Science.gov

Sample records for gradient tracer test

  1. Evaluation of longitudinal dispersivity estimates from forced-gradient tracer tests in heterogeneous aquifers

    USGS Publications Warehouse

    Tiedeman, C.R.; Hsieh, P.A.

    2002-01-01

    Converging radial-flow and two-well tracer tests are simulated in two-dimensional aquifers to investigate the effects of heterogeneity and forced-gradient test configuration on longitudinal dispersivity (??L) estimates, and to compare ??L estimates from forced-gradient tests with ??L values that characterize solute spreading under natural-gradient flow. Results indicate that in mildly heterogeneous aquifers, for tests with relatively large tracer transport distances, ??L estimates from the two test types are generally similar, and are also similar to ??L values determined from natural-gradient tracer simulations. In highly heterogeneous aquifers, ??L estimates from two-well tests are generally larger than those from radial-flow tests, and the ??L estimates from both test types are typically smaller than the ??L values determined from natural-gradient simulations.

  2. Evaluation of longitudinal dispersivity estimates from forced-gradient tracer tests in heterogeneous aquifers

    USGS Publications Warehouse

    Tiedeman, C.R.; Hsieh, P.A.

    2002-01-01

    Converging radial-flow and two-well tracer tests are simulated in two-dimensional aquifers to investigate the effects of heterogeneity and forced-gradient test configuration on longitudinal dispersivity (??L) estimates, and to compare ??L estimates from forced-gradient tests with ??L values that characterize solute spreading under natural-gradient flow. Results indicate that in both mildly and highly heterogeneous aquifers, ??L estimates from two-well tests are generally larger than those from radial-flow tests. In mildly heterogeneous aquifers, ??L estimates from two-well tests with relatively large tracer transport distances are similar to ??L values from natural-gradient simulations. In highly heterogeneous aquifers, ??L estimates from two-well tests at all tracer transport distances are typically smaller than ??L values from natural-gradient simulations.

  3. Combined use of heat and saline tracer to estimate aquifer properties in a forced gradient test

    NASA Astrophysics Data System (ADS)

    Colombani, N.; Giambastiani, B. M. S.; Mastrocicco, M.

    2015-06-01

    Usually electrolytic tracers are employed for subsurface characterization, but the interpretation of tracer test data collected by low cost techniques, such as electrical conductivity logging, can be biased by cation exchange reactions. To characterize the aquifer transport properties a saline and heat forced gradient test was employed. The field site, located near Ferrara (Northern Italy), is a well characterized site, which covers an area of 200 m2 and is equipped with a grid of 13 monitoring wells. A two-well (injection and pumping) system was employed to perform the forced gradient test and a straddle packer was installed in the injection well to avoid in-well artificial mixing. The contemporary continuous monitor of hydraulic head, electrical conductivity and temperature within the wells permitted to obtain a robust dataset, which was then used to accurately simulate injection conditions, to calibrate a 3D transient flow and transport model and to obtain aquifer properties at small scale. The transient groundwater flow and solute-heat transport model was built using SEAWAT. The result significance was further investigated by comparing the results with already published column experiments and a natural gradient tracer test performed in the same field. The test procedure shown here can provide a fast and low cost technique to characterize coarse grain aquifer properties, although some limitations can be highlighted, such as the small value of the dispersion coefficient compared to values obtained by natural gradient tracer test, or the fast depletion of heat signal due to high thermal diffusivity.

  4. Double forced gradient tracer test: Performance and interpretation of a field test using a new solute transport model

    NASA Astrophysics Data System (ADS)

    Vandenbohede, A.; Lebbe, L.

    2006-02-01

    A double forced gradient tracer test was performed in heterogeneous quaternary deposits of the Scheldt river in Belgium. The objectives of the test were to derive reliable hydraulic and solute transport parameters, to study the heterogeneity of the groundwater reservoir and to illustrate the practical utility of forced gradient tracer tests. Salt water was used as a conservative tracer. The tracer was injected with two injection wells and both plumes were pumped towards one intermediately placed pumping well. Before the forced gradient tracer test a short lasting pumping test was performed. Drawdown and concentration measurements were made in different observation wells during the pumping and forced gradient tracer test. The movement of the salt water was followed by measuring the electrical conductivity of the sediments around observation wells using a focussed electromagnetic induction method. The drawdown and concentration observations were then interpreted together. By combining these two sets of data, hydraulic and solute transport parameters were derived simultaneously and more accurately than in the case only one type of data is used. For this, a new 3D solute transport model TRACER3D, specifically designed to simulate accurately flow and solute transport towards a well, was developed. The behaviour of the two tracer plumes was totally different due to varying hydraulic and dispersive properties in the aquifer. Horizontal and vertical conductivity, specific elastic storage, effective porosity and longitudinal dispersivity were derived and brought into relation with the site's heterogeneity, visualised by natural gamma logs in the different wells.

  5. In situ measurement of methane oxidation in groundwater by using natural-gradient tracer tests

    USGS Publications Warehouse

    Smith, R.L.; Howes, B.L.; Garabedian, S.P.

    1991-01-01

    Methane oxidation was measured in an unconfined sand and gravel aquifer (Cape Cod, Mass.) by using in situ natural-gradient tracer tests at both a pristine, oxygenated site and an anoxic, sewage-contaminated site. The tracer sites were equipped with multilevel sampling devices to create target grids of sampling points; the injectate was prepared with groundwater from the tracer site to maintain the same geochemical conditions. Methane oxidation was calculated from breakthrough curves of methane relative to halide and inert gas (hexafluoroethane) tracers and was confirmed by the appearance of 13C-enriched carbon dioxide in experiments in which 13C-enriched methane was used as the tracer. A V(max) for methane oxidation could be calculated when the methane concentration was sufficiently high to result in zero-order kinetics throughout the entire transport interval. Methane breakthrough curves could be simulated by modifying a one-dimensional advection-dispersion transport model to include a Michaelis-Menten-based consumption term for methane oxidation. The K(m) values for methane oxidation that gave the best match for the breakthrough curve peaks were 6.0 and 9.0 ??M for the uncontaminated and contaminated sites, respectively. Natural-gradient tracer tests are a promising approach for assessing microbial processes and for testing in situ bioremediation potential in groundwater systems.

  6. In situ measurement of methane oxidation in groundwater by using natural-gradient tracer tests.

    PubMed Central

    Smith, R L; Howes, B L; Garabedian, S P

    1991-01-01

    Methane oxidation was measured in an unconfined sand and gravel aquifer (Cape Cod, Mass.) by using in situ natural-gradient tracer tests at both a pristine, oxygenated site and an anoxic, sewage-contaminated site. The tracer sites were equipped with multilevel sampling devices to create target grids of sampling points; the injectate was prepared with groundwater from the tracer site to maintain the same geochemical conditions. Methane oxidation was calculated from breakthrough curves of methane relative to halide and inert gas (hexafluroethane) tracers and was confirmed by the appearance of 13C-enriched carbon dioxide in experiments in which 13C-enriched methane was used as the tracer. A Vmax for methane oxidation could be calculated when the methane concentration was sufficiently high to result in zero-order kinetics throughout the entire transport interval. Methane breakthrough curves could be simulated by modifying a one-dimensional adevection-dispersion transport model to include a Michaelis-Menten-based consumption term for methane oxidation. The Km values for methane oxidation that gave the best match for the breakthrough curve peaks were 6.0 and 9.0 microM for the uncontaminated and contaminated sites, respectively. Natural-gradient tracer tests are a promising approach for assessing microbial processes and for testing in situ bioremediation potential in groundwater systems. PMID:1892389

  7. Evaluation of longitudinal dispersivity estimates from simulated forced- and natural-gradient tracer tests in heterogeneous aquifers

    USGS Publications Warehouse

    Tiedeman, C.R.; Hsieh, P.A.

    2004-01-01

    We simulate three types of forced-gradient tracer tests (converging radial flow, unequal strength two well, and equal strength two well) and natural-gradient tracer tests in multiple realizations of heterogeneous two-dimensional aquifers with a hydraulic conductivity distribution characterized by a spherical variogram. We determine longitudinal dispersivities (??L) by analysis of forced-gradient test breakthrough curves at the pumped well and by spatial moment analysis of tracer concentrations during the natural-gradient tests. Results show that among the forced-gradient tests, a converging radial-flow test tends to yield the smallest ??L, an equal strength two-well test tends to yield the largest ??L, and an unequal strength two-well test tends to yield an intermediate value. This finding is qualitatively explained by considering the aquifer area sampled by a particular test. A converging radial-flow test samples a small area, and thus the tracer undergoes a low degree of spreading and mixing. An equal strength two-well test samples a much larger area, so the tracer is spread and mixed to a greater degree. Results also suggest that if the distance between the tracer source well and the pumped well is short relative to the lengths over which velocity is correlated, then the ??L estimate can be highly dependent on local heterogeneities in the vicinity of the wells. Finally, results indicate that ??L estimated from forced-gradient tracer tests can significantly underestimate the ??L needed to characterize solute dispersion under natural-gradient flow. Only a two-well tracer test with a large well separation in an aquifer with a low degree of heterogeneity can yield a value of ??L that characterizes natural-gradient tracer spreading. This suggests that a two-well test with a large well separation is the preferred forced-gradient test for characterizing solute dispersion under natural-gradient flow.

  8. A note on the recent natural gradient tracer test at the Borden site

    USGS Publications Warehouse

    Naff, R.L.; Yeh, T.-C.J.; Kemblowski, M.W.

    1988-01-01

    The variance in particle position, a measure of dispersion, is reviewed in the context of certain models of flow in random porous media. Asymptotic results for a highly stratified medium and an isotropic medium are particularly highlighted. Results of the natural gradient tracer test at the Borden site are reviewed in light of these models. This review suggests that the moments obtained for the conservative tracers could as well be explained by a model that more explicitly represents the three-dimensional nature of the flow field. -Authors

  9. Comparison of denitrification activity measurements in groundwater using cores and natural-gradient tracer tests

    USGS Publications Warehouse

    Smith, R.L.; Garabedian, S.P.; Brooks, M.H.

    1996-01-01

    The transport of many solutes in groundwater is dependent upon the relative rates of physical flow and microbial metabolism. Quantifying rates of microbial processes under subsurface conditions is difficult and is most commonly approximated using laboratory studies with aquifer materials. In this study, we measured in situ rates of denitrification in a nitrate- contaminated aquifer using small-scale, natural-gradient tracer tests and compared the results with rates obtained from laboratory incubations with aquifer core material. Activity was measured using the acetylene block technique. For the tracer tests, co-injection of acetylene and bromide into the aquifer produced a 30 ??M increase in nitrous oxide after 10 m of transport (23-30 days). An advection-dispersion transport model was modified to include an acetylene-dependent nitrous oxide production term and used to simulate the tracer breakthrough curves. The model required a 4-day lag period and a relatively low sensitivity to acetylene to match the narrow nitrous oxide breakthrough curves. Estimates of in situ denitrification rates were 0.60 and 1.51 nmol of N2O produced cm-3 aquifer day-1 for two successive tests. Aquifer core material collected from the tracer test site and incubated as mixed slurries in flasks and as intact cores yielded rates that were 1.2-26 times higher than the tracer test rate estimates. Results with the coring-dependent techniques were variable and subject to the small- scale heterogeneity within the aquifer, while the tracer tests integrated the heterogeneity along a flow path, giving a rate estimate that is more applicable to transport at the scale of the aquifer.

  10. Evaluation of Heat as a Tracer in a Forced-Gradient Test at the MADE Site

    NASA Astrophysics Data System (ADS)

    Huang, A.; Tick, G. R.; Keasberry, A.; Zheng, C.

    2011-12-01

    Tracer tests conducted at the Macrodispersion Experiment (MADE) site in Columbus Air Force Base in Mississippi have contributed significantly to the understanding of contaminant transport processes in highly-heterogeneous media. Previous experiments have revealed a network of interconnected preferential flow paths within the underlying aquifer. Only solute tracers including bromide and tritium have been used in previous experiments. In this new study, a forced-gradient experiment based on heated water injection was conducted to evaluate the feasibility of heat as a substitute for a solute tracer to study aquifer heterogeneity at the MADE site. We injected a pulse of heated water, recorded the breakthrough curves, and used numerical modeling to characterize the heat transport behavior and its relationship to subsurface heterogeneity. The results were compared with those from a previous experiment based on the bromide tracer. This research suggests heat can be a cheaper and environmentally-friendly alternative to traditional solute tracers, and improves our understanding of contaminant transport processes in highly-heterogeneous systems.

  11. LARGE-SCALE NATURAL GRADIENT TRACER TEST IN SAND AND GRAVEL, CAPE COD, MASSACHUSETTS - 1. EXPERIMENTAL DESIGN AND OBSERVED TRACER MOVEMENT

    EPA Science Inventory

    A large-scale natural gradient tracer experiment was conducted on Cape Cod, Massachusetts, to examine the transport and dispersion of solutes in a sand and gravel aquifer. The nonreactive tracer, bromide, and the reactive tracers, lithium and molybdate, were injected as a pulse i...

  12. Assessing denitrification in groundwater using natural gradient tracer tests with 15N: In situ measurement of a sequential multistep reaction

    USGS Publications Warehouse

    Smith, R.L.; Böhlke, J.K.; Garabedian, S.P.; Revesz, K.M.; Yoshinari, T.

    2004-01-01

    Denitrification was measured within a nitrate-contaminated aquifer on Cape Cod, Massachusetts, using natural gradient tracer tests with 15N nitrate. The aquifer contained zones of relatively high concentrations of nitrite (up to 77 ??M) and nitrous oxide (up to 143 ??M) and has been the site of previous studies examining ground water denitrification using the acetylene block technique. Small-scale (15-24 m travel distance) tracer tests were conducted by injecting 15N nitrate and bromide as tracers into a depth interval that contained nitrate, nitrite, nitrous oxide, and excess nitrogen gas. The timing of the bromide breakthrough curves at down-gradient wells matched peaks in 15N abundance above background for nitrate, nitrite, nitrous oxide, and nitrogen gas after more than 40 days of travel. Results were simulated with a one-dimensional transport model using linked reaction kinetics for the individual steps of the denitrification reaction pathway. It was necessary to include within the model spatial variations in background concentrations of all nitrogen oxide species. The model indicated that nitrite production (0.036-0.047 ??mol N (L aquifer)-1 d -1) was faster than the subsequent denitrification steps (0.013-0.016 ??mol N (L aquifer)-1 d-1 for nitrous oxide and 0.013-0.020 ??mol N (L aquifer)-1 d-1 for nitrogen gas) and that the total rate of reaction was slower than indicated by both acetylene block tracer tests and laboratory incubations. The rate of nitrate removal by denitrification was much slower than the rate of transport, indicating that nitrate would migrate several kilometers down-gradient before being completely consumed.

  13. Fate and transport of linear alkylbenzenesulfonate in a sewage- contaminated aquifer: A comparison of natural-gradient pulsed tracer tests

    USGS Publications Warehouse

    Krueger, C.J.; Barber, L.B.; Metge, D.W.; Field, J.A.

    1998-01-01

    Two natural-gradient tracer tests were conducted to determine the transport and biodegradation behavior of linear alkylbenzenesulfonate (LAS) surfactant under in situ conditions in a sewage-contaminated aquifer. The tests were conducted in two biogeochemically distinct zones of the aquifer: (1) an aerobic uncontaminated zone (oxic zone) and (2) a moderately aerobic, sewage-contaminated zone (transition zone). Chromatographic separation of the surfactant mixture was observed in both zones and attributed to the retardation of the longer alkyl chain homologues during transport. No significant loss of IAS mass was observed for the oxic zone while 20% of the LAS mass injected into the transition zone was removed due to biodegradation. Biodegradation preferentially removed the longer alkyl chain homologues and the external isomers (i.e., 2- and 3-phenyl). The removal of LAS mass coincided with a decrease in dissolved oxygen concentrations, the appearance of LAS metabolites, and an increase in the number of free-living bacteria with a concomitant change in bacteria morphology. The formation of LAS metabolites accounted for 86% of the LAS mass removed in the transition zone. Over the duration of the test, sorption and biodegradation enriched the LAS mixture in the more water-soluble and biologically resistant components.Two natural-gradient tracer tests were conducted to determine the transport and biodegradation behavior of linear alkylbenzenesulfonate (LAS) surfactant under in situ conditions in a sewage-contaminated aquifer. The tests were conducted in two biogeochemically distinct zones of the aquifer: (1) an aerobic uncontaminated zone (oxic zone) and (2) a moderately aerobic, sewage-contaminated zone (transition zone). Chromatographic separation of the surfactant mixture was observed in both zones and attributed to the retardation of the longer alkyl chain homologues during transport. No significant loss of LAS mass was observed for the oxic zone while 20% of the LAS

  14. Numerical evaluation of apparent transport parameters from forced-gradient tracer tests in statistically anisotropic heterogeneous formations

    NASA Astrophysics Data System (ADS)

    Pedretti, D.; Fernandez-Garcia, D.; Bolster, D.; Sanchez-Vila, X.; Benson, D.

    2012-04-01

    For risk assessment and adequate decision making regarding remediation strategies in contaminated aquifers, solute fate in the subsurface must be modeled correctly. In practical situations, hydrodynamic transport parameters are obtained by fitting procedures, that aim to mathematically reproduce solute breakthrough (BTC) observed in the field during tracer tests. In recent years, several methods have been proposed (curve-types, moments, nonlocal formulations) but none of them combine the two main characteristic effects of convergent flow tracer tests (which are the most used tests in the practice): the intrinsic non-stationarity of the convergent flow to a well and the ubiquitous multiscale hydraulic heterogeneity of geological formations. These two effects separately have been accounted for by a lot of methods that appear to work well. Here, we investigate both effects at the same time via numerical analysis. We focus on the influence that measurable statistical properties of the aquifers (such as the variance and the statistical geometry of correlation scales) have on the shape of BTCs measured at the pumping well during convergent flow tracer tests. We built synthetic multigaussian 3D fields of heterogeneous hydraulic conductivity fields with variable statistics. A well is located in the center of the domain to reproduce a forced gradient towards it. Constant-head values are imposed on the boundaries of the domains, which have 251x251x100 cells. Injections of solutes take place by releasing particles at different distances from the well and using a random walk particle tracking scheme with constant local coefficient of dispersivity. The results show that BTCs partially display the typical anomalous behavior that has been commonly referred to as the effect of heterogeneity and connectivity (early and late arrival times of solute differ from the one predicted by local formulations). Among the most salient features, the behaviors of BTCs after the peak (the slope

  15. Fluorescent dye imaging of the volume sampled by single well forced-gradient tracer tests evaluated in a laboratory-scale aquifer physical model.

    PubMed

    Barns, Gareth L; Wilson, Ryan D; Thornton, Steven F

    2012-02-01

    This study presents a new method to visualise forced-gradient tracer tests in 2-D using a laboratory-scale aquifer physical model. Experiments were designed to investigate the volume of aquifer sampled in vertical dipole flow tracer tests (DFTT) and push-pull tests (PPT), using a miniature monitoring well and straddle packer arrangement equipped with solute injection and recovery chambers. These tests have previously been used to estimate bulk aquifer hydraulic and transport properties for the evaluation of natural attenuation and other remediation approaches. Experiments were performed in a silica glass bead-filled box, using a fluorescent tracer (fluorescein) to deduce conservative solute transport paths. Digital images of fluorescein transport were captured under ultraviolet light and processed to analyse tracer plume geometry and obtain point-concentration breakthrough histories. Inorganic anion mixtures were also used to obtain conventional tracer breakthrough histories. Concentration data from the conservative tracer breakthrough curves was compared with the digital images and a well characterised numerical model. The results show that the peak tracer breakthrough response in dipole flow tracer tests samples a zone of aquifer close to the well screen, while the sampling volume of push-pull tests is limited by the length of the straddle packers used. The effective sampling volume of these single well forced-gradient tests in isotropic conditions can be estimated with simple equations. The experimental approach offers the opportunity to evaluate under controlled conditions the theoretical basis, design and performance of DFTTs and PPTs in porous media in relation to measured flow and transport properties.

  16. Fluorescent dye imaging of the volume sampled by single well forced-gradient tracer tests evaluated in a laboratory-scale aquifer physical model.

    PubMed

    Barns, Gareth L; Wilson, Ryan D; Thornton, Steven F

    2012-02-01

    This study presents a new method to visualise forced-gradient tracer tests in 2-D using a laboratory-scale aquifer physical model. Experiments were designed to investigate the volume of aquifer sampled in vertical dipole flow tracer tests (DFTT) and push-pull tests (PPT), using a miniature monitoring well and straddle packer arrangement equipped with solute injection and recovery chambers. These tests have previously been used to estimate bulk aquifer hydraulic and transport properties for the evaluation of natural attenuation and other remediation approaches. Experiments were performed in a silica glass bead-filled box, using a fluorescent tracer (fluorescein) to deduce conservative solute transport paths. Digital images of fluorescein transport were captured under ultraviolet light and processed to analyse tracer plume geometry and obtain point-concentration breakthrough histories. Inorganic anion mixtures were also used to obtain conventional tracer breakthrough histories. Concentration data from the conservative tracer breakthrough curves was compared with the digital images and a well characterised numerical model. The results show that the peak tracer breakthrough response in dipole flow tracer tests samples a zone of aquifer close to the well screen, while the sampling volume of push-pull tests is limited by the length of the straddle packers used. The effective sampling volume of these single well forced-gradient tests in isotropic conditions can be estimated with simple equations. The experimental approach offers the opportunity to evaluate under controlled conditions the theoretical basis, design and performance of DFTTs and PPTs in porous media in relation to measured flow and transport properties. PMID:22192345

  17. Design and analysis of a natural-gradient ground-water tracer test in a freshwater tidal wetland, West Branch Canal Creek, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Olsen, Lisa D.; Tenbus, Frederick J.

    2005-01-01

    A natural-gradient ground-water tracer test was designed and conducted in a tidal freshwater wetland at West Branch Canal Creek, Aberdeen Proving Ground, Maryland. The objectives of the test were to characterize solute transport at the site, obtain data to more accurately determine the ground-water velocity in the upper wetland sediments, and to compare a conservative, ionic tracer (bromide) to a volatile tracer (sulfur hexafluoride) to ascertain whether volatilization could be an important process in attenuating volatile organic compounds in the ground water. The tracer test was conducted within the upper peat unit of a layer of wetland sediments that also includes a lower clayey unit; the combined layer overlies an aquifer. The area selected for the test was thought to have an above-average rate of ground-water discharge based on ground-water head distributions and near-surface detections of volatile organic compounds measured in previous studies. Because ground-water velocities in the wetland sediments were expected to be slow compared to the underlying aquifer, the test was designed to be conducted on a small scale. Ninety-seven ?-inch-diameter inverted-screen stainless-steel piezometers were installed in a cylindrical array within approximately 25 cubic feet (2.3 cubic meters) of wetland sediments, in an area with a vertically upward hydraulic gradient. Fluorescein dye was used to qualitatively evaluate the hydrologic integrity of the tracer array before the start of the tracer test, including verifying the absence of hydraulic short-circuiting due to nonnatural vertical conduits potentially created during piezometer installation. Bromide and sulfur hexafluoride tracers (0.139 liter of solution containing 100,000 milligrams per liter of bromide ion and 23.3 milligrams per liter of sulfur hexafluoride) were co-injected and monitored to generate a dataset that could be used to evaluate solute transport in three dimensions. Piezometers were sampled 2 to 15 times

  18. Merging single-well and inter-well tracer tests into one forced-gradient dipole test, at the Heletz site within the MUSTANG project

    NASA Astrophysics Data System (ADS)

    Behrens, Horst; Ghergut, Julia; Bensabat, Jac; Niemi, Auli; Licha, Tobias; Ptak, Thomas; Sauter, Martin

    2014-05-01

    The Heletz site[1] in Israel was chosen for conducting a CO2 transport experiment within the MUSTANG project[2], whose aim is to demonstrate and validate leading-edge techniques for CCS site characterization, process monitoring and risk assessment. The major CO2 injection experiment at Heletz was supposed to be preceded and accompanied by a sequence of single-well 'push-then-pull' (SW) and inter-well (IW) tracer tests, aimed at characterizing transport properties of the storage formation, in accordance to a number of general and specific principles[3],[4]. - Instead of the rather luxurious {SW1, IW1, SW2, IW2} test sequence described in our previous work[5], we now propose a drastically economized tracer test concept, which lets the sampling stages of SW and IW tests merge into a single fluid production stage, and relies on a forced-gradient dipole flow field at any time of the overall test. Besides cost reduction, this economized design also improves on operational aspects, as well as on issues of parameter ambiguity and of scale disparity between SW and IW flow fields: (i) the new design renders SW test results more representative for the aquifer sector ('angle') actually interrogated by the IW dipole test; (ii) the new design saves time and costs on the SW test (fluid sampling for SW 'pull' now being conducted simultaneously with IW-related sampling and monitoring), while allowing for a considerably longer duration of SW 'pull' signals than had originally been intended, whose late-time tailings help improve the quantification of non-advective processes and parameters, which are of great relevance to mid- and long-term trapping mechanisms ('residual trapping', 'mineral trapping'); (iii) the quasi-simultaneous execution of fluid injection/production for the IW and SW tests considerably reduces the overall hydraulic imbalance that was originally associated with the SW test, thus preventing formation damage and supporting hydrogeomechanical stability; (iv) the new

  19. Identification of small-scale low and high permeability layers using single well forced-gradient tracer tests: fluorescent dye imaging and modelling at the laboratory-scale.

    PubMed

    Barns, Gareth L; Thornton, Steven F; Wilson, Ryan D

    2015-01-01

    Heterogeneity in aquifer permeability, which creates paths of varying mass flux and spatially complex contaminant plumes, can complicate the interpretation of contaminant fate and transport in groundwater. Identifying the location of high mass flux paths is critical for the reliable estimation of solute transport parameters and design of groundwater remediation schemes. Dipole flow tracer tests (DFTTs) and push-pull tests (PPTs) are single well forced-gradient tests which have been used at field-scale to estimate aquifer hydraulic and transport properties. In this study, the potential for PPTs and DFTTs to resolve the location of layered high- and low-permeability layers in granular porous media was investigated with a pseudo 2-D bench-scale aquifer model. Finite element fate and transport modelling was also undertaken to identify appropriate set-ups for in situ tests to determine the type, magnitude, location and extent of such layered permeability contrasts at the field-scale. The characteristics of flow patterns created during experiments were evaluated using fluorescent dye imaging and compared with the breakthrough behaviour of an inorganic conservative tracer. The experimental results show that tracer breakthrough during PPTs is not sensitive to minor permeability contrasts for conditions where there is no hydraulic gradient. In contrast, DFTTs are sensitive to the type and location of permeability contrasts in the host media and could potentially be used to establish the presence and location of high or low mass flux paths. Numerical modelling shows that the tracer peak breakthrough time and concentration in a DFTT is sensitive to the magnitude of the permeability contrast (defined as the permeability of the layer over the permeability of the bulk media) between values of 0.01-20. DFTTs are shown to be more sensitive to deducing variations in the contrast, location and size of aquifer layered permeability contrasts when a shorter central packer is used

  20. Identification of small-scale low and high permeability layers using single well forced-gradient tracer tests: fluorescent dye imaging and modelling at the laboratory-scale.

    PubMed

    Barns, Gareth L; Thornton, Steven F; Wilson, Ryan D

    2015-01-01

    Heterogeneity in aquifer permeability, which creates paths of varying mass flux and spatially complex contaminant plumes, can complicate the interpretation of contaminant fate and transport in groundwater. Identifying the location of high mass flux paths is critical for the reliable estimation of solute transport parameters and design of groundwater remediation schemes. Dipole flow tracer tests (DFTTs) and push-pull tests (PPTs) are single well forced-gradient tests which have been used at field-scale to estimate aquifer hydraulic and transport properties. In this study, the potential for PPTs and DFTTs to resolve the location of layered high- and low-permeability layers in granular porous media was investigated with a pseudo 2-D bench-scale aquifer model. Finite element fate and transport modelling was also undertaken to identify appropriate set-ups for in situ tests to determine the type, magnitude, location and extent of such layered permeability contrasts at the field-scale. The characteristics of flow patterns created during experiments were evaluated using fluorescent dye imaging and compared with the breakthrough behaviour of an inorganic conservative tracer. The experimental results show that tracer breakthrough during PPTs is not sensitive to minor permeability contrasts for conditions where there is no hydraulic gradient. In contrast, DFTTs are sensitive to the type and location of permeability contrasts in the host media and could potentially be used to establish the presence and location of high or low mass flux paths. Numerical modelling shows that the tracer peak breakthrough time and concentration in a DFTT is sensitive to the magnitude of the permeability contrast (defined as the permeability of the layer over the permeability of the bulk media) between values of 0.01-20. DFTTs are shown to be more sensitive to deducing variations in the contrast, location and size of aquifer layered permeability contrasts when a shorter central packer is used

  1. Identification of small-scale low and high permeability layers using single well forced-gradient tracer tests: Fluorescent dye imaging and modelling at the laboratory-scale

    NASA Astrophysics Data System (ADS)

    Barns, Gareth L.; Thornton, Steven F.; Wilson, Ryan D.

    2015-01-01

    Heterogeneity in aquifer permeability, which creates paths of varying mass flux and spatially complex contaminant plumes, can complicate the interpretation of contaminant fate and transport in groundwater. Identifying the location of high mass flux paths is critical for the reliable estimation of solute transport parameters and design of groundwater remediation schemes. Dipole flow tracer tests (DFTTs) and push-pull tests (PPTs) are single well forced-gradient tests which have been used at field-scale to estimate aquifer hydraulic and transport properties. In this study, the potential for PPTs and DFTTs to resolve the location of layered high- and low-permeability layers in granular porous media was investigated with a pseudo 2-D bench-scale aquifer model. Finite element fate and transport modelling was also undertaken to identify appropriate set-ups for in situ tests to determine the type, magnitude, location and extent of such layered permeability contrasts at the field-scale. The characteristics of flow patterns created during experiments were evaluated using fluorescent dye imaging and compared with the breakthrough behaviour of an inorganic conservative tracer. The experimental results show that tracer breakthrough during PPTs is not sensitive to minor permeability contrasts for conditions where there is no hydraulic gradient. In contrast, DFTTs are sensitive to the type and location of permeability contrasts in the host media and could potentially be used to establish the presence and location of high or low mass flux paths. Numerical modelling shows that the tracer peak breakthrough time and concentration in a DFTT is sensitive to the magnitude of the permeability contrast (defined as the permeability of the layer over the permeability of the bulk media) between values of 0.01-20. DFTTs are shown to be more sensitive to deducing variations in the contrast, location and size of aquifer layered permeability contrasts when a shorter central packer is used

  2. Tracer testing for reservoir description

    SciTech Connect

    Brigham, W.E.; Abbaszadeh-Dehghani, M.

    1987-05-01

    When a reservoir is studied in detail for an EOR project, well-to-well tracers should be used as a tool to help understand the reservoir in a quantitative way. Tracers complement the more traditional reservoir evaluation tools. This paper discusses the concepts underlying tracer testing, the analysis methods used to produce quantitative results, and the meaning of these results in terms of conceptual picture of the reservoir. Some of the limitations of these analysis methods are discussed, along with ongoing research on tracer flow.

  3. 3-D numerical evaluation of density effects on tracer tests.

    PubMed

    Beinhorn, M; Dietrich, P; Kolditz, O

    2005-12-01

    In this paper we present numerical simulations carried out to assess the importance of density-dependent flow on tracer plume development. The scenario considered in the study is characterized by a short-term tracer injection phase into a fully penetrating well and a natural hydraulic gradient. The scenario is thought to be typical for tracer tests conducted in the field. Using a reference case as a starting point, different model parameters were changed in order to determine their importance to density effects. The study is based on a three-dimensional model domain. Results were interpreted using concentration contours and a first moment analysis. Tracer injections of 0.036 kg per meter of saturated aquifer thickness do not cause significant density effects assuming hydraulic gradients of at least 0.1%. Higher tracer input masses, as used for geoelectrical investigations, may lead to buoyancy-induced flow in the early phase of a tracer test which in turn impacts further plume development. This also holds true for shallow aquifers. Results of simulations with different tracer injection rates and durations imply that the tracer input scenario has a negligible effect on density flow. Employing model cases with different realizations of a log conductivity random field, it could be shown that small variations of hydraulic conductivity in the vicinity of the tracer injection well have a major control on the local tracer distribution but do not mask effects of buoyancy-induced flow. PMID:16183165

  4. Tracers and Tracer Testing: Design, Implementation, Tracer Selection, and Interpretation Methods

    SciTech Connect

    G. Michael Shook; Shannon L.; Allan Wylie

    2004-01-01

    Conducting a successful tracer test requires adhering to a set of steps. The steps include identifying appropriate and achievable test goals, identifying tracers with the appropriate properties, and implementing the test as designed. When these steps are taken correctly, a host of tracer test analysis methods are available to the practitioner. This report discusses the individual steps required for a successful tracer test and presents methods for analysis. The report is an overview of tracer technology; the Suggested Reading section offers references to the specifics of test design and interpretation.

  5. Tracer Testing for Estimating Heat Transfer Area in Fractured Reservoirs

    SciTech Connect

    Pruess, Karsten; van Heel, Ton; Shan, Chao

    2004-05-12

    A key parameter governing the performance and life-time of a Hot Fractured Rock (HFR) reservoir is the effective heat transfer area between the fracture network and the matrix rock. We report on numerical modeling studies into the feasibility of using tracer tests for estimating heat transfer area. More specifically, we discuss simulation results of a new HFR characterization method which uses surface-sorbing tracers for which the adsorbed tracer mass is proportional to the fracture surface area per unit volume. Sorption in the rock matrix is treated with the conventional formulation in which tracer adsorption is volume-based. A slug of solute tracer migrating along a fracture is subject to diffusion across the fracture walls into the adjacent rock matrix. Such diffusion removes some of the tracer from the fluid in the fractures, reducing and retarding the peak in the breakthrough curve (BTC) of the tracer. After the slug has passed the concentration gradient reverses, causing back-diffusion from the rock matrix into the fracture, and giving rise to a long tail in the BTC of the solute. These effects become stronger for larger fracture-matrix interface area, potentially providing a means for estimating this area. Previous field tests and modeling studies have demonstrated characteristic tailing in BTCs for volatile tracers in vapor-dominated reservoirs. Simulated BTCs for solute tracers in single-phase liquid systems show much weaker tails, as would be expected because diffusivities are much smaller in the aqueous than in the gas phase, by a factor of order 1000. A much stronger signal of fracture-matrix interaction can be obtained when sorbing tracers are used. We have performed simulation studies of surface-sorbing tracers by implementing a model in which the adsorbed tracer mass is assumed proportional to the fracture-matrix surface area per unit volume. The results show that sorbing tracers generate stronger tails in BTCs, corresponding to an effective

  6. Identification of transport processes in Southern Indian fractured crystalline rock using forced-gradient tracer experiments

    NASA Astrophysics Data System (ADS)

    Guihéneuf, Nicolas; Bour, Olivier; Boisson, Alexandre; Le Borgne, Tanguy; Becker, Matthew R.; Nigon, Benoit; Wajiduddin, Mohammed; Ahmed, Shakeel; Maréchal, Jean-Christophe

    2015-04-01

    Understanding dominant transport processes is essential to improve prediction of contaminants transfer in fractured crystalline rocks. In such fractured media, solute transport is characterized by fast advection within open and connected fractures and sometimes by matrix diffusion that may be enhanced by chemical weathering. To investigate this phenomenon, we carried out radially convergent and push-pull tracer experiments in the fractured granite of the Experimental Hydrogeological Park of Choutuppal (Southern India). Tracer tests were performed in the same permeable fracture from few meters to several ten meters and from few hours to two weeks to check the consistency of the results at different spatial and temporal scales. These different types of forced gradient tracer experiments allow separation of the effects of advection and diffusion on transport. Breakthrough curves from radially convergent tracer tests display systematically a -2 power law slope on the late time behavior. This tailing can be adequately represented by a transport model that only takes into account heterogeneous advection caused by fluid flow channeling. The negligible impact of matrix diffusion was confirmed by the push-pull tracer tests, at least for the duration of experiments. A push-pull experiment carried out with a cocktail of two conservative tracers having different diffusion coefficients displayed similar breakthrough curves. Increasing the resting phase during the experiments did not lead to a significant decline of peak concentration. All these results suggest a negligible impact of matrix diffusion. However, increasing the scales of investigation during push-pull tracer tests led to a decrease of the power law slope on the late time behavior. This behavior that cannot be modeled with a transport model based on independent flow paths and indicate non-reversible heterogeneous advection. This process could be explained by the convergence of streamlines after a certain distance

  7. LARGE-SCALE NATURAL GRADIENT TRACER TEST IN SAND AND GRAVEL, CAPE CODE, MASSACHUSETTS 3. HYDRAULIC CONDUCTI- VITY AND CALCULATED MACRODISPERSIVITIES

    EPA Science Inventory

    Hydraulic conductivity (K) variability in a sand and gravel aquifer on Cape Cod, Massachusetts, was measured and subsequently used in stochastic transport theories to estimate macrodispersivities. Nearly 1500 K measurements were obtained by borehole flowmeter tests ...

  8. Long residence times - bad tracer tests?

    NASA Astrophysics Data System (ADS)

    Ghergut, Julia; Behrens, Horst; Sauter, Martin

    2015-04-01

    Tracer tests conducted at geothermal well doublets or triplets in the Upper Rhine Rift Valley [1] all face, with very few exceptions so far, one common issue: lack of conclusive tracer test results, or tracer signals still undetectable for longer than one or two years after tracer injection. While the reasons for this surely differ from site to site (Riehen, Landau, Insheim, Bruchsal, ...), its effects on how the usefulness of tracer tests is perceived by the non-tracer community are pretty much the same. The 'poor-signal' frustration keeps nourishing two major 'alternative' endeavours : (I) design and execute tracer tests in single-well injection-withdrawal (push-pull), 'instead of' inter-well flow-path tracing configurations; (II) use 'novel' tracer substances instead of the 'old' ones which have 'obviously failed'. Frustration experienced with most inter-well tracer tests in the Upper Rhine Rift Valley has also made them be regarded as 'maybe useful for EGS' ('enhanced', or 'engineered' geothermal systems, whose fluid RTD typically include a major share of values below one year), but 'no longer worthwhile a follow-up sampling' in natural, large-scale hydrothermal reservoirs. We illustrate some of these arguments with the ongoing Bruchsal case [2]. The inter-well tracer test conducted at Bruchsal was (and still is!) aimed at assessing inter-well connectivity, fluid residence times, and characterizing the reservoir structure [3]. Fluid samples taken at the geothermal production well after reaching a fluid turnover of about 700,000 m3 showed tracer concentrations in the range of 10-8 Minj per m3, in the liquid phase of each sample (Minj being the total quantity of tracer injected as a short pulse at the geothermal re-injection well). Tracer signals might actually be higher, owing to tracer amounts co-precipitated and/or adsorbed onto the solid phase whose accumulation in the samples was unavoidable (due to pressure relief and degassing during the very sampling

  9. Tracer Test Interpretation Methods for Reservior Properties

    SciTech Connect

    Shook, George Michael

    2001-08-01

    The purpose of this project is to develop tools that can be used to interpret tracer tests and obtain estimates of reservoir and operational parameters. These tools (mostly in the form of spreadsheet applications) can be used to optimize geothermal resource management.

  10. MULTISPECIES REACTIVE TRACER TEST IN A SAND AND GRAVEL AQUIFER, CAPE COD, MASSACHUSETTS: PART 2: TRANSPORT OF CHROMIUM (VI) AND LEAD-, COPPER-, AND ZINC-EDTA TRACERS

    EPA Science Inventory

    This report discusses the transport of a group of reactive tracers over the course of a large-scale, natural gradient tracer test conducted at the USGS Cape Cod Toxic Substances Hydrology Research site, near Falmouth, Massachusetts. The overall objectives of the experiment were ...

  11. Transport of microspheres and indigenous bacteria through a sandy aquifer: Results of natural- and forced-gradient tracer experiments

    USGS Publications Warehouse

    Harvey, R.W.; George, L.H.; Smith, R.L.; LeBlanc, D.R.

    1989-01-01

    Transport of indigenous bacteria through sandy aquifer sediments was investigated in forced- and natural-gradient tracer teste. A diverse population of bacteria was collected and concentrated from groundwater at the site, stained with a DNA-specific fluorochrome, and injected back into the aquifer. Included with the injectate were a conservative tracer (Br- or Cl-) and bacteria-sized (0.2-1.3-??m) microspheres having carboxylated, carbonyl, or neutral surfaces. Transport of stained bacteria and all types and size classes of microspheres was evident. In the natural-gradient test, both surface characteristics and size of microspheres affected attenuation. Surface characteristics had the greatest effect upon retardation. Peak break-through of DAPI-stained bacteria (forced-gradient experiment) occurred well in advance of bromide at the more distal sampler. Transport behavior of bacteria was substantially different from that of carboxylated microspheres of comparable size. ?? 1988 American Chemical Society.

  12. Tracer mass recovery in fractured aquifers estimated from multiple well tests.

    PubMed

    Sanford, William E; Cook, Peter G; Robinson, Neville I; Weatherill, Douglas

    2006-01-01

    Forced-gradient tracer tests in fractured aquifers often report low mass recoveries. In fractured aquifers, fractures intersected by one borehole may not be intersected by another. As a result (1) injected tracer can follow pathways away from the withdrawal well causing low mass recovery and (2) recovered water can follow pathways not connected to the injection well causing significant tracer dilution. These two effects occur along with other forms of apparent mass loss. If the strength of the connection between wells and the amount of dilution can be predicted ahead of time, tracer tests can be designed to optimize mass recovery and dilution. A technique is developed to use hydraulic tests in fractured aquifers to calculate the conductance (strength of connection) between well pairs and to predict mass recovery and amount of dilution during forced gradient tracer tests. Flow is considered to take place through conduits, which connect the wells to each other and to distant sources or sinks. Mass recovery is related to the proportion of flow leaving the injection well and arriving at the withdrawal well, and dilution is related to the proportion of the flow from the withdrawal well that is derived from the injection well. The technique can be used to choose well pairs for tracer tests, what injection and withdrawal rates to use, and which direction to establish the hydraulic gradient to maximize mass recovery and/or minimize dilution. The method is applied to several tracer tests in fractured aquifers in the Clare Valley, South Australia. PMID:16857034

  13. Interpreting tracer breakthrough tailing from different forced-gradient tracer experiment configurations in fractured bedrock

    USGS Publications Warehouse

    Becker, M.W.; Shapiro, A.M.

    2003-01-01

    Conceptual and mathematical models are presented that explain tracer breakthrough tailing in the absence of significant matrix diffusion. Model predictions are compared to field results from radially convergent, weak-dipole, and push-pull tracer experiments conducted in a saturated crystalline bedrock. The models are based upon the assumption that flow is highly channelized, that the mass of tracer in a channel is proportional to the cube of the mean channel aperture, and the mean transport time in the channel is related to the square of the mean channel aperture. These models predict the consistent -2 straight line power law slope observed in breakthrough from radially convergent and weak-dipole tracer experiments and the variable straight line power law slope observed in push-pull tracer experiments with varying injection volumes. The power law breakthrough slope is predicted in the absence of matrix diffusion. A comparison of tracer experiments in which the flow field was reversed to those in which it was not indicates that the apparent dispersion in the breakthrough curve is partially reversible. We hypothesize that the observed breakthrough tailing is due to a combination of local hydrodynamic dispersion, which always increases in the direction of fluid velocity, and heterogeneous advection, which is partially reversed when the flow field is reversed. In spite of our attempt to account for heterogeneous advection using a multipath approach, a much smaller estimate of hydrodynamic dispersivity was obtained from push-pull experiments than from radially convergent or weak dipole experiments. These results suggest that although we can explain breakthrough tailing as an advective phenomenon, we cannot ignore the relationship between hydrodynamic dispersion and flow field geometry at this site. The design of the tracer experiment can severely impact the estimation of hydrodynamic dispersion and matrix diffusion in highly heterogeneous geologic media.

  14. Simulation and interpretation of inter-well tracer tests

    NASA Astrophysics Data System (ADS)

    Huseby, Olaf; Sagen, Jan; Viig, Sissel; Dugstad, Øyvind

    2013-05-01

    In inter-well tracer tests (IWTT), chemical compounds or radioactive isotopes are used to label injection water and gas to establish well connections and fluid patterns in petroleum reservoirs. Tracer simulation is an invaluable tool to ease the interpretation of IWTT results and is also required for assisted history matching application of tracer data. In this paper we present a new simulation technique to analyse and interpret tracer results. Laboratory results are used to establish and test formulations of the tracer conservation equations, and the technique is used to provide simulated tracer responses that are compared with observed tracer data from an extensive tracer program. The implemented tracer simulation methodology use a fast post-processing of previously simulated reservoir simulation runs. This provides a fast, flexible and powerful method for analysing gas tracer behaviour in reservoirs. We show that simulation time for tracers can be reduced by factor 100 compared to solving the tracer flow equations simultaneously with the reservoir fluid flow equations. The post-processing technique, combined with a flexible built-in local tracer-grid refinement is exploited to reduce numerical smearing, particularly severe for narrow tracer pulses.

  15. Evaluation of leakage from fume hoods using tracer gas, tracer nanoparticles and nanopowder handling test methodologies.

    PubMed

    Dunn, Kevin H; Tsai, Candace Su-Jung; Woskie, Susan R; Bennett, James S; Garcia, Alberto; Ellenbecker, Michael J

    2014-01-01

    The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tracer gas (sulfur hexafluoride) and nanoparticles as well as an active test using an operator handling nanoalumina were conducted. A commercially available particle generator was used to produce sodium chloride tracer nanoparticles. Containment effectiveness was evaluated by sampling both in the breathing zone (BZ) of a mannequin and operator as well as across the hood opening. These containment tests were conducted across a range of hood face velocities (60, 80, and 100 ft/min) and with the room ventilation system turned off and on. For the tracer gas and tracer nanoparticle tests, leakage was much more prominent on the left side of the hood (closest to the room supply air diffuser) although some leakage was noted on the right side and in the BZ sample locations. During the tracer gas and tracer nanoparticle tests, leakage was primarily noted when the room air conditioner was on for both the low and medium hood exhaust airflows. When the room air conditioner was turned off, the static tracer gas tests showed good containment across most test conditions. The tracer gas and nanoparticle test results were well correlated showing hood leakage under the same conditions and at the same sample locations. The impact of a room air conditioner was demonstrated with containment being adversely impacted during the use of room air ventilation. The tracer nanoparticle approach is a simple method requiring minimal setup and instrumentation. However, the method requires the reduction in

  16. Evaluation of leakage from fume hoods using tracer gas, tracer nanoparticles and nanopowder handling test methodologies.

    PubMed

    Dunn, Kevin H; Tsai, Candace Su-Jung; Woskie, Susan R; Bennett, James S; Garcia, Alberto; Ellenbecker, Michael J

    2014-01-01

    The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tracer gas (sulfur hexafluoride) and nanoparticles as well as an active test using an operator handling nanoalumina were conducted. A commercially available particle generator was used to produce sodium chloride tracer nanoparticles. Containment effectiveness was evaluated by sampling both in the breathing zone (BZ) of a mannequin and operator as well as across the hood opening. These containment tests were conducted across a range of hood face velocities (60, 80, and 100 ft/min) and with the room ventilation system turned off and on. For the tracer gas and tracer nanoparticle tests, leakage was much more prominent on the left side of the hood (closest to the room supply air diffuser) although some leakage was noted on the right side and in the BZ sample locations. During the tracer gas and tracer nanoparticle tests, leakage was primarily noted when the room air conditioner was on for both the low and medium hood exhaust airflows. When the room air conditioner was turned off, the static tracer gas tests showed good containment across most test conditions. The tracer gas and nanoparticle test results were well correlated showing hood leakage under the same conditions and at the same sample locations. The impact of a room air conditioner was demonstrated with containment being adversely impacted during the use of room air ventilation. The tracer nanoparticle approach is a simple method requiring minimal setup and instrumentation. However, the method requires the reduction in

  17. EVALUATION OF LEAKAGE FROM FUME HOODS USING TRACER GAS, TRACER NANOPARTICLES AND NANOPOWDER HANDLING TEST METHODOLOGIES

    PubMed Central

    Dunn, Kevin H.; Tsai, Candace Su-Jung; Woskie, Susan R.; Bennett, James S.; Garcia, Alberto; Ellenbecker, Michael J.

    2015-01-01

    The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tracer gas (sulfur hexafluoride) and nanoparticles as well as an active test using an operator handling nanoalumina were conducted. A commercially available particle generator was used to produce sodium chloride tracer nanoparticles. Containment effectiveness was evaluated by sampling both in the breathing zone (BZ) of a mannequin and operator as well as across the hood opening. These containment tests were conducted across a range of hood face velocities (60, 80, and 100 feet/minute) and with the room ventilation system turned off and on. For the tracer gas and tracer nanoparticle tests, leakage was much more prominent on the left side of the hood (closest to the room supply air diffuser) although some leakage was noted on the right side and in the BZ sample locations. During the tracer gas and tracer nanoparticle tests, leakage was primarily noted when the room air conditioner was on for both the low and medium hood exhaust air flows. When the room air conditioner was turned off, the static tracer gas tests showed good containment across most test conditions. The tracer gas and nanoparticle test results were well correlated showing hood leakage under the same conditions and at the same sample locations. The impact of a room air conditioner was demonstrated with containment being adversely impacted during the use of room air ventilation. The tracer nanoparticle approach is a simple method requiring minimal setup and instrumentation. However, the method requires the reduction in

  18. 76 FR 71610 - Market Test of First-Class Tracer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... Market Test of First-Class Tracer AGENCY: Postal Regulatory Commission. ACTION: Notice. SUMMARY: The Commission is noticing a recently-field Postal Service proposal to conduct a market test of a market dominant product, First- Class Tracer. This document describes the proposed test, addresses procedural aspects...

  19. Tracer diffusion measurements in solid lithium: a test case for the comparison between NMR in static and pulsed magnetic field gradients after upgrading a standard solid state NMR spectrometer.

    PubMed

    Marion Fischer, D; Duwe, Peter; Indris, Sylvio; Heitjans, Paul

    2004-09-01

    This paper reports on the upgrading of a standard solid state NMR spectrometer, which has been used in combination with a field variable 7 T cryomagnet, to a low-cost combined SFG and PFG NMR spectrometer. Both methods are applied to solid lithium as a simple test case. The results show that under the given conditions SFG NMR and PFG NMR can provide tracer diffusion coefficients for 7 Li diffusion down to about 10(-14) and 10(-13) m2/s, respectively. SFG and PFG NMR are complementary methods. The paper demonstrates advantages and disadvantages of each method with a concrete example and why it is desirable to be able to apply both methods to the same sample.

  20. Lidar Tracking of Multiple Fluorescent Tracers: Method and Field Test

    NASA Technical Reports Server (NTRS)

    Eberhard, Wynn L.; Willis, Ron J.

    1992-01-01

    Past research and applications have demonstrated the advantages and usefulness of lidar detection of a single fluorescent tracer to track air motions. Earlier researchers performed an analytical study that showed good potential for lidar discrimination and tracking of two or three different fluorescent tracers at the same time. The present paper summarizes the multiple fluorescent tracer method, discusses its expected advantages and problems, and describes our field test of this new technique.

  1. Combining 3D Hydraulic Tomography with Tracer Tests for Improved Transport Characterization.

    PubMed

    Sanchez-León, E; Leven, C; Haslauer, C P; Cirpka, O A

    2016-07-01

    Hydraulic tomography (HT) is a method for resolving the spatial distribution of hydraulic parameters to some extent, but many details important for solute transport usually remain unresolved. We present a methodology to improve solute transport predictions by combining data from HT with the breakthrough curve (BTC) of a single forced-gradient tracer test. We estimated the three dimensional (3D) hydraulic-conductivity field in an alluvial aquifer by inverting tomographic pumping tests performed at the Hydrogeological Research Site Lauswiesen close to Tübingen, Germany, using a regularized pilot-point method. We compared the estimated parameter field to available profiles of hydraulic-conductivity variations from direct-push injection logging (DPIL), and validated the hydraulic-conductivity field with hydraulic-head measurements of tests not used in the inversion. After validation, spatially uniform parameters for dual-domain transport were estimated by fitting tracer data collected during a forced-gradient tracer test. The dual-domain assumption was used to parameterize effects of the unresolved heterogeneity of the aquifer and deemed necessary to fit the shape of the BTC using reasonable parameter values. The estimated hydraulic-conductivity field and transport parameters were subsequently used to successfully predict a second independent tracer test. Our work provides an efficient and practical approach to predict solute transport in heterogeneous aquifers without performing elaborate field tracer tests with a tomographic layout.

  2. Three-Dimensional Bayesian Geostatistical Aquifer Characterization at the Hanford 300 Area using Tracer Test Data

    SciTech Connect

    Chen, Xingyuan; Murakami, Haruko; Hahn, Melanie S.; Hammond, Glenn E.; Rockhold, Mark L.; Zachara, John M.; Rubin, Yoram

    2012-06-01

    Tracer testing under natural or forced gradient flow holds the potential to provide useful information for characterizing subsurface properties, through monitoring, modeling and interpretation of the tracer plume migration in an aquifer. Non-reactive tracer experiments were conducted at the Hanford 300 Area, along with constant-rate injection tests and electromagnetic borehole flowmeter (EBF) profiling. A Bayesian data assimilation technique, the method of anchored distributions (MAD) [Rubin et al., 2010], was applied to assimilate the experimental tracer test data with the other types of data and to infer the three-dimensional heterogeneous structure of the hydraulic conductivity in the saturated zone of the Hanford formation. In this study, the Bayesian prior information on the underlying random hydraulic conductivity field was obtained from previous field characterization efforts using the constant-rate injection tests and the EBF data. The posterior distribution of the conductivity field was obtained by further conditioning the field on the temporal moments of tracer breakthrough curves at various observation wells. MAD was implemented with the massively-parallel three-dimensional flow and transport code PFLOTRAN to cope with the highly transient flow boundary conditions at the site and to meet the computational demands of MAD. A synthetic study proved that the proposed method could effectively invert tracer test data to capture the essential spatial heterogeneity of the three-dimensional hydraulic conductivity field. Application of MAD to actual field data shows that the hydrogeological model, when conditioned on the tracer test data, can reproduce the tracer transport behavior better than the field characterized without the tracer test data. This study successfully demonstrates that MAD can sequentially assimilate multi-scale multi-type field data through a consistent Bayesian framework.

  3. Direct Quantification of Microbial Community Respiration along a Contamination Gradient using a novel Hydrologic Smart Tracer

    NASA Astrophysics Data System (ADS)

    Stanaway, D. J.; Haggerty, R.; Feris, K. P.

    2010-12-01

    Heavy metal contamination in lotic ecosystems is a major health and environmental concern worldwide. The Resazurin Resorufin (Raz Rru) Smart Tracer system (Haggerty et al., 2008) provides a novel approach to test current models of microbial ecosystem response to chronic stressors such as heavy metals. These models predict that functional redundancy of metabolic capabilities of community members (e.g. respiration rate and enzyme activity) will compensate for decreases in species diversity until a stress threshold is reached. At this point, species diversity and function are expected to decline rapidly. Contrary to this model, microbial communities of the Clark Fork River (CF), Montana, demonstrate high levels of species diversity along the contamination gradient, whereas community function is inversely proportional to the level of contamination. The Raz Rru tool, a metabolically reactive hydrologic tracer, allows for direct quantification of in-situ microbial respiration rates. Therefore, this tool provides an opportunity to build upon studies of ecosystem response to contamination previously limited to extrapolation of point scale measurements to reach scale processes. The Raz Rru tool is used here to quantify the magnitude of metal induced limits on heterotrophic microbial respiration in communities that have evolved to different levels of chronic metal exposure. In this way we propose to be able to test a novel hypothesis concerning the nature of evolution of community processes to chronic stress and persistent environmental pollutants. Specifically, we hypothesize that metal contamination produces a measureable metabolic cost to both tolerant and intolerant communities. To test this hypothesis, rates of respiration associated with hyporheic sediments, supporting intact microbial communities, were quantified in the presence and absence of an acute Cd exposure in column experiments. Hyporheic sediment was collected from differently contaminated locations within

  4. ANALYTICAL METHOD DEVELOPMENTS TO SUPPORT PARTITIONING INTERWELL TRACER TESTING

    EPA Science Inventory

    Partitioning Interwell Tracer Testing (PITT) uses alcohol tracer compounds in estimating subsurface contamination from non-polar pollutants. PITT uses the analysis of water samples for various alcohols as part of the overall measurement process. The water samples may contain many...

  5. Some design considerations for the proposed Dixie Valley tracer test

    SciTech Connect

    Doughty, C.; Bodvarsson, G.S.

    1988-06-01

    A tracer test for the Dixie Valley, Nevada, geothermal resource is planned for the summer of 1988, in order to study the fluid flow paths that will develop under typical operating conditions. During the test six production wells will provide the power plant with steam sufficient for generation of 60 MWe, requiring fluid production at a rate of approximately 600 kg/sec. Up to 75% by mass of the extracted fluid will be reinjected into the reservoir, using four injection wells. Tracer will be added to the injected fluid for a twenty-minute period, and subsequently the produced fluid will be monitored for the tracer. 5 refs., 9 figs., 5 tabs.

  6. Heat tracer test in an alluvial aquifer: Field experiment and inverse modelling

    NASA Astrophysics Data System (ADS)

    Klepikova, Maria; Wildemeersch, Samuel; Hermans, Thomas; Jamin, Pierre; Orban, Philippe; Nguyen, Frédéric; Brouyère, Serge; Dassargues, Alain

    2016-09-01

    Using heat as an active tracer for aquifer characterization is a topic of increasing interest. In this study, we investigate the potential of using heat tracer tests for characterization of a shallow alluvial aquifer. A thermal tracer test was conducted in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in an injection well and monitoring the evolution of groundwater temperature and tracer concentration in the pumping well and in measurement intervals. To get insights in the 3D characteristics of the heat transport mechanisms, temperature data from a large number of observation wells closely spaced along three transects were used. Temperature breakthrough curves in observation wells are contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. The observed complex behavior of the heat plume is explained by the groundwater flow gradient on the site and heterogeneities in the hydraulic conductivity field. Moreover, due to high injection temperatures during the field experiment a temperature-induced fluid density effect on heat transport occurred. By using a flow and heat transport numerical model with variable density coupled with a pilot point approach for inversion of the hydraulic conductivity field, the main preferential flow paths were delineated. The successful application of a field heat tracer test at this site suggests that heat tracer tests is a promising approach to image hydraulic conductivity field. This methodology could be applied in aquifer thermal energy storage (ATES) projects for assessing future efficiency that is strongly linked to the hydraulic conductivity variability in the considered aquifer.

  7. Simple Spreadsheet Models For Interpretation Of Fractured Media Tracer Tests

    EPA Science Inventory

    An analysis of a gas-phase partitioning tracer test conducted through fractured media is discussed within this paper. The analysis employed matching eight simple mathematical models to the experimental data to determine transport parameters. All of the models tested; two porous...

  8. Multiple Tracer Tests in Porous Media During Clogging

    NASA Astrophysics Data System (ADS)

    Englert, A.; Banning, A.; Siegmund, J.; Freye, S.; Goekpinar, T.

    2015-12-01

    Transport processes are known to be governed by the physical and chemical heterogeneity of the subsurface. Clogging processes can alter this heterogeneity as function of time and thus can modify transport. To understand transport under clogging conditions and to unravel the potential of multiple tracer tests to characterize such transport process we perform column and sandbox experiments. Our recently developed column and sandbox experiments are used to perform multiple tracer tests during clogging. In a first set of experiments, a cubic cell of 0.1 m x 0.1 m x 0.1 m is used to experimentally estimate flow and transport characteristics of an unconsolidated sediment through Darcy and tracer experiments. The water streaming through the experiment is amended with ammonium sulfate permanently. Salt tracers are added to the streaming water repeatedly, to be detected at micro electrodes at the inflow and the outflow of the cubic cell. Through repeated syringe injections of a barium chloride solution into the center of the cubic cell clogging processes are forced to occur around the mixing zone of the injected and streaming water by precipitation of barium sulfate. In a second set of experiments, a sandbox model including a sediment body of 0.3 m x 0.3 m x 0.1 m is used. Tracer, streaming, and injection water chemistry is kept similar to the cubic cell experiments. However, tracer breakthrough is now detected at nine positions within the experiment and at the inflow and the outflow of the sandbox model. Injection of barium chloride solution is now at two locations around the center of the sandbox model. Flow and transport characteristics of the sediment body are estimated based on Darcy and tracer experiments, which are performed repeatedly. Combined analysis of local and ensemble breakthrough curves and integrated numerical modeling will be used to understand effective and local flow and transport in a in a porous medium during clogging.

  9. Field tracer-transport tests in unsaturated fractured tuff.

    PubMed

    Hu, Q; Salve, R; Stringfellow, W T; Wang, J S

    2001-09-01

    This paper presents the results of a field investigation in the unsaturated, fractured welded tuff within the Exploratory Studies Facility (ESF) at Yucca Mountain, NV. This investigation included a series of tests during which tracer-laced water was released into a high-permeability zone within a horizontal injection borehole. The tracer concentration was monitored in the seepage collected in an excavated slot about 1.6 m below the borehole. Results showed significant variability in the hydrologic response of fractures and the matrix. Analyses of the breakthrough curves suggest that flow and transport pathways are dynamic, rather than fixed, and related to liquid-release rates. Under high release rates, fractures acted as the predominant flow pathways, with limited fracture-matrix interaction. Under low release rates, fracture flow was comparatively less dominant, with a noticeable contribution from matrix flow. Observations of tracer concentrations rebounding in seepage water, following an interruption of flow, provided evidence of mass exchange between the fast-flowing fractures and slow- or non-flowing regions. The tests also showed the applicability of fluorinated benzoate tracers in situations where multiple tracers of similar physical properties are warranted. PMID:11530924

  10. Testing fundamentals: The chemical state of geochemical tracers in biominerals.

    NASA Astrophysics Data System (ADS)

    Branson, O.; Redfern, S. A. T.; Read, E.; Elderfield, H.

    2015-12-01

    The use of many carbonate-derived geochemical proxies is underpinned by the assumption that tracer elements are incorporated 'ideally' as impurities the mineral lattice, following relatively straightforward kinetic and thermodynamic drives. This allows comparison to inorganic precipitation experiments, and provides a systematic starting point from which to translate geochemical tracers to environmental records. Biomineral carbonates are a prominent source of geochemical proxy material, and are far from an ideal inorganic system. They are structurally and compositionally heterogeneous mineral-organic composites, produced in tightly controlled biological environments, possibly via non-classical crystal growth mechanisms. Biominerals offer numerous opportunities for tracers to be incorporated in a 'non-ideal' state. For instance, tracers could be hosted within the organic component of the structure, in interstitial micro-domains of a separate mineral phase, or in localized high-impurity clusters. If a proxy element is hosted in a non-ideal state, our understanding of its incorporation and preservation is flawed, and the theoretical basis behind the proxies derived from it must be reevaluated. Thus far, the assumption of ideal tracer incorporation has remained largely untested, owing to the spatial resolution and sensitivity limits of available techniques. Developments in high-resolution, high-sensitivity X-ray spectroscopy at Scanning Transmission X-Ray Microscopes (STXMs) have allowed us to measure trace element coordination in foraminiferal calcite, at length-scales relevant to biomineralisation processes and tracer incorporation. This instrument has allowed us to test the fundamental assumptions behind several geochemical proxy elements. We present a summary of four STXM studies, assessing the chemical state and distribution of Mg (Branson et al, 2014), B (Branson et al, 2015), S and Na (unpub.), and highlight the implications of these data for the use of these

  11. TRAC, a collaborative computer tool for tracer-test interpretation

    NASA Astrophysics Data System (ADS)

    Gutierrez, A.; Klinka, T.; Thiéry, D.; Buscarlet, E.; Binet, S.; Jozja, N.; Défarge, C.; Leclerc, B.; Fécamp, C.; Ahumada, Y.; Elsass, J.

    2013-05-01

    Artificial tracer tests are widely used by consulting engineers for demonstrating water circulation, proving the existence of leakage, or estimating groundwater velocity. However, the interpretation of such tests is often very basic, with the result that decision makers and professionals commonly face unreliable results through hasty and empirical interpretation. There is thus an increasing need for a reliable interpretation tool, compatible with the latest operating systems and available in several languages. BRGM, the French Geological Survey, has developed a project together with hydrogeologists from various other organizations to build software assembling several analytical solutions in order to comply with various field contexts. This computer program, called TRAC, is very light and simple, allowing the user to add his own analytical solution if the formula is not yet included. It aims at collaborative improvement by sharing the tool and the solutions. TRAC can be used for interpreting data recovered from a tracer test as well as for simulating the transport of a tracer in the saturated zone (for the time being). Calibration of a site operation is based on considering the hydrodynamic and hydrodispersive features of groundwater flow as well as the amount, nature and injection mode of the artificial tracer. The software is available in French, English and Spanish, and the latest version can be downloaded from the web site http://trac.brgm.fr">http://trac.brgm.fr.

  12. Numerical simulation of a natural gradient tracer experiment for the natural attenuation study: flow and physical transport.

    PubMed

    Julian, H E; Boggs, J M; Zheng, C; Feehley, C E

    2001-01-01

    Results are presented for numerical simulations of ground water flow and physical transport associated with a natural gradient tracer experiment conducted within a heterogeneous alluvial aquifer of the Natural Attenuation Study (NATS) site near Columbus, Mississippi. A principal goal of NATS is to evaluate biogeochemical models that predict the rate and extent of natural biodegradation under field conditions. This paper describes the initial phase in the model evaluation process, i.e., calibration of flow and physical transport models that simulate conservative bromide tracer plume evolution during NATS. An initial large-scale flow model (LSM) is developed encompassing the experimental site and surrounding region. This model is subsequently scaled down in telescopic fashion to an intermediate-scale ground water flow model (ISM) covering the tracer-monitoring network, followed by a small-scale transport model (SSM) focused on the small region of hydrocarbon plume migration observed during NATS. The LSM uses inferred depositional features of the site in conjunction with hydraulic conductivity (K) data from aquifer tests and borehole flowmeter tests to establish large-scale K and flow field trends in and around the experimental site. The subsequent ISM incorporates specified flux boundary conditions and large-scale K trends obtained from the calibrated LSM, while preserving small-scale K structure based on some 4000 flowmeter data for solute transport modeling. The configuration of the ISM-predicted potentiometric surface approximates that of the observed surface within a root mean squared error of 0.15 m. The SSM is based on the dual-domain mass-transfer approach. Despite the well-recognized difficulties in modeling solute transport in extremely heterogeneous media as found at the NATS site, the dual-domain model adequately reproduced the observed bromide concentration distributions. Differences in observed and predicted bromide concentration distributions are

  13. Geothermal reservoir characterization by tracer and well testing

    SciTech Connect

    Akin, S.; Okandan, E.

    1997-12-31

    This work presents the analysis of experimental data obtained on a lab scale fractured geothermal model where matrix block sizes, fracture apertures and distributions are known. The ultimate goal is to obtain the fracture aperture which is a key parameter in determining the flow and transport characteristics of fractured media. For the tracer tests, 4,000 ppm potassium iodide solution slug was injected from the corner of the model prepared using seventy stacked marble blocks and production concentration of the tracer was monitored from the other end of the diagonal. Drawdown pressure transient tests were conducted using the same model. Results indicated that flow was mainly through a major fracture path and tracer also entered to this path from auxiliary side fractures. The apparent size of the main fracture path was calculated as average 30 microns and secondary fractures had the average size of 10 microns which was found to be in good agreement with the mechanical aperture of 13.58 microns. The apparent fracture apertures, calculated using the permeability obtained from the well test analysis, changed from 70 microns to 116 microns overestimating the mechanical fracture aperture.

  14. Chemical tracer test at the Dixie Valley geothermal field, Nevada. Geothermal Reservoir Technology research program

    SciTech Connect

    Adams, M.C.; Moore, J.N.; Benoit, W.R.; Doughty, C.; Bodvarsson, G.S.

    1993-10-01

    In the injection test described, chemical tracers established the fluid flow between one injection well and one production well. Measured tracer concentrations, calculated flow rates, sampling schedules, and the daily events of the tracer test are documented. This experiment was designed to test the application of organic tracers, to further refine the predictive capability of the reservoir model, and to improve the effectiveness of Oxbow`s injection strategy.

  15. Results of ground-water tracer tests using tritiated water at Oak Ridge National Laboratory, Tennessee

    USGS Publications Warehouse

    Webster, D.A.

    1996-01-01

    Ground-water tracer test were conducted at two sites in the radioactive-waste disposal area of Oak Ridge National Laboratory from 1977 to 1982. The purpose of the tests was to determine if the regolith beds had weathered sufficiently to permit the substantial flow of water across them. About 50 curies of tritium dissolved in water were used as the tracer in one site, and about 100 curies at the other. Results demonstrated that ground water is able to flow through joints in the weathered bedding and that the direction of the water-table gradient is the primary factor governint flow direction. Nevertheless, the substantial lateral spread of the plume as it developed showed that bedding-plane openings can still exert a significant secondary influence on flow direction in weathered rock. About 3,500 water samples from the injection and observation wells were analyzed for tritium during the test period. Concentrations detected spanned 11 orders of magnitude. Measurable concentrations were still present in the two injection wells and most observation wells 5 years after the tracer was introduced. Matrix diffusion may have played a significant role in these tests. The process would account for the sustained concentrations of tritium at many of the observation wells, the long-term residual concentrations at the injection and observation wells, and the apparent slow movement of the centers of mass across the two well fields. The process also would have implications regarding aquifer remediation. Other tracer tests have been conducted in the regolith of the Conasauga Group. Results differ from the results described in this report.

  16. Estimation of Fluorescent Dye Amount in Tracer Dye Test

    NASA Astrophysics Data System (ADS)

    Pekkan, Emrah; Balkan, Erman; Balkan, Emir

    2015-04-01

    Karstic groundwater is more influenced by human than the groundwater that disperse in pores. On the other hand karstic groundwater resources, in addition to providing agricultural needs, livestock breeding, drinking and domestic water in most of the months of the year, they also supply drinking water to the wild life at high altitudes. Therefore sustainability and hydrogeological investigation of karstic resources is critical. Tracing techniques are widely used in hydrologic and hydrogeologic studies to determine water storage, flow rate, direction and protection area of groundwater resources. Karanfil Mountain (2800 m), located in Adana, Turkey, is one of the karstic recharge areas of the natural springs spread around its periphery. During explorations of the caves of Karanfil mountain, a 600 m deep cave was found by the Turkish and Polish cavers. At the bottom of the cave there is an underground river with a flow rate of approximately 0.5 m3/s during August 2014. The main spring is located 8 km far from the cave's entrance and its mean flow rate changes between 3.4 m3/s and 0.21 m3/s in March and September respectively according to a flowrate observation station of Directorate of Water Works of Turkey. As such frequent storms, snowmelt and normal seasonal variations in rainfall have a significant and rapid effect on the volume of this main spring resource. The objective of our research is to determine and estimate dye amount before its application on the field inspired from the previously literature on the subject. This estimation is intended to provide a preliminary application of a tracer test of a karstic system. In this study dye injection, inlet point will be an underground river located inside the cave and the observation station will be the spring that is approximately 8 km far from the cave entrance. On the other hand there is 600 meter elevation difference between cave entrance and outlet spring. In this test Rodamin-WT will be used as tracer and the

  17. Transport and attenuation of carboxylate-modified latex microspheres in fractured rock laboratory and field tracer tests

    USGS Publications Warehouse

    Becker, M.W.; Reimus, P.W.; Vilks, P.

    1999-01-01

    Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks of pathogen contamination in drinking water wells. Much has been learned through laboratory and field-scale colloid tracer tests, but progress has been hampered by a lack of consistent tracer testing methodology at different scales and fluid velocities. This paper presents laboratory and field tracer tests in fractured rock that use the same type of colloid tracer over an almost three orders-of-magnitude range in scale and fluid velocity. Fluorescently-dyed carboxylate-modified latex (CML) microspheres (0.19 to 0.98 ??m diameter) were used as tracers in (1) a naturally fractured tuff sample, (2) a large block of naturally fractured granite, (3) a fractured granite field site, and (4) another fractured granite/schist field site. In all cases, the mean transport time of the microspheres was shorter than the solutes, regardless of detection limit. In all but the smallest scale test, only a fraction of the injected microsphere mass was recovered, with the smaller microspheres being recovered to a greater extent than the larger microspheres. Using existing theory, we hypothesize that the observed microsphere early arrival was due to volume exclusion and attenuation was due to aggregation and/or settling during transport. In most tests, microspheres were detected using flow cytometry, which proved to be an excellent method of analysis. CML microspheres appear to be useful tracers for fractured rock in forced gradient and short-term natural gradient tests, but longer residence times may result in small microsphere recoveries.Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks

  18. Filtering a statistically exactly solvable test model for turbulent tracers from partial observations

    SciTech Connect

    Gershgorin, B.; Majda, A.J.

    2011-02-20

    A statistically exactly solvable model for passive tracers is introduced as a test model for the authors' Nonlinear Extended Kalman Filter (NEKF) as well as other filtering algorithms. The model involves a Gaussian velocity field and a passive tracer governed by the advection-diffusion equation with an imposed mean gradient. The model has direct relevance to engineering problems such as the spread of pollutants in the air or contaminants in the water as well as climate change problems concerning the transport of greenhouse gases such as carbon dioxide with strongly intermittent probability distributions consistent with the actual observations of the atmosphere. One of the attractive properties of the model is the existence of the exact statistical solution. In particular, this unique feature of the model provides an opportunity to design and test fast and efficient algorithms for real-time data assimilation based on rigorous mathematical theory for a turbulence model problem with many active spatiotemporal scales. Here, we extensively study the performance of the NEKF which uses the exact first and second order nonlinear statistics without any approximations due to linearization. The role of partial and sparse observations, the frequency of observations and the observation noise strength in recovering the true signal, its spectrum, and fat tail probability distribution are the central issues discussed here. The results of our study provide useful guidelines for filtering realistic turbulent systems with passive tracers through partial observations.

  19. A Geoelectrically-Monitored Tracer Test At The Macrodispersion Experiment (MADE) Site In Columbus, Mississippi

    NASA Astrophysics Data System (ADS)

    Swanson, R. D.; Singha, K.; Pidlisecky, A.; Hyndman, D. W.; Butler, J. J.; Bohling, G.

    2010-12-01

    The Macrodispersion Experiment (MADE) Site in northeastern Mississippi consists of a shallow unconfined aquifer of poorly to well-sorted sand intermixed with silts and gravel. Fluvial deposits extend 12m below the surface and terminate at the low hydraulic conductivity, clay-rich Eutaw Formation. The MADE site has been the subject of numerous tracer tests due to its highly heterogeneous aquifer. Despite these tests, there is still disagreement over the dominant mechanism of transport; proposed solutions include modeling large scale hydraulic conductivity variations, allowing for poorly and well-connected flowpaths and dividing the subsurface into mobile and immobile domains. In October 2009, a doublet tracer test was performed by injecting a solution of NaCl into one well and extracting groundwater at an equal rate 6.2m down gradient. The tracer was monitored from 1 to 12m using 34 sampling points in 7 multi-level samplers for over 100 days. For 4 days after injection, over 129,000 in-well and cross-borehole electrical resistivity measurements were collected between 4 wells containing 16 electrodes each. Initial inversions of electrical resistivity data indicate two distinct regions of lower resistivity zones near the surface and the Eutaw clay with a higher resistivity zone near the middle of the aquifer. Geophysical tomograms, when compared with both gamma borehole measurements and high-resolution hydraulic conductivity measurements, suggest at this site electrical resistivity measurements are highly correlated to hydraulic conductivity and silt content. Breakthrough histories show a heterogeneous pattern of tracer arrival times and long tails in concentration at most depths. For example, measurements from a multilevel sampler 5m down gradient of the injection well indicate breakthroughs at 15 and 26 hours at a depth of 7 and 4m, respectively, but little variation in fluid conductivity was observed at 1 and 6m throughout the duration of the experiment. Both in

  20. Testing and comparison of four ionic tracers to measure stream flow loss by multiple tracer injection

    USGS Publications Warehouse

    Zellweger, G.W.

    1994-01-01

    An injectate containing lithium, sodium, chloride and bromide was added continuously at five sites along a 507 m study reach of St Kevin Gulch, Lake County, Colorado to determine which sections of the stream were losing water to the stream bed and to ascertain how well the four tracers performed. The acidity of the stream (pH 3.6) made it possible for lithium and sodium, which are normally absorbed by ion exchange with stream bed sediment, to be used as conservative tracers. Net flow losses as low as 0.81 s-1, or 8% of flow, were calculated between measuring sites. By comparing the results of simultaneous injection it was determined whether subsections of the study reach were influent or effluent. Evaluation of tracer concentrations along 116 m of stream indicated that all four tracers behaved conservatively. Discharges measured by Parshall flumes were 4-18% greater than discharges measured by tracer dilution. -from Author

  1. HYDROGEL TRACER BEADS: THE DEVELOPMENT, MODIFICATION, AND TESTING OF AN INNOVATIVE TRACER FOR BETTER UNDERSTANDING LNAPL TRANSPORT IN KARST AQUIFERS

    SciTech Connect

    Amanda Laskoskie, Harry M. Edenborn, and Dorothy J. Vesper

    2012-01-01

    The goal of this specific research task is to develop proxy tracers that mimic contaminant movement to better understand and predict contaminant fate and transport in karst aquifers. Hydrogel tracer beads are transported as a separate phase than water and can used as a proxy tracer to mimic the transport of non-aqueous phase liquids (NAPL). They can be constructed with different densities, sizes & chemical attributes. This poster describes the creation and optimization of the beads and the field testing of buoyant beads, including sampling, tracer analysis, and quantitative analysis. The buoyant beads are transported ahead of the dissolved solutes, suggesting that light NAPL (LNAPL) transport in karst may occur faster than predicted from traditional tracing techniques. The hydrogel beads were successful in illustrating this enhanced transport.

  2. Encapsulated cell bioremediation: Evaluation on the basis of particle tracer tests

    SciTech Connect

    Petrich, C.R.; Stormo, K.E.; Ralston, D.R.; Crawford, R.L.

    1998-09-01

    Microencapsulation of degradative organisms enhances microorganism survivability. The use of encapsulated cell microbeads for in situ biodegradation depends not only on microorganism survival but also on microbead transport characteristics. Two forced-gradient, recirculating-loop tracer experiments were conducted to evaluate the feasibility of encapsulated cell transport and bioremediation on the basis of polystyrene microsphere transport results. The tracer tests were conducted in a shallow, confined, unconsolidated, heterogeneous, sedimentary aquifer using bromide ion and 2 {micro}m, 5 {micro}m, and 15{micro}m microsphere tracers. Significant differences were observed in the transport of bromide solute and polystyrene microspheres. Microspheres reached peak concentrations in monitoring wells before bromide, which was thought to reflect the influence of aquifer heterogeneity. Greater decreases in microsphere C/C{sub 0} ratios were observed with distance from the injection wells than in bromide C/C{sub 0} ratios, which was attributed to particle filtration and/or settling. Several methods might be considered for introducing encapsulated cell microbeads into a subsurface environment, including direct injection into a contaminated aquifer zone, injection through a recirculating ground water flow system, or emplacement in a subsurface microbial curtain in advance of a plume. However, the in situ use of encapsulated cells in an aquifer is probably limited to aquifers containing sufficiently large pore spaces, allowing passage of at least some encapsulated cells. The use of encapsulated cells may also be limited by differences in solute and microbead transport patterns and flowpath clogging by larger encapsulated cell microbeads.

  3. Tritium tracer test to estimate aquifer recharge under irrigated conditions

    NASA Astrophysics Data System (ADS)

    Jimenez-Martinez, J.; Tamoh, K.; Candela, L.

    2009-12-01

    Environmental tracers, as tritium, have been generally used to estimate aquifer recharge under natural conditions. A tritium tracer test to estimate recharge under semi-arid and irrigated conditions is presented. The test was carried out in an experimental plot under drip irrigation, located in SE Spain, with annual row crops (rotation lettuce and melon), following common agricultural practices in open air. Tritiated water was applied as an irrigation pulse, soil cores were taken at different depths and a liquid scintillation analyzer was used to measure the concentration of tritium in soil samples. Transport of tritium was simulated with SOLVEG code, a one-dimensional numerical model for simulating transport of heat, water and tritiated water in liquid and gas phase, which has been modified and adapted for this experience, including ground cover, root growth and root water uptake. One crop has been used to calibrate the modeling approach and other three crops to validate it. Results of flow and transport modelling show a good agreement between observed and estimated tritium concentration profile. For the period October 2007-September 2008, total drainage obtained value was 441 mm.

  4. Borehole flowmeter logging for the accurate design and analysis of tracer tests.

    PubMed

    Basiricò, Stefano; Crosta, Giovanni B; Frattini, Paolo; Villa, Alberto; Godio, Alberto

    2015-04-01

    Tracer tests often give ambiguous interpretations that may be due to the erroneous location of sampling points and/or the lack of flow rate measurements through the sampler. To obtain more reliable tracer test results, we propose a methodology that optimizes the design and analysis of tracer tests in a cross borehole mode by using vertical borehole flow rate measurements. Experiments using this approach, herein defined as the Bh-flow tracer test, have been performed by implementing three sequential steps: (1) single-hole flowmeter test, (2) cross-hole flowmeter test, and (3) tracer test. At the experimental site, core logging, pumping tests, and static water-level measurements were previously carried out to determine stratigraphy, fracture characteristics, and bulk hydraulic conductivity. Single-hole flowmeter testing makes it possible to detect the presence of vertical flows as well as inflow and outflow zones, whereas cross-hole flowmeter testing detects the presence of connections along sets of flow conduits or discontinuities intercepted by boreholes. Finally, the specific pathways and rates of groundwater flow through selected flowpaths are determined by tracer testing. We conclude that the combined use of single and cross-borehole flowmeter tests is fundamental to the formulation of the tracer test strategy and interpretation of the tracer test results. PMID:25417730

  5. A Tracer Test at the Los Alamos Canyon Weir

    NASA Astrophysics Data System (ADS)

    Levitt, D. G.; Stone, W. J.; Newell, D. L.; Wykoff, D. S.

    2002-12-01

    A low-head weir was constructed in the Los Alamos Canyon to reduce the transport of contaminant-bearing sediment caused by fire-enhanced runoff off Los Alamos National Laboratory (LANL) property towards the Rio Grande following the May 2000 Cerro Grande fire at Los Alamos, New Mexico. Fractured basalt was exposed in the channel by grading during construction of the weir, and water temporarily ponds behind the weir following periods of runoff. In order to monitor any downward transport of contaminants into fractured basalt, and potentially downward to the regional ground water, three boreholes (one vertical, one at 43 degrees, and one at 34 degrees from horizontal) were installed for environmental monitoring. The boreholes penetrate to depths ranging from approximately 9 to 82 m below the weir floor. The two angled boreholes are fitted with flexible FLUTe liners with resistance sensors to measure relative moisture content and absorbent sampling pads for contaminant and environmental tracer sampling within the vadose zone. The two angled boreholes are also monitored for relative changes in moisture content by neutron logging. The vertical borehole penetrates three perched water zones and is equipped with four screens and sampling ports. In April 2002, a tracer test was initiated with the application of a 0.2 M (16,000 ppm) solution of potassium bromide (KBr) onto the weir floor. The tracer experiment was intended to provide data on travel times through the complex hydrogeologic media of fractured basalt. A precipitation and runoff event in June 2002 resulted in approximately 0.61 m of standing water behind the weir. If the KBr and flood waters were well mixed, the concentration of KBr in the flood waters was approximately 24 ppm. Bromide was detected in the absorbent membrane in the 43 degree hole at concentrations up to 2 ppm. Resistance sensors in the 43 degree borehole detected moisture increases within 3 days at a depth of 27 m, indicating an average wetting

  6. Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems

    SciTech Connect

    Williams, Mark D.; Reimus, Paul; Vermeul, Vincent R.; Rose, Peter; Dean, Cynthia A.; Watson, Tom B.; Newell, D.; Leecaster, Kevin; Brauser, Eric

    2013-05-01

    A recent report found that power and heat produced from enhanced (or engineered) geothermal systems (EGSs) could have a major impact on the U.S energy production capability while having a minimal impact on the environment. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distribution, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for the design and commercial development of the geothermal energy of a potential EGS site. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. This project was initially focused on tracer development with the application of perfluorinated tracer (PFT) compounds, non-reactive tracers used in numerous applications from atmospheric transport to underground leak detection, to geothermal systems, and evaluation of encapsulated PFTs that would release tracers at targeted reservoir temperatures. After the 2011 midyear review and subsequent discussions with the U.S. Department of Energy Geothermal Technology Program (GTP), emphasis was shifted to interpretive tool development, testing, and validation. Subsurface modeling capabilities are an important component of this project for both the design of suitable tracers and the interpretation of data from in situ tracer tests, be they single- or multi-well tests. The purpose of this report is to describe the results of the tracer and model development for simulating and conducting tracer tests for characterizing EGS parameters.

  7. High-resolution Electrical Resistivity Tomography monitoring of a tracer test in a confined aquifer

    NASA Astrophysics Data System (ADS)

    Wilkinson, P. B.; Meldrum, P. I.; Kuras, O.; Chambers, J. E.; Holyoake, S. J.; Ogilvy, R. D.

    2010-04-01

    A permanent geoelectrical subsurface imaging system has been installed at a contaminated land site to monitor changes in groundwater quality after the completion of a remediation programme. Since the resistivities of earth materials are sensitive to the presence of contaminants and their break-down products, 4-dimensional resistivity imaging can act as a surrogate monitoring technology for tracking and visualising changes in contaminant concentrations at much higher spatial and temporal resolution than manual intrusive investigations. The test site, a municipal car park built on a former gasworks, had been polluted by a range of polycyclic aromatic hydrocarbons and dissolved phase contaminants. It was designated statutory contaminated land under Part IIA of the UK Environmental Protection Act due to the risk of polluting an underlying minor aquifer. Resistivity monitoring zones were established on the boundaries of the site by installing vertical electrode arrays in purpose-drilled boreholes. After a year of monitoring data had been collected, a tracer test was performed to investigate groundwater flow velocity and to demonstrate rapid volumetric monitoring of natural attenuation processes. A saline tracer was injected into the confined aquifer, and its motion and evolution were visualised directly in high-resolution tomographic images in near real-time. Breakthrough curves were calculated from independent resistivity measurements, and the estimated seepage velocities from the monitoring images and the breakthrough curves were found to be in good agreement with each other and with estimates based on the piezometric gradient and assumed material parameters.

  8. Determination of Water Saturation in Relatively Dry Porous Media Using Gas-phase Tracer Tests

    SciTech Connect

    Oostrom, Martinus; Tartakovsky, Guzel D.; Wietsma, Thomas W.; Truex, Michael J.; Dane, Jacob H.

    2011-04-15

    Soil desiccation (drying), involving water evaporation induced by dry air injection and extraction, is a potentially robust remediation process to slow migration of inorganic or radionuclide contaminants through the vadose zone. The application of gas-phase partitioning tracer tests has been proposed as a means to estimate initial water volumes and to monitor the progress of the desiccation process at pilot-test and field sites. In this paper, tracer tests have been conducted in porous medium columns with various water saturations using sulfur hexafluoride as the conservative tracer and tricholorofluoromethane and difluoromethane as the water-partitioning tracers. For porous media with minimal silt and/or organic matter fractions, tracer tests provided reasonable saturation estimates for saturations close to zero. However, for sediments with significant silt and/or organic matter fractions, tracer tests only provided satisfactory results when the water saturation was at least 0.1 - 0.2. For dryer conditions, the apparent tracer retardation increases due to air – soil sorption, which is not included in traditional retardation coefficients derived from advection-dispersion equations accounting only for air – water partitioning and water – soil sorption. Based on these results, gas-phase partitioning tracer tests may be used to determine initial water volumes in sediments, provided the initial water saturations are sufficiently large. However, tracer tests are not suitable for quantifying moisture content in desiccated sediments.

  9. COMPARISON OF THREE TRACER TESTS AT THE RAFT RIVER GEOTHERMAL SITE

    SciTech Connect

    Earl D Mattson; Mitchell Plummer; Carl Palmer; Larry Hull; Samantha Miller; Randy Nye

    2011-02-01

    Three conservative tracer tests have been conducted through the Bridge Fault fracture zone at the Raft River Geothermal (RRG) site. All three tests were conducted between injection well RRG-5 and production wells RRG-1 (790 m distance) and RRG-4 (740 m distance). The injection well is used during the summer months to provide pressure support to the production wells. The first test was conducted in 2008 using 136 kg of fluorescein tracer. Two additional tracers were injected in 2010. The first 2010 tracer injected was 100 kg fluorescein disodium hydrate salt on June, 21. The second tracer (100 kg 2,6-naphthalene disulfonic acid sodium salt) was injected one month later on July 21. Sampling of the two productions wells is still being performed to obtain the tail end of the second 2010 tracer test. Tracer concentrations were measured using HPLC with a fluorescence detector. Results for the 2008 test, suggest 80% tracer recover at the two production wells. Of the tracer recovered, 85% of tracer mass was recovered in well RRG-4 indicating a greater flow pathway connection between injection well and RRG-4 than RRG-1. Fluorescein tracer results appear to be similar between the 2008 and 2010 tests for well RRG-4 with peak concentrations arriving approximately 20 days after injection despite the differences between the injection rates for the two tests (~950 gpm to 475 gpm) between the 2008 and 2010. The two 2010 tracer tests will be compared to determine if the results support the hypothesis that rock contraction along the flow pathway due to the 55 oC cooler water injection alters the flow through the ~140 oC reservoir.

  10. Characterization of scale-dependent dispersivity in fractured formations through a divergent flow tracer test.

    PubMed

    Sharifi Haddad, Amin; Hassanzadeh, Hassan; Abedi, Jalal; Chen, Zhangxin; Ware, Antony

    2015-04-01

    Scale-dependency of dispersivity has been reported from field tracer tests. We present a simple methodology for characterization of dispersivity as a linear function of scale around an injection well using divergent flow tracer test data conducted in fractured formations. Results show that the slope of this linear dispersivity function can be estimated using tracer concentration measurements in a monitoring well. The characterized dispersivity function has applications in modeling of field-scale transport processes in fractured formations. PMID:24660811

  11. Can one identify karst conduit networks geometry and properties from hydraulic and tracer test data?

    NASA Astrophysics Data System (ADS)

    Borghi, Andrea; Renard, Philippe; Cornaton, Fabien

    2016-04-01

    Karst aquifers are characterized by extreme heterogeneity due to the presence of karst conduits embedded in a fractured matrix having a much lower hydraulic conductivity. The resulting contrast in the physical properties of the system implies that the system reacts very rapidly to some changes in the boundary conditions and that numerical models are extremely sensitive to small modifications in properties or positions of the conduits. Furthermore, one major issue in all those models is that the location and size of the conduits is generally unknown. For all those reasons, estimating karst network geometry and their properties by solving an inverse problem is a particularly difficult problem. In this paper, two numerical experiments are described. In the first one, 18,000 flow and transport simulations have been computed and used in a systematic manner to assess statistically if one can retrieve the parameters of a model (geometry and radius of the conduits, hydraulic conductivity of the conduits) from head and tracer data. When two tracer test data sets are available, the solution of the inverse problems indicate with high certainty that there are indeed two conduits and not more. The radius of the conduits are usually well identified but not the properties of the matrix. If more conduits are present in the system, but only two tracer test data sets are available, the inverse problem is still able to identify the true solution as the most probable but it also indicates that the data are insufficient to conclude with high certainty. In the second experiment, a more complex model (including non linear flow equations in conduits) is considered. In this example, gradient-based optimization techniques are proved to be efficient for estimating the radius of the conduits and the hydraulic conductivity of the matrix in a promising and efficient manner. These results suggest that, despite the numerical difficulties, inverse methods should be used to constrain numerical

  12. ANALYSIS OF A GAS-PHASE PARTITIONING TRACER TEST CONDUCTED THROUGH FRACTURED MEDIA

    EPA Science Inventory

    The gas-phase partitioning tracer method was used to estimate non-aqueous phase liquid (NAPL), water, and air saturations in the vadose zone at a chlorinated-solvent contaminated field site in Tucson, AZ. The tracer test was conducted in a fractured clay system that is the confin...

  13. First Tracer Test After Circulation in Desert Peak 27-15

    DOE Data Explorer

    Rose, Peter

    2013-11-16

    Following the successful stimulation of Desert Peak target EGS well 27-15, a circulation test was initiated by injecting a conservative tracer (1,5-nds) in combination with a reactive tracer (7-amino-1,3-naphthalene disulfonate). The closest production well 74-21 was monitored over the subsequent several months.

  14. Numerical Modeling for Integrated Design of a DNAPL Partitioning Tracer Test

    NASA Astrophysics Data System (ADS)

    McCray, J. E.; Divine, C. E.; Dugan, P. J.; Wolf, L.; Boving, T.; Louth, M.; Brusseau, M. L.; Hayes, D.

    2002-12-01

    Partitioning tracer tests (PTTs) are commonly used to estimate the location and volume of nonaqueous-phase liquids (NAPLs) at contaminated groundwater sites. PTTs are completed before and after remediation efforts as one means to assess remediation effectiveness. PTT design is complex. Numerical models are invaluable tools for designing a PTT, particularly for designing flow rates and selecting tracers to ensure proper tracer breakthrough times, spatial design of injection-extraction wells and rates to maximize tracer capture, well-specific sampling density and frequency, and appropriate tracer-chemical masses. Generally, the design requires consideration of the following factors: type of contaminant; distribution of contaminant at the site, including location of hot spots; site hydraulic characteristics; measurement of the partitioning coefficients for the various tracers; the time allotted to conduct the PTT; evaluation of the magnitude and arrival time of the tracer breakthrough curves; duration of the tracer input pulse; maximum tracer concentrations; analytical detection limits for the tracers; estimation of the capture zone of the well field to tracer ensure mass balance and to limit residual tracer concentrations left in the subsurface; effect of chemical remediation agents on the PTT results, and disposal of the extracted tracer solution. These design principles are applied to a chemical-enhanced remediation effort for a chlorinated-solvent dense NAPL (DNAPL) site at Little Creek Naval Amphibious Base in Virginia Beach, Virginia. For this project, the hydrology and pre-PTT contaminant distribution were characterized using traditional methods (slug tests, groundwater and soil concentrations from monitoring wells, and geoprobe analysis), as well as membrane interface probe analysis. Additional wells were installed after these studies. Partitioning tracers were selected based on the primary DNAPL contaminants at the site, expected NAPL saturations

  15. An Analytical Solution for Slug-Tracer Tests in FracturedReservoirs

    SciTech Connect

    Shan, Chao; Pruess, Karsten

    2005-03-02

    The transport of chemicals or heat in fractured reservoirs is strongly affected by the fracture-matrix interfacial area. In a vapor-dominated geothermal reservoir, this area can be estimated by inert gas tracer tests, where gas diffusion between the fracture and matrix causes the tracer breakthrough curve (BTC) to have a long tail determined by the interfacial area. For water-saturated conditions, recent studies suggest that sorbing solute tracers can also generate strong tails in BTCs that may allow a determination of the fracture-matrix interfacial area. To theoretically explore such a useful phenomenon, this paper develops an analytical solution for BTCs in slug-tracer tests in a water-saturated fractured reservoir. The solution shows that increased sorption should have the same effect on BTCs as an increase of the diffusion coefficient. The solution is useful for understanding transport mechanisms, verifying numerical codes, and for identifying appropriate chemicals as tracers for the characterization of fractured reservoirs.

  16. A test of geographic assignment using isotope tracers in feathers of known origin.

    PubMed

    Wunder, Michael B; Kester, Cynthia L; Knopf, Fritz L; Rye, Robert O

    2005-08-01

    We used feathers of known origin collected from across the breeding range of a migratory shorebird to test the use of isotope tracers for assigning breeding origins. We analyzed deltaD, delta13C, and delta15N in feathers from 75 mountain plover (Charadrius montanus) chicks sampled in 2001 and from 119 chicks sampled in 2002. We estimated parameters for continuous-response inverse regression models and for discrete-response Bayesian probability models from data for each year independently. We evaluated model predictions with both the training data and by using the alternate year as an independent test dataset. Our results provide weak support for modeling latitude and isotope values as monotonic functions of one another, especially when data are pooled over known sources of variation such as sample year or location. We were unable to make even qualitative statements, such as north versus south, about the likely origin of birds using both deltaD and delta13C in inverse regression models; results were no better than random assignment. Probability models provided better results and a more natural framework for the problem. Correct assignment rates were highest when considering all three isotopes in the probability framework, but the use of even a single isotope was better than random assignment. The method appears relatively robust to temporal effects and is most sensitive to the isotope discrimination gradients over which samples are taken. We offer that the problem of using isotope tracers to infer geographic origin is best framed as one of assignment, rather than prediction.

  17. 100-NR-2 Apatite Treatability Test: Fall 2010 Tracer Infiltration Test (White Paper)

    SciTech Connect

    Vermeul, Vincent R.; Fritz, Brad G.; Fruchter, Jonathan S.; Greenwood, William J.; Johnson, Timothy C.; Horner, Jacob A.; Strickland, Christopher E.; Szecsody, James E.; Williams, Mark D.

    2011-04-14

    The primary objectives of the tracer infiltration test were to 1) determine whether field-scale hydraulic properties for the compacted roadbed materials and underlying Hanford fm. sediments comprising the zone of water table fluctuation beneath the site are consistent with estimates based laboratory-scale measurements on core samples and 2) characterize wetting front advancement and distribution of soil moisture achieved for the selected application rate. These primary objectives were met. The test successfully demonstrated that 1) the remaining 2 to 3 ft of compacted roadbed material below the infiltration gallery does not limit infiltration rates to levels that would be expected to eliminate near surface application as a viable amendment delivery approach and 2) the combined aqueous and geophysical monitoring approaches employed at this site, with some operational adjustments based on lessons learned, provides an effective means of assessing wetting front advancement and the distribution of soil moisture achieved for a given solution application. Reasonably good agreement between predicted and observed tracer and moisture front advancement rates was observed. During the first tracer infiltration test, which used a solution application rate of 0.7 cm/hr, tracer arrivals were observed at the water table (10 to 12 ft below the bottom of the infiltration gallery) after approximately 5 days, for an advancement rate of approximately 2 ft/day. This advancement rate is generally consistent with pre-test modeling results that predicted tracer arrival at the water table after approximately 5 days (see Figure 8, bottom left panel). This agreement indicates that hydraulic property values specified in the model for the compacted roadbed materials and underlying Hanford formation sediments, which were based on laboratory-scale measurements, are reasonable estimates of actual field-scale conditions. Additional work is needed to develop a working relationship between resistivity

  18. Ambiguity in measuring matrix diffusion with single-well injection/recovery tracer tests

    USGS Publications Warehouse

    Lessoff, S.C.; Konikow, L.F.

    1997-01-01

    Single-well injection/recovery tracer tests are considered for use in characterizing and quantifying matrix diffusion in dual-porosity aquifers. Numerical modeling indicates that neither regional drift in homogeneous aquifers, nor heterogeneity in aquifers having no regional drift, nor hydrodynamic dispersion significantly affects these tests. However, when drift is coupled simultaneously with heterogeneity, they can have significant confounding effects on tracer return. This synergistic effect of drift and heterogeneity may help explain irreversible flow and inconsistent results sometimes encountered in previous single-well injection/recovery tracer tests. Numerical results indicate that in a hypothetical single-well injection/recovery tracer test designed to demonstrate and measure dual-porosity characteristics in a fractured dolomite, the simultaneous effects of drift and heterogeneity sometimes yields responses similar to those anticipated in a homogeneous dual-porosity formation. In these cases, tracer recovery could provide a false indication of the occurrence of matrix diffusion. Shortening the shut-in period between injection and recovery periods may make the test less sensitive to drift. Using multiple tracers having different diffusion characteristics, multiple tests having different pumping schedules, and testing the formation at more than one location would decrease the ambiguity in the interpretation of test data.

  19. Conservative tracers for the C-well hydraulic testing

    SciTech Connect

    Dombrowski, T.; Coates, G.; Stetzenbach, K.J.

    1992-11-01

    This paper reports that work is being done to identify and characterize conservative organic tracers for use as groundwater tracers at the C-well complex. An evaluation of the chemical and biological stability of several compounds including fluorinated aliphatic and aromatic acids, fluorinated salicylic acids, and fluorinated cinnamic acids was carried out using tuff samples from the Yucca Mountain area and J13 or de-ionized water. Samples were monitored over a 60-day period for any decrease in concentration; the resulting data was evaluated for possible sorption or biological degradation of the candidate compound. The fluorinated benzoic acids show the greatest stability over the 60-day period. All analyses were carried out using an HPLC system, with either a fluorescence detector, a variable wavelength UV-VIS detector, or a quadrupole mass spectrometer.

  20. PARTITIONING TRACERS FOR MEASURING RESIDUAL NAPL: FIELD-SCALE TEST RESULTS

    EPA Science Inventory

    The difficult task of locating and quantifying nonaqueous phase liquids (NAPLs) present in the vadose and saturated zones has prompted the development of innovative, nondestructive characterization techniques. The use of the interwell partitioning tracer's (IWPT) test, in which ...

  1. PARTITIONING INTERWELL TRACER TEST FOR NAPL SOURCE CHARACTERIZATION: A GENERAL OVERVIEW

    EPA Science Inventory

    Innovative and nondestructive characterization techniques have been developed to locate and quantify nonaqueous phase liquids (NAPLs) in the vadose and saturated zones in the subsurface environment. One such technique is the partitioning interwell tracer test (PITT). The PITT i...

  2. Tracer Tests in the Fractured Rock to Investigate Preferential Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Chan, W.; Chung, L.; Lee, T.; Liu, C.; Chia, Y.; Teng, M.

    2012-12-01

    Hydraulic tests are often used to obtain hydraulic conductivity in the aquifer. Test results usually reflect the average hydraulic conductivity in the surrounding strat. However, in fractured rock, groundwater flows primarily through a few fractures. Saltwater tracer test can be used to detect the direction of groundwater flow, but it was difficult to know the hydraulic connectivity between fractures. In this study, we use a variety of field tests, including tracer test, hydraulic test, and heat-pulse flowmeter test, to locate the permeable fractures and detect the hydraulic connections between boreholes. There are eight test wells and two observation wells on field experimental site in central Taiwan. Geological survey results show that there are at least three sets of joint planes. In order to realize the location of the preferential pathway of groundwater flow, heat-pulse flowmeter measurement was adopted to identify the depth of permeable fractures. Multi-well pumping test was also performed to investigate the hydraulic connectivity between these wells. Tracer tests were then used to detect the hydraulic connectivity of permeable fractures between two wells. Injection of nano zero valent iron in one well and and collection of iron tracer with a magnet array in the other well can specifically locate the permeable fracture and determine the connectivity. Saltwater tracer test result can be used to support that of nano-iron tracer test, and verify the relationship between well water conductivity increases and rock fracture location. The results show that tracer test is a useful tool to investigate the preferential groundwater flow in the fractured rock, but it is essential to flush the mud in fractures prior to the test.

  3. Photoacoustic infrared spectroscopy for conducting gas tracer tests and measuring water saturations in landfills

    SciTech Connect

    Jung, Yoojin; Han, Byunghyun; Mostafid, M. Erfan; Chiu, Pei; Yazdani, Ramin; Imhoff, Paul T.

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Photoacoustic infrared spectroscopy tested for measuring tracer gas in landfills. Black-Right-Pointing-Pointer Measurement errors for tracer gases were 1-3% in landfill gas. Black-Right-Pointing-Pointer Background signals from landfill gas result in elevated limits of detection. Black-Right-Pointing-Pointer Technique is much less expensive and easier to use than GC. - Abstract: Gas tracer tests can be used to determine gas flow patterns within landfills, quantify volatile contaminant residence time, and measure water within refuse. While gas chromatography (GC) has been traditionally used to analyze gas tracers in refuse, photoacoustic spectroscopy (PAS) might allow real-time measurements with reduced personnel costs and greater mobility and ease of use. Laboratory and field experiments were conducted to evaluate the efficacy of PAS for conducting gas tracer tests in landfills. Two tracer gases, difluoromethane (DFM) and sulfur hexafluoride (SF{sub 6}), were measured with a commercial PAS instrument. Relative measurement errors were invariant with tracer concentration but influenced by background gas: errors were 1-3% in landfill gas but 4-5% in air. Two partitioning gas tracer tests were conducted in an aerobic landfill, and limits of detection (LODs) were 3-4 times larger for DFM with PAS versus GC due to temporal changes in background signals. While higher LODs can be compensated by injecting larger tracer mass, changes in background signals increased the uncertainty in measured water saturations by up to 25% over comparable GC methods. PAS has distinct advantages over GC with respect to personnel costs and ease of use, although for field applications GC analyses of select samples are recommended to quantify instrument interferences.

  4. IMAGE Project: Results of Laboratory Tests on Tracers for Supercritical Conditions.

    NASA Astrophysics Data System (ADS)

    Brandvoll, Øyvind; Opsahl Viig, Sissel; Nardini, Isabella; Muller, Jiri

    2016-04-01

    The use of tracers is a well-established technique for monitoring dynamic behaviour of water and gas through a reservoir. In geothermal reservoirs special challenges are encountered due to high temperatures and pressures. In this work, tracer candidates for monitoring water at supercritical conditions (temperature > 374°C, pressure ca 218 bar), are tested in laboratory experiments. Testing of tracers at supercritical water conditions requires experimental set-ups which tolerate harsh conditions with respect to high temperature and pressure. In addition stringent HES (health, environment and safety) factors have to be taken into consideration when designing and performing the experiments. The setup constructed in this project consists of a pressure vessel, high pressure pump, instrumentation for pressure and temperature control and instrumentation required for accurate sampling of tracers. In order to achieve accurate results, a special focus has been paid to the development of the tracer sampling technique. Perfluorinated cyclic hydrocarbons (PFCs) have been selected as tracer candidates. This group of compounds is today commonly used as gas tracers in oil reservoirs. According to the literature they are stable at temperatures up to 400°C. To start with, five PFCs have been tested for thermal stability in static experiments at 375°C and 108 bar in the experimental setup described above. The tracer candidates will be further tested for several months at the relevant conditions. Preliminary results indicate that some of the PFC compounds show stability after three months. However, in order to arrive at conclusive results, the experiments have to be repeated over a longer period and paying special attention to more accurate sampling procedures.

  5. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    SciTech Connect

    B.M. Freifeild

    2001-10-18

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  6. Interpretations of Tracer Tests Performed in the Culebra Dolomite at the Waste Isolation Pilot Plant Site

    SciTech Connect

    MEIGS,LUCY C.; BEAUHEIM,RICHARD L.; JONES,TOYA L.

    2000-08-01

    This report provides (1) an overview of all tracer testing conducted in the Culebra Dolomite Member of the Rustler Formation at the Waste Isolation Pilot Plant (WPP) site, (2) a detailed description of the important information about the 1995-96 tracer tests and the current interpretations of the data, and (3) a summary of the knowledge gained to date through tracer testing in the Culebra. Tracer tests have been used to identify transport processes occurring within the Culebra and quantify relevant parameters for use in performance assessment of the WIPP. The data, especially those from the tests performed in 1995-96, provide valuable insight into transport processes within the Culebra. Interpretations of the tracer tests in combination with geologic information, hydraulic-test information, and laboratory studies have resulted in a greatly improved conceptual model of transport processes within the Culebra. At locations where the transmissivity of the Culebra is low (< 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a single-porosity medium in which advection occurs largely through the primary porosity of the dolomite matrix. At locations where the transmissivity of the Culebra is high (> 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a heterogeneous, layered, fractured medium in which advection occurs largely through fractures and solutes diffuse between fractures and matrix at multiple rates. The variations in diffusion rate can be attributed to both variations in fracture spacing (or the spacing of advective pathways) and matrix heterogeneity. Flow and transport appear to be concentrated in the lower Culebra. At all locations, diffusion is the dominant transport process in the portions of the matrix that tracer does not access by flow.

  7. Catchment scale tracer testing from karstic features in a porous limestone

    NASA Astrophysics Data System (ADS)

    Maurice, L.; Atkinson, T. C.; Williams, A. T.; Barker, J. A.; Farrant, A. R.

    2010-07-01

    SummaryTracer testing was undertaken from sinking streams feeding the Chalk, a porous limestone aquifer characterised by frequent small-scale surface karst features. The objective was to investigate the nature and extent of sub-surface karstic development in the aquifer. Previous tracer testing has demonstrated rapid flow combined with low attenuation of tracer. In this study, at two sites rapid groundwater flow was combined with very high attenuation and at two other sites no tracer was detected at springs within the likely catchment area of the stream sinks tested, suggesting that tracer was totally attenuated along the flowpath. It is proposed that the networks beneath stream sinks in the Chalk and other mildly karstic aquifers distribute recharge into multiple enlarged fractures that divide and become smaller at each division whereas the networks around springs have a predominantly tributary topology that concentrates flow into a few relatively large cavities, a morphology with similarities to that of the early stages of karstification. Tracer attenuation is controlled by the degree to which the two networks are directly connected. In the first state, there is no direct linkage and flow between the two networks is via primary fractures in which tracer attenuation is extreme. The second state is at a percolation threshold in which a single direct link joins the two networks. A very small proportion of tracer reaches the spring rapidly but overall attenuation is very high. In the third state, the recharge and discharge networks are integrated therefore a large fraction of tracer reaches the spring and peak concentrations are relatively high. Despite the large number of stream sinks that recharge the Chalk aquifer, these results suggest that sub-surface conduit development may not always be continuous, with flow down smaller fissures and fractures causing high attenuation of solutes and particulates providing a degree of protection to groundwater outlets that is

  8. Analytical solutions for efficient interpretation of single-well push-pull tracer tests

    EPA Science Inventory

    Single-well push-pull tracer tests have been used to characterize the extent, fate, and transport of subsurface contamination. Analytical solutions provide one alternative for interpreting test results. In this work, an exact analytical solution to two-dimensional equations descr...

  9. Transfer function approach for artificial tracer test interpretation in karstic systems

    NASA Astrophysics Data System (ADS)

    Labat, D.; Mangin, A.

    2015-10-01

    A karstic formation consists in a three-dimensional hydrological system which involves horizontal and vertical, diphasic or saturated water transfers characterised by a large range of velocity. These subsurface flow processes correspond to various water pathways through fractured, fissured, and underground streams or conduits leading to a nonlinear global behaviour of the system. An efficient way of investigating of a karstic system behaviour consists in the injection of artificial tracer tests at loss points and in careful analysis of the recovery tracer fluxes at one or several outlets of the systems. These injections are also an efficient way of providing hypotheses on characteristic time of contaminant transfer in these type of aquifers. Here, we propose a Laplace-transform transfer function of the Residence Time Distribution function that allows to discriminate between a quick-flow advection-dominated component and a slow-flow advection-dispersion/dominated component in the artificial tracer transfer in the system. We apply this transfer function on five high resolution sampling rate artificial tracer tests operated on the Baget system in the Pyrenees (France) in order to illustrate the advantages and limitations of this approach. We provide then an interpretation of the relationship between tracer test recovery shape and karstic system organisation between inlet and outlet site.

  10. Partitioning gas tracer tests for measurement of water in municipal solid waste.

    PubMed

    Imhoff, Paul T; Jakubowitch, Andrew; Briening, Michele L; Chiu, Pei C

    2003-11-01

    A key component in the operation of almost all bioreactor landfills is the addition of water to maintain optimal moisture conditions. To determine how much water is needed and where to add it, in situ methods are required to measure water within solid waste. Existing technologies often result in measurements of unknown accuracy, because of the variability of solid waste materials and time-dependent changes in packing density, both of which influence most measurement methods. To overcome these problems, a new technology recently developed by hydrologists for measuring water in the vadose zone--the partitioning gas tracer test--was tested. In this technology, the transport behavior of two gas tracers within solid waste is used to measure the fraction of the void space filled with water. One tracer is conservative and does not react with solids or liquids, while a second tracer partitions into the water and is separated from the conservative tracer during transport. This technology was tested in four different solid waste packings and was capable of determining the volumetric water content to within 48% of actual values, with most measurement errors less than 15%. This technology and the factors that affect its applicability to landfills are discussed in this paper. PMID:14649759

  11. Single-well tracer push-pull test sensitivity w. r. to fracture aperture and spacing

    NASA Astrophysics Data System (ADS)

    Ghergut, I.; Behrens, H.; Karmakar, S.; Sauter, M.

    2012-04-01

    Dealing with a parallel-fracture system of infinite lateral extension, four characteristic regimes of tracer signal sensitivity w. r. to fracture aperture and w. r. to fracture spacing s (whose reciprocal defines fracture density, or the fluid-rock interface area per volume) can be identified during the pull phase of a single-well push-pull test, also depending upon the ratio between push-phase duration Tpush and a characteristic time scale Ts (defined by s2 / D = Ts , with D denoting the tracer's effective diffusion coefficient): early-time regime: tracer signals are sensitive w. r. to fracture aperture, but insensitive w. r. to fracture spacing; sensitivity w. r. to fracture aperture first increases, then decreases with Tpush / Ts (thus there will be an optimum in terms of to Tpush / Ts , at early pull times); mid-time regime: tracer signals are sensitive w. r. to fracture spacing, but insensitive w. r. to fracture aperture; sensitivity w. r. to fracture spacing increases with Tpush / Ts ; late-time regime: with increasing pull duration, tracer signals become increasingly insensitive w. r. to fracture spacing, while regaining sensitivity w. r. to fracture aperture; 'very late'-time regime: sensitivity w. r. to fracture aperture becomes independent upon Tpush / Ts . From these different regimes, some recommendations can be derived regarding the design and dimensioning of dual-tracer single-well push-pull tests for the specific purposes of geothermal reservoir characterization, using conservative solutes and heat as tracers. Acknowledgement: This study is funded by MWK Niedersachsen (Lower-Saxony's Science and Culture Ministry) and by Baker Hughes (Celle) within task unit 'G6' of the Collaborative Research Project 'gebo' (Geothermal Energy and High-Performance Drilling).

  12. Multiple-tracer tests for contaminant transport process identification in saturated municipal solid waste

    SciTech Connect

    Woodman, N.D. Rees-White, T.C.; Stringfellow, A.M.; Beaven, R.P.; Hudson, A.P.

    2015-04-15

    Highlights: • Multiple tracers were applied to saturated MSW to test dual-porosity properties. • Lithium demonstrated to be non-conservative as a tracer. • 260 mm diameter column too small to test transport properties of MSW. • The classical advection-dispersion mode was rejected due to high dispersivity. • Characteristic diffusion times did not vary with the tracer. - Abstract: Two column tests were performed in conditions emulating vertical flow beneath the leachate table in a biologically active landfill to determine dominant transport mechanisms occurring in landfills. An improved understanding of contaminant transport process in wastes is required for developing better predictions about potential length of the long term aftercare of landfills, currently measured in timescales of centuries. Three tracers (lithium, bromide and deuterium) were used. Lithium did not behave conservatively. Given that lithium has been used extensively for tracing in landfill wastes, the tracer itself and the findings of previous tests which assume that it has behaved conservatively may need revisiting. The smaller column test could not be fitted with continuum models, probably because the volume of waste was below a representative elemental volume. Modelling compared advection-dispersion (AD), dual porosity (DP) and hybrid AD–DP models. Of these models, the DP model was found to be the most suitable. Although there is good evidence to suggest that diffusion is an important transport mechanism, the breakthrough curves of the different tracers did not differ from each other as would be predicted based on the free-water diffusion coefficients. This suggested that solute diffusion in wastes requires further study.

  13. Tracer dilution measurements for two-phase geothermal production: Comparative testing and operating experience

    SciTech Connect

    Hirtz, P.; Lovekin, J.

    1995-12-31

    The tracer dilution technique for the measurement of steam and water mass flowrates and total enthalpy of two-phase geothermal fluids has been in routine use in the U.S.A. for almost three years. The tracer technique was first tested and adopted on a field-wide basis at the Coso geothermal field in California. Validation of the method was performed at the Roosevelt Hot Springs geothermal project in Utah and the Salton Sea and Heber geothermal projects in California by direct comparison to orifice-plate flowmeter measurements of the separated phases. Production well mass flowrates and total enthalpy are now regularly measured by this technique in the Coso, Salton Sea and Heber geothermal fields. Implementation of the tracer method is currently underway for the Tiwi and Bulalo geothermal fields in the Philippines. This paper presents the conceptual design of the measurement process, the results of field validations, and operating experience during field-wide testing in Coso.

  14. Results of injection and tracer tests in Olkaria north east field in Kenya

    SciTech Connect

    Karingithi, C.W.

    1995-12-31

    Tracer and injection tests were performed in the Olkaria North East Field with the objective to reduce uncertainty in the engineering design and to determine the suitability of well OW-704 as a re-injection well for the waste brine from the steam field during production. An organic dye (sodium fluorescein) was injected into well OW-704 as a slug. The tracer returns were observed in well OW-M2 which is 580 m deep, 620 m from well OW-704 and well OW-716 which is 900 m from well OW-704. The other wells on discharge, OW-714, and OW-725 did not show any tracer returns. However, other chemical constituents suggested., that well OW-716 experienced a chemical breakthrough earlier than OW-M2. Tracer return velocities of 0.31 m/hr and 1.3 m/hr were observed. Results of the tracer and injection tests indicate that OW-704 may be used as a re-injection well provided a close monitoring program is put in place.

  15. Single well surfactant test to evaluate surfactant floods using multi tracer method

    DOEpatents

    Sheely, Clyde Q.

    1979-01-01

    Data useful for evaluating the effectiveness of or designing an enhanced recovery process said process involving mobilizing and moving hydrocarbons through a hydrocarbon bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well, comprising (a) determining hydrocarbon saturation in a volume in the formation near a well bore penetrating formation, (b) injecting sufficient mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore, and (c) determining the hydrocarbon saturation in a volume including at least a part of the volume of (b) by an improved single well surfactant method comprising injecting 2 or more slugs of water containing the primary tracer separated by water slugs containing no primary tracer. Alternatively, the plurality of ester tracers can be injected in a single slug said tracers penetrating varying distances into the formation wherein the esters have different partition coefficients and essentially equal reaction times. The single well tracer method employed is disclosed in U.S. Pat. No. 3,623,842. This method designated the single well surfactant test (SWST) is useful for evaluating the effect of surfactant floods, polymer floods, carbon dioxide floods, micellar floods, caustic floods and the like in subterranean formations in much less time and at much reduced cost compared to conventional multiwell pilot tests.

  16. Leak testing of bubble-tight dampers using tracer gas techniques

    SciTech Connect

    Lagus, P.L.; DuBois, L.J.; Fleming, K.M.

    1995-02-01

    Recently tracer gas techniques have been applied to the problem of measuring the leakage across an installed bubble-tight damper. A significant advantage of using a tracer gas technique is that quantitative leakage data are obtained under actual operating differential pressure conditions. Another advantage is that leakage data can be obtained using relatively simple test setups that utilize inexpensive materials without the need to tear ducts apart, fabricate expensive blank-off plates, and install test connections. Also, a tracer gas technique can be used to provide an accurate field evaluation of the performance of installed bubble-tight dampers on a periodic basis. Actual leakage flowrates were obtained at Zion Generating Station on four installed bubble-tight dampers using a tracer gas technique. Measured leakage rates ranged from 0.01 CFM to 21 CFM. After adjustment and subsequent retesting, the 21 CFM damper leakage was reduced to a leakage of 3.8 CFM. In light of the current regulatory climate and the interest in Control Room Habitability issues, imprecise estimates of critical air boundary leakage rates--such as through bubble-tight dampers--are not acceptable. These imprecise estimates can skew radioactive dose assessments as well as chemical contaminant exposure calculations. Using a tracer gas technique, the actual leakage rate can be determined. This knowledge eliminates a significant source of uncertainty in both radioactive dose and/or chemical exposure assessments.

  17. Tracer development at ESRI

    SciTech Connect

    Adams, M.C.; Rose, P.E.; McPherson, P.

    1996-04-10

    At ESRI the Tracer Development Program is divided into three components: liquid-phase tracers, vapor-phase tracers, and pre-test modeling. The liquid-phase project has tested 40 aromatic acids and 10 fluorescent tracers for geothermal use. The vapor-phase project, which develops tracers for reservoirs such as the Geysers, is currently focused on testing SF{sub 6} at high temperatures and examining HPLC methods for the sensitive analysis of alcohol tracers. The pre-test modeling component is exploring the feasibility of using simple numerical models to lower the cost of tracer tests by providing estimates of tracer quantities, flowpaths, and arrival times.

  18. Predictions of tracer transport in interwell tracer tests at the C-Hole complex. Yucca Mountain site characterization project report milestone 4077

    SciTech Connect

    Reimus, P.W.

    1996-09-01

    This report presents predictions of tracer transport in interwell tracer tests that are to be conducted at the C-Hole complex at the Nevada Test Site on behalf of the Yucca Mountain Site Characterization Project. The predictions are used to make specific recommendations about the manner in which the tracer test should be conducted to best satisfy the needs of the Project. The objective of he tracer tests is to study flow and species transport under saturated conditions in the fractured tuffs near Yucca Mountain, Nevada, the site of a potential high-level nuclear waste repository. The potential repository will be located in the unsaturated zone within Yucca Mountain. The saturated zone beneath and around the mountain represents the final barrier to transport to the accessible environment that radionuclides will encounter if they breach the engineered barriers within the repository and the barriers to flow and transport provided by the unsaturated zone. Background information on the C-Holes is provided in Section 1.1, and the planned tracer testing program is discussed in Section 1.2.

  19. A Tracer Test to Characterize Treatment of TCE in a Permeable Reactive Barrier

    EPA Science Inventory

    A tracer test was conducted to characterize the flow of ground water surrounding a permeable reactive barrier constructed with plant mulch (a biowall) at the OU-1 site on Altus Air Force Base, Oklahoma. This biowall is intended to intercept and treat ground water contaminated by ...

  20. Characterization of thermal tracer tests and heat exchanges in fractured media

    NASA Astrophysics Data System (ADS)

    de La Bernardie, Jérôme; Bour, Olivier; Guihéneuf, Nicolas; Chatton, Eliot; Labasque, Thierry; Longuevergne, Laurent; Le Lay, Hugo; Koch, Florian; Gerard, Marie-Françoise; Lavenant, Nicolas; Le Borgne, Tanguy

    2016-04-01

    Geothermal energy is a renewable energy source particularly attractive due to associated low greenhouse gas emission rates. Crystalline rocks are in general considered of poor interest for geothermal applications at shallow depths (< 100m), because of the low permeability of the medium. In some cases, fractures may enhance permeability, but thermal energy storage at these shallow depths is still remaining very challenging because of the low storativity of the medium. Within this framework, the purpose of this study is to test the possibility of efficient thermal energy storage in shallow fractured rocks with a single well semi open loop heat exchanger (standing column well). For doing so, several heat tracer tests have been achieved along a borehole between two connected fractures. The heat tracer tests have been achieved at the experimental site of Ploemeur (H+ observatory network). The tracer tests consist in monitoring the temperature in the upper fracture while injecting hot water in the deeper one thanks to a field boiler. For such an experimental setup, the main difficulty to interpret the data comes from the requirement for separating the temperature advective signal of the tracer test (temperature recovery) from the heat increase due to injection of hot water through the borehole which induces heat losses all along the injection tube in the water column. For doing so, in addition to a double straddle packer used for isolating the injection chamber, the particularity of the experimental set up is the use of fiber optic distributed temperature sensing (FO-DTS); an innovative technology which allows spatial and temporal monitoring of the temperature all along the well. Thanks to this tool, we were able to estimate heat increases coming from diffusion along the injection tube which is found much lower than localized temperature increases resulting from tracer test recovery. With local temperatures probes, separating both effects would not have been feasible. We

  1. Multispecies reactive tracer test in an aquifer with spatially variable chemical conditions

    USGS Publications Warehouse

    Davis, J.A.; Kent, D.B.; Coston, J.A.; Hess, K.M.; Joye, J.L.

    2000-01-01

    A field investigation of multispecies reactive transport was conducted in a well-characterized, sand and gravel aquifer on Cape Cod, Massachusetts. The aquifer is characterized by regions of differing chemical conditions caused by the disposal of secondary sewage effluent. Ten thousand liters of groundwater with added tracers (Br, Cr(VI), and BDTA complexed with Pb, Zn, Cu, and Ni) were injected into the aquifer and distributions of the tracers were monitored for 15 months. Most of the tracers were transported more than 200 m; transport was quantified using spatial moments computed from the results of a series of synoptic samplings. Cr(VI) transport was retarded relative to Br; the retardation factor varied from 1.1 to 2.4 and was dependent on chemical conditions. At 314 days after the injection, dissolved Cr(VI) mass in the tracer cloud had decreased 85%, with the likely cause being reduction to Cr(III) in a suboxic region of the aquifer. Transport of the metal-EDTA complexes was affected by aqueous complexation, adsorption, and dissolution-precipitation reactions of Fe oxyhydroxide minerals in the aquifer sediments. Dissolved Pb-EDTA complexes disappeared from the tracer cloud within 85 days, probably due to metal exchange reactions with Fe and adsorbed Zn (present prior to the injection from contamination by the sewage effluent). About 30% of the Cu-EDTA complexes remained within the tracer cloud 314 days after injection, even though the thermodynamic stability of the Pb-EDTA complex is greater than Cu-EDTA. It is hypothesized that stronger adsorption of Pb2+ to the aquifer sediments causes the Pb-EDTA complex to disassociate to a greater degree than the Cu-EDTA complex. The mass of dissolved Zn-EDTA increased during the first 175 days of the tracer test to 140% of the mass injected, with the increase due to desorption of sewage-derived Zn. Dissolved Ni-EDTA mass remained nearly constant throughout the tracer test, apparently only participating in reversible

  2. Evidence of Multi-Process Matrix Diffusion in a Single Fracturefrom a Field Tracer Test

    SciTech Connect

    Zhou, Quanlin; Liu, Hui-Hai; Bodvarsson, Gudmundur; Molz, Fred J.

    2005-06-11

    Compared to values inferred from laboratory tests on matrix cores, many field tracer tests in fractured rock have shown enhanced matrix diffusion coefficient values (obtained using a single-process matrix-diffusion model with a homogeneous matrix diffusion coefficient). To investigate this phenomenon, a conceptual model of multi-process matrix diffusion in a single-fracture system was developed. In this model, three matrix diffusion processes of different diffusion rates were assumed to coexist: (1) diffusion into stagnant water and infilling materials within fractures, (2) diffusion into a degraded matrix zone, and (3) further diffusion into an intact matrix zone. The validity of the conceptual model was then demonstrated by analyzing a unique tracer test conducted using a long-time constant-concentration injection. The tracer-test analysis was conducted using a numerical model capable of tracking the multiple matrix-diffusion processes. The analysis showed that in the degraded zone, a diffusion process with an enhanced diffusion rate controlled the steep rising limb and decay-like falling limb in the observed breakthrough curve, whereas in the intact matrix zone, a process involving a lower diffusion rate affected the long-term middle platform of slowly increasing tracer concentration. The different matrix-diffusion-coefficient values revealed from the field tracer test are consistent with the variability of matrix diffusion coefficient measured for rock cores with different degrees of fracture coating at the same site. By comparing to the matrix diffusion coefficient calibrated using single-process matrix diffusion, we demonstrated that this multi-process matrix diffusion may contribute to the enhanced matrix-diffusion-coefficient values for single-fracture systems at the field scale.

  3. Partitioning tracer test for detection, estimation, and remediation performance assessment of subsurface nonaqueous phase liquids

    SciTech Connect

    Jin, M.; Delshad, M.; Dwarakanath, V.; McKinney, D.C.; Pope, G.A.; Sepehrnoori, K.; Tilburg, C.E.; Jackson, R.E.

    1995-05-01

    In this paper we present a partitioning interwell tracer test (PITT) technique for the detection, estimation, and remediation performance assessment of the subsurface contaminated by nonaqueous phase liquids (NAPLs). We demonstrate the effectiveness of this technique by examples of experimental and simulation results. The experimental results are from partitioning tracer experiments in columns packed with Ottawa sand. Both the method of moments and inverse modeling techniques for estimating NAPL saturation in the sand packs are demonstrated. In the simulation examples we use UTCHEM, a comprehensive three-dimensional, chemical flood compositional simulator developed at the University of Texas, to simulate a hypothetical two-dimensional aquifer with properties similar to the Borden site contaminated by tetrachloroethylene (PCE), and we show how partitioning interwell tracer tests can be used to estimate the amount of PCE contaminant before remedial action and as the remediation process proceeds. Tracer test results from different stages of remediation are compared to determine the quantity of PCE removed and the amount remaining. Both the experimental (small-scale) and simulation (large-scale) results demonstrate that PITT can be used as an innovative and effective technique to detect and estimate the amount of residual NAPL and for remediation performance assessment in subsurface formations. 43 refs., 10 figs., 1 tab.

  4. Modeling a tracer test at the Grimsel Test Site (GTS) using a lattice Boltzmann method and transmissivity field

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Lanyon, G. W.; Baik, M. H.; Blechschmidt, I.

    2015-12-01

    A series of tracer tests have been conducted in the Migration (MI) Shear Zone at the Grimsel Test Site (GTS) for the Colloid Formation and Migration Project (CFM). As a part of the series, a dipole test (Tracer Test Run 13-05) using radionuclides, colloids and conservative tracers was performed to determine the breakthrough between CRR99.002-i2 and BOMI87.010-i2. To date, the breakthrough data of only the conservative dye tracer (Amino-G acid) are available. In the preceding project, the Colloid and Radionuclide Retardation Project (CRR), a transmissivity field for the MI shear zone was obtained by the geostatistical inverse modeling approach. In this study, the breakthrough of the tracer was computed by a gray lattice Boltzmann method (LBM). The transmissivity field with finite elements grid was transformed to the effective fracture aperture or flow porosity according to the cubic law, and the grid was uniformalized by the interpolation. The uniform mesh of the effective aperture was utilized as the model domain of the gray LBM. In the gray LBM, the heterogeneity of the aperture was dealt with a partial-bounceback scheme. The profiles of hydraulic heads monitored at the boreholes nearby were used as the reference values in the calculation of the pressure distribution in the model domain. The modeling results could reveal a dominant pathway of tracers in the dipole test. The developed model can be utilized in the calculation of the reactive transports of radionuclides and colloids by coupling with a geochemical model, such as Phreeqc, the Geochemist's Workbench, etc.

  5. Using predictive uncertainty analysis to optimise tracer test design and data acquisition

    NASA Astrophysics Data System (ADS)

    Wallis, Ilka; Moore, Catherine; Post, Vincent; Wolf, Leif; Martens, Evelien; Prommer, Henning

    2014-07-01

    Tracer injection tests are regularly-used tools to identify and characterise flow and transport mechanisms in aquifers. Examples of practical applications are manifold and include, among others, managed aquifer recharge schemes, aquifer thermal energy storage systems and, increasingly important, the disposal of produced water from oil and shale gas wells. The hydrogeological and geochemical data collected during the injection tests are often employed to assess the potential impacts of injection on receptors such as drinking water wells and regularly serve as a basis for the development of conceptual and numerical models that underpin the prediction of potential impacts. As all field tracer injection tests impose substantial logistical and financial efforts, it is crucial to develop a solid a-priori understanding of the value of the various monitoring data to select monitoring strategies which provide the greatest return on investment. In this study, we demonstrate the ability of linear predictive uncertainty analysis (i.e. “data worth analysis”) to quantify the usefulness of different tracer types (bromide, temperature, methane and chloride as examples) and head measurements in the context of a field-scale aquifer injection trial of coal seam gas (CSG) co-produced water. Data worth was evaluated in terms of tracer type, in terms of tracer test design (e.g., injection rate, duration of test and the applied measurement frequency) and monitoring disposition to increase the reliability of injection impact assessments. This was followed by an uncertainty targeted Pareto analysis, which allowed the interdependencies of cost and predictive reliability for alternative monitoring campaigns to be compared directly. For the evaluated injection test, the data worth analysis assessed bromide as superior to head data and all other tracers during early sampling times. However, with time, chloride became a more suitable tracer to constrain simulations of physical transport

  6. Interpretation of Colloid-Homologue Tracer Test 10-03, Including Comparisons to Test 10-01

    SciTech Connect

    Reimus, Paul W.

    2012-06-26

    This presentation covers the interpretations of colloid-homologue tracer test 10-03 conducted at the Grimsel Test Site, Switzerland, in 2010. It also provides a comparison of the interpreted test results with those of tracer test 10-01, which was conducted in the same fracture flow system and using the same tracers than test 10-03, but at a higher extraction flow rate. A method of correcting for apparent uranine degradation in test 10-03 is presented. Conclusions are: (1) Uranine degradation occurred in test 10-03, but not in 10-01; (2) Uranine correction based on apparent degradation rate in injection loop in test 11-02 seems reasonable when applied to data from test 10-03; (3) Colloid breakthrough curves quite similar in the two tests with similar recoveries relative to uranine (after correction); and (4) Much slower apparent desorption of homologues in test 10-03 than in 10-01 (any effect of residual homologues from test 10-01 in test 10-03?).

  7. Application of the tracer-aerosol gradient interpretive technique to sulfur attribution for the big bend regional aerosol and visibility observational study.

    PubMed

    Green, Mark; Kuhns, Hampden; Pitchford, Marc; Dietz, Russell; Ashbaugh, Lowell; Watson, Tom

    2003-05-01

    A simple data analysis method called the Tracer-Aerosol Gradient Interpretive Technique (TAGIT) is used to attribute particulate S and SO2 at Big Bend National Park in Texas and nearby areas to local and regional sources. Particulate S at Big Bend is of concern because of its effects on atmospheric visibility. The analysis used particulate S, SO2, and perfluorocarbon tracer data from six 6-hr sampling sites in and near Big Bend National Park. The data were collected in support of the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study; the field portion was conducted from July through October 1999. Perfluorocarbon tracer was released continuously from a tower at Eagle Pass, TX, approximately 25 km northeast of two large coal-fired power plants (Carbon I and II) in Coahuila, Mexico, and approximately 270 km east-southeast of Big Bend National Park. The perfluorocarbon tracer did not properly represent the location of the emissions from the Carbon power plants for individual 6-hr sampling periods and attributed only 3% of the particulate S and 27% of the SO2 at the 6-hr sites in and near Big Bend to sources represented by the tracer. An alternative approach using SO2 to tag "local" sources such as the Carbon plants attributed 10% of the particulate S and 75% of the SO2 at the 6-hr sites to local sources. Based on these two approaches, most of the regional (65-86%) and a small fraction (19-31%) of the local SO2 was converted to particulate S. The analysis implies that substantial reductions in particulate S at Big Bend National Park cannot be achieved by only reducing emissions from the Carbon power plants; reduction of emissions from many sources over a regional area would be necessary.

  8. Estimating kinetic mass transfer by resting-period measurements in flow-interruption tracer tests

    SciTech Connect

    Gong, R; Lu, C; Wu, Wei-min; Cheng, H.; Gu, Baohua; Watson, David B; Criddle, Craig; Kitanidis, Peter K.; Brooks, Scott C; Jardine, Philip M; Luo, Jian

    2010-06-01

    Flow-interruption tracer test is an effective approach to identify kinetic mass transfer processes for solute transport in subsurface media. By switching well pumping and resting, one may alter the dominant transport mechanism and generate special concentration patterns for identifying kinetic mass transfer processes. In the present research, we conducted three-phase (i.e., pumping, resting, and pumping) field-scale flow-interruption tracer tests using a conservative tracer bromide in a multiple-well system installed at the US Department of Energy Site, Oak Ridge, TN. A novel modeling approach based on the resting-period measurements was developed to estimate the mass transfer parameters. This approach completely relied on the measured breakthrough curves without requiring detailed aquifer characterization and solving transport equations in nonuniform, transient flow fields. Additional measurements, including hydraulic heads and tracer concentrations in large pumping wells, were taken to justify the assumption that mass transfer processes dominated concentration change during resting periods. The developed approach can be conveniently applied to any linear mass transfer model. Both first-order and multirate mass transfer models were applied to analyze the breakthrough curves at various monitoring wells. The multirate mass transfer model was capable of jointly fitting breakthrough curve behavior, showing the effectiveness and flexibility for incorporating aquifer heterogeneity and scale effects in upscaling effective mass transfer models.

  9. Estimating kinetic mass transfer by resting-period measurements in flow-interruption tracer tests.

    PubMed

    Gong, R; Lu, C; Wu, W-M; Cheng, H; Gu, B; Watson, D B; Criddle, C S; Kitanidis, P K; Brooks, S C; Jardine, P M; Luo, J

    2010-09-20

    Flow-interruption tracer test is an effective approach to identify kinetic mass transfer processes for solute transport in subsurface media. By switching well pumping and resting, one may alter the dominant transport mechanism and generate special concentration patterns for identifying kinetic mass transfer processes. In the present research, we conducted three-phase (i.e., pumping, resting, and pumping) field-scale flow-interruption tracer tests using a conservative tracer bromide in a multiple-well system installed at the US Department of Energy Site, Oak Ridge, TN. A novel modeling approach based on the resting-period measurements was developed to estimate the mass transfer parameters. This approach completely relied on the measured breakthrough curves without requiring detailed aquifer characterization and solving transport equations in nonuniform, transient flow fields. Additional measurements, including hydraulic heads and tracer concentrations in large pumping wells, were taken to justify the assumption that mass transfer processes dominated concentration change during resting periods. The developed approach can be conveniently applied to any linear mass transfer model. Both first-order and multirate mass transfer models were applied to analyze the breakthrough curves at various monitoring wells. The multirate mass transfer model was capable of jointly fitting breakthrough curve behavior, showing the effectiveness and flexibility for incorporating aquifer heterogeneity and scale effects in upscaling effective mass transfer models.

  10. Capability of EnKF to assimilate tracer test data at the lower detection limit

    NASA Astrophysics Data System (ADS)

    Bruckmann, Johanna; Vogt, Christian; Clauser, Christoph

    2014-05-01

    We model water flow and estimate permeability distribution to improve regional groundwater management for a tectonically limited hard-rock aquifer. Management of groundwater resources for drinking water supply requires understanding and quantifying of the regional groundwater flow and groundwater budget which depends largely on the petrophysical transport properties (e. g., porosity and permeability) of the underground. We study a structurally complex and thus highly heterogeneous area on a regional scale: the Hastenrather Graben 15 km northeast of Aachen, Germany. Here, groundwater is produced from a carbonate aquifer for drinking water supply. However, direct data on the geometry and petrophysical properties of the underground are sparse and most data are only one-dimensional. For overcoming this limitation and coping with the heterogeneity of the underground we use the Ensemble Kalman Filter (EnKF) for stochastic parameter estimation and statistical ensemble analysis. Assimilating time-dependent tracer test data will help estimating permeability. The fact that the aquifer is used for drinking water supply prevents using of any artificial tracer such as radioactive or fluorescent tracer. Instead, drinking water with a lower salinity compared to the groundwater (e.g., dam water) will be used. The detection limit will be relatively low due to the low salinity contrast between reservoir water and tracer. It might even be in the range of measuring error. For studying the sensitivity of EnKF at the limit of detection we set up a synthetic scenario based on the conditions in our study area. Performing EnKF assimilation runs based on perturbed observations characterized by different measurement error levels yields information on the acceptable signal-to-noise-ratio required by EnKF for successful estimates of the given synthetic permeability distribution. This, in turn, provides information on the limits of the real-world's tracer test at low salinity contrast.

  11. Unsaturated Zone Tracer Test at the Bemidji, Minnesota Crude Oil Spill Site

    NASA Astrophysics Data System (ADS)

    Herkelrath, W. N.; Delin, G. N.

    2003-12-01

    As a part of a study of the subsurface transport and natural attenuation of petroleum hydrocarbon contaminants at the Bemidji, Minnesota crude-oil spill research site, we used aqueous tracers to investigate solute transport from the soil surface through the crude oil-contaminated unsaturated zone to the water table. We applied tracer solution to the soil surface within a 5 by 12 meter tracer test plot that ran from a heavily oil-contaminated area to an oil-free zone. The depth to the water table was about 6 meters. The tracer test plot was instrumented with soil moisture probes, tensiometers, suction lysimeters, and drive-point sampling wells. Sixty liters of solution containing about 6.0E03 mg/l rhodamine WT and 1.0E04 mg/l bromide was uniformly sprayed on the soil surface in October 2001. We monitored subsequent tracer movement in response to precipitation by obtaining water samples weekly using the suction lysimeters in the unsaturated zone and the drive point wells in the saturated zone. Rhodamine concentrations were measured in the field using a fluorometer, and bromide concentrations were measured in the lab using ion chromatography. The time required for rhodamine tracer to reach the water table was 340 +/- 26 days. Travel times for bromide were about the same as for rhodamine, but the bromide data were less useful because the maximum bromide concentrations observed in the wells were close to background values. Rhodamine travel times through the oily unsaturated zone were not significantly different from the travel times through the oil-free unsaturated zone. However, the peak rhodamine concentrations found in ground-water samples obtained below the oil zone were an average of 3 times larger than the peak rhodamine values beneath the oil-free zone. We hypothesize that the rhodamine was adsorbed less in the oil-contaminated zone than in the oil-free zone because iron-containing minerals that absorb rhodamine have been largely removed from the oily sediments

  12. MULTISPECIES REACTIVE TRACER TEST IN A SAND AND GRAVEL AQUIFER, CAPE COD, MASSACHUSETTS: PART 1: EXPERIMENTAL DESIGN AND TRANSPORT OF BROMIDE AND NICKEL-EDTA TRACERS

    EPA Science Inventory

    In this report, we summarize a portion of the results of a large-scale tracer test conducted at the U. S. Geological Survey research site on Cape Cod, Massachusetts. The site is located on a large sand and gravel glacial outwash plain in an unconfined aquifer. In April 1993, ab...

  13. Ultra-Gradient Test Cavity for Testing SRF Wafer Samples

    SciTech Connect

    N.J. Pogue, P.M. McIntyre, A.I. Sattarov, C. Reece

    2010-11-01

    A 1.3 GHz test cavity has been designed to test wafer samples of superconducting materials. This mushroom shaped cavity, operating in TE01 mode, creates a unique distribution of surface fields. The surface magnetic field on the sample wafer is 3.75 times greater than elsewhere on the Niobium cavity surface. This field design is made possible through dielectrically loading the cavity by locating a hemisphere of ultra-pure sapphire just above the sample wafer. The sapphire pulls the fields away from the walls so the maximum field the Nb surface sees is 25% of the surface field on the sample. In this manner, it should be possible to drive the sample wafer well beyond the BCS limit for Niobium while still maintaining a respectable Q. The sapphire's purity must be tested for its loss tangent and dielectric constant to finalize the design of the mushroom test cavity. A sapphire loaded CEBAF cavity has been constructed and tested. The results on the dielectric constant and loss tangent will be presented

  14. ANALYSIS OF A GAS-PHASE PARTITIONING TRACER TEST CONDUCTED IN AN UNSATURATED FRACTURED-CLAY FORMATION

    EPA Science Inventory

    The gas-phase partitioning tracer method was used to estimate non-aqueous phase liquid (NAPL), water, and air saturations in the vadose zone at a chlorinated-solvent contaminated field site in Tucson, AZ. The tracer test was conducted in a fractured-clay system that is the confin...

  15. Evaluation of the radionuclide tracer test conducted at the project Gnome Underground Nuclear Test Site, New Mexico

    SciTech Connect

    Pohll, G.; Pohlmann, K.

    1996-08-01

    A radionuclide tracer test was conducted in 1963 by the U.S. Geological Survey at the Project Gnome underground nuclear test site, approximately 40 km southeast of Carlsbad, New Mexico. The tracer study was carried out under the auspices of the U.S. Atomic Energy Commission (AEC) to study the transport behavior of radionuclides in fractured rock aquifers. The Culebra Dolomite was chosen for the test because it was considered to be a reasonable analogue of the fractured carbonate aquifer at the Nevada Test Site (NTS), the principal location of U.S. underground nuclear tests. Project Gnome was one of a small number of underground nuclear tests conducted by the AEC at sites distant from the NTS. The Gnome device was detonated on December 10, 1961 in an evaporate unit at a depth of 360 m below ground surface. Recently, the U.S. Department of Energy (DOE) implemented an environmental restoration program to characterize, remediate, and close these offsite nuclear test areas. An early step in this process is performance of a preliminary risk analysis of the hazard posed by each site. The Desert Research Institute has performed preliminary hydrologic risk evaluations for the groundwater transport pathway at Gnome. That evaluation included the radioactive tracer test as a possible source because the test introduced radionuclides directly into the Culebra Dolomite, which is the only aquifer at the site. This report presents a preliminary evaluation of the radionuclide tracer test as a source for radionuclide migration in the Culebra Dolomite. The results of this study will assist in planning site characterization activities and refining estimates of the radionuclide source for comprehensive models of groundwater transport st the Gnome site.

  16. Measurement of distribution coefficients using a radial injection dual-tracer test

    SciTech Connect

    Pickens, J.F.; Jackson, R.E.; Inch, K.J.; Merritt, W.F.

    1981-06-01

    The dispersive and adsorptive properties of a sandy aquifer were evaluated by using a radial injection dual-tracer test with /sup 131/I as the nonreactive tracer and /sup 85/Sr as the reactive tracer. The tracer migration was monitored by using multilevel point-sampling devices located at various radial distances and depths. Nonequilibrium physical and chemical adsorption effects for /sup 85/Sr were treated as a spreading or dispersion mechanism in the breakthrough curve analysis. The resulting effective dispersivity values for /sup 85/Sr were typically a factor of 2 to 5 larger than those obtained for /sup 131/I. The distribution coefficient (K/sub d//sup Sr/) values obtained from analysis of the breakthrough curves at three depths and two radial distances ranged from 2.6 to 4.5 ml/g. These compare favorably with values obtained by separation of fluids from solids in sediment cores, by batch experiments on core sediments and by analysis of a 25-year-old radioactive waste plume in another part of the same aquifer. Correlations of adsorbed /sup 85/Sr radioactivity with grain size fractions demonstrated preferential adsorption to the coarsest fraction and to the finest fraction. The relative amounts of electrostatically and specifically adsorbed /sup 85/Sr on the aquifer sediments were determined with desorption experiments on core sediments using selective chemical extractants. The withdrawal phase breakthrough curves for the well, obtained immediately following the injection phase, showed essentially full tracer recoveries for both /sup 131/I and /sup 85/Sr. Relatively slow desorption of /sup 85/Sr provided further indication of the nonequilibrium nature of the adsorption-desorption phenomena.

  17. Assessment of a Geothermal Doublet in the Malm Aquifer Using a Push-Pull Tracer Test

    NASA Astrophysics Data System (ADS)

    Lafogler, Mark; Somogyi, Gabriella; Nießner, Reinhard; Baumann, Thomas

    2013-04-01

    Geothermal exploration of the Malm aquifer in Bavaria is highly successful. Data about the long-term operation, however, is still scarce, although detailed knowledge about the processes occurring in the aquifer is a key requirement to run geothermal facilities efficiently and economically. While there usually is a constant flow of data from the production well (temperatures, hydraulic data, hydrochemical conditions, gas composition) not even the temperatures in the immediate surrounding of the reinjection well are accessible or known. In 2011 the geothermal facility in Pullach was extended with a third geothermal well reaching into the Malm aquifer which is now used as a reinjection well. The former reinjection well was converted to a production well after 5 years of operation. This setting offers a unique opportunity to study the processes in the vicinity of a reinjection well and provides the data base to describe the hydraulic, thermal and hydrochemical performance of the reservoir. The viscosity of the reinjected cold water is increasing by 60% compared to the production well, thus one would expect an increase of the reinjection pressure as the cold water plume spreads around the reinjection well. Measurements, however, show a significant decrease of the reinjection pressure, suggesting processes in the aquifer which positively change the hydraulic properties and overcompensate the viscosity effects. Hydrochemical data and modeling indicate that a dissolution of the matrix along the flow pathways is responsible for the decreasing reinjection pressures. The change of the flow direction from reinjection to production was used to conduct a push-pull tracer test. Here, a series of fluorescent dye pulses was added to the reinjected water before the former reinjection well was shut down (push phase). These tracers included a conservative tracer (Fluorescein), surface-sensitive tracers (Eosin/Sulforhodamin B), and a NAPL-sensitive tracer (Na-Naphthionate). After

  18. Use of tracer tests to evaluate the impact of enhanced-solubilization flushing on in-situ biodegradation.

    PubMed

    Alter, S R; Brusseau, M L; Piatt, J J; Ray-Maitra, A; Wang, J-M; Cain, R B

    2003-07-01

    Tracer tests were conducted to evaluate the effect of a complexing sugar flush (CSF) on in-situ biodegradation potential at a site contaminated by jet fuel, solvents, and other organic compounds. Technical-grade hydroxypropyl-beta-cyclodextrin was used during the CSF study, which was conducted in a hydraulically isolated cell emplaced in a surficial aquifer. In-situ biodegradation potential was assessed with the use of tracer tests, which were conducted prior to and immediately following the CSF study. Ethanol, hexanol, and benzoate were used as the biodegradable tracers, while bromide was used as a nonreactive tracer. The results indicate that the biodegradation of benzoate was similar for both tracer tests. Conversely, the biodegradation of ethanol (23% increase) and hexanol (41% increase) was greater for the post-CSF tracer test. In addition, analysis of core samples collected from within the test cell indicates that the population density of aerobic jet-fuel degraders increased in the vicinity of the injection wells during the CSF. These results indicate that the cyclodextrin flush did not deleteriously affect the indigenous microbial community. This study illustrates that tracer tests can be used to evaluate the impact of remediation activities on in-situ biodegradation potential.

  19. Preliminary Interpretation of a Radionuclide and Colloid Tracer Test in a Granodiorite Shear Zone at the Grimsel Test Site, Switzerland

    SciTech Connect

    Reimus, Paul W.

    2012-08-30

    In February and March 2012, a tracer test involving the injection of a radionuclide-colloid cocktail was conducted in the MI shear zone at the Grimsel Test Site, Switzerland, as part of the Colloids Formation and Migration (CFM) project. The colloids were derived from FEBEX bentonite, which is mined in Spain and is being considered as a potential waste package backfill in a Spanish nuclear waste repository. The tracer test, designated test 12-02 (second test in 2012), involved the injection of the tracer cocktail into borehole CFM 06.002i2 and extraction from the Pinkel surface packer at the main access tunnel wall approximately 6.1 m from the injection interval. The test configuration is depicted in Figure 1. This configuration has been used in several conservative tracer tests and two colloid-homologue tracer tests since 2007, and it is will be employed in an upcoming test involving the emplacement of a radionuclide-doped bentonite plug into CFM 06.002i2 to evaluate the swelling and erosion of the bentonite and the transport of bentonite colloids and radionuclides from the source to the extraction point at the tunnel wall. Interpretive analyses of several of the previous tracer tests, from 09-01 through 12-02 were provided in two previous Used Fuel Disposition Program milestone reports (Arnold et al., 2011; Kersting et al., 2012). However, only the data for the conservative tracer Amino-G Acid was previously analyzed from test 12-02 because the other tracer data from this test were not available at the time. This report documents the first attempt to quantitatively analyze the radionuclide and colloid breakthrough curves from CFM test 12-02. This report was originally intended to also include an experimental assessment of colloid-facilitated transport of uranium by bentonite colloids in the Grimsel system, but this assessment was not conducted because it was reported by German collaborators at the Karlsruhe Institute of Technology (KIT) that neither uranium nor

  20. Evaluation of Partitioning Gas Tracer Tests for Measuring Water in Landfills

    NASA Astrophysics Data System (ADS)

    Imhoff, P. T.; Han, B.; Jafarpour, Y.; Gallagher, V. N.; Chiu, P. C.; Fluman, D. A.; Vasuki, N. C.; Yazdani, R.; Augenstein, D.; Cohen, K. K.

    2003-12-01

    Methane is an important greenhouse gas, and landfills are the largest anthropogenic source in many developed countries. Bioreactor landfills have been proposed as one means of abating greenhouse gas emissions from landfills. Here, the decomposition of organic wastes is enhanced by the controlled addition of water or leachate to maintain optimal conditions for waste decomposition. Greenhouse gas abatement is accomplished by sequestration of photosynthetically derived carbon in wastes, CO2 offsets from energy use of waste derived gas, and mitigation of methane emission from the wastes. An important issue in the operation of bioreactor landfills is knowing how much water to add and where to add it. Accurate methods for measuring the amount of water in landfills would be valuable aids for implementing leachate recirculation systems. Current methods for measuring water are inadequate, though, since they provide point measurements and are frequently affected by heterogeneity of the solid waste composition and solid waste compaction. The value of point measurements is significantly reduced in systems where water flows preferentially, such as in landfills. Here, spatially integrated measurements might be of greater value. We are evaluating a promising technology, the partitioning gas tracer test, to measure the water saturation within landfills, the amount of free water in solid waste divided by the volume of the voids. The partitioning gas tracer test was recently developed by researchers working in the vadose zone. We report the results from laboratory and field tests designed to evaluate the partitioning gas tracer test within an anaerobic landfill operated by the Delaware Solid Waste Authority. Vertical wells were installed within the landfill to inject and extract tracer gases. Gas flow and tracer gas movement in the solid waste were controlled by the landfill's existing gas collection system, which included vertical wells installed throughout the landfill through

  1. Are single-well "push-pull" tests suitable tracer methods for aquifer characterization?

    NASA Astrophysics Data System (ADS)

    Hebig, Klaus; Zeilfelder, Sarah; Ito, Narimitsu; Machida, Isao; Scheytt, Traugott; Marui, Atsunao

    2013-04-01

    Recently, investigations were conducted for geological and hydrogeological characterisation of the sedimentary coastal basin of Horonobe (Hokkaido, Japan). Coastal areas are typical geological settings in Japan, which are less tectonically active than the mountain ranges. In Asia, and especially in Japan, these areas are often densely populated. Therefore, it is important to investigate the behaviour of solutes in such unconsolidated aquifers. In such settings sometimes only single boreholes or groundwater monitoring wells are available for aquifer testing for various reasons, e.g. depths of more than 100 m below ground level and slow groundwater velocities due to density driven flow. A standard tracer test with several involved groundwater monitoring wells is generally very difficult or even not possible at these depths. One of the most important questions in our project was how we can obtain information about chemical and hydraulic properties in such aquifers. Is it possible to characterize solute transport behaviour parameters with only one available groundwater monitoring well or borehole? A so-called "push-pull" test may be one suitable method for aquifer testing with only one available access point. In a push-pull test a known amount of several solutes including a conservative tracer is injected into the aquifer ("push") and afterwards extracted ("pull"). The measured breakthrough curve during the pumping back phase can then be analysed. This method has already been used previously with various aims, also in the recent project (e.g. Hebig et al. 2011, Zeilfelder et al. 2012). However, different test setups produced different tracer breakthrough curves. As no systematic evaluation of this aquifer tracer test method was done so far, nothing is known about its repeatability. Does the injection and extraction rate influence the shape of the breakthrough curve? Which role plays the often applied "chaser", which is used to push the test solution out from the

  2. CO2CRC's Otway Residual Saturation and Dissolution Test: Using Reactive Ester Tracers to Determine Residual CO2 Saturation

    NASA Astrophysics Data System (ADS)

    Myers, M.; Stalker, L.; LaForce, T.; Pejcic, B.; Dyt, C.; Ho, K.; Ennis-King, J.

    2013-12-01

    Residual trapping, that is CO2 held in the rock pore space due to capillarity, is an important storage mechanism in geo-sequestration of over the short to medium term (up to 1000 years). As such residual CO2 saturation is a critical reservoir parameter for assessing the storage capacity and security of carbon capture and storage (CCS). As a component of the CO2CRC's Residual Gas Saturation and Dissolution Test at the CO2CRC Otway Project site in Victoria (Australia), we have recently tested a suite of reactive esters (triacetin, tripropionin and propylene glycol diacetate) in a single well chemical tracer test to determine residual CO2 saturation. The goal of this project was to assess and validate a suite of possible tests that could be implemented to determine residual CO2 saturation. For this test, the chemical tracers were injected with a saturated CO2/water mixture into the formation (that is already at residual CO2 saturation) where they were allowed to 'soak' for approximately 10 days allowing for the partial hydrolysis of the esters to their corresponding carboxylic acids and alcohols. Water containing the tracers was then produced from the well resulting in over 600 tracer samples over a period of 12 hours. A selection of these samples were analysed for tracer content and to establish tracer breakthrough curves. To understand the behaviour of these chemical tracers in the downhole environment containing residually trapped supercritical CO2 and formation water, it is necessary to determine the supercritical CO2/water partition coefficients. We have previously determined these in the laboratory (Myers et al., 2012) and they are used here to model the tracer behaviour and provide an estimate of the residual CO2 saturation. Two different computational simulators were used to analyse the tracer breakthrough profiles. The first is based on simple chromatographic retardation and has been used extensively in single well chemical tracer tests to determine residual

  3. Application of tracer tests using SF6 and chloride for hydrogeological characterization of a CCS site, Eumseong, Korea

    NASA Astrophysics Data System (ADS)

    Kim, H. H.; Lee, S. S.; Kim, T. W.; Lee, K.; Kim, M.; Lee, K. K.

    2015-12-01

    Push-pull tracer test was conducted to acquire precise site information and characteristics on a Carbon Capture and Storage (CCS)-site at Eumseong, Korea. Push-pull test is very simple to design, and perform. The test is also convenient to set a duration of experiment period based on the background ground-water velocity. In this study, SF6 and Chloride were used as tracers known as non-reactive tracers. The performed push-pull tests were consisted of 3 phases: 1) solution injection phase; 2) rest phase; and 3) pumping phase. We used a portable multi-level packer to isolate the injection interval. Samples were obtained during pumping phase at every 2 minutes. LTC level-logger was installed to record real-time water level, temperature, and electric conductivity before and during the experiment. A breakthrough curve was obtained by analyzing LTC level-logger data and tracer concentration of water samples. The values of ground water velocity and effective porosity from two tracers came out similar values. SF6 and chloride did not show intervening effect and display similar transport behavior. It seems that both tracers can be applied independently or together to perform tracer tests for estimation of transport behaviors of dissolved volatile components. Acknowledgement: Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003) and Korea Ministry of Environment as "The GAIA project(2014000540010)"

  4. Application of a NAPL partitioning interwell tracer test (PITT) to support DNAPL remediation at the Sandia National Laboratories/New Mexico chemical waste landfill

    SciTech Connect

    Studer, J.E.; Mariner, P.; Jin, M.

    1996-05-01

    Chlorinated solvents as dense non-aqueous phase liquid (DNAPL) are present at a large number of hazardous waste sites across the U.S. and world. DNAPL is difficult to detect in the subsurface, much less characterize to any degree of accuracy. Without proper site characterization, remedial decisions are often difficult to make and technically effective, cost-efficient remediations are even more difficult to obtain. A new non-aqueous phase liquid (NAPL) characterization technology that is superior to conventional technologies has been developed and applied at full-scale. This technology, referred to as the Partitioning Interwell Tracer Test (PITT), has been adopted from oil-field practices and tailored to environmental application in the vadose and saturated zones. A PITT has been applied for the first time at full-scale to characterize DNAPL in the vadose zone. The PITT was applied in December 1995 beneath two side-by-side organic disposal pits at Sandia National Laboratories/New Mexico (SNL/NM) RCRA Interim Status Chemical Waste Landfill (CWL), located in Albuquerque, New Mexico. DNAPL, consisting of a mixture of chlorinated solvents, aromatic hydrocarbons, and PCE oils, is known to exist in at least one of the two buried pits. The vadose zone PITT was conducted by injecting a slug of non-partitioning and NAPL-partitioning tracers into and through a zone of interest under a controlled forced gradient. The forced gradient was created by a balanced extraction of soil gas at a location 55 feet from the injector. The extracted gas stream was sampled over time to define tracer break-through curves. Soil gas sampling ports from multilevel monitoring installations were sampled to define break-through curves at specific locations and depths. Analytical instrumentation such as gas chromatographs and a photoacoustical analyzers operated autonomously, were used for tracer detection.

  5. Measurement of the Tracer Gradient and Sampling System Bias of the Hot Fuel Examination Facility Stack Air Monitoring System

    SciTech Connect

    Glissmeyer, John A.; Flaherty, Julia E.

    2011-07-20

    This report describes tracer gas uniformity and bias measurements made in the exhaust air discharge of the Hot Fuel Examination Facility at Idaho National Laboratory. The measurements were a follow-up on earlier measurements which indicated a lack of mixing of the two ventilation streams being discharged via a common stack. The lack of mixing is detrimental to the accuracy of air emission measurements. The lack of mixing was confirmed in these new measurements. The air sampling probe was found to be out of alignment and that was corrected. The suspected sampling bias in the air sample stream was disproved.

  6. Evaluating Microbial Purification during Soil Treatment of Wastewater with Multicomponent Tracer and Surrogate Tests

    USGS Publications Warehouse

    Van Cuyk, S.; Siegrist, R.L.; Lowe, K.; Harvey, R.W.

    2004-01-01

    Soil treatment of wastewater has the potential to achieve high purification efficiency, yet the understanding and predictability of purification with respect to removal of viruses and other pathogens is limited. Research has been completed to quantify the removal of virus and bacteria through the use of microbial surrogates and conservative tracers during controlled experiments with three-dimensional pilot-scale soil treatment systems in the laboratory and during the testing of full-scale systems under field conditions. The surrogates and tracers employed included two viruses (MS-2 and PRID-1 bacteriophages), one bacterium (ice-nucleating active Pseudomonas), and one conservative tracer (bromide ion). Efforts have also been made to determine the relationship between viruses and fecal coliform bacteria in soil samples below the wastewater infiltrative surface, and the correlation between Escherichia coil concentrations measured in percolating soil solution as compared with those estimated from analyses of soil solids. The results suggest episodic breakthrough of virus and bacteria during soil treatment of wastewater and a 2 to 3 log (99-99.9%) removal of virus and near complete removal of fecal coliform bacteria during unsaturated flow through 60 to 90 cm of sandy medium. Results also suggest that the fate of fecal coliform bacteria may be indicative of that of viruses in soil media near the infiltrative surface receiving wastewater effluent. Concentrations of fecal coliform in percolating soil solution may be conservatively estimated from analysis of extracted soil solids.

  7. Well ER-6-1 Tracer Test Analysis: Yucca Flat, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    SciTech Connect

    Greg Ruskauff

    2006-09-01

    The ER-6-1 multiple-well aquifer test-tracer test (MWAT-TT) investigated groundwater flow and transport processes relevant to the transport of radionuclides from sources on the Nevada Test Site (NTS) through the lower carbonate aquifer (LCA) hydrostratigraphic unit (HSU). The LCA, which is present beneath much of the NTS, is the principal aquifer for much of southern Nevada. This aquifer consists mostly of limestone and dolomite, and is pervasively fractured. Groundwater flow in this aquifer is primarily in the fractures, and the hydraulic properties are primarily related to fracture frequency and fracture characteristics (e.g., mineral coatings, aperture, connectivity). The objective of the multiple-well aquifer test (MWAT) was to determine flow and hydraulic characteristics for the LCA in Yucca Flat. The data were used to derive representative flow model and parameter values for the LCA. The items of specific interest are: Hydraulic conductivity; Storage parameters; Dual-porosity behavior; and Fracture flow characteristics. The objective of the tracer transport experiment was to evaluate the transport properties and processes of the LCA and to derive representative transport parameter values for the LCA. The properties of specific interest are: Effective porosity; Matrix diffusion; Longitudinal dispersivity; Adsorption characteristics; and Colloid transport characteristics. These properties substantially control the rate of transport of contaminants in the groundwater system and concentration distributions. To best support modeling at the scale of the corrective action unit (CAU), these properties must be investigated at the field scale. The processes represented by these parameters are affected by in-situ factors that are either difficult to investigate at the laboratory scale or operate at a much larger scale than can be reproduced in the laboratory. Measurements at the field scale provide a better understanding of the effective average parameter values. The

  8. Testing limits to adaptation along altitudinal gradients in rainforest Drosophila.

    PubMed

    Bridle, Jon R; Gavaz, Sedef; Kennington, W Jason

    2009-04-22

    Given that evolution can generate rapid and dramatic shifts in the ecological tolerance of a species, what prevents populations adapting to expand into new habitat at the edge of their distributions? Recent population genetic models have focused on the relative costs and benefits of migration between populations. On the one hand, migration may limit adaptive divergence by preventing local populations from matching their local selective optima. On the other hand, migration may also contribute to the genetic variance necessary to allow populations to track these changing optima. Empirical evidence for these contrasting effects of gene flow in natural situations are lacking, largely because it remains difficult to acquire. Here, we develop a way to explore theoretical models by estimating genetic divergence in traits that confer stress resistance along similar ecological gradients in rainforest Drosophila. This approach allows testing for the coupling of clinal divergence with local density, and the effects of genetic variance and the rate of change of the optimum on the response to selection. In support of a swamping effect of migration on phenotypic divergence, our data show no evidence for a cline in stress-related traits where the altitudinal gradient is steep, but significant clinal divergence where it is shallow. However, where clinal divergence is detected, sites showing trait means closer to the presumed local optimum have more genetic variation than sites with trait means distant from their local optimum. This pattern suggests that gene flow also aids a sustained response to selection.

  9. Testing limits to adaptation along altitudinal gradients in rainforest Drosophila

    PubMed Central

    Bridle, Jon R.; Gavaz, Sedef; Kennington, W. Jason

    2009-01-01

    Given that evolution can generate rapid and dramatic shifts in the ecological tolerance of a species, what prevents populations adapting to expand into new habitat at the edge of their distributions? Recent population genetic models have focused on the relative costs and benefits of migration between populations. On the one hand, migration may limit adaptive divergence by preventing local populations from matching their local selective optima. On the other hand, migration may also contribute to the genetic variance necessary to allow populations to track these changing optima. Empirical evidence for these contrasting effects of gene flow in natural situations are lacking, largely because it remains difficult to acquire. Here, we develop a way to explore theoretical models by estimating genetic divergence in traits that confer stress resistance along similar ecological gradients in rainforest Drosophila. This approach allows testing for the coupling of clinal divergence with local density, and the effects of genetic variance and the rate of change of the optimum on the response to selection. In support of a swamping effect of migration on phenotypic divergence, our data show no evidence for a cline in stress-related traits where the altitudinal gradient is steep, but significant clinal divergence where it is shallow. However, where clinal divergence is detected, sites showing trait means closer to the presumed local optimum have more genetic variation than sites with trait means distant from their local optimum. This pattern suggests that gene flow also aids a sustained response to selection. PMID:19324822

  10. Results of injection and tracer tests in Olkaria East Geothermal Field

    SciTech Connect

    Ambusso, Willis J.

    1994-01-20

    This paper presents results of a six month Injection and Tracer test done in Olkaria East Geothermal Field The Injection tests show that commencement of injection prior to onset of large drawdown in the reservoir leads to greater sustenance of well production and can reduce well cycling which is a common feature of wells in Olkaria East Field. For cases where injection is started after some drawdown has occurred in the reservoir, injection while leading to improvement of well output can also lead to increase in well cycling which is a non desirable side effect. Tracer tests reveal slow rate of fluid migration (< 5 m/hr). However estimates of the cumulative tracer returns over the period of injection is at least 31% which is large and reveals the danger of late time thermal drawdown and possible loss of production. It is shown in the discussion that the two sets of results are consistent with a reservoir where high permeability occurs along contact surfaces which act as horizontal "fractures" while the formations between the "fractures" have low permeability. This type of fracture system will lead to channeled flow of injected fluid and therefore greater thermal depletion along the fractures while formations further from the fracture would still be at higher temperature. In an attempt to try and achieve a more uniform thermal depletion in the reservoir, it is proposed that continuous injection be done for short periods (~2 years) and this be followed by recovery periods of the nearly the same length of time before resumption of injection again.

  11. Isotopic analysis and multi tracer tests to study groundwater circulation in a landslide in Southern Alps

    NASA Astrophysics Data System (ADS)

    Pera, Sebastian; Marzocchi, Roberto; Bronzini, Simona

    2014-05-01

    Understanding groundwater circulation in landslides is often necessary to assess their dynamics and forecast movements. Fontana landslide is placed in Canton Ticino, its main body is constituted by gneiss, that is covered by moraine and other deposits related to the mass movements like debris flows and, rock fall. Gneiss that originally has low hydraulic conductivity increases their aquifer properties due to weathering and fracture presence. In fact several springs are present in across the landslide some of them having discharge up to 1 m3 S-1. To study groundwater circulation in the landslide body, a multi tracer test was designed and water samples taken. 3 tracers (Naphtionate, Sulphorhodamine B and Uranine) were injected underground. Injection mass was calculated by using EHTD (EPA, 2003), 2 field fluorimeters were placed in springs considered to be the main water discharge of the system for continuous monitoring. Other springs with smaller discharge scattered along the landslide body were monitored by using charcoal bags. Water samples also were taken for chemical and stable isotopes analysis. The tracers' presence was also monitored in the river crossing the area collecting surface flow from snowmelt and springs. Even if the landslide has a small area, isotopic composition of water from springs shows clear differences. All samples plot close to the local meteoric water line, and an altitude effect is visible. Chemical composition is relatively uniform however some differences can also be seen. Concerning tracers the only that arrived at monitored points was uranine, and it was detected in the charcoal bags. Considering tracer concentration in ppm, in the charcoal and travel times to restitution points was possible to have conceptual model for groundwater flow across the landslide. Circulation is rapid and recharge controlled by snowmelt in spring and precipitation in late spring to autumn. Snow accumulates at the top of the landslide where an elongated

  12. A tracer test at the Beowawe geothermal field, Nevada, using fluorescein and tinopal CBS

    SciTech Connect

    Rose, P.E.; Adams, M.C.; Benoit, D.

    1995-12-31

    An interwell tracer test using fluorescein and tinopal CBS was performed at the Beowawe geothermal field in north-central Nevada in order to assess the effects of recent changes to the injection strategy. Fluorescein return curves established injection-production flow patterns and verified that produced water is being reinjected into a region of the reservoir that is in excellent communication with the production wells. An analysis of the tinopal CBS return curves indicated that tinopal CBS was apparently strongly adsorbed onto the reservoir rock. The fluorescein return curves were used to estimate the overall (fractures and matrix) reservoir volume.

  13. Radioactive tracer test to develop a recycling system for operating reactor scrap metal

    SciTech Connect

    Umemura, A.; Kimura, K.; Takahashi, K.; Sakurai, D.; Yamamoto, M.; Abe, S.

    1995-12-31

    A demonstration test using radio-isotope (RI) tracers during the manufacturing of inner drum shielding material from the recycling of operating reactor scrap metal was completed and the following results were obtained. The behavior of five radionuclides (Mn-54, Co-60, Zn-65, Sr-85 and Cs-137) was established. The time-dependent behaviors of the radionuclides in molten steel and in slag were investigated. The radioactivity distributions in metal products were homogeneous. Dose equivalent rates in the working area were below background levels and radioactive dust concentrations in the air were below detection limits.

  14. Insight from simulations of single-well injection-withdrawal tracer tests on simple and complex fractures

    SciTech Connect

    Tsang, C.-F.; Doughty, C.

    2009-08-06

    The single-well injection withdrawal (SWIW) test, a tracer test utilizing only one well, is proposed as a useful contribution to site characterization of fractured rock, as well as providing parameters relevant to tracer diffusion and sorption. The usual conceptual model of flow and solute transport through fractured rock with low matrix permeability involves solute advection and dispersion through a fracture network coupled with diffusion and sorption into the surrounding rock matrix. Unlike two-well tracer tests, results of SWIW tests are ideally independent of advective heterogeneity, channeling and flow dimension, and, instead, focus on diffusive and sorptive characteristics of tracer (solute) transport. Thus, they can be used specifically to study such characteristics and evaluate the diffusive parameters associated with tracer transport through fractured media. We conduct simulations of SWIW tests on simple and complex fracture models, the latter being defined as having two subfractures with altered rock blocks in between and gouge material in their apertures. Using parameters from the Aspo site in Sweden, we calculate and study SWIW tracer breakthrough curves (BTCs) from a test involving four days of injection and then withdrawal. By examining the peak concentration C{sub pk} of the SWIW BTCs for a variety of parameters, we confirm that C{sub pk} is largely insensitive to the fracture advective flow properties, in particular to permeability heterogeneity over the fracture plane or to subdividing the flow into two subfractures in the third dimension orthogonal to the fracture plane. The peak arrival time t{sub pk} is not a function of fracture or rock properties, but is controlled by the time schedule of the SWIW test. The study shows that the SWIW test is useful for the study of tracer diffusion-sorption processes, including the effect of the so-called flow-wetted surface (FWS) of the fracture. Calculations with schematic models with different FWS values are

  15. Dual-porosity analysis of conservative tracer testing in saturated volcanic rocks at Yucca Mountain in Nye County, Nevada

    USGS Publications Warehouse

    Fahy, M.F.

    1997-01-01

    A radially convergent conservative tracer injection test was conducted between boreholes UE-25 #2 and UE-25 c #3 of the C-hole complex at Yucca Mountain to determine effective porosity and longitudinal dispersivity. Approximately 47% of the tracer mass was recovered and a dual-porosity analytical model replicates the breakthrough curve. Fractured-rock analyses focus on the fracture-porosity and geometry as the controlling factors in transport.

  16. Vadose Zone Tracer Testing in the UK Sherwood Sandstone: Hydrogeophysical Data Report

    SciTech Connect

    Binley, A

    2003-10-08

    In 1998 a joint project between the universities of Lancaster and Leeds, funded by the UK Natural Environment Research Council and the UK Environment Agency, was initiated to examine, using geophysical methods, unsaturated flow and transport processes at two purposely developed field sites in the UK Sherwood Sandstone. More recently work by Lancaster university funded by a UK Natural Environment Research Council PhD studentship (awarded to Peter Winship) has continued the investigation at the two sites. This work, so far, has demonstrated: how cross-borehole (borehole to borehole) radar tomography can be used to monitor changes in moisture content in the unsaturated zone due to natural and forced (tracer) inputs (Binley et al., 2001); the evaluation of seasonal variation of moisture content profiles using high-resolution borehole resistivity and radar profiling (Binley et al., 2002a); initial attempts to utilize the geophysical data to develop numerical predictive models of unsaturated flow (Binley et al., 2002b; Binley et al, 2003; Binley and Beven, 2003). In addition, petrophysical models relating geophysical data to hydrological properties have been developed (West et al., 2003). Here we provide a data report on two tracer experiments conducted at one of the field sites. Within the report we describe the site layout and present summary results from the two tracer tests. In the appendix a file map is provided to allow identification of relevant files in the dataset accompanying this report. The two techniques used here are three-dimensional time-lapse electrical resistivity tomography (ERT) and lime-lapse cross-borehole radar tomography and profiling. They provide geophysical measurements that can be related to the moisture content of the subsurface, and subsequently to the conductivity of that moisture content. They also yield data on a scale that is appropriate for numerical simulations of water movement in the subsurface. The two methods have been applied at a

  17. Gas-partitioning tracer test to quantify trapped gas during recharge

    USGS Publications Warehouse

    Heilweil, V.M.; Solomon, D.K.; Perkins, K.S.; Ellett, K.M.

    2004-01-01

    Dissolved helium and bromide tracers were used to evaluate trapped gas during an infiltration pond experiment. Dissolved helium preferentially partitioned into trapped gas bubbles, or other pore air, because of its low solubility in water. This produced observed helium retardation factors of as much as 12 relative to bromide. Numerical simulations of helium breakthrough with both equilibrium and kinetically limited advection/dispersion/retardation did not match observed helium concentrations. However, better fits were obtained by including a decay term representing the diffusive loss of helium through interconnected, gas-filled pores. Calculations indicate that 7% to more than 26% of the porosity beneath the pond was filled with gas. Measurements of laboratory hydraulic properties indicate that a 10% decrease in saturation would reduce the hydraulic conductivity by at least one order of magnitude in the well-sorted sandstone, but less in the overlying soils. This is consistent with in situ measurements during the experiment, which show steeper hydraulic gradients in sandstone than in soil. Intrinsic permeability of the soil doubled during the first six months of the experiment, likely caused by a combination of dissolution and thermal contraction of trapped gas. Managers of artificial recharge basins may consider minimizing the amount of trapped gas by using wet, rather than dry, tilling to optimize infiltration rates, particularly in well-sorted porous media in which reintroduced trapped gas may cause substantial reductions in permeability. Trapped gas may also inhibit the amount of focused infiltration that occurs naturally during ephemeral flood events along washes and playas.

  18. Using sequential self-calibration method to identify conductivity distribution: Conditioning on tracer test data

    USGS Publications Warehouse

    Hu, B.X.; He, C.

    2008-01-01

    An iterative inverse method, the sequential self-calibration method, is developed for mapping spatial distribution of a hydraulic conductivity field by conditioning on nonreactive tracer breakthrough curves. A streamline-based, semi-analytical simulator is adopted to simulate solute transport in a heterogeneous aquifer. The simulation is used as the forward modeling step. In this study, the hydraulic conductivity is assumed to be a deterministic or random variable. Within the framework of the streamline-based simulator, the efficient semi-analytical method is used to calculate sensitivity coefficients of the solute concentration with respect to the hydraulic conductivity variation. The calculated sensitivities account for spatial correlations between the solute concentration and parameters. The performance of the inverse method is assessed by two synthetic tracer tests conducted in an aquifer with a distinct spatial pattern of heterogeneity. The study results indicate that the developed iterative inverse method is able to identify and reproduce the large-scale heterogeneity pattern of the aquifer given appropriate observation wells in these synthetic cases. ?? International Association for Mathematical Geology 2008.

  19. Reactive tracer test to evaluate the fate of pharmaceuticals in rivers.

    PubMed

    Kunkel, Uwe; Radke, Michael

    2011-08-01

    The fate of pharmaceutically active substances in rivers is still only incompletely understood, especially as the knowledge transfer from laboratory experiments to the real world is complicated by factors like turbidity, hydrodynamics, or heterogeneity. Therefore, we performed a tracer test with pharmaceutically active substances to study their fate and the importance of individual attenuation mechanisms in situ. The experiment was carried out at a small stream in central Sweden. Two dye tracers and six pharmaceuticals were injected as Dirac pulse and water was sampled at five downstream sites along a 16-km-long river reach. Ibuprofen and clofibric acid were the only compounds which were eliminated along the study reach at half-life times of 10 h and 2.5 d, respectively. Based on the shape of the breakthrough curves and the low hydraulic conductivity of the river bed, we can assume that exchange of river water with the hyporheic zone was minor. Thus, the contribution of processes in the hyporheic zone to the attenuation of pharmaceuticals was low. We hypothesize that ibuprofen and clofibric acid were transformed by in-stream biofilms growing on submerged macrophytes and at the water-sediment interface. Phototransformation and sorption were ruled out as major attenuation processes. No attenuation of bezafibrate, diclofenac, metoprolol, and naproxen was observed. PMID:21671643

  20. Solvent-refined-coal (SRC) process: axial dispersion in tall bubble columns - tracer tests

    SciTech Connect

    Parimi, K.; Pitchford, M.D.

    1982-01-01

    The degree of backmixing is an important consideration in the design and scale-up of SRC-II reactors. Several qualitative tests were conducted on the 25 ft plexiglass bubble column in order to visually observe the axial dispersion or backmixing characteristics of a column of this size. A concentrated solution of Methyl-Orange was injected, and the dispersion of the dye throughout the column was observed and photographed. These observations indicated that the backmixing level was not as extensive as existing correlations would predict. Since backmixing plays an important role in the design and scale-up of SRC II reactors, it was decided to follow up with additional quantitative tests for further elucidation of this aspect of bubble column performance. The required test apparatus was assembled and tracer tests using an electrolytic tracer in the form of a 10 N NaOH solution were conducted. The results confirmed the visual observations; that the degree of backmixing was less than existing literature correlations predicted. Part of the reason for the discrepancy may be due to the large extrapolation involved, but more importantly, there is the question of adequacy of the model to describe the complex mixing patterns present in the column. Implicit in using any of the existing correlations to predict backmixing is the assumption that a simple dispersion model can adequately describe the complex mixing patterns observed. This is not a valid assumption when the column operates well beyond the quiescent bubble flow regime. There is, therefore, a real need to identify models which would represent more closely the fluid dynamic behavior of large columns and which can be used confidently for design and scale-up.

  1. Study of the effects of the chaser in push-pull tracer tests by using temporal moment analysis

    NASA Astrophysics Data System (ADS)

    Hebig, Klaus; Zeilfelder, Sarah; Ito, Narimitsu; Machida, Isao; Marui, Atsunao; Scheytt, Traugott

    2015-04-01

    "Push-pull" tracer tests are a suitable tracer test method for hydrochemical charac-terization of an aquifer in a single-well setting (e.g. in deep geothermal systems). A known amount of selected solutes as conservative and reactive tracers is injected into the aquifer ("push") and afterwards extracted ("pull"). In many cases, a so-called "chaser", which is just original groundwater without any added solutes, is injected directly after the injection of the test solution. Its objective is to push the test solution out of the bore-hole into the aquifer and therefore to mini-mize the influence of the gravel pack on the shape of the breakthrough curve. The influence of the chaser on the tracer breakthrough curve is unknown so far. Also, the determination of the appropriate volume for the chaser is a difficult task if at all applied. A first experiment was conducted with the objective to compare three push-pull tests with similar injection volumes, two tests with and one without a chaser. Results show that the application of a chaser lowers the main peak concentration. However, it does not alter the tailing of the breakthrough curve nor does it have a negative in-fluence on tracer mass recovery. In a second experiment, a new method was developed to determine the optimal chaser volume by testing seven different chaser injection volumes combined with temporal moment analysis and comparison of the mean residence times of the in-jected tracer fluid. As a result, the application of a chaser is recommended, when reactions of injected solutes within the open well or the gravel pack should be avoided. If a chaser is used, the new method mentioned above can easily be used to determine the required chaser injection volume. The experiments were conducted at the Hamasato test site in Horonobe (Hokkaido, Japan).

  2. In-situ tracer tests and models developed to understand flow paths in a shear zone at the Grimsel Test Site, Switzerland

    NASA Astrophysics Data System (ADS)

    Blechschmidt, I.; Martin, A. J.

    2012-12-01

    The Grimsel Test Site (www.grimsel.com) is an international underground research laboratory excavated at a depth of 450m below the surface in the crystalline Aare Massif of southern Switzerland in 1984. It is operated and owned by the National Cooperative for the Disposal of Radioactive Waste of Switzerland (NAGRA) which is the organization responsible for managing and researching the geological disposal of all types of radioactive wastes originating in Switzerland. One experiment, the Colloid Formation and Migration test (CFM*), is an ongoing in-situ migration test started in 2004 to study colloid facilitated transport behavior of radionuclides through a shear zone. The importance of colloid transport in the context of a radioactive waste repository is that it provides a mechanism for potentially enhancing the advective transport of radionuclides. The montmorillonite clays that are planned to be used as an engineered barrier around the radioactive waste in many repository concepts may be a source of such colloids under specific hydraulic and/or chemical boundary conditions. The CFM project includes an integrated programme of field testing, laboratory studies and modelling/interpretation. The field tests are performed in a shear zone where the natural outflow has been controlled by a tunnel packer system and flow is monitored with an array of boreholes drilled for CFM and previous experiments at the site. The flow field is controlled by a low-rate extraction from a surface packer. The controlled low-rate extraction creates a region of low hydraulic gradients and fluid velocity within the shear zone, suitable for study under repository-relevant or other geo-resource relevant conditions. Here we present a summary of the migration tracer tests carried out so far to understand the hydraulic properties and transport characteristics of the shear zone using both stable and radioactive (Na-22, Cs-137, Ba-133, Th-232, Np-237, Am-243, Pu-242) tracers as well as colloids, and

  3. Using Tracer Tests to Estimate Vertical Recharge and Evaluate Influencing Factors for Irrigated Agricultural Systems

    NASA Astrophysics Data System (ADS)

    Lin, D.; Jin, M.; Brusseau, M.; Ma, B.; Liu, Y.

    2013-12-01

    Accurate estimation of vertical groundwater recharge is critical for (semi) arid regions, especially in places such as the North China Plain where vertical recharge comprises the largest portion of recharge. Tracer tests were used to estimate vertical recharge beneath agricultural systems irrigated by groundwater, and to help delineate factors that influence recharge. Bromide solution was applied to trace infiltration in the vadose zone beneath irrigated agricultural fields (rotated winter wheat and summer maize, orchards, and cotton) and non-irrigated woodlands at both piedmont plain (Shijiazhaung) and alluvial and lacustrine plains (Hengshui) in the North China Plain. The tracer tests lasted for more than two years, and were conducted at a total of 37 sites. Tracer solution was injected into the subsurface at a depth of 1.2 m before the rainy season. Soil samples were then collected periodically to observe bromide transport and estimate recharge rates at the point-scale. For these experiments, the only irrigation the fields received was that applied by the landowners. In addition to these tests, a controlled irrigation experiment was conducted at a single wheat and maize site. The results showed that recharge rates were lower for the alluvial and lacustrine plains sites, which comprise finer-textured soils than those present in the piedmont plain. Specifically, the recharge rate ranged between 56-466 mm/a beneath wheat-maize, 110-564 mm/a beneath orchard, and 0-21 mm/a beneath woodlands with an average recharge coefficient of 0.17 for the piedmont plain sites, while the recharge rate ranged between 26-165 mm/a beneath wheat-maize, 6-40 mm/a beneath orchard, 87-319 mm/a beneath cotton, and 0-32 mm/a beneath woodlands with an average recharge coefficient of 0.10 for the alluvial and lacustrine plain sites. Irrigation provided the primary contribution to recharge, with precipitation providing a minor contribution. The results of both the uncontrolled and controlled

  4. Thermal Gradient Behavior of TBCs Subjected to a Laser Gradient Test Rig: Simulating an Air-to-Air Combat Flight

    NASA Astrophysics Data System (ADS)

    Lima, Rogerio S.; Marple, Basil R.; Marcoux, P.

    2016-01-01

    A computer-controlled laser test rig (using a CO2 laser) offers an interesting alternative to traditional flame-based thermal gradient rigs in evaluating thermal barrier coatings (TBCs). The temperature gradient between the top and back surfaces of a TBC system can be controlled based on the laser power and a forced air back-face cooling system, enabling the temperature history of complete aircraft missions to be simulated. An air plasma spray-deposited TBC was tested and, based on experimental data available in the literature, the temperature gradients across the TBC system (ZrO2-Y2O3 YSZ top coat/CoNiCrAlY bond coat/Inconel 625 substrate) and their respective frequencies during air-to-air combat missions of fighter jets were replicated. The missions included (i) idle/taxi on the runway, (ii) take-off and climbing, (iii) cruise trajectory to rendezvous zone, (iv) air-to-air combat maneuvering, (v) cruise trajectory back to runway, and (vi) idle/taxi after landing. The results show that the TBC thermal gradient experimental data in turbine engines can be replicated in the laser gradient rig, leading to an important tool to better engineer TBCs.

  5. Constraining performance assessment models with tracer test results: a comparison between two conceptual models

    NASA Astrophysics Data System (ADS)

    McKenna, Sean A.; Selroos, Jan-Olof

    Tracer tests are conducted to ascertain solute transport parameters of a single rock feature over a 5-m transport pathway. Two different conceptualizations of double-porosity solute transport provide estimates of the tracer breakthrough curves. One of the conceptualizations (single-rate) employs a single effective diffusion coefficient in a matrix with infinite penetration depth. However, the tracer retention between different flow paths can vary as the ratio of flow-wetted surface to flow rate differs between the path lines. The other conceptualization (multirate) employs a continuous distribution of multiple diffusion rate coefficients in a matrix with variable, yet finite, capacity. Application of these two models with the parameters estimated on the tracer test breakthrough curves produces transport results that differ by orders of magnitude in peak concentration and time to peak concentration at the performance assessment (PA) time and length scales (100,000 years and 1,000 m). These differences are examined by calculating the time limits for the diffusive capacity to act as an infinite medium. These limits are compared across both conceptual models and also against characteristic times for diffusion at both the tracer test and PA scales. Additionally, the differences between the models are examined by re-estimating parameters for the multirate model from the traditional double-porosity model results at the PA scale. Results indicate that for each model the amount of the diffusive capacity that acts as an infinite medium over the specified time scale explains the differences between the model results and that tracer tests alone cannot provide reliable estimates of transport parameters for the PA scale. Results of Monte Carlo runs of the transport models with varying travel times and path lengths show consistent results between models and suggest that the variation in flow-wetted surface to flow rate along path lines is insignificant relative to variability in

  6. Diffusive partitioning tracer test for the quantification of nonaqueous phase liquid (NAPL) in the vadose zone: Performance evaluation for heterogeneous NAPL distribution

    NASA Astrophysics Data System (ADS)

    Werner, David; Karapanagioti, Hrissi K.; Höhener, Patrick

    2009-08-01

    A partitioning tracer test based on gas-phase diffusion in the vadose zone yields estimates of the residual nonaqueous phase liquid (NAPL) saturation. The present paper investigates this technique further by studying diffusive tracer breakthrough curves in the vadose zone for a heterogeneous NAPL distribution. Tracer experiments were performed in a lysimeter with a horizontal layer of artificial kerosene embedded in unsaturated sand. Tracer disappearance curves at the injection point and tracer breakthrough curves at some distance from the injection point were measured inside and outside of the NAPL layer. A numerical code was used to generate independent model predictions based on the physicochemical sand, NAPL, and tracer properties. The measured and modeled tracer breakthrough curves were in good agreement confirming the validity of important modeling assumptions such as negligible sorption of chlorofluorocarbon (CFC) tracers to the uncontaminated sand and their fast reversible partitioning between the soil air and the NAPL phase. Subsequently, the model was used to investigate different configurations of NAPL contamination. The experimental and model results show that the tracer disappearance curves of a single-well diffusive partitioning tracer test (DPTT) are dominated by the near-field presence of NAPL around the tip of the soil gas probe. In contrast, breakthrough curves of inter-well tracer tests reflect the NAPL saturation in between the probes, although there is no unique interpretation of the tracer signals if the NAPL distribution is heterogeneous. Numerical modeling is useful for the planning of a DPTT application. Simulations suggest that several cubic meters of soil can be investigated with a single inter-well partitioning tracer test of 24-hour duration by placing the injection point in the center of the investigated soil volume and probes at up to 1 m distance for the monitoring of gaseous tracers.

  7. Evaluation of Floors and Item Gradients for Reading and Math Tests for Young Children

    ERIC Educational Resources Information Center

    Bradley-Johnson, Sharon; Durmusoglu, Gokce

    2005-01-01

    Ignoring the adequacy of floors and item gradients for tests used with young children can have serious consequences. Thus, because of the importance of early intervention for reading and math problems, we used the criteria suggested by Bracken for adequate floors and item gradients, and reviewed 15 reading tests and 12 math tests for ages 4-0…

  8. INL Tracer Interpretation

    2007-03-27

    This spreadsheet application is for tracer test analysis. The analyses are based on the first temporal moment of a tracer. The governing equations are briefly discussed, and the individual steps required of the user are outlined. A series of Excel macros written in Visual Basic calculate mean residence time, swept pore volume, and flow-storage geometry from a tracer history.

  9. Delineation of Groundwater Flow Pathway in Fractured Bedrock Using Nano-Iron Tracer Test in the Sealed Well

    NASA Astrophysics Data System (ADS)

    Chuang, Po-Yu; Chia, Yeeping; Chiu, Yung-Chia; Liou, Ya-Hsuan; Teng, Mao-Hua; Liu, Ching-Yi; Lee, Tsai-Ping

    2016-04-01

    Deterministic delineation of the preferential flow paths and their hydraulic properties are desirable for developing hydrogeological conceptual models in bedrock aquifers. In this study, we proposed using nanoscale zero-valent iron (nZVI) as a tracer to characterize the fractured connectivity and hydraulic properties. Since nZVI particles are magnetic, we designed a magnet array to attract the arriving nZVI particles in the observation well for identifying the location of incoming tracer. This novel approach was examined at two experiment wells with well hydraulic connectivity in a hydrogeological research station in the fractured aquifer. Heat-pulse flowmeter test was used to detect the vertical distribution of permeable zones in the borehole, providing the design basis of tracer test. Then, the less permeable zones in the injection well were sealed by casing to prevent the injected nZVI particles from being stagnated at the bottom hole. Afterwards, hydraulic test was implemented to examine the hydraulic connectivity between two wells. When nZVI slurry was released in the injection well, they could migrate through connected permeable fractures to the observation well. A breakthrough curve was obtained by the fluid conductivity sensor in the observation well, indicating the arrival of nZVI slurry. The iron nanoparticles that were attracted to the magnets in the observation well provide the quantitative information to locate the position of tracer inlet, which corroborates well with the depth of a permeable zone delineated by the flowmeter. Finally, the numerical method was utilized to simulate the process of tracer migration. This article demonstrates that nano-iron tracer test can be a promising approach for characterizing connectivity patterns and transmissivities of the flow paths in the fractured rock.

  10. From Stochastic toward Deterministic Characterization of Discrete Fracture Network via Thermal Tracer Tests

    NASA Astrophysics Data System (ADS)

    Somogyvari, M.; Jalali, M.; Bayer, P.; Jiménez Parras, S.

    2015-12-01

    The presence of fractures play an essential role in different disciplines, including hydrogeology, geothermal and hydrocarbon industries, as fractures introduce new pathways for flow and transport in the host rocks. Understanding the physical properties of these planar features would reduce the uncertainty of the numerical models and enhance the reliability of their results. Among the fracture properties, orientation and spacing are relatively easily estimated via borehole logs, core images, and outcrops, whereas the fracture geometry (i.e. length, width, and height) is more difficult to investigate. As the fracture geometry controls the hydraulic and thermal behavior of the fracture network through the strong dependency of the fracture conductivity with fracture aperture, it is possible to estimate these geometrical properties indirectly through hydraulic and thermal tomography investigations. To reach this goal, an innovative approach is introduced for discrete fracture network (DFN) characterization of heterogeneous fractured media via active thermal tracer testing. A synthetic DFN model is constructed based on the geological properties of an arbitrary fracture medium such as fracture orientation, length, spacing and persistency. Different realization are then constructed by considering all the above mentioned fracture properties except the length of fracture segments. Pressure and temperature fields are estimated inside the fracture network by means of an implicit upwind finite difference method, which is used to compute heat tracer travel times between injection and observation points and record the full temperature breakthrough curves at the monitoring points. A trans-dimensional inversion is then adopted to update the lengths fracture segment (add or remove) of the DFN model by comparison between proposed and observed travel times (Figure 1). The resulting assemble of the models can be used as an input geometry for deterministic simulations of fracture

  11. Methodology, results, and significance of an unsaturated-zone tracer test at an artificial-recharge facility, Tucson, Arizona

    USGS Publications Warehouse

    Graham, D.D.

    1989-01-01

    A tracer test conducted in 1987 at an artificial-recharge facility in Tucson, Arizona, indicates that solute movement through the poorly sorted stratified alluvial sediments in the unsaturated zone beneath a recharge basin takes place along preferential-flow paths. Movement of a tracer-laced pulse of reclaimed wastewater was monitored using pressure-vacuum lysimeters installed at depths that range from 11 to 45 ft below the bottom of the recharge basin. Tracer-breakthrough curves do not indicate a consistent relation between maximum tracer concentration and depth or between time of tracer breakthrough and depth. Apparent dispersion, as indicated by the slope of the rising leg of the tracer-breakthrough curve, shows no apparent relation with depth. In some cases, the tracer arrived earlier at deep sampling locations than at shallow ones. Velocity of solute flow ranged from 1.9 to 9.0 ft/day. Less interaction between recharge water and solid-phase materials in the unsaturated zone occurs under preferential-flow conditions than if flow occurred as a uniform wetting front. Flow of water through the unsaturated zone is concentrated into fingers or channels under preferential-flow conditions, and the renovating capability of soil is reduced because of the reduced surface area and reduced contact time in the biologically active part of the unsaturated profile. Chemical substances that normally would be decomposed by microbial activity or sorbed by sediment particles can move through the unsaturated zone and cause groundwater contamination under preferential-flow conditions. (USGS)

  12. Phenols and hydroxy-PAHs (arylphenols) as tracers for coal smoke particulate matter: source tests and ambient aerosol assessments

    SciTech Connect

    Bernd R.T. Simoneit; Xinhui Bi; Daniel R. Oros; Patricia M. Medeiros; Guoying Sheng; Jiamo Fu

    2007-11-01

    Source tests were conducted to analyze and characterize diagnostic key tracers for emissions from burning of coals with various ranks. Coal samples included lignite from Germany, semibituminous coal from Arizona, USA, bituminous coal from Wales, UK and sample from briquettes of semibituminous coal, bituminous coal and anthracite from China. Ambient aerosol particulate matter was also collected in three areas of China and a background area in Corvallis, OR (U.S.) to confirm the presence of tracers specific for coal smoke. The results showed a series of aliphatic and aromatic hydrocarbons and phenolic compounds, including PAHs and hydroxy-PAHs as the major tracers, as well as a significant unresolved complex mixture (UCM) of compounds. The tracers that were found characteristic of coal combustion processes included hydroxy-PAHs and PAHs. Atmospheric ambient samples from Beijing and Taiyuan, cities where coal is burned in northern China, revealed that the hydroxy-PAH tracers were present during the wintertime, but not in cities where coal is not commonly used (e.g., Guangzhou, South China). Thus, the mass of hydroxy-PAHs can be apportioned to coal smoke and the source strength modeled by summing the proportional contents of EC (elemental carbon), PAHs, UCM and alkanes with the hydroxy-PAHs. 36 refs., 2 figs., 3 tabs.

  13. Dye Tracer Tests to Determine Time-of-Travel in Iowa Streams, 1990-2006

    USGS Publications Warehouse

    Christiansen, Daniel E.

    2009-01-01

    Dye-tracing tests have been used by the U.S. Geological Survey, Iowa Water Science Center to determine the time-of-travel in selected Iowa streams from 1990-2006. Time-of-travel data are tabulated for 309 miles of stream reaches in four Iowa drainage basins: the Des Moines, Raccoon, Cedar, and Turkey Rivers. Time-of-travel was estimated in the Des Moines River, Fourmile Creek, North Raccoon River, Raccoon River, Cedar River, and Roberts Creek. Estimation of time-of-travel is important for environmental studies and in determining fate of agricultural constituents and chemical movement through a waterway. The stream reaches range in length from slightly more than 5 miles on Fourmile Creek, to more than 137 miles on the North Raccoon River. The travel times during the dye-tracer tests ranged from 7.5 hours on Fourmile Creek to as long as 200 hours on Roberts Creek; velocities ranged from less than 4.50 feet per minute on Roberts Creek to more than 113 feet per minute on the Cedar River.

  14. Multi tracer test for the implementation of enhanced in-situ bioremediation at a BTEX-contaminated megasite.

    PubMed

    Gödeke, Stefan; Richnow, Hans-Hermann; Weiss, Holger; Fischer, Anko; Vogt, Carsten; Borsdorf, Helko; Schirmer, Mario

    2006-10-10

    At the Centre for Environmental Research Leipzig-Halle (UFZ) research site in Zeitz, Germany, benzene contaminates the lower of two aquifers with concentrations of up to 20 mg/l. Since the benzene plume has a minimum length of approximately 1 km, enhanced natural attenuation measures are being considered as a remediation strategy. This study describes the performance and evaluation of a multi-species reactive tracer test using the tracers fluorescein and bromide as conservative tracers and toluene as reactive tracer. Sampling was performed over a period of six months using a detailed network of multilevel sampling wells. Toluene was only slightly retarded in comparison to bromide, whereas fluorescein was retarded considerably stronger. Therefore, it was not possible to use fluorescein as an in situ tracer for the determination of groundwater velocities. The ionic nature of fluorescein is assumed to be the major reason for its retardation. The results show that the infiltration conditions were suitable to produce a wide spreading of the tracer front along the full thickness of the aquifer. Thus, a large aquifer volume can be treated in future enhanced bioremediation measures. The total quantity of infiltrated toluene (24 l) was degraded under sulfate-reducing conditions over a flow path of 50 m. Benzylsuccinate was identified as a metabolite of toluene degradation under sulfate-reducing conditions at this site. The modelling results show that toluene degradation was described more accurately using Monod kinetics than first-order kinetics. Since toluene was only slightly retarded in comparison to bromide, sorption and desorption processes were considered to be negligible.

  15. Transport properties of iodide in a sandy aquifer: Hydrogeological modelling and field tracer tests

    NASA Astrophysics Data System (ADS)

    Razafindratsima, Stephen; Péron, Olivier; Piscitelli, Anne; Gégout, Claire; Schneider, Vincent; Barbecot, Florent; Giffaut, Eric; Robinet, Jean-Charles; Le Cointe, Pierre; Montavon, Gilles

    2015-01-01

    The release of radioactive iodine into geological media from nuclear waste disposal is an issue that has to be considered since iodine is a biophilic element. 129I is, with 99Tc, one of the two long-lived radionuclides that have the highest mobility in radioactive waste disposal. Within this context, iodide retardation is still a matter of debate. A low value of the retardation factor is generally accepted in soils without organic matter, but the possibility for sorption cannot be completely ruled out. Since isotopic exchange with naturally occurring iodine is one of the main potential sorption mechanisms, site-specific retention parameters are needed. In the present paper, we study iodide transport in a sandy aquifer. A hydrogeological model was built to fit deuterium, bromide and iodide breakthrough data from in situ tracer test experiments. Within the precision range of the fitting, iodide is excluded from 2.5% of the effective porosity by anionic exclusion and presents a field retention factor (Kd) lower than 0.025 L/kg.

  16. Analysis of convergent flow tracer tests in a heterogeneous sandy box with connected gravel channels

    NASA Astrophysics Data System (ADS)

    Molinari, Antonio; Pedretti, D.; Fallico, C.

    2015-07-01

    We analyzed the behavior of convergent flow tracer tests performed in a 3-D heterogeneous sandbox in presence of connected gravel channels under laboratory-controlled conditions. We focused on the evaluation of connectivity metrics based on characteristic times calculated from experimental breakthrough curves (BTCs), and the selection of upscaling model parameters related to connectivity. A conservative compound was injected from several piezometers in the box, and depth-integrated BTCs were measured at the central pumping well. Results show that transport was largely affected by the presence of gravel channels, which generate anomalous transport behavior such as BTC tailing and double peaks. Connectivity indicators based on BTC peak times provided better information about the presence of connected gravel channels in the box. One of these indicators, β, was defined as the relative temporal separation of the BTCs peaks from the BTCs centers of mass. The mathematical equivalence between β and the capacity coefficient adopted in mass transfer-based formulations suggests how connectivity metrics could be directly embedded in mass transfer formulations. This finding is in line with previous theoretical studies and was corroborated by reproducing a few representative experimental BTCs using a 1-D semianalytical bimodal solution embedding a mass transfer term. Model results show a good agreement with experimental BTCs when the capacity coefficient was constrained by measured β. Models that do not embed adequate connectivity metrics or do not adequately reproduce connectivity showed poor matching with observed BTCs.

  17. Biodegradation of the surfactant linear alkylbenzenesulfonate in sewage- contaminated groundwater: A comparison of column experiments and field tracer tests

    USGS Publications Warehouse

    Krueger, C.J.; Radakovich, K.M.; Sawyer, T.E.; Barber, L.B.; Smith, R.L.; Field, J.A.

    1998-01-01

    Transport and biodegradation of linear alkylbenzenesulfonate (LAS) in sewage-contaminated groundwater were investigated for a range of dissolved oxygen concentrations. Both laboratory column and an 80-day continuous injection tracer test field experiments were conducted. The rates of LAS biodegradation increased with increasing dissolved oxygen concentrations and indicated the preferential biodegradation of the longer alkyl chain LAS homologues (i.e., C12 and C13) and external isomers (i.e., 2-and 3- phenyl). However, for similar dissolved oxygen concentrations, mass removal rates for LAS generally were 2-3 times greater in laboratory column experiments than in the field tracer test. Under low oxygen conditions (<1 mg/L) only a fraction of the LAS mixture biodegraded in both laboratory and field experiments. Biodegradation rate constants for the continuous injection field test (0.002-0.08 day-1) were comparable to those estimated for a 3-h injection (pulsed) tracer test conducted under similar biogeochemical conditions, indicating that increasing the exposure time of aquifer sediments to LAS did not increase biodegradation rates.Transport and biodegradation of linear alkylbenzenesulfonate (LAS) in sewage-contaminated groundwater were investigated for a range of dissolved oxygen concentrations. Both laboratory column and an 80-day continuous injection tracer test field experiments were conducted. The rates of LAS biodegradation increased with increasing dissolved oxygen concentrations and indicated the preferential biodegradation of the longer alkyl chain LAS homologues (i.e., C12 and C13) and external isomers (i.e., 2- and 3-phenyl). However, for similar dissolved oxygen concentrations, mass removal rates for LAS generally were 2-3 times greater in laboratory column experiments than in the field tracer test. Under low oxygen conditions (<1 mg/L) only a fraction of the LAS mixture biodegraded in both laboratory and field experiments. Biodegradation rate constants

  18. Characterization of preferential flow paths between boreholes in fractured rock using a nanoscale zero-valent iron tracer test

    NASA Astrophysics Data System (ADS)

    Chuang, Po-Yu; Chia, Yeeping; Liou, Ya-Hsuan; Teng, Mao-Hua; Liu, Ching-Yi; Lee, Tsai-Ping

    2016-05-01

    Recent advances in borehole geophysical techniques have improved characterization of cross-hole fracture flow. The direct detection of preferential flow paths in fractured rock, however, remains to be resolved. In this study, a novel approach using nanoscale zero-valent iron (nZVI or `nano-iron') as a tracer was developed for detecting fracture flow paths directly. Generally, only a few rock fractures are permeable while most are much less permeable. A heat-pulse flowmeter can be used to detect changes in flow velocity for delineating permeable fracture zones in the borehole and providing the design basis for the tracer test. When nano-iron particles are released in an injection well, they can migrate through the connecting permeable fracture and be attracted to a magnet array when arriving in an observation well. Such an attraction of incoming iron nanoparticles by the magnet can provide quantitative information for locating the position of the tracer inlet. A series of field experiments were conducted in two wells in fractured rock at a hydrogeological research station in Taiwan, to test the cross-hole migration of the nano-iron tracer through permeable connected fractures. The fluid conductivity recorded in the observation well confirmed the arrival of the injected nano-iron slurry. All of the iron nanoparticles attracted to the magnet array in the observation well were found at the depth of a permeable fracture zone delineated by the flowmeter. This study has demonstrated that integrating the nano-iron tracer test with flowmeter measurement has the potential to characterize preferential flow paths in fractured rock.

  19. Assessment of local hydraulic properties from electrical resistivity tomography monitoring of a three-dimensional synthetic tracer test experiment

    NASA Astrophysics Data System (ADS)

    Camporese, M.; Cassiani, G.; Deiana, R.; Salandin, P.

    2011-12-01

    In recent years geophysical methods have become increasingly popular for hydrological applications. Time-lapse electrical resistivity tomography (ERT) represents a potentially powerful tool for subsurface solute transport characterization since a full picture of the spatiotemporal evolution of the process can be obtained. However, the quantitative interpretation of tracer tests is difficult because of the uncertainty related to the geoelectrical inversion, the constitutive models linking geophysical and hydrological quantities, and the a priori unknown heterogeneous properties of natural formations. Here an approach based on the Lagrangian formulation of transport and the ensemble Kalman filter (EnKF) data assimilation technique is applied to assess the spatial distribution of hydraulic conductivity K by incorporating time-lapse cross-hole ERT data. Electrical data consist of three-dimensional cross-hole ERT images generated for a synthetic tracer test in a heterogeneous aquifer. Under the assumption that the solute spreads as a passive tracer, for high Peclet numbers the spatial moments of the evolving plume are dominated by the spatial distribution of the hydraulic conductivity. The assimilation of the electrical conductivity 4D images allows updating of the hydrological state as well as the spatial distribution of K. Thus, delineation of the tracer plume and estimation of the local aquifer heterogeneity can be achieved at the same time by means of this interpretation of time-lapse electrical images from tracer tests. We assess the impact on the performance of the hydrological inversion of (i) the uncertainty inherently affecting ERT inversions in terms of tracer concentration and (ii) the choice of the prior statistics of K. Our findings show that realistic ERT images can be integrated into a hydrological model even within an uncoupled inverse modeling framework. The reconstruction of the hydraulic conductivity spatial distribution is satisfactory in the portion

  20. An analytical model for solute transport in an infiltration tracer test in soil with a shallow groundwater table

    NASA Astrophysics Data System (ADS)

    Liang, Ching-Ping; Hsu, Shao-Yiu; Chen, Jui-Sheng

    2016-09-01

    It is recommended that an in-situ infiltration tracer test is considered for simultaneously determining the longitudinal and transverse dispersion coefficients in soil. Analytical solutions have been derived for two-dimensional advective-dispersive transport in a radial geometry in the literature which can be used for interpreting the result of such a tracer test. However, these solutions were developed for a transport domain with an unbounded-radial extent and an infinite thickness of vadose zone which might not be realistically manifested in the actual solute transport during a field infiltration tracer test. Especially, the assumption of infinite thickness of vadose zone should be invalid for infiltration tracer tests conducted in soil with a shallow groundwater table. This paper describes an analytical model for interpreting the results of an infiltration tracer test based on improving the transport domain with a bounded-radial extent and a finite thickness of vadose zone. The analytical model is obtained with the successive application of appropriate integral transforms and their corresponding inverse transforms. A comparison of the newly derived analytical solution against the previous analytical solutions in which two distinct sets of radial extent and thickness of vadose zone are considered is conducted to determine the influence of the radial and exit boundary conditions on the solute transport. The results shows that both the radial and exit boundary conditions substantially affect the trailing segment of the breakthrough curves for a soil medium with large dispersion coefficients. Previous solutions derived for a transport domain with an unbounded-radial and an infinite thickness of vadose zone boundary conditions give lower concentration predictions compared with the proposed solution at late times. Moreover, the differences between two solutions are amplified when the observation positions are near the groundwater table. In addition, we compare our

  1. Constraining performance assessment models with tracer test results: a comparison between two conceptual models

    NASA Astrophysics Data System (ADS)

    McKenna, Sean A.; Selroos, Jan-Olof

    Tracer tests are conducted to ascertain solute transport parameters of a single rock feature over a 5-m transport pathway. Two different conceptualizations of double-porosity solute transport provide estimates of the tracer breakthrough curves. One of the conceptualizations (single-rate) employs a single effective diffusion coefficient in a matrix with infinite penetration depth. However, the tracer retention between different flow paths can vary as the ratio of flow-wetted surface to flow rate differs between the path lines. The other conceptualization (multirate) employs a continuous distribution of multiple diffusion rate coefficients in a matrix with variable, yet finite, capacity. Application of these two models with the parameters estimated on the tracer test breakthrough curves produces transport results that differ by orders of magnitude in peak concentration and time to peak concentration at the performance assessment (PA) time and length scales (100,000 years and 1,000 m). These differences are examined by calculating the time limits for the diffusive capacity to act as an infinite medium. These limits are compared across both conceptual models and also against characteristic times for diffusion at both the tracer test and PA scales. Additionally, the differences between the models are examined by re-estimating parameters for the multirate model from the traditional double-porosity model results at the PA scale. Results indicate that for each model the amount of the diffusive capacity that acts as an infinite medium over the specified time scale explains the differences between the model results and that tracer tests alone cannot provide reliable estimates of transport parameters for the PA scale. Results of Monte Carlo runs of the transport models with varying travel times and path lengths show consistent results between models and suggest that the variation in flow-wetted surface to flow rate along path lines is insignificant relative to variability in

  2. The anomaly in a breakthrough curve of a single well "push-pull" tracer test: A density driven effect?

    NASA Astrophysics Data System (ADS)

    Zeilfelder, Sarah; Hebig, Klaus; Ito, Narimitsu; Machida, Isao; Scheytt, Traugott; Marui, Atsunao

    2013-04-01

    What method is appropriate to investigate an aquifer when there is only one well available? A single well "push-pull" tracer test (PP Test) may be a suitable method in order to characterize an aquifer and to obtain information about the hydraulic and chemical properties when only one well is available for the investigations. In a PP test, a test solution that contains a known amount of solutes and a conservative tracer is injected into the aquifer ("push") and extracted afterwards ("pull"). Optionally, the test solution is flushed out of the well and the casing with untreated test solution with a so called "chaser" before being extracted. Also between the injection and the extraction phase a drifting time may be included. The breakthrough of the tracer during the extraction phase is measured and used for analyses and interpretation. In the last three years, several PP Test campaigns were conducted at two different test sites in Japan (Hebig et al. 2011, Zeilfelder et al. 2012). The aim was to investigate the applicability of the PP Test method in different geological settings and in different types of aquifers. The latest field campaign thus focussed on the question how variations of the setup are influencing the breakthrough curve of the PP Test in order to develop and enhance this method. Also the standardization of the PP Test was an aim of this study. During the campaign, a total of seven PP Tests were performed, while only single aspects of the setup were varied from test to test. The tests differed in injection and extraction rate, in the salinity of the injected test solution and in the use of a chaser solution. The general shapes of the breakthrough curves were similar and conclusions about the repeatability of the PP Test could be drawn. However, a sharp anomaly was observed in the breakthrough curve of one specific setup type. By repeating this PP test under the same boundary conditions, we were able to recreate the anomaly and could exclude any technical

  3. Assessment of transport parameters in a karst system under various flow periods through extensive analysis of artificial tracer tests

    NASA Astrophysics Data System (ADS)

    Doummar, J.; Margane, A.; Sauter, M.; Geyer, T.

    2012-04-01

    It is primordial to understand the sensibility of a catchment or a spring against contamination to secure a sustainable water resource management in karst aquifers. Artificial tracer tests have proven to be excellent tools for the simulation of contaminant transport within an aquifer before its arrival at a karst spring as they provide information about transit times, dispersivities and therefore insights into the vulnerability of a water body against contamination (Geyer et al. 2007). For this purpose, extensive analysis of artificial tracer tests was undertaken in the following work, in order to acquire conservative transport parameters along fast and slow pathways in a mature karst system under various flow conditions. In the framework of the project "Protection of Jeita Spring" (BGR), about 30 tracer tests were conducted on the catchment area of the Jeita spring in Lebanon (Q= 1 to 20 m3/s) under various flow conditions and with different injection points (dolines, sinkholes, subsurface, and underground channel). Tracer breakthrough curves (TBC) observed at karst springs and in the conduit system were analyzed using the two-region non-equilibrium approach (2NREM) (Toride & van Genuchten 1999). The approach accounts for the skewness in the TBCs long tailings, which cannot be described with one dimensional advective-dispersive transport models (Geyer et al. 2007). Relationships between the modeling parameters estimated from the TBC were established under various flow periods. Rating curves for velocity and discharge show that the flow velocity increases with spring discharge. The calibrated portion of the immobile region in the conduit system is relatively low. Estimated longitudinal dispersivities in the conduit system range between 7 and 10 m in high flow periods and decreases linearly with increasing flow. In low flow periods, this relationship doesn't hold true as longitudinal dispersivities range randomly between 4 and 7 m. The longitudinal dispersivity

  4. Testing mixing models of old and young groundwater in a tropical lowland rain forest with environmental tracers

    USGS Publications Warehouse

    Solomon, D. Kip; Genereux, David P.; Plummer, L. Niel; Busenberg, Eurybiades

    2010-01-01

    We tested three models of mixing between old interbasin groundwater flow (IGF) and young, locally derived groundwater in a lowland rain forest in Costa Rica using a large suite of environmental tracers. We focus on the young fraction of water using the transient tracers CFC-11, CFC-12, CFC-113, SF6, 3H, and bomb 14C. We measured 3He, but 3H/3He dating is generally problematic due to the presence of mantle 3He. Because of their unique concentration histories in the atmosphere, combinations of transient tracers are sensitive not only to subsurface travel times but also to mixing between waters having different travel times. Samples fall into three distinct categories: (1) young waters that plot along a piston flow line, (2) old samples that have near-zero concentrations of the transient tracers, and (3) mixtures of 1 and 2. We have modeled the concentrations of the transient tracers using (1) a binary mixing model (BMM) of old and young water with the young fraction transported via piston flow, (2) an exponential mixing model (EMM) with a distribution of groundwater travel times characterized by a mean value, and (3) an exponential mixing model for the young fraction followed by binary mixing with an old fraction (EMM/BMM). In spite of the mathematical differences in the mixing models, they all lead to a similar conceptual model of young (0 to 10 year) groundwater that is locally derived mixing with old (>1000 years) groundwater that is recharged beyond the surface water boundary of the system.

  5. Testing mixing models of old and young groundwater in a tropical lowland rain forest with environmental tracers

    NASA Astrophysics Data System (ADS)

    Solomon, D. Kip; Genereux, David P.; Plummer, L. Niel; Busenberg, Eurybiades

    2010-04-01

    We tested three models of mixing between old interbasin groundwater flow (IGF) and young, locally derived groundwater in a lowland rain forest in Costa Rica using a large suite of environmental tracers. We focus on the young fraction of water using the transient tracers CFC-11, CFC-12, CFC-113, SF6, 3H, and bomb 14C. We measured 3He, but 3H/3He dating is generally problematic due to the presence of mantle 3He. Because of their unique concentration histories in the atmosphere, combinations of transient tracers are sensitive not only to subsurface travel times but also to mixing between waters having different travel times. Samples fall into three distinct categories: (1) young waters that plot along a piston flow line, (2) old samples that have near-zero concentrations of the transient tracers, and (3) mixtures of 1 and 2. We have modeled the concentrations of the transient tracers using (1) a binary mixing model (BMM) of old and young water with the young fraction transported via piston flow, (2) an exponential mixing model (EMM) with a distribution of groundwater travel times characterized by a mean value, and (3) an exponential mixing model for the young fraction followed by binary mixing with an old fraction (EMM/BMM). In spite of the mathematical differences in the mixing models, they all lead to a similar conceptual model of young (0 to 10 year) groundwater that is locally derived mixing with old (>1000 years) groundwater that is recharged beyond the surface water boundary of the system.

  6. Interpretation of tracer tests performed in fractured rock of the Lange Bramke basin, Germany

    NASA Astrophysics Data System (ADS)

    Maloszewski, Piotr; Herrmann, Andreas; Zuber, Andrzej

    Two multitracer tests performed in one of the major cross-fault zones of the Lange Bramke basin (Harz Mountains, Germany) confirm the dominant role of the fault zone in groundwater flow and solute transport. Tracers having different coefficients of molecular diffusion (deuterium, bromide, uranine, and eosine) yielded breakthrough curves that can only be explained by a model that couples the advective-dispersive transport in the fractures with the molecular diffusion exchange in the matrix. For the scale of the tests (maximum distance of 225m), an approximation was used in which the influence of adjacent fractures is neglected. That model yielded nearly the same rock and transport parameters for each tracer, which means that the single-fracture approximation is acceptable and that matrix diffusion plays an important role. The hydraulic conductivity of the fault zone obtained from the tracer tests is about 1.5×10-2m/s, whereas the regional hydraulic conductivity of the fractured rock mass is about 3×10-7m/s, as estimated from the tritium age and the matrix porosity of about 2%. These values show that the hydraulic conductivity along the fault is several orders of magnitude larger than that of the remaining fractured part of the aquifer, which confirms the dominant role of the fault zones as collectors of water and conductors of fast flow. Résumé Deux multitraçages ont été réalisés dans l'une des zones principales de failles du bassin de Lange Bramke (massif du Harz, Allemagne); les résultats confirment le rôle prédominant de la zone de failles pour l'écoulement souterrain et le transport de soluté. Les traceurs, possédant des coefficients de diffusion différents (deutérium, bromure, uranine et éosine), ont fourni des courbes de restitution qui ne peuvent être expliquées que par un modèle qui associe un transport advectif-dispersif dans les fractures à un échange par diffusion moléculaire dans la matrice. A l'échelle des expériences (distance

  7. Interpretation of tracer tests performed in fractured rock of the Lange Bramke basin, Germany

    NASA Astrophysics Data System (ADS)

    Maloszewski, Piotr; Herrmann, Andreas; Zuber, Andrzej

    Two multitracer tests performed in one of the major cross-fault zones of the Lange Bramke basin (Harz Mountains, Germany) confirm the dominant role of the fault zone in groundwater flow and solute transport. Tracers having different coefficients of molecular diffusion (deuterium, bromide, uranine, and eosine) yielded breakthrough curves that can only be explained by a model that couples the advective-dispersive transport in the fractures with the molecular diffusion exchange in the matrix. For the scale of the tests (maximum distance of 225m), an approximation was used in which the influence of adjacent fractures is neglected. That model yielded nearly the same rock and transport parameters for each tracer, which means that the single-fracture approximation is acceptable and that matrix diffusion plays an important role. The hydraulic conductivity of the fault zone obtained from the tracer tests is about 1.5×10-2m/s, whereas the regional hydraulic conductivity of the fractured rock mass is about 3×10-7m/s, as estimated from the tritium age and the matrix porosity of about 2%. These values show that the hydraulic conductivity along the fault is several orders of magnitude larger than that of the remaining fractured part of the aquifer, which confirms the dominant role of the fault zones as collectors of water and conductors of fast flow. Résumé Deux multitraçages ont été réalisés dans l'une des zones principales de failles du bassin de Lange Bramke (massif du Harz, Allemagne); les résultats confirment le rôle prédominant de la zone de failles pour l'écoulement souterrain et le transport de soluté. Les traceurs, possédant des coefficients de diffusion différents (deutérium, bromure, uranine et éosine), ont fourni des courbes de restitution qui ne peuvent être expliquées que par un modèle qui associe un transport advectif-dispersif dans les fractures à un échange par diffusion moléculaire dans la matrice. A l'échelle des expériences (distance

  8. Characterization of Anomalous Contaminant Transport via Push-Pull Tracer Tests

    NASA Astrophysics Data System (ADS)

    Hansen, S. K.; Vesselinov, V. V.; Berkowitz, B.

    2015-12-01

    Push-pull (single-well-injection-withdrawal) tracer tests are widely used as an economical means of characterizing field-scale solute transport properties such as sorption and dispersion. Typically, these are analyzed by means of analytic solutions that assume transport obeys the radial advection-dispersion equation. We revisit this approach as: (1) Recognition of the ubiquity of anomalous transport and its impact on contaminant remediation necessitates the use of new methods to characterize it, and (2) Improved computational power and numerical methods have rendered reliance on analytical solutions obsolete. Here, we present a technique for characterizing diffusion-driven anomalous transport (i.e., anomalous transport driven by a "trapping" process whose trapping and release statistics are independent of the groundwater flow velocity). Examples include diffusion into low permeability zones, kinetic sorption, and matrix diffusion. Using field observations, we simultaneously calibrate an exponential probability distribution for time spent on a single sojourn in the mobile domain and a truncated power law probability distribution for time spent on a single sojourn in the immobile domain via a stochastic global optimization technique. The calibrated distributions, being independent of the flow regime, are applicable to the same domain under any flow conditions, including linear flow. In the context of the continuous time random walk (CTRW), one may simply define a transition to represent a single trap-and-release cycle, and directly compute the spatiotemporal transition distribution that defines the CTRW from the two calibrated distributions and the local seepage velocity (so that existing CTRW transport theory applies). A test of our methodology against a push-pull test from the MADE site demonstrated fitting performance comparable to that of a 3-D MODFLOW/MT3DMS model with a variety of hydraulic conductivity zones and explicit treatment of mobile-immobile mass

  9. Heat as a tracer for understanding transport processes in fractured media: Theory and field assessment from multiscale thermal push-pull tracer tests

    NASA Astrophysics Data System (ADS)

    Klepikova, Maria V.; Le Borgne, Tanguy; Bour, Olivier; Dentz, Marco; Hochreutener, Rebecca; Lavenant, Nicolas

    2016-07-01

    The characterization and modeling of heat transfer in fractured media is particularly challenging as the existence of fractures at multiple scales induces highly localized flow patterns. From a theoretical and numerical analysis of heat transfer in simple conceptual models of fractured media, we show that flow channeling has a significant effect on the scaling of heat recovery in both space and time. The late time tailing of heat recovery under channeled flow is shown to diverge from the T>(t>)∝t-1.5 behavior expected for the classical parallel plate model and follow the scaling T>(t>)∝1/t>(log⁡t>)2 for a simple channel modeled as a tube. This scaling, which differs significantly from known scalings in mobile-immobile systems, is of purely geometrical origin: late time heat transfer from the matrix to a channel corresponds dimensionally to a radial diffusion process, while heat transfer from the matrix to a plate may be considered as a one-dimensional process. This phenomenon is also manifested on the spatial scaling of heat recovery as flow channeling affects the decay of the thermal breakthrough peak amplitude and the increase of the peak time with scale. These findings are supported by the results of a field experimental campaign performed on the fractured rock site of Ploemeur. The scaling of heat recovery in time and space, measured from thermal breakthrough curves measured through a series of push-pull tests at different scales, shows a clear signature of flow channeling. The whole data set can thus be successfully represented by a multichannel model parametrized by the mean channel density and aperture. These findings, which bring new insights on the effect of flow channeling on heat transfer in fractured rocks, show how heat recovery in geothermal tests may be controlled by fracture geometry. In addition, this highlights the interest of thermal push-pull tests as a complement to solute tracers tests to infer fracture aperture and geometry.

  10. Thermal single-well injection-withdrawal tracer tests for determining fracture-matrix heat transfer area

    SciTech Connect

    Pruess, K.; Doughty, C.

    2010-01-15

    Single-well injection-withdrawal (SWIW) tracer tests involve injection of traced fluid and subsequent tracer recovery from the same well, usually with some quiescent time between the injection and withdrawal periods. SWIW are insensitive to variations in advective processes that arise from formation heterogeneities, because upon withdrawal, fluid parcels tend to retrace the paths taken during injection. However, SWIW are sensitive to diffusive processes, such as diffusive exchange of conservative or reactive solutes between fractures and rock matrix. This paper focuses on SWIW tests in which temperature itself is used as a tracer. Numerical simulations demonstrate the sensitivity of temperature returns to fracture-matrix interaction. We consider thermal SWIW response to the two primary reservoir improvements targeted with stimulation, (1) making additional fractures accessible to injected fluids, and (2) increasing the aperture and permeability of pre-existing fractures. It is found that temperature returns in SWIW tests are insensitive to (2), while providing a strong signal of more rapid temperature recovery during the withdrawal phase for (1).

  11. TESTING FOR AZIMUTHAL ABUNDANCE GRADIENTS IN M101

    SciTech Connect

    Li, Yanxia; Bresolin, Fabio; Kennicutt, Robert C. Jr.

    2013-03-20

    New optical spectra of 28 H II regions in the M101 disk have been obtained, yielding 10 new detections of the [O III] {lambda}4363 auroral line. The oxygen abundance gradient measured from these data, combined with previous observations, displays a local scatter of 0.15 {+-} 0.03 dex along an arc in the west side of the galaxy, compared with a smaller scatter of 0.08 {+-} 0.01 dex in the rest of the disk. One of the H II regions in our sample (H27) has a significantly lower oxygen abundance than surrounding nebulae at a similar galactocentric distance, while an additional, relatively nearby one (H128) was already known to have a high oxygen abundance for its position in the galaxy. These results represent marginal evidence for the existence of moderate deviations from chemical abundance homogeneity in the interstellar medium of M101. Using a variety of strong-line abundance indicators, we find no evidence for significant large-scale azimuthal variations of the oxygen abundance across the whole disk of the galaxy.

  12. Push-pull partitioning tracer tests using radon-222 to quantify non-aqueous phase liquid contamination.

    PubMed

    Davis, B M; Istok, J D; Semprini, L

    2002-09-01

    Naturally occurring radon in groundwater can be used as an in situ partitioning tracer for locating and quantifying non-aqueous phase liquid (NAPL) contamination in the subsurface. When combined with the single-well, push-pull test, this methodology has the potential to provide a low-cost alternative to inter-well partitioning tracer tests. During a push-pull test, a known volume of test solution (radon-free water containing a conservative tracer) is first injected ("pushed") into a well; flow is then reversed and the test solution/groundwater mixture is extracted ("pulled") from the same well. In the presence of NAPL radon transport is retarded relative to the conservative tracer. Assuming linear equilibrium partitioning, retardation factors for radon can be used to estimate NAPL saturations. The utility of this methodology was evaluated in laboratory and field settings. Laboratory push-pull tests were conducted in both non-contaminated and trichloroethene NAPL (TCE)-contaminated sediment. The methodology was then applied in wells located in non-contaminated and light non-aqueous phase liquid (LNAPL)-contaminated portions of an aquifer at a former petroleum refinery. The method of temporal moments and an approximate analytical solution to the governing transport equations were used to interpret breakthrough curves and estimate radon retardation factors; estimated retardation factors were then used to calculate TCE saturations. Numerical simulations were used to further investigate the behavior of the breakthrough curves. The laboratory and field push-pull tests demonstrated that radon retardation does occur in the presence of TCE and LNAPL and that radon retardation can be used to calculate TCE saturations. Laboratory injection-phase test results in TCE-contaminated sediment yielded radon retardation factors ranging from 1.1 to 1.5, resulting in calculated TCE saturations ranging from 0.2 to 0.9%. Laboratory extraction-phase test results in the same sediment

  13. Convergent radial dispersion: a Laplace transform solution for aquifer tracer testing

    USGS Publications Warehouse

    Moench, A.F.

    1989-01-01

    A Laplace transform solution was obtained for the injection of a tracer in a well situated in a homogeneous aquifer where steady, horizontal, radially convergent flow has been established due to pumping at a second well. The standard advection-dispersion equation for mass transfer was used as the controlling equation. For boundary conditions, mass balances that account for mixing of the tracer with the fluid residing in the injection and pumping wells were used. The derived solution, which can be adapted for either resident or flux-averaged concentration, is of practical use only for the pumped well. This problem is of interest because it is easily applied to field determination of aquifer dispersivity and effective porosity. Breakthrough curves were obtained by numerical inversion of the Laplace transform solution. -from Author

  14. Stochastic modeling of spatial heterogeneities conditioned to hydraulic and tracer tests

    SciTech Connect

    Datta Gupta, A.; Vasco, D.W.; Long, J.C.S.; Vomvoris, S.

    1994-07-01

    Uncertainty concerning the physical and chemical nature of subsurface heterogeneities constitutes a severe technical barrier to assessing long term performance of nuclear waste repositories. This paper discusses an approach to generation of stochastic permeability fields through simultaneous inversion of flow and transport data. For tracer transport calculations, we have used a semianalytic transit time algorithm which is fast, accurate and free from numerical dispersion. The inversion of data has been accomplished through the use of simulated annealing. We have addressed the non-uniqueness associated with our results by shifting the focus from the search for a single model that fits the data best to inferences about the properties that are shared by an ensemble of acceptable models. We then determine a most likely model for heterogeneity. The approach has been illustrated through application to tracer migration in a synthetic fracture plane.

  15. Estimation of αL, velocity, Kd and confidence limits from tracer injection test data

    USGS Publications Warehouse

    Broermann, James; Bassett, R.L.; Weeks, Edwin P.; Borgstrom, Mark

    1997-01-01

    Bromide and boron were used as tracers during an injection experiment conducted at an artificial recharge facility near Stanton, Texas. The Ogallala aquifer at the Stanton site represents a heterogeneous alluvial environment and provides the opportunity to report scale dependent dispersivities at observation distances of 2 to 15 m in this setting. Values of longitudinal dispersivities are compared with other published values. Water samples were collected at selected depths both from piezometers and from fully screened observation wells at radii of 2, 5, 10 and 15 m. An exact analytical solution is used to simulate the concentration breakthrough curves and estimate longitudinal dispersivities and velocity parameters. Greater confidence can be placed on these data because the estimated parameters are error bounded using the bootstrap method. The non-conservative behavior of boron transport in clay rich sections of the aquifer were quantified with distribution coefficients by using bromide as a conservative reference tracer.

  16. High-Gradient Tests of the Single-Cell SC Cavity with a Feedback Waveguide

    SciTech Connect

    Yakovlev, V.; Solyak, N.; Wu, G.; Ge, M.; Gonin, I.; Khabiboulline, T.; Ozelis, J.; Rowe, A.; Avrakhov, P.; Kanareykin, A.; Rathke, J.

    2010-11-04

    Use of a superconducting (SC) traveling-wave accelerating (STWA) structure with a small phase advance per cell, rather than a standing-wave structure, may provide a significant increase in the accelerating gradient in the ILC linac [1]. For the same surface electric and magnetic fields, the STWA achieves an accelerating gradient 1.2 larger than TESLA-like standing-wave cavities. In addition, the STWA allows longer acceleration cavities, reducing the number of gaps between them. However, the STWA structure requires a SC feedback waveguide to return the few hundreds of MW of circulating RF power from the structure output to the structure input. A test single-cell cavity with feedback was designed and manufactured to demonstrate the possibility of proper processing to achieve a high accelerating gradient. The first results of high-gradient tests of a prototype 1.3 GHz single-cell cavity with feedback waveguide will be presented.

  17. Results of the 1988 geothermal gradient test drilling project for the State of Washington

    SciTech Connect

    Barnett, D.B.; Korosec, M.A.

    1989-05-01

    During late summer and early fall of 1988, the Washington Department of Natural Resources, Division of Geology and Earth Resources (DGER) completed drilling eight shallow geothermal gradient test wells in the southern Washington Cascade Range. This report describes the preliminary results of the 1988 drilling and gradient measuring, and summarizes our current perspectives on distribution and magnitude of the geothermal resource potential in the southern Washington Cascades. 18 refs., 11 figs., 11 tabs.

  18. A field test of tracer transport and organic contaminant elution in a stratified aquifer at the Rocky Mountain Arsenal (Denver, Colorado, U.S.A.)

    NASA Astrophysics Data System (ADS)

    Thorbjarnarson, Kathryn W.; Mackay, Douglas M.

    1997-01-01

    A tracer-elution experiment was conducted in a 9-m-thick alluvial sand aquifer at the Rocky Mountain Arsenal, Denver, Colorado, within an extensive 1,1,1-trichloroethene and trichloroethene plume. The forced-gradient flow field was controlled by an injection well and an extraction well separated by 8.4 m and aligned in the direction of the natural-gradient flow. Upon extraction, the contaminant-laden water was treated by air stripping and reinjected into the injection well. Iodide tracer was added to the injection flow during the initial 27.5 h of the experiment. Tracer transport and organic contaminant elution were monitored by four 0.15-m-screened drive points and a fully penetrating monitoring well. Relative permeabilities, dispersivities and retardation factors were estimated from tracer breakthrough and contaminant elution curves by the moment method and by curve-fitting with an advection-dispersion model. Tracer transport through the four strata sampled by the drive points indicated a permeability variation of three orders of magnitude. Contaminant elution was not observed in the lowest-permeability stratum monitored during the experiment. In all monitored strata, contaminant elution was controlled primarily by permeability effects on water flow and exhibited minimal retardation or desorption effects. The fully penetrating monitoring well exhibited a tracer response primarily from the more permeable strata with the addition of tracer from the less permeable strata producing an increased breakthrough spreading. This increased spreading or dispersion was reflected in a higher longitudinal dispersivity estimate (1.2 m assuming a homogeneous aquifer) than dispersivity estimates from the drive-point sampler tracer curves (ranging from 5 to 21 cm). Contaminant elution curves from the fully penetrating monitoring well exhibited an initial response primarily from the more permeable strata (rapid elution of contaminants) and provided no insight into the elution

  19. Experimental high gradient testing of a 17.1 GHz photonic band-gap accelerator structure

    NASA Astrophysics Data System (ADS)

    Munroe, Brian J.; Zhang, JieXi; Xu, Haoran; Shapiro, Michael A.; Temkin, Richard J.

    2016-03-01

    We report the design, fabrication, and high gradient testing of a 17.1 GHz photonic band-gap (PBG) accelerator structure. Photonic band-gap (PBG) structures are promising candidates for electron accelerators capable of high-gradient operation because they have the inherent damping of high order modes required to avoid beam breakup instabilities. The 17.1 GHz PBG structure tested was a single cell structure composed of a triangular array of round copper rods of radius 1.45 mm spaced by 8.05 mm. The test assembly consisted of the test PBG cell located between conventional (pillbox) input and output cells, with input power of up to 4 MW from a klystron supplied via a TM01 mode launcher. Breakdown at high gradient was observed by diagnostics including reflected power, downstream and upstream current monitors and visible light emission. The testing procedure was first benchmarked with a conventional disc-loaded waveguide structure, which reached a gradient of 87 MV /m at a breakdown probability of 1.19 ×10-1 per pulse per meter. The PBG structure was tested with 100 ns pulses at gradient levels of less than 90 MV /m in order to limit the surface temperature rise to 120 K. The PBG structure reached up to 89 MV /m at a breakdown probability of 1.09 ×10-1 per pulse per meter. These test results show that a PBG structure can simultaneously operate at high gradients and low breakdown probability, while also providing wakefield damping.

  20. Stronger tests of mechanisms underlying geographic gradients of biodiversity: insights from the dimensionality of biodiversity.

    PubMed

    Stevens, Richard D; Tello, J Sebastián; Gavilanez, María Mercedes

    2013-01-01

    Inference involving diversity gradients typically is gathered by mechanistic tests involving single dimensions of biodiversity such as species richness. Nonetheless, because traits such as geographic range size, trophic status or phenotypic characteristics are tied to a particular species, mechanistic effects driving broad diversity patterns should manifest across numerous dimensions of biodiversity. We develop an approach of stronger inference based on numerous dimensions of biodiversity and apply it to evaluate one such putative mechanism: the mid-domain effect (MDE). Species composition of 10,000-km(2) grid cells was determined by overlaying geographic range maps of 133 noctilionoid bat taxa. We determined empirical diversity gradients in the Neotropics by calculating species richness and three indices each of phylogenetic, functional and phenetic diversity for each grid cell. We also created 1,000 simulated gradients of each examined metric of biodiversity based on a MDE model to estimate patterns expected if species distributions were randomly placed within the Neotropics. For each simulation run, we regressed the observed gradient onto the MDE-expected gradient. If a MDE drives empirical gradients, then coefficients of determination from such an analysis should be high, the intercept no different from zero and the slope no different than unity. Species richness gradients predicted by the MDE fit empirical patterns. The MDE produced strong spatially structured gradients of taxonomic, phylogenetic, functional and phenetic diversity. Nonetheless, expected values generated from the MDE for most dimensions of biodiversity exhibited poor fit to most empirical patterns. The MDE cannot account for most empirical patterns of biodiversity. Fuller understanding of latitudinal gradients will come from simultaneous examination of relative effects of random, environmental and historical mechanisms to better understand distribution and abundance of the current biota. PMID

  1. Application of separable parameter space techniques to multi-tracer PET compartment modeling

    NASA Astrophysics Data System (ADS)

    Zhang, Jeff L.; Morey, A. Michael; Kadrmas, Dan J.

    2016-02-01

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg-Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models.

  2. Tracer tests, hydrochemical and microbiological investigations as a basis for groundwater protection in a remote tropical mountainous karst area, Vietnam

    NASA Astrophysics Data System (ADS)

    Nguyet, Vu Thi Minh; Goldscheider, Nico

    2006-11-01

    The Tam Duong karst area in NW Vietnam is among the poorest and remotest regions in the country. The local population largely depends on water from two main karst springs. Due to agricultural activity and untreated domestic wastewaters, the spring water is often microbiologically contaminated. In order to provide a scientific basis for groundwater protection in the area, different field methods have been applied including hydrogeological framework investigations, tracer tests, and hydrochemical and microbiological sampling and analyses. All methods had to be adapted to the conditions of a poor and remote area. These adaptations included, amongst other measures, the use of a portable microbiological water_testing kit and the involvement of the local population in the sampling campaign. The tracer tests showed simple and direct connections between two important swallow holes and the two main springs, and made it possible to determine the linear groundwater flow velocities, which are extremely high (up to 875 m/h). The hydrochemical and microbiological data confirmed the strong impact of the streams sinking into the swallow holes on the spring water quality. Future groundwater source protection strategies should consequently focus on the reduction of polluting activities near the sinking streams and within their catchment areas.

  3. Experimental study of the effect of test-well arrangement for partitioning interwell tracer test on the estimation of NAPL saturation

    NASA Astrophysics Data System (ADS)

    Kim, B.; Kim, Y.; Yeo, I.; Yongcheol Kim, In Wook Yeo

    2011-12-01

    Partitioning interwell tracer test (PITT) is a method to quantify and qualify a contaminated site with NAPLs through a degree of retardation of partitioning tracers compared to a conservative one. Although PITT is known to be a more effective method to measure the saturation of spatially-distributed NAPL contaminant than the point investigation method, the saturation estimation from PITT is reported to be underestimated due to various factors including heterogeneity of the media, adsorption, source zone NAPL architecture, and long tailing in breakthrough curves of partitioning tracers. Analytical description of PITT assumes that the injection-pumping well pair is on the line of ambient groundwater flow direction, but the test-well pair could easily be off the line in the field site, which could be another erroneous factor in analyzing PITT data. The purpose of this work is to study the influence of the angle of the test-well pair to ambient groundwater flow direction based on the result from PITT. The experiments were conducted in a small-scale 3D sandbox with dimensions of 0.5 m × 0.4 m × 0.15 m (LWH) of stainless steel. The surface is covered and sealed with a plexiglass plate to make the physical model a confined aquifer. Eight full-screened wells of Teflon material were installed along the perimeter of a 50 mm circle with 45 degree intervals in the middle of the physical model. Both ends of the sand box are connected to constant head reservoirs. The physical model was wet-packed with sieved and washed sand. Trichloroethylene (TCE) and bromide were used as the contaminant and the conservative tracer, respectively. Hexanol, 2,4-dimethyl-3-pentanol and 6-methyl-2-heptanol were used as partitioning tracers. Before the injection of TCE, a PITT was conducted to measure adsorption coefficient of partitioning tracers to the sand material. TCE of 4.5 mL, dyed with Sudan IV, was injected into the inner part of the circle of the wells. PITTs using the test-well pair

  4. Contaminant transfer and hydrodispersive parameters in basaltic lava flows: artificial tracer test and implications for long-term management

    NASA Astrophysics Data System (ADS)

    Bertrand, G.; Celle-Jeanton, H.; Huneau, F.; Baillieux, A.; Mauri, G.; Lavastre, V.; Undereiner, G.; Girolami, L.; Moquet, J. S.

    2015-10-01

    The aim of this paper is to evaluate the vulnerability after point source contamination and characterize water circulations in volcanic flows located in the Argnat basin volcanic system (Chaîne des Puys, French Massif Central) using a tracer test performed by injecting a iodide solution. The analysis of breakthrough curves allowed the hydrodispersive characteristics of the massive lava flows to be determined. Large Peclet numbers indicated a dominant advective transport. The multimodal feature of breakthrough curves combined with high values of mean velocity and low longitudinal dispersion coefficients indicated thatwater flows in an environment analogous to a fissure system, and only slightly interacts with a low porosity matrix (ne < 1%). Combining this information with lava flow stratigraphy provided by several drillings allowed a conceptual scheme of potential contaminant behaviour to be designed. Although lava flows are vulnerable to point source pollution due to the rapid transfer of water within fractures, the saturated scoriaceous layers located between massive rocks should suffice to strongly buffer the transit of pollution through dilution and longer transit times. This was consistent with the low recovery rate of the presented tracer test.

  5. Insights about fracture shape and aperture from push-pull thermal tracer tests achieved at different scales

    NASA Astrophysics Data System (ADS)

    Klepikova, Maria V.; Le Borgne, Tanguy; Bour, Olivier; Hochreutener, Rebecca; Lavenant, Nicolas

    2015-04-01

    The prediction of transport patterns in fractured media is a challenging task. Different transport mechanisms are generally contributing: dispersion at fracture scale related to aperture variability, dispersion at network scale due to transport in different flowpaths and matrix diffusion. It is however difficult to know which mechanism is dominant. In this study we test the interest of heat tracer tests for providing new constraints on transport in fractured media by interpreting three push-pull tests of different duration. A series of heat and solute push-pull tracer test with Dirac-type injection was conducted in fractured aquifer of Ploemeur, France. The comparison of solute and heat breakthrough curves shows that due to thermal loss to the rock matrix temperature recovery peak arrives earlier than concentration peak. Moreover, the peak is significantly smaller for temperature recovery while it exhibits a longest tailing. Finally, we found that the recovered peak temperature decreases with scale and has a power law slope of -1 on a log-log plot. By means of flow and heat numerical model, we investigate the relevance of different conceptual models: single 'plate', 'tube' and 'ellipse' homogeneous fracture models at different scales. For all tested fracture geometries temperature breakthrough curves were found to be sensitive to fracture aperture. An 'elliptical tube' fracture model was found to provide the best fit to the data and based on this model, we were able to estimate the aperture of the fracture in the present case. Moreover, the comparison of experimental breakthrough curves and modelling results also suggests that the effective fracture aperture may increase with scale. This work emphasizes that multiple-scale push-pull thermal tests can provide valuable insights on fracture geometry and fracture aperture.

  6. Characterization of Min-K TE-1400 Thermal Insulation (Two-Year Gradient Stress Relaxation Testing Update)

    SciTech Connect

    Hemrick, James Gordon; Lara-Curzio, Edgar; King, James

    2009-09-01

    Min-K 1400TE insulation material was characterized at Oak Ridge National Laboratory for use in structural applications under gradient temperature conditions. A previous report (ORNL/TM-2008/089) discusses the testing and results from the original three year duration of the project. This testing included compression testing to determine the effect of sample size and test specimen geometry on the compressive strength of Min-K, subsequent compression testing on cylindrical specimens to determine loading rates for stress relaxation testing, isothermal stress relaxation testing, and gradient stress relaxation testing. This report presents the results from the continuation of the gradient temperature stress relaxation testing and the resulting updated modeling.

  7. An ensemble Kalman filter approach to identify the hydraulic conductivity spatial distribution from electrical resistivity tomography time-lapse monitoring of three-dimensional tracer test experiments

    NASA Astrophysics Data System (ADS)

    Camporese, M.; Cassiani, G.; Deiana, R.; Perri, M. T.; Salandin, P.

    2012-04-01

    An approach based on the Lagrangian formulation of transport and the ensemble Kalman filter (EnKF) is applied to assess the spatial distribution of hydraulic conductivity K by assimilating time-lapse cross-hole electrical resistivity tomography (ERT) images generated for a synthetic tracer test in a heterogeneous aquifer. Assuming that the solute spreads as a passive tracer, for high Peclet numbers the spatial moments of the evolving plume are dominated by the spatial distribution of the hydraulic conductivity. The assimilation of the electrical conductivity 4D images allows updating both the hydrological state in terms of solute concentration and the spatial distribution of K. Thus, delineation of the tracer plume and estimation of the aquifer heterogeneity at the local scale can be achieved at the same time by means of this interpretation of time-lapse electrical images from tracer tests. We assess the impact on the performance of the hydrological inversion of the uncertainty inherently affecting ERT inversions in terms of tracer concentration and the choice of the prior statistics of K. The results show that realistic ERT images can be integrated into a hydrological model even within an uncoupled inverse modeling framework, the reconstruction of the hydraulic conductivity spatial distribution being satisfactory in the portion of the domain directly covered by the passage of the tracer. Aside from the issues commonly affecting inverse models, the proposed approach is subject to the problem of the filter inbreeding and the retrieval performance is sensitive to the choice of K prior geostatistical parameters.

  8. Hydrodispersive characterization of a sandy porous medium by tracer tests carried out in laboratory on undisturbed soil samples

    NASA Astrophysics Data System (ADS)

    Ferrante, Aldo Pedro; Fallico, Carmine; Rios, Ana C.; Fernanda Rivera, Maria; Santillan, Patricio; Salazar, Mario

    2013-04-01

    The contamination of large areas and correspondent aquifers often imposes to implement some recovery operations which are generally complex and very expensive. Anyway, these interventions necessarily require the preventive characterization of the aquifers to be reclaimed and in particular the knowledge of the relevant hydrodispersive parameters. The determination of these parameters requires the implementation tracer tests for the specific site (Sauty JP, 1978). To reduce cost and time that such test requires tracer tests on undisturbed soil samples, representative of the whole aquifer, can be performed. These laboratory tests are much less expensive and require less time, but the results are certainly less reliable than those obtained by field tests for several reasons, including the particular scale of investigation. In any case the hydrodispersive parameters values, obtained by tests carried out in laboratory, can provide useful information on the considered aquifer, allowing to carry out initial verifications on the transmission and propagation of the pollutants in the aquifer considered. For this purpose, tracer tests with inlet of short time were carried out in the Soil Physics Laboratory of the Department of Soil Protection (University of Calabria), on a series of sandy soil samples with six different lengths, repeating each test with three different water flow velocities (5 m/d; 10 m/s and 15 m/d) (J. Feyen et al., 1998). The lengths of the samples taken into account are respectively 15 cm, 24 cm, 30 cm, 45 cm, 60 cm and 75 cm, while the solution used for each test was made of 100 ml of water and NaCl with a concentration of this substance corresponding to 10 g/L. For the porous medium taken into consideration a particle size analysis was carried out, resulting primarily made of sand, with total porosity equal to 0.33. Each soil sample was placed in a flow cell in which was inlet the tracer from the bottom upwards, measuring by a conductivimeter the

  9. Application of tracer injection tests to characterize rock matrix block size distribution and dispersivity in fractured aquifers

    NASA Astrophysics Data System (ADS)

    Sharifi Haddad, Amin; Hassanzadeh, Hassan; Abedi, Jalal; Chen, Zhangxin

    2014-03-01

    The complexity of mass transfer processes between the mobile and immobile zones in geohydrologic settings and the limitations that currently exist in the characterization of contaminated sites demand the development of improved models. In this work, we present a model that describes the mass transfer in structured porous media. This model considers divergent radial advective-dispersive transport in fractures and diffusive mass transfer inside rock matrix blocks. The heterogeneous nature of fractured formations is included with the integration of various distributions of rock matrix block sizes into the transport model. Breakthrough curves generated based on the developed model are analyzed to investigate the effects of the rate of injection, dispersivity and the immobile to mobile porosity ratio on mass transfer between mobile and immobile zones. It is shown that the developed model, in conjunction with tracer data collected from a monitoring well, can be used to estimate the dispersivity and fracture intensity. Results reveal that the dispersivity is independent of the rock matrix block size distribution for dispersion-dominant transport in fractures. These findings are used to develop a methodology to characterize rock matrix block size distribution in fractured aquifers and to estimate dispersivity based on a tracer test, which will improve our decisions concerning the remediation of contaminated sites.

  10. Comparison of agar dilution and antibiotic gradient strip test with broth microdilution for susceptibility testing of swine Brachyspira species.

    PubMed

    Mirajkar, Nandita S; Gebhart, Connie J

    2016-03-01

    Production-limiting diseases in swine caused by Brachyspira are characterized by mucohemorrhagic diarrhea (B. hyodysenteriae and "B. hampsonii") or mild colitis (B. pilosicoli), while B. murdochii is often isolated from healthy pigs. Emergence of novel pathogenic Brachyspira species and strains with reduced susceptibility to commonly used antimicrobials has reinforced the need for standardized susceptibility testing. Two methods are currently used for Brachyspira susceptibility testing: agar dilution (AD) and broth microdilution (BMD). However, these tests have primarily been used for B. hyodysenteriae and rarely for B. pilosicoli. Information on the use of commercial susceptibility testing products such as antibiotic gradient strips is lacking. Our main objective was to validate and compare the susceptibility results, measured as the minimum inhibitory concentration (MIC), of 6 antimicrobials for 4 Brachyspira species (B. hyodysenteriae, "B. hampsonii", B. pilosicoli, and B. murdochii) by BMD and AD (tiamulin, valnemulin, lincomycin, tylosin, and carbadox) or antibiotic gradient strip (doxycycline) methods. In general, the results of a high percentage of all 4 Brachyspira species differed by ±1 log2 dilution or less by BMD and AD for tiamulin, valnemulin, lincomycin, and tylosin, and by BMD and antibiotic gradient strip for doxycycline. The carbadox MICs obtained by BMD were 1-5 doubling dilutions different than those obtained by AD. BMD for Brachyspira was quicker to perform with less ambiguous interpretation of results when compared with AD and antibiotic gradient strip methods, and the results confirm the utility of BMD in routine diagnostics. PMID:26965233

  11. Functional linear models to test for differences in prairie wetland hydraulic gradients

    USGS Publications Warehouse

    Greenwood, Mark C.; Sojda, Richard S.; Preston, Todd M.; Swayne, David A.; Yang, Wanhong; Voinov, A.A.; Rizzoli, A.; Filatova, T.

    2010-01-01

    Functional data analysis provides a framework for analyzing multiple time series measured frequently in time, treating each series as a continuous function of time. Functional linear models are used to test for effects on hydraulic gradient functional responses collected from three types of land use in Northeastern Montana at fourteen locations. Penalized regression-splines are used to estimate the underlying continuous functions based on the discretely recorded (over time) gradient measurements. Permutation methods are used to assess the statistical significance of effects. A method for accommodating missing observations in each time series is described. Hydraulic gradients may be an initial and fundamental ecosystem process that responds to climate change. We suggest other potential uses of these methods for detecting evidence of climate change.

  12. Testing the stress gradient hypothesis in herbivore communities facilitation peaks at intermediate nutrient levels.

    PubMed

    Bakker, Elisabeth S; Dobrescu, Ioana; Straile, Dietmar; Holmgren, Milena

    2013-08-01

    The role of positive interactions in structuring plant and animal communities is increasingly recognized, but the generality of current theoretical models has remained practically unexplored in animal communities. The stress gradient hypothesis predicts a linear increase in the intensity of facilitation as environmental conditions become increasingly stressful, whereas other theoretical models predict a maximum at intermediate environmental stress. We tested how competition and facilitation between herbivores change over a manipulated gradient of nutrient availability. We studied the effect of grazing by pond snails (Lymnaea stagnalis L.) as bulk grazers on aquatic caterpillars (Acentria ephemerella Denis and Schiffermüller) as small specialist grazers along an experimental gradient of environmental nutrient concentration. Higher nutrient levels increased overall total plant biomass but induced a shift toward dominance of filamentous algae at the expense of macrophytes. Facilitation of caterpillars by snail presence peaked at intermediate nutrient levels. Both caterpillar biomass and caterpillar grazing on macrophytes were highest at intermediate nutrient levels. Snails facilitated caterpillars possibly by removing filamentous algae and increasing access to the macrophyte resource, whereas they did not affect macrophyte biomass or C: nutrient ratios, a measure of food quality. We conclude that competition and facilitation in herbivore communities change along nutrient availability gradients that affect plant biomass and community composition. Understanding how interspecific interactions may change in strength and direction along environmental gradients is important to predict how the diversity and structure of communities may respond to the introduction or removal of herbivore species in ecosystems. PMID:24015521

  13. Geology, hydrology, and results of tracer testing in the Galena-Platteville aquifer at a waste-disposal site near Byron, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Yeskis, Douglas J.; Prinos, Scott T.; Morrow, William S.; Vendl, Mark

    1999-01-01

    A study was conducted by the U.S. Geological Survey and the U.S. Environmental Protection Agency of the geohydrology of the dolomite bedrock at a waste-disposal site near Byron, Illinois. The study was designed to identify and characterize the flow pathways through the bedrock aquifer beneath the site. The geologic units of concern at the site are the Glenwood Formation of the Ancell Group, and the Platteville and Galena Groups. These deposits compose the Galena-Platteville aquifer and the underlying Harmony Hill Shale semiconfining unit. The Galena-Platteville aquifer is an unconfined aquifer. Geophysical logging, water levels, and aquifer-test data indicate the presence of interconnected, hydraulically active fractures in the middle of the Galena-Platteville aquifer (the upper flow pathway), and a second set of hydraulically active fractures (the lower flow pathway). The lower flow pathway may be present through much of the site. Few hydraulically active fractures are present in the upper part of the aquifer near the center of the site, but appear to be more numerous in the upper part of the aquifer in the western and northeastern parts of the site. Water-level data obtained during the tracer test indicate that pumping effects were present near the pumped wells. Pumping effects may have been present at several wells located along directions of identified fracture orientation from the pumped well. The upper part of the aquifer did not appear to be hydraulically well connected to the flow pathways supplying water to the pumped well. Large background changes in water levels obscured the effects of pumping and prevented calculation of aquifer properties. The velocity of the bromide tracer through the lower flow pathway under the hydraulic gradient resulting from the pumping was about 152 feet per day. Solution of the Darcy velocity equation results in a calculated effective porosity for this interval of 3.5 percent, indicating hydraulic interconnection between the

  14. A servo controlled gradient loading triaxial model test system for deep-buried cavern

    NASA Astrophysics Data System (ADS)

    Chen, Xu-guang; Zhang, Qiang-yong; Li, Shu-cai

    2015-10-01

    A servo controlled gradient loading model test system is developed to simulate the gradient geostress in deep-buried cavern. This system consists of the gradient loading apparatus, the digital servo control device, and the measurement system. Among them, the gradient loading apparatus is the main component which is used for exerting load onto the model. This loading apparatus is placed inside the counterforce wall/beam and is divided to several different loading zones, with each loading zone independently controlled. This design enables the gradient loading. Hence, the "real" geostress field surrounding the deep-buried cavern can be simulated. The loading or unloading process can be controlled by the human-computer interaction machines, i.e., the digital servo control system. It realizes the automation and visualization of model loading/unloading. In addition, this digital servo could control and regulate hydraulic loading instantaneously, which stabilizes the geostress onto the model over a long term. During the loading procedure, the collision between two adjacent loading platens is also eliminated by developing a guide frame. This collision phenomenon is induced by the volume shrinkage of the model when compressed in true 3D state. In addition, several accurate measurements, including the optical and grating-based method, are adopted to monitor the small deformation of the model. Hence, the distortion of the model could be accurately measured. In order to validate the performance of this innovative model test system, a 3D geomechanical test was conducted on a simulated deep-buried underground reservoir. The result shows that the radial convergence increases rapidly with the release of the stress in the reservoir. Moreover, the deformation increases with the increase of the gas production rate. This observation is consistence with field observation in petroleum engineering. The system is therefore capable of testing deep-buried engineering structures.

  15. A servo controlled gradient loading triaxial model test system for deep-buried cavern

    SciTech Connect

    Chen, Xu-guang; Zhang, Qiang-yong; Li, Shu-cai

    2015-10-15

    A servo controlled gradient loading model test system is developed to simulate the gradient geostress in deep-buried cavern. This system consists of the gradient loading apparatus, the digital servo control device, and the measurement system. Among them, the gradient loading apparatus is the main component which is used for exerting load onto the model. This loading apparatus is placed inside the counterforce wall/beam and is divided to several different loading zones, with each loading zone independently controlled. This design enables the gradient loading. Hence, the “real” geostress field surrounding the deep-buried cavern can be simulated. The loading or unloading process can be controlled by the human-computer interaction machines, i.e., the digital servo control system. It realizes the automation and visualization of model loading/unloading. In addition, this digital servo could control and regulate hydraulic loading instantaneously, which stabilizes the geostress onto the model over a long term. During the loading procedure, the collision between two adjacent loading platens is also eliminated by developing a guide frame. This collision phenomenon is induced by the volume shrinkage of the model when compressed in true 3D state. In addition, several accurate measurements, including the optical and grating-based method, are adopted to monitor the small deformation of the model. Hence, the distortion of the model could be accurately measured. In order to validate the performance of this innovative model test system, a 3D geomechanical test was conducted on a simulated deep-buried underground reservoir. The result shows that the radial convergence increases rapidly with the release of the stress in the reservoir. Moreover, the deformation increases with the increase of the gas production rate. This observation is consistence with field observation in petroleum engineering. The system is therefore capable of testing deep-buried engineering structures.

  16. A servo controlled gradient loading triaxial model test system for deep-buried cavern.

    PubMed

    Chen, Xu-guang; Zhang, Qiang-yong; Li, Shu-cai

    2015-10-01

    A servo controlled gradient loading model test system is developed to simulate the gradient geostress in deep-buried cavern. This system consists of the gradient loading apparatus, the digital servo control device, and the measurement system. Among them, the gradient loading apparatus is the main component which is used for exerting load onto the model. This loading apparatus is placed inside the counterforce wall/beam and is divided to several different loading zones, with each loading zone independently controlled. This design enables the gradient loading. Hence, the "real" geostress field surrounding the deep-buried cavern can be simulated. The loading or unloading process can be controlled by the human-computer interaction machines, i.e., the digital servo control system. It realizes the automation and visualization of model loading/unloading. In addition, this digital servo could control and regulate hydraulic loading instantaneously, which stabilizes the geostress onto the model over a long term. During the loading procedure, the collision between two adjacent loading platens is also eliminated by developing a guide frame. This collision phenomenon is induced by the volume shrinkage of the model when compressed in true 3D state. In addition, several accurate measurements, including the optical and grating-based method, are adopted to monitor the small deformation of the model. Hence, the distortion of the model could be accurately measured. In order to validate the performance of this innovative model test system, a 3D geomechanical test was conducted on a simulated deep-buried underground reservoir. The result shows that the radial convergence increases rapidly with the release of the stress in the reservoir. Moreover, the deformation increases with the increase of the gas production rate. This observation is consistence with field observation in petroleum engineering. The system is therefore capable of testing deep-buried engineering structures. PMID

  17. A modular injection system, multilevel sampler, and manifold for tracer tests.

    PubMed

    Mailloux, Brian J; Fuller, Mark E; Rose, George F; Onstott, Tullis C; DeFlaun, Mary F; Alvarez, Enrique; Hemingway, Chris; Hallet, R Bruce; Phelps, Tommy J; Griffin, Timothy

    2003-01-01

    Ground water injection and sampling systems were developed for bacterial transport experiments in both homogenous and heterogeneous unconsolidated, surficial aquifers. Two types of injection systems, a large single tank and a dynamic mixing tank, were designed to deliver more than 800 L of amended ground water to the aquifer over 12 hours, without altering the ground water temperature, pH, Eh, or dissolved gas composition. Two types of multilevel samplers (MLSs) were designed and installed. Permanent MLSs performed well for the homogenous surficial aquifer, but their installation procedure promoted vertical mixing, which could obfuscate experimental data obtained from vertically stratified, heterogeneous aquifers. A novel, removable MLS was designed to fit in 2- and 4-inch wells. Expandable O-rings between each sampling port hydraulically isolated each port for sample collection when a nut was tightened at the land surface. A low-cost vacuum manifold system designed to work with both MLS designs used 50 mL centrifuge tubes to efficiently sample 12 MLS ports with one peristaltic pump head. The integrated system was developed and used during four field campaigns over a period of three years. During each campaign, more than 3000 ground water samples were collected in less than one week. This system should prove particularly useful for ground water tracer, injection, and push-pull experiments that require high-frequency and/or high-density sampling. PMID:14649864

  18. Cosmological Constraints from the Redshift Dependence of the Alcock-Paczynski Test: Galaxy Density Gradient Field

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Dong; Park, Changbom; Forero-Romero, J. E.; Kim, Juhan

    2014-12-01

    We propose a method based on the redshift dependence of the Alcock-Paczynski (AP) test to measure the expansion history of the universe. It uses the isotropy of the galaxy density gradient field to constrain cosmological parameters. If the density parameter Ω m or the dark energy equation of state w are incorrectly chosen, the gradient field appears to be anisotropic with the degree of anisotropy varying with redshift. We use this effect to constrain the cosmological parameters governing the expansion history of the universe. Although redshift-space distortions (RSD) induced by galaxy peculiar velocities also produce anisotropies in the gradient field, these effects are close to uniform in magnitude over a large range of redshift. This makes the redshift variation of the gradient field anisotropy relatively insensitive to the RSD. By testing the method on mock surveys drawn from the Horizon Run 3 cosmological N-body simulations, we demonstrate that the cosmological parameters can be estimated without bias. Our method is complementary to the baryon acoustic oscillation or topology methods as it depends on DAH , the product of the angular diameter distance and the Hubble parameter.

  19. Cosmological constraints from the redshift dependence of the Alcock-Paczynski test: galaxy density gradient field

    SciTech Connect

    Li, Xiao-Dong; Park, Changbom; Forero-Romero, J. E.; Kim, Juhan E-mail: cbp@kias.re.kr E-mail: kjhan@kias.re.kr

    2014-12-01

    We propose a method based on the redshift dependence of the Alcock-Paczynski (AP) test to measure the expansion history of the universe. It uses the isotropy of the galaxy density gradient field to constrain cosmological parameters. If the density parameter Ω {sub m} or the dark energy equation of state w are incorrectly chosen, the gradient field appears to be anisotropic with the degree of anisotropy varying with redshift. We use this effect to constrain the cosmological parameters governing the expansion history of the universe. Although redshift-space distortions (RSD) induced by galaxy peculiar velocities also produce anisotropies in the gradient field, these effects are close to uniform in magnitude over a large range of redshift. This makes the redshift variation of the gradient field anisotropy relatively insensitive to the RSD. By testing the method on mock surveys drawn from the Horizon Run 3 cosmological N-body simulations, we demonstrate that the cosmological parameters can be estimated without bias. Our method is complementary to the baryon acoustic oscillation or topology methods as it depends on D{sub AH} , the product of the angular diameter distance and the Hubble parameter.

  20. Testing the facilitation–competition paradigm under the stress-gradient hypothesis: decoupling multiple stress factors

    PubMed Central

    Kawai, Takashi; Tokeshi, Mutsunori

    2007-01-01

    While the facilitation–competition paradigm under the stress-gradient hypothesis has received recent attention, its rigorous testing is yet to be explored. Most of the studies have considered a switch in the net interactions from competition to facilitation with increasing environmental stress as primary evidence supporting the hypothesis, though few studies examined changes in interaction along a full range of a stress gradient. Here, we have conceptualized possible variations in the patterns of change in interaction strength along such gradient. Based on this, we empirically evaluated the temporal shift in the interaction between two marine sessile animals, goose barnacles (Capitulum mitella) and mussels (Septifer virgatus), under multiple stress factors. The net effect of goose barnacles on mussel survivorship was positively related to the total stress gradient encompassing two stress factors, physical disturbance and thermal stress, while no negative value occurred even under mild conditions. When the two stress factors were treated separately, however, the net effect demonstrated apparently different patterns: monotonic increase with physical disturbance versus a quasi-asymptotic pattern (no change over a wide range) with thermal stress. These variable situations have not previously been recognized in this discipline, and the present study emphasizes the importance of an integrative and mechanistic approach to testing and deciphering the facilitation–competition paradigm. PMID:17686725

  1. Testing the facilitation-competition paradigm under the stress-gradient hypothesis: decoupling multiple stress factors.

    PubMed

    Kawai, Takashi; Tokeshi, Mutsunori

    2007-10-01

    While the facilitation-competition paradigm under the stress-gradient hypothesis has received recent attention, its rigorous testing is yet to be explored. Most of the studies have considered a switch in the net interactions from competition to facilitation with increasing environmental stress as primary evidence supporting the hypothesis, though few studies examined changes in interaction along a full range of a stress gradient. Here, we have conceptualized possible variations in the patterns of change in interaction strength along such gradient. Based on this, we empirically evaluated the temporal shift in the interaction between two marine sessile animals, goose barnacles (Capitulum mitella) and mussels (Septifer virgatus), under multiple stress factors. The net effect of goose barnacles on mussel survivorship was positively related to the total stress gradient encompassing two stress factors, physical disturbance and thermal stress, while no negative value occurred even under mild conditions. When the two stress factors were treated separately, however, the net effect demonstrated apparently different patterns: monotonic increase with physical disturbance versus a quasi-asymptotic pattern (no change over a wide range) with thermal stress. These variable situations have not previously been recognized in this discipline, and the present study emphasizes the importance of an integrative and mechanistic approach to testing and deciphering the facilitation-competition paradigm.

  2. Innovative techniques for the description of reservoir heterogeneity using tracers

    SciTech Connect

    Pope, G.; Sepehrnoori, K.

    1991-09-01

    The objective of this research is to develop an advanced, innovative technique for the description of reservoir heterogeneity. This proposed method consists of using tracers in single-well backflow tests. The general idea is to make use of fluid drift in the reservoir either due to naturally occurring pressure gradients in the reservoir, or by deliberately imposed pressure gradients using adjacent injection and production wells in the same reservoir. The analytical tool that will be used to design and interpret these tests is a compositional reservoir simulator with special features added and tested specifically for this purpose. 2 refs., 5 figs.

  3. Numerical simulations of radon as an in situ partitioning tracer for quantifying NAPL contamination using push-pull tests.

    PubMed

    Davis, B M; Istok, J D; Semprini, L

    2005-06-01

    Presented here is a reanalysis of results previously presented by [Davis, B.M., Istok, J.D., Semprini, L., 2002. Push-pull partitioning tracer tests using radon-222 to quantify non-aqueous phase liquid contamination. J. Contam. Hydrol. 58, 129-146] of push-pull tests using radon as a naturally occurring partitioning tracer for evaluating NAPL contamination. In a push-pull test where radon-free water and bromide are injected, the presence of NAPL is manifested in greater dispersion of the radon breakthrough curve (BTC) relative to the bromide BTC during the extraction phase as a result of radon partitioning into the NAPL. Laboratory push-pull tests in a dense or DNAPL-contaminated physical aquifer model (PAM) indicated that the previously used modeling approach resulted in an overestimation of the DNAPL (trichloroethene) saturation (S(n)). The numerical simulations presented here investigated the influence of (1) initial radon concentrations, which vary as a function of S(n), and (2) heterogeneity in S(n) distribution within the radius of influence of the push-pull test. The simulations showed that these factors influence radon BTCs and resulting estimates of S(n). A revised method of interpreting radon BTCs is presented here, which takes into account initial radon concentrations and uses non-normalized radon BTCs. This revised method produces greater radon BTC sensitivity at small values of S(n) and was used to re-analyze the results from the PAM push-pull tests reported by Davis et al. The re-analysis resulted in a more accurate estimate of S(n) (1.8%) compared with the previously estimated value (7.4%). The revised method was then applied to results from a push-pull test conducted in a light or LNAPL-contaminated aquifer at a field site, resulting in a more accurate estimate of S(n) (4.1%) compared with a previously estimated value (13.6%). The revised method improves upon the efficacy of the radon push-pull test to estimate NAPL saturations. A limitation of the

  4. Characterizing Aquifer Heterogeneity Using Bacterial and Bacteriophage Tracers.

    PubMed

    Flynn, Raymond M; Mallèn, German; Engel, Marion; Ahmed, Ashraf; Rossi, Pierre

    2015-09-01

    Gravel aquifers act as important potable water sources in central western Europe, yet they are subject to numerous contamination pressures. Compositional and textural heterogeneity makes protection zone delineation around groundwater supplies in these units challenging; artificial tracer testing aids characterization. This paper reappraises previous tracer test results in light of new geological and microbiological data. Comparative passive gradient testing, using a fluorescent solute (Uranine), virus (H40/1 bacteriophage), and comparably sized bacterial tracers and , was used to investigate a calcareous gravel aquifer's ability to remove microbiological contaminants at a test site near Munich, Germany. Test results revealed relative recoveries could exceed those of H40/1 at monitoring wells, 10 m and 20 m from an injection well, by almost four times; recoveries varied by a factor of up to three between wells. Application of filtration theory suggested greater attenuation of H40/1 relative to similarly charged occurred due to differences in microorganism size, while estimated collision efficiencies appeared comparable. By contrast, more positively charged experienced greater attenuation at one monitoring point, while lower attenuation rates at the second location indicated the influence of geochemical heterogeneity. Test findings proved consistent with observations from nearby fresh outcrops that suggested thin open framework gravel beds dominated mass transport in the aquifer, while discrete intervals containing stained clasts reflect localized geochemical heterogeneity. Study results highlight the utility of reconciling outcrop observations with artificial tracer test responses, using microbiological tracers with well-defined properties, to characterize aquifer heterogeneity.

  5. Characterizing Aquifer Heterogeneity Using Bacterial and Bacteriophage Tracers.

    PubMed

    Flynn, Raymond M; Mallèn, German; Engel, Marion; Ahmed, Ashraf; Rossi, Pierre

    2015-09-01

    Gravel aquifers act as important potable water sources in central western Europe, yet they are subject to numerous contamination pressures. Compositional and textural heterogeneity makes protection zone delineation around groundwater supplies in these units challenging; artificial tracer testing aids characterization. This paper reappraises previous tracer test results in light of new geological and microbiological data. Comparative passive gradient testing, using a fluorescent solute (Uranine), virus (H40/1 bacteriophage), and comparably sized bacterial tracers and , was used to investigate a calcareous gravel aquifer's ability to remove microbiological contaminants at a test site near Munich, Germany. Test results revealed relative recoveries could exceed those of H40/1 at monitoring wells, 10 m and 20 m from an injection well, by almost four times; recoveries varied by a factor of up to three between wells. Application of filtration theory suggested greater attenuation of H40/1 relative to similarly charged occurred due to differences in microorganism size, while estimated collision efficiencies appeared comparable. By contrast, more positively charged experienced greater attenuation at one monitoring point, while lower attenuation rates at the second location indicated the influence of geochemical heterogeneity. Test findings proved consistent with observations from nearby fresh outcrops that suggested thin open framework gravel beds dominated mass transport in the aquifer, while discrete intervals containing stained clasts reflect localized geochemical heterogeneity. Study results highlight the utility of reconciling outcrop observations with artificial tracer test responses, using microbiological tracers with well-defined properties, to characterize aquifer heterogeneity. PMID:26436262

  6. Influence of Eco-hydrological Changes on Flow Velocities in a Shallow Alluvial Aquifer - Findings From Tracer Tests at the Merdingen Test Site, Germany.

    NASA Astrophysics Data System (ADS)

    Goeppert, N.; Kaess, W.; Hoetzl, H.; Goldscheider, N.

    2008-12-01

    Since 1979, the Merdingen test site, located in the alluvial deposits of the Upper Rhine Graben, has been used for tracer tests using fluorescent dyes, heavy metals, microorganisms, microspheres and other tracers. In 1999, the storm Lothar badly affected the test site and significantly changed the vegetation cover. The previously forested area is now predominantly covered by bushes and a few remaining trees. 13 wells can be used for tracer experiments over a distance of up to 200 meters. Before the storm (1988), uranine gave a maximum flow velocity (vmax) of 1.08 m/h and a peak flow velocity (vpeak) of 0.07 m/h over a distance of 25 meters. Vmax was not influenced by rainfall, whereas the peak might have been accelerated by rainfall events. In 2005, uranine gave a vmax of 2.55 m/h and a vpeak of 0.07 m/h, during a period of falling water table and no rainfalls. This means that vmax increased by a factor of 2.3, whereas vpeak remained stable. The vmax for 1 μm microspheres increased by a factor of 4.6 between 1988 and 2005, the vmax for the Serratia marcescens bacterium increased by the same factor, while vpeak remained stable. This behavior can, at least partly, be explained by the change in vegetation caused by the storm, particularly by the impact of uprooted trees and intensively rooting bushes on the shallow aquifer, which obviously created additional preferential flowpaths that allow for higher maximum velocities. The even higher observed increase of the maximum velocities for bacteria and microspheres can be explained by the fact that particle transport is known to be even more influenced by preferential flowpaths than solute transport (pore exclusion). Our findings suggest that vegetation changes, particularly trees being overthrown and uprooted, can actually influence groundwater flow velocities in shallow alluvial aquifers, which can result in higher maximum transport velocities of microorganisms along preferential flowpaths.

  7. Evidence of distinct contaminant transport patterns in rivers using tracer tests and a multiple domain retention model

    NASA Astrophysics Data System (ADS)

    Bottacin-Busolin, Andrea; Marion, Andrea; Musner, Tommaso; Tregnaghi, Matteo; Zaramella, Mattia

    2011-06-01

    Solute transport in rivers is controlled by surface hydrodynamics and by mass exchanges with distinct retention zones. Surface and hyporheic retention processes can be accounted for separately in solute transport models with multiple storage compartments. In the simplest two component model, short term storage can be associated to in-channel transient retention, e.g. produced by riparian vegetation or surface dead zones, and the long-term storage can be associated to hyporheic exchange. The STIR (Solute Transport In Rivers) multiple domain transport model is applied here to tracer test data from three very different Mediterranean streams with distinctive characteristics in terms of flow discharge, vegetation and substrate material. The model is used with an exponential residence time distribution (RTD) to represent surface storage processes and two distinct modeling closures are tested to simulate hyporheic retention: a second exponential RTD and a power-law distribution approximating a known solution for bedform-induced hyporheic exchange. Each stream shows distinct retention patterns characterized by different timescales of the storage time distribution. Both modeling closures lead to very good approximations of the observed breakthrough curves in the two rivers with permeable bed exposed to the flow, where hyporheic flows are expected to occur. In the one case where the occurrence of hyporheic flows is inhibited by bottom vegetation, only the two exponential RTD model is acceptable and the time scales of the two components are of the same magnitude. The significant finding of this work is the recognition of a strong signature of the river properties on tracer data and the evidence of the ability of multiple-component models to describe individual stream responses. This evidence may open a new perspective in river contamination studies, where rivers could possibly be classified based on their ability to trap and release pollutants.

  8. Hydrological parameter estimations from a conservative tracer test with variable-density effects at the Boise Hydrogeophysical Research Site

    NASA Astrophysics Data System (ADS)

    Dafflon, B.; Barrash, W.; Cardiff, M.; Johnson, T. C.

    2011-12-01

    Reliable predictions of groundwater flow and solute transport require an estimation of the detailed distribution of the parameters (e.g., hydraulic conductivity, effective porosity) controlling these processes. However, such parameters are difficult to estimate because of the inaccessibility and complexity of the subsurface. In this regard, developments in parameter estimation techniques and investigations of field experiments are still challenging and necessary to improve our understanding and the prediction of hydrological processes. Here we analyze a conservative tracer test conducted at the Boise Hydrogeophysical Research Site in 2001 in a heterogeneous unconfined fluvial aquifer. Some relevant characteristics of this test include: variable-density (sinking) effects because of the injection concentration of the bromide tracer, the relatively small size of the experiment, and the availability of various sources of geophysical and hydrological information. The information contained in this experiment is evaluated through several parameter estimation approaches, including a grid-search-based strategy, stochastic simulation of hydrological property distributions, and deterministic inversion using regularization and pilot-point techniques. Doing this allows us to investigate hydraulic conductivity and effective porosity distributions and to compare the effects of assumptions from several methods and parameterizations. Our results provide new insights into the understanding of variable-density transport processes and the hydrological relevance of incorporating various sources of information in parameter estimation approaches. Among others, the variable-density effect and the effective porosity distribution, as well as their coupling with the hydraulic conductivity structure, are seen to be significant in the transport process. The results also show that assumed prior information can strongly influence the estimated distributions of hydrological properties.

  9. Modified Whole Effluent Toxicity Test to Assess and Decouple Wastewater Effects from Environmental Gradients

    PubMed Central

    Sauco, Sebastián; Gómez, Julio; Barboza, Francisco R.; Lercari, Diego; Defeo, Omar

    2013-01-01

    Environmental gradients and wastewater discharges produce aggregated effects on marine populations, obscuring the detection of human impact. Classical assessment methods do not include environmental effects in toxicity tests designs, which could lead to incorrect conclusions. We proposed a modified Whole Effluent Toxicity test (mWET) that includes environmental gradients in addition to effluent dilutions, together with the application of Generalized Linear Mixed Models (GLMM) to assess and decouple those effects. We tested this approach, analyzing the lethal effects of wastewater on a marine sandy beach bivalve affected by an artificial canal freshwater discharge used for rice crops irrigation. To this end, we compared bivalve mortality between canal water dilutions (CWd) and salinity controls (SC: without canal water). CWd were prepared by diluting the water effluent (sampled during the pesticide application period) with artificial marine water. The salinity gradient was included in the design by achieving the same final salinities in both CWd and SC, allowing us to account for the effects of salinity by including this variable as a random factor in the GLMM. Our approach detected significantly higher mortalities in CWd, indicating potential toxic effects of the effluent discharge. mWET represents an improvement over the internationally standardized WET tests, since it considers environmental variability and uses appropriate statistical analyses. PMID:23755304

  10. In situ tracer tests to determine retention properties of a block scale fracture network in granitic rock at the Aspö Hard Rock Laboratory, Sweden.

    PubMed

    Andersson, Peter; Byegård, Johan; Tullborg, Eva-Lena; Doe, Thomas; Hermanson, Jan; Winberg, Anders

    2004-06-01

    Experiments were conducted at the Aspö Hard Rock Laboratory in order to improve the understanding of radionuclide retention properties of fractured crystalline bedrock in the 10-100 m scale (TRUE Block Scale Project, jointly funded by ANDRA, ENRESA, Nirex, JNC, Posiva and SKB). A series of tracer experiments were performed using sorbing tracers in three different flow paths. The different flow paths had Euclidian lengths of 14, 17 and 33 m, respectively, and one to three water conducting structures. Four tests were performed using different cocktails made up of radioactive sorbing tracers (22,24Na+, 42K+, 47Ca2+, 85Sr2+, 83,86Rb+, 131,133Ba2+ and 134,137Cs+). For each tracer injection, the breakthrough of sorbing tracers was compared to the breakthrough of a conservative tracer, 82Br-, 131I-, HTO and 186ReO4-, respectively. In the two longer flow paths, no breakthrough of 83Rb+ and 137Cs+ was observed after 8 months of pumping. Selected tracer tests were subject to basic modelling in which a one-dimensional (1D) advection-dispersion model, including surface sorption, and an unlimited matrix diffusion were used for the interpretation of the results. The results of the modelling indicated that there is a slightly higher mass transfer into a highly porous material in the block-scale experiment compared with in situ experiments performed over shorter distances and significantly higher than what would have been expected from laboratory data obtained from studies of the interactions in nonaltered intact rock.

  11. In situ tracer tests to determine retention properties of a block scale fracture network in granitic rock at the Äspö Hard Rock Laboratory, Sweden

    NASA Astrophysics Data System (ADS)

    Andersson, Peter; Byegård, Johan; Tullborg, Eva-Lena; Doe, Thomas; Hermanson, Jan; Winberg, Anders

    2004-06-01

    Experiments were conducted at the Äspö Hard Rock Laboratory in order to improve the understanding of radionuclide retention properties of fractured crystalline bedrock in the 10-100 m scale (TRUE Block Scale Project, jointly funded by ANDRA, ENRESA, Nirex, JNC, Posiva and SKB). A series of tracer experiments were performed using sorbing tracers in three different flow paths. The different flow paths had Euclidian lengths of 14, 17 and 33 m, respectively, and one to three water conducting structures. Four tests were performed using different cocktails made up of radioactive sorbing tracers ( 22,24Na +, 42K +, 47Ca 2+, 85Sr 2+, 83,86Rb +, 131,133Ba 2+ and 134,137Cs +). For each tracer injection, the breakthrough of sorbing tracers was compared to the breakthrough of a conservative tracer, 82Br -, 131I -, HTO and 186ReO 4-, respectively. In the two longer flow paths, no breakthrough of 83Rb + and 137Cs + was observed after 8 months of pumping. Selected tracer tests were subject to basic modelling in which a one-dimensional (1D) advection-dispersion model, including surface sorption, and an unlimited matrix diffusion were used for the interpretation of the results. The results of the modelling indicated that there is a slightly higher mass transfer into a highly porous material in the block-scale experiment compared with in situ experiments performed over shorter distances and significantly higher than what would have been expected from laboratory data obtained from studies of the interactions in nonaltered intact rock.

  12. Transport and retention from single to multiple fractures in crystalline rock at Äspö (Sweden): 1. Evaluation of tracer test results and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Cvetkovic, V.; Cheng, H.; ByegâRd, J.; Winberg, A.; Tullborg, E.-L.; Widestrand, H.

    2010-05-01

    We evaluate the breakthrough curves obtained within a comprehensive experimental program for investigating the retention properties of crystalline rock, referred to as Tracer Retention Understanding Experiments (TRUE). The tracer tests were conducted at the Äspö Hard Rock Laboratory (Sweden) in two phases jointly referred to as TRUE Block Scale (TBS); the TBS tests comprise a total of 17 breakthrough curves with nonsorbing and a range of sorbing tracers. The Euclidian length scales are between 10 and 30 m, compared to 5 m for the earlier tests TRUE-1. The unlimited diffusion model is consistent with measured breakthrough curves and is adopted here for evaluation. The model has four independent parameters, two of which are related to advection and dispersion, one which is related to diffusion-sorption, and one which is related to surface sorption; the individual retention parameters or properties cannot be inferred from breakthrough curves alone and require additional constraints. The mean water residence times for the TBS tests are in the range 15-250 h, whereas the coefficient of variation of the water residence times is in the range 0.4-0.6. A consistent trend is found in the calibrated retention parameters with the sorption affinities of the tracers involved. Using Bode sensitivity functions, it is shown that sensitivity increases for the retention parameter with increasing sorption affinity; for nonsorbing tracers, diffusion and hydrodynamic dispersion are shown to "compete," exhibiting similar effects; hence, their estimates are uncertain. The analysis presented here exposes a few fundamental limitations and sensitivities when evaluating diffusion-controlled retention in the subsurface; it is general and applicable to any site with comparable tracer test data. In part 2, it will be shown how discrete fracture network simulations based on the hydrostructural information available can be used for further constraining individual retention parameters, in

  13. High gradient test at Nextef and high-power long-term operation of devices

    NASA Astrophysics Data System (ADS)

    Matsumoto, Shuji; Abe, Tetsuo; Higashi, Yasuo; Higo, Toshiyasu; Du, Yingchao

    2011-11-01

    The X-band high gradient studies at Nextef, the 100 MW X-Band test station in KEK operated since 2008, is reviewed. Recent high power test results of TD18#2, an 18-cell CLIC prototype structure with HOM damping slots, are given. The measured breakdown rate is ˜10 -5/pulse/m under the operation at 100 MV/m gradient with 250 ns rf pulse width. The rate is higher by one- to two-order compared with that of the T18 structure, which is a disk loaded structure without the HOM slots. The recent performance of the station is also reviewed, especially that of PPM klystrons is discussed. An overview of our on-going programs such as the pulse compression system of Nextef as well as the future plans of X-band study is given.

  14. Trends in education gradients of 'preventable' mortality: a test of fundamental cause theory.

    PubMed

    Masters, Ryan K; Link, Bruce G; Phelan, Jo C

    2015-02-01

    Fundamental cause theory explains persisting associations between socioeconomic status and mortality in terms of personal resources such as knowledge, money, power, prestige, and social connections, as well as disparate social contexts related to these resources. We review evidence concerning fundamental cause theory and test three central claims using the National Health Interview Survey Linked Mortality Files 1986-2004. We then examine cohort-based variation in the associations between a fundamental social cause of disease, educational attainment, and mortality rates from heart disease, other "preventable" causes of death, and less preventable causes of death. We further explore race/ethnic and gender variation in these associations. Overall, findings are consistent with nearly all features of fundamental cause theory. Results show, first, larger education gradients in mortality risk for causes of death that are under greater human control than for less preventable causes of death, and, second, that these gradients grew more rapidly across successive cohorts than gradients for less preventable causes. Results also show that relative sizes and cohort-based changes in the education gradients vary substantially by race/ethnicity and gender.

  15. Temporal Changes in Education Gradients of ‘Preventable’ Mortality: A Test of Fundamental Cause Theory

    PubMed Central

    Masters, Ryan K.; Link, Bruce G.; Phelan, Jo C.

    2015-01-01

    Fundamental cause theory explains persisting associations between socioeconomic status and mortality in terms of personal resources such as knowledge, money, power, prestige, and social connections, as well as disparate social contexts related to these resources. We review evidence concerning fundamental cause theory and test three central claims using the National Health Interview Survey Linked Mortality Files 1986-2004. We then examine cohort-based variation in the associations between a fundamental social cause of disease, educational attainment, and mortality rates from heart disease, other “preventable” causes of death, and less preventable causes of death. We further explore race/ethnic and gender variation in these associations. Overall, findings are consistent with nearly all features of fundamental cause theory. Results show, first, larger education gradients in mortality risk for causes of death that are under greater human control than for less preventable causes of death, and, second, that these gradients grew more rapidly across successive cohorts than gradients for less preventable causes. Results also show that relative sizes and cohort-based changes in the education gradients vary substantially by race/ethnicity and gender. PMID:25556675

  16. Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Annable, Michael D.; Jawitz, James W.

    2013-09-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E = 0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important

  17. Controls on soil methane fluxes: Tests of biophysical mechanisms using stable isotope tracers

    NASA Astrophysics Data System (ADS)

    von Fischer, Joseph C.; Hedin, Lars O.

    2007-06-01

    Understanding factors that control methane exchange between soils and the atmosphere remains one of the highest priorities for climate change research. Here we use a novel isotope-based technique to investigate the relative importance of three mechanisms for explaining landscape-scale variations in soil methane emissions: (1) consumption of methane by methanotrophic bacteria, (2) quantity of carbon mineralization, or (3) relative amounts of carbon flow through nonmethanogenic versus methanogenic mineralization pathways. Application of a new, nondisruptive, 13CH4 isotope pool dilution technique permitted us to evaluate these mechanisms by distinguishing gross methane fluxes through both productive and consumptive pathways. We quantified each of these pathways in surface soils across broad moisture gradients in tropical montane environments in the Hawaiian Islands and temperate ecosystems in the northeastern United States. We found only limited support for the consumption control hypothesis because consumption was only important in dry soils. We also failed to find support for the carbon supply hypothesis, in that rates of carbon mineralization did not explain the observed variability in net fluxes across landscapes. Rather, dramatic differences in methane production, and thus emission, depended on surprisingly small diversions of soil carbon flow from nonmethanogenic to methanogenic pathways: on average, soils were a net source of methane to the atmosphere if more than 0.04% of total carbon mineralization passed through methanogenic pathways. We infer that fine-scale heterogeneity of soil redox status is critical for regulating soil methane fluxes.

  18. Inferences about Shear Zone Flow Pathways between CFM 06.002i2 and Pinkel from Tracer Tests 10-01 to 12-02

    SciTech Connect

    Reimus, Paul W.

    2012-06-26

    This presentation provides an analysis of several tracer tests conducted at the Grimsel Test Site, Switzerland, between 2010 and early 2012, with the objective of testing a conceptual model of flow through the shear zone in which the tracer tests were conducted. The analysis includes predictions of tracer residence times in each of two flow pathways in the shear zone as a function of injection and extraction flow rates in the tracer tests. Conclusions are: (1) Separation of shear zone flow between CFM 06.002i2 and Pinkel into two predominant flow pathways seems reasonable; (2) Conceptual model is that travel time in pathway 1 is dependent on injection flow rate, and travel time in pathway 2 is dependent on extraction flow rate; (3) Predict residence time (in hours) in Pathway 1 equal to {approx}9.9/(Injection Flow Rate, ml/min), provided injection interval flow is greater than about 0.15 ml/min (which is not reliably achieved under natural flow/dilution conditions after installation of CFM 11.00X holes); and (4) Predict residence time of {approx}8 hrs in Pathway 2 with extraction flow rate of 25 ml/min.

  19. Southeast Geyers Cooperative Tracer Evaluation and Testing Program for the Purpose of Estimating The Efficiency of Injection

    SciTech Connect

    J.L. Smith

    2001-02-12

    The Southeast Geysers Cooperative Tracer Evaluation Program has been a joint project located in the SE part of the Geysers geothermal field, in Lake and Sonoma Counties, California. A new generation of environmentally benign vapor-phase tracers has been used to estimate the varying degrees to which injectate is being recovered following the significant increase of injected volumes within the Southeast Geysers.

  20. On the use of flow-storage repartitions derived from artificial tracer tests for geothermal reservoir characterization in the Malm-Molasse basin: a theoretical study

    NASA Astrophysics Data System (ADS)

    Dewi, Dina Silvia; Osaigbovo Enomayo, Augustine; Mohsin, Rizwan; Karmakar, Shyamal; Ghergut, Julia; Sauter, Martin

    2016-04-01

    Flow-storage repartition (FSR) analysis (Shook 2003) is a versatile tool for characterizing subsurface flow and transport systems. FSR can be derived from measured signals of inter-well tracer tests, if certain requirements are met - basically, the same as required for equivalence between fluid residence time distribution (RTD) and a measured inter-well tracer signal (pre-processed and de-convolved if necessary). Nominally, a FSR is derived from a RTD as a trajectory in normalized {1st, 0th}-order statistical moment space; more intuitively, as a parametric plot of 0th-order against 1st-order statistical moments of RTD truncated at time t, with t as a parameter running from the first tracer input to the latest available tracer sampling; 0th-order moments being normalized by the total tracer recovery, and 1st-order moments by the mean RT. Fracture-dominated systems plot in the upper left (high F , low S) region of FSR diagrams; a homogeneous single-continuum with no dispersion (infinite Peclet number) displays a straight line from {F ,S}={0,0} to {F ,S}={1,1}. This analysis tool appears particularly attractive for characterizing markedly-heterogeneous, porous-fissured-fractured (partly karstified) formations like those targeted by geothermal exploration in the Malm-Molasse basin in Southern Germany, and especially for quantifying flow and transport contributions from contrasting facies types ('reef' versus 'bedded'). However, tracer tests conducted in such systems with inter-well distances of some hundreds of metres (as required by economic considerations on geothermal reservoir sizing) face the problem of very long residence times - and thus the need to deal with incomplete (truncated) signals. For the geothermal well triplet at the Sauerlach site near Munich, tracer peak arrival times exceeding 2 years have been predicted, and signal tails decreasing by less than 50% over >10 years, which puts great uncertainty on the (extrapolation-based) normalizing factors

  1. Reactivity of Hontomín carbonate rocks to acidic solution injection: reactive "push-pull" tracer tests results

    NASA Astrophysics Data System (ADS)

    De Gaspari, Francesca; Cabeza, Yoar; Luquot, Linda; Rötting, Tobias; Saaltink, Maarten W.; Carrera, Jesus

    2014-05-01

    Several field tests will be carried out in order to characterize the reservoir for CO2 injection in Hontomín (Burgos, Spain) as part of the Compostilla project of "Fundación Ciudad de la Energía" (CIUDEN). Once injected, the dissolution of the CO2 in the resident brine will increase the acidity of the water and lead to the dissolution of the rocks, constituted mainly by carbonates. This mechanism will cause changes in the aquifer properties such as porosity and permeability. To reproduce the effect of the CO2 injection, a reactive solution with 2% of acetic acid is going to be injected in the reservoir and extracted from the same well (reactive "push-pull" tracer tests) to identify and quantify the geochemical reactions occurring into the aquifer. The reactivity of the rock will allow us also to evaluate the changes of its properties. Previously, theoretical calculations of Damkhöler numbers were done to determine the acid concentrations and injection flow rates needed to generate ramified-wormholes patterns, during theses "push-pull" experiments. The aim of this work is to present the results and a preliminary interpretation of the field tests.

  2. Migration of fission products at the Nevada Test Site: Detection with an isotopic tracer

    SciTech Connect

    Thompton, J.L.; Gilmore, J.S. )

    1989-01-01

    Researchers at Los Alamos National Laboratory are studying the migration of fission products away from explosion cavities formed by underground nuclear tests at the Nevada Test Site. In some cases, the isotopic composition of the fission products or activation products associated with a particular test are distinctive and we may identify them many years after the event. In this paper we describe a case in which we used rhodium isotopes to identify the source of radioactive material that had moved some 350 m from the explosion site. 4 refs., 2 figs., 2 tabs.

  3. High gradient test of the HINS SSR1 single spoke resonator

    SciTech Connect

    Gonin, I.; Khabibouline, T.; Lanfranco, G.; Mukherjee, A.; Ozelis, JH.; Ristori, L.; Sergatskov, A.; Wagner, R.; Webber, R.; /Fermilab

    2008-09-01

    Eighteen {beta} = 0.21 superconducting single spoke resonators comprise the first state in the cold section of the 8-GeV H{sup -} Linac for Fermilab's proposed Project X. After Buffered Chemical Polishing and High Pressure Rinse, one resonator has undergone high gradient RF testing at 2.0-4.5 K in the Vertical Test Stand at Fermilab. They present measurements of the surface resistance as a function of temperature and the quality factor as a function of accelerating field. The resonator reached an accelerating field of 18.0 MV/m.

  4. Production of stream habitat gradients by montane watersheds: Hypothesis tests based on spatially explicit path analyses

    USGS Publications Warehouse

    Isaak, D.J.; Hubert, W.A.

    2001-01-01

    We studied how the features of mountain watersheds interact to cause gradients in three stream attributes: baseflow stream widths, total alkalinity, and stream slope. A priori hypotheses were developed before being tested in a series of path analyses using data from 90 stream reaches on 24 second- to fourth-order streams across a fifth-order Rocky Mountain watershed. Because most of the conventional least squares regressions initially calculated for the path analyses had spatially correlated residuals (13 of 15 regressions), spatially explicit regressions were often used to derive more accurate parameter estimates and significance tests. Our final working hypotheses accounted for most of the variation in baseflow stream width (73%), total alkalinity (74%), and stream slope (78%) and provide systemic views of watershed function by depicting interactions that occur between geomorphology, land surface features, and stream attributes. Stream gradients originated mainly from the unidirectional changes in geomorphic features that occur over the lengths of streams. Land surface features were of secondary importance and, because they change less predictably relative to the stream, appear to modify the rate at which stream gradients change.

  5. Implications of a Multi-well Tracer Test in the Transport of Pathogens at a Riverbank Filtration Experiment Site.

    NASA Astrophysics Data System (ADS)

    Langford, R. P.; Pillai, S.; Schulze-Makuch, D.; Widmer, K.; Abdel-Fattah, A.; Lerhner, T.

    2003-12-01

    This study tracks the transport of bromide and microspheres mimicking pathogens in an arid environment. The study site uses the Rio Grande that experiences significant annual fluctuations in both water quantity and quality. The pumping well is 17 m from the stream bank and the water table was 2 m below the stream surface. The aquifer is medium and fine-grained sand comprising two flow units. Observation wells are screened over 1 or 1.5 m intervals. The average hydraulic conductivity was about 2 x 10-3 m/s based on a test analysis, however, the responses indicated that sediment heterogeneities affected the hydraulic behavior. A 427 hour tracer test using bromide and fluorescent microspheres provides initial results that are relevant to the transport of pathogens through the subsurface under riverbank filtration conditions. Bromide was injected into an observation well at the channel margin. Differently colored fluorescent microspheres (0.25nm, 1?m, 6?m and 10?m) were injected into the stream bottom and into two observation wells. Conclusions from the tracer test are: 1) Both bromide and microspheres continued to be observed throughout the 18 days of the experiment. 2) The bromide recovery in the pumping well and in the deeper observation wells showed early and late peaks with a long tails indicating that the geological medium at the field site behaves like a double-porosity medium allowing the tracer to move relatively quickly through the higher conductivity units while being significantly retarded in the low hydraulic conductivity units. 3) Some wells showed consistently higher concentrations of bromide. 4) The 1? micospheres were abundant in the observation wells and allowed tracing of flowpaths. These showed multiple peaks similar to the bromide results. This indicates highly preferential transport paths in the sediment. 5) Microspheres from the three injection sites had distinctly different transport paths and rates. 6) Both bromide and microspheres appeared in

  6. A new tracer-density criterion for heterogeneous porous media

    USGS Publications Warehouse

    Barth, G.R.; Illangasekare, T.H.; Hill, M.C.; Rajaram, H.

    2001-01-01

    Tracerexperiments provide information about aquifer material properties vital for accurate site characterization. Unfortunately, density-induced sinking can distort tracer movement, leading to an inaccurate assessment of material properties. Yet existing criteria for selecting appropriate tracer concentrations are based on analysis of homogeneous media instead of media with heterogeneities typical of field sites. This work introduces a hydraulic-gradient correction for heterogeneous media and applies it to a criterion previously used to indicate density-induced instabilities in homogeneous media. The modified criterion was tested using a series of two-dimensional heterogeneous intermediate-scale tracer experiments and data from several detailed field tracer tests. The intermediate-scale experimental facility (10.0 ?? 1.2 ?? 0.06 m) included both homogeneous and heterogeneous (??2/In ?? = 1.22) zones. The field tracer tests were less heterogeneous (0.24 < ??2/ln ?? < 0.37), but measurements were sufficient to detect density-induced sinking. Evaluation of the modified criterion using the experiments and field tests demonstrates that the new criterion appears to account for the change in density-induced sinking due to heterogeneity. The criterion demonstrates the importance of accounting for heterogeneity to predict density-induced sinking and differences in the onset of density induced sinking in two-and three-dimensional systems.

  7. Cyclic Failure Mechanisms of Thermal and Environmental Barrier Coating Systems Under Thermal Gradient Test Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Plasma-sprayed ZrO2-8wt%Y2O3 and mullite+BSAS/Si multilayer thermal and environmental barrier coating (TBC-EBC) systems on SiC/SiC ceramic matrix composite (CMC) substrates were thermally cyclic tested under high thermal gradients using a laser high-heat-flux rig in conjunction with furnace exposure in water-vapor environments. Coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after exposure. Sintering kinetics of the coating systems were also independently characterized using a dilatometer. It was found that the coating failure involved both the time-temperature dependent sintering and the cycle frequency dependent cyclic fatigue processes. The water vapor environments not only facilitated the initial coating conductivity increases due to enhanced sintering and interface reaction, but also promoted later conductivity reductions due to the accelerated coating cracking and delamination. The failure mechanisms of the coating systems are also discussed based on the cyclic test results and are correlated to the sintering and thermal stress behavior under the thermal gradient test conditions.

  8. Field-scale Prediction of Enhanced DNAPL Dissolution Using Partitioning Tracers and Flow Pattern Effects

    NASA Astrophysics Data System (ADS)

    Wang, F.; Annable, M. D.; Jawitz, J. W.

    2012-12-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a PCE-contaminated dry cleaner site, located in Jacksonville, Florida. The EST is an analytical solution with field-measurable input parameters. Here, measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ alcohol (ethanol) flood. In addition, a simulated partitioning tracer test from a calibrated spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The ethanol prediction based on both the field partitioning tracer test and the UTCHEM tracer test simulation closely matched the field data. The PCE EST prediction showed a peak shift to an earlier arrival time that was concluded to be caused by well screen interval differences between the field tracer test and alcohol flood. This observation was based on a modeling assessment of potential factors that may influence predictions by using UTCHEM simulations. The imposed injection and pumping flow pattern at this site for both the partitioning tracer test and alcohol flood was more complex than the natural gradient flow pattern (NGFP). Both the EST model and UTCHEM were also used to predict PCE dissolution under natural gradient conditions, with much simpler flow patterns than the forced-gradient double five spot of the alcohol flood. The NGFP predictions based on parameters determined from tracer tests conducted with complex flow patterns underestimated PCE concentrations and total mass removal. This suggests that the flow patterns influence aqueous dissolution and that the aqueous dissolution under the NGFP is more efficient than dissolution under complex flow patterns.

  9. Electrochemical Potential Gradient as a Quantitative in Vitro Test Platform for Cellular Oxidative Stress

    PubMed Central

    Bryant, Carson; Atha, Donald; Reipa, Vytas

    2016-01-01

    Oxidative stress in a biological system is often defined as a redox imbalance within cells or groups of cells within an organism. Reductive-oxidative (redox) imbalances in cellular systems have been implicated in several diseases, such as cancer. To better understand the redox environment within cellular systems, it is important to be able to characterize the relationship between the intensity of the oxidative environment, characterized by redox potential, and the biomolecular consequences of oxidative damage. In this study, we show that an in situ electrochemical potential gradient can serve as a tool to simulate exogenous oxidative stress in surface-attached mammalian cells. A culture plate design, which permits direct imaging and analysis of the cell viability, following exposure to a range of solution redox potentials, was developed. The in vitro oxidative stress test vessel consists of a cell growth flask fitted with two platinum electrodes that support a direct current along the flask bottom. The applied potential span and gradient slope can be controlled by adjusting the constant current magnitude across the vessel with spatially localized media potentials measured with a sliding reference electrode. For example, the viability of Chinese Hamster Ovary cells under a gradient of redox potentials indicated that cell death was initiated at approximately 0.4 V vs. standard hydrogen electrode (SHE) media potential and this potential could be modified with antioxidants. This experimental platform may facilitate studies of oxidative stress characteristics on different types of cells by enabling imaging live cell cultures that have been exposed to a gradient of exogenous redox potentials. PMID:27409641

  10. Electrochemical Potential Gradient as a Quantitative in Vitro Test Platform for Cellular Oxidative Stress.

    PubMed

    Bryant, Carson; Atha, Donald; Reipa, Vytas

    2016-01-01

    Oxidative stress in a biological system is often defined as a redox imbalance within cells or groups of cells within an organism. Reductive-oxidative (redox) imbalances in cellular systems have been implicated in several diseases, such as cancer. To better understand the redox environment within cellular systems, it is important to be able to characterize the relationship between the intensity of the oxidative environment, characterized by redox potential, and the biomolecular consequences of oxidative damage. In this study, we show that an in situ electrochemical potential gradient can serve as a tool to simulate exogenous oxidative stress in surface-attached mammalian cells. A culture plate design, which permits direct imaging and analysis of the cell viability, following exposure to a range of solution redox potentials, was developed. The in vitro oxidative stress test vessel consists of a cell growth flask fitted with two platinum electrodes that support a direct current along the flask bottom. The applied potential span and gradient slope can be controlled by adjusting the constant current magnitude across the vessel with spatially localized media potentials measured with a sliding reference electrode. For example, the viability of Chinese Hamster Ovary cells under a gradient of redox potentials indicated that cell death was initiated at approximately 0.4 V vs. standard hydrogen electrode (SHE) media potential and this potential could be modified with antioxidants. This experimental platform may facilitate studies of oxidative stress characteristics on different types of cells by enabling imaging live cell cultures that have been exposed to a gradient of exogenous redox potentials. PMID:27409641

  11. Electrochemical Potential Gradient as a Quantitative in Vitro Test Platform for Cellular Oxidative Stress.

    PubMed

    Bryant, Carson; Atha, Donald; Reipa, Vytas

    2016-01-01

    Oxidative stress in a biological system is often defined as a redox imbalance within cells or groups of cells within an organism. Reductive-oxidative (redox) imbalances in cellular systems have been implicated in several diseases, such as cancer. To better understand the redox environment within cellular systems, it is important to be able to characterize the relationship between the intensity of the oxidative environment, characterized by redox potential, and the biomolecular consequences of oxidative damage. In this study, we show that an in situ electrochemical potential gradient can serve as a tool to simulate exogenous oxidative stress in surface-attached mammalian cells. A culture plate design, which permits direct imaging and analysis of the cell viability, following exposure to a range of solution redox potentials, was developed. The in vitro oxidative stress test vessel consists of a cell growth flask fitted with two platinum electrodes that support a direct current along the flask bottom. The applied potential span and gradient slope can be controlled by adjusting the constant current magnitude across the vessel with spatially localized media potentials measured with a sliding reference electrode. For example, the viability of Chinese Hamster Ovary cells under a gradient of redox potentials indicated that cell death was initiated at approximately 0.4 V vs. standard hydrogen electrode (SHE) media potential and this potential could be modified with antioxidants. This experimental platform may facilitate studies of oxidative stress characteristics on different types of cells by enabling imaging live cell cultures that have been exposed to a gradient of exogenous redox potentials.

  12. Using tracers to understand the hydrology of an abandoned underground coal mine

    SciTech Connect

    Canty, G.A.; Everett, J.W.

    1998-12-31

    Flooded underground mines pose a difficult problem for remediation efforts requiring hydrologic information. Mine environments are hydraulically complicated due to sinuous travel paths and variable hydraulic gradients. For an acidic mine remediation project, conducted by the University of Oklahoma in conjunction with the Oklahoma Conservation Commission, a tracer study was undertaken to identify basic hydrologic properties of a flooded coal mine. The study was conducted to investigate the possibility of in-situ remediation of acidic mine water with the use of alkaline coal combustion by-products. Information on the rate of flow and ``connectiveness`` of injection wells with the discharge point was needed to develop a treatment strategy. Fluorescent dyes are not typically used in mine tracer studies because of the low pH values associated with certain mines and a tendency to adsorb ferric iron precipitates. However, Rhodamine WT was used in one tracer test because it can be detected at low concentrations. Due to poor recovery, a second tracer test was undertaken using a more conservative tracer-chloride. Each tracer produced similar travel time results. Findings from this study suggest that Rhodamine WT can be used under slightly acidic conditions, with mixed results. The more conservative tracer provided somewhat better results, but recovery was still poor. Use of these tracers has provided some valuable information with regard to mine hydrology, but additional questions have been raised.

  13. Expected fluid residence times, thermal breakthrough, and tracer test design for characterizing a hydrothermal system in the Upper Rhine Rift Valley

    NASA Astrophysics Data System (ADS)

    Ghergut, I.; Meixner, J.; Rettenmaier, D.; Maier, F.; Nottebohm, M.; Ptak, T.; Sauter, M.

    2012-04-01

    Relying on the structural-hydrogeological model proposed by J. Meixner (2009) for a particular hydrothermal system in South-West Germany (on the East side of the Upper Rhine Rift, this reservoir being used to demonstrate electricity production by means of a well doublet), we set up a distributed-parameter model (using Feflow) enabling to numerically simulate fluid ages, temperature evolutions and tracer test signals for a number of contrasting assumptions w. r. to (a) the nature of boundary conditions and hydrogeological characteristics of remotely situated, large-scale natural faults, (b) the degree of permeability contrast between different system compartments, (c) the hydrogeological characteristics of a naturally-occurring fault, located between injection and production wells. It appears that a spike dimensioning allowing for tracer signals to become detectable during the first three years after tracer injection in all of the contrasting a/b/c scenarios is not feasible in practice. In some of the a/b/c cases considered, the system will act like a very large reservoir, with fluid residence times in the order of decades, and extreme dilution of injected tracers. Even using preparative-scale cleaning of samples, brine separation, sample enrichment by solid phase extraction, evaporative concentrating etc. followed by state-of-the-art chromatography techniques to separate between tracer and natural background, it will not be possible to lower tracer detection limits below a certain threshold, which is mainly dictated by the amount of certain naturally-occurring aromatics in the reservoir fluids. On practical reasons, the spike dimensioning will be limited to some hundred kilogram of one or two organic tracers. This implies that part of the above-mentioned, contrasting a/b/c scenarios will remain indistinguishable during the first three years after tracer injection. However, for this reservoir structure, there is not a bijective correspondence between early

  14. Towards Truly Quiet MRI: animal MRI magnetic field gradients as a test platform for acoustic noise reduction

    NASA Astrophysics Data System (ADS)

    Edelstein, William; El-Sharkawy, Abdel-Monem

    2013-03-01

    Clinical MRI acoustic noise, often substantially exceeding 100 dB, causes patient anxiety and discomfort and interferes with functional MRI (fMRI) and interventional MRI. MRI acoustic noise reduction is a long-standing and difficult technical challenge. The noise is basically caused by large Lorentz forces on gradient windings--surrounding the patient bore--situated in strong magnetic fields (1.5 T, 3 T or higher). Pulsed currents of 300 A or more are switched through the gradient windings in sub-milliseconds. Experimenting with hardware noise reduction on clinical scanners is difficult and expensive because of the large scale and weight of clinical scanner components (gradient windings ~ 1000 kg) that require special handling equipment in large engineering test facilities. Our approach is to produce a Truly Quiet (<70 dB) small-scale animal imager. Results serve as a test platform for acoustic noise reduction measures that can be implemented in clinical scanners. We have so far decreased noise in an animal scale imager from 108 dB to 71 dB, a 37 dB reduction. Our noise reduction measures include: a gradient container that can be evacuated; inflatable antivibration mounts to prevent transmission of vibrations from gradient winding to gradient container; vibration damping of wires going from gradient to the outside world via the gradient container; and a copper passive shield to prevent the generation of eddy currents in the metal cryostat inner bore, which in turn can vibrate and produce noise.

  15. Coupled and uncoupled hydrogeophysical inversions using ensemble Kalman filter assimilation of ERT-monitored tracer test data

    NASA Astrophysics Data System (ADS)

    Camporese, Matteo; Cassiani, Giorgio; Deiana, Rita; Salandin, Paolo; Binley, Andrew

    2015-05-01

    Recent advances in geophysical methods have been increasingly exploited as inverse modeling tools in groundwater hydrology. In particular, several attempts to constrain the hydrogeophysical inverse problem to reduce inversion errors have been made using time-lapse geophysical measurements through both coupled and uncoupled (also known as sequential) inversion approaches. Despite the appeal and popularity of coupled inversion approaches, their superiority over uncoupled methods has not been proved conclusively; the goal of this work is to provide an objective comparison between the two approaches within a specific inversion modeling framework based on the ensemble Kalman filter (EnKF). Using EnKF and a model of Lagrangian transport, we compare the performance of a fully coupled and uncoupled inversion method for the reconstruction of heterogeneous saturated hydraulic conductivity fields through the assimilation of ERT-monitored tracer test data. The two inversion approaches are tested in a number of different scenarios, including isotropic and anisotropic synthetic aquifers, where we change the geostatistical parameters used to generate the prior ensemble of hydraulic conductivity fields. Our results show that the coupled approach outperforms the uncoupled when the prior statistics are close to the ones used to generate the true field. Otherwise, the coupled approach is heavily affected by "filter inbreeding" (an undesired effect of variance underestimation typical of EnKF), while the uncoupled approach is more robust, being able to correct biased prior information, thanks to its capability of capturing the solute travel times even in presence of inversion artifacts such as the violation of mass balance. Furthermore, the coupled approach is more computationally intensive than the uncoupled, due to the much larger number of forward runs required by the electrical model. Overall, we conclude that the relative merit of the coupled versus the uncoupled approach cannot

  16. Microstructural evolutions and stability of gradient nano-grained copper under tensile tests and subsequent storage

    NASA Astrophysics Data System (ADS)

    Chen, W.; You, Z. S.; Tao, N. R.; Lu, L.

    2015-08-01

    A gradient nano-grained (GNG) surface layer is produced on a bulk coarse-grained Cu by means of a surface mechanical grinding treatment. Homogeneous grain coarsening induced by mechanical deformation is observed in the GNG Cu layer under tensile tests at both 300 K and 123 K. The concurrent grain coarsening during tensile deformation is proven to be also thermally activated, because the extent of grain coarsening of the GNG Cu layer is less significant at 123 K than at 300 K, although a higher flow stress is achieved at 123 K. During the subsequent storage at 258 K after tensile tests, no obvious change can be found for the grain size in the GNG Cu layer deformed at 300 K. In contrast, widespread abnormal grain coarsening is frequently observed in the GNG Cu layer deformed at 123 K and stored for 100 days, which may be caused by the higher stored energy in the non-equilibrium grain boundary structures.

  17. Test of simultaneous synthetic DNA tracer injections for the estimation of the englacial and subglacial drainage system structure of Storglaciären, northern Sweden

    NASA Astrophysics Data System (ADS)

    Dahlke, H. E.; Leung, S.; Lyon, S. W.; Sharma, A. N.; Walter, M. T.; Williamson, A.

    2013-12-01

    Storglaciären glacier, located in the sub-arctic Tarfala catchment, in northern Sweden is one of the world's longest continuously monitored glaciers which provides a unique research platform for the long-term assessment of glacier and ice sheet processes. For example, small mountain glacier hydrological knowledge of the subglacial water distribution at the ice-bed interface has been applied to ice sheets to predict basal sliding processes. Basal sliding promoted by hydraulic jacking is an important glacial-velocity control that is dependent on the subglacial flow pathways' morphology. Thus, understanding subglacial water distribution and drainage system structure and morphology is crucial for modeling ice masses' flow. In order to estimate subglacial drainage system structure and morphology dye tracing experiments are widely employed. Tracer experiments provide quantitative parameters for any input location including tracer transit velocity, dispersivity, recovery and storage. However, spatial data coverage is limited by the finite number of tracers available for simultaneous tracing. In the presented study we test the use of synthetic DNA tracers for the assessment of the englacial and subglacial drainage system structure of Storglaciären. The synthetic DNA tracer is composed of polylactic acid (PLA) microspheres into which short strands of synthetic DNA and paramagnetic iron oxide nanoparticles are incorporated (Sharma et al., 2012, Environmental Science & Technology). Because the DNA sequences can be randomly combined the synthetic DNA tracer provides an enormous number of unique tracers (approximately 1.61 x 1060). Thus, these synthetic tracers have the advantage that multiple (>10) experiments can be conducted simultaneously, allowing a greater information gain within a shorter measurement period. Quantities of a certain DNA strand can be detected using biotechnology tools such as polymerase chain reaction (PCR) and quantitative PCR (qPCR). During the 2013

  18. Hydrogeology and results of tracer tests at the old Tampa well field in Hillsborough County, with implications for wellhead-protection strategies in west-central Florida

    USGS Publications Warehouse

    Robinson, J.L.

    1995-01-01

    Wellhead-protection strategies were evaluated for the Upper Floridan aquifer of west-central Florida using the old Tampa well field in northeastern Hillsborough County, Florida, as a test site. The upper 400 feet of the Upper Floridan aquifer responded to pumping as an equivalent, porous medium for a range of discharge rates from 450 to 1,000 gallons per minute. Transmissivity and storage coefficient values determined for the Upper Floridan aquifer were 23,000 feet squared per day and 0.0001, respectively. Rock cores from the Upper Floridan aquifer have effective porosity values from 21 to 46 percent. Tracer tests were conducted using a fluorescent dye. A bimodal distribution of tracer arrival times indicates ground-water flow through a dual porosity system. Analysis of tracer test results an effective porosity of 25 percent and a longitudinal dispersivity of 1.3 feet for the aquifer matrix. A numerical aquifer-simulation equivalent porous media model of the Upper Floridan aquifer was calibrated using results of aquifer tests. A particle-tracking program was used to simulate the matrix flow groundwater travel time measured with the fluorescent dye tracer test. An evaluation of wellhead-protection strategies was conducted using the particle-tracking program to simulate areas of contribution from the aquifer matrix. The results of this study demonstrate the heterogeneity of the Upper Floridan aquifer. Because of this heterogeneity, the use of uniform porosity models to delineate time-related areas of wellhead protection in the karst Upper Floridan aquifer is inappropriate; however, ground-water movement in the aquifer matrix can be simulated with uniform porosity models.

  19. Application of the re-circulating tracer well test method to determine nitrate reaction rates in shallow unconfined aquifers.

    PubMed

    Burbery, Lee F; Flintoft, Mark J; Close, Murray E

    2013-02-01

    Five re-circulating tracer well tests (RCTWTs) have been conducted in a variety of aquifer settings, at four sites across New Zealand. The tests constitute the first practical assessment of the two-well RCTWT methodology described by Burbery and Wang (Journal of Hydrology, 2010; 382:163-173) and were aimed at evaluating nitrate reaction rates in situ. The performance of the RCTWTs differed significantly at the different sites. The RCTWT method performed well when it was applied to determine potential nitrate reaction rates in anoxic, electro-chemically reductive, nitrate-free aquifers of volcanic lithology, on the North Island, New Zealand. Regional groundwater flow was not fast-flowing in this setting. An effective first-order nitrate reaction rate in the region of 0.09 d(-1) to 0.26 d(-1) was determined from two RCTWTs applied at one site where a reaction rate of 0.37 d(-1) had previously been estimated from a push-pull test. The RCTWT method performed poorly, however, in a fast-flowing, nitrate-impacted fluvio-glacial gravel aquifer that was examined on the South Island, New Zealand. This setting was more akin to the hypothetical physiochemical problem described by Burbery and Wang (2010). Although aerobic conditions were identified as the primary reason for failure to measure any nitrate reaction in the gravel aquifer, failure to establish significant interflow in the re-circulation cell due to the heterogeneous nature of the aquifer structure, and natural variability exhibited in nitrate contaminant levels of the ambient groundwater further contributed to the poor performance of the test. Our findings suggest that in practice, environmental conditions are more complex than assumed by the RCTWT methodology, which compromises the practicability of the method as one for determining attenuation rates in groundwater based on tracing ambient contaminant levels. Although limited, there appears to be a scope for RCTWTs to provide useful information on potential

  20. A high gradient test of a single-cell superconducting radio frequency cavity with a feedback waveguide

    NASA Astrophysics Data System (ADS)

    Kostin, Roman; Avrakhov, Pavel; Kanareykin, Alexei; Solyak, Nikolay; Yakovlev, Vyacheslav; Kazakov, Sergey; Wu, Genfa; Khabiboulline, Timergali; Rowe, Allan; Rathke, John

    2015-09-01

    The most severe problem of the international linear collider (ILC-type) is its high cost, resulting in part from the enormous length of the collider. This length is determined mainly by the achievable accelerating gradient in the RF system of the collider. In current technology, the maximum acceleration gradient in superconducting (SC) structures is determined mainly by the value of the surface RF magnetic field. In order to increase the gradient, a superconducting traveling wave accelerating (STWA) structure is suggested. Utilization of STWA structure with small phase advance per cell for future high energy linear colliders such as ILCs may provide an accelerating gradient 1.2-1.4 times larger [1] than a standing wave structure. However, STWA structure requires a feedback waveguide for power redirecting from the end of the structure back to the front end of accelerating structure. Recent tests of a 1.3 GHz model of a single-cell cavity with waveguide feedback demonstrated an accelerating gradient comparable to the gradient of a single-cell ILC-type cavity from the same manufacturer [2]. In the present paper, high gradient test results are presented.

  1. Impact of non-idealities in gas-tracer tests on the estimation of reaeration, respiration, and photosynthesis rates in streams.

    PubMed

    Knapp, Julia L A; Osenbrück, Karsten; Cirpka, Olaf A

    2015-10-15

    Estimating respiration and photosynthesis rates in streams usually requires good knowledge of reaeration at the given locations. For this purpose, gas-tracer tests can be conducted, and reaeration rate coefficients are determined from the decrease in gas concentration along the river stretch. The typical procedure for analysis of such tests is based on simplifying assumptions, as it neglects dispersion altogether and does not consider possible fluctuations and trends in the input signal. We mathematically derive the influence of these non-idealities on estimated reaeration rates and how they are propagated onto the evaluation of aerobic respiration and photosynthesis rates from oxygen monitoring. We apply the approach to field data obtained from a gas-tracer test using propane in a second-order stream in Southwest Germany. We calculate the reaeration rate coefficients accounting for dispersion as well as trends and uncertainty in the input signals and compare them to the standard approach. We show that neglecting dispersion significantly underestimates reaeration, and results between sections cannot be compared if trends in the input signal of the gas tracer are disregarded. Using time series of dissolved oxygen and the various estimates of reaeration, we infer respiration and photosynthesis rates for the same stream section, demonstrating that the bias and uncertainty of reaeration using the different approaches significantly affects the calculation of metabolic rates.

  2. Miniaturized Antimicrobial Susceptibility Test by Combining Concentration Gradient Generation and Rapid Cell Culturing

    PubMed Central

    Kim, Samuel C.; Cestellos-Blanco, Stefano; Inoue, Keisuke; Zare, Richard N.

    2015-01-01

    Effective treatment of bacterial infection relies on timely diagnosis and proper prescription of antibiotic drugs. The antimicrobial susceptibility test (AST) is one of the most crucial experimental procedures, providing the baseline information for choosing effective antibiotic agents and their dosages. Conventional methods, however, require long incubation times or significant instrumentation costs to obtain test results. We propose a lab-on-a-chip approach to perform AST in a simple, economic, and rapid manner. Our assay platform miniaturizes the standard broth microdilution method on a microfluidic device (20 × 20 mm) that generates an antibiotic concentration gradient and delivers antibiotic-containing culture media to eight 30-nL chambers for cell culture. When tested with 20 μL samples of a model bacterial strain (E. coli ATCC 25922) treated with ampicillin or streptomycin, our method allows for the determination of minimum inhibitory concentrations consistent with the microdilution test in three hours, which is almost a factor of ten more rapid than the standard method. PMID:27025635

  3. Single-well tracer test sensitivity w. r. to hydrofrac and matrix parameters (case study for the Horstberg site in the N-German Sedimentary Basin)

    NASA Astrophysics Data System (ADS)

    Ghergut, I.; Behrens, H.; Holzbecher, E.; Jung, R.; Sauter, M.; Tischner, T.

    2012-04-01

    At the geothermal pilot site Horstberg in the N-German Sedimentary Basin, a complex field experiment program was conducted (2003-2007) by the Federal Institute for Geosciences and Natural Resources (BGR) together with the Leibniz Institute for Applied Geosciences (GGA), aimed at evaluating the performance of innovative technologies for heat extraction, for direct use, from a single geothermal well[1],[2]. The envisaged single-well operation schemes comprised inter-layer circulation through a large-area hydrofrac (whose successful creation could thus be demonstrated), and single-screen 'huff-puff' in suitable (stimulated) layers, seated in sandstone-claystone formations in 3-4 km depth, with temperatures exceeding 160 ° C. Relying on Horstberg tracer-test data, we analyze heat and solute tracer transport in three characteristic hydraulic settings: (A) single-screen, multi-layer push-pull, with spiking and sampling at lower well-screen in low-permeability sandstone layer ('Detfurth'), from which hydrofrac propagation (through several adjacent layers) was initiated; (B) single-screen, single-layer push-pull, with spiking and sampling at upper well-screen within a more permeable sandstone layer ('Solling'); (C) inter-layer vertical push through above-mentioned hydrofrac, with spiking at well-screen of A, and sampling at well-screen of B. Owing to drill-hole deviation, the hydraulically-induced frac will, in its vertical propagation, reach the upper sandstone layer in a certain horizontal distance X from the upper well-screen, whose value turns out to be the major controlling parameter for the system's thermal lifetime under operation scheme C (values of X below ~8 m leading to premature thermal breakthrough, with the minimum-target rate of fluid turnover; however, the injection pressure required for maintaining the target outflow rate will also increase with X, which renders scheme C uneconomical, or technically-infeasible, when X exceeds ~15 m). Tracer signals in C

  4. Analysis of tracer and thermal transients during reinjection

    SciTech Connect

    Kocabas, I.

    1989-10-01

    This work studied tracer and thermal transients during reinjection in geothermal reserviors and developed a new technique which combines the results from interwell tracer tests and thermal injection-backflow tests to estimate the thermal breakthrough times. Tracer tests are essential to determine the degree of connectivity between the injection wells and the producing wells. To analyze the tracer return profiles quantitatively, we employed three mathematical models namely, the convection-dispersion (CD) model, matrix diffusion (MD) model, and the Avodnin (AD) model, which were developed to study tracer and heat transport in a single vertical fracture. We considered three types of tracer tests namely, interwell tracer tests without recirculation, interwell tracer tests with recirculation, and injection-backflow tracer tests. To estimate the model parameters, we used a nonlinear regression program to match tracer return profiles to the solutions.

  5. Using a Gas-Phase Tracer Test to Characterize the Impact of Landfill Gas Generation on Advective-Dispersive Transport of VOCs in the Vadose Zone

    PubMed Central

    Monger, Gregg R.; Duncan, Candice Morrison; Brusseau, Mark L.

    2015-01-01

    A gas-phase tracer test (GTT) was conducted at a landfill in Tucson, AZ, to help elucidate the impact of landfill gas generation on the transport and fate of chlorinated aliphatic volatile organic contaminants (VOCs). Sulfur hexafluoride (SF6) was used as the non-reactive gas tracer. Gas samples were collected from a multiport monitoring well located 15.2 m from the injection well, and analyzed for SF6, CH4, CO2, and VOCs. The travel times determined for SF6 from the tracer test are approximately two to ten times smaller than estimated travel times that incorporate transport by only gas-phase diffusion. In addition, significant concentrations of CH4 and CO2 were measured, indicating production of landfill gas. Based on these results, it is hypothesized that the enhanced rates of transport observed for SF6 are caused by advective transport associated with landfill gas generation. The rates of transport varied vertically, which is attributed to multiple factors including spatial variability of water content, refuse mass, refuse permeability, and gas generation. PMID:26380532

  6. Gradient limiting defects in 9-cell cavities EP processed and RF tested at Jefferson Lab

    SciTech Connect

    Geng, Rongli; Ciovati, Giovanni; Crawford, Anthony C.

    2009-11-01

    Several 9-cell cavities processed by electropolishing (EP) and RF tested at Jefferson Lab are found to be quench-limited. Pass-band mode excitation measurements provide the first clue of candidate cells responsible for the limit. A second RF test with thermometers attached to the equator region of candidate cells (typically only 2 candidates) reveals a hot spot caused by excessive heating of the operational defect and hence determines its location. High resolution optical tools inspect the RF surface corresponding to the hot spot to image and document the defect. All defects in cavities quench limited < 21 MV/m are sub-mm sized irregularities near but outside of the equator EBW. In contrast, no observable irregularities are found in some other cavities that are quench-limited ~ 30 MV/m. These two types of quench limited cavities have different response to a second EP processing. In this paper, we will give a summary of the test results and attempt to catalog the observed defects. An equation for quench gradient is given.

  7. Damage Characterization of EBC-SiCSiC Ceramic Matrix Composites Under Imposed Thermal Gradient Testing

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew P.; Morscher, Gregory N.; Zhu, Dongming

    2014-01-01

    Due to their high temperature capabilities, Ceramic Matrix Composite (CMC) components are being developed for use in hot-section aerospace engine applications. Harsh engine environments have led to the development of Environmental Barrier Coatings (EBCs) for silicon-based CMCs to further increase thermal and environmental capabilities. This study aims at understanding the damage mechanisms associated with these materials under simulated operating conditions. A high heat-flux laser testing rig capable of imposing large through-thickness thermal gradients by means of controlled laser beam heating and back-side air cooling is used. Tests are performed on uncoated composites, as well as CMC substrates that have been coated with state-of-the-art ceramic EBC systems. Results show that the use of the EBCs may help increase temperature capability and creep resistance by reducing the effects of stressed oxidation and environmental degradation. Also, the ability of electrical resistance (ER) and acoustic emission (AE) measurements to monitor material condition and damage state during high temperature testing is shown; suggesting their usefulness as a valuable health monitoring technique. Micromechanics models are used to describe the localized stress state of the composite system, which is utilized along with ER modeling concepts to develop an electromechanical model capable of characterizing material behavior.

  8. Simulation of variable-density flow and transport of reactive and nonreactive solutes during a tracer test at Cape Cod, Massachusetts

    USGS Publications Warehouse

    Zhang, H.; Schwartz, F.W.; Wood, W.W.; Garabedian, S.P.; LeBlanc, D.R.

    1998-01-01

    A multispecies numerical code was developed to simulate flow and mass transport with kinetic adsorption in variable-density flow systems. The two-dimensional code simulated the transport of bromide (Br-), a nonreactive tracer, and lithium (Li+), a reactive tracer, in a large-scale tracer test performed in a sand-and-gravel aquifer at Cape Cod, Massachusetts. A two-fraction kinetic adsorption model was implemented to simulate the interaction of Li+ with the aquifer solids. Initial estimates for some of the transport parameters were obtained from a nonlinear least squares curve-fitting procedure, where the breakthrough curves from column experiments were matched with one-dimensional theoretical models. The numerical code successfully simulated the basic characteristics of the two plumes in the tracer test. At early times the centers of mass of Br- and Li+ sank because the two plumes were closely coupled to the density-driven velocity field. At later times the rate of downward movement in the Br- plume due to gravity slowed significantly because of dilution by dispersion. The downward movement of the Li+ plume was negligible because the two plumes moved in locally different velocity regimes, where Li+ transport was retarded relative to Br-. The maximum extent of downward transport of the Li+ plume was less than that of the Br- plume. This study also found that at early times the downward movement of a plume created by a three-dimensional source could he much more extensive than the case with a two-dimensional source having the same cross-sectional area. The observed shape of the Br- plume at Cape Cod was simulated by adding two layers with different hydraulic conductivities at shallow depth across the region. The large dispersion and asymmetrical shape of the Li+ plume were simulated by including kinetic adsorption-desorption reactions.

  9. IPGMAKER: a program for IBM-compatible personal computers to create and test recipes for immobilized pH gradients.

    PubMed

    Altland, K

    1990-02-01

    The program "IPGMAKER" is a computational aid for creating and testing recipes for near-linear immobilized pH gradients. It was written for fast IBM personal computers (with a Type 80386 processor and 80387 coprocessor) and compatibles equipped with a VGA, EGA or Hercules (mono) graphics card. The program is limited to the use of up to 10 acids and/or bases, and to ranges spanning between pH 2 and 12. The resulting recipes are presented either as final concentrations in the 2 chambers of a mixing device for linear gradients or as volumes from 0.2 moles/L stock solutions adjusted to a user-defined average buffering power. One of the subroutines determines the pH, gradient slope and buffering capacity at any location of the gradient and includes a facility to estimate the pI of proteins from the composition of their primary structure.

  10. Analysis of Conservative Tracer Tests in the Bullfrog, Tram, and Prow Pass Tuffs, 1996 to 1998, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Umari, Amjad; Fahy, Michael F.; Earle, John D.; Tucci, Patrick

    2008-01-01

    To evaluate the potential for transport of radionuclides in ground water from the proposed high-level nuclear-waste repository at Yucca Mountain, Nevada, conservative (nonsorbing) tracer tests were conducted among three boreholes, known as the C-hole Complex, and values for transport (or flow) porosity, storage (or matrix) porosity, longitudinal dispersivity, and the extent of matrix diffusion were obtained. The C-holes are completed in a sequence of Miocene tuffaceous rock, consisting of nonwelded to densely welded ash-flow tuff with intervals of ash-fall tuff and volcaniclastic rocks, covered by Quaternary alluvium. The lower part of the tuffaceous-rock sequence includes the Prow Pass, Bullfrog, and Tram Tuffs of the Crater Flat Group. The rocks are pervaded by tectonic and cooling fractures. Paleozoic limestone and dolomite underlie the tuffaceous rocks. Four radially convergent and one partially recirculating conservative (nonsorbing) tracer tests were conducted at the C-hole Complex from 1996 to 1998 to establish values for flow porosity, storage porosity, longitudinal dispersivity, and extent of matrix diffusion in the Bullfrog and Tram Tuffs and the Prow Pass Tuff. Tracer tests included (1) injection of iodide into the combined Bullfrog-Tram interval; (2) injection of 2,6 difluorobenzoic acid into the Lower Bullfrog interval; (3) injection of 3-carbamoyl-2-pyridone into the Lower Bullfrog interval; and (4) injection of iodide and 2,4,5 trifluorobenzoic acid, followed by 2,3,4,5 tetrafluorobenzoic acid, into the Prow Pass Tuff. All tracer tests were analyzed by the Moench single- and dual-porosity analytical solutions to the advection-dispersion equation or by superposition of these solutions. Nonlinear regression techniques were used to corroborate tracer solution results, to obtain optimal parameter values from the solutions, and to quantify parameter uncertainty resulting from analyzing two of the three radially convergent conservative tracer tests

  11. Cycling Performance of a Columnar-Structured Complex Perovskite in a Temperature Gradient Test

    NASA Astrophysics Data System (ADS)

    Schlegel, N.; Sebold, D.; Sohn, Y. J.; Mauer, G.; Vaßen, R.

    2015-10-01

    To increase the efficiency of turbines for the power generation and the aircraft industry, advanced thermal barrier coatings (TBCs) are required. They need to be long-term stable at temperatures higher than 1200 °C. Nowadays, yttria partially stabilized zirconia (YSZ) is applied as standard TBC material. But its long-term application at temperatures higher than 1200 °C leads to detrimental phase changes and sintering effects. Therefore, new materials have to be investigated, for example, complex perovskites. They provide high melting points, high thermal expansion coefficients and thermal conductivities of approx. 2.0 W/(m K). In this work, the complex perovskite La(Al1/4Mg1/2Ta1/4)O3 (LAMT) was investigated. It was deposited by the suspension plasma spraying (SPS) process, resulting in a columnar microstructure of the coating. The coatings were tested in thermal cycling gradient tests and they show excellent results, even though some phase decomposition was found.

  12. Accounting for Dispersion and time-dependent Input Signals during Gas Tracer Tests and their Effect on the Estimation of Reaeration, Respiration and Photosynthesis in Streams

    NASA Astrophysics Data System (ADS)

    Knapp, Julia; Osenbrück, Karsten; Olaf, Cirpka

    2015-04-01

    The variation of dissolved oxygen (DO) in streams, are caused by a number of processes, of which respiration and primary production are considered to be the most important ones (Odum, 1956; Staehr et al., 2012). Measuring respiration and photosynthesis rates in streams based on recorded time series of DO requires good knowledge on the reaeration fluxes at the given locations. For this, gas tracer tests can be conducted, and reaeration coefficients determined from the observed decrease in gas concentration along the stretch (Genereux and Hemond, 1990): ( ) --1- -cup- k2 = t2 - t1 ln Rcdown (1) with the gas concentrations measured at an upstream location, cup[ML-3], and a downstream location, cdown. t1[T] andt2 [T] denote the measurement times at the two locations and R [-] represents the recovery rate which can also be obtained from conservative tracer data. The typical procedure for analysis, however, contains a number of assumptions, as it neglects dispersion and does not take into account possible fluctuations of the input signal. We derive the influence of these aspects mathematically and illustrate them on the basis of field data obtained from a propane gas tracer test. For this, we compare the reaeration coefficients obtained from approaches with dispersion and/or a time-dependent input signals to the standard approach. Travel times and travel time distributions between the different measurement stations are obtained from a simultaneously performed conservative tracer test with fluorescein. In order to show the carry-over effect to metabolic rates, we furthermore estimate respiration and photosynthesis rates from the calculated reaeration coefficients and measured oxygen data. This way, we are able to show that neglecting dispersion significantly underestimates reaeration, and the impact of the time-dependent input concentration cannot be disregarded either. When estimated reaeration rates are used to calculate respiration and photosynthesis from measured

  13. Comparison of fluid-fluid interfacial areas measured with X-ray microtomography and interfacial partitioning tracer tests for the same samples

    NASA Astrophysics Data System (ADS)

    McDonald, Kieran; Carroll, Kenneth C.; Brusseau, Mark L.

    2016-07-01

    Two different methods are currently used for measuring interfacial areas between immiscible fluids within 3-D porous media, high-resolution microtomographic imaging and interfacial partitioning tracer tests (IPTT). Both methods were used in this study to measure nonwetting/wetting interfacial areas for a natural sand. The microtomographic imaging was conducted on the same packed columns that were used for the IPTTs. This is in contrast to prior studies comparing the two methods, for which in all cases different samples were used for the two methods. In addition, the columns were imaged before and after the IPTTs to evaluate the potential impacts of the tracer solution on fluid configuration and attendant interfacial area. The interfacial areas measured using IPTT are ˜5 times larger than the microtomographic-measured values, which is consistent with previous work. Analysis of the image data revealed no significant impact of the tracer solution on NAPL configuration or interfacial area. Other potential sources of error were evaluated, and all were demonstrated to be insignificant. The disparity in measured interfacial areas between the two methods is attributed to the limitation of the microtomography method to characterize interfacial area associated with microscopic surface roughness due to resolution constraints.

  14. A novel test ground for the equipment qualification of magnetic gradient sensors used for unexploded bomb detection

    NASA Astrophysics Data System (ADS)

    Hiergeist, Robert; Ketzler, Rainer; Harcken, Hans; Lüdke, Joachim; Albrecht, Martin; Brand, Thomas; Fischer, Andreas

    2015-01-01

    Scanning of the ground level by magnetic gradient sensors (fluxgate sensors) is the primary detection technique for unexploded bombs (UXBs). In order to allow a classification of the test equipment (magnetic sensors and associated evaluation software) as well as training and examination of the skills of sensor operating teams we built up a test facility. In the first step to generate the stray magnetic fields of UXBs, we positioned solenoids of the same dimension as the simulated bombs under a test ground using the principle of the equivalent current shell. From numerical investigations it has been found, that for depths exceeding 1.2 m, the gradient field profiles of these solenoids and the gradient field profiles of small multi-layer split coils agree very well (far field regime). This was verified later experimentally: By positioning these movable small multi-layer split coils in tubes running diagonally underneath the test ground and controlling the current flowing through these coils, we were able to find a good agreement between calculated and experimental data of the gradiometer signal scans on the measurement plane for (i) tests of the signal resolution and (ii) tests of the relative spatial resolution of the gradient sensors.

  15. Testing thermal gradient driving force for grain boundary migration using molecular dynamics simulations

    SciTech Connect

    Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.

    2015-02-01

    Strong thermal gradients in low-thermal-conductivity ceramics may drive extended defects, such as grain boundaries and voids, to migrate in preferential directions. In this work, molecular dynamics simulations are conducted to study thermal gradient driven grain boundary migration and to verify a previously proposed thermal gradient driving force equation, using uranium dioxide as a model system. It is found that a thermal gradient drives grain boundaries to migrate up the gradient and the migration velocity increases under a constant gradient owing to the increase in mobility with temperature. Different grain boundaries migrate at very different rates due to their different intrinsic mobilities. The extracted mobilities from the thermal gradient driven simulations are compared with those calculated from two other well-established methods and good agreement between the three different methods is found, demonstrating that the theoretical equation of the thermal gradient driving force is valid, although a correction of one input parameter should be made. The discrepancy in the grain boundary mobilities between modeling and experiments is also discussed.

  16. Testing taxon tenacity of tortoises: evidence for a geographical selection gradient at a secondary contact zone

    USGS Publications Warehouse

    Edwards, Taylor; Berry, Kristin H.; Inman, Richard D.; Esque, Todd C.; Nussear, Kenneth E.; Jones, Cristina A.; Culver, Melanie

    2015-01-01

    We examined a secondary contact zone between two species of desert tortoise, Gopherus agassizii and G. morafkai. The taxa were isolated from a common ancestor during the formation of the Colorado River (4-8 mya) and are a classic example of allopatric speciation. However, an anomalous population of G. agassizii comes into secondary contact with G. morafkai east of the Colorado River in the Black Mountains of Arizona and provides an opportunity to examine reinforcement of species' boundaries under natural conditions. We sampled 234 tortoises representing G. agassizii in California (n = 103), G. morafkai in Arizona (n = 78), and 53 individuals of undetermined assignment in the contact zone including and surrounding the Black Mountains. We genotyped individuals for 25 STR loci and determined maternal lineage using mtDNA sequence data. We performed multilocus genetic clustering analyses and used multiple statistical methods to detect levels of hybridization. We tested hypotheses about habitat use between G. agassizii and G. morafkai in the region where they co-occur using habitat suitability models. Gopherus agassizii and G. morafkai maintain independent taxonomic identities likely due to ecological niche partitioning, and the maintenance of the hybrid zone is best described by a geographical selection gradient model.

  17. Testing Taxon Tenacity of Tortoises: evidence for a geographical selection gradient at a secondary contact zone

    PubMed Central

    Edwards, Taylor; Berry, Kristin H; Inman, Richard D; Esque, Todd C; Nussear, Kenneth E; Jones, Cristina A; Culver, Melanie

    2015-01-01

    We examined a secondary contact zone between two species of desert tortoise, Gopherus agassizii and G. morafkai. The taxa were isolated from a common ancestor during the formation of the Colorado River (4–8 mya) and are a classic example of allopatric speciation. However, an anomalous population of G. agassizii comes into secondary contact with G. morafkai east of the Colorado River in the Black Mountains of Arizona and provides an opportunity to examine reinforcement of species' boundaries under natural conditions. We sampled 234 tortoises representing G. agassizii in California (n - 103), G. morafkai in Arizona (n - 78), and 53 individuals of undetermined assignment in the contact zone including and surrounding the Black Mountains. We genotyped individuals for 25 STR loci and determined maternal lineage using mtDNA sequence data. We performed multilocus genetic clustering analyses and used multiple statistical methods to detect levels of hybridization. We tested hypotheses about habitat use between G. agassizii and G. morafkai in the region where they co-occur using habitat suitability models. Gopherus agassizii and G. morafkai maintain independent taxonomic identities likely due to ecological niche partitioning, and the maintenance of the hybrid zone is best described by a geographical selection gradient model. PMID:26045959

  18. Modeling a Combined Tracer and Time-Lapse Radar Imaging Test in the Heterogeneous Fluvial Aquifer at the Boise Hydrogeophysical Research Site

    NASA Astrophysics Data System (ADS)

    Leven, C.; Barrash, W.; Hyndman, D. W.; Johnson, T. C.

    2002-12-01

    magnitude across the measured vertical dimension. We will present results from transient three-dimensional flow and transport models of the time-lapse tracer test, implemented using information from the dynamic cross-well radar tomography measurements. Preliminary modeling shows that the transport of the solute plume is strongly influenced by both small-scale aquifer heterogeneity and the geometry of hydrostratigraphic units. The dynamic plume imaging approach that we are developing should lead to a comprehensive description, characterization, and quantification of aquifer heterogeneity of the BHRS.

  19. Noctuid moth diversity along a temperate elevational gradient: testing the role of environmental factors, MDE, and Rapoport's rule

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many factors, including climate, area, and habitat diversity likely influence spatial variation in species diversity along elevational gradients. In this study, we test the relative influence of energy availability, habitat diversity, mid-domain effects, and area on the diversity of noctuid moths i...

  20. Summary and interpretation of dye-tracer tests to investigate the hydraulic connection of fractures at a ridge-and-valley-wall site near Fishtrap Lake, Pike County, Kentucky

    USGS Publications Warehouse

    Taylor, C.J.

    1994-01-01

    decreasing-head conditions resulted in dye being trapped in hydraulically dead zones in water- depleted fractures. Residual dye was remobilized from storage and transported (over periods ranging from several months to about 2 years) by increased recharge to the hydrologic system. Subsequent fluctuations in hydraulic gradients, resulting from increases or decreases in recharge to the hydrologic system, acted to speed or slow the transport of dye along the fracture-controlled flow paths. The dye-tracer tests also demonstrated that mining-related disturbances significantly altered the natural fracture-controlled flow paths of the hydrologic system over time. An abandoned underground mine and subsidence-related surface cracks extend to within 250 ft of the principal dye- injection core hole. Results from two of the dye-tracer tests at the site indicate that the annular seal in the core hole was breached by subsurface propagation of the mining-induced fractures. This propagation of fractures resulted in hydraulic short-circuiting between the dye-injection zone in the core hole and two lower piezometer zones, and a partial disruption of the hydraulic connection between the injection core hole and downgradient piezometers on the ridge crest and valley wall. In addition, injected dye was detected in piezometers monitoring a flooded part of the abandoned underground mine. Dye was apparently transported into the mine through a hydraulic connection between the injection core hole and subsidence-related fractures.

  1. Dissolved gas dynamics in wetland soils: Root-mediated gas transfer kinetics determined via push-pull tracer tests

    NASA Astrophysics Data System (ADS)

    Reid, Matthew C.; Pal, David S.; Jaffé, Peter R.

    2015-09-01

    Gas transfer processes are fundamental to the biogeochemical and water quality functions of wetlands, yet there is limited knowledge of the rates and pathways of soil-atmosphere exchange for gases other than oxygen and methane (CH4). In this study, we use a novel push-pull technique with sulfur hexafluoride (SF6) and helium (He) as dissolved gas tracers to quantify the kinetics of root-mediated gas transfer, which is a critical efflux pathway for gases from wetland soils. This tracer approach disentangles the effects of physical transport from simultaneous reaction in saturated, vegetated wetland soils. We measured significant seasonal variation in first-order gas exchange rate constants, with smaller spatial variations between different soil depths and vegetation zones in a New Jersey tidal marsh. Gas transfer rates for most biogeochemical trace gases are expected to be bracketed by the rate constants for SF6 and He, which ranged from ˜10-2 to 2 × 10-1 h-1 at our site. A modified Damköhler number analysis is used to evaluate the balance between biochemical reaction and root-driven gas exchange in governing the fate of environmental trace gases in rooted, anaerobic soils. This approach confirmed the importance of plant gas transport for CH4, and showed that root-driven transport may affect nitrous oxide (N2O) balances in settings where N2O reduction rates are slow.

  2. Kinetic modeling and long-term test-retest reproducibility of the mGluR5 PET tracer 18F-FPEB in human brain.

    PubMed

    Leurquin-Sterk, Gil; Postnov, Andrey; de Laat, Bart; Casteels, Cindy; Celen, Sofie; Crunelle, Cleo L; Bormans, Guy; Koole, Michel; Van Laere, Koen

    2016-04-01

    (18)F-FPEB is a promising PET tracer for studying the metabotropic glutamate subtype 5 receptor (mGluR5) expression in neuropsychiatric disorders. To assess the potential of (18)F-FPEB for longitudinal mGluR5 evaluation in patient studies, we evaluated the long-term test-retest reproducibility using various kinetic models in the human brain. Nine healthy volunteers underwent consecutive scans separated by a 6-month period. Dynamic PET was combined with arterial sampling and radiometabolite analysis. Total distribution volume (V(T)) and nondisplaceable binding potential (BP(ND)) were derived from a two-tissue compartment model without constraints (2TCM) and with constraining the K(1)/k(2) ratio to the value of either cerebellum (2TCM-CBL) or pons (2TCM-PONS). The effect of fitting different functions to the tracer parent fractions and reducing scan duration were assessed. Regional absolute test-retest variability (aTRV), coefficient of repeatability (CR) and intraclass correlation coefficient (ICC) were computed. The 2TCM-CBL showed best fits. The mean 6-month aTRV of V(T) ranged from 8 to 13% (CR < 25%) with ICC > 0.6 for all kinetic models. BPND from 2TCM-CBL with a sigmoid fit for the parent fractions showed the best reproducibility, with aTRV ≤ 7% (CR < 16%) and ICC > 0.9 in most regions. Reducing the scan duration from 90 to 60 min did not affect reproducibility. These results demonstrate for the first time that (18)F-FPEB brain PET has good long-term reproducibility, therefore validating its use to monitor mGluR5 expression in longitudinal clinical studies. We suggest a 2TCM-CBL with fitting a sigmoid function to the parent fractions to be optimal for this tracer.

  3. Tracer test with As(V) under variable redox conditions controlling arsenic transport in the presence of elevated ferrous iron concentrations

    USGS Publications Warehouse

    Hohn, R.; Isenbeck-Schroter, M.; Kent, D.B.; Davis, J.A.; Jakobsen, R.; Jann, S.; Niedan, V.; Scholz, C.; Stadler, S.; Tretner, A.

    2006-01-01

    To study transport and reactions of arsenic under field conditions, a small-scale tracer test was performed in an anoxic, iron-reducing zone of a sandy aquifer at the USGS research site on Cape Cod, Massachusetts, USA. For four weeks, a stream of groundwater with added As(V) (6.7????M) and bromide (1.6??mM), was injected in order to observe the reduction of As(V) to As(III). Breakthrough of bromide (Br-), As(V), and As(III) as well as additional parameters characterizing the geochemical conditions was observed at various locations downstream of the injection well over a period of 104??days. After a short lag period, nitrate and dissolved oxygen from the injectate oxidized ferrous iron and As(V) became bound to the freshly formed hydrous iron oxides. Approximately one week after terminating the injection, anoxic conditions had been reestablished and increases in As(III) concentrations were observed within 1??m of the injection. During the observation period, As(III) and As(V) were transported to a distance of 4.5??m downgradient indicating significant retardation by sorption processes for both species. Sediment assays as well as elevated concentrations of hydrogen reflected the presence of As(V) reducing microorganisms. Thus, microbial As(V) reduction was thought to be one major process driving the release of As(III) during the tracer test in the Cape Cod aquifer. ?? 2006 Elsevier B.V. All rights reserved.

  4. Tracer test with As(V) under variable redox conditions controlling arsenic transport in the presence of elevated ferrous iron concentrations.

    PubMed

    Höhn, R; Isenbeck-Schröter, M; Kent, D B; Davis, J A; Jakobsen, R; Jann, S; Niedan, V; Scholz, C; Stadler, S; Tretner, A

    2006-11-20

    To study transport and reactions of arsenic under field conditions, a small-scale tracer test was performed in an anoxic, iron-reducing zone of a sandy aquifer at the USGS research site on Cape Cod, Massachusetts, USA. For four weeks, a stream of groundwater with added As(V) (6.7 muM) and bromide (1.6 mM), was injected in order to observe the reduction of As(V) to As(III). Breakthrough of bromide (Br(-)), As(V), and As(III) as well as additional parameters characterizing the geochemical conditions was observed at various locations downstream of the injection well over a period of 104 days. After a short lag period, nitrate and dissolved oxygen from the injectate oxidized ferrous iron and As(V) became bound to the freshly formed hydrous iron oxides. Approximately one week after terminating the injection, anoxic conditions had been reestablished and increases in As(III) concentrations were observed within 1 m of the injection. During the observation period, As(III) and As(V) were transported to a distance of 4.5 m downgradient indicating significant retardation by sorption processes for both species. Sediment assays as well as elevated concentrations of hydrogen reflected the presence of As(V) reducing microorganisms. Thus, microbial As(V) reduction was thought to be one major process driving the release of As(III) during the tracer test in the Cape Cod aquifer. PMID:16945450

  5. Evaluation of tracer tests completed in 1999 and 2000 on the upper Santa Clara River, Los Angeles and Ventura Counties, California

    USGS Publications Warehouse

    Cox, Marisa H.; Mendez, Gregory O.; Kratzer, Charles R.; Reichard, Eric G.

    2003-01-01

    The interaction of surface water and hyporheic water along the Santa Clara River in Los Angeles and Ventura Counties, California, was evaluated by conducting tracer tests and analyzing water-quality data under different flow conditions in October 1999 and May 2000. Tracer and water-quality samples were collected at multiple river and hyporheic sites as well as at the Los Angeles County Sanitation Districts Saugus and Valencia Water Reclamation Plants. These water reclamation plants provide the main source of base flow in the river. Rhodamine WT dye was injected into the river to determine river traveltimes and to indicate when Lagrangian water-quality sampling could be performed at each site. Sodium bromide was injected into the river at a constant rate at the water reclamation plants to evaluate the surface-water and shallow ground-water interactions in the hyporheic zone. In the upper reach of the study area, which extends 2.9 river miles downstream from the Saugus Water Reclamation Plant, traveltime was 3.2 hours during May 2000. In the lower reach, which extends 14.1 river miles downstream from the Valencia Water Reclamation Plant, traveltime was 9.6 hours during October 1999 and 7.1 hours during May 2000. The sodium bromide tracer was detected at both hyporheic locations sampled during October 1999, and at two of the three hyporheic locations sampled during May 2000. On the basis of Rhodamine dye tests, flow curves were constructed from the discharge measurements in the Valencia reach. Flow-curve results indicate net gains in flow throughout most, but not all, of the upper parts of the reach and net losses in flow at the lower part of the reach. Lagrangian water-quality sampling provides information on the changes in chemistry as the water flows downstream from the water reclamation plants. Along both reaches there is an increase in sulfate (40-60 mg/L in the Saugus reach and 160 mg/L in the Valencia reach) and a decrease in chloride (about 45 mg/L in the

  6. Gradient Index Microlens Implanted in Prefrontal Cortex of Mouse Does Not Affect Behavioral Test Performance over Time

    PubMed Central

    Lee, Seon A.; Holly, Kevin S.; Voziyanov, Vladislav; Villalba, Stephanie L.; Tong, Rudi; Grigsby, Holly E.; Glasscock, Edward; Szele, Francis G.; Vlachos, Ioannis; Murray, Teresa A.

    2016-01-01

    Implanted gradient index lenses have extended the reach of standard multiphoton microscopy from the upper layers of the mouse cortex to the lower cortical layers and even subcortical regions. These lenses have the clarity to visualize dynamic activities, such as calcium transients, with subcellular and millisecond resolution and the stability to facilitate repeated imaging over weeks and months. In addition, behavioral tests can be used to correlate performance with observed changes in network function and structure that occur over time. Yet, this raises the questions, does an implanted microlens have an effect on behavioral tests, and if so, what is the extent of the effect? To answer these questions, we compared the performance of three groups of mice in three common behavioral tests. A gradient index lens was implanted in the prefrontal cortex of experimental mice. We compared their performance with mice that had either a cranial window or a sham surgery. Three presurgical and five postsurgical sets of behavioral tests were performed over seven weeks. Behavioral tests included rotarod, foot fault, and Morris water maze. No significant differences were found between the three groups, suggesting that microlens implantation did not affect performance. The results for the current study clear the way for combining behavioral studies with gradient index lens imaging in the prefrontal cortex, and potentially other regions of the mouse brain, to study structural, functional, and behavioral relationships in the brain. PMID:26799938

  7. Gradient Index Microlens Implanted in Prefrontal Cortex of Mouse Does Not Affect Behavioral Test Performance over Time.

    PubMed

    Lee, Seon A; Holly, Kevin S; Voziyanov, Vladislav; Villalba, Stephanie L; Tong, Rudi; Grigsby, Holly E; Glasscock, Edward; Szele, Francis G; Vlachos, Ioannis; Murray, Teresa A

    2016-01-01

    Implanted gradient index lenses have extended the reach of standard multiphoton microscopy from the upper layers of the mouse cortex to the lower cortical layers and even subcortical regions. These lenses have the clarity to visualize dynamic activities, such as calcium transients, with subcellular and millisecond resolution and the stability to facilitate repeated imaging over weeks and months. In addition, behavioral tests can be used to correlate performance with observed changes in network function and structure that occur over time. Yet, this raises the questions, does an implanted microlens have an effect on behavioral tests, and if so, what is the extent of the effect? To answer these questions, we compared the performance of three groups of mice in three common behavioral tests. A gradient index lens was implanted in the prefrontal cortex of experimental mice. We compared their performance with mice that had either a cranial window or a sham surgery. Three presurgical and five postsurgical sets of behavioral tests were performed over seven weeks. Behavioral tests included rotarod, foot fault, and Morris water maze. No significant differences were found between the three groups, suggesting that microlens implantation did not affect performance. The results for the current study clear the way for combining behavioral studies with gradient index lens imaging in the prefrontal cortex, and potentially other regions of the mouse brain, to study structural, functional, and behavioral relationships in the brain.

  8. Tracer tomography (in) rocks!

    NASA Astrophysics Data System (ADS)

    Somogyvári, Márk; Jalali, Mohammadreza; Jimenez Parras, Santos; Bayer, Peter

    2016-04-01

    Physical behavior of fractured aquifers is rigorously controlled by the presence of interconnected conductive fractures, as they represent the main pathways for flow and transport. Ideally, they are simulated as a discrete fracture network (DFN) in a model to capture the role of fracture system geometry, i.e. fracture length, height, and width (aperture/transmissivity). Such network may be constrained by prior geological information or direct data resources such as field mapping, borehole logging and geophysics. With the many geometric features, however, calibration of a DFN to measured data is challenging. This is especially the case when spatial properties of a fracture network need to be calibrated to flow and transport data. One way to increase the insight in a fractured rock is by combining the information from multiple field tests. In this study, a tomographic configuration that combines multiple tracer tests is suggested. These tests are conducted from a borehole with different injection levels that act as sources. In a downgradient borehole, the tracer is recorded at different levels or receivers, in order to maximize insight in the spatial heterogeneity of the rock. As tracer here we chose heat, and temperature breakthrough curves are recorded. The recorded tracer data is inverted using a novel stochastic trans-dimensional Markov Chain Monte Carlo procedure. An initial DFN solution is generated and sequentially modified given available geological information, such as expected fracture density, orientation, length distribution, spacing and persistency. During this sequential modification, the DFN evolves in a trans-dimensional inversion space through adding and/or deleting fracture segments. This stochastic inversion algorithm requires a large number of thousands of model runs to converge, and thus using a fast and robust forward model is essential to keep the calculation efficient. To reach this goal, an upwind coupled finite difference method is employed

  9. The use of air as a natural tracer infractured hydrothermal systems, Los Azufres, Mexico, case study

    SciTech Connect

    Mario Cesar Sudrez Arriaga; Hector Gutierrez Puente, Josefina Moreno Ochoa

    1991-01-01

    Injection of atmospheric air mixed with cold water has been occurring since 1982 at the Los Azufres geothermal field. Several chemical and thermodynamical evidences show that air injection into this fractured hydrothermal system could be considered as a long term natural tracer test. Nitrogen and Argon separated from the air mixture migrate, under the action of the induced injection-extraction gradient, from reinjection sectors to production zones following preferential paths closely related to high permeability conduits. A coarse numerical estimation of the average permeability tensor existing at Tejamaniles, the southern sector, explains the unsuccessful recovery of the artificial tracer tests performed in past years: the anisotropic nature of the fractured volcanic rock would demand considerably quantities of tracer in order to be detected at the producing wells, especially when fluid extraction was low. At the same time concentrations of calcium, cesium, chloride, potassium, rubidium and sodium, are increasing in the liquid produced by the oldest wells of this field's sector.

  10. Generalization Gradients in Human Predictive Learning: Effects of Discrimination Training and within-Subjects Testing

    ERIC Educational Resources Information Center

    Vervliet, Bram; Iberico, Carlos; Vervoort, Ellen; Baeyens, Frank

    2011-01-01

    Generalization gradients have been investigated widely in animal conditioning experiments, but much less so in human predictive learning tasks. Here, we apply the experimental design of a recent study on conditioned fear generalization in humans (Lissek et al., 2008) to a predictive learning task, and examine the effects of a number of relevant…

  11. Analysis of single-hole and cross-hole tracer tests conducted at the Nye County early warning drilling program well complex, Nye County, Nevada

    USGS Publications Warehouse

    Umari, A.; Earle, J.D.; Fahy, M.F.

    2006-01-01

    As part of the effort to understand the flow and transport characteristics downgradient from the proposed high-level radioactive waste geologic repository at Yucca Mountain, Nevada, single- and cross-hole tracer tests were conducted from December 2004 through October 2005 in boreholes at the Nye County 22 well complex. The results were analyzed for transport properties using both numerical and analytical solutions of the governing advection dispersion equation. Preliminary results indicate effective flow porosity values ranging from 1.0 ?? 10-2 for an individual flow path to 2.0 ?? 10 -1 for composite flow paths, longitudinal dispersivity ranging from 0.3 to 3 m, and a transverse horizontal dispersivity of 0.03 m. Individual flow paths identified from the cross-hole testing indicate some solute diffusion into the stagnant portion of the alluvial aquifer.

  12. Tracer-monitored flow titrations.

    PubMed

    Sasaki, Milton K; Rocha, Diogo L; Rocha, Fábio R P; Zagatto, Elias A G

    2016-01-01

    The feasibility of implementing tracer-monitored titrations in a flow system is demonstrated. A dye tracer is used to estimate the instant sample and titrant volumetric fractions without the need for volume, mass or peak width measurements. The approach was applied to spectrophotometric flow titrations involving variations of sample and titrant flow-rates (i.e. triangle programmed technique) or concentration gradients established along the sample zone (i.e. flow injection system). Both strategies required simultaneous monitoring of two absorbing species, namely the titration indicator and the dye tracer. Mixing conditions were improved by placing a chamber with mechanical stirring in the analytical path aiming at to minimize diffusional effects. Unlike most of flow-based titrations, the innovation is considered as a true titration, as it does not require a calibration curve thus complying with IUPAC definition. As an application, acidity evaluation in vinegars involving titration with sodium hydroxide was selected. Phenolphthalein and brilliant blue FCF were used as indicator and dye tracer, respectively. Effects of sample volume, titrand/titrant concentrations and flow rates were investigated aiming at improved accuracy and precision. Results were reliable and in agreement with those obtained by a reference titration procedure.

  13. Tracer-monitored flow titrations.

    PubMed

    Sasaki, Milton K; Rocha, Diogo L; Rocha, Fábio R P; Zagatto, Elias A G

    2016-01-01

    The feasibility of implementing tracer-monitored titrations in a flow system is demonstrated. A dye tracer is used to estimate the instant sample and titrant volumetric fractions without the need for volume, mass or peak width measurements. The approach was applied to spectrophotometric flow titrations involving variations of sample and titrant flow-rates (i.e. triangle programmed technique) or concentration gradients established along the sample zone (i.e. flow injection system). Both strategies required simultaneous monitoring of two absorbing species, namely the titration indicator and the dye tracer. Mixing conditions were improved by placing a chamber with mechanical stirring in the analytical path aiming at to minimize diffusional effects. Unlike most of flow-based titrations, the innovation is considered as a true titration, as it does not require a calibration curve thus complying with IUPAC definition. As an application, acidity evaluation in vinegars involving titration with sodium hydroxide was selected. Phenolphthalein and brilliant blue FCF were used as indicator and dye tracer, respectively. Effects of sample volume, titrand/titrant concentrations and flow rates were investigated aiming at improved accuracy and precision. Results were reliable and in agreement with those obtained by a reference titration procedure. PMID:26703261

  14. First Beam and High-Gradient Cryomodule Commissioning Results of the Advanced Superconducting Test Accelerator at Fermilab

    SciTech Connect

    Crawford, Darren; et al.

    2015-06-01

    The advanced superconducting test accelerator at Fermilab has accelerated electrons to 20 MeV and, separately, the International Linear Collider (ILC) style 8-cavity cryomodule has achieved the ILC performance milestone of 31.5 MV/m per cavity. When fully completed, the accelerator will consist of a photoinjector, one ILC-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We report on the results of first beam, the achievement of our cryomodule to ILC gradient specifications, and near-term future plans for the facility.

  15. Statistical analysis and mathematical modeling of a tracer test on the Santa Clara River, Ventura County, California

    USGS Publications Warehouse

    Paybins, Katherine S.; Nishikawa, Tracy; Izbicki, John A.; Reichard, Eric G.

    1998-01-01

    To better understand flow processes, solute-transport processes, and ground-water/surface-water interactions on the Santa Clara River in Ventura County, California, a 24-hour fluorescent-dye tracer study was performed under steady-state flow conditions on a 28-mile reach of the river. The study reach includes perennial (uppermost and lowermost) subreaches and ephemeral subreaches of the lower Piru Creek and the middle Santa Clara River. Dye was injected at a site on Piru Creek, and fluorescence of river water was measured continuously at four sites and intermittently at two sites. Discharge measurements were also made at the six sites. The time of travel of the dye, peak dye concentration, and time-variance of time-concentration curves were obtained at each site. The long tails of the time-concentration curves are indicative of sources/sinks within the river, such as riffles and pools, or transient bank storage. A statistical analysis of the data indicates that, in general, the transport characteristics follow Fickian theory. These data and previously collected discharge data were used to calibrate a one-dimensional flow model (DAFLOW) and a solute-transport model (BLTM). DAFLOW solves a simplified form of the diffusion-wave equation and uses empirical relations between flow rate and cross-sectional area, and flow rate and channel width. BLTM uses the velocity data from DAFLOW and solves the advection-dispersion transport equation, including first-order decay. The simulations of dye transport indicated that (1) ground-water recharge explains the loss of dye mass in the middle, ephemeral, subreaches, and (2) ground-water recharge does not explain the loss of dye mass in the uppermost and lowermost, perennial, subreaches. This loss of mass was simulated using a linear decay term. The loss of mass in the perennial subreaches may be caused by a combination of photodecay or adsorption/desorption.

  16. Final report of the second dye-tracer test at the Chesnut Ridge Security Pits, Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1992-11-01

    Martin Marietta Energy Systems, Inc. (Energy Systems) manages a closed hazardous waste disposal unit, Chestnut Ridge Security Pits (CRSP), in the form of two trenches and several auger-holes, located on top of the eastern portion of Chestnut Ridge at the Department of Energy (DOE) Oak Ridge Y-12 Plant in Tennessee. The groundwater monitoring system for the unit presently consists of a network of upgradient and downgradient monitor wells. To investigate the discharge of groundwater to springs and streams, Energy Systems, through Geraghty and Miller, Inc., conducted an initial dye-tracer study during the driest part of 1990. The dye was detected at some of the monitoring sites, but verification was necessary due to the proximity of some sites to extraneous dye sources. Based on the results of the initial study, Energy Systems recommended to the Tennessee Department of Environment and Conservation (TDEC) in the 1990 Groundwater Quality Assessment Report (GWQAR) (HSW 1991) for the CRSP that a second dye-tracer study be conducted during the wet weather season. The procedures and materials were reviewed, and a field inspection of the monitoring sites was performed in the fall of 1991. The actual test commenced during the first week of February 1992 with a 4-week baseline monitoring period to determine the inherent variability of the emission spectra within the wavelength range characteristic of Rhodamine WT (RWT) and Fluorescent Brightener 28 (FB28) or similar naturally occuring compounds within in the aquifer. This is commonly referred as background in discussion of minimum detectable levels of dyes. On March 13, RWT and FB28 were injected; weekly monitoring began with the collection of the first set of detectors on March 19. The test was originally scheduled to conclude after 12 weeks but was extended to 18 weeks when no definitive results were obtained.

  17. Planned High-gradient Flat-beam-driven Dielectric Wakefield Experiments at the Fermilab’s Advanced Superconducting Test Accelerator

    SciTech Connect

    Lemery, Francois; Mihalcea, Daniel; Piot, Philippe; Zhu, Jun

    2014-07-01

    In beam driven dielectric wakefield acceleration (DWA), high-gradient short-wavelength accelerating fields are generally achieved by employing dielectric-lined waveguides (DLWs)  with small aperture which constraints the beam sizes. In this paper we investigate the possibility of using a low-energy (50-MeV) flat beams to induce high-gradient wakes in a slab-symmetric DLW. We demonstrate via numerical simulations the possibility to produce axial electric field with peak amplitude close to 0.5 GV/m. Our studies are carried out using the Fermilab's Advanced Superconducting Test Accelerator (ASTA) photoinjector beamline. We finally discuss a possible experiment that could be performed in the ASTA photoinjector and eventually at higher energies.  

  18. Responses of floodplain forest species to spatially condensed gradients: a test of the flood-shade tolerance tradeoff hypothesis.

    PubMed

    Battaglia, L L; Sharitz, R R

    2006-02-01

    Previous work in southeastern US floodplains led to the hypothesis that a tradeoff between flood and shade tolerance underlies species-specific responses to flooding and light, which drive forest regeneration. In systems where community turnover can occur with small-scale environmental changes, testing this hypothesis requires recognizing that turnover of species along the two gradients can be large relative to the spatial distances involved. We test the tradeoff hypothesis in an old-growth bottomland hardwood forest by (1) comparing shade and moisture profiles of woody juveniles versus random points and (2) using individual-based sampling of woody juveniles to model probability of occurrence in response to distance-to-water table and canopy openness gradients. We found that juveniles of all species combined occupied a similar range of distance-to-water table compared to measurements taken at random points, but average canopy openness above seedlings was significantly higher than at random points. On average, shade-tolerant species, with the exception of Acer rubrum, were found in shaded areas that were also drier, whereas less shade-tolerant taxa, plus A. rubrum, were found in wetter, more open areas, suggesting a tradeoff between flood and shade tolerance. Predictive models of species occurrence, which incorporate the availability of canopy and microtopographic conditions, indicated that three taxa (Fraxinus pennsylvanica, Quercus spp., and Ulmus americana) had patterns consistent with a flood-shade tolerance tradeoff. In contrast, Asimina triloba, Celtis laevigata, and Liquidambar styraciflua had positive responses when the joint stresses of flooding and shade were diminished. A. rubrum appeared to be the most tolerant to both stresses. Our work not only lends support to the flood-shade tradeoff hypothesis but also indicates that a more general model is needed that includes a "flood-shade release" component. We also suggest that responses to small

  19. Combining Push Pull Tracer Tests and Microbial DNA and mRNA Analysis to Assess In-Situ Groundwater Nitrate Transformations

    NASA Astrophysics Data System (ADS)

    Henson, W.; Graham, W. D.; Huang, L.; Ogram, A.

    2015-12-01

    Nitrogen transformation mechanisms in the Upper Floridan Aquifer (UFA) are still poorly understood because of karst aquifer complexity and spatiotemporal variability in nitrate and carbon loading. Transformation rates have not been directly measured in the aquifer. This study quantifies nitrate-nitrogen transformation potential in the UFA using single well push-pull tracer injection (PPT) experiments combined with microbial characterization of extracted water via qPCR and RT-qPCR of selected nitrate reduction genes. Tracer tests with chloride and nitrate ± carbon were executed in two wells representing anoxic and oxic geochemical end members in a spring groundwater contributing area. A significant increase in number of microbes with carbon addition suggests stimulated growth. Increases in the activities of denitrification genes (nirK and nirS) as measured by RT-qPCR were not observed. However, only microbes suspended in the tracer were obtained, ignoring effects of aquifer material biofilms. Increases in nrfA mRNA and ammonia concentrations were observed, supporting Dissimilatory Reduction of Nitrate to Ammonia (DNRA) as a reduction mechanism. In the oxic aquifer, zero order nitrate loss rates ranged from 32 to 89 nmol /L*hr with no added carbon and 90 to 240 nmol /L*hr with carbon. In the anoxic aquifer, rates ranged from 18 to 95 nmol /L*hr with no added carbon and 34 to 207 nmol /L*hr with carbon. These loss rates are low; 13 orders of magnitude less than the loads applied in the contributing area each year, however they do indicate that losses can occur in oxic and anoxic aquifers with and without carbon. These rates may include, ammonia adsorption, uptake, or denitrification in aquifer material biofilms. Rates with and without carbon addition for both aquifers were similar, suggesting aquifer redox state and carbon availability alone are insufficient to predict response to nutrient additions without characterization of microbial response. Surprisingly, these

  20. Analysis of a Multi-Well Tracer Test at a Bank Filtration Site in an Arid Environment of El Paso, Texas

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, A. N.; Langford, R.; Schulze-Makuch, D.; Sheng, Z.

    2005-12-01

    River bank filtered water is an important component of the drinking water production in many areas of the world. In riverbank filtration, the removal of pathogens is an important task for the production of good quality drinking water. The hydrogeological factors and spatial changes in the water's microbiology during the transport from the river to the aquifer have important implications on the quality of the produced water. The goal of this study was to investigate riverbank infiltration effectiveness in arid environments such as that of El Paso, Texas. The hydrostratigraphic units and hydrogeologic conditions were characterized with lithologic samples obtained from all boreholes collected during the construction of twelve observation wells and one production well in the site, which were constructed near the artificial stream to provide geologic and hydrologic information. The shallow aquifer is composed of three unites: high hydraulic conductivity layers on the top and bottom, and low conductivity layer in the middle. In this study advective transport of microspheres was compared with a conservative tracer such as bromide. Bromide was injected into an observation well at the channel margin. Simultaneously, 1, 6 and 10 micron-diameter fluorescent microspheres equivalent to Giardia, Cryptosporidium, and bacteria sizes were injected into the stream bottom and two observation wells to assess the suitability of microspheres as abiotic analogs in future investigations involving the physical aspects of bacteria and protozoa transport behavior. The 17.8 day-tracer test provided valuable results that are relevant to the transport of pathogens through the subsurface under riverbank filtration conditions. The 1 micron-size microspheres were abundant in the pumping and observation wells and showed multiple peaks similar to the bromide results. Microspheres from the three injection sites had distinctly different transport paths and rates. The 6 and 10 micron-size microspheres

  1. Evaluating the techniques for a tiered testing approach to dredged sediment assessment--a study over a metal concentration gradient

    SciTech Connect

    Porebski, L.M.; Doe, K.G.; Zajdlik, B.A.; Lee, D.; Pocklington, P.; Osborne, J.M.

    1999-11-01

    A sediment quality triad approach was used to evaluate Environment Canada's battery of marine bioassays and the proposed pass/fail criteria along a metals gradient in Belledune Harbour, New Brunswick, Canada. Most assays performed consistently, but certain tests provided less response than expected at the more contaminated stations (amphipod survival and light reduction in photoluminescent bacteria tests passed according to proposed pass/fail criteria). Echinoid fertilization tests were quite sensitive. Bioaccumulation of lead and benthic community structure were related to bulk sediment values. Test interpretation criteria appear reasonable, but as the response rate was low in certain tests, further assessment is recommended. With respect to species suitability, only the clam Macoma balthica used in the bioaccumulation test was thought to be less than optimal for routine use on a large scale because of practical handling and cost considerations. Canadian draft Interim Sediment Quality Guidelines, which the Disposal at Sea Program may use for screening purposes in a tiered testing approach, were used in this study as the chemical benchmarks to select test stations on the basis of the relative probability of effects. Guidelines at the threshold effects level (TEL) performed well in the study as levels below which unacceptable biological effects were unlikely to occur. The ratio of simultaneously extractable metals to acid volatile sulfides was also used in addition to the guideline levels to help explain responses (or lack thereof) along the gradient. Each of the chemical approaches was useful in the prediction/explanation of some but not all of the responses seen in the toxicity and/or benthic community results.

  2. Mississippian coral latitudinal diversity gradients (western interior United States): Testing the limits of high resolution diversity data

    USGS Publications Warehouse

    Webb, G.E.; Sando, W.J.; Raymond, A.

    1997-01-01

    Analysis of high resolution diversity data for Mississippian corals in the western interior United States yielded mild latitudinal diversity gradients despite the small geographic area covered by samples and a large influence on diversity patterns by geographic sampling intensity (sample bias). Three competing plate tectonic reconstructions were tested using the diversity patterns. Although none could be forcefully rejected, one reconstruction proved less consistent with diversity patterns than the other two and additional coral diversity data from farther north in Canada would better discriminate the two equivalent reconstructions. Despite the relatively high sampling intensity represented by the analyzed database, diversity patterns were greatly affected by sample abundance and distribution. Hence, some effort at recognizing and accounting for sample bias should be undertaken in any study of latitudinal diversity gradients. Small-scale geographic lumping of sample localities had only small effects on geographic diversity patterns. However, large-scale (e.g., regional) geographic lumping of diversity data may not yield latitudinally sensitive diversity patterns. Temporal changes in coral diversity in this region reflect changes in eustacy, local tectonism, and terrigenous sediment flux, far more than they do shifting latitude. Highest regional diversity occurred during the interval when the studied region occupied the highest latitude. Therefore, diversity data from different regions may not be comparable, in terms of latitudinal inference. Small-scale stratigraphic lumping of the data caused a nearly complete loss of the latitudinal diversity patterns apparent prior to lumping. Hence, the narrowest possible stratigraphic resolution should be maintained in analyzing latitudinal diversity gradients.

  3. Characterisation of a DNAPL source zone in a porous aquifer using the Partitioning Interwell Tracer Test and an inverse modelling approach.

    PubMed

    Dridi, Lotfi; Pollet, Ingrid; Razakarisoa, Olivier; Schäfer, Gerhard

    2009-06-26

    In this paper, we discuss the results of a Partitioning Interwell Tracer Test (PITT) performed in a large scale experiment with a well-defined TCE spill, and present a novel combined analytical-numerical inverse modelling approach using measured concentration profiles within a TCE plume to predict the distribution of the DNAPL in a virtual vertical plane of the source. The proposed inverse modelling approach assumes local thermodynamic equilibrium of the distribution of TCE between the NAPL phase and the aqueous phase and no decay or sorption of the dissolved TCE concentrations downstream of the spill area. The analytical part of the inverse modelling approach contains two steps. As a first step, the location of the contaminant in a virtual vertical plane of a porous medium is fixed by using measured concentration profiles and considering the dissolution of the organic phase under equilibrium conditions. In the second step, the volume of contaminant entrapped in the source cells is estimated. A multiphase advective-dispersive transport model is used in the final step to adjust the volumes quantified in the second step. The predictions are highly dependent on the quantity and quality of the data in space and time. From the PITT-breakthrough curves measured at the pumping well, a mean TCE saturation in the sweep zone of 0.0004 was derived, which is very low compared to that determined at the local scale. In a second analysis, tracer breakthrough curves available at measuring points placed closely downstream and upstream of the presumed source zone, were used to explain why the globally obtained DNAPL saturation was very low compared to the "real", locally evaluated TCE saturations in the source zone. This was principally caused by the overall travel time compared to the short travel time of the tracers in the source zone. Another reason is that due to bypassing, only part of the volume of tracer injected had been in contact and had eventually interacted with the

  4. Results from air-injection and tracer testing in the upper Tiva Canyon, Bow Ridge Fault, and upper Paintbrush contact alcoves of the Exploratory Studies Facility, August 1994 through July 1996, Yucca Mountain, Nevada

    USGS Publications Warehouse

    LeCain, Gary D.

    1998-01-01

    Air-injection and tracer testing were conducted in the upper Tiva Canyon, Bow Ridge Fault, and upper Paintbrush contact alcoves in the Exploratory Studies Facility at Yucca Mountain, Nevada, from August 1994 to July 1991. The study was conducted by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy.

  5. Tracers for Characterizing Enhanced Geothermal Systems

    SciTech Connect

    Karen Wright; George Redden; Carl D. Palmer; Harry Rollins; Mark Stone; Mason Harrup; Laurence C. Hull

    2010-02-01

    Information about the times of thermal breakthrough and subsequent rates of thermal drawdown in enhanced geothermal systems (EGS) is necessary for reservoir management, designing fracture stimulation and well drilling programs, and forecasting economic return. Thermal breakthrough in heterogeneous porous media can be estimated using conservative tracers and assumptions about heat transfer rates; however, tracers that undergo temperature-dependent changes can provide more detailed information about the thermal profile along the flow path through the reservoir. To be effectively applied, the thermal reaction rates of such temperature sensitive traces must be well characterized for the range of conditions that exist in geothermal systems. Reactive tracers proposed in the literature include benzoic and carboxylic acids (Adams) and organic esters and amides (Robinson et al.); however, the practical temperature range over which these tracers can be applied (100-275°C) is somewhat limited. Further, for organic esters and amides, little is known about their sorption to the reservoir matrix and how such reactions impact data interpretation. Another approach involves tracers where the reference condition is internal to the tracer itself. Two examples are: 1) racemization of polymeric amino acids, and 2) mineral thermoluminescence. In these cases internal ratios of states are measured rather than extents of degradation and mass loss. Racemization of poly-L-lactic acid (for example) is temperature sensitive and therefore can be used as a temperature-recording tracer depending on the rates of racemization and stability of the amino acids. Heat-induced quenching of thermoluminescence of pre-irradiated LiF can also be used. To protect the tracers from alterations (extraneous reactions, dissolution) in geothermal environments we are encapsulating the tracers in core-shell colloidal structures that will subsequently be tested for their ability to be transported and to protect the

  6. Chemical bond as a test of density-gradient expansions for kinetic and exchange energies

    SciTech Connect

    Perdew, J.P.; Levy, M.; Painter, G.S.; Wei, S.; Lagowski, J.B.

    1988-01-15

    Errors in kinetic and exchange contributions to the molecular bonding energy are assessed for approximate density functionals by reference to near-exact Hartree-Fock values. From the molecular calculations of Allan et al. and of Lee and Ghosh, it is demonstrated that the density-gradient expansion does not accurately describe the noninteracting kinetic contribution to the bonding energy, even when this expansion is carried to fourth order and applied in its spin-density-functional form to accurate Hartree-Fock densities. In a related study, it is demonstrated that the overbinding of molecules such as N/sub 2/ and F/sub 2/, which occurs in the local-spin-density (LSD) approximation for the exchange-correlation energy, is not attributable to errors in the self-consistent LSD densities. Contrary to expectations based upon the Gunnarsson-Jones nodality argument, it is found that the LSD approximation for the exchange energy can seriously overbind a molecule even when bonding does not create additional nodes in the occupied valence orbitals. LSD and exact values for the exchange contribution to the bonding energy are displayed and discussed for several molecules.

  7. Monitoring High Velocity Salt Tracer via 4D Electrical Resistivity Tomography - Possibility for Salt Tracer Tomography

    NASA Astrophysics Data System (ADS)

    Doro, K. O.; Cirpka, O. A.; Patzelt, A.; Leven, C.

    2014-12-01

    Hydrogeological testing in a tomographic sequence as shown by the use of hydraulic tomography, allows an improvement of the spatial resolution of subsurface parameters. In this regard, recent studies show increasing interest in tracer tomography which involves sequential and spatially separated tracer injections and the measurement of their corresponding tracer breakthrough at different locations and depths. Such concentration measurements however require large experimental efforts and can be simplified by geophysical tracer monitoring techniques such as electrical resistivity. In this study, we present the use of 4-D, cross-hole electrical resistivity tomography (ERT) for monitoring salt tracer experiments in high velocity flow fields. For our study, we utilized a set up that enables the conduction of salt tracer experiments with complete recovery within 84 hours over a transport distance of 16 m. This allows the repetition of the experiments with different injection depths for a tomographic salt tracer testing. For ERT monitoring, we designed modular borehole electrodes for repeated usage in a flexible manner. We also assess the use of a high speed resistivity data acquisition mode for field scale tracer monitoring ensuring high spatial and temporal resolution without sacrificing data accuracy. We applied our approach at the Lauswiesen test site, Tübingen, Germany. In our 10 m × 10 m tracer monitoring domain with 16 borehole electrodes, we acquired 4650 data points in less than 18 minutes for each monitoring cycle. Inversion results show that the tracer could be successfully imaged using this approach. The results show that repeated salt tracer tests can be efficiently monitored at a high resolution with ERT which gives the possibility for salt tracer tomography at field scale. Our results also provide a data base for extending current hydrogeophysical inversion approaches to field scale data.

  8. A tracer-based inversion method for diagnosing eddy-induced diffusivity and advection

    NASA Astrophysics Data System (ADS)

    Bachman, S. D.; Fox-Kemper, B.; Bryan, F. O.

    2015-02-01

    A diagnosis method is presented which inverts a set of tracer flux statistics into an eddy-induced transport intended to apply for all tracers. The underlying assumption is that a linear flux-gradient relationship describes eddy-induced tracer transport, but a full tensor coefficient is assumed rather than a scalar coefficient which allows for down-gradient and skew transports. Thus, Lagrangian advection and anisotropic diffusion not necessarily aligned with the tracer gradient can be diagnosed. In this method, multiple passive tracers are initialized in an eddy-resolving flow simulation. Their spatially-averaged gradients form a matrix, where the gradient of each tracer is assumed to satisfy an identical flux-gradient relationship. The resulting linear system, which is overdetermined when using more than three tracers, is then solved to obtain an eddy transport tensor R which describes the eddy advection (antisymmetric part of R) and potentially anisotropic diffusion (symmetric part of R) in terms of coarse-grained variables. The mathematical basis for this inversion method is presented here, along with practical guidelines for its implementation. We present recommendations for initialization of the passive tracers, maintaining the required misalignment of the tracer gradients, correcting for nonconservative effects, and quantifying the error in the diagnosed transport tensor. A method is proposed to find unique, tracer-independent, distinct rotational and divergent Lagrangian transport operators, but the results indicate that these operators are not meaningfully relatable to tracer-independent eddy advection or diffusion. With the optimal method of diagnosis, the diagnosed transport tensor is capable of predicting the fluxes of other tracers that are withheld from the diagnosis, including even active tracers such as buoyancy, such that relative errors of 14% or less are found.

  9. Fires in Seasonally Dry Tropical Forest: Testing the Varying Constraints Hypothesis across a Regional Rainfall Gradient

    PubMed Central

    Mondal, Nandita; Sukumar, Raman

    2016-01-01

    The “varying constraints hypothesis” of fire in natural ecosystems postulates that the extent of fire in an ecosystem would differ according to the relative contribution of fuel load and fuel moisture available, factors that vary globally along a spatial gradient of climatic conditions. We examined if the globally widespread seasonally dry tropical forests (SDTFs) can be placed as a single entity in this framework by analyzing environmental influences on fire extent in a structurally diverse SDTF landscape in the Western Ghats of southern India, representative of similar forests in monsoonal south and southeast Asia. We used logistic regression to model fire extent with factors that represent fuel load and fuel moisture at two levels—the overall landscape and within four defined moisture regimes (between 700 and1700 mm yr-1)—using a dataset of area burnt and seasonal rainfall from 1990 to 2010. The landscape scale model showed that the extent of fire in a given year within this SDTF is dependent on the combined interaction of seasonal rainfall and extent burnt the previous year. Within individual moisture regimes the relative contribution of these factors to the annual extent burnt varied—early dry season rainfall (i.e., fuel moisture) was the predominant factor in the wettest regime, while wet season rainfall (i.e., fuel load) had a large influence on fire extent in the driest regime. Thus, the diverse structural vegetation types associated with SDTFs across a wide range of rainfall regimes would have to be examined at finer regional or local scales to understand the specific environmental drivers of fire. Our results could be extended to investigating fire-climate relationships in STDFs of monsoonal Asia. PMID:27441689

  10. Fires in Seasonally Dry Tropical Forest: Testing the Varying Constraints Hypothesis across a Regional Rainfall Gradient.

    PubMed

    Mondal, Nandita; Sukumar, Raman

    2016-01-01

    The "varying constraints hypothesis" of fire in natural ecosystems postulates that the extent of fire in an ecosystem would differ according to the relative contribution of fuel load and fuel moisture available, factors that vary globally along a spatial gradient of climatic conditions. We examined if the globally widespread seasonally dry tropical forests (SDTFs) can be placed as a single entity in this framework by analyzing environmental influences on fire extent in a structurally diverse SDTF landscape in the Western Ghats of southern India, representative of similar forests in monsoonal south and southeast Asia. We used logistic regression to model fire extent with factors that represent fuel load and fuel moisture at two levels-the overall landscape and within four defined moisture regimes (between 700 and1700 mm yr-1)-using a dataset of area burnt and seasonal rainfall from 1990 to 2010. The landscape scale model showed that the extent of fire in a given year within this SDTF is dependent on the combined interaction of seasonal rainfall and extent burnt the previous year. Within individual moisture regimes the relative contribution of these factors to the annual extent burnt varied-early dry season rainfall (i.e., fuel moisture) was the predominant factor in the wettest regime, while wet season rainfall (i.e., fuel load) had a large influence on fire extent in the driest regime. Thus, the diverse structural vegetation types associated with SDTFs across a wide range of rainfall regimes would have to be examined at finer regional or local scales to understand the specific environmental drivers of fire. Our results could be extended to investigating fire-climate relationships in STDFs of monsoonal Asia. PMID:27441689

  11. Dual-tracer receptor concentration imaging using tracers with different tissue delivery kinetics

    NASA Astrophysics Data System (ADS)

    Tichauer, Kenneth M.; Diop, Mamadou; Elliott, Jonathan T.; Samkoe, Kimberley S.; Hasan, Tayyaba; St. Lawrence, Keith; Pogue, Brian W.

    2014-03-01

    Simultaneous dynamic fluorescent imaging of a suitable untargeted tracer in conjunction with any molecular targeted fluorescent agent has been shown to be a powerful approach for quantifying cancer-specific cell surface receptors in vivo in the presence of non-specific uptake and tracer delivery variability. The identification of a "suitable" untargeted tracer (i.e., one having equivalent plasma and tissue delivery pharmacokinetics to the targeted tracer) for every targeted tracer, however, may not always be feasible or could require extensive testing. This work presents a "deconvolution" approach capable of correcting for plasma and tissue-delivery pharmacokinetic differences between tracers by quantifying dynamic differences in targeted and untargeted tracer uptake in a receptor-free tissue (one devoid of targeted molecular species) and correcting uptake in all other tissues accordingly. This deconvolution correction approach is evaluated in theoretical models and explored in an in vivo mouse xenograft model of human glioma. In the animal experiments, epidermal growth factor receptor (EGFR: a receptor known to be overexpressed in the investigated glioma cell line) was targeted using a fluorescent tracer with very different plasma pharmacokinetics than a second untargeted fluorescent tracer. Without correcting for these differences, the dual-tracer approach yielded substantially higher estimations of EGFR concentration in all tissues than expected; however, deconvolution correction was able to produce estimates that matched ex vivo validation.

  12. Tracer-level radioactive pilot-scale test of in situ vitrification for the stabilization of contaminated soil sites at ORNL

    SciTech Connect

    Spalding, B.P.; Jacobs, G.K.; Naney, M.T. ); Dunbar, N.W. ); Tixier, J.S.; Powell, T.D. )

    1992-11-01

    A field demonstration of in situ vitrification (ISV) was completed in May 1991, and produced approximately 12 Mg of melted earthen materials containing 12.7 mCi of radioactivity within 500 g of sludge in amodel of an old seepage trench waste disposal unit. Past waste disposal operations at Oak Ridge National Laboratory have left several contaminated seepage sites. In planning for remediation of such sites, ISV technology has been identified as a leading candidate because of the high risks associated with any retrieval option and because of the usual high quality of vitreous waste form. Major isotopes placed in the test trench were [sup 137]Cs and [sup 90]Sr, with lesser amounts of [sup 6O]Co, [sup 241]Am, and [sup 239,240]Pu. A total of 29 MWh of electrical power was delivered to the ground over a 5-day period producing a melt depth of 8.5 ft. During melting, 2.4% of the [sup 137]Cs volatilized from the melt into an off-gas containment hood and was captured quantitatively on a high efficiency particulate air filter. No volatilization of [sup 90]Sr, [sup 241]Am, or [sup 239,240]Pu was detected and > 99.993% retention of these isotopes in the melt was estimated. The use of added rare earth tracers (Ce, La, and Nd), as surrogates for transuranic isotopes, led to estimated melt retentions of >99.9995% during the test. The molten material, composed of the native soil and dolomitic limestone used for filling the test trench, reached a processing temperature of 1500[degrees]C. Standardized leaching procedures using Product Consistency Testing indicated that the ISV product has excellent characteristics relative to other vitreous nuclear waste forms.

  13. SOFI/Substrate integrity testing for cryogenic propellant tanks at extreme thermal gradient conditions

    NASA Astrophysics Data System (ADS)

    Haynes, M.; Fabian, P.

    2015-12-01

    Liquid propellant tank insulation for space flight requires low weight as well as high insulation factors. Use of Spray-On Foam Insulation (SOFI) is an accepted, cost effective technique for insulating a single wall cryogenic propellant tank and has been used extensively throughout the aerospace industry. Determining the bond integrity of the SOFI to the metallic substrate as well as its ability to withstand the in-service strains, both mechanical and thermal, is critical to the longevity of the insulation. This determination has previously been performed using highly volatile, explosive cryogens, which increases the test costs enormously, as well as greatly increasing the risk to both equipment and personnel. CTD has developed a new test system, based on a previous NASA test that simulates the mechanical and thermal strains associated with filling a large fuel tank with a cryogen. The test enables a relatively small SOFI/substrate sample to be monitored for any deformations, delaminations, or disjunctures during the cooling and mechanical straining process of the substrate, and enables the concurrent application of thermal and physical strains to two specimens at the same time. The thermal strains are applied by cooling the substrate to the desired cryogen temperature (from 4 K to 250 K) while maintaining the outside surface of the SOFI foam at ambient conditions. Multiple temperature monitoring points are exercised to ensure even cooling across the substrate, while at the same time, surface temperatures of the SOFI can be monitored to determine the heat flow. The system also allows for direct measurement of the strains in the substrate during the test. The test system as well as test data from testing at 20 K, for liquid Hydrogen simulation, will be discussed.

  14. Biological tracer method

    DOEpatents

    Strong-Gunderson, J.M.; Palumbo, A.V.

    1998-09-15

    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer. 2 figs.

  15. Biological tracer method

    DOEpatents

    Strong-Gunderson, Janet M.; Palumbo, Anthony V.

    1998-01-01

    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer.

  16. TESTING 24 {mu}m AND INFRARED LUMINOSITY AS STAR FORMATION TRACERS FOR GALACTIC STAR-FORMING REGIONS

    SciTech Connect

    Vutisalchavakul, Nalin; Evans, Neal J. II

    2013-03-10

    We have tested some relations for star formation rates used in extragalactic studies for regions within the Galaxy. In nearby molecular clouds, where the initial mass function is not fully sampled, the dust emission at 24 {mu}m greatly underestimates star formation rates (by a factor of 100 on average) when compared to star formation rates determined from counting young stellar objects. The total infrared emission does no better. In contrast, the total far-infrared method agrees within a factor of two on average with star formation rates based on radio continuum emission for massive, dense clumps that are forming enough massive stars to have L{sub TIR} exceed 10{sup 4.5} L{sub Sun }. The total infrared and 24 {mu}m also agree well with each other for both nearby, low-mass star-forming regions and the massive, dense clump regions.

  17. A test for community saturation along the Himalayan bird diversity gradient, based on within-species geographical variation.

    PubMed

    Ghosh-Harihar, Mousumi; Price, Trevor D

    2014-05-01

    The idea that ecological communities are unsaturated is central to many explanations for regional gradients in species diversity. We describe a test for differing degrees of saturation across a regional diversity gradient, based on within-species geographical variation in ecological attributes. If communities in species-poor regions are less saturated than communities in species-rich regions, species that straddle both regions should have broader niches in species-poor regions, exploiting resources that are consumed by other species in species-rich regions. We studied 10 species of Old World leaf warblers that range across the Himalayas. Elevational range and feeding method showed niche contractions in the species-poor north-west Himalayas with respect to the species-rich south-east Himalayas, whereas prey size did not vary geographically. Niche contractions are contrary to the expectation of character release in depauperate environments, as has been shown, for example in mainland-island comparisons. We show that arthropod abundances are likely a limiting resource, and that niche contractions are consistent with measurements of a narrowing of resource availability. Results suggest that north-western warbler communities are at least as saturated as the south-east and that lower resource diversity drives reduced species numbers. PMID:24219104

  18. Analytic energy gradient of excited electronic state within TDDFT/MMpol framework: Benchmark tests and parallel implementation

    SciTech Connect

    Zeng, Qiao; Liang, WanZhen

    2015-10-07

    The time-dependent density functional theory (TDDFT) has become the most popular method to calculate the electronic excitation energies, describe the excited-state properties, and perform the excited-state geometric optimization of medium and large-size molecules due to the implementation of analytic excited-state energy gradient and Hessian in many electronic structure software packages. To describe the molecules in condensed phase, one usually adopts the computationally efficient hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) models. Here, we extend our previous work on the energy gradient of TDDFT/MM excited state to account for the mutual polarization effects between QM and MM regions, which is believed to hold a crucial position in the potential energy surface of molecular systems when the photoexcitation-induced charge rearrangement in the QM region is drastic. The implementation of a simple polarizable TDDFT/MM (TDDFT/MMpol) model in Q-Chem/CHARMM interface with both the linear response and the state-specific features has been realized. Several benchmark tests and preliminary applications are exhibited to confirm our implementation and assess the effects of different treatment of environmental polarization on the excited-state properties, and the efficiency of parallel implementation is demonstrated as well.

  19. Spatial resolution of the pain system: a proximal-to-distal gradient of sensitivity revealed with psychophysical testing.

    PubMed

    Weissman-Fogel, Irit; Brayer-Zwi, Nurit; Defrin, Ruth

    2012-01-01

    The spatial resolution of the pain system has not been studied in depth, and results are contradictory regarding the gradient of spatial resolution. Microneurographic recordings have revealed smaller receptive fields and higher density of nociceptors in more distal than proximal leg regions, whereas histological studies report higher density of C-fibers in more proximal than distal body regions. Due to this controversy, we conducted various psychophysical tests in order to examine the nociceptive spatial resolution and its gradient. Heat-pain threshold (HPT), perceived pain intensity, spatial summation (SS) of pain, two-point discrimination (2PD) of pain, and pain localization were measured in four body regions: upper back, thigh, lower leg, and foot. The highest HPT was demonstrated in the lower leg as compared with more proximal regions (P < 0.0001). SS was observed in all the regions and was found to be smallest in the foot (P < 0.05). The smallest 2PD and localization distances were found in the foot (P < 0.01) as compared with the lower leg and upper back. It appears that the nociceptive spatial resolution has a proximal-to-distal pattern of performance, namely that the spatial resolution of pain is finer in more distal than proximal body regions, similar to that of the touch system.

  20. Analytic energy gradient of excited electronic state within TDDFT/MMpol framework: Benchmark tests and parallel implementation.

    PubMed

    Zeng, Qiao; Liang, WanZhen

    2015-10-01

    The time-dependent density functional theory (TDDFT) has become the most popular method to calculate the electronic excitation energies, describe the excited-state properties, and perform the excited-state geometric optimization of medium and large-size molecules due to the implementation of analytic excited-state energy gradient and Hessian in many electronic structure software packages. To describe the molecules in condensed phase, one usually adopts the computationally efficient hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) models. Here, we extend our previous work on the energy gradient of TDDFT/MM excited state to account for the mutual polarization effects between QM and MM regions, which is believed to hold a crucial position in the potential energy surface of molecular systems when the photoexcitation-induced charge rearrangement in the QM region is drastic. The implementation of a simple polarizable TDDFT/MM (TDDFT/MMpol) model in Q-Chem/CHARMM interface with both the linear response and the state-specific features has been realized. Several benchmark tests and preliminary applications are exhibited to confirm our implementation and assess the effects of different treatment of environmental polarization on the excited-state properties, and the efficiency of parallel implementation is demonstrated as well. PMID:26450289

  1. Analytic energy gradient of excited electronic state within TDDFT/MMpol framework: Benchmark tests and parallel implementation.

    PubMed

    Zeng, Qiao; Liang, WanZhen

    2015-10-01

    The time-dependent density functional theory (TDDFT) has become the most popular method to calculate the electronic excitation energies, describe the excited-state properties, and perform the excited-state geometric optimization of medium and large-size molecules due to the implementation of analytic excited-state energy gradient and Hessian in many electronic structure software packages. To describe the molecules in condensed phase, one usually adopts the computationally efficient hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) models. Here, we extend our previous work on the energy gradient of TDDFT/MM excited state to account for the mutual polarization effects between QM and MM regions, which is believed to hold a crucial position in the potential energy surface of molecular systems when the photoexcitation-induced charge rearrangement in the QM region is drastic. The implementation of a simple polarizable TDDFT/MM (TDDFT/MMpol) model in Q-Chem/CHARMM interface with both the linear response and the state-specific features has been realized. Several benchmark tests and preliminary applications are exhibited to confirm our implementation and assess the effects of different treatment of environmental polarization on the excited-state properties, and the efficiency of parallel implementation is demonstrated as well.

  2. Calorimeter measures high nuclear heating rates and their gradients across a reactor test hole

    NASA Technical Reports Server (NTRS)

    Burwell, D.; Coombe, J. R.; Mc Bride, J.

    1970-01-01

    Pedestal-type calorimeter measures gamma-ray heating rates from 0.5 to 7.0 watts per gram of aluminum. Nuclear heating rate is a function of cylinder temperature change, measured by four chromel-alumel thermocouples attached to the calorimeter, and known thermoconductivity of the tested material.

  3. Bacteriophages as surface and ground water tracers

    NASA Astrophysics Data System (ADS)

    Rossi, P.; Dörfliger, N.; Kennedy, K.; Müller, I.; Aragno, M.

    Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra). In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  4. Testing fine sediment connectivity hypotheses using fallout radionuclide tracers in a small catchment with badlands. Vallcebre Research Catchments (NE Spain)

    NASA Astrophysics Data System (ADS)

    Gallart, Francesc; Latron, Jérôme; Vuolo, Diego; Martínez-Carreras, Núria; Pérez-Gallego, Nuria; Ferrer, Laura; Estrany, Joan

    2016-04-01

    . Indeed, long residence time of stream bed sediments allowing FRN accumulation is suggested by (i) fine in-stream sediment activities higher than those measured at their sources and (ii) increasing activities downstream. Results showed a more intricate behaviour than expected. Pbx-210 activities of fine bed and suspended sediments were usually below detectable levels or had large uncertainty bounds, confirming that they come mainly from fresh rocks but making difficult the hypotheses testing. Fine sediments on the stream beds had low activities in contradiction with hypothesis 2. Activities of in-stream suspended sediments partly followed hypothesis 1 but they decreased with the increasing capacity of runoff events to mobilise low-activity sediments from the stream bed. Shorter-lived Be-7 activity was detectable only on badland regoliths and suspended sediments, with activities increasing downstream; this cannot be attributed to the accumulation of FRN in old sediments, because of the short life of Be-7. Instead, fine bed sediments might be brought into suspension by raindrop impacts, and most of the FRN content of these raindrops would be flushed with the suspended sediment, impeding its accumulation on bed sediments and disabling hypothesis 2. Overall, several lines of evidence suggest that FRNs were quickly sequestered by the more dynamic sediment particles, preventing its accumulation on coarser sediment particles and surfaces exposed to overland or stream flow.

  5. Tracer Lamination in the Stratosphere: A Global Climatology

    NASA Technical Reports Server (NTRS)

    Appenzeller, Christof; Holton, James R.

    1997-01-01

    Vertical soundings of stratospheric ozone often exhibit laminated tracer structures characterized by strong vertical tracer gradients. The change in time of these gradients is used to define a tracer lamination rate. It is shown that this quantity can be calculated by the cross product of the horizontal temperature and horizontal tracer gradients. A climatology based on UARS satellite-borne ozone data and on ozone-like pseudotracer data is presented. Three stratospheric regions with high lamination rates were found: the part of the stratospheric overworld which is influenced by the polar vortex, the part of the lowermost stratosphere which is influenced by the tropopause and a third region in the subtropical lower stratosphere mainly characterized with strong vertical shear. High lamination rates in the stratospheric overworld were absent during summer, whereas in the lowermost stratosphere high lamination rates were found year-round. This is consistent with the occurrence and seasonal variation of the horizontal tracer gradient and vertical shear necessary for tilting the tracer surfaces. During winter, high lamination rates associated with the stratospheric polar vortex are present down to approximately 100 hPa. Several features of the derived climatology are roughly consistent with earlier balloon-borne studies. The patterns in the southern and northern hemisphere are comparable, but details differ as anticipated from a less disturbed and more symmetric southern polar vortex.

  6. Nonlinear Advection Algorithms Applied to Inter-related Tracers: Errors and Implications for Modeling Aerosol-Cloud Interactions

    SciTech Connect

    Ovtchinnikov, Mikhail; Easter, Richard C.

    2009-02-01

    Monotonicity constraints and gradient preserving flux corrections employed by many advection algorithms used in atmospheric models make these algorithms non-linear. Consequently, any relations among model variables transported separately are not necessarily preserved in such models. These errors cannot be revealed by traditional algorithm testing based on advection of a single tracer. New type of tests are developed and conducted to evaluate the preservation of a sum of several number mixing ratios advected independently of each other, as is the case, for example, in models using bin or sectional representation of aerosol or cloud particle size distribution. The tests show that when three tracers are advected in 1D uniform constant velocity flow, local errors in the sum can be on the order of 10%. When cloud-like interactions are allowed among the tracers, errors in total sum of three mixing ratios can reach up to 30%. Several approaches to eliminate the error are suggested, all based on advecting the sum as a separate variable and then normalizing mixing ratios for individual tracers to match the total sum. A simple scalar normalization preserves the total number mixing ratio and positive definiteness of the variables but the monotonicity constraint for individual tracers is no longer maintained. More involved flux normalization procedures are developed for the flux based advection algorithms to maintain the monotonicity for individual scalars and their sum.

  7. Tracer-based prediction of thermal reservoir lifetime: scope, limitations, and the role of thermosensitive tracers

    NASA Astrophysics Data System (ADS)

    Ghergut, I.; Behrens, H.; Karmakar, S.; Licha, T.; Nottebohm, M.; Sauter, M.

    2012-04-01

    Thermal-lifetime prediction is a traditional endeavour of inter-well tracer tests conducted in geothermal reservoirs. Early tracer test signals (detectable within the first few years of operation) are expected to correlate with late-time production temperature evolutions ('thermal breakthrough', supposed to not occur before some decades of operation) of a geothermal reservoir. Whenever a geothermal reservoir can be described as a single-fracture system, its thermal lifetime will, ideally, be determined by two parameters (say, fracture aperture and porosity), whose inversion from conservative-tracer test signals is straightforward and non-ambiguous (provided that the tracer tests, and their interpretation, are performed in accordance to the rules of the art). However, as soon as only 'few more' fractures are considered, this clear-cut correlation is broken. A given geothermal reservoir can simultaneously feature a single-fracture behaviour, in terms of heat transport, and a multiple-fracture behaviour, in terms of solute tracer transport (or vice-versa), whose effective values of fracture apertures, spacings, and porosities are essentially uncorrelated between heat and solute tracers. Solute transport parameters derived from conservative-tracer tests will no longer characterize the heat transport processes (and thus temperature evolutions) taking place in the same reservoir. Parameters determining its thermal lifetime will remain 'invisible' to conservative tracers in inter-well tests. We demonstrate this issue at the example of a five-fracture system, representing a deep-geothermal reservoir, with well-doublet placement inducing fluid flow 'obliquely' to the fractures. Thermal breakthrough in this system is found to strongly depend on fracture apertures, whereas conservative-solute tracer signals from inter-well tests in the same system do not show a clear-cut correlation with fracture apertures. Only by using thermosensitive substances as tracers, a reliable

  8. Vertical Diffusivities of Active and Passive Tracers

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Cheng, Y.; Howard, A. M.

    2010-01-01

    The climate models that include a carbon-cycle need the vertical diffusivity of a passive tracer. Since an expression for the latter is not available, it has been common practice to identify it with that of salt. The identification is questionable since T, S are active, not passive tracers. We present the first derivation of the diffusivity of a passive tracer in terms of Ri (Richardson number) and Rq (density ratio, ratio of salinity over temperature z-gradients). The following results have emerged: (a) The passive tracer diffusivity is an algebraic function of Ri, Rq. (b) In doubly stable regimes (DS, partial derivative of T with respect to z > 0, partial derivative of S with respect to z < 0), the passive scalar diffusivity is nearly the same as that of salt/heat for any values of Rq < 0 and Ri > 0. (c) In DC regimes (diffusive convection, partial derivative of T with respect to z < 0, partial derivative of S with respect to z < 0, Rq > 1), the passive scalar diffusivity is larger than that of salt. At Ri = O(1), it can be more than twice as large. (d) In SF regimes (salt fingers, partial derivative of T with respect to z > 0, partial derivative of S with respect to z > 0, Rq < 1), the passive scalar diffusivity is smaller than that of salt. At Ri = O(1), it can be less than half of it. (e) The passive tracer diffusivity predicted at the location of NATRE (North Atlantic Tracer Release Experiment) is discussed. (f) Perhaps the most relevant conclusion is that the common identification of the tracer diffusivity with that of salt is valid only in DS regimes. In the Southern Ocean, where there is the largest CO2 absorption, the dominant regime is diffusive convection discussed in (c) above.

  9. Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish cell line (RTgill-W1)--towards water toxicity testing.

    PubMed

    Glawdel, Tomasz; Elbuken, Caglar; Lee, Lucy E J; Ren, Carolyn L

    2009-11-21

    This study presents a microfluidic system that incorporates electroosmotic pumps, a concentration gradient generator and a fish cell line (rainbow trout gill) to perform toxicity testing on fish cells seeded in the system. The system consists of three mechanical components: (1) a toxicity testing chip containing a microfluidic gradient generator which creates a linear concentration distribution of toxicant in a cell test chamber, (2) an electroosmotic (EO) pump chip that controls the flow rate and operation of the toxicity chip, and (3) indirect reservoirs that connect the two chips allowing for the toxicant solution to be pumped separately from the electroosmotic pump solution. The flow rate and stability of the EO pumps was measured and tested by monitoring the gradient generator using fluorescence microscopy. Furthermore, a lethality test was performed with this system setup using a rainbow trout gill cell line (RTgill-W1) as the test cells and sodium dodecyl sulfate as a model toxicant. A gradient of sodium dodecyl sulfate, from 0 to 50 microg mL(-1), was applied for 1 hr to the attached cells, and the results were quantified using a Live/Dead cell assay. This work is a preliminary study on the application of EO pumps in a living cell assay, with the potential to use the pumps in portable water quality testing devices with RTgill-W1 cells as the biosensors. PMID:19865731

  10. Tracer attenuation in groundwater

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  11. Does nitrogen saturation theory apply to unpolluted temperate forests? A test along a forest soil nitrogen gradient in Oregon

    NASA Astrophysics Data System (ADS)

    Perakis, S. S.; Sinkhorn, E. R.

    2011-12-01

    Natural gradients of soil nitrogen (N) can be used to evaluate the consequences of long-term ecosystem N enrichment, and to test the applicability of N saturation theory as a general framework for understanding ecosystem N dynamics. Temperate forest soils of the Oregon Coast Range experience low rates of atmospheric N deposition, yet display among the highest soil N accumulations ever reported worldwide. We measured plant and soil (0-1m) N stocks and natural abundance delta15N, plant production, N uptake and return in litterfall, soil gross and net N mineralization rates, and hydrologic N losses of nine Douglas-fir forests growing across an exceptionally wide soil N gradient in the Oregon Coast Range. Ecosystem N content ranged from 8,788 to 22,667 kg N/ha across sites, with highest N accumulations near the coast, and 96-98% of total ecosystem N residing in mineral soil. Ecosystem delta15N displayed a curvilinear relationship with ecosystem N content that reflected competing influences of N input from biological fixation at low-N sites and fractionating N losses at high-N sites. Simulation modeling of ecosystem N and delta15N mass balance suggest that cycles of wildfire can promote unusually high natural N accumulation by fostering early successional biological nitrogen fixation. Surface mineral soil (0 - 10 cm) N concentrations were tightly correlated to total soil N stocks to 1 m depth, and in contrast to predictions of N saturation theory, were linearly related to 10-fold variation in net N mineralization from 8 - 82 kg N/ha-yr. Net N mineralization was unrelated to soil C:N, soil texture, precipitation and temperature differences among sites. Net nitrification accounted for < 20% of net N mineralization at low N sites, increasing to 85 - 100% of net N mineralization at intermediate and high N sites, and was associated with soil pH decline from 5.8 to 4.1 across sites. The ratio of net:gross N mineralization and nitrification increased along the gradient

  12. Tracer diffusion inside fibrinogen layers.

    PubMed

    Cieśla, Michał; Gudowska-Nowak, Ewa; Sagués, Francesc; Sokolov, Igor M

    2014-01-28

    We investigate the obstructed motion of tracer (test) particles in crowded environments by carrying simulations of two-dimensional Gaussian random walk in model fibrinogen monolayers of different orientational ordering. The fibrinogen molecules are significantly anisotropic and therefore they can form structures where orientational ordering, similar to the one observed in nematic liquid crystals, appears. The work focuses on the dependence between level of the orientational order (degree of environmental crowding) of fibrinogen molecules inside a layer and non-Fickian character of the diffusion process of spherical tracer particles moving within the domain. It is shown that in general particles motion is subdiffusive and strongly anisotropic, and its characteristic features significantly change with the orientational order parameter, concentration of fibrinogens, and radius of a diffusing probe. PMID:25669566

  13. Experimental design for estimating parameters of rate-limited mass transfer: Analysis of stream tracer studies

    NASA Astrophysics Data System (ADS)

    Wagner, Brian J.; Harvey, Judson W.

    Tracer experiments are valuable tools for analyzing the transport characteristics of streams and their interactions with shallow groundwater. The focus of this work is the design of tracer studies in high-gradient stream systems subject to advection, dispersion, groundwater inflow, and exchange between the active channel and zones in surface or subsurface water where flow is stagnant or slow moving. We present a methodology for (1) evaluating and comparing alternative stream tracer experiment designs and (2) identifying those combinations of stream transport properties that pose limitations to parameter estimation and therefore a challenge to tracer test design. The methodology uses the concept of global parameter uncertainty analysis, which couples solute transport simulation with parameter uncertainty analysis in a Monte Carlo framework. Two general conclusions resulted from this work. First, the solute injection and sampling strategy has an important effect on the reliability of transport parameter estimates. We found that constant injection with sampling through concentration rise, plateau, and fall provided considerably more reliable parameter estimates than a pulse injection across the spectrum of transport scenarios likely encountered in high-gradient streams. Second, for a given tracer test design, the uncertainties in mass transfer and storage-zone parameter estimates are strongly dependent on the experimental Damkohler number, DaI, which is a dimensionless combination of the rates of exchange between the stream and storage zones, the stream-water velocity, and the stream reach length of the experiment. Parameter uncertainties are lowest at DaI values on the order of 1.0. When DaI values are much less than 1.0 (owing to high velocity, long exchange timescale, and/or short reach length), parameter uncertainties are high because only a small amount of tracer interacts with storage zones in the reach. For the opposite conditions (DaI>>1.0), solute exchange

  14. Experimental design for estimating parameters of rate-limited mass transfer: Analysis of stream tracer studies

    USGS Publications Warehouse

    Wagner, B.J.; Harvey, J.W.

    1997-01-01

    Tracer experiments are valuable tools for analyzing the transport characteristics of streams and their interactions with shallow groundwater. The focus of this work is the design of tracer studies in high-gradient stream systems subject to advection, dispersion, groundwater inflow, and exchange between the active channel and zones in surface or subsurface water where flow is stagnant or slow moving. We present a methodology for (1) evaluating and comparing alternative stream tracer experiment designs and (2) identifying those combinations of stream transport properties that pose limitations to parameter estimation and therefore a challenge to tracer test design. The methodology uses the concept of global parameter uncertainty analysis, which couples solute transport simulation with parameter uncertainty analysis in a Monte Carlo framework. Two general conclusions resulted from this work. First, the solute injection and sampling strategy has an important effect on the reliability of transport parameter estimates. We found that constant injection with sampling through concentration rise, plateau, and fall provided considerably more reliable parameter estimates than a pulse injection across the spectrum of transport scenarios likely encountered in high-gradient streams. Second, for a given tracer test design, the uncertainties in mass transfer and storage-zone parameter estimates are strongly dependent on the experimental Damkohler number, DaI, which is a dimensionless combination of the rates of exchange between the stream and storage zones, the stream-water velocity, and the stream reach length of the experiment. Parameter uncertainties are lowest at DaI values on the order of 1.0. When DaI values are much less than 1.0 (owing to high velocity, long exchange timescale, and/or short reach length), parameter uncertainties are high because only a small amount of tracer interacts with storage zones in the reach. For the opposite conditions (DaI >> 1.0), solute exchange

  15. ANALYSIS OF ESTUARINE TRACER-GAS TRANSPORT AND DESORPTION.

    USGS Publications Warehouse

    Bales, Jerad D.; Holley, Edward R.

    1987-01-01

    The riverine tracer-gas technique provides a direct, reach-averaged measure of gas exchange, is fairly simple to implement, and is widely accepted for determining reaeration-rate coefficients in rivers. The method, however, is not directly applicable to flows having vertical density gradients. Consequently, studies were undertaken to develop and evaluate methods for obtaining surface-exchange coefficients from estuarine tracer-gas data. Reasonable estimates of the desorption coefficient (within 50 percent of the correct value) were obtained when an analytical solution of the transport equation was compared with data from a numerically simulated continuous release of tracer gas.

  16. Scaling up from traits to communities to ecosystems across broad climate gradients: Testing Metabolic Scaling Theories predictions for forests

    NASA Astrophysics Data System (ADS)

    Enquist, B. J.; Michaletz, S. T.; Buzzard, V.

    2015-12-01

    Key insights in global ecology will come from mechanistically linking pattern and process across scales. Macrosystems ecology specifically attempts to link ecological processes across spatiotemporal scales. The goal s to link the processing of energy and nutrients from cells all the way ecosystems and to understand how shifting climate influences ecosystem processes. Using new data collected from NSF funded Macrosystems project we report on new findings from forests sites across a broad temperature gradient. Our study sites span tropical, temperate, and high elevation forests we assess several key predictions and assumptions of Metabolic Scaling Theory (MST) as well as several other competing hypotheses for the role of climate, light, and plant traits on influencing forest demography and forest ecosystems. Specifically, we assess the importance of plant size, light limitation, size structure, and various climatic factors on forest growth, demography, and ecosystem functioning. We provide some of the first systematic tests of several key predictions from MST. We show that MST predictions are largely upheld and that new insights from assessing theories predictions yields new observations and findings that help modify and extend MST's predictions and applicability. We discuss how theory is critically needed to further our understanding of how to scale pattern and process in ecology - from traits to ecosystems - in order to develop a more predictive global change biology.

  17. Geophysical monitoring of solute transport in dual-domain environments through laboratory experiments, field-scale solute tracer tests, and numerical simulation

    NASA Astrophysics Data System (ADS)

    Swanson, Ryan David

    The advection-dispersion equation (ADE) fails to describe non-Fickian solute transport breakthrough curves (BTCs) in saturated porous media in both laboratory and field experiments, necessitating the use of other models. The dual-domain mass transfer (DDMT) model partitions the total porosity into mobile and less-mobile domains with an exchange of mass between the two domains, and this model can reproduce better fits to BTCs in many systems than ADE-based models. However, direct experimental estimation of DDMT model parameters remains elusive and model parameters are often calculated a posteriori by an optimization procedure. Here, we investigate the use of geophysical tools (direct-current resistivity, nuclear magnetic resonance, and complex conductivity) to estimate these model parameters directly. We use two different samples of the zeolite clinoptilolite, a material shown to demonstrate solute mass transfer due to a significant internal porosity, and provide the first evidence that direct-current electrical methods can track solute movement into and out of a less-mobile pore space in controlled laboratory experiments. We quantify the effects of assuming single-rate DDMT for multirate mass transfer systems. We analyze pore structures using material characterization methods (mercury porosimetry, scanning electron microscopy, and X-ray computer tomography), and compare these observations to geophysical measurements. Nuclear magnetic resonance in conjunction with direct-current resistivity measurements can constrain mobile and less-mobile porosities, but complex conductivity may have little value in relation to mass transfer despite the hypothesis that mass transfer and complex conductivity lengths scales are related. Finally, we conduct a geoelectrical monitored tracer test at the Macrodispersion Experiment (MADE) site in Columbus, MS. We relate hydraulic and electrical conductivity measurements to generate a 3D hydraulic conductivity field, and compare to

  18. Is fully coupled hydrogeophysical inversion really better than uncoupled? A comparison study using ensemble Kalman filter assimilation of ERT-monitored tracer test data. (Invited)

    NASA Astrophysics Data System (ADS)

    Camporese, M.; Cassiani, G.; Deiana, R.; Salandin, P.; Binley, A. M.

    2013-12-01

    Recent advances in geophysical methods have been increasingly exploited as inverse modeling tools in groundwater hydrology. In particular, several attempts to constrain the hydrogeophysical inverse problem to reduce inversion error have been made using time-lapse geophysical measurements through both coupled and uncoupled inversion approaches. On one hand, the main advantage of coupled approaches is that the numerical models for the geophysical and hydrological processes are linked together such that the geophysical data are inverted directly for the hydrological properties of interest, avoiding artifacts related to the classical geophysical inversions. On the other hand, uncoupled approaches, relying upon a geophysical inversion that is carried out before estimating the hydrological variable of interest, could reveal something about the process that is not accounted for in a model, i.e., they are not constrained by the conceptualization of the hydrological model. In spite of the appeal and popularity of fully coupled inversion approaches, their superiority over more traditional uncoupled methods still needs to be objectively proven; the aim of this work is to shed some light on this debate. An approach based on the Lagrangian formulation of transport and the ensemble Kalman filter (EnKF) is here applied to assess the spatial distribution of hydraulic conductivity (K) by assimilating time-lapse cross-hole electrical resistivity tomography (ERT) data generated for a synthetic tracer test in a heterogeneous aquifer. In the coupled version of the proposed inverse modeling approach, the K distribution is retrieved by assimilating raw ERT resistance data without the need for a preliminary geoelectrical inversion. In the uncoupled version, K is estimated by assimilating electrical conductivity data derived from a previously performed classical geophysical inversion of the same resistance dataset. We compare the performance of the two approaches in a number of simulation

  19. Geologic flow characterization using tracer techniques

    SciTech Connect

    Klett, R. D.; Tyner, C. E.; Hertel, Jr., E. S.

    1981-04-01

    A new tracer flow-test system has been developed for in situ characterization of geologic formations. This report describes two sets of test equipment: one portable and one for testing in deep formations. Equations are derived for in situ detector calibration, raw data reduction, and flow logging. Data analysis techniques are presented for computing porosity and permeability in unconfined isotropic media, and porosity, permeability and fracture characteristics in media with confined or unconfined two-dimensional flow. The effects of tracer pulse spreading due to divergence, dispersion, and porous formations are also included.

  20. Tracer Partitioning in Two-Phase Flow

    NASA Astrophysics Data System (ADS)

    Sathaye, K.; Hesse, M. A.

    2012-12-01

    The concentration distributions of geochemical tracers in a subsurface reservoir can be used as an indication of the reservoir flow paths and constituent fluid origin. In this case, we are motivated by the origin of marked geochemical gradients in the Bravo Dome natural CO2 reservoir in northeastern New Mexico. This reservoir contains 99% CO2 with various trace noble gas components and overlies the formation brine in a sloping aquifer. It is thought that magmatic CO2 entered the reservoir, and displaced the brine. This displacement created gradients in the concentrations of the noble gases. Two models to explain noble gas partitioning in two-phase flow are presented here. The first model assumes that the noble gases act as tracers and uses a first order non-linear partial differential equation to compute the volume fraction of each phase along the displament path. A one-way coupled partial differential equation determines the tracer concentration, which has no effect on the overall flow or phase saturations. The second model treats each noble gas as a regular component resulting in a three-component, two-phase system. As the noble gas injection concentration goes to zero, we see the three-component system behave like the one-way coupled system of the first model. Both the analytical and numerical solutions are presented for these models. For the process of a gas displacing a liquid, we see that a noble gas tracer with greater preference for the gas phase, such as Helium, will move more quickly along the flowpath than a heavier tracer that will more easily enter the liquid phase, such as Argon. When we include partial miscibility of both the major and trace components, these differences in speed are shown in a bank of the tracer at the saturation front. In the three component model, the noble gas bank has finite width and concentration. In the limit where the noble gas is treated as a tracer, the width of the bank is zero and the concentration increases linearly

  1. Testing Cort-Fitness and Cort-Adaptation hypotheses in a habitat suitability gradient for roe deer

    NASA Astrophysics Data System (ADS)

    Escribano-Avila, Gema; Pettorelli, Nathalie; Virgós, Emilio; Lara-Romero, Carlos; Lozano, Jorge; Barja, Isabel; Cuadra, Felipe S.; Puerta, Marisa

    2013-11-01

    According to the Cort-Fitness Hypothesis, higher stress levels (glucocorticoids) in vertebrates are correlated to lower fitness. However, recent studies have failed to validate this hypothesis. A proposed wider framework suggests that reproduction can be perceived as an overload adds up to other environmental challenges that individuals must adjust to. In this case, elevated glucocorticoids could help individuals to allocate resources to reproduction without comprising other functions, leading to the expectation of a positive cort-fitness relationship. This has been proposed as the Cort-Adaptation Hypothesis. Stress levels result from a complex interaction between the environment and the neuroendocrine system of animals. Accounting for physiological functions involved in how animals cope with their environment would help to clarify the relationship between glucocorticoids and animal performance. We used roe deer (Capreolus capreolus) inhabiting diverse habitats in the Iberian Peninsula to: i) test the Cort-Fitness and Cort-Adaptation hypotheses by indexing fitness using a comprehensive physiological approach which takes into account fundamental physiological functions and their trade-offs; and ii) evaluate the link between primary productivity and individuals' condition in a seasonal environment. We evaluated spatial and temporal variation in stress levels, reproductive hormone levels, nutritional status and immune function from fecal samples collected in 2010. Lower stress levels were related to better condition in non-reproductive seasons but not to higher primary productivity. In contrast, stress levels were always positively related to reproductive condition, which was better in most productive habitats. Summer and winter were the less productive seasons and the more challenging for the species in the habitat gradient studied. In winter, reproductive condition traded off against immune function being biased toward immune function in less productive habitats. In

  2. Results from Geothermal Logging, Air and Core-Water Chemistry Sampling, Air Injection Testing and Tracer Testing in the Northern Ghost Dance Fault, YUCCA Mountain, Nevada, November 1996 to August 1998

    SciTech Connect

    Lecain, G.D.; Anna, L.O.; Fahy, M.F.

    1998-08-01

    Geothermal logging, air and core-water chemistry sampling, air-injection testing, and tracer testing were done in the northern Ghost Dance Fault at Yucca Mountain, Nevada, from November 1996 to August 1998. The study was done by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy. The fault-testing drill room and test boreholes were located in the crystal-poor, middle nonlithophysal zone of the Topopah Spring Tuff, a tuff deposit of Miocene age. The drill room is located off the Yucca Mountain underground Exploratory Studies Facility at about 230 meters below ground surface. Borehole geothermal logging identified a temperature decrease of 0.1 degree Celsius near the Ghost Dance Fault. The temperature decrease could indicate movement of cooler air or water, or both, down the fault, or it may be due to drilling-induced evaporative or adiabatic cooling. In-situ pneumatic pressure monitoring indicated that barometric pressure changes were transmitted from the ground surface to depth through the Ghost Dance Fault. Values of carbon dioxide and delta carbon-13 from gas samples indicated that air from the underground drill room had penetrated the tuff, supporting the concept of a well-developed fracture system. Uncorrected carbon-14-age estimates from gas samples ranged from 2,400 to 4,500 years. Tritium levels in borehole core water indicated that the fault may have been a conduit for the transport of water from the ground surface to depth during the last 100 years.

  3. Universal tracer monitored titrations.

    PubMed

    DeGrandpre, Michael D; Martz, Todd R; Hart, Robert D; Elison, David M; Zhang, Alice; Bahnson, Anna G

    2011-12-15

    Titrations, while primarily known as the chemical rite of passage for fledgling science students, are still widely used for chemical analysis. With its many years of existence and improvement, the method would seem an unlikely candidate for innovation, yet it is desirable, in this age of autonomous sensing where analyzers may be sent into space or to the bottom of the ocean, to have a simplified titrimetric method that does not rely upon volumetric or gravimetric measurement of sample and titrant. In previous work on the measurement of seawater alkalinity, we found that use of a tracer in the titrant eliminates the need to measure mass or volume. Here, we show the versatility of the method for diverse types of titrations and tracers. The results suggest that tracers may be employed in all types of titrations, opening the door for greatly simplified laboratory and field-based chemical analysis.

  4. A Method of Evaluating Atmospheric Models Using Tracer Measurements.

    NASA Astrophysics Data System (ADS)

    Korain, Darko; Frye, James; Isakov, Vlad

    2000-02-01

    tracer potential is constructed for each daily tracer measurement, and this tracer potential is used to normalize the relative success of the wind fields in reproducing the transport of tracers. The method is not sensitive to the exact form of the cost function because a test with an inverse square root dependence in the cost function rather than an inverse linear distance dependence ranked the wind fields in the same order. The method requires sufficient spatial coverage of tracer receptors in the vicinity of a source and primarily gives credit to the wind fields that are able to approach areas with high tracer concentrations. The method can quantitatively determine which wind fields are best able to reproduce the main transport of tracers and can be used to determine the most successful wind fields to serve as a solid base for necessary improvement of dispersion models. It can also be used as a screening method prior to using dispersion models. Since the measured tracer concentrations are affected by both transport and dispersion, however, the method does not evaluate the capabilities of successful wind fields, as input to dispersion algorithms, to create tracer concentrations at receptors that are similar to measured ones. The tracer potential method has been applied to data from a comprehensive field program that included tracer measurements and was conducted in the Colorado River Valley area in the southwestern United States in 1992. Wind fields obtained from four atmospheric models as well as those derived from the wind profiler measurements were tested, and the results of their comparison are presented. Since data from the tracer experiment are publicly available, this developed method can be used to test other atmospheric models.

  5. B-10 enriched boric acid, bromide, and heat as tracers of recycled groundwater flow near managed aquifer recharge operations

    NASA Astrophysics Data System (ADS)

    Clark, J. F.; Becker, T.; Johnson, T. A.

    2013-12-01

    Recycling wastewater for potable and nonpotable use by artificially recharging aquifers is a decades-old but increasingly popular practice. Natural attenuation processes in the subsurface, known as soil aquifer treatment (SAT), purify recycled water during recharge and subsequent groundwater flow. Travel time criteria are often used to regulate managed aquifer recharge (MAR) operations. California state draft regulations currently gives preference to groundwater tracers to quantify underground residence time, with a target retention time of >6 months from infiltration to drinking water extraction for surface spreading projects using tertiary treated wastewater (less time may be possible if full advanced treated water is utilized). In the past sulfur hexafluoride, a very strong greenhouse gas, has been the principle deliberate tracer for this work. However, its emission has recently become regulated in California and new tracers are needed. Here, two prospective tracers are evaluated: boron-10 (B-10), the least abundant boron isotope, and heat (with recharging water naturally warmed at the sewage treatment plants and in surface-spreading basins). An additional deliberate tracer, bromide (Br), which is a well-studied conservative tracer, was released as a control. Tracer injection occurred at the San Gabriel Spreading Grounds research test basin in Los Angeles County, CA, USA. The basin was constructed and characterized by the US Geological Survey in the mid-1990s. Recycled wastewater was piped directly to this basin at a known rate (about 1.5 m3/day). Down gradient from the test basin are nine high quality monitoring wells in a line that extends from the center of the basin to 150 m down gradient. All of the wells were equipped with temperature loggers that recorded groundwater temperatures every hour with an accuracy of one thousandth of a degree. The pre-experiment expected arrival times ranged from less than one day to six months. Arrival of Br was always

  6. Biomarker Pigment Divinyl Chlorophyll a as a Tracer of Water Masses?

    NASA Technical Reports Server (NTRS)

    Mejdandzic, Maja; Mihanovic, Hrvoje; Silovic, Tina; Henderiks, Jorijntje; Supraha, Luka; Polovic, Dorotea; Bosak, Suncica; Bosnjak, Ivana; Cetinic, Ivona; Olujic, Goran; Ljubesic, Zrinka

    2015-01-01

    The ecological preferences of different Phytoplankton types drive their temporal and spatial distributions, reflecting their dependence on certain temperature ranges, light levels, nutrient availability and other environmental gradients. Hence, some phytoplankton taxa can be used as water mass tracers (biotracers).

  7. Selection of Actinide Chemical Analogues for WIPP Tests: Potential Nonradioactive Sorbing and Nonsorbing Tracers for Study of Ion Transport in the Environment

    SciTech Connect

    Dale Spall; Robert Villarreal

    1998-08-01

    Chemical characteristics of the actinides (Th, U, Np, Pu, Am) have been studied relative to nonradioactive chemical elements that have similar characteristics in an attempt to identify a group of actinide chemical analogues that are nonradioactive. In general, the chemistries of the actinides, especially U, Np, Pu, and Am, are very complex and attempts to identify a single chemical analogue for each oxidation state were not successful. However, the rationale for selecting a group of chemical analogues that would mimic the actinides as a group is provided. The categorization of possible chemical analogues (tracers) with similar chemical properties was based on the following criteria. Categorization was studied according.

  8. Determination of stream reaeration coefficients by use of tracers

    USGS Publications Warehouse

    Kilpatrick, F.A.; Rathbun, R.E.; Yotsukura, Nobuhiro; Parker, G.W.; DeLong, L.L.

    1987-01-01

    Stream reaeration is the physical absorption of oxygen from the atmosphere by a flowing stream. This is the primary process by which a stream replenishes the oxygen consumed in the biodegradation of organic wastes. Prior to 1965, reaeration rate coefficients could be estimated only by indirect methods. In 1965, a direct method of measuring stream reaeration coefficients was developed in which a radioactive tracer gas was injected into a stream--the tracer gas being desorbed from the stream inversely to how oxygen would be absorbed. The technique has since been modified by substituting hydrocarbon gases for the radioactive tracer gas. The slug-injection and constant-rate injection methods of performing gas tracer desorption measurements are described. Emphasis is on the use of rhodamine WT dye as a relatively conservative tracer and propane as the nonconservative gas tracer, on planning field tests, methods of injection, sampling and analysis, and computational techniques to compute desorption and reaeration coefficients. (Author 's abstract)

  9. A CO2 concentration gradient facility for testing CO2 enrichment and soil effects on grassland ecosystem function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuing increases in atmospheric CO2 concentrations mandate techniques for examining impacts on terrestrial ecosystems. Most experiments examine only two or a few levels of CO2 concentration and a single soil type, but if CO2 can be varied as a gradient from subambient to superambient concentra...

  10. Analysis of groundwater contamination using concentration-time series recorded during an integral pumping test: bias introduced by strong concentration gradients within the plume.

    PubMed

    Zeru, Allelign; Schäfer, Gerhard

    2005-12-01

    When only few monitoring wells are available to assess the extent and level of groundwater contamination, inversion of concentration breakthrough curves acquired during an integral pumping test can be used as an alternative quantification method. The idea is to use concentration-time series recorded during integral pumping tests through an inversion technique to estimate contaminant mass fluxes crossing a control plane. In this paper, we examine how a longitudinal concentration gradient along a contaminant plume length scale affects the estimated inversed-concentration distribution and its associated mass flux. The analytically inversed-concentration distribution at the imaginary control plane (ICP) is compared to a numerically generated concentration distribution, treating the latter one as a "real contaminant plume" characterized by the presence of a longitudinal concentration gradient. It is found that the analytically inversed-concentration can lead to overestimation or underestimation of concentration distribution values depending on the transport time period and dispersivity values. At lower dispersivity values, with shorter transport time periods, the analytically inversed-concentration distribution overestimates the "real" concentration distribution. A better fit of the estimated concentration distribution to the "real" one is observed when the transport time period increases, i.e. when the advective front has already crossed the ICP. However, for higher dispersivity values, underestimation of the real concentration distribution is observed. Deviation of the inversed-concentration distribution from the "real" one is assessed for a site-specific concentration gradient term. A concentration gradient adjusted contaminant mass flux is thus formulated to evaluate groundwater contamination levels at a given time period through an ICP. This concentration gradient ratio can indicate whether the ICP is well positioned to evaluate accurately contaminant mass fluxes

  11. Boron isotopes as an artificial tracer.

    PubMed

    Quast, Konrad W; Lansey, Kevin; Arnold, Robert; Bassett, Randy L; Rincon, Martha

    2006-01-01

    A field study was conducted using a combination of intrinsic and artificial tracers to estimate travel times and dilution during transport of infiltrate from a reclaimed water infiltration basin to nearby monitoring wells. A major study objective was to validate boric acid enriched in (10)B as an artificial tracer. Basin 10E at the Rio Hondo Spreading Grounds in Whittier, California, was the site of the test. The basin normally receives a mixture of treated municipal waste water, purchased State Project water, and local runoff from the San Gabriel River. Approximately 3.5 kg of (10)B-enriched boric acid was dispersed among 2.05 x 10(5) m(3) of basin water to initiate the experiment. The resultant median delta(11)B in the infiltration basin was -71 per thousand. Prior to tracer addition, the basin water had an intrinsic delta(11)B of +2 per thousand. Local monitoring wells that were used to assess travel times had delta(11)B values of +5 per thousand and +8 per thousand at the time of tracer addition. Analytic results supported an assumption that boron is conserved during ground water transport and that boron enriched in (10)B is a useful artificial tracer. Several intrinsic tracers were used to reinforce the boric acid tracer findings. These included stable isotopes of oxygen (delta(18)O) and hydrogen (deltaD), sulfate concentration, and the boron to chloride ratio. Xenon isotopes, (136)Xe and (124)Xe, also supported boron isotope results. Xenon isotopes were added to the recharge basin as dissolved gases by investigators from the Lawrence Livermore National Laboratory.

  12. Breakdown study based on direct in situ observation of inner surfaces of an rf accelerating cavity during a high-gradient test

    NASA Astrophysics Data System (ADS)

    Abe, Tetsuo; Kageyama, Tatsuya; Sakai, Hiroshi; Takeuchi, Yasunao; Yoshino, Kazuo

    2016-10-01

    We have developed normal-conducting accelerating single-cell cavities with a complete higher-order-mode (HOM) heavily damped structure, into which we feed a 508.9-MHz continuous wave. During a high-gradient test of the second production version of the cavity, we performed a breakdown study based on direct in situ observation of the inner surfaces of the cavity. This paper presents our experimental findings obtained from this observation.

  13. Radiopharmaceutical Tracers for Neural Progenitor Cells

    SciTech Connect

    Mangner, Thomas J.

    2006-09-29

    The Technical Report summarizes the results of the synthesis and microPET animal scanning of several compounds labeled with positron-emitting isotopes in normal, neonatal and kainic acid treated (seizure induced) rats as potential PET tracers to image the process of neurogenesis using positron emission tomography (PET). The tracers tested were 3'-deoxy-3'-[F-18]fluorothymidine ([F-18]FLT) and 5'-benzoyl-FTL, 1-(2'-deoxy-2'-[F-18]fluoro-B-D-arabinofuranosyl)-5-bromouracil (FBAU) and 3',5'-dibenzoyl-FBAU, N-[F-18]fluoroacetyl-D-glucosamine (FLAG) and tetraacetyl-FLAG, and L-[1-C-11]leucine.

  14. Tracer for circulation determinations

    SciTech Connect

    Moore, H.; Santos, S.; Wysong, R. D.

    1985-03-19

    An improved tracer particle is described comprising an ion exchange core having a polymer coating thereon, the coated ion exchange core having a reaction site capable of reacting with a compound containing an oxirane group, said coated ion exchange core having been treated with a compound containing an oxirane group to react with said coated ion exchange core causing an increase in mass of the tracer particle. Preferably, the ion exchange core is labelled with a radionuclide. These particles have improved characteristics including improved stability against leaching and improved handling properties. Such particles are useful in circulatory determinations involving the injection of the particles as a suspension in a physiologically acceptable carrier or medium into the circulatory system of animals.

  15. Molecules as Tracers of Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Costagliola, F.; Aalto, S.; Rodriguez, M. I.; Muller, S.; Spoon, H. W. W.; Martín, S.; Peréz-Torres, M. A.; Alberdi, A.; Lindberg, J. E.; Batejat, F.; Jütte, E.; van der Werf, P.; Lahuis, F.

    2011-11-01

    Here we present the results of a 3 mm survey of 23 galaxies, obtained with the EMIR receiver at the IRAM 30 m telescope. Emission of the main molecular species is compared with existing chemical models, in order to find and test molecular signatures of galaxy evolution and to compare them to IR evolutionary tracers.

  16. Subsurface barrier integrity verification using perfluorocarbon tracers

    SciTech Connect

    Sullivan, T.M.; Heiser, J.; Milian, L.; Senum, G.

    1996-12-01

    Subsurface barriers are an extremely promising remediation option to many waste management problems. Gas phase tracers include perfluorocarbon tracers (PFT`s) and chlorofluorocarbon tracers (CFC`s). Both have been applied for leak detection in subsurface systems. The focus of this report is to describe the barrier verification tests conducted using PFT`s and analysis of the data from the tests. PFT verification tests have been performed on a simulated waste pit at the Hanford Geotechnical facility and on an actual waste pit at Brookhaven National Laboratory (BNL). The objective of these tests were to demonstrate the proof-of-concept that PFT technology can be used to determine if small breaches form in the barrier and for estimating the effectiveness of the barrier in preventing migration of the gas tracer to the monitoring wells. The subsurface barrier systems created at Hanford and BNL are described. The experimental results and the analysis of the data follow. Based on the findings of this study, conclusions are offered and suggestions for future work are presented.

  17. The 2011 Japanese 9.0 magnitude earthquake: Test of a kinetic energy wave model using coastal configuration and offshore gradient of Earth and beyond

    NASA Astrophysics Data System (ADS)

    Mahaney, William C.; Dohm, James M.

    2011-07-01

    Based on geological investigations of coastal geometry and stratigraphy, offshore gradient variation, wave velocity/energy, and quartz grain microtexture analysis of key sites inundated by tsunamis during the Holocene, we have developed a postulated model that could be used to assess modern and ancient onshore environmental conditions during tsunami emplacement. Given that tsunami waves can travel up to ~ 900 km/h, the kinetic energy of the wave is determined by frictional release on the offshore slope to seabed, nearshore sand and sediment supply, and coastal geomorphology, specifically coast linearity or embayments that constrict wave energy. With gentle offshore gradients and relatively linear coastlines, the kinetic energy of the tsunami is decreased by friction with the seabed and radiated outward along the coast, thus producing reduced flooding of the affected coast and fewer collisions of entrained grains. In contrast, steep offshore gradients reduce friction to mere milliseconds of wave impact, and embayments, specifically narrow coastal constrictions, increase wave energy, both of which increase on land run-up heights, and importantly to our proposed model, grain collision effects. Damage to quartz grains deposited by tsunamis along coastal extents ranges from slight on linear coasts with gentle offshore gradients to highly resurfaced mineral surfaces on coasts with steep offshore gradients and narrow embayments. Our model can be further tested through collection, analyses, and comparison of quartz grains in relatively low- and high-energy environments of the recently tsunami-impacted northeastern coast of Japan. For example, the location of the Fukushima nuclear plant along a linear coastline with a less steep offshore gradient may have attenuated the energy of the incoming wave, and thus yielding less resurfaced grains when compared to the coastline located to the north of Sendai City where coastal embayments of variable size coupled with steep offshore

  18. Gradient networks

    NASA Astrophysics Data System (ADS)

    Toroczkai, Zoltán; Kozma, Balázs; Bassler, Kevin E.; Hengartner, N. W.; Korniss, G.

    2008-04-01

    Gradient networks are defined (Toroczkai and Bassler 2004 Nature 428 716) as directed graphs formed by local gradients of a scalar field distributed on the nodes of a substrate network G. We present the derivation for some of the general properties of gradient graphs and give an exact expression for the in-degree distribution R(l) of the gradient network when the substrate is a binomial (Erd{\\;\\kern -0.10em \\raise -0.35ex \\{{^{^{\\prime\\prime}}}}\\kern -0.57em \\o} s-Rényi) random graph, G_{N,p} , and the scalars are independent identically distributed (i.i.d.) random variables. We show that in the limit N \\to \\infty, p \\to 0, z = pN = \\mbox{const} \\gg 1, R(l)\\propto l^{-1} for l < l_c = z , i.e., gradient networks become scale-free graphs up to a cut-off degree. This paper presents the detailed derivation of the results announced in Toroczkai and Bassler (2004 Nature 428 716).

  19. Testing the Stress-Gradient Hypothesis at the Roof of the World: Effects of the Cushion Plant Thylacospermum caespitosum on Species Assemblages

    PubMed Central

    Dvorský, Miroslav; Doležal, Jiří; Kopecký, Martin; Chlumská, Zuzana; Janatková, Kateřina; Altman, Jan; de Bello, Francesco; Řeháková, Klára

    2013-01-01

    Many cushion plants ameliorate the harsh environment they inhabit in alpine ecosystems and act as nurse plants, with significantly more species growing within their canopy than outside. These facilitative interactions seem to increase with the abiotic stress, thus supporting the stress-gradient hypothesis. We tested this prediction by exploring the association pattern of vascular plants with the dominant cushion plant Thylacospermum caespitosum (Caryophyllaceae) in the arid Trans-Himalaya, where vascular plants occur at one of the highest worldwide elevational limits. We compared plant composition between 1112 pair-plots placed both inside cushions and in surrounding open areas, in communities from cold steppes to subnival zones along two elevational gradients (East Karakoram: 4850–5250 m and Little Tibet: 5350–5850 m). We used PERMANOVA to assess differences in species composition, Friedman-based permutation tests to determine individual species habitat preferences, species-area curves to assess whether interactions are size-dependent and competitive intensity and importance indices to evaluate plant-plant interactions. No indications for net facilitation were found along the elevation gradients. The open areas were not only richer in species, but not a single species preferred to grow exclusively inside cushions, while 39–60% of 56 species detected had a significant preference for the habitat outside cushions. Across the entire elevation range of T. caespitosum, the number and abundance of species were greater outside cushions, suggesting that competitive rather than facilitative interactions prevail. This was supported by lower soil nutrient contents inside cushions, indicating a resource preemption, and little thermal amelioration at the extreme end of the elevational gradient. We attribute the negative associations to competition for limited resources, a strong environmental filter in arid high-mountain environment selecting the stress-tolerant species

  20. Ground-penetrating radar images of a dye tracer test within the unsaturated zone at the Susquehanna-Shale Hills CZO

    NASA Astrophysics Data System (ADS)

    Pitman, Lacey M.

    Dye tracer and time-lapse ground-penetrating radar (GPR) were used to image preferential flow paths in the shallow, unsaturated zone on hillslopes in two adjacent watersheds within the Susquehanna-Shale Hills Critical Zone Observatory (CZO). At each site we injected about 50 L of water mixed with brilliant blue dye (4 g/L) into a trench cut perpendicular to the slope (˜1.0 m long by ˜0.20 m wide by ˜0.20 m deep) to create a line of infiltration. GPR (800 MHz antennae with constant offset) was used to monitor the movement of the dye tracer downslope on a 1.0 m x 2.0 m grid with a 0.05 m line spacing. The site was then excavated and the stained pathways photographed to document the dye movement. We saw a considerable difference in the pattern of shallow preferential flow between the two sites despite similar soil characteristics and slope position. Both sites showed dye penetrating down to saprolite (˜0.40 m); however, lateral flow migration between the two sites was different. At the Missed Grouse field site, the lateral migration was ˜0.55 m as an evenly dispersed plume, but at distance of 0.70 m a finger of dye was observed. At the Shale Hills field site, the total lateral flow was ˜0.40 m, dye was barely visible until the excavation reached ˜0.10 m, and there was more evidence of distinct fingering in the vertical direction. Based on laboratory and field experiments as well as processing of the radargrams, the following conclusions were drawn: 1) time-lapse GPR successfully delineated the extent of lateral flow, but the GPR resolution was insufficient to detect small fingers of dye; 2) there was not a distinct GPR reflection at the regolith-saprock boundary, but this interface could be estimated from the extent of signal attenuation; 3) the preliminary soil moisture conditions may explain differences in the extent of infiltration at the two sites; 4) rapid infiltration into the underlying saprock limited the extent of shallow lateral flow at both sites and

  1. Analysis of Particle Transport Using a Particulate Tracer Modeling

    NASA Astrophysics Data System (ADS)

    Wang, P.; Linker, L. C.; Lung, W.; Batiuk, R. A.

    2002-05-01

    Understanding the transport of dissolved and particulate materials in the Chesapeake Bay estuary is critical to allocating nutrient and sediment load reduction goals to the seven watershed states. A computer simulation of a particulate conservative tracer was conducted to help determine the transport mechanism. Tracers were loaded daily at the fall-line of Potomac River (a middle Bay's tributary). The settling rate is set at 0.1 m/day, with the assumption of neither scour nor re-suspension of tracer from the bed to allow continuous accumulation of tracers on bed. The low settling rate was used to allow tracer to transport widely in the estuary to provide information on the transport of fine particulates such as dead algae. After the tracers reach the mouth of Potomac River, most of them are further transported into the lower main-stem Bay. Flood tide is the main force for tracers transported north to the upper main-stem Bay and to the upstream of non-source rivers. In the main stem of the Bay, there exist concentration gradients from the Potomac River mouth to the opposite shore (the Maryland and Virginia eastern shore), to the lower Bay, and to the upper Bay. Concentration gradients also exist from the fall-line to the mouth in the source river, and from the mouth to the upstream in non-source rivers. These gradients are usually disturbed across trenches, due to a so-called "trench effect". A trench either deposits more or less tracers than its shallower sides, depending on the trench to be hydrologically landward from the source (i.e., the Potomac fall line) or the sub-source (e.g., the Rappahannock River mouth for the trench in the upstream of Rappahannock River), or hydrologically seaward from the source or the sub-source. Depending on the layer (saline water-rich or fresh water-rich) in which tracers reside and the direction (landward or seaward) along which tracers transport, the transport/deposit of tracer may be favored along trench over its shallower sides

  2. Travel-time-based thermal tracer tomography

    NASA Astrophysics Data System (ADS)

    Somogyvári, Márk; Bayer, Peter; Brauchler, Ralf

    2016-05-01

    Active thermal tracer testing is a technique to get information about the flow and transport properties of an aquifer. In this paper we propose an innovative methodology using active thermal tracers in a tomographic setup to reconstruct cross-well hydraulic conductivity profiles. This is facilitated by assuming that the propagation of the injected thermal tracer is mainly controlled by advection. To reduce the effects of density and viscosity changes and thermal diffusion, early-time diagnostics are used and specific travel times of the tracer breakthrough curves are extracted. These travel times are inverted with an eikonal solver using the staggered grid method to reduce constraints from the pre-defined grid geometry and to improve the resolution. Finally, non-reliable pixels are removed from the derived hydraulic conductivity tomograms. The method is applied to successfully reconstruct cross-well profiles as well as a 3-D block of a high-resolution fluvio-aeolian aquifer analog data set. Sensitivity analysis reveals a negligible role of the injection temperature, but more attention has to be drawn to other technical parameters such as the injection rate. This is investigated in more detail through model-based testing using diverse hydraulic and thermal conditions in order to delineate the feasible range of applications for the new tomographic approach.

  3. Using a Coupled Surface water/ Groundwater Model to Study Heat as a Tracer in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Reeves, J.; Hatch, C. E.; Letcher, B. H.

    2014-12-01

    Heat as a tracer has proven to be an effective method for quantifying groundwater - surface water interactions. However, there remains a lack of controlled, experimental data to assess fundamental aspects of heat transport in porous media. There may be a disconnect between field and model-based studies, because: 1) model results have yet to be tested against data from controlled laboratory experiments, and 2) there are often too many variables in field studies to be thoroughly modeled without simplification. This study is comprised of a three-dimensional transient numerical model of heat flow through a porous media coupled with steady state fluid flow using COMSOL Multiphysics. Pressure and temperature outputs are compared to data measured in a laboratory flume. The 3D model enables exploration of the effects of oblique flow paths through a stream bed and/or banks with a (stream) surface water upper boundary on diurnal temperature records. By imposing known flow or temperature gradients in any direction, we can analyze the effects of these diverse gradients on the veracity of current heat as a tracer methods (which assume unidirectional flow) as well as develop valid error statistics for these methods in the presence of non-vertical flow.

  4. Natural and artificial nobel gas hydrologic tracers

    SciTech Connect

    Hudson, G.B.

    1994-06-01

    Noble gas isotopes provide opportunities for ground water tracing. Both naturally occurring tracers and artificially injected tracers can be used. The equilibration of water with the earth`s atmosphere records the temperature and atmospheric pressure during ground water recharge. This temperature/pressure record can be used to distinguish cold recharge from warmer recharge with a resolution of 1-2 C temperature and 500m in altitude. The radioactive decay of U and Th produce large concentrations of 4He in old ground water and this 4He signature can be useful in tracing the small addition of old water (>10,000 yr.) to young water (<100 yr.). The decay of 3H present either form nuclear testing or cosmic ray interactions leads to detectable amounts of 3He in young ground water (<50 yr.). By measuring both 3H and 3He, the mean age of the 3H in the water can be calculated. In addition to these natural tracers, isotopically enriched noble gas isotopes are readily available at low cost and can be used an non-hazardous water tracers. This inert, persistent, and harmless tracing technique can used in many situations at a cost of about one dollar per million gallons of water traced.

  5. Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm

    NASA Astrophysics Data System (ADS)

    Nottingham, A. T.; Turner, B. L.; Whitaker, J.; Ostle, N. J.; McNamara, N. P.; Bardgett, R. D.; Salinas, N.; Meir, P.

    2015-10-01

    Aboveground primary productivity is widely considered to be limited by phosphorus (P) availability in lowland tropical forests and by nitrogen (N) availability in montane tropical forests. However, the extent to which this paradigm applies to belowground processes remains unresolved. We measured indices of soil microbial nutrient status in lowland, sub-montane and montane tropical forests along a natural gradient spanning 3400 m in elevation in the Peruvian Andes. With increasing elevation there were marked increases in soil concentrations of total N, total P, and readily exchangeable P, but a decrease in N mineralization determined by in situ resin bags. Microbial carbon (C) and N increased with increasing elevation, but microbial C : N : P ratios were relatively constant, suggesting homeostasis. The activity of hydrolytic enzymes, which are rich in N, decreased with increasing elevation, while the ratio of enzymes involved in the acquisition of N and P increased with increasing elevation, further indicating an increase in the relative demand for N compared to P with increasing elevation. We conclude that soil microorganisms shift investment in nutrient acquisition from P to N between lowland and montane tropical forests, suggesting that different nutrients regulate soil microbial metabolism and the soil carbon balance in these ecosystems.

  6. Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm

    NASA Astrophysics Data System (ADS)

    Nottingham, A. T.; Turner, B. L.; Whitaker, J.; Ostle, N.; McNamara, N. P.; Bardgett, R. D.; Salinas, N.; Meir, P.

    2015-04-01

    Aboveground primary productivity is widely considered to be limited by phosphorus (P) availability in lowland tropical forests and by nitrogen (N) availability in montane tropical forests. However, the extent to which this paradigm applies to belowground processes remains unresolved. We measured indices of soil microbial nutrient status in lowland, sub-montane and montane tropical forests along a natural gradient spanning 3400 m in elevation in the Peruvian Andes. With increasing elevation there were marked increases in soil concentrations of total N, total P, and readily-extractable P, but a decrease in N mineralization determined by in situ resin bags. Microbial carbon (C) and N increased with increasing elevation, but microbial C:N:P ratios were relatively constant, suggesting homeostasis. The activity of hydrolytic enzymes, which are rich in N, decreased with increasing elevation, while the ratios of enzymes involved in the acquisition of N and P increased with increasing elevation, further indicating a shift in the relative demand for N and P by microbial biomass. We conclude that soil microorganisms shift investment in nutrient acquisition from P to N between lowland and montane tropical forests, suggesting that different nutrients regulate soil microbial metabolism and the soil carbon balance in these ecosystems.

  7. Manufacture and Testing of a High Field Gradient Magnetic Fractionation System for Quantitative Detection of Plasmodium falciparum Gametocytes

    NASA Astrophysics Data System (ADS)

    Karl, Stephan; Woodward, Robert C.; Davis, Timothy M. E.; St. Pierre, Tim G.

    2010-12-01

    Plasmodium falciparum is the most dangerous of the human malaria parasite species and accounts for millions of clinical episodes of malaria each year in tropical countries. The pathogenicity of Plasmodium falciparum is a result of its ability to infect erythrocytes where it multiplies asexually over 48 h or develops into sexual forms known as gametocytes. If sufficient male and female gametocytes are taken up by a mosquito vector, it becomes infectious. Therefore, the presence and density of gametocytes in human blood is an important indicator of human-to-mosquito transmission of malaria. Recently, we have shown that high field gradient magnetic fractionation improves gametocyte detection in human blood samples. Here we present two important new developments. Firstly we introduce a quantitative approach to replace the previous qualitative method and, secondly, we describe a novel method that enables cost-effective production of the magnetic fractionation equipment required to carry out gametocyte quantification. We show that our custom-made magnetic fractionation equipment can deliver results with similar sensitivity and convenience but for a small fraction of the cost.

  8. Short-term fluid, heat, and solute transport in deep 'georeservoirs' likely to become 'EGS': some challenges to ICDP hydrogeologists who might like using artificial tracers

    NASA Astrophysics Data System (ADS)

    Ghergut, Julia; Behrens, Horst; Huenges, Ernst; Rose, Peter; Sauter, Martin

    2014-05-01

    During Fall 2013, the Integrated Continental Scientific Drilling Programme (ICDP) set out to define a new Science Plan that shall replace its past-decade version (Harms et al., eds., 2005) for the decade to come. Geoscientists worldwide were welcomed to suggest new imaging and exploration methods, new sites to drill, new challenges to be addressed with a view at new 'societal needs' (Harms and Wiersberg 2013). Save for two outstanding exceptions at the Mutnovsky volcano in Russia and the KTB site in Germany, the use of artificial tracers, especially within forced-gradient tests, has not been on the agenda of most ICDP projects so far (other than for purposes of monitoring microbial contamination in conjunction with drilling activities); deep-reservoir exploration and characterization efforts were restrained to non-fluid-invasive techniques on the one hand, and to sites featuring some unique earth-historical traits, on the other hand. Surely, this was not for lack of interest in quantifying fluid transport in the deep subsurface in general, but mainly due to operational, technical, and financial constraints (lack of resources / lack of opportunity for significant fluid turnover within the target, deep-seated georeservoirs, and fear of persistent, large-scale georeservoir contamination by non-pristine fluids). - This is likely to change during the forthcoming decade(s), owing to worldwide increased interest in some 'georesource' or 'georeservoir' play types (Moeck 2013) that have not been in the ICDP focus so far, including non-volcanogenic geothermal, and allowing for man-made design and intervention into how those 'georesources' or 'georeservoirs' shall work for us. Among the latter, petrothermal systems (Jung 2013, Huenges and Jung 2004) acquire growing recognition as a promising (and maybe unique) option for baseload energy supply in vast areas of the Northern hemisphere, at very low emissions and (in the long run) moderate costs. With petrothermal coming into

  9. Assessing Intraspecific Variation in Effective Dispersal Along an Altitudinal Gradient: A Test in Two Mediterranean High-Mountain Plants

    PubMed Central

    Lara-Romero, Carlos; Robledo-Arnuncio, Juan J.; García-Fernández, Alfredo; Iriondo, Jose M.

    2014-01-01

    Background Plant recruitment depends among other factors on environmental conditions and their variation at different spatial scales. Characterizing dispersal in contrasting environments may thus be necessary to understand natural intraspecific variation in the processes underlying recruitment. Silene ciliata and Armeria caespitosa are two representative species of cryophilic pastures above the tree line in Mediterranean high mountains. No explicit estimations of dispersal kernels have been made so far for these or other high-mountain plants. Such data could help to predict their dispersal and recruitment patterns in a context of changing environments under ongoing global warming. Methods We used an inverse modelling approach to analyse effective seed dispersal patterns in five populations of both Silene ciliata and Armeria caespitosa along an altitudinal gradient in Sierra de Guadarrama (Madrid, Spain). We considered four commonly employed two-dimensional seedling dispersal kernels exponential-power, 2Dt, WALD and log-normal. Key Results No single kernel function provided the best fit across all populations, although estimated mean dispersal distances were short (<1 m) in all cases. S. ciliata did not exhibit significant among-population variation in mean dispersal distance, whereas significant differences in mean dispersal distance were found in A. caespitosa. Both S. ciliata and A. caespitosa exhibited among-population variation in the fecundity parameter and lacked significant variation in kernel shape. Conclusions This study illustrates the complexity of intraspecific variation in the processes underlying recruitment, showing that effective dispersal kernels can remain relatively invariant across populations within particular species, even if there are strong variations in demographic structure and/or physical environment among populations, while the invariant dispersal assumption may not hold for other species in the same environment. Our results call for a

  10. Field-scale sulfur hexafluoride tracer experiment to understand long distance gas transport in the deep unsaturated zone

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Andraski, Brian; Green, Christopher T.; Stonestrom, David A.; Striegl, Rob

    2014-01-01

    A natural gradient SF6 tracer experiment provided an unprecedented evaluation of long distance gas transport in the deep unsaturated zone (UZ) under controlled (known) conditions. The field-scale gas tracer test in the 110-m-thick UZ was conducted at the U.S. Geological Survey’s Amargosa Desert Research Site (ADRS) in southwestern Nevada. A history of anomalous (theoretically unexpected) contaminant gas transport observed at the ADRS, next to the first commercial low-level radioactive waste disposal facility in the United States, provided motivation for the SF6 tracer study. Tracer was injected into a deep UZ borehole at depths of 15 and 48 m, and plume migration was observed in a monitoring borehole 9 m away at various depths (0.5–109 m) over the course of 1 yr. Tracer results yielded useful information about gas transport as applicable to the spatial scales of interest for off-site contaminant transport in arid unsaturated zones. Modeling gas diffusion with standard empirical expressions reasonably explained SF6 plume migration, but tended to underpredict peak concentrations for the field-scale experiment given previously determined porosity information. Despite some discrepancies between observations and model results, rapid SF6 gas transport commensurate with previous contaminant migration was not observed. The results provide ancillary support for the concept that apparent anomalies in historic transport behavior at the ADRS are the result of factors other than nonreactive gas transport properties or processes currently in effect in the undisturbed UZ.

  11. Testing Associations of Plant Functional Diversity with Carbon and Nitrogen Storage along a Restoration Gradient of Sandy Grassland.

    PubMed

    Zuo, Xiaoan; Zhou, Xin; Lv, Peng; Zhao, Xueyong; Zhang, Jing; Wang, Shaokun; Yue, Xiyuan

    2016-01-01

    The trait-based approach shows that ecosystem function is strongly affected by plant functional diversity as reflected by the traits of the most abundant species (community-weighted mean, CWM) and functional dispersion (FDis). Effects of CWM and FDis individually support the biomass ratio hypothesis and the niche complementarity hypothesis. However, there is little empirical evidence on the relative roles of CWM traits and FDis in explaining the carbon (C) and nitrogen (N) storage in grassland ecosystems. We measured plant functional traits in the 34 most abundant species across 24 sites along a restoration gradient of sandy grassland (mobile dune, semi-fixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China. Thereafter, we calculated the CWM traits, the functional divergence of each single trait (FDvar) and the trait dispersion of multiple traits (FDis). We also measured the C and N storage in plant, litter, root, and soil. Using a stepwise multiple regression analysis, we further assessed which of the functional diversity components best explained C and N storage in the sandy grassland restoration. We found consistent links between C or N storage and leaf traits related to plant resource use strategy. However, the CWM of plant height was retained as an important predictor of C and N storage in plant, litter, soil, and total ecosystem in the final multiple models. CWMs of specific leaf area and plant height best predicted soil C and N storage and total ecosystem N storage. FDis was one of good predictors of litter C and N storage as well as total ecosystem C storage. These results suggest that ecosystem C and N pools in the sandy grassland restoration are primarily associated with the traits of the most abundant species in communities, thereby supporting the biomass ratio hypothesis. The positive associations of FDis with C storage in litter and total ecosystem provide evidence to support the niche complementarity hypothesis. Both functional

  12. Testing Associations of Plant Functional Diversity with Carbon and Nitrogen Storage along a Restoration Gradient of Sandy Grassland

    PubMed Central

    Zuo, Xiaoan; Zhou, Xin; Lv, Peng; Zhao, Xueyong; Zhang, Jing; Wang, Shaokun; Yue, Xiyuan

    2016-01-01

    The trait-based approach shows that ecosystem function is strongly affected by plant functional diversity as reflected by the traits of the most abundant species (community-weighted mean, CWM) and functional dispersion (FDis). Effects of CWM and FDis individually support the biomass ratio hypothesis and the niche complementarity hypothesis. However, there is little empirical evidence on the relative roles of CWM traits and FDis in explaining the carbon (C) and nitrogen (N) storage in grassland ecosystems. We measured plant functional traits in the 34 most abundant species across 24 sites along a restoration gradient of sandy grassland (mobile dune, semi-fixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China. Thereafter, we calculated the CWM traits, the functional divergence of each single trait (FDvar) and the trait dispersion of multiple traits (FDis). We also measured the C and N storage in plant, litter, root, and soil. Using a stepwise multiple regression analysis, we further assessed which of the functional diversity components best explained C and N storage in the sandy grassland restoration. We found consistent links between C or N storage and leaf traits related to plant resource use strategy. However, the CWM of plant height was retained as an important predictor of C and N storage in plant, litter, soil, and total ecosystem in the final multiple models. CWMs of specific leaf area and plant height best predicted soil C and N storage and total ecosystem N storage. FDis was one of good predictors of litter C and N storage as well as total ecosystem C storage. These results suggest that ecosystem C and N pools in the sandy grassland restoration are primarily associated with the traits of the most abundant species in communities, thereby supporting the biomass ratio hypothesis. The positive associations of FDis with C storage in litter and total ecosystem provide evidence to support the niche complementarity hypothesis. Both functional

  13. Implementation of a Semi-Lagrangian scheme for water vapour and tracer advection in RegCM4

    NASA Astrophysics Data System (ADS)

    Tefera Diro, Gulilat; Tompkins, Adrian; Giorgi, Filippo; Bonaventura, Luca

    2013-04-01

    A semi-Lagrangian approach is introduced in the latest version of the ICTP regional climate model (RegCM4) for water vapor and tracer advection. A 'quasi' cubic interpolation and McGregor's third order accurate trajectory calculation are used in the advection scheme. The modified scheme is evaluated on idealized as well as realistic case studies and its results are compared against those of the Eulerian scheme originally employed in RegCM4. In the idealized test cases the semi-Lagrangian scheme appears to be superior to the Eulerian scheme in terms of the dissipative and dispersive errors, especially when large gradients are present in the advected quantity. Two realistic cases of meso-scale phenomena over the European domain were also tested in a short range mode for specific humidity transport. In both cases, the semi-Lagrangian scheme has captured better the detailed structure and improved the overall pattern of the vertically integrated humidity field. In the present preliminary implementation, the scheme is more expensive than the Eulerian one. This is because the same time step is used for tracer advection as the explicit time discretization employed by the dynamical core. However, greater computational gains are expected as the number of tracers considered increases, for instance when the gas phase chemistry is switched on.

  14. Comparison of different undulator schemes with superimposed alternating gradients for the VUV-FEL at the TESLA Test Facility

    SciTech Connect

    Pflueger, J.; Nikitina, Y.M.

    1995-12-31

    For the VUV-FEL at the TESLA Test Facility an undulator with a total length of 30 m is needed. In this study three different approaches to realize an undulator with a sinusoidal plus a superimposed quadrupolar field were studied with the 3D code MAFIA.

  15. TESTING THE FLORISTIC QUALITY ASSESSMENT INDEX AS AN INDICATOR OF WETLAND CONDITION ALONG GRADIENTS OF HUMAN INFLUENCE

    EPA Science Inventory

    Biological indicators of ecosystem integrity are increasingly being sought for use in ecosystem assessment and goal-setting for restoration projects. We tested the effectiveness of a plant community-based bioassessment tool, the floristic quality assessment index (FQAI) in 20 dep...

  16. Field measurements of tracer gas transport by barometric pumping

    SciTech Connect

    Lagus, P.L.; McKinnis, W.B.; Hearst, J.R.; Burkhard, N.R.; Smith, C.F.

    1994-07-28

    Vertical gas motions induced by barometric pressure variations can carry radioactive gases out of the rubblized region produced by an underground nuclear explosion, through overburden rock, into the atmosphere. To better quantify transit time and amount of transport, field experiments were conducted at two sites on Pahute Mesa, Kapelli and Tierra, where radioactive gases had been earlier detected in surface cracks. At each site, two tracer gases were injected into the rubblized chimney 300-400 m beneath the surface and their arrival was monitored by concentration measurements in gas samples extracted from shallow collection holes. The first ``active`` tracer was driven by a large quantity of injected air; the second ``passive`` tracer was introduced with minimal gas drive to observe the natural transport by barometric pumping. Kapelli was injected in the fall of 1990, followed by Tierra in the fall of 1991. Data was collected at both sites through the summer of 1993. At both sites, no surface arrival of tracer was observed during the active phase of the experiment despite the injection of several million cubic feet of air, suggesting that cavity pressurization is likely to induce horizontal transport along high permeability layers rather than vertical transport to the surface. In contrast, the vertical pressure gradients associated with barometric pumping brought both tracers to the surface in comparable concentrations within three months at Kapelli, whereas 15 months elapsed before surface arrival at Tierra. At Kapelli, a quasisteady pumping regime was established, with tracer concentrations in effluent gases 1000 times smaller than concentrations thought to exist in the chimney. Tracer concentrations observed at Tierra were typically an order of magnitude smaller. Comparisons with theoretical calculations suggest that the gases are traveling through {approximately}1 millimeter vertical fractures spaced 2 to 4 meters apart. 6 refs., 18 figs., 3 tabs.

  17. A Wavelet Based Suboptimal Kalman Filter for Assimilation of Stratospheric Chemical Tracer Observations

    NASA Technical Reports Server (NTRS)

    Auger, Ludovic; Tangborn, Andrew; Atlas, Robert (Technical Monitor)

    2002-01-01

    A suboptimal Kalman filter system which evolves error covariances in terms of a truncated set of wavelet coefficients has been developed for the assimilation of chemical tracer observations of CH4. The truncation is carried out in such a way that the resolution of the error covariance, is reduced only in the zonal direction, where gradients are smaller. Assimilation experiments which last 24 days, and used different degrees of truncation were carried out. These reduced the covariance, by 90, 97 and 99 % and the computational cost of covariance propagation by 80, 93 and 96 % respectively. The difference in both error covariance and the tracer field between the truncated and full systems over this period were found to be not growing in the first case, and a growing relatively slowly in the later two cases. The largest errors in the tracer fields were found to occur in regions of largest zonal gradients in the tracer field.

  18. Tracer dating and ocean ventilation

    SciTech Connect

    Thiele, G.; Sarmiento, J.L. )

    1990-06-15

    The interpretation of transient tracer observations depends on difficult to obtain information on the evolution in time of the tracer boundary conditions and interior distributions. Recent studies have attempted to circumvent this problem by making use of a derived quantity, age, based on the simultaneous distribution of two complementary tracers, such as tritium and its daughter, helium 3. The age is defined with reference to the surface such that the boundary condition takes on a constant value of zero. The authors use a two-dimensional model to explore the circumstances under which such a combination of conservation equations for two complementary tracers can lead to a cancellation of the time derivative terms. An interesting aspect of this approach is that mixing can serve as a source or sink of tracer based age. The authors define an idealized ventilation age tracer that is conservative with respect to mixing, and they explore how its behavior compares with that of the tracer-based ages over a range of advective and diffusive parameters.

  19. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain Site characterization study. Progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Stetzenbach, K.; Farnham, I.

    1995-12-01

    Laboratory work on tracers to be used for C-Well tracer tests is complete. Solubilities for fluorinated benzoic acids in J13 water were determined and the stability of these compounds to both degradation and sorption on ground tuff measured in batch and column tests.

  20. Tempest: Mesoscale test case suite results and the effect of order-of-accuracy on pressure gradient force errors

    NASA Astrophysics Data System (ADS)

    Guerra, J. E.; Ullrich, P. A.

    2014-12-01

    Tempest is a new non-hydrostatic atmospheric modeling framework that allows for investigation and intercomparison of high-order numerical methods. It is composed of a dynamical core based on a finite-element formulation of arbitrary order operating on cubed-sphere and Cartesian meshes with topography. The underlying technology is briefly discussed, including a novel Hybrid Finite Element Method (HFEM) vertical coordinate coupled with high-order Implicit/Explicit (IMEX) time integration to control vertically propagating sound waves. Here, we show results from a suite of Mesoscale testing cases from the literature that demonstrate the accuracy, performance, and properties of Tempest on regular Cartesian meshes. The test cases include wave propagation behavior, Kelvin-Helmholtz instabilities, and flow interaction with topography. Comparisons are made to existing results highlighting improvements made in resolving atmospheric dynamics in the vertical direction where many existing methods are deficient.

  1. Comparison of different tracers for PIV measurements in EHD airflow

    NASA Astrophysics Data System (ADS)

    Hamdi, M.; Havet, M.; Rouaud, O.; Tarlet, D.

    2014-04-01

    In this study, a proposed method for selecting a tracer for particle imaging velocimetry (PIV) measurement in electrohydrodynamics flows was developed. To begin with, several published studies were identified that exploit different tracers, such as oil smoke, cigarette smoke and titanium dioxide (TiO2). An assortment of tracers was then selected based on comparisons with conventional dimensionless numbers; Stokes number ( St), Archimedes number ( Ar) and electrical mobility ratio ( M). Subsequently, an experimental study for testing tracers was developed, which enabled the velocity profile of an ionic wind generated by a needle/ring configuration to be measured. Air velocity measurements carried out with a Pitot tube, considered as the reference measurements, were compared to PIV measurements for each tracer. In addition, the current-voltage curves and the evolution of the current during seeding were measured. All the experimental results show that TiO2, SiO2 microballoons and incense smoke are the ideal tracers in the series of tracers investigated.

  2. Tracer airflow measurement system (TRAMS)

    DOEpatents

    Wang, Duo

    2007-04-24

    A method and apparatus for measuring fluid flow in a duct is disclosed. The invention uses a novel high velocity tracer injector system, an optional insertable folding mixing fan for homogenizing the tracer within the duct bulk fluid flow, and a perforated hose sampling system. A preferred embodiment uses CO.sub.2 as a tracer gas for measuring air flow in commercial and/or residential ducts. In extant commercial buildings, ducts not readily accessible by hanging ceilings may be drilled with readily plugged small diameter holes to allow for injection, optional mixing where desired using a novel insertable foldable mixing fan, and sampling hose.

  3. Changes in permeability and fluid chemistry of the Topopah Spring Member of the Paintbrush tuff (Nevada Test Site) when held in a temperature gradient: summary of results

    SciTech Connect

    Moore, D.E.; Morrow, C.A.; Byerlee, J.D.

    1984-06-01

    The permeability and groundwater chemistry results for the Topopah Spring Member are reported and compared with the results from the previous work on Bullfrog. Permeability measurements made on samples of the Topopah Spring Member of the Paintbrush Tuff at room-temperature and in a temperature gradient show that the initially high (3-65 {mu}da) permeabilities are little affected by heating to at least 150{sup 0}C. These permeability relationships are favvorable for the disposal of nuclear waste in this stuff in an unsaturated zone at the Nevada Test Site. The fluids discharged from the samples of tuff during the experiments are dilute, nearly neutral solutions that differ only slightly from the starting groundwater composition. 8 references, 10 figures, 5 tables.

  4. Quantifying capture efficiency of gas collection wells with gas tracers.

    PubMed

    Yazdani, Ramin; Imhoff, Paul; Han, Byunghyun; Mei, Changen; Augenstein, Don

    2015-09-01

    A new in situ method for directly measuring the gas collection efficiency in the region around a gas extraction well was developed. Thirteen tests were conducted by injecting a small volume of gas tracer sequentially at different locations in the landfill cell, and the gas tracer mass collected from each test was used to assess the collection efficiency at each injection point. For 11 tests the gas collection was excellent, always exceeding 70% with seven tests showing a collection efficiency exceeding 90%. For one test the gas collection efficiency was 8±6%. Here, the poor efficiency was associated with a water-laden refuse or remnant daily cover soil located between the point of tracer injection and the extraction well. The utility of in situ gas tracer tests for quantifying landfill gas capture at particular locations within a landfill cell was demonstrated. While there are certainly limitations to this technology, this method may be a valuable tool to help answer questions related to landfill gas collection efficiency and gas flow within landfills. Quantitative data from tracer tests may help assess the utility and cost-effectiveness of alternative cover systems, well designs and landfill gas collection management practices. PMID:26148643

  5. Empirical tests of harvest-induced body-size evolution along a geographic gradient in Australian macropods.

    PubMed

    Prowse, Thomas A A; Correll, Rachel A; Johnson, Christopher N; Prideaux, Gavin J; Brook, Barry W

    2015-01-01

    Life-history theory predicts the progressive dwarfing of animal populations that are subjected to chronic mortality stress, but the evolutionary impact of harvesting terrestrial herbivores has seldom been tested. In Australia, marsupials of the genus Macropus (kangaroos and wallabies) are subjected to size-selective commercial harvesting. Mathematical modelling suggests that harvest quotas (c. 10-20% of population estimates annually) could be driving body-size evolution in these species. We tested this hypothesis for three harvested macropod species with continental-scale distributions. To do so, we measured more than 2000 macropod skulls sourced from wildlife collections spanning the last 130 years. We analysed these data using spatial Bayesian models that controlled for the age and sex of specimens as well as environmental drivers and island effects. We found no evidence for the hypothesized decline in body size for any species; rather, models that fit trend terms supported minor body size increases over time. This apparently counterintuitive result is consistent with reduced mortality due to a depauperate predator guild and increased primary productivity of grassland vegetation following European settlement in Australia. Spatial patterns in macropod body size supported the heat dissipation limit and productivity hypotheses proposed to explain geographic body-size variation (i.e. skull size increased with decreasing summer maximum temperature and increasing rainfall, respectively). There is no empirical evidence that size-selective harvesting has driven the evolution of smaller body size in Australian macropods. Bayesian models are appropriate for investigating the long-term impact of human harvesting because they can impute missing data, fit nonlinear growth models and account for non-random spatial sampling inherent in wildlife collections. PMID:25039424

  6. Is the tracer velocity of a fluid continuum equal to its mass velocity?

    PubMed

    Brenner, Howard

    2004-12-01

    Owing to its size independence in the so-called near-continuum vanishingly small Knudsen number regime (Kn<1) , thermophoretic particle motion occurring in an otherwise quiescent gas under the influence of a temperature gradient is here interpreted as representing the motion of a tracer, namely, an effectively point-size test particle monitoring the local velocity of the undisturbed, particle-free, compressible gas continuum through space. "Compressibility" refers here not to the usual effect of pressure on the gas's mass density rho but rather to the effect thereon of temperature. Our unorthodox continuum interpretation of thermophoresis differs from the usual one, which regards the existence of thermophoretic forces in gases as a strictly noncontinuum phenomenon, involving thermal stress-induced Maxwell slip ("thermal creep") of the gas's mass velocity vm at the surface of the particle, with vm denoting the velocity appearing in the continuity equation expressing the law of conservation of mass. Explicitly, instead of regarding the thermally animated particle as moving through the gas, we regard the particle (in its hypothesized role as a tracer of the undisturbed, particle-free, fluid motion) as moving with the gas, through space; that is, the particle is viewed as simply being entrained in the flowing gas, which, as a result of an externally applied temperature gradient, was already in motion prior to the tracer's introduction into the fluid--albeit not mass motion (which is, in fact, identically zero) but rather volume motion. This tracer-particle interpretation of experimental thermophoretic particle velocity measurements raises fundamental issues in regard to the universally accepted Newtonian rheological law constitutively specifying the viscous or deviatoric stress T as being proportional to the (symmetrized, traceless) fluid velocity gradient inverted Deltav , with v identified as being the fluid's mass velocity vm . Rather, it is argued in the case of

  7. Is the tracer velocity of a fluid continuum equal to its mass velocity?

    PubMed

    Brenner, Howard

    2004-12-01

    Owing to its size independence in the so-called near-continuum vanishingly small Knudsen number regime (Kn<1) , thermophoretic particle motion occurring in an otherwise quiescent gas under the influence of a temperature gradient is here interpreted as representing the motion of a tracer, namely, an effectively point-size test particle monitoring the local velocity of the undisturbed, particle-free, compressible gas continuum through space. "Compressibility" refers here not to the usual effect of pressure on the gas's mass density rho but rather to the effect thereon of temperature. Our unorthodox continuum interpretation of thermophoresis differs from the usual one, which regards the existence of thermophoretic forces in gases as a strictly noncontinuum phenomenon, involving thermal stress-induced Maxwell slip ("thermal creep") of the gas's mass velocity vm at the surface of the particle, with vm denoting the velocity appearing in the continuity equation expressing the law of conservation of mass. Explicitly, instead of regarding the thermally animated particle as moving through the gas, we regard the particle (in its hypothesized role as a tracer of the undisturbed, particle-free, fluid motion) as moving with the gas, through space; that is, the particle is viewed as simply being entrained in the flowing gas, which, as a result of an externally applied temperature gradient, was already in motion prior to the tracer's introduction into the fluid--albeit not mass motion (which is, in fact, identically zero) but rather volume motion. This tracer-particle interpretation of experimental thermophoretic particle velocity measurements raises fundamental issues in regard to the universally accepted Newtonian rheological law constitutively specifying the viscous or deviatoric stress T as being proportional to the (symmetrized, traceless) fluid velocity gradient inverted Deltav , with v identified as being the fluid's mass velocity vm . Rather, it is argued in the case of

  8. In-Situ Characterization of Dense Non-Aqueous Phase Liquids Using Partitioning Tracers

    SciTech Connect

    Gary A. Pope; Daene C. McKinney; Akhil Datta Gupta; Richard E. Jackson; Minquan Jin

    2000-03-20

    Majors advances have been made during the past three years in our research on interwell partitioning tracers tests (PITTs). These advances include (1) progress on the inverse problem of how to estimate the three-dimensional distribution of NAPL in aquifers from the tracer data, (2) the first ever partitioning tracer experiments in dual porosity media, (3) the first modeling of partitioning tracers in dual porosity media (4) experiments with complex NAPLs such as coal tar, (5) the development of an accurate and simple method to predict partition coefficients using the equivalent alkane carbon number approach, (6) partitioning tracer experiments in large model aquifers with permeability layers, (7) the first ever analysis of partitioning tracer data to estimate the change in composition of a NAPL before and after remediation (8) the first ever analysis of partitioning tracer data after a field demonstration of surfactant foam to remediate NAPL and (9) experiments at elevated temperatures .

  9. Redesigning TRACER trial after TRITON.

    PubMed

    Serebruany, Victor L

    2015-10-15

    Designing of smart clinical trials is critical for regulatory approval and future drug utilization. Importantly, trial design should be reconsidered if the interim analyses suggest unexpected harm, or conflicting results were yielded from the other trials within the same therapeutic area. With regard to antiplatelet agents, the perfect example is redesigning of the ongoing PRoFESS trial by eliminating aspirin from clopidogrel arm after the earlier MATCH trial results became available. The goal was to aseess the unchanged TRACER trial design in light of the evidence yielded from the earlier completed TRITON trial. TRACER was designed as a triple versus dual antiplatelet trial in NSTEMI patients with no previous long-term outcome data supporting such aggressive strategy. TRITON data represented dual versus dual antiplatelet therapy, and became available before TRACER enrollment starts revealing prasugrel front-loaded early vascular benefit predominantly in STEMI patients with the growing over time bleeding and cancer risks. Moreover, large prasugrel NSTEMI TRITON cohort exhibited trend towards excess mortality in experimental arm warning against aggressive TRACER design. The long-term TRITON results in general, and especially in the NSTEMI patients challenge unchanged TRACER trial design. Applying dual, rather than triple antiplatelet therapy protocol modification should be considered in TRACER to minimize bleeding, cancer, and non-cardiovascular death risks. PMID:26126053

  10. Atmospheric and soil-gas monitoring for surface leakage at the San Juan Basin CO{sub 2} pilot test site at Pump Canyon New Mexico, using perfluorocarbon tracers, CO{sub 2} soil-gas flux and soil-gas hydrocarbons

    SciTech Connect

    Wells, Arthur W; Diehl, J Rodney; Strazisar, Brian R; Wilson, Thomas; H Stanko, Dennis C

    2012-05-01

    Near-surface monitoring and subsurface characterization activities were undertaken in collaboration with the Southwest Regional Carbon Sequestration Partnership on their San Juan Basin coal-bed methane pilot test site near Navajo City, New Mexico. Nearly 18,407 short tons (1.670 × 107 kg) of CO{sub 2} were injected into 3 seams of the Fruitland coal between July 2008 and April 2009. Between September 18 and October 30, 2008, two additions of approximately 20 L each of perfluorocarbon (PFC) tracers were mixed with the CO{sub 2} at the injection wellhead. PFC tracers in soil-gas and in the atmosphere were monitored over a period of 2 years using a rectangular array of permanent installations. Additional monitors were placed near existing well bores and at other locations of potential leakage identified during the pre-injection site survey. Monitoring was conducted using sorbent containing tubes to collect any released PFC tracer from soil-gas or the atmosphere. Near-surface monitoring activities also included CO{sub 2} surface flux and carbon isotopes, soil-gas hydrocarbon levels, and electrical conductivity in the soil. The value of the PFC tracers was demonstrated when a significant leakage event was detected near an offset production well. Subsurface characterization activities, including 3D seismic interpretation and attribute analysis, were conducted to evaluate reservoir integrity and the potential that leakage of injected CO{sub 2} might occur. Leakage from the injection reservoir was not detected. PFC tracers made breakthroughs at 2 of 3 offset wells which were not otherwise directly observable in produced gases containing 20–30% CO{sub 2}. These results have aided reservoir geophysical and simulation investigations to track the underground movement of CO{sub 2}. 3D seismic analysis provided a possible interpretation for the order of appearance of tracers at production wells.

  11. Innovative techniques for the description of reservoir heterogeneity using tracers. Second technical annual progress report, October 1991--September 1992

    SciTech Connect

    Pope, G.A.; Sepehrnoori, K.

    1992-12-31

    This second annual report on innovative uses of tracers for reservoir characterization contains four sections each describing a novel use of oilfield tracers. The first section describes and illustrates the use of a new single-well tracer test to estimate wettability. This test consists of the injection of brine containing tracers followed by oil containing tracers, a shut-in period to allow some of the tracers to react, and then production of the tracers. The inclusion of the oil injection slug with tracers is unique to this test, and this is what makes the test work. We adapted our chemical simulator, UTCHEM, to enable us to study this tracer method and made an extensive simulation study to evaluate the effects of wettability based upon characteristic curves for relative permeability and capillary pressure for differing wetting states typical of oil reservoirs. The second section of this report describes a new method for analyzing interwell tracer data based upon a type-curve approach. Theoretical frequency response functions were used to build type curves of ``transfer function`` and ``phase spectrum`` that have dimensionless heterogeneity index as a parameter to characterize a stochastic permeability field. We illustrate this method by analyzing field tracer data. The third section of this report describes a new theory for interpreting interwell tracer data in terms of channeling and dispersive behavior for reservoirs. Once again, a stochastic approach to reservoir description is taken. The fourth section of this report describes our simulation of perfluorocarbon gas tracers. This new tracer technology developed at Brookhaven National Laboratory is being tested at the Elk Hills Naval Petroleum Reserve No. 1 in California. We report preliminary simulations made of these tracers in one of the oil reservoirs under evaluation with these tracers in this field. Our compostional simulator (UTCOMP) was used for this simulation study.

  12. Solute transport in heterogeneous karst systems: Dimensioning and estimation of the transport parameters via multi-sampling tracer-tests modelling using the OTIS (One-dimensional Transport with Inflow and Storage) program

    NASA Astrophysics Data System (ADS)

    Dewaide, Lorraine; Bonniver, Isabelle; Rochez, Gaëtan; Hallet, Vincent

    2016-03-01

    This paper presents the modelling results of several tracer-tests performed in the cave system of Han-sur-Lesse (South Belgium). In Han-sur-Lesse, solute flows along accessible underground river stretches and through flooded areas that are rather unknown in terms of geometry. This paper focus on the impact of those flooded areas on solute transport and their dimensioning. The program used (One-dimensional Transport with Inflow and Storage: OTIS) is based on the two-region non equilibrium model that supposes the existence of an immobile water zone along the main flow zone in which solute can be caught. The simulations aim to replicate experimental breakthrough curves (BTCs) by adapting the main transport and geometric parameters that govern solute transport in karst conduits. Furthermore, OTIS allows a discretization of the investigated system, which is particularly interesting in systems presenting heterogeneous geometries. Simulation results show that transient storage is a major process in flooded areas and that the crossing of these has a major effect on the BTCs shape. This influence is however rather complex and very dependent of the flooded areas geometry and transport parameters. Sensibility tests performed in this paper aim to validate the model and show the impact of the parametrization on the BTCs shape. Those tests demonstrate that transient storage is not necessarily transformed in retardation. Indeed, significant tailing effect is only observed in specific conditions (depending on the system geometry and/or the flow) that allow residence time in the storage area to be longer than restitution time. This study ends with a comparison of solute transport in river stretches and in flooded areas.

  13. AN INTEGRATED APPROACH TO CHARACTERIZING BYPASSED OIL IN HETEROGENEOUS AND FRACTURED RESERVOIRS USING PARTITIONING TRACERS

    SciTech Connect

    Akhil Datta-Gupta

    2003-08-01

    We explore the use of efficient streamline-based simulation approaches for modeling partitioning interwell tracer tests in hydrocarbon reservoirs. Specifically, we utilize the unique features of streamline models to develop an efficient approach for interpretation and history matching of field tracer response. A critical aspect here is the underdetermined and highly ill-posed nature of the associated inverse problems. We have adopted an integrated approach whereby we combine data from multiple sources to minimize the uncertainty and non-uniqueness in the interpreted results. For partitioning interwell tracer tests, these are primarily the distribution of reservoir permeability and oil saturation distribution. A novel approach to multiscale data integration using Markov Random Fields (MRF) has been developed to integrate static data sources from the reservoir such as core, well log and 3-D seismic data. We have also explored the use of a finite difference reservoir simulator, UTCHEM, for field-scale design and optimization of partitioning interwell tracer tests. The finite-difference model allows us to include detailed physics associated with reactive tracer transport, particularly those related with transverse and cross-streamline mechanisms. We have investigated the potential use of downhole tracer samplers and also the use of natural tracers for the design of partitioning tracer tests. Finally, the behavior of partitioning tracer tests in fractured reservoirs is investigated using a dual-porosity finite-difference model.

  14. Characteristics and Evolution of Passive Tracers in the Oceanic Mixed Layer

    NASA Astrophysics Data System (ADS)

    Smith, Katherine; Hamlington, Peter; Fox-Kemper, Baylor

    2015-11-01

    Ocean tracers such as CO2 and plankton reside primarily in the mixed layer where air-sea gas exchange occurs and light is plentiful for photosynthesis. There can be substantial heterogeneity in the distributions of these tracers due to turbulent mixing, particularly in the submesoscale range where partly geostrophic eddies and small-scale 3D turbulence are both active. In this talk, LES spanning scales from 20km down to 5m are used to examine the role of turbulent mixing on nonreactive passive ocean tracers. The simulations include the effects of both wave-driven Langmuir turbulence and submesoscale eddies, and tracers with different initial and boundary conditions are examined. Tracer properties are characterized using spatial fields, statistics, multiscale fluxes, and spectra, and results show that passive tracer mixing depends on air-sea flux rate, release depth, and flow regime. The results indicate that while submesoscale eddies transport buoyancy upward to extract potential energy, the same is not true of passive tracers, whose entrainment is instead suppressed. Early in the evolution of some tracers, counter-gradient transport occurs co-located with regions of negative potential vorticity, suggesting that symmetric instabilities may act to oppose turbulent mixing.

  15. Wind tunnel evaluation of several tracer and collection techniques for the measurement of spray drift.

    PubMed

    Brusselman, E; Van Driessen, K; Steurbaut, W; Gabriels, D; Cornelis, W; Nuyttens, D; Sonck, B; Baetens, K; Nicolai, B; Verboven, P; Ramon, H

    2004-01-01

    In the history of pesticide drift measuring techniques, different tracers and a lot of different collection techniques have been used. At the start of a new Flemish project 'Protecting the Flemish environment against drift - The importance of drift-reducing techniques', wind tunnel tests have been executed to select the most efficient tracer and collection technique. As tracer types a fluorescent tracer Renaissance W15, 2 different chelates, a NaCl-solution and a fungicide Tolylfluanide were used. 2 different collection techniques were tested: drains incorporated in the wind tunnel floor filled with filter paper and filled with cloths. The recovery of the different tracers combined with the 2 collection materials was calculated. The advantages and disadvantages of the tracers and collection materials are enumerated in this article. PMID:15756877

  16. Determination of stream reaeration coefficients by use of tracers

    USGS Publications Warehouse

    Kilpatrick, F.A.; Rathbun, R.E.; Yotsukura, Nobuhiro; Parker, G.W.; DeLong, L.L.

    1989-01-01

    Stream reaeration is the physical absorption of oxygen from the atmosphere by a flowing stream. This is the primary process by which a stream replenishes the oxygen consumed in the biodegradation of organic wastes. Prior to 1965, reaeration rate coefficients could be estimated only by indirect methods. In 1965, a direct method of measuring stream reaeration coefficients was developed whereby a radioactive tracer gas was injected into a stream-the principle being that the tracer gas would be desorbed from the stream inversely to how oxygen would be absorbed. The technique has since been modified by substituting hydrocarbon gases for the radioactive tracer gas. This manual describes the slug-injection and constant-rate-injection methods of measuring gas-tracer desorption. Emphasis is on the use of rhodamine WT dye as a relatively conservative tracer and propane as the nonconservative gas tracer, on planning field tests, on methods of injection, sampling, and analysis, and on techniques for computing desorption and reaeration coefficients.

  17. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain Site Characterization study. [Quarterly] progress report, April 1, 1995--June 3, 1995

    SciTech Connect

    Stetzenbach, K.; Farnham, I.

    1995-08-01

    The focus for this quarter has been on completing the laboratory studies in preparation for the C-Well tracer tests. These studies include measuring the solubilities for each of the fluorinated benzoic acids as well as determining the stabilities of these compounds through both batch and column testing. A batch test for four pyridone compounds was also initiated. The Tracer QA procedures were approved by the YM USGS on May 24, 1995. The batch testing was repeated using these procedures.

  18. Study of North Atlantic ventilation using transient tracers. Doctoral Thesis

    SciTech Connect

    Doney, S.C.

    1991-08-01

    Tritium, (3)He, and chlorofluorocarbon distributions in the North Atlantic provide constraints on the ventilation time-scales for the thermocline and abyssal water. A new model function based on a factor analysis of the WMO/IAEA precipitation data set is developed for predicting the spatial and temporal patterns of bomb-tritium in precipitation. Model atmospheric and advective tritium inputs to the North Atlantic are compared with the observed bomb-tritium inventories calculated from the 1972 GEOSECS and 1981-1983 TTO data sets. The observed growth of bomb-tritium levels in the deep North Atlantic are used, along with the tracer gradients ((3)H and (3)He) in the Deep Western Boundary Current, to estimate abyssal ventilation rates and boundary current recirculation. The surface boundary conditions for different transient tracers are found to profoundly effect thermocline ventilation rates estimates. Tracers that equilibrate rapidly with the atmosphere, such as (3)He and the CFCs, have faster apparent ventilation rates and are more appropriate for estimating oxygen utilization rates than tracers that are reset slowly in the surface ocean (e.g. (3)H and (14)C). The chlorofluorocarbon data for a new section in the eastern North Atlantic are presented and used to illustrate the ventilation time-scales for the major water masses in the region. (Copyright (c) Scott C. Doney, 1991.)

  19. Final Progress Report for Project Entitled: Quantum Dot Tracers for Use in Engineered Geothermal Systems

    SciTech Connect

    Rose, Peter; Bartl, Michael; Reimus, Paul; Williams, Mark; Mella, Mike

    2015-09-12

    The objective of this project was to develop and demonstrate a new class of tracers that offer great promise for use in characterizing fracture networks in EGS reservoirs. From laboratory synthesis and testing through numerical modeling and field demonstrations, we have demonstrated the amazing versatility and applicability of quantum dot tracers. This report summarizes the results of four years of research into the design, synthesis, and characterization of semiconductor nanocrystals (quantum dots) for use as geothermal tracers.

  20. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain Site Characterization Study; Progress report, June 1--December 31, 1990

    SciTech Connect

    Stetzenbach, K.J.

    1990-12-31

    Ground water tracers are solutes dissolved in or carried by ground water to delineate flow pathways. Tracers provide information on direction and speed of water movement and that of contaminants that might be conveyed by the water. Tracers can also be used to measure effective porosity, hydraulic conductivity, dispersivity and solute distribution coefficients. For most applications tracers should be conservative, that is, move at the same rate as the water and not sorb to aquifer materials. Tracers must have a number of properties to be functional. Regardless of the desired properties, the chemical and physical behavior of a tracer in ground water and the porous medium under study must be understood. Good estimates of tracer behavior can be obtained from laboratory studies. Studies in this proposal will address tracer properties with analytical method development, static sorption and degradation studies and column transport studies, Mutagenicity tests will be performed on promising candidates. The tracers that will be used for these experiments are fluorinated organic acids and other organic compounds that have the chemical and biological stability necessary to be effective in the Yucca Mountain environment. Special emphasis will be placed on compounds that fluoresce or have very large ultraviolet absorption coefficients for very high analytical sensitivity.

  1. Contribution of time-related environmental tracing combined with tracer tests for characterization of a groundwater conceptual model: a case study at the Séchilienne landslide, western Alps (France)

    NASA Astrophysics Data System (ADS)

    Vallet, A.; Bertrand, C.; Mudry, J.; Bogaard, T.; Fabbri, O.; Baudement, C.; Régent, B.

    2015-12-01

    Groundwater-level rise plays an important role in the activation or reactivation of deep-seated landslides and so hydromechanical studies require a good knowledge of groundwater flows. Anisotropic and heterogeneous media combined with landslide deformation make classical hydrogeological investigations difficult. Hydrogeological investigations have recently focused on indirect hydrochemistry methods. This study aims at determining the groundwater conceptual model of the Séchilienne landslide and its hosting massif in the western Alps (France). The hydrogeological investigation is streamlined by combining three approaches: a one-time multi-tracer test survey during high-flow periods, a seasonal monitoring of the water stable-isotope content and electrical conductivity, and a hydrochemical survey during low-flow periods. The complexity of the hydrogeological setting of the Séchilienne massif leads to development of an original method to estimate the elevations of the spring recharge areas, based on topographical analyses and water stable-isotope contents of springs and precipitation. This study shows that the massif supporting the Séchilienne landslide is characterized by a dual-permeability behaviour typical of fractured-rock aquifers where conductive fractures play a major role in the drainage. There is a permeability contrast between the unstable zone and the intact rock mass supporting the landslide. This contrast leads to the definition of a shallow perched aquifer in the unstable zone and a deep aquifer in the intact massif hosting the landslide. The perched aquifer in the landslide is temporary, mainly discontinuous, and its extent and connectivity fluctuate according to the seasonal recharge.

  2. Tracer transport in fractured crystalline rock: Evidence of nondiffusive breakthrough tailing

    USGS Publications Warehouse

    Becker, M.W.; Shapiro, A.M.

    2000-01-01

    Extended tailing of tracer breakthrough is often observed in pulse injection tracer tests conducted in fractured geologic media. This behavior has been attributed to diffusive exchange of tracer between mobile fluids traveling through channels in fractures and relatively stagnant fluid between fluid channels, along fracture walls, or within the bulk matrix. We present a field example where tracer breakthrough tailing apparently results from nondiffusive transport. Tracer tests were conducted in a fractured crystalline rock using both a convergent and weak dipole injection and pumping scheme. Deuterated water, bromide, and pentafluorobenzoic acid were selected as tracers for their wide range in molecular diffusivity. The late time behavior of the normalized breakthrough curves were consistent for all tracers, even when the pumping rate was changed. The lack of separation between tracers of varying diffusivity indicates that strong breakthrough tailing in fractured geologic media may be caused by advective transport processes. This finding has implications for the interpretation of tracer tests designed to measure matrix diffusion in situ and the prediction of contaminant transport in fractured rock.

  3. On gradient field theories: gradient magnetostatics and gradient elasticity

    NASA Astrophysics Data System (ADS)

    Lazar, Markus

    2014-09-01

    In this work, the fundamentals of gradient field theories are presented and reviewed. In particular, the theories of gradient magnetostatics and gradient elasticity are investigated and compared. For gradient magnetostatics, non-singular expressions for the magnetic vector gauge potential, the Biot-Savart law, the Lorentz force and the mutual interaction energy of two electric current loops are derived and discussed. For gradient elasticity, non-singular forms of all dislocation key formulas (Burgers equation, Mura equation, Peach-Koehler stress equation, Peach-Koehler force equation, and mutual interaction energy of two dislocation loops) are presented. In addition, similarities between an electric current loop and a dislocation loop are pointed out. The obtained fields for both gradient theories are non-singular due to a straightforward and self-consistent regularization.

  4. Partitioning Gas Tracer Technology for Measuring Water in Landfills

    NASA Astrophysics Data System (ADS)

    Briening, M. L.; Jakubowitch, A.; Imhoff, P. T.; Chiu, P. C.; Tittlebaum, M. E.

    2002-12-01

    Unstable landfills can result in significant environmental contamination and can become a risk to public health. To reduce this risk, water may be added to landfills to ensure that enough moisture exists for biodegradation of organic wastes. In this case risks associated with future breaks in the landfill cap are significantly reduced because organic material is degraded more rapidly. To modify moisture conditions and enhance biodegradation, leachate is typically collected from the bottom of the landfill and then recirculated near the top. It is difficult, though, to know how much leachate to add and where to add it to achieve uniform moisture conditions. This situation is exacerbated by the heterogeneous nature of landfill materials, which is known to cause short circuiting of infiltrating water, a process that has been virtually impossible to measure or model. Accurate methods for measuring the amount of water in landfills would be valuable aids for implementing leachate recirculation systems. Current methods for measuring water are inadequate, though, since they provide point measurements and are frequently affected by heterogeneity of the solid waste composition and solid waste compaction. The value of point measurements is significantly reduced in systems where water flows preferentially, such as in landfills. Here, spatially integrated measurements might be of greater value. In this research we are evaluating a promising technology, the partitioning gas tracer test, to measure the water saturation within landfills, the amount of free water in solid waste divided by the volume of the voids. The partitioning gas tracer test was recently developed by researchers working in the vadose zone. In this methodology two gas tracers are injected into a landfill. One tracer is non-reactive with landfill materials, while the second partitions into and out of free water trapped within the pore space of the solid waste. Chromatographic separation of the tracers occurs

  5. A dynamic system for the simulation of fasting luminal pH-gradients using hydrogen carbonate buffers for dissolution testing of ionisable compounds.

    PubMed

    Garbacz, Grzegorz; Kołodziej, Bartosz; Koziolek, Mirko; Weitschies, Werner; Klein, Sandra

    2014-01-23

    The hydrogen carbonate buffer is considered as the most biorelevant buffer system for the simulation of intestinal conditions and covers the physiological pH range of the luminal fluids from pH 5.5 to about pH 8.4. The pH value of a hydrogen carbonate buffer is the result of a complex and dynamic interplay of the concentration of hydrogen carbonate ions, carbonic acid, the concentration of dissolved and solvated carbon dioxide and its partial pressure above the solution. The complex equilibrium between the different ions results in a thermodynamic instability of hydrogen carbonate solutions. In order to use hydrogen carbonate buffers with pH gradients in the physiological range and with the dynamics observed in vivo without changing the ionic strength of the solution, we developed a device (pHysio-grad®) that provides both acidification of the dissolution medium by microcomputer controlled carbon dioxide influx and alkalisation by degassing. This enables a continuous pH control and adjustment during dissolution of ionisable compounds. The results of the pH adjustment indicate that the system can compensate even rapid pH changes after addition of a basic or acidic moiety in amounts corresponding up to 90% of the overall buffer capacity. The results of the dissolution tests performed for a model formulation containing ionizable compounds (Nexium 20mg mups) indicate that both the simulated fasting intraluminal pH-profiles and the buffer species can significantly affect the dissolution process by changing the lag time prior to initial drug release and the release rate of the model compound. A prediction of the in vivo release behaviour of this formulation is thus most likely strongly related to the test conditions such as pH and buffer species.

  6. Bioethics. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Martin, Cathy, Comp.; Cadoree, Michelle

    This guide lists published materials on many aspects of bioethics, the literature of which is varied and scattered. Related guides in the LC Science Tracer Bullet series are TB 80-9, Terminal Care, TB 80-11, Drug Research on Human Subjects, TB 83-4, Science Policy, and TB 84-7, Biotechnology. Not intended to be a comprehensive bibliography, this…

  7. Following Footsteps: ECD Tracer Studies.

    ERIC Educational Resources Information Center

    Smale, Jim, Editor

    2002-01-01

    This document consists of the single 2002 issue of The Bernard van Leer Foundation's "Early Childhood Matters," a periodical addressed to practitioners in the field of early childhood education and including information on projects funded by the Foundation. Articles in this issue focus on early childhood development tracer studies of former…

  8. Human calcium metabolism including bone resorption measured with {sup 41}Ca tracer

    SciTech Connect

    Freeman, S.P.H.T.; King, J.C.; Vieira, N.E.; Woodhouse, L.R.; Yergey, A.L.

    1996-08-01

    Accelerator mass spectrometry is so sensitive to small quantities of {sup 41}Ca that it might be used as a tracer in the study of human calcium kinetics to generate unique kinds of data. In contrast with the use of other Ca isotopic tracers, {sup 41}Ca tracer can be so administered that the tracer movements between the various body pools achieve a quasi steady state. Resorbing bone may thus be directly measured. We have tested such a protocol against a conventional stable isotope experiment with good agreement.

  9. Use of deuterated water as a conservative artificial ground water tracer

    USGS Publications Warehouse

    Becker, M.W.; Coplen, T.B.

    2001-01-01

    Conservative tracers are necessary to obtain groundwater transport velocities at the field scale. Deuterated water is an effective tracer for this purpose due to its similarity to water, chemical stability, non-reactivity, ease of handling and sampling, relatively neutral buoyancy, and reasonable price. Reliable detection limits of 0.1 mg deuterium/L may be obtained in field tests. A field example is presented in which deuterated water, bromide, and pentafluorobenzoic acid are used as groundwater tracers. Deuterated water appeared to be transported conservatively, producing almost identical breakthrough curves as that of other soluble tracers. ?? Springer-Verlag 2001.

  10. Plan for radionuclide tracer studies of the residence time distribution in the Wilsonville dissolver and preheater

    SciTech Connect

    Jolley, R.L.; Begovich, J.M.; Brashear, H.R.; Case, N.; Clark, T.G.; Emery, J.F.; Patton, B.D.; Rodgers, B.R.; Villiers-Fisher, J.F.; Watson, J.S.

    1983-12-01

    Stimulus-response measurements using radiotracers to measure residence time distribution (RTD) and hydrodynamic parameters for the preheaters and dissolvers at the Ft. Lewis Solvent Refined Coal (SRC) and the Exxon Donor Solvent (EDS) coal conversion pilot plants are reviewed. A plan is also presented for a series of radioactive tracer studies proposed for the Advanced Coal Liquefaction Facility at Wilsonville, Alabama, to measure the RTD for the preheater and dissolvers in the SRC-I mode. The tracer for the gas phase will be /sup 133/Xe, and /sup 198/Au (on carbonized resin or as an aqueous colloidal suspension) will be used as the slurry tracer. Four experimental phases are recommended for the RTD tracer studies: (1) preheater; (2) dissolver with 100% takeoff; (3) dissolver with 100% takeoff and solids withdrawal; and (4) dissolver with 50% takeoff. Eighteen gas-tracer and 22 liquid-tracer injections are projected to accomplish the four experimental phases. Two to four tracer injections are projected for preliminary tests to ensure the capability of safe injection of the radiotracers and the collection of statistically significant data. A complete projected cost and time schedule is provided, including procurement of necessary components, preparation of the radiotracers, assembly and testing of tracer injection apparatus and detection systems, onsite work and tracer injections, laboratory experimentation, data analysis, and report writing.

  11. Short-term fluid, heat, and solute transport in deep 'georeservoirs' likely to become 'EGS': some challenges to ICDP hydrogeologists who might like using artificial tracers

    NASA Astrophysics Data System (ADS)

    Ghergut, Julia; Behrens, Horst; Huenges, Ernst; Rose, Peter; Sauter, Martin

    2014-05-01

    During Fall 2013, the Integrated Continental Scientific Drilling Programme (ICDP) set out to define a new Science Plan that shall replace its past-decade version (Harms et al., eds., 2005) for the decade to come. Geoscientists worldwide were welcomed to suggest new imaging and exploration methods, new sites to drill, new challenges to be addressed with a view at new 'societal needs' (Harms and Wiersberg 2013). Save for two outstanding exceptions at the Mutnovsky volcano in Russia and the KTB site in Germany, the use of artificial tracers, especially within forced-gradient tests, has not been on the agenda of most ICDP projects so far (other than for purposes of monitoring microbial contamination in conjunction with drilling activities); deep-reservoir exploration and characterization efforts were restrained to non-fluid-invasive techniques on the one hand, and to sites featuring some unique earth-historical traits, on the other hand. Surely, this was not for lack of interest in quantifying fluid transport in the deep subsurface in general, but mainly due to operational, technical, and financial constraints (lack of resources / lack of opportunity for significant fluid turnover within the target, deep-seated georeservoirs, and fear of persistent, large-scale georeservoir contamination by non-pristine fluids). - This is likely to change during the forthcoming decade(s), owing to worldwide increased interest in some 'georesource' or 'georeservoir' play types (Moeck 2013) that have not been in the ICDP focus so far, including non-volcanogenic geothermal, and allowing for man-made design and intervention into how those 'georesources' or 'georeservoirs' shall work for us. Among the latter, petrothermal systems (Jung 2013, Huenges and Jung 2004) acquire growing recognition as a promising (and maybe unique) option for baseload energy supply in vast areas of the Northern hemisphere, at very low emissions and (in the long run) moderate costs. With petrothermal coming into

  12. Kinetic limitations on tracer partitioning in ganglia dominated source zones.

    PubMed

    Ervin, Rhiannon E; Boroumand, Ali; Abriola, Linda M; Ramsburg, C Andrew

    2011-11-01

    Quantification of the relationship between dense nonaqueous phase liquid (DNAPL) source strength, source longevity and spatial distribution is increasingly recognized as important for effective remedial design. Partitioning tracers are one tool that may permit interrogation of DNAPL architecture. Tracer data are commonly analyzed under the assumption of linear, equilibrium partitioning, although the appropriateness of these assumptions has not been fully explored. Here we focus on elucidating the nonlinear and nonequilibrium partitioning behavior of three selected alcohol tracers - 1-pentanol, 1-hexanol and 2-octanol in a series of batch and column experiments. Liquid-liquid equilibria for systems comprising water, TCE and the selected alcohol illustrate the nonlinear distribution of alcohol between the aqueous and organic phases. Complete quantification of these equilibria facilitates delineation of the limits of applicability of the linear partitioning assumption, and assessment of potential inaccuracies associated with measurement of partition coefficients at a single concentration. Column experiments were conducted under conditions of non-equilibrium to evaluate the kinetics of the reversible absorption of the selected tracers in a sandy medium containing a uniform entrapped saturation of TCE-DNAPL. Experimental tracer breakthrough data were used, in conjunction with mathematical models and batch measurements, to evaluate alternative hypotheses for observed deviations from linear equilibrium partitioning behavior. Analyses suggest that, although all tracers accumulate at the TCE-DNAPL/aqueous interface, surface accumulation does not influence transport at concentrations typically employed for tracer tests. Moreover, results reveal that the kinetics of the reversible absorption process are well described using existing mass transfer correlations originally developed to model aqueous boundary layer resistance for pure-component NAPL dissolution. PMID:22115085

  13. Isotopic Tracers for Delineating Non-Point Source Pollutants in Surface Water

    SciTech Connect

    Davisson, M L

    2001-03-01

    This study tested whether isotope measurements of surface water and dissolved constituents in surface water could be used as tracers of non-point source pollution. Oxygen-18 was used as a water tracer, while carbon-14, carbon-13, and deuterium were tested as tracers of DOC. Carbon-14 and carbon-13 were also used as tracers of dissolved inorganic carbon, and chlorine-36 and uranium isotopes were tested as tracers of other dissolved salts. In addition, large databases of water quality measurements were assembled for the Missouri River at St. Louis and the Sacramento-San Joaquin Delta in California to enhance interpretive results of the isotope measurements. Much of the water quality data has been under-interpreted and provides a valuable resource to investigative research, for which this report exploits and integrates with the isotope measurements.

  14. Comparison of tracer methods to quantify hydrodynamic exchange within the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Engelhardt, I.; Piepenbrink, M.; Trauth, N.; Stadler, S.; Kludt, C.; Schulz, M.; Schüth, C.; Ternes, T. A.

    2011-03-01

    SummaryHydrodynamic exchange between surface-water and groundwater was studied at a river located within the Rhine Valley in Germany. Piezometric pressure heads and environmental tracers such as temperature, stable isotopes, chloride, X-ray contrast media, and artificial sweetener were investigated within the hyporheic zone and river water plume. Vertical profiles of environmental tracers were collected using multi-level wells within the neutral up-gradient zone, beneath the river bed, and within the horizontal proximal and distal down-gradient zone. Infiltration velocities were calculated from pressure heads, temperature fluctuations and gradients. The amount of river water within groundwater was estimated from vertical profiles of chloride, stable isotopes, and persistent pharmaceuticals. Profiles of stable isotopes and chloride reveal the existence of down-welling within the shallow hyporheic zone that is generated by river bed irregularities. Due to down-welling an above-average migration of river water into the hyporheic zone establishes even under upward hydraulic pressure gradients. The investigated environmental tracers could not distinctively display short-time-infiltration velocities representative for flood waves, while average infiltration velocities calculated over several months are uniform displayed. Based on vertical temperature profiles the down-gradient migration of the river water plume could be observed even after long periods of effluent conditions and over a distance of 200 m from the river bank. X-ray contrast media and artificial sweeteners were observed in high concentrations within the proximal zone, but were not detected at a distance of 200 m from the river bank. Using temperature as environmental tracer within the hyporheic zone may result in overestimating the migration of pollutants within the river water plume as the process of natural attenuation will be neglected. Furthermore, temperature was not able to display the effect of down

  15. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain Site characterization study. Progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Stetzenbach, K.; Farnham, I.

    1995-05-01

    Fluorinated organic acids were utilized in a test study as hydrologic tracers for the Yucca Mountain Project. Fluorinated acids included cinnamic acid; benzoic acid, and toluic acid. Results are discussed pertaining to retention time, elution time, and stability.

  16. Preliminary assessment of halogenated alkanes as vapor-phase tracers

    SciTech Connect

    Adams, Michael C.; Moore, Joseph N.; Hirtz, Paul

    1991-01-01

    New tracers are needed to evaluate the efficiency of injection strategies in vapor-dominated environments. One group of compounds that seems to meet the requirements for vapor-phase tracing are the halogenated alkanes (HCFCs). HCFCs are generally nontoxic, and extrapolation of tabulated thermodynamic data indicate that they will be thermally stable and nonreactive in a geothermal environment. The solubilities and stabilities of these compounds, which form several homologous series, vary according to the substituent ratios of fluorine, chlorine, and hydrogen. Laboratory and field tests that will further define the suitability of HCFCs as vapor-phase tracers are under way.

  17. Multiple-tracer gas analyzer

    SciTech Connect

    Uhl, J.E.

    1982-01-01

    A multi-gas tracer system has been designed, built, and used on an explosively fractured oil shale rubble bed. This paper deals exclusively with the hardware, software, and overall operation of the tracer system. This system is a field portable, self-contained unit, which utilizes a mass spectrometer for gas analysis. The unit has a 20 channel sample port capability and is controlled by a desk top computer. The system is configured to provide a dynamic sensitivity range of up to six orders of magnitude. A roots blower is manifolded to the unit to provide continuous flow in all sample lines. The continuous flow process allows representative samples as well as decreasing the time between each measurement. Typical multiplex cycle time to evaluate four unique gases is approximately 12 seconds.

  18. TRACER DISPERSION STUDIES FOR HYDRAULIC CHARACTERIZATION OF PIPES

    EPA Science Inventory

    A series of experiments were conducted at the U. S. Environmental Protection Agency (EPA) Test & Evaluation (T&E) Facility in Cincinnati, Ohio, to quantify longitudinal dispersion of a sodium fluoride tracer in polyvinyl chloride (PVC) pipe and ductile iron pipe under laminar, tr...

  19. Using molecular-scale tracers to investigate transport of agricultural pollutants in soil and water

    NASA Astrophysics Data System (ADS)

    Lloyd, C.; Michaelides, K.; Chadwick, D.; Dungait, J.; Evershed, R. P.

    2012-12-01

    We explore the use of molecular-scale tracers to investigate the transport of potential pollutants due to the application of slurry to soil. The molecular-scale approach allows us to separate the pollutants which are moved to water bodies through sediment-bound and dissolved transport pathways. Slurry is applied to agricultural land to as a soil-improver across a wide-range of topographic and climatic regimes, hence a set of experiments were designed to assess the effect of changing slope gradient and rainfall intensity on the transport of pollutants. The experiments were carried out using University of Bristol's TRACE (Test Rig for Advancing Connectivity Experiments) facility. The facility includes a dual axis soil slope (6 x 2.5 x 0.3 m3) and 6-nozzle rainfall simulator, which enables the manipulation of the slope to simulate different slope gradient and rainfall scenarios. Cattle slurry was applied to the top 1 metre strip of the experimental soil slope followed by four rainfall simulations, where the gradient (5° & 10°) and the rainfall intensity (60 & 120 mm hr-1) were co-varied. Leachate was sampled from different flow pathways (surface, subsurface and percolated) via multiple outlets on the slope throughout the experiments and soil cores were taken from the slope after each experiment. Novel tracers were used to trace the pollutants in both dissolved and sediment-bound forms. Fluorescence spectroscopy was used to trace dissolved slurry-derived material via water flow pathways, as the slurry was found to have a distinct signature compared with the soil. The fluorescence signatures of the leachates were compared with those of many organic compounds in order to characterise the origin of the signal. This allowed the assessment of the longevity of the signal in the environment to establish if it could be used as a robust long-term tracer of slurry material in water or if would be subject to transform processes through time. 5-βstanols, organic compounds

  20. Matching tracer selection to georeservoir typology - A note on geothermal reservoir classification

    NASA Astrophysics Data System (ADS)

    Ghergut, Julia; Behrens, Horst; Licha, Tobias; Sauter, Martin

    2013-04-01

    Thermal-lifetime prediction is a traditional endeavor of inter-well tracer tests conducted in geothermal reservoirs. Early tracer test signals (detectable within the first few years of operation) are expected to correlate with late-time production temperature drop (so-called 'thermal breakthrough', supposed to not occur before some decades of operation) of a geothermal reservoir. Whenever a geothermal reservoir can be described as a single-fracture system, its thermal lifetime will, ideally, be determined by two parameters, whose inversion from conservative-tracer test signals is straightforward and non-ambiguous (provided that the tracer tests, and their interpretation, are performed in accordance to the rules of the art). However, as soon as just few more fractures are considered, this clear-cut correlation is broken. A given geothermal reservoir can simultaneously exhibit a single-fracture behavior, in terms of heat transport, and a multiple-fracture behavior, in terms of solute tracer transport (or vice-versa), whose effective values of fracture apertures, spacings, and porosities are essentially uncorrelated between heat and solute tracers. Solute transport parameters derived from conservative-tracer tests will no longer characterize the heat transport processes (and thus temperature evolutions) taking place in the same reservoir. Parameters determining its thermal lifetime will remain invisible to conservative tracers in inter-well tests. Non-conservative tracers, in particular sorptive and thermo-sensitive compounds, can be used to overcome this gap between heat and tracer transport. However, significant differences exist, w. r. to tracer functionality, between different geothermal systems: (I) hot natural aquifers (with predominantly 'porous media' character), (II) aquifer-based EGS, (III) petrothermally-based EGS, (IV) naturally-fractured systems. Conservative tracers are indispensable to characterizing any of (I) - (IV), but their residence time

  1. Predicted fate of tritium residuum from groundwater tracer experiments in the Amargosa Desert, southern Nevada

    SciTech Connect

    Brikowski, T.

    1993-07-01

    Analytic solutions are used in this study to evaluate potential groundwater transport of tritium used in goundwater tracer tests southwest of the Nevada Test Site. Possible transport from this site is of interest because initial radionuclide concentrations were high and the site is close to goundwater discharge points (12 km). Anecdotal evidence indicates that 90 percent of these tracers were removed by pumping at the completion of the tests; this study examines the probable transport of the tracers with and without the removal. Classical dispersive transport analytic solutions are used, treating the tracer test as a point slug injection. Input parameters for the solutions were measured at the site, and consideration of parameter uncertainty is incorporated in the results. With removal of the tracer, the maximum expected region with above-Safe Drinking Water Act (40 CFR 121) concentrations of tritium extends 5 km from the injection point, and does not reach any sites of public access. Detectable tritium from the tests is likely to have reached the Ash Meadows fault zone, but flow along the fault probably diluted the tracer to below detection limits before arrival at springs along the fault. Arrival at the springs would have occurred 20 to 25 years after the tests. Without removal of the tracer, the solutions indicate that tritium concentrations just above Safe Drinking Water Act standards would have reached the Ash Meadows fault zone. In this case, detectable tritium might have been found in Devil`s Hole or Longstreet Spring, the nearest points of possible public exposure.

  2. Off-gassing induced tracer release from molten basalt pools

    SciTech Connect

    Cronenberg, A.W.; Callow, R.A.

    1994-01-01

    Two in situ vitrification (ISV) field tests were conducted at the Idaho National Engineering Laboratory (INEL) during the summer of 1990 to assess ISV suitability for long-term stabilization of buried waste that contains transuranic and other radionuclide contaminants. The ISV process uses electrical resistance heating to melt buried waste and soil in place, which upon cooldown and resolidification fixes the waste into a vitrified (glass-like) form. In these two ISV field tests, small quantities of rare-earth oxides (tracers DY{sub 2}O{sub 3}, Yb{sub 2}O{sub 3}, and Tb{sub 4}O{sub 7}) were placed in the test pits to simulate the presence of plutonium oxides and assess plutonium retention/release behavior. The analysis presented in this report indicates that dissolution of tracer oxides into basaltic melts can be expected with subsequent tracer molecular or microparticle carry-off by escaping gas bubbles, which is similar to adsorptive bubble separation and ion flotation processes employed in the chemical industry to separate dilute heavy species from liquids under gas sparging conditions. Gaseous bubble escape from the melt surface and associated aerosolization is believed to be responsible for small quantities of tracer ejection from the melt surface to the cover hood and off-gas collection system. Methods of controlling off-gassing during ISV would be expected to improve the overall retention of such heavy oxide contaminants during melting/vitrification of buried waste.

  3. Open Clusters as Tracers of the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Cantat-Gaudin, Tristan

    2015-01-01

    for star formation mechanisms. * the study of the OCs can shed light on the disk properties, in particular on the presence of a chemical gradient. Studying the distribution of chemical elements across the Galactic disk has been a central question in astronomy for the past decade. The exact shape of this metallicity gradient, revealed by various tracers such as Cepheids, Planetary Nebulae or HII regions is not quite clear. OCs suggest a flattening of the gradient in the outer disk. Here I will investigate the issue using the GES data set. Methods: The data analysis of the GES is a complex task carried out by different groups. When dealing with a huge quantity of astronomical data, it is essential to have tools that economically process large amounts of information and produce repeatable results. As part of the GES I developed an automated tool to measure the EWs in spectra of FGK stars in a fully automatic way. This tool, called DAOSPEC Option Optimizer pipeline (DOOp), uses DAOSPEC and optimizes its key parameters in order to make the measurements as robust as possible. This tool was widely tested on synthetic and observational spectra. Stellar parameters and elemental abundances are derived with the code FAMA developed with the aim of dealing with large batches of stars. FAMA uses the widely used software MOOG and optimizes stellar parameters in order to satisfy the excitation and ionization balance, following the classical equivalent width procedure. The construction of a metallicity scale, based on high-quality spectra of benchmark stars is fundamental to interpret the spectroscopic results in the context of the Galaxy formation and evolution. We take advantage of the variety of analysis methods represented within the GES collaboration, including DOOp + FAMA in order to produce a homogeneous metallicity scale. Those reference stars can be used to assess the precision and accuracy of a given method. Results: Using archival photometric data, I presents an in

  4. Petroleum characterization by perfluorocarbon tracers

    SciTech Connect

    Senum, G.I.; Fajer, R.W. ); Harris, B.R. Jr. ); DeRose, W.E. ); Ottaviani, W.L. )

    1992-02-01

    Perfluorocarbon tracers (PFTs), a class of six compounds, were used to help characterize the Shallow Oil Zone (SOZ) reservoir at the Naval Petroleum Reserve in California (NPRC) at Elk Hills. The SOZ reservoir is undergoing a pilot gas injection program to assess the technical feasibility and economic viability of injecting gas into the SOZ for improved oil recovery. PFTs were utilized in the pilot gas injection to qualitatively assess the extent of the pilot gas injection so as to determine the degree of gas containment within the SOZ reservoir.

  5. Second order gradient ascent pulse engineering.

    PubMed

    de Fouquieres, P; Schirmer, S G; Glaser, S J; Kuprov, Ilya

    2011-10-01

    We report some improvements to the gradient ascent pulse engineering (GRAPE) algorithm for optimal control of spin ensembles and other quantum systems. These include more accurate gradients, convergence acceleration using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm as well as faster control derivative calculation algorithms. In all test systems, the wall clock time and the convergence rates show a considerable improvement over the approximate gradient ascent.

  6. Effects of submesoscale turbulence on ocean tracers

    NASA Astrophysics Data System (ADS)

    Smith, Katherine M.; Hamlington, Peter E.; Fox-Kemper, Baylor

    2016-01-01

    Ocean tracers such as carbon dioxide, nutrients, plankton, and oil advect, diffuse, and react primarily in the oceanic mixed layer where air-sea gas exchange occurs and light is plentiful for photosynthesis. There can be substantial heterogeneity in the spatial distributions of these tracers due to turbulent stirring, particularly in the submesoscale range where partly geostrophic fronts and eddies and small-scale three-dimensional turbulence are simultaneously active. In this study, a large eddy simulation spanning horizontal scales from 20 km down to 5 m is used to examine the effects of multiscale turbulent mixing on nonreactive passive ocean tracers from interior and sea-surface sources. The simulation includes the effects of both wave-driven Langmuir turbulence and submesoscale eddies, and tracers with different initial and boundary conditions are examined in order to understand the respective impacts of small-scale and submesoscale motions on tracer transport. Tracer properties are characterized using spatial fields and statistics, multiscale fluxes, and spectra, and the results detail how tracer mixing depends on air-sea tracer flux rate, tracer release depth, and flow regime. Although vertical fluxes of buoyancy by submesoscale eddies compete with mixing by Langmuir turbulence, vertical fluxes of tracers are often dominated by Langmuir turbulence, particularly for tracers that are released near the mixed-layer base or that dissolve rapidly through the surface, even in regions with pronounced submesoscale activity. Early in the evolution of some tracers, negative eddy diffusivities occur co-located with regions of negative potential vorticity, suggesting that symmetric instabilities or other submesoscale phenomenon may act to oppose turbulent mixing.

  7. Tracer Cycles and Water Ages in Heterogeneous Catchments and Aquifers

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.; Jasechko, S.

    2015-12-01

    Estimates of catchment mean transit times are often based on seasonal cycles of stable isotope tracers in precipitation and streamflow. In many cases these transit time estimates are derived directly from sine-wave fitting to the observed seasonal isotope cycles. Broadly similar results are also obtained from time-domain convolutions or explicit tracer modeling, because here too the dominant tracer signal that these techniques seek to match is the seasonal isotopic cycle. Here I use simple benchmark tests to show that estimates of mean transit times based on seasonal tracer cycles will typically be wrong by several hundred percent, when applied to catchments with realistic degrees of spatial heterogeneity. This aggregation bias arises from the strong nonlinearity in the relationship between tracer cycle amplitude and mean travel time. A similar bias arises in estimates of mean transit times in nonstationary catchments. Since typical real-world catchments are both spatially heterogeneous and nonstationary, this analysis poses a fundamental challenge to tracer-based estimates of mean transit times. I propose an alternative storage metric, the fraction of "young water" in streamflow, defined as the fraction of runoff with transit times of less than roughly 0.2 years. I show that young water fractions are virtually free of aggregation bias; that is, they can be accurately estimated from tracer cycles in highly heterogeneous mixtures of subcatchments with strongly contrasting transit time distributions. They can also be reliably estimated in strongly nonstationary catchments. Young water fractions can be estimated separately for individual flow regimes, allowing direct determination of how shifts in hydraulic regime alter the fraction of water reaching the stream by fast flowpaths. One can also estimate the chemical composition of idealized "young water" and "old water" end-members, using relationships between young water fractions and solute concentrations across

  8. Oxidation in a temperature gradient

    SciTech Connect

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Russell, James H.

    2001-01-01

    The effects of a temperature gradient and heat flux on point defect diffusion in protective oxide scales were examined. Irreversible thermodynamics were used to expand Fick's first law of diffusion to include a heat flux term--a Soret effect. Oxidation kinetics were developed for the oxidation of cobalt and for nickel doped with chromium. Research in progress is described to verify the effects of a heat flux by oxidizing pure cobalt in a temperature gradient above 800 C, and comparing the kinetics to isothermal oxidation. The tests are being carried out in the new high temperature gaseous corrosion and corrosion/erosion facility at the Albany Research Center.

  9. Balloon tracer for atmospheric pollutants

    SciTech Connect

    Lichfield, E.W.; Ivey, M.D.; Zak, B.D.; Church, H.W.

    1985-01-01

    An operational prototype of the Balloon Tracer was developed and described. This prototype was designed to be capable of meeting all of the desired specifications for the Balloon Tracer. Its buoyancy adjustment subsystem is shown. Three Gilian instrument pumps operating in parallel provide a flow of about 12 litres per minute, depending upon backpressure. The miniature Klippard mechanical valves are actuated by a servo mechanism which only requires power when the state of the valves is being changed. The balloon itself for the operational prototype is just under 3 meters in diameter. A block diagram of the operational prototype payload measures ambient pressure, temperature, and humidity obtained from AIR which outputs its data in ASCII format. The vertical anemometer, which has a measured starting speed of under 2 cm/s, makes use of a Gill styrofoam propeller and a Spaulding Instruments rotation sendor. The command decoder is built around a chip developed originally for remote control television tuners. The command receiver operating on 13.8035 MHz was developed and built by Hock Engineering. The Argos transmitter is a Telonics platform transmitter terminal. The heart of the control system is an Intel 8052AH BASIC microcomputer with both random access and read only memory.

  10. The fluorescent tracer experiment on Holiday Beach near Mugu Canyon, Southern California

    USGS Publications Warehouse

    Kinsman, Nicole; Xu, J. P.

    2012-01-01

    After revisiting sand tracer techniques originally developed in the 1960s, a range of fluorescent coating formulations were tested in the laboratory. Explicit steps are presented for the preparation of the formulation evaluated to have superior attributes, a thermoplastic pigment/dye in a colloidal mixture with a vinyl chloride/vinyl acetate copolymer. In September 2010, 0.59 cubic meters of fluorescent tracer material was injected into the littoral zone about 4 kilometers upcoast of Mugu submarine canyon in California. The movement of tracer was monitored in three dimensions over the course of 4 days using manual and automated techniques. Detailed observations of the tracer's behavior in the coastal zone indicate that this tracer successfully mimicked the native beach sand and similar methods could be used to validate models of tracer movement in this type of environment. Recommendations including how to time successful tracer studies and how to scale the field of view of automated camera systems are presented along with the advantages and disadvantages of the described tracer methodology.

  11. Comment on "Analysis of groundwater contamination using concentration-time series recorded during an integral pumping test: Bias introduced by strong concentration gradients within the plume" by Allelign Zeru and Gerhard Schäfer.

    PubMed

    Bayer-Raich, Martí; Jarsjö, Jerker; Teutsch, Georg

    2007-03-20

    We consider the results of a recent paper in this journal [Zeru, A. and Schäfer, G., 2005. Analysis of groundwater contamination using concentration-time series recorded during an integral pumping test: Bias introduced by strong concentration gradients within the plume. Journal of Contaminant Hydrology 81 (2005) 106-124], which addresses the field-scale characterisation of contaminant plumes in groundwater. There, it is concluded that contaminant concentration gradients can bias Integral Pumping Test (IPT) interpretations considerably, in particular if IPTs are conducted in advective fronts of contaminant plumes. We discuss implications of this setting and also argue that the longitudinal and transverse dispersivities used in the examples of Zeru and Schäfer (2005) of up to 30 m and 3 m, respectively, are generally very high for the here relevant capture zone scale (<20 m). However, regardless of both longitudinal and transverse concentration gradients, we further show through a counter-example that IPT results are unbiased as long as the concentration attenuation along the flow direction is linear over the capture zone extent.

  12. Ammonium transport and reaction in contaminated groundwater: Application of isotope tracers and isotope fractionation studies

    USGS Publications Warehouse

    Böhlke, J.K.; Smith, R.L.; Miller, D.N.

    2006-01-01

    Ammonium (NH4+) is a major constituent of many contaminated groundwaters, but its movement through aquifers is complex and poorly documented. In this study, processes affecting NH4+ movement in a treated wastewater plume were studied by a combination of techniques including large-scale monitoring of NH4+ distribution; isotopic analyses of coexisting aqueous NH4+, NO3-, N2, and sorbed NH 4+; and in situ natural gradient 15NH 4+ tracer tests with numerical simulations of 15NH4+, 15NO3-, and 15N2 breakthrough data. Combined results indicate that the main mass of NH4+ was moving downgradient at a rate about 0.25 times the groundwater velocity. Retardation factors and groundwater ages indicate that much of the NH4+ in the plume was recharged early in the history of the wastewater disposal. NO3- and excess N2 gas, which were related to each other by denitrification near the plume source, were moving downgradient more rapidly and were largely unrelated to coexisting NH 4+. The ??15N data indicate areas of the plume affected by nitrification (substantial isotope fractionation) and sorption (no isotope fractionation). There was no conclusive evidence for NH 4+-consuming reactions (nitrification or anammox) in the anoxic core of the plume. Nitrification occurred along the upper boundary of the plume but was limited by a low rate of transverse dispersive mixing of wastewater NH4+ and O2 from overlying uncontaminated groundwater. Without induced vertical mixing or displacement of plume water with oxic groundwater from upgradient sources, the main mass of NH4+ could reach a discharge area without substantial reaction long after the more mobile wastewater constituents are gone. Multiple approaches including in situ isotopic tracers and fractionation studies provided critical information about processes affecting NH4+ movement and N speciation.

  13. Cardiac PET Perfusion Tracers: Current Status and Future Directions

    PubMed Central

    Maddahi, Jamshid; Packard, René R. S.

    2015-01-01

    Positron emission tomography (PET) myocardial perfusion imaging (MPI) is increasingly used for non-invasive detection and evaluation of coronary artery disease (CAD). However, the widespread use of PET MPI has been limited by shortcomings of the current PET perfusion tracers. Availability of these tracers is limited by need for an on-site (15O water and 13N ammonia) or nearby (13N ammonia) cyclotron or commitment to costly generators (82Rb). Due to short half-lives ranging from 76sec for 82Rb, to 2.1min for 15O water and 10min for 13N ammonia, their use in conjunction with treadmill exercise stress testing is either not possible (82Rb and 15O water) or is not practical (13N ammonia). Furthermore, the long positron range of 82Rb makes image resolution suboptimal and its low extraction limits its defect resolution. In recent years, development of an 18F labeled PET perfusion tracer has gathered considerable interest. The longer half-life of 18F (108 minutes) would make the tracer available as a unit dose from regional cyclotrons and allow use in conjunction with treadmill exercise testing. Furthermore, the short positron range of 18F would result in better image resolution. 18F flurpiridaz is by far the most thoroughly studied in animal models, and is the only F18-based PET MPI radiotracer currently undergoing clinical evaluation. Pre-clinical and clinical experience with 18F flurpiridaz demonstrated a high myocardial extraction fraction, high image and defect resolution, high myocardial uptake, slow myocardial clearance, and high myocardial-to-background contrast which was stable over time – important properties of an ideal PET MPI radiotracer. Pre-clinical data from other 18F labeled myocardial perfusion tracers are encouraging. PMID:25234078

  14. On the Vertical Gradient in CO2

    NASA Astrophysics Data System (ADS)

    Stine, A. R.; Fung, I. Y.

    2008-12-01

    Attempts to constrain surface fluxes of carbon from atmospheric measurements of carbon dioxide have primarily focused on surface boundary layer measurements, because information about surface fluxes is least diluted close to the locations where the fluxes occur. However, errors in model ventilation of air in the vertical can be misinterpreted as local surface fluxes. Satellites which measure column integrated CO2 are expected to represent a major advance in part because they observe the entire atmospheric column. Recent work has highlighted the fact that vertical gradients in carbon concentrations can give us information about where vertical mixing errors are likely to be misinterpreted as local surface fluxes, but passive tracer evidence suggests that models that capture vertical profiles on the ocean do poorly on the land (and vice versa), suggesting that the problem of correctly treating vertical mixing in inverse studies is more fundamental than picking the "best" model. We consider observations of the vertical gradient in CO2 from aircrafts and from a comparison of satellites that observe in the near infrared (which observe the column integrated CO2 field) and the thermal infrared (which observe the upper troposphere). We evaluate the feasibility of using these satellites for determining the vertical gradient in CO2. We examine how observations of the vertical gradient of CO2 allow us to differentiate the imprint of vertical mixing and the imprint in surface fluxes on the observed field of atmospheric CO2.

  15. Preparation of intravenous cholesterol tracer using current good manufacturing practices.

    PubMed

    Lin, Xiaobo; Ma, Lina; Racette, Susan B; Swaney, William P; Ostlund, Richard E

    2015-12-01

    Studies of human reverse cholesterol transport require intravenous infusion of cholesterol tracers. Because insoluble lipids may pose risk and because it is desirable to have consistent doses of defined composition available over many months, we investigated the manufacture of cholesterol tracer under current good manufacturing practice (CGMP) conditions appropriate for phase 1 investigation. Cholesterol tracer was prepared by sterile admixture of unlabeled cholesterol or cholesterol-d7 in ethanol with 20% Intralipid(®). The resulting material was filtered through a 1.2 micron particulate filter, stored at 4°C, and tested at time 0, 1.5, 3, 6, and 9 months for sterility, pyrogenicity, autoxidation, and particle size and aggregation. The limiting factor for stability was a rise in thiobarbituric acid-reacting substances of 9.6-fold over 9 months (P < 0.01). The emulsion was stable with the Z-average intensity-weighted mean droplet diameter remaining at 60 nm over 23 months. The zeta potential (a measure of negative surface charge protecting from aggregation) was unchanged at -36.2. Rapid cholesterol pool size was 25.3 ± 1.3 g. Intravenous cholesterol tracer was stable at 4°C for 9 months postproduction. CGMP manufacturing methods can be achieved in the academic setting and need to be considered for critical components of future metabolic studies.

  16. Unit vent airflow measurements using a tracer gas technique

    SciTech Connect

    Adams, D.G.; Lagus, P.L.; Fleming, K.M.

    1997-08-01

    An alternative method for assessing flowrates that does not depend on point measurements of air flow velocity is the constant tracer injection technique. In this method one injects a tracer gas at a constant rate into a duct and measures the resulting concentration downstream of the injection point. A simple equation derived from the conservation of mass allows calculation of the flowrate at the point of injection. Flowrate data obtained using both a pitot tube and a flow measuring station were compared with tracer gas flowrate measurements in the unit vent duct at the Callaway Nuclear Station during late 1995 and early 1996. These data are presented and discussed with an eye toward obtaining precise flowrate data for release rate calculations. The advantages and disadvantages of the technique are also described. In those test situations for which many flowrate combinations are required, or in large area ducts, a tracer flowrate determination requires fewer man-hours than does a conventional traverse-based technique and does not require knowledge of the duct area. 6 refs., 10 figs., 6 tabs.

  17. Preparation of intravenous cholesterol tracer using current good manufacturing practices.

    PubMed

    Lin, Xiaobo; Ma, Lina; Racette, Susan B; Swaney, William P; Ostlund, Richard E

    2015-12-01

    Studies of human reverse cholesterol transport require intravenous infusion of cholesterol tracers. Because insoluble lipids may pose risk and because it is desirable to have consistent doses of defined composition available over many months, we investigated the manufacture of cholesterol tracer under current good manufacturing practice (CGMP) conditions appropriate for phase 1 investigation. Cholesterol tracer was prepared by sterile admixture of unlabeled cholesterol or cholesterol-d7 in ethanol with 20% Intralipid(®). The resulting material was filtered through a 1.2 micron particulate filter, stored at 4°C, and tested at time 0, 1.5, 3, 6, and 9 months for sterility, pyrogenicity, autoxidation, and particle size and aggregation. The limiting factor for stability was a rise in thiobarbituric acid-reacting substances of 9.6-fold over 9 months (P < 0.01). The emulsion was stable with the Z-average intensity-weighted mean droplet diameter remaining at 60 nm over 23 months. The zeta potential (a measure of negative surface charge protecting from aggregation) was unchanged at -36.2. Rapid cholesterol pool size was 25.3 ± 1.3 g. Intravenous cholesterol tracer was stable at 4°C for 9 months postproduction. CGMP manufacturing methods can be achieved in the academic setting and need to be considered for critical components of future metabolic studies. PMID:26416797

  18. Biomimetic Gradient Polymers with Enhanced Damping Capacities.

    PubMed

    Wang, Dong; Zhang, Huan; Guo, Jing; Cheng, Beichen; Cao, Yuan; Lu, Shengjun; Zhao, Ning; Xu, Jian

    2016-04-01

    Designing gradient structures, mimicking biological materials, such as pummelo peels and tendon, is a promising strategy for developing advanced materials with superior energy damping capacities. Here a facile and effective approach for fabricating polymers with composition gradients at millimeter length scale is presented. The gradient thiol-ene polymers (TEPs) are created by the use of density difference of ternary thiol-ene-ene precursors and the subsequent photo-crosslinking via thiol-ene reaction. The compositional gradients are analyzed via differential scanning calorimeter (DSC), compressive modulus testing, atomic force microscopy (AFM) indentation, and swelling measurements. In contrast to homogeneous TEPs networks, the resultant gradient polymer shows a broader effective damping temperature range combining with good mechanical properties. The present result provides an effective route toward high damping materials by the fabrication of gradient structures. PMID:26776353

  19. Development of Models to Simulate Tracer Behavior in Enhanced Geothermal Systems

    SciTech Connect

    Williams, Mark D.; Vermeul, Vincent R.; Reimus, P. W.; Newell, D.; Watson, Tom B.

    2010-06-01

    A recent report found that power and heat produced from engineered (or enhanced) geothermal systems (EGSs) could have a major impact on the United States while incurring minimal environmental impacts. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distributions, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for commercial development of geothermal energy. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. Modeling capabilities are being developed as part of this project to support laboratory and field testing to characterize engineered geothermal systems in single- and multi-well tests using tracers. The objective of this report is to describe the simulation plan and the status of model development for simulating tracer tests for characterizing EGS.

  20. Retention of chemical tracers in geothermal reservoirs

    SciTech Connect

    Horne, R.N.; Breitenbach, K.A.; Fossum, M.P.

    1982-01-01

    The advantages and disadvantages of chemical tracers for use in geothermal reservoir monitoring are examined. Tracers are used to determine the magnitude of connectivity between injection and production wells in order to estimate the likelihood of premature fluid breakthrough. Even though chemical tracers are generally less environmentally sensitive than radioactive materials, quantities injected need to be much larger to be distinguishable by chemical analysis. As a result, a non-equilibrium concentration of tracer material is injected into the reservoir, and the tracer is susceptible to retention within the reservoir by ion exchange, diffusion into the solids or immobile reservoir fluid, adsorption or dissolution. These various reactions lead to changes in the tracer concentration as the traced fluid flows through the reservoir, and therefore reduce the capability of the experiment to distinguish concentration changes due to purely mechanical effects. Experimental observations reported here show that substantial fractions of KI tracer were retained under reservoir conditions, even though it appears that the retained material was subsequently released into more dilute fluid. The result is an apparent storage and release mechanism that will distort the later response of a tracer breakthrough.

  1. USING TRACERS TO DESCRIBE NAPL HETEROGENEITY

    EPA Science Inventory

    Tracers are frequently used to estimate both the average travel time for water flow through the tracer swept volume and NAPL saturation. The same data can be used to develop a statistical distribution describing the hydraulic conductivity in the sept volume and a possible distri...

  2. Nitrous oxide as a tracer gas in the ASHRAE 110-1995 Standard.

    PubMed

    Burke, Martin; Wong, Larry; Gonzales, Ben A; Knutson, Gerhard

    2014-01-01

    ANSI/ASHRAE Standard 110 provides a quantitative method for testing the performance of laboratory fume hoods. Through release of a known quantity (4.0 Lpm) of a tracer gas, and subsequent monitoring of the tracer gas concentration in the "breathing zone" of a mannequin positioned in front of the hood, this method allows for evaluation of laboratory hood performance. Standard 110 specifies sulfur hexafluoride (SF6) as the tracer gas; however, suitable alternatives are allowed. Through three series of performance tests, this analysis serves to investigate the use of nitrous oxide (N2O) as an alternate tracer gas for hood performance testing. Single gas tests were performed according to ASHRAE Standard 110-1995 with each tracer gas individually. These tests showed identical results using an acceptance criterion of AU 0.1 with the sash half open, nominal 18 inches (0.46m) high, and the face velocity at a nominal 60 fpm (0.3 m/s). Most data collected in these single gas tests, for both tracer gases, were below the minimum detection limit, thus two dual gas tests were developed for simultaneous sampling of both tracer gases. Dual gas dual ejector tests were performed with both tracer gases released simultaneously through two ejectors, and the concentration measured with two detectors using a common sampling probe. Dual gas single ejector tests were performed with both tracer gases released though a single ejector, and the concentration measured in the same manner as the dual gas dual ejector tests. The dual gas dual ejector tests showed excellent correlation, with R typically greater than 0.9. Variance was observed in the resulting regression line for each hood, likely due to non-symmetry between the two challenges caused by variables beyond the control of the investigators. Dual gas single ejector tests resulted in exceptional correlation, with R>0.99 typically for the consolidated data, with a slope of 1.0. These data indicate equivalent results for ASHRAE 110

  3. Assessing the Accuracy of the Tracer Dilution Method with Atmospheric Dispersion Modeling

    NASA Astrophysics Data System (ADS)

    Taylor, D.; Delkash, M.; Chow, F. K.; Imhoff, P. T.

    2015-12-01

    Landfill methane emissions are difficult to estimate due to limited observations and data uncertainty. The mobile tracer dilution method is a widely used and cost-effective approach for predicting landfill methane emissions. The method uses a tracer gas released on the surface of the landfill and measures the concentrations of both methane and the tracer gas downwind. Mobile measurements are conducted with a gas analyzer mounted on a vehicle to capture transects of both gas plumes. The idea behind the method is that if the measurements are performed far enough downwind, the methane plume from the large area source of the landfill and the tracer plume from a small number of point sources will be sufficiently well-mixed to behave similarly, and the ratio between the concentrations will be a good estimate of the ratio between the two emissions rates. The mobile tracer dilution method is sensitive to different factors of the setup such as placement of the tracer release locations and distance from the landfill to the downwind measurements, which have not been thoroughly examined. In this study, numerical modeling is used as an alternative to field measurements to study the sensitivity of the tracer dilution method and provide estimates of measurement accuracy. Using topography and wind conditions for an actual landfill, a landfill emissions rate is prescribed in the model and compared against the emissions rate predicted by application of the tracer dilution method. Two different methane emissions scenarios are simulated: homogeneous emissions over the entire surface of the landfill, and heterogeneous emissions with a hot spot containing 80% of the total emissions where the daily cover area is located. Numerical modeling of the tracer dilution method is a useful tool for evaluating the method without having the expense and labor commitment of multiple field campaigns. Factors tested include number of tracers, distance between tracers, distance from landfill to transect

  4. SENSITIVITY OF A REACTIVE-TRACER BASED ESTIMATE OF THERMAL BREAKTHROUGH IN AN EGS TO PROPERTIES OF THE RESERVOIR AND TRACER

    SciTech Connect

    Mitchell A. Plummer; Carl D. Palmer; Laurence C. Hull; Earl D. Mattson

    2010-02-01

    Reactive tracers have long been considered a possible means of measuring thermal drawdown in a geothermal system, before significant cooling occurs at the extraction well. Here, we examine the sensitivity of the proposed method to reservoir cooling and demonstrate that while the sensitivity of the method as generally proposed is low, it may be practical under certain conditions. Our analyses suggest that modifications to that method, where practical, could provide much greater sensitivity. In particular, if the reaction can be quenched before maximum temperature is reached, the sensitivity is greatly enhanced. Push-pull tracer tests conducted at the injection well demonstrate similar advantages. Other alternatives, such as combinations of tracers, and tracers with parallel or chain decay behavior may offer similar advantages.

  5. Greatly Enhanced Detectability of Geothermal Tracers Through Laser-Induced Fluorescence

    SciTech Connect

    Peter Rose; Joel Harris; Phaedra Kilbourn; James Kleimeyer; Troy Carter

    2002-10-30

    WE have successfully completed a four-year R and D project to greatly reduce the detection limit of fluorescent tracers through the use of emerging laser-excitation, optical fiber, and CCD-spectroscopy technologies. Whereas the efforts over the first two years were directed at demonstrating a reduction in the detection limit of fluorescent compounds by a factor of 100 and at identifying several new fluorescein-derived tracer candidates, our recent efforts were focused primarily on the field demonstration of new tracers having detection limits in the low parts-per-quadrillion range. During the summer of 2001, we initiated field tests at the Dixie Valley, Nevada and at the Beowawe, Nevada geothermal fields using very small quantities of the fluorescein-derivative 6-carboxyfluorescein. Subsequently, we succeeded in measuring sub-part-per-trillion quantities of that candidate tracer at both the Beowawe and Dixie Valley geothermal reservoirs-using approximately 530 g of tracer at each setting. Our studies indicate that we could have observed a breakthrough using only 0.53 g of 6-carboxyfluorescein. This represents a reduction by a factor of 170,000 below the mass of tracer used in a previous tracer test at Beowawe.

  6. Development of Kinetic Interface Sensitive Tracers (KIS-Tracer) for Supercritical Carbon Dioxide Injections into Deep Saline Aquifers

    NASA Astrophysics Data System (ADS)

    Schaffer, M.; Maier, F.; Licha, T.; Sauter, M.

    2012-04-01

    the interface and undergoes hydrolysis in contact with water. As a consequence, two water soluble reaction products are formed and can be measured in the water phase over time. Here, the reaction kinetics is the rate-limiting step for the phase transfer and strongly dependents on reservoir properties, such as temperature and pH. Such tracer molecules must have the following properties: i) low polarity (high log KOW) to ensure high scCO2 solubility and to minimize distribution into the water phase; (ii) at least one highly water soluble reaction product, which does not do partitioning back into the scCO2 phase; (iii) low detection limit. On the basis of naphthalenesulfonic acid, an established geothermal tracer, different molecules with the desired properties were synthesized and tested in the laboratory. For studying the occurring processes at the interface under atmospheric pressure conditions the scCO2 was replaced with a non-polar organic solvent. The experiments were conducted in a static batch system with constant interfacial area as well as in a dynamic system with changing interface size. In parallel, a macroscopic model which couples mass transfer and reaction kinetics is developed to interpret the data. In conclusion, experiments indicate that the integration of hydrolysis kinetics is possible and even one of the reaction products may be used as additional partitioning tracer, i.e. for measuring the residual saturation.

  7. Multiple injected and natural conservative tracers quantify mixing in a stream confluence affected by acid mine drainage near Silverton, Colorado

    NASA Astrophysics Data System (ADS)

    Schemel, Laurence E.; Cox, Marisa H.; Runkel, Robert L.; Kimball, Briant A.

    2006-08-01

    The acidic discharge from Cement Creek, containing elevated concentrations of dissolved metals and sulphate, mixed with the circumneutral-pH Animas River over a several hundred metre reach (mixing zone) near Silverton, CO, during this study. Differences in concentrations of Ca, Mg, Si, Sr, and SO42- between the creek and the river were sufficiently large for these analytes to be used as natural tracers in the mixing zone. In addition, a sodium chloride (NaCl) tracer was injected into Cement Creek, which provided a Cl- reference tracer in the mixing zone. Conservative transport of the dissolved metals and sulphate through the mixing zone was verified by mass balances and by linear mixing plots relative to the injected reference tracer. At each of seven sites in the mixing zone, five samples were collected at evenly spaced increments of the observed across-channel gradients, as determined by specific conductance. This created sets of samples that adequately covered the ranges of mixtures (mixing ratios, in terms of the fraction of Animas River water, %AR). Concentratis measured in each mixing zone sample and in the upstream Animas River and Cement Creek were used to compute %AR for the reference and natural tracers. Values of %AR from natural tracers generally showed good agreement with values from the reference tracer, but variability in discharge and end-member concentrations and analytical errors contributed to unexpected outlier values for both injected and natural tracers. The median value (MV) %AR (calculated from all of the tracers) reduced scatter in the mixing plots for the dissolved metals, indicating that the MV estimate reduced the effects of various potential errors that could affect any tracer.

  8. Multiple injected and natural conservative tracers quantify mixing in a stream confluence affected by acid mine drainage near Silverton, Colorado

    USGS Publications Warehouse

    Schemel, L.E.; Cox, M.H.; Runkel, R.L.; Kimball, B.A.

    2006-01-01

    The acidic discharge from Cement Creek, containing elevated concentrations of dissolved metals and sulphate, mixed with the circumneutral-pH Animas River over a several hundred metre reach (mixing zone) near Silverton, CO, during this study. Differences in concentrations of Ca, Mg, Si, Sr, and SO42- between the creek and the river were sufficiently large for these analytes to be used as natural tracers in the mixing zone. In addition, a sodium chloride (NaCl) tracer was injected into Cement Creek, which provided a Cl- 'reference' tracer in the mixing zone. Conservative transport of the dissolved metals and sulphate through the mixing zone was verified by mass balances and by linear mixing plots relative to the injected reference tracer. At each of seven sites in the mixing zone, five samples were collected at evenly spaced increments of the observed across-channel gradients, as determined by specific conductance. This created sets of samples that adequately covered the ranges of mixtures (mixing ratios, in terms of the fraction of Animas River water, %AR). Concentrations measured in each mixing zone sample and in the upstream Animas River and Cement Creek were used to compute %AR for the reference and natural tracers. Values of %AR from natural tracers generally showed good agreement with values from the reference tracer, but variability in discharge and end-member concentrations and analytical errors contributed to unexpected outlier values for both injected and natural tracers. The median value (MV) %AR (calculated from all of the tracers) reduced scatter in the mixing plots for the dissolved metals, indicating that the MV estimate reduced the effects of various potential errors that could affect any tracer.

  9. Open Clusters as Tracers of the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Cantat-Gaudin, Tristan

    2015-01-01

    for star formation mechanisms. * the study of the OCs can shed light on the disk properties, in particular on the presence of a chemical gradient. Studying the distribution of chemical elements across the Galactic disk has been a central question in astronomy for the past decade. The exact shape of this metallicity gradient, revealed by various tracers such as Cepheids, Planetary Nebulae or HII regions is not quite clear. OCs suggest a flattening of the gradient in the outer disk. Here I will investigate the issue using the GES data set. Methods: The data analysis of the GES is a complex task carried out by different groups. When dealing with a huge quantity of astronomical data, it is essential to have tools that economically process large amounts of information and produce repeatable results. As part of the GES I developed an automated tool to measure the EWs in spectra of FGK stars in a fully automatic way. This tool, called DAOSPEC Option Optimizer pipeline (DOOp), uses DAOSPEC and optimizes its key parameters in order to make the measurements as robust as possible. This tool was widely tested on synthetic and observational spectra. Stellar parameters and elemental abundances are derived with the code FAMA developed with the aim of dealing with large batches of stars. FAMA uses the widely used software MOOG and optimizes stellar parameters in order to satisfy the excitation and ionization balance, following the classical equivalent width procedure. The construction of a metallicity scale, based on high-quality spectra of benchmark stars is fundamental to interpret the spectroscopic results in the context of the Galaxy formation and evolution. We take advantage of the variety of analysis methods represented within the GES collaboration, including DOOp + FAMA in order to produce a homogeneous metallicity scale. Those reference stars can be used to assess the precision and accuracy of a given method. Results: Using archival photometric data, I presents an in

  10. Tracer studies on an aerated lagoon.

    PubMed

    Broughton, Alistair; Shilton, Andy

    2012-01-01

    The city of Palmerston North, New Zealand, has two aerated lagoons as its secondary treatment facility. Interest about treatment efficiency led to an investigation into the hydraulics in the second lagoon to determine if further optimisation was viable. A tracer study using rhodamine WT was undertaken to ascertain the stimulus response output. Samples were also taken at 24 points within the lagoon to determine the tracer concentration profile throughout the lagoon. The mean residence time was determined to be 39.9 h compared with a theoretical residence time of 55.4 h. Peak concentration of the tracer at the outlet occurred at 0.44 of the mean residence time. The results of the tracer study pointed to 28% of volume being dead space. A subsequent sludge survey indicated that 26% of the design volume of the lagoon was filled with sludge. While the curved geometry of the lagoon did not appear to impact the hydraulics the fact that the first aerator is confined in a relatively smaller area will have locally boosted the mixing energy input in this inlet zone. From interpretation of the tracer response and the tracer distribution profiles it appears that the aerators are mixing the influent into the bulk flow effectively in the front end of the lagoon and that there was no evidence of any substantive short-circuiting path of concentrated tracer around to the outlet. The tracer distribution profiles gave direct insight as to how the tracer was being transported within the pond and should be used more often when conducting tracer studies. Comparison with the literature indicated that the lagoon's hydraulic efficiency was on par with a baffled pond system and it would be expected that addition of several baffles to the lagoon would provide minimal further improvement. PMID:22277219

  11. Synthesis and characterization of environmentally friendly fluorescent particle tracers

    NASA Astrophysics Data System (ADS)

    Tauro, Flavia; Porfiri, Maurizio; Rapiti, Emiliano; Grimaldi, Salvatore

    2013-04-01

    Tracers are widely used in experimental fluid mechanics and hydrology to investigate complex flows and water cycle processes. Commonly used tracers include dyes, artificial tracers, naturally occurring isotopes and chemicals, microorganisms, and DNA-based systems. Tracers should be characterized by low detection limits and high accuracy in following water paths and flow structures. For natural studies, tracers are also expected to be nontoxic and with low sorption affinity to natural substrates to minimize losses in the environment. In this context, while isotopes are completely natural, their use in field studies is limited by their ubiquity and, therefore, by the high uncertainty in data processing methodologies. Further, the use of dyes and artificial tracers can be hampered by extremely low detection limits due to dilution in natural streams and microorganisms, while DNA-based system may require physical sampling and time-consuming functionalization and detection procedures. In this work, we present the synthesis and characterization of fluorescent beads incorporating an eco-compatible fluorophore for environmental and laboratory applications. The particles are synthesized from natural beeswax through an inexpensive thermal procedure and can be engineered to present variable densities and diameters. A thorough characterization of their surface morphology at the nanoscale, crystal structure and size, chemical composition, and dye incorporation into the beeswax matrix is described by using a wide array of microscopy techniques. In addition, the particle fluorescence response is studied by performing excitation and emission scans on melted beeswax bead samples. The feasibility of using the synthesized particles in environmental settings is assessed through the design of ad-hoc weathering agent experiments where the beads are exposed to high energy radiation and hot water. Further, a proof of concept test is described to understand the particles' potential as a

  12. Influence of Transport on Two-Dimensional Model Simulation. Tracer Sensitivity to 2-D Model Transport. 1; Long Lived Tracers

    NASA Technical Reports Server (NTRS)

    Fleming, Eric L.; Jackman, Charles H.; Considine, David B.; Stolarski, Richard S.

    1999-01-01

    In this study, we examine the sensitivity of long lived tracers to changes in the base transport components in our 2-D model. Changes to the strength of the residual circulation in the upper troposphere and stratosphere and changes to the lower stratospheric K(sub zz) had similar effects in that increasing the transport rates decreased the overall stratospheric mean age, and increased the rate of removal of material from the stratosphere. Increasing the stratospheric K(sub yy) increased the mean age due to the greater recycling of air parcels through the middle atmosphere, via the residual circulation, before returning to the troposphere. However, increasing K(sub yy) along with self-consistent increases in the corresponding planetary wave drive, which leads to a stronger residual circulation, more than compensates for the K(sub yy)-effect, and produces significantly younger ages throughout the stratosphere. Simulations with very small tropical stratospheric K(sub yy) decreased the globally averaged age of air by as much as 25% in the middle and upper stratosphere, and resulted in substantially weaker vertical age gradients above 20 km in the extratropics. We found only very small stratospheric tracer sensitivity to the magnitude of the horizontal mixing across the tropopause, and to the strength of the mesospheric gravity wave drag and diffusion used in the model. We also investigated the transport influence on chemically active tracers and found a strong age-tracer correlation, both in concentration and calculated lifetimes. The base model transport gives the most favorable overall comparison with a variety of inert tracer observations, and provides a significant improvement over our previous 1995 model transport. Moderate changes to the base transport were found to provide modest agreement with some of the measurements. Transport scenarios with residence times ranging from moderately shorter to slightly longer relative to the base case simulated N2O lifetimes

  13. Two-phase flow measurement by chemical tracer technique for Uenotai geothermal field in Japan

    SciTech Connect

    Sato, Tatsuya; Osato, Kazumi; Hirtz, P.

    1996-12-31

    A tracer flow-test (TFT) survey of three production wells was performed in February, 1996, for Akita Geothermal Energy Co., Ltd. (AGECO) at the Uenotai geothermal field in the Akita prefecture of northern Honshu, Japan. The survey was conducted as a demonstration test of the chemical tracer method for two-phase flow measurement. Although the tracer method has been in commercial use for about 4 years this was the first time the technique had been applied on wells with mixing runs of less than 12 meters. The tracers were injected through the wing valve on the side of the wellheads to maximize the tracer dispersion through the 9 meters of pipeline available before sample collection. The three wells tested had steam fractions at the wellhead of 38 to 99.4 % by weight and total flow rates of 31.5 to 51.5 tons/hr. Based on the test results the chemical tracer method is considered accurate under the conditions experienced at the Uenotai geothermal field and has been adopted for routine flow rate and enthalpy monitoring.

  14. Measuring Air-water Interfacial Area for Soils Using the Mass Balance Surfactant-tracer Method

    PubMed Central

    Araujo, Juliana B.; Mainhagu, Jon; Brusseau, Mark L.

    2015-01-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. PMID:25950136

  15. Measuring air-water interfacial area for soils using the mass balance surfactant-tracer method.

    PubMed

    Araujo, Juliana B; Mainhagu, Jon; Brusseau, Mark L

    2015-09-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention.

  16. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain site characterization study. Final report

    SciTech Connect

    Stetzenbach, K.; Farnham, I.

    1996-06-01

    Extensive tracer testing is expected to take place at the C-well complex in the Nevada Test Site as part of the Yucca Mountain Site Characterization Project. The C-well complex consists of one pumping well, C3, and two injection wells, C1 and C2 into which tracer will be introduced. The goal of this research was to provide USGS with numerous tracers to completed these tests. Several classes of fluorinated organic acids have been evaluated. These include numerous isomers of fluorinated benzoic acids, cinnamic acids, and salicylic acids. Also several derivatives of 2-hydroxy nicotinic acid (pyridone) have been tested. The stability of these compounds was determined using batch and column tests. Ames testing (mutagenicity/carcinogenicity) was conducted on the fluorinated benzoic acids and a literature review of toxicity of the fluorobenzoates and three perfluoro aliphatic acids was prepared. Solubilities were measured and method development work was performed to optimize the detection of these compounds. A Quality Assurance (QA) Program was developed under existing DOE and USGS guidelines. The program includes QA procedures and technical standard operating procedures. A tracer test, using sodium iodide, was performed at the C-well complex. HRC chemists performed analyses on site, to provide real time data for the USGS hydrologists and in the laboratories at UNLV. Over 2,500 analyses were performed. This report provides the results of the laboratory experiments and literature reviews used to evaluate the potential tracers and reports on the results of the iodide C-well tracer test.

  17. Using Tracer Technology to Characterize Contaminated Pipelines

    SciTech Connect

    Maresca, Joseph, W., Jr., Ph.D.; Bratton, Wesley, L., Ph.D., P.E.; Dickerson, Wilhelmina; Hales, Rochelle

    2005-12-30

    The Pipeline Characterization Using Tracers (PCUT) technique uses conservative and partitioning, reactive or other interactive tracers to remotely determine the amount of contaminant within a run of piping or ductwork. The PCUT system was motivated by a method that has been successfully used to characterize subsurface soil contaminants and is similar in operation to that of a gas chromatography column. By injecting a ?slug? of both conservative and partitioning tracers at one end (or section) of the piping and measuring the time history of the concentration of the tracers at the other end (or another section) of the pipe, the presence, location, and amount of contaminant within the pipe or duct can be determined. The tracers are transported along the pipe or duct by a gas flow field, typically air or nitrogen, which has a velocity that is slow enough so that the partitioning tracer has time to interact with the contaminant before the tracer slug completely passes over the contaminate region. PCUT not only identifies the presence of contamination, it also can locate the contamination along the pipeline and quantify the amount of residual. PCUT can be used in support of deactivation and decommissioning (D&D) of piping and ducts that may have been contaminated with hazardous chemicals such as chlorinated solvents, petroleum products, radioactive materials, or heavy metals, such as mercury.

  18. Wanted: Scalable Tracers for Diffusion Measurements

    PubMed Central

    2015-01-01

    Scalable tracers are potentially a useful tool to examine diffusion mechanisms and to predict diffusion coefficients, particularly for hindered diffusion in complex, heterogeneous, or crowded systems. Scalable tracers are defined as a series of tracers varying in size but with the same shape, structure, surface chemistry, deformability, and diffusion mechanism. Both chemical homology and constant dynamics are required. In particular, branching must not vary with size, and there must be no transition between ordinary diffusion and reptation. Measurements using scalable tracers yield the mean diffusion coefficient as a function of size alone; measurements using nonscalable tracers yield the variation due to differences in the other properties. Candidate scalable tracers are discussed for two-dimensional (2D) diffusion in membranes and three-dimensional diffusion in aqueous solutions. Correlations to predict the mean diffusion coefficient of globular biomolecules from molecular mass are reviewed briefly. Specific suggestions for the 3D case include the use of synthetic dendrimers or random hyperbranched polymers instead of dextran and the use of core–shell quantum dots. Another useful tool would be a series of scalable tracers varying in deformability alone, prepared by varying the density of crosslinking in a polymer to make say “reinforced Ficoll” or “reinforced hyperbranched polyglycerol.” PMID:25319586

  19. Tracer design for magnetic particle imaging (invited)

    PubMed Central

    Ferguson, R. Matthew; Khandhar, Amit P.; Krishnan, Kannan M.

    2012-01-01

    Magnetic particle imaging (MPI) uses safe iron oxide nanoparticle tracers to offer fundamentally new capabilities for medical imaging, in applications as vascular imaging and ultra-sensitive cancer therapeutics. MPI is perhaps the first medical imaging platform to intrinsically exploit nanoscale material properties. MPI tracers contain magnetic nanoparticles whose tunable, size-dependent magnetic properties can be optimized by selecting a particular particle size and narrow size-distribution. In this paper we present experimental MPI measurements acquired using a homemade MPI magnetometer: a zero-dimensional MPI imaging system designed to characterize tracer performance by measuring the derivative of the time-varying tracer magnetization, M’(H(t)), at a driving frequency of 25 kHz. We show that MPI performance is optimized by selecting phase-pure magnetite tracers of a particular size and narrow size distribution; in this work, tracers with 20 nm median diameter, log-normal distribution shape parameter, σv, equal to 0.26, and hydrodynamic diameter equal to 30 nm showed the best performance. Furthermore, these optimized MPI tracers show 4 × greater signal intensity (measured at the third harmonic) and 20% better spatial resolution compared with commercial nanoparticles developed for MRI. PMID:22434939

  20. A MULTI-STREAM MODEL FOR VERTICAL MIXING OF A PASSIVE TRACER IN THE CONVECTIVE BOUNDARY LAYER

    EPA Science Inventory

    We study a multi-stream model (MSM) for vertical mixing of a passive tracer in the convective boundary layer, in which the tracer is advected by many vertical streams with different probabilities and diffused by small scale turbulence. We test the MSM algorithm for investigatin...

  1. THE NEW YORK CITY URBAN DISPERSION PROGRAM MARCH 2005 FIELD STUDY: TRACER METHODS AND RESULTS.

    SciTech Connect

    WATSON, T.B.; HEISER, J.; KALB, P.; DIETZ, R.N.; WILKE, R.; WIESER, R.; VIGNATO, G.

    2005-10-01

    The Urban Dispersion Program March 2005 Field Study tracer releases, sampling, and analytical methods are described in detail. There were two days where tracer releases and sampling were conducted. A total of 16.0 g of six tracers were released during the first test day or Intensive Observation Period (IOP) 1 and 15.7 g during IOP 2. Three types of sampling instruments were used in this study. Sequential air samplers, or SAS, collected six-minute samples, while Brookhaven atmospheric tracer samplers (BATS) and personal air samplers (PAS) collected thirty-minute samples. There were a total of 1300 samples resulting from the two IOPs. Confidence limits in the sampling and analysis method were 20% as determined from 100 duplicate samples. The sample recovery rate was 84%. The integrally averaged 6-minute samples were compared to the 30-minute samples. The agreement was found to be good in most cases. The validity of using a background tracer to calculate sample volumes was examined and also found to have a confidence level of 20%. Methods for improving sampling and analysis are discussed. The data described in this report are available as Excel files. An additional Excel file of quality assured tracer data for use in model validation efforts is also available. The file consists of extensively quality assured BATS tracer data with background concentrations subtracted.

  2. Glass mixing theory and tracer study results from the SF-10 run

    SciTech Connect

    Bowman, B.W.; Routt, K.R.

    1988-08-01

    A general, partial differential equation governing glass mixing in the Slurry Fed Ceramic Melter (SFCM) was derived and a solution obtained based upon certain simplifying assumptions. Tracer studies were then conducted in the SFCM during the SF-10 run to test the theory and characterize glass mixing in this melter. Analysis of the tracer data shows that glass mixing in the SFCM can be explained by use of a model of two, well-mixed tanks in series.

  3. Mobility of Metal Tracers in Unsaturated Tuffs of Busted Butte, Nevada

    SciTech Connect

    A.R. Groffman; H.J. Turin; J. Roach; C.L. Jones; W.E. Soll

    2003-09-20

    A complex tracer mixture was injected continuously for over two years into a 10 m x 10 m x 7 m block of unsaturated tuff as part of the Busted Butte unsaturated-zone tracer test at Yucca Mountain. The test was designed to measure tracer transport within the Topopah Springs and Calico Hills tuffs, units that occur between the potential high-level nuclear waste repository at Yucca Mountain and the water table below. The mixture included nonreactive (Br, I, and fluorinated benzoic acids (FBAs)) and reactive tracers (Li, Ce, Sm, Ni, Co, and Mn). Bromide, I, FBAs, and Li were detected during the test on absorbent pads emplaced in a series of solute collection boreholes located beneath the injectors but the more strongly sorbing metals did not reach the collection boreholes during this period. To determine the distribution and mobility of these metals, tracer constituents were extracted from tuff samples collected during overcoring and mineback of the test block. Tracers were extracted from the tuff samples by leaching with a 5% nitric acid solution for metals and a bicarbonate-carbonate buffer for anions. Results from the overcore sample suite show that metals have migrated through the tuff in the region adjacent to and immediately below the tracer injectors. Consistent with laboratory sorption measurements and observed breakthrough in the collection boreholes, rock analyses showed that Li is the most mobile of the metals. Co and Ni behave similarly, traveling tens of cm from the injection sites, while Sm and Ce moved far less, possibly due to precipitation reactions in addition to sorption. Determination of Mn transport is complicated by high background concentrations in the tuff; additional background samples are currently being evaluated. As expected, the rock analyses show that the nonreactive tracers Br and FBAs have moved beyond the overcore region, corroborating results from collection boreholes.

  4. Macro and micro scale interactions between cohesive sediment tracers and natural estuarine mud.

    NASA Astrophysics Data System (ADS)

    Spencer, K. L.; Manning, A. J.; Droppo, I. G.; Leppard, G. G.; Benson, T.

    2009-04-01

    conditions at both macro- and micro-scales. A series of "jar tests" were conducted to assess how the tracer behaved in a turbulent water when combined with natural estuarine mud. A comprehensive series of floc characteristics tests were conducted using tracer to natural mud ratios (T:M) of 100:0, 75:25, 50:50, 25:75 and 0:100. The floc size and settling velocity measurements were obtained using the LabSFLOC - Laboratory Spectral Flocculation Characteristics - instrument. Other parameters including floc porosity, floc dry mass, and the mass settling flux were also calculated using algorithms originally developed by Fennessy et al. (1997). Floc internal micro-structure (matrix) at a sub-micron level (1-2 nm) and elemental floc composition were observed using TEM (transmission electron microscopy) and EDS (energy dispersive spectroscopy). The flocs observed comprised tracer to natural mud ratios (T:M) of 100:0, 50:50 and 0:100 enabling examination of micro-scale interactions between tracer and natural mud. The LabSFLOC video assessments demonstrated that pure natural muds, tracer and flocs comprising both tracer and natural mud exhibited similar macrofloc properties in terms of settling velocity, individual floc size, density and porosity. Electron micrographs of the natural mud indicated a typical estuarine floc with a highly porous, complex matrix of structurally independent organic and inorganic constituents. Aggregation was controlled by both bio- and electrochemical flocculation. In comparison, the tracer formed dense, less porous, inorganic flocs where aggregation was controlled by electrochemical flocculation. Flocs comprising both natural mud and tracer were also observed and TEM shows individual microflocs of both dense, platy material typical of the tracer and microflocs comprising biological and inorganic particles typical of those found in the natural estuarine mud. EDS spectra of these mixed flocs were also collected and the tracer can be identified by its

  5. Using the tracer-dilution discharge method to develop streamflow records for ice-affected streams in Colorado

    USGS Publications Warehouse

    Capesius, Joseph P.; Sullivan, Joseph R.; O'Neill, Gregory B.; Williams, Cory A.

    2005-01-01

    Accurate ice-affected streamflow records are difficult to obtain for several reasons, which makes the management of instream-flow water rights in the wintertime a challenging endeavor. This report documents a method to improve ice-affected streamflow records for two gaging stations in Colorado. In January and February 2002, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, conducted an experiment using a sodium chloride tracer to measure streamflow under ice cover by the tracer-dilution discharge method. The purpose of this study was to determine the feasibility of obtaining accurate ice-affected streamflow records by using a sodium chloride tracer that was injected into the stream. The tracer was injected at two gaging stations once per day for approximately 20 minutes for 25 days. Multiple-parameter water-quality sensors at the two gaging stations monitored background and peak chloride concentrations. These data were used to determine discharge at each site. A comparison of the current-meter streamflow record to the tracer-dilution streamflow record shows different levels of accuracy and precision of the tracer-dilution streamflow record at the two sites. At the lower elevation and warmer site, Brandon Ditch near Whitewater, the tracer-dilution method overestimated flow by an average of 14 percent, but this average is strongly biased by outliers. At the higher elevation and colder site, Keystone Gulch near Dillon, the tracer-dilution method experienced problems with the tracer solution partially freezing in the injection line. The partial freezing of the tracer contributed to the tracer-dilution method underestimating flow by 52 percent at Keystone Gulch. In addition, a tracer-pump-reliability test was conducted to test how accurately the tracer pumps can discharge the tracer solution in conditions similar to those used at the gaging stations. Although the pumps were reliable and consistent throughout the 25-day study period

  6. Fundamentals of the advanced Fresnel tracer used for two-dimensional in-process micromeasurements

    NASA Astrophysics Data System (ADS)

    Huhnke, Burkhard; Urbschat, Gunnar

    1998-12-01

    The drive to short development times and closed-loop process control has created a demand for new tools to collect the needed dimensional data. Optical technologies in fields such as sensors, signal processing, metrology, and instrumentation offer unique solutions to many areas of monitoring, diagnostics and control. The Advanced Fresnel Tracer (AFT), an innovative instrumentation for in-process micromeasurement consisting of a smart optical sensors and an automatic follow-up system, based on a temperature controlled grated glass scale or interferometer will be presented. This device may readily be integrated into a turning or grinding machine, e.g. for the needs of quality assurance and to enable an on-line automatic compensation of diameter deviations/1/2. The device contains an optical Fresnel diffraction sensor allowing a fast measurement of the surface topography, achieving three goals: 1) improvement of the instantaneous diameter measurement, 2) surface quality inspection, and 3) determination of the edge gradient or the waviness of the workpiece. The new compact, smart, and precise optical multiparamter sensor, the AFT has been developed and tested.

  7. Automatic alignment of renal DCE-MRI image series for improvement of quantitative tracer kinetic studies

    NASA Astrophysics Data System (ADS)

    Zikic, Darko; Sourbron, Steven; Feng, Xinxing; Michaely, Henrik J.; Khamene, Ali; Navab, Nassir

    2008-03-01

    Tracer kinetic modeling with dynamic contrast enhanced MRI (DCE-MRI) and the quantification of the kinetic parameters are active fields of research which have the potential to improve the measurement of renal function. However, the strong coronal motion of the kidney in the time series inhibits an accurate assessment of the kinetic parameters. Automatic motion correction is challenging due to the large movement of the kidney and the strong intensity changes caused by the injected bolus. In this work, we improve the quantification results by a template matching motion correction method using a gradient-based similarity measure. Thus, a tedious manual motion correction is replaced by an automatic procedure. The only remaining user interaction is reduced to a selection of a reference slice and a coarse manual segmentation of the kidney in this slice. These steps do not present an overhead to the interaction needed for the assessment of the kinetic parameters. In order to achieve reliable and fast results, we constrain the degrees of freedom for the correction method as far as possible. Furthermore, we compare our method to deformable registration using the same similarity measure. In all our tests, the presented template matching correction was superior to the deformable approach in terms of reliability, leading to more accurate parameter quantification. The evaluation on 10 patient data series with 180-230 images each demonstrate that the quantitative analysis by a two-compartment model can be improved by our method.