran, F. R.; Volz, M. P.

    1999-01-01

    Thermal and compositional gradients induced during the growth process contribute significantly to the development of defects in the solidified boule. Thermal gradients and the solid-liquid interface shape can be greatly effected by ampoule material. Compositional gradients are strongly influenced by interface curvature and convective flow in the liquid. Results of this investigation illustrate the combined influences of interface shape and convective fluid flow. An applied magnetic field was used to reduce the effects of convective fluid flow in the electrically conductive melt during directional solidification. Several 8 mm diameter boules of Ga-doped Ge were grown at different field strengths, up to 5 Tesla, in four different ampoule materials. Compositional profiles indicate mass transfer conditions ranged from completely mixed to diffusion controlled. The influence of convection in the melt on the developing crystal microstructure and defect density was investigated as a function of field strength and ampoule material. Chemical etching and electron backscattered electron diffraction were used to map the crystal structure of each boule along the center plane. Dislocation etch pit densities were measured for each boule. Results show the influence of magnetic field strength and ampoule material on overall crystal quality.

  10. Unraveling Deformation Mechanisms in Gradient Structured Metals

    NASA Astrophysics Data System (ADS)

    Moering, Jordan Alexander

    Gradient structures have demonstrated high strength and high ductility, introducing new mechanisms to challenge conventional mechanics. This work develops a method for characterizing the shear strain in gradient structured steel and presents evidence of a texture gradient that develops in Surface Mechanical Attrition Treatment (SMAT). Mechanics underlying some theories of the strengthening mechanisms in gradient structured metals are introduced, followed by the fabrication and testing of gradient structured aluminum rod. The round geometry is intrinsically different from its flat counterparts, which leads to a multiaxial stress state evolving in tension. The aluminum exhibits strengthening beyond rule of mixtures, and texture evolution in the post-mortem sample indicates that out of plane stresses operate within the gradient. Finally, another gradient structured aluminum rod is shown to exhibit higher strength and higher elongation to failure in a variety of sample diameters and processing conditions. The GND density and microstructural evolution showed no significant changes during mechanical testing, and high resolution strain mapping was successfully completed within the core of the material. These discoveries and contributions to the field should help continue unraveling the deformation mechanisms of gradient structured metals.

  11. Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

    DOE PAGES

    Ping, Y.; Fernandez-Panella, A.; Sio, H.; ...

    2015-09-04

    We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. As a result, the sensitivity of the measurements to thermal conductivity is confirmed by simulations.

  12. Microfluidic approaches for the fabrication of gradient crosslinked networks based on poly(ethylene glycol) and hyperbranched polymers for manipulation of cell interactions

    PubMed Central

    Pedron, S; Peinado, C; Bosch, P; Benton, J A; Anseth, K S

    2011-01-01

    High-throughput methods allow rapid examination of parameter space to characterize materials and develop new polymeric formulations for biomaterials applications. One limitation is the difficulty of preparing libraries and performing high-throughput screening with conventional instrumentation and sample preparation. Here, we describe the fabrication of substrate materials with controlled gradients in composition by a rapid method of micromixing followed by a photopolymerization reaction. Specifically, poly(ethylene glycol) dimethacrylate was copolymerized with a hyperbranched multimethacrylate (P1000MA or H30MA) in a gradient manner. The extent of methacrylate conversion and the final network composition were determined by near-infrared spectroscopy, and mechanical properties were measured by nanoindentation. A relationship was observed between the elastic modulus and network crosslinking density. Roughness and hydrophilicity were increased on surfaces with a higher concentration of P1000MA. These results likely relate to a phase segregation process of the hyperbranched macromer that occurs during the photopolymerization reaction. On the other hand, the decrease in the final conversion in H30MA polymerization reactions was attributed to the lower termination rate as a consequence of the softening of the network. Valvular interstitial cell attachment was evaluated on these gradient substrates as a demonstration of studying cell morphology as a function of the local substrate properties. Data revealed that the presence of P1000MA affects cell–material interaction with a higher number of adhered cells and more cell spreading on gradient regions with a higher content of the multifunctional crosslinker. PMID:21105168

  13. Nanofiber scaffold gradients for interfacial tissue engineering.

    PubMed

    Ramalingam, Murugan; Young, Marian F; Thomas, Vinoy; Sun, Limin; Chow, Laurence C; Tison, Christopher K; Chatterjee, Kaushik; Miles, William C; Simon, Carl G

    2013-02-01

    We have designed a 2-spinnerette device that can directly electrospin nanofiber scaffolds containing a gradient in composition that can be used to engineer interfacial tissues such as ligament and tendon. Two types of nanofibers are simultaneously electrospun in an overlapping pattern to create a nonwoven mat of nanofibers containing a composition gradient. The approach is an advance over previous methods due to its versatility - gradients can be formed from any materials that can be electrospun. A dye was used to characterize the 2-spinnerette approach and applicability to tissue engineering was demonstrated by fabricating nanofibers with gradients in amorphous calcium phosphate nanoparticles (nACP). Adhesion and proliferation of osteogenic cells (MC3T3-E1 murine pre-osteoblasts) on gradients was enhanced on the regions of the gradients that contained higher nACP content yielding a graded osteoblast response. Since increases in soluble calcium and phosphate ions stimulate osteoblast function, we measured their release and observed significant release from nanofibers containing nACP. The nanofiber-nACP gradients fabricated herein can be applied to generate tissues with osteoblast gradients such as ligaments or tendons. In conclusion, these results introduce a versatile approach for fabricating nanofiber gradients that can have application for engineering graded tissues.

  14. Method and means for a spatial and temporal probe for laser-generated plumes based on density gradients

    DOEpatents

    Yeung, Edward S.; Chen, Guoying

    1990-05-01

    A method and means for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived.

  15. Finite Element Analysis of Multilayered and Functionally Gradient Tribological Coatings With Measured Material Properties (Preprint)

    DTIC Science & Technology

    2006-11-01

    gradient coatings with diamond like carbon (DLC) coating on 440C stainless steel substrate were assumed as a series of perfectly bonded layers with...resistance and low friction. Ti1-xCx (0≤ x ≤1) gradient coatings with diamond like carbon (DLC) coating on 440C stainless steel substrate were...indenter tip was used for the FEA model. Each coating sample consists of 1 μm thick coating and 440C stainless steel substrate. The area function for

  16. Preparation of asymmetric porous materials

    DOEpatents

    Coker, Eric N [Albuquerque, NM

    2012-08-07

    A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

  17. Solution of the Eshelby problem in gradient elasticity for multilayer spherical inclusions

    NASA Astrophysics Data System (ADS)

    Volkov-Bogorodskii, D. B.; Lurie, S. A.

    2016-03-01

    We consider gradient models of elasticity which permit taking into account the characteristic scale parameters of the material. We prove the Papkovich-Neuber theorems, which determine the general form of the gradient solution and the structure of scale effects. We derive the Eshelby integral formula for the gradient moduli of elasticity, which plays the role of the closing equation in the self-consistent three-phase method. In the gradient theory of deformations, we consider the fundamental Eshelby-Christensen problem of determining the effective elastic properties of dispersed composites with spherical inclusions; the exact solution of this problem for classical models was obtained in 1976. This paper is the first to present the exact analytical solution of the Eshelby-Christensen problem for the gradient theory, which permits estimating the influence of scale effects on the stress state and the effective properties of the dispersed composites under study.We also analyze the influence of scale factors.

  18. Combinatorial techniques to efficiently investigate and optimize organic thin film processing and properties.

    PubMed

    Wieberger, Florian; Kolb, Tristan; Neuber, Christian; Ober, Christopher K; Schmidt, Hans-Werner

    2013-04-08

    In this article we present several developed and improved combinatorial techniques to optimize processing conditions and material properties of organic thin films. The combinatorial approach allows investigations of multi-variable dependencies and is the perfect tool to investigate organic thin films regarding their high performance purposes. In this context we develop and establish the reliable preparation of gradients of material composition, temperature, exposure, and immersion time. Furthermore we demonstrate the smart application of combinations of composition and processing gradients to create combinatorial libraries. First a binary combinatorial library is created by applying two gradients perpendicular to each other. A third gradient is carried out in very small areas and arranged matrix-like over the entire binary combinatorial library resulting in a ternary combinatorial library. Ternary combinatorial libraries allow identifying precise trends for the optimization of multi-variable dependent processes which is demonstrated on the lithographic patterning process. Here we verify conclusively the strong interaction and thus the interdependency of variables in the preparation and properties of complex organic thin film systems. The established gradient preparation techniques are not limited to lithographic patterning. It is possible to utilize and transfer the reported combinatorial techniques to other multi-variable dependent processes and to investigate and optimize thin film layers and devices for optical, electro-optical, and electronic applications.

  19. Advanced Gradient Heating Facility

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Advanced Gradient Heating Facility (AGHF) is a European Space Agency (ESA) developed hardware. The AGHF was flown on STS-78, which featured four European PI's and two NASA PI's. The AGHFsupports the production of advanced semiconductor materials and alloys using the directional process, which depends on establishing a hot side and a cold side in the sample.

  20. Microstructures and Mechanical Properties of Commercially Pure Ti Processed by Rotationally Accelerated Shot Peening

    PubMed Central

    Huang, Zhaowen; Cao, Yang; Nie, Jinfeng; Zhou, Hao; Li, Yusheng

    2018-01-01

    Gradient structured materials possess good combinations of strength and ductility, rendering the materials attractive in industrial applications. In this research, a surface nanocrystallization (SNC) technique, rotationally accelerated shot peening (RASP), was employed to produce a gradient nanostructured pure Ti with a deformation layer that had a thickness of 2000 μm, which is thicker than those processed by conventional SNC techniques. It is possible to fabricate a gradient structured Ti workpiece without delamination. Moreover, based on the microstructural features, the microstructure of the processed sample can be classified into three regions, from the center to the surface of the RASP-processed sample: (1) a twinning-dominated core region; (2) a “twin intersection”-dominated twin transition region; and (3) the nanostructured region, featuring nanograins. A microhardness gradient was detected from the RASP-processed Ti. The surface hardness was more than twice that of the annealed Ti sample. The RASP-processed Ti sample exhibited a good combination of yield strength and uniform elongation, which may be attributed to the high density of deformation twins and a strong back stress effect. PMID:29498631

  1. Minimizing hot spot temperature in asymmetric gradient coil design.

    PubMed

    While, Peter T; Forbes, Larry K; Crozier, Stuart

    2011-08-01

    Heating caused by gradient coils is a considerable concern in the operation of magnetic resonance imaging (MRI) scanners. Hot spots can occur in regions where the gradient coil windings are closely spaced. These problem areas are particularly common in the design of gradient coils with asymmetrically located target regions. In this paper, an extension of an existing coil design method is described, to enable the design of asymmetric gradient coils with reduced hot spot temperatures. An improved model is presented for predicting steady-state spatial temperature distributions for gradient coils. A great amount of flexibility is afforded by this model to consider a wide range of geometries and system material properties. A feature of the temperature distribution related to the temperature gradient is used in a relaxed fixed point iteration routine for successively altering coil windings to have a lower hot spot temperature. Results show that significant reductions in peak temperature are possible at little or no cost to coil performance when compared to minimum power coils of equivalent field error.

  2. Multiphysics Modelling of Sodium Sulfur Battery

    NASA Astrophysics Data System (ADS)

    Mason, Jerry Hunter

    Due to global climate change and the desire to decrease greenhouse gas emissions, large scale energy storage has become a critical issue. Renewable energy sources such as wind and solar will not be a viable energy source unless the storage problem is solved. One of the practical and cost effective solutions for this problem is sodium sulfur batteries. These batteries are comprised of liquid electrode materials suspended in porous media and operate at relatively high temperatures (>300°C). The sodium anode and the sulfur/sodium-polysulfide cathode are separated by a solid electrolyte made of beta-alumina or NASICON material. Due to the use of porous materials in the electrodes, capillary pressure and the combination of capillary action and gravity become important. Capillary pressure has a strong dependence on the wetting phase (liquid electrode material) saturation; therefore sharp concentration gradients can occur between the inert gas and the electrode liquid, especially within the cathode. These concentration gradients can have direct impacts on the electrodynamics of the battery as they may produce areas of high electrical potential variation, which can decrease efficiency and even cause failures. Then, thermal management also becomes vital since the electrochemistry and material properties are sensitive to temperature gradients. To investigate these phenomena in detail and to attempt to improve upon battery design a multi-dimensional, multi-phase code has been developed and validated in this study. Then a porous media flow model is implemented. Transport equations for charge, mass and heat are solved in a time marching fashion using finite volume method. Material properties are calculated and updated as a function of time. The porous media model is coupled with the continuity equation and a separate diffusion equation for the liquid sodium in the melt. The total mass transport model is coupled with charge transport via Faraday's law. Results show that overpotential is significantly higher in the porous region of the cathode as was predicted by models in the literature. Overpotential is also high on the electrolyte surface and wall. Alternative electrode configurations with high resistive layers recommended by previous researchers also produce areas of high potential gradient. New electrode designs including conductivity gradients and porous media property variations are simulated and compared to previous designs and then recommendations are made for optimum cell operating conditions.

  3. Analytical instrumentation infrastructure for combinatorial and high-throughput development of formulated discrete and gradient polymeric sensor materials arrays

    NASA Astrophysics Data System (ADS)

    Potyrailo, Radislav A.; Hassib, Lamyaa

    2005-06-01

    Multicomponent polymer-based formulations of optical sensor materials are difficult and time consuming to optimize using conventional approaches. To address these challenges, our long-term goal is to determine relationships between sensor formulation and sensor response parameters using new scientific methodologies. As the first step, we have designed and implemented an automated analytical instrumentation infrastructure for combinatorial and high-throughput development of polymeric sensor materials for optical sensors. Our approach is based on the fabrication and performance screening of discrete and gradient sensor arrays. Simultaneous formation of multiple sensor coatings into discrete 4×6, 6×8, and 8×12 element arrays (3-15μL volume per element) and their screening provides not only a well-recognized acceleration in the screening rate, but also considerably reduces or even eliminates sources of variability, which are randomly affecting sensors response during a conventional one-at-a-time sensor coating evaluation. The application of gradient sensor arrays provides additional capabilities for rapid finding of the optimal formulation parameters.

  4. New head gradient coil design and construction techniques

    PubMed Central

    Handler, William B; Harris, Chad T; Scholl, Timothy J; Parker, Dennis L; Goodrich, K Craig; Dalrymple, Brian; Van Sass, Frank; Chronik, Blaine A

    2013-01-01

    Purpose To design and build a head insert gradient coil to use in conjunction with body gradients for superior imaging. Materials and Methods The use of the Boundary Element Method to solve for a gradient coil wire pattern on an arbitrary surface has allowed us to incorporate engineering changes into the electromagnetic design of a gradient coil directly. Improved wire pattern design has been combined with robust manufacturing techniques and novel cooling methods. Results The finished coil had an efficiency of 0.15 mT/m/A in all three axes and allowed the imaging region to extend across the entire head and upper part of the neck. Conclusion The ability to adapt your electromagnetic design to necessary changes from an engineering perspective leads to superior coil performance. PMID:24123485

  5. Microsphere-based gradient implants for osteochondral regeneration: a long-term study in sheep

    PubMed Central

    Mohan, Neethu; Gupta, Vineet; Sridharan, Banu Priya; Mellott, Adam J; Easley, Jeremiah T; Palmer, Ross H; Galbraith, Richard A; Key, Vincent H; Berkland, Cory J; Detamore, Michael S

    2015-01-01

    Background: The microfracture technique for cartilage repair has limited ability to regenerate hyaline cartilage. Aim: The current study made a direct comparison between microfracture and an osteochondral approach with microsphere-based gradient plugs. Materials & methods: The PLGA-based scaffolds had opposing gradients of chondroitin sulfate and β-tricalcium phosphate. A 1-year repair study in sheep was conducted. Results: The repair tissues in the microfracture were mostly fibrous and had scattered fissures with degenerative changes. Cartilage regenerated with the gradient plugs had equal or superior mechanical properties; had lacunated cells and stable matrix as in hyaline cartilage. Conclusion: This first report of gradient scaffolds in a long-term, large animal, osteochondral defect demonstrated potential for equal or better cartilage repair than microfracture. PMID:26418471

  6. Temperature-gradient-induced

    NASA Astrophysics Data System (ADS)

    Park, Cheol; Glaser, Matt; Maclennan, Joe; Clark, Noel; Trittel, Torsten; Stannarius, Ralf

    Freely-suspended smectic films of sub-micrometer thickness and lateral extensions of several millimeters were used to study thermally driven migration and convection in the film plane. Film experiments were performed during the 6 minute microgravity phase of a TEXUS suborbital rocket flight (Texus 52, launched April 27, 2015). We have found an attraction of the smectic material towards the cold edge of the film in a temperature gradient, similar to the Soret effect. This process is reversed when this edge is heated up again. Thermal convection driven by two thermocontacts in the film is practically absent, even at temperature gradients up to 10 K/mm, with thermally driven convection only setting in when the hot post reaches the transition temperature to the nematic phase. The Observation and Analysis of Smectic Islands in Space (OASIS) flight hardware was launched on SpaceX-6 in April 2015 and experiments on smectic bubbles were carried out on the International Space Station using four different smectic A and C liquid crystal materials in separate sample chambers. We observed that smectic islands on the surface of the bubbles migrated towards the colder part of the bubble in a temperature gradient. This work was supported by NASA Grant No. NNX-13AQ81G, by the Soft Materials Research Center under NSF MRSEC Grants No. DMR-0820579 and No. DMR-1420736, and by DLR Grants 50WM1127 and 50WM1430.

  7. Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths.

    PubMed

    Tsai, Yu-Ju; Larouche, Stéphane; Tyler, Talmage; Lipworth, Guy; Jokerst, Nan M; Smith, David R

    2011-11-21

    We demonstrate the design, fabrication and characterization of an artificially structured, gradient index metamaterial with a linear index variation of Δn ~ 3.0. The linear gradient profile is repeated periodically to form the equivalent of a blazed grating, with the gradient occurring across a spatial distance of 61 μm. The grating, which operates at a wavelength of 10.6 μm, is composed of non-resonant, progressively modified "I-beam" metamaterial elements and approximates a linear phase shift gradient using 61 distinguishable phase levels. The grating structure consists of four layers of lithographically patterned metallic I-beam elements separated by dielectric layers of SiO(2). The index gradient is confirmed by comparing the measured magnitudes of the -1, 0 and +1 diffracted orders to those obtained from full wave simulations incorporating all material properties of the metals and dielectrics of the structures. The large index gradient has the potential to enable compact infrared diffractive and gradient index optics, as well as more exotic transformation optical media. © 2011 Optical Society of America

  8. Continuous gradient scaffolds for rapid screening of cell-material interactions and interfacial tissue regeneration.

    PubMed

    Bailey, Brennan M; Nail, Lindsay N; Grunlan, Melissa A

    2013-09-01

    In tissue engineering, the physical and chemical properties of the scaffold mediates cell behavior, including regeneration. Thus a strategy that permits rapid screening of cell-scaffold interactions is critical. Herein, we have prepared eight "hybrid" hydrogel scaffolds in the form of continuous gradients such that a single scaffold contains spatially varied properties. These scaffolds are based on combining an inorganic macromer (methacrylated star polydimethylsiloxane, PDMSstar-MA) and organic macromer (poly(ethylene glycol)diacrylate, PEG-DA) as well as both aqueous and organic fabrication solvents. Having previously demonstrated its bioactivity and osteoinductivity, PDMSstar-MA is a particularly powerful component to incorporate into instructive gradient scaffolds based on PEG-DA. The following parameters were varied to produce the different gradients or gradual transitions in: (1) the wt.% ratio of PDMSstar-MA to PEG-DA macromers, (2) the total wt.% macromer concentration, (3) the number average molecular weight (Mn) of PEG-DA and (4) the Mn of PDMSstar-MA. Upon dividing each scaffold into four "zones" perpendicular to the gradient, we were able to demonstrate the spatial variation in morphology, bioactivity, swelling and modulus. Among these gradient scaffolds are those in which swelling and modulus are conveniently decoupled. In addition to rapid screening of cell-material interactions, these scaffolds are well suited for regeneration of interfacial tissues (e.g. osteochondral tissues) that transition from one tissue type to another. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Strain gradient drives shear banding in metallic glasses

    NASA Astrophysics Data System (ADS)

    Tian, Zhi-Li; Wang, Yun-Jiang; Chen, Yan; Dai, Lan-Hong

    2017-09-01

    Shear banding is a nucleation-controlled process in metallic glasses (MGs) involving multiple temporal-spatial scales, which hinders a concrete understanding of its structural origin down to the atomic scale. Here, inspired by the morphology of composite materials, we propose a different perspective of MGs as a hard particle-reinforced material based on atomic-scale structural heterogeneity. The local stable structures indicated by a high level of local fivefold symmetry (L5FS) act as hard "particles" which are embedded in the relatively soft matrix. We demonstrate this concept by performing atomistic simulations of shear banding in CuZr MG. A shear band is prone to form in a sample with a high degree of L5FS which is slowly quenched from the liquid. An atomic-scale analysis on strain and the structural evolution reveals that it is the strain gradient effect that has originated from structural heterogeneity that facilitates shear transformation zones (STZs) to mature shear bands. An artificial composite model with a high degree of strain gradient, generated by inserting hard MG strips into a soft MG matrix, demonstrates a great propensity for shear banding. It therefore confirms the critical role strain gradient plays in shear banding. The strain gradient effect on shear banding is further quantified with a continuum model and a mechanical instability analysis. These physical insights might highlight the strain gradient as the hidden driving force in transforming STZs into shear bands in MGs.

  10. Gelatin freeze casting of biomimetic titanium alloy with anisotropic and gradient pore structure.

    PubMed

    Zhang, Lei; Le Coz-Botrel, Ronan; Beddoes, Charlotte; Sjöström, Terje; Su, Bo

    2017-01-17

    Titanium is a material commonly used for dental and orthopaedic implants. However, due to large differences in properties between the titanium metal and the natural bone, stress shielding has been observed in the surrounding area, resulting in bone atrophy, and thus has raised concerns of the use of this material. Ideally implant materials should possess similar properties to the surrounding tissues in order to distribute the load as the joint would naturally, while also possessing a similar porous structure to the bone to enable interaction with the surrounding material. In this paper we report the formation of aligned porous titanium alloy scaffolds with the use of unidirectional freeze casting with a temperature gradient. The resulting scaffolds had a dense bottom part with sufficient strength for loading, while the top part remaining porous in order to allow bone growth in the scaffold and fully integrating with the surrounding tissue. The anisotropic nature of the pores within the titanium alloy samples were observed via micro computed tomography, where a gradient structure similar to bone was observed. The compressive strength of the fabricated scaffolds was found to be up to 427 MPa when measured with the pores aligned with the applied load, depending on the pore density. This is within the range of cortical bone.

  11. Some opinions about matter and material substances: from inanimate system -- to living according to A. Einstein general theory of relativity.

    PubMed

    Topuria, T; Gogebashvili, N; Korsantia, B

    2005-11-01

    During transformation from inanimate to living, change of the space position of the matter causes the change of the field, as the space does not exist without the field, therefore the time-space as the properties of material substances, should undergo certain changes. The outside inanimate system, in this case a matrix, has its own time. The living system, in this case a cell, where the matter undergoes space conformation with the change of field and space-time, has its own time and it has begun to flow more rapidly than in matrix. From the surface of the body, from different energetic reservoirs oppositely charged matter substances following from special transport systems from the life system transmitted into lifeless one and change their matter space conformation, create transmission gradient that is the gradient border of time from lifeless system into live. In the case of a human, hypothetically, the gradient system of time must be of a complex scheme counting the inter-transformation and interaction gradients of outer and inner abdominal systems. Subconscious and consciousness by means of special links and messages, information selection interact and form unique connection between the systems. Subconscious serves for accelerated time system. Conscious by means of permanent contact with the environment collects and reacts in matrix time system By interconnection of these two systems ideal adaptation with the environment takes place. Time difference gradient system is an additional energy factor, by means of which respective ordered geometrical structures special for the given types are formed. The living organism is an inter-regulated interconnection global system resulting from the changes of matter and material substances space configuration.

  12. Gradients of microhabitat and crappie (Pomoxis spp.) distributions in reservoir coves

    USGS Publications Warehouse

    Kaczka, Levi J.; Miranda, Leandro E.

    2013-01-01

    Embayments are among the most widespread littoral habitats found in Mississippi flood-control reservoirs. These macrohabitats represent commonly used nursery zones for age-0 crappies, Pomoxis spp., despite barren and eroded shorelines formed over 60–70 years of annual water level fluctuations. We tested if embayments displayed microhabitat gradients linked to the effect of water level fluctuations on riparian vegetation and if these gradients were paralleled by gradients in age-0 crappie distribution. Habitat composition changed longitudinally along the embayments with the most pronounced gradient representing a shift from nonvegetated mudflats near the mouth of embayments to herbaceous material upstream. The degree of habitat change depended on the water level. Similarly, catch rates of crappies increased upstream toward the rear of embayments, differing among water levels and reservoirs, but the longitudinal pattern persisted. Our results indicate that habitat composition gradients occur in embayments of northwest Mississippi flood-control reservoirs and that these gradients may influence a similar gradient in age-0 crappie distribution. While the biotic interactions behind the gradients may be less clear, we speculate that water level is the main factor influencing the observed gradients in habitat composition and fish. Management to benefit age-0 crappies may involve habitat improvement along embayment shorelines and water level regimes that foster growth of herbaceous plants.

  13. Biomaterials with persistent growth factor gradients in vivo accelerate vascularized tissue formation.

    PubMed

    Akar, Banu; Jiang, Bin; Somo, Sami I; Appel, Alyssa A; Larson, Jeffery C; Tichauer, Kenneth M; Brey, Eric M

    2015-12-01

    Gradients of soluble factors play an important role in many biological processes, including blood vessel assembly. Gradients can be studied in detail in vitro, but methods that enable the study of spatially distributed soluble factors and multi-cellular processes in vivo are limited. Here, we report on a method for the generation of persistent in vivo gradients of growth factors in a three-dimensional (3D) biomaterial system. Fibrin loaded porous poly (ethylene glycol) (PEG) scaffolds were generated using a particulate leaching method. Platelet derived growth factor BB (PDGF-BB) was encapsulated into poly (lactic-co-glycolic acid) (PLGA) microspheres which were placed distal to the tissue-material interface. PLGA provides sustained release of PDGF-BB and its diffusion through the porous structure results in gradient formation. Gradients within the scaffold were confirmed in vivo using near-infrared fluorescence imaging and gradients were present for more than 3 weeks. The diffusion of PDGF-BB was modeled and verified with in vivo imaging findings. The depth of tissue invasion and density of blood vessels formed in response to the biomaterial increased with magnitude of the gradient. This biomaterial system allows for generation of sustained growth factor gradients for the study of tissue response to gradients in vivo. Published by Elsevier Ltd.

  14. On the combined gradient-stochastic plasticity model: Application to Mo-micropillar compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantinidis, A. A., E-mail: akonsta@civil.auth.gr; Zhang, X., E-mail: zhangxu26@126.com; Aifantis, E. C., E-mail: mom@mom.gen.auth.gr

    2015-02-17

    A formulation for addressing heterogeneous material deformation is proposed. It is based on the use of a stochasticity-enhanced gradient plasticity model implemented through a cellular automaton. The specific application is on Mo-micropillar compression, for which the irregularities of the strain bursts observed have been experimentally measured and theoretically interpreted through Tsallis' q-statistics.

  15. Material and Optical Densities

    ERIC Educational Resources Information Center

    Gluck, Paul

    2007-01-01

    The bending of a laser beam in a medium with a density and refractive index gradient in the same direction has been described previously. When a transparent container is half filled with a salt or sugar solution and an equal amount of water is floated on top of it, then diffusion will create a concentration gradient from top to bottom. A laser…

  16. Method for single crystal growth of photovoltaic perovskite material and devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jinsong; Dong, Qingfeng

    Systems and methods for perovskite single crystal growth include using a low temperature solution process that employs a temperature gradient in a perovskite solution in a container, also including at least one small perovskite single crystal, and a substrate in the solution upon which substrate a perovskite crystal nucleates and grows, in part due to the temperature gradient in the solution and in part due to a temperature gradient in the substrate. For example, a top portion of the substrate external to the solution may be cooled.

  17. Method and means for a spatial and temporal probe for laser-generated plumes based on density gradients

    DOEpatents

    Yeung, E.S.; Chen, G.

    1990-05-01

    A method and means are disclosed for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived. 15 figs.

  18. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients

    PubMed Central

    Bai, Hao; Chen, Yuan; Delattre, Benjamin; Tomsia, Antoni P.; Ritchie, Robert O.

    2015-01-01

    Natural materials, such as bone, teeth, shells, and wood, exhibit outstanding properties despite being porous and made of weak constituents. Frequently, they represent a source of inspiration to design strong, tough, and lightweight materials. Although many techniques have been introduced to create such structures, a long-range order of the porosity as well as a precise control of the final architecture remain difficult to achieve. These limitations severely hinder the scale-up fabrication of layered structures aimed for larger applications. We report on a bidirectional freezing technique to successfully assemble ceramic particles into scaffolds with large-scale aligned, lamellar, porous, nacre-like structure and long-range order at the centimeter scale. This is achieved by modifying the cold finger with a polydimethylsiloxane (PDMS) wedge to control the nucleation and growth of ice crystals under dual temperature gradients. Our approach could provide an effective way of manufacturing novel bioinspired structural materials, in particular advanced materials such as composites, where a higher level of control over the structure is required. PMID:26824062

  19. Purification of Piscirickettsia salmonis and partial characterisation of antigens

    USGS Publications Warehouse

    Barnes, M.N.; Landolt, M.L.; Powell, D.B.; Winton, J.R.

    1998-01-01

    Piscirickettsia salmonis is the etiological agent of salmonid rickettsial septicemia, an economically significant disease affecting the salmon aquaculture industry. As with other rickettsial pathogens, antigenic analysis of P. salmonis has been limited by the inherent difficulties of purifying an intracellular organism away from host cell material. In this report, we describe the use of diatrizoate meglumine and diatrizoate sodium (DMDS) density gradient centrifugation to purify P. salmonis grown in chinook salmon embryo (CHSE-214) cells. Plaque assay titers and total protein assays confirmed that viable P. salmonis was consistently concentrated in a visible band within the DMDS density gradient at a density of 1.15 to 1.16 g ml-1. Recovery of purified, viable organisms from DMDS density gradients varied from 0.6 to 3%. Preparations of uninfected CHSE-214 cells, CHSE-214 cells infected with P. salmonis, and gradient-purified P. salmonis were compared using sodium dodecyl sulfate polyacrylamide gel electrophoresis to assess the degree of purification and to identify P. salmonis-specific proteins. Although gradient-purified P. salmonis preparations were not completely free of host cell material, 8 bacterial proteins were identified. Polyclonal rabbit antiserum was used in an immunoblot of proteins from purified P. salmonis to identify 3 major and 5 minor antigens. The major antigens of 56, 30 and 20 kDa were potential candidates for experimental vaccines and development of novel diagnostic assays.

  20. Experimental and Finite Element Modeling of Near-Threshold Fatigue Crack Growth for the K-Decreasing Test Method

    NASA Technical Reports Server (NTRS)

    Smith, Stephen W.; Seshadri, Banavara R.; Newman, John A.

    2015-01-01

    The experimental methods to determine near-threshold fatigue crack growth rate data are prescribed in ASTM standard E647. To produce near-threshold data at a constant stress ratio (R), the applied stress-intensity factor (K) is decreased as the crack grows based on a specified K-gradient. Consequently, as the fatigue crack growth rate threshold is approached and the crack tip opening displacement decreases, remote crack wake contact may occur due to the plastically deformed crack wake surfaces and shield the growing crack tip resulting in a reduced crack tip driving force and non-representative crack growth rate data. If such data are used to life a component, the evaluation could yield highly non-conservative predictions. Although this anomalous behavior has been shown to be affected by K-gradient, starting K level, residual stresses, environmental assisted cracking, specimen geometry, and material type, the specifications within the standard to avoid this effect are limited to a maximum fatigue crack growth rate and a suggestion for the K-gradient value. This paper provides parallel experimental and computational simulations for the K-decreasing method for two materials (an aluminum alloy, AA 2024-T3 and a titanium alloy, Ti 6-2-2-2-2) to aid in establishing clear understanding of appropriate testing requirements. These simulations investigate the effect of K-gradient, the maximum value of stress-intensity factor applied, and material type. A material independent term is developed to guide in the selection of appropriate test conditions for most engineering alloys. With the use of such a term, near-threshold fatigue crack growth rate tests can be performed at accelerated rates, near-threshold data can be acquired in days instead of weeks without having to establish testing criteria through trial and error, and these data can be acquired for most engineering materials, even those that are produced in relatively small product forms.

  1. Improved incorporation of strain gradient elasticity in the flexoelectricity based energy harvesting from nanobeams

    NASA Astrophysics Data System (ADS)

    Zhou, Yarong; Yang, Xu; Pan, Dongmei; Wang, Binglei

    2018-04-01

    Flexoelectricity, the coupling of strain gradient and polarization, exists in all the dielectric materials and numerous models have been proposed to study this mechanism. However, the contribution of strain gradient elasticity has typically been underestimated. In this work, inspired by the one-length scale parameter model developed by Deng et al. [19], we incorporate three length-scale parameters to carefully capture the contribution of the purely mechanical strain gradients on flexoelectricity. This three-parameter model is more flexible and could be applied to investigate the flexoelectricity in a wide range of complicated deformations. Accordingly, we carry out our analysis by studying a dielectric nanobeam under different boundary conditions. We show that the strain gradient elasticity and flexoelectricity have apparent size effects and significant influence on the electromechanical response. In particular, the strain gradient effects could significantly reduce the energy efficiency, indicating their importance and necessity. This work may be helpful in understanding the mechanism of flexoelectricity at the nanoscale and sheds light on the flexoelectricity energy harvesting.

  2. Optimized operation of dielectric laser accelerators: Single bunch

    NASA Astrophysics Data System (ADS)

    Hanuka, Adi; Schächter, Levi

    2018-05-01

    We introduce a general approach to determine the optimal charge, efficiency and gradient for laser driven accelerators in a self-consistent way. We propose a way to enhance the operational gradient of dielectric laser accelerators by leverage of beam-loading effect. While the latter may be detrimental from the perspective of the effective gradient experienced by the particles, it can be beneficial as the effective field experienced by the accelerating structure, is weaker. As a result, the constraint imposed by the damage threshold fluence is accordingly weakened and our self-consistent approach predicts permissible gradients of ˜10 GV /m , one order of magnitude higher than previously reported experimental results—with unbunched pulse of electrons. Our approach leads to maximum efficiency to occur for higher gradients as compared with a scenario in which the beam-loading effect on the material is ignored. In any case, maximum gradient does not occur for the same conditions that maximum efficiency does—a trade-off set of parameters is suggested.

  3. Aligned coaxial tungsten oxide-carbon nanotube sheet: a flexible and gradient electrochromic film.

    PubMed

    Yao, Zhaojun; Di, Jiangtao; Yong, Zhenzhong; Zhao, Zhigang; Li, Qingwen

    2012-08-25

    We develop a simple dry wrapping method to fabricate a tungsten oxide (WO(3))/carbon nanotube (CNT) cable, in which WO(3) layers act as an electrochromic component while aligned CNTs as the core provide mechanical support and an anisotropic, continuous electron transport pathway. Interestingly, the resultant cable material exhibits an obvious gradient electrochromic phenomenon.

  4. Macroscale Transformation Optics Enabled by Photoelectrochemical Etching.

    PubMed

    Barth, David S; Gladden, Christopher; Salandrino, Alessandro; O'Brien, Kevin; Ye, Ziliang; Mrejen, Michael; Wang, Yuan; Zhang, Xiang

    2015-10-28

    Photoelectrochemical etching of silicon can be used to form lateral refractive index gradients for transformation optical devices. This technique allows the fabrication of macroscale devices with large refractive index gradients. Patterned porous layers can also be lifted from the substrate and transferred to other materials, creating more possibilities for novel devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Interface Effects of the Properties and Processing of Graded Composite Aluminum Alloys

    DTIC Science & Technology

    2015-08-31

    diffuse interface. Produced by the Alcoa sequential casting process, the material has a gradient in composition from a stronger, precipitation...strengthened alloy (7055) to a softer, strain-hardenable alloy (5456) [1], [2]. Alcoa donated material, 30x30x2 cm3 in volume. The material was cast, rolled

  6. Surface treatment of alumina-based ceramics using combined laser sources

    NASA Astrophysics Data System (ADS)

    Triantafyllidis, D.; Li, L.; Stott, F. H.

    2002-01-01

    Alumina-based refractory materials are extensively used as linings in incinerators and furnaces. These materials are subject to molten salt corrosion and chemical degradation because of the existence of porosity and material inhomogeneity. Efforts to improve the performance of these materials have so far concentrated mainly on the optimisation of the manufacturing processes (e.g. producing denser refractory bricks) and in-service monitoring. Laser surface treatment has also been used to improve performance. The main problem identified with laser surface treatment is solidification cracking due to the generation of very large temperature gradients. The aim of this paper is to investigate the surface modification of alumina-based ceramics by using two combined laser sources in order to control the thermal gradients and cooling rates during processing so that crack formation can be eliminated. The material under investigation is 85% alumina refractory ceramic, used as lining material in incineration plants. The surface morphology and cross-section of the treated samples are analysed using optical and scanning electron microscopy (SEM) and compared with single laser beam treated samples.

  7. Spherical gradient-index lenses as perfect imaging and maximum power transfer devices.

    PubMed

    Gordon, J M

    2000-08-01

    Gradient-index lenses can be viewed from the perspectives of both imaging and nonimaging optics, that is, in terms of both image fidelity and achievable flux concentration. The simple class of gradient-index lenses with spherical symmetry, often referred to as modified Luneburg lenses, is revisited. An alternative derivation for established solutions is offered; the method of Fermat's strings and the principle of skewness conservation are invoked. Then these nominally perfect imaging devices are examined from the additional vantage point of power transfer, and the degree to which they realize the thermodynamic limit to flux concentration is determined. Finally, the spherical gradient-index lens of the fish eye is considered as a modified Luneburg lens optimized subject to material constraints.

  8. Dispersion of acoustic surface waves by velocity gradients

    NASA Astrophysics Data System (ADS)

    Kwon, S. D.; Kim, H. C.

    1987-10-01

    The perturbation theory of Auld [Acoustic Fields and Waves in Solids (Wiley, New York, 1973), Vol. II, p. 294], which describes the effect of a subsurface gradient on the velocity dispersion of surface waves, has been modified to a simpler form by an approximation using a newly defined velocity gradient for the case of isotropic materials. The modified theory is applied to nitrogen implantation in AISI 4140 steel with a velocity gradient of Gaussian profile, and compared with dispersion data obtained by the ultrasonic right-angle technique in the frequency range from 2.4 to 14.8 MHz. The good agreement between experiments and our theory suggests that the compound layer in the subsurface region plays a dominant role in causing the dispersion of acoustic surface waves.

  9. Temperature and porosity effects on wave propagation in nanobeams using bi-Helmholtz nonlocal strain-gradient elasticity

    NASA Astrophysics Data System (ADS)

    Reza Barati, Mohammad

    2018-05-01

    In this paper, applying a general nonlocal strain-gradient elasticity model with two nonlocal and one strain-gradient parameters, wave dispersion behavior of thermally affected and elastically bonded nanobeams is investigated. The two nanobeams are considered to have material imperfections or porosities evenly dispersed across the thickness. Each nanobeam has uniform thickness and is modeled by refined shear deformation beam theory with sinusoidal transverse shear strains. The governing equations of the system are derived by Hamilton's rule and are analytically solved to obtain wave frequencies and the velocity of wave propagation. In the presented graphs, one can see that porosities, temperature, nonlocal, strain gradient and bonding springs have great influences on the wave characteristics of the system.

  10. Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials.

    PubMed

    Liu, Ruopeng; Cheng, Qiang; Chin, Jessie Y; Mock, Jack J; Cui, Tie Jun; Smith, David R

    2009-11-09

    Utilizing non-resonant metamaterial elements, we demonstrate that complex gradient index optics can be constructed exhibiting low material losses and large frequency bandwidth. Although the range of structures is limited to those having only electric response, with an electric permittivity always equal to or greater than unity, there are still numerous metamaterial design possibilities enabled by leveraging the non-resonant elements. For example, a gradient, impedance matching layer can be added that drastically reduces the return loss of the optical elements due to reflection. In microwave experiments, we demonstrate the broadband design concepts with a gradient index lens and a beam-steering element, both of which are confirmed to operate over the entire X-band (roughly 8-12 GHz) frequency spectrum.

  11. Numerical methods for the design of gradient-index optical coatings.

    PubMed

    Anzengruber, Stephan W; Klann, Esther; Ramlau, Ronny; Tonova, Diana

    2012-12-01

    We formulate the problem of designing gradient-index optical coatings as the task of solving a system of operator equations. We use iterative numerical procedures known from the theory of inverse problems to solve it with respect to the coating refractive index profile and thickness. The mathematical derivations necessary for the application of the procedures are presented, and different numerical methods (Landweber, Newton, and Gauss-Newton methods, Tikhonov minimization with surrogate functionals) are implemented. Procedures for the transformation of the gradient coating designs into quasi-gradient ones (i.e., multilayer stacks of homogeneous layers with different refractive indices) are also developed. The design algorithms work with physically available coating materials that could be produced with the modern coating technologies.

  12. Modeling the zonal disintegration of rocks near deep level tunnels by gradient internal variable continuous phase transition theory

    NASA Astrophysics Data System (ADS)

    Haoxiang, Chen; Qi, Chengzhi; Peng, Liu; Kairui, Li; Aifantis, Elias C.

    2015-12-01

    The occurrence of alternating damage zones surrounding underground openings (commonly known as zonal disintegration) is treated as a "far from thermodynamic equilibrium" dynamical process or a nonlinear continuous phase transition phenomenon. The approach of internal variable gradient theory with diffusive transport, which may be viewed as a subclass of Landau's phase transition theory, is adopted. The order parameter is identified with an irreversible strain quantity, the gradient of which enters into the expression for the free energy of the rock system. The gradient term stabilizes the material behavior in the post-softening regime, where zonal disintegration occurs. The results of a simplified linearized analysis are confirmed by the numerical solution of the nonlinear problem.

  13. Characterization of the thermal conductivity for Advanced Toughened Uni-piece Fibrous Insulations

    NASA Technical Reports Server (NTRS)

    Stewart, David A.; Leiser, Daniel B.

    1993-01-01

    Advanced Toughened Uni-piece Fibrous Insulations (TUFI) is discussed in terms of their thermal response to an arc-jet air stream. A modification of the existing Ames thermal conductivity program to predict the thermal response of these functionally gradient materials is described in the paper. The modified program was used to evaluate the effect of density, surface porosity, and density gradient through the TUFI materials on the thermal response of these insulations. Predictions using a finite-difference code and calculated thermal conductivity values from the modified program were compared with in-depth temperature measurements taken from TUFI insulations during short exposures to arc-jet hypersonic air streams.

  14. Utilization of nuclear methods for materials analysis and the determination of concentration gradients

    NASA Technical Reports Server (NTRS)

    Darras, R.

    1979-01-01

    The various types of nuclear chemical analysis methods are discussed. The possibilities of analysis through activation and direct observation of nuclear reactions are described. Such methods make it possible to analyze trace elements and impurities with selectivity, accuracy, and a high degree of sensitivity. Such methods are used in measuring major elements present in materials which are available for analysis only in small quantities. These methods are well suited to superficial analyses and to determination of concentration gradients; provided the nature and energy of the incident particles are chosen judiciously. Typical examples of steels, pure iron and refractory metals are illustrated.

  15. METHOD OF PRODUCING NEUTRONS

    DOEpatents

    Imhoff, D.H.; Harker, W.H.

    1964-01-14

    This patent relates to a method of producing neutrons in which there is produced a heated plasma containing heavy hydrogen isotope ions wherein heated ions are injected and confined in an elongated axially symmetric magnetic field having at least one magnetic field gradient region. In accordance with the method herein, the amplitude of the field and gradients are varied at an oscillatory periodic frequency to effect confinement by providing proper ratios of rotational to axial velocity components in the motion of said particles. The energetic neutrons may then be used as in a blanket zone containing a moderator and a source fissionable material to produce heat and thermal neutron fissionable materials. (AEC)

  16. Infiltration of MHD liquid into a deformable porous material

    NASA Astrophysics Data System (ADS)

    Naseem, Anum; Mahmood, Asif; Siddique, J. I.; Zhao, Lifeng

    2018-03-01

    We analyze the capillary rise dynamics for magnetohydrodynamics (MHD) fluid flow through deformable porous material in the presence of gravity effects. The modeling is performed using mixture theory approach and mathematical manipulation yields a nonlinear free boundary problem. Due to the capillary rise action, the pressure gradient in the liquid generates a stress gradient that results in the deformation of porous substrate. The capillary rise process for MHD fluid slows down as compared to Newtonian fluid case. Numerical solutions are obtained using a method of lines approach. The graphical results are presented for important physical parameters, and comparison is presented with Newtonian fluid case.

  17. Enhanced electrochemical performance and storage property of LiNi0.815Co0.15Al0.035O2 via Al gradient doping

    NASA Astrophysics Data System (ADS)

    Duan, Jianguo; Hu, Guorong; Cao, Yanbing; Tan, Chaopu; Wu, Ceng; Du, Ke; Peng, Zhongdong

    2016-09-01

    LiNi1-x-yCoxAlyO2 is a commonly used Ni-rich cathode material because of its relatively low cost, excellent rate capability and high gravimetric energy density. Surface modification is an efficient way to overcome the shortcomings of Ni-rich cathodes such as poor cycling stability and poor thermal stability. A high-powered concentration-gradient cathode material with an average composition of LiNi0.815Co0.15Al0.035O2 (LGNCAO) has been successfully synthesized by using spherical concentration-gradient Ni0.815Co0.15Al0.035(OH)2 (GNCA)as the starting material. An efficient design of the Al3+ precipitation method is developed, which enables obtaining spherical GNCA with ∼10 μm particle size and high tap density. In LGNCAO, the nickel and cobalt concentration decreases gradually whereas the aluminum concentration increases from the centre to the outer layer of each particle. Electrochemical performance and storage properties of LGNCAO have been investigated comparatively. The LGNCAO displays better electrochemical performance and improved storage stability than LNCAO.

  18. Dielectrophoresis-Based Particle Sensor Using Nanoelectrode Arrays

    NASA Technical Reports Server (NTRS)

    Li, Jun; Cassell, Alan M.; Arumugam, Prabhu U.

    2013-01-01

    A method has been developed for concentrating, or partly separating, particles of a selected species from a liquid or gas containing these particles, and flowing in a channel. An example of this is to promote an accumulation (and thus concentration) of the selected particle (e.g., biological species such as E. coli, salmonella, anthrax, tobacco mosaic virus or herpes simplex, and non-biological materials such as nano- and microparticles, quantum dots, nanowires, nano - tubes, and other inorganic particles) adjacent to the first surface. Additionally, this method can also determine if the particle species is present in the liquid. This is accomplished by providing an insulating material in an interstitial volume between two or more adjacent nanostructure electrodes. It can also be accomplished by providing a functionalizing substance, located on a selected region of the insulating material surface, which promotes attachment of the selected species particles to the functionalized surface, and measuring a selected electrical property such as electrical impedance, conductance, or capacitance. A time-varying electrical field E, having a root-mean-square intensity of E(sup 2) rms, with a non-zero gradient in a direction transverse to the liquid or fluid flow direction, is produced by a nanostructure electrode array with a very high-magnitude gradient near exposed electrode tips. A dielectrophoretic force causes the selected particles to accumulate near the electrode tips, if the medium and selected particles have substantially different dielectric constants. An insulating material surrounds most of the nanostructure electrodes, and a region of the insulating material surface is functionalized to promote attachment of the selected particle species to the surface. An electrical property value Z(meas) is measured at the functionalized surface, and is compared with a reference value Z(ref) to determine if the selected species particles are attached to the functionalized surface. Some advantages of this innovation are that an array of nanostructure electrodes can provide an electric field intensity gradient that is one or more orders of magnitude greater than the corresponding gradient provided by a conventional microelectrode arrangement, and that, as a result of the high-magnitude field intensity gradients, a nanostructure concentrator can trap particles from high-speed microfluidic flows. This is critical for applications where the entire analysis must be performed in a few minutes

  19. Flux-gate magnetometer spin axis offset calibration using the electron drift instrument

    NASA Astrophysics Data System (ADS)

    Plaschke, Ferdinand; Nakamura, Rumi; Leinweber, Hannes K.; Chutter, Mark; Vaith, Hans; Baumjohann, Wolfgang; Steller, Manfred; Magnes, Werner

    2014-10-01

    Spin-stabilization of spacecraft immensely supports the in-flight calibration of on-board flux-gate magnetometers (FGMs). From 12 calibration parameters in total, 8 can be easily obtained by spectral analysis. From the remaining 4, the spin axis offset is known to be particularly variable. It is usually determined by analysis of Alfvénic fluctuations that are embedded in the solar wind. In the absence of solar wind observations, the spin axis offset may be obtained by comparison of FGM and electron drift instrument (EDI) measurements. The aim of our study is to develop methods that are readily usable for routine FGM spin axis offset calibration with EDI. This paper represents a major step forward in this direction. We improve an existing method to determine FGM spin axis offsets from EDI time-of-flight measurements by providing it with a comprehensive error analysis. In addition, we introduce a new, complementary method that uses EDI beam direction data instead of time-of-flight data. Using Cluster data, we show that both methods yield similarly accurate results, which are comparable yet more stable than those from a commonly used solar wind-based method.

  20. Implementation and application of a gradient enhanced crystal plasticity model

    NASA Astrophysics Data System (ADS)

    Soyarslan, C.; Perdahcıoǧlu, E. S.; Aşık, E. E.; van den Boogaard, A. H.; Bargmann, S.

    2017-10-01

    A rate-independent crystal plasticity model is implemented in which description of the hardening of the material is given as a function of the total dislocation density. The evolution of statistically stored dislocations (SSDs) is described using a saturating type evolution law. The evolution of geometrically necessary dislocations (GNDs) on the other hand is described using the gradient of the plastic strain tensor in a non-local manner. The gradient of the incremental plastic strain tensor is computed explicitly during an implicit FE simulation after each converged step. Using the plastic strain tensor stored as state variables at each integration point and an efficient numerical algorithm to find the gradients, the GND density is obtained. This results in a weak coupling of the equilibrium solution and the gradient enhancement. The algorithm is applied to an academic test problem which considers growth of a cylindrical void in a single crystal matrix.

  1. The Effect of Temperature on Moisture Transport in Concrete.

    PubMed

    Wang, Yao; Xi, Yunping

    2017-08-09

    Most concrete structures and buildings are under temperature and moisture variations simultaneously. Thus, the moisture transport in concrete is driven by the moisture gradient as well as the temperature gradient. This paper presents an experimental approach for determining the effect of different temperature gradients on moisture distribution profiles in concrete. The effect of elevated temperatures under isothermal conditions on the moisture transport was also evaluated, and found not to be significant. The non-isothermal tests show that the temperature gradient accelerates the moisture transport in concrete. The part of increased moisture transfer due to the temperature gradient can be quantified by a coupling parameter D HT , which can be determined by the present test data. The test results indicated that D HT is not a constant but increases linearly with the temperature variation. A material model was developed for D HT based on the experimental results obtained in this study.

  2. The Effect of Temperature on Moisture Transport in Concrete

    PubMed Central

    Wang, Yao; Xi, Yunping

    2017-01-01

    Most concrete structures and buildings are under temperature and moisture variations simultaneously. Thus, the moisture transport in concrete is driven by the moisture gradient as well as the temperature gradient. This paper presents an experimental approach for determining the effect of different temperature gradients on moisture distribution profiles in concrete. The effect of elevated temperatures under isothermal conditions on the moisture transport was also evaluated, and found not to be significant. The non-isothermal tests show that the temperature gradient accelerates the moisture transport in concrete. The part of increased moisture transfer due to the temperature gradient can be quantified by a coupling parameter DHT, which can be determined by the present test data. The test results indicated that DHT is not a constant but increases linearly with the temperature variation. A material model was developed for DHT based on the experimental results obtained in this study. PMID:28792460

  3. A Theoretical and Experimental Study of Emission Spectroscopy of Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Henderson, Bradley Gray

    1995-01-01

    This thesis explores the spectral emissivity of particulate materials on planetary surfaces through theoretical modeling and supporting laboratory and field investigations. In the first part of the thesis, I develop a Monte Carlo ray tracing model to calculate the directional and spectral emissivity and the polarization state of the radiation emitted from a particulate, isothermal surface for emission angles 0^circ-90^ circ and wavelengths 7-16 mu m. The results show that roughness and scattering significantly affect the character of the emitted radiation field and should be taken into account when interpreting the physical properties of a planetary surface from IR spectrophotometry or spectropolarimetry. The remainder of the thesis focuses on understanding near-surface thermal gradients and their effects on emission spectra for different planetary environments. These gradients are formed by radiative cooling in the top few hundred microns of low conductivity particulate materials on planetary surfaces with little or no atmosphere. I model the heat transfer by conduction and radiation in the top few millimeters of a planetary regolith for scattering and non-scattering media. In conjunction with the modeling, I measure emission spectra of fine-grained quartz in an environment chamber designed to simulate the conditions on other planetary surfaces. The results show that significant thermal gradients will form in the near surface of materials on the surface of the Moon and Mercury. Their presence increases spectral contrast and creates emission maxima in the transparent regions of the spectrum. Thermal gradients are shown to be responsible for the observed wavelength shifts of the Christiansen emission peak with variations in thermal conductivity and grain size. The results are also used to analyze recent telescopic spectra of the Moon and Mercury and can explain certain features seen in those data. Thermal gradients are shown to be minor for the surface of Mars and negligible on Earth. I conclude that the spectral effects created by near-surface thermal gradients are predictable and might even provide an extra source of information about the physical nature of a planetary surface, and mid-IR emission spectroscopy should therefore prove to be useful for remote sensing of airless bodies.

  4. Development and kinetic analysis of cobalt gradient formation in WC-Co composites

    NASA Astrophysics Data System (ADS)

    Guo, Jun

    2011-12-01

    Functionally graded cemented tungsten carbide (FG WC-Co) is one of the main research directions in the field of WC-Co over decades. Although it has long been recognized that FG WC-Co could outperform conventional homogeneous WC-Co owing to its potentially superior combinations of mechanical properties, until recently there has been a lack of effective and economical methods to make such materials. The lack of the technology has prevented the manufacturing and industrial applications of FG WC-Co from becoming a reality. This dissertation is a comprehensive study of an innovative atmosphere heat treatment process for producing FG WC-Co with a surface cobalt compositional gradient. The process exploited a triple phase field in W-C-Co phase diagram among three phases (solid WC, solid Co, and liquid Co) and the dependence of the migration of liquid Co on temperature and carbon content. WC-Co with a graded surface cobalt composition can be achieved by controlling the diffusion of carbon transported from atmosphere during sintering or during postsintering heat treatment. The feasibility of the process was validated by the successful preparations of FG WC-Co via both carburization and decarburization process following conventional liquid phase sintering. A study of the carburization process was undertaken to further understand and quantitatively modeled this process. The effects of key processing parameters (including heat treating temperature, atmosphere, and time) and key materials variables (involving Co content, WC grain size, and addition of grain growth inhibitors) on the formation of Co gradients were examined. Moreover, a carbon-diffusion controlled kinetic model was developed for simulating the formation of the gradient during the process. The parameters involved in this model were determined by thermodynamic calculations and regression-fit of simulation results with experimental data. In summary, this research first demonstrated the principle of the approach. Second, a model was developed to predict the gradients produced by the carbon-controlled atmosphere heat treatment process, which is useful for manufacturing WC-Co with designed gradients. FG WC-Co materials produced using this method are expected to exhibit superior performance in many applications and to have a profound impact on the manufacturing industries that use tungsten carbide tools.

  5. NASA-UVA light aerospace alloy and structures technology program (LA(sup 2)ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.

    1992-01-01

    The general objective of the Light Aerospace Alloy and Structures Technology (LA(sup 2)ST) Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and thermal gradient structures in collaboration with Langley researchers. Specific technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material behavior and microstructure, new monolithic and composite alloys, advanced processing methods, new solid and fluid mechanics analyses, measurement advances, and critically, a pool of educated graduate students for aerospace technologies. Four research areas are being actively investigated, including: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.

  6. Flight Performance of an Advanced Thermal Protection Material: Toughened Uni-Piece Fibrous Insulation

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B.; Gordon, Michael P.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    The flight performance of a new class of low density, high temperature thermal protection materials (TPM) is described and compared to "standard" Space Shuttle TPM. This new functionally gradient material designated as Toughened Uni-Piece Fibrous Insulation (TUFI), was bonded on a removable panel attached to the base heat shield of Orbiter 105, Endeavour.

  7. Flight Performance of an Advanced Thermal Protection Material: Toughened Uni-Piece Fibrous Insulation

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B.; Gordon, Michael P.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    The flight performance of a new class of low density, high temperature, thermal protection materials (TPM), is described and compared to "standard" Space Shuttle TPM. This new functionally gradient material designated as Toughened Uni-Piece Fibrous Insulation (TUFI), was bonded on a removable panel attached to the base heatshield of Orbiter 105, Endeavor.

  8. Drop casting of stiffness gradients for chip integration into stretchable substrates

    NASA Astrophysics Data System (ADS)

    Naserifar, Naser; LeDuc, Philip R.; Fedder, Gary K.

    2017-04-01

    Stretchable electronics have demonstrated promise within unobtrusive wearable systems in areas such as health monitoring and medical therapy. One significant question is whether it is more advantageous to develop holistic stretchable electronics or to integrate mature CMOS into stretchable electronic substrates where the CMOS process is separated from the mechanical processing steps. A major limitation with integrating CMOS is the dissimilar interface between the soft stretchable and hard CMOS materials. To address this, we developed an approach to pattern an elastomeric polymer layer with spatially varying mechanical properties around CMOS electronics to create a controllable material stiffness gradient. Our experimental approach reveals that modifying the interfaces can increase the strain failure threshold up to 30% and subsequently decreases delamination. The stiffness gradient in the polymer layer provides a safe region for electronic chips to function under a substrate tensile strain up to 150%. These results will have impacts in diverse applications including skin sensors and wearable health monitoring systems.

  9. Tessellated permanent magnet circuits for flow-through, open gradient separations of weakly magnetic materials

    PubMed Central

    Moore, Lee R.; Williams, P. Stephen; Chalmers, Jeffrey J.; Zborowski, Maciej

    2017-01-01

    Emerging microfluidic-based cell assays favor label-free red blood cell (RBC) depletion. Magnetic separation of RBC is possible because of the paramagnetism of deoxygenated hemoglobin but the process is slow for open-gradient field configurations. In order to increase the throughput, periodic arrangements of the unit magnets were considered, consisting of commercially available Nd-Fe-B permanent magnets and soft steel flux return pieces. The magnet design is uniquely suitable for multiplexing by magnet tessellation, here meaning the tiling of the magnet assembly cross-sectional plane by periodic repetition of the magnet and the flow channel shapes. The periodic pattern of magnet magnetizations allows a reduction of the magnetic material per channel with minimal distortion of the field cylindrical symmetry inside the magnet apertures. A number of such magnet patterns are investigated for separator performance, size and economy with the goal of designing an open-gradient magnetic separator capable of reducing the RBC number concentration a hundred-fold in 1 mL whole blood per hour. PMID:29104346

  10. Tessellated permanent magnet circuits for flow-through, open gradient separations of weakly magnetic materials.

    PubMed

    Moore, Lee R; Williams, P Stephen; Chalmers, Jeffrey J; Zborowski, Maciej

    2017-04-01

    Emerging microfluidic-based cell assays favor label-free red blood cell (RBC) depletion. Magnetic separation of RBC is possible because of the paramagnetism of deoxygenated hemoglobin but the process is slow for open-gradient field configurations. In order to increase the throughput, periodic arrangements of the unit magnets were considered, consisting of commercially available Nd-Fe-B permanent magnets and soft steel flux return pieces. The magnet design is uniquely suitable for multiplexing by magnet tessellation, here meaning the tiling of the magnet assembly cross-sectional plane by periodic repetition of the magnet and the flow channel shapes. The periodic pattern of magnet magnetizations allows a reduction of the magnetic material per channel with minimal distortion of the field cylindrical symmetry inside the magnet apertures. A number of such magnet patterns are investigated for separator performance, size and economy with the goal of designing an open-gradient magnetic separator capable of reducing the RBC number concentration a hundred-fold in 1 mL whole blood per hour.

  11. Plastic deformation treated as material flow through adjustable crystal lattice

    NASA Astrophysics Data System (ADS)

    Minakowski, P.; Hron, J.; Kratochvíl, J.; Kružík, M.; Málek, J.

    2014-08-01

    Looking at severe plastic deformation experiments, it seems that crystalline materials at yield behave as a special kind of anisotropic, highly viscous fluids flowing through an adjustable crystal lattice space. High viscosity provides a possibility to describe the flow as a quasi-static process, where inertial and other body forces can be neglected. The flow through the lattice space is restricted to preferred crystallographic planes and directions causing anisotropy. In the deformation process the lattice is strained and rotated. The proposed model is based on the rate form of the decomposition rule: the velocity gradient consists of the lattice velocity gradient and the sum of the velocity gradients corresponding to the slip rates of individual slip systems. The proposed crystal plasticity model allowing for large deformations is treated as the flow-adjusted boundary value problem. As a test example we analyze a plastic flow of an single crystal compressed in a channel die. We propose three step algorithm of finite element discretization for a numerical solution in the Arbitrary Lagrangian Eulerian (ALE) configuration.

  12. Continuously graded extruded polymer composites for energetic applications fabricated using twin-screw extrusion processing technology

    NASA Astrophysics Data System (ADS)

    Gallant, Frederick M.

    A novel method of fabricating functionally graded extruded composite materials is proposed for propellant applications using the technology of continuous processing with a Twin-Screw Extruder. The method is applied to the manufacturing of grains for solid rocket motors in an end-burning configuration with an axial gradient in ammonium perchlorate volume fraction and relative coarse/fine particle size distributions. The fabrication of functionally graded extruded polymer composites with either inert or energetic ingredients has yet to be investigated. The lack of knowledge concerning the processing of these novel materials has necessitated that a number of research issues be addressed. Of primary concern is characterizing and modeling the relationship between the extruder screw geometry, transient processing conditions, and the gradient architecture that evolves in the extruder. Recent interpretations of the Residence Time Distributions (RTDs) and Residence Volume Distributions (RVDs) for polymer composites in the TSE are used to develop new process models for predicting gradient architectures in the direction of extrusion. An approach is developed for characterizing the sections of the extrudate using optical, mechanical, and compositional analysis to determine the gradient architectures. The effects of processing on the burning rate properties of extruded energetic polymer composites are characterized for homogeneous formulations over a range of compositions to determine realistic gradient architectures for solid rocket motor applications. The new process models and burning rate properties that have been characterized in this research effort will be the basis for an inverse design procedure that is capable of determining gradient architectures for grains in solid rocket motors that possess tailored burning rate distributions that conform to user-defined performance specifications.

  13. Effects of off-resonance spins on the performance of the modulated gradient spin echo sequence.

    PubMed

    Serša, Igor; Bajd, Franci; Mohorič, Aleš

    2016-09-01

    Translational molecular dynamics in various materials can also be studied by diffusion spectra. These can be measured by a constant gradient variant of the modulated gradient spin echo (MGSE) sequence which is composed of a CPMG RF pulse train superimposed to a constant magnetic field gradient. The application of the RF train makes the effective gradient oscillating thus enabling measurements of diffusion spectra in a wide range of frequencies. However, seemingly straightforward implementation of the MGSE sequence proved to be complicated and can give overestimated results for diffusion if not interpreted correctly. In this study, unrestricted diffusion in water and other characteristic materials was analyzed by the MGSE sequence in the frequency range 50-3000Hz using a 6T/m diffusion probe. First, it was shown that the MGSE echo train acquired from the entire sample decays faster than the train acquired only from a narrow band at zero frequency of the sample. Then, it was shown that the decay rate is dependent on the band's off-resonance characterized by the ratio Δω0/ω1 and that with higher off-resonances the decay is faster. The faster decay therefore corresponds to a higher diffusion coefficient if the diffusion is calculated using standard Stejskal-Tanner formula. The result can be explained by complex coherence pathways contributing to the MGSE echo signals when |Δω0|/ω1>0. In a magnetic field gradient, all the pathways are more diffusion attenuated than the direct coherence pathway and therefore decay faster, which leads to an overestimation of the diffusion coefficient. A solution to this problem was found in an efficient off-resonance signal reduction by using only zero frequency filtered MGSE echo train signals. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. 3D ductile crack propagation within a polycrystalline microstructure using XFEM

    NASA Astrophysics Data System (ADS)

    Beese, Steffen; Loehnert, Stefan; Wriggers, Peter

    2018-02-01

    In this contribution we present a gradient enhanced damage based method to simulate discrete crack propagation in 3D polycrystalline microstructures. Discrete cracks are represented using the eXtended finite element method. The crack propagation criterion and the crack propagation direction for each point along the crack front line is based on the gradient enhanced damage variable. This approach requires the solution of a coupled problem for the balance of momentum and the additional global equation for the gradient enhanced damage field. To capture the discontinuity of the displacements as well as the gradient enhanced damage along the discrete crack, both fields are enriched using the XFEM in combination with level sets. Knowing the crack front velocity, level set methods are used to compute the updated crack geometry after each crack propagation step. The applied material model is a crystal plasticity model often used for polycrystalline microstructures of metals in combination with the gradient enhanced damage model. Due to the inelastic material behaviour after each discrete crack propagation step a projection of the internal variables from the old to the new crack configuration is required. Since for arbitrary crack geometries ill-conditioning of the equation system may occur due to (near) linear dependencies between standard and enriched degrees of freedom, an XFEM stabilisation technique based on a singular value decomposition of the element stiffness matrix is proposed. The performance of the presented methodology to capture crack propagation in polycrystalline microstructures is demonstrated with a number of numerical examples.

  15. On propagation of axisymmetric waves in pressurized functionally graded elastomeric hollow cylinders

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Su, Yipin; Liu, Dongying; Chen, Weiqiu; Zhang, Chuanzeng

    2018-05-01

    Soft materials can be designed with a functionally graded (FG) property for specific applications. Such material inhomogeneity can also be found in many soft biological tissues whose functionality is only partly understood to date. In this paper, we analyze the axisymmetric guided wave propagation in a pressurized FG elastomeric hollow cylinder. The cylinder is subjected to a combined action of axial pre-stretch and pressure difference applied to the inner and outer cylindrical surfaces. We consider both torsional waves and longitudinal waves propagating in the FG cylinder made of incompressible isotropic elastomer, which is characterized by the Mooney-Rivlin strain energy function but with the material parameters varying with the radial coordinate in an affine way. The pressure difference generates an inhomogeneous deformation field in the FG cylinder, which dramatically complicates the superimposed wave problem described by the small-on-large theory. A particularly efficient approach is hence employed which combines the state-space formalism for the incremental wave motion with the approximate laminate or multi-layer technique. Dispersion relations for the two types of axisymmetric guided waves are then derived analytically. The accuracy and convergence of the proposed approach is validated numerically. The effects of the pressure difference, material gradient, and axial pre-stretch on both the torsional and the longitudinal wave propagation characteristics are discussed in detail through numerical examples. It is found that the frequency of axisymmetric waves depends nonlinearly on the pressure difference and the material gradient, and an increase in the material gradient enhances the capability of the pressure difference to adjust the wave behavior in the FG cylinder. This work provides a theoretical guidance for characterizing FG soft materials by in-situ ultrasonic nondestructive evaluation and for designing tunable waveguides via material tailoring along with an adjustment of the pre-stretch and pressure difference.

  16. Progress of ILC High Gradient SRF Cavity R&D at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.L. Geng, J. Dai, G.V. Eremeev, A.D. Palczewski

    2011-09-01

    Latest progress of ILC high gradient SRF cavity R&D at Jefferson Lab will be presented. 9 out of 10 real 9-cell cavities reached an accelerating gradient of more than 38 MV/m at a unloaded quality factor of more than 8 {center_dot} 109. New understandings of quench limitation in 9-cell cavities are obtained through instrumented studies of cavities at cryogenic temperatures. Our data have shown that present limit reached in 9-cell cavities is predominantly due to localized defects, suggesting that the fundamental material limit of niobium is not yet reached in 9-cell cavities and further gradient improvement is still possible. Somemore » examples of quench-causing defects will be given. Possible solutions to pushing toward the fundamental limit will be described.« less

  17. Echo-Planar Imaging for a 9.4 Tesla Vertical-Bore Superconducting Magnet Using an Unshielded Gradient Coil.

    PubMed

    Kodama, Nao; Kose, Katsumi

    2016-10-11

    Echo-planar imaging (EPI) sequences were developed for a 9.4 Tesla vertical standard bore (~54 mm) superconducting magnet using an unshielded gradient coil optimized for live mice imaging and a data correction technique with reference scans. Because EPI requires fast switching of intense magnetic field gradients, eddy currents were induced in the surrounding metallic materials, e.g., the room temperature bore, and this produced serious artifacts on the EPI images. We solved the problem using an unshielded gradient coil set of proper size (outer diameter = 39 mm, inner diameter = 32 mm) with time control of the current rise and reference scans. The obtained EPI images of a phantom and a plant sample were almost artifact-free and demonstrated the promise of our approach.

  18. Three-dimensional Macroscopic Scaffolds With a Gradient in Stiffness for Functional Regeneration of Interfacial Tissues

    PubMed Central

    Singh, Milind; Dormer, Nathan; Salash, Jean R.; Christian, Jordan M.; Moore, David S.; Berkland, Cory; Detamore, Michael S.

    2010-01-01

    A novel approach has been demonstrated to construct biocompatible, macroporous 3-D tissue engineering scaffolds containing a continuous macroscopic gradient in composition that yields a stiffness gradient along the axis of the scaffold. Polymeric microspheres, made of poly(d,l-lactic-co-glycolic acid) (PLGA), and composite microspheres encapsulating a higher stiffness nano-phase material (PLGA encapsulating CaCO3 or TiO2 nanoparticles) were used for the construction of microsphere-based scaffolds. Using controlled infusion of polymeric and composite microspheres, gradient scaffolds displaying an anisotropic macroscopic distribution of CaCO3/TiO2 were fabricated via an ethanol sintering technique. The controllable mechanical characteristics and biocompatible nature of these scaffolds warrants further investigation for interfacial tissue engineering applications. PMID:20336753

  19. Gradient biomaterials and their influences on cell migration

    PubMed Central

    Wu, Jindan; Mao, Zhengwei; Tan, Huaping; Han, Lulu; Ren, Tanchen; Gao, Changyou

    2012-01-01

    Cell migration participates in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. The cells specifically migrate to destiny sites induced by the gradually varying concentration (gradient) of soluble signal factors and the ligands bound with the extracellular matrix in the body during a wound healing process. Therefore, regulation of the cell migration behaviours is of paramount importance in regenerative medicine. One important way is to create a microenvironment that mimics the in vivo cellular and tissue complexity by incorporating physical, chemical and biological signal gradients into engineered biomaterials. In this review, the gradients existing in vivo and their influences on cell migration are briefly described. Recent developments in the fabrication of gradient biomaterials for controlling cellular behaviours, especially the cell migration, are summarized, highlighting the importance of the intrinsic driving mechanism for tissue regeneration and the design principle of complicated and advanced tissue regenerative materials. The potential uses of the gradient biomaterials in regenerative medicine are introduced. The current and future trends in gradient biomaterials and programmed cell migration in terms of the long-term goals of tissue regeneration are prospected. PMID:23741610

  20. High-performance ionic diode membrane for salinity gradient power generation.

    PubMed

    Gao, Jun; Guo, Wei; Feng, Dan; Wang, Huanting; Zhao, Dongyuan; Jiang, Lei

    2014-09-03

    Salinity difference between seawater and river water is a sustainable energy resource that catches eyes of the public and the investors in the background of energy crisis. To capture this energy, interdisciplinary efforts from chemistry, materials science, environmental science, and nanotechnology have been made to create efficient and economically viable energy conversion methods and materials. Beyond conventional membrane-based processes, technological breakthroughs in harvesting salinity gradient power from natural waters are expected to emerge from the novel fluidic transport phenomena on the nanoscale. A major challenge toward real-world applications is to extrapolate existing single-channel devices to macroscopic materials. Here, we report a membrane-scale nanofluidic device with asymmetric structure, chemical composition, and surface charge polarity, termed ionic diode membrane (IDM), for harvesting electric power from salinity gradient. The IDM comprises heterojunctions between mesoporous carbon (pore size ∼7 nm, negatively charged) and macroporous alumina (pore size ∼80 nm, positively charged). The meso-/macroporous membrane rectifies the ionic current with distinctly high ratio of ca. 450 and keeps on rectifying in high-concentration electrolytes, even in saturated solution. The selective and rectified ion transport furthermore sheds light on salinity-gradient power generation. By mixing artificial seawater and river water through the IDM, substantially high power density of up to 3.46 W/m(2) is discovered, which largely outperforms some commercial ion-exchange membranes. A theoretical model based on coupled Poisson and Nernst-Planck equations is established to quantitatively explain the experimental observations and get insights into the underlying mechanism. The macroscopic and asymmetric nanofluidic structure anticipates wide potentials for sustainable power generation, water purification, and desalination.

  1. Deformation compatibility in a single crystalline Ni superalloy

    PubMed Central

    Zhang, Tiantian; Dunne, Fionn P. E.

    2016-01-01

    Deformation in materials is often complex and requires rigorous understanding to predict engineering component lifetime. Experimental understanding of deformation requires utilization of advanced characterization techniques, such as high spatial resolution digital image correlation (HR-DIC) and high angular resolution electron backscatter diffraction (HR-EBSD), combined with clear interpretation of their results to understand how a material has deformed. In this study, we use HR-DIC and HR-EBSD to explore the mechanical behaviour of a single-crystal nickel alloy and to highlight opportunities to understand the complete deformations state in materials. Coupling of HR-DIC and HR-EBSD enables us to precisely focus on the extent which we can access the deformation gradient, F, in its entirety and uncouple contributions from elastic deformation gradients, slip and rigid body rotations. Our results show a clear demonstration of the capabilities of these techniques, found within our experimental toolbox, to underpin fundamental mechanistic studies of deformation in polycrystalline materials and the role of microstructure. PMID:26997901

  2. Mapping polaronic states and lithiation gradients in individual V2O5 nanowires

    PubMed Central

    De Jesus, Luis R.; Horrocks, Gregory A.; Liang, Yufeng; Parija, Abhishek; Jaye, Cherno; Wangoh, Linda; Wang, Jian; Fischer, Daniel A.; Piper, Louis F. J.; Prendergast, David; Banerjee, Sarbajit

    2016-01-01

    The rapid insertion and extraction of Li ions from a cathode material is imperative for the functioning of a Li-ion battery. In many cathode materials such as LiCoO2, lithiation proceeds through solid-solution formation, whereas in other materials such as LiFePO4 lithiation/delithiation is accompanied by a phase transition between Li-rich and Li-poor phases. We demonstrate using scanning transmission X-ray microscopy (STXM) that in individual nanowires of layered V2O5, lithiation gradients observed on Li-ion intercalation arise from electron localization and local structural polarization. Electrons localized on the V2O5 framework couple to local structural distortions, giving rise to small polarons that serves as a bottleneck for further Li-ion insertion. The stabilization of this polaron impedes equilibration of charge density across the nanowire and gives rise to distinctive domains. The enhancement in charge/discharge rates for this material on nanostructuring can be attributed to circumventing challenges with charge transport from polaron formation. PMID:27349567

  3. Porous media modeling and micro-structurally motivated material moduli determination via the micro-dilatation theory

    NASA Astrophysics Data System (ADS)

    Jeong, J.; Ramézani, H.; Sardini, P.; Kondo, D.; Ponson, L.; Siitari-Kauppi, M.

    2015-07-01

    In the present contribution, the porous material modeling and micro-structural material parameters determination are scrutinized via the micro-dilatation theory. The main goal is to take advantage of the micro-dilatation theory which belongs to the generalized continuum media. In the first stage, the thermodynamic laws are entirely revised to reach the energy balance relation using three variables, deformation, porosity change and its gradient underlying the porous media as described in the micro-dilatation theory or so-called void elasticity. Two experiments over cement mortar specimens are performed in order to highlight the material parameters related to the pore structure. The shrinkage due to CO2 carbonation, porosity and its gradient are calculated. The extracted values are verified via 14C-PMMA radiographic image method. The modeling of swelling phenomenon of Delayed Ettringite Formation (DEF) is studied later on. This issue is performed via the crystallization pressure application using the micro-dilatation theory.

  4. Numerical model of thermo-mechanical coupling for the tensile failure process of brittle materials

    NASA Astrophysics Data System (ADS)

    Fu, Yu; Wang, Zhe; Ren, Fengyu; Wang, Daguo

    2017-10-01

    A numerical model of thermal cracking with a thermo-mechanical coupling effect was established. The theory of tensile failure and heat conduction is used to study the tensile failure process of brittle materials, such as rock and concrete under high temperature environment. The validity of the model is verified by thick-wall cylinders with analytical solutions. The failure modes of brittle materials under thermal stresses caused by temperature gradient and different thermal expansion coefficient were studied by using a thick-wall cylinder model and an embedded particle model, respectively. In the thick-wall cylinder model, different forms of cracks induced by temperature gradient were obtained under different temperature boundary conditions. In the embedded particle model, radial cracks were produced in the medium part with lower tensile strength when temperature increased because of the different thermal expansion coefficient. Model results are in good agreement with the experimental results, thereby providing a new finite element method for analyzing the thermal damage process and mechanism of brittle materials.

  5. Semiconductor apparatus utilizing gradient freeze and liquid-solid techniques

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Caillat, Thierry F. (Inventor); Borshchevsky, Alexander (Inventor)

    1998-01-01

    Transition metals of Group VIII (Co, Rh and Ir) have been prepared as semiconductor compounds with the general formula TSb.sub.3. The skutterudite-type crystal lattice structure of these semiconductor compounds and their enhanced thermoelectric properties results in semiconductor materials which may be used in the fabrication of thermoelectric elements to substantially improve the efficiency of the resulting thermoelectric device. Semiconductor materials having the desired skutterudite-type crystal lattice structure may be prepared in accordance with the present invention by using vertical gradient freezing techniques and/or liquid phase sintering techniques. Measurements of electrical and thermal transport properties of selected semiconductor materials prepared in accordance with the present invention, demonstrated high Hall mobilities (up to 1200 cm.sup.2.V.sup.-1.s.sup.-1) and good Seebeck coefficients (up to 150 .mu.VK.sup.-1 between 300.degree. C. and 700.degree. C.). Optimizing the transport properties of semiconductor materials prepared from elemental mixtures Co, Rh, Ir and Sb resulted in a substantial increase in the thermoelectric figure of merit (ZT) at temperatures as high as 400.degree. C. for thermoelectric elements fabricated from such semiconductor materials.

  6. Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Yang, Dan-Qing; Liu, Shi-Lei; Yu, Si-Yuan; Lu, Ming-Hui; Zhu, Jie; Zhang, Shan-Tao; Zhu, Ming-Wei; Guo, Xia-Sheng; Wu, Hao-Dong; Wang, Xin-Long; Chen, Yan-Feng

    2017-02-01

    High-quality broadband ultrasound transducers yield superior imaging performance in biomedical ultrasonography. However, proper design to perfectly bridge the energy between the active piezoelectric material and the target medium over the operating spectrum is still lacking. Here, we demonstrate a new anisotropic cone-structured acoustic metamaterial matching layer that acts as an inhomogeneous material with gradient acoustic impedance along the ultrasound propagation direction. When sandwiched between the piezoelectric material unit and the target medium, the acoustic metamaterial matching layer provides a broadband window to support extraordinary transmission of ultrasound over a wide frequency range. We fabricated the matching layer by etching the peeled silica optical fibre bundles with hydrofluoric acid solution. The experimental measurement of an ultrasound transducer equipped with this acoustic metamaterial matching layer shows that the corresponding -6 dB bandwidth is able to reach over 100%. This new material fully enables new high-end piezoelectric materials in the construction of high-performance ultrasound transducers and probes, leading to considerably improved resolutions in biomedical ultrasonography and compact harmonic imaging systems.

  7. Flight Performance of a Functionally Gradient Material, TUFI, on Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Leister, Daniel B.; Stewart, David A.; DiFiore, Robert; Tipton, Bradford; Gordon, Michael P.; Arnold, Jim (Technical Monitor)

    2001-01-01

    TUFI (Toughened Uni-Piece Fibrous Insulation), a functionally gradient material has been successfully flying on the Shuttle Orbiters in several locations on two insulation substrates over the past few years. TUFI is composed of insulation and a gradated surface treatment. The locations it has flown include the base heat shield where damage had been observed after every flight before its application. It was also applied to the body flap, the bottom of the body flap and around selected windows and doors where damage had been observed in the past. A description of the types of processing used including substrates will be presented and its overall performance will be reviewed.

  8. Origami-inspired active graphene-based paper for programmable instant self-folding walking devices.

    PubMed

    Mu, Jiuke; Hou, Chengyi; Wang, Hongzhi; Li, Yaogang; Zhang, Qinghong; Zhu, Meifang

    2015-11-01

    Origami-inspired active graphene-based paper with programmed gradients in vertical and lateral directions is developed to address many of the limitations of polymer active materials including slow response and violent operation methods. Specifically, we used function-designed graphene oxide as nanoscale building blocks to fabricate an all-graphene self-folding paper that has a single-component gradient structure. A functional device composed of this graphene paper can (i) adopt predesigned shapes, (ii) walk, and (iii) turn a corner. These processes can be remote-controlled by gentle light or heating. We believe that this self-folding material holds potential for a wide range of applications such as sensing, artificial muscles, and robotics.

  9. Decontamination of combustion gases in fluidized bed incinerators

    DOEpatents

    Leon, Albert M.

    1982-01-01

    Sulfur-containing atmospheric pollutants are effectively removed from exit gas streams produced in a fluidized bed combustion system by providing a fluidized bed of particulate material, i.e. limestone and/or dolomite wherein a concentration gradient is maintained in the vertical direction. Countercurrent contacting between upwardly directed sulfur containing combustion gases and descending sorbent particulate material creates a concentration gradient across the vertical extent of the bed characterized in progressively decreasing concentration of sulfur, sulfur dioxide and like contaminants upwardly and decreasing concentration of e.g. calcium oxide, downwardly. In this manner, gases having progressively decreasing sulfur contents contact correspondingly atmospheres having progressively increasing concentrations of calcium oxide thus assuring optimum sulfur removal.

  10. A novel high-temperature furnace for combined in situ synchrotron X-ray diffraction and infrared thermal imaging to investigate the effects of thermal gradients upon the structure of ceramic materials

    PubMed Central

    Robinson, James B.; Brown, Leon D.; Jervis, Rhodri; Taiwo, Oluwadamilola O.; Millichamp, Jason; Mason, Thomas J.; Neville, Tobias P.; Eastwood, David S.; Reinhard, Christina; Lee, Peter D.; Brett, Daniel J. L.; Shearing, Paul R.

    2014-01-01

    A new technique combining in situ X-ray diffraction using synchrotron radiation and infrared thermal imaging is reported. The technique enables the application, generation and measurement of significant thermal gradients, and furthermore allows the direct spatial correlation of thermal and crystallographic measurements. The design and implementation of a novel furnace enabling the simultaneous thermal and X-ray measurements is described. The technique is expected to have wide applicability in material science and engineering; here it has been applied to the study of solid oxide fuel cells at high temperature. PMID:25178003

  11. Effect of Vertical Concentration Gradient on Globally Planar Detonation with Detailed Reaction Mechanism

    NASA Astrophysics Data System (ADS)

    Song, Qingguana; Wang, Cheng; Han, Yong; Gao, Dayuan; Duan, Yingliang

    2017-06-01

    Since detonation often initiates and propagates in the non-homogeneous mixtures, investigating its behavior in non-uniform mixtures is significant not only for the industrial explosion in the leakage combustible gas, but also for the experimental investigations with a vertical concentration gradient caused by the difference in the molecular weight of gas mixture. Objective of this work is to show the detonation behavior in the mixture with different concentration gradients with detailed chemical reaction mechanism. A globally planar detonation in H2-O2 system is simulated by a high-resolution code based on the fifth-order weighted essentially non-oscillatory (WENO) scheme in spatial discretization and the third-order Additive Runge-Kutta schemes in time discretization. The different shocked combustion modes appear in the rich-fuel and poor-fuel layers due to the concentration gradient effect. Globally, for the cases with the lower gradient detonation can be sustained in a way of the alternation of the multi-heads mode and single-head mode, whereas for the cases with the higher gradient detonation propagates with a single-head mode. Institute of Chemical Materials, CAEP.

  12. Strain Gradient Solution for the Eshelby-Type Polyhedral Inclusion Problem

    DTIC Science & Technology

    2012-01-01

    2011 Available online 6 November 2011 Keywords: Eshelby tensor Polyhedral inclusion Size effect Eigenstrain Strain gradient a b s t r a c t The Eshelby...material containing an ellipsoidal inclusion prescribed with a uniform eigenstrain is a milestone in micromechanics. The solution for the dynamic Eshelby...strain to the prescribed uniform eigenstrain , is constant inside the inclusion. However, this property is true only for ellipsoidal inclusions (and when

  13. MEMS-based gradiometer for the complete characterization of Martian magnetic environment

    NASA Astrophysics Data System (ADS)

    Mesa, Jose Luis; Ciudad, David; McHenry, Michael E.; Aroca, Claudio; Díaz-Michelena, Marina

    2013-04-01

    The in-situ determination of the Martian magnetic field is one of the most important and ambitious objectives in Mars exploration, because its implications in paleomagnetism, tectonics and mineral determination. To place sensors on Mars is a complicated task, due to the extreme conditions of the planet surface and also because of the relative low budget devoted to this kind of instrument: low power, mass, volume and the need to operate in a magnetically noise environment. A complete and accurate measurement of the magnetic environment includes the determination of both magnitude and gradient of the magnetic field (B). There are many developments of magnetometers with the characteristics mentioned before [2], but the question about gradient is not that well solved and most gradient sensors are based on a couple of magnetometers separated a certain distance [2, 3]. The aim of this abstract is to introduce a new MEMS based robust gradiometer for the point measurement of the field gradient with the ultimate goal to perform in situ measurement on Mars and shed some light in the magnetic anomalies explanation of the Red Planet. Since in some conditions ?ׯB = 0, we assume knowing six of the nine components is sufficient to reconstruct entirely the magnetic field gradient. The device proposed consists of a set of six cantilevers to measure these six components (with resolution in the order of 1 nT/mm) combined either with another miniaturized and more accurate magnetometer (with resolution below the nT) for the measurement of the field vector. Every component system consists of a cantilever with an appropriate geometry, an excitation coil and a mechanism to generate a field gradient. The cantilevers are made of piezoelectric material (bimorph, with two piezoelectric layers) covered by a soft ferromagnetic material (of Iron-Nickel base). Is explained below the working principle for one component. When the excitation system generates an alternating magnetic field (enough to saturate) along the width of the cantilever, the ferromagnetic material is alternatively saturated in both directions along the cantilever's width. Under the presence of a magnetic field gradient in the normal direction to the plane of the cantilever, the ferromagnetic material experiments a force, making the cantilever vibrate. This vibration generates an electric signal, given that when the cantilever vibrates, the piezoelectric layers stretches and contracts, so it sets a voltage difference. The current system with dimensions in the order of mm is run at its resonant frequency. In the presence of an external magnetic field gradient, the vibration frequency changes. The external gradient can be easily measured by means of the measurement of the frequency shift. References: [1] Acuña, M.H.: Space-based magnetometers, Rev. Sci. Instrum., 73, 3717-3736, doi: 10.1063/1.1510570, Nov 2002. [2] Merayo, J.M.G.; Brauer, P.; Primdahl, F.: Triaxial fluxgate gradiometer of high stability and linearity, Sensor Actuat A-Phys., 120, 71-77, doi: 10.1016/j.sna.2004.11.014, Apr 2005. [3] Lucas, I.; Michelena, M.D.;del Real, R.P.; de Manuel, V.; Plaza, J.A. 2; Duch, M.; Esteve, J; Guerrero, H.: A New Single-Sensor Magnetic Field Gradiometer, Sens. Lett., 7, 563-570, doi: 10.1166/sl.2009.1110, Aug 2009.

  14. Graded High-Strength Spring-Steels by a Special Inductive Heat T reatment

    NASA Astrophysics Data System (ADS)

    Tump, A.; Brandt, R.

    2016-03-01

    A method for effective lightweight design is the use of materials with high specific strength. As materials e.g. titanium are very expensive, steel is still the most important material for manufacturing automotive components. Steel is cost efficient, easy to recycle and its tensile strength easily exceeds 2,000 MPa by means of modern QT-technology (Quenched and Tempered). Therefore, lightweight design is still feasible in spite of the high density of steel. However, a further increase of tensile strength is limited, especially due to an increasing notch sensitivity and exposure to a corrosive environment. One solution is a special QT-process for steel, which creates a hardness gradient from the surface to the core of the material. This type of tailored material possesses a softer layer, which improves material properties such as fracture toughness and notch sensitivity. This leads to a better resistance to stress corrosion cracking and corrosion fatigue. Due to this optimization, a weight reduction is feasible without the use of expensive alloying elements. To understand the damage mechanism a comprehensive testing procedure was performed on homogeneous and gradient steels. Some results regarding the fracture mechanic behavior of such steels will be discussed.

  15. Thermoelectric detection of inclusions in metallic biomaterials by magnetic sensing

    NASA Astrophysics Data System (ADS)

    Carreon, Hector

    2017-05-01

    The detectability of small inclusions and subtle imperfections by magnetic measurements that senses thermoelectric currents produced by a temperature gradient is ultimately limited by the intrinsic thermoelectric anisotropy and inhomogeneity of the material to be inspected. The probability of detection (POD) of a given material flaw is determined by the resulting signal-to-noise ratio rather than by the absolute magnitude of the signal itself. The strength of the magnetic field to be detected greatly depends on the physical nature of the host medium and dimensions of the imperfection. This paper presents experimental data for the magnetic field produced by thermoelectric currents around tin inclusions in different host medium such as 316LVM stainless steel and Ti-6Al-4V titanium alloy under external thermal excitation. The diameter of the inclusions and the lift-off distance varied from 0.39 to 3.175 mm and from 1 to 10 mm, respectively. A 0.6 °C/cm temperature gradient in the samples produced peak magnetic flux densities ranging from 0.1 to 280 nT, that was measured by a fluxgate magnetometer. The numerical results were found to be in good agreement with theoretical predictions and demonstrated that both property anisotropy and gradient in thermoelectric materials can significantly influence the induced thermoelectric currents and magnetic fields.

  16. Spatial encoding using the nonlinear field perturbations from magnetic materials.

    PubMed

    Karimi, Hirad; Dominguez-Viqueira, William; Cunningham, Charles H

    2014-08-01

    A proof-of-concept study was performed to assess the technical feasibility of using magnetic materials to generate spatial encoding fields. Spatially varying magnetic fields were generated by the placement of markers with different volume susceptibilities within the imaging volume. No linear gradients were used for spatial encoding during the signal acquisition. A signal-encoding model is described for reconstructing the images encoded with these field perturbations. Simulation and proof-of-concept experimental results are presented. Experiments were performed using field perturbations from a cylindrical marker as an example of the new encoding fields. Based on this experimental setup, annular rings were reconstructed from signals encoded with the new fields. Simulation results were presented for different acquisition parameters. Proof-of-concept was supported by the correspondence of regions in an image reconstructed from experimental data compared to those in a conventional gradient-echo image. Experimental results showed that inclusions of dimensions 1.5 mm in size could be resolved with the experimental setup. This study shows the technical feasibility of using magnetic markers to produce encoding fields. Magnetic materials will allow generating spatial encoding fields, which can be tailored to an imaging application with less complexity and at lower cost compared to the use of gradient inserts. Copyright © 2013 Wiley Periodicals, Inc.

  17. Quantification of cell response to polymeric composites using a two-dimensional gradient platform.

    PubMed

    Lin, Nancy J; Hu, Haiqing; Sung, Lipin; Lin-Gibson, Sheng

    2009-07-01

    A simple and straightforward screening process to assess the toxicity and corresponding cell response of dental composites would be useful prior to extensive in vitro or in vivo characterization. To this end, gradient composite samples were prepared with variations in filler content/type and in degree of conversion (DC). The DC was determined using near infrared spectroscopy (NIR), and the surface morphology was evaluated by laser scanning confocal microscopy (LSCM). RAW 264.7 macrophage-like cells were cultured directly on the composite gradient samples, and cell viability, density, and area were measured at 24 h. All three measures of cell response varied as a function of material properties. For instance, compositions with higher filler content had no reduction in cell viability or cell density, even at low conversions of 52%, whereas significant decreases in viability and density were present when the filler content was 35% or below (by mass). The overall results demonstrate the complexity of the cell-material interactions, with properties including DC, filler type, filler mass ratio, and surface morphology influencing the cell response. The combinatorial approach described herein enables simultaneous screening of multiple compositions and material properties, providing a more thorough characterization of cell response for the improved selection of biocompatible composite formulations and processing conditions.

  18. Gradient plasticity for thermo-mechanical processes in metals with length and time scales

    NASA Astrophysics Data System (ADS)

    Voyiadjis, George Z.; Faghihi, Danial

    2013-03-01

    A thermodynamically consistent framework is developed in order to characterize the mechanical and thermal behavior of metals in small volume and on the fast transient time. In this regard, an enhanced gradient plasticity theory is coupled with the application of a micromorphic approach to the temperature variable. A physically based yield function based on the concept of thermal activation energy and the dislocation interaction mechanisms including nonlinear hardening is taken into consideration in the derivation. The effect of the material microstructural interface between two materials is also incorporated in the formulation with both temperature and rate effects. In order to accurately address the strengthening and hardening mechanisms, the theory is developed based on the decomposition of the mechanical state variables into energetic and dissipative counterparts which endowed the constitutive equations to have both energetic and dissipative gradient length scales for the bulk material and the interface. Moreover, the microstructural interaction effect in the fast transient process is addressed by incorporating two time scales into the microscopic heat equation. The numerical example of thin film on elastic substrate or a single phase bicrystal under uniform tension is addressed here. The effects of individual counterparts of the framework on the thermal and mechanical responses are investigated. The model is also compared with experimental results.

  19. An evaluation of a coupled microstructural approach for the analysis of functionally graded composites via the finite-element method

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Dunn, Patrick

    1995-01-01

    A comparison is presented between the predictions of the finite-element analysis and a recently developed higher-order theory for functionally graded materials subjected to a thorough-thickness temperature gradient. In contrast to existing micromechanical theories that utilize classical (i.e., uncoupled) homogenization schemes to calculate micro-level and macro-level stress and displacement fields in materials with uniform or nonuniform fiber spacing (i.e., functionally graded materials), the new theory explicitly couples the microstructural details with the macrostructure of the composite. Previous thermo-elastic analysis has demonstrated that such coupling is necessary when: the temperature gradient is large with respect to the dimension of the reinforcement; the characteristic dimension of the reinforcement is large relative to the global dimensions of the composite and the number of reinforcing fibers or inclusions is small. In these circumstances, the standard micromechanical analyses based on the concept of the representative volume element used to determine average composite properties produce questionable results. The comparison between the predictions of the finite-element method and the higher-order theory presented herein establish the theory's accuracy in predicting thermal and stress fields within composites with a finite number of fibers in the thickness direction subjected to a thorough-thickness thermal gradient.

  20. Autonomous Motility of Polymer Films.

    PubMed

    Treml, Benjamin E; McKenzie, Ruel N; Buskohl, Philip; Wang, David; Kuhn, Michael; Tan, Loon-Seng; Vaia, Richard A

    2018-02-01

    Adaptive soft materials exhibit a diverse set of behaviors including reconfiguration, actuation, and locomotion. These responses however, are typically optimized in isolation. Here, the interrelation between these behaviors is established through a state space framework, using Nylon 6 thin films in a humidity gradient as an experimental testbed. It is determined that the dynamic behaviors are a result of not only a response to but also an interaction with the applied stimulus, which can be tuned via control of the environment and film characteristics, including size, permeability, and coefficient of hygroscopic expansion to target a desired behavior such as multimodal locomotion. Using these insights, it is demonstrated that films simultaneously harvest energy and information from the environment to autonomously move down a stimulus gradient. Improved understanding of the coupling between an adaptive material and its environment aids the development of materials that integrate closed loop autonomous sensing, actuation, and locomotion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis and materialization of a reaction-diffusion French flag pattern

    NASA Astrophysics Data System (ADS)

    Zadorin, Anton S.; Rondelez, Yannick; Gines, Guillaume; Dilhas, Vadim; Urtel, Georg; Zambrano, Adrian; Galas, Jean-Christophe; Estevez-Torres, André

    2017-10-01

    During embryo development, patterns of protein concentration appear in response to morphogen gradients. These patterns provide spatial and chemical information that directs the fate of the underlying cells. Here, we emulate this process within non-living matter and demonstrate the autonomous structuration of a synthetic material. First, we use DNA-based reaction networks to synthesize a French flag, an archetypal pattern composed of three chemically distinct zones with sharp borders whose synthetic analogue has remained elusive. A bistable network within a shallow concentration gradient creates an immobile, sharp and long-lasting concentration front through a reaction-diffusion mechanism. The combination of two bistable circuits generates a French flag pattern whose 'phenotype' can be reprogrammed by network mutation. Second, these concentration patterns control the macroscopic organization of DNA-decorated particles, inducing a French flag pattern of colloidal aggregation. This experimental framework could be used to test reaction-diffusion models and fabricate soft materials following an autonomous developmental programme.

  2. Gradient Heating Facility in the Materials Science Double Rack (MSDR) on Spacelab-1 Module

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Space Shuttle was designed to carry large payloads into Earth orbit. One of the most important payloads is Spacelab. The Spacelab serves as a small but well-equipped laboratory in space to perform experiments in zero-gravity and make astronomical observations above the Earth's obscuring atmosphere. In this photograph, Payload Specialist, Ulf Merbold, is working at Gradient Heating Facility on the Materials Science Double Rack (MSDR) inside the science module in the Orbiter Columbia's payload bay during STS-9, Spacelab-1 mission. Spacelab-1, the joint ESA (European Space Agency)/NASA mission, was the first operational flight for the Spacelab, and demonstrated new instruments and methods for conducting experiments that are difficult or impossible in ground-based laboratories. This facility performed, in extremely low gravity, a wide variety of materials processing experiments in crystal growth, fluid physics, and metallurgy. The Marshall Space Flight Center had overall management responsibilities.

  3. Optical Coherence Tomography Enabling Non Destructive Metrology of Layered Polymeric GRIN Material

    PubMed Central

    Meemon, Panomsak; Yao, Jianing; Lee, Kye-Sung; Thompson, Kevin P.; Ponting, Michael; Baer, Eric; Rolland, Jannick P.

    2013-01-01

    Gradient Refractive INdex (GRIN) optical components have historically fallen short of theoretical expectations. A recent breakthrough is the manufacturing of nanolayered spherical GRIN (S-GRIN) polymer optical elements, where the construction method yields refractive index gradients that exceed 0.08. Here we report on the application of optical coherence tomography (OCT), including micron-class axial and lateral resolution advances, as effective, innovative methods for performing nondestructive diagnostic metrology on S-GRIN. We show that OCT can be used to visualize and quantify characteristics of the material throughout the manufacturing process. Specifically, internal film structure may be revealed and data are processed to extract sub-surface profiles of each internal film of the material to quantify 3D film thickness and homogeneity. The technique provides direct feedback into the fabrication process directed at optimizing the quality of the nanolayered S-GRIN polymer optical components.

  4. Selection considerations between ZERODUR® and silicon carbide for dimensionally-stable spaceborne optical telescopes in two-earth-orbits

    NASA Astrophysics Data System (ADS)

    Hull, Tony; Westerhoff, Thomas; Weidmann, Gunter

    2015-09-01

    A key consideration in defining a space telescope mission is definition of the optical materials. This selection defines both the performance of the system and system complexity and cost. Optimal material selection for system stability must consider the thermal environment and its variation. Via numerical simulations, we compare the thermal and structural-mechanical behavior of ZERODUR® and SiC as mirror substrates for telescope assemblies in space. SiC has significantly larger CTE values then ZERODUR®, but also its thermal diffusivity k/(ρcp) is larger, and that helps to homogenize thermal gradients in the mirror. Therefore it is not obvious at first glance which material performs with better dimensional stability under realistic unsteady, inhomogeneous thermal loads. We specifically examine the telescope response to transient, gradient driving, thermal environments representative of low- and high-earth- orbits.

  5. Confinement effects in premelting dynamics

    NASA Astrophysics Data System (ADS)

    Pramanik, Satyajit; Wettlaufer, John

    2017-11-01

    We examine the effects of confinement on the dynamics of premelted films driven by thermomolecular pressure gradients. Our approach is to modify a well-studied setting in which the thermomolecular pressure gradient is driven by a temperature gradient parallel to an interfacially premelted elastic wall. The modification treats the increase in viscosity associated with the thinning of films studied in a wide variety of materials using a power law and we examine the consequent evolution of the elastic wall. We treat (i) a range of interactions that are known to underlie interfacial premelting and (ii) a constant temperature gradient wherein the thermomolecular pressure gradient is a constant. The difference between the cases with and without the proximity effect arises in the volume flux of premelted liquid. The proximity effect increases the viscosity as the film thickness decreases thereby requiring the thermomolecular pressure driven flux to be accommodated at larger temperatures where the premelted film thickness is the largest. Implications for experiment and observations of frost heave are discussed.

  6. Confinement effects in premelting dynamics

    NASA Astrophysics Data System (ADS)

    Pramanik, Satyajit; Wettlaufer, John S.

    2017-11-01

    We examine the effects of confinement on the dynamics of premelted films driven by thermomolecular pressure gradients. Our approach is to modify a well-studied setting in which the thermomolecular pressure gradient is driven by a temperature gradient parallel to an interfacially premelted elastic wall. The modification treats the increase in viscosity associated with the thinning of films, studied in a wide variety of materials, using a power law and we examine the consequent evolution of the confining elastic wall. We treat (1) a range of interactions that are known to underlie interfacial premelting and (2) a constant temperature gradient wherein the thermomolecular pressure gradient is a constant. The difference between the cases with and without the proximity effect arises in the volume flux of premelted liquid. The proximity effect increases the viscosity as the film thickness decreases thereby requiring the thermomolecular pressure driven flux to be accommodated at higher temperatures where the premelted film thickness is the largest. Implications for experiment and observations of frost heave are discussed.

  7. Surface Hardening of Composite Material by the Centrifugal-Casting Method

    NASA Astrophysics Data System (ADS)

    Eidelman, E. D.; Durnev, M. A.

    2018-04-01

    The effect of rotation flow emerging under centrifugal casting on the first-order phase transition, i.e., crystallization, has been studied using the example of producing a gradient composite material of AK12 aluminum alloy in a mixture with basalt fibers. It has been shown that a material with a hardened surface can be created. Distribution of admixtures in the main material when there is macroscopic motion has been found.

  8. UHTC Research at NASA Ames

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.

    2011-01-01

    For enhanced aerodynamic performance. Materials for sharp leading edges can be reusable but need different properties because of geometry and very high temperatures. Require materials with significantly higher temperature capabilities, but for short duration. Current shuttle RCC leading edge materials: T approx. 1650 C. Materials for vehicles with sharp leading edges: T>2000 C. >% Figure depicts: High Temperature at Tip and Steep Temperature Gradient. Passive cooling is simplest option to manage the intense heating on sharp leading edges.

  9. Generalization of the van der Pauw Method: Analyzing Longitudinal Magnetoresistance Asymmetry to Quantify Doping Gradients

    NASA Astrophysics Data System (ADS)

    Grayson, M.; Zhou, Wang; Yoo, Heun-Mo; Prabhu-Gaunkar, S.; Tiemann, L.; Reichl, C.; Wegscheider, W.

    A longitudinal magnetoresistance asymmetry (LMA) between a positive and negative magnetic field is known to occur in both the extreme quantum limit and the classical Drude limit in samples with a nonuniform doping density. By analyzing the current stream function in van der Pauw measurement geometry, it is shown that the electron density gradient can be quantitatively deduced from this LMA in the Drude regime. Results agree with gradients interpolated from local densities calibrated across an entire wafer, establishing a generalization of the van der Pauw method to quantify density gradients. Results will be shown of various semoconductor systems where this method is applied, from bulk doped semiconductors, to exfoliated 2D materials. McCormick Catalyst Award from Northwestern University, EECS Bridge Funding, and AFOSR FA9550-15-1-0247.

  10. EARTHSHINE ON A YOUNG MOON: EXPLAINING THE LUNAR FARSIDE HIGHLANDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Arpita; Wright, Jason T.; Sigurðsson, Steinn

    2014-06-20

    The lunar farside highlands problem refers to the curious and unexplained fact that the farside lunar crust is thicker, on average, than the nearside crust. Here we recognize the crucial influence of Earthshine, and propose that it naturally explains this hemispheric dichotomy. Since the accreting Moon rapidly achieved synchronous rotation, a surface and atmospheric thermal gradient was imposed by the proximity of the hot, post-giant impact Earth. This gradient guided condensation of atmospheric and accreting material, preferentially depositing crust-forming refractories on the cooler farside, resulting in a primordial bulk chemical inhomogeneity that seeded the crustal asymmetry. Our model provides amore » causal solution to the lunar highlands problem: the thermal gradient created by Earthshine produced the chemical gradient responsible for the crust thickness dichotomy that defines the lunar highlands.« less

  11. Echo-Planar Imaging for a 9.4 Tesla Vertical-Bore Superconducting Magnet Using an Unshielded Gradient Coil

    PubMed Central

    KODAMA, Nao; KOSE, Katsumi

    2016-01-01

    Echo-planar imaging (EPI) sequences were developed for a 9.4 Tesla vertical standard bore (∼54 mm) superconducting magnet using an unshielded gradient coil optimized for live mice imaging and a data correction technique with reference scans. Because EPI requires fast switching of intense magnetic field gradients, eddy currents were induced in the surrounding metallic materials, e.g., the room temperature bore, and this produced serious artifacts on the EPI images. We solved the problem using an unshielded gradient coil set of proper size (outer diameter = 39 mm, inner diameter = 32 mm) with time control of the current rise and reference scans. The obtained EPI images of a phantom and a plant sample were almost artifact-free and demonstrated the promise of our approach. PMID:27001398

  12. High-Fidelity Geometric Modeling and Mesh Generation for Mechanics Characterization of Polycrystalline Materials

    DTIC Science & Technology

    2014-10-26

    From the parameterization results, we extract adaptive and anisotropic T-meshes for the further T- spline surface construction. Finally, a gradient flow...field-based method [7, 12] to generate adaptive and anisotropic quadrilateral meshes, which can be used as the control mesh for high-order T- spline ...parameterization results, we extract adaptive and anisotropic T-meshes for the further T- spline surface construction. Finally, a gradient flow-based

  13. Survey and bibliography on attainment of laminar flow control in air using pressure gradient and suction, volume 1

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Tuttle, M. H.

    1979-01-01

    A survey was conducted and a bibliography compiled on attainment of laminar flow in air through the use of favorable pressure gradient and suction. This report contains the survey, summaries of data for both ground and flight experiments, and abstracts of referenced reports. Much early information is also included which may be of some immediate use as background material for LFC applications.

  14. Superconducting RF, the History, Challenges and Promise

    ScienceCinema

    Padamsee, Hasan

    2018-01-01

    After a short survey of on-going accelerator applications, I will discuss future applications prospects for this enabling technology, both near term and long term. A selection of technology highlights will serve as an introduction to outstanding issues for all types of applications, from pulsed high gradient to CW medium gradient. Finally I will touch upon the limits of niobium and the prospects of new materials. The talk will be targeted at a general audience.

  15. High Slew-Rate Head-Only Gradient for Improving Distortion in Echo Planar Imaging: Preliminary Experience

    PubMed Central

    Tan, Ek T.; Lee, Seung-Kyun; Weavers, Paul T.; Graziani, Dominic; Piel, Joseph E.; Shu, Yunhong; Huston, John; Bernstein, Matt A.; Foo, Thomas K.F.

    2016-01-01

    Purpose To investigate the effects on echo planar imaging (EPI) distortion of using high gradient slew rates (SR) of up to 700 T/m/s for in-vivo human brain imaging, with a dedicated, head-only gradient coil. Materials and Methods Simulation studies were first performed to determine the expected echo spacing and distortion reduction in EPI. A head gradient of 42-cm inner diameter and with asymmetric transverse coils was then installed in a whole-body, conventional 3T MRI system. Human subject imaging was performed on five subjects to determine the effects of EPI on echo spacing and signal dropout at various gradient slew rates. The feasibility of whole-brain imaging at 1.5 mm-isotropic spatial resolution was demonstrated with gradient-echo and spin-echo diffusion-weighted EPI. Results As compared to a whole-body gradient coil, the EPI echo spacing in the head-only gradient coil was reduced by 48%. Simulation and in vivo results, respectively, showed up to 25-26% and 19% improvement in signal dropout. Whole-brain imaging with EPI at 1.5 mm spatial resolution provided good whole-brain coverage, spatial linearity, and low spatial distortion effects. Conclusion Our results of human brain imaging with EPI using the compact head gradient coil at slew rates higher than in conventional whole-body MR systems demonstrate substantially improved image distortion, and point to a potential for benefits to non-EPI pulse sequences. PMID:26921117

  16. Preparation and evaluation of Vinpocetine self-emulsifying pH gradient release pellets.

    PubMed

    Liu, Mengqi; Zhang, Shiming; Cui, Shuxia; Chen, Fen; Jia, Lianqun; Wang, Shu; Gai, Xiumei; Li, Pingfei; Yang, Feifei; Pan, Weisan; Yang, Xinggang

    2017-11-01

    The main objective of this study was to develop a pH gradient release pellet with self-emulsifying drug delivery system (SEDDS), which could not only improve the oral bioavailability of Vinpocetine (VIN), a poor soluble drug, but reduce the fluctuation of plasma concentration. First, the liquid VIN SEDDS formulation was prepared. Then the self-emulsifying pH gradient release pellets were prepared by extrusion spheronization technique, and formulation consisted by the liquid SEDDS, absorbent (colloidal silicon dioxide), penetration enhancer (sodium chloride), microcrystalline cellulose, ethyl alcohol, and three coating materials (HPMC, Eudragit L30D55, Eudragit FS30D) were eventually selected. Three kinds of coated pellets were mixed in capsules with the mass ratio of 1:1:1. The release curves of capsules were investigated in vitro under the simulated gastrointestinal conditions. In addition, the oral bioavailability and pharmacokinetics of VIN self-emulsifying pH gradient release pellets, commercial tablets and liquid VIN SEDDS were evaluated in Beagle dogs. The oral bioavailability of self-emulsifying pH gradient release pellets was about 149.8% of commercial VIN tablets, and it was about 86% of liquid VIN SEDDS, but there were no significant difference between liquid SEDDS and self-emulsifying pH gradient release pellets. In conclusion, the self-emulsifying pH gradient release pellets could significantly enhance the absorption of VIN and effectively achieve a pH gradient release. And the self-emulsifying pH gradient release pellet was a promising method to improve bioavailability of insoluble drugs.

  17. Transmitted light relaxation and microstructure evolution of ferrofluids under gradient magnetic fields

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Li, Decai; Li, Feng; Zhu, Quanshui; Xie, Yu

    2015-03-01

    Using light transmission experiments and optical microscope observations with a longitudinal gradient magnetic field configuration, the relationship between the behavior of the transmitted light relaxation and the microstructure evolution of ionic ferrofluids in the central region of an axisymmetric field is investigated. Under a low-gradient magnetic field, there are two types of relaxation process. When a field is applied, the transmitted light intensity decreases to a minimum within a time on the order of 101-102 s. It is then gradually restored, approaching its initial value within a time on the order of 102 s. This is type I relaxation, which corresponds to the formation of magnetic columns. After the transmission reaches this value, it either increases or decreases slowly, stabilizing within a time on the order of 103 s, according to the direction of the field gradient. This is a type II relaxation, which results from the shadowing effect, corresponding to the motion of the magnetic columns under the application of a gradient force. Under a magnetic field with a centripetal high-gradient (magnetic materials subjected to a force pointing toward the center of the axisymmetric field), the transmitted light intensity decreases monotonously and more slowly than that under a low-gradient field. Magnetic transport and separation resulted from magnetophoresis under high-gradient fields, changing the formation dynamics of the local columns and influencing the final state of the column system.

  18. A low-cost, mechanically simple apparatus for measuring eddy current-induced magnetic fields in MRI.

    PubMed

    Gilbert, Kyle M; Martyn Klassen, L; Menon, Ravi S

    2013-10-01

    The fidelity of gradient waveforms in MRI pulse sequences is essential to the acquisition of images and spectra with minimal distortion artefacts. Gradient waveforms can become nonideal when eddy currents are created in nearby conducting structures; however, the resultant magnetic fields can be characterised and compensated for by measuring the spatial and temporal field response following a gradient impulse. This can be accomplished using a grid of radiofrequency (RF) coils. The RF coils must adhere to strict performance requirements: they must achieve a high sensitivity and signal-to-noise ratio (SNR), have minimal susceptibility field gradients between the sample and surrounding material interfaces and be highly decoupled from each other. In this study, an apparatus is presented that accomplishes these tasks with a low-cost, mechanically simple solution. The coil system consists of six transmit/receive RF coils immersed in a high-molarity saline solution. The sensitivity and SNR following an excitation pulse are sufficiently high to allow accurate phase measurements during free-induction decays; the intrinsic susceptibility matching of the materials, because of the unique design of the coil system, results in sufficiently narrow spectral line widths (mean of 19 Hz), and adjacent RF coils are highly decoupled (mean S12 of -47 dB). The temporal and spatial distributions of eddy currents following a gradient pulse are measured to validate the efficacy of the design, and the resultant amplitudes and time constants required for zeroth- and first-order compensation are provided. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Learning to Use Illumination Gradients as an Unambiguous Cue to Three Dimensional Shape

    PubMed Central

    Harding, Glen; Harris, Julie M.; Bloj, Marina

    2012-01-01

    The luminance and colour gradients across an image are the result of complex interactions between object shape, material and illumination. Using such variations to infer object shape or surface colour is therefore a difficult problem for the visual system. We know that changes to the shape of an object can affect its perceived colour, and that shading gradients confer a sense of shape. Here we investigate if the visual system is able to effectively utilise these gradients as a cue to shape perception, even when additional cues are not available. We tested shape perception of a folded card object that contained illumination gradients in the form of shading and more subtle effects such as inter-reflections. Our results suggest that observers are able to use the gradients to make consistent shape judgements. In order to do this, observers must be given the opportunity to learn suitable assumptions about the lighting and scene. Using a variety of different training conditions, we demonstrate that learning can occur quickly and requires only coarse information. We also establish that learning does not deliver a trivial mapping between gradient and shape; rather learning leads to the acquisition of assumptions about lighting and scene parameters that subsequently allow for gradients to be used as a shape cue. The perceived shape is shown to be consistent for convex and concave versions of the object that exhibit very different shading, and also similar to that delivered by outline, a largely unrelated cue to shape. Overall our results indicate that, although gradients are less reliable than some other cues, the relationship between gradients and shape can be quickly assessed and the gradients therefore used effectively as a visual shape cue. PMID:22558279

  20. Measuring small compartment dimensions by probing diffusion dynamics via Non-uniform Oscillating-Gradient Spin-Echo (NOGSE) NMR.

    PubMed

    Shemesh, Noam; Alvarez, Gonzalo A; Frydman, Lucio

    2013-12-01

    Noninvasive measurements of microstructure in materials, cells, and in biological tissues, constitute a unique capability of gradient-assisted NMR. Diffusion-diffraction MR approaches pioneered by Callaghan demonstrated this ability; Oscillating-Gradient Spin-Echo (OGSE) methodologies tackle the demanding gradient amplitudes required for observing diffraction patterns by utilizing constant-frequency oscillating gradient pairs that probe the diffusion spectrum, D(ω). Here we present a new class of diffusion MR experiments, termed Non-uniform Oscillating-Gradient Spin-Echo (NOGSE), which dynamically probe multiple frequencies of the diffusion spectral density at once, thus affording direct microstructural information on the compartment's dimension. The NOGSE methodology applies N constant-amplitude gradient oscillations; N-1 of these oscillations are spaced by a characteristic time x, followed by a single gradient oscillation characterized by a time y, such that the diffusion dynamics is probed while keeping (N-1)x+y≡TNOGSE constant. These constant-time, fixed-gradient-amplitude, multi-frequency attributes render NOGSE particularly useful for probing small compartment dimensions with relatively weak gradients - alleviating difficulties associated with probing D(ω) frequency-by-frequency or with varying relaxation weightings, as in other diffusion-monitoring experiments. Analytical descriptions of the NOGSE signal are given, and the sequence's ability to extract small compartment sizes with a sensitivity towards length to the sixth power, is demonstrated using a microstructural phantom. Excellent agreement between theory and experiments was evidenced even upon applying weak gradient amplitudes. An MR imaging version of NOGSE was also implemented in ex vivo pig spinal cords and mouse brains, affording maps based on compartment sizes. The effects of size distributions on NOGSE are also briefly analyzed. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Longitudinal Fracture Analysis of a Two-Dimensional Functionally Graded Beam

    NASA Astrophysics Data System (ADS)

    Rizov, V.

    2017-11-01

    Longitudinal fracture in a two-dimensional functionally graded beam is analyzed. The modulus of elasticity varies continuously in the beam cross-section. The beam is clamped in its right-hand end. The external loading consists of one longitudinal force applied at the free end of the lower crack arm. The longitudinal crack is located in the beam mid-plane. The fracture is studied in terms of the strain energy release rate. The solution derived is used to elucidate the effects of material gradients along the height as well as along the width of the beam cross-section on the fracture behaviour. The results obtained indicate that the fracture in two-dimensional functionally graded beams can be regulated efficiently by employing appropriate material gradients.

  2. Arrays of quasi-hexagonally ordered silica nanopillars with independently controlled areal density, diameter and height gradients

    NASA Astrophysics Data System (ADS)

    Özdemir, Burcin; Huang, Wenting; Plettl, Alfred; Ziemann, Paul

    2015-03-01

    A consecutive fabrication approach of independently tailored gradients of the topographical parameters distance, diameter and height in arrays of well-ordered nanopillars on smooth SiO2-Si-wafers is presented. For this purpose, previously reported preparation techniques are further developed and combined. First, self-assembly of Au-salt loaded micelles by dip-coating with computer-controlled pulling-out velocities and subsequent hydrogen plasma treatment produce quasi-hexagonally ordered, 2-dimensional arrays of Au nanoparticles (NPs) with unidirectional variations of the interparticle distances along the pulling direction between 50-120 nm. Second, the distance (or areal density) gradient profile received in this way is superimposed with a diameter-controlled gradient profile of the NPs applying a selective photochemical growth technique. For demonstration, a 1D shutter is used for locally defined UV exposure times to prepare Au NP size gradients varying between 12 and 30 nm. Third, these double-gradient NP arrangements serve as etching masks in a following reactive ion etching step delivering arrays of nanopillars. For height gradient generation, the etching time is locally controlled by applying a shutter made from Si wafer piece. Due to the high flexibility of the etching process, the preparation route works on various materials such as cover slips, silicon, silicon oxide, silicon nitride and silicon carbide.

  3. Response of Soft Continuous Structures and Topological Defects to a Temperature Gradient.

    PubMed

    Kurita, Rei; Mitsui, Shun; Tanaka, Hajime

    2017-09-08

    Thermophoresis, which is mass transport induced by a temperature gradient, has recently attracted considerable attention as a new way to transport materials. So far the study has been focused on the transport of discrete structures such as colloidal particles, proteins, and polymers in solutions. However, the response of soft continuous structures such as membranes and gels to a temperature gradient has been largely unexplored. Here we study the behavior of a lamellar phase made of stacked surfactant bilayer membranes under a temperature gradient. We find the migration of membranes towards a low-temperature region, causing the increase in the degree of membrane undulation fluctuations towards that direction. This is contrary to our intuition that the fluctuations are weaker at a lower temperature. We show that this can be explained by temperature-gradient-induced migration of membranes under the topological constraint coming from the connectivity of each membrane. We also reveal that the pattern of an edge dislocation array formed in a wedge-shaped cell can be controlled by a temperature gradient. These findings suggest that application of a temperature gradient provides a novel way to control the organization of soft continuous structures such as membranes, gels, and foams, in a manner essentially different from the other types of fields, and to manipulate topological defects.

  4. Evaluating Battery-like Reactions to Harvest Energy from Salinity Differences using Ammonium Bicarbonate Salt Solutions.

    PubMed

    Kim, Taeyoung; Rahimi, Mohammad; Logan, Bruce E; Gorski, Christopher A

    2016-05-10

    Mixing entropy batteries (MEBs) are a new approach to generate electricity from salinity differences between two aqueous solutions. To date, MEBs have only been prepared from solutions containing chloride salts, owing to their relevance in natural salinity gradients created from seawater and freshwater. We hypothesized that MEBs could capture energy using ammonium bicarbonate (AmB), a thermolytic salt that can be used to convert waste heat into salinity gradients. We examined six battery electrode materials. Several of the electrodes were unstable in AmB solutions or failed to produce expected voltages. Of the electrode materials tested, a cell containing a manganese oxide electrode and a metallic lead electrode produced the highest power density (6.3 mW m(-2) ). However, this power density is still low relative to previously reported NaCl-based MEBs and heat recovery systems. This proof-of-concept study demonstrated that MEBs could indeed be used to generate electricity from AmB salinity gradients. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Explaining social class differences in depression and well-being.

    PubMed

    Stansfeld, S A; Head, J; Marmot, M G

    1998-01-01

    Work characteristics, including skill discretion and decision authority, explain most of the socioeconomic status gradient in well-being and depression in middle-aged British civil servants from the Whitehall II Study, London. Social support explained about one-third of the gradient, life events and material difficulties less than one-third. Socioeconomic status was measured by employment grade. Work characteristics were based on the Karasek model, social support was measured by the Close Persons Questionnaire, depression by the General Health Questionnaire and well-being by the Affect Balance Scale. Despite a small contribution from social selective factors measured by upward mobility, the psychosocial work environment explained most of the cross-sectional socioeconomic status gradient in well-being and depression.

  6. ptchg: A FORTRAN program for point-charge calculations of electric field gradients (EFGs)

    NASA Astrophysics Data System (ADS)

    Spearing, Dane R.

    1994-05-01

    ptchg, a FORTRAN program, has been developed to calculate electric field gradients (EFG) around an atomic site in crystalline solids using the point-charge direct-lattice summation method. It uses output from the crystal structure generation program Atoms as its input. As an application of ptchg, a point-charge calculation of the EFG quadrupolar parameters around the oxygen site in SiO 2 cristobalite is demonstrated. Although point-charge calculations of electric field gradients generally are limited to ionic compounds, the computed quadrupolar parameters around the oxygen site in SiO 2 cristobalite, a highly covalent material, are in good agreement with the experimentally determined values from nuclear magnetic resonance (NMR) spectroscopy.

  7. Refined gradient theory of scale-dependent superthin rods

    NASA Astrophysics Data System (ADS)

    Lurie, S. A.; Kuznetsova, E. L.; Rabinskii, L. N.; Popova, E. I.

    2015-03-01

    A version of the refined nonclassical theory of thin beams whose thickness is comparable with the scale characteristic of the material structure is constructed on the basis of the gradient theory of elasticity which, in contrast to the classical theory, contains some additional physical characteristics depending on the structure scale parameters and is therefore most appropriate for modeling the strains of scale-dependent systems. The fundamental conditions for the well-posedness of the gradient theories are obtained for the first time, and it is shown that some of the known applied gradient theories do not generally satisfy the well-posedness criterion. A version of the well-posed gradient strain theory which satisfies the symmetry condition is proposed. The well-posed gradient theory is then used to implement the method of kinematic hypotheses for constructing a refined theory of scale-dependent beams. The equilibrium equations of the refined theory of scale-dependent Timoshenko and Bernoulli beams are obtained. It is shown that the scale effects are localized near the beam ends, and therefore, taking the scale effects into account does not give any correction to the bending rigidity of long beams as noted in the previously published papers dealing with the scale-dependent beams.

  8. Chemical gradients in sediment cores from an EPA reference site off the Farallon Islands - Assessing chemical indicators of dredged material disposal in the deep sea

    USGS Publications Warehouse

    Bothner, Michael H.; Gill, P.W.; Boothman, W.S.; Taylor, B.B.; Karl, Herman A.

    1998-01-01

    Heavy metal and organic contaminants have been determined in undisturbed sediment cores from the US Environmental Protection Agency reference site for dredged material on the continental slope off San Francisco. As expected, the concentrations are significantly lower than toxic effects guidelines, but concentrations of PCBs, PAHs, Hg, Pb, and Clostridium perfringens (a bacterium spore found in sewage) were nearly two or more times greater in the surface sediments than in intervals deeper in the cores. These observations indicate the usefulness of measuring concentration gradients in sediments at the San Francisco deep ocean disposal site (SF-DODS) where a thin (0.5 cm thick) layer of dredged material has been observed beyond the boundary. This thin layer has not been chemically characterized by the common practice of homogenizing over the top 10 cm. An estimated 300 million cubic yards of dredged material from San Francisco Bay are expected to be discharged at the SF-DODS site during the next 50 years. Detailed depth analysis of sediment cores would add significant new information about the fate and effects of dredged material in the deep sea.

  9. Microgravity

    NASA Image and Video Library

    1998-12-01

    The Magnetically Damped Furnace (MDF) breadboard is being developed in response to NASA's mission and goals to advance the scientific knowledge of microgravity research, materials science, and related technologies. The objective of the MDF is to dampen the fluid flows due to density gradients and surface tension gradients in conductive melts by introducing a magnetic field during the sample processing. The MDF breadboard will serve as a proof of concept that the MDF performance requirements can be attained within the International Space Station resource constraints.

  10. Mechanical Properties of Porous, High Temperature Structural Materials: Sources of Toughness in Reaction Bonded Silicon Nitride.

    DTIC Science & Technology

    1995-10-15

    tensile extension. At each level of externally imposed displacements, internal equilibrium was achieved by a conjugate gradient method of energy...indentation cracks viewed by TEM. This could be due to either weaker grain boundaries or due to grain level internal stresses of misfit. The fact... internally using the conjugate gradient method until the overall elastic strain energy function 4 was minimized for a unit level of border displacement which

  11. Gradient-based Optimization for Poroelastic and Viscoelastic MR Elastography

    PubMed Central

    Tan, Likun; McGarry, Matthew D.J.; Van Houten, Elijah E.W.; Ji, Ming; Solamen, Ligin; Weaver, John B.

    2017-01-01

    We describe an efficient gradient computation for solving inverse problems arising in magnetic resonance elastography (MRE). The algorithm can be considered as a generalized ‘adjoint method’ based on a Lagrangian formulation. One requirement for the classic adjoint method is assurance of the self-adjoint property of the stiffness matrix in the elasticity problem. In this paper, we show this property is no longer a necessary condition in our algorithm, but the computational performance can be as efficient as the classic method, which involves only two forward solutions and is independent of the number of parameters to be estimated. The algorithm is developed and implemented in material property reconstructions using poroelastic and viscoelastic modeling. Various gradient- and Hessian-based optimization techniques have been tested on simulation, phantom and in vivo brain data. The numerical results show the feasibility and the efficiency of the proposed scheme for gradient calculation. PMID:27608454

  12. Algorithm for ion beam figuring of low-gradient mirrors.

    PubMed

    Jiao, Changjun; Li, Shengyi; Xie, Xuhui

    2009-07-20

    Ion beam figuring technology for low-gradient mirrors is discussed. Ion beam figuring is a noncontact machining technique in which a beam of high-energy ions is directed toward a target workpiece to remove material in a predetermined and controlled fashion. Owing to this noncontact mode of material removal, problems associated with tool wear and edge effects, which are common in conventional contact polishing processes, are avoided. Based on the Bayesian principle, an iterative dwell time algorithm for planar mirrors is deduced from the computer-controlled optical surfacing (CCOS) principle. With the properties of the removal function, the shaping process of low-gradient mirrors can be approximated by the linear model for planar mirrors. With these discussions, the error surface figuring technology for low-gradient mirrors with a linear path is set up. With the near-Gaussian property of the removal function, the figuring process with a spiral path can be described by the conventional linear CCOS principle, and a Bayesian-based iterative algorithm can be used to deconvolute the dwell time. Moreover, the selection criterion of the spiral parameter is given. Ion beam figuring technology with a spiral scan path based on these methods can be used to figure mirrors with non-axis-symmetrical errors. Experiments on SiC chemical vapor deposition planar and Zerodur paraboloid samples are made, and the final surface errors are all below 1/100 lambda.

  13. Mapping polaronic states and lithiation gradients in individual V 2O 5 nanowires

    DOE PAGES

    De Jesus, Luis R.; Horrocks, Gregory A.; Liang, Yufeng; ...

    2016-06-28

    The rapid insertion and extraction of Li ions from a cathode material is imperative for the functioning of a Li-ion battery. In many cathode materials such as LiCoO 2 , lithiation proceeds through solid-solution formation, whereas in other materials such as LiFePO 4 lithiation/delithiation is accompanied by a phase transition between Li-rich and Li-poor phases. We demonstrate using scanning transmission X-ray microscopy (STXM) that in individual nanowires of layered V 2 O 5 , lithiation gradients observed on Li-ion intercalation arise from electron localization and local structural polarization. Electrons localized on the V 2 O 5 framework couple to localmore » structural distortions, giving rise to small polarons that serves as a bottleneck for further Li-ion insertion. The stabilization of this polaron impedes equilibration of charge density across the nanowire and gives rise to distinctive domains. The enhancement in charge/discharge rates for this material on nanostructuring can be attributed to circumventing challenges with charge transport from polaron formation.« less

  14. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST). Research on Materials for the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Stoner, Glenn E.; Wert, John A.

    1997-01-01

    Since 1986, the NASA-Langley Research Center has sponsored the NASA-UVa Light Alloy and Structures Technology (LA2ST) Program at the University of Virginia (UVa). The fundamental objective of the LA2ST program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures. The LA2ST program has aimed to product relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The scope of the LA2ST Program is broad. Research areas include: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites, (2) Aerospace Materials Science, (3) Mechanics of materials for Aerospace Structures, and (4) Thermal Gradient Structures. A substantial series of semi-annual progress reports issued since 1987 documents the technical objectives, experimental or analytical procedures, and detailed results of graduate student research in these topical areas.

  15. Microstructural and Mechanical Study of Press Hardening of Thick Boron Steel Sheet

    NASA Astrophysics Data System (ADS)

    Pujante, J.; Garcia-Llamas, E.; Golling, S.; Casellas, D.

    2017-09-01

    Press hardening has become a staple in the production of automotive safety components, due to the combination of high mechanical properties and form complexity it offers. However, the use of press hardened components has not spread to the truck industry despite the advantages it confers, namely affordable weight reduction without the use of exotic materials, would be extremely attractive for this sector. The main reason for this is that application of press hardened components in trucks implies adapting the process to the manufacture of thick sheet metal. This introduces an additional layer of complexity, mainly due to the thermal gradients inside the material resulting in though-thickness differences in austenitization and cooling, potentially resulting in complex microstructure and gradient of mechanical properties. This work presents a preliminary study on the press hardening of thick boron steel sheet. First of all, the evolution of the sheet metal during austenitization is studied by means of dilatometry tests and by analysing the effect of furnace dwell time on grain size. Afterwards, material cooled using different cooling strategies, and therefore different effective cooling rates, is studied in terms of microstructure and mechanical properties. Initial results from finite element simulation are compared to experimental results, focusing on the phase composition in through thickness direction. Results show that industrial-equivalent cooling conditions do not lead to gradient microstructures, even in extreme scenarios involving asymmetrical cooling.

  16. Thin Film Approaches to the SRF Cavity Problem: Fabrication and Characterization of Superconducting Thin Films

    NASA Astrophysics Data System (ADS)

    Beringer, Douglas B.

    Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory's CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency - 1.5 GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m - there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (approximately 45 MV/m for Niobium) where inevitable thermodynamic breakdown occurs. With state of the art niobium based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio-frequency applications.

  17. Elasticity of fractal materials using the continuum model with non-integer dimensional space

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2015-01-01

    Using a generalization of vector calculus for space with non-integer dimension, we consider elastic properties of fractal materials. Fractal materials are described by continuum models with non-integer dimensional space. A generalization of elasticity equations for non-integer dimensional space, and its solutions for the equilibrium case of fractal materials are suggested. Elasticity problems for fractal hollow ball and cylindrical fractal elastic pipe with inside and outside pressures, for rotating cylindrical fractal pipe, for gradient elasticity and thermoelasticity of fractal materials are solved.

  18. Lattice Rotation Patterns and Strain Gradient Effects in Face-Centered-Cubic Single Crystals Under Spherical Indentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Y. F.; Larson, B. C.; Lee, J. H.

    Strain gradient effects are commonly modeled as the origin of the size dependence of material strength, such as the dependence of indentation hardness on contact depth and spherical indenter radius. However, studies on the microstructural comparisons of experiments and theories are limited. First, we have extended a strain gradient Mises-plasticity model to its crystal plasticity version and implemented a finite element method to simulate the load-displacement response and the lattice rotation field of Cu single crystals under spherical indentation. The strain gradient simulations demonstrate that the forming of distinct sectors of positive and negative angles in the lattice rotation fieldmore » is governed primarily by the slip geometry and crystallographic orientations, depending only weakly on strain gradient effects, although hardness depends strongly on strain gradients. Second, the lattice rotation simulations are compared quantitatively with micron resolution, three-dimensional X-ray microscopy (3DXM) measurements of the lattice rotation fields under 100mN force, 100 mu m radius spherical indentations in < 111 >, < 110 >, and < 001 > oriented Cu single crystals. Third, noting the limitation of continuum strain gradient crystal plasticity models, two-dimensional discrete dislocation simulation results suggest that the hardness in the nanocontact regime is governed synergistically by a combination of strain gradients and source-limited plasticity. However, the lattice rotation field in the discrete dislocation simulations is found to be insensitive to these two factors but to depend critically on dislocation obstacle densities and strengths.« less

  19. Thermal Conductive Heat Transfer and Partial Melting of Volatiles in Icy Moons, Asteroids, and Kuiper Belt Objects (Invited)

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Furfaro, R.

    2013-12-01

    Thermal gradients within conductive layers of icy satellite and asteroids depend partly on heat flow, which is related to the secular decay of radioactive isotopes, to heat released by chemical phase changes, by conversion of gravitational potential energy to heat during differentiation, tidal energy dissipation, and to release of heat stored from prior periods. Thermal gradients are also dependent on the thermal conductivity of materials, which in turn depends on their composition, crystallinity, porosity, crystal fabric anisotropy, and details of their mixture with other materials. Small impurities can produce lattice defects and changes in polymerization, and thereby have a huge influence on thermal conductivity, as can cage-inclusion (clathrate) compounds. Heat flow and thermal gradients can be affected by fluid phase advection of mass and heat (in oceans or sublimating upper crusts), by refraction related to heterogeneities of thermal conductivity due to lateral variations and composition or porosity. Thermal profiles depend also on the surface temperature controlled by albedo and climate, surface relief, and latitude, orbital obliquity and surface insolation, solid state greenhouses, and endogenic heating of the surface. The thermal state of icy moon interiors and thermal gradients can be limited at depth by fluid phase advection of heat (e.g., percolating meteoric methane or gas emission), by the latent heat of phase transitions (melting, solid-state transitions, and sublimation), by solid-state convective or diapiric heat transfer, and by foundering. Rapid burial of thick volatile deposits can also affect thermal gradients. For geologically inactive or simple icy objects, most of these controls on heat flow and thermal gradients are irrelevant, but for many other icy objects they can be important, in some cases causing large lateral and depth variations in thermal gradients, large variations in heat flow, and dynamically evolving thermal states. Many of these processes result in transient thermal states and hence rapid evolution of icy body interiors. Interesting heat-flow phenomena (approximated as steady-state thermal states) have been modeled in volatile-rich main belt asteroids, Io, Europa, Enceladus, Titan, Pluto, and Makemake (2005 FY9). Thermal conditions can activate geologic processes, but the occurrence of geologic activity can fundamentally alter the thermal conductivity and elasticity of icy objects, which then further affects the distribution and type of subsequent geologic activity. For example, cryoclastic volcanism on Enceladus can increase solid-state greenhouse heating of the upper crust, reduce thermal conductivity, and increase retention of heat and spur further cryovolcanism. Sulfur extrusion on Io can produce low-thermal-conductivity flows, high thermal gradients, basal melting of the flows, and lateral extrusion and spreading of the flows or formation of solid-crusted lava lakes. Impact formation of regoliths and fine-grained dust deposits on large asteroids may generate local variations in thermal gradients. Interior heating and geologic activity can either (1) emplace low-conductivity materials on the surface and cause further interior heating, or (2) drive metamorphism, sintering, and volatile loss, and increase thermal conductivity and cool the object. Thus, the type and distribution of present-day geologic activity on icy worlds is dependent on geologic history. Geology begets geology.

  20. Manufacture of gradient micro-structures of magnesium alloys using two stage extrusion dies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Yeong-Maw; Huang, Tze-Hui; Alexandrov, Sergei

    2013-12-16

    This paper aims to manufacture magnesium alloy metals with gradient micro-structures using hot extrusion process. The extrusion die was designed to have a straight channel part combined with a conical part. Materials pushed through this specially-designed die generate a non-uniform velocity distribution at cross sections inside the die and result in different strain and strain rate distributions. Accordingly, a gradient microstructure product can be obtained. Using the finite element analysis, the forming temperature, effective strain, and effective strain rate distributions at the die exit were firstly discussed for various inclination angles in the conical die. Then, hot extrusion experiments withmore » a two stage die were conducted to obtain magnesium alloy products with gradient micro-structures. The effects of the inclination angle on the grain size distribution at cross sections of the products were also discussed. Using a die of an inclination angle of 15°, gradient micro-structures of the grain size decreasing gradually from 17 μm at the center to 4 μm at the edge of product were achieved.« less

  1. A hot-electron thermophotonic solar cell demonstrated by thermal up-conversion of sub-bandgap photons

    PubMed Central

    Farrell, Daniel J.; Sodabanlu, Hassanet; Wang, Yunpeng; Sugiyama, Masakazu; Okada, Yoshitaka

    2015-01-01

    The direct conversion of solar energy to electricity can be broadly separated into two main categories: photovoltaics and thermal photovoltaics, where the former utilizes gradients in electrical potential and the latter thermal gradients. Conventional thermal photovoltaics has a high theoretical efficiency limit (84%) but in practice cannot be easily miniaturized and is limited by the engineering challenges of sustaining large (>1,000 K) temperature gradients. Here we show a hot-carrier-based thermophotonic solar cell, which combines the compact nature of photovoltaic devices with the potential to reach the high-efficiency regime of thermal photovoltaics. In the device, a thermal gradient of 500 K is established by hot electrons, under Stokes illumination, rather than by raising the temperature of the material itself. Under anti-Stokes (sub-bandgap) illumination we observe a thermal gradient of ∼20 K, which is maintained by steady-state Auger heating of carriers and corresponds to a internal thermal up-conversion efficiency of 30% between the collector and solar cell. PMID:26541415

  2. Modelling of directional solidification of BSO

    NASA Astrophysics Data System (ADS)

    Lin, Chenting; Motakef, Shahryar

    1993-03-01

    A thermo-fluid model for vertical Bridgman growth of bismuth silicon oxide (BSO) as model material for semi-transparent, low thermal conductivity oxides is developed. Internal radiative heat transfer, together with convective and conductive heat transfer are considered in this model. Due to the strong internal thermal radiation within the grown crystal, the growth interface is highly convex into the melt, instead of being concave as is the case for opaque materials with the thermal conductivity of the melt larger than that of the solid. Reduction of the growth interface non-planarity through variations in the growth configuration is investigated. A furnace temperature profile consisting of a steep gradient on the melt side and shallow gradient on the solid side of the charge is found to be the most effective approach.

  3. Characterization of Thin Film Materials using SCAN meta-GGA, an Accurate Nonempirical Density Functional

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buda, I. G.; Lane, C.; Barbiellini, B.

    We discuss self-consistently obtained ground-state electronic properties of monolayers of graphene and a number of ’beyond graphene’ compounds, including films of transition-metal dichalcogenides (TMDs), using the recently proposed strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) to the density functional theory. The SCAN meta-GGA results are compared with those based on the local density approximation (LDA) as well as the generalized gradient approximation (GGA). As expected, the GGA yields expanded lattices and softened bonds in relation to the LDA, but the SCAN meta-GGA systematically improves the agreement with experiment. Our study suggests the efficacy of the SCAN functionalmore » for accurate modeling of electronic structures of layered materials in high-throughput calculations more generally.« less

  4. Effect of Thermal Gradient on Vibration of Non-uniform Visco-elastic Rectangular Plate

    NASA Astrophysics Data System (ADS)

    Khanna, Anupam; Kaur, Narinder

    2016-04-01

    Here, a theoretical model is presented to analyze the effect of bilinear temperature variations on vibration of non-homogeneous visco-elastic rectangular plate with non-uniform thickness. Non-uniformity in thickness of the plate is assumed linear in one direction. Since plate's material is considered as non-homogeneous, authors characterized non-homogeneity in poisson ratio and density of the plate's material exponentially in x-direction. Plate is supposed to be clamped at the ends. Deflection for first two modes of vibration is calculated by using Rayleigh-Ritz technique and tabulated for various values of plate's parameters i.e. taper constant, aspect ratio, non-homogeneity constants and thermal gradient. Comparison of present findings with existing literature is also provided in tabular and graphical manner.

  5. Environmental Durability and Stress Rupture of EBC/CMCs

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming

    2012-01-01

    This research focuses on the strength and creep performance of SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems under complex simulated engine environments. Tensile-strength and stress-rupture testing was conducted to illustrate the material properties under isothermal and thermal gradient conditions. To determine material durability, further testing was conducted under exposure to thermal cycling, thermal gradients and simulated combustion environments. Emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation, including modal acoustic emission and electrical resistivity monitoring, to characterize strength degradation and damage mechanisms. Currently, little is known about the behavior of EBC-CMCs under these conditions; consequently, this work will prove invaluable in the development of structural components for use in high temperature applications.

  6. Laboratory layered latte.

    PubMed

    Xue, Nan; Khodaparast, Sepideh; Zhu, Lailai; Nunes, Janine K; Kim, Hyoungsoo; Stone, Howard A

    2017-12-12

    Inducing thermal gradients in fluid systems with initial, well-defined density gradients results in the formation of distinct layered patterns, such as those observed in the ocean due to double-diffusive convection. In contrast, layered composite fluids are sometimes observed in confined systems of rather chaotic initial states, for example, lattes formed by pouring espresso into a glass of warm milk. Here, we report controlled experiments injecting a fluid into a miscible phase and show that, above a critical injection velocity, layering emerges over a time scale of minutes. We identify critical conditions to produce the layering, and relate the results quantitatively to double-diffusive convection. Based on this understanding, we show how to employ this single-step process to produce layered structures in soft materials, where the local elastic properties vary step-wise along the length of the material.

  7. Characterization of Thin Film Materials using SCAN meta-GGA, an Accurate Nonempirical Density Functional

    DOE PAGES

    Buda, I. G.; Lane, C.; Barbiellini, B.; ...

    2017-03-23

    We discuss self-consistently obtained ground-state electronic properties of monolayers of graphene and a number of ’beyond graphene’ compounds, including films of transition-metal dichalcogenides (TMDs), using the recently proposed strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) to the density functional theory. The SCAN meta-GGA results are compared with those based on the local density approximation (LDA) as well as the generalized gradient approximation (GGA). As expected, the GGA yields expanded lattices and softened bonds in relation to the LDA, but the SCAN meta-GGA systematically improves the agreement with experiment. Our study suggests the efficacy of the SCAN functionalmore » for accurate modeling of electronic structures of layered materials in high-throughput calculations more generally.« less

  8. Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process.

    PubMed

    Fousová, Michaela; Vojtěch, Dalibor; Kubásek, Jiří; Jablonská, Eva; Fojt, Jaroslav

    2017-05-01

    Porous structures, manufactured of a biocompatible metal, mimicking human bone structure are the future of orthopedic implantology. Fully porous materials, however, suffer from certain drawbacks. To overcome these, gradient in structure can be prepared. With gradient in porosity mechanical properties can be optimized to an appropriate value, implant can be attributed a similar gradient macrostructure as bone, tissue adhesion may be promoted and also various modification with organic or inorganic substances are possible. In this study, additive technology selective laser melting (SLM) was used to produce three types of gradient porosity model specimens of titanium alloy Ti-6Al-4V. As this technology has the potential to prepare complex structures in the near-net form, to control porosity, pore size and shape, it represents a promising option. The first part of the research work was focused on the characterization of the material itself in the as-produced state, only with heat treatment applied. The second part dealt with the influence of porosity on mechanical properties. The study has shown SLM brings significant changes in the surface chemistry. Despite this finding, titanium alloy retained its cytocompatibility, as it was outlined by in vitro tests with U-2 OS cells. With introduced porosity yield strength, ultimate strength and stiffness showed linear decrease, both in tension and compression. With respect to the future use in the form of orthopedic implant, especially reduction in Young's modulus down to the human bone value (30.5±2GPa) is very appreciated as the stress-shielding effect followed by possible implant loosening is limited. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Efficiency of unconstrained minimization techniques in nonlinear analysis

    NASA Technical Reports Server (NTRS)

    Kamat, M. P.; Knight, N. F., Jr.

    1978-01-01

    Unconstrained minimization algorithms have been critically evaluated for their effectiveness in solving structural problems involving geometric and material nonlinearities. The algorithms have been categorized as being zeroth, first, or second order depending upon the highest derivative of the function required by the algorithm. The sensitivity of these algorithms to the accuracy of derivatives clearly suggests using analytically derived gradients instead of finite difference approximations. The use of analytic gradients results in better control of the number of minimizations required for convergence to the exact solution.

  10. Response of Materials Subjected to Magnetic Fields

    DTIC Science & Technology

    2011-08-31

    is a superconducting Helmholtz coil capable of operating at up to 6 Tesla. Access to the high magnetic field at the center of the magnet is by...conducting sphere moves through the magnetic field gradient (0 to 4 Tesla over ~20cm) at low velocity (under the influence of gravity for 1 meter). Area...sphere moves through the magnetic field gradient (0 to 4 Tesla over ~20cm) at high velocity (under the influence of gravity for 1 meter). Figure 8

  11. Design for a spin-Seebeck diode based on two-dimensional materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Hua-Hua; Wu, Dan-Dan; Gu, Lei

    2015-07-01

    Studies of the spin-Seebeck effect (SSE) are very important for the development of fundamental science and novel low-power-consumption technologies. The spin-Seebeck diode (SSD), in which the spin current can be driven by a forward temperature gradient but not by a reverse temperature gradient, is a key unit in spin caloritronic devices. Here, we propose a SSD design using two-dimensional (2D) materials such as silicene and phosphorene nanoribbons as the source and drain. Due to their unique band structures and magnetic states, thermally driven spin-up and spin-down currents flow in opposite directions. This mechanism is different from that of the previousmore » one, which uses two permalloy circular disks [Phys. Rev. Lett. 112, 047203 (2014)], and the SSD in our design can be easily integrated with gate voltage control. Since the concept of this design is rather general and applicable to many 2D materials, it is promising for the realization and exploitation of SSDs in nanodevices.« less

  12. Effect of process parameters on hardness, temperature profile and solidification of different layers processed by direct metal laser sintering (DMLS)

    NASA Astrophysics Data System (ADS)

    Ahmed, Sazzad Hossain; Mian, Ahsan; Srinivasan, Raghavan

    2016-07-01

    In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materials can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.

  13. Migration of Point Defects in the Field of a Temperature Gradient

    NASA Astrophysics Data System (ADS)

    Kozlov, A. V.; Portnykh, I. A.; Pastukhov, V. I.

    2018-04-01

    The influence of the temperature gradient over the thickness of the cladding of a fuel element of a fast-neutron reactor on the migration of point defects formed in the cladding material due to neutron irradiation has been studied. It has been shown that, under the action of the temperature gradient, the flux of vacancies onto the inner surface of the cladding is higher than the flux of interstitial atoms, which leads to the formation of a specific concentration profile in the cladding with a vacancy-depleted zone near the inner surface. The experimental results on the spatial distribution of pores over the cladding thickness have been presented with which the data on the concentration profiles and vacancy fluxes have been compared.

  14. Therapeutic Ultrasound Enhancement of Drug Delivery to Soft Tissues

    NASA Astrophysics Data System (ADS)

    Lewis, George; Wang, Peng; Lewis, George; Olbricht, William

    2009-04-01

    Effects of exposure to 1.58 MHz focused ultrasound on transport of Evans Blue Dye (EBD) in soft tissues are investigated when an external pressure gradient is applied to induce convective flow through the tissue. The magnitude of the external pressure gradient is chosen to simulate conditions in brain parenchyma during convection-enhanced drug delivery (CED) to the brain. EBD uptake and transport are measured in equine brain, avian muscle and agarose brain-mimicking phantoms. Results show that ultrasound enhances EBD uptake and transport, and the greatest enhancement occurs when the external pressure gradient is applied. The results suggest that exposure of the brain parenchyma to ultrasound could enhance penetration of material infused into the brain during CED therapy.

  15. Gradient-index elements made from phosphate glasses in the system Al(PO3)3 - Na2O - Ag2O by ion-exchange process

    NASA Astrophysics Data System (ADS)

    Staronski, Leszek R.; Wychowaniec, Marek; Wasylak, Jan

    1994-10-01

    Silver aluminum phosphate glassed have been tested as a material for gradient index (GRIN) elements fabrication by exchange of Na+ ions from mixed molten salt baths by the Ag+ ones. The annealing technique was used to control the final gradient and GRIN rod elements with radial index profile were prepared with n(r) equals no(1 - A/2 (DOT) rn) where 2

  16. Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Herman

    2016-09-01

    Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3/2, 5/2, 7/2, and 9/2. These results may be used to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Applications of NQR methods to studies of electronic structure in heavy element systems are proposed. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Heavy Element Chemistrymore » program.« less

  17. Spatial gradients in stream power and the implications for lateral and downstream transport of material during the 2013 Floods in Colorado and 2011 Irene Floods in Vermont, USA

    NASA Astrophysics Data System (ADS)

    Gartner, J. D.; Renshaw, C. E.; Magilligan, F. J.; Buraas, E. M.; Dethier, E.; Dade, W. B.

    2014-12-01

    Classic approaches to understand sediment transport and channel-hillslope coupling focus on magnitudes of forces at a point location or reach. Yet often overlooked are downstream gradients in forces along a river. Here we show a physical rationale supported by field evidence that downstream spatial gradients in sediment transport capacity affect lateral exchange of material in the form of landslides, bank failures and floodplain deposition. Taking advantage of the strong signals of near-channel deposition and erosion during the record-high 2011 Irene floods in Vermont and 2013 floods in Colorado, USA, we test if these spatial gradients can predict geomorphic response in flood events. Total stream power, an indicator of total sediment transport capacity, was mapped using GIS analysis along the Saxtons River (190 km2) and West Branch of White River (112 km2) in Vermont and Fourmile Creek (20 km2) and an unnamed creek on Mt Sanitas (7 km2) in Boulder, CO. These mountainous streams exhibit reach slopes of 0.5 to > 10%, with less steep reaches interspersed among steeper reaches. Near-channel erosion and deposition were quantified along 52 river km by pre/post satellite imagery, field surveys, and, when available, differencing of pre/post topography measured by aerial LiDAR. Zones of abundant mass wasting inputs—up to 11,000 m3 per km—were generally distinct from zones of abundant floodplain deposition—up to 30,000 m3 per km. Spatial patterns indicate that zones of abundant mass wasting into the channels align approximately with zones of down-flow increasing stream power. These reaches can convey material delivered from upstream plus additional lateral inputs of sediment. Conversely, reaches of abundant lateral flux out of the channel via near-channel deposition occur predominantly where mapped total stream power declines in the down-flow direction. These reaches appear unable to convey material supplied from upstream, which induces lateral deposition. The demonstrated interaction between downstream and lateral fluxes of material provides insight on physical controls on broad-scale geomorphic processes at channel margins as well as the sources and fates of matter transported by rivers, with implications for flood recovery and long-term river management.

  18. On the Possibility of Elastic Strain Localisation in a Fault

    NASA Astrophysics Data System (ADS)

    Pasternak, E.; Mühlhaus, H.-B.; Dyskin, A. V.

    2004-12-01

    The phenomenon of strain localisation is often observed in shear deformation of particulate materials, e.g., fault gouge. This phenomenon is usually attributed to special types of plastic behaviour of the material (e.g., strain softening or mismatch between dilatancy and pressure sensitivity or both). Observations of strain localisation in situ or in experiments are usually based on displacement measurements and subsequent computation of the displacement gradient. While in conventional continua the symmetric part of the displacement gradient is equal to the strain, it is no longer the case in the more realistic descriptions within the framework of generalised continua. In such models the rotations of the gouge particles are considered as independent degrees of freedom the values of which usually differ from the rotation of an infinitesimal volume element of the continuum, the latter being described for infinitesimal deformations by the non-symmetric part of the displacement gradient. As a model for gouge material we propose a continuum description for an assembly of spherical particles of equal radius in which the particle rotation is treated as an independent degree of freedom. Based on this model we consider simple shear deformations of the fault gouge. We show that there exist values of the model parameters for which the displacement gradient exhibits a pronounced localisation at the mid-layers of the fault, even in the absence of inelasticity. Inelastic effects are neglected in order to highlight the role of the independent rotations and the associated additional parameters. The localisation-like behaviour occurs if (a) the particle rotations on the boundary of the shear layer are constrained (this type of boundary condition does not exist in a standard continuum) and (b) the contact moment—or bending stiffness is much smaller than the product of the effective shear modulus of the granulate and the square of the width of the gouge layer. It should be noted however that the virtual work functional is positive definite over the range of physically meaningful parameters (here: contact stiffnesses, solid volume fraction and coordination number) so that strictly speaking we are not dealing with a material instability.

  19. Gradient twinned 304 stainless steels for high strength and high ductility

    DOE PAGES

    Chen, Aiying; Liu, Jiabin; Wang, Hongtao; ...

    2016-04-23

    Gradient materials often have attractive mechanical properties that outperform uniform microstructure counterparts. It remains a difficult task to investigate and compare the performance of various gradient microstructures due to the difficulty of fabrication, the wide range of length scales involved, and their respective volume percentage variations. We have investigated four types of gradient microstructures in 304 stainless steels that utilize submicrotwins, nanotwins, nanocrystalline-, ultrafine- and coarse-grains as building blocks. Tensile tests reveal that the gradient microstructure consisting of submicrotwins and nanotwins has a persistent and stable work hardening rate and yields an impressive combination of high strength and high ductility,more » leading to a toughness that is nearly 50% higher than that of the coarse-grained counterpart. Ex- and in-situ transmission electron microscopy indicates that nanoscale and submicroscale twins help to suppress and limit martensitic phase transformation via the confinement of martensite within the twin lamellar. Twinning and detwinning remain active during tensile deformation and contribute to the work hardening behavior. We discuss the advantageous properties of using submicrotwins as the main load carrier and nanotwins as the strengthening layers over those coarse and nanocrystalline grains. Furthermore, our work uncovers a new gradient design strategy to help metals and alloys achieve high strength and high ductility.« less

  20. Advanced Magnetic Materials Methods and Numerical Models for Fluidization in Microgravity and Hypogravity

    NASA Technical Reports Server (NTRS)

    Atwater, James; Wheeler, Richard, Jr.; Akse, James; Jovanovic, Goran; Reed, Brian

    2013-01-01

    To support long-duration manned missions in space such as a permanent lunar base, Mars transit, or Mars Surface Mission, improved methods for the treatment of solid wastes, particularly methods that recover valuable resources, are needed. The ability to operate under microgravity and hypogravity conditions is essential to meet this objective. The utilization of magnetic forces to manipulate granular magnetic media has provided the means to treat solid wastes under variable gravity conditions by filtration using a consolidated magnetic media bed followed by thermal processing of the solid wastes in a fluidized bed reactor. Non-uniform magnetic fields will produce a magnetic field gradient in a bed of magnetically susceptible media toward the distributor plate of a fluidized bed reactor. A correctly oriented magnetic field gradient will generate a downward direct force on magnetic media that can substitute for gravitational force in microgravity, or which may augment low levels of gravity, such as on the Moon or Mars. This approach is termed Gradient Magnetically Assisted Fluidization (G-MAFB), in which the magnitude of the force on the fluidized media depends upon the intensity of the magnetic field (H), the intensity of the field gradient (dH/dz), and the magnetic susceptibility of the media. Fluidized beds based on the G-MAFB process can operate in any gravitational environment by tuning the magnetic field appropriately. Magnetic materials and methods have been developed that enable G-MAFB operation under variable gravity conditions.

  1. Self-generated concentration and modulus gradient coating design to protect Si nano-wire electrodes during lithiation.

    PubMed

    Kim, Sung-Yup; Ostadhossein, Alireza; van Duin, Adri C T; Xiao, Xingcheng; Gao, Huajian; Qi, Yue

    2016-02-07

    Surface coatings as artificial solid electrolyte interphases have been actively pursued as an effective way to improve the cycle efficiency of nanostructured Si electrodes for high energy density lithium ion batteries, where the mechanical stability of the surface coatings on Si is as critical as Si itself. However, the chemical composition and mechanical property change of coating materials during the lithiation and delithiation process imposed a grand challenge to design coating/Si nanostructure as an integrated electrode system. In our work, we first developed reactive force field (ReaxFF) parameters for Li-Si-Al-O materials to simulate the lithiation process of Si-core/Al2O3-shell and Si-core/SiO2-shell nanostructures. With reactive dynamics simulations, we were able to simultaneously track and correlate the lithiation rate, compositional change, mechanical property evolution, stress distributions, and fracture. A new mechanics model based on these varying properties was developed to determine how to stabilize the coating with a critical size ratio. Furthermore, we discovered that the self-accelerating Li diffusion in Al2O3 coating forms a well-defined Li concentration gradient, leading to an elastic modulus gradient, which effectively avoids local stress concentration and mitigates crack propagation. Based on these results, we propose a modulus gradient coating, softer outside, harder inside, as the most efficient coating to protect the Si electrode surface and improve its current efficiency.

  2. Cleaning by Surfactant Gradients: Particulate Removal from Porous Materials and the Significance of Rinsing in Laundry Detergency

    NASA Astrophysics Data System (ADS)

    Shin, Sangwoo; Warren, Patrick B.; Stone, Howard A.

    2018-03-01

    Removing particles from fibrous materials involves loosening via surfactants followed by particle transfer in a flow. While flow advection is commonly believed to be the major driver for pore-scale transport, small pores within the fabric do not allow any significant fluid flow inside them, thus significantly reducing the role of advection. However, rinsing the fabric with fresh water naturally establishes a surfactant gradient within the pore space, providing a suitable environment for particles to undergo diffusiophoresis. We demonstrate that this mechanism can remove particles from deep within fabric pores at an accelerated rate. The nonlinear aspect of diffusiophoresis significantly prolongs the lifetime of the phoretic motion beyond the naive solute diffusion time scale during rinsing, allowing long-lasting, continuous removal of particles. Moreover, owing to the fine balance between chemiphoresis and electrophoresis for particles in anionic surfactant concentration gradients, we show that the particle removal is sensitive to the counterion mobility, suggesting a simple route to control the effect. We thus claim to have resolved the "stagnant core problem"—a long-standing mystery in laundry detergency—and have identified a physicochemical approach to particle transport in fibrous media with broad applicability.

  3. Modeling of microstructure evolution in direct metal laser sintering: A phase field approach

    NASA Astrophysics Data System (ADS)

    Nandy, Jyotirmoy; Sarangi, Hrushikesh; Sahoo, Seshadev

    2017-02-01

    Direct Metal Laser Sintering (DMLS) is a new technology in the field of additive manufacturing, which builds metal parts in a layer by layer fashion directly from the powder bed. The process occurs within a very short time period with rapid solidification rate. Slight variations in the process parameters may cause enormous change in the final build parts. The physical and mechanical properties of the final build parts are dependent on the solidification rate which directly affects the microstructure of the material. Thus, the evolving of microstructure plays a vital role in the process parameters optimization. Nowadays, the increase in computational power allows for direct simulations of microstructures during materials processing for specific manufacturing conditions. In this study, modeling of microstructure evolution of Al-Si-10Mg powder in DMLS process was carried out by using a phase field approach. A MATLAB code was developed to solve the set of phase field equations, where simulation parameters include temperature gradient, laser scan speed and laser power. The effects of temperature gradient on microstructure evolution were studied and found that with increase in temperature gradient, the dendritic tip grows at a faster rate.

  4. Energy approach to brittle fracture in strain-gradient modelling.

    PubMed

    Placidi, Luca; Barchiesi, Emilio

    2018-02-01

    In this paper, we exploit some results in the theory of irreversible phenomena to address the study of quasi-static brittle fracture propagation in a two-dimensional isotropic continuum. The elastic strain energy density of the body has been assumed to be geometrically nonlinear and to depend on the strain gradient. Such generalized continua often arise in the description of microstructured media. These materials possess an intrinsic length scale, which determines the size of internal boundary layers. In particular, the non-locality conferred by this internal length scale avoids the concentration of deformations, which is usually observed when dealing with local models and which leads to mesh dependency. A scalar Lagrangian damage field, ranging from zero to one, is introduced to describe the internal state of structural degradation of the material. Standard Lamé and second-gradient elastic coefficients are all assumed to decrease as damage increases and to be locally zero if the value attained by damage is one. This last situation is associated with crack formation and/or propagation. Numerical solutions of the model are provided in the case of an obliquely notched rectangular specimen subjected to monotonous tensile and shear loading tests, and brittle fracture propagation is discussed.

  5. Gradient-type modeling of the effects of plastic recovery and surface passivation in thin films

    NASA Astrophysics Data System (ADS)

    Liu, Jinxing; Kah Soh, Ai

    2016-08-01

    The elasto-plastic responses of thin films subjected to cyclic tension-compression loading and bending are studied, with a focus on Bauschinger and size effects. For this purpose, a model is established by incorporating plastic recovery into the strain gradient plasticity theory we proposed recently. Elastic and plastic parts of strain and strain gradient, which are determined by the elasto-plastic decomposition according to the associative rule, are assumed to have a degree of material-dependent reversibility. Based on the above assumption, a dislocation reversibility-dependent rule is built to describe evolutions of different deformation components under cyclic loadings. Furthermore, a simple strategy is provided to implement the passivated boundary effects by introducing a gradual change to relevant material parameters in the yield function. Based on this theory, both bulge and bending tests under cyclic loading conditions are investigated. By comparing the present predictions with the existing experimental data, it is found that the yield function is able to exhibit the size effect, the Bauschinger effect, the influence of surface passivation and the hysteresis-loop phenomenon. Thus, the proposed model is deemed helpful in studying plastic deformations of micron-scale films.

  6. A Simplified Model of Moisture Transport in Hydrophilic Porous Media With Applications to Pharmaceutical Tablets.

    PubMed

    Klinzing, Gerard R; Zavaliangos, Antonios

    2016-08-01

    This work establishes a predictive model that explicitly recognizes microstructural parameters in the description of the overall mass uptake and local gradients of moisture into tablets. Model equations were formulated based on local tablet geometry to describe the transient uptake of moisture. An analytical solution to a simplified set of model equations was solved to predict the overall mass uptake and moisture gradients with the tablets. The analytical solution takes into account individual diffusion mechanisms in different scales of porosity and diffusion into the solid phase. The time constant of mass uptake was found to be a function of several key material properties, such as tablet relative density, pore tortuosity, and equilibrium moisture content of the material. The predictions of the model are in excellent agreement with experimental results for microcrystalline cellulose tablets without the need for parameter fitting. The model presented provides a new method to analyze the transient uptake of moisture into hydrophilic materials with the knowledge of only a few fundamental material and microstructural parameters. In addition, the model allows for quick and insightful predictions of moisture diffusion for a variety of practical applications including pharmaceutical tablets, porous polymer systems, or cementitious materials. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. In-situ method to remove iron and other metals from solution in groundwater down gradient from permeable reactive barrier

    DOEpatents

    Carpenter, Clay E.; Morrison, Stanley J.

    2001-07-03

    This invention is directed to a process for treating the flow of anaerobic groundwater through an aquifer with a primary treatment media, preferably iron, and then passing the treated groundwater through a second porous media though which an oxygenated gas is passed in order to oxygenate the dissolved primary treatment material and convert it into an insoluble material thereby removing the dissolved primary treatment material from the groundwater.

  8. Photovoltaic Cell And Manufacturing Process

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes R.

    1996-11-26

    Provided is a method for controlling electrical properties and morphology of a p-type material of a photovoltaic device. The p-type material, such as p-type cadmium telluride, is first subjected to heat treatment in an oxidizing environment, followed by recrystallization in an environment substantially free of oxidants. In one embodiment, the heat treatment step comprises first subjecting the p-type material to an oxidizing atmosphere at a first temperature to getter impurities, followed by second subjecting the p-type material to an oxidizing atmosphere at a second temperature, higher than the first temperature, to develop a desired oxidation gradient through the p-type material.

  9. Double Diffusive Convection in Materials Processing

    NASA Technical Reports Server (NTRS)

    Ramachandra, Narayanan; Leslie, Fred W.

    1999-01-01

    A great number of crystals grown in space are plagued by convective motions which contribute to structural flaws. The character of these instabilities is not well understood but is associated with density variations in the presence of residual gravity (g-jitter). As a specific example, past HgCdTe crystal growth space experiments by Lehoczky and co-workers indicate radial compositional asymmetry in the grown crystals. In the case of HgCdTe the rejected component into the melt upon solidification is HgTe which is denser than the melt. The space grown crystals indicate the presence of three dimensional flow with the heavier HgTe-rich material clearly aligned with the residual gravity (0.55-1.55 micro g) vector. This flow stems from double-diffusive convection, namely, thermal and solutal buoyancy driven flow in the melt. The study of double-diffusive convection is multi-faceted and rather vast. In our investigation, we seek to focus on one specific aspect of this discipline that is of direct relevance to materials processing especially crystal growth, namely, the side ways heating regime. This problem has been widely studied, both experimentally and numerically, in the context of solar ponds wherein the system is characterized by a linear salt (solutal) gradient with an imposed lateral temperature gradient. The induced flow instabilities arise from the wide disparity between the fluid thermal diffusivity and the solute diffusivity. The extension of the analysis to practical crystal growth applications has however not been rigorously made and understood. One subtle but important difference in crystal growth systems is the fact that die system solute gradient is non-linear (typically exponential). Besides, the crystal growth problem has the added complexities of solidification, both lateral and longitudinal thermal gradients and segregation phenomena in systems where binary and ternary compounds are being grown. This paper treats the side ways heating problem alone in a model fluid system. Results from detailed numerical calculations, mainly two dimensional are provided. The interactions between a non-linear solute gradient and an imposed transverse thermal gradient are investigated. The buoyancy effects are treated in the traditional Boussinesq approximation and also in a more complete density formulation to address recent concerns of the first approach especially in simulations of the system response in a reduced gravity environment. Detailed flow, temperature and solute field plots along with heat and mass transfer results are presented in the paper. Implications to practical crystal growth systems as discerned from the modeling results are also explored and reported.

  10. Mixed ternary heterojunction solar cell

    DOEpatents

    Chen, Wen S.; Stewart, John M.

    1992-08-25

    A thin film heterojunction solar cell and a method of making it has a p-type layer of mixed ternary I-III-VI.sub.2 semiconductor material in contact with an n-type layer of mixed binary II-VI semiconductor material. The p-type semiconductor material includes a low resistivity copper-rich region adjacent the back metal contact of the cell and a composition gradient providing a minority carrier mirror that improves the photovoltaic performance of the cell. The p-type semiconductor material preferably is CuInGaSe.sub.2 or CuIn(SSe).sub.2.

  11. Charge gradient microscopy

    DOEpatents

    Roelofs, Andreas; Hong, Seungbum

    2018-02-06

    A method for rapid imaging of a material specimen includes positioning a tip to contact the material specimen, and applying a force to a surface of the material specimen via the tip. In addition, the method includes moving the tip across the surface of the material specimen while removing electrical charge therefrom, generating a signal produced by contact between the tip and the surface, and detecting, based on the data, the removed electrical charge induced through the tip during movement of the tip across the surface. The method further includes measuring the detected electrical charge.

  12. Energy changes in transforming solids. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, G.

    Research is reported on energy changes in transforming solids. Topics include: damage mechanics, functionally gradient materials with defects, problems in heterogenization, and conservation laws with application to fracture mechanics and defect mechanics.

  13. Development of high gradient magnetic separation system for removing the metallic wear debris to be present in highly viscous fluid

    NASA Astrophysics Data System (ADS)

    Hayashi, S.; Mishima, F.; Akiyama, Y.; Nishijima, S.

    2010-11-01

    In the industrial plants processing highly viscous fluid such as foods or industrial materials, there is an issue of contamination by metallic wear debris originating from pipe of manufacturing line. It is necessary to remove the metallic wear debris in highly viscous fluid, since these debris causes quality loss. In this study, we developed a high gradient magnetic separation system by using superconducting magnet to remove the metallic wear debris. The particle trajectory simulation and the magnetic separation experiment were conducted with polyvinyl alcohol as a model material. As a result, ca. 100% and 92.2% of the separation efficiency was achieved respectively for the highly viscous fluid of 1 Pa s and 6 Pa s in viscosity, with 14 and 30 mesh magnetic filters.

  14. The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Li, Xiang; Wang, Hao; Yan, Xinxiu; Wang, Lei; Deng, Bangwei; Ge, Wujie; Qu, Meizhen

    2018-01-01

    A gradient boracic polyanion-doping method is applied to Ni-rich LiNi0.8Co0.15Al0.05O2 (NCA) cathode material in this study to suppress the capacity/potential fade during charge-discharge cycling. Scanning electron microscope (SEM) results show that all samples present spherical morphology and the secondary particle size increases with increasing boron content. X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) results demonstrate that boracic polyanions are successfully introduced into the bulk material and more enriched in the outer layer. XPS analysis further reveals that the valence state of Ni3+ is partly reduced to Ni2+ at the surface due to the incorporation of boracic polyanions. From the electrochemical measurements, B0.015-NCA electrode exhibits excellent cycling performance, even at high potential and elevated temperature. Moreover, the SEM images illustrate the presence of cracks and a thick SEI layer on pristine particles after 100 cycles at high temperature, while the B0.015-NCA particles show an intact structure and thin SEI layer. Electrochemical impedance spectroscopy confirms that the boracic polyanion doping could hinder the impedance increase during cycling at elevated temperature. These results clearly indicate that the gradient boracic polyanion-doping contributes to the remarkable enhancement of structure stability and cycling performance of NCA.

  15. Gradient Dynamics and Entropy Production Maximization

    NASA Astrophysics Data System (ADS)

    Janečka, Adam; Pavelka, Michal

    2018-01-01

    We compare two methods for modeling dissipative processes, namely gradient dynamics and entropy production maximization. Both methods require similar physical inputs-how energy (or entropy) is stored and how it is dissipated. Gradient dynamics describes irreversible evolution by means of dissipation potential and entropy, it automatically satisfies Onsager reciprocal relations as well as their nonlinear generalization (Maxwell-Onsager relations), and it has statistical interpretation. Entropy production maximization is based on knowledge of free energy (or another thermodynamic potential) and entropy production. It also leads to the linear Onsager reciprocal relations and it has proven successful in thermodynamics of complex materials. Both methods are thermodynamically sound as they ensure approach to equilibrium, and we compare them and discuss their advantages and shortcomings. In particular, conditions under which the two approaches coincide and are capable of providing the same constitutive relations are identified. Besides, a commonly used but not often mentioned step in the entropy production maximization is pinpointed and the condition of incompressibility is incorporated into gradient dynamics.

  16. Design and fabrication of integrated micro/macrostructure for 3D functional gradient systems based on additive manufacturing

    NASA Astrophysics Data System (ADS)

    Yin, Ming; Xie, Luofeng; Jiang, Weifeng; Yin, Guofu

    2018-05-01

    Functional gradient systems have important applications in many areas. Although a 2D dielectric structure that serves as the gradient index medium for controlling electromagnetic waves is well established, it may not be suitable for application in 3D case. In this paper, we present a method to realize functional gradient systems with 3D integrated micro/macrostructure. The homogenization of the structure is studied in detail by conducting band diagram analysis. The analysis shows that the effective medium approximation is valid even when periodicity is comparable to wavelength. The condition to ensure the polarization-invariant, isotropic, and frequency-independent property is investigated. The scheme for the design and fabrication of 3D systems requiring spatial material property distribution is presented. By using the vat photopolymerization process, a large overall size of macrostructure at the system level and precise fine features of microstructure at the unit cell level are realized, thus demonstrating considerable scalability of the system for wave manipulation.

  17. Acoustic emission analysis of crack resistance and fracture behavior of 20GL steel having the gradient microstructure and strength

    NASA Astrophysics Data System (ADS)

    Nikulin, S.; Nikitin, A.; Belov, V.; Rozhnov, A.; Turilina, V.; Anikeenko, V.; Khatkevich, V.

    2017-07-01

    The crack resistances as well as fracture behavior of 20GL steel quenched with a fast-moving water stream and having gradient microstructure and strength are analyzed. Crack resistance tests with quenched and normalized flat rectangular specimens having different cut lengths loaded by three-point bending with acoustic emission measurements have been performed. The critical J-integral has been used as the crack resistance parameter of the material. Quenching with a fast moving water stream leads to gradient (along a specimen wall thickness) strengthening of steel due to highly refined gradient microstructure formation of the troostomartensite type. Quenching with a fast-moving water stream increases crack resistance Jc , of 20GL steel by a factor of ∼ 1.5. The fracture accrues gradually with the load in the normalized specimens while the initiated crack is hindered in the variable ductility layer and further arrested in the more ductile core in the quenched specimens.

  18. Propelling Extended Objects

    NASA Astrophysics Data System (ADS)

    Humbert, Richard

    2010-03-01

    A force acting on just part of an extended object (either a solid or a volume of a liquid) can cause all of it to move. That motion is due to the transmission of the force through the object by its material. This paper discusses how the force is distributed to all of the object by a gradient of stress or pressure in it, which creates the local force that directly propels each part of the object. Those gradients resemble the ones created in objects by their weights. An example of the latter is the compressive stress in a column of a building increasing steadily toward its lower end. That gradient occurs because each horizontal section through the column supports all of the weight above it, including the load force pushing down on the column's upper end. The gradient resembles the pressure in a container of liquid increasing with depth in it. Likewise, the weight of a vertically hanging cable causes its tension and tensile stress to increase toward its upper end.

  19. Direct Electrospray Printing of Gradient Refractive Index Chalcogenide Glass Films.

    PubMed

    Novak, Spencer; Lin, Pao Tai; Li, Cheng; Lumdee, Chatdanai; Hu, Juejun; Agarwal, Anuradha; Kik, Pieter G; Deng, Weiwei; Richardson, Kathleen

    2017-08-16

    A spatially varying effective refractive index gradient using chalcogenide glass layers is printed on a silicon wafer using an optimized electrospray (ES) deposition process. Using solution-derived glass precursors, IR-transparent Ge 23 Sb 7 S 70 and As 40 S 60 glass films of programmed thickness are fabricated to yield a bilayer structure, resulting in an effective gradient refractive index (GRIN) film. Optical and compositional analysis tools confirm the optical and physical nature of the gradient in the resulting high-optical-quality films, demonstrating the power of direct printing of multimaterial structures compatible with planar photonic fabrication protocols. The potential application of such tailorable materials and structures as they relate to the enhancement of sensitivity in chalcogenide glass based planar chemical sensor device design is presented. This method, applicable to a broad cross section of glass compositions, shows promise in directly depositing GRIN films with tunable refractive index profiles for bulk and planar optical components and devices.

  20. Morning Martian Atmospheric Temperature Gradients and Fluctuations Observed by Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    Mihalov, John D.; Haberle, R. M.; Murphy, J. R.; Seiff, A.; Wilson, G. R.

    1999-01-01

    We have studied the most prominent atmospheric temperature fluctuations observed during Martian mornings by Mars Pathfinder and have concluded, based on comparisons with wind directions, that they appear to be a result of atmospheric heating associated with the Lander spacecraft. Also, we have examined the morning surface layer temperature lapse rates, which are found to decrease as autumn approaches at the Pathfinder location, and which have mean (and median) values as large as 7.3 K/m in the earlier portions of the Pathfinder landed mission. It is plausible that brief isolated periods with gradients twice as steep are associated with atmospheric heating adjacent to Lander air bag material. In addition, we have calculated the gradient with height of the structure function obtained with Mars Pathfinder, for Mars' atmospheric temperatures measured within about 1.3 m from the surface, assuming a power law dependence, and have found that these gradients superficially resemble those reported for the upper region of the terrestrial stable boundary layer.

  1. A magnetic gradient induced force in NMR restricted diffusion experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghadirian, Bahman; Stait-Gardner, Tim; Castillo, Reynaldo

    2014-03-28

    We predict that the phase cancellation of a precessing magnetisation field carried by a diffusing species in a bounded geometry under certain nuclear magnetic resonance pulsed magnetic field gradient sequences results in a small force over typically micrometre length scales. Our calculations reveal that the total magnetisation energy in a pore under the influence of a pulsed gradient will be distance-dependent thus resulting in a force acting on the boundary. It is shown that this effect of the magnetisation of diffusing particles will appear as either an attractive or repulsive force depending on the geometry of the pore and magneticmore » properties of the material. A detailed analysis is performed for the case of a pulsed gradient spin-echo experiment on parallel planes. It is shown that the force decays exponentially in terms of the spin-spin relaxation. The proof is based on classical electrodynamics. An application of this effect to soft matter is suggested.« less

  2. Focusing of relativistic electrons in dense plasma using a resistivity-gradient-generated magnetic switchyard.

    PubMed

    Robinson, A P L; Key, M H; Tabak, M

    2012-03-23

    A method for producing a self-generated magnetic focussing structure for a beam of laser-generated relativistic electrons using a complex array of resistivity gradients is proposed and demonstrated using numerical simulations. The array of resistivity gradients is created by using a target consisting of alternating layers of different Z material. This new scheme is capable of effectively focussing the fast electrons even when the source is highly divergent. The application of this technique to cone-guided fast ignition inertial confinement fusion is considered, and it is shown that it may be possible to deposit over 25% of the fast electron energy into a hot spot even when the fast electron divergence angle is very large (e.g., 70° half-angle).

  3. Surface-Plasmon-Mediated Gradient Force Enhancement and Mechanical State Transitions of Graphene Sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Peng; Shen, Nian-Hai; Koschny, Thomas

    Graphene, a two-dimensional material possessing extraordinary properties in electronics as well as mechanics, provides a great platform for various optoelectronic and opto-mechanical devices. Here in this article, we theoretically study the optical gradient force arising from the coupling of surface plasmon modes on parallel graphene sheets, which can be several orders stronger than that between regular dielectric waveguides. Furthermore, with an energy functional optimization model, possible force-induced deformation of graphene sheets is calculated. We show that the significantly enhanced optical gradient force may lead to mechanical state transitions of graphene sheets, which are accompanied by abrupt changes in reflection andmore » transmission spectra of the system. Our demonstrations illustrate the potential for a broader graphene-related applications such as force sensors and actuators.« less

  4. Surface-Plasmon-Mediated Gradient Force Enhancement and Mechanical State Transitions of Graphene Sheets

    DOE PAGES

    Zhang, Peng; Shen, Nian-Hai; Koschny, Thomas; ...

    2016-12-16

    Graphene, a two-dimensional material possessing extraordinary properties in electronics as well as mechanics, provides a great platform for various optoelectronic and opto-mechanical devices. Here in this article, we theoretically study the optical gradient force arising from the coupling of surface plasmon modes on parallel graphene sheets, which can be several orders stronger than that between regular dielectric waveguides. Furthermore, with an energy functional optimization model, possible force-induced deformation of graphene sheets is calculated. We show that the significantly enhanced optical gradient force may lead to mechanical state transitions of graphene sheets, which are accompanied by abrupt changes in reflection andmore » transmission spectra of the system. Our demonstrations illustrate the potential for a broader graphene-related applications such as force sensors and actuators.« less

  5. Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering.

    PubMed

    Pan, Wenbo; Huang, Cheng; Pu, Mingbo; Ma, Xiaoliang; Cui, Jianhua; Zhao, Bo; Luo, Xiangang

    2016-02-19

    The absorptive and radiative losses are two fundamental aspects of the electromagnetic responses, which are widely occurring in many different systems such as waveguides, solar cells, and antennas. Here we proposed a metasurface to realize the control of the absorptive and radiative loss and to reduce the radar cross section (RCS) in multi-frequency bands. The anti-phase gradient and absorptive metasurfaces were designed that consists of metallic square patch and square loop structure inserted with resistors, acting as an phase gradient material in the X and Ku band, while behaving as an absorber in the S band. The simulation and experiment results verified the double-band, wideband and polarization-independent RCS reduction by the absorptive and anti-phase gradient metasurfaces.

  6. Method of making a functionally graded material

    DOEpatents

    Lauf, Robert J.; Menchhofer, Paul A.; Walls, Claudia A.; Moorhead, Arthur J.

    2002-01-01

    A gelcasting method of making an internally graded article alternatively includes the steps of: preparing a slurry including a least two different phases suspended in a gelcasting solution, the phases characterized by having different settling characteristics; casting the slurry into a mold having a selected shape; allowing the slurry to stand for a sufficient period of time to permit desired gravitational fractionation in order to achieve a vertical compositional gradient in the molded slurry; gelling the slurry to form a solid gel while preserving the vertical compositional gradient in the molded slurry; drying the gel to form a dried green body; and sintering the dry green body to form a solid object, at least one property thereof varying along the vertical direction because of the compositional gradient in the molded slurry.

  7. Near-field Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ayars, Eric James

    2000-10-01

    The purpose of this research is to investigate differences observed between Raman spectra when seen through a Near-field Scanning Optical Microscope (NSOM) and spectra of the same materials in conventional Raman or micro-Raman configurations. One source of differences in the observed spectra is a strong z polarized component in the near-field radiation; observations of the magnitude of this effect are compared with theoretical predictions for the field intensity near an NSOM tip. Large electric field gradients near the sharp NSOM probe may be another source of differences. This Gradient-Field Raman (GFR) effect was observed, and there is good evidence that it plays a significant role in Surface-Enhanced Raman Spectroscopy (SERS). The NSOM data seen, however, are not sufficient to prove conclusively that the spectral variations seen are due to the field gradients.

  8. Facile Fabrication of Gradient Surface Based on (meth)acrylate Copolymer Films

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Yang, H.; Wen, X.-F.; Cheng, J.; Xiong, J.

    2016-08-01

    This paper describes a simple and economic approach for fabrication of surface wettability gradient on poly(butyl acrylate - methyl methacrylate) [P (BA-MMA)] and poly(butyl acrylate - methyl methacrylate - 2-hydroxyethyl methacrylate) [P (BA-MMA-HEMA)] films. The (meth)acrylate copolymer [including P (BA-MMA) and P (BA-MMA-HEMA)] films are hydrolyzed in an aqueous solution of NaOH and the transformation of surface chemical composition is achieved by hydrolysis in NaOH solution. The gradient wetting properties are generated based on different functional groups on the P (BA-MMA) and P (BA-MMA-HEMA) films. The effects of both the surface chemical and surface topography on wetting of the (meth)acrylate copolymer film are discussed. Surface chemical composition along the materials length is determined by XPS, and surface topography properties of the obtained gradient surfaces are analyzed by FESEM and AFM. Water contact angle system (WCAs) results show that the P (BA-MMA-HEMA) films provide a larger slope of the gradient wetting than P (BA-MMA). Moreover, this work demonstrates that the gradient concentration of chemical composition on the poly(meth) acrylate films is owing to the hydrolysis processes of ester group, and the hydrolysis reactions that have negligible influence on the surface morphology of the poly(meth) acrylate films coated on the glass slide. The gradient wettability surfaces may find broad applications in the field of polymer coating due to the compatibility of (meth) acrylate polymer.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Aiying; Liu, Jiabin; Wang, Hongtao

    Gradient materials often have attractive mechanical properties that outperform uniform microstructure counterparts. It remains a difficult task to investigate and compare the performance of various gradient microstructures due to the difficulty of fabrication, the wide range of length scales involved, and their respective volume percentage variations. We have investigated four types of gradient microstructures in 304 stainless steels that utilize submicrotwins, nanotwins, nanocrystalline-, ultrafine- and coarse-grains as building blocks. Tensile tests reveal that the gradient microstructure consisting of submicrotwins and nanotwins has a persistent and stable work hardening rate and yields an impressive combination of high strength and high ductility,more » leading to a toughness that is nearly 50% higher than that of the coarse-grained counterpart. Ex- and in-situ transmission electron microscopy indicates that nanoscale and submicroscale twins help to suppress and limit martensitic phase transformation via the confinement of martensite within the twin lamellar. Twinning and detwinning remain active during tensile deformation and contribute to the work hardening behavior. We discuss the advantageous properties of using submicrotwins as the main load carrier and nanotwins as the strengthening layers over those coarse and nanocrystalline grains. Furthermore, our work uncovers a new gradient design strategy to help metals and alloys achieve high strength and high ductility.« less

  10. Engineering functionality gradients by dip coating process in acceleration mode.

    PubMed

    Faustini, Marco; Ceratti, Davide R; Louis, Benjamin; Boudot, Mickael; Albouy, Pierre-Antoine; Boissière, Cédric; Grosso, David

    2014-10-08

    In this work, unique functional devices exhibiting controlled gradients of properties are fabricated by dip-coating process in acceleration mode. Through this new approach, thin films with "on-demand" thickness graded profiles at the submillimeter scale are prepared in an easy and versatile way, compatible for large-scale production. The technique is adapted to several relevant materials, including sol-gel dense and mesoporous metal oxides, block copolymers, metal-organic framework colloids, and commercial photoresists. In the first part of the Article, an investigation on the effect of the dip coating speed variation on the thickness profiles is reported together with the critical roles played by the evaporation rate and by the viscosity on the fluid draining-induced film formation. In the second part, dip-coating in acceleration mode is used to induce controlled variation of functionalities by playing on structural, chemical, or dimensional variations in nano- and microsystems. In order to demonstrate the full potentiality and versatility of the technique, original graded functional devices are made including optical interferometry mirrors with bidirectional gradients, one-dimensional photonic crystals with a stop-band gradient, graded microfluidic channels, and wetting gradient to induce droplet motion.

  11. Effluent migration from septic tank systems in two different lithologies, Broward County, Florida

    USGS Publications Warehouse

    Waller, B.G.; Howie, Barbara; Causaras, C.R.

    1987-01-01

    Two septic tank test sites, one in sand and one in limestone, in Broward County, Florida, were analyzed for effluent migration. Groundwater from shallow wells, both in background areas and hydraulically down-gradient of the septic tank system, was sampled during a 16-month period from April 1983 through August 1984. Water quality indicators were used to determine the effluent affected zone near the septic tank systems. Specific conductance levels and concentrations of chloride, sulfate, ammonium, and nitrate indicated effluent movement primarily in a vertical direction with abrupt dilution as it moved down-gradient. Effluent was detected in the sand to a depth more than 20 ft below the septic tank outlet, but was diluted to near background conditions 50 ft down-gradient from the tank. Effluent in the limestone was detected in all three observation wells to depths exceeding 25 ft below the septic tank outlet and was diluted, but still detectable, 40 ft down-gradient. The primary controls on effluent movement from septic tank systems in Broward County are the lithology and layering of the geologic materials, hydraulic gradients, and the volume and type of use the system receives. (Author 's abstract)

  12. A study of TiB2/TiB gradient coating by laser cladding on titanium alloy

    NASA Astrophysics Data System (ADS)

    Lin, Yinghua; Lei, Yongping; Li, Xueqiao; Zhi, Xiaohui; Fu, Hanguang

    2016-07-01

    TiB2/TiB gradient coating has been fabricated by a laser cladding technique on the surface of a Ti-6Al-4V substrate using TiB2 powder as the cladding material. The microstructure and mechanical properties of the gradient coating were analyzed by SEM, EPMA, XRD, TEM and an instrument to measure hardness. With the increasing distance from the coating surface, the content of TiB2 particles gradually decreased, but the content of TiB short fibers gradually increased. Meanwhile, the micro-hardness and the elastic modulus of the TiB2/TiB coating showed a gradient decreasing trend, but the fracture toughness showed a gradient increasing trend. The fracture toughness of the TiB2/TiB coating between the center and the bottom was improved, primarily due to the debonding of TiB2 particles and the high fracture of TiB short fibers, and the fracture position of TiB short fiber can be moved to an adjacent position. However, the debonding of TiB2 particles was difficult to achieve at the surface of the TiB2/TiB coating.

  13. Modeling of surface effects in crystalline materials within the framework of gradient crystal plasticity

    NASA Astrophysics Data System (ADS)

    Peng, Xiang-Long; Husser, Edgar; Huang, Gan-Yun; Bargmann, Swantje

    2018-03-01

    A finite-deformation gradient crystal plasticity theory is developed, which takes into account the interaction between dislocations and surfaces. The model captures both energetic and dissipative effects for surfaces penetrable by dislocations. By taking advantage of the principle of virtual power, the surface microscopic boundary equations are obtained naturally. Surface equations govern surface yielding and hardening. A thin film under shear deformation serves as a benchmark problem for validation of the proposed model. It is found that both energetic and dissipative surface effects significantly affect the plastic behavior.

  14. Thermal management and design for optical refrigeration

    NASA Astrophysics Data System (ADS)

    Symonds, G.; Farfan, B. G.; Ghasemkhani, M. R.; Albrecht, A. R.; Sheik-Bahae, M.; Epstein, R. I.

    2016-03-01

    We present our recent work in developing a robust and versatile optical refrigerator. This work focuses on minimizing parasitic energy losses through efficient design and material optimization. The cooler's thermal linkage system and housing are studied using thermal analysis software to minimize thermal gradients through the device. Due to the extreme temperature differences within the device, material selection and characterization are key to constructing an efficient device. We describe the design constraints and material selections necessary for thermally efficient and durable optical refrigeration.

  15. Niobium-Matrix-Composite High-Temperature Turbine Blades

    NASA Technical Reports Server (NTRS)

    Kaplan, Richard B.; Tuffias, Robert H.; La Ferla, Raffaele; Heng, Sangvavann; Harding, John T.

    1995-01-01

    High-temperture composite-material turbine blades comprising mainly niobium matrices reinforced with refractory-material fibers being developed. Of refractory fibrous materials investigated, FP-AL(2)0(3), tungsten, and polymer-based SiC fibers most promising. Blade of this type hollow and formed in nearly net shape by wrapping mesh of reinforcing refractory fibers around molybdenum mandrel, then using thermal-gradient chemical-vapor infiltration (CVI) to fill interstices with niobium. CVI process controllable and repeatable, and kinetics of both deposition and infiltration well understood.

  16. Surface Modifications in Adhesion and Wetting

    NASA Astrophysics Data System (ADS)

    Longley, Jonathan

    Advances in surface modification are changing the world. Changing surface properties of bulk materials with nanometer scale coatings enables inventions ranging from the familiar non-stick frying pan to advanced composite aircraft. Nanometer or monolayer coatings used to modify a surface affect the macro-scale properties of a system; for example, composite adhesive joints between the fuselage and internal frame of Boeing's 787 Dreamliner play a vital role in the structural stability of the aircraft. This dissertation focuses on a collection of surface modification techniques that are used in the areas of adhesion and wetting. Adhesive joints are rapidly replacing the familiar bolt and rivet assemblies used by the aerospace and automotive industries. This transition is fueled by the incorporation of composite materials into aircraft and high performance road vehicles. Adhesive joints have several advantages over the traditional rivet, including, significant weight reduction and efficient stress transfer between bonded materials. As fuel costs continue to rise, the weight reduction is accelerating this transition. Traditional surface pretreatments designed to improve the adhesion of polymeric materials to metallic surfaces are extremely toxic. Replacement adhesive technologies must be compatible with the environment without sacrificing adhesive performance. Silane-coupling agents have emerged as ideal surface modifications for improving composite joint strength. As these coatings are generally applied as very thin layers (<50 nm), it is challenging to characterize their material properties for correlation to adhesive performance. We circumvent this problem by estimating the elastic modulus of the silane-based coatings using the buckling instability formed between two materials of a large elastic mismatch. The elastic modulus is found to effectively predict the joint strength of an epoxy/aluminum joint that has been reinforced with silane coupling agents. This buckling technique is extended to investigate the effects of chemical composition on the elastic modulus. Finally, the effect of macro-scale roughness on silane-reinforced joints is investigated within the framework of the unresolved problem of how to best characterize rough surfaces. Initially, the fractal dimension is used to characterize grit-blasted and sanded surfaces. It is found that, contrary to what has been suggested in the literature, the fractal dimension is independent of the roughening mechanism. Instead, the use of an anomalous diffusion coefficient is proposed as a more effective way to characterize a rough surface. Surface modification by preparation of surface energy gradients is then investigated. Materials with gradients in surface energy are useful in the areas of microfluidics, heat transfer and protein adsorption, to name a few. Gradients are prepared by vapor deposition of a reactive silane from a filter paper source. The technique gives control over the size and shape of the gradient. This surface modification is then used to induce droplet motion through repeated stretching and compression of a water drop between two gradient surfaces. This inchworm type motion is studied in detail and offers an alternative method to surface vibration for moving drops in microfluidic devices. The final surface modification considered is the application of a thin layer of rubber to a rigid surface. While this technique has many practical uses, such as easy release coatings in marine environments, it is applied herein to enable spontaneous healing between a rubber surface and a glass cover slip. Study of the diffusion controlled healing of a blister can be made by trapping an air filled blister between a glass cover slip and a rubber film. Through this study we find evidence for an interfacial diffusion process. This mechanism of diffusion is likely to be important in many biological systems.

  17. An analysis of the drying process in forest fuel material

    Treesearch

    G.M. Byram; R.M. Nelson

    2015-01-01

    It is assumed that the flow of moisture in forest fuels and other woody materials is determined by the gradient of a quantity g which is a function of some property, or properties, of the moisture content. There appears to be no preferred choice for this function, hence moisture transfer equations can be based on a number of equally valid definitions of g. The physical...

  18. Cavitation resistance of surface composition "Steel-Ni-TiNi-TiNiZr-cBNCo", formed by High-Velocity Oxygen-Fuel spraying

    NASA Astrophysics Data System (ADS)

    Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.

    2018-01-01

    The object of the study is a multilayered surface composition "Steel - a Multicomponent material with Shape Memory Effect - a wear-resistant layer" under conditions of cavitation effects in sea water. Multicomponent TiNi-based coatings with addition of alloying elements such as Zr in an amount up to 10% mass, allow to create a composite material with a gradient of properties at the interface of layers, which gives new properties to coatings and improves their performance significantly. The use of materials with shape memory effect (SME) as surface layers or in the composition of surface layered compositions allows to provide an effective reaction of materials to the influence of external factors and adaptation to external influences. The surface composite layer cBN-10%Co has high hardness and strength, which ensures its resistance to shock cyclic influences of collapsing caverns. The increased roughness of the surface of a solid surface composite in the form of strong columnar structures ensures the crushing of vacuum voids, redistributing their effect on the entire surface, and not concentrating them in certain zones. In addition, the gradient structure of the multilayer composite coating TiNi-Ti33Ni49Zr18-cBN-10%Co Co makes it possible to create conditions for the relaxation of stresses created by the variable impact load of cavitation caverns and the manifestation of compensating internal forces due to thermo-elastic martensitic transformations of SME materials. The cavitation resistance of the coating TiNi-Ti33Ni49Zr18-cBN-10%Co according to the criterion of mass wear is 15-20 times higher than that of the base material without coating and 10-12 times higher than that of the TiNi-TiNiZr coating. The proposed architecture of the multifunctional gradient composition, "steel-Ni-TiNi- Ti33Ni49Zr18-cBN-10%Co", each layer of which has its functional purpose, allows to increase the service life of parts operating under conditions of cavitation-fatigue loading in corrosive environments.

  19. Influence of Ta content in high purity niobium on cavity performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Kneisel; G. Ciovati; G. R. Myneni

    In a previous paper [1] we have reported about initial tests of single cell 1500 MHz cavities made from high purity niobium with three different Ta contents of 160 ppm , {approx}600 ppm and {approx}1400 ppm. These cavities had been treated by buffered chemical polishing several times and 100 {micro}m, 200 {micro}m and 300 {micro}m of material had been removed from the surfaces. This contribution reports about subsequent tests following post purification heat treatments with Ti and ''in situ'' baking. As a result, all cavities exhibited increased quench fields due to the improved thermal conductivity after the heat treatment. Aftermore » the ''in situ'' baking at 120 C for {approx} 40 hrs the always present Q-drop at high fields disappeared and further improvements in accelerating gradient could be realized. Gradients as high as E{sub acc} = 35 MV/m were achieved and there were no clear indications that the cavity performance was influenced by the Ta content in the material. A multi-cell cavity from the high Ta content material has been fabricated and initial results are reported.« less

  20. Design and analysis of gradient index metamaterial-based cloak with wide bandwidth and physically realizable material parameters

    NASA Astrophysics Data System (ADS)

    Bisht, Mahesh Singh; Rajput, Archana; Srivastava, Kumar Vaibhav

    2018-04-01

    A cloak based on gradient index metamaterial (GIM) is proposed. Here, the GIM is used, for conversion of propagating waves into surface waves and vice versa, to get the cloaking effect. The cloak is made of metamaterial consisting of four supercells with each supercell possessing the linear spatial variation of permittivity and permeability. The spatial variation of material parameters in supercells allows the conversion of propagating waves into surface waves and vice versa, hence results in reduction of electromagnetic signature of the object. To facilitate the practical implementation of the cloak, continuous spatial variation of permittivity and/or permeability, in each supercell, is discretized into seven segments and it is shown that there is not much deviation in cloaking performance of discretized cloak as compared to its continuous counterpart. The crucial advantage, of the proposed cloaks, is that the material parameters are isotropic and in physically realizable range. Furthermore, the proposed cloaks have been shown to possess bandwidth of the order of 190% which is a significantly improved performance compared to the recently published literature.

  1. Towards computational materials design from first principles using alchemical changes and derivatives.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Lilienfeld-Toal, Otto Anatole

    2010-11-01

    The design of new materials with specific physical, chemical, or biological properties is a central goal of much research in materials and medicinal sciences. Except for the simplest and most restricted cases brute-force computational screening of all possible compounds for interesting properties is beyond any current capacity due to the combinatorial nature of chemical compound space (set of stoichiometries and configurations). Consequently, when it comes to computationally optimizing more complex systems, reliable optimization algorithms must not only trade-off sufficient accuracy and computational speed of the models involved, they must also aim for rapid convergence in terms of number of compoundsmore » 'visited'. I will give an overview on recent progress on alchemical first principles paths and gradients in compound space that appear to be promising ingredients for more efficient property optimizations. Specifically, based on molecular grand canonical density functional theory an approach will be presented for the construction of high-dimensional yet analytical property gradients in chemical compound space. Thereafter, applications to molecular HOMO eigenvalues, catalyst design, and other problems and systems shall be discussed.« less

  2. Vertical Gradients in Regional Alveolar Oxygen Tension in Supine Human Lung Imaged by Hyperpolarized 3He MRI

    PubMed Central

    Hamedani, Hooman; Shaghaghi, Hoora; Kadlecek, Stephen J.; Xin, Yi; Han, Biao; Siddiqui, Sarmad; Rajaei, Jennia; Ishii, Masaru; Rossman, Milton; Rizi, Rahim R.

    2015-01-01

    Purpose To evaluate whether regional alveolar oxygen tension (PAO2) vertical gradients imaged with hyperpolarized 3He can identify smoking-induced pulmonary alterations. To compare these gradients with common clinical measurements including pulmonary function tests, the six minute walk test, and the St. George’s Respiratory Questionnaire. Materials and Methods 8 healthy nonsmokers, 12 asymptomatic smokers, and 7 symptomatic subjects with chronic obstructive pulmonary disease (COPD) underwent two sets of back-to-back PAO2 imaging acquisitions in supine position with two opposite directions (top to bottom and bottom to top), followed by clinically standard pulmonary tests. The whole-lung mean, standard deviation (DPAO2) and vertical gradients of PAO2 along the slices were extracted, and the results were compared with clinically derived metrics. Statistical tests were performed to analyze the differences between cohorts. Results The anterior-posterior vertical gradients and DPAO2 effectively differentiated all three cohorts (p<0.05). The average vertical gradient PAO2 in healthy subjects was −1.03 ± 0.51 Torr/cm toward lower values in the posterior/dependent regions. The directional gradient was absent in smokers (0.36 ± 1.22 Torr/cm) and was in the opposite direction in COPD subjects (2.18 ± 1.54 Torr/cm). The vertical gradients correlated with Smoking History (p=0.004); BMI (p=0.037), PFT metrics (FEV1, p=0.025; and %RV/TLC, p=0.033) and with distance walked in six minutes (p=0.009). Discussion Regional PAO2 data indicate that cigarette smoke induces physiological alterations that are not being detected by the most widely used physiologic tests. PMID:25395184

  3. Design and Fabrication of Large Diameter Gradient-Index Lenses for Dual-Band Visible to Short-Wave Infrared Imaging Applications

    NASA Astrophysics Data System (ADS)

    Visconti, Anthony Joseph

    The fabrication of gradient-index (GRIN) optical elements is quite challenging, which has traditionally restricted their use in many imaging systems; consequently, commercial-level GRIN components usually exist in one particular market or niche application space. One such fabrication technique, ion exchange, is a well-known process used in the chemical strengthening of glass, the fabrication of waveguide devices, and the production of small diameter GRIN optical relay systems. However, the manufacturing of large diameter ion-exchanged GRIN elements has historically been limited by long diffusion times. For example, the diffusion time for a 20 mm diameter radial GRIN lens in commercially available ion exchange glass for small diameter relays, is on the order of a year. The diffusion time can be dramatically reduced by addressing three key ion exchange process parameters; the composition of the glass, the diffusion temperature, and the composition of the salt bath. Experimental work throughout this thesis aims to (1) scale up the ion exchange diffusion process to 20 mm diameters for a fast-diffusing titania silicate glass family in both (2) sodium ion for lithium ion (Na+ for Li+) and lithium ion for sodium ion (Li+ for Na+) exchange directions, while (3) utilizing manufacturing friendly salt bath compositions. In addition, optical design studies have demonstrated that an important benefit of gradient-index elements in imaging systems is the added degree of freedom introduced with a gradient's optical power. However, these studies have not investigated the potential usefulness of GRIN materials in dual-band visible to short-wave infrared (vis-SWIR) imaging systems. The unique chromatic properties of the titania silicate ion exchange glass become a significant degree of freedom in the design process for these color-limited, broadband imaging applications. A single GRIN element can replace a cemented doublet or even a cemented triplet, without loss in overall system performance. In this work, a polychromatic vis-SWIR gradient-index design model is constructed based on the homogeneous material properties of the titania silicate ion exchange glass. This model is verified by measuring the dispersion of fabricated GRIN profiles across the vis-SWIR spectrum. Finally, the polychromatic GRIN design model is implemented into commercial design software and several design studies are presented which validate the beneficial chromatic properties of the titania silicate GRIN material. In addition, system-level tolerancing with gradient-index elements is a largely unexplored area. This work introduces new methods and techniques for incorporating GRIN manufacturing errors directly into the design and tolerancing analysis of a multi-element optical system. These methods allow for the optical engineer to utilize manufacturable GRIN profiles throughout the design process and to better predict the final performance of an as-built system. Based on these techniques, a true design-for-manufacture high-performance eyepiece, utilizing a spherical gradient-index element, is designed, toleranced, and commissioned for build.

  4. Ecosystems in the Laboratory

    ERIC Educational Resources Information Center

    Madders, M.

    1975-01-01

    Describes the materials and laboratory techniques for the study of food chains and food webs, pyramids of numbers and biomass, energy pyramids, and oxygen gradients. Presents a procedure for investigating the effects of various pollutants on an entire ecosystem. (GS)

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Sazzad Hossain; Mian, Ahsan, E-mail: ahsan.mian@wright.edu; Srinivasan, Raghavan

    In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materialsmore » can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.« less

  6. Nano-materials enabled thermoelectricity from window glasses.

    PubMed

    Inayat, Salman B; Rader, Kelly R; Hussain, Muhammad M

    2012-01-01

    With a projection of nearly doubling up the world population by 2050, we need wide variety of renewable and clean energy sources to meet the increased energy demand. Solar energy is considered as the leading promising alternate energy source with the pertinent challenge of off sunshine period and uneven worldwide distribution of usable sun light. Although thermoelectricity is considered as a reasonable renewable energy from wasted heat, its mass scale usage is yet to be developed. Here we show, large scale integration of nano-manufactured pellets of thermoelectric nano-materials, embedded into window glasses to generate thermoelectricity using the temperature difference between hot outside and cool inside. For the first time, this work offers an opportunity to potentially generate 304 watts of usable power from 9 m(2) window at a 20°C temperature gradient. If a natural temperature gradient exists, this can serve as a sustainable energy source for green building technology.

  7. Acoustic propagation in rigid ducts with blockage

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.; Wagner, P.

    1982-01-01

    Acoustic levitation has been suggested for moving nonmagnetic material in furnaces for heat processing in space experiments. Basically, acoustic standing waves under resonant conditions are excited in the cavity of the furnace while the material blockage is located at a pressure node and thus at a maximum gradient. The position of the blockage is controlled by displacing the node as a result of frequency change. The present investigation is concerned with the effect of blockage on the longitudinal and transverse resonances of a cylindrical cavity, taking into account the results of a one-dimensional and three-dimensional (3-D) analysis. Based on a Green's function surface element method, 3-D analysis is tested experimentally and proved to be accurate over a wide range of geometric parameters and boundary shapes. The shift in resonance depends on the change in pressure gradient and duct shortening caused by the blockage.

  8. Thermo-Electro-Mechanical Analysis of a Curved Functionally Graded Piezoelectric Actuator with Sandwich Structure.

    PubMed

    Yan, Zhi; Zaman, Mostafa; Jiang, Liying

    2011-12-12

    In this work, the problem of a curved functionally graded piezoelectric (FGP) actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g 31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment.

  9. Diffusive-convective physical vapor transport of PbTe from a Te-rich solid source

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J.; Akutagawa, W.

    1982-01-01

    Crystal growth of PbTe by physical vapor transport (sublimation) in a closed ampoule is governed by the vapor species in thermal equilibrium with the solid compound. Deviations from stoichiometry in the source material cause diffusion limitation of the transport rate, which can be modified by natural (gravity-driven) convection. Mass-transport experiments have been performed using Te-rich material wherein sublimation rates have been measured in order to study the effects of natural convection in diffusion-limited vapor transport. Linear velocities for both crystal growth and evaporation (back sublimation) have been measured for transport in the direction of gravity, horizontally, and opposite to gravity. The experimental results are discussed in terms of both the one-dimensional diffusive-advective model and current, more sophisticated theory which includes natural convection. There is some evidence that convection effects from radial temperature gradients and solutal density gradients have been observed.

  10. Gravity and thermal deformation of large primary mirror in space telescope

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Jiang, Shouwang; Wan, Jinlong; Shu, Rong

    2016-10-01

    The technology of integrating mechanical FEA analysis with optical estimation is essential to simulate the gravity deformation of large main mirror and the thermal deformation such as static or temperature gradient of optical structure. We present the simulation results of FEA analysis, data processing, and image performance. Three kinds of support structure for large primary mirror which have the center holding structure, the edge glue fixation and back support, are designed and compared to get the optimal gravity deformation. Variable mirror materials Zerodur/SiC are chosen and analyzed to obtain the small thermal gradient distortion. The simulation accuracy is dependent on FEA mesh quality, the load definition of structure, the fitting error from discrete data to smooth surface. A main mirror with 1m diameter is designed as an example. The appropriate structure material to match mirror, the central supporting structure, and the key aspects of FEA simulation are optimized for space application.

  11. Advanced Materials by Atom Transfer Radical Polymerization.

    PubMed

    Matyjaszewski, Krzysztof

    2018-06-01

    Atom transfer radical polymerization (ATRP) has been successfully employed for the preparation of various advanced materials with controlled architecture. New catalysts with strongly enhanced activity permit more environmentally benign ATRP procedures using ppm levels of catalyst. Precise control over polymer composition, topology, and incorporation of site specific functionality enables synthesis of well-defined gradient, block, comb copolymers, polymers with (hyper)branched structures including stars, densely grafted molecular brushes or networks, as well as inorganic-organic hybrid materials and bioconjugates. Examples of specific applications of functional materials include thermoplastic elastomers, nanostructured carbons, surfactants, dispersants, functionalized surfaces, and biorelated materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Field assisted sintering of refractory carbide ceramics and fiber reinforced ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Gephart, Sean

    The sintering behaviors of silicon carbide (SiC) and boron carbide (B4C) based materials were investigated using an emerging sintering technology known as field assisted sintering technology (FAST), also known as spark plasma sintering (SPS) and pulse electric current sintering (PECS). Sintering by FAST utilizes high density electric current, uniaxial pressure, and relatively high heating rate compared to conventional sintering techniques. This effort investigated issues of scaling from laboratory FAST system (25 ton capacity) to industrial FAST system (250 ton capacity), as well as exploring the difference in sintering behavior of single phase B4C and SiC using FAST and conventional sintering techniques including hot-pressing (HP) and pressure-less sintering (PL). Materials were analyzed for mechanical and bulk properties, including characterization of density, hardness, fracture toughness, fracture (bend) strength, elastic modulus and microstructure. A parallel investigation was conducted in the development of ceramic matrix composites (CMC) using SiC powder impregnation of fiber compacts followed by FAST sintering. The FAST technique was used to sinter several B4C and SiC materials to near theoretical density. Preliminary efforts established optimized sintering temperatures using the smaller 25 ton laboratory unit, targeting a sample size of 40 mm diameter and 8 mm thickness. Then the same B4C and SiC materials were sintered by the larger 250 ton industrial FAST system, a HP system, and PL sintering system with a targeted dense material geometry of 4 x 4 x 0.315 inches3 (101.6 x 101.6 x 8 mm3). The resulting samples were studied to determine if the sintering dynamics and/or the resulting material properties were influenced by the sintering technique employed. This study determined that FAST sintered ceramic materials resulted in consistently higher averaged values for mechanical properties as well as smaller grain size when compared to conventionally sintered materials. While FAST sintered materials showed higher average values, in general they also showed consistently larger variation in the scattered data and consequently larger standard deviation for the resulting material properties. In addition, dynamic impact testing (V50 test) was conducted on the resulting materials and it was determined that there was no discernable correlation between observed mechanical properties of the ceramic materials and the resulting dynamic testing. Another study was conducted on the sintering of SiC and carbon fiber reinforced SiC ceramic matrix composites (CMC) using FAST. There has been much interest recently in fabricating high strength, low porosity SiC CMC.s for high temperature structural applications, but the current methods of production, namely chemical vapor infiltration (CVI), melt infiltration (MI), and polymer infiltration and pyrolysis (PIP), are considered time consuming and involve material related shortcomings associated with their respective methodologies. In this study, SiC CMC.s were produced using the 25 ton laboratory unit with a target sample size of 40 mm diameter and 3 mm thickness, as well as on the larger 250 ton industrial FAST system targeting a sample size of 101.6 x 101.6 x 3 mm3 to investigate issues associated with scaling. Several sintering conditions were explored including: pressure of 35-65 MPa, temperature of 1700-1900°C, and heating rates between 50-400°C/min. The SiC fibers used in this study were coated using chemical vapor deposition (CVD) with boron nitride (BN) and pyrolytic carbon to act as a barrier layer and preserve the integrity of the fibers during sintering. Then the barrier coating was coated by an outer layer of SiC to enhance the bonding between the fibers and the SiC matrix. Microstructures of the sintered samples were examined by FE-SEM. Mechanical properties including flexural strength-deflection and stress-strain were characterized using 4-point bend testing. Tensile testing was performed on the larger 101.6 x 101.6 x 3 mm samples. The microstructures of samples sintered using the 25 ton laboratory FAST system showed a reduction in porosity and good adhesion between the fiber-fiber and fiber-matrix interface. The microstructures of samples sintered on the 250 ton industrial FAST system showed a reduction in porosity, but there was visible reaction of the fiber and fiber coatings with the surrounding matrix. Additionally, there was significant radial cracking of the fibers visible in the microstructures. There is gap in the understanding of sintering behavior between laboratory and industrial scale FAST systems. The vast majority of publications on FAST sintering have been primarily focused on small sample geometries (20 mm diameter, less than 3 mm thick). A study was coordinated to investigate the thermal properties during heating and cooling using a 250 ton industrial FAST system at 900°C using B4C and SiC materials inside the graphite die assembly. The thermal properties were then compared to the resulting material properties of the identically sintered B4C and SiC to approximately 94% relative density, at a temperature of 1950°C, pressure of 45 MPa, 10 minute hold, and heated at a rate of 100°C/min. The study determined that at 900°C there were significant thermal gradients within the system for the examined materials, and that these gradients correlated well with the material property difference of the samples sintered at higher temperatures where the gradients are presumably larger due to an increase in radiative heat loss. The observed temperatures throughout the graphite were significantly different between B4C and SiC. These temperatures also correlated well with the material properties of the sintered products which showed more substantial variation for B4C when compared to SiC which was overall less affected by thermal gradients. This was attributed to the intrinsic thermal conductivity difference between the two subject materials which was manifested as thermal gradients throughout the material and graphite die assembly. Additionally, both the observed temperature gradients throughout the graphite die assembly and the difference in temperature reading between the optical pyrometer and thermocouples were significantly larger for the 250 ton FAST system than previous publications have demonstrated experimentally or via modeling of smaller laboratory scale systems. The findings from this work showed that relative to conventional sintering methods, the FAST process demonstrated comparable or improved material and mechanical properties with a significantly shorter processing cycle. However, the results demonstrated on the 25 ton laboratory scale unit were significantly different compared to results for the same materials sintered using the 250 ton industrial scale unit. The temperature gradients observed on the 250 ton FAST unit were significantly larger than previous reports on smaller FAST units. This result showed future efforts to scale up the FAST sintering process while maintaining similar results will require careful attention to minimizing temperature gradients. This could potentially be achieved by reducing radiative heat loss during processing and/or optimizing the graphite die design and implementing heat spreaders in specific locations dependent on the host material.s thermal and electrical properties as well as the sample geometry.

  13. Theoretical analysis of sheet metal formability

    NASA Astrophysics Data System (ADS)

    Zhu, Xinhai

    Sheet metal forming processes are among the most important metal-working operations. These processes account for a sizable proportion of manufactured goods made in industrialized countries each year. Furthermore, to reduce the cost and increase the performance of manufactured products, in addition to the environmental concern, more and more light weight and high strength materials have been used as a substitute to the conventional steel. These materials usually have limited formability, thus, a thorough understanding of the deformation processes and the factors limiting the forming of sound parts is important, not only from a scientific or engineering viewpoint, but also from an economic point of view. An extensive review of previous studies pertaining to theoretical analyses of Forming Limit Diagrams (FLDs) is contained in Chapter I. A numerical model to analyze the neck evolution process is outlined in Chapter II. With the use of strain gradient theory, the effect of initial defect profile on the necking process is analyzed. In the third chapter, the method proposed by Storen and Rice is adopted to analyze the initiation of localized neck and predict the corresponding FLDs. In view of the fact that the width of the localized neck is narrow, the deformation inside the neck region is constrained by the material in the neighboring homogeneous region. The relative rotation effect may then be assumed to be small and is thus neglected. In Chapter IV, Hill's 1948 yield criterion and strain gradient theory are employed to obtain FLDs, for planar anisotropic sheet materials by using bifurcation analysis. The effects of the strain gradient coefficient c and the material anisotropic parameters R's on the orientation of the neck and FLDs are analyzed in a systematic manner and compared with experiments. In Chapter V, Hill's 79 non-quadratic yield criterion with a deformation theory of plasticity is used along with bifurcation analyses to derive a general analytical expression for calculating FLDs. In the final chapter, a method is proposed to construct forming limit diagrams for sheet metals under different deformation histories. This analysis employs Hill's 79 anisotropic yield function and uses strain gradient theory to describe the constitutive equation for the flow stress. In order to utilize an analytical method developed earlier for proportional loading, the concept of "virtual deformation" is introduced. The actual deformation path is divided into a sequence of linear paths and an effective "virtual deformation" path is defined having a strain ratio identical to that of the linear part in the final deformation stage, and a plastic work identical to that of the prior actual deformation it is replacing. (Abstract shortened by UMI.)

  14. Generating gradient germanium nanostructures by shock-induced amorphization and crystallization

    PubMed Central

    Zhao, Shiteng; Kad, Bimal; Wehrenberg, Christopher E.; Remington, Bruce A.; Hahn, Eric N.; More, Karren L.; Meyers, Marc A.

    2017-01-01

    Gradient nanostructures are attracting considerable interest due to their potential to obtain superior structural and functional properties of materials. Applying powerful laser-driven shocks (stresses of up to one-third million atmospheres, or 33 gigapascals) to germanium, we report here a complex gradient nanostructure consisting of, near the surface, nanocrystals with high density of nanotwins. Beyond there, the structure exhibits arrays of amorphous bands which are preceded by planar defects such as stacking faults generated by partial dislocations. At a lower shock stress, the surface region of the recovered target is completely amorphous. We propose that germanium undergoes amorphization above a threshold stress and that the deformation-generated heat leads to nanocrystallization. These experiments are corroborated by molecular dynamics simulations which show that supersonic partial dislocation bursts play a role in triggering the crystalline-to-amorphous transition. PMID:28847926

  15. The flexoelectric effect associated size dependent pyroelectricity in solid dielectrics

    NASA Astrophysics Data System (ADS)

    Bai, Gang; Liu, Zhiguo; Xie, Qiyun; Guo, Yanyan; Li, Wei; Yan, Xiaobing

    2015-09-01

    A phenomenological thermodynamic theory is used to investigate the effect of strain gradient on the pyroelectric effect in centrosymmetric dielectric solids. Direct pyroelectricity can exist as external mechanical stress is applied to non-pyroelectric dielectrics with shapes such as truncated pyramids, due to elastic strain gradient induced flexoelectric polarization. Effective pyroelectric coefficient was analyzed in truncated pyramids. It is found to be controlled by size, ambient temperature, stress, and aspect ratio and depends mainly on temperature sensitivity of flexoelectric coefficient (TSFC) and strain gradient of the truncated pyramids dielectric solids. These results show that the pyroelectric property of Ba0.67Sr0.33TiO3 above Tc similar to PZT and other lead-based ferroelectrics can be obtained. This feature might widely broaden the selection of materials for infrared detectors with preferable properties.

  16. A study of microindentation hardness tests by mechanism-based strain gradient plasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Y.; Xue, Z.; Gao, H.

    2000-08-01

    We recently proposed a theory of mechanism-based strain gradient (MSG) plasticity to account for the size dependence of plastic deformation at micron- and submicron-length scales. The MSG plasticity theory connects micron-scale plasticity to dislocation theories via a multiscale, hierarchical framework linking Taylor's dislocation hardening model to strain gradient plasticity. Here we show that the theory of MSG plasticity, when used to study micro-indentation, indeed reproduces the linear dependence observed in experiments, thus providing an important self-consistent check of the theory. The effects of pileup, sink-in, and the radius of indenter tip have been taken into account in the indentation model.more » In accomplishing this objective, we have generalized the MSG plasticity theory to include the elastic deformation in the hierarchical framework. (c) 2000 Materials Research Society.« less

  17. Generating gradient germanium nanostructures by shock-induced amorphization and crystallization.

    PubMed

    Zhao, Shiteng; Kad, Bimal; Wehrenberg, Christopher E; Remington, Bruce A; Hahn, Eric N; More, Karren L; Meyers, Marc A

    2017-09-12

    Gradient nanostructures are attracting considerable interest due to their potential to obtain superior structural and functional properties of materials. Applying powerful laser-driven shocks (stresses of up to one-third million atmospheres, or 33 gigapascals) to germanium, we report here a complex gradient nanostructure consisting of, near the surface, nanocrystals with high density of nanotwins. Beyond there, the structure exhibits arrays of amorphous bands which are preceded by planar defects such as stacking faults generated by partial dislocations. At a lower shock stress, the surface region of the recovered target is completely amorphous. We propose that germanium undergoes amorphization above a threshold stress and that the deformation-generated heat leads to nanocrystallization. These experiments are corroborated by molecular dynamics simulations which show that supersonic partial dislocation bursts play a role in triggering the crystalline-to-amorphous transition.

  18. Glassy dynamics of landscape evolution

    PubMed Central

    Ortiz, Carlos P.; Jerolmack, Douglas J.

    2018-01-01

    Soil creeps imperceptibly downhill, but also fails catastrophically to create landslides. Despite the importance of these processes as hazards and in sculpting landscapes, there is no agreed-upon model that captures the full range of behavior. Here we examine the granular origins of hillslope soil transport by discrete element method simulations and reanalysis of measurements in natural landscapes. We find creep for slopes below a critical gradient, where average particle velocity (sediment flux) increases exponentially with friction coefficient (gradient). At critical gradient there is a continuous transition to a dense-granular flow rheology. Slow earthflows and landslides thus exhibit glassy dynamics characteristic of a wide range of disordered materials; they are described by a two-phase flux equation that emerges from grain-scale friction alone. This glassy model reproduces topographic profiles of natural hillslopes, showing its promise for predicting hillslope evolution over geologic timescales. PMID:29686102

  19. Apparatus for magnetic separation of paramagnetic and diamagnetic material

    DOEpatents

    Doctor, Richard D.

    1988-01-01

    The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadropole magnet. The open gradient magnetic field further segregates the paramagnetic particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin.

  20. Apparatus for magnetic separation of paramagnetic and diamagnetic material

    DOEpatents

    Doctor, R.D.

    1988-10-18

    The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadrupole magnet. The open gradient magnetic field further segregates the paramagnetic particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin. 5 figs.

  1. Apparatus for magnetic separation of paramagnetic and diamagnetic material

    DOEpatents

    Doctor, R.D.

    1986-07-24

    The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadrupole magnet. The open gradient magnetic field further segregates the paramagnetic-particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin. 5 figs.

  2. Hybrid High-Order methods for finite deformations of hyperelastic materials

    NASA Astrophysics Data System (ADS)

    Abbas, Mickaël; Ern, Alexandre; Pignet, Nicolas

    2018-01-01

    We devise and evaluate numerically Hybrid High-Order (HHO) methods for hyperelastic materials undergoing finite deformations. The HHO methods use as discrete unknowns piecewise polynomials of order k≥1 on the mesh skeleton, together with cell-based polynomials that can be eliminated locally by static condensation. The discrete problem is written as the minimization of a broken nonlinear elastic energy where a local reconstruction of the displacement gradient is used. Two HHO methods are considered: a stabilized method where the gradient is reconstructed as a tensor-valued polynomial of order k and a stabilization is added to the discrete energy functional, and an unstabilized method which reconstructs a stable higher-order gradient and circumvents the need for stabilization. Both methods satisfy the principle of virtual work locally with equilibrated tractions. We present a numerical study of the two HHO methods on test cases with known solution and on more challenging three-dimensional test cases including finite deformations with strong shear layers and cavitating voids. We assess the computational efficiency of both methods, and we compare our results to those obtained with an industrial software using conforming finite elements and to results from the literature. The two HHO methods exhibit robust behavior in the quasi-incompressible regime.

  3. In-situ Observation of Cross-Sectional Microstructural Changes and Stress Distributions in Fracturing TiN Thin Film during Nanoindentation.

    PubMed

    Zeilinger, Angelika; Todt, Juraj; Krywka, Christina; Müller, Martin; Ecker, Werner; Sartory, Bernhard; Meindlhumer, Michael; Stefenelli, Mario; Daniel, Rostislav; Mitterer, Christian; Keckes, Jozef

    2016-03-07

    Load-displacement curves measured during indentation experiments on thin films depend on non-homogeneous intrinsic film microstructure and residual stress gradients as well as on their changes during indenter penetration into the material. To date, microstructural changes and local stress concentrations resulting in plastic deformation and fracture were quantified exclusively using numerical models which suffer from poor knowledge of size dependent material properties and the unknown intrinsic gradients. Here, we report the first in-situ characterization of microstructural changes and multi-axial stress distributions in a wedge-indented 9 μm thick nanocrystalline TiN film volume performed using synchrotron cross-sectional X-ray nanodiffraction. During the indentation, needle-like TiN crystallites are tilted up to 15 degrees away from the indenter axis in the imprint area and strongly anisotropic diffraction peak broadening indicates strain variation within the X-ray nanoprobe caused by gradients of giant compressive stresses. The morphology of the multiaxial stress distributions with local concentrations up to -16.5 GPa correlate well with the observed fracture modes. The crack growth is influenced decisively by the film microstructure, especially by the micro- and nano-scopic interfaces. This novel experimental approach offers the capability to interpret indentation response and indenter imprint morphology of small graded nanostructured features.

  4. Advances in Large Grain/Single Crystal SC Resonators at DESY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Singer; A. Brinkmann; A. Ermakov

    The main aim of the DESY large grain R&D program is to check whether this option is reasonable to apply for fabrication of ca. 1'000 XFEL cavities. Two aspects are being pursued. On one hand the basic material investigation, on the other hand the material availability, fabrication and preparation procedure. Several single cell large grain cavities of TESLA shape have been fabricated and tested. The best accelerating gradients of 41 MV/m was measured on electropolished cavity. First large grain nine-cell cavities worldwide have been produced under contract of DESY with ACCEL Instruments Co. All three cavities fulfil the XFEL specificationmore » already in first RF test after only BCP (Buffered Chemical Polishing) treatment and 800 degrees C annealing. Accelerating gradient of 27 - 29 MV/m was reached. A fabrication method of single crystal cavity of ILC like shape was proposed. A single cell single crystal cavity was build at the company ACCEL. Accelerating gradient of 37.5 MV/m reached after only 112 microns BCP and in situ baking 120 degrees C for 6 hrs with the quality factor higher as 2x1010. The developed method can be extended on fabrication of multi cell single crystal cavities.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    LAGASSE,ROBERT R.; THOMPSON,KYLE R.

    The goal of this work is to develop techniques for measuring gradients in particle concentration within filled polymers, such as encapsulant. A high concentration of filler particles is added to such materials to tailor physical properties such as thermal expansion coefficient. Sedimentation and flow-induced migration of particles can produce concentration gradients that are most severe near material boundaries. Therefore, techniques for measuring local particle concentration should be accurate near boundaries. Particle gradients in an alumina-filled epoxy resin are measured with a spatial resolution of 0.2 mm using an x-ray beam attenuation technique, but an artifact related to the finite diametermore » of the beam reduces accuracy near the specimen's edge. Local particle concentration near an edge can be measured more reliably using microscopy coupled with image analysis. This is illustrated by measuring concentration profiles of glass particles having 40 {micro}m median diameter using images acquired by a confocal laser fluorescence microscope. The mean of the measured profiles of volume fraction agrees to better than 3% with the expected value, and the shape of the profiles agrees qualitatively with simple theory for sedimentation of monodisperse particles. Extending this microscopy technique to smaller, micron-scale filler particles used in encapsulant for microelectronic devices is illustrated by measuring the local concentration of an epoxy resin containing 0.41 volume fraction of silica.« less

  6. Spin-orbit-torque-induced magnetic domain wall motion in Ta/CoFe nanowires with sloped perpendicular magnetic anisotropy.

    PubMed

    Zhang, Yue; Luo, Shijiang; Yang, Xiaofei; Yang, Chang

    2017-05-17

    In materials with the gradient of magnetic anisotropy, spin-orbit-torque-induced magnetization behaviour has attracted attention because of its intriguing scientific principle and potential application. Most of the magnetization behaviours microscopically originate from magnetic domain wall motion, which can be precisely depicted using the standard cooperative coordinate method (CCM). However, the domain wall motion in materials with the gradient of magnetic anisotropy using the CCM remains lack of investigation. In this paper, by adopting CCM, we established a set of equations to quantitatively depict the spin-orbit-torque-induced motion of domain walls in a Ta/CoFe nanotrack with weak Dzyaloshinskii-Moriya interaction and magnetic anisotropy gradient. The equations were solved numerically, and the solutions are similar to those of a micromagnetic simulation. The results indicate that the enhanced anisotropy along the track acts as a barrier to inhibit the motion of the domain wall. In contrast, the domain wall can be pushed to move in a direction with reduced anisotropy, with the velocity being accelerated by more than twice compared with that for the constant anisotropy case. This substantial velocity manipulation by anisotropy engineering is important in designing novel magnetic information devices with high reading speeds.

  7. Graded nanowell arrays: a fine plasmonic "library" with an adjustable spectral range.

    PubMed

    Xue, Peihong; Ye, Shunsheng; Su, Hongyang; Wang, Shuli; Nan, Jingjie; Chen, Xingchi; Ruan, Weidong; Zhang, Junhu; Cui, Zhanchen; Yang, Bai

    2017-05-25

    We present an effective approach for fabricating graded plasmonic arrays based on ordered micro-/nanostructures with a geometric gradient. Ag nanowell arrays with graded geometric parameters were fabricated and systematically investigated. The order of the graded plasmonic arrays is generated by colloidal lithography, while the geometric gradient is the result of inclined reactive ion etching. The surface plasmon resonance (SPR) peaks were measured at different positions, which move gradually along the Ag nanowell arrays with a geometric gradient. Such micro-/nanostructure arrays with graded and integrated SPR peaks can work as a fine plasmonic "library" (FPL), and the spectral range can be controlled using a "coarse adjustment knob" (lattice constant) and a "fine adjustment knob" (pore diameter). Additionally, the spectral resolution of the FPL is high, which benefits from the high value of the full height/full width at half-maximum and the small step size of the wavelength shift (0.5 nm). Meanwhile, the FPL could be effectively applied as a well-defined model to verify the plasmonic enhancement in surface enhanced Raman scattering. As the FPL is an integrated optical material with graded individual SPR peaks, it can not only be a theoretical model for fundamental research, but also has great potential in high-throughput screening of optical materials, multiplex sensors, etc.

  8. A homogenized localizing gradient damage model with micro inertia effect

    NASA Astrophysics Data System (ADS)

    Wang, Zhao; Poh, Leong Hien

    2018-07-01

    The conventional gradient enhancement regularizes structural responses during material failure. However, it induces a spurious damage growth phenomenon, which is shown here to persist in dynamics. Similar issues were reported with the integral averaging approach. Consequently, the conventional nonlocal enhancement cannot adequately describe the dynamic fracture of quasi-brittle materials, particularly in the high strain rate regime, where a diffused damage profile precludes the development of closely spaced macrocracks. To this end, a homogenization theory is proposed to translate the micro processes onto the macro scale. Starting with simple elementary models at the micro scale to describe the fracture mechanisms, an additional kinematic field is introduced to capture the variations in deformation and velocity within a unit cell. An energetic equivalence between micro and macro is next imposed to ensure consistency at the two scales. The ensuing homogenized microforce balance resembles closely the conventional gradient expression, albeit with an interaction domain that decreases with damage, complemented by a micro inertia effect. Considering a direct single pressure bar example, the homogenized model is shown to resolve the non-physical responses obtained with conventional nonlocal enhancement. The predictive capability of the homogenized model is furthermore demonstrated by considering the spall tests of concrete, with good predictions on failure characteristics such as fragmentation profiles and dynamic tensile strengths, at three different loading rates.

  9. Apparatus for investigating the reactions of soft-bodied invertebrates to controlled humidity gradients

    PubMed Central

    Russell, Joshua; Pierce-Shimomura, Jonathan T.

    2015-01-01

    Background While many studies have assayed behavioral responses of animals to chemical, temperature and light gradients, fewer studies have assayed how animals respond to humidity gradients. Our novel humidity chamber has allowed us to study the neuromolecular basis of humidity sensation in the nematode Caenorhabditis elegans (Russell et al. 2014). New Method We describe an easy-to-construct, low-cost humidity chamber to assay the behavior of small animals, including soft-bodied invertebrates, in controlled humidity gradients. Results We show that our humidity-chamber design is amenable to soft-bodied invertebrates and can produce reliable gradients ranging 0.3–8% RH/cm across a 9-cm long x 7.5-cm wide gel-covered arena. Comparison with Existing Method(s) Previous humidity chambers relied on circulating dry and moist air to produce a steep humidity gradient in a small arena (e.g. Sayeed & Benzer, 1996). To remove the confound of moving air that may elicit mechanical responses independent of humidity responses, our chamber controlled the humidity gradient using reservoirs of hygroscopic materials. Additionally, to better observe the behavioral mechanisms for humidity responses, our chamber provided a larger arena. Although similar chambers have been described previously, these approaches were not suitable for soft-bodied invertebrates or for easy imaging of behavior because they required that animals move across wire or fabric mesh. Conclusion The general applicability of our humidity chamber overcomes limitations of previous designs and opens the door to observe the behavioral responses of soft-bodied invertebrates, including genetically powerful C. elegans and Drosophila larvae. PMID:25176025

  10. Efficient gradient calibration based on diffusion MRI.

    PubMed

    Teh, Irvin; Maguire, Mahon L; Schneider, Jürgen E

    2017-01-01

    To propose a method for calibrating gradient systems and correcting gradient nonlinearities based on diffusion MRI measurements. The gradient scaling in x, y, and z were first offset by up to 5% from precalibrated values to simulate a poorly calibrated system. Diffusion MRI data were acquired in a phantom filled with cyclooctane, and corrections for gradient scaling errors and nonlinearity were determined. The calibration was assessed with diffusion tensor imaging and independently validated with high resolution anatomical MRI of a second structured phantom. The errors in apparent diffusion coefficients along orthogonal axes ranged from -9.2% ± 0.4% to + 8.8% ± 0.7% before calibration and -0.5% ± 0.4% to + 0.8% ± 0.3% after calibration. Concurrently, fractional anisotropy decreased from 0.14 ± 0.03 to 0.03 ± 0.01. Errors in geometric measurements in x, y and z ranged from -5.5% to + 4.5% precalibration and were likewise reduced to -0.97% to + 0.23% postcalibration. Image distortions from gradient nonlinearity were markedly reduced. Periodic gradient calibration is an integral part of quality assurance in MRI. The proposed approach is both accurate and efficient, can be setup with readily available materials, and improves accuracy in both anatomical and diffusion MRI to within ±1%. Magn Reson Med 77:170-179, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. © 2016 Wiley Periodicals, Inc.

  11. Efficient gradient calibration based on diffusion MRI

    PubMed Central

    Teh, Irvin; Maguire, Mahon L.

    2016-01-01

    Purpose To propose a method for calibrating gradient systems and correcting gradient nonlinearities based on diffusion MRI measurements. Methods The gradient scaling in x, y, and z were first offset by up to 5% from precalibrated values to simulate a poorly calibrated system. Diffusion MRI data were acquired in a phantom filled with cyclooctane, and corrections for gradient scaling errors and nonlinearity were determined. The calibration was assessed with diffusion tensor imaging and independently validated with high resolution anatomical MRI of a second structured phantom. Results The errors in apparent diffusion coefficients along orthogonal axes ranged from −9.2% ± 0.4% to + 8.8% ± 0.7% before calibration and −0.5% ± 0.4% to + 0.8% ± 0.3% after calibration. Concurrently, fractional anisotropy decreased from 0.14 ± 0.03 to 0.03 ± 0.01. Errors in geometric measurements in x, y and z ranged from −5.5% to + 4.5% precalibration and were likewise reduced to −0.97% to + 0.23% postcalibration. Image distortions from gradient nonlinearity were markedly reduced. Conclusion Periodic gradient calibration is an integral part of quality assurance in MRI. The proposed approach is both accurate and efficient, can be setup with readily available materials, and improves accuracy in both anatomical and diffusion MRI to within ±1%. Magn Reson Med 77:170–179, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. PMID:26749277

  12. Thin Film Approaches to the SRF Cavity Problem Fabrication and Characterization of Superconducting Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beringer, Douglas

    Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory’s CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater performance benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency – 1.5more » GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m – there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (≈ 45 MV/m for Nb) where inevitable thermodynamic breakdown occurs. With state of the art Nb based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio frequency applications. Correlated studies on structure, surface morphology and superconducting properties of epitaxial Nb and MgB2 thin films are presented.« less

  13. Bed failure induced by internal solitary waves

    NASA Astrophysics Data System (ADS)

    Rivera-Rosario, Gustavo A.; Diamessis, Peter J.; Jenkins, James T.

    2017-07-01

    The pressure field inside a porous bed induced by the passage of an Internal Solitary Wave (ISW) of depression is examined using high-accuracy numerical simulations. The velocity and density fields are obtained by solving the Dubreil-Jacotin-Long Equation, for a two-layer, continuously stratified water column. The total wave-induced pressure across the surface of the bed is computed by vertically integrating for the hydrostatic and nonhydrostatic contributions. The bed is assumed to be a continuum composed of either sand or silt, with a small amount of trapped gas. Results show variations in pore-water pressure penetrating deeper into more conductive materials and remaining for a prolonged period after the wave has passed. In order to quantify the potential for failure, the vertical pressure gradient is compared against the buoyant weight of the bed. The pressure gradient exceeds this weight for weakly conductive materials. Failure is further enhanced by a decrease in bed saturation, consistent with studies in surface-wave induced failure. In deeper water, the ISW-induced pressure is stronger, causing failure only for weakly conductive materials. The pressure associated with the free-surface displacement that accompanies ISWs is significant, when the water depth is less than 100 m, but has little influence when it is greater than 100 m, where the hydrostatic pressure due to the pycnocline displacement is much larger. Since the pore-pressure gradient reduces the specific weight of the bed, results show that particles are easier for the flow to suspend, suggesting that pressure contributes to the powerful resuspension events observed in the field.

  14. Microbial Community Structure of Korean Cabbage Kimchi and Ingredients with Denaturing Gradient Gel Electrophoresis.

    PubMed

    Hong, Sung Wook; Choi, Yun-Jeong; Lee, Hae-Won; Yang, Ji-Hee; Lee, Mi-Ai

    2016-06-28

    Kimchi is a traditional Korean fermented vegetable food, the production of which involves brining of Korean cabbage, blending with various other ingredients (red pepper powder, garlic, ginger, salt-pickled seafood, etc.), and fermentation. Recently, kimchi has also become popular in the Western world because of its unique taste and beneficial properties such as antioxidant and antimutagenic activities, which are derived from the various raw materials and secondary metabolites of the fermentative microorganisms used during production. Despite these useful activities, analysis of the microbial community present in kimchi has received relatively little attention. The objective of this study was to evaluate the bacterial community structure from the raw materials, additives, and final kimchi product using the culture-independent method. Specifically, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the 16S rRNA partial sequences of the microflora. One primer set for bacteria, 341F(GC)-518R, reliably produced amplicons from kimchi and its raw materials, and these bands were clearly separated on a 35-65% denaturing gradient gel. Overall, 117 16S rRNA fragments were identified by PCR-DGGE analysis. Pediococcus pentosaceus, Leuconostoc citreum, Leuconostoc gelidum, and Leuconostoc mesenteroides were the dominant bacteria in kimchi. The other strains identified were Tetragenococcus, Pseudomonas, Weissella, and uncultured bacterium. Comprehensive analysis of these microorganisms could provide a more detailed understanding of the biologically active components of kimchi and help improve its quality. PCR-DGGE analysis can be successfully applied to a fermented food to detect unculturable or other species.

  15. Topology optimization of hyperelastic structures using a level set method

    NASA Astrophysics Data System (ADS)

    Chen, Feifei; Wang, Yiqiang; Wang, Michael Yu; Zhang, Y. F.

    2017-12-01

    Soft rubberlike materials, due to their inherent compliance, are finding widespread implementation in a variety of applications ranging from assistive wearable technologies to soft material robots. Structural design of such soft and rubbery materials necessitates the consideration of large nonlinear deformations and hyperelastic material models to accurately predict their mechanical behaviour. In this paper, we present an effective level set-based topology optimization method for the design of hyperelastic structures that undergo large deformations. The method incorporates both geometric and material nonlinearities where the strain and stress measures are defined within the total Lagrange framework and the hyperelasticity is characterized by the widely-adopted Mooney-Rivlin material model. A shape sensitivity analysis is carried out, in the strict sense of the material derivative, where the high-order terms involving the displacement gradient are retained to ensure the descent direction. As the design velocity enters into the shape derivative in terms of its gradient and divergence terms, we develop a discrete velocity selection strategy. The whole optimization implementation undergoes a two-step process, where the linear optimization is first performed and its optimized solution serves as the initial design for the subsequent nonlinear optimization. It turns out that this operation could efficiently alleviate the numerical instability and facilitate the optimization process. To demonstrate the validity and effectiveness of the proposed method, three compliance minimization problems are studied and their optimized solutions present significant mechanical benefits of incorporating the nonlinearities, in terms of remarkable enhancement in not only the structural stiffness but also the critical buckling load.

  16. Nanostructured high-energy cathode materials for advanced lithium batteries

    NASA Astrophysics Data System (ADS)

    Sun, Yang-Kook; Chen, Zonghai; Noh, Hyung-Joo; Lee, Dong-Ju; Jung, Hun-Gi; Ren, Yang; Wang, Steve; Yoon, Chong Seung; Myung, Seung-Taek; Amine, Khalil

    2012-11-01

    Nickel-rich layered lithium transition-metal oxides, LiNi1-xMxO2 (M = transition metal), have been under intense investigation as high-energy cathode materials for rechargeable lithium batteries because of their high specific capacity and relatively low cost. However, the commercial deployment of nickel-rich oxides has been severely hindered by their intrinsic poor thermal stability at the fully charged state and insufficient cycle life, especially at elevated temperatures. Here, we report a nickel-rich lithium transition-metal oxide with a very high capacity (215 mA h g-1), where the nickel concentration decreases linearly whereas the manganese concentration increases linearly from the centre to the outer layer of each particle. Using this nano-functional full-gradient approach, we are able to harness the high energy density of the nickel-rich core and the high thermal stability and long life of the manganese-rich outer layers. Moreover, the micrometre-size secondary particles of this cathode material are composed of aligned needle-like nanosize primary particles, resulting in a high rate capability. The experimental results suggest that this nano-functional full-gradient cathode material is promising for applications that require high energy, long calendar life and excellent abuse tolerance such as electric vehicles.

  17. Nanostructured high-energy cathode materials for advanced lithium batteries.

    PubMed

    Sun, Yang-Kook; Chen, Zonghai; Noh, Hyung-Joo; Lee, Dong-Ju; Jung, Hun-Gi; Ren, Yang; Wang, Steve; Yoon, Chong Seung; Myung, Seung-Taek; Amine, Khalil

    2012-11-01

    Nickel-rich layered lithium transition-metal oxides, LiNi(1-x)M(x)O(2) (M = transition metal), have been under intense investigation as high-energy cathode materials for rechargeable lithium batteries because of their high specific capacity and relatively low cost. However, the commercial deployment of nickel-rich oxides has been severely hindered by their intrinsic poor thermal stability at the fully charged state and insufficient cycle life, especially at elevated temperatures. Here, we report a nickel-rich lithium transition-metal oxide with a very high capacity (215 mA h g(-1)), where the nickel concentration decreases linearly whereas the manganese concentration increases linearly from the centre to the outer layer of each particle. Using this nano-functional full-gradient approach, we are able to harness the high energy density of the nickel-rich core and the high thermal stability and long life of the manganese-rich outer layers. Moreover, the micrometre-size secondary particles of this cathode material are composed of aligned needle-like nanosize primary particles, resulting in a high rate capability. The experimental results suggest that this nano-functional full-gradient cathode material is promising for applications that require high energy, long calendar life and excellent abuse tolerance such as electric vehicles.

  18. Perioperative thermal insulation.

    PubMed

    Bräuer, Anselm; Perl, Thorsten; English, Michael J M; Quintel, Michael

    2007-01-01

    Perioperative hypothermia remains a common problem during anesthesia and surgery. Unfortunately, the implementation of new minimally invasive surgical procedures has not lead to a reduction of this problem. Heat losses from the skin can be reduced by thermal insulation to avoid perioperative hypothermia. However, only a small amount of information is available regarding the physical properties of insulating materials used in the Operating Room (OR). Therefore, several materials using validated manikins were tested. Heat loss from the surface of the manikin can be described as:"Q = h . DeltaT . A" where Q = heat flux, h = heat exchange coefficient, DeltaT = temperature gradient between the environment and surface, and A = covered area. Heat flux per unit area and surface temperature were measured with calibrated heat flux transducers. Environmental temperature was measured using a thermoanemometer. The temperature gradient between the surface and environment (DeltaT) was varied and "h" was determined by linear regression analysis as the slope of "DeltaT" versus heat flux per unit area. The reciprocal of the heat exchange coefficient defines the insulation. The insulation values of the materials varied between 0.01 Clo (plastic bag) to 2.79 Clo (2 layers of a hospital duvet). Given the range of insulating materials available for outdoor activities, significant improvement in insulation of patients in the OR is both possible and desirable.

  19. Thermal-Mechanical Stability of Single Crystal Oxide Refractive Concentrators for High-Temperature Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) are candidate refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermo-mechanical reliability of these components in severe thermal environments during the space mission sun/shade transition is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions, and thus provide vital information for the component design. In this paper, a controlled heat flux thermal shock test approach is established for the single crystal oxide materials using a 3.0 kW continuous wave CO2 laser, with a wavelength 10.6 micron. Thermal fracture behavior and failure mechanisms of these oxide materials are investigated and critical temperature gradients are determined under various temperature and heating conditions. The test results show that single crystal sapphire is able to sustain the highest temperature gradient and heating-cooling rate, and thus exhibit the best thermal shock resistance, as compared to the yttria-stabilized zirconia, yttrium aluminum garnet and magnesium oxide.

  20. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1992-01-01

    The NASA-UVa Light Aerospace Alloy and Structure Technology (LAST) Program continues to maintain a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1992. The objectives of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of the next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with Langley researchers. Technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report cover topics including: (1) Mechanical and Environmental Degradation Mechanisms in Advance Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.

  1. Thermal-Mechanical Stability of Single Crystal Oxide Refractive Concentrators for High-Temperature Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) are candidate refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermo-mechanical reliability of these components in severe thermal environments during the space mission sun/shade transition is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions, and thus provide vital information for the component design. In this paper, a controlled heat flux thermal shock test approach is established for the single crystal oxide materials using a 3.0 kW continuous wave CO2 laser, with a wavelength 10.6 micron. Thermal fracture behavior and failure mechanisms of these oxide materials are investigated and critical temperature gradients are determined under various temperature and heating conditions. The test results show that single crystal sapphire is able to sustain the highest temperature gradient and heating-cooling rate, and thus exhibit the best thermal shock resistance, as compared to the yttria-stabilized zirconia, yttrium aluminum garnet, and magnesium oxide.

  2. Ultrastructure and wear patterns of the ventral epidermis of four snake species (Squamata, Serpentes).

    PubMed

    Klein, Marie-Christin G; Gorb, Stanislav N

    2014-10-01

    Snakes are limbless tetrapods highly specialized for sliding locomotion. This locomotion leads to the skin being exposed to friction loads, especially on the ventral body side, which leads to wear. It is presumed that snakes therefore have specific optimizations for minimizing abrasion. Scales from snakes with habitat, locomotor and/or behavior specializations have specific gradients in material properties that may be due to different epidermal architecture. To approach this issue we examined the skin of Lampropeltis getula californiae (terrestrial), Epicrates cenchria cenchria (generalist), Morelia viridis (arboreal), and Gongylophis colubrinus (burrowing) with a focus on (i) the ultrastructure of the ventral epidermis and (ii) the qualitative abrasion pattern of the ventral scales. Scanning and transmission electron microscopy revealed variations in the structure, thickness, layering, and material composition of the epidermis between the species. Furthermore, SEM and white light interferometer images of the scale surface showed that the abrasion patterns differed, even when the snakes were reared on the same substrate. These data support the idea that (i) a specific gradient in material properties may be due to a variation in epidermis architecture (thickness/ultrastructure) and (ii) this variation may be an optimization of material properties for specific ways of life. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. Apparatus for growing HgI.sub.2 crystals

    DOEpatents

    Schieber, Michael M.; Beinglass, Israel; Dishon, Giora

    1978-01-01

    A method and horizontal furnace for vapor phase growth of HgI.sub.2 crystals which utilizes controlled axial and radial airflow to maintain the desired temperature gradients. The ampoule containing the source material is rotated while axial and radial air tubes are moved in opposite directions during crystal growth to maintain a desired distance and associated temperature gradient with respect to the growing crystal, whereby the crystal interface can advance in all directions, i.e., radial and axial according to the crystallographic structure of the crystal. Crystals grown by this method are particularly applicable for use as room-temperature nuclear radiation detectors.

  4. MEMS Calculator

    National Institute of Standards and Technology Data Gateway

    SRD 166 MEMS Calculator (Web, free access)   This MEMS Calculator determines the following thin film properties from data taken with an optical interferometer or comparable instrument: a) residual strain from fixed-fixed beams, b) strain gradient from cantilevers, c) step heights or thicknesses from step-height test structures, and d) in-plane lengths or deflections. Then, residual stress and stress gradient calculations can be made after an optical vibrometer or comparable instrument is used to obtain Young's modulus from resonating cantilevers or fixed-fixed beams. In addition, wafer bond strength is determined from micro-chevron test structures using a material test machine.

  5. Environmental and Mechanical Stability of Environmental Barrier Coated SA Tyrannohex SiC Composites Under Simulated Turbine Engine Environments

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Halbig, Michael Charles; Sing, Mrityunjay

    2014-01-01

    The environmental stability and thermal gradient cyclic durability performance of SA Tyrannohex composites were investigated for turbine engine component applications. The work has been focused on investigating the combustion rig recession, cyclic thermal stress resistance and thermomechanical low cycle fatigue of uncoated and environmental barrier coated Tyrannohex SiC SA composites in simulated turbine engine combustion water vapor, thermal gradients, and mechanical loading conditions. Flexural strength degradations have been evaluated, and the upper limits of operating temperature conditions for the SA composite material systems are discussed based on the experimental results.

  6. Practical and efficient magnetic heat pump

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1978-01-01

    Method for pumping heat magnetically at room temperature is more economical than existing refrigeration systems. Method uses natural magneto-thermal effect of gadolinium metal to establish temperature gradient across length of tube. Regenerative cyclic process in which gadolinium sample is magnetized and gives off heat at one end of tube, and then is demagnetized at other end to absorb heat has established temperature gradients of 144 degrees F in experiments near room temperature. Other materials with large magnetothermal effects can be used below room temperature. Possible commercial applications include freeze-drying and food processing, cold storage, and heating and cooling of buildings, plants, and ships.

  7. The Influence of Wavelength-Dependent Absorption and Temperature Gradients on Temperature Determination in Laser-Heated Diamond-Anvil Cells

    NASA Astrophysics Data System (ADS)

    Deng, J.; Lee, K. K. M.; Du, Z.; Benedetti, L. R.

    2016-12-01

    In situ temperature measurements in the laser-heated diamond-anvil cell (LHDAC) are among the most fundamental experiments undertaken in high-pressure science. Despite its importance, few efforts have been made to examine the alteration of thermal radiation spectra of hot samples by wavelength-dependent absorption of the sample itself together with temperature gradients within samples while laser heating and their influence on temperature measurement. For example, iron-bearing minerals show strong wavelength dependent absorption in the wavelength range used to determine temperature, which, together with temperature gradients can account for largely aliased apparent temperatures (e.g., 1200 K deviation for a 4000 K melting temperature) in some experiments obtained by fitting of detected thermal radiation intensities. As such, conclusions of melting temperatures, phase diagrams and partitioning behavior, may be grossly incorrect for these materials. In general, wavelength-dependent absorption and temperature gradients of samples are two key factors to consider in order to rigorously constrain temperatures, which have been largely ignored in previous LHDAC studies. A reevaluation of temperatures measured in recent high-profile papers will be reviewed.

  8. Strain-gradient-induced magnetic anisotropy in straight-stripe mixed-phase bismuth ferrites: Insight into flexomagnetism

    NASA Astrophysics Data System (ADS)

    Lee, Jin Hong; Kim, Kwang-Eun; Jang, Byung-Kweon; Ünal, Ahmet A.; Valencia, Sergio; Kronast, Florian; Ko, Kyung-Tae; Kowarik, Stefan; Seidel, Jan; Yang, Chan-Ho

    2017-08-01

    Implementation of antiferromagnetic compounds as active elements in spintronics has been hindered by their insensitive nature against external perturbations which causes difficulties in switching among different antiferromagnetic spin configurations. Electrically controllable strain gradient can become a key parameter to tune the antiferromagnetic states of multiferroic materials. We have discovered a correlation between an electrically written straight-stripe mixed-phase boundary and an in-plane antiferromagnetic spin axis in highly elongated La-5%-doped BiFe O3 thin films by performing polarization-dependent photoemission electron microscopy in conjunction with cluster model calculations. A model Hamiltonian calculation for the single-ion anisotropy including the spin-orbit interaction has been performed to figure out the physical origin of the link between the strain gradient present in the mixed-phase area and its antiferromagnetic spin axis. Our findings enable estimation of the strain-gradient-induced magnetic anisotropy energy per Fe ion at around 5 ×10-12eV m , and provide a pathway toward an electric-field-induced 90° rotation of antiferromagnetic spin axis at room temperature by flexomagnetism.

  9. Composition gradient, structure, stress, roughness and magnetic properties of 5-500 nm thin NiFe films obtained by electrodeposition

    NASA Astrophysics Data System (ADS)

    Gong, Jie; Riemer, Steve; Kautzky, Michael; Tabakovic, Ibro

    2016-01-01

    The composition gradients of 5-500 nm thin NiFe films on Cu and NiP substrates obtained by electrodeposition in stirred plating solutions at pH 3.0 on 8 in wafers were studied. It was found that the average elemental composition of the NiFe changes during electrodeposition with steep downturns of Fe-content, from 58 to 50 wt% Fe, in composition gradient zone near the substrate interface in the thickness range 5-250 nm depending on the electrode substrate (Cu and NiP). The increase of Fe-content in the composition gradient zone is accompanied by the increase of coercivity, Hc, magnetic flux saturation, Bs, saturation magnetostriction, λs, increase of dimensionless roughness, ρrms, and change of stress, σ. The coercivity (easy and hard axis) follows the Neel's relation Hc=ct-n (t is thickness and c is a constant). The mechanisms related to the change of coercivity of the NiFe films deposited on different substrates (Cu and NiP) are discussed in terms of material properties of these films.

  10. High power tests of an electroforming cavity operating at 11.424 GHz

    NASA Astrophysics Data System (ADS)

    Dolgashev, V. A.; Gatti, G.; Higashi, Y.; Leonardi, O.; Lewandowski, J. R.; Marcelli, A.; Rosenzweig, J.; Spataro, B.; Tantawi, S. G.; Yeremian, D. A.

    2016-03-01

    The achievement of ultra high accelerating gradients is mandatory in order to fabricate compact accelerators at 11.424 GHz for scientific and industrial applications. An extensive experimental and theoretical program to determine a reliable ultra high gradient operation of the future linear accelerators is under way in many laboratories. In particular, systematic studies on the 11.424 GHz frequency accelerator structures, R&D on new materials and the associated microwave technology are in progress to achieve accelerating gradients well above 120 MeV/m. Among the many, the electroforming procedure is a promising approach to manufacture high performance RF devices in order to avoid the high temperature brazing and to produce precise RF structures. We report here the characterization of a hard high gradient RF accelerating structure at 11.424 GHz fabricated using the electroforming technique. Low-level RF measurements and high power RF tests carried out at the SLAC National Accelerator Laboratory on this prototype are presented and discussed. In addition, we present also a possible layout where the water-cooling of irises based on the electroforming process has been considered for the first time.

  11. Mixed finite-element formulations in piezoelectricity and flexoelectricity

    PubMed Central

    2016-01-01

    Flexoelectricity, the linear coupling of strain gradient and electric polarization, is inherently a size-dependent phenomenon. The energy storage function for a flexoelectric material depends not only on polarization and strain, but also strain-gradient. Thus, conventional finite-element methods formulated solely on displacement are inadequate to treat flexoelectric solids since gradients raise the order of the governing differential equations. Here, we introduce a computational framework based on a mixed formulation developed previously by one of the present authors and a colleague. This formulation uses displacement and displacement-gradient as separate variables which are constrained in a ‘weighted integral sense’ to enforce their known relation. We derive a variational formulation for boundary-value problems for piezo- and/or flexoelectric solids. We validate this computational framework against available exact solutions. Our new computational method is applied to more complex problems, including a plate with an elliptical hole, stationary cracks, as well as tension and shear of solids with a repeating unit cell. Our results address several issues of theoretical interest, generate predictions of experimental merit and reveal interesting flexoelectric phenomena with potential for application. PMID:27436967

  12. Bio-inspired design of a magnetically active trilayered scaffold for cartilage tissue engineering.

    PubMed

    Brady, Mariea A; Talvard, Lucien; Vella, Alain; Ethier, C Ross

    2017-04-01

    An important topic in cartilage tissue engineering is the development of biomimetic scaffolds which mimic the depth-dependent material properties of the native tissue. We describe an advanced trilayered nanocomposite hydrogel (ferrogel) with a gradient in compressive modulus from the top to the bottom layers (p < 0.05) of the construct. Further, the scaffold was able to respond to remote external stimulation, exhibiting an elastic, depth-dependent strain gradient. When bovine chondrocytes were seeded into the ferrogels and cultured for up to 14 days, there was good cell viability and a biochemical gradient was measured with sulphated glycosaminoglycan increasing with depth from the surface. This novel construct provides tremendous scope for tailoring location-specific cartilage replacement tissue; by varying the density of magnetic nanoparticles, concentration of base hydrogel and number of cells, physiologically relevant depth-dependent gradients may be attained. © 2015 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. © 2015 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.

  13. Temperature Gradient-Induced Instability of Perovskite via Ion Transport.

    PubMed

    Wang, Xinwei; Liu, Hong; Zhou, Feng; Dahan, Jeremy; Wang, Xin; Li, Zhengping; Shen, Wenzhong

    2018-01-10

    Perovskite has been known as a promising novel material for photovoltaics and other fields because of its excellent opto-electric properties and convenient fabrication. However, its stability has been a widely known haunting factor that has severely deteriorated its application in reality. In this work, it has been discovered for the first time that perovskite can become significantly chemically unstable with the existence of a temperature gradient in the system, even at temperature far below its thermal decomposition condition. A study of the detailed mechanism has revealed that the existence of a temperature gradient could induce a mass transport process of extrinsic ionic species into the perovskite layer, which enhances its decomposition process. Moreover, this instability could be effectively suppressed with a reduced temperature gradient by simple structural modification of the device. Further experiments have proved the existence of this phenomenon in different perovskites with various mainstream substrates, indicating the universality of this phenomenon in many previous studies and future research. Hopefully, this work may bring deeper understanding of its formation mechanisms and facilitate the general development of perovskite toward its real application.

  14. Mixed finite-element formulations in piezoelectricity and flexoelectricity.

    PubMed

    Mao, Sheng; Purohit, Prashant K; Aravas, Nikolaos

    2016-06-01

    Flexoelectricity, the linear coupling of strain gradient and electric polarization, is inherently a size-dependent phenomenon. The energy storage function for a flexoelectric material depends not only on polarization and strain, but also strain-gradient. Thus, conventional finite-element methods formulated solely on displacement are inadequate to treat flexoelectric solids since gradients raise the order of the governing differential equations. Here, we introduce a computational framework based on a mixed formulation developed previously by one of the present authors and a colleague. This formulation uses displacement and displacement-gradient as separate variables which are constrained in a 'weighted integral sense' to enforce their known relation. We derive a variational formulation for boundary-value problems for piezo- and/or flexoelectric solids. We validate this computational framework against available exact solutions. Our new computational method is applied to more complex problems, including a plate with an elliptical hole, stationary cracks, as well as tension and shear of solids with a repeating unit cell. Our results address several issues of theoretical interest, generate predictions of experimental merit and reveal interesting flexoelectric phenomena with potential for application.

  15. Texturing of high T(sub c) superconducting polycrystalline fibers/wires by laser-driven directional solidification in an thermal gradient

    NASA Technical Reports Server (NTRS)

    Varshney, Usha; Eichelberger, B. Davis, III

    1995-01-01

    This paper summarizes the technique of laser-driven directional solidification in a controlled thermal gradient of yttria stabilized zirconia core coated Y-Ba-Cu-O materials to produce textured high T(sub c) superconducting polycrystalline fibers/wires with improved critical current densities in the extended range of magnetic fields at temperatures greater than 77 K. The approach involves laser heating to minimize phase segregation by heating very rapidly through the two-phase incongruent melt region to the single phase melt region and directionally solidifying in a controlled thermal gradient to achieve highly textured grains in the fiber axis direction. The technique offers a higher grain growth rate and a lower thermal budget compared with a conventional thermal gradient and is amenable as a continuous process for improving the J(sub c) of high T(sub c) superconducting polycrystalline fibers/wires. The technique has the advantage of suppressing weak-link behavior by orientation of crystals, formation of dense structures with enhanced connectivity, formation of fewer and cleaner grain boundaries, and minimization of phase segregation in the incongruent melt region.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Won, Yoo Jai; Ki, Hyungson

    A novel picosecond-laser pulsed laser deposition method has been developed for fabricating functionally graded films with pre-designed gradient profiles. Theoretically, the developed method is capable of precisely fabricating films with any thicknesses and any gradient profiles by controlling the laser beam powers for the two different targets based on the film composition profiles. As an implementation example, we have successfully constructed functionally graded diamond-like carbon films with six different gradient profiles: linear, quadratic, cubic, square root, cubic root, and sinusoidal. Energy dispersive X-ray spectroscopy is employed for investigating the chemical composition along the thickness of the film, and the depositionmore » profile and thickness errors are found to be less than 3% and 1.04%, respectively. To the best of the authors' knowledge, this is the first method for fabricating films with designed gradient profiles and has huge potential in many areas of coatings and films, including multifunctional optical films. We believe that this method is not only limited to the example considered in this study, but also can be applied to all material combinations as long as they can be deposited using the pulsed laser deposition technique.« less

  17. Customised spatiotemporal temperature gradients created by a liquid metal enabled vortex generator.

    PubMed

    Zhu, Jiu Yang; Thurgood, Peter; Nguyen, Ngan; Ghorbani, Kamran; Khoshmanesh, Khashayar

    2017-11-07

    Generating customised temperature gradients in miniaturised flow-free liquid chambers is challenging due to the dominance of diffusion. Inducing internal flows in the form of vortices is an effective strategy for overcoming the limitations of diffusion in such environments. Vortices can be produced by applying pressure, temperature and electric potential gradients via miniaturised actuators. However, the difficulties associated with the fabrication, integration, maintenance and operation of such actuators hinder their utility. Here, we utilise liquid metal enabled pumps to induce vortices inside a miniaturised liquid chamber. The configuration and rotational velocity of these vortices can be controlled by tuning the polarity and frequency of the energising electrical signal. This allows creation of customised spatial temperature gradients inside the chamber. The absence of conventional moving elements in the pumps facilitates the rapid reconfiguration of vortices. This enables quick transition from one temperature profile to another, and creates customised spatiotemporal temperature gradients. This allows temperature oscillation from 35 to 62 °C at the hot spot, and from 25 to 27 °C at the centre of the vortex within 15 seconds. Our liquid metal enabled vortex generator can be fabricated, integrated and operated easily, and offers opportunities for studying thermo-responsive materials and biological samples.

  18. Mass transport in morphogenetic processes: A second gradient theory for volumetric growth and material remodeling

    NASA Astrophysics Data System (ADS)

    Ciarletta, P.; Ambrosi, D.; Maugin, G. A.

    2012-03-01

    In this work, we derive a novel thermo-mechanical theory for growth and remodeling of biological materials in morphogenetic processes. This second gradient hyperelastic theory is the first attempt to describe both volumetric growth and mass transport phenomena in a single-phase continuum model, where both stress- and shape-dependent growth regulations can be investigated. The diffusion of biochemical species (e.g. morphogens, growth factors, migration signals) inside the material is driven by configurational forces, enforced in the balance equations and in the set of constitutive relations. Mass transport is found to depend both on first- and on second-order material connections, possibly withstanding a chemotactic behavior with respect to diffusing molecules. We find that the driving forces of mass diffusion can be written in terms of covariant material derivatives reflecting, in a purely geometrical manner, the presence of a (first-order) torsion and a (second-order) curvature. Thermodynamical arguments show that the Eshelby stress and hyperstress tensors drive the rearrangement of the first- and second-order material inhomogeneities, respectively. In particular, an evolution law is proposed for the first-order transplant, extending a well-known result for inelastic materials. Moreover, we define the first stress-driven evolution law of the second-order transplant in function of the completely material Eshelby hyperstress. The theory is applied to two biomechanical examples, showing how an Eshelbian coupling can coordinate volumetric growth, mass transport and internal stress state, both in physiological and pathological conditions. Finally, possible applications of the proposed model are discussed for studying the unknown regulation mechanisms in morphogenetic processes, as well as for optimizing scaffold architecture in regenerative medicine and tissue engineering.

  19. Process to remove actinides from soil using magnetic separation

    DOEpatents

    Avens, Larry R.; Hill, Dallas D.; Prenger, F. Coyne; Stewart, Walter F.; Tolt, Thomas L.; Worl, Laura A.

    1996-01-01

    A process of separating actinide-containing components from an admixture including forming a slurry including actinide-containing components within an admixture, said slurry including a dispersion-promoting surfactant, adjusting the pH of the slurry to within a desired range, and, passing said slurry through a pretreated matrix material, said matrix material adapted to generate high magnetic field gradients upon the application of a strong magnetic field exceeding about 0.1 Tesla whereupon a portion of said actinide-containing components are separated from said slurry and remain adhered upon said matrix material is provided.

  20. IR GRIN optics: design and fabrication

    NASA Astrophysics Data System (ADS)

    Gibson, Daniel; Bayya, Shyam; Nguyen, Vinh; Sanghera, Jas; Kotov, Mikhail; McClain, Collin; Deegan, John; Lindberg, George; Unger, Blair; Vizgaitis, Jay

    2017-06-01

    Infrared (IR) transmitting gradient index (GRIN) materials have been developed for broad-band IR imaging. This material is derived from the diffusion of homogeneous chalcogenide glasses has good transmission for all IR wavebands. The optical properties of the IR-GRIN materials are presented and the fabrication and design methodologies are discussed. Modeling and optimization of the diffusion process is exploited to minimize the deviation of the index profile from the design profile. Fully diffused IR-GRIN blanks with Δn of 0.2 are demonstrated with deviation errors of +/-0.01 refractive index units.

  1. Correction of geometric distortion in Propeller echo planar imaging using a modified reversed gradient approach

    PubMed Central

    Chang, Hing-Chiu; Chuang, Tzu-Chao; Wang, Fu-Nien; Huang, Teng-Yi; Chung, Hsiao-Wen

    2013-01-01

    Objective This study investigates the application of a modified reversed gradient algorithm to the Propeller-EPI imaging method (periodically rotated overlapping parallel lines with enhanced reconstruction based on echo-planar imaging readout) for corrections of geometric distortions due to the EPI readout. Materials and methods Propeller-EPI acquisition was executed with 360-degree rotational coverage of the k-space, from which the image pairs with opposite phase-encoding gradient polarities were extracted for reversed gradient geometric and intensity corrections. The spatial displacements obtained on a pixel-by-pixel basis were fitted using a two-dimensional polynomial followed by low-pass filtering to assure correction reliability in low-signal regions. Single-shot EPI images were obtained on a phantom, whereas high spatial resolution T2-weighted and diffusion tensor Propeller-EPI data were acquired in vivo from healthy subjects at 3.0 Tesla, to demonstrate the effectiveness of the proposed algorithm. Results Phantom images show success of the smoothed displacement map concept in providing improvements of the geometric corrections at low-signal regions. Human brain images demonstrate prominently superior reconstruction quality of Propeller-EPI images with modified reversed gradient corrections as compared with those obtained without corrections, as evidenced from verification against the distortion-free fast spin-echo images at the same level. Conclusions The modified reversed gradient method is an effective approach to obtain high-resolution Propeller-EPI images with substantially reduced artifacts. PMID:23630654

  2. Gint2D-T2 correlation NMR of porous media

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Blümich, Bernhard

    2015-03-01

    The internal magnetic field gradient induced in porous media by magnetic susceptibility differences at material interfaces impacts diffusion measurements in particular at high magnetic field and can be used to probe the pore structure. Insight about the relationship between pore space and internal gradient Gint can be obtained from 2D Laplace NMR experiments. When measuring distributions of transverse relaxation times T2 in fluid filled porous media, relaxation and diffusion in internal gradients arise simultaneously and data are often interpreted with the assumption that one or the other parameter be constant throughout the sample. To examine this assumption we measure correlations of the distributions of Gint2D and T2 by 2D Laplace NMR for three different kinds of samples, glass beads with different bead diameters saturated with water, glass beads filled with oil and water, and a wet mortar sample. For the first two samples the cases where either the internal gradient or diffusion dominates were examined separately in order to better understand the relationship between Gint and D. These results are useful for assessing the impact of internal gradients and diffusion in unknown samples, such as the mortar sample. The experiments were performed at different magnetic field strengths corresponding to 300 MHz and 700 MHz 1H Larmor frequency to identify the impact of the magnetic field on the internal gradient. Subsequently, spatially resolved Gint2D-T2 maps were obtained to study the sample heterogeneity.

  3. High Gradient Accelerator Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temkin, Richard

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave coldmore » test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.« less

  4. Ultra-High Accelerating Gradients in Radio-Frequency Cryogenic Copper Structures

    NASA Astrophysics Data System (ADS)

    Cahill, Alexander David

    Normal conducting radio-frequency (rf) particle accelerators have many applications, including colliders for high energy physics, high-intensity synchrotron light sources, non-destructive testing for security, and medical radiation therapy. In these applications, the accelerating gradient is an important parameter. Specifically for high energy physics, increasing the accelerating gradient extends the potential energy reach and is viewed as a way to mitigate their considerable cost. Furthermore, a gradient increase will enable for more compact and thus accessible free electron lasers (FELs). The major factor limiting larger accelerating gradients is vacuum rf breakdown. Basic physics of this phenomenon has been extensively studied over the last few decades. During which, the occurrence of rf breakdowns was shown to be probabilistic, and can be characterized by a breakdown rate. The current consensus is that vacuum rf breakdowns are caused by movements of crystal defects induced by periodic mechanical stress. The stress may be caused by pulsed surface heating and large electric fields. A compelling piece of evidence that supports this hypothesis is that accelerating structures constructed from harder materials exhibit larger accelerating gradients for similar breakdown rates. One possible method to increase sustained electric fields in copper cavities is to cool them to temperatures below 77 K, where the rf surface resistance and coefficient of thermal expansion decrease, while the yield strength (which correlates with hardness) and thermal conductivity increase. These changes in material properties at low temperature increases metal hardness and decreases the mechanical stress from exposure to rf electromagnetic fields. To test the validity of the improvement in breakdown rate, experiments were conducted with cryogenic accelerating cavities in the Accelerator Structure Test Area (ASTA) at SLAC National Accelerator Laboratory. A short 11.4 GHz standing wave accelerating structure was conditioned to an accelerating gradient of 250 MV/m at 45 K with 108 rf pulses. At gradients greater than 150 MV/m I observed a degradation in the intrinsic quality factor of the cavity, Q0. I developed a model for the change in Q0 using measured field emission currents and rf signals. I found that the Q 0 degradation is consistent with the rf power being absorbed by strong field emission currents accelerated inside the cavity. I measured rf breakdown rates for 45 K and found 2*10-4/pulse/meter when accounting for any change in Q0. These are the largest accelerating gradients for a structure with similar breakdown rates. The final chapter presents the design of an rf photoinjector electron source that uses the cryogenic normal conducting accelerator technology: the TOPGUN. With this cryogenic rf photoinjector, the beam brightness will increase by over an order of a magnitude when compared to the current photoinjector for the Linac Coherent Light Source (LCLS). When using the TOPGUN as the source for an X-ray Free Electron Laser, the higher brightness would allow for a decrease in the required length of the LCLS undulator by more than a factor of two.

  5. Generating gradient germanium nanostructures by shock-induced amorphization and crystallization

    DOE PAGES

    Zhao, Shiteng; Kad, Bimal; Wehrenberg, Christopher E.; ...

    2017-08-28

    Gradient nanostructures are attracting considerable interest due to their potential to obtain superior structural and functional properties of materials. Applying powerful laser-driven shocks (stresses of up to one-third million atmospheres, or 33 gigapascals) to germanium, we report a complex gradient nanostructure consisting of, near the surface, nanocrystals with high density of nanotwins. Beyond there, the structure exhibits arrays of amorphous bands which are preceded by planar defects such as stacking faults generated by partial dislocations. At a lower shock stress, the surface region of the recovered target is completely amorphous. Here, we propose that germanium undergoes amorphization above a thresholdmore » stress and that the deformation-generated heat leads to nanocrystallization. These experiments are corroborated by molecular dynamics simulations which show that supersonic partial dislocation bursts play a role in triggering the crystalline-to-amorphous transition.« less

  6. Glassy dynamics of landscape evolution.

    PubMed

    Ferdowsi, Behrooz; Ortiz, Carlos P; Jerolmack, Douglas J

    2018-05-08

    Soil creeps imperceptibly downhill, but also fails catastrophically to create landslides. Despite the importance of these processes as hazards and in sculpting landscapes, there is no agreed-upon model that captures the full range of behavior. Here we examine the granular origins of hillslope soil transport by discrete element method simulations and reanalysis of measurements in natural landscapes. We find creep for slopes below a critical gradient, where average particle velocity (sediment flux) increases exponentially with friction coefficient (gradient). At critical gradient there is a continuous transition to a dense-granular flow rheology. Slow earthflows and landslides thus exhibit glassy dynamics characteristic of a wide range of disordered materials; they are described by a two-phase flux equation that emerges from grain-scale friction alone. This glassy model reproduces topographic profiles of natural hillslopes, showing its promise for predicting hillslope evolution over geologic timescales. Copyright © 2018 the Author(s). Published by PNAS.

  7. MRI Artifacts of a Metallic Stent Derived From a Human Aorta Specimen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soto, M. E.; Flores, P.; Marrufo, O.

    Magnetic resonance imaging has proved to be a useful technique to get images of the whole body. However, the presence of ferromagnetic material can cause susceptibility artifacts, which result from microscopic gradients that occur near the boundaries between areas displaying different magnetic susceptibility. These gradients cause dephasing of spins and frequency shifts in the surrounding tissues. Intravoxel dephasing and spatial mis-registration can degrade image quality. An aorta with a metallic stent was preserved in formaldehyde at 10% inside acrylic cylinders and used to obtain MR images. We tested pulsed spin echo and gradient echo sequences to improve image quality. Allmore » experiments were performed on a 7T/21 cm Varian system (Varian, Inc, Palo Alto, CA) equipped with Direct Drive technology and a 16-rung birdcage coil transceiver. The presence of metallic stents produces a lack of signal that might give falsely reassuring appearances within the vessel lumen.« less

  8. A gradient enhanced plasticity-damage microplane model for concrete

    NASA Astrophysics Data System (ADS)

    Zreid, Imadeddin; Kaliske, Michael

    2018-03-01

    Computational modeling of concrete poses two main types of challenges. The first is the mathematical description of local response for such a heterogeneous material under all stress states, and the second is the stability and efficiency of the numerical implementation in finite element codes. The paper at hand presents a comprehensive approach addressing both issues. Adopting the microplane theory, a combined plasticity-damage model is formulated and regularized by an implicit gradient enhancement. The plasticity part introduces a new microplane smooth 3-surface cap yield function, which provides a stable numerical solution within an implicit finite element algorithm. The damage part utilizes a split, which can describe the transition of loading between tension and compression. Regularization of the model by the implicit gradient approach eliminates the mesh sensitivity and numerical instabilities. Identification methods for model parameters are proposed and several numerical examples of plain and reinforced concrete are carried out for illustration.

  9. Advances in high gradient normal conducting accelerator structures

    DOE PAGES

    Simakov, Evgenya Ivanovna; Dolgashev, Valery A.; Tantawi, Sami G.

    2018-03-09

    Here, this paper reviews the current state-of-the-art in understanding the phenomena of ultra-high vacuum radio-frequency (rf) breakdown in accelerating structures and the efforts to improve stable operation of the structures at accelerating gradients above 100 MV/m. Numerous studies have been conducted recently with the goal of understanding the dependence of the achievable accelerating gradients and breakdown rates on the frequency of operations, the geometry of the structure, material and method of fabrication, and operational temperature. Tests have been conducted with single standing wave accelerator cells as well as with the multi-cell traveling wave structures. Notable theoretical effort was directed atmore » understanding the physical mechanisms of the rf breakdown and its statistical behavior. Finally, the achievements presented in this paper are the result of the large continuous self-sustaining collaboration of multiple research institutions in the United States and worldwide.« less

  10. Advances in high gradient normal conducting accelerator structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simakov, Evgenya Ivanovna; Dolgashev, Valery A.; Tantawi, Sami G.

    Here, this paper reviews the current state-of-the-art in understanding the phenomena of ultra-high vacuum radio-frequency (rf) breakdown in accelerating structures and the efforts to improve stable operation of the structures at accelerating gradients above 100 MV/m. Numerous studies have been conducted recently with the goal of understanding the dependence of the achievable accelerating gradients and breakdown rates on the frequency of operations, the geometry of the structure, material and method of fabrication, and operational temperature. Tests have been conducted with single standing wave accelerator cells as well as with the multi-cell traveling wave structures. Notable theoretical effort was directed atmore » understanding the physical mechanisms of the rf breakdown and its statistical behavior. Finally, the achievements presented in this paper are the result of the large continuous self-sustaining collaboration of multiple research institutions in the United States and worldwide.« less

  11. Generating gradient germanium nanostructures by shock-induced amorphization and crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shiteng; Kad, Bimal; Wehrenberg, Christopher E.

    Gradient nanostructures are attracting considerable interest due to their potential to obtain superior structural and functional properties of materials. Applying powerful laser-driven shocks (stresses of up to one-third million atmospheres, or 33 gigapascals) to germanium, we report a complex gradient nanostructure consisting of, near the surface, nanocrystals with high density of nanotwins. Beyond there, the structure exhibits arrays of amorphous bands which are preceded by planar defects such as stacking faults generated by partial dislocations. At a lower shock stress, the surface region of the recovered target is completely amorphous. Here, we propose that germanium undergoes amorphization above a thresholdmore » stress and that the deformation-generated heat leads to nanocrystallization. These experiments are corroborated by molecular dynamics simulations which show that supersonic partial dislocation bursts play a role in triggering the crystalline-to-amorphous transition.« less

  12. Temperature of ground water at Philadelphia, Pennsylvania, 1979- 1981

    USGS Publications Warehouse

    Paulachok, Gary N.

    1986-01-01

    Anthropogenic heat production has undoubtedly caused increased ground-water temperatures in many parts of Philadelphia, Pennsylvania, as shown by temperatures of 98 samples and logs of 40 wells measured during 1979-81. Most sample temperatures were higher than 12.6 degrees Celsius (the local mean annual air temperature), and many logs depict cooling trends with depth (anomalous gradients). Heating of surface and shallow-subsurface materials has likely caused the elevated temperatures and anomalous gradients. Solar radiation on widespread concrete and asphalt surfaces, fossil-fuel combustion, and radiant losses from buried pipelines containing steam and process chemicals are believed to be the chief sources of heat. Some heat from these and other sources is transferred to deeper zones, mainly by conduction. Temperatures in densely urbanized areas are commonly highest directly beneath the land surface and decrease progressively with depth. Temperatures in sparsely urbanized areas generally follow the natural geothermal gradient and increase downward at about that same rate.

  13. Analytic materials

    PubMed Central

    2016-01-01

    The theory of inhomogeneous analytic materials is developed. These are materials where the coefficients entering the equations involve analytic functions. Three types of analytic materials are identified. The first two types involve an integer p. If p takes its maximum value, then we have a complete analytic material. Otherwise, it is incomplete analytic material of rank p. For two-dimensional materials, further progress can be made in the identification of analytic materials by using the well-known fact that a 90° rotation applied to a divergence-free field in a simply connected domain yields a curl-free field, and this can then be expressed as the gradient of a potential. Other exact results for the fields in inhomogeneous media are reviewed. Also reviewed is the subject of metamaterials, as these materials provide a way of realizing desirable coefficients in the equations. PMID:27956882

  14. Directional solidification of C8-BTBT films induced by temperature gradients and its application for transistors

    NASA Astrophysics Data System (ADS)

    Fujieda, Ichiro; Iizuka, Naoki; Onishi, Yosuke

    2015-03-01

    Because charge transport in a single crystal is anisotropic in nature, directional growth of single crystals would enhance device performance and reduce its variation among devices. For an organic thin film, a method based on a temperature gradient would offer advantages in throughput and cleanliness. In experiments, a temperature gradient was established in a spin-coated film of 2,7-dioctyl [1]benzothieno[3,2-b]benzothiophene (C8-BTBT) by two methods. First, a sample was placed on a metal plate bridging two heat stages. When one of the heat stages was cooled, the material started to solidify from the colder region. The melt-solid interface proceeded along the temperature gradient. Cracks were formed perpendicular to the solidification direction. Second, a line-shaped region on the film was continuously exposed to the light from a halogen lamp. After the heat stage was cooled, cracks similar to the first experiment were observed, indicating that the melt-solid interface moved laterally. We fabricated top-contact, bottom-gate transistors with these films. Despite the cracks, field-effect mobility of the transistors fabricated with these films was close to 6 cm2 /Vs and 4 cm2 /Vs in the first and second experiment, respectively. Elimination of cracks would improve charge transport and reduce performance variation among devices. It should be noted that the intense light from the halogen lamp did not damage the C8-BTBT films. The vast knowledge on laser annealing is now available for directional growth of this type of materials. The associated cost would be much smaller because an organic thin film melts at a low temperature.

  15. Microscale Electromagnetic Heating in Heterogeneous Energetic Materials Based on X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; Glover, B. B.; Duque, A. L. Higginbotham; Perry, W. L.; Patterson, B. M.; Dalvit, D. A. R.; Moore, D. S.

    2016-04-01

    Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. We analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.

  16. Microscopic Investigation of Materials Limitations of Superconducting RF Cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anlage, Steven

    2017-08-04

    Our overall goal is to contribute to the understanding of defects that limit the high accelerating gradient performance of Nb SRF cavities. Our approach is to develop a microscopic connection between materials defects and SRF performance. We developed a near-field microwave microscope to establish this connection. The microscope is based on magnetic hard drive write heads, which are designed to create very strong rf magnetic fields in very small volumes on a surface.

  17. Does an immigrant health paradox exist among Asian Americans? Associations of nativity and occupational class with self-rated health and mental disorders

    PubMed Central

    John, Dolly A.; de Castro, A.B.; Martin, Diane P.; Duran, Bonnie; Takeuchi, David T.

    2017-01-01

    A robust socioeconomic gradient in health is well-documented, with higher socioeconomic status (SES) associated with better health across the SES spectrum. However, recent studies of U.S. racial/ethnic minorities and immigrants show complex SES-health patterns (e.g., flat gradients), with individuals of low SES having similar or better health than their richer, U.S.-born and more acculturated counterparts, a so-called “epidemiological paradox” or “immigrant health paradox”. To examine whether this exists among Asian Americans, we investigate how nativity and occupational class (white-collar, blue-collar, service, unemployed) are associated with subjective health (self-rated physical health, self-rated mental health) and 12-month DSM-IV mental disorders (any mental disorder, anxiety, depression). We analyzed data from 1530 Asian respondents to the 2002–2003 National Latino and Asian American Study in the labor force using hierarchical multivariate logistic regression models controlling for confounders, subjective social status (SSS), material and psychosocial factors theorized to explain health inequalities. Compared to U.S.-born Asians, immigrants had worse socioeconomic profiles, and controlling for age and gender, increased odds for reporting fair/poor mental health and decreased odds for any DSM-IV mental disorder and anxiety. No strong occupational class-health gradients were found. The foreign-born health-protective effect persisted after controlling for SSS but became nonsignificant after controlling for material and psychosocial factors. Speaking fair/poor English was strongly associated with all outcomes. Material and psychosocial factors were associated with some outcomes – perceived financial need with subjective health, uninsurance with self-rated mental health and depression, social support, discrimination and acculturative stress with all or most DSM-IV outcomes. Our findings caution against using terms like “immigrant health paradox” which oversimplify complex patterns and mask negative outcomes among underserved sub-groups (e.g., speaking fair/poor English, experiencing acculturative stress). We discuss implications for better measurement of SES and health given the absence of a gradient and seemingly contradictory finding of nativity-related differences in self-rated health and DSM-IV mental disorders. PMID:22503561

  18. Does an immigrant health paradox exist among Asian Americans? Associations of nativity and occupational class with self-rated health and mental disorders.

    PubMed

    John, Dolly A; de Castro, A B; Martin, Diane P; Duran, Bonnie; Takeuchi, David T

    2012-12-01

    A robust socioeconomic gradient in health is well-documented, with higher socioeconomic status (SES) associated with better health across the SES spectrum. However, recent studies of U.S. racial/ethnic minorities and immigrants show complex SES-health patterns (e.g., flat gradients), with individuals of low SES having similar or better health than their richer, U.S.-born and more acculturated counterparts, a so-called "epidemiological paradox" or "immigrant health paradox". To examine whether this exists among Asian Americans, we investigate how nativity and occupational class (white-collar, blue-collar, service, unemployed) are associated with subjective health (self-rated physical health, self-rated mental health) and 12-month DSM-IV mental disorders (any mental disorder, anxiety, depression). We analyzed data from 1530 Asian respondents to the 2002-2003 National Latino and Asian American Study in the labor force using hierarchical multivariate logistic regression models controlling for confounders, subjective social status (SSS), material and psychosocial factors theorized to explain health inequalities. Compared to U.S.-born Asians, immigrants had worse socioeconomic profiles, and controlling for age and gender, increased odds for reporting fair/poor mental health and decreased odds for any DSM-IV mental disorder and anxiety. No strong occupational class-health gradients were found. The foreign-born health-protective effect persisted after controlling for SSS but became nonsignificant after controlling for material and psychosocial factors. Speaking fair/poor English was strongly associated with all outcomes. Material and psychosocial factors were associated with some outcomes--perceived financial need with subjective health, uninsurance with self-rated mental health and depression, social support, discrimination and acculturative stress with all or most DSM-IV outcomes. Our findings caution against using terms like "immigrant health paradox" which oversimplify complex patterns and mask negative outcomes among underserved sub-groups (e.g., speaking fair/poor English, experiencing acculturative stress). We discuss implications for better measurement of SES and health given the absence of a gradient and seemingly contradictory finding of nativity-related differences in self-rated health and DSM-IV mental disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Non-classical continuum theory for fluids incorporating internal and Cosserat rotation rates

    NASA Astrophysics Data System (ADS)

    Surana, K. S.; Joy, A. D.; Reddy, J. N.

    2017-11-01

    This paper presents a non-classical continuum theory for fluent continua in which the conservation and balance laws are derived by incorporating both internal rotation rates arising from the velocity gradient tensor and the rotation rates of the Cosserats. Specifically, in this non-classical continuum theory we have (1) the usual velocities (\\bar{ ±b {\\varvec{v }}}), (2) the three internal rotation rates ({}_i^t\\bar{ ±b {\\varvec{Θ }}}) about the axes of a fixed triad whose axes are parallel to the x-frame arising from the velocity gradient tensor (\\bar{ ±b {\\varvec{L }}}) that are completely defined by the antisymmetric part of the velocity gradient tensor, and (3) three additional rotation rates ({}_e^t\\bar{ ±b {\\varvec{Θ }}}) about the axes of the same triad located at each material point as additional three unknown degrees of freedom, referred to as Cosserat rotation rates. This gives rise to \\bar{ ±b {\\varvec{v }}} and {}_e^t\\bar{ ±b {\\varvec{Θ }}} as six degrees of freedom at a material point. The internal rotation rates {}_i^t\\bar{ ±b {\\varvec{Θ }}}, often neglected in classical fluid mechanics, exist in all deforming fluent continua as these are due to velocity gradient tensor. When the internal rotation rates {}_i^t\\bar{ ±b {\\varvec{Θ }}} are resisted by deforming fluent continua, conjugate moment tensor arises that together with {}_i^t\\bar{ ±b {\\varvec{Θ }}} may result in energy storage and/or dissipation, which must be considered in the conservation and balance laws. The Cosserat rotation rations {}_e^t\\bar{ ±b {\\varvec{Θ }}} also result in conjugate moment tensor that together with {}_e^t\\bar{ ±b {\\varvec{Θ }}} may also result in energy storage and/or dissipation. The main focus of this paper is a consistent derivation of conservation and balance laws for fluent continua that incorporate the aforementioned physics and associated constitutive theories for thermofluids using the conditions resulting from the entropy inequality. The material coefficients derived in the constitutive theories are clearly defined and discussed.

  20. Using magnetic resonance elastography to assess the dynamic mechanical properties of cartilage

    NASA Astrophysics Data System (ADS)

    Lopez, Orlando; Amrami, Kimberly; Rossman, Phillip; Ehman, Richard L.

    2004-04-01

    This work explored the feasibility of using Magnetic Resonance Elastography (MRE) technology to enable in vitro quantification of dynamic mechanical behavior of cartilage through its thickness. A customized system for MRE of cartilage was designed to include components for adequate generation and detection of high frequency mechanical shear waves within small and stiff materials. The system included components for mechanical excitation, motion encoding, and imaging of small samples. Limitations in sensitivity to motion encoding of high frequency propagating mechanical waves using a whole body coil (i.e. Gmax = 2.2 G/cm) required the design of a local gradient coil system to achieve a gain in gradient strength of at least 5 times. The performance of the new system was tested using various cartilage-mimicking phantom materials. MRE of a stiff 5% agar gelatin phantom demonstrated gains in sensitivity to motion encoding of high frequency mechanical waves in cartilage like materials. MRE of fetal bovine cartilage samples yielded a distribution of shear stiffness within the thickness of the cartilage similar to values found in the literature, hence, suggesting the feasibility of using MRE to non-invasively and directly assess the dynamic mechanical properties of cartilage.

  1. Validation of microwave radiometry for measuring the internal temperature profile of human tissue

    NASA Astrophysics Data System (ADS)

    Levick, A.; Land, D.; Hand, J.

    2011-06-01

    A phantom target with a known linear temperature gradient has been developed for validating microwave radiometry for measuring internal temperature profiles within human tissue. The purpose of the phantom target is to simulate the temperature gradient found within the surface layers of a baby's brain during hypothermal neuroprotection therapy, in which the outer surface of the phantom represents the skin surface and the inner surface the brain core. The target comprises a volume of phantom tissue material with similar dielectric properties to high water-content human tissue, contained between two copper plates at known temperatures. The antenna of a microwave radiometer is in contact with one surface of the phantom material. We have measured the microwave temperature of the phantom with microwave radiometry in a frequency band of 3.0-3.5 GHz. Our microwave temperature measurements have small 0.05 °C (type A) uncertainties associated with random effects and provide temperatures consistent with values determined using theoretical models of the antenna-target system within uncertainties. The measurements are in good agreement with the major signal contribution being formed over a near plane-wave response within the material with a much smaller contribution from close to the antenna face.

  2. Recent work on material interface reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosso, S.J.; Swartz, B.K.

    1997-12-31

    For the last 15 years, many Eulerian codes have relied on a series of piecewise linear interface reconstruction algorithms developed by David Youngs. In a typical Youngs` method, the material interfaces were reconstructed based upon nearly cell values of volume fractions of each material. The interfaces were locally represented by linear segments in two dimensions and by pieces of planes in three dimensions. The first step in such reconstruction was to locally approximate an interface normal. In Youngs` 3D method, a local gradient of a cell-volume-fraction function was estimated and taken to be the local interface normal. A linear interfacemore » was moved perpendicular to the now known normal until the mass behind it matched the material volume fraction for the cell in question. But for distorted or nonorthogonal meshes, the gradient normal estimate didn`t accurately match that of linear material interfaces. Moreover, curved material interfaces were also poorly represented. The authors will present some recent work in the computation of more accurate interface normals, without necessarily increasing stencil size. Their estimate of the normal is made using an iterative process that, given mass fractions for nearby cells of known but arbitrary variable density, converges in 3 or 4 passes in practice (and quadratically--like Newton`s method--in principle). The method reproduces a linear interface in both orthogonal and nonorthogonal meshes. The local linear approximation is generally 2nd-order accurate, with a 1st-order accurate normal for curved interfaces in both two and three dimensional polyhedral meshes. Recent work demonstrating the interface reconstruction for curved surfaces will /be discussed.« less

  3. Compatibility of materials with liquid metal targets for SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiStefano, J.R.; Pawel, S.J.; DeVan, J.H.

    1996-06-01

    Several heavy liquid metals are candidates as the target in a spallation neutron source: Hg, Pb, Bi, and Pb-Bi eutectic. Systems with these liquid metals have been used in the past and a data-base on compatibility already exists. Two major compatibility issues have been identified when selecting a container material for these liquid metals: temperature gradient mass transfer and liquid metal embrittlement or LME. Temperature gradient mass transfer refers to dissolution of material from the high temperature portions of a system and its deposition in the lower temperature areas. Solution and deposition rate constants along with temperature, {Delta}T, and velocitymore » are usually the most important parameters. For most candidate materials mass transfer corrosion has been found to be proportionately worse in Bi compared with Hg and Pb. For temperatures to {approx}550{degrees}C, ferritic/martensitic steels have been satisfactory in Pb or Hg systems and the maximum temperature can be extended to {approx}650{degrees}C with additions of inhibitors to the liquid metal, e.g. Mg, Ti, Zr. Above {approx}600{degrees}C, austenitic stainless steels have been reported to be unsatisfactory, largely because of the mass transfer of nickel. Blockage of flow from deposition of material is usually the life-limiting effect of this type of corrosion. However, mass transfer corrosion at lower temperatures has not been studied. At low temperatures (usually < 150{degrees}C), LME has been reported for some liquid metal/container alloy combinations. Liquid metal embrittlement, like hydrogen embrittlement, results in brittle fracture of a normally ductile material.« less

  4. Early Soft X-Ray to UV Emission from Double Neutron Star Mergers: Implications from the Long-term Observations of GW170817

    NASA Astrophysics Data System (ADS)

    Wang, Xiang-Yu; Huang, Zhi-Qiu

    2018-01-01

    Recent long-term radio follow-up observations of GW170817 reveal a simple power-law rising light curve, with a slope of {t}0.78, up to 93 days after the merger. The latest X-ray detection at 109 days is also consistent with such a temporal slope. Such a shallow rise behavior requires a mildly relativistic outflow with a steep velocity gradient profile, so that slower material with larger energy catches up with the decelerating ejecta and re-energizes it. It has been suggested that this mildly relativistic outflow may represent a cocoon of material. We suggest that the velocity gradient profile may form during the stage that the cocoon is breaking out of the merger ejecta, resulting from shock propagation down a density gradient. The cooling of the hot relativistic cocoon material immediately after it breaks out should have produced soft X-ray to UV radiation at tens of seconds to hours after the merger. The soft X-ray emission has a luminosity of {L}{{X}}∼ {10}45 {erg} {{{s}}}-1 over a period of tens of seconds for a merger event like GW170817. The UV emission shows a rise initially and peaks at about a few hours with a luminosity of {L}{UV}∼ {10}42 {erg} {{{s}}}-1. The soft X-ray transients could be detected by future wide-angle X-ray detectors, such as the Chinese mission Einstein Probe. This soft X-ray/UV emission would serve as one of the earliest electromagnetic counterparts of gravitation waves from double neutron star mergers and could provide the earliest localization of the sources.

  5. Review of high-throughput techniques for detecting solid phase Transformation from material libraries produced by combinatorial methods

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2005-01-01

    High-throughput measurement techniques are reviewed for solid phase transformation from materials produced by combinatorial methods, which are highly efficient concepts to fabricate large variety of material libraries with different compositional gradients on a single wafer. Combinatorial methods hold high potential for reducing the time and costs associated with the development of new materials, as compared to time-consuming and labor-intensive conventional methods that test large batches of material, one- composition at a time. These high-throughput techniques can be automated to rapidly capture and analyze data, using the entire material library on a single wafer, thereby accelerating the pace of materials discovery and knowledge generation for solid phase transformations. The review covers experimental techniques that are applicable to inorganic materials such as shape memory alloys, graded materials, metal hydrides, ferric materials, semiconductors and industrial alloys.

  6. In-situ Observation of Cross-Sectional Microstructural Changes and Stress Distributions in Fracturing TiN Thin Film during Nanoindentation

    PubMed Central

    Zeilinger, Angelika; Todt, Juraj; Krywka, Christina; Müller, Martin; Ecker, Werner; Sartory, Bernhard; Meindlhumer, Michael; Stefenelli, Mario; Daniel, Rostislav; Mitterer, Christian; Keckes, Jozef

    2016-01-01

    Load-displacement curves measured during indentation experiments on thin films depend on non-homogeneous intrinsic film microstructure and residual stress gradients as well as on their changes during indenter penetration into the material. To date, microstructural changes and local stress concentrations resulting in plastic deformation and fracture were quantified exclusively using numerical models which suffer from poor knowledge of size dependent material properties and the unknown intrinsic gradients. Here, we report the first in-situ characterization of microstructural changes and multi-axial stress distributions in a wedge-indented 9 μm thick nanocrystalline TiN film volume performed using synchrotron cross-sectional X-ray nanodiffraction. During the indentation, needle-like TiN crystallites are tilted up to 15 degrees away from the indenter axis in the imprint area and strongly anisotropic diffraction peak broadening indicates strain variation within the X-ray nanoprobe caused by gradients of giant compressive stresses. The morphology of the multiaxial stress distributions with local concentrations up to −16.5 GPa correlate well with the observed fracture modes. The crack growth is influenced decisively by the film microstructure, especially by the micro- and nano-scopic interfaces. This novel experimental approach offers the capability to interpret indentation response and indenter imprint morphology of small graded nanostructured features. PMID:26947558

  7. Persisting roughness when deposition stops.

    PubMed

    Schwartz, Moshe; Edwards, S F

    2004-12-01

    Useful theories for growth of surfaces under random deposition of material have been developed by several authors. The simplest theory is that introduced by Edwards and Wilkinson (EW), which is linear and soluble. Its nonlinear generalization by Kardar, Parisi, and Zhang (KPZ) resulted in many subsequent studies. Yet both EW and KPZ theories contain an unphysical feature. When deposition of material is stopped, both theories predict that as time tends to infinity, the surface becomes flat. In fact, of course, the final surface is not flat, but simply has no gradients larger than the gradient related to the angle of repose. We modify the EW and KPZ theories to accommodate this feature and study the consequences for the simpler system which is a modification of the EW equation. In spite of the fact that the equation describing the evolution of the surface is not linear, we find that the steady state in the presence of noise is not very different in the long-wavelength limit from that of the linear EW equation. The situation is quite different from that of EW when deposition stops. Initially there is still some rearrangement of the surface, but that stops as everywhere on the surface the gradient is less than that related to the angle of repose. The most interesting feature observed after deposition stops is the emergence of history-dependent steady-state distributions.

  8. Flexoelectricity as a bulk property

    NASA Astrophysics Data System (ADS)

    Resta, Raffaele

    2010-03-01

    Piezoelectric composites can be created using nonpiezoelectric materials, by exploiting flexoelectricity. This is by definition the linear response of polarization to strain gradient, and is symmetry-allowed even in elemental crystals. However, the basic issue whether flexoelectricity is a bulk or a surface material property is open. We mention that the analogous issue about piezoelectricity is nontrivial either.^1 In this first attempt towards a full theory of flexoelectricity we prove that, for a simple class of strain and strain gradients, flexoelectricity is indeed a bulk effect. The key ingredients of the present theory are the long-range perturbations linearly induced by a unit displacement of a single nucleus in an otherwise perfect crystal: to leading order these are dipolar, quadrupolar, and octupolar. The corresponding tensors have rank 2, 3, and 4, respectively. Whereas dipoles and quadrupoles provide the piezoelectric response,^1 we show that dipoles and octupoles provide the flexoelectric response in nonpiezoelectric crystals. We conjecture that the full dipole and octupole tensors provide the flexoelectric response to the most general form of strain gradient. Our problem has a close relationship to the one of the ``absolute'' deformation potentials, which is based on a similar kind of dipolar and octupolar tensors.^2 ^1 R. M. Martin, Phys. Rev. B 5, 1607 (1972). ^2 R. Resta, L. Colombo and S. Baroni, Phys. Rev. B 41, 12538 (1990).

  9. Design of shared instruments to utilize simulated gravities generated by a large-gradient, high-field superconducting magnet.

    PubMed

    Wang, Y; Yin, D C; Liu, Y M; Shi, J Z; Lu, H M; Shi, Z H; Qian, A R; Shang, P

    2011-03-01

    A high-field superconducting magnet can provide both high-magnetic fields and large-field gradients, which can be used as a special environment for research or practical applications in materials processing, life science studies, physical and chemical reactions, etc. To make full use of a superconducting magnet, shared instruments (the operating platform, sample holders, temperature controller, and observation system) must be prepared as prerequisites. This paper introduces the design of a set of sample holders and a temperature controller in detail with an emphasis on validating the performance of the force and temperature sensors in the high-magnetic field.

  10. Temperature cycling vapor deposition HgI.sub.2 crystal growth

    DOEpatents

    Schieber, Michael M.; Beinglass, Israel; Dishon, Giora

    1977-01-01

    A method and horizontal furnace for vapor phase growth of HgI.sub.2 crystals which utilizes controlled axial and radial airflow to maintain the desired temperature gradients. The ampoule containing the source material is rotated while axial and radial air tubes are moved in opposite directions during crystal growth to maintain a desired distance and associated temperature gradient with respect to the growing crystal, whereby the crystal interface can advance in all directions, i.e., radial and axial according to the crystallographic structure of the crystal. Crystals grown by this method are particularly applicable for use as room-temperature nuclear radiation detectors.

  11. Reactive transport modeling at uranium in situ recovery sites: uncertainties in uranium sorption on iron hydroxides

    USGS Publications Warehouse

    Johnson, Raymond H.; Tutu, Hlanganani; Brown, Adrian; Figueroa, Linda; Wolkersdorfer, Christian

    2013-01-01

    Geochemical changes that can occur down gradient from uranium in situ recovery (ISR) sites are important for various stakeholders to understand when evaluating potential effects on surrounding groundwater quality. If down gradient solid-phase material consists of sandstone with iron hydroxide coatings (no pyrite or organic carbon), sorption of uranium on iron hydroxides can control uranium mobility. Using one-dimensional reactive transport models with PHREEQC, two different geochemical databases, and various geochemical parameters, the uncertainties in uranium sorption on iron hydroxides are evaluated, because these oxidized zones create a greater risk for future uranium transport than fully reduced zones where uranium generally precipitates.

  12. Design of shared instruments to utilize simulated gravities generated by a large-gradient, high-field superconducting magnet

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Yin, D. C.; Liu, Y. M.; Shi, J. Z.; Lu, H. M.; Shi, Z. H.; Qian, A. R.; Shang, P.

    2011-03-01

    A high-field superconducting magnet can provide both high-magnetic fields and large-field gradients, which can be used as a special environment for research or practical applications in materials processing, life science studies, physical and chemical reactions, etc. To make full use of a superconducting magnet, shared instruments (the operating platform, sample holders, temperature controller, and observation system) must be prepared as prerequisites. This paper introduces the design of a set of sample holders and a temperature controller in detail with an emphasis on validating the performance of the force and temperature sensors in the high-magnetic field.

  13. A class of fractional differential hemivariational inequalities with application to contact problem

    NASA Astrophysics Data System (ADS)

    Zeng, Shengda; Liu, Zhenhai; Migorski, Stanislaw

    2018-04-01

    In this paper, we study a class of generalized differential hemivariational inequalities of parabolic type involving the time fractional order derivative operator in Banach spaces. We use the Rothe method combined with surjectivity of multivalued pseudomonotone operators and properties of the Clarke generalized gradient to establish existence of solution to the abstract inequality. As an illustrative application, a frictional quasistatic contact problem for viscoelastic materials with adhesion is investigated, in which the friction and contact conditions are described by the Clarke generalized gradient of nonconvex and nonsmooth functionals, and the constitutive relation is modeled by the fractional Kelvin-Voigt law.

  14. Multiscale structural gradients enhance the biomechanical functionality of the spider fang

    PubMed Central

    Bar-On, Benny; Barth, Friedrich G.; Fratzl, Peter; Politi, Yael

    2014-01-01

    The spider fang is a natural injection needle, hierarchically built from a complex composite material comprising multiscale architectural gradients. Considering its biomechanical function, the spider fang has to sustain significant mechanical loads. Here we apply experiment-based structural modelling of the fang, followed by analytical mechanical description and Finite-Element simulations, the results of which indicate that the naturally evolved fang architecture results in highly adapted effective structural stiffness and damage resilience. The analysis methods and physical insights of this work are potentially important for investigating and understanding the architecture and structural motifs of sharp-edge biological elements such as stingers, teeth, claws and more. PMID:24866935

  15. Aggregation-Induced Emission Luminogen-Based Direct Visualization of Concentration Gradient Inside an Evaporating Binary Sessile Droplet.

    PubMed

    Cai, Xin; Xie, Ni; Qiu, Zijie; Yang, Junxian; He, Minghao; Wong, Kam Sing; Tang, Ben Zhong; Qiu, Huihe

    2017-08-30

    In this study, the concentration gradient inside evaporating binary sessile droplets of 30, 50, and 60 vol % tetrahydrofuran (THF)/water mixtures was investigated. The 5 μL THF/water droplets were evaporated on a transparent hydrophobic substrate. This is the first demonstration of local concentration mapping within an evaporating binary droplet utilizing the aggregation-induced emission material. During the first two evaporation stages of the binary droplet, the local concentration can be directly visualized by the change of fluorescence emission intensity. Time-resolved average and local concentrations can be estimated by using the pre-established function of fluorescence intensity versus water volume fraction.

  16. Edge effects in composites by moire interferometry

    NASA Technical Reports Server (NTRS)

    Czarnek, R.; Post, D.; Herakovich, C.

    1983-01-01

    The very high sensitivity of moire interferometry has permitted the present edge effect experiments to be conducted at a low average stress and strain level, assuring linear and elastic behavior in the composite material samples tested. Sensitivity corresponding to 2450 line/mm moire was achieved with a 0.408 micron/fringe. Simultaneous observations of the specimen face and edge displacement fields showed good fringe definition despite the 1-mm thickness of the specimens and the high gradients, and it is noted that the use of a carrier pattern and optical filtering was effective in even these conditions. Edge effects and dramatic displacement gradients were confirmed in angle-ply composite laminates.

  17. Thermomechanical and Environmental Durability of Environmental Barrier Coated Ceramic Matrix Composites Under Thermal Gradients

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Bhatt, Ramakrishna T.; Harder, Bryan

    2016-01-01

    This paper presents the developments of thermo-mechanical testing approaches and durability performance of environmental barrier coatings (EBCs) and EBC coated SiCSiC ceramic matrix composites (CMCs). Critical testing aspects of the CMCs will be described, including state of the art instrumentations such as temperature, thermal gradient, and full field strain measurements; materials thermal conductivity evolutions and thermal stress resistance; NDE methods; thermo-mechanical stress and environment interactions associated damage accumulations. Examples are also given for testing ceramic matrix composite sub-elements and small airfoils to help better understand the critical and complex CMC and EBC properties in engine relevant testing environments.

  18. Ferroic Shape Memory Materials & Piezo:Pyro-Electric Oriented Recrystallized Glasses.

    DTIC Science & Technology

    1986-07-01

    microcope hot stage. The direction of crystallization was parallel to the direction of temperature gradient. The crystalline phases in the glass...may increase or decrease with temperature. Several compounds show a sign reversal in the pyroelectric coefficients, going from positive to negative

  19. 40 CFR 230.45 - Riffle and pool complexes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 230.45 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION... Impacts on Special Aquatic Sites § 230.45 Riffle and pool complexes. (a) Steep gradient sections of... modification. Note: Possible actions to minimize adverse impacts on site or material characteristics can be...

  20. 40 CFR 230.45 - Riffle and pool complexes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 230.45 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION... Impacts on Special Aquatic Sites § 230.45 Riffle and pool complexes. (a) Steep gradient sections of... modification. Note: Possible actions to minimize adverse impacts on site or material characteristics can be...

  1. 40 CFR 230.45 - Riffle and pool complexes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 230.45 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION... Impacts on Special Aquatic Sites § 230.45 Riffle and pool complexes. (a) Steep gradient sections of... modification. Note: Possible actions to minimize adverse impacts on site or material characteristics can be...

  2. Thermo-Electro-Mechanical Analysis of a Curved Functionally Graded Piezoelectric Actuator with Sandwich Structure

    PubMed Central

    Yan, Zhi; Zaman, Mostafa; Jiang, Liying

    2011-01-01

    In this work, the problem of a curved functionally graded piezoelectric (FGP) actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment. PMID:28824130

  3. Complex modal analysis of transverse free vibrations for axially moving nanobeams based on the nonlocal strain gradient theory

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Shen, Huoming; Zhang, Bo; Liu, Juan; Zhang, Yingrong

    2018-07-01

    We investigate the transverse free vibration behaviour of axially moving nanobeams based on the nonlocal strain gradient theory. Considering the geometrical nonlinearity, which takes the form of von Kármán strains, the coupled plane motion equations and related boundary conditions of a new size-dependent beam model of Euler-Bernoulli type are developed using the generalized Hamilton principle. Using the simply supported axially moving nanobeams as an example, the complex modal analysis method is adopted to solve the governing equation; then, the effect of the order of modal truncation on the natural frequencies is discussed. Subsequently, the roles of the nonlocal parameter, material characteristic parameter, axial speed, stiffness and axial support rigidity parameter on the free vibration are comprehensively addressed. The material characteristic parameter induces the stiffness hardening of nanobeams, while the nonlocal parameter induces stiffness softening. In addition, the roles of small-scale parameters on the flutter critical velocity and stability are explained.

  4. Ereptiospiration.

    PubMed

    Woolley, Christine; Garcia, Antonio A; Santello, Marco

    2017-04-12

    Pure coconut oil, lanolin, and acetaminophen were vaporized at rates of 1-50 mg/min, using a porous network exhibiting a temperature gradient from 5000 to 5500 K/mm, without incurring noticeable chemical changes due to combustion, oxidation, or other thermally-induced chemical structural changes. The newly coined term "ereptiospiration" is used here to describe this combination of thermal transpiration at high temperature gradients since the process can force the creation of thermal aerosols by rapid heating in a localized zone. Experimental data were generated for these materials using two different supports for metering the materials to the battery powered coil: namely, a stainless steel fiber bundle and a 3-D printed steel cartridge. Heating coconut oil, lanolin, or acetaminophen in a beaker to lower temperatures than those achieved at the surface of the coil showed noticeable and rapid degradation in the samples, while visual and olfactory observations for ereptiospiration showed no noticeable degradation in lanolin and coconut oil while HPLC chromatograms along with visual observation confirm that within the limit of detection, acetaminophen remains chemically unaltered by ereptiospiration.

  5. Analytical Solution for the Critical Velocity of Pushing/Engulfment Transition

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu

    2004-01-01

    The distribution of ceramic particles in a metal matrix composite material depends primarily on the interaction of the particles with the solid/liquid interface during the solidification process. A numerical model that describes the evolution of the shape of the solid/liquid interface in the proximity of a foreign particle will presented in this paper. The model accounts for the influence of the temperature gradient and the Gibbs-Thomson and disjoining pressure effects. It shows that for the systems characterized by k(sub p) < k(sub L) the disjoining pressure causes the interface curvature to change its sign in the close-contact particle/interface region. It also shows that the increase of the temperature gradient diminishes the effect of the disjoining pressure. The analysis of the numerical results obtained for a large range of processing conditions and materials parameters has led to the development of an analytical solution for the critical velocity of pushing/engulfinent transition. The theoretical results will be discussed and compared with the experimental measurements performed under microgravity conditions.

  6. Cycling Performance of a Columnar-Structured Complex Perovskite in a Temperature Gradient Test

    NASA Astrophysics Data System (ADS)

    Schlegel, N.; Sebold, D.; Sohn, Y. J.; Mauer, G.; Vaßen, R.

    2015-10-01

    To increase the efficiency of turbines for the power generation and the aircraft industry, advanced thermal barrier coatings (TBCs) are required. They need to be long-term stable at temperatures higher than 1200 °C. Nowadays, yttria partially stabilized zirconia (YSZ) is applied as standard TBC material. But its long-term application at temperatures higher than 1200 °C leads to detrimental phase changes and sintering effects. Therefore, new materials have to be investigated, for example, complex perovskites. They provide high melting points, high thermal expansion coefficients and thermal conductivities of approx. 2.0 W/(m K). In this work, the complex perovskite La(Al1/4Mg1/2Ta1/4)O3 (LAMT) was investigated. It was deposited by the suspension plasma spraying (SPS) process, resulting in a columnar microstructure of the coating. The coatings were tested in thermal cycling gradient tests and they show excellent results, even though some phase decomposition was found.

  7. Pore Formation and Mobility Investigation (PFMI): Concept, Hardware Development, and Initial Analysis of Experiments Conducted Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    2003-01-01

    Porosity in the form of "bubbles and pipes" can occur during controlled directional solidification processing of metal alloys. This is a consequence that 1) precludes obtaining any meaningful scientific results and 2) is detrimental to desired material properties. Unfortunately, several Microgravity experiments have been compromised by porosity. The intent of the PFMl investigation is to conduct a systematic effort directed towards understanding porosity formation and mobility during controlled directional solidification (DS) in a microgravity environment. PFMl uses a pure transparent material, succinonitrile (SCN), as well as SCN "alloyed" with water, in conjunction with a translating temperature gradient stage so that direct observation and recording of pore generation and mobility can be made. PFMl is investigating the role of thermocapillary forces and temperature gradients in affecting bubble dynamics as well as other solidification processes in a microgravity environment. This presentation will cover the concept, hardware development, operations, and the initial results from experiments conducted aboard the International Space Station.

  8. Pore Formation and Mobility Investigation (PFMI): Concept, Hardware Development and Initial Analysis of Experiments

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    2004-01-01

    Porosity in the form of "bubbles and pipes" can occur during controlled directional solidification processing of metal alloys. This is a consequence that 1) precludes obtaining any meaningful scientific results and 2) is detrimental to desired material properties. Unfortunately, several Microgravity experiments have been compromised by porosity. The intent of the PFMI investigation is to conduct a systematic effort directed towards understanding porosity formation and mobility during controlled directional solidification (DS) in a microgravity environment. PFMI uses a pure transparent material, succinonitrile (SCN), as well as SCN "alloyed" with water, in conjunction with a translating temperature gradient stage so that direct observation and recording of pore generation and mobility can be made. PFMI is investigating the role of thermocapillary forces and temperature gradients in affecting bubble dynamics as well as other solidification processes in a microgravity Environment. This presentation will cover the concept, hardware development, operations, and the initial results from experiments conducted aboard the International Space Station. .

  9. VPS Process for Copper Components in Thrust Chamber Assemblies

    NASA Technical Reports Server (NTRS)

    Elam, Sandra; Holmes, Richard; Hickman, Robert; McKechnie, Tim; Thom, George

    2005-01-01

    For several years, NASA's Marshall Space Flight Center (MSFC) has been working with Plasma Processes, Inc., (PPI) to fabricate thrust chamber liners with GRCop-84. Using the vacuum plasma spray (VPS) process, chamber liners of a variety of shapes and sizes have been created. Each has been formed as a functional gradient material (FGM) that creates a unique protective layer of NiCrAlY on the GRCop-84 liner s hot wall surface. Hot-fire testing was successfully conducted on a subscale unit to demonstrate the liner's durability and performance. Similar VPS technology has also been applied to create functional gradient coatings (FGC) on copper injector faceplates. Protective layers of NiCrAlY and zirconia were applied to both coaxial and impinging faceplate designs. Hot-fire testing is planned for these coated injectors in April 2005. The resulting material systems for both copper alloy components allows them to operate at higher temperatures with improved durability and operating margins.

  10. Roadmap to the Future

    NASA Astrophysics Data System (ADS)

    Colby, Eric R.; Len, L. K.

    Most particle accelerators today are expensive devices found only in the largest laboratories, industries, and hospitals. Using techniques developed nearly a century ago, the limiting performance of these accelerators is often traceable to material limitations, power source capabilities, and the cost tolerance of the application. Advanced accelerator concepts aim to increase the gradient of accelerators by orders of magnitude, using new power sources (e.g. lasers and relativistic beams) and new materials (e.g. dielectrics, metamaterials, and plasmas). Worldwide, research in this area has grown steadily in intensity since the 1980s, resulting in demonstrations of accelerating gradients that are orders of magnitude higher than for conventional techniques. While research is still in the early stages, these techniques have begun to demonstrate the potential to radically change accelerators, making them much more compact, and extending the reach of these tools of science into the angstrom and attosecond realms. Maturation of these techniques into robust, engineered devices will require sustained interdisciplinary, collaborative R&D and coherent use of test infrastructure worldwide. The outcome can potentially transform how accelerators are used.

  11. Roadmap to the Future

    NASA Astrophysics Data System (ADS)

    Colby, Eric R.; Len, L. K.

    Most particle accelerators today are expensive devices found only in the largest laboratories, industries, and hospitals. Using techniques developed nearly a century ago, the limiting performance of these accelerators is often traceable to material limitations, power source capabilities, and the cost tolerance of the application. Advanced accelerator conceptsa aim to increase the gradient of accelerators by orders of magnitude, using new power sources (e.g. lasers and relativistic beams) and new materials (e.g. dielectrics, metamaterials, and plasmas). Worldwide, research in this area has grown steadily in intensity since the 1980s, resulting in demonstrations of accelerating gradients that are orders of magnitude higher than for conventional techniques. While research is still in the early stages, these techniques have begun to demonstrate the potential to radically change accelerators, making them much more compact, and extending the reach of these tools of science into the angstrom and attosecond realms. Maturation of these techniques into robust, engineered devices will require sustained interdisciplinary, collaborative R&D and coherent use of test infrastructure worldwide. The outcome can potentially transform how accelerators are used.

  12. A study of RSI under combined stresses

    NASA Technical Reports Server (NTRS)

    Kibler, J. J.; Rosen, B. W.

    1974-01-01

    The behavior of typical rigidized surface insulation material (RSI) under combined loading states was investigated. In particular, the thermal stress states induced during reentry of the space shuttle were of prime concern. A typical RSI tile was analyzed for reentry thermal stresses under computed thermal gradients for a model of the RSI material. The results of the thermal stress analyses were then used to aid in defining typical combined stress states for the failure analysis of RSI.

  13. Microscale electromagnetic heating in heterogeneous energetic materials based on x-ray computed tomography

    DOE PAGES

    Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; ...

    2016-04-01

    Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.

  14. Microscale electromagnetic heating in heterogeneous energetic materials based on x-ray computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.

    Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.

  15. Planar optical waveguides for optical panel having gradient refractive index core

    DOEpatents

    Veligdan, James T.

    2001-01-01

    An optical panel is disclosed. A plurality of stacked planar optical waveguides are used to guide light from an inlet face to an outlet face of an optical panel. Each of the optical waveguides comprises a planar sheet of core material having a central plane. The core material has an index of refraction which decreases as the distance from the central plane increases. The decrease in the index of refraction occurs gradually and continuously.

  16. Planar optical waveguides for optical panel having gradient refractive index core

    DOEpatents

    Veligdan, James T.

    2004-08-24

    An optical panel is disclosed. A plurality of stacked planar optical waveguides are used to guide light from an inlet face to an outlet face of an optical panel. Each of the optical waveguides comprises a planar sheet of core material having a central plane. The core material has an index of refraction which decreases as the distance from the central plane increases. The decrease in the index of refraction occurs gradually and continuously.

  17. Methods of both destructive and non-destructive metrology of GRIN optical elements

    NASA Astrophysics Data System (ADS)

    Lindberg, G. P.; Deegan, J.; Benson, R.; Berger, A. J.; Linden, J. J.; Gibson, D.; Bayya, S.; Sanghera, J.; Nguyen, V.; Kotov, M.

    2015-05-01

    Gradient index (GRIN) optics have been an up-and-coming tool in the world of optics. By combining an index gradient with a surface curvature the number of optical components for a lens system can often be greatly reduced. Their use in the realm of infra-red is only becoming realized as new efforts are being developed to create materials that are suitable and mutually compatible for these optical components. The materials being pursued are the chalcogenide based glasses. Small changes in elemental concentrations in these glasses can have significant effects on physical and optical properties. The commonality between these glasses and their widely different optical properties make them prime candidates for GRIN applications. Traditional methods of metrology are complicated by the combination of the GRIN and the curvature of the element. We will present preliminary data on both destructive and non-destructive means of measuring the GRIN profile. Non-destructive methods may require inference of index through material properties, by careful measurement of the individual materials going into the GRIN optic, followed by, mapping measurements of the GRIN surface. Methods to be pursued are micro Raman mapping and CT scanning. By knowing the properties of the layers and accurately mapping the interfaces between the layers we should be able to back out the index profile of the GRIN optic and then confirm the profile by destructive means.

  18. Potential techniques for non-destructive evaluation of cable materials

    NASA Astrophysics Data System (ADS)

    Gillen, Kenneth T.; Clough, Roger L.; Mattson, Bengt; Stenberg, Bengt; Oestman, Erik

    This paper describes the connection between mechanical degradation of common cable materials, in radiation and elevated temperature environments, and density increases caused by the oxidation which leads to this degradation. Two techniques based on density changes are suggested as potential non-destructive evaluation (NDE) procedures which may be applicable to monitoring the mechanical condition of cable materials in power plant environments. The first technique is direct measurement of density changes, via a density gradient column, using small shavings removed from the surface of cable jackets at selected locations. The second technique is computed X-ray tomography, utilizing a portable scanning device.

  19. Electromagnetic valve for controlling the flow of molten, magnetic material

    DOEpatents

    Richter, T.

    1998-06-16

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell. 5 figs.

  20. Electromagnetic valve for controlling the flow of molten, magnetic material

    DOEpatents

    Richter, Tomas

    1998-01-01

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell.

  1. Advanced characterization of lithium battery materials with positrons

    NASA Astrophysics Data System (ADS)

    Barbiellini, Bernardo; Kuriplach, Jan

    2017-01-01

    Cathode materials are crucial to improved battery performance, in part because there are not yet materials that can maintain high power and stable cycling with a capacity comparable to that of anode materials. Our parameter-free, gradient-corrected model for electron-positron correlations predicts that spectroscopies based on positron annihilation can be deployed to study the effect of lithium intercalation in the oxide matrix of the cathode. The positron characteristics in oxides can be reliably computed using methods based on first-principles. Thus, we can enable a fundamental characterization of lithium battery materials involving positron annihilation spectroscopy and first-principles calculations. The detailed information one can extract from positron experiments could be useful for understanding and optimizing both battery materials and bi-functional catalysts for oxygen reduction and evolution.

  2. Apparatus for consolidating a pre-impregnated, filament-reinforced polymeric prepreg material

    NASA Technical Reports Server (NTRS)

    Sandusky, Donald A. (Inventor)

    1995-01-01

    An apparatus and method were developed for providing a uniform, consolidated, unidirectional, continuous, fiber-reinforced polymeric material. The apparatus comprises a supply means, a forming means, a shaping means, and a take-up means. The forming means further comprises a pre-melting chamber and a stationary bar assembly. The shaping means is a loaded cooled nip-roller apparatus. Forming takes place by heating a polymeric prepreg material to a temperature where the polymer becomes viscous and applying pressure gradients at separate locations along the prepreg material. Upon exiting the forming means, the polymeric prepreg material is malleable, consolidated, and flattened. Shaping takes place by passing the malleable, consolidated, flattened prepreg material through a shaped, matched groove in a loaded, cooled nip-roller apparatus to provide the final solid product.

  3. Superheating Suppresses Structural Disorder in Layered BiI3 Semiconductors Grown by the Bridgman Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johns, Paul M.; Sulekar, Soumitra; Yeo, Shinyoung

    2016-01-01

    The susceptibility of layered structures to stacking faults is a problem in some of the more attractive semiconductor materials for ambient-temperature radiation detectors. In the work presented here, Bridgman-grown BiI3 layered single crystals are investigated to understand and eliminate this structural disorder, which reduces radiation detector performance. The use of superheating gradients has been shown to improve crystal quality in non-layered semiconductor crystals; thus the technique was here explored to improve the growth of BiI3. When investigating the homogeneity of non-superheated crystals, highly geometric void defects were found to populate the bulk of the crystals. Applying a superheating gradient tomore » the melt prior to crystal growth improved structural quality and decreased defect density from the order of 4600 voids per cm3 to 300 voids per cm3. Corresponding moderate improvements to electronic properties also resulted from the superheat gradient method of crystal growth. Comparative measurements through infrared microscopy, etch-pit density, x-ray rocking curves, and sheet resistivity readings show that superheat gradients in BiI3 growth led to higher quality crystals.« less

  4. Buoyancy-Marangoni convection in confined volatile binary fluids subject to a horizontal temperature gradient

    NASA Astrophysics Data System (ADS)

    Qin, Tongran; Grigoriev, Roman

    2017-11-01

    We consider convection in a layer of binary fluid with free surface subject to a horizontal temperature gradient in the presence of noncondensable gases, which is driven by a combination of three different forces: buoyancy, thermocapillarity, and solutocapillarity. Unlike buoyancy, both thermo- and solutocapillary stresses depend sensitively on the local phase equilibrium at the liquid-gas interface. In particular, thermocapillarity associated with the interfacial temperature gradient is controlled by the vapors' concentration along the interface, and solutocapillarity associated with the interfacial concentration gradient is controlled by differential phase change of two components of the liquid, which is strongly influenced by the presence of noncondensables. Therefore, flows in both phases, phase change, and effect of noncondensables all have to be considered. Numerical simulations based on a comprehensive model taking these effects into account show qualitative agreement with recent experiments which identified a number of flow regimes at various compositions of both phases. In particular,we find that the composition of both the gas and liquid phase have a significant effect on the observed convection patterns; this dependence can be understood using a simple analytical model. This material is based upon work supported by the National Science Foundation under Grant No. 1511470.

  5. Separation of Bacteria, Protozoa and Carbon Nanotubes by Density Gradient Centrifugation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortimer, Monika; Petersen, Elijah; Buchholz, Bruce

    Sustainable production and use of carbon nanotube (CNT)-enabled materials require efficient assessment of CNT environmental hazards, including the potential for CNT bioaccumulation and biomagnification in environmental receptors. Microbes, as abundant organisms responsible for nutrient cycling in soil and water, are important ecological receptors for studying the effects of CNTs. Quantification of CNT association with microbial cells requires efficient separation of CNT-associated cells from individually dispersed CNTs and CNT agglomerates. Here in this paper, we designed, optimized, and demonstrated procedures for separating bacteria (Pseudomonas aeruginosa) from unbound multiwall carbon nanotubes (MWCNTs) and MWCNT agglomerates using sucrose density gradient centrifugation. We demonstratemore » separation of protozoa (Tetrahymena thermophila) from MWCNTs, bacterial agglomerates, and protozoan fecal pellets by centrifugation in an iodixanol solution. The presence of MWCNTs in the density gradients after centrifugation was determined by quantification of 14C-labeled MWCNTs; the recovery of microbes from the density gradient media was confirmed by optical microscopy. Protozoan intracellular contents of MWCNTs and of bacteria were also unaffected by the designed separation process. Lastly, the optimized methods contribute to improved efficiency and accuracy in quantifying MWCNT association with bacteria and MWCNT accumulation in protozoan cells, thus supporting improved assessment of CNT bioaccumulation.« less

  6. Classical Heat-Flux Measurements in Coronal Plasmas from Collective Thomson-Scattering Spectra

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Hu, S. X.; Katz, J.; Froula, D. H.; Rozmus, W.

    2016-10-01

    Collective Thomson scattering was used to measure heat flux in coronal plasmas. The relative amplitude of the Thomson-scattered power into the up- and downshifted electron plasma wave features was used to determine the flux of electrons moving along the temperature gradient at three to four times the electron thermal velocity. Simultaneously, the ion-acoustic wave features were measured. Their relative amplitude was used to measure the flux of the return-current electrons. The frequencies of these ion-acoustic and electron plasma wave features provide local measurements of the electron temperature and density. These spectra were obtained at five locations along the temperature gradient in a laser-produced blowoff plasma. These measurements of plasma parameters are used to infer the Spitzer-Härm flux (qSH = - κ∇Te ) and are in good agreement with the values of the heat flux measured from the scattering-feature asymmetries. Additional experiments probed plasma waves perpendicular to the temperature gradient. The data show small effects resulting from heat flux compared to probing waves along the temperature gradient. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  7. Application of the High Gradient hydrodynamics code to simulations of a two-dimensional zero-pressure-gradient turbulent boundary layer over a flat plate

    NASA Astrophysics Data System (ADS)

    Kaiser, Bryan E.; Poroseva, Svetlana V.; Canfield, Jesse M.; Sauer, Jeremy A.; Linn, Rodman R.

    2013-11-01

    The High Gradient hydrodynamics (HIGRAD) code is an atmospheric computational fluid dynamics code created by Los Alamos National Laboratory to accurately represent flows characterized by sharp gradients in velocity, concentration, and temperature. HIGRAD uses a fully compressible finite-volume formulation for explicit Large Eddy Simulation (LES) and features an advection scheme that is second-order accurate in time and space. In the current study, boundary conditions implemented in HIGRAD are varied to find those that better reproduce the reduced physics of a flat plate boundary layer to compare with complex physics of the atmospheric boundary layer. Numerical predictions are compared with available DNS, experimental, and LES data obtained by other researchers. High-order turbulence statistics are collected. The Reynolds number based on the free-stream velocity and the momentum thickness is 120 at the inflow and the Mach number for the flow is 0.2. Results are compared at Reynolds numbers of 670 and 1410. A part of the material is based upon work supported by NASA under award NNX12AJ61A and by the Junior Faculty UNM-LANL Collaborative Research Grant.

  8. Separation of Bacteria, Protozoa and Carbon Nanotubes by Density Gradient Centrifugation

    DOE PAGES

    Mortimer, Monika; Petersen, Elijah; Buchholz, Bruce; ...

    2016-10-12

    Sustainable production and use of carbon nanotube (CNT)-enabled materials require efficient assessment of CNT environmental hazards, including the potential for CNT bioaccumulation and biomagnification in environmental receptors. Microbes, as abundant organisms responsible for nutrient cycling in soil and water, are important ecological receptors for studying the effects of CNTs. Quantification of CNT association with microbial cells requires efficient separation of CNT-associated cells from individually dispersed CNTs and CNT agglomerates. Here in this paper, we designed, optimized, and demonstrated procedures for separating bacteria (Pseudomonas aeruginosa) from unbound multiwall carbon nanotubes (MWCNTs) and MWCNT agglomerates using sucrose density gradient centrifugation. We demonstratemore » separation of protozoa (Tetrahymena thermophila) from MWCNTs, bacterial agglomerates, and protozoan fecal pellets by centrifugation in an iodixanol solution. The presence of MWCNTs in the density gradients after centrifugation was determined by quantification of 14C-labeled MWCNTs; the recovery of microbes from the density gradient media was confirmed by optical microscopy. Protozoan intracellular contents of MWCNTs and of bacteria were also unaffected by the designed separation process. Lastly, the optimized methods contribute to improved efficiency and accuracy in quantifying MWCNT association with bacteria and MWCNT accumulation in protozoan cells, thus supporting improved assessment of CNT bioaccumulation.« less

  9. Microstructure Development in Electron Beam-Melted Inconel 718 and Associated Tensile Properties

    DOE PAGES

    Kirka, M. M.; Unocic, K. A.; Raghavan, N.; ...

    2016-02-12

    During the electron beam melting (EBM) process, builds occur at temperatures in excess of 800°C for nickel-base superalloys such as Inconel 718. When coupled with the temporal differences between the start and end of a build, a top-to-bottom microstructure gradient forms. Characterized in this study is the microstructure gradient and associated tensile property gradient that are common to all EBM Inconel 718 builds. From the characteristic microstructure elements observed in EBM Inconel 718 material, the microstructure gradient can be classified into three distinct regions. Region 1 (top of a build) and is comprised of a cored dendritic structure that includesmore » carbides and Laves phase within the interdendritic regions. Region 2 is an intermediate transition zone characterized by a diffuse dendritic structure, dissolution of the Laves phase, and precipitation of δ needle networks within the interdendritic regions. The bulk structure (Region 3) is comprised of a columnar grain structure lacking dendritic characteristics with δ networks having precipitated within the grain interiors. Mechanically at both 20°C and 650° C, the yield strength, ultimate tensile strength, and elongation at failure exhibit the general trend of increasing with increasing build height.« less

  10. Separation of Bacteria, Protozoa and Carbon Nanotubes by Density Gradient Centrifugation

    PubMed Central

    Mortimer, Monika; Petersen, Elijah J.; Buchholz, Bruce A.; Holden, Patricia A.

    2016-01-01

    Sustainable production and use of carbon nanotube (CNT)-enabled materials require efficient assessment of CNT environmental hazards, including the potential for CNT bioaccumulation and biomagnification in environmental receptors. Microbes, as abundant organisms responsible for nutrient cycling in soil and water, are important ecological receptors for studying the effects of CNTs. Quantification of CNT association with microbial cells requires efficient separation of CNT-associated cells from individually dispersed CNTs and CNT agglomerates. Here, we designed, optimized, and demonstrated procedures for separating bacteria (Pseudomonas aeruginosa) from unbound multiwall carbon nanotubes (MWCNTs) and MWCNT agglomerates using sucrose density gradient centrifugation. We demonstrate separation of protozoa (Tetrahymena thermophila) from MWCNTs, bacterial agglomerates, and protozoan fecal pellets by centrifugation in an iodixanol solution. The presence of MWCNTs in the density gradients after centrifugation was determined by quantification of 14C-labeled MWCNTs; the recovery of microbes from the density gradient media was confirmed by optical microscopy. Protozoan intracellular contents of MWCNTs and of bacteria were also unaffected by the designed separation process. The optimized methods contribute to improved efficiency and accuracy in quantifying MWCNT association with bacteria and MWCNT accumulation in protozoan cells, thus supporting improved assessment of CNT bioaccumulation. PMID:27917301

  11. High-pressure nuclear magnetic resonance studies of fuel cell membranes

    NASA Astrophysics Data System (ADS)

    Mananga, Eugene Stephane

    This thesis focuses on the use of high pressure NMR to study transport properties in electrolyte membranes used for fuel cells. The main concern is in studying the self-diffusion coefficients of ions and molecules in membranes and solutions, which can be used to characterize electrolytes in fuel cells. For this purpose, a high-pressure fringe field NMR method to study transport properties in material systems useful for fuel cell and battery electrolytes, was designed, developed, and implemented. In this investigation, pressure is the thermodynamic variable to obtain additional information about the ionic transport process, which could yield the crucial parameter, activation volume. Most of the work involves proton NMR, with additional investigations of others nuclei, such as fluorine, phosphorus and lithium. Using the FFG method, two fuel cell membrane types (NAFION-117, SPTES), and different dilutions of phosphoric acid were investigated, as was LiTf salt in Diglyme solution, which is used as a lithium battery electrolyte. In addition to high-pressure NMR diffusion measurements carried out in the fringe field gradient for the investigation of SPTES, pulse field gradient spin echo NMR was also used to characterize the water diffusion, in addition to measuring diffusion rates as a function of temperature. This second method allows us to measure distinct diffusion coefficients in cases where the different nuclear (proton) environments can be resolved in the NMR spectrum. Polymer electrolyte systems, in which the mobility of both cations and anions is probed by NMR self-diffusion measurements using standard pulsed field gradient methods and static gradient measurements as a function of applied hydrostatic pressure, were also investigated. The material investigated is the low molecular weight liquid diglyme/LiCF3SO3 (LiTf) complexes which can be used as electrolytes in lithium batteries. Finally, high-pressure diffusion coefficient measurements of phosphoric acid in water at different concentrations: proton (1H) and phosphorus (31P) nuclei have been performed using the static field gradient spin-echo nuclear magnetic resonance. This study is expected to be helpful in improving the understanding of phosphoric acid fuel cell technology.

  12. Argonne wins four R&D 100 Awards | Argonne National Laboratory

    Science.gov Websites

    . High-Energy Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles converting discovery science into innovative, high-impact products, processes and systems." Globus scientific facilities (such as supercomputing centers and high energy physics experiments), cloud storage

  13. Association of Stremptomyces community composition determined by PCR-denaturing gradient gel electrophoresis with indoor mold status.

    EPA Science Inventory

    Abstract Both Streptomyces species and mold species have previously been isolated from moisture-damaged building materials; however, an association between these two groups of microorganisms in indoor environments is not clear. In this study, we used a cultureindependent met...

  14. An internal crack parallel to the boundary of a nonhomogeneous half plane under thermal loading

    NASA Astrophysics Data System (ADS)

    Jin, Zhi-He; Noda, Naotake

    1993-05-01

    This paper considers the crack problem for a semi-infinite nonhomogeneous thermoelastic solid subjected to steady heat flux over the boundary. The crack faces are assumed to be insulated. The research is aimed at understanding the effect of nonhomogeneities of materials on stress intensity factors. By using the Fourier transform, the problem is reduced to a system of singular integral equations which are solved numerically. Results are presented illustrating the influence of the nonhomogeneity of the material on the stress intensity factors. Zero Mode I stress intensity factors are found for some groups of the material constants, which may be interesting for the understanding of compositions of advanced Functionally Gradient Materials.

  15. Asymptotic behavior of curvature of surface elements in isotropic turbulence

    NASA Technical Reports Server (NTRS)

    Girimaji, S. S.

    1991-01-01

    The asymptotic behavior of the curvature of material elements in turbulence is investigated using Lagrangian velocity-gradient time series obtained from direct numerical simulations of isotropic turbulence. Several material-element ensembles of different initial curvatures and shapes are studied. It is found that, at long times, the (first five) moments of the logarithm of characteristic curvature and shape factor asymptote to values that are independent of the initial curvature or shape. This evidence strongly suggests that the asymptotic pdf's of the curvature and shape of material elements are stationary and independent of initial conditions. Irrespective of initial curvature or shape, the asymptotic shape of a material surface is cylindrical with a high probability.

  16. Microfabricated thermoelectric power-generation devices

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Phillips, Wayne (Inventor); Borshchevsky, Alex (Inventor); Kolawa, Elizabeth A. (Inventor); Ryan, Margaret A. (Inventor); Caillat, Thierry (Inventor); Mueller, Peter (Inventor); Snyder, G. Jeffrey (Inventor); Kascich, Thorsten (Inventor)

    2002-01-01

    A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.

  17. Pressure gradient passivation of carbonaceous material normally susceptible to spontaneous combustion

    DOEpatents

    Ochs, Thomas L.; Sands, William D.; Schroeder, Karl; Summers, Cathy A.; Utz, Bruce R.

    2002-01-29

    This invention is a process for the passivation or deactivation with respect to oxygen of a carbonaceous material by the exposure of the carbonaceous material to an oxygenated gas in which the oxygenated gas pressure is increased from a first pressure to a second pressure and then the pressure is changed to a third pressure. Preferably a cyclic process which comprises exposing the carbonaceous material to the gas at low pressure and increasing the pressure to a second higher pressure and then returning the pressure to a lower pressure is used. The cycle is repeated at least twice wherein the higher pressure may be increased after a selected number of cycles.

  18. Pressure gradient passivation of carbonaceous material normally susceptible to spontaneous combustion

    DOEpatents

    Ochs, Thomas L.; Sands, William D.; Schroeder, Karl; Summers, Cathy A.; Utz, Bruce R.

    2000-11-14

    This invention is a process for the passivation or deactivation with resp to oxygen of a carbonaceous material by the exposure of the carbonaceous material to an oxygenated gas in which the oxygenated gas pressure is increased from a first pressure to a second pressure and then the pressure is changed to a third pressure. Preferably a cyclic process which comprises exposing the carbonaceous material to the gas at low pressure and increasing the pressure to a second higher pressure and then returning the pressure to a lower pressure is used. The cycle is repeated at least twice wherein the higher pressure may be increased after a selected number of cycles.

  19. Microfabricated thermoelectric power-generation devices

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Ryan, Margaret A. (Inventor); Borshchevsky, Alex (Inventor); Phillips, Wayne (Inventor); Kolawa, Elizabeth A. (Inventor); Snyder, G. Jeffrey (Inventor); Caillat, Thierry (Inventor); Kascich, Thorsten (Inventor); Mueller, Peter (Inventor)

    2004-01-01

    A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.

  20. Determination of Flux-Gate Magnetometer Spin Axis Offsets with the Electron Drift Instrument

    NASA Astrophysics Data System (ADS)

    Plaschke, Ferdinand; Nakamura, Rumi; Giner, Lukas; Teubenbacher, Robert; Chutter, Mark; Leinweber, Hannes K.; Magnes, Werner

    2014-05-01

    Spin-stabilization of spacecraft enormously supports the in-flight calibration of onboard flux-gate magnetometers (FGMs): eight out of twelve calibration parameters can be determined by minimization of spin tone and harmonics in the calibrated magnetic field measurements. From the remaining four parameters, the spin axis offset is usually obtained by analyzing observations of Alfvénic fluctuations in the solar wind. If solar wind measurements are unavailable, other methods for spin axis offset determination need to be used. We present two alternative methods that are based on the comparison of FGM and electron drift instrument (EDI) data: (1) EDI measures the gyration periods of instrument-emitted electrons in the ambient magnetic field. They are inversely proportional to the magnetic field strength. Differences between FGM and EDI measured field strengths can be attributed to inaccuracies in spin axis offset, if the other calibration parameters are accurately known. (2) For EDI electrons to return to the spacecraft, they have to be sent out in perpendicular direction to the ambient magnetic field. Minimization of the variance of electron beam directions with respect to the FGM-determined magnetic field direction also yields an estimate of the spin axis offset. Prior to spin axis offset determination, systematic inaccuracies in EDI gyration period measurements and in the transformation of EDI beam directions into the FGM spin-aligned reference coordinate system have to be corrected. We show how this can be done by FGM/EDI data comparison, as well.

  1. GOJJAM ZONE, WESTERN AMHARA, ETHIOPIA.

    PubMed

    Andualem, Mulusew

    2016-07-01

    Female genital mutilation is one of the harmful traditional practices among women and girls. More than 130 million girls and women live today who have undergone female genital mutilation. In Ethiopia, a high prevalence (74.3% national and 68.5% in Amhara region) has been reported. This study was aimed to identify determinant factors of female genital mutilation practices in East Gojjam Zone, Western Amhara, Ethiopia community based cross sectional study was conducted among 730 women aged 15-49 years and having children < 5 years old in September, 2014. Data were collected using a pretested interviewer administered questionnaire. Descriptive statistics were used to describe study objectives, and bivariate and multivariate analysis to identify determinant factors to female genital mutilation. 718 women and 805 daughters participated in the study. FGM prevalence was 689 (96%) and 403 (49%) among women and daughters< 5 years of age, respectively. Type1 and type 2 FGMs were common and daughters <1 years of age exhibited 91% female genital mutilation. Daughters' age, parent education level, residence, women circumcision history, culture, health education, frequent health extension workers follow up and participation in anti FGM interventions were risk factors to female genital mutilation practice. Female genital mutilation practices continues to be a major problem to women and daughter <5 years of age in the study area. A number of factors were associated with FGM practices including daughters’ age, parent education level, residence, health education, culture, mothers circumcision history, frequent health extensions workers follow up and participation in anti FGM interventions were determinants to higher FGM practices.

  2. Study of performance characteristics of noble metal thermocouple materials to 2000 C

    NASA Technical Reports Server (NTRS)

    Freeze, P. D.; Thomas, D.; Edelman, S.; Stern, J.

    1972-01-01

    Three performance characteristics of noble metal thermocouples in various environments are discussed. Catalytic effects cause significant errors when noble metal thermocouple materials are exposed to air containing unburned gases in temperature ranges from 25 C to 1500 C. The thermoelectric stability of the iridium 40 rhodium to iridium thermocouple system at 2000 C in an oxidizing medium is described. The effects of large and small temperature gradients on the accuracy and stability of temperature measurements are analyzed.

  3. Microgravity

    NASA Image and Video Library

    2004-04-15

    The Advanced Gradient Heating Facility (AGHF) is a European Space Agency (ESA) developed hardware. The AGHF was flown on STS-78, which featured four European PI's and two NASA PI's. The AGHFsupports the production of advanced semiconductor materials and alloys using the directional process, which depends on establishing a hot side and a cold side in the sample.

  4. Effect of the temperature-rate parameters of directional solidification on the structure formation in high-temperature materials

    NASA Astrophysics Data System (ADS)

    Svetlov, I. L.; Neiman, A. V.

    2017-03-01

    The effect of the temperature gradient and the crystal growth rate on the structure formation in nickel and niobium superalloys is studied under the conditions of the flat, cellular, dendritic, or dendritic-cellular configuration of a solidification front during directional solidification.

  5. Self-Paced Physics, Segments 24-27.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    Four study segments of the Self-Paced Physics Course materials are presented in this fifth problems and solutions book used as a part of student course work. The subject matter is related to work in electric fields, potential differences, parallel plates, electric potential energies, potential gradients, capacitances, and capacitor circuits.…

  6. Pharmaceuticals and organochlorine pesticides in sediments of an urban river in Florida, United States

    USDA-ARS?s Scientific Manuscript database

    Purpose Sediments from a rural to urban gradient along the Alafia River in Florida, United States were investigated to determine the risk of environmental contamination with legacy (organochlorine pesticides, OCPs) and new contaminants (pharmaceuticals). Materials and methods Bed sediments (0-10 cm)...

  7. Low input and intensified crop production systems effects on soil health and environment

    USDA-ARS?s Scientific Manuscript database

    The material in this chapter covers the concepts of "low-input" and "intensified" production systems in the context of input intensity and sustainability. Research-based case studies are presented that draw out the practicalities of implementing production practices on an input intensity gradient fr...

  8. Going Beyond, Going Further: An Inexpensive Experiment for the Introduction of High Performance Liquid Chromatography.

    ERIC Educational Resources Information Center

    Bidlingmeyer, Brian A.; Warren, F. Vincent, Jr.

    1984-01-01

    Background information, materials needed, laboratory procedures, and typical results are provided for five high performance liquid chromatography experiments (three isocratic and two step gradient separations). Suggestions for further experimentation are also provided, including quantitative determinations and separation of charged solutes. (JN)

  9. Advanced methods for preparation and characterization of infrared detector materials. [mercury cadmium tellurides

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.; Martin, B. G.

    1980-01-01

    Mercury cadmium telluride crystals were prepared by the Bridgman method with a wide range of crystal growth rates and temperature gradients adequate to prevent constitutional supercooling under diffusion-limited, steady state, growth conditions. The longitudinal compositional gradients for different growth conditions and alloy compositions were calculated and compared with experimental data to develop a quantitative model of the crystal growth kinetics for the Hg(i-x)CdxTe alloys, and measurements were performed to ascertain the effect of growth conditions on radial compositional gradients. The pseudobinary HgTe-CdTe constitutional phase diagram was determined by precision differential thermal analysis measurements and used to calculate the segregation coefficient of Cd as a function of x and interface temperature. Computer algorithms specific to Hg(1-x)CdxTe were developed for calculations of the charge carrier concentrations, charge carrier mobilities, Hall coefficient, optical absorptance, and Fermi energy as functions of x, temperature, ionized donor and acceptor concentrations, and neutral defect concentrations.

  10. Graphene-edge dielectrophoretic tweezers for trapping of biomolecules.

    PubMed

    Barik, Avijit; Zhang, Yao; Grassi, Roberto; Nadappuram, Binoy Paulose; Edel, Joshua B; Low, Tony; Koester, Steven J; Oh, Sang-Hyun

    2017-11-30

    The many unique properties of graphene, such as the tunable optical, electrical, and plasmonic response make it ideally suited for applications such as biosensing. As with other surface-based biosensors, however, the performance is limited by the diffusive transport of target molecules to the surface. Here we show that atomically sharp edges of monolayer graphene can generate singular electrical field gradients for trapping biomolecules via dielectrophoresis. Graphene-edge dielectrophoresis pushes the physical limit of gradient-force-based trapping by creating atomically sharp tweezers. We have fabricated locally backgated devices with an 8-nm-thick HfO 2 dielectric layer and chemical-vapor-deposited graphene to generate 10× higher gradient forces as compared to metal electrodes. We further demonstrate near-100% position-controlled particle trapping at voltages as low as 0.45 V with nanodiamonds, nanobeads, and DNA from bulk solution within seconds. This trapping scheme can be seamlessly integrated with sensors utilizing graphene as well as other two-dimensional materials.

  11. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films

    PubMed Central

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R.; Voznyy, Oleksandr; Kwon, S. Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles—yet size–effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector. PMID:26165185

  12. Echo planar imaging at 4 Tesla with minimum acoustic noise.

    PubMed

    Tomasi, Dardo G; Ernst, Thomas

    2003-07-01

    To minimize the acoustic sound pressure levels of single-shot echo planar imaging (EPI) acquisitions on high magnetic field MRI scanners. The resonance frequencies of gradient coil vibrations, which depend on the coil length and the elastic properties of the materials in the coil assembly, were measured using piezoelectric transducers. The frequency of the EPI-readout train was adjusted to avoid the frequency ranges of mechanical resonances. Our MRI system exhibited two sharp mechanical resonances (at 720 and 1220 Hz) that can increase vibrational amplitudes up to six-fold. A small adjustment of the EPI-readout frequency made it possible to reduce the sound pressure level of EPI-based perfusion and functional MRI scans by 12 dB. Normal vibrational modes of MRI gradient coils can dramatically increase the sound pressure levels during echo planar imaging (EPI) scans. To minimize acoustic noise, the frequency of EPI-readout trains and the resonance frequencies of gradient coil vibrations need to be different. Copyright 2003 Wiley-Liss, Inc.

  13. Static and Dynamic Model Update of an Inflatable/Rigidizable Torus Structure

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, mercedes C.

    2006-01-01

    The present work addresses the development of an experimental and computational procedure for validating finite element models. A torus structure, part of an inflatable/rigidizable Hexapod, is used to demonstrate the approach. Because of fabrication, materials, and geometric uncertainties, a statistical approach combined with optimization is used to modify key model parameters. Static test results are used to update stiffness parameters and dynamic test results are used to update the mass distribution. Updated parameters are computed using gradient and non-gradient based optimization algorithms. Results show significant improvements in model predictions after parameters are updated. Lessons learned in the areas of test procedures, modeling approaches, and uncertainties quantification are presented.

  14. Anomalous magnon Nernst effect of topological magnonic materials

    NASA Astrophysics Data System (ADS)

    Wang, X. S.; Wang, X. R.

    2018-05-01

    The magnon transport driven by a thermal gradient in a perpendicularly magnetized honeycomb lattice is studied. The system with the nearest-neighbor pseudodipolar interaction and the next-nearest-neighbor Dzyaloshinskii–Moriya interaction has various topologically nontrivial phases. When an in-plane thermal gradient is applied, a transverse in-plane magnon current is generated. This phenomenon is termed as the anomalous magnon Nernst effect that closely resembles the anomalous Nernst effect for an electronic system. The anomalous magnon Nernst coefficient and its sign are determined by the magnon Berry curvature distributions in the momentum space and magnon populations in the magnon bands. We predict a temperature-induced sign reversal in anomalous magnon Nernst effect under certain conditions.

  15. Anomalous thermoelectricity in strained Bi2Te3 films.

    PubMed

    Liu, Yucong; Chen, Jiadong; Deng, Huiyong; Hu, Gujin; Zhu, Daming; Dai, Ning

    2016-09-07

    Bi2Te3-based alloys have been intensively used for thermoelectric coolers and generators due to their high Seebeck coefficient S. So far, efforts to improve the S have been made mostly on changing the structures and components. Herein, we demonstrate an anomalous thermoelectricity in strained Bi2Te3 films, i.e., the value of S is obviously changed after reversing the direction of temperature gradient. Further theoretical and experimental analysis shows that it originates from the coupling of thermoelectric and flexoelectric effects caused by a stress gradient. Our finding provides a new avenue to adjust the S of Bi2Te3-based thermoelectric materials through flexoelectric polarization.

  16. Anomalous thermoelectricity in strained Bi2Te3 films

    PubMed Central

    Liu, Yucong; Chen, Jiadong; Deng, Huiyong; Hu, Gujin; Zhu, Daming; Dai, Ning

    2016-01-01

    Bi2Te3-based alloys have been intensively used for thermoelectric coolers and generators due to their high Seebeck coefficient S. So far, efforts to improve the S have been made mostly on changing the structures and components. Herein, we demonstrate an anomalous thermoelectricity in strained Bi2Te3 films, i.e., the value of S is obviously changed after reversing the direction of temperature gradient. Further theoretical and experimental analysis shows that it originates from the coupling of thermoelectric and flexoelectric effects caused by a stress gradient. Our finding provides a new avenue to adjust the S of Bi2Te3-based thermoelectric materials through flexoelectric polarization. PMID:27600406

  17. Intrinsic mobility limit for anisotropic electron transport in Alq3.

    PubMed

    Drew, A J; Pratt, F L; Hoppler, J; Schulz, L; Malik-Kumar, V; Morley, N A; Desai, P; Shakya, P; Kreouzis, T; Gillin, W P; Kim, K W; Dubroka, A; Scheuermann, R

    2008-03-21

    Muon spin relaxation has been used to probe the charge carrier motion in the molecular conductor Alq3 (tris[8-hydroxy-quinoline] aluminum). At 290 K, the magnetic field dependence of the muon spin relaxation corresponds to that expected for highly anisotropic intermolecular electron hopping. Intermolecular mobility in the fast hopping direction has been found to be 0.23+/-0.03 cm2 V-1 s(-1) in the absence of an electric- field gradient, increasing to 0.32+/-0.06 cm2 V-1 s(-1) in an electric field gradient of 1 MV m(-1). These intrinsic mobility values provide an estimate of the upper limit for mobility achievable in bulk material.

  18. Method and apparatus for ceramic analysis

    DOEpatents

    Jankowiak, Ryszard J.; Schilling, Chris; Small, Gerald J.; Tomasik, Piotr

    2003-04-01

    The present invention relates to a method and apparatus for ceramic analysis, in particular, a method for analyzing density, density gradients and/or microcracks, including an apparatus with optical instrumentation for analysis of density, density gradients and/or microcracks in ceramics. The method provides analyzing density of a ceramic comprising exciting a component on a surface/subsurface of the ceramic by exposing the material to excitation energy. The method may further include the step of obtaining a measurement of an emitted energy from the component. The method may additionally include comparing the measurement of the emitted energy from the component with a predetermined reference measurement so as to obtain a density for said ceramic.

  19. Gradient moduli lens models: how material properties and application of forces can affect deformation and distributions of stress

    NASA Astrophysics Data System (ADS)

    Wang, Kehao; Venetsanos, Demetrios; Wang, Jian; Pierscionek, Barbara K.

    2016-08-01

    The human lens provides one-third of the ocular focussing power and is responsible for altering focus over a range of distances. This ability, termed accommodation, defines the process by which the lens alters shape to increase or decrease ocular refractive power; this is mediated by the ciliary muscle through the zonule. This ability decreases with age such that around the sixth decade of life it is lost rendering the eye unable to focus on near objects. There are two opponent theories that provide an explanation for the mechanism of accommodation; definitive support for either of these requires investigation. This work aims to elucidate how material properties can affect accommodation using Finite Element models based on interferometric measurements of refractive index. Gradients of moduli are created in three models from representative lenses, aged 16, 35 and 48 years. Different forms of zonular attachments are studied to determine which may most closely mimic the physiological form by comparing stress and displacement fields with simulated shape changes to accommodation in living lenses. The results indicate that for models to mimic accommodation in living eyes, the anterior and posterior parts of the zonule need independent force directions. Choice of material properties affects which theory of accommodation is supported.

  20. Laboratory Layered Latte

    NASA Astrophysics Data System (ADS)

    Xue, Nan; Khodaparast, Sepideh; Zhu, Lailai; Nunes, Janine; Kim, Hyoungsoo; Stone, Howard

    2017-11-01

    Layered composite fluids are sometimes observed in confined systems of rather chaotic initial states, for example, layered lattes formed by pouring espresso into a glass of warm milk. In such configurations, pouring forces a lower density liquid (espresso) into a higher density ambient, which is similar to the fountain effects that characterize a wide range of flows driven by injecting a fluid into a second miscible phase. Although the initial state of the mixture is complex and chaotic, there are conditions where the mixture cools at room temperature and exhibits an organized layered pattern. Here we report controlled experiments injecting a fluid into a miscible phase and show that, above a critical injection velocity, layering naturally emerges over the time scale of minutes. We perform experimental and numerical analyses of the time-dependent flows to observe and understand the convective circulation in the layers. We identify critical conditions to produce the layering and relate the results quantitatively to the critical Rayleigh number in double-diffusive convection, which indicates the competition between the horizontal thermal gradient and the vertical density gradient generated by the fluid injection. Based on this understanding, we show how to employ this single-step process to produce layered structures in soft materials, where the local elastic properties as well as the local material concentration vary step-wise along the length of the material.

Top