Science.gov

Sample records for gradient tracer test

  1. Evaluation of longitudinal dispersivity estimates from forced-gradient tracer tests in heterogeneous aquifers

    USGS Publications Warehouse

    Tiedeman, C.R.; Hsieh, P.A.

    2002-01-01

    Converging radial-flow and two-well tracer tests are simulated in two-dimensional aquifers to investigate the effects of heterogeneity and forced-gradient test configuration on longitudinal dispersivity (??L) estimates, and to compare ??L estimates from forced-gradient tests with ??L values that characterize solute spreading under natural-gradient flow. Results indicate that in mildly heterogeneous aquifers, for tests with relatively large tracer transport distances, ??L estimates from the two test types are generally similar, and are also similar to ??L values determined from natural-gradient tracer simulations. In highly heterogeneous aquifers, ??L estimates from two-well tests are generally larger than those from radial-flow tests, and the ??L estimates from both test types are typically smaller than the ??L values determined from natural-gradient simulations.

  2. Evaluation of longitudinal dispersivity estimates from forced-gradient tracer tests in heterogeneous aquifers

    USGS Publications Warehouse

    Tiedeman, C.R.; Hsieh, P.A.

    2002-01-01

    Converging radial-flow and two-well tracer tests are simulated in two-dimensional aquifers to investigate the effects of heterogeneity and forced-gradient test configuration on longitudinal dispersivity (??L) estimates, and to compare ??L estimates from forced-gradient tests with ??L values that characterize solute spreading under natural-gradient flow. Results indicate that in both mildly and highly heterogeneous aquifers, ??L estimates from two-well tests are generally larger than those from radial-flow tests. In mildly heterogeneous aquifers, ??L estimates from two-well tests with relatively large tracer transport distances are similar to ??L values from natural-gradient simulations. In highly heterogeneous aquifers, ??L estimates from two-well tests at all tracer transport distances are typically smaller than ??L values from natural-gradient simulations.

  3. Forced and natural gradient tracer tests in a highly heterogeneous porous aquifer: instrumentation and measurements

    NASA Astrophysics Data System (ADS)

    Ptak, T.; Teutsch, G.

    1994-07-01

    At the Horkheimer Insel experimental field site, several short to intermediate distance forced and natural gradient tracer tests with depth-integrated and multilevel sampling were conducted to characterize the aquifer transport properties. Compared with other test sites, the aquifer at the Horkheimer Insel is highly heterogeneous and highly conductive. Hence, new tracer measurement techniques had to be developed. This paper presents some of the instrumentation developed together with measurements and their initial interpretation. The results demonstrate that for contaminant transport predictions in highly heterogeneous and highly conductive aquifers, investigation techniques with a high resolution in time and space are needed. The aquifer heterogeneity is evident from the spatial variability of peak concentration, transport velocity and longitudinal macrodispersivity values obtained from the tracer tests. Furthermore, the tracer test results indicate that at the observation scale investigated, a complex numerical flow and transport model is needed to describe adequately mass transport within the heterogeneous aquifer.

  4. Combined use of heat and saline tracer to estimate aquifer properties in a forced gradient test

    NASA Astrophysics Data System (ADS)

    Colombani, N.; Giambastiani, B. M. S.; Mastrocicco, M.

    2015-06-01

    Usually electrolytic tracers are employed for subsurface characterization, but the interpretation of tracer test data collected by low cost techniques, such as electrical conductivity logging, can be biased by cation exchange reactions. To characterize the aquifer transport properties a saline and heat forced gradient test was employed. The field site, located near Ferrara (Northern Italy), is a well characterized site, which covers an area of 200 m2 and is equipped with a grid of 13 monitoring wells. A two-well (injection and pumping) system was employed to perform the forced gradient test and a straddle packer was installed in the injection well to avoid in-well artificial mixing. The contemporary continuous monitor of hydraulic head, electrical conductivity and temperature within the wells permitted to obtain a robust dataset, which was then used to accurately simulate injection conditions, to calibrate a 3D transient flow and transport model and to obtain aquifer properties at small scale. The transient groundwater flow and solute-heat transport model was built using SEAWAT. The result significance was further investigated by comparing the results with already published column experiments and a natural gradient tracer test performed in the same field. The test procedure shown here can provide a fast and low cost technique to characterize coarse grain aquifer properties, although some limitations can be highlighted, such as the small value of the dispersion coefficient compared to values obtained by natural gradient tracer test, or the fast depletion of heat signal due to high thermal diffusivity.

  5. In situ measurement of methane oxidation in groundwater by using natural-gradient tracer tests

    USGS Publications Warehouse

    Smith, R.L.; Howes, B.L.; Garabedian, S.P.

    1991-01-01

    Methane oxidation was measured in an unconfined sand and gravel aquifer (Cape Cod, Mass.) by using in situ natural-gradient tracer tests at both a pristine, oxygenated site and an anoxic, sewage-contaminated site. The tracer sites were equipped with multilevel sampling devices to create target grids of sampling points; the injectate was prepared with groundwater from the tracer site to maintain the same geochemical conditions. Methane oxidation was calculated from breakthrough curves of methane relative to halide and inert gas (hexafluoroethane) tracers and was confirmed by the appearance of 13C-enriched carbon dioxide in experiments in which 13C-enriched methane was used as the tracer. A V(max) for methane oxidation could be calculated when the methane concentration was sufficiently high to result in zero-order kinetics throughout the entire transport interval. Methane breakthrough curves could be simulated by modifying a one-dimensional advection-dispersion transport model to include a Michaelis-Menten-based consumption term for methane oxidation. The K(m) values for methane oxidation that gave the best match for the breakthrough curve peaks were 6.0 and 9.0 ??M for the uncontaminated and contaminated sites, respectively. Natural-gradient tracer tests are a promising approach for assessing microbial processes and for testing in situ bioremediation potential in groundwater systems.

  6. Evaluation of longitudinal dispersivity estimates from simulated forced- and natural-gradient tracer tests in heterogeneous aquifers

    USGS Publications Warehouse

    Tiedeman, C.R.; Hsieh, P.A.

    2004-01-01

    We simulate three types of forced-gradient tracer tests (converging radial flow, unequal strength two well, and equal strength two well) and natural-gradient tracer tests in multiple realizations of heterogeneous two-dimensional aquifers with a hydraulic conductivity distribution characterized by a spherical variogram. We determine longitudinal dispersivities (??L) by analysis of forced-gradient test breakthrough curves at the pumped well and by spatial moment analysis of tracer concentrations during the natural-gradient tests. Results show that among the forced-gradient tests, a converging radial-flow test tends to yield the smallest ??L, an equal strength two-well test tends to yield the largest ??L, and an unequal strength two-well test tends to yield an intermediate value. This finding is qualitatively explained by considering the aquifer area sampled by a particular test. A converging radial-flow test samples a small area, and thus the tracer undergoes a low degree of spreading and mixing. An equal strength two-well test samples a much larger area, so the tracer is spread and mixed to a greater degree. Results also suggest that if the distance between the tracer source well and the pumped well is short relative to the lengths over which velocity is correlated, then the ??L estimate can be highly dependent on local heterogeneities in the vicinity of the wells. Finally, results indicate that ??L estimated from forced-gradient tracer tests can significantly underestimate the ??L needed to characterize solute dispersion under natural-gradient flow. Only a two-well tracer test with a large well separation in an aquifer with a low degree of heterogeneity can yield a value of ??L that characterizes natural-gradient tracer spreading. This suggests that a two-well test with a large well separation is the preferred forced-gradient test for characterizing solute dispersion under natural-gradient flow.

  7. A note on the recent natural gradient tracer test at the Borden site

    USGS Publications Warehouse

    Naff, R.L.; Yeh, T.-C.J.; Kemblowski, M.W.

    1988-01-01

    The variance in particle position, a measure of dispersion, is reviewed in the context of certain models of flow in random porous media. Asymptotic results for a highly stratified medium and an isotropic medium are particularly highlighted. Results of the natural gradient tracer test at the Borden site are reviewed in light of these models. This review suggests that the moments obtained for the conservative tracers could as well be explained by a model that more explicitly represents the three-dimensional nature of the flow field. -Authors

  8. Comparison of denitrification activity measurements in groundwater using cores and natural-gradient tracer tests

    USGS Publications Warehouse

    Smith, R.L.; Garabedian, S.P.; Brooks, M.H.

    1996-01-01

    The transport of many solutes in groundwater is dependent upon the relative rates of physical flow and microbial metabolism. Quantifying rates of microbial processes under subsurface conditions is difficult and is most commonly approximated using laboratory studies with aquifer materials. In this study, we measured in situ rates of denitrification in a nitrate- contaminated aquifer using small-scale, natural-gradient tracer tests and compared the results with rates obtained from laboratory incubations with aquifer core material. Activity was measured using the acetylene block technique. For the tracer tests, co-injection of acetylene and bromide into the aquifer produced a 30 ??M increase in nitrous oxide after 10 m of transport (23-30 days). An advection-dispersion transport model was modified to include an acetylene-dependent nitrous oxide production term and used to simulate the tracer breakthrough curves. The model required a 4-day lag period and a relatively low sensitivity to acetylene to match the narrow nitrous oxide breakthrough curves. Estimates of in situ denitrification rates were 0.60 and 1.51 nmol of N2O produced cm-3 aquifer day-1 for two successive tests. Aquifer core material collected from the tracer test site and incubated as mixed slurries in flasks and as intact cores yielded rates that were 1.2-26 times higher than the tracer test rate estimates. Results with the coring-dependent techniques were variable and subject to the small- scale heterogeneity within the aquifer, while the tracer tests integrated the heterogeneity along a flow path, giving a rate estimate that is more applicable to transport at the scale of the aquifer.

  9. Evaluation of Heat as a Tracer in a Forced-Gradient Test at the MADE Site

    NASA Astrophysics Data System (ADS)

    Huang, A.; Tick, G. R.; Keasberry, A.; Zheng, C.

    2011-12-01

    Tracer tests conducted at the Macrodispersion Experiment (MADE) site in Columbus Air Force Base in Mississippi have contributed significantly to the understanding of contaminant transport processes in highly-heterogeneous media. Previous experiments have revealed a network of interconnected preferential flow paths within the underlying aquifer. Only solute tracers including bromide and tritium have been used in previous experiments. In this new study, a forced-gradient experiment based on heated water injection was conducted to evaluate the feasibility of heat as a substitute for a solute tracer to study aquifer heterogeneity at the MADE site. We injected a pulse of heated water, recorded the breakthrough curves, and used numerical modeling to characterize the heat transport behavior and its relationship to subsurface heterogeneity. The results were compared with those from a previous experiment based on the bromide tracer. This research suggests heat can be a cheaper and environmentally-friendly alternative to traditional solute tracers, and improves our understanding of contaminant transport processes in highly-heterogeneous systems.

  10. Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 2. Analysis of spatial moments for a nonreactive tracer

    USGS Publications Warehouse

    Garabedian, Stephen P.; LeBlanc, Dennis R.; Gelhar, Lynn W.; Celia, Michael A.

    1991-01-01

    A large-scale natural gradient tracer test was conducted to examine the transport of reactive and nonreactive tracers in a sand and gravel aquifer on Cape Cod, Massachusetts. As part of this test the transport of bromide, a nonreactive tracer, was monitored for about 280 m and quantified using spatial moments. The calculated mass of bromide for each sampling date varied between 85% and 105% of the injected mass using an estimated porosity of 0.39, and the center of mass moved at a nearly constant horizontal velocity of 0.42 m per day. A nonlinear change in the bromide longitudinal variance was observed during the first 26 m of travel distance, but afterward the variance followed a linear trend, indicating the longitudinal dispersivity had reached a constant value of 0.96 m. The transverse dispersivities were much smaller; transverse horizontal dispersivity was 1.8 cm, and transverse vertical dispersivity was about 1.5 mm.

  11. LARGE-SCALE NATURAL GRADIENT TRACER TEST IN SAND AND GRAVEL, CAPE COD, MASSACHUSETTS - 1. EXPERIMENTAL DESIGN AND OBSERVED TRACER MOVEMENT

    EPA Science Inventory

    A large-scale natural gradient tracer experiment was conducted on Cape Cod, Massachusetts, to examine the transport and dispersion of solutes in a sand and gravel aquifer. The nonreactive tracer, bromide, and the reactive tracers, lithium and molybdate, were injected as a pulse i...

  12. Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 1. Experimental design and observed tracer movement

    USGS Publications Warehouse

    LeBlanc, Denis R.; Garabedian, Stephen P.; Hess, Kathryn M.; Gelhar, Lynn W.; Quadri, Richard D.; Stollenwerk, Kenneth G.; Wood, Warren W.

    1991-01-01

    A large-scale natural gradient tracer experiment was conducted on Cape Cod, Massachusetts, to examine the transport and dispersion of solutes in a sand and gravel aquifer. The nonreactive tracer, bromide, and the reactive tracers, lithium and molybdate, were injected as a pulse in July 1985 and monitored in three dimensions as they moved as far as 280 m down-gradient through an array of multilevel samplers. The bromide cloud moved horizontally at a rate of 0.42 m per day. It also moved downward about 4 m because of density-induced sinking early in the test and accretion of areal recharge from precipitation. After 200 m of transport, the bromide cloud had spread more than 80 m in the direction of flow, but was only 14 m wide and 4–6 m thick. The lithium and molybdate clouds followed the same path as the bromide cloud, but their rates of movement were retarded about 50% relative to bromide movement because of sorption onto the sediments.

  13. Assessing denitrification in groundwater using natural gradient tracer tests with 15N: In situ measurement of a sequential multistep reaction

    USGS Publications Warehouse

    Smith, R.L.; Böhlke, J.K.; Garabedian, S.P.; Revesz, K.M.; Yoshinari, T.

    2004-01-01

    Denitrification was measured within a nitrate-contaminated aquifer on Cape Cod, Massachusetts, using natural gradient tracer tests with 15N nitrate. The aquifer contained zones of relatively high concentrations of nitrite (up to 77 ??M) and nitrous oxide (up to 143 ??M) and has been the site of previous studies examining ground water denitrification using the acetylene block technique. Small-scale (15-24 m travel distance) tracer tests were conducted by injecting 15N nitrate and bromide as tracers into a depth interval that contained nitrate, nitrite, nitrous oxide, and excess nitrogen gas. The timing of the bromide breakthrough curves at down-gradient wells matched peaks in 15N abundance above background for nitrate, nitrite, nitrous oxide, and nitrogen gas after more than 40 days of travel. Results were simulated with a one-dimensional transport model using linked reaction kinetics for the individual steps of the denitrification reaction pathway. It was necessary to include within the model spatial variations in background concentrations of all nitrogen oxide species. The model indicated that nitrite production (0.036-0.047 ??mol N (L aquifer)-1 d -1) was faster than the subsequent denitrification steps (0.013-0.016 ??mol N (L aquifer)-1 d-1 for nitrous oxide and 0.013-0.020 ??mol N (L aquifer)-1 d-1 for nitrogen gas) and that the total rate of reaction was slower than indicated by both acetylene block tracer tests and laboratory incubations. The rate of nitrate removal by denitrification was much slower than the rate of transport, indicating that nitrate would migrate several kilometers down-gradient before being completely consumed.

  14. Fate and transport of linear alkylbenzenesulfonate in a sewage- contaminated aquifer: A comparison of natural-gradient pulsed tracer tests

    USGS Publications Warehouse

    Krueger, C.J.; Barber, L.B.; Metge, D.W.; Field, J.A.

    1998-01-01

    Two natural-gradient tracer tests were conducted to determine the transport and biodegradation behavior of linear alkylbenzenesulfonate (LAS) surfactant under in situ conditions in a sewage-contaminated aquifer. The tests were conducted in two biogeochemically distinct zones of the aquifer: (1) an aerobic uncontaminated zone (oxic zone) and (2) a moderately aerobic, sewage-contaminated zone (transition zone). Chromatographic separation of the surfactant mixture was observed in both zones and attributed to the retardation of the longer alkyl chain homologues during transport. No significant loss of IAS mass was observed for the oxic zone while 20% of the LAS mass injected into the transition zone was removed due to biodegradation. Biodegradation preferentially removed the longer alkyl chain homologues and the external isomers (i.e., 2- and 3-phenyl). The removal of LAS mass coincided with a decrease in dissolved oxygen concentrations, the appearance of LAS metabolites, and an increase in the number of free-living bacteria with a concomitant change in bacteria morphology. The formation of LAS metabolites accounted for 86% of the LAS mass removed in the transition zone. Over the duration of the test, sorption and biodegradation enriched the LAS mixture in the more water-soluble and biologically resistant components.Two natural-gradient tracer tests were conducted to determine the transport and biodegradation behavior of linear alkylbenzenesulfonate (LAS) surfactant under in situ conditions in a sewage-contaminated aquifer. The tests were conducted in two biogeochemically distinct zones of the aquifer: (1) an aerobic uncontaminated zone (oxic zone) and (2) a moderately aerobic, sewage-contaminated zone (transition zone). Chromatographic separation of the surfactant mixture was observed in both zones and attributed to the retardation of the longer alkyl chain homologues during transport. No significant loss of LAS mass was observed for the oxic zone while 20% of the LAS

  15. Design and analysis of a natural-gradient ground-water tracer test in a freshwater tidal wetland, West Branch Canal Creek, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Olsen, Lisa D.; Tenbus, Frederick J.

    2005-01-01

    A natural-gradient ground-water tracer test was designed and conducted in a tidal freshwater wetland at West Branch Canal Creek, Aberdeen Proving Ground, Maryland. The objectives of the test were to characterize solute transport at the site, obtain data to more accurately determine the ground-water velocity in the upper wetland sediments, and to compare a conservative, ionic tracer (bromide) to a volatile tracer (sulfur hexafluoride) to ascertain whether volatilization could be an important process in attenuating volatile organic compounds in the ground water. The tracer test was conducted within the upper peat unit of a layer of wetland sediments that also includes a lower clayey unit; the combined layer overlies an aquifer. The area selected for the test was thought to have an above-average rate of ground-water discharge based on ground-water head distributions and near-surface detections of volatile organic compounds measured in previous studies. Because ground-water velocities in the wetland sediments were expected to be slow compared to the underlying aquifer, the test was designed to be conducted on a small scale. Ninety-seven ?-inch-diameter inverted-screen stainless-steel piezometers were installed in a cylindrical array within approximately 25 cubic feet (2.3 cubic meters) of wetland sediments, in an area with a vertically upward hydraulic gradient. Fluorescein dye was used to qualitatively evaluate the hydrologic integrity of the tracer array before the start of the tracer test, including verifying the absence of hydraulic short-circuiting due to nonnatural vertical conduits potentially created during piezometer installation. Bromide and sulfur hexafluoride tracers (0.139 liter of solution containing 100,000 milligrams per liter of bromide ion and 23.3 milligrams per liter of sulfur hexafluoride) were co-injected and monitored to generate a dataset that could be used to evaluate solute transport in three dimensions. Piezometers were sampled 2 to 15 times

  16. Merging single-well and inter-well tracer tests into one forced-gradient dipole test, at the Heletz site within the MUSTANG project

    NASA Astrophysics Data System (ADS)

    Behrens, Horst; Ghergut, Julia; Bensabat, Jac; Niemi, Auli; Licha, Tobias; Ptak, Thomas; Sauter, Martin

    2014-05-01

    The Heletz site[1] in Israel was chosen for conducting a CO2 transport experiment within the MUSTANG project[2], whose aim is to demonstrate and validate leading-edge techniques for CCS site characterization, process monitoring and risk assessment. The major CO2 injection experiment at Heletz was supposed to be preceded and accompanied by a sequence of single-well 'push-then-pull' (SW) and inter-well (IW) tracer tests, aimed at characterizing transport properties of the storage formation, in accordance to a number of general and specific principles[3],[4]. - Instead of the rather luxurious {SW1, IW1, SW2, IW2} test sequence described in our previous work[5], we now propose a drastically economized tracer test concept, which lets the sampling stages of SW and IW tests merge into a single fluid production stage, and relies on a forced-gradient dipole flow field at any time of the overall test. Besides cost reduction, this economized design also improves on operational aspects, as well as on issues of parameter ambiguity and of scale disparity between SW and IW flow fields: (i) the new design renders SW test results more representative for the aquifer sector ('angle') actually interrogated by the IW dipole test; (ii) the new design saves time and costs on the SW test (fluid sampling for SW 'pull' now being conducted simultaneously with IW-related sampling and monitoring), while allowing for a considerably longer duration of SW 'pull' signals than had originally been intended, whose late-time tailings help improve the quantification of non-advective processes and parameters, which are of great relevance to mid- and long-term trapping mechanisms ('residual trapping', 'mineral trapping'); (iii) the quasi-simultaneous execution of fluid injection/production for the IW and SW tests considerably reduces the overall hydraulic imbalance that was originally associated with the SW test, thus preventing formation damage and supporting hydrogeomechanical stability; (iv) the new

  17. Identification of small-scale low and high permeability layers using single well forced-gradient tracer tests: fluorescent dye imaging and modelling at the laboratory-scale.

    PubMed

    Barns, Gareth L; Thornton, Steven F; Wilson, Ryan D

    2015-01-01

    Heterogeneity in aquifer permeability, which creates paths of varying mass flux and spatially complex contaminant plumes, can complicate the interpretation of contaminant fate and transport in groundwater. Identifying the location of high mass flux paths is critical for the reliable estimation of solute transport parameters and design of groundwater remediation schemes. Dipole flow tracer tests (DFTTs) and push-pull tests (PPTs) are single well forced-gradient tests which have been used at field-scale to estimate aquifer hydraulic and transport properties. In this study, the potential for PPTs and DFTTs to resolve the location of layered high- and low-permeability layers in granular porous media was investigated with a pseudo 2-D bench-scale aquifer model. Finite element fate and transport modelling was also undertaken to identify appropriate set-ups for in situ tests to determine the type, magnitude, location and extent of such layered permeability contrasts at the field-scale. The characteristics of flow patterns created during experiments were evaluated using fluorescent dye imaging and compared with the breakthrough behaviour of an inorganic conservative tracer. The experimental results show that tracer breakthrough during PPTs is not sensitive to minor permeability contrasts for conditions where there is no hydraulic gradient. In contrast, DFTTs are sensitive to the type and location of permeability contrasts in the host media and could potentially be used to establish the presence and location of high or low mass flux paths. Numerical modelling shows that the tracer peak breakthrough time and concentration in a DFTT is sensitive to the magnitude of the permeability contrast (defined as the permeability of the layer over the permeability of the bulk media) between values of 0.01-20. DFTTs are shown to be more sensitive to deducing variations in the contrast, location and size of aquifer layered permeability contrasts when a shorter central packer is used

  18. Assessing the effect of natural attenuation on oxygen consumption processes in a sewage-contaminated aquifer by use of a natural-gradient tracer test

    NASA Astrophysics Data System (ADS)

    Mathisen, P. P.; Kent, D. B.; Smith, R. L.; Barber, L. B.; Harvey, R. W.; Metge, D. W.; Hess, K. M.; Leblanc, D. R.; Koch, J. C.

    2003-12-01

    Processes associated with aquifer restoration subsequent to cessation of treated-sewage loading in a sand and gravel aquifer are being investigated at the USGS Toxic Substances Hydrology Site on Cape Cod, MA. Restoration has been slow because of significant oxygen depletion resulting from biogeochemical processes associated with residual sorbed pools of organic carbon, ammonium, and reduced metals in the aquifer. The in situ interaction of the physical, chemical, and biological processes governing oxygen consumption was examined by using a natural-gradient tracer test in fall 2001, 6 years after sewage disposal had been discontinued. Ground water with a high dissolved oxygen (DO) concentration was withdrawn from an uncontaminated zone of the aquifer and re-injected with a conservative tracer, bromide, into an anoxic zone directly below a former sewage-effluent disposal bed where Fe and sulfide concentrations were below detection and the DO was less than 5 uM. An injection with negligible ammonium, a nitrate concentration of 22 uM, and DO of approximately 260 uM was maintained at approximately 15 L/hr for a period of 75 days. An array of multi-level samplers (MLS), placed at distances ranging from 1 to 7 m down-gradient from the injection well, was sampled prior to and throughout the 75-day injection, and during a 25-day period after the injection. Water samples from the MLS were analyzed for DO and a variety of aqueous constituents. The DO decreased from approximately 260 uM to 210 uM over 7 m of transport, indicating the presence of rate-limited oxygen consumption. An increase in nitrate from 22 to approximately 36 uM indicated the presence of rate-limited ammonium oxidation. However, this ammonium oxidation was not sufficient to account for all of the DO consumption. Further characterization of these processes was accomplished by use of PHREEQC, a one-dimensional, geochemical reactive transport model. The 1D model is based on an ion association model for aqueous

  19. Journal: Efficient Hydrologic Tracer-Test Design for Tracer ...

    EPA Pesticide Factsheets

    Hydrological tracer testing is the most reliable diagnostic technique available for the determination of basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed to facilitate the design of tracer tests by root determination of the one-dimensional advection-dispersion equation (ADE) using a preset average tracer concentration which provides a theoretical basis for an estimate of necessary tracer mass. The method uses basic measured field parameters (e.g., discharge, distance, cross-sectional area) that are combined in functional relatipnships that descrive solute-transport processes related to flow velocity and time of travel. These initial estimates for time of travel and velocity are then applied to a hypothetical continuous stirred tank reactor (CSTR) as an analog for the hydrological-flow system to develop initial estimates for tracer concentration, tracer mass, and axial dispersion. Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to be necessary for descri

  20. Tracer-Test Planning Using the Efficient Hydrologic Tracer ...

    EPA Pesticide Factsheets

    Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed that combines basic measured field parameters (e.g., discharge, distance, cross-sectional area) in functional relationships that describe solute-transport processes related to flow velocity and time of travel. The new method applies these initial estimates for time of travel and velocity to a hypothetical continuously stirred tank reactor as an analog for the hydrologic flow system to develop initial estimates for tracer concentration and axial dispersion, based on a preset average tracer concentration. Root determination of the one-dimensional advection-dispersion equation (ADE) using the preset average tracer concentration then provides a theoretical basis for an estimate of necessary tracer mass.Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to be

  1. Tracers and Tracer Testing: Design, Implementation, Tracer Selection, and Interpretation Methods

    SciTech Connect

    G. Michael Shook; Shannon L.; Allan Wylie

    2004-01-01

    Conducting a successful tracer test requires adhering to a set of steps. The steps include identifying appropriate and achievable test goals, identifying tracers with the appropriate properties, and implementing the test as designed. When these steps are taken correctly, a host of tracer test analysis methods are available to the practitioner. This report discusses the individual steps required for a successful tracer test and presents methods for analysis. The report is an overview of tracer technology; the Suggested Reading section offers references to the specifics of test design and interpretation.

  2. Tracer tests in geothermal resource management

    NASA Astrophysics Data System (ADS)

    Axelsson, G.

    2013-05-01

    Geothermal reinjection involves injecting energy-depleted fluid back into geothermal systems, providing an effective mode of waste-water disposal as well as supplementary fluid recharge. Cooling of production boreholes is one of the main disadvantages associated with reinjection, however. Tracer testing is an important tool for reinjection studies because tracer tests actually have a predictive power since tracer transport is orders of magnitude faster than cold-front advancement around reinjection boreholes. A simple and efficient method of tracer test interpretation, assuming specific flow channels connecting reinjection and production boreholes, is available. It simulates tracer return profiles and estimates properties of the flow channels, which are consequently used for predicting the production borehole cooling. Numerous examples are available worldwide on the successful application of tracer tests in geothermal management, many involving the application of this interpretation technique. Tracer tests are also used for general subsurface hydrological studies in geothermal systems and for flow rate measurements in two-phase geothermal pipelines. The tracers most commonly used in geothermal applications are fluorescent dyes, chemical substances and radioactive isotopes. New temperature-resistant tracers have also been introduced and high-tech tracers are being considered.

  3. Tracer-Test Planning Using the Efficient Hydrologic Tracer-Test Design (Ehtd) Program (2003)

    EPA Science Inventory

    Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test ...

  4. EFFICIENT HYDROLOGICAL TRACER-TEST DESIGN (EHTD ...

    EPA Pesticide Factsheets

    Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed that combines basic measured field parameters (e.g., discharge, distance, cross-sectional area) in functional relationships that describe solute-transport processes related to flow velocity and time of travel. The new method applies these initial estimates for time of travel and velocity to a hypothetical continuously stirred tank reactor as an analog for the hydrologic flow system to develop initial estimates for tracer concentration and axial dispersion, based on a preset average tracer concentration. Root determination of the one-dimensional advection-dispersion equation (ADE) using the preset average tracer concentration then provides a theoretical basis for an estimate of necessary tracer mass.Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to

  5. Doublet Tracer Testing in Klamath Falls, Oregon

    SciTech Connect

    Gudmundsson, J.S.; Johnson, S.E.; Horne, R.N.; Jackson, P.B.; Culver, G.G.

    1983-12-15

    A tracer test was carried out in a geothermal doublet system to study the injection behavior of a developed reservoir known to be fractured. The doublet produces about 320 gpm of 160 F water that is used for space heating and then injected; the wells are spaced 250 ft apart. Tracer breakthrough was observed in 2 hours and 45 minutes in the production well, indicating fracture flow. However, the tracer concentrations were low and indicated porous media flow; the tracers mixed with a reservoir volume much larger than a fracture.

  6. The Art of Tomographic Tracer Tests

    NASA Astrophysics Data System (ADS)

    Cirpka, O. A.; Leven, C.; Doro, K. O.; Sanchez-Leon, E. E.

    2015-12-01

    In tracer tomography several tracer tests are performed within an aquifer and breakthrough curves are observed at multiple observation points. In the analysis, hydraulic conductivity is estimated as spatially variable, 3-D field subject to some smoothness constraint. Coupled flow and transport models using this conductivity fields are requested to meet observed tracer data. The approach can be combined with hydraulic tomography.We have performed hydraulic-tomography and tracer-tomography tests using heat and fluorescein as tracers at a field site close to Tübingen, Germany. The aquifer consists of 8-9m alluvials sands and gravels overlain by 1-2m alluvial fines. The hydraulic setup consists of a forced flow field between an injection/extraction well couple, embedded in the forced flow field of another well couple. By turning injection to extraction wells, and vice versa, two different flow fields were considered. Injection wells were separated into several sections by packers, and water was injected into each section proportional to its transmissivity. The water injected into one of the sections contained the tracer. Multi-level observation wells were equiped with thermometers (for heat-tracer tests), on-line fluoremeters (for teh dye tracers), and pressure transducers. Processing of the breakthrough curves included data cleaning, non-parametric deconvolution, and calculation of temperal moments of the estimated transfer functions.The joint inversion of hydraulic-head measurements and temporal moments of heat-tracer transfer functions was done by the quasi-linear geostatistical approach on a computing cluster. As alternative, we directly invert the time series (without temporal moments) by Ensemble-Kalman filtering.The high diffusion coefficient of temperature diminishes the penetration of the heat-tracer into the aquifer, which can partially be compensated by reverting the flow field and repeating the tracer tests. In tests with fluorscent tracers the signal

  7. Analysis of tracer responses in the BULLION Forced-Gradient Experiment at Pahute Mesa, Nevada

    SciTech Connect

    Paul W. Reimus; Marc J. Haga

    1999-10-01

    This report presents an analysis of the tracer data from the BULLION forced-gradient experiment (FGE) conducted on Pahute Mesa at the Nevada Test Site from June 2, 1997 through August 28, 1997, for the Underground Test Area (UGTA) Program. It also serves to document the polystyrene microsphere data from the FGE. The FGE involved the injection of solute and colloid tracers into wells ER-20-6 No. 1 and ER-20-6 No. 2 while ER-20-6 No. 3 was pumped at approximately 116 gallons per minute (gpm). The experimental configuration and test design are described briefly in this report; more details are provided elsewhere (IT, 1996, 1997, 1998). The tracer responses in the various wells yielded valuable information about transport processes such as longitudinal dispersion, matrix diffusion and colloid transport in the hydrogeologic system in the vicinity of the BULLION nuclear test cavity. Parameter values describing these processes are derived from the semi-analytical model interpretations presented in this report. A companion report (IT, 1998) presents more detailed numerical modeling interpretations of the solute tracer responses.

  8. Long residence times - bad tracer tests?

    NASA Astrophysics Data System (ADS)

    Ghergut, Julia; Behrens, Horst; Sauter, Martin

    2015-04-01

    Tracer tests conducted at geothermal well doublets or triplets in the Upper Rhine Rift Valley [1] all face, with very few exceptions so far, one common issue: lack of conclusive tracer test results, or tracer signals still undetectable for longer than one or two years after tracer injection. While the reasons for this surely differ from site to site (Riehen, Landau, Insheim, Bruchsal, ...), its effects on how the usefulness of tracer tests is perceived by the non-tracer community are pretty much the same. The 'poor-signal' frustration keeps nourishing two major 'alternative' endeavours : (I) design and execute tracer tests in single-well injection-withdrawal (push-pull), 'instead of' inter-well flow-path tracing configurations; (II) use 'novel' tracer substances instead of the 'old' ones which have 'obviously failed'. Frustration experienced with most inter-well tracer tests in the Upper Rhine Rift Valley has also made them be regarded as 'maybe useful for EGS' ('enhanced', or 'engineered' geothermal systems, whose fluid RTD typically include a major share of values below one year), but 'no longer worthwhile a follow-up sampling' in natural, large-scale hydrothermal reservoirs. We illustrate some of these arguments with the ongoing Bruchsal case [2]. The inter-well tracer test conducted at Bruchsal was (and still is!) aimed at assessing inter-well connectivity, fluid residence times, and characterizing the reservoir structure [3]. Fluid samples taken at the geothermal production well after reaching a fluid turnover of about 700,000 m3 showed tracer concentrations in the range of 10-8 Minj per m3, in the liquid phase of each sample (Minj being the total quantity of tracer injected as a short pulse at the geothermal re-injection well). Tracer signals might actually be higher, owing to tracer amounts co-precipitated and/or adsorbed onto the solid phase whose accumulation in the samples was unavoidable (due to pressure relief and degassing during the very sampling

  9. LARGE-SCALE NATURAL GRADIENT TRACER TEST IN SAND AND GRAVEL, CAPE CODE, MASSACHUSETTS 3. HYDRAULIC CONDUCTI- VITY AND CALCULATED MACRODISPERSIVITIES

    EPA Science Inventory

    Hydraulic conductivity (K) variability in a sand and gravel aquifer on Cape Cod, Massachusetts, was measured and subsequently used in stochastic transport theories to estimate macrodispersivities. Nearly 1500 K measurements were obtained by borehole flowmeter tests ...

  10. MULTISPECIES REACTIVE TRACER TEST IN A SAND AND GRAVEL AQUIFER, CAPE COD, MASSACHUSETTS: PART 2: TRANSPORT OF CHROMIUM (VI) AND LEAD-, COPPER-, AND ZINC-EDTA TRACERS

    EPA Science Inventory

    This report discusses the transport of a group of reactive tracers over the course of a large-scale, natural gradient tracer test conducted at the USGS Cape Cod Toxic Substances Hydrology Research site, near Falmouth, Massachusetts. The overall objectives of the experiment were ...

  11. Transport of microspheres and indigenous bacteria through a sandy aquifer: Results of natural- and forced-gradient tracer experiments

    USGS Publications Warehouse

    Harvey, R.W.; George, L.H.; Smith, R.L.; LeBlanc, D.R.

    1989-01-01

    Transport of indigenous bacteria through sandy aquifer sediments was investigated in forced- and natural-gradient tracer teste. A diverse population of bacteria was collected and concentrated from groundwater at the site, stained with a DNA-specific fluorochrome, and injected back into the aquifer. Included with the injectate were a conservative tracer (Br- or Cl-) and bacteria-sized (0.2-1.3-??m) microspheres having carboxylated, carbonyl, or neutral surfaces. Transport of stained bacteria and all types and size classes of microspheres was evident. In the natural-gradient test, both surface characteristics and size of microspheres affected attenuation. Surface characteristics had the greatest effect upon retardation. Peak break-through of DAPI-stained bacteria (forced-gradient experiment) occurred well in advance of bromide at the more distal sampler. Transport behavior of bacteria was substantially different from that of carboxylated microspheres of comparable size. ?? 1988 American Chemical Society.

  12. Tracer Particle Response in High-Gradient Flow

    NASA Astrophysics Data System (ADS)

    Herzog, Joshua; Rothamer, David

    2016-11-01

    Many laser-based fluid velocity measurements depend on the motion of tracer particles seeded into the flow. In most cases, the tracers are assumed to follow the flow exactly. However, this is not always the case. The actual motion of a tracer particle is dependent on the properties of both the particle and the fluid surrounding it. Previous analysis for spherical particles in the Stokes regime (assumes Re << 1) shows that the absolute difference between the particle and fluid velocity exponentially decays in time, with the relaxation time constant dependent on particle diameter, free stream velocity, Reynolds number, and both particle and fluid mass density. For all cases, it is necessary to accurately describe the physics of the tracer particle motion to perform rigorous quantitative studies with particle-based techniques. This study aims to measure and describe particle response to a step change in velocity in a uniform flow. Velocity profiles of solid tracer particles ranging from 300 to 3800 nm in diameter, with initial particle Reynolds numbers up to 100, were measured in a shock tube using particle image velocimetry. The goal of this study is to assess velocity relaxation estimates and assumptions for particle-based velocimetry techniques.

  13. Interpreting tracer breakthrough tailing from different forced-gradient tracer experiment configurations in fractured bedrock

    USGS Publications Warehouse

    Becker, M.W.; Shapiro, A.M.

    2003-01-01

    Conceptual and mathematical models are presented that explain tracer breakthrough tailing in the absence of significant matrix diffusion. Model predictions are compared to field results from radially convergent, weak-dipole, and push-pull tracer experiments conducted in a saturated crystalline bedrock. The models are based upon the assumption that flow is highly channelized, that the mass of tracer in a channel is proportional to the cube of the mean channel aperture, and the mean transport time in the channel is related to the square of the mean channel aperture. These models predict the consistent -2 straight line power law slope observed in breakthrough from radially convergent and weak-dipole tracer experiments and the variable straight line power law slope observed in push-pull tracer experiments with varying injection volumes. The power law breakthrough slope is predicted in the absence of matrix diffusion. A comparison of tracer experiments in which the flow field was reversed to those in which it was not indicates that the apparent dispersion in the breakthrough curve is partially reversible. We hypothesize that the observed breakthrough tailing is due to a combination of local hydrodynamic dispersion, which always increases in the direction of fluid velocity, and heterogeneous advection, which is partially reversed when the flow field is reversed. In spite of our attempt to account for heterogeneous advection using a multipath approach, a much smaller estimate of hydrodynamic dispersivity was obtained from push-pull experiments than from radially convergent or weak dipole experiments. These results suggest that although we can explain breakthrough tailing as an advective phenomenon, we cannot ignore the relationship between hydrodynamic dispersion and flow field geometry at this site. The design of the tracer experiment can severely impact the estimation of hydrodynamic dispersion and matrix diffusion in highly heterogeneous geologic media.

  14. Dense nonaqueous phase liquid tracer tests: experimental results.

    PubMed

    Burt, R A; Christians, G L; Williams, S P; Wilson, D J

    2001-12-01

    Two dense nonaqueous phase liquid (DNAPL) tracer tests were carried out in a shallow aquifer north of Fort Worth, TX. i-Propanol was used as the nonpartitioning tracer: n-hexanol and n-octanol were the partitioning tracers. Field data, mathematical modeling, the results of column tests, and field tracer tests with NaCl were used in designing the DNAPL tracer tests. The results indicated the presence of DNAPL at both sites tested; semi-quantitative estimates of the amounts of DNAPL present were obtained by mathematical modeling. Interpretation was complicated by heterogeneity of the aquifer and mass transport effects.

  15. Journal: A Review of Some Tracer-Test Design Equations for Tracer-Mass Estimation and Sample Collection Frequency

    EPA Science Inventory

    Determination of necessary tracer mass, initial sample-collection time, and subsequent sample-collection frequency are the three most difficult aspects to estimate for a proposed tracer test prior to conducting the tracer test. To facilitate tracer-mass estimation, 33 mass-estima...

  16. Lidar Tracking of Multiple Fluorescent Tracers: Method and Field Test

    NASA Technical Reports Server (NTRS)

    Eberhard, Wynn L.; Willis, Ron J.

    1992-01-01

    Past research and applications have demonstrated the advantages and usefulness of lidar detection of a single fluorescent tracer to track air motions. Earlier researchers performed an analytical study that showed good potential for lidar discrimination and tracking of two or three different fluorescent tracers at the same time. The present paper summarizes the multiple fluorescent tracer method, discusses its expected advantages and problems, and describes our field test of this new technique.

  17. Three-Dimensional Bayesian Geostatistical Aquifer Characterization at the Hanford 300 Area using Tracer Test Data

    SciTech Connect

    Chen, Xingyuan; Murakami, Haruko; Hahn, Melanie S.; Hammond, Glenn E.; Rockhold, Mark L.; Zachara, John M.; Rubin, Yoram

    2012-06-01

    Tracer testing under natural or forced gradient flow holds the potential to provide useful information for characterizing subsurface properties, through monitoring, modeling and interpretation of the tracer plume migration in an aquifer. Non-reactive tracer experiments were conducted at the Hanford 300 Area, along with constant-rate injection tests and electromagnetic borehole flowmeter (EBF) profiling. A Bayesian data assimilation technique, the method of anchored distributions (MAD) [Rubin et al., 2010], was applied to assimilate the experimental tracer test data with the other types of data and to infer the three-dimensional heterogeneous structure of the hydraulic conductivity in the saturated zone of the Hanford formation. In this study, the Bayesian prior information on the underlying random hydraulic conductivity field was obtained from previous field characterization efforts using the constant-rate injection tests and the EBF data. The posterior distribution of the conductivity field was obtained by further conditioning the field on the temporal moments of tracer breakthrough curves at various observation wells. MAD was implemented with the massively-parallel three-dimensional flow and transport code PFLOTRAN to cope with the highly transient flow boundary conditions at the site and to meet the computational demands of MAD. A synthetic study proved that the proposed method could effectively invert tracer test data to capture the essential spatial heterogeneity of the three-dimensional hydraulic conductivity field. Application of MAD to actual field data shows that the hydrogeological model, when conditioned on the tracer test data, can reproduce the tracer transport behavior better than the field characterized without the tracer test data. This study successfully demonstrates that MAD can sequentially assimilate multi-scale multi-type field data through a consistent Bayesian framework.

  18. Combining 3D Hydraulic Tomography with Tracer Tests for Improved Transport Characterization.

    PubMed

    Sanchez-León, E; Leven, C; Haslauer, C P; Cirpka, O A

    2016-07-01

    Hydraulic tomography (HT) is a method for resolving the spatial distribution of hydraulic parameters to some extent, but many details important for solute transport usually remain unresolved. We present a methodology to improve solute transport predictions by combining data from HT with the breakthrough curve (BTC) of a single forced-gradient tracer test. We estimated the three dimensional (3D) hydraulic-conductivity field in an alluvial aquifer by inverting tomographic pumping tests performed at the Hydrogeological Research Site Lauswiesen close to Tübingen, Germany, using a regularized pilot-point method. We compared the estimated parameter field to available profiles of hydraulic-conductivity variations from direct-push injection logging (DPIL), and validated the hydraulic-conductivity field with hydraulic-head measurements of tests not used in the inversion. After validation, spatially uniform parameters for dual-domain transport were estimated by fitting tracer data collected during a forced-gradient tracer test. The dual-domain assumption was used to parameterize effects of the unresolved heterogeneity of the aquifer and deemed necessary to fit the shape of the BTC using reasonable parameter values. The estimated hydraulic-conductivity field and transport parameters were subsequently used to successfully predict a second independent tracer test. Our work provides an efficient and practical approach to predict solute transport in heterogeneous aquifers without performing elaborate field tracer tests with a tomographic layout.

  19. ANALYTICAL METHOD DEVELOPMENTS TO SUPPORT PARTITIONING INTERWELL TRACER TESTING

    EPA Science Inventory

    Partitioning Interwell Tracer Testing (PITT) uses alcohol tracer compounds in estimating subsurface contamination from non-polar pollutants. PITT uses the analysis of water samples for various alcohols as part of the overall measurement process. The water samples may contain many...

  20. Direct Quantification of Microbial Community Respiration along a Contamination Gradient using a novel Hydrologic Smart Tracer

    NASA Astrophysics Data System (ADS)

    Stanaway, D. J.; Haggerty, R.; Feris, K. P.

    2010-12-01

    Heavy metal contamination in lotic ecosystems is a major health and environmental concern worldwide. The Resazurin Resorufin (Raz Rru) Smart Tracer system (Haggerty et al., 2008) provides a novel approach to test current models of microbial ecosystem response to chronic stressors such as heavy metals. These models predict that functional redundancy of metabolic capabilities of community members (e.g. respiration rate and enzyme activity) will compensate for decreases in species diversity until a stress threshold is reached. At this point, species diversity and function are expected to decline rapidly. Contrary to this model, microbial communities of the Clark Fork River (CF), Montana, demonstrate high levels of species diversity along the contamination gradient, whereas community function is inversely proportional to the level of contamination. The Raz Rru tool, a metabolically reactive hydrologic tracer, allows for direct quantification of in-situ microbial respiration rates. Therefore, this tool provides an opportunity to build upon studies of ecosystem response to contamination previously limited to extrapolation of point scale measurements to reach scale processes. The Raz Rru tool is used here to quantify the magnitude of metal induced limits on heterotrophic microbial respiration in communities that have evolved to different levels of chronic metal exposure. In this way we propose to be able to test a novel hypothesis concerning the nature of evolution of community processes to chronic stress and persistent environmental pollutants. Specifically, we hypothesize that metal contamination produces a measureable metabolic cost to both tolerant and intolerant communities. To test this hypothesis, rates of respiration associated with hyporheic sediments, supporting intact microbial communities, were quantified in the presence and absence of an acute Cd exposure in column experiments. Hyporheic sediment was collected from differently contaminated locations within

  1. Some design considerations for the proposed Dixie Valley tracer test

    SciTech Connect

    Doughty, C.; Bodvarsson, G.S.

    1988-06-01

    A tracer test for the Dixie Valley, Nevada, geothermal resource is planned for the summer of 1988, in order to study the fluid flow paths that will develop under typical operating conditions. During the test six production wells will provide the power plant with steam sufficient for generation of 60 MWe, requiring fluid production at a rate of approximately 600 kg/sec. Up to 75% by mass of the extracted fluid will be reinjected into the reservoir, using four injection wells. Tracer will be added to the injected fluid for a twenty-minute period, and subsequently the produced fluid will be monitored for the tracer. 5 refs., 9 figs., 5 tabs.

  2. Three-dimensional Bayesian geostatistical aquifer characterization at the Hanford 300 Area using tracer test data

    NASA Astrophysics Data System (ADS)

    Chen, Xingyuan; Murakami, Haruko; Hahn, Melanie S.; Hammond, Glenn E.; Rockhold, Mark L.; Zachara, John M.; Rubin, Yoram

    2012-06-01

    Tracer tests performed under natural or forced gradient flow conditions can provide useful information for characterizing subsurface properties, through monitoring, modeling, and interpretation of the tracer plume migration in an aquifer. Nonreactive tracer experiments were conducted at the Hanford 300 Area, along with constant-rate injection tests and electromagnetic borehole flowmeter tests. A Bayesian data assimilation technique, the method of anchored distributions (MAD) (Rubin et al., 2010), was applied to assimilate the experimental tracer test data with the other types of data and to infer the three-dimensional heterogeneous structure of the hydraulic conductivity in the saturated zone of the Hanford formation.In this study, the Bayesian prior information on the underlying random hydraulic conductivity field was obtained from previous field characterization efforts using constant-rate injection and borehole flowmeter test data. The posterior distribution of the conductivity field was obtained by further conditioning the field on the temporal moments of tracer breakthrough curves at various observation wells. MAD was implemented with the massively parallel three-dimensional flow and transport code PFLOTRAN to cope with the highly transient flow boundary conditions at the site and to meet the computational demands of MAD. A synthetic study proved that the proposed method could effectively invert tracer test data to capture the essential spatial heterogeneity of the three-dimensional hydraulic conductivity field. Application of MAD to actual field tracer data at the Hanford 300 Area demonstrates that inverting for spatial heterogeneity of hydraulic conductivity under transient flow conditions is challenging and more work is needed.

  3. How to chase a tracer - combining conventional salt tracer testing and direct push electrical conductivity profiling for enhanced aquifer characterization

    NASA Astrophysics Data System (ADS)

    Vienken, Thomas; Huber, Emanuel; Kreck, Manuel; Huggenberger, Peter; Dietrich, Peter

    2017-01-01

    Tracer testing is a well-established technique in hydrogeological site characterization. However, certain a priori knowledge of the hydraulic regime is required beforehand to avoid test failure, e.g. miss of tracer. In this study, we propose a novel tracer test concept for the hydraulic characterization of shallow unconsolidated sedimentary deposits when only scarce a priori information on the hydraulic regime is available. Therefore, we combine conventional salt tracer testing with direct push vertical high resolution electrical conductivity logging. The proposed tracer test concept was successfully tested on coarse, braided river deposits of the Tagliamento River, Italy. With limited a priori information available two tracer tests were performed in three days to reliably determine ground water flow direction and velocity allowing on-site decision-making to adaptively install observation wells for reliable breakthrough curve measurements. Furthermore, direct push vertical electrical profiling provided essential information about the plume characteristics with outstanding measurement resolution and efficiency.

  4. Unraveling complex hydrogeologic systems using field tracer tests

    NASA Astrophysics Data System (ADS)

    Dam, William A.; Nicholson, Thomas

    Tracking the movement of underground contaminants is vital to protecting public health and the environment worldwide. Scientific efforts using field tracer techniques to solve contaminant migration problems are rapidly evolving to fill critical information gaps and provide confirmation of laboratory data and numerical models. Various chemical tracers are being used to formulate and evaluate alternative conceptual hydrogeologic modelssemi; namely, to constrain hydraulic properties of geologic systems, identify sources of groundwater, flow paths, and rates, and determine mechanisms that affect contaminant transport. Naturally occurring elements and environmental isotopes from atmospheric and underground nuclear testing can make excellent tracers. In addition, characterizing sites of future waste disposal, such as the potential high-level nuclear waste repository at Yucca Mountain, requires new and innovative techniques like injecting surrogate tracers that simulate potential contaminants and shed light on mechanisms that could control future contaminant migration.

  5. Heat tracer test in an alluvial aquifer: Field experiment and inverse modelling

    NASA Astrophysics Data System (ADS)

    Klepikova, Maria; Wildemeersch, Samuel; Hermans, Thomas; Jamin, Pierre; Orban, Philippe; Nguyen, Frédéric; Brouyère, Serge; Dassargues, Alain

    2016-09-01

    Using heat as an active tracer for aquifer characterization is a topic of increasing interest. In this study, we investigate the potential of using heat tracer tests for characterization of a shallow alluvial aquifer. A thermal tracer test was conducted in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in an injection well and monitoring the evolution of groundwater temperature and tracer concentration in the pumping well and in measurement intervals. To get insights in the 3D characteristics of the heat transport mechanisms, temperature data from a large number of observation wells closely spaced along three transects were used. Temperature breakthrough curves in observation wells are contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. The observed complex behavior of the heat plume is explained by the groundwater flow gradient on the site and heterogeneities in the hydraulic conductivity field. Moreover, due to high injection temperatures during the field experiment a temperature-induced fluid density effect on heat transport occurred. By using a flow and heat transport numerical model with variable density coupled with a pilot point approach for inversion of the hydraulic conductivity field, the main preferential flow paths were delineated. The successful application of a field heat tracer test at this site suggests that heat tracer tests is a promising approach to image hydraulic conductivity field. This methodology could be applied in aquifer thermal energy storage (ATES) projects for assessing future efficiency that is strongly linked to the hydraulic conductivity variability in the considered aquifer.

  6. Simple Spreadsheet Models For Interpretation Of Fractured Media Tracer Tests

    EPA Science Inventory

    An analysis of a gas-phase partitioning tracer test conducted through fractured media is discussed within this paper. The analysis employed matching eight simple mathematical models to the experimental data to determine transport parameters. All of the models tested; two porous...

  7. Multiple Tracer Tests in Porous Media During Clogging

    NASA Astrophysics Data System (ADS)

    Englert, A.; Banning, A.; Siegmund, J.; Freye, S.; Goekpinar, T.

    2015-12-01

    Transport processes are known to be governed by the physical and chemical heterogeneity of the subsurface. Clogging processes can alter this heterogeneity as function of time and thus can modify transport. To understand transport under clogging conditions and to unravel the potential of multiple tracer tests to characterize such transport process we perform column and sandbox experiments. Our recently developed column and sandbox experiments are used to perform multiple tracer tests during clogging. In a first set of experiments, a cubic cell of 0.1 m x 0.1 m x 0.1 m is used to experimentally estimate flow and transport characteristics of an unconsolidated sediment through Darcy and tracer experiments. The water streaming through the experiment is amended with ammonium sulfate permanently. Salt tracers are added to the streaming water repeatedly, to be detected at micro electrodes at the inflow and the outflow of the cubic cell. Through repeated syringe injections of a barium chloride solution into the center of the cubic cell clogging processes are forced to occur around the mixing zone of the injected and streaming water by precipitation of barium sulfate. In a second set of experiments, a sandbox model including a sediment body of 0.3 m x 0.3 m x 0.1 m is used. Tracer, streaming, and injection water chemistry is kept similar to the cubic cell experiments. However, tracer breakthrough is now detected at nine positions within the experiment and at the inflow and the outflow of the sandbox model. Injection of barium chloride solution is now at two locations around the center of the sandbox model. Flow and transport characteristics of the sediment body are estimated based on Darcy and tracer experiments, which are performed repeatedly. Combined analysis of local and ensemble breakthrough curves and integrated numerical modeling will be used to understand effective and local flow and transport in a in a porous medium during clogging.

  8. Testing fundamentals: The chemical state of geochemical tracers in biominerals.

    NASA Astrophysics Data System (ADS)

    Branson, O.; Redfern, S. A. T.; Read, E.; Elderfield, H.

    2015-12-01

    The use of many carbonate-derived geochemical proxies is underpinned by the assumption that tracer elements are incorporated 'ideally' as impurities the mineral lattice, following relatively straightforward kinetic and thermodynamic drives. This allows comparison to inorganic precipitation experiments, and provides a systematic starting point from which to translate geochemical tracers to environmental records. Biomineral carbonates are a prominent source of geochemical proxy material, and are far from an ideal inorganic system. They are structurally and compositionally heterogeneous mineral-organic composites, produced in tightly controlled biological environments, possibly via non-classical crystal growth mechanisms. Biominerals offer numerous opportunities for tracers to be incorporated in a 'non-ideal' state. For instance, tracers could be hosted within the organic component of the structure, in interstitial micro-domains of a separate mineral phase, or in localized high-impurity clusters. If a proxy element is hosted in a non-ideal state, our understanding of its incorporation and preservation is flawed, and the theoretical basis behind the proxies derived from it must be reevaluated. Thus far, the assumption of ideal tracer incorporation has remained largely untested, owing to the spatial resolution and sensitivity limits of available techniques. Developments in high-resolution, high-sensitivity X-ray spectroscopy at Scanning Transmission X-Ray Microscopes (STXMs) have allowed us to measure trace element coordination in foraminiferal calcite, at length-scales relevant to biomineralisation processes and tracer incorporation. This instrument has allowed us to test the fundamental assumptions behind several geochemical proxy elements. We present a summary of four STXM studies, assessing the chemical state and distribution of Mg (Branson et al, 2014), B (Branson et al, 2015), S and Na (unpub.), and highlight the implications of these data for the use of these

  9. Journal: Efficient Hydrologic Tracer-Test Design for Tracer-Mass Estimation and Sample Collection Frequency, 1 Method Development

    EPA Science Inventory

    Hydrological tracer testing is the most reliable diagnostic technique available for the determination of basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowl...

  10. Testing the limits of gradient sensing

    PubMed Central

    Lakhani, Vinal

    2017-01-01

    The ability to detect a chemical gradient is fundamental to many cellular processes. In multicellular organisms gradient sensing plays an important role in many physiological processes such as wound healing and development. Unicellular organisms use gradient sensing to move (chemotaxis) or grow (chemotropism) towards a favorable environment. Some cells are capable of detecting extremely shallow gradients, even in the presence of significant molecular-level noise. For example, yeast have been reported to detect pheromone gradients as shallow as 0.1 nM/μm. Noise reduction mechanisms, such as time-averaging and the internalization of pheromone molecules, have been proposed to explain how yeast cells filter fluctuations and detect shallow gradients. Here, we use a Particle-Based Reaction-Diffusion model of ligand-receptor dynamics to test the effectiveness of these mechanisms and to determine the limits of gradient sensing. In particular, we develop novel simulation methods for establishing chemical gradients that not only allow us to study gradient sensing under steady-state conditions, but also take into account transient effects as the gradient forms. Based on reported measurements of reaction rates, our results indicate neither time-averaging nor receptor endocytosis significantly improves the cell’s accuracy in detecting gradients over time scales associated with the initiation of polarized growth. Additionally, our results demonstrate the physical barrier of the cell membrane sharpens chemical gradients across the cell. While our studies are motivated by the mating response of yeast, we believe our results and simulation methods will find applications in many different contexts. PMID:28207738

  11. Numerical simulation of a natural gradient tracer experiment for the natural attenuation study: flow and physical transport.

    PubMed

    Julian, H E; Boggs, J M; Zheng, C; Feehley, C E

    2001-01-01

    Results are presented for numerical simulations of ground water flow and physical transport associated with a natural gradient tracer experiment conducted within a heterogeneous alluvial aquifer of the Natural Attenuation Study (NATS) site near Columbus, Mississippi. A principal goal of NATS is to evaluate biogeochemical models that predict the rate and extent of natural biodegradation under field conditions. This paper describes the initial phase in the model evaluation process, i.e., calibration of flow and physical transport models that simulate conservative bromide tracer plume evolution during NATS. An initial large-scale flow model (LSM) is developed encompassing the experimental site and surrounding region. This model is subsequently scaled down in telescopic fashion to an intermediate-scale ground water flow model (ISM) covering the tracer-monitoring network, followed by a small-scale transport model (SSM) focused on the small region of hydrocarbon plume migration observed during NATS. The LSM uses inferred depositional features of the site in conjunction with hydraulic conductivity (K) data from aquifer tests and borehole flowmeter tests to establish large-scale K and flow field trends in and around the experimental site. The subsequent ISM incorporates specified flux boundary conditions and large-scale K trends obtained from the calibrated LSM, while preserving small-scale K structure based on some 4000 flowmeter data for solute transport modeling. The configuration of the ISM-predicted potentiometric surface approximates that of the observed surface within a root mean squared error of 0.15 m. The SSM is based on the dual-domain mass-transfer approach. Despite the well-recognized difficulties in modeling solute transport in extremely heterogeneous media as found at the NATS site, the dual-domain model adequately reproduced the observed bromide concentration distributions. Differences in observed and predicted bromide concentration distributions are

  12. Absolute hydraulic conductivity estimates from aquifer pumping and tracer tests in a stratified aquifer

    SciTech Connect

    Thorbjarnarson, K.W.; Huntley, D.; McCarty, J.J.

    1998-01-01

    Independent estimates of absolute hydraulic conductivity were obtained by a standard aquifer pumping test and a forced-gradient tracer test in a highly heterogeneous aquifer. An aquifer hydraulic test was conducted to evaluate the average hydraulic conductivity (K), and to establish steady-state flow for the tracer test. An average K of 48 m/day was interpreted from the draw-down data in a fully screened well. Type-curve matching and simulation with MODFLOW of the hydraulic response in partially screened wells indicates K of 10 to 15 m/day for the upper section and 71 to 73 m/day for the deeper section. Iodide and fluorescent dye tracers were injected at low rates in wells located approximately 8 m upgradient of the production well. Tracer breakthrough was monitored in the production well and at ten depth intervals within the fully screened monitoring well. Interpretation of tracer response in the production well reveals tracer transport is limited to a 3.9 m thick section of the 20 m thick aquifer, with a hydraulic conductivity of 248 m/day. However, the depth distribution of these permeable strata cannot be determined from the production well tracer response. When sampled at 1.5 m depth intervals in the monitoring well, breakthrough was observed in only three intervals along the entire 18.2 m screened well. K estimates from tracer travel time within discrete high-permeability strata range from 31 to 317 m/day. Inclusion of permeameter K estimates for the lower permeability aquifer sands result in a range in relative K of 0.01 to 1.0. This field site has the highest absolute K estimate for a discrete stratum and the widest range in relative hydraulic conductivity among research field sites with K estimates for discrete strata. Within such a highly stratified aquifer, the use of an average K from an aquifer pumping test to predict solute transport results in great underestimation of transport distances for a given time period.

  13. Report on 10-ton retort tracer testing: tests S76 through S79

    SciTech Connect

    Turner, T.F.

    1985-07-01

    An oil shale retort with contrasting permeability regions has been studied using gas tracer techniques. The Western Research Institute's 10-ton retort was loaded with oil shale of various size ranges resulting in different void fractions. Four retorting and tracer runs were performed on the retort. For each run, tracer injections were made into the main air flow inlet and into taps near the top of the retort. Detection taps were located at four levels in the retort with five taps on each level in tests S76 through S78. There were six taps on each level in run S79. The oil shale rubble bed was configured with a cylindrical nonuniform region on the center line of the retort in tests S76 through S78. In run S79 two side-by-side regions with differing bed properties were tracer tested and retorted. Response times were calculated from the tracer response curves. The tracer response times from in-bed tracer tests correlate with oil yield and with bed properties. Response times from the inlet-to-outlet tracer tests correlate with total oil yield through a first-order relationship with sweep efficiencies. 8 refs., 6 figs., 1 tab.

  14. Active thermal tracer testing in a shallow aquifer of the Thur valley, Switzerland

    NASA Astrophysics Data System (ADS)

    Schweingruber, Mischa; Somogyvári, Márk; Bayer, Peter

    2015-04-01

    Tracer tests are one of the standard methods for investigating groundwater processes. Among the range of different test variants, using heat as a tracer has gained substantial interest during the last decade. Temperature measurements have become essential ingredients for example for characterization of river-aquifer interactions and in the field of geothermics. Much less attention than on natural temperature signals has been devoted to induced synthetic temperature signals, even though it is well known that temperature is an easy to measure, invisible but sensitive system property. Design, application and inversion of such active thermal tracer tests represent one focus of our work. We build up on the experience from related field experiments, where heated water was injected and the propagation of the generated thermal anomaly was monitored. In this presentation, we show the results from first field-testing in an alluvial aquifer at the Widen site in the Thur valley in Switzerland. The thermal evolution of groundwater was monitored in summer 2014 during and after several days of heated water injection. By this test, we want to derive insights into the prevailing hydraulic heterogeneity of the shallow aquifer at the site. The results are used for calibration of a two dimensional hydrogeological numerical model. With the calibrated hydraulic conductivity field, the experiment is simulated and the transient evolution of the heat plume is visualized. Hydraulic heterogeneity is identified as one main factor for lateral spreading of the heat plume. The most important result of the experiment is that the significance of the ambient flow field is very high and even with high pumping rates to establish forced gradient conditions its effect cannot be overridden. During the test, precious technical experience was gained, which will be beneficial for subsequent heat tracer applications. For example, the challenge of maintaining a constant injection rate and temperature could

  15. Chemical tracer test at the Dixie Valley geothermal field, Nevada. Geothermal Reservoir Technology research program

    SciTech Connect

    Adams, M.C.; Moore, J.N.; Benoit, W.R.; Doughty, C.; Bodvarsson, G.S.

    1993-10-01

    In the injection test described, chemical tracers established the fluid flow between one injection well and one production well. Measured tracer concentrations, calculated flow rates, sampling schedules, and the daily events of the tracer test are documented. This experiment was designed to test the application of organic tracers, to further refine the predictive capability of the reservoir model, and to improve the effectiveness of Oxbow`s injection strategy.

  16. Estimation of Fluorescent Dye Amount in Tracer Dye Test

    NASA Astrophysics Data System (ADS)

    Pekkan, Emrah; Balkan, Erman; Balkan, Emir

    2015-04-01

    Karstic groundwater is more influenced by human than the groundwater that disperse in pores. On the other hand karstic groundwater resources, in addition to providing agricultural needs, livestock breeding, drinking and domestic water in most of the months of the year, they also supply drinking water to the wild life at high altitudes. Therefore sustainability and hydrogeological investigation of karstic resources is critical. Tracing techniques are widely used in hydrologic and hydrogeologic studies to determine water storage, flow rate, direction and protection area of groundwater resources. Karanfil Mountain (2800 m), located in Adana, Turkey, is one of the karstic recharge areas of the natural springs spread around its periphery. During explorations of the caves of Karanfil mountain, a 600 m deep cave was found by the Turkish and Polish cavers. At the bottom of the cave there is an underground river with a flow rate of approximately 0.5 m3/s during August 2014. The main spring is located 8 km far from the cave's entrance and its mean flow rate changes between 3.4 m3/s and 0.21 m3/s in March and September respectively according to a flowrate observation station of Directorate of Water Works of Turkey. As such frequent storms, snowmelt and normal seasonal variations in rainfall have a significant and rapid effect on the volume of this main spring resource. The objective of our research is to determine and estimate dye amount before its application on the field inspired from the previously literature on the subject. This estimation is intended to provide a preliminary application of a tracer test of a karstic system. In this study dye injection, inlet point will be an underground river located inside the cave and the observation station will be the spring that is approximately 8 km far from the cave entrance. On the other hand there is 600 meter elevation difference between cave entrance and outlet spring. In this test Rodamin-WT will be used as tracer and the

  17. Results of ground-water tracer tests using tritiated water at Oak Ridge National Laboratory, Tennessee

    USGS Publications Warehouse

    Webster, D.A.

    1996-01-01

    Ground-water tracer test were conducted at two sites in the radioactive-waste disposal area of Oak Ridge National Laboratory from 1977 to 1982. The purpose of the tests was to determine if the regolith beds had weathered sufficiently to permit the substantial flow of water across them. About 50 curies of tritium dissolved in water were used as the tracer in one site, and about 100 curies at the other. Results demonstrated that ground water is able to flow through joints in the weathered bedding and that the direction of the water-table gradient is the primary factor governint flow direction. Nevertheless, the substantial lateral spread of the plume as it developed showed that bedding-plane openings can still exert a significant secondary influence on flow direction in weathered rock. About 3,500 water samples from the injection and observation wells were analyzed for tritium during the test period. Concentrations detected spanned 11 orders of magnitude. Measurable concentrations were still present in the two injection wells and most observation wells 5 years after the tracer was introduced. Matrix diffusion may have played a significant role in these tests. The process would account for the sustained concentrations of tritium at many of the observation wells, the long-term residual concentrations at the injection and observation wells, and the apparent slow movement of the centers of mass across the two well fields. The process also would have implications regarding aquifer remediation. Other tracer tests have been conducted in the regolith of the Conasauga Group. Results differ from the results described in this report.

  18. Transport and attenuation of carboxylate-modified latex microspheres in fractured rock laboratory and field tracer tests

    USGS Publications Warehouse

    Becker, M.W.; Reimus, P.W.; Vilks, P.

    1999-01-01

    Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks of pathogen contamination in drinking water wells. Much has been learned through laboratory and field-scale colloid tracer tests, but progress has been hampered by a lack of consistent tracer testing methodology at different scales and fluid velocities. This paper presents laboratory and field tracer tests in fractured rock that use the same type of colloid tracer over an almost three orders-of-magnitude range in scale and fluid velocity. Fluorescently-dyed carboxylate-modified latex (CML) microspheres (0.19 to 0.98 ??m diameter) were used as tracers in (1) a naturally fractured tuff sample, (2) a large block of naturally fractured granite, (3) a fractured granite field site, and (4) another fractured granite/schist field site. In all cases, the mean transport time of the microspheres was shorter than the solutes, regardless of detection limit. In all but the smallest scale test, only a fraction of the injected microsphere mass was recovered, with the smaller microspheres being recovered to a greater extent than the larger microspheres. Using existing theory, we hypothesize that the observed microsphere early arrival was due to volume exclusion and attenuation was due to aggregation and/or settling during transport. In most tests, microspheres were detected using flow cytometry, which proved to be an excellent method of analysis. CML microspheres appear to be useful tracers for fractured rock in forced gradient and short-term natural gradient tests, but longer residence times may result in small microsphere recoveries.Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks

  19. Transport and attenuation of carboxylate-modified latex microspheres in fractured rock laboratory and field tracer tests

    SciTech Connect

    Becker, M.W.; Reimus, P.W.; Vilks, P.

    1999-05-01

    Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks of pathogen contamination in drinking water wells. Much has been learned through laboratory and field-scale colloid tracer tests, but progress has been hampered by a lack of consistent tracer testing methodology at different scales and fluid velocities. This paper presents laboratory and field tracer tests in fractured rock that use the same type of colloid tracer over an almost three orders-of-magnitude range in scale and fluid velocity. Fluorescently-dyed carboxylate-modified latex (CML) microspheres were used as tracers in (1) a naturally fractured tuff sample, (2) a large block of naturally fractured granite, (3) a fractured granite field site, and (4) another fractured granite/schist field site. In all cases, the mean transport time of the microspheres was shorter than the solutes, regardless of detection limit. In all but the smallest scale test, only a fraction of the injected microsphere mass was recovered, with the smaller microspheres being recovered to a greater extent than the larger microspheres. Using existing theory, the authors hypothesize that the observed microsphere early arrival was due to volume exclusion and attenuation was due to aggregation and/or settling during transport. In most tests, microspheres were detected using flow cytometry, which proved to be an excellent method of analysis. CML microspheres appear to be useful tracers for fractured rock in forced gradient and short-term natural gradient tests, but longer residence times may result in small microsphere recoveries.

  20. Filtering a statistically exactly solvable test model for turbulent tracers from partial observations

    SciTech Connect

    Gershgorin, B.; Majda, A.J.

    2011-02-20

    A statistically exactly solvable model for passive tracers is introduced as a test model for the authors' Nonlinear Extended Kalman Filter (NEKF) as well as other filtering algorithms. The model involves a Gaussian velocity field and a passive tracer governed by the advection-diffusion equation with an imposed mean gradient. The model has direct relevance to engineering problems such as the spread of pollutants in the air or contaminants in the water as well as climate change problems concerning the transport of greenhouse gases such as carbon dioxide with strongly intermittent probability distributions consistent with the actual observations of the atmosphere. One of the attractive properties of the model is the existence of the exact statistical solution. In particular, this unique feature of the model provides an opportunity to design and test fast and efficient algorithms for real-time data assimilation based on rigorous mathematical theory for a turbulence model problem with many active spatiotemporal scales. Here, we extensively study the performance of the NEKF which uses the exact first and second order nonlinear statistics without any approximations due to linearization. The role of partial and sparse observations, the frequency of observations and the observation noise strength in recovering the true signal, its spectrum, and fat tail probability distribution are the central issues discussed here. The results of our study provide useful guidelines for filtering realistic turbulent systems with passive tracers through partial observations.

  1. Landscape-gradient assessment of thermokarst lake hydrology using water isotope tracers

    NASA Astrophysics Data System (ADS)

    Narancic, Biljana; Wolfe, Brent B.; Pienitz, Reinhard; Meyer, Hanno; Lamhonwah, Daniel

    2017-02-01

    Thermokarst lakes are widespread in arctic and subarctic regions. In subarctic Québec (Nunavik), they have grown in number and size since the mid-20th century. Recent studies have identified that these lakes are important sources of greenhouse gases. This is mainly due to the supply of catchment-derived dissolved organic carbon that generates anoxic conditions leading to methane production. To assess the potential role of climate-driven changes in hydrological processes to influence greenhouse-gas emissions, we utilized water isotope tracers to characterize the water balance of thermokarst lakes in Nunavik during three consecutive mid- to late summer sampling campaigns (2012-2014). Lake distribution stretches from shrub-tundra overlying discontinuous permafrost in the north to spruce-lichen woodland with sporadic permafrost in the south. Calculation of lake-specific input water isotope compositions (δI) and lake-specific evaporation-to-inflow (E/I) ratios based on an isotope-mass balance model reveal a narrow hydrological gradient regardless of diversity in regional landscape characteristics. Nearly all lakes sampled were predominantly fed by rainfall and/or permafrost meltwater, which suppressed the effects of evaporative loss. Only a few lakes in one of the southern sampling locations, which overly highly degraded sporadic permafrost terrain, appear to be susceptible to evaporative lake-level drawdown. We attribute this lake hydrological resiliency to the strong maritime climate in coastal regions of Nunavik. Predicted climate-driven increases in precipitation and permafrost degradation will likely contribute to persistence and expansion of thermokarst lakes throughout the region. If coupled with an increase in terrestrial carbon inputs to thermokarst lakes from surface runoff, conditions favorable for mineralization and emission of methane, these water bodies may become even more important sources of greenhouse gases.

  2. Testing and comparison of four ionic tracers to measure stream flow loss by multiple tracer injection

    USGS Publications Warehouse

    Zellweger, G.W.

    1994-01-01

    An injectate containing lithium, sodium, chloride and bromide was added continuously at five sites along a 507 m study reach of St Kevin Gulch, Lake County, Colorado to determine which sections of the stream were losing water to the stream bed and to ascertain how well the four tracers performed. The acidity of the stream (pH 3.6) made it possible for lithium and sodium, which are normally absorbed by ion exchange with stream bed sediment, to be used as conservative tracers. Net flow losses as low as 0.81 s-1, or 8% of flow, were calculated between measuring sites. By comparing the results of simultaneous injection it was determined whether subsections of the study reach were influent or effluent. Evaluation of tracer concentrations along 116 m of stream indicated that all four tracers behaved conservatively. Discharges measured by Parshall flumes were 4-18% greater than discharges measured by tracer dilution. -from Author

  3. HYDROGEL TRACER BEADS: THE DEVELOPMENT, MODIFICATION, AND TESTING OF AN INNOVATIVE TRACER FOR BETTER UNDERSTANDING LNAPL TRANSPORT IN KARST AQUIFERS

    SciTech Connect

    Amanda Laskoskie, Harry M. Edenborn, and Dorothy J. Vesper

    2012-01-01

    The goal of this specific research task is to develop proxy tracers that mimic contaminant movement to better understand and predict contaminant fate and transport in karst aquifers. Hydrogel tracer beads are transported as a separate phase than water and can used as a proxy tracer to mimic the transport of non-aqueous phase liquids (NAPL). They can be constructed with different densities, sizes & chemical attributes. This poster describes the creation and optimization of the beads and the field testing of buoyant beads, including sampling, tracer analysis, and quantitative analysis. The buoyant beads are transported ahead of the dissolved solutes, suggesting that light NAPL (LNAPL) transport in karst may occur faster than predicted from traditional tracing techniques. The hydrogel beads were successful in illustrating this enhanced transport.

  4. Borehole flowmeter logging for the accurate design and analysis of tracer tests.

    PubMed

    Basiricò, Stefano; Crosta, Giovanni B; Frattini, Paolo; Villa, Alberto; Godio, Alberto

    2015-04-01

    Tracer tests often give ambiguous interpretations that may be due to the erroneous location of sampling points and/or the lack of flow rate measurements through the sampler. To obtain more reliable tracer test results, we propose a methodology that optimizes the design and analysis of tracer tests in a cross borehole mode by using vertical borehole flow rate measurements. Experiments using this approach, herein defined as the Bh-flow tracer test, have been performed by implementing three sequential steps: (1) single-hole flowmeter test, (2) cross-hole flowmeter test, and (3) tracer test. At the experimental site, core logging, pumping tests, and static water-level measurements were previously carried out to determine stratigraphy, fracture characteristics, and bulk hydraulic conductivity. Single-hole flowmeter testing makes it possible to detect the presence of vertical flows as well as inflow and outflow zones, whereas cross-hole flowmeter testing detects the presence of connections along sets of flow conduits or discontinuities intercepted by boreholes. Finally, the specific pathways and rates of groundwater flow through selected flowpaths are determined by tracer testing. We conclude that the combined use of single and cross-borehole flowmeter tests is fundamental to the formulation of the tracer test strategy and interpretation of the tracer test results.

  5. Journal: A Review of Some Tracer-Test Design Equations for ...

    EPA Pesticide Factsheets

    Determination of necessary tracer mass, initial sample-collection time, and subsequent sample-collection frequency are the three most difficult aspects to estimate for a proposed tracer test prior to conducting the tracer test. To facilitate tracer-mass estimation, 33 mass-estimation equations are reviewed here, 32 of which were evaluated using previously published tracer-test design examination parameters. Comparison of the results produced a wide range of estimated tracer mass, but no means is available by which one equation may be reasonably selected over the others. Each equation produces a simple approximation for tracer mass. Most of the equations are based primarily on estimates or measurements of discharge, transport distance, and suspected transport times. Although the basic field parameters commonly employed are appropriate for estimating tracer mass, the 33 equations are problematic in that they were all probably based on the original developers' experience in a particular field area and not necessarily on measured hydraulic parameters or solute-transport theory. Suggested sampling frequencies are typically based primarily on probable transport distance, but with little regard to expected travel times. This too is problematic in that tends to result in false negatives or data aliasing. Simulations from the recently developed efficient hydrologic tracer-test design methodology (EHTD) were compared with those obtained from 32 of the 33 published tracer-

  6. Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems

    SciTech Connect

    Williams, Mark D.; Reimus, Paul; Vermeul, Vincent R.; Rose, Peter; Dean, Cynthia A.; Watson, Tom B.; Newell, D.; Leecaster, Kevin; Brauser, Eric

    2013-05-01

    A recent report found that power and heat produced from enhanced (or engineered) geothermal systems (EGSs) could have a major impact on the U.S energy production capability while having a minimal impact on the environment. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distribution, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for the design and commercial development of the geothermal energy of a potential EGS site. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. This project was initially focused on tracer development with the application of perfluorinated tracer (PFT) compounds, non-reactive tracers used in numerous applications from atmospheric transport to underground leak detection, to geothermal systems, and evaluation of encapsulated PFTs that would release tracers at targeted reservoir temperatures. After the 2011 midyear review and subsequent discussions with the U.S. Department of Energy Geothermal Technology Program (GTP), emphasis was shifted to interpretive tool development, testing, and validation. Subsurface modeling capabilities are an important component of this project for both the design of suitable tracers and the interpretation of data from in situ tracer tests, be they single- or multi-well tests. The purpose of this report is to describe the results of the tracer and model development for simulating and conducting tracer tests for characterizing EGS parameters.

  7. On the inference of hydrogeological and geochemical parameters from tracer tests

    NASA Astrophysics Data System (ADS)

    Bellin, A.; Rubin, Y.

    2003-04-01

    We present a new methodology for inference of spatial variability models of the aquifer's hydrogeological and geochemical parameters from the breakthrough curves of tracers, measured at samplers placed within monitoring wells. Hypotheses on scaling effects on both hydrogeological and geochemical parameters can be confirmed, or rejected, based on the inference conducted with subsets of the full data set. Natural and forced head tracer tests typically reveal a significant disparity in both the arrival time and the spreading of the BTCs collected at the monitoring points belonging to the same well. We can then surmise that statistics of the BTC, such as the mean concentration arrival time, t_m, and the peak concentration arrival time, t_p, vary between the samplers due to the heterogeneity of the medium. One may further assume that the solute spreading observed at any of the monitoring points is controlled by local dispersion, while the disparity between the arrival times at the different samplers is the result of large-scale heterogeneity. The methodology relies on matching analytical models for travel time moments with the corresponding moments obtained from BTCs analysis. Specifically, the average of t_m is matched with the analytical expression of the mean travel time, while the variance of t_m, augmented by the average of the BTC second moment, is matched with the analytical expression of the travel time variance. We show, through a numerical example, that the same equivalences hold when t_m is replaced with t_p, with the latter providing more reliable results in presence of BTC truncation. The methodology can be applied to both natural and forced head gradient tracer tests, provided that suitable analytical models of the travel time moments are available, as confirmed by our analysis of published data on a forced head tracer experiment conducted at Borden (Canada). Furthermore, geochemical parameters are obtained by matching analytical models of travel time

  8. COMPARISON OF THREE TRACER TESTS AT THE RAFT RIVER GEOTHERMAL SITE

    SciTech Connect

    Earl D Mattson; Mitchell Plummer; Carl Palmer; Larry Hull; Samantha Miller; Randy Nye

    2011-02-01

    Three conservative tracer tests have been conducted through the Bridge Fault fracture zone at the Raft River Geothermal (RRG) site. All three tests were conducted between injection well RRG-5 and production wells RRG-1 (790 m distance) and RRG-4 (740 m distance). The injection well is used during the summer months to provide pressure support to the production wells. The first test was conducted in 2008 using 136 kg of fluorescein tracer. Two additional tracers were injected in 2010. The first 2010 tracer injected was 100 kg fluorescein disodium hydrate salt on June, 21. The second tracer (100 kg 2,6-naphthalene disulfonic acid sodium salt) was injected one month later on July 21. Sampling of the two productions wells is still being performed to obtain the tail end of the second 2010 tracer test. Tracer concentrations were measured using HPLC with a fluorescence detector. Results for the 2008 test, suggest 80% tracer recover at the two production wells. Of the tracer recovered, 85% of tracer mass was recovered in well RRG-4 indicating a greater flow pathway connection between injection well and RRG-4 than RRG-1. Fluorescein tracer results appear to be similar between the 2008 and 2010 tests for well RRG-4 with peak concentrations arriving approximately 20 days after injection despite the differences between the injection rates for the two tests (~950 gpm to 475 gpm) between the 2008 and 2010. The two 2010 tracer tests will be compared to determine if the results support the hypothesis that rock contraction along the flow pathway due to the 55 oC cooler water injection alters the flow through the ~140 oC reservoir.

  9. High-resolution Electrical Resistivity Tomography monitoring of a tracer test in a confined aquifer

    NASA Astrophysics Data System (ADS)

    Wilkinson, P. B.; Meldrum, P. I.; Kuras, O.; Chambers, J. E.; Holyoake, S. J.; Ogilvy, R. D.

    2010-04-01

    A permanent geoelectrical subsurface imaging system has been installed at a contaminated land site to monitor changes in groundwater quality after the completion of a remediation programme. Since the resistivities of earth materials are sensitive to the presence of contaminants and their break-down products, 4-dimensional resistivity imaging can act as a surrogate monitoring technology for tracking and visualising changes in contaminant concentrations at much higher spatial and temporal resolution than manual intrusive investigations. The test site, a municipal car park built on a former gasworks, had been polluted by a range of polycyclic aromatic hydrocarbons and dissolved phase contaminants. It was designated statutory contaminated land under Part IIA of the UK Environmental Protection Act due to the risk of polluting an underlying minor aquifer. Resistivity monitoring zones were established on the boundaries of the site by installing vertical electrode arrays in purpose-drilled boreholes. After a year of monitoring data had been collected, a tracer test was performed to investigate groundwater flow velocity and to demonstrate rapid volumetric monitoring of natural attenuation processes. A saline tracer was injected into the confined aquifer, and its motion and evolution were visualised directly in high-resolution tomographic images in near real-time. Breakthrough curves were calculated from independent resistivity measurements, and the estimated seepage velocities from the monitoring images and the breakthrough curves were found to be in good agreement with each other and with estimates based on the piezometric gradient and assumed material parameters.

  10. Attribution of Particulate Sulfur in the Grand Canyon to Specific Point Sources Using Tracer-Aerosol Gradient Interpretive Technique (TAGIT).

    PubMed

    Kuhns, Hampden; Green, Mark; Pitchford, Marc; Vasconcelos, Luis; White, Warren; Mirabella, Vince

    1999-08-01

    Since aerosol particulate sulfur is generally a secondary airborne pollutant, most source attribution techniques require many assumptions about the transport and chemistry of sulfur dioxide (SO2) emissions. Uncertainties in our understanding of these processes impair our ability to generate reliable attribution information that is necessary for designing cost-effective pollution control policies. A new attribution technique using artificial tracer is presented in hopes of reducing the uncertainty of secondary aerosol source attribution. The Tracer-Aerosol Gradient Interpretive Technique (TAGIT) uses tracer data from a monitoring network to distinguish sites impacted by a source tagged with tracer from nonimpacted sites. Sites determined not to be influenced by the plume are considered to represent background particulate sulfur concentrations. The particulate sulfur attributable to the source at sites within the plume is calculated as the difference between observed and background particulate sulfur. TAGIT is applied to measurements made in the vicinity of the east and west ends of the Grand Canyon in order to attribute particulate sulfur to the sources within the Eastern Colorado River Valley (ECRV) and the Mohave Power Project (MPP), respectively. TAGIT results indicate that during the winter intensive field sampling experiment (January 15-February 13, 1992), an average of 59 + 12% of the particulate sulfur at Marble Canyon, AZ, was attributable to ECRV sources. Similarly, during the summer field sampling experiment (July 13-August 30, 1992), MPP is estimated to have contributed an average of 7 + 3% of the particulate sulfur at Meadview, AZ. Uncertainties associated with the assumptions of TAGIT are discussed and quantified. The attribution results suggest that SO2-to-sulfate conversion rates are highly variable from day to day in this region.

  11. USE OF PERFLUOROCARBON TRACER (PFT) TECHNOLOGY FOR SUBSURFACE BARRIER INTEGRITY VERIFICATION AT THE WALDO TEST SITE.

    SciTech Connect

    SULLIVAN,T.

    1999-06-01

    Testing of perfluorocarbon gas tracers (PFT) on a subsurface barrier with known flaws was conducted at the Waldo Test Site operated by Science and Engineering Associates, Inc (SEA). The tests involved the use of five unique PFTs with a different tracer injected along the interior of each wall of the barrier. A fifth tracer was injected exterior to the barrier to examine the validity of diffusion controlled transport of the PFTs. The PFTs were injected for three days at a nominal flow rate of 15 cm{sup 3}/min and concentrations in the range of a few hundred ppm. Approximately 65 liters of air laced with tracer was injected for each tracer. The tracers were able to accurately detect the presence of the engineered flaws. Two flaws were detected on the north and east walls, and one flaw was detected on the south and west walls. In addition, one non-engineered flaw at the seam between the north and east walls was also detected. The use of multiple tracers provided independent confirmation of the flaws and permitted a distinction between tracers arriving at a monitoring port after being released from a nearby flaw and non-engineered flaws. The PFTs detected the smallest flaw, 0.5 inches in diameter. Visual inspection of the data showed excellent agreement with the known flaw locations and the relative size of the flaws was accurately estimated. Simultaneous with the PFT tests, SEA conducted tests with another gas tracer sulfur hexafluoride (SF{sub 6}).

  12. USE OF PERFLUOROCARBON TRACER (PFT) TECHNOLOGY FOR SUBSURFACE BARRIER INTEGRITY VERIFICATION AT THE WALDO TEST SITE

    SciTech Connect

    SULLIVAN,T.; HEISER,J.; SENUM,G.; MILLIAN,L.

    2000-02-27

    Researchers from Brookhaven National Laboratory (BNL) tested perfluorocarbon (PFT) gas tracers on a subsurface barrier with known flaws at the Waldo test facility [operated by Science and Engineering Associates, Inc (SEA)]. The tests involved the use of five unique PFT tracers with a different tracer injected along the interior of each wall of the barrier. A fifth tracer was injected exterior to the barrier to examine the validity of diffusion controlled transport of the PFTs. The PFTs were injected for three days at a nominal flow rate of 15 cm{sup 3}/min and a concentrations in the range of a few hundred ppm. Approximately 65 liters of air laced with tracer was injected for each tracer. The tracers were able to accurately detect the presence of the engineered flaws. Two flaws were detected on the north and east walls and lane flaw was detected on the south and west walls. In addition, one non-engineered flaw at the seam between the north and east walls was also detected. The use of multiple tracers provided independent confirmation of the flaws and permitted a distinction between tracers arriving at a monitoring port after being released from a nearby flaw and non-engineered flaws. The PFTs detected the smallest flaw, 0.5 inches in diameter. Visual inspection of the data showed excellent agreement with the known flaw locations and the relative size of the flaws was accurately estimated.

  13. A Systematic Method For Tracer Test Analysis: An Example Using Beowawe Tracer Data

    SciTech Connect

    G. Michael Shook

    2005-01-01

    Quantitative analysis of tracer data using moment analysis requires a strict adherence to a set of rules which include data normalization, correction for thermal decay, deconvolution, extrapolation, and integration. If done correctly, the method yields specific information on swept pore volume, flow geometry and fluid velocity, and an understanding of the nature of reservoir boundaries. All calculations required for the interpretation can be done in a spreadsheet. The steps required for moment analysis are reviewed in this paper. Data taken from the literature is used in an example calculation.

  14. Can one identify karst conduit networks geometry and properties from hydraulic and tracer test data?

    NASA Astrophysics Data System (ADS)

    Borghi, Andrea; Renard, Philippe; Cornaton, Fabien

    2016-04-01

    Karst aquifers are characterized by extreme heterogeneity due to the presence of karst conduits embedded in a fractured matrix having a much lower hydraulic conductivity. The resulting contrast in the physical properties of the system implies that the system reacts very rapidly to some changes in the boundary conditions and that numerical models are extremely sensitive to small modifications in properties or positions of the conduits. Furthermore, one major issue in all those models is that the location and size of the conduits is generally unknown. For all those reasons, estimating karst network geometry and their properties by solving an inverse problem is a particularly difficult problem. In this paper, two numerical experiments are described. In the first one, 18,000 flow and transport simulations have been computed and used in a systematic manner to assess statistically if one can retrieve the parameters of a model (geometry and radius of the conduits, hydraulic conductivity of the conduits) from head and tracer data. When two tracer test data sets are available, the solution of the inverse problems indicate with high certainty that there are indeed two conduits and not more. The radius of the conduits are usually well identified but not the properties of the matrix. If more conduits are present in the system, but only two tracer test data sets are available, the inverse problem is still able to identify the true solution as the most probable but it also indicates that the data are insufficient to conclude with high certainty. In the second experiment, a more complex model (including non linear flow equations in conduits) is considered. In this example, gradient-based optimization techniques are proved to be efficient for estimating the radius of the conduits and the hydraulic conductivity of the matrix in a promising and efficient manner. These results suggest that, despite the numerical difficulties, inverse methods should be used to constrain numerical

  15. ANALYSIS OF A GAS-PHASE PARTITIONING TRACER TEST CONDUCTED THROUGH FRACTURED MEDIA

    EPA Science Inventory

    The gas-phase partitioning tracer method was used to estimate non-aqueous phase liquid (NAPL), water, and air saturations in the vadose zone at a chlorinated-solvent contaminated field site in Tucson, AZ. The tracer test was conducted in a fractured clay system that is the confin...

  16. First Tracer Test After Circulation in Desert Peak 27-15

    DOE Data Explorer

    Rose, Peter

    2013-11-16

    Following the successful stimulation of Desert Peak target EGS well 27-15, a circulation test was initiated by injecting a conservative tracer (1,5-nds) in combination with a reactive tracer (7-amino-1,3-naphthalene disulfonate). The closest production well 74-21 was monitored over the subsequent several months.

  17. Numerical Modeling for Integrated Design of a DNAPL Partitioning Tracer Test

    NASA Astrophysics Data System (ADS)

    McCray, J. E.; Divine, C. E.; Dugan, P. J.; Wolf, L.; Boving, T.; Louth, M.; Brusseau, M. L.; Hayes, D.

    2002-12-01

    Partitioning tracer tests (PTTs) are commonly used to estimate the location and volume of nonaqueous-phase liquids (NAPLs) at contaminated groundwater sites. PTTs are completed before and after remediation efforts as one means to assess remediation effectiveness. PTT design is complex. Numerical models are invaluable tools for designing a PTT, particularly for designing flow rates and selecting tracers to ensure proper tracer breakthrough times, spatial design of injection-extraction wells and rates to maximize tracer capture, well-specific sampling density and frequency, and appropriate tracer-chemical masses. Generally, the design requires consideration of the following factors: type of contaminant; distribution of contaminant at the site, including location of hot spots; site hydraulic characteristics; measurement of the partitioning coefficients for the various tracers; the time allotted to conduct the PTT; evaluation of the magnitude and arrival time of the tracer breakthrough curves; duration of the tracer input pulse; maximum tracer concentrations; analytical detection limits for the tracers; estimation of the capture zone of the well field to tracer ensure mass balance and to limit residual tracer concentrations left in the subsurface; effect of chemical remediation agents on the PTT results, and disposal of the extracted tracer solution. These design principles are applied to a chemical-enhanced remediation effort for a chlorinated-solvent dense NAPL (DNAPL) site at Little Creek Naval Amphibious Base in Virginia Beach, Virginia. For this project, the hydrology and pre-PTT contaminant distribution were characterized using traditional methods (slug tests, groundwater and soil concentrations from monitoring wells, and geoprobe analysis), as well as membrane interface probe analysis. Additional wells were installed after these studies. Partitioning tracers were selected based on the primary DNAPL contaminants at the site, expected NAPL saturations

  18. An Analytical Solution for Slug-Tracer Tests in FracturedReservoirs

    SciTech Connect

    Shan, Chao; Pruess, Karsten

    2005-03-02

    The transport of chemicals or heat in fractured reservoirs is strongly affected by the fracture-matrix interfacial area. In a vapor-dominated geothermal reservoir, this area can be estimated by inert gas tracer tests, where gas diffusion between the fracture and matrix causes the tracer breakthrough curve (BTC) to have a long tail determined by the interfacial area. For water-saturated conditions, recent studies suggest that sorbing solute tracers can also generate strong tails in BTCs that may allow a determination of the fracture-matrix interfacial area. To theoretically explore such a useful phenomenon, this paper develops an analytical solution for BTCs in slug-tracer tests in a water-saturated fractured reservoir. The solution shows that increased sorption should have the same effect on BTCs as an increase of the diffusion coefficient. The solution is useful for understanding transport mechanisms, verifying numerical codes, and for identifying appropriate chemicals as tracers for the characterization of fractured reservoirs.

  19. 100-NR-2 Apatite Treatability Test: Fall 2010 Tracer Infiltration Test (White Paper)

    SciTech Connect

    Vermeul, Vincent R.; Fritz, Brad G.; Fruchter, Jonathan S.; Greenwood, William J.; Johnson, Timothy C.; Horner, Jacob A.; Strickland, Christopher E.; Szecsody, James E.; Williams, Mark D.

    2011-04-14

    The primary objectives of the tracer infiltration test were to 1) determine whether field-scale hydraulic properties for the compacted roadbed materials and underlying Hanford fm. sediments comprising the zone of water table fluctuation beneath the site are consistent with estimates based laboratory-scale measurements on core samples and 2) characterize wetting front advancement and distribution of soil moisture achieved for the selected application rate. These primary objectives were met. The test successfully demonstrated that 1) the remaining 2 to 3 ft of compacted roadbed material below the infiltration gallery does not limit infiltration rates to levels that would be expected to eliminate near surface application as a viable amendment delivery approach and 2) the combined aqueous and geophysical monitoring approaches employed at this site, with some operational adjustments based on lessons learned, provides an effective means of assessing wetting front advancement and the distribution of soil moisture achieved for a given solution application. Reasonably good agreement between predicted and observed tracer and moisture front advancement rates was observed. During the first tracer infiltration test, which used a solution application rate of 0.7 cm/hr, tracer arrivals were observed at the water table (10 to 12 ft below the bottom of the infiltration gallery) after approximately 5 days, for an advancement rate of approximately 2 ft/day. This advancement rate is generally consistent with pre-test modeling results that predicted tracer arrival at the water table after approximately 5 days (see Figure 8, bottom left panel). This agreement indicates that hydraulic property values specified in the model for the compacted roadbed materials and underlying Hanford formation sediments, which were based on laboratory-scale measurements, are reasonable estimates of actual field-scale conditions. Additional work is needed to develop a working relationship between resistivity

  20. Ambiguity in measuring matrix diffusion with single-well injection/recovery tracer tests

    USGS Publications Warehouse

    Lessoff, S.C.; Konikow, L.F.

    1997-01-01

    Single-well injection/recovery tracer tests are considered for use in characterizing and quantifying matrix diffusion in dual-porosity aquifers. Numerical modeling indicates that neither regional drift in homogeneous aquifers, nor heterogeneity in aquifers having no regional drift, nor hydrodynamic dispersion significantly affects these tests. However, when drift is coupled simultaneously with heterogeneity, they can have significant confounding effects on tracer return. This synergistic effect of drift and heterogeneity may help explain irreversible flow and inconsistent results sometimes encountered in previous single-well injection/recovery tracer tests. Numerical results indicate that in a hypothetical single-well injection/recovery tracer test designed to demonstrate and measure dual-porosity characteristics in a fractured dolomite, the simultaneous effects of drift and heterogeneity sometimes yields responses similar to those anticipated in a homogeneous dual-porosity formation. In these cases, tracer recovery could provide a false indication of the occurrence of matrix diffusion. Shortening the shut-in period between injection and recovery periods may make the test less sensitive to drift. Using multiple tracers having different diffusion characteristics, multiple tests having different pumping schedules, and testing the formation at more than one location would decrease the ambiguity in the interpretation of test data.

  1. Novel Application of Single-Well Tracer Tests to Evaluate Hydraulic Stimulation Effectiveness

    SciTech Connect

    G. M. Shook; Gopi Nalla

    2005-09-01

    This paper presents a graphical method by which one can identify the number of fractures and their permeability distribution in the near-well region from single-well tracer tests. The method is an extension of tracer analysis methods developed previously to estimate flow geometry and relies on caluclating the relative fluid velocity from F-__ plots. A number of numerical examples show that high flow zones (fractures) are readily identified from the derivatives of an F-___ curve. The method can be used in evaluating well stimulation efforts by conducting a tracer test before and after the stimulation and comparing the velocity distributions.

  2. Conservative tracers for the C-well hydraulic testing

    SciTech Connect

    Dombrowski, T.; Coates, G.; Stetzenbach, K.J.

    1992-11-01

    This paper reports that work is being done to identify and characterize conservative organic tracers for use as groundwater tracers at the C-well complex. An evaluation of the chemical and biological stability of several compounds including fluorinated aliphatic and aromatic acids, fluorinated salicylic acids, and fluorinated cinnamic acids was carried out using tuff samples from the Yucca Mountain area and J13 or de-ionized water. Samples were monitored over a 60-day period for any decrease in concentration; the resulting data was evaluated for possible sorption or biological degradation of the candidate compound. The fluorinated benzoic acids show the greatest stability over the 60-day period. All analyses were carried out using an HPLC system, with either a fluorescence detector, a variable wavelength UV-VIS detector, or a quadrupole mass spectrometer.

  3. PARTITIONING TRACERS FOR MEASURING RESIDUAL NAPL: FIELD-SCALE TEST RESULTS

    EPA Science Inventory

    The difficult task of locating and quantifying nonaqueous phase liquids (NAPLs) present in the vadose and saturated zones has prompted the development of innovative, nondestructive characterization techniques. The use of the interwell partitioning tracer's (IWPT) test, in which ...

  4. PARTITIONING INTERWELL TRACER TEST FOR NAPL SOURCE CHARACTERIZATION: A GENERAL OVERVIEW

    EPA Science Inventory

    Innovative and nondestructive characterization techniques have been developed to locate and quantify nonaqueous phase liquids (NAPLs) in the vadose and saturated zones in the subsurface environment. One such technique is the partitioning interwell tracer test (PITT). The PITT i...

  5. Tracer Tests in the Fractured Rock to Investigate Preferential Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Chan, W.; Chung, L.; Lee, T.; Liu, C.; Chia, Y.; Teng, M.

    2012-12-01

    Hydraulic tests are often used to obtain hydraulic conductivity in the aquifer. Test results usually reflect the average hydraulic conductivity in the surrounding strat. However, in fractured rock, groundwater flows primarily through a few fractures. Saltwater tracer test can be used to detect the direction of groundwater flow, but it was difficult to know the hydraulic connectivity between fractures. In this study, we use a variety of field tests, including tracer test, hydraulic test, and heat-pulse flowmeter test, to locate the permeable fractures and detect the hydraulic connections between boreholes. There are eight test wells and two observation wells on field experimental site in central Taiwan. Geological survey results show that there are at least three sets of joint planes. In order to realize the location of the preferential pathway of groundwater flow, heat-pulse flowmeter measurement was adopted to identify the depth of permeable fractures. Multi-well pumping test was also performed to investigate the hydraulic connectivity between these wells. Tracer tests were then used to detect the hydraulic connectivity of permeable fractures between two wells. Injection of nano zero valent iron in one well and and collection of iron tracer with a magnet array in the other well can specifically locate the permeable fracture and determine the connectivity. Saltwater tracer test result can be used to support that of nano-iron tracer test, and verify the relationship between well water conductivity increases and rock fracture location. The results show that tracer test is a useful tool to investigate the preferential groundwater flow in the fractured rock, but it is essential to flush the mud in fractures prior to the test.

  6. Photoacoustic infrared spectroscopy for conducting gas tracer tests and measuring water saturations in landfills

    SciTech Connect

    Jung, Yoojin; Han, Byunghyun; Mostafid, M. Erfan; Chiu, Pei; Yazdani, Ramin; Imhoff, Paul T.

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Photoacoustic infrared spectroscopy tested for measuring tracer gas in landfills. Black-Right-Pointing-Pointer Measurement errors for tracer gases were 1-3% in landfill gas. Black-Right-Pointing-Pointer Background signals from landfill gas result in elevated limits of detection. Black-Right-Pointing-Pointer Technique is much less expensive and easier to use than GC. - Abstract: Gas tracer tests can be used to determine gas flow patterns within landfills, quantify volatile contaminant residence time, and measure water within refuse. While gas chromatography (GC) has been traditionally used to analyze gas tracers in refuse, photoacoustic spectroscopy (PAS) might allow real-time measurements with reduced personnel costs and greater mobility and ease of use. Laboratory and field experiments were conducted to evaluate the efficacy of PAS for conducting gas tracer tests in landfills. Two tracer gases, difluoromethane (DFM) and sulfur hexafluoride (SF{sub 6}), were measured with a commercial PAS instrument. Relative measurement errors were invariant with tracer concentration but influenced by background gas: errors were 1-3% in landfill gas but 4-5% in air. Two partitioning gas tracer tests were conducted in an aerobic landfill, and limits of detection (LODs) were 3-4 times larger for DFM with PAS versus GC due to temporal changes in background signals. While higher LODs can be compensated by injecting larger tracer mass, changes in background signals increased the uncertainty in measured water saturations by up to 25% over comparable GC methods. PAS has distinct advantages over GC with respect to personnel costs and ease of use, although for field applications GC analyses of select samples are recommended to quantify instrument interferences.

  7. A Bayesian geostatistical transfer function approach to tracer test analysis

    NASA Astrophysics Data System (ADS)

    Fienen, Michael N.; Luo, Jian; Kitanidis, Peter K.

    2006-07-01

    Reactive transport modeling is often used in support of bioremediation and chemical treatment planning and design. There remains a pressing need for practical and efficient models that do not require (or assume attainable) the high level of characterization needed by complex numerical models. We focus on a linear systems or transfer function approach to the problem of reactive tracer transport in a heterogeneous saprolite aquifer. Transfer functions are obtained through the Bayesian geostatistical inverse method applied to tracer injection histories and breakthrough curves. We employ nonparametric transfer functions, which require minimal assumptions about shape and structure. The resulting flexibility empowers the data to determine the nature of the transfer function with minimal prior assumptions. Nonnegativity is enforced through a reflected Brownian motion stochastic model. The inverse method enables us to quantify uncertainty and to generate conditional realizations of the transfer function. Complex information about a hydrogeologic system is distilled into a relatively simple but rigorously obtained function that describes the transport behavior of the system between two wells. The resulting transfer functions are valuable in reactive transport models based on traveltime and streamline methods. The information contained in the data, particularly in the case of strong heterogeneity, is not overextended but is fully used. This is the first application of Bayesian geostatistical inversion to transfer functions in hydrogeology but the methodology can be extended to any linear system.

  8. IMAGE Project: Results of Laboratory Tests on Tracers for Supercritical Conditions.

    NASA Astrophysics Data System (ADS)

    Brandvoll, Øyvind; Opsahl Viig, Sissel; Nardini, Isabella; Muller, Jiri

    2016-04-01

    The use of tracers is a well-established technique for monitoring dynamic behaviour of water and gas through a reservoir. In geothermal reservoirs special challenges are encountered due to high temperatures and pressures. In this work, tracer candidates for monitoring water at supercritical conditions (temperature > 374°C, pressure ca 218 bar), are tested in laboratory experiments. Testing of tracers at supercritical water conditions requires experimental set-ups which tolerate harsh conditions with respect to high temperature and pressure. In addition stringent HES (health, environment and safety) factors have to be taken into consideration when designing and performing the experiments. The setup constructed in this project consists of a pressure vessel, high pressure pump, instrumentation for pressure and temperature control and instrumentation required for accurate sampling of tracers. In order to achieve accurate results, a special focus has been paid to the development of the tracer sampling technique. Perfluorinated cyclic hydrocarbons (PFCs) have been selected as tracer candidates. This group of compounds is today commonly used as gas tracers in oil reservoirs. According to the literature they are stable at temperatures up to 400°C. To start with, five PFCs have been tested for thermal stability in static experiments at 375°C and 108 bar in the experimental setup described above. The tracer candidates will be further tested for several months at the relevant conditions. Preliminary results indicate that some of the PFC compounds show stability after three months. However, in order to arrive at conclusive results, the experiments have to be repeated over a longer period and paying special attention to more accurate sampling procedures.

  9. Laboratory characterization of non-aqueous phase liquid/tracer interaction in support of a vadose zone partitioning interwell tracer test

    NASA Astrophysics Data System (ADS)

    Deeds, Neil E.; McKinney, Daene C.; Pope, Gary A.

    2000-01-01

    Contaminant characterization is important for successful remediation of non-aqueous phase liquids (NAPLs) in the unsaturated zone. A partitioning interwell tracer test (PITT) can provide a good estimate of average subsurface NAPL saturations. Screening experiments were completed in the laboratory to evaluate several gas tracers for a PITT study to be completed in the vadose zone at Kirtland Air Force Base in Albuquerque, NM. Four perfluorocarbon tracers were found to be suitable for this PITT. Further laboratory column studies were completed using contaminated field soil to measure the partition coefficients between the tracers and the NAPL. The results from the column studies showed that the air/NAPL tracer partition coefficients ranged from 8.8±0.6 to 71±3. This range of partition coefficients is suitable for detection of NAPL saturations in the field of 0.002 to 0.14.

  10. Tracer test analysis of the Klamath Falls geothermal resource: a comparison of models

    SciTech Connect

    Johnson, S.E.

    1984-06-01

    Two tracer tests on doublet systems in a fractured geothermal system were carried out in Klamath Falls, Oregon. The purpose of the tests were to obtain data which would lead to information about the reservoir and to test the applicability of current tracer flow models. The results show rapid breakthrough times and indicate fracture flow with vigorous mixing of injector fluid before production of same. This leads to the idea that thermal breakthrough is not directly related to tracer breakthrough in the Klamath Union doublet system. There has been no long-term enthalpy loss from exploiting the resource for 40 years. In order to reduce the data, models were developed to analyze the results. Along with a porous media flow model two mathematical models developed to analyze fractured geothermal systems are used to help decipher the various tracer return curves. The flow of tracers in doublet systems was investigated. A mathematical description is used for tracer flow through fractures as a function of time and various nonlinear parameters which can be found using a curve fitting technique. This allows the reservoir to be qualitatively defined. These models fit the data well, but point to the fact that future improvement needs to be considered for a clearer and more quantitative understanding of fractured geothermal systems. 22 refs., 32 figs., 11 tabs.

  11. Application of multiple-point geostatistics on modelling pumping tests and tracer tests in heterogeneous environments with complex geological structures

    NASA Astrophysics Data System (ADS)

    Huysmans, Marijke; Dassargues, Alain

    2014-05-01

    In heterogeneous environments with complex geological structures, analysis of pumping and tracer tests is often problematic. Standard interpretation methods do not account for heterogeneity or simulate this heterogeneity introducing empirical zonation of the calibrated parameters or using variogram-based geostatistical techniques that are often not able to describe realistic heterogeneity in complex geological environments where e.g. sedimentary structures, multi-facies deposits, structures with large connectivity or curvi-linear structures can be present. Multiple-point geostatistics aims to overcome the limitations of the variogram and can be applied in different research domains to simulate heterogeneity in complex environments. In this project, multiple-point geostatistics is applied to the interpretation of pumping tests and a tracer test in an actual case of a sandy heterogeneous aquifer. This study allows to deduce the main advantages and disadvantages of this technique compared to variogram-based techniques for interpretation of pumping tests and tracer tests. A pumping test and a tracer test were performed in the same sandbar deposit consisting of cross-bedded units composed of materials with different grain sizes and hydraulic conductivities. The pumping test and the tracer test are analyzed with a local 3D groundwater model in which fine-scale sedimentary heterogeneity is modelled using multiple-point geostatistics. To reduce CPU and RAM requirements of the multiple-point geostatistical simulation steps, edge properties indicating the presence of irregularly-shaped surfaces are directly simulated. Results show that for the pumping test as well as for the tracer test, incorporating heterogeneity results in a better fit between observed and calculated drawdowns/concentrations. The improvement of the fit is however not as large as expected. In this paper, the reasons for these somewhat unsatisfactory results are explored and recommendations for future

  12. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    SciTech Connect

    B.M. Freifeild

    2001-10-18

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  13. Estimation of fracture porosity in an unsaturated fractured welded tuff using gas tracer testing

    SciTech Connect

    Freifeld, Barry Mark

    2001-12-01

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  14. Laboratory testing and modeling to evaluate perfluorocarbon compounds as tracers in geothermal systems

    SciTech Connect

    Reimus, Paul W

    2011-01-21

    The thermal stability and adsorption characteristics of three perfluorinated hydrocarbon compounds were evaluated under geothermal conditions to determine the potential to use these compounds as conservative or thermally-degrading tracers in Engineered (or Enhanced) Geothermal Systems (EGS). The three compounds tested were perfluorodimethyl-cyclobutane (PDCB), perfluoromethylcyclohexane (PMCH), and perfluorotrimethylcyclohexane (PTCH), which are collectively referred to as perfluorinated tracers, or PFTs. Two sets of duplicate tests were conducted in batch mode in gold-bag reactors, with one pair of reactors charged with a synthetic geothermal brine containing the PFTs and a second pair was charged with the brine-PFT mixture plus a mineral assemblage chosen to be representative of activated fractures in an EGS reservoir. A fifth reactor was charged with deionized water containing the three PFTs. The experiments were conducted at {approx}100 bar, with temperatures ranging from 230 C to 300 C. Semi-analytical and numerical modeling was also conducted to show how the PFTs could be used in conjunction with other tracers to interrogate surface area to volume ratios and temperature profiles in EGS reservoirs. Both single-well and cross-hole tracer tests are simulated to illustrate how different suites of tracers could be used to accomplish these objectives. The single-well tests are especially attractive for EGS applications because they allow the effectiveness of a stimulation to be evaluated without drilling a second well.

  15. Interpretations of Tracer Tests Performed in the Culebra Dolomite at the Waste Isolation Pilot Plant Site

    SciTech Connect

    MEIGS,LUCY C.; BEAUHEIM,RICHARD L.; JONES,TOYA L.

    2000-08-01

    This report provides (1) an overview of all tracer testing conducted in the Culebra Dolomite Member of the Rustler Formation at the Waste Isolation Pilot Plant (WPP) site, (2) a detailed description of the important information about the 1995-96 tracer tests and the current interpretations of the data, and (3) a summary of the knowledge gained to date through tracer testing in the Culebra. Tracer tests have been used to identify transport processes occurring within the Culebra and quantify relevant parameters for use in performance assessment of the WIPP. The data, especially those from the tests performed in 1995-96, provide valuable insight into transport processes within the Culebra. Interpretations of the tracer tests in combination with geologic information, hydraulic-test information, and laboratory studies have resulted in a greatly improved conceptual model of transport processes within the Culebra. At locations where the transmissivity of the Culebra is low (< 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a single-porosity medium in which advection occurs largely through the primary porosity of the dolomite matrix. At locations where the transmissivity of the Culebra is high (> 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a heterogeneous, layered, fractured medium in which advection occurs largely through fractures and solutes diffuse between fractures and matrix at multiple rates. The variations in diffusion rate can be attributed to both variations in fracture spacing (or the spacing of advective pathways) and matrix heterogeneity. Flow and transport appear to be concentrated in the lower Culebra. At all locations, diffusion is the dominant transport process in the portions of the matrix that tracer does not access by flow.

  16. Bounding flow and transport analysis of proposed 105A mock-up tank tracer test

    SciTech Connect

    Piepho, M.G.

    1994-08-01

    The purpose of this bounding analysis was to determine bounding estimates of salt concentrations in the aquifer below the salt-tracer plume test at the 105A mockup-tank site near the inactive Semi-Works Plant in the 200 East Area. The objective was to calculate the bounding salt concentrations and compare them to the appropriate maximum contamination level (MCL) allowed by state law, which for sodium chloride is 415 mg/l as a secondary standard. The tracer test is part of the Electrical-Resistance Tomography (ERT) demonstration, which will provide an effective method of detecting tank leaks if it is shown to be successful. The basic idea of ERT method is that the electrical resistance in the soils will change enough to be detected when water with salts infiltrate the soils, even if a high-conductance metal tank is just above the leak. The 105A mockup tank did not have an impermeable bottom and was open at the top until the time of the test. It was assumed, at the time of the tracer test or shortly afterwards, that an impermeable bottom (concrete) would be placed at the bottom of the tank, but still remain open at the top. Hence, in this analysis, no artificial recharge is produced due to water running off a tank top, since no top is assumed. The conceptual model is discussed in Section 2.0 with the mathematical and numerical models briefly discussed in Section 3.0. The main results are given in Section 4.0 with the conclusions drawn in Section 5.0. These calculations were made before the tracer test. A similar set of calculations will be performed after the tracer test assuming more details concerning leak location and soil properties are available. The tracer test could be used to validate or confirm the modeling methodology/capability of plumes in the vadose zone at the Hanford site.

  17. Semi-analytic approach to analyze single well tracer tests TR-44

    SciTech Connect

    Antunez, E.U.

    1984-08-01

    Residual oil saturation is one of the most important parameters to be considered when analyzing a prospective field for enhanced oil recovery. Traditionally, residual oil saturation has been estimated from cores or well logs. These methods have a small radius of investigation, evaluating saturations in a region close to the wellbore. This region is often affected by injection or production operations. Single well tracer tests have proven to be a better alternative to estimate residual oil saturation since they cover a substantially larger volume of the reservoir, and thus measure a more representative residual oil saturation of the target formation. The method consists of the injection of a reactive tracer that is soluble in oil and water. This tracer slowly hydrolyzes forming a secondary tracer as a product of an irreversible chemical reaction. After injection, the well is shut in to allow the formation of a detectable amount of secondary tracer, which is soluble only in water. When the well is open to production, each tracer arrives to the well at different times. From the separation between the concentration peaks, residual oil saturation is estimated. However, the determination of the residual oil saturation through the analysis of single well tracer test production data, in the past, has required: 1) the use of finite difference simulators, 2) five fitting parameters and 3) considerable man-computer interaction time. In addition finite difference simulators give results that are affected by numerical dispersion. This, and the fitting parameters, add uncertainty to the uniqueness of the solution. In this work, a new approach is presented. The test is analyzed. 28 references, 70 figures, 7 tables.

  18. Analytical solutions for efficient interpretation of single-well push-pull tracer tests

    EPA Science Inventory

    Single-well push-pull tracer tests have been used to characterize the extent, fate, and transport of subsurface contamination. Analytical solutions provide one alternative for interpreting test results. In this work, an exact analytical solution to two-dimensional equations descr...

  19. Single-well tracer push-pull test sensitivity w. r. to fracture aperture and spacing

    NASA Astrophysics Data System (ADS)

    Ghergut, I.; Behrens, H.; Karmakar, S.; Sauter, M.

    2012-04-01

    Dealing with a parallel-fracture system of infinite lateral extension, four characteristic regimes of tracer signal sensitivity w. r. to fracture aperture and w. r. to fracture spacing s (whose reciprocal defines fracture density, or the fluid-rock interface area per volume) can be identified during the pull phase of a single-well push-pull test, also depending upon the ratio between push-phase duration Tpush and a characteristic time scale Ts (defined by s2 / D = Ts , with D denoting the tracer's effective diffusion coefficient): early-time regime: tracer signals are sensitive w. r. to fracture aperture, but insensitive w. r. to fracture spacing; sensitivity w. r. to fracture aperture first increases, then decreases with Tpush / Ts (thus there will be an optimum in terms of to Tpush / Ts , at early pull times); mid-time regime: tracer signals are sensitive w. r. to fracture spacing, but insensitive w. r. to fracture aperture; sensitivity w. r. to fracture spacing increases with Tpush / Ts ; late-time regime: with increasing pull duration, tracer signals become increasingly insensitive w. r. to fracture spacing, while regaining sensitivity w. r. to fracture aperture; 'very late'-time regime: sensitivity w. r. to fracture aperture becomes independent upon Tpush / Ts . From these different regimes, some recommendations can be derived regarding the design and dimensioning of dual-tracer single-well push-pull tests for the specific purposes of geothermal reservoir characterization, using conservative solutes and heat as tracers. Acknowledgement: This study is funded by MWK Niedersachsen (Lower-Saxony's Science and Culture Ministry) and by Baker Hughes (Celle) within task unit 'G6' of the Collaborative Research Project 'gebo' (Geothermal Energy and High-Performance Drilling).

  20. Multiple-tracer tests for contaminant transport process identification in saturated municipal solid waste

    SciTech Connect

    Woodman, N.D. Rees-White, T.C.; Stringfellow, A.M.; Beaven, R.P.; Hudson, A.P.

    2015-04-15

    Highlights: • Multiple tracers were applied to saturated MSW to test dual-porosity properties. • Lithium demonstrated to be non-conservative as a tracer. • 260 mm diameter column too small to test transport properties of MSW. • The classical advection-dispersion mode was rejected due to high dispersivity. • Characteristic diffusion times did not vary with the tracer. - Abstract: Two column tests were performed in conditions emulating vertical flow beneath the leachate table in a biologically active landfill to determine dominant transport mechanisms occurring in landfills. An improved understanding of contaminant transport process in wastes is required for developing better predictions about potential length of the long term aftercare of landfills, currently measured in timescales of centuries. Three tracers (lithium, bromide and deuterium) were used. Lithium did not behave conservatively. Given that lithium has been used extensively for tracing in landfill wastes, the tracer itself and the findings of previous tests which assume that it has behaved conservatively may need revisiting. The smaller column test could not be fitted with continuum models, probably because the volume of waste was below a representative elemental volume. Modelling compared advection-dispersion (AD), dual porosity (DP) and hybrid AD–DP models. Of these models, the DP model was found to be the most suitable. Although there is good evidence to suggest that diffusion is an important transport mechanism, the breakthrough curves of the different tracers did not differ from each other as would be predicted based on the free-water diffusion coefficients. This suggested that solute diffusion in wastes requires further study.

  1. Investigation of tracer tests on the Western Research Institute 10-ton retort

    SciTech Connect

    Turner, T.F.; Moore, D.F.

    1984-05-01

    An oil shale rubble bed with contrasting permeability regions is investigated using a gas tracer in conjunction with a two-dimensional flow and tracer model and with a one-dimensional dispersion model. Six runs on the retort are discussed. Tracer injections are made into the main flow inlet and into five taps near the top of the retort. Detection taps are located at four levels in the retort with five taps on each level. The one-dimensional dispersion model is fit to the tracer response curves producing estimates of dispersion and space time in the retort. The dispersion model produces reasonable estimates where the fluid flow deviates only slightly from vertical. The two-dimensional flow model developed by Travis at Los Alamos National Laboratory (LANL) is compared to tracer velocities. The correlation between the model and the data is good in the last of the six tests. The correlation is not as good in the earlier tests and possible reasons for this are discussed.

  2. Single well surfactant test to evaluate surfactant floods using multi tracer method

    DOEpatents

    Sheely, Clyde Q.

    1979-01-01

    Data useful for evaluating the effectiveness of or designing an enhanced recovery process said process involving mobilizing and moving hydrocarbons through a hydrocarbon bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well, comprising (a) determining hydrocarbon saturation in a volume in the formation near a well bore penetrating formation, (b) injecting sufficient mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore, and (c) determining the hydrocarbon saturation in a volume including at least a part of the volume of (b) by an improved single well surfactant method comprising injecting 2 or more slugs of water containing the primary tracer separated by water slugs containing no primary tracer. Alternatively, the plurality of ester tracers can be injected in a single slug said tracers penetrating varying distances into the formation wherein the esters have different partition coefficients and essentially equal reaction times. The single well tracer method employed is disclosed in U.S. Pat. No. 3,623,842. This method designated the single well surfactant test (SWST) is useful for evaluating the effect of surfactant floods, polymer floods, carbon dioxide floods, micellar floods, caustic floods and the like in subterranean formations in much less time and at much reduced cost compared to conventional multiwell pilot tests.

  3. Leak testing of bubble-tight dampers using tracer gas techniques

    SciTech Connect

    Lagus, P.L.; DuBois, L.J.; Fleming, K.M.

    1995-02-01

    Recently tracer gas techniques have been applied to the problem of measuring the leakage across an installed bubble-tight damper. A significant advantage of using a tracer gas technique is that quantitative leakage data are obtained under actual operating differential pressure conditions. Another advantage is that leakage data can be obtained using relatively simple test setups that utilize inexpensive materials without the need to tear ducts apart, fabricate expensive blank-off plates, and install test connections. Also, a tracer gas technique can be used to provide an accurate field evaluation of the performance of installed bubble-tight dampers on a periodic basis. Actual leakage flowrates were obtained at Zion Generating Station on four installed bubble-tight dampers using a tracer gas technique. Measured leakage rates ranged from 0.01 CFM to 21 CFM. After adjustment and subsequent retesting, the 21 CFM damper leakage was reduced to a leakage of 3.8 CFM. In light of the current regulatory climate and the interest in Control Room Habitability issues, imprecise estimates of critical air boundary leakage rates--such as through bubble-tight dampers--are not acceptable. These imprecise estimates can skew radioactive dose assessments as well as chemical contaminant exposure calculations. Using a tracer gas technique, the actual leakage rate can be determined. This knowledge eliminates a significant source of uncertainty in both radioactive dose and/or chemical exposure assessments.

  4. Sampling design for groundwater solute transport: Tests of methods and analysis of Cape Cod tracer test data

    USGS Publications Warehouse

    Knopman, Debra S.; Voss, Clifford I.; Garabedian, Stephen P.

    1991-01-01

    Tests of a one-dimensional sampling design methodology on measurements of bromide concentration collected during the natural gradient tracer test conducted by the U.S. Geological Survey on Cape Cod, Massachusetts, demonstrate its efficacy for field studies of solute transport in groundwater and the utility of one-dimensional analysis. The methodology was applied to design of sparse two-dimensional networks of fully screened wells typical of those often used in engineering practice. In one-dimensional analysis, designs consist of the downstream distances to rows of wells oriented perpendicular to the groundwater flow direction and the timing of sampling to be carried out on each row. The power of a sampling design is measured by its effectiveness in simultaneously meeting objectives of model discrimination, parameter estimation, and cost minimization. One-dimensional models of solute transport, differing in processes affecting the solute and assumptions about the structure of the flow field, were considered for description of tracer cloud migration. When fitting each model using nonlinear regression, additive and multiplicative error forms were allowed for the residuals which consist of both random and model errors. The one-dimensional single-layer model of a nonreactive solute with multiplicative error was judged to be the best of those tested. Results show the efficacy of the methodology in designing sparse but powerful sampling networks. Designs that sample five rows of wells at five or fewer times in any given row performed as well for model discrimination as the full set of samples taken up to eight times in a given row from as many as 89 rows. Also, designs for parameter estimation judged to be good by the methodology were as effective in reducing the variance of parameter estimates as arbitrary designs with many more samples. Results further showed that estimates of velocity and longitudinal dispersivity in one-dimensional models based on data from only five

  5. A Tracer Test to Characterize Treatment of TCE in a Permeable Reactive Barrier

    EPA Science Inventory

    A tracer test was conducted to characterize the flow of ground water surrounding a permeable reactive barrier constructed with plant mulch (a biowall) at the OU-1 site on Altus Air Force Base, Oklahoma. This biowall is intended to intercept and treat ground water contaminated by ...

  6. Characterization of thermal tracer tests and heat exchanges in fractured media

    NASA Astrophysics Data System (ADS)

    de La Bernardie, Jérôme; Bour, Olivier; Guihéneuf, Nicolas; Chatton, Eliot; Labasque, Thierry; Longuevergne, Laurent; Le Lay, Hugo; Koch, Florian; Gerard, Marie-Françoise; Lavenant, Nicolas; Le Borgne, Tanguy

    2016-04-01

    Geothermal energy is a renewable energy source particularly attractive due to associated low greenhouse gas emission rates. Crystalline rocks are in general considered of poor interest for geothermal applications at shallow depths (< 100m), because of the low permeability of the medium. In some cases, fractures may enhance permeability, but thermal energy storage at these shallow depths is still remaining very challenging because of the low storativity of the medium. Within this framework, the purpose of this study is to test the possibility of efficient thermal energy storage in shallow fractured rocks with a single well semi open loop heat exchanger (standing column well). For doing so, several heat tracer tests have been achieved along a borehole between two connected fractures. The heat tracer tests have been achieved at the experimental site of Ploemeur (H+ observatory network). The tracer tests consist in monitoring the temperature in the upper fracture while injecting hot water in the deeper one thanks to a field boiler. For such an experimental setup, the main difficulty to interpret the data comes from the requirement for separating the temperature advective signal of the tracer test (temperature recovery) from the heat increase due to injection of hot water through the borehole which induces heat losses all along the injection tube in the water column. For doing so, in addition to a double straddle packer used for isolating the injection chamber, the particularity of the experimental set up is the use of fiber optic distributed temperature sensing (FO-DTS); an innovative technology which allows spatial and temporal monitoring of the temperature all along the well. Thanks to this tool, we were able to estimate heat increases coming from diffusion along the injection tube which is found much lower than localized temperature increases resulting from tracer test recovery. With local temperatures probes, separating both effects would not have been feasible. We

  7. Multispecies reactive tracer test in an aquifer with spatially variable chemical conditions

    USGS Publications Warehouse

    Davis, J.A.; Kent, D.B.; Coston, J.A.; Hess, K.M.; Joye, J.L.

    2000-01-01

    A field investigation of multispecies reactive transport was conducted in a well-characterized, sand and gravel aquifer on Cape Cod, Massachusetts. The aquifer is characterized by regions of differing chemical conditions caused by the disposal of secondary sewage effluent. Ten thousand liters of groundwater with added tracers (Br, Cr(VI), and BDTA complexed with Pb, Zn, Cu, and Ni) were injected into the aquifer and distributions of the tracers were monitored for 15 months. Most of the tracers were transported more than 200 m; transport was quantified using spatial moments computed from the results of a series of synoptic samplings. Cr(VI) transport was retarded relative to Br; the retardation factor varied from 1.1 to 2.4 and was dependent on chemical conditions. At 314 days after the injection, dissolved Cr(VI) mass in the tracer cloud had decreased 85%, with the likely cause being reduction to Cr(III) in a suboxic region of the aquifer. Transport of the metal-EDTA complexes was affected by aqueous complexation, adsorption, and dissolution-precipitation reactions of Fe oxyhydroxide minerals in the aquifer sediments. Dissolved Pb-EDTA complexes disappeared from the tracer cloud within 85 days, probably due to metal exchange reactions with Fe and adsorbed Zn (present prior to the injection from contamination by the sewage effluent). About 30% of the Cu-EDTA complexes remained within the tracer cloud 314 days after injection, even though the thermodynamic stability of the Pb-EDTA complex is greater than Cu-EDTA. It is hypothesized that stronger adsorption of Pb2+ to the aquifer sediments causes the Pb-EDTA complex to disassociate to a greater degree than the Cu-EDTA complex. The mass of dissolved Zn-EDTA increased during the first 175 days of the tracer test to 140% of the mass injected, with the increase due to desorption of sewage-derived Zn. Dissolved Ni-EDTA mass remained nearly constant throughout the tracer test, apparently only participating in reversible

  8. Study of alternative tracer tests in characterizing transport in fractured rocks

    SciTech Connect

    Tsang, Y.W.

    1995-06-01

    Flow and transport calculations are carried out by numerical simulation for different tracer designs: single-well radially diverging/converging (huff-puff), single well radially converging, and two-well injection-withdrawal (doublet) in a 2D fracture zone. The fractured rocks are conceptualized as a dual-continuum: the well-connected fractures forming a heterogeneous continuum for advective transport, and the less permeable matrix forming a second continuum for tracer diffusion. Results show that the huff-puff design is a good diagnostic test for matrix diffusion. The two-well doublet design averages over a large volume and corrects for the extreme sensitivity to spatial heterogeneities of the single well converging test, but requires prior knowledge of presence or absence of matrix diffusion to give reliable estimate of transport parameters. Results of this study demonstrate that using a suite of different tracer designs is important to reduce the uncertainty in association with solving the inverse problem of tracer test interpretation to characterize transport in fracture rocks. 10 refs., 4 figs., 1 tab.

  9. Study of alternative tracer tests in characterizing transport in fractured rocks

    NASA Astrophysics Data System (ADS)

    Tsang, Y. W.

    Flow and transport calculations are carried out by numerical simulation for different tracer designs: single-well radially diverging /converging (huff-puff), single well radially converging, and two-well injection-withdrawal (doublet) in a 2D fracture zone. The fractured rocks are conceptualized as a dual-continuum: the well-connected fractures forming a heterogeneous continuum for advective transport, and the less permeable matrix forming a second continuum for tracer diffusion. Results show that the huff-puff design is a good diagnostic test for matrix diffusion. The two-well doublet design averages over a large volume and corrects for the extreme sensitivity to spatial heterogeneities of the single well converging test, but requires prior knowledge of presence or absence of matrix diffusion to give reliable estimate of transport parameters. Results of this study demonstrate that using a suite of different tracer designs is important to reduce the uncertainty in association with solving the inverse problem of tracer test interpretation to characterize transport in fracture rocks.

  10. Modeling a tracer test at the Grimsel Test Site (GTS) using a lattice Boltzmann method and transmissivity field

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Lanyon, G. W.; Baik, M. H.; Blechschmidt, I.

    2015-12-01

    A series of tracer tests have been conducted in the Migration (MI) Shear Zone at the Grimsel Test Site (GTS) for the Colloid Formation and Migration Project (CFM). As a part of the series, a dipole test (Tracer Test Run 13-05) using radionuclides, colloids and conservative tracers was performed to determine the breakthrough between CRR99.002-i2 and BOMI87.010-i2. To date, the breakthrough data of only the conservative dye tracer (Amino-G acid) are available. In the preceding project, the Colloid and Radionuclide Retardation Project (CRR), a transmissivity field for the MI shear zone was obtained by the geostatistical inverse modeling approach. In this study, the breakthrough of the tracer was computed by a gray lattice Boltzmann method (LBM). The transmissivity field with finite elements grid was transformed to the effective fracture aperture or flow porosity according to the cubic law, and the grid was uniformalized by the interpolation. The uniform mesh of the effective aperture was utilized as the model domain of the gray LBM. In the gray LBM, the heterogeneity of the aperture was dealt with a partial-bounceback scheme. The profiles of hydraulic heads monitored at the boreholes nearby were used as the reference values in the calculation of the pressure distribution in the model domain. The modeling results could reveal a dominant pathway of tracers in the dipole test. The developed model can be utilized in the calculation of the reactive transports of radionuclides and colloids by coupling with a geochemical model, such as Phreeqc, the Geochemist's Workbench, etc.

  11. Solute transport characterization in karst aquifers by tracer injection tests for a sustainable water resource management

    NASA Astrophysics Data System (ADS)

    Morales, T.; Angulo, B.; Uriarte, J. A.; Olazar, M.; Arandes, J. M.; Antiguedad, I.

    2017-04-01

    Protection of water resources is a major challenge today, given that territory occupation and land use are continuously increasing. In the case of karst aquifers, its dynamic complexity requires the use of specific methodologies that allow establishing local and regional flow and transport patterns. This information is particularly necessary when springs and wells harnessed for water supply are concerned. In view of the present state of the art, this work shows a new approach based on the use of a LiCl based tracer injection test through a borehole for transport characterization from a local to a regional scale. Thus a long term tracer injection test was conducted in a particularly sensitive sector of the Egino karst massif (Basque Country, Spain). The initial displacement of tracer in the vicinity of the injection was monitored in a second borehole at a radial distance of 10.24 m. This first information, assessed by a radial divergent model, allows obtaining transport characteristic parameters in this immediate vicinity during injection. At a larger (regional) scale, the tracer reaches a highly transmissive network with mean traveling velocities to the main springs being from 4.3 to 13.7 m/h. The responses obtained, particularly clear in the main spring used for water supply, and the persistence of part of the tracer in the injection zone, pose reconsidering the need for their protection. Thus, although the test allows establishing the 24-h isochrone, which is the ceiling value in present European vulnerability approaches, the results obtained advise widening the zone to protect in order to guarantee water quality in the springs. Overall, this stimulus-response test allows furthering the knowledge on the dynamics of solute transport in karst aquifers and is a particularly useful tool in studies related to source vulnerability and protection in such a complex medium.

  12. Using predictive uncertainty analysis to optimise tracer test design and data acquisition

    NASA Astrophysics Data System (ADS)

    Wallis, Ilka; Moore, Catherine; Post, Vincent; Wolf, Leif; Martens, Evelien; Prommer, Henning

    2014-07-01

    Tracer injection tests are regularly-used tools to identify and characterise flow and transport mechanisms in aquifers. Examples of practical applications are manifold and include, among others, managed aquifer recharge schemes, aquifer thermal energy storage systems and, increasingly important, the disposal of produced water from oil and shale gas wells. The hydrogeological and geochemical data collected during the injection tests are often employed to assess the potential impacts of injection on receptors such as drinking water wells and regularly serve as a basis for the development of conceptual and numerical models that underpin the prediction of potential impacts. As all field tracer injection tests impose substantial logistical and financial efforts, it is crucial to develop a solid a-priori understanding of the value of the various monitoring data to select monitoring strategies which provide the greatest return on investment. In this study, we demonstrate the ability of linear predictive uncertainty analysis (i.e. “data worth analysis”) to quantify the usefulness of different tracer types (bromide, temperature, methane and chloride as examples) and head measurements in the context of a field-scale aquifer injection trial of coal seam gas (CSG) co-produced water. Data worth was evaluated in terms of tracer type, in terms of tracer test design (e.g., injection rate, duration of test and the applied measurement frequency) and monitoring disposition to increase the reliability of injection impact assessments. This was followed by an uncertainty targeted Pareto analysis, which allowed the interdependencies of cost and predictive reliability for alternative monitoring campaigns to be compared directly. For the evaluated injection test, the data worth analysis assessed bromide as superior to head data and all other tracers during early sampling times. However, with time, chloride became a more suitable tracer to constrain simulations of physical transport

  13. Adjoint Sensitivity Analysis of Push-Pull Partitioning Tracer Test Data for DNAPL Saturation Estimation

    NASA Astrophysics Data System (ADS)

    Tang, T.; Boroumand, A.; Abriola, L. M.; Miller, E. L.

    2013-12-01

    Characterization of dense non-aqueous phase liquid (DNAPL) source zones is a critical component for successful remediation of sites contaminated by chlorinated solvents. Although Push-Pull Tracer Tests (PPTTs) offer a promising approach for local in situ source zone characterization, non-equilibrium mass transfer effects and the spatial variability of saturation make their interpretation difficult. To better understand the dependence of well test data on these factors and as the basis for the estimation of the spatial DNAPL distribution, here we develop numerical methods based on the use of adjoint sensitivity mehtods to explore the sensitivity of PPTT observations to the distribution of DNAPL saturation. We examine the utility of the developed approach using three-dimensional hypothetical source zones containing heterogeneous DNAPL distributions. For model applications the flow fields are generated with MODFLOW and non-equilibrium tracer mass transfer is described by a linear driving force expression. Comprehensive modeling of partitioning tracer tests requires the solution of tracer mass balance equations in the aqueous and DNAPL phases. Consistent with this process coupling, the developed adjoint method introduces a vector of adjoint variables to formulate the coupled adjoint states equations for tracer concentrations in both the aqueous and NAPL phases. For the sensitivity analysis, we investigate how the tracer concentration in the well changes with perturbations of the saturation within the interrogated zone. Using the calculated sensitivity functions, coupled with the observed tracer breakthrough curve, we develop a nonlinear least-squares inverse method to determine three metrics related to the spatial distribution of DNAPL in the source zone: average DNAPL saturation, total mass of DNAPL and distance of the DNAPL from the test well. These results have utility for local source zone characterization and can provide an initial quantitative understanding of

  14. Interpretation of Colloid-Homologue Tracer Test 10-03, Including Comparisons to Test 10-01

    SciTech Connect

    Reimus, Paul W.

    2012-06-26

    This presentation covers the interpretations of colloid-homologue tracer test 10-03 conducted at the Grimsel Test Site, Switzerland, in 2010. It also provides a comparison of the interpreted test results with those of tracer test 10-01, which was conducted in the same fracture flow system and using the same tracers than test 10-03, but at a higher extraction flow rate. A method of correcting for apparent uranine degradation in test 10-03 is presented. Conclusions are: (1) Uranine degradation occurred in test 10-03, but not in 10-01; (2) Uranine correction based on apparent degradation rate in injection loop in test 11-02 seems reasonable when applied to data from test 10-03; (3) Colloid breakthrough curves quite similar in the two tests with similar recoveries relative to uranine (after correction); and (4) Much slower apparent desorption of homologues in test 10-03 than in 10-01 (any effect of residual homologues from test 10-01 in test 10-03?).

  15. Influence of Mass Transfer Kinetics on Interpretation of Push-Pull Partitioning Tracer Tests

    NASA Astrophysics Data System (ADS)

    Ervin, R. E.; Boroumand, A.; Abriola, L. M.; Ramsburg, C. A.

    2012-12-01

    There is now considerable interest in predicting plume response to various levels of treatment applied within a DNAPL source zone. An important component to the development of this predictive capability is the ability to characterize the distribution of DNAPL within the source zone. Metrics developed for description of source zone architecture are frequently based upon some combination of downgradient contaminant concentrations and in source testing. One option for in source testing is the use of partition tracers in either interwell or push-pull test configurations. Push-pull tracer tests are advantageous for obtaining more localized information that can be integrated with other observations to reduce the uncertainty related the links between the architecture of a source and its associated plume. Here we examined push-pull tracer tests in a series of aquifer cell experiments to evaluate the potential of this type of test to quantify metrics of the DNAPL distribution at the local-scale (i.e., 1 m flow path). Three DNAPL architectures were characterized by conducting push-pull tracer tests using a solution which comprised three partitioning tracers (1-pentanol, 1-hexanol, and 2-octanol) and one non-partitioning tracer (bromide). Each architecture was characterized using three flow regimes that employed combinations of fast (~30 cm/hr) and slow (~2 cm/hr) velocities. Production curves (i.e., tracer concentrations during the pull phase of the test) for the partitioning tracers were found to be asymmetric. This asymmetry severely degraded the ability of an analytical solution employing the local equilibrium assumption to predict the overall saturations. Saturation estimates from the analytical solution were found to be improved when the application of the model was restricted to later time data (Vext/Vinj >1). This observation suggests it is important to better understand the factors influencing the early time data. Experiments were also simulated using a numerical

  16. Measuring air-water interfacial areas with X-ray microtomography and interfacial partitioning tracer tests.

    PubMed

    Brusseau, Mark L; Peng, Sheng; Schnaar, Gregory; Murao, Asami

    2007-03-15

    Air-water interfacial areas as a function of water saturation were measured for a sandy, natural porous medium using two methods, aqueous-phase interfacial partitioning tracer tests and synchrotron X-ray microtomography. In addition, interfacial areas measured in a prior study with the gas-phase interfacial partitioning tracer-test method for the same porous medium were included for comparison. For all three methods, total air-water interfacial areas increased with decreasing water saturation. The interfacial areas measured with the tracer-test methods were generally larger than those obtained from microtomography, and the disparity increased as water saturation decreased. The interfacial areas measured by microtomography extrapolated to a value (147 cm(-1)) very similar to the specific solid surface area (151 cm(-1)) calculated using the smooth-sphere assumption, indicating that the method does not characterize the area associated with microscopic surface heterogeneity (surface roughness, microporosity). This is consistent with the method resolution of approximately 12 microm. In contrast, the interfacial areas measured with the gas-phase tracer tests approached the N2/BET measured specific solid surface area (56000 cm(-1)), indicating that this method does characterize the interfacial area associated with microscopic surface heterogeneity. The largest interfacial area measured with the aqueous-phase tracer tests was 224 cm(-1), while the extrapolated maximum interfacial area was approximately 1100 cm(-1). Both of these values are larger than the smooth-sphere specific solid surface area but much smaller than the N2/BET specific solid surface area, which suggests that the method measures a limited portion of the interfacial area associated with microscopic surface heterogeneity. All three methods provide measures of total (capillary + film) interfacial area, a primary difference being that the film-associated area is a smooth-surface equivalent for the

  17. Capability of EnKF to assimilate tracer test data at the lower detection limit

    NASA Astrophysics Data System (ADS)

    Bruckmann, Johanna; Vogt, Christian; Clauser, Christoph

    2014-05-01

    We model water flow and estimate permeability distribution to improve regional groundwater management for a tectonically limited hard-rock aquifer. Management of groundwater resources for drinking water supply requires understanding and quantifying of the regional groundwater flow and groundwater budget which depends largely on the petrophysical transport properties (e. g., porosity and permeability) of the underground. We study a structurally complex and thus highly heterogeneous area on a regional scale: the Hastenrather Graben 15 km northeast of Aachen, Germany. Here, groundwater is produced from a carbonate aquifer for drinking water supply. However, direct data on the geometry and petrophysical properties of the underground are sparse and most data are only one-dimensional. For overcoming this limitation and coping with the heterogeneity of the underground we use the Ensemble Kalman Filter (EnKF) for stochastic parameter estimation and statistical ensemble analysis. Assimilating time-dependent tracer test data will help estimating permeability. The fact that the aquifer is used for drinking water supply prevents using of any artificial tracer such as radioactive or fluorescent tracer. Instead, drinking water with a lower salinity compared to the groundwater (e.g., dam water) will be used. The detection limit will be relatively low due to the low salinity contrast between reservoir water and tracer. It might even be in the range of measuring error. For studying the sensitivity of EnKF at the limit of detection we set up a synthetic scenario based on the conditions in our study area. Performing EnKF assimilation runs based on perturbed observations characterized by different measurement error levels yields information on the acceptable signal-to-noise-ratio required by EnKF for successful estimates of the given synthetic permeability distribution. This, in turn, provides information on the limits of the real-world's tracer test at low salinity contrast.

  18. MULTISPECIES REACTIVE TRACER TEST IN A SAND AND GRAVEL AQUIFER, CAPE COD, MASSACHUSETTS: PART 1: EXPERIMENTAL DESIGN AND TRANSPORT OF BROMIDE AND NICKEL-EDTA TRACERS

    EPA Science Inventory

    In this report, we summarize a portion of the results of a large-scale tracer test conducted at the U. S. Geological Survey research site on Cape Cod, Massachusetts. The site is located on a large sand and gravel glacial outwash plain in an unconfined aquifer. In April 1993, ab...

  19. TRAVELLING WAVE AND STANDING WAVE SINGLE CELL HIGH GRADIENT TESTS

    SciTech Connect

    Dolgashev, V

    2004-08-24

    Accelerating gradient is one of the crucial parameters affecting design, construction and cost of next-generation linear accelerators. Operating accelerating gradient in normal conducting accelerating structures is limited by rf breakdown. In this paper we describe an experimental setup for study of these limits for 11.4 GHz travelingwave and standing-wave accelerating structures. The setup uses matched mode converters that launch the circular TM01 mode into short test structures. The test structures are designed so that the electromagnetic fields in one cell mimic the fields in prototype structures for the Next Linear Collider. Fields elsewhere in the test structures and in the mode converters are significantly lower than in this single cell. This setup allows economic testing of different cell geometries, cell materials and preparation techniques with short turn around time. Here we present design considerations and describe planned experiments.

  20. Unsaturated Zone Tracer Test at the Bemidji, Minnesota Crude Oil Spill Site

    NASA Astrophysics Data System (ADS)

    Herkelrath, W. N.; Delin, G. N.

    2003-12-01

    As a part of a study of the subsurface transport and natural attenuation of petroleum hydrocarbon contaminants at the Bemidji, Minnesota crude-oil spill research site, we used aqueous tracers to investigate solute transport from the soil surface through the crude oil-contaminated unsaturated zone to the water table. We applied tracer solution to the soil surface within a 5 by 12 meter tracer test plot that ran from a heavily oil-contaminated area to an oil-free zone. The depth to the water table was about 6 meters. The tracer test plot was instrumented with soil moisture probes, tensiometers, suction lysimeters, and drive-point sampling wells. Sixty liters of solution containing about 6.0E03 mg/l rhodamine WT and 1.0E04 mg/l bromide was uniformly sprayed on the soil surface in October 2001. We monitored subsequent tracer movement in response to precipitation by obtaining water samples weekly using the suction lysimeters in the unsaturated zone and the drive point wells in the saturated zone. Rhodamine concentrations were measured in the field using a fluorometer, and bromide concentrations were measured in the lab using ion chromatography. The time required for rhodamine tracer to reach the water table was 340 +/- 26 days. Travel times for bromide were about the same as for rhodamine, but the bromide data were less useful because the maximum bromide concentrations observed in the wells were close to background values. Rhodamine travel times through the oily unsaturated zone were not significantly different from the travel times through the oil-free unsaturated zone. However, the peak rhodamine concentrations found in ground-water samples obtained below the oil zone were an average of 3 times larger than the peak rhodamine values beneath the oil-free zone. We hypothesize that the rhodamine was adsorbed less in the oil-contaminated zone than in the oil-free zone because iron-containing minerals that absorb rhodamine have been largely removed from the oily sediments

  1. ANALYSIS OF A GAS-PHASE PARTITIONING TRACER TEST CONDUCTED IN AN UNSATURATED FRACTURED-CLAY FORMATION

    EPA Science Inventory

    The gas-phase partitioning tracer method was used to estimate non-aqueous phase liquid (NAPL), water, and air saturations in the vadose zone at a chlorinated-solvent contaminated field site in Tucson, AZ. The tracer test was conducted in a fractured-clay system that is the confin...

  2. An in-well heat-tracer-test method for evaluating borehole flow conditions

    NASA Astrophysics Data System (ADS)

    Sellwood, Stephen M.; Hart, David J.; Bahr, Jean M.

    2015-12-01

    An improved method is presented for characterizing vertical borehole flow conditions in open boreholes using in-well heat tracer tests monitored by a distributed temperature sensing (DTS) system. This flow logging method uses an electrical resistance heater to warm slugs of water within bedrock boreholes and DTS monitoring of subsequent heat migration to measure borehole flow characteristics. Use of an electrical resistance heater allows for controlled test initiation, while the DTS allows for detailed monitoring of heat movement within the borehole. The method was evaluated in bedrock boreholes open to Cambrian sandstone formations in south-central Wisconsin (USA). The method was successfully used to measure upward flow, downward flow, and zero flow, and to identify changes in borehole flow rates associated with fracture flow and porous media flow. The main benefits of the DTS-monitored in-well heat tracer test method of borehole flow logging are (1) borehole flow direction and changes in borehole fluid velocity are readily apparent from a simple plot of the field data, (2) the case of zero vertical borehole flow is easily and confidently identified, and (3) the ability to monitor temperatures over the full borehole length simultaneously and in rapid succession provides detailed flow data with minimal disturbance of the borehole flow. The results of this study indicate that DTS-monitored in-well heat tracer tests are an effective method of characterizing borehole flow conditions.

  3. Evaluation of the radionuclide tracer test conducted at the project Gnome Underground Nuclear Test Site, New Mexico

    SciTech Connect

    Pohll, G.; Pohlmann, K.

    1996-08-01

    A radionuclide tracer test was conducted in 1963 by the U.S. Geological Survey at the Project Gnome underground nuclear test site, approximately 40 km southeast of Carlsbad, New Mexico. The tracer study was carried out under the auspices of the U.S. Atomic Energy Commission (AEC) to study the transport behavior of radionuclides in fractured rock aquifers. The Culebra Dolomite was chosen for the test because it was considered to be a reasonable analogue of the fractured carbonate aquifer at the Nevada Test Site (NTS), the principal location of U.S. underground nuclear tests. Project Gnome was one of a small number of underground nuclear tests conducted by the AEC at sites distant from the NTS. The Gnome device was detonated on December 10, 1961 in an evaporate unit at a depth of 360 m below ground surface. Recently, the U.S. Department of Energy (DOE) implemented an environmental restoration program to characterize, remediate, and close these offsite nuclear test areas. An early step in this process is performance of a preliminary risk analysis of the hazard posed by each site. The Desert Research Institute has performed preliminary hydrologic risk evaluations for the groundwater transport pathway at Gnome. That evaluation included the radioactive tracer test as a possible source because the test introduced radionuclides directly into the Culebra Dolomite, which is the only aquifer at the site. This report presents a preliminary evaluation of the radionuclide tracer test as a source for radionuclide migration in the Culebra Dolomite. The results of this study will assist in planning site characterization activities and refining estimates of the radionuclide source for comprehensive models of groundwater transport st the Gnome site.

  4. Analysis of two-well tracer tests with a pulse input

    SciTech Connect

    Gelhar, L.W.; Leonhart, L.S.

    1982-04-01

    Dispersion of a conservative solute which is introduced as a pulse in the recharge well of a two-well flow system is analyzed using the general theory for longitudinal dispersion in nonuniform flow a long streamlines. Results for the concentration variation at the pumping well are developed using numerical integration and are presented in the form of dimensionless type-curves which can be used to design and analyze tracer tests. 6 refs., 10 figs.

  5. Interpretation of the return profile of a tracer test in the Thelamork geothermal field, Iceland

    SciTech Connect

    Kocabas, I.; Axelsson, G.; Bjornsson, G.

    1996-12-31

    As a part of a full scale production test, a long term tracer test was performed in the Thelamork low temperature geothermal system, in N-Iceland. The tracer test was aimed at recovering the transport properties of fractures connecting the injection and production wells. Hence, the estimated parameters might be used in determining the performance of the system under various injection schemes. A qualitative evaluation the tracer return profile showed the presence of strong recirculation effects. In addition, the return profile indicated that the medium appears to be highly dispersive. Earlier modelling studies employed a one-dimensional two path model to match the return profile and substituted the properties of the major path in the Lauwerier model to estimate the thermal breakthrough time. However, the two path model estimates a very large dispersive transport almost equal to the convective transport. This large dispersivity necessitates adding a dispersive heat transport term in the Lauwerier model and as a result reduces the Lauwerier thermal breakthrough time almost to half. Considering the injection and production rates, we used a more accurate one-dimensional five-path model in this work. This model infers a smaller dispersivity and leads to a greater breakthrough time than the two path model, owing to both increased heat transfer area with increasing number of fractures and less dispersive transport of heat.

  6. Evaluation of Partitioning Gas Tracer Tests for Measuring Water in Landfills

    NASA Astrophysics Data System (ADS)

    Imhoff, P. T.; Han, B.; Jafarpour, Y.; Gallagher, V. N.; Chiu, P. C.; Fluman, D. A.; Vasuki, N. C.; Yazdani, R.; Augenstein, D.; Cohen, K. K.

    2003-12-01

    Methane is an important greenhouse gas, and landfills are the largest anthropogenic source in many developed countries. Bioreactor landfills have been proposed as one means of abating greenhouse gas emissions from landfills. Here, the decomposition of organic wastes is enhanced by the controlled addition of water or leachate to maintain optimal conditions for waste decomposition. Greenhouse gas abatement is accomplished by sequestration of photosynthetically derived carbon in wastes, CO2 offsets from energy use of waste derived gas, and mitigation of methane emission from the wastes. An important issue in the operation of bioreactor landfills is knowing how much water to add and where to add it. Accurate methods for measuring the amount of water in landfills would be valuable aids for implementing leachate recirculation systems. Current methods for measuring water are inadequate, though, since they provide point measurements and are frequently affected by heterogeneity of the solid waste composition and solid waste compaction. The value of point measurements is significantly reduced in systems where water flows preferentially, such as in landfills. Here, spatially integrated measurements might be of greater value. We are evaluating a promising technology, the partitioning gas tracer test, to measure the water saturation within landfills, the amount of free water in solid waste divided by the volume of the voids. The partitioning gas tracer test was recently developed by researchers working in the vadose zone. We report the results from laboratory and field tests designed to evaluate the partitioning gas tracer test within an anaerobic landfill operated by the Delaware Solid Waste Authority. Vertical wells were installed within the landfill to inject and extract tracer gases. Gas flow and tracer gas movement in the solid waste were controlled by the landfill's existing gas collection system, which included vertical wells installed throughout the landfill through

  7. Numerical model of a tracer test on the Santa Clara River, Ventura County, California

    USGS Publications Warehouse

    Nishikawa, T.; Paybins, K.S.; Izbicki, J.A.; Reichard, E.G.

    1999-01-01

    To better understand the flow processes, solute-transport processes, and ground-water/surface-water interactions on the Santa Clara River in Ventura County, California, a 24-hour fluorescent-dye tracer study was performed under steady-state flow conditions on a 45-km reach of the river. The study reach includes perennial (uppermost and lowermost) subreaches and ephemeral subreaches of the lower Piru Creek and the middle Santa Clara River. The tracer-test data were used to calibrate a one-dimensional flow model (DAFLOW) and a solute-transport model (BLTM). The dye-arrival times at each sample location were simulated by calibrating the velocity parameters in DAFLOW. The simulations of dye transport indicated that (1) ground-water recharge explains the loss of mass in the ephemeral middle subreaches, and (2) groundwater recharge does not explain the loss of mass in the perennial uppermost and lowermost subreaches. The observed tracer curves in the perennial subreaches were indicative of sorptive dye losses, transient storage, and (or) photodecay - these phenomena were simulated using a linear decay term. However, analysis of the linear decay terms indicated that photodecay was not a dominant source of dye loss.To better understand the flow processes, solute-transport processes, and ground-water/surface-water interactions on the Santa Clara River in Ventura County, California, a 24-hour fluorescent-dye tracer study was performed under steady-state flow conditions on a 45-km reach of the river. The study reach includes perennial (uppermost and lowermost) subreaches and ephemeral subreaches of the lower Piru Creek and the middle Santa Clara River. The tracer-test data were used to calibrate a one-dimension-al flow model (DAFLOW) and a solute-transport model (BLTM). The dye-arrival times at each sample location were simulated by calibrating the velocity parameters in DAFLOW. The simulations of dye transport indicated that (1) ground-water recharge explains the loss of

  8. Are single-well "push-pull" tests suitable tracer methods for aquifer characterization?

    NASA Astrophysics Data System (ADS)

    Hebig, Klaus; Zeilfelder, Sarah; Ito, Narimitsu; Machida, Isao; Scheytt, Traugott; Marui, Atsunao

    2013-04-01

    Recently, investigations were conducted for geological and hydrogeological characterisation of the sedimentary coastal basin of Horonobe (Hokkaido, Japan). Coastal areas are typical geological settings in Japan, which are less tectonically active than the mountain ranges. In Asia, and especially in Japan, these areas are often densely populated. Therefore, it is important to investigate the behaviour of solutes in such unconsolidated aquifers. In such settings sometimes only single boreholes or groundwater monitoring wells are available for aquifer testing for various reasons, e.g. depths of more than 100 m below ground level and slow groundwater velocities due to density driven flow. A standard tracer test with several involved groundwater monitoring wells is generally very difficult or even not possible at these depths. One of the most important questions in our project was how we can obtain information about chemical and hydraulic properties in such aquifers. Is it possible to characterize solute transport behaviour parameters with only one available groundwater monitoring well or borehole? A so-called "push-pull" test may be one suitable method for aquifer testing with only one available access point. In a push-pull test a known amount of several solutes including a conservative tracer is injected into the aquifer ("push") and afterwards extracted ("pull"). The measured breakthrough curve during the pumping back phase can then be analysed. This method has already been used previously with various aims, also in the recent project (e.g. Hebig et al. 2011, Zeilfelder et al. 2012). However, different test setups produced different tracer breakthrough curves. As no systematic evaluation of this aquifer tracer test method was done so far, nothing is known about its repeatability. Does the injection and extraction rate influence the shape of the breakthrough curve? Which role plays the often applied "chaser", which is used to push the test solution out from the

  9. Preliminary Interpretation of a Radionuclide and Colloid Tracer Test in a Granodiorite Shear Zone at the Grimsel Test Site, Switzerland

    SciTech Connect

    Reimus, Paul W.

    2012-08-30

    In February and March 2012, a tracer test involving the injection of a radionuclide-colloid cocktail was conducted in the MI shear zone at the Grimsel Test Site, Switzerland, as part of the Colloids Formation and Migration (CFM) project. The colloids were derived from FEBEX bentonite, which is mined in Spain and is being considered as a potential waste package backfill in a Spanish nuclear waste repository. The tracer test, designated test 12-02 (second test in 2012), involved the injection of the tracer cocktail into borehole CFM 06.002i2 and extraction from the Pinkel surface packer at the main access tunnel wall approximately 6.1 m from the injection interval. The test configuration is depicted in Figure 1. This configuration has been used in several conservative tracer tests and two colloid-homologue tracer tests since 2007, and it is will be employed in an upcoming test involving the emplacement of a radionuclide-doped bentonite plug into CFM 06.002i2 to evaluate the swelling and erosion of the bentonite and the transport of bentonite colloids and radionuclides from the source to the extraction point at the tunnel wall. Interpretive analyses of several of the previous tracer tests, from 09-01 through 12-02 were provided in two previous Used Fuel Disposition Program milestone reports (Arnold et al., 2011; Kersting et al., 2012). However, only the data for the conservative tracer Amino-G Acid was previously analyzed from test 12-02 because the other tracer data from this test were not available at the time. This report documents the first attempt to quantitatively analyze the radionuclide and colloid breakthrough curves from CFM test 12-02. This report was originally intended to also include an experimental assessment of colloid-facilitated transport of uranium by bentonite colloids in the Grimsel system, but this assessment was not conducted because it was reported by German collaborators at the Karlsruhe Institute of Technology (KIT) that neither uranium nor

  10. CO2CRC's Otway Residual Saturation and Dissolution Test: Using Reactive Ester Tracers to Determine Residual CO2 Saturation

    NASA Astrophysics Data System (ADS)

    Myers, M.; Stalker, L.; LaForce, T.; Pejcic, B.; Dyt, C.; Ho, K.; Ennis-King, J.

    2013-12-01

    Residual trapping, that is CO2 held in the rock pore space due to capillarity, is an important storage mechanism in geo-sequestration of over the short to medium term (up to 1000 years). As such residual CO2 saturation is a critical reservoir parameter for assessing the storage capacity and security of carbon capture and storage (CCS). As a component of the CO2CRC's Residual Gas Saturation and Dissolution Test at the CO2CRC Otway Project site in Victoria (Australia), we have recently tested a suite of reactive esters (triacetin, tripropionin and propylene glycol diacetate) in a single well chemical tracer test to determine residual CO2 saturation. The goal of this project was to assess and validate a suite of possible tests that could be implemented to determine residual CO2 saturation. For this test, the chemical tracers were injected with a saturated CO2/water mixture into the formation (that is already at residual CO2 saturation) where they were allowed to 'soak' for approximately 10 days allowing for the partial hydrolysis of the esters to their corresponding carboxylic acids and alcohols. Water containing the tracers was then produced from the well resulting in over 600 tracer samples over a period of 12 hours. A selection of these samples were analysed for tracer content and to establish tracer breakthrough curves. To understand the behaviour of these chemical tracers in the downhole environment containing residually trapped supercritical CO2 and formation water, it is necessary to determine the supercritical CO2/water partition coefficients. We have previously determined these in the laboratory (Myers et al., 2012) and they are used here to model the tracer behaviour and provide an estimate of the residual CO2 saturation. Two different computational simulators were used to analyse the tracer breakthrough profiles. The first is based on simple chromatographic retardation and has been used extensively in single well chemical tracer tests to determine residual

  11. Application of tracer tests using SF6 and chloride for hydrogeological characterization of a CCS site, Eumseong, Korea

    NASA Astrophysics Data System (ADS)

    Kim, H. H.; Lee, S. S.; Kim, T. W.; Lee, K.; Kim, M.; Lee, K. K.

    2015-12-01

    Push-pull tracer test was conducted to acquire precise site information and characteristics on a Carbon Capture and Storage (CCS)-site at Eumseong, Korea. Push-pull test is very simple to design, and perform. The test is also convenient to set a duration of experiment period based on the background ground-water velocity. In this study, SF6 and Chloride were used as tracers known as non-reactive tracers. The performed push-pull tests were consisted of 3 phases: 1) solution injection phase; 2) rest phase; and 3) pumping phase. We used a portable multi-level packer to isolate the injection interval. Samples were obtained during pumping phase at every 2 minutes. LTC level-logger was installed to record real-time water level, temperature, and electric conductivity before and during the experiment. A breakthrough curve was obtained by analyzing LTC level-logger data and tracer concentration of water samples. The values of ground water velocity and effective porosity from two tracers came out similar values. SF6 and chloride did not show intervening effect and display similar transport behavior. It seems that both tracers can be applied independently or together to perform tracer tests for estimation of transport behaviors of dissolved volatile components. Acknowledgement: Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003) and Korea Ministry of Environment as "The GAIA project(2014000540010)"

  12. SYNCHROTRON X-RAY MICROTOMOGRAPHY AND INTERFACIAL PARTITIONING TRACER TEST MEASUREMENTS OF NAPL-WATER INTERFACIAL AREAS

    PubMed Central

    Brusseau, Mark L.; Janousek, Hilary; Murao, Asami; Schnaar, Gregory

    2013-01-01

    Interfacial areas between an immiscible organic liquid (NAPL) and water were measured for two natural porous media using two methods, aqueous-phase interfacial partitioning tracer tests and synchrotron X-ray microtomography. The interfacial areas measured with the tracer tests were similar to previously reported values obtained with the method. The values were, however, significantly larger than those obtained from microtomography. Analysis of microtomography data collected before and after introduction of the interfacial tracer solution indicated that the surfactant tracer had minimal impact on fluid-phase configuration and interfacial areas under conditions associated with typical laboratory application. The disparity between the tracer-test and microtomography values is attributed primarily to the inability of the microtomography method to resolve interfacial area associated with microscopic surface heterogeneity. This hypothesis is consistent with results recently reported for a comparison of microtomographic analysis and interfacial tracer tests conducted for an air-water system. The tracer-test method provides a measure of effective, total (capillary and film) interfacial area, whereas microtomography can be used to determine separately both capillary-associated and film-associated interfacial areas. Both methods appear to provide useful information for given applications. A key to their effective use is recognizing the specific nature of the information provided by each, as well as associated limitations. PMID:23678204

  13. The Influence of Surface Tension Gradients on Surfactant Tracer Measurement of Air-Water Interfacial Area in Porous Media

    NASA Astrophysics Data System (ADS)

    Costanza-Robinson, M. S.; Estabrook, B. D.; Henry, E. J.

    2009-12-01

    Air-water interfacial area (AI) in porous media is an important factor governing equilibrium contaminant retention, as well as the kinetics of interphase mass transfer, such as delivery of oxygen to roots and volatilization of methane from landfills. Despite this importance, significant method-dependence is observed among techniques used to determine AI in porous media. In this work, possible low bias in conventional aqueous interfacial-partitioning tracer methodology (IPT) was examined by comparison of IPT-AI estimates with more direct estimates obtained using synchrotron X-ray microtomographic (µCT) imaging. Sodium dodecyl benzene sulfonate and pentafluorobenzoate were used as interfacial and nonreactive tracers, respectively, to measure AI at three water saturations (Sw) in a natural fine sand. IPT-AI exhibited expected trends, with higher areas associated with drier conditions, but the magnitude of AI was as much as 50% lower than those measured by µCT. IPT-AI values for the driest system agreed most closely with microtomography data. Real-time system mass measurements revealed that upon introduction of the surfactant tracer, system Sw decreased by 15-30%; the driest system exhibited the least drainage. This drainage is consistent with a reduction in capillarity caused by the lower surface tension of the surfactant solution as compared to the surfactant-free resident fluid. Drainage in the direction of flow would lead to earlier breakthrough of the surfactant tracer and a lower AI-estimate. In fact, the magnitude of drainage and magnitude of AI-underestimation relative to µCT were qualitatively correlated. Although this effect was expected, its magnitude and potential influence on AI was previously unknown and was larger than anticipated.

  14. Using seismic reflection to locate a tracer testing complex south of Yucca Mountain, Nye County, Nevada

    NASA Astrophysics Data System (ADS)

    Kryder, Levi

    Tracer testing in the fractured volcanic aquifer near Yucca Mountain, and in the alluvial aquifer south of Yucca Mountain, Nevada has been conducted in the past to determine the flow and transport properties of groundwater in those geologic units. However, no tracer testing has been conducted across the alluvium/volcanic interface. This thesis documents the investigative process and subsequent analysis and interpretations used to identify a location suitable for installation of a tracer testing complex, near existing Nye County wells south of Yucca Mountain. The work involved evaluation of existing geologic data, collection of wellbore seismic data, and a detailed surface seismic reflection survey. Borehole seismic data yielded useful information on alluvial P-wave velocities. Seismic reflection data were collected over a line of 4.5-km length, with a 10-m receiver and shot spacing. Reflection data were extensively processed to image the alluvium/volcanic interface. A location for installation of an alluvial/volcanic tracer testing complex was identified based on one of the reflectors imaged in the reflection survey; this site is located between existing Nye County monitoring wells, near an outcrop of Paintbrush Tuff. Noise in the reflection data (due to some combination of seismic source signal attenuation, poor receiver-to-ground coupling, and anthropogenic sources) were sources of error that affected the final processed data set. In addition, in some areas low impedance contrast between geologic units caused an absence of reflections in the data, complicating the processing and interpretation. Forward seismic modeling was conducted using Seismic Un*x; however, geometry considerations prevented direct comparison of the modeled and processed data sets. Recommendations for additional work to address uncertainties identified during the course of this thesis work include: drilling additional boreholes to collect borehole seismic and geologic data; reprocessing a

  15. Characterization of retention processes and their effect on the analysis of tracer tests in fractured reservoirs

    SciTech Connect

    Walkup, G.W. Jr.

    1984-06-01

    Retention processes such as adsorption and diffusion into an immobile region can effect tracer movement through a fractured reservoir. This study has conducted experimental work and has developed a two-dimensional model to characterize retention processes. A method to directly determine some important flow parameters, such as the fracture aperture, from the analysis of tracer tests has been developed as a result of the new two-dimensional model. The experimental work consisted of batch experiments designed to both reproduce earlier work and to determine the magnitude of the retention effects. Negligible retention was observed from which it was concluded that the batch experiments were not sensitive enough and that more sensitive flowing tests were needed. A two-dimensional model that represents a fractured medium by a mobile region, in which convention, diffusion, and adsorption are allowed, and an immobile region in which only diffusion and adsorption are allowed has been developed. It was possible to demonstrate how each of the mass-transfer processes included in the model affect tracer return curves by producing return curves for any set of the defining variables. Field data from the New Zealand was numerically fit with the model. The optimum values of the parameters determined from curve fitting provided a direct estimate of the fracture width and could be used to estimate other important flow parameters if experimentally determinable values were known. 25 refs., 22 figs., 6 tabs.

  16. Ultra-Gradient Test Cavity for Testing SRF Wafer Samples

    SciTech Connect

    N.J. Pogue, P.M. McIntyre, A.I. Sattarov, C. Reece

    2010-11-01

    A 1.3 GHz test cavity has been designed to test wafer samples of superconducting materials. This mushroom shaped cavity, operating in TE01 mode, creates a unique distribution of surface fields. The surface magnetic field on the sample wafer is 3.75 times greater than elsewhere on the Niobium cavity surface. This field design is made possible through dielectrically loading the cavity by locating a hemisphere of ultra-pure sapphire just above the sample wafer. The sapphire pulls the fields away from the walls so the maximum field the Nb surface sees is 25% of the surface field on the sample. In this manner, it should be possible to drive the sample wafer well beyond the BCS limit for Niobium while still maintaining a respectable Q. The sapphire's purity must be tested for its loss tangent and dielectric constant to finalize the design of the mushroom test cavity. A sapphire loaded CEBAF cavity has been constructed and tested. The results on the dielectric constant and loss tangent will be presented

  17. Evaluating Microbial Purification during Soil Treatment of Wastewater with Multicomponent Tracer and Surrogate Tests

    USGS Publications Warehouse

    Van Cuyk, S.; Siegrist, R.L.; Lowe, K.; Harvey, R.W.

    2004-01-01

    Soil treatment of wastewater has the potential to achieve high purification efficiency, yet the understanding and predictability of purification with respect to removal of viruses and other pathogens is limited. Research has been completed to quantify the removal of virus and bacteria through the use of microbial surrogates and conservative tracers during controlled experiments with three-dimensional pilot-scale soil treatment systems in the laboratory and during the testing of full-scale systems under field conditions. The surrogates and tracers employed included two viruses (MS-2 and PRID-1 bacteriophages), one bacterium (ice-nucleating active Pseudomonas), and one conservative tracer (bromide ion). Efforts have also been made to determine the relationship between viruses and fecal coliform bacteria in soil samples below the wastewater infiltrative surface, and the correlation between Escherichia coil concentrations measured in percolating soil solution as compared with those estimated from analyses of soil solids. The results suggest episodic breakthrough of virus and bacteria during soil treatment of wastewater and a 2 to 3 log (99-99.9%) removal of virus and near complete removal of fecal coliform bacteria during unsaturated flow through 60 to 90 cm of sandy medium. Results also suggest that the fate of fecal coliform bacteria may be indicative of that of viruses in soil media near the infiltrative surface receiving wastewater effluent. Concentrations of fecal coliform in percolating soil solution may be conservatively estimated from analysis of extracted soil solids.

  18. Measurement of the Tracer Gradient and Sampling System Bias of the Hot Fuel Examination Facility Stack Air Monitoring System

    SciTech Connect

    Glissmeyer, John A.; Flaherty, Julia E.

    2011-07-20

    This report describes tracer gas uniformity and bias measurements made in the exhaust air discharge of the Hot Fuel Examination Facility at Idaho National Laboratory. The measurements were a follow-up on earlier measurements which indicated a lack of mixing of the two ventilation streams being discharged via a common stack. The lack of mixing is detrimental to the accuracy of air emission measurements. The lack of mixing was confirmed in these new measurements. The air sampling probe was found to be out of alignment and that was corrected. The suspected sampling bias in the air sample stream was disproved.

  19. Well ER-6-1 Tracer Test Analysis: Yucca Flat, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    SciTech Connect

    Greg Ruskauff

    2006-09-01

    The ER-6-1 multiple-well aquifer test-tracer test (MWAT-TT) investigated groundwater flow and transport processes relevant to the transport of radionuclides from sources on the Nevada Test Site (NTS) through the lower carbonate aquifer (LCA) hydrostratigraphic unit (HSU). The LCA, which is present beneath much of the NTS, is the principal aquifer for much of southern Nevada. This aquifer consists mostly of limestone and dolomite, and is pervasively fractured. Groundwater flow in this aquifer is primarily in the fractures, and the hydraulic properties are primarily related to fracture frequency and fracture characteristics (e.g., mineral coatings, aperture, connectivity). The objective of the multiple-well aquifer test (MWAT) was to determine flow and hydraulic characteristics for the LCA in Yucca Flat. The data were used to derive representative flow model and parameter values for the LCA. The items of specific interest are: Hydraulic conductivity; Storage parameters; Dual-porosity behavior; and Fracture flow characteristics. The objective of the tracer transport experiment was to evaluate the transport properties and processes of the LCA and to derive representative transport parameter values for the LCA. The properties of specific interest are: Effective porosity; Matrix diffusion; Longitudinal dispersivity; Adsorption characteristics; and Colloid transport characteristics. These properties substantially control the rate of transport of contaminants in the groundwater system and concentration distributions. To best support modeling at the scale of the corrective action unit (CAU), these properties must be investigated at the field scale. The processes represented by these parameters are affected by in-situ factors that are either difficult to investigate at the laboratory scale or operate at a much larger scale than can be reproduced in the laboratory. Measurements at the field scale provide a better understanding of the effective average parameter values. The

  20. Nano-iron Tracer Test for Characterizing Preferential Flow Path in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Chia, Y.; Chuang, P. Y.

    2015-12-01

    Deterministic description of the discrete features interpreted from site characterization is desirable for developing a discrete fracture network conceptual model. It is often difficult, however, to delineate preferential flow path through a network of discrete fractures in the field. A preliminary cross-borehole nano-iron tracer test was conducted to characterize the preferential flow path in fractured shale bedrock at a hydrogeological research station. Prior to the test, heat-pulse flowmeter measurements were performed to detect permeable fracture zones at both the injection well and the observation well. While a few fracture zones are found permeable, most are not really permeable. Chemical reduction method was used to synthesize nano zero-valent iron particles with a diameter of 50~150 nm. The conductivity of nano-iron solution is about 3100 μs/cm. The recorded fluid conductivity shows the arrival of nano-iron solution in the observation well 11.5 minutes after it was released from the injection well. The magnetism of zero-valent iron enables it to be absorbed on magnet array designed to locate the depth of incoming tracer. We found nearly all of absorbed iron on the magnet array in the observation well were distributed near the most permeable fracture zone. The test results revealed a preferential flow path through a permeable fracture zone between the injection well and the observation well. The estimated hydraulic conductivity of the connected fracture is 2.2 × 10-3 m/s. This preliminary study indicated that nano-iron tracer test has the potential to characterize preferential flow path in fractured rock.

  1. Tracer experiment results during the Long-Term Flow Test of the Fenton Hill reservoir

    SciTech Connect

    Rodrigues, N.E.V.; Robinson, B.A.; Counce, D.A.

    1993-02-01

    Three chemical tracer experiments and one extended injection of fluid low in concentration of dissolved species have been carried out during the Long Term Flow Test (LTFT) of the Fenton Hill Hot Dry Rock (HDR) reservoir. The tracer tests,results illustrate the dynamic nature of the flow system, with more fluid traveling through longer residence time paths as heat is extracted. The total fracture volumes calculated from these tests allow us to determine the fate of unrecovered injection fluid, examine the pressure-dependence of fracture volume, and, through a comparison to the hydraulic performance, postulate a model for the nature of the pressure drops through the system. The Fresh Water Flush (FWF) test showed that while no dissolved specie behavior is truly conservative (no sources or sinks), several breakthrough curves are well explained with a pore fluid displacement model. Other dissolved components are clearly influenced by dissolution or precipitation reactions. Finally, the transient response of the chemistry during the FWF to an increase in production well pressure showed that some fractures connected to the production well preferentially open when pressure is raised.

  2. A tracer test at the Beowawe geothermal field, Nevada, using fluorescein and tinopal CBS

    SciTech Connect

    Rose, P.E.; Adams, M.C.; Benoit, D.

    1995-12-31

    An interwell tracer test using fluorescein and tinopal CBS was performed at the Beowawe geothermal field in north-central Nevada in order to assess the effects of recent changes to the injection strategy. Fluorescein return curves established injection-production flow patterns and verified that produced water is being reinjected into a region of the reservoir that is in excellent communication with the production wells. An analysis of the tinopal CBS return curves indicated that tinopal CBS was apparently strongly adsorbed onto the reservoir rock. The fluorescein return curves were used to estimate the overall (fractures and matrix) reservoir volume.

  3. Testing Method for Heat Resistance Under Temperature Gradient

    NASA Astrophysics Data System (ADS)

    Takagi, K.; Kawasaki, A.; Itoh, Y.; Harada, Y.; Ono, F.

    2007-12-01

    Testing Method for Heat Resistance under Temperature Gradient” is a Japanese Industrial Standard (JIS) newly established by the Minister of Economy, Trade and Industry, after deliberations by the Japanese Industrial Standards Committee, in accordance with the Industrial Standardization Law. This standard specified the testing method for heat resistance under temperature gradient of materials and coated members of equipment exposed to high temperature, such as aircraft engines, gas turbines, and so on. This paper introduces the principle and overview of the established standard. In addition, taking the heat cycle test using the burner rig for instance, we specifically illustrate the acquirable data and their analysis in the standard. Monitoring of the effective thermal conductivity and acoustic emission particularly enables to the non-destructive evaluation of failure cycle.

  4. Boundary conditions for convergent radial tracer tests and effect of well bore mixing volume

    NASA Astrophysics Data System (ADS)

    Zlotnik, Vitaly A.; David Logan, J.

    Convergent radial flow tracer tests have a complex spatial nonaxial transport structure caused by the flow in the vicinity of the injection well and its finite mixing volume. The formulation of the boundary value problem, and especially the treatment of the boundary conditions at the injection well, is nontrivial. Hodgkinson and Lever [1983], Moench [1989, 1991], and Welty and Gelhar [1994] have developed different models and methods for the analysis of breakthrough curves in the extraction well. To extend interpretation techniques to breakthrough curves in the zone between injection and extraction wells, an analysis of conventional transport models is given, and improved boundary conditions are formulated for a convergent radial tracer test problem. The formulation of the boundary conditions is based upon a more detailed analysis of the kinematic flow structure and tracer mass balance in the neighborhood of the injection well. Two practical applications of revised boundary conditions for field data analysis are given. First, the note explains anomalous high well bore mixing volumes of injection wells found by Cady et al. [1993] and allows one to establish the role of mixing versus other processes (retardation, matrix diffusion, etc.). Second, it is shown that the improper use of Moench's [1989] model can produce bias in the characteristics of breakthrough curves in the extraction well under conditions that involve a significant mixing factor in the injection well. A numerical example indicates an error in peak concentrations on a breakthrough curve by as much as 70% and in peak arrival time by 10% for Peclet numbers Pe=102. The effect becomes slightly less significant for Pe=1.

  5. Dual-porosity analysis of conservative tracer testing in saturated volcanic rocks at Yucca Mountain in Nye County, Nevada

    USGS Publications Warehouse

    Fahy, M.F.

    1997-01-01

    A radially convergent conservative tracer injection test was conducted between boreholes UE-25 #2 and UE-25 c #3 of the C-hole complex at Yucca Mountain to determine effective porosity and longitudinal dispersivity. Approximately 47% of the tracer mass was recovered and a dual-porosity analytical model replicates the breakthrough curve. Fractured-rock analyses focus on the fracture-porosity and geometry as the controlling factors in transport.

  6. TRACER STABILITY AND CHEMICAL CHANGES IN AN INJECTED GEOTHERMAL FLUID DURING INJECTION-BACKFLOW TESTING AT THE EAST MESA GEOTHERMAL FIELD

    SciTech Connect

    Adams, M.C.

    1985-01-22

    The stabilities of several tracers were tested under geothermal conditions while injection-backflow tests were conducted at East Mesa. The tracers I and Br were injected continuously while SCN (thiocyanate), B, and disodium fluorescein were each injected as a point source (slug). The tracers were shown to be stable, except where the high concentrations used during slug injection induced adsorption of the slug tracers. However, adsorption of the slug tracers appeared to ''armor'' the formation against adsorption during subsequent tests. Precipitation behavior of calcite and silica as well as Na/K shifts during injection are also discussed.

  7. Final report on the use of gaseous tracers in WRI's 10-ton nonuniform oil shale retorting tests

    SciTech Connect

    Turner, T.F.; Moore, D.F.

    1985-12-01

    For tests on nonuniform oil shale retorting, Western Research Institute's 10-ton retort was loaded with shale rubble in zones of different permeability. The permeability of any given zone was determined by the particle size range loaded into that zone. The retort was studied using gas tracer techniques and flow model simulations. Results of these tracer studies are discussed in this report. Nine retorting and tracer runs were made on the retort. For each run, tracer injections were made into the main air flow inlet and into taps near the top of the retort. Detection taps were located at four levels in the retort with five taps on each level in tests S71 through S78 and six taps on each level in run S79. The oil shale rubble bed was configured with a cylindrical core in tests S71 through S78 and with two side-by-side regions with differing bed properties in test S79. Relationships are shown between the tracer response and sweep efficiency, oil yield, and local yield. Model simulations are compared with tracer responses and indicate fair agreement between model-estimated and measured response times but poor agreement on the shapes of the response curves. Although the data are scattered, there is suggestive evidence that the sweep efficiency of a retort can be determined using simple inlet-to-outlet tracer tests. Oil yield can also be predicted for the operating conditions used for the nonuniform retorting tests. More tests on retorts with intermediate degrees of nonuniformity must be made to confirm the correlations developed in this study. 15 refs., 9 figs.

  8. A spreadsheet program for two-well tracer test data analysis.

    PubMed

    Tang, Guoping; Watson, David B; Parker, Jack C; Brooks, Scott C

    2012-01-01

    Two-well tracer tests are often conducted to investigate subsurface solute transport in the field. Analyzing breakthrough curves in extraction and monitoring wells using numerical methods is nontrivial due to highly nonuniform flow conditions. We extended approximate analytical solutions for the advection-dispersion equation for an injection-extraction well doublet in a homogeneous confined aquifer under steady-state flow conditions for equal injection and extraction rates with no transverse dispersion and negligible ambient flow, and implemented the solutions in Microsoft Excel using Visual Basic for Application (VBA). Functions were implemented to calculate concentrations in extraction and monitoring wells at any location due to a step or pulse injection. Type curves for a step injection were compared with those calculated by numerically integrating the solution for a pulse injection. The results from the two approaches are similar when the dispersivity is small. As the dispersivity increases, the latter was found to be more accurate but requires more computing time. The code was verified by comparing the results with published-type curves and applied to analyze data from the literature. The method can be used as a first approximation for two-well tracer test design and data analysis, and to check accuracy of numerical solutions. The code and example files are publicly available.

  9. A Spreadsheet Program for Two-Well Tracer Test Data Analysis

    SciTech Connect

    Tang, Guoping; Watson, David; Parker, Jack C.; Brooks, Scott C

    2011-01-01

    Two-well tracer tests are often conducted to investigate subsurface solute transport in the field. Analyzing breakthrough curves in extraction and monitoring wells using numerical methods is nontrivial due to highly nonuniform flow conditions. We extended approximate analytical solutions for the advection-dispersion equation for an injection-extraction well doublet in a homogeneous confined aquifer under steady-state flow conditions for equal injection and extraction rates with no transverse dispersion and negligible ambient flow, and implemented the solutions in Microsoft Excel using Visual Basic for Application (VBA). Functions were implemented to calculate concentrations in extraction and monitoring wells at any location due to a step or pulse injection. Type curves for a step injection were compared with those calculated by numerically integrating the solution for a pulse injection. The results from the two approaches are similar when the dispersivity is small. As the dispersivity increases, the latter was found to be more accurate but requires more computing time. The code was verified by comparing the results with published-type curves and applied to analyze data from the literature. The method can be used as a first approximation for two-well tracer test design and data analysis, and to check accuracy of numerical solutions. The code and example files are publicly available.

  10. A Microsoft Excel Program for Two-Well Tracer Test Data Analysis

    SciTech Connect

    Tang, Guoping; Watson, David B; Parker, Jack C.; Brooks, Scott C

    2012-01-01

    Two-well tracer tests are often conducted to investigate subsurface solute transport in the field. Analyzing breakthrough curves in the extraction and monitoring wells using numerical methods is nontrivial due to highly nonuniform flow conditions. We extended, and implemented analytical solutions for the convection-dispersion equation for an injection-extraction well-duplet in a homogeneous confined aquifer under steady state conditions. Functions were provided to calculate the concentrations in the extraction and monitoring wells at any location due to a step or pulse injection. Type curves for a step injection were compared with those calculated by numerically integrating the solution for a pulse injection. The results from the two approaches are similar when the dispersivity is small. As the dispersivity increases, the latter was found to be more accurate but requires more computing time. The code was verified by comparing the results with published type curves and applied to analyze data from the literature. It can be used as a first approximation for two-well tracer test data analysis, and to check accuracy of numerical solutions. The code and example files are publically-available.

  11. Heat Transfer Characterization Using Heat and Solute Tracer Tests in a Shallow Alluvial Aquifer

    NASA Astrophysics Data System (ADS)

    Dassargues, A.

    2013-12-01

    Very low enthalpy geothermal systems are increasingly considered for heating or cooling using groundwater energy combined with heat pumps. The design and the impact of shallow geothermal systems are often assessed in a semi-empirical way. It is accepted by most of the private partners but not by environmental authorities deploring a lack of rigorous evaluation of the mid- to long-term impact on groundwater. In view of a more rigorous methodology, heat and dye tracers are used for estimating simultaneously heat transfer and solute transport parameters in an alluvial aquifer. The experimental field site, is equipped with 21 piezometers drilled in alluvial deposits composed of a loam layer overlying a sand and gravel layer constituting the alluvial aquifer. The tracing experiment consisted in injecting simultaneously heated water and a dye tracer in a piezometer and monitoring evolution of groundwater temperature and tracer concentration in 3 control panels set perpendicularly to the main groundwater flow. Results showed drastic differences between heat transfer and solute transport due to the main influence of thermal capacity of the saturated porous medium. The tracing experiment was then simulated using a numerical model and the best estimation of heat transfer and solute transport parameters is obtained by calibrating this numerical model using inversion tools. The developed concepts and tests may lead to real projects of various extents that can be now optimized by the use of a rigorous and efficient methodology at the field scale. On the field: view from the injection well in direction of the pumping well through the three monitoring panels Temperature monitoring in the pumping well and in the piezometers of the three panels: heat transfer is faster in the lower part of the aquifer (blue curves) than in the upper part (red curves). Breakthrough curves are also more dispersed in the upper part with longer tailings.

  12. Tracer test for the measurement of gas diffusion and non-aqueous phase liquid (NAPL) saturation in soil.

    PubMed

    Van De Steene, Joke; Höhener, Patrick

    2009-01-01

    During soil bioremediation, the diffusion of oxygen into the soil is an important prerequisite for aerobic biodegradation, and the decrease of petroleum products is the ultimate goal. Both processes need to be monitored. The aim of this work was to develop a gas tracer test that yields information on both, gas diffusion and residual saturation with non-aqueous phase liquids (NAPLs) in unsaturated soil heaps. One conservative tracer (methane) and 4 partitioning gas tracers (diethylether, methyl tert-butyl ether, chloroform and n-heptane) were injected as vapors into laboratory columns filled with unsaturated sand with increasing NAPL saturation. Breakthrough curves of gaseous compounds were measured at two points and compared to analytical solutions of an analytical diffusive-reactive transport equation. By fitting of methane data, robust results for effective diffusivity (tortuosity) were obtained. NAPL saturation was most accurately measured by the moderately water soluble tracers (ethers and chloroform). The hydrophobic tracer n-heptane did not partition into water-immersed NAPL. An easy and accurate way to assess air-NAPL partitioning constants from gas chromatography retention times is furthermore reported. It is concluded that gas tracer tests have the potential for measuring two important properties in soil bioremediation systems easily and quickly.

  13. Gas-partitioning tracer test to qualify trapped gas during recharge

    USGS Publications Warehouse

    Heilweil, Victor M.; Kip, Solomon D.; Perkins, Kim S.; Ellett, Kevin M.

    2004-01-01

    Dissolved helium and bromide tracers were used to evaluate trapped gas during an infiltration pond experiment. Dissolved helium preferentially partitioned into trapped gas bubbles, or other pore air, because of its low solubility in water. This produced observed helium retardation factors of as much as 12 relative to bromide. Numerical simulations of helium breakthrough with both equilibrium and kinetically limited advection/dispersion/retardation did not match observed helium concentrations. However, better fits were obtained by including a decay term representing the diffusive loss of helium through interconnected, gas-filled pores. Calculations indicate that 7% to more than 26% of the porosity beneath the pond was filled with gas. Measurements of laboratory hydraulic properties indicate that a 10% decrease in saturation would reduce the hydraulic conductivity by at least one order of magnitude in the well-sorted sandstone, but less in the overlying soils. This is consistent with in situ measurements during the experiment, which show steeper hydraulic gradients in sandstone than in soil. Intrinsic permeability of the soil doubled during the first six months of the experiment, likely caused by a combination of dissolution and thermal contraction of trapped gas. Managers of artificial recharge basins may consider minimizing the amount of trapped gas by using wet, rather than dry, tilling to optimize infiltration rates, particularly in well-sorted porous media in which reintroduced trapped gas may cause substantial reductions in permeability. Trapped gas may also inhibit the amount of focused infiltration that occurs naturally during ephemeral flood events along washes and playas.

  14. Gas-partitioning tracer test to quantify trapped gas during recharge

    USGS Publications Warehouse

    Heilweil, V.M.; Solomon, D.K.; Perkins, K.S.; Ellett, K.M.

    2004-01-01

    Dissolved helium and bromide tracers were used to evaluate trapped gas during an infiltration pond experiment. Dissolved helium preferentially partitioned into trapped gas bubbles, or other pore air, because of its low solubility in water. This produced observed helium retardation factors of as much as 12 relative to bromide. Numerical simulations of helium breakthrough with both equilibrium and kinetically limited advection/dispersion/retardation did not match observed helium concentrations. However, better fits were obtained by including a decay term representing the diffusive loss of helium through interconnected, gas-filled pores. Calculations indicate that 7% to more than 26% of the porosity beneath the pond was filled with gas. Measurements of laboratory hydraulic properties indicate that a 10% decrease in saturation would reduce the hydraulic conductivity by at least one order of magnitude in the well-sorted sandstone, but less in the overlying soils. This is consistent with in situ measurements during the experiment, which show steeper hydraulic gradients in sandstone than in soil. Intrinsic permeability of the soil doubled during the first six months of the experiment, likely caused by a combination of dissolution and thermal contraction of trapped gas. Managers of artificial recharge basins may consider minimizing the amount of trapped gas by using wet, rather than dry, tilling to optimize infiltration rates, particularly in well-sorted porous media in which reintroduced trapped gas may cause substantial reductions in permeability. Trapped gas may also inhibit the amount of focused infiltration that occurs naturally during ephemeral flood events along washes and playas.

  15. Solvent-refined-coal (SRC) process: axial dispersion in tall bubble columns - tracer tests

    SciTech Connect

    Parimi, K.; Pitchford, M.D.

    1982-01-01

    The degree of backmixing is an important consideration in the design and scale-up of SRC-II reactors. Several qualitative tests were conducted on the 25 ft plexiglass bubble column in order to visually observe the axial dispersion or backmixing characteristics of a column of this size. A concentrated solution of Methyl-Orange was injected, and the dispersion of the dye throughout the column was observed and photographed. These observations indicated that the backmixing level was not as extensive as existing correlations would predict. Since backmixing plays an important role in the design and scale-up of SRC II reactors, it was decided to follow up with additional quantitative tests for further elucidation of this aspect of bubble column performance. The required test apparatus was assembled and tracer tests using an electrolytic tracer in the form of a 10 N NaOH solution were conducted. The results confirmed the visual observations; that the degree of backmixing was less than existing literature correlations predicted. Part of the reason for the discrepancy may be due to the large extrapolation involved, but more importantly, there is the question of adequacy of the model to describe the complex mixing patterns present in the column. Implicit in using any of the existing correlations to predict backmixing is the assumption that a simple dispersion model can adequately describe the complex mixing patterns observed. This is not a valid assumption when the column operates well beyond the quiescent bubble flow regime. There is, therefore, a real need to identify models which would represent more closely the fluid dynamic behavior of large columns and which can be used confidently for design and scale-up.

  16. Using Tracer Tests to Estimate Vertical Recharge and Evaluate Influencing Factors for Irrigated Agricultural Systems

    NASA Astrophysics Data System (ADS)

    Lin, D.; Jin, M.; Brusseau, M.; Ma, B.; Liu, Y.

    2013-12-01

    Accurate estimation of vertical groundwater recharge is critical for (semi) arid regions, especially in places such as the North China Plain where vertical recharge comprises the largest portion of recharge. Tracer tests were used to estimate vertical recharge beneath agricultural systems irrigated by groundwater, and to help delineate factors that influence recharge. Bromide solution was applied to trace infiltration in the vadose zone beneath irrigated agricultural fields (rotated winter wheat and summer maize, orchards, and cotton) and non-irrigated woodlands at both piedmont plain (Shijiazhaung) and alluvial and lacustrine plains (Hengshui) in the North China Plain. The tracer tests lasted for more than two years, and were conducted at a total of 37 sites. Tracer solution was injected into the subsurface at a depth of 1.2 m before the rainy season. Soil samples were then collected periodically to observe bromide transport and estimate recharge rates at the point-scale. For these experiments, the only irrigation the fields received was that applied by the landowners. In addition to these tests, a controlled irrigation experiment was conducted at a single wheat and maize site. The results showed that recharge rates were lower for the alluvial and lacustrine plains sites, which comprise finer-textured soils than those present in the piedmont plain. Specifically, the recharge rate ranged between 56-466 mm/a beneath wheat-maize, 110-564 mm/a beneath orchard, and 0-21 mm/a beneath woodlands with an average recharge coefficient of 0.17 for the piedmont plain sites, while the recharge rate ranged between 26-165 mm/a beneath wheat-maize, 6-40 mm/a beneath orchard, 87-319 mm/a beneath cotton, and 0-32 mm/a beneath woodlands with an average recharge coefficient of 0.10 for the alluvial and lacustrine plain sites. Irrigation provided the primary contribution to recharge, with precipitation providing a minor contribution. The results of both the uncontrolled and controlled

  17. The Effect of Variable Geochemical Conditions on the Reactive Transport of U(VI) in Small Scale Tracer Tests

    NASA Astrophysics Data System (ADS)

    Curtis, G. P.; Fox, P.; Kohler, M.; Davis, J. A.

    2005-12-01

    Small-scale tracer tests were conducted to evaluate the effect of variable geochemical conditions on the reactive transport of U(VI). The tracer tests were conducted in a shallow alluvial aquifer downgradient from a former uranium mill and a tailings disposal area near Naturita, CO. The U(VI) concentration in the groundwater at the tracer test site was approximately 5 μM, the alkalinity was 8.5 meq/L and the pH was approximately 7.1. Previous studies at the site demonstrated the U(VI) was most sensitive to the alkalinity and least sensitive to the pH values relative to the range of measured values. Uranium migration tests were conducted on a scale of 1-2.5 m and considered variable U(VI) and alkalinity and included Br as an inert tracer. The tracer tests demonstrated that the sediment readily released U(VI) even after many years of contact with the contaminated groundwater suggesting the U(VI) migration is controlled by adsorption reactions. Reactive transport simulations used a surface complexation model developed independently from laboratory bench scale studies to simulate adsorption. The reactive transport simulations gave good predictions of the observed breakthrough of U(VI) when the advection and dispersion parameters were fitted to Br breakthrough. Field studies also included several single well push-pull tests that were conducted at increased and decreased U(VI) and alkalinity values. Reactive transport simulations of these experiments will be presented and compared with the tracer tests simulations.

  18. Estimation of Transport Parameters Using Forced Gradient Tracer Tests in Heterogeneous Aquifers

    DTIC Science & Technology

    2007-11-02

    model assuming that the solute undergoes Langmuir or Freundlich adsorption at the fracture wall. In the Langmuir adsorption case, the average...concentration approaches the effective concentration described by an effective model for linear adsorption. In the Freundlich adsorption case, the average...groundwater remains one of the major challenges to Army. Numerical models that are designed to simulate the flow of water and transport behavior of

  19. In-situ tracer tests and models developed to understand flow paths in a shear zone at the Grimsel Test Site, Switzerland

    NASA Astrophysics Data System (ADS)

    Blechschmidt, I.; Martin, A. J.

    2012-12-01

    The Grimsel Test Site (www.grimsel.com) is an international underground research laboratory excavated at a depth of 450m below the surface in the crystalline Aare Massif of southern Switzerland in 1984. It is operated and owned by the National Cooperative for the Disposal of Radioactive Waste of Switzerland (NAGRA) which is the organization responsible for managing and researching the geological disposal of all types of radioactive wastes originating in Switzerland. One experiment, the Colloid Formation and Migration test (CFM*), is an ongoing in-situ migration test started in 2004 to study colloid facilitated transport behavior of radionuclides through a shear zone. The importance of colloid transport in the context of a radioactive waste repository is that it provides a mechanism for potentially enhancing the advective transport of radionuclides. The montmorillonite clays that are planned to be used as an engineered barrier around the radioactive waste in many repository concepts may be a source of such colloids under specific hydraulic and/or chemical boundary conditions. The CFM project includes an integrated programme of field testing, laboratory studies and modelling/interpretation. The field tests are performed in a shear zone where the natural outflow has been controlled by a tunnel packer system and flow is monitored with an array of boreholes drilled for CFM and previous experiments at the site. The flow field is controlled by a low-rate extraction from a surface packer. The controlled low-rate extraction creates a region of low hydraulic gradients and fluid velocity within the shear zone, suitable for study under repository-relevant or other geo-resource relevant conditions. Here we present a summary of the migration tracer tests carried out so far to understand the hydraulic properties and transport characteristics of the shear zone using both stable and radioactive (Na-22, Cs-137, Ba-133, Th-232, Np-237, Am-243, Pu-242) tracers as well as colloids, and

  20. INL Tracer Interpretation

    SciTech Connect

    2007-03-27

    This spreadsheet application is for tracer test analysis. The analyses are based on the first temporal moment of a tracer. The governing equations are briefly discussed, and the individual steps required of the user are outlined. A series of Excel macros written in Visual Basic calculate mean residence time, swept pore volume, and flow-storage geometry from a tracer history.

  1. Diffusive partitioning tracer test for the quantification of nonaqueous phase liquid (NAPL) in the vadose zone: Performance evaluation for heterogeneous NAPL distribution

    NASA Astrophysics Data System (ADS)

    Werner, David; Karapanagioti, Hrissi K.; Höhener, Patrick

    2009-08-01

    A partitioning tracer test based on gas-phase diffusion in the vadose zone yields estimates of the residual nonaqueous phase liquid (NAPL) saturation. The present paper investigates this technique further by studying diffusive tracer breakthrough curves in the vadose zone for a heterogeneous NAPL distribution. Tracer experiments were performed in a lysimeter with a horizontal layer of artificial kerosene embedded in unsaturated sand. Tracer disappearance curves at the injection point and tracer breakthrough curves at some distance from the injection point were measured inside and outside of the NAPL layer. A numerical code was used to generate independent model predictions based on the physicochemical sand, NAPL, and tracer properties. The measured and modeled tracer breakthrough curves were in good agreement confirming the validity of important modeling assumptions such as negligible sorption of chlorofluorocarbon (CFC) tracers to the uncontaminated sand and their fast reversible partitioning between the soil air and the NAPL phase. Subsequently, the model was used to investigate different configurations of NAPL contamination. The experimental and model results show that the tracer disappearance curves of a single-well diffusive partitioning tracer test (DPTT) are dominated by the near-field presence of NAPL around the tip of the soil gas probe. In contrast, breakthrough curves of inter-well tracer tests reflect the NAPL saturation in between the probes, although there is no unique interpretation of the tracer signals if the NAPL distribution is heterogeneous. Numerical modeling is useful for the planning of a DPTT application. Simulations suggest that several cubic meters of soil can be investigated with a single inter-well partitioning tracer test of 24-hour duration by placing the injection point in the center of the investigated soil volume and probes at up to 1 m distance for the monitoring of gaseous tracers.

  2. Diffusive partitioning tracer test for the quantification of nonaqueous phase liquid (NAPL) in the vadose zone: performance evaluation for heterogeneous NAPL distribution.

    PubMed

    Werner, David; Karapanagioti, Hrissi K; Höhener, Patrick

    2009-08-11

    A partitioning tracer test based on gas-phase diffusion in the vadose zone yields estimates of the residual nonaqueous phase liquid (NAPL) saturation. The present paper investigates this technique further by studying diffusive tracer breakthrough curves in the vadose zone for a heterogeneous NAPL distribution. Tracer experiments were performed in a lysimeter with a horizontal layer of artificial kerosene embedded in unsaturated sand. Tracer disappearance curves at the injection point and tracer breakthrough curves at some distance from the injection point were measured inside and outside of the NAPL layer. A numerical code was used to generate independent model predictions based on the physicochemical sand, NAPL, and tracer properties. The measured and modeled tracer breakthrough curves were in good agreement confirming the validity of important modeling assumptions such as negligible sorption of chlorofluorocarbon (CFC) tracers to the uncontaminated sand and their fast reversible partitioning between the soil air and the NAPL phase. Subsequently, the model was used to investigate different configurations of NAPL contamination. The experimental and model results show that the tracer disappearance curves of a single-well diffusive partitioning tracer test (DPTT) are dominated by the near-field presence of NAPL around the tip of the soil gas probe. In contrast, breakthrough curves of inter-well tracer tests reflect the NAPL saturation in between the probes, although there is no unique interpretation of the tracer signals if the NAPL distribution is heterogeneous. Numerical modeling is useful for the planning of a DPTT application. Simulations suggest that several cubic meters of soil can be investigated with a single inter-well partitioning tracer test of 24-hour duration by placing the injection point in the center of the investigated soil volume and probes at up to 1 m distance for the monitoring of gaseous tracers.

  3. Testing the 234U/238U weathering tracer in a tropical granitoid watershed, Luquillo, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J. C.; Derry, L. A.

    2006-12-01

    Recent studies have employed U-series disequilibria as a tracer of both weathering profile development and of timescale of erosion for whole watersheds. We have undertaken a detailed analysis of the behavior of the U- series isotopes in a previously well-characterized watershed in order to test this approach. In the Rio Icacos watershed in the Luquillo Mountains of Puerto Rico, previous studies have determined both the rate of propagation of the chemical weathering front by regolith mass balance analysis, and the surface denudation rate using the cosmogenic 10Be tracer. Our study aims to determine whether the U-series approach provides regolith development and erosion rates in agreement with those previously determined. In order to better constrain interpretations based on U-series data, we have coupled the U-series analysis with analyses of trace element concentrations, δ^{30}Si, Ge/Si, and 87Sr/86Sr ratios. Used together, these geochemical tracers provide a powerful tool for understanding weathering reactions, chemical transfers within and out of the weathering profile, and the timing of these chemical transfers. Analyses of soil, saprolite and pore water samples reveal a complex history of U and Th transformations including mobilization of both U and Th in the soil followed by re-adsorption deeper in the profile. 234U/238U activity ratios in soil and saprolite show significant variability both with depth, and also among individual mineral phases at any particular depth. This variation among mineral phases, combined with the likely physical sorting of these phases during erosional transport, results in an additional isotopic fractionation unrelated to that imparted by the weathering process. This implies that suspended sediment samples taken from streamwater are unlikely to accurately reflect the average disequilibria carried by the secondary minerals phases in the soil and saprolite. Our analyses also reveal a significant contribution of atmospheric mineral

  4. Delineation of Groundwater Flow Pathway in Fractured Bedrock Using Nano-Iron Tracer Test in the Sealed Well

    NASA Astrophysics Data System (ADS)

    Chuang, Po-Yu; Chia, Yeeping; Chiu, Yung-Chia; Liou, Ya-Hsuan; Teng, Mao-Hua; Liu, Ching-Yi; Lee, Tsai-Ping

    2016-04-01

    Deterministic delineation of the preferential flow paths and their hydraulic properties are desirable for developing hydrogeological conceptual models in bedrock aquifers. In this study, we proposed using nanoscale zero-valent iron (nZVI) as a tracer to characterize the fractured connectivity and hydraulic properties. Since nZVI particles are magnetic, we designed a magnet array to attract the arriving nZVI particles in the observation well for identifying the location of incoming tracer. This novel approach was examined at two experiment wells with well hydraulic connectivity in a hydrogeological research station in the fractured aquifer. Heat-pulse flowmeter test was used to detect the vertical distribution of permeable zones in the borehole, providing the design basis of tracer test. Then, the less permeable zones in the injection well were sealed by casing to prevent the injected nZVI particles from being stagnated at the bottom hole. Afterwards, hydraulic test was implemented to examine the hydraulic connectivity between two wells. When nZVI slurry was released in the injection well, they could migrate through connected permeable fractures to the observation well. A breakthrough curve was obtained by the fluid conductivity sensor in the observation well, indicating the arrival of nZVI slurry. The iron nanoparticles that were attracted to the magnets in the observation well provide the quantitative information to locate the position of tracer inlet, which corroborates well with the depth of a permeable zone delineated by the flowmeter. Finally, the numerical method was utilized to simulate the process of tracer migration. This article demonstrates that nano-iron tracer test can be a promising approach for characterizing connectivity patterns and transmissivities of the flow paths in the fractured rock.

  5. From Stochastic toward Deterministic Characterization of Discrete Fracture Network via Thermal Tracer Tests

    NASA Astrophysics Data System (ADS)

    Somogyvari, M.; Jalali, M.; Bayer, P.; Jiménez Parras, S.

    2015-12-01

    The presence of fractures play an essential role in different disciplines, including hydrogeology, geothermal and hydrocarbon industries, as fractures introduce new pathways for flow and transport in the host rocks. Understanding the physical properties of these planar features would reduce the uncertainty of the numerical models and enhance the reliability of their results. Among the fracture properties, orientation and spacing are relatively easily estimated via borehole logs, core images, and outcrops, whereas the fracture geometry (i.e. length, width, and height) is more difficult to investigate. As the fracture geometry controls the hydraulic and thermal behavior of the fracture network through the strong dependency of the fracture conductivity with fracture aperture, it is possible to estimate these geometrical properties indirectly through hydraulic and thermal tomography investigations. To reach this goal, an innovative approach is introduced for discrete fracture network (DFN) characterization of heterogeneous fractured media via active thermal tracer testing. A synthetic DFN model is constructed based on the geological properties of an arbitrary fracture medium such as fracture orientation, length, spacing and persistency. Different realization are then constructed by considering all the above mentioned fracture properties except the length of fracture segments. Pressure and temperature fields are estimated inside the fracture network by means of an implicit upwind finite difference method, which is used to compute heat tracer travel times between injection and observation points and record the full temperature breakthrough curves at the monitoring points. A trans-dimensional inversion is then adopted to update the lengths fracture segment (add or remove) of the DFN model by comparison between proposed and observed travel times (Figure 1). The resulting assemble of the models can be used as an input geometry for deterministic simulations of fracture

  6. Methodology, results, and significance of an unsaturated-zone tracer test at an artificial-recharge facility, Tucson, Arizona

    USGS Publications Warehouse

    Graham, D.D.

    1989-01-01

    A tracer test conducted in 1987 at an artificial-recharge facility in Tucson, Arizona, indicates that solute movement through the poorly sorted stratified alluvial sediments in the unsaturated zone beneath a recharge basin takes place along preferential-flow paths. Movement of a tracer-laced pulse of reclaimed wastewater was monitored using pressure-vacuum lysimeters installed at depths that range from 11 to 45 ft below the bottom of the recharge basin. Tracer-breakthrough curves do not indicate a consistent relation between maximum tracer concentration and depth or between time of tracer breakthrough and depth. Apparent dispersion, as indicated by the slope of the rising leg of the tracer-breakthrough curve, shows no apparent relation with depth. In some cases, the tracer arrived earlier at deep sampling locations than at shallow ones. Velocity of solute flow ranged from 1.9 to 9.0 ft/day. Less interaction between recharge water and solid-phase materials in the unsaturated zone occurs under preferential-flow conditions than if flow occurred as a uniform wetting front. Flow of water through the unsaturated zone is concentrated into fingers or channels under preferential-flow conditions, and the renovating capability of soil is reduced because of the reduced surface area and reduced contact time in the biologically active part of the unsaturated profile. Chemical substances that normally would be decomposed by microbial activity or sorbed by sediment particles can move through the unsaturated zone and cause groundwater contamination under preferential-flow conditions. (USGS)

  7. Estimation of local scale dispersion from local breakthrough curves during a tracer test in a heterogeneous aquifer: the Lagrangian approach.

    PubMed

    Vanderborght, Jan; Vereecken, Harry

    2002-01-01

    The local scale dispersion tensor, Dd, is a controlling parameter for the dilution of concentrations in a solute plume that is displaced by groundwater flow in a heterogeneous aquifer. In this paper, we estimate the local scale dispersion from time series or breakthrough curves, BTCs, of Br concentrations that were measured at several points in a fluvial aquifer during a natural gradient tracer test at Krauthausen. Locally measured BTCs were characterized by equivalent convection dispersion parameters: equivalent velocity, v(eq)(x) and expected equivalent dispersivity, [lambda(eq)(x)]. A Lagrangian framework was used to approximately predict these equivalent parameters in terms of the spatial covariance of log(e) transformed conductivity and the local scale dispersion coefficient. The approximate Lagrangian theory illustrates that [lambda(eq)(x)] increases with increasing travel distance and is much larger than the local scale dispersivity, lambda(d). A sensitivity analysis indicates that [lambda(eq)(x)] is predominantly determined by the transverse component of the local scale dispersion and by the correlation scale of the hydraulic conductivity in the transverse to flow direction whereas it is relatively insensitive to the longitudinal component of the local scale dispersion. By comparing predicted [lambda(eq)(x)] for a range of Dd values with [lambda(eq)(x)] obtained from locally measured BTCs, the transverse component of Dd, DdT, was estimated. The estimated transverse local scale dispersivity, lambda(dT) = DdT/U1 (U1 = mean advection velocity) is in the order of 10(1)-10(2) mm, which is relatively large but realistic for the fluvial gravel sediments at Krauthausen.

  8. Phenols and hydroxy-PAHs (arylphenols) as tracers for coal smoke particulate matter: source tests and ambient aerosol assessments

    SciTech Connect

    Bernd R.T. Simoneit; Xinhui Bi; Daniel R. Oros; Patricia M. Medeiros; Guoying Sheng; Jiamo Fu

    2007-11-01

    Source tests were conducted to analyze and characterize diagnostic key tracers for emissions from burning of coals with various ranks. Coal samples included lignite from Germany, semibituminous coal from Arizona, USA, bituminous coal from Wales, UK and sample from briquettes of semibituminous coal, bituminous coal and anthracite from China. Ambient aerosol particulate matter was also collected in three areas of China and a background area in Corvallis, OR (U.S.) to confirm the presence of tracers specific for coal smoke. The results showed a series of aliphatic and aromatic hydrocarbons and phenolic compounds, including PAHs and hydroxy-PAHs as the major tracers, as well as a significant unresolved complex mixture (UCM) of compounds. The tracers that were found characteristic of coal combustion processes included hydroxy-PAHs and PAHs. Atmospheric ambient samples from Beijing and Taiyuan, cities where coal is burned in northern China, revealed that the hydroxy-PAH tracers were present during the wintertime, but not in cities where coal is not commonly used (e.g., Guangzhou, South China). Thus, the mass of hydroxy-PAHs can be apportioned to coal smoke and the source strength modeled by summing the proportional contents of EC (elemental carbon), PAHs, UCM and alkanes with the hydroxy-PAHs. 36 refs., 2 figs., 3 tabs.

  9. Dye Tracer Tests to Determine Time-of-Travel in Iowa Streams, 1990-2006

    USGS Publications Warehouse

    Christiansen, Daniel E.

    2009-01-01

    Dye-tracing tests have been used by the U.S. Geological Survey, Iowa Water Science Center to determine the time-of-travel in selected Iowa streams from 1990-2006. Time-of-travel data are tabulated for 309 miles of stream reaches in four Iowa drainage basins: the Des Moines, Raccoon, Cedar, and Turkey Rivers. Time-of-travel was estimated in the Des Moines River, Fourmile Creek, North Raccoon River, Raccoon River, Cedar River, and Roberts Creek. Estimation of time-of-travel is important for environmental studies and in determining fate of agricultural constituents and chemical movement through a waterway. The stream reaches range in length from slightly more than 5 miles on Fourmile Creek, to more than 137 miles on the North Raccoon River. The travel times during the dye-tracer tests ranged from 7.5 hours on Fourmile Creek to as long as 200 hours on Roberts Creek; velocities ranged from less than 4.50 feet per minute on Roberts Creek to more than 113 feet per minute on the Cedar River.

  10. Solute dilution at the Borden and Cape Cod groundwater tracer tests

    USGS Publications Warehouse

    Thierrin, Joseph; Kitanidis, Peter K.

    1994-01-01

    This study presents an analysis of the rate of dilution of a conservative nonreactive tracer in two well-known field experiments: The Borden (Ontario, Canada) experiment and the Cape Cod (Massachusetts) experiment. In evaluating the dilution of injected sodium bromide, in addition to computing the second spatial moments, we have used the dilution index and the reactor ratio. The dilution index is a measure of the formation volume occupied by the solute plume, and the reactor ratio is a shape factor, which measures how stretched and deformed the plume is. Unlike the second moments, which may go up or down during an experiment, the dilution index should increase monotonically. The results for both plumes were quite similar. After an initial period the dilution index increased linearly with time, which is macroscopically equivalent to transport in two-dimensional uniform flow. The reactor ratio was relatively constant during the period of the experiments. Their values, about 0.72 for the Borden test and 0.63 for the Cape Cod test, indicate that the Cape Cod plume was more stretched and deformed than the Borden plume. The maximum concentration, which is an alternative to the dilution index for quantifying dilution, was found to be more erratic and more susceptible to sampling error.

  11. Testing cosmic ray acceleration with radio relics: a high-resolution study using MHD and tracers

    NASA Astrophysics Data System (ADS)

    Wittor, D.; Vazza, F.; Brüggen, M.

    2017-02-01

    Weak shocks in the intracluster medium may accelerate cosmic-ray protons and cosmic-ray electrons differently depending on the angle between the upstream magnetic field and the shock normal. In this work, we investigate how shock obliquity affects the production of cosmic rays in high-resolution simulations of galaxy clusters. For this purpose, we performed a magnetohydrodynamical simulation of a galaxy cluster using the mesh refinement code ENZO. We use Lagrangian tracers to follow the properties of the thermal gas, the cosmic rays and the magnetic fields over time. We tested a number of different acceleration scenarios by varying the obliquity-dependent acceleration efficiencies of protons and electrons, and by examining the resulting hadronic γ-ray and radio emission. We find that the radio emission does not change significantly if only quasi-perpendicular shocks are able to accelerate cosmic-ray electrons. Our analysis suggests that radio-emitting electrons found in relics have been typically shocked many times before z = 0. On the other hand, the hadronic γ-ray emission from clusters is found to decrease significantly if only quasi-parallel shocks are allowed to accelerate cosmic ray protons. This might reduce the tension with the low upper limits on γ-ray emission from clusters set by the Fermi satellite.

  12. Biodegradation of the surfactant linear alkylbenzenesulfonate in sewage- contaminated groundwater: A comparison of column experiments and field tracer tests

    USGS Publications Warehouse

    Krueger, C.J.; Radakovich, K.M.; Sawyer, T.E.; Barber, L.B.; Smith, R.L.; Field, J.A.

    1998-01-01

    Transport and biodegradation of linear alkylbenzenesulfonate (LAS) in sewage-contaminated groundwater were investigated for a range of dissolved oxygen concentrations. Both laboratory column and an 80-day continuous injection tracer test field experiments were conducted. The rates of LAS biodegradation increased with increasing dissolved oxygen concentrations and indicated the preferential biodegradation of the longer alkyl chain LAS homologues (i.e., C12 and C13) and external isomers (i.e., 2-and 3- phenyl). However, for similar dissolved oxygen concentrations, mass removal rates for LAS generally were 2-3 times greater in laboratory column experiments than in the field tracer test. Under low oxygen conditions (<1 mg/L) only a fraction of the LAS mixture biodegraded in both laboratory and field experiments. Biodegradation rate constants for the continuous injection field test (0.002-0.08 day-1) were comparable to those estimated for a 3-h injection (pulsed) tracer test conducted under similar biogeochemical conditions, indicating that increasing the exposure time of aquifer sediments to LAS did not increase biodegradation rates.Transport and biodegradation of linear alkylbenzenesulfonate (LAS) in sewage-contaminated groundwater were investigated for a range of dissolved oxygen concentrations. Both laboratory column and an 80-day continuous injection tracer test field experiments were conducted. The rates of LAS biodegradation increased with increasing dissolved oxygen concentrations and indicated the preferential biodegradation of the longer alkyl chain LAS homologues (i.e., C12 and C13) and external isomers (i.e., 2- and 3-phenyl). However, for similar dissolved oxygen concentrations, mass removal rates for LAS generally were 2-3 times greater in laboratory column experiments than in the field tracer test. Under low oxygen conditions (<1 mg/L) only a fraction of the LAS mixture biodegraded in both laboratory and field experiments. Biodegradation rate constants

  13. Characterization of preferential flow paths between boreholes in fractured rock using a nanoscale zero-valent iron tracer test

    NASA Astrophysics Data System (ADS)

    Chuang, Po-Yu; Chia, Yeeping; Liou, Ya-Hsuan; Teng, Mao-Hua; Liu, Ching-Yi; Lee, Tsai-Ping

    2016-11-01

    Recent advances in borehole geophysical techniques have improved characterization of cross-hole fracture flow. The direct detection of preferential flow paths in fractured rock, however, remains to be resolved. In this study, a novel approach using nanoscale zero-valent iron (nZVI or `nano-iron') as a tracer was developed for detecting fracture flow paths directly. Generally, only a few rock fractures are permeable while most are much less permeable. A heat-pulse flowmeter can be used to detect changes in flow velocity for delineating permeable fracture zones in the borehole and providing the design basis for the tracer test. When nano-iron particles are released in an injection well, they can migrate through the connecting permeable fracture and be attracted to a magnet array when arriving in an observation well. Such an attraction of incoming iron nanoparticles by the magnet can provide quantitative information for locating the position of the tracer inlet. A series of field experiments were conducted in two wells in fractured rock at a hydrogeological research station in Taiwan, to test the cross-hole migration of the nano-iron tracer through permeable connected fractures. The fluid conductivity recorded in the observation well confirmed the arrival of the injected nano-iron slurry. All of the iron nanoparticles attracted to the magnet array in the observation well were found at the depth of a permeable fracture zone delineated by the flowmeter. This study has demonstrated that integrating the nano-iron tracer test with flowmeter measurement has the potential to characterize preferential flow paths in fractured rock.

  14. Assessment of local hydraulic properties from electrical resistivity tomography monitoring of a three-dimensional synthetic tracer test experiment

    NASA Astrophysics Data System (ADS)

    Camporese, M.; Cassiani, G.; Deiana, R.; Salandin, P.

    2011-12-01

    In recent years geophysical methods have become increasingly popular for hydrological applications. Time-lapse electrical resistivity tomography (ERT) represents a potentially powerful tool for subsurface solute transport characterization since a full picture of the spatiotemporal evolution of the process can be obtained. However, the quantitative interpretation of tracer tests is difficult because of the uncertainty related to the geoelectrical inversion, the constitutive models linking geophysical and hydrological quantities, and the a priori unknown heterogeneous properties of natural formations. Here an approach based on the Lagrangian formulation of transport and the ensemble Kalman filter (EnKF) data assimilation technique is applied to assess the spatial distribution of hydraulic conductivity K by incorporating time-lapse cross-hole ERT data. Electrical data consist of three-dimensional cross-hole ERT images generated for a synthetic tracer test in a heterogeneous aquifer. Under the assumption that the solute spreads as a passive tracer, for high Peclet numbers the spatial moments of the evolving plume are dominated by the spatial distribution of the hydraulic conductivity. The assimilation of the electrical conductivity 4D images allows updating of the hydrological state as well as the spatial distribution of K. Thus, delineation of the tracer plume and estimation of the local aquifer heterogeneity can be achieved at the same time by means of this interpretation of time-lapse electrical images from tracer tests. We assess the impact on the performance of the hydrological inversion of (i) the uncertainty inherently affecting ERT inversions in terms of tracer concentration and (ii) the choice of the prior statistics of K. Our findings show that realistic ERT images can be integrated into a hydrological model even within an uncoupled inverse modeling framework. The reconstruction of the hydraulic conductivity spatial distribution is satisfactory in the portion

  15. An analytical model for solute transport in an infiltration tracer test in soil with a shallow groundwater table

    NASA Astrophysics Data System (ADS)

    Liang, Ching-Ping; Hsu, Shao-Yiu; Chen, Jui-Sheng

    2016-09-01

    It is recommended that an in-situ infiltration tracer test is considered for simultaneously determining the longitudinal and transverse dispersion coefficients in soil. Analytical solutions have been derived for two-dimensional advective-dispersive transport in a radial geometry in the literature which can be used for interpreting the result of such a tracer test. However, these solutions were developed for a transport domain with an unbounded-radial extent and an infinite thickness of vadose zone which might not be realistically manifested in the actual solute transport during a field infiltration tracer test. Especially, the assumption of infinite thickness of vadose zone should be invalid for infiltration tracer tests conducted in soil with a shallow groundwater table. This paper describes an analytical model for interpreting the results of an infiltration tracer test based on improving the transport domain with a bounded-radial extent and a finite thickness of vadose zone. The analytical model is obtained with the successive application of appropriate integral transforms and their corresponding inverse transforms. A comparison of the newly derived analytical solution against the previous analytical solutions in which two distinct sets of radial extent and thickness of vadose zone are considered is conducted to determine the influence of the radial and exit boundary conditions on the solute transport. The results shows that both the radial and exit boundary conditions substantially affect the trailing segment of the breakthrough curves for a soil medium with large dispersion coefficients. Previous solutions derived for a transport domain with an unbounded-radial and an infinite thickness of vadose zone boundary conditions give lower concentration predictions compared with the proposed solution at late times. Moreover, the differences between two solutions are amplified when the observation positions are near the groundwater table. In addition, we compare our

  16. Constraining performance assessment models with tracer test results: a comparison between two conceptual models

    NASA Astrophysics Data System (ADS)

    McKenna, Sean A.; Selroos, Jan-Olof

    Tracer tests are conducted to ascertain solute transport parameters of a single rock feature over a 5-m transport pathway. Two different conceptualizations of double-porosity solute transport provide estimates of the tracer breakthrough curves. One of the conceptualizations (single-rate) employs a single effective diffusion coefficient in a matrix with infinite penetration depth. However, the tracer retention between different flow paths can vary as the ratio of flow-wetted surface to flow rate differs between the path lines. The other conceptualization (multirate) employs a continuous distribution of multiple diffusion rate coefficients in a matrix with variable, yet finite, capacity. Application of these two models with the parameters estimated on the tracer test breakthrough curves produces transport results that differ by orders of magnitude in peak concentration and time to peak concentration at the performance assessment (PA) time and length scales (100,000 years and 1,000 m). These differences are examined by calculating the time limits for the diffusive capacity to act as an infinite medium. These limits are compared across both conceptual models and also against characteristic times for diffusion at both the tracer test and PA scales. Additionally, the differences between the models are examined by re-estimating parameters for the multirate model from the traditional double-porosity model results at the PA scale. Results indicate that for each model the amount of the diffusive capacity that acts as an infinite medium over the specified time scale explains the differences between the model results and that tracer tests alone cannot provide reliable estimates of transport parameters for the PA scale. Results of Monte Carlo runs of the transport models with varying travel times and path lengths show consistent results between models and suggest that the variation in flow-wetted surface to flow rate along path lines is insignificant relative to variability in

  17. The anomaly in a breakthrough curve of a single well "push-pull" tracer test: A density driven effect?

    NASA Astrophysics Data System (ADS)

    Zeilfelder, Sarah; Hebig, Klaus; Ito, Narimitsu; Machida, Isao; Scheytt, Traugott; Marui, Atsunao

    2013-04-01

    What method is appropriate to investigate an aquifer when there is only one well available? A single well "push-pull" tracer test (PP Test) may be a suitable method in order to characterize an aquifer and to obtain information about the hydraulic and chemical properties when only one well is available for the investigations. In a PP test, a test solution that contains a known amount of solutes and a conservative tracer is injected into the aquifer ("push") and extracted afterwards ("pull"). Optionally, the test solution is flushed out of the well and the casing with untreated test solution with a so called "chaser" before being extracted. Also between the injection and the extraction phase a drifting time may be included. The breakthrough of the tracer during the extraction phase is measured and used for analyses and interpretation. In the last three years, several PP Test campaigns were conducted at two different test sites in Japan (Hebig et al. 2011, Zeilfelder et al. 2012). The aim was to investigate the applicability of the PP Test method in different geological settings and in different types of aquifers. The latest field campaign thus focussed on the question how variations of the setup are influencing the breakthrough curve of the PP Test in order to develop and enhance this method. Also the standardization of the PP Test was an aim of this study. During the campaign, a total of seven PP Tests were performed, while only single aspects of the setup were varied from test to test. The tests differed in injection and extraction rate, in the salinity of the injected test solution and in the use of a chaser solution. The general shapes of the breakthrough curves were similar and conclusions about the repeatability of the PP Test could be drawn. However, a sharp anomaly was observed in the breakthrough curve of one specific setup type. By repeating this PP test under the same boundary conditions, we were able to recreate the anomaly and could exclude any technical

  18. Database dictionary for the results of groundwater tracer tests using tritiated water, conducted at the Oak Ridge National Laboratory

    SciTech Connect

    Thompson, B.K.; Huff, D.D.

    1997-05-01

    In 1977, the United States Geological Survey (USGS) conducted two tracer tests at the Oak Ridge National Laboratory (ORNL) using tritiated water to study the relative importance of bedding-plane openings on shallow groundwater flow. Through a cooperative agreement between the USGS and the US Department of Energy (DOE), the data were made available to researchers at the Oak Ridge National Laboratory (ORNL), who organized the data into a data management format. The results of these groundwater tracer tests have been compiled into a collection of four SAS data sets. This report documents these SAS data sets, including their structure, methodology, and content. The SAS data sets include information on precipitation, tritium, water levels, and well construction for wells at or near ORNL radioactive waste burial grounds 4, 5, and 6.

  19. Testing Observational Tracers of Turbulence with Numerical Simulations: Measuring the Sonic Mach Number in Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Burkhart, B.; Lazarian, A.; Correia, C.; Ossenkopf, V.; Stutzki, J.; de Medeiros, J. R.

    2014-09-01

    Astrophysical simulations provide a unique opportunity to test and verify observational diagnostics of the physics of the interstellar medium. In these proceedings, we highlight how s imulations of MHD turbulence can increase the accuracy and understanding of observational tracers of important plasma parameters, such as the sonic Mach number, in molecular clouds. For this purpose we analyze MHD simulations which include post-processing to take radiative transfer effects of 13CO emission and absorption into account. We find very good agreement between the linewidth estimated sonic Mach number and the actual sonic Mach number of the simulations for optically thin 13CO. However, we find that opacity broadening causes Ms to be overestimated by a factor of ≈ 1.16-1.3 when calculated from optically thick 13CO lines. We also find that there is a dependency on the magnetic field: super-Alfvénic turbulence shows increased line broadening as compared with sub-Alfvénic turbulence for all values of optical depth for the line of sight perpendicular to an magnetic field. These results have implications for the observationally derived sonic Mach number-density standard deviation (σρ/<ρ>) relationship, σ2ρ/<ρ>=b2M s2, and the related column density standard deviation (σN/(N)) sonic Mach number relationship, which we briefly discuss. The turbulence sonic Mach number is an important parameter of star formation models and the results highlighted in these proceedings provide researchers with increased understanding of these parameters derived from observations.

  20. Testing mixing models of old and young groundwater in a tropical lowland rain forest with environmental tracers

    USGS Publications Warehouse

    Solomon, D. Kip; Genereux, David P.; Plummer, L. Niel; Busenberg, Eurybiades

    2010-01-01

    We tested three models of mixing between old interbasin groundwater flow (IGF) and young, locally derived groundwater in a lowland rain forest in Costa Rica using a large suite of environmental tracers. We focus on the young fraction of water using the transient tracers CFC-11, CFC-12, CFC-113, SF6, 3H, and bomb 14C. We measured 3He, but 3H/3He dating is generally problematic due to the presence of mantle 3He. Because of their unique concentration histories in the atmosphere, combinations of transient tracers are sensitive not only to subsurface travel times but also to mixing between waters having different travel times. Samples fall into three distinct categories: (1) young waters that plot along a piston flow line, (2) old samples that have near-zero concentrations of the transient tracers, and (3) mixtures of 1 and 2. We have modeled the concentrations of the transient tracers using (1) a binary mixing model (BMM) of old and young water with the young fraction transported via piston flow, (2) an exponential mixing model (EMM) with a distribution of groundwater travel times characterized by a mean value, and (3) an exponential mixing model for the young fraction followed by binary mixing with an old fraction (EMM/BMM). In spite of the mathematical differences in the mixing models, they all lead to a similar conceptual model of young (0 to 10 year) groundwater that is locally derived mixing with old (>1000 years) groundwater that is recharged beyond the surface water boundary of the system.

  1. Testing mixing models of old and young groundwater in a tropical lowland rain forest with environmental tracers

    NASA Astrophysics Data System (ADS)

    Solomon, D. Kip; Genereux, David P.; Plummer, L. Niel; Busenberg, Eurybiades

    2010-04-01

    We tested three models of mixing between old interbasin groundwater flow (IGF) and young, locally derived groundwater in a lowland rain forest in Costa Rica using a large suite of environmental tracers. We focus on the young fraction of water using the transient tracers CFC-11, CFC-12, CFC-113, SF6, 3H, and bomb 14C. We measured 3He, but 3H/3He dating is generally problematic due to the presence of mantle 3He. Because of their unique concentration histories in the atmosphere, combinations of transient tracers are sensitive not only to subsurface travel times but also to mixing between waters having different travel times. Samples fall into three distinct categories: (1) young waters that plot along a piston flow line, (2) old samples that have near-zero concentrations of the transient tracers, and (3) mixtures of 1 and 2. We have modeled the concentrations of the transient tracers using (1) a binary mixing model (BMM) of old and young water with the young fraction transported via piston flow, (2) an exponential mixing model (EMM) with a distribution of groundwater travel times characterized by a mean value, and (3) an exponential mixing model for the young fraction followed by binary mixing with an old fraction (EMM/BMM). In spite of the mathematical differences in the mixing models, they all lead to a similar conceptual model of young (0 to 10 year) groundwater that is locally derived mixing with old (>1000 years) groundwater that is recharged beyond the surface water boundary of the system.

  2. Interpretation of tracer tests performed in fractured rock of the Lange Bramke basin, Germany

    NASA Astrophysics Data System (ADS)

    Maloszewski, Piotr; Herrmann, Andreas; Zuber, Andrzej

    Two multitracer tests performed in one of the major cross-fault zones of the Lange Bramke basin (Harz Mountains, Germany) confirm the dominant role of the fault zone in groundwater flow and solute transport. Tracers having different coefficients of molecular diffusion (deuterium, bromide, uranine, and eosine) yielded breakthrough curves that can only be explained by a model that couples the advective-dispersive transport in the fractures with the molecular diffusion exchange in the matrix. For the scale of the tests (maximum distance of 225m), an approximation was used in which the influence of adjacent fractures is neglected. That model yielded nearly the same rock and transport parameters for each tracer, which means that the single-fracture approximation is acceptable and that matrix diffusion plays an important role. The hydraulic conductivity of the fault zone obtained from the tracer tests is about 1.5×10-2m/s, whereas the regional hydraulic conductivity of the fractured rock mass is about 3×10-7m/s, as estimated from the tritium age and the matrix porosity of about 2%. These values show that the hydraulic conductivity along the fault is several orders of magnitude larger than that of the remaining fractured part of the aquifer, which confirms the dominant role of the fault zones as collectors of water and conductors of fast flow. Résumé Deux multitraçages ont été réalisés dans l'une des zones principales de failles du bassin de Lange Bramke (massif du Harz, Allemagne); les résultats confirment le rôle prédominant de la zone de failles pour l'écoulement souterrain et le transport de soluté. Les traceurs, possédant des coefficients de diffusion différents (deutérium, bromure, uranine et éosine), ont fourni des courbes de restitution qui ne peuvent être expliquées que par un modèle qui associe un transport advectif-dispersif dans les fractures à un échange par diffusion moléculaire dans la matrice. A l'échelle des expériences (distance

  3. Heat as a tracer for understanding transport processes in fractured media: Theory and field assessment from multiscale thermal push-pull tracer tests

    NASA Astrophysics Data System (ADS)

    Klepikova, Maria V.; Le Borgne, Tanguy; Bour, Olivier; Dentz, Marco; Hochreutener, Rebecca; Lavenant, Nicolas

    2016-07-01

    The characterization and modeling of heat transfer in fractured media is particularly challenging as the existence of fractures at multiple scales induces highly localized flow patterns. From a theoretical and numerical analysis of heat transfer in simple conceptual models of fractured media, we show that flow channeling has a significant effect on the scaling of heat recovery in both space and time. The late time tailing of heat recovery under channeled flow is shown to diverge from the T>(t>)∝t-1.5 behavior expected for the classical parallel plate model and follow the scaling T>(t>)∝1/t>(log⁡t>)2 for a simple channel modeled as a tube. This scaling, which differs significantly from known scalings in mobile-immobile systems, is of purely geometrical origin: late time heat transfer from the matrix to a channel corresponds dimensionally to a radial diffusion process, while heat transfer from the matrix to a plate may be considered as a one-dimensional process. This phenomenon is also manifested on the spatial scaling of heat recovery as flow channeling affects the decay of the thermal breakthrough peak amplitude and the increase of the peak time with scale. These findings are supported by the results of a field experimental campaign performed on the fractured rock site of Ploemeur. The scaling of heat recovery in time and space, measured from thermal breakthrough curves measured through a series of push-pull tests at different scales, shows a clear signature of flow channeling. The whole data set can thus be successfully represented by a multichannel model parametrized by the mean channel density and aperture. These findings, which bring new insights on the effect of flow channeling on heat transfer in fractured rocks, show how heat recovery in geothermal tests may be controlled by fracture geometry. In addition, this highlights the interest of thermal push-pull tests as a complement to solute tracers tests to infer fracture aperture and geometry.

  4. Characterization of Anomalous Contaminant Transport via Push-Pull Tracer Tests

    NASA Astrophysics Data System (ADS)

    Hansen, S. K.; Vesselinov, V. V.; Berkowitz, B.

    2015-12-01

    Push-pull (single-well-injection-withdrawal) tracer tests are widely used as an economical means of characterizing field-scale solute transport properties such as sorption and dispersion. Typically, these are analyzed by means of analytic solutions that assume transport obeys the radial advection-dispersion equation. We revisit this approach as: (1) Recognition of the ubiquity of anomalous transport and its impact on contaminant remediation necessitates the use of new methods to characterize it, and (2) Improved computational power and numerical methods have rendered reliance on analytical solutions obsolete. Here, we present a technique for characterizing diffusion-driven anomalous transport (i.e., anomalous transport driven by a "trapping" process whose trapping and release statistics are independent of the groundwater flow velocity). Examples include diffusion into low permeability zones, kinetic sorption, and matrix diffusion. Using field observations, we simultaneously calibrate an exponential probability distribution for time spent on a single sojourn in the mobile domain and a truncated power law probability distribution for time spent on a single sojourn in the immobile domain via a stochastic global optimization technique. The calibrated distributions, being independent of the flow regime, are applicable to the same domain under any flow conditions, including linear flow. In the context of the continuous time random walk (CTRW), one may simply define a transition to represent a single trap-and-release cycle, and directly compute the spatiotemporal transition distribution that defines the CTRW from the two calibrated distributions and the local seepage velocity (so that existing CTRW transport theory applies). A test of our methodology against a push-pull test from the MADE site demonstrated fitting performance comparable to that of a 3-D MODFLOW/MT3DMS model with a variety of hydraulic conductivity zones and explicit treatment of mobile-immobile mass

  5. Gravity-gradient suppression in spaceborne atomic tests of the equivalence principle

    NASA Astrophysics Data System (ADS)

    Chiow, Sheng-wey; Williams, Jason; Yu, Nan; Müller, Holger

    2017-02-01

    The gravity gradient is one of the most serious systematic effects in atomic tests of the equivalence principle (EP). While differential acceleration measurements performed with different atomic species under free fall test the validity of the EP, minute displacements between the test masses in a gravity gradient produce a false EP-violating signal that limits the precision of the test. We show that gravity inversion and modulation using a gimbal mount can suppress the systematics due to gravity gradients caused by both moving and stationary parts of the instrument as well as the environment, strongly reducing the need to overlap two species.

  6. Using noble gas tracers to estimate residual CO2 saturation in the field: results from the CO2CRC Otway residual saturation and dissolution test

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Paterson, L.

    2013-12-01

    Residual CO2 saturation is a critically important parameter in CO2 storage as it can have a large impact on the available secure storage volume and post-injection CO2 migration. A suite of single-well tests to measure residual trapping was conducted at the Otway test site in Victoria, Australia during 2011. One or more of these tests could be conducted at a prospective CO2 storage site before large-scale injection. The test involved injection of 150 tonnes of pure carbon dioxide followed by 454 tonnes of CO2-saturated formation water to drive the carbon dioxide to residual saturation. This work presents a brief overview of the full test sequence, followed by the analysis and interpretation of the tests using noble gas tracers. Prior to CO2 injection krypton (Kr) and xenon (Xe) tracers were injected and back-produced to characterise the aquifer under single-phase conditions. After CO2 had been driven to residual the two tracers were injected and produced again. The noble gases act as non-partitioning aqueous-phase tracers in the undisturbed aquifer and as partitioning tracers in the presence of residual CO2. To estimate residual saturation from the tracer test data a one-dimensional radial model of the near-well region is used. In the model there are only two independent parameters: the apparent dispersivity of each tracer and the residual CO2 saturation. Independent analysis of the Kr and Xe tracer production curves gives the same estimate of residual saturation to within the accuracy of the method. Furthermore the residual from the noble gas tracer tests is consistent with other measurements in the sequence of tests.

  7. Thermal single-well injection-withdrawal tracer tests for determining fracture-matrix heat transfer area

    SciTech Connect

    Pruess, K.; Doughty, C.

    2010-01-15

    Single-well injection-withdrawal (SWIW) tracer tests involve injection of traced fluid and subsequent tracer recovery from the same well, usually with some quiescent time between the injection and withdrawal periods. SWIW are insensitive to variations in advective processes that arise from formation heterogeneities, because upon withdrawal, fluid parcels tend to retrace the paths taken during injection. However, SWIW are sensitive to diffusive processes, such as diffusive exchange of conservative or reactive solutes between fractures and rock matrix. This paper focuses on SWIW tests in which temperature itself is used as a tracer. Numerical simulations demonstrate the sensitivity of temperature returns to fracture-matrix interaction. We consider thermal SWIW response to the two primary reservoir improvements targeted with stimulation, (1) making additional fractures accessible to injected fluids, and (2) increasing the aperture and permeability of pre-existing fractures. It is found that temperature returns in SWIW tests are insensitive to (2), while providing a strong signal of more rapid temperature recovery during the withdrawal phase for (1).

  8. Use of 222Rn as a natural tracer to evaluate the efficiency of flushing test at DNAPL contaminated area

    NASA Astrophysics Data System (ADS)

    Lee, S.; Joun, W.; Kim, H.; Kaown, D.; Lee, K.

    2013-12-01

    Flushing test was applied to remediate the depth-discrete residual dense non-aqueous phase liquid (DNAPL) sources in an unsaturated zone at an industrial complex in Wonju, Korea. Remediation efficiency for flushing test was evaluated by comparing the natural tracer 222Rn concentration data in groundwater and the mass discharges of trichloroethylene (TCE) through a cross section before and during the test period. In the previous research performed at the study site, the location of residual DNAPL sources in the unsaturated zone was identified using the natural tracer 222Rn and contaminant concentrations based on the information for characteristics of radon which was partitioning into TCE. The natural injection method and pressurized injection method were applied for water injection. Uncontaminated groundwater around main source area was used as injection water. Temporal and spatial monitoring results show that a combined water injection (conducting both natural injection and pressurization injection) is an effective operation method. The 222Rn activities and TCE concentrations in groundwater fluctuated irregularly with water level increase at the main source area. The natural tracer 222Rn in groundwater originating from the underlying crystalline biotite granite, had a wide range from 15,000 to 183,000 Bq/m3 and total concentrations of TCE ranged from 0.03 to 1.79 mg/l. These temporal variations in 222Rn activities might be caused by not only the unknown quantities of residual TCE in the unsaturated zone but also the characteristics of radon partitioning into residual TCE with water level increase. From these results, the 222Rn activities could not be used directly as a natural tracer to evaluate the remediation efficiency due to the irregular production. Therefore, for more precise efficiency evaluation, the comparative analysis between 222Rn activities and relative contaminant concentrations data is required.

  9. Variational test on the relationship between gradient expansion terms in the kinetic energy density functional

    NASA Astrophysics Data System (ADS)

    Glossman, M. Daniel; Castro, Eduardo A.

    1989-05-01

    By using an approximate analytical trial density and the consideration of an energy density functional which includes a modified gradient correction, the relationship between the zeroth-order and the first gradient correction is tested and the results compared with those obtained through the use of Hartree-Fock-Roothaan-Clementi densities.

  10. Estimation of αL, velocity, Kd and confidence limits from tracer injection test data

    USGS Publications Warehouse

    Broermann, James; Bassett, R.L.; Weeks, Edwin P.; Borgstrom, Mark

    1997-01-01

    Bromide and boron were used as tracers during an injection experiment conducted at an artificial recharge facility near Stanton, Texas. The Ogallala aquifer at the Stanton site represents a heterogeneous alluvial environment and provides the opportunity to report scale dependent dispersivities at observation distances of 2 to 15 m in this setting. Values of longitudinal dispersivities are compared with other published values. Water samples were collected at selected depths both from piezometers and from fully screened observation wells at radii of 2, 5, 10 and 15 m. An exact analytical solution is used to simulate the concentration breakthrough curves and estimate longitudinal dispersivities and velocity parameters. Greater confidence can be placed on these data because the estimated parameters are error bounded using the bootstrap method. The non-conservative behavior of boron transport in clay rich sections of the aquifer were quantified with distribution coefficients by using bromide as a conservative reference tracer.

  11. Convergent radial dispersion: a Laplace transform solution for aquifer tracer testing

    USGS Publications Warehouse

    Moench, A.F.

    1989-01-01

    A Laplace transform solution was obtained for the injection of a tracer in a well situated in a homogeneous aquifer where steady, horizontal, radially convergent flow has been established due to pumping at a second well. The standard advection-dispersion equation for mass transfer was used as the controlling equation. For boundary conditions, mass balances that account for mixing of the tracer with the fluid residing in the injection and pumping wells were used. The derived solution, which can be adapted for either resident or flux-averaged concentration, is of practical use only for the pumped well. This problem is of interest because it is easily applied to field determination of aquifer dispersivity and effective porosity. Breakthrough curves were obtained by numerical inversion of the Laplace transform solution. -from Author

  12. Use of single-well tracer dilution tests to evaluate LNAPL flux at seven field sites.

    PubMed

    Mahler, Nicholas; Sale, Tom; Smith, Tim; Lyverse, Mark

    2012-01-01

    Petroleum liquids, referred to as light non-aqueous phase liquids (LNAPLs), are commonly found beneath petroleum facilities. Concerns with LNAPLs include migration into clean soils, migration beyond property boundaries, and discharges to surface water. Single-well tracer dilution techniques were used to measure LNAPL fluxes through 50 wells at 7 field sites. A hydrophobic tracer was mixed into LNAPL in a well. Intensities of fluorescence associated with the tracer were measured over time using a spectrometer and a fiber optic cable. LNAPL fluxes were estimated using observed changes in the tracer concentrations over time. Measured LNAPL fluxes range from 0.006 to 2.6 m/year with a mean and median of 0.15 and 0.064 m/year, respectively. Measured LNAPL fluxes are two to four orders of magnitude smaller than a common groundwater flux of 30 m/year. Relationships between LNAPL fluxes and possible governing parameters were evaluated. Observed LNAPL fluxes are largely independent of LNAPL thickness in wells. Natural losses of LNAPL through dissolution, evaporation, and subsequent biodegradation, were estimated using a simple mass balance, measured LNAPL fluxes in wells, and an assumed stable LNAPL extent. The mean and median of the calculated loss rates were found to be 24.0 and 5.0 m3/ha/year, respectively. Mean and median losses are similar to values reported by others. Coupling observed LNAPL fluxes to observed rates of natural LNAPL depletion suggests that natural losses of LNAPL may be an important parameter controlling the overall extent of LNAPL bodies.

  13. TESTING FOR AZIMUTHAL ABUNDANCE GRADIENTS IN M101

    SciTech Connect

    Li, Yanxia; Bresolin, Fabio; Kennicutt, Robert C. Jr.

    2013-03-20

    New optical spectra of 28 H II regions in the M101 disk have been obtained, yielding 10 new detections of the [O III] {lambda}4363 auroral line. The oxygen abundance gradient measured from these data, combined with previous observations, displays a local scatter of 0.15 {+-} 0.03 dex along an arc in the west side of the galaxy, compared with a smaller scatter of 0.08 {+-} 0.01 dex in the rest of the disk. One of the H II regions in our sample (H27) has a significantly lower oxygen abundance than surrounding nebulae at a similar galactocentric distance, while an additional, relatively nearby one (H128) was already known to have a high oxygen abundance for its position in the galaxy. These results represent marginal evidence for the existence of moderate deviations from chemical abundance homogeneity in the interstellar medium of M101. Using a variety of strong-line abundance indicators, we find no evidence for significant large-scale azimuthal variations of the oxygen abundance across the whole disk of the galaxy.

  14. Using Noble Gas Tracers to Estimate CO2 Saturation in the Field: Results from the 2014 CO2CRC Otway Repeat Residual Saturation Test

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Boreham, C.; Serno, S.; Cook, P. J.; Freifeld, B. M.; Gilfillan, S.; Jarrett, A.; Johnson, G.; Myers, M.; Paterson, L.

    2015-12-01

    Residual trapping efficiency is a critical parameter in the design of secure subsurface CO2 storage. Residual saturation is also a key parameter in oil and gas production when a field is under consideration for enhanced oil recovery. Tracers are an important tool that can be used to estimate saturation in field tests. A series of measurements of CO2 saturation in an aquifer were undertaken as part of the Otway stage 2B extension field project in Dec. 2014. These tests were a repeat of similar tests in the same well in 2011 with improvements to the data collection and handling method. Two single-well tracer tests using noble gas tracers were conducted. In the first test krypton and xenon are injected into the water-saturated formation to establish dispersivity of the tracers in single-phase flow. Near-residual CO2 saturation is then established near the well. In the second test krypton and xenon are injected with CO2-saturated water to measure the final CO2 saturation. The recovery rate of the tracers is similar to predicted rates using recently published partitioning coefficients. Due to technical difficulties, there was mobile CO2 in the reservoir throughout the second tracer test in 2014. As a consequence, it is necessary to use a variation of the previous simulation procedure to interpret the second tracer test. One-dimensional, radial simulations are used to estimate average saturation of CO2 near the well. Estimates of final average CO2 saturation are computed using two relative permeability models, thermal and isothermal simulations, and three sets of coefficients for the partitioning of the tracers between phases. Four of the partitioning coefficients used were not previously available in the literature. The noble gas tracer field test and analysis of the 2011 and 2014 data both give an average CO2 saturation that is consistent with other field measurements. This study has demonstrated the repeatability of the methodology for noble gas tracer tests in the

  15. Assessment of hydraulic conductivity distributions through assimilation of travel time data from ERT-monitored tracer tests

    NASA Astrophysics Data System (ADS)

    Crestani, E.; Camporese, M.; Salandin, P.

    2015-10-01

    Assessing the spatial distribution of hydraulic conductivity (K) in natural aquifers is fundamental to predict the spatio-temporal evolution of solutes, a process that is mainly controlled by the heterogeneity of K. In sedimentary aquifers, the vertical variations of K are typically more relevant than the horizontal ones in controlling the plume evolution at the local scale; such K vertical distributions can be inferred by combining the Lagrangian formulation of transport with the assimilation of tracer test data via the ensemble Kalman filter (EnKF). In this work, the data for the assimilation procedure are provided by monitoring tracer tests with electrical resistivity tomography (ERT). Our main objective is to show the possibility of directly using ERT data by assimilating the solute travel times, instead of the concentration values, thus avoiding the need for a petrophysical law. The methodology is applied to both a synthetic and a real test case and gives a satisfactory retrieval of the K field distribution, as well as of the solute evolution.

  16. Tracer tests, hydrochemical and microbiological investigations as a basis for groundwater protection in a remote tropical mountainous karst area, Vietnam

    NASA Astrophysics Data System (ADS)

    Nguyet, Vu Thi Minh; Goldscheider, Nico

    2006-11-01

    The Tam Duong karst area in NW Vietnam is among the poorest and remotest regions in the country. The local population largely depends on water from two main karst springs. Due to agricultural activity and untreated domestic wastewaters, the spring water is often microbiologically contaminated. In order to provide a scientific basis for groundwater protection in the area, different field methods have been applied including hydrogeological framework investigations, tracer tests, and hydrochemical and microbiological sampling and analyses. All methods had to be adapted to the conditions of a poor and remote area. These adaptations included, amongst other measures, the use of a portable microbiological water_testing kit and the involvement of the local population in the sampling campaign. The tracer tests showed simple and direct connections between two important swallow holes and the two main springs, and made it possible to determine the linear groundwater flow velocities, which are extremely high (up to 875 m/h). The hydrochemical and microbiological data confirmed the strong impact of the streams sinking into the swallow holes on the spring water quality. Future groundwater source protection strategies should consequently focus on the reduction of polluting activities near the sinking streams and within their catchment areas.

  17. Comparison of spiral gradient and conventional agar dilution for susceptibility testing of anaerobic bacteria.

    PubMed Central

    Wexler, H M; Molitoris, E; Jashnian, F; Finegold, S M

    1991-01-01

    Antimicrobial susceptibility tests were performed on brucella laked blood agar with 340 isolates and 14 antimicrobial agents by the standard agar dilution technique and the spiral gradient technique in which antibiotic concentrations were established by diffusion from the agar surface. For comparison, spiral gradient MICs were determined by calculating antimicrobial concentrations at growth endpoints and rounding up to the next twofold incremental concentration. The cumulative percentage of strains susceptible at the breakpoint determined from spiral gradient data was within 10%, generally, of the percentage of strains susceptible at the breakpoint determined from agar dilution data. The overall agreement between the two techniques (within one doubling dilution) was 90.6%. The spiral gradient agar dilution technique is a reasonable alternative to the conventional agar dilution technique for susceptibility testing of anaerobic bacteria. Images PMID:1929262

  18. High-Gradient Tests of the Single-Cell SC Cavity with a Feedback Waveguide

    SciTech Connect

    Yakovlev, V.; Solyak, N.; Wu, G.; Ge, M.; Gonin, I.; Khabiboulline, T.; Ozelis, J.; Rowe, A.; Avrakhov, P.; Kanareykin, A.; Rathke, J.

    2010-11-04

    Use of a superconducting (SC) traveling-wave accelerating (STWA) structure with a small phase advance per cell, rather than a standing-wave structure, may provide a significant increase in the accelerating gradient in the ILC linac [1]. For the same surface electric and magnetic fields, the STWA achieves an accelerating gradient 1.2 larger than TESLA-like standing-wave cavities. In addition, the STWA allows longer acceleration cavities, reducing the number of gaps between them. However, the STWA structure requires a SC feedback waveguide to return the few hundreds of MW of circulating RF power from the structure output to the structure input. A test single-cell cavity with feedback was designed and manufactured to demonstrate the possibility of proper processing to achieve a high accelerating gradient. The first results of high-gradient tests of a prototype 1.3 GHz single-cell cavity with feedback waveguide will be presented.

  19. Analysis of three sets of SWIW tracer-test data using a two-population complex fracture model for matrix diffusion and sorption

    SciTech Connect

    Doughty, C.; Tsang, C.F.

    2009-08-01

    A complex fracture model employing two populations for diffusion and sorption is proposed to analyze three representative single-well injection-withdrawal (SWIW) tracer tests from Forsmark and Laxemar, the two sites under investigation by the Swedish Nuclear Fuel and Waste Management Company (SKB). One population represents the semi-infinite rock matrix and the other represents finite blocks that can become saturated, thereafter accepting no further diffusion or sorption. The diffusion and sorption parameters of the models are inferred by matching tracer breakthrough curves (BTCs). Three tracers are simultaneously injected, uranine (Ur), which is conservative, and rubidium (Rb) and cesium (Cs), which are non-conservative. For non-sorbing tracer uranine, the finite blocks become saturated with test duration of the order of 10 hours, and both the finite and the semi-infinite populations play a distinct role in controlling BTCs. For sorbing tracers Rb and Cs, finite blocks do not saturate, but act essentially as semi-infinite, and thus BTC behavior is comparable to that obtained for a model containing only a semi-infinite rock matrix. The ability to obtain good matches to BTCs for both sorbing and non-sorbing tracers for these three different SWIW data sets demonstrates that the two-population complex fracture model may be a useful conceptual model to analyze all SWIW tracer tests in fractured rock, and perhaps also usual multiwell tracer tests. One of the two populations should be semi-infinite rock matrix and the other finite blocks that can saturate. The latter can represent either rock blocks or gouge within the fracture, a fracture skin zone, or stagnation zones.

  20. Solute transport processes in a karst vadose zone characterized by long-term tracer tests (the cave system of Postojnska Jama, Slovenia)

    NASA Astrophysics Data System (ADS)

    Kogovsek, Janja; Petric, Metka

    2014-11-01

    The processes influencing the solute transport in the karst vadose zone were studied by long-term tracer tests with artificial tracers. The results of three successive tracer tests with different modes of injection were compared. Tracer breakthrough curves were monitored at three drips of different hydrological types inside one of the cave galleries of the system of Postojnska Jama over several years. Comparison of the results indicates the highly significant influence of preceding hydrological conditions (dry vs wet), injection mode (artificial flushing vs natural infiltration by subsequent rainfall, and on a bare rock vs on an overlying layer) and geologic heterogeneities within the vadose zone on solute transport in the karst vadose zone. Injection with artificial flushing resulted in rapid infiltration and the tracer traversed almost one hundred meters of bedrock in hours. However, the majority of tracer can be stored within less permeable parts of the vadose zone and then gradually flushed out after additional abundant and intensive precipitation in the period of several years. Long-continued sampling in each of the tests proved to be important for reliable characterization of the long-term solute transport dynamics.

  1. Is macrodispersivity a meaningful parameter? - Applicability of simple ADE-equation for modeling of a tracer test

    NASA Astrophysics Data System (ADS)

    Haendel, Falk; Liedl, Rudolf; Dietrich, Peter

    2015-04-01

    In the last decades, numerical modeling has been developed as the common method to investigate solute transport in groundwater. Thereby in science, various numerical procedures have been applied for understanding complex processes of transport in highly heterogeneous aquifers. Beside this, numerical modeling of transport is also standard practice in engineering and consulting. The numerical approaches differ due to factors such as scope of modeling, knowledge about site characterization and time and manpower constraints. In general, there is a lack of knowledge about the hydraulic properties of a site like information of lithology and deterministic subunits. Therefore, assumption have to be made and standard Advection-Dispersion-Equation (ADE) is used involving macrodispersion coefficients. In this study we analyze a tracer test in the Lauswiesen aquifer, Baden-Wuerttemberg, Germany, described in the literature by Ptak et al. (2004) and Riva et al. (2008) and use a straightforward numerical model to reproduce the integral and depth-dependent transport behavior. Depth-dependent tracer test data show a clear depth dependency including two different breakthrough behaviors. Previous model approaches for evaluation of the mentioned tracer test by Riva et al. (2008) included a large set of Monte-Carlo simulations by describing the aquifer heterogeneity by a double stochastic process. Information about the geostatistical parameters could be gained mainly by a large number of sieve analyses. Finally, stochastic modeling of Riva et al. (2008) created a large amount of breakthrough curves due to high uncertainty of the distribution of hydraulic conductivity. However, stochastic modeling and a precise reproduction of the variability of hydraulic properties in space help to better understand the transport processes driven by heterogeneity and to provide assessment of uncertainty at a site. In our straightforward modeling we include only two deterministic subunits, more

  2. Contaminant transfer and hydrodispersive parameters in basaltic lava flows: artificial tracer test and implications for long-term management

    NASA Astrophysics Data System (ADS)

    Bertrand, G.; Celle-Jeanton, H.; Huneau, F.; Baillieux, A.; Mauri, G.; Lavastre, V.; Undereiner, G.; Girolami, L.; Moquet, J. S.

    2015-10-01

    The aim of this paper is to evaluate the vulnerability after point source contamination and characterize water circulations in volcanic flows located in the Argnat basin volcanic system (Chaîne des Puys, French Massif Central) using a tracer test performed by injecting a iodide solution. The analysis of breakthrough curves allowed the hydrodispersive characteristics of the massive lava flows to be determined. Large Peclet numbers indicated a dominant advective transport. The multimodal feature of breakthrough curves combined with high values of mean velocity and low longitudinal dispersion coefficients indicated thatwater flows in an environment analogous to a fissure system, and only slightly interacts with a low porosity matrix (ne < 1%). Combining this information with lava flow stratigraphy provided by several drillings allowed a conceptual scheme of potential contaminant behaviour to be designed. Although lava flows are vulnerable to point source pollution due to the rapid transfer of water within fractures, the saturated scoriaceous layers located between massive rocks should suffice to strongly buffer the transit of pollution through dilution and longer transit times. This was consistent with the low recovery rate of the presented tracer test.

  3. Experimental study of the effect of test-well arrangement for partitioning interwell tracer test on the estimation of NAPL saturation

    NASA Astrophysics Data System (ADS)

    Kim, B.; Kim, Y.; Yeo, I.; Yongcheol Kim, In Wook Yeo

    2011-12-01

    Partitioning interwell tracer test (PITT) is a method to quantify and qualify a contaminated site with NAPLs through a degree of retardation of partitioning tracers compared to a conservative one. Although PITT is known to be a more effective method to measure the saturation of spatially-distributed NAPL contaminant than the point investigation method, the saturation estimation from PITT is reported to be underestimated due to various factors including heterogeneity of the media, adsorption, source zone NAPL architecture, and long tailing in breakthrough curves of partitioning tracers. Analytical description of PITT assumes that the injection-pumping well pair is on the line of ambient groundwater flow direction, but the test-well pair could easily be off the line in the field site, which could be another erroneous factor in analyzing PITT data. The purpose of this work is to study the influence of the angle of the test-well pair to ambient groundwater flow direction based on the result from PITT. The experiments were conducted in a small-scale 3D sandbox with dimensions of 0.5 m × 0.4 m × 0.15 m (LWH) of stainless steel. The surface is covered and sealed with a plexiglass plate to make the physical model a confined aquifer. Eight full-screened wells of Teflon material were installed along the perimeter of a 50 mm circle with 45 degree intervals in the middle of the physical model. Both ends of the sand box are connected to constant head reservoirs. The physical model was wet-packed with sieved and washed sand. Trichloroethylene (TCE) and bromide were used as the contaminant and the conservative tracer, respectively. Hexanol, 2,4-dimethyl-3-pentanol and 6-methyl-2-heptanol were used as partitioning tracers. Before the injection of TCE, a PITT was conducted to measure adsorption coefficient of partitioning tracers to the sand material. TCE of 4.5 mL, dyed with Sudan IV, was injected into the inner part of the circle of the wells. PITTs using the test-well pair

  4. Insights about fracture shape and aperture from push-pull thermal tracer tests achieved at different scales

    NASA Astrophysics Data System (ADS)

    Klepikova, Maria V.; Le Borgne, Tanguy; Bour, Olivier; Hochreutener, Rebecca; Lavenant, Nicolas

    2015-04-01

    The prediction of transport patterns in fractured media is a challenging task. Different transport mechanisms are generally contributing: dispersion at fracture scale related to aperture variability, dispersion at network scale due to transport in different flowpaths and matrix diffusion. It is however difficult to know which mechanism is dominant. In this study we test the interest of heat tracer tests for providing new constraints on transport in fractured media by interpreting three push-pull tests of different duration. A series of heat and solute push-pull tracer test with Dirac-type injection was conducted in fractured aquifer of Ploemeur, France. The comparison of solute and heat breakthrough curves shows that due to thermal loss to the rock matrix temperature recovery peak arrives earlier than concentration peak. Moreover, the peak is significantly smaller for temperature recovery while it exhibits a longest tailing. Finally, we found that the recovered peak temperature decreases with scale and has a power law slope of -1 on a log-log plot. By means of flow and heat numerical model, we investigate the relevance of different conceptual models: single 'plate', 'tube' and 'ellipse' homogeneous fracture models at different scales. For all tested fracture geometries temperature breakthrough curves were found to be sensitive to fracture aperture. An 'elliptical tube' fracture model was found to provide the best fit to the data and based on this model, we were able to estimate the aperture of the fracture in the present case. Moreover, the comparison of experimental breakthrough curves and modelling results also suggests that the effective fracture aperture may increase with scale. This work emphasizes that multiple-scale push-pull thermal tests can provide valuable insights on fracture geometry and fracture aperture.

  5. An ensemble Kalman filter approach to identify the hydraulic conductivity spatial distribution from electrical resistivity tomography time-lapse monitoring of three-dimensional tracer test experiments

    NASA Astrophysics Data System (ADS)

    Camporese, M.; Cassiani, G.; Deiana, R.; Perri, M. T.; Salandin, P.

    2012-04-01

    An approach based on the Lagrangian formulation of transport and the ensemble Kalman filter (EnKF) is applied to assess the spatial distribution of hydraulic conductivity K by assimilating time-lapse cross-hole electrical resistivity tomography (ERT) images generated for a synthetic tracer test in a heterogeneous aquifer. Assuming that the solute spreads as a passive tracer, for high Peclet numbers the spatial moments of the evolving plume are dominated by the spatial distribution of the hydraulic conductivity. The assimilation of the electrical conductivity 4D images allows updating both the hydrological state in terms of solute concentration and the spatial distribution of K. Thus, delineation of the tracer plume and estimation of the aquifer heterogeneity at the local scale can be achieved at the same time by means of this interpretation of time-lapse electrical images from tracer tests. We assess the impact on the performance of the hydrological inversion of the uncertainty inherently affecting ERT inversions in terms of tracer concentration and the choice of the prior statistics of K. The results show that realistic ERT images can be integrated into a hydrological model even within an uncoupled inverse modeling framework, the reconstruction of the hydraulic conductivity spatial distribution being satisfactory in the portion of the domain directly covered by the passage of the tracer. Aside from the issues commonly affecting inverse models, the proposed approach is subject to the problem of the filter inbreeding and the retrieval performance is sensitive to the choice of K prior geostatistical parameters.

  6. Experimental high gradient testing of a 17.1 GHz photonic band-gap accelerator structure

    NASA Astrophysics Data System (ADS)

    Munroe, Brian J.; Zhang, JieXi; Xu, Haoran; Shapiro, Michael A.; Temkin, Richard J.

    2016-03-01

    We report the design, fabrication, and high gradient testing of a 17.1 GHz photonic band-gap (PBG) accelerator structure. Photonic band-gap (PBG) structures are promising candidates for electron accelerators capable of high-gradient operation because they have the inherent damping of high order modes required to avoid beam breakup instabilities. The 17.1 GHz PBG structure tested was a single cell structure composed of a triangular array of round copper rods of radius 1.45 mm spaced by 8.05 mm. The test assembly consisted of the test PBG cell located between conventional (pillbox) input and output cells, with input power of up to 4 MW from a klystron supplied via a TM01 mode launcher. Breakdown at high gradient was observed by diagnostics including reflected power, downstream and upstream current monitors and visible light emission. The testing procedure was first benchmarked with a conventional disc-loaded waveguide structure, which reached a gradient of 87 MV /m at a breakdown probability of 1.19 ×10-1 per pulse per meter. The PBG structure was tested with 100 ns pulses at gradient levels of less than 90 MV /m in order to limit the surface temperature rise to 120 K. The PBG structure reached up to 89 MV /m at a breakdown probability of 1.09 ×10-1 per pulse per meter. These test results show that a PBG structure can simultaneously operate at high gradients and low breakdown probability, while also providing wakefield damping.

  7. Stronger tests of mechanisms underlying geographic gradients of biodiversity: insights from the dimensionality of biodiversity.

    PubMed

    Stevens, Richard D; Tello, J Sebastián; Gavilanez, María Mercedes

    2013-01-01

    Inference involving diversity gradients typically is gathered by mechanistic tests involving single dimensions of biodiversity such as species richness. Nonetheless, because traits such as geographic range size, trophic status or phenotypic characteristics are tied to a particular species, mechanistic effects driving broad diversity patterns should manifest across numerous dimensions of biodiversity. We develop an approach of stronger inference based on numerous dimensions of biodiversity and apply it to evaluate one such putative mechanism: the mid-domain effect (MDE). Species composition of 10,000-km(2) grid cells was determined by overlaying geographic range maps of 133 noctilionoid bat taxa. We determined empirical diversity gradients in the Neotropics by calculating species richness and three indices each of phylogenetic, functional and phenetic diversity for each grid cell. We also created 1,000 simulated gradients of each examined metric of biodiversity based on a MDE model to estimate patterns expected if species distributions were randomly placed within the Neotropics. For each simulation run, we regressed the observed gradient onto the MDE-expected gradient. If a MDE drives empirical gradients, then coefficients of determination from such an analysis should be high, the intercept no different from zero and the slope no different than unity. Species richness gradients predicted by the MDE fit empirical patterns. The MDE produced strong spatially structured gradients of taxonomic, phylogenetic, functional and phenetic diversity. Nonetheless, expected values generated from the MDE for most dimensions of biodiversity exhibited poor fit to most empirical patterns. The MDE cannot account for most empirical patterns of biodiversity. Fuller understanding of latitudinal gradients will come from simultaneous examination of relative effects of random, environmental and historical mechanisms to better understand distribution and abundance of the current biota.

  8. Hydrodispersive characterization of a sandy porous medium by tracer tests carried out in laboratory on undisturbed soil samples

    NASA Astrophysics Data System (ADS)

    Ferrante, Aldo Pedro; Fallico, Carmine; Rios, Ana C.; Fernanda Rivera, Maria; Santillan, Patricio; Salazar, Mario

    2013-04-01

    The contamination of large areas and correspondent aquifers often imposes to implement some recovery operations which are generally complex and very expensive. Anyway, these interventions necessarily require the preventive characterization of the aquifers to be reclaimed and in particular the knowledge of the relevant hydrodispersive parameters. The determination of these parameters requires the implementation tracer tests for the specific site (Sauty JP, 1978). To reduce cost and time that such test requires tracer tests on undisturbed soil samples, representative of the whole aquifer, can be performed. These laboratory tests are much less expensive and require less time, but the results are certainly less reliable than those obtained by field tests for several reasons, including the particular scale of investigation. In any case the hydrodispersive parameters values, obtained by tests carried out in laboratory, can provide useful information on the considered aquifer, allowing to carry out initial verifications on the transmission and propagation of the pollutants in the aquifer considered. For this purpose, tracer tests with inlet of short time were carried out in the Soil Physics Laboratory of the Department of Soil Protection (University of Calabria), on a series of sandy soil samples with six different lengths, repeating each test with three different water flow velocities (5 m/d; 10 m/s and 15 m/d) (J. Feyen et al., 1998). The lengths of the samples taken into account are respectively 15 cm, 24 cm, 30 cm, 45 cm, 60 cm and 75 cm, while the solution used for each test was made of 100 ml of water and NaCl with a concentration of this substance corresponding to 10 g/L. For the porous medium taken into consideration a particle size analysis was carried out, resulting primarily made of sand, with total porosity equal to 0.33. Each soil sample was placed in a flow cell in which was inlet the tracer from the bottom upwards, measuring by a conductivimeter the

  9. Estimates of ambient groundwater velocity in the alluvium south of Yucca Mountain from single-well tracer tests.

    SciTech Connect

    Reimus, P. W.; Umari M. J.; Roback, R.; Earle, John,; Darnell Jon; Farnham, Irene

    2002-01-01

    The saturated alluvium located south of Yucca Mountain, Nevada is expected to serve as the final barrier to radionuclide transport from the proposed high-level nuclear waste repository at Yucca Mountain. The alluvium will act as a barrier if radionuclides breach the engineered barriers in the repository, move through the unsaturated zone beneath the repository to the water table, and then migrate through saturated volcanic tuffs to the alluvium. Three single-well injection-withdrawal tracer tests were conducted between December 2000 and April 2001 in the saturated alluviuni at NC-EWDP-19D1, a Nye County-Early Warning Drilling Program well located about 18 km south of Yucca Mountain. The tests had the objectives of (1) distinguishing between a single- and a dual-porosity conceptual radionuclide transport model for the alluvium, and (2) obtaining estimates of ambient groundwater velocity in the alluvium.

  10. Geology, hydrology, and results of tracer testing in the Galena-Platteville aquifer at a waste-disposal site near Byron, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Yeskis, Douglas J.; Prinos, Scott T.; Morrow, William S.; Vendl, Mark

    1999-01-01

    A study was conducted by the U.S. Geological Survey and the U.S. Environmental Protection Agency of the geohydrology of the dolomite bedrock at a waste-disposal site near Byron, Illinois. The study was designed to identify and characterize the flow pathways through the bedrock aquifer beneath the site. The geologic units of concern at the site are the Glenwood Formation of the Ancell Group, and the Platteville and Galena Groups. These deposits compose the Galena-Platteville aquifer and the underlying Harmony Hill Shale semiconfining unit. The Galena-Platteville aquifer is an unconfined aquifer. Geophysical logging, water levels, and aquifer-test data indicate the presence of interconnected, hydraulically active fractures in the middle of the Galena-Platteville aquifer (the upper flow pathway), and a second set of hydraulically active fractures (the lower flow pathway). The lower flow pathway may be present through much of the site. Few hydraulically active fractures are present in the upper part of the aquifer near the center of the site, but appear to be more numerous in the upper part of the aquifer in the western and northeastern parts of the site. Water-level data obtained during the tracer test indicate that pumping effects were present near the pumped wells. Pumping effects may have been present at several wells located along directions of identified fracture orientation from the pumped well. The upper part of the aquifer did not appear to be hydraulically well connected to the flow pathways supplying water to the pumped well. Large background changes in water levels obscured the effects of pumping and prevented calculation of aquifer properties. The velocity of the bromide tracer through the lower flow pathway under the hydraulic gradient resulting from the pumping was about 152 feet per day. Solution of the Darcy velocity equation results in a calculated effective porosity for this interval of 3.5 percent, indicating hydraulic interconnection between the

  11. USE OF TRACER DATA FROM THE MADISON SQUARE GARDEN 2005 FIELD EXPERIMENT TO TEST A SIMPLE URBAN DISPERSION MODEL

    SciTech Connect

    Hanna, Steven R.; Baja, Emmanuel; Flaherty, Julia E.; Allwine, K Jerry

    2008-01-30

    A simple urban dispersion model is tested that is based on the Gaussian plume model and the Briggs’ urban dispersion curves. A key aspect of the model is that an initial dispersion coefficient (sigma) of 40 m is assumed to apply in the x, y, and z directions in built-up downtown areas. This initial sigma accounts for mixing in the local street canyon and/or building wakes. At short distances (i.e., when the release is in the same street canyon as the receptor and there are no obstructions in between), the initial lateral sigma is assumed to be less, 10 m. Observations from tracer experiments during the Madison Square Garden 2005 (MSG05) field study are used for model testing. MSG05 took place in a 1 km by 1 km area in Manhattan surrounding Madison Square Garden. Six different perfluorocarbon tracer (PFT) gases were released concurrently from five different locations around MSG, and concentrations in the air were observed by 20 samplers near the surface and seven samplers on building tops. There were two separate continuous 60 minute tracer release periods on each day, beginning at 9 am and at 11:30 am. Releases took place on two separate days (March 10 and 14). The samplers provided 30 minute averaged PFT concentrations from 9 am through 2 pm. This analysis focuses on the maximum 60-minute averaged PFT gas concentration at each sampler location for each PFT for each release period. Stability was assumed to be nearly neutral, because of the moderate winds and the mechanical mixing generated by the buildings. Input wind direction was the average observed building-top wind direction (285° on March 10 and 315° on March 14). Input wind speed was the average street-level observed wind speed (1.5 m/s for both days). To be considered in the evaluation, both the observed and predicted concentration had to exceed the threshold. Concentrations normalized by source release rate, C/Q, were tested. For all PFTs, samplers, and release times, the median observed and predicted

  12. Solving large test-day models by iteration on data and preconditioned conjugate gradient.

    PubMed

    Lidauer, M; Strandén, I; Mäntysaari, E A; Pösö, J; Kettunen, A

    1999-12-01

    A preconditioned conjugate gradient method was implemented into an iteration on a program for data estimation of breeding values, and its convergence characteristics were studied. An algorithm was used as a reference in which one fixed effect was solved by Gauss-Seidel method, and other effects were solved by a second-order Jacobi method. Implementation of the preconditioned conjugate gradient required storing four vectors (size equal to number of unknowns in the mixed model equations) in random access memory and reading the data at each round of iteration. The preconditioner comprised diagonal blocks of the coefficient matrix. Comparison of algorithms was based on solutions of mixed model equations obtained by a single-trait animal model and a single-trait, random regression test-day model. Data sets for both models used milk yield records of primiparous Finnish dairy cows. Animal model data comprised 665,629 lactation milk yields and random regression test-day model data of 6,732,765 test-day milk yields. Both models included pedigree information of 1,099,622 animals. The animal model ¿random regression test-day model¿ required 122 ¿305¿ rounds of iteration to converge with the reference algorithm, but only 88 ¿149¿ were required with the preconditioned conjugate gradient. To solve the random regression test-day model with the preconditioned conjugate gradient required 237 megabytes of random access memory and took 14% of the computation time needed by the reference algorithm.

  13. Numerical simulations of radon as an in situ partitioning tracer for quantifying NAPL contamination using push-pull tests.

    PubMed

    Davis, B M; Istok, J D; Semprini, L

    2005-06-01

    Presented here is a reanalysis of results previously presented by [Davis, B.M., Istok, J.D., Semprini, L., 2002. Push-pull partitioning tracer tests using radon-222 to quantify non-aqueous phase liquid contamination. J. Contam. Hydrol. 58, 129-146] of push-pull tests using radon as a naturally occurring partitioning tracer for evaluating NAPL contamination. In a push-pull test where radon-free water and bromide are injected, the presence of NAPL is manifested in greater dispersion of the radon breakthrough curve (BTC) relative to the bromide BTC during the extraction phase as a result of radon partitioning into the NAPL. Laboratory push-pull tests in a dense or DNAPL-contaminated physical aquifer model (PAM) indicated that the previously used modeling approach resulted in an overestimation of the DNAPL (trichloroethene) saturation (S(n)). The numerical simulations presented here investigated the influence of (1) initial radon concentrations, which vary as a function of S(n), and (2) heterogeneity in S(n) distribution within the radius of influence of the push-pull test. The simulations showed that these factors influence radon BTCs and resulting estimates of S(n). A revised method of interpreting radon BTCs is presented here, which takes into account initial radon concentrations and uses non-normalized radon BTCs. This revised method produces greater radon BTC sensitivity at small values of S(n) and was used to re-analyze the results from the PAM push-pull tests reported by Davis et al. The re-analysis resulted in a more accurate estimate of S(n) (1.8%) compared with the previously estimated value (7.4%). The revised method was then applied to results from a push-pull test conducted in a light or LNAPL-contaminated aquifer at a field site, resulting in a more accurate estimate of S(n) (4.1%) compared with a previously estimated value (13.6%). The revised method improves upon the efficacy of the radon push-pull test to estimate NAPL saturations. A limitation of the

  14. Characterization of Min-K TE-1400 Thermal Insulation (Two-Year Gradient Stress Relaxation Testing Update)

    SciTech Connect

    Hemrick, James Gordon; Lara-Curzio, Edgar; King, James

    2009-09-01

    Min-K 1400TE insulation material was characterized at Oak Ridge National Laboratory for use in structural applications under gradient temperature conditions. A previous report (ORNL/TM-2008/089) discusses the testing and results from the original three year duration of the project. This testing included compression testing to determine the effect of sample size and test specimen geometry on the compressive strength of Min-K, subsequent compression testing on cylindrical specimens to determine loading rates for stress relaxation testing, isothermal stress relaxation testing, and gradient stress relaxation testing. This report presents the results from the continuation of the gradient temperature stress relaxation testing and the resulting updated modeling.

  15. Innovative techniques for the description of reservoir heterogeneity using tracers

    SciTech Connect

    Pope, G.; Sepehrnoori, K.

    1991-09-01

    The objective of this research is to develop an advanced, innovative technique for the description of reservoir heterogeneity. This proposed method consists of using tracers in single-well backflow tests. The general idea is to make use of fluid drift in the reservoir either due to naturally occurring pressure gradients in the reservoir, or by deliberately imposed pressure gradients using adjacent injection and production wells in the same reservoir. The analytical tool that will be used to design and interpret these tests is a compositional reservoir simulator with special features added and tested specifically for this purpose. 2 refs., 5 figs.

  16. Hydrological parameter estimations from a conservative tracer test with variable-density effects at the Boise Hydrogeophysical Research Site

    SciTech Connect

    Dafflon, Baptisite; Barrash, Warren; Cardiff, Michael A.; Johnson, Timothy C.

    2011-12-15

    Reliable predictions of groundwater flow and solute transport require an estimation of the detailed distribution of the parameters (e.g., hydraulic conductivity, effective porosity) controlling these processes. However, such parameters are difficult to estimate because of the inaccessibility and complexity of the subsurface. In this regard, developments in parameter estimation techniques and investigations of field experiments are still challenging and necessary to improve our understanding and the prediction of hydrological processes. Here we analyze a conservative tracer test conducted at the Boise Hydrogeophysical Research Site in 2001 in a heterogeneous unconfined fluvial aquifer. Some relevant characteristics of this test include: variable-density (sinking) effects because of the injection concentration of the bromide tracer, the relatively small size of the experiment, and the availability of various sources of geophysical and hydrological information. The information contained in this experiment is evaluated through several parameter estimation approaches, including a grid-search-based strategy, stochastic simulation of hydrological property distributions, and deterministic inversion using regularization and pilot-point techniques. Doing this allows us to investigate hydraulic conductivity and effective porosity distributions and to compare the effects of assumptions from several methods and parameterizations. Our results provide new insights into the understanding of variabledensity transport processes and the hydrological relevance of incorporating various sources of information in parameter estimation approaches. Among others, the variable-density effect and the effective porosity distribution, as well as their coupling with the hydraulic conductivity structure, are seen to be significant in the transport process. The results also show that assumed prior information can strongly influence the estimated distributions of hydrological properties.

  17. Hydrological parameter estimations from a conservative tracer test with variable-density effects at the Boise Hydrogeophysical Research Site

    NASA Astrophysics Data System (ADS)

    Dafflon, B.; Barrash, W.; Cardiff, M.; Johnson, T. C.

    2011-12-01

    Reliable predictions of groundwater flow and solute transport require an estimation of the detailed distribution of the parameters (e.g., hydraulic conductivity, effective porosity) controlling these processes. However, such parameters are difficult to estimate because of the inaccessibility and complexity of the subsurface. In this regard, developments in parameter estimation techniques and investigations of field experiments are still challenging and necessary to improve our understanding and the prediction of hydrological processes. Here we analyze a conservative tracer test conducted at the Boise Hydrogeophysical Research Site in 2001 in a heterogeneous unconfined fluvial aquifer. Some relevant characteristics of this test include: variable-density (sinking) effects because of the injection concentration of the bromide tracer, the relatively small size of the experiment, and the availability of various sources of geophysical and hydrological information. The information contained in this experiment is evaluated through several parameter estimation approaches, including a grid-search-based strategy, stochastic simulation of hydrological property distributions, and deterministic inversion using regularization and pilot-point techniques. Doing this allows us to investigate hydraulic conductivity and effective porosity distributions and to compare the effects of assumptions from several methods and parameterizations. Our results provide new insights into the understanding of variable-density transport processes and the hydrological relevance of incorporating various sources of information in parameter estimation approaches. Among others, the variable-density effect and the effective porosity distribution, as well as their coupling with the hydraulic conductivity structure, are seen to be significant in the transport process. The results also show that assumed prior information can strongly influence the estimated distributions of hydrological properties.

  18. Tracer test modeling for characterizing heterogeneity and local-scale residence time distribution in an artificial recharge site

    NASA Astrophysics Data System (ADS)

    Valhondo, Cristina; Martínez-Landa, Lurdes; Carrera, Jesús; Hidalgo, Juan J.; Tubau, Isabel; De Pourcq, Katrien; Grau-Martínez, Alba; Ayora, Carlos

    2016-10-01

    Artificial recharge of aquifers is a technique for improving water quality and increasing groundwater resources. Understanding the fate of a potential contaminant requires knowledge of the residence time distribution (RTD) of the recharged water in the aquifer beneath. A simple way to obtain the RTDs is to perform a tracer test. We performed a pulse injection tracer test in an artificial recharge system through an infiltration basin to obtain the breakthrough curves, which directly yield the RTDs. The RTDs turned out to be very broad and we used a numerical model to interpret them, to characterize heterogeneity, and to extend the model to other flow conditions. The model comprised nine layers at the site scaled to emulate the layering of aquifer deposits. Two types of hypotheses were considered: homogeneous (all flow and transport parameters identical for every layer) and heterogeneous (diverse parameters for each layer). The parameters were calibrated against the head and concentration data in both model types, which were validated quite satisfactorily against 1,1,2-Trichloroethane and electrical conductivity data collected over a long period of time with highly varying flow conditions. We found that the broad RTDs can be attributed to the complex flow structure generated under the basin due to three-dimensionality and time fluctuations (the homogeneous model produced broad RTDs) and the heterogeneity of the media (the heterogeneous model yielded much better fits). We conclude that heterogeneity must be acknowledged to properly assess mixing and broad RTDs, which are required to explain the water quality improvement of artificial recharge basins.

  19. TERA high gradient test program of RF cavities for medical linear accelerators

    NASA Astrophysics Data System (ADS)

    Degiovanni, A.; Amaldi, U.; Bonomi, R.; Garlasché, M.; Garonna, A.; Verdú-Andrés, S.; Wegner, R.

    2011-11-01

    The scientific community and the medical industries are putting a considerable effort into the design of compact, reliable and cheap accelerators for hadrontherapy. Up to now only circular accelerators are used to deliver beams with energies suitable for the treatment of deep seated tumors. The TERA Foundation has proposed and designed a hadrontherapy facility based on the cyclinac concept: a high gradient linear accelerator placed downstream of a cyclotron used as an injector. The overall length of the linac, and therefore its final cost, is almost inversely proportional to the average accelerating gradient achieved in the linac. TERA, in collaboration with the CLIC RF group, has started a high gradient test program. The main goal is to study the high gradient behavior of prototype cavities and to determine the appropriate linac operating frequency considering important issues such as machine reliability and availability of distributed power sources. A preliminary test of a 3 GHz cavity has been carried out at the beginning of 2010, giving encouraging results. Further investigations are planned before the end of 2011. A set of 5.7 GHz cavities is under production and will be tested in a near future. The construction and test of a multi-cell structure is also foreseen.

  20. Interpretation of Perfluorocarbon Tracer Data Collected During the Frio Carbon Dioxide Sequestration Test

    NASA Astrophysics Data System (ADS)

    McCallum, S. D.; Phelps, T. J.; Riestenberg, D. E.; Freifeld, B. M.; Trautz, R. C.

    2005-12-01

    In October of 2004 over 1600 tons of CO2 was injected into a brine-bearing sandstone unit within the Frio Formation. An injection well was used to introduce the CO2 into the Frio at a depth of 1540 meters below the surface. A monitoring well located 31 meters updip from the injection well was used to sample formation fluids and detect the breakthrough of the CO2 plume. Perfluorocarbon tracers (PFTs) were injected in three paired intervals at the beginning and middle of the CO2 injection. The four PFTs selected for injection were perfluoromethylcyclopentane (PMCP), perfluoromethylcyclohexane (PMCH), perfluorodimethylcyclohexane (PDCH), and perfluorotrimethylcyclohexane (PTCH). The PFTs were used as a means to monitor CO2 plume breakthroughs and aid in the interpretation of CO2 flow path development. Fluid samples were collected at the monitoring well during and after the CO2 and PFT injections. These samples were later analyzed in the laboratory to measure the concentration of PFTs. Laboratory analysis was performed using a gas chromatograph (GC) equipped with an electron capture detector (ECD). Standardization of the data set was achieved by dividing C by Cno (C/Cno), where C is the molar mass of PFT and CO2 recovered and Cno is the initial molar mass of PFT and CO2 injected. The C/Cno data showed the amount of PFT dilution that occurred between injection and collection. Analysis of the C/Cno data revealed three breakthrough peaks corresponding with the three PFT injections at 54, 157, and 173 hours after the start of CO2 injection, with an average travel time of 51 hours for each injection. With each subsequent PFT peak a greater amount of PFT dilution was observed along with a broadening of the breakthrough peak. The first PFT breakthrough spans 10 hours, the second spans 20 hours and the third spans 24 hours. The increase in peak broadness observed in each subsequent breakthrough may have been caused by increased CO2 saturation. Since PFTs are more soluble in CO

  1. Comparison of agar dilution and antibiotic gradient strip test with broth microdilution for susceptibility testing of swine Brachyspira species.

    PubMed

    Mirajkar, Nandita S; Gebhart, Connie J

    2016-03-01

    Production-limiting diseases in swine caused by Brachyspira are characterized by mucohemorrhagic diarrhea (B. hyodysenteriae and "B. hampsonii") or mild colitis (B. pilosicoli), while B. murdochii is often isolated from healthy pigs. Emergence of novel pathogenic Brachyspira species and strains with reduced susceptibility to commonly used antimicrobials has reinforced the need for standardized susceptibility testing. Two methods are currently used for Brachyspira susceptibility testing: agar dilution (AD) and broth microdilution (BMD). However, these tests have primarily been used for B. hyodysenteriae and rarely for B. pilosicoli. Information on the use of commercial susceptibility testing products such as antibiotic gradient strips is lacking. Our main objective was to validate and compare the susceptibility results, measured as the minimum inhibitory concentration (MIC), of 6 antimicrobials for 4 Brachyspira species (B. hyodysenteriae, "B. hampsonii", B. pilosicoli, and B. murdochii) by BMD and AD (tiamulin, valnemulin, lincomycin, tylosin, and carbadox) or antibiotic gradient strip (doxycycline) methods. In general, the results of a high percentage of all 4 Brachyspira species differed by ±1 log2 dilution or less by BMD and AD for tiamulin, valnemulin, lincomycin, and tylosin, and by BMD and antibiotic gradient strip for doxycycline. The carbadox MICs obtained by BMD were 1-5 doubling dilutions different than those obtained by AD. BMD for Brachyspira was quicker to perform with less ambiguous interpretation of results when compared with AD and antibiotic gradient strip methods, and the results confirm the utility of BMD in routine diagnostics.

  2. Functional linear models to test for differences in prairie wetland hydraulic gradients

    USGS Publications Warehouse

    Greenwood, Mark C.; Sojda, Richard S.; Preston, Todd M.; Swayne, David A.; Yang, Wanhong; Voinov, A.A.; Rizzoli, A.; Filatova, T.

    2010-01-01

    Functional data analysis provides a framework for analyzing multiple time series measured frequently in time, treating each series as a continuous function of time. Functional linear models are used to test for effects on hydraulic gradient functional responses collected from three types of land use in Northeastern Montana at fourteen locations. Penalized regression-splines are used to estimate the underlying continuous functions based on the discretely recorded (over time) gradient measurements. Permutation methods are used to assess the statistical significance of effects. A method for accommodating missing observations in each time series is described. Hydraulic gradients may be an initial and fundamental ecosystem process that responds to climate change. We suggest other potential uses of these methods for detecting evidence of climate change.

  3. Testing alternative hypotheses for evolutionary diversification in an African songbird: rainforest refugia versus ecological gradients.

    PubMed

    Kirschel, Alexander N G; Slabbekoorn, Hans; Blumstein, Daniel T; Cohen, Rachel E; de Kort, Selvino R; Buermann, Wolfgang; Smith, Thomas B

    2011-11-01

    Geographic isolation in rainforest refugia and local adaptation to ecological gradients may both be important drivers of evolutionary diversification. However, their relative importance and the underlying mechanisms of these processes remain poorly understood because few empirical studies address both putative processes in a single system. A key question is to what extent is divergence in signals that are important in mate and species recognition driven by isolation in rainforest refugia or by divergent selection across ecological gradients? We studied the little greenbul, Andropadus virens, an African songbird, in Cameroon and Uganda, to determine whether refugial isolation or ecological gradients better explain existing song variation. We then tested whether song variation attributable to refugial or ecological divergence was biologically meaningful using reciprocal playback experiments to territorial males. We found that much of the existing song variation can be explained by both geographic isolation and ecological gradients, but that divergence across the gradient, and not geographic isolation, affects male response levels. These data suggest that ecologically divergent traits, independent of historical isolation during glacial cycles, can promote reproductive isolation. Our study provides further support for the importance of ecology in explaining patterns of evolutionary diversification in ecologically diverse regions of the planet.

  4. A servo controlled gradient loading triaxial model test system for deep-buried cavern

    NASA Astrophysics Data System (ADS)

    Chen, Xu-guang; Zhang, Qiang-yong; Li, Shu-cai

    2015-10-01

    A servo controlled gradient loading model test system is developed to simulate the gradient geostress in deep-buried cavern. This system consists of the gradient loading apparatus, the digital servo control device, and the measurement system. Among them, the gradient loading apparatus is the main component which is used for exerting load onto the model. This loading apparatus is placed inside the counterforce wall/beam and is divided to several different loading zones, with each loading zone independently controlled. This design enables the gradient loading. Hence, the "real" geostress field surrounding the deep-buried cavern can be simulated. The loading or unloading process can be controlled by the human-computer interaction machines, i.e., the digital servo control system. It realizes the automation and visualization of model loading/unloading. In addition, this digital servo could control and regulate hydraulic loading instantaneously, which stabilizes the geostress onto the model over a long term. During the loading procedure, the collision between two adjacent loading platens is also eliminated by developing a guide frame. This collision phenomenon is induced by the volume shrinkage of the model when compressed in true 3D state. In addition, several accurate measurements, including the optical and grating-based method, are adopted to monitor the small deformation of the model. Hence, the distortion of the model could be accurately measured. In order to validate the performance of this innovative model test system, a 3D geomechanical test was conducted on a simulated deep-buried underground reservoir. The result shows that the radial convergence increases rapidly with the release of the stress in the reservoir. Moreover, the deformation increases with the increase of the gas production rate. This observation is consistence with field observation in petroleum engineering. The system is therefore capable of testing deep-buried engineering structures.

  5. A servo controlled gradient loading triaxial model test system for deep-buried cavern.

    PubMed

    Chen, Xu-guang; Zhang, Qiang-yong; Li, Shu-cai

    2015-10-01

    A servo controlled gradient loading model test system is developed to simulate the gradient geostress in deep-buried cavern. This system consists of the gradient loading apparatus, the digital servo control device, and the measurement system. Among them, the gradient loading apparatus is the main component which is used for exerting load onto the model. This loading apparatus is placed inside the counterforce wall/beam and is divided to several different loading zones, with each loading zone independently controlled. This design enables the gradient loading. Hence, the "real" geostress field surrounding the deep-buried cavern can be simulated. The loading or unloading process can be controlled by the human-computer interaction machines, i.e., the digital servo control system. It realizes the automation and visualization of model loading/unloading. In addition, this digital servo could control and regulate hydraulic loading instantaneously, which stabilizes the geostress onto the model over a long term. During the loading procedure, the collision between two adjacent loading platens is also eliminated by developing a guide frame. This collision phenomenon is induced by the volume shrinkage of the model when compressed in true 3D state. In addition, several accurate measurements, including the optical and grating-based method, are adopted to monitor the small deformation of the model. Hence, the distortion of the model could be accurately measured. In order to validate the performance of this innovative model test system, a 3D geomechanical test was conducted on a simulated deep-buried underground reservoir. The result shows that the radial convergence increases rapidly with the release of the stress in the reservoir. Moreover, the deformation increases with the increase of the gas production rate. This observation is consistence with field observation in petroleum engineering. The system is therefore capable of testing deep-buried engineering structures.

  6. A servo controlled gradient loading triaxial model test system for deep-buried cavern

    SciTech Connect

    Chen, Xu-guang; Zhang, Qiang-yong; Li, Shu-cai

    2015-10-15

    A servo controlled gradient loading model test system is developed to simulate the gradient geostress in deep-buried cavern. This system consists of the gradient loading apparatus, the digital servo control device, and the measurement system. Among them, the gradient loading apparatus is the main component which is used for exerting load onto the model. This loading apparatus is placed inside the counterforce wall/beam and is divided to several different loading zones, with each loading zone independently controlled. This design enables the gradient loading. Hence, the “real” geostress field surrounding the deep-buried cavern can be simulated. The loading or unloading process can be controlled by the human-computer interaction machines, i.e., the digital servo control system. It realizes the automation and visualization of model loading/unloading. In addition, this digital servo could control and regulate hydraulic loading instantaneously, which stabilizes the geostress onto the model over a long term. During the loading procedure, the collision between two adjacent loading platens is also eliminated by developing a guide frame. This collision phenomenon is induced by the volume shrinkage of the model when compressed in true 3D state. In addition, several accurate measurements, including the optical and grating-based method, are adopted to monitor the small deformation of the model. Hence, the distortion of the model could be accurately measured. In order to validate the performance of this innovative model test system, a 3D geomechanical test was conducted on a simulated deep-buried underground reservoir. The result shows that the radial convergence increases rapidly with the release of the stress in the reservoir. Moreover, the deformation increases with the increase of the gas production rate. This observation is consistence with field observation in petroleum engineering. The system is therefore capable of testing deep-buried engineering structures.

  7. Southeast Geyers Cooperative Tracer Evaluation and Testing Program for the Purpose of Estimating The Efficiency of Injection

    SciTech Connect

    J.L. Smith

    2001-02-12

    The Southeast Geysers Cooperative Tracer Evaluation Program has been a joint project located in the SE part of the Geysers geothermal field, in Lake and Sonoma Counties, California. A new generation of environmentally benign vapor-phase tracers has been used to estimate the varying degrees to which injectate is being recovered following the significant increase of injected volumes within the Southeast Geysers.

  8. Inferences about Shear Zone Flow Pathways between CFM 06.002i2 and Pinkel from Tracer Tests 10-01 to 12-02

    SciTech Connect

    Reimus, Paul W.

    2012-06-26

    This presentation provides an analysis of several tracer tests conducted at the Grimsel Test Site, Switzerland, between 2010 and early 2012, with the objective of testing a conceptual model of flow through the shear zone in which the tracer tests were conducted. The analysis includes predictions of tracer residence times in each of two flow pathways in the shear zone as a function of injection and extraction flow rates in the tracer tests. Conclusions are: (1) Separation of shear zone flow between CFM 06.002i2 and Pinkel into two predominant flow pathways seems reasonable; (2) Conceptual model is that travel time in pathway 1 is dependent on injection flow rate, and travel time in pathway 2 is dependent on extraction flow rate; (3) Predict residence time (in hours) in Pathway 1 equal to {approx}9.9/(Injection Flow Rate, ml/min), provided injection interval flow is greater than about 0.15 ml/min (which is not reliably achieved under natural flow/dilution conditions after installation of CFM 11.00X holes); and (4) Predict residence time of {approx}8 hrs in Pathway 2 with extraction flow rate of 25 ml/min.

  9. On the use of flow-storage repartitions derived from artificial tracer tests for geothermal reservoir characterization in the Malm-Molasse basin: a theoretical study

    NASA Astrophysics Data System (ADS)

    Dewi, Dina Silvia; Osaigbovo Enomayo, Augustine; Mohsin, Rizwan; Karmakar, Shyamal; Ghergut, Julia; Sauter, Martin

    2016-04-01

    Flow-storage repartition (FSR) analysis (Shook 2003) is a versatile tool for characterizing subsurface flow and transport systems. FSR can be derived from measured signals of inter-well tracer tests, if certain requirements are met - basically, the same as required for equivalence between fluid residence time distribution (RTD) and a measured inter-well tracer signal (pre-processed and de-convolved if necessary). Nominally, a FSR is derived from a RTD as a trajectory in normalized {1st, 0th}-order statistical moment space; more intuitively, as a parametric plot of 0th-order against 1st-order statistical moments of RTD truncated at time t, with t as a parameter running from the first tracer input to the latest available tracer sampling; 0th-order moments being normalized by the total tracer recovery, and 1st-order moments by the mean RT. Fracture-dominated systems plot in the upper left (high F , low S) region of FSR diagrams; a homogeneous single-continuum with no dispersion (infinite Peclet number) displays a straight line from {F ,S}={0,0} to {F ,S}={1,1}. This analysis tool appears particularly attractive for characterizing markedly-heterogeneous, porous-fissured-fractured (partly karstified) formations like those targeted by geothermal exploration in the Malm-Molasse basin in Southern Germany, and especially for quantifying flow and transport contributions from contrasting facies types ('reef' versus 'bedded'). However, tracer tests conducted in such systems with inter-well distances of some hundreds of metres (as required by economic considerations on geothermal reservoir sizing) face the problem of very long residence times - and thus the need to deal with incomplete (truncated) signals. For the geothermal well triplet at the Sauerlach site near Munich, tracer peak arrival times exceeding 2 years have been predicted, and signal tails decreasing by less than 50% over >10 years, which puts great uncertainty on the (extrapolation-based) normalizing factors

  10. Predicting the denitrification capacity of sandy aquifers from in situ measurements using push-pull 15N tracer tests

    NASA Astrophysics Data System (ADS)

    Eschenbach, W.; Well, R.; Walther, W.

    2015-04-01

    Knowledge about the spatial variability of in situ denitrification rates (Dr(in situ)) and their relation to the denitrification capacity in nitrate-contaminated aquifers is crucial to predict the development of groundwater quality. Therefore, 28 push-pull 15N tracer tests for the measurement of in situ denitrification rates were conducted in two sandy Pleistocene aquifers in northern Germany. The 15N analysis of denitrification-derived 15N-labelled N2 and N2O dissolved in water samples collected during the push-pull 15N tracer tests was performed using isotope ratio mass spectrometry (IRMS) in the lab and additionally for some tracer tests online in the field with a quadrupole membrane inlet mass spectrometer (MIMS) in order to test the feasibility of on-site real-time 15N analysis. Aquifer material from the same locations and depths as the push-pull injection points was incubated, and the initial and cumulative denitrification after 1 year of incubation (Dcum(365)) as well as the stock of reduced compounds (SRC) was compared with in situ measurements of denitrification. This was done to derive transfer functions suitable to predict Dcum(365) and SRC from Dr(in situ). Dr(in situ) ranged from 0 to 51.5 μg N kg-1 d-1. Denitrification rates derived from on-site isotope analysis using MIMS satisfactorily coincided with laboratory analysis by conventional IRMS, thus proving the feasibility of in situ analysis. Dr(in situ) was significantly higher in the sulfidic zone of both aquifers compared to the zone of non-sulfidic aquifer material. Overall, regressions between the Dcum(365) and SRC of the tested aquifer material with Dr(in situ) exhibited only a modest linear correlation for the full data set. However, the predictability of Dcum(365) and SRC from Dr(in situ) data clearly increased for aquifer samples from the zone of NO3--bearing groundwater. In the NO3--free aquifer zone, a lag phase of denitrification after NO3- injections was observed, which confounded the

  11. Predicting the denitrification capacity of sandy aquifers from in situ measurements using push-pull 15N tracer tests

    NASA Astrophysics Data System (ADS)

    Eschenbach, W.; Well, R.; Walther, W.

    2014-12-01

    Knowledge about the spatial variability of in situ denitrification rates (Dr(in situ)) and their relation to the denitrification capacity in nitrate-contaminated aquifers is crucial to predict the development of groundwater quality. Therefore, 28 push-pull 15N tracer tests for the measurement of in situ denitrification rates were conducted in two sandy Pleistocene aquifers in Northern Germany. The 15N analysis of denitrification derived 15N labelled N2 and N2O dissolved in water samples collected during the push-pull 15N tracer tests was performed by isotope ratio mass spectrometry (IRMS) in the lab and additionally for some tracer tests online in the field with a quadrupole membrane inlet mass spectrometer (MIMS), in order to test the feasibility of on-site real-time 15N analysis. Aquifer material from the same locations and depths as the push-pull injection points was incubated and the initial and cumulative denitrification after one year of incubation (Dcum(365)) as well as the stock of reduced compounds (SRC) was compared with in situ measurements of denitrification. This was done to derive transfer functions suitable to predict Dcum(365) and SRC from Dr(in situ). Dr(in situ) ranged from 0 to 51.5 μg N kg-1 d-1. Denitrification rates derived from on-site isotope analysis using membrane-inlet mass spectrometry satisfactorily coincided with laboratory analysis by conventional isotope ratio mass spectrometry, thus proving the feasibility of in situ analysis. Dr(in situ) was significantly higher in the sulphidic zone of both aquifers compared to the zone of non-sulphidic aquifer material. Overall, regressions between the Dcum(365) and SRC of the tested aquifer material with Dr(in situ) exhibited only a modest linear correlation for the full data set. But the predictability of Dcum(365) and SRC from Dr(in situ) data clearly increased for aquifer samples from the zone of NO3--bearing groundwater. In the NO3--free aquifer zone a lag phase of denitrification after NO3

  12. Cosmological constraints from the redshift dependence of the Alcock-Paczynski test: galaxy density gradient field

    SciTech Connect

    Li, Xiao-Dong; Park, Changbom; Forero-Romero, J. E.; Kim, Juhan E-mail: cbp@kias.re.kr E-mail: kjhan@kias.re.kr

    2014-12-01

    We propose a method based on the redshift dependence of the Alcock-Paczynski (AP) test to measure the expansion history of the universe. It uses the isotropy of the galaxy density gradient field to constrain cosmological parameters. If the density parameter Ω {sub m} or the dark energy equation of state w are incorrectly chosen, the gradient field appears to be anisotropic with the degree of anisotropy varying with redshift. We use this effect to constrain the cosmological parameters governing the expansion history of the universe. Although redshift-space distortions (RSD) induced by galaxy peculiar velocities also produce anisotropies in the gradient field, these effects are close to uniform in magnitude over a large range of redshift. This makes the redshift variation of the gradient field anisotropy relatively insensitive to the RSD. By testing the method on mock surveys drawn from the Horizon Run 3 cosmological N-body simulations, we demonstrate that the cosmological parameters can be estimated without bias. Our method is complementary to the baryon acoustic oscillation or topology methods as it depends on D{sub AH} , the product of the angular diameter distance and the Hubble parameter.

  13. Testing the facilitation–competition paradigm under the stress-gradient hypothesis: decoupling multiple stress factors

    PubMed Central

    Kawai, Takashi; Tokeshi, Mutsunori

    2007-01-01

    While the facilitation–competition paradigm under the stress-gradient hypothesis has received recent attention, its rigorous testing is yet to be explored. Most of the studies have considered a switch in the net interactions from competition to facilitation with increasing environmental stress as primary evidence supporting the hypothesis, though few studies examined changes in interaction along a full range of a stress gradient. Here, we have conceptualized possible variations in the patterns of change in interaction strength along such gradient. Based on this, we empirically evaluated the temporal shift in the interaction between two marine sessile animals, goose barnacles (Capitulum mitella) and mussels (Septifer virgatus), under multiple stress factors. The net effect of goose barnacles on mussel survivorship was positively related to the total stress gradient encompassing two stress factors, physical disturbance and thermal stress, while no negative value occurred even under mild conditions. When the two stress factors were treated separately, however, the net effect demonstrated apparently different patterns: monotonic increase with physical disturbance versus a quasi-asymptotic pattern (no change over a wide range) with thermal stress. These variable situations have not previously been recognized in this discipline, and the present study emphasizes the importance of an integrative and mechanistic approach to testing and deciphering the facilitation–competition paradigm. PMID:17686725

  14. Migration of fission products at the Nevada Test Site: Detection with an isotopic tracer

    SciTech Connect

    Thompton, J.L.; Gilmore, J.S. )

    1989-01-01

    Researchers at Los Alamos National Laboratory are studying the migration of fission products away from explosion cavities formed by underground nuclear tests at the Nevada Test Site. In some cases, the isotopic composition of the fission products or activation products associated with a particular test are distinctive and we may identify them many years after the event. In this paper we describe a case in which we used rhodium isotopes to identify the source of radioactive material that had moved some 350 m from the explosion site. 4 refs., 2 figs., 2 tabs.

  15. Modified Whole Effluent Toxicity Test to Assess and Decouple Wastewater Effects from Environmental Gradients

    PubMed Central

    Sauco, Sebastián; Gómez, Julio; Barboza, Francisco R.; Lercari, Diego; Defeo, Omar

    2013-01-01

    Environmental gradients and wastewater discharges produce aggregated effects on marine populations, obscuring the detection of human impact. Classical assessment methods do not include environmental effects in toxicity tests designs, which could lead to incorrect conclusions. We proposed a modified Whole Effluent Toxicity test (mWET) that includes environmental gradients in addition to effluent dilutions, together with the application of Generalized Linear Mixed Models (GLMM) to assess and decouple those effects. We tested this approach, analyzing the lethal effects of wastewater on a marine sandy beach bivalve affected by an artificial canal freshwater discharge used for rice crops irrigation. To this end, we compared bivalve mortality between canal water dilutions (CWd) and salinity controls (SC: without canal water). CWd were prepared by diluting the water effluent (sampled during the pesticide application period) with artificial marine water. The salinity gradient was included in the design by achieving the same final salinities in both CWd and SC, allowing us to account for the effects of salinity by including this variable as a random factor in the GLMM. Our approach detected significantly higher mortalities in CWd, indicating potential toxic effects of the effluent discharge. mWET represents an improvement over the internationally standardized WET tests, since it considers environmental variability and uses appropriate statistical analyses. PMID:23755304

  16. A new tracer-density criterion for heterogeneous porous media

    USGS Publications Warehouse

    Barth, G.R.; Illangasekare, T.H.; Hill, M.C.; Rajaram, H.

    2001-01-01

    Tracerexperiments provide information about aquifer material properties vital for accurate site characterization. Unfortunately, density-induced sinking can distort tracer movement, leading to an inaccurate assessment of material properties. Yet existing criteria for selecting appropriate tracer concentrations are based on analysis of homogeneous media instead of media with heterogeneities typical of field sites. This work introduces a hydraulic-gradient correction for heterogeneous media and applies it to a criterion previously used to indicate density-induced instabilities in homogeneous media. The modified criterion was tested using a series of two-dimensional heterogeneous intermediate-scale tracer experiments and data from several detailed field tracer tests. The intermediate-scale experimental facility (10.0 ?? 1.2 ?? 0.06 m) included both homogeneous and heterogeneous (??2/In ?? = 1.22) zones. The field tracer tests were less heterogeneous (0.24 < ??2/ln ?? < 0.37), but measurements were sufficient to detect density-induced sinking. Evaluation of the modified criterion using the experiments and field tests demonstrates that the new criterion appears to account for the change in density-induced sinking due to heterogeneity. The criterion demonstrates the importance of accounting for heterogeneity to predict density-induced sinking and differences in the onset of density induced sinking in two-and three-dimensional systems.

  17. Implications of a Multi-well Tracer Test in the Transport of Pathogens at a Riverbank Filtration Experiment Site.

    NASA Astrophysics Data System (ADS)

    Langford, R. P.; Pillai, S.; Schulze-Makuch, D.; Widmer, K.; Abdel-Fattah, A.; Lerhner, T.

    2003-12-01

    This study tracks the transport of bromide and microspheres mimicking pathogens in an arid environment. The study site uses the Rio Grande that experiences significant annual fluctuations in both water quantity and quality. The pumping well is 17 m from the stream bank and the water table was 2 m below the stream surface. The aquifer is medium and fine-grained sand comprising two flow units. Observation wells are screened over 1 or 1.5 m intervals. The average hydraulic conductivity was about 2 x 10-3 m/s based on a test analysis, however, the responses indicated that sediment heterogeneities affected the hydraulic behavior. A 427 hour tracer test using bromide and fluorescent microspheres provides initial results that are relevant to the transport of pathogens through the subsurface under riverbank filtration conditions. Bromide was injected into an observation well at the channel margin. Differently colored fluorescent microspheres (0.25nm, 1?m, 6?m and 10?m) were injected into the stream bottom and into two observation wells. Conclusions from the tracer test are: 1) Both bromide and microspheres continued to be observed throughout the 18 days of the experiment. 2) The bromide recovery in the pumping well and in the deeper observation wells showed early and late peaks with a long tails indicating that the geological medium at the field site behaves like a double-porosity medium allowing the tracer to move relatively quickly through the higher conductivity units while being significantly retarded in the low hydraulic conductivity units. 3) Some wells showed consistently higher concentrations of bromide. 4) The 1? micospheres were abundant in the observation wells and allowed tracing of flowpaths. These showed multiple peaks similar to the bromide results. This indicates highly preferential transport paths in the sediment. 5) Microspheres from the three injection sites had distinctly different transport paths and rates. 6) Both bromide and microspheres appeared in

  18. First high gradient test results of a dressed 325 MHz superconducting single spoke resonator at Fermilab

    SciTech Connect

    Webber, R.C.; Khabiboulline, T.; Madrak, R.; Nicol, T.; Ristori, L.; Soyars, W.; Wagner, R.; /Fermilab

    2010-09-01

    A new superconducting RF cavity test facility has been commissioned at Fermilab in conjunction with first tests of a 325 MHz, {beta} = 0.22 superconducting single-spoke cavity dressed with a helium jacket and prototype tuner. The facility is described and results of full gradient, CW cavity tests with a high Q{sub ext} drive coupler are reported. Sensitivities to Q disease and externally applied magnetic fields were investigated. Results are compared to bare cavity results obtained prior to hydrogen degassing and welding into the helium jacket.

  19. Technological issues and high gradient test results on X-band molybdenum accelerating structures

    NASA Astrophysics Data System (ADS)

    Spataro, B.; Alesini, D.; Chimenti, V.; Dolgashev, V.; Haase, A.; Tantawi, S. G.; Higashi, Y.; Marrelli, C.; Mostacci, A.; Parodi, R.; Yeremian, A. D.

    2011-11-01

    Two 11.424 GHz single cell standing wave accelerating structures have been fabricated for high gradient RF breakdown studies. Both are brazed structures: one made from copper and the other from sintered molybdenum bulk. The tests results are presented and compared to those of similar devices constructed at SLAC ( Stanford Linear Accelerator Center) and KEK ( Kō Enerugī Kasokuki Kenkyū Kikō). The technological issues to build both sections are discussed.

  20. Technological Issues and High Gradient Test Results on X-Band Molybdenum Accelerating Structures

    SciTech Connect

    Spataro, B.; Alesini, D.; Chimenti, V.; Dolgashev, V.; Haase, A.; Tantawi, S.G.; Higashi, Y.; Marrelli, C.; Mostacci, A.; Parodi, R.; Yeremian, A.D.; /SLAC

    2012-04-24

    Two 11.424 GHz single cell standing wave accelerating structures have been fabricated for high gradient RF breakdown studies. Both are brazed structures: one made from copper and the other from sintered molybdenum bulk. The tests results are presented and compared to those of similar devices constructed at SLAC (Stanford Linear Accelerator Center) and KEK (Ko Enerugi Kasokuki Kenkyu Kiko). The technological issues to build both sections are discussed.

  1. Trends in education gradients of 'preventable' mortality: a test of fundamental cause theory.

    PubMed

    Masters, Ryan K; Link, Bruce G; Phelan, Jo C

    2015-02-01

    Fundamental cause theory explains persisting associations between socioeconomic status and mortality in terms of personal resources such as knowledge, money, power, prestige, and social connections, as well as disparate social contexts related to these resources. We review evidence concerning fundamental cause theory and test three central claims using the National Health Interview Survey Linked Mortality Files 1986-2004. We then examine cohort-based variation in the associations between a fundamental social cause of disease, educational attainment, and mortality rates from heart disease, other "preventable" causes of death, and less preventable causes of death. We further explore race/ethnic and gender variation in these associations. Overall, findings are consistent with nearly all features of fundamental cause theory. Results show, first, larger education gradients in mortality risk for causes of death that are under greater human control than for less preventable causes of death, and, second, that these gradients grew more rapidly across successive cohorts than gradients for less preventable causes. Results also show that relative sizes and cohort-based changes in the education gradients vary substantially by race/ethnicity and gender.

  2. High gradient test of the HINS SSR1 single spoke resonator

    SciTech Connect

    Gonin, I.; Khabibouline, T.; Lanfranco, G.; Mukherjee, A.; Ozelis, JH.; Ristori, L.; Sergatskov, A.; Wagner, R.; Webber, R.; /Fermilab

    2008-09-01

    Eighteen {beta} = 0.21 superconducting single spoke resonators comprise the first state in the cold section of the 8-GeV H{sup -} Linac for Fermilab's proposed Project X. After Buffered Chemical Polishing and High Pressure Rinse, one resonator has undergone high gradient RF testing at 2.0-4.5 K in the Vertical Test Stand at Fermilab. They present measurements of the surface resistance as a function of temperature and the quality factor as a function of accelerating field. The resonator reached an accelerating field of 18.0 MV/m.

  3. Effect of tracer buoyancy on tracer experiments conducted in fractured crystalline bedrock

    NASA Astrophysics Data System (ADS)

    Becker, Matthew W.

    2003-02-01

    Tracer buoyancy has been shown to influence breakthrough from two-well tracer experiments conducted in porous media. Two-well tracer experiments are presented from fractured crystalline bedrock, in which the specific gravity of the tracer injectate varied from 1.0002 to 1.0133. Under the forced hydraulic conditions imposed, no difference in breakthrough was noted for the three experiments. These results show that even relatively dense tracer injectate solutions may have an insignificant effect on breakthrough when imposed gradients are sufficiently large.

  4. Coupled and uncoupled hydrogeophysical inversions using ensemble Kalman filter assimilation of ERT-monitored tracer test data

    NASA Astrophysics Data System (ADS)

    Camporese, Matteo; Cassiani, Giorgio; Deiana, Rita; Salandin, Paolo; Binley, Andrew

    2015-05-01

    Recent advances in geophysical methods have been increasingly exploited as inverse modeling tools in groundwater hydrology. In particular, several attempts to constrain the hydrogeophysical inverse problem to reduce inversion errors have been made using time-lapse geophysical measurements through both coupled and uncoupled (also known as sequential) inversion approaches. Despite the appeal and popularity of coupled inversion approaches, their superiority over uncoupled methods has not been proved conclusively; the goal of this work is to provide an objective comparison between the two approaches within a specific inversion modeling framework based on the ensemble Kalman filter (EnKF). Using EnKF and a model of Lagrangian transport, we compare the performance of a fully coupled and uncoupled inversion method for the reconstruction of heterogeneous saturated hydraulic conductivity fields through the assimilation of ERT-monitored tracer test data. The two inversion approaches are tested in a number of different scenarios, including isotropic and anisotropic synthetic aquifers, where we change the geostatistical parameters used to generate the prior ensemble of hydraulic conductivity fields. Our results show that the coupled approach outperforms the uncoupled when the prior statistics are close to the ones used to generate the true field. Otherwise, the coupled approach is heavily affected by "filter inbreeding" (an undesired effect of variance underestimation typical of EnKF), while the uncoupled approach is more robust, being able to correct biased prior information, thanks to its capability of capturing the solute travel times even in presence of inversion artifacts such as the violation of mass balance. Furthermore, the coupled approach is more computationally intensive than the uncoupled, due to the much larger number of forward runs required by the electrical model. Overall, we conclude that the relative merit of the coupled versus the uncoupled approach cannot

  5. Cyclic Failure Mechanisms of Thermal and Environmental Barrier Coating Systems Under Thermal Gradient Test Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Plasma-sprayed ZrO2-8wt%Y2O3 and mullite+BSAS/Si multilayer thermal and environmental barrier coating (TBC-EBC) systems on SiC/SiC ceramic matrix composite (CMC) substrates were thermally cyclic tested under high thermal gradients using a laser high-heat-flux rig in conjunction with furnace exposure in water-vapor environments. Coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after exposure. Sintering kinetics of the coating systems were also independently characterized using a dilatometer. It was found that the coating failure involved both the time-temperature dependent sintering and the cycle frequency dependent cyclic fatigue processes. The water vapor environments not only facilitated the initial coating conductivity increases due to enhanced sintering and interface reaction, but also promoted later conductivity reductions due to the accelerated coating cracking and delamination. The failure mechanisms of the coating systems are also discussed based on the cyclic test results and are correlated to the sintering and thermal stress behavior under the thermal gradient test conditions.

  6. Ellenberg's water table experiment put to the test: species optima along a hydrological gradient.

    PubMed

    Bartelheimer, Maik; Poschlod, Peter

    2016-08-01

    An important aspect of niche theory is the position of species' optima along ecological gradients. It is widely believed that a species' ecological optimum takes its shape only under competitive pressure. The ecological optimum, therefore, is thought to differ from the physiological optimum in the absence of interspecific competition. Ellenberg's Hohenheim water table experiment has been very influential in this context. However, the water table gradient in Ellenberg's experiment was produced by varying the soil thickness above the water table, which confounded the potentially disparate impacts of water table depth (WTD) and soil depth on species growth. Accordingly, here we have re-evaluated Ellenberg's work. Specifically, we tested the hypothesis that physiological and ecological optima are identical and unaffected by interspecific interaction. We used the same six grasses as in Ellenberg's experiments, but in our mesocosms, WTD was varied but soil depth kept constant. The design included both an additive component (with/without plant interaction) and a substitutive component (monocultures vs. species mixtures). The results show that the physiological optima along the hydrological gradient varied greatly between species, even in the absence of interspecific interaction. Within species, however, physiological and ecological optima appeared identical in most cases, irrespective of the competition treatment. We conclude that the 'physiological capacity' of species largely determines where they are able to persist and that any impact of interspecific interaction is only marginal. These findings are at variance with Ellenberg's rule, where competition is considered to shift the distribution of a species away from its physiological optimum.

  7. Hydrogeology and results of tracer tests at the old Tampa well field in Hillsborough County, with implications for wellhead-protection strategies in west-central Florida

    USGS Publications Warehouse

    Robinson, J.L.

    1995-01-01

    Wellhead-protection strategies were evaluated for the Upper Floridan aquifer of west-central Florida using the old Tampa well field in northeastern Hillsborough County, Florida, as a test site. The upper 400 feet of the Upper Floridan aquifer responded to pumping as an equivalent, porous medium for a range of discharge rates from 450 to 1,000 gallons per minute. Transmissivity and storage coefficient values determined for the Upper Floridan aquifer were 23,000 feet squared per day and 0.0001, respectively. Rock cores from the Upper Floridan aquifer have effective porosity values from 21 to 46 percent. Tracer tests were conducted using a fluorescent dye. A bimodal distribution of tracer arrival times indicates ground-water flow through a dual porosity system. Analysis of tracer test results an effective porosity of 25 percent and a longitudinal dispersivity of 1.3 feet for the aquifer matrix. A numerical aquifer-simulation equivalent porous media model of the Upper Floridan aquifer was calibrated using results of aquifer tests. A particle-tracking program was used to simulate the matrix flow groundwater travel time measured with the fluorescent dye tracer test. An evaluation of wellhead-protection strategies was conducted using the particle-tracking program to simulate areas of contribution from the aquifer matrix. The results of this study demonstrate the heterogeneity of the Upper Floridan aquifer. Because of this heterogeneity, the use of uniform porosity models to delineate time-related areas of wellhead protection in the karst Upper Floridan aquifer is inappropriate; however, ground-water movement in the aquifer matrix can be simulated with uniform porosity models.

  8. Evaluation of the heat-storage capability of shallow aquifers using active heat tracer tests and Fiber-Optics Distributed-Temperature-Sensing

    NASA Astrophysics Data System (ADS)

    Suibert Oskar Seibertz, Klodwig; Chirila, Marian Andrei; Bumberger, Jan; Dietrich, Peter; Vienken, Thomas

    2015-04-01

    In the course of the energy transition, geothermal energy storage and heat generation and cooling have proven to be environmental friendly alternatives to conventional energy. However, to ensure sustain usage, the heat transport behavior of aquifers and its distribution has to be studied. A tool to achieve this is the active heat tracer test, eg. Leaf et al. (2012). If active heat tracer tests are combined with in aquifer heat testing via electric heating-cables, eg. Liu et al. (2013), it is possible to observe heat transport and temperature signal decay without disturbing the original pressure field within the aquifer. In this field study a two channel High-Resolution-Fiber-Optic-Distributed-Temperature-Sensing and Pt100 were used to measure temperature signals within in two wells of 1.4 m distance, where the temperature difference was generated using a self regulating heating cable in the upstream well. High resolution Distributed-Temperature-Sensing measurements were achieved by coiling the fiber around screened plastic tubes. The upstream well was also used to observe heating (Δ Tmax approx. 24K) and temperature signal decay, while the downstream well was used to observe heat transport between both wells. The data was analyzed and compared to thermal conductivity of soil samples and Direct-Push (DP) Electrical-Conductivity-Logging and DP Hydraulic-Profiling results. The results show good agreement between DP data and temperature measurements proving the active heat tracer test is a suitable tool for providing reliable information on aquifer heat-storage capability. References Leaf, A.T., Hart, D.J., Bahr, J.M.: Active Thermal Tracer Tests for Improved Hydrostratigraphic Characterization. Ground Water, vol. 50, 2012 Liu, G., Knobbe, S., Butler, J.J.Jr.: Resolving centimeter-scale flows in aquifers and their hydrostratigraphic controls. Geophysical Research Letters, vol. 40, 2013

  9. Multispecies reactive tracer test in an aquifer with spatially variable chemical conditions, Cape Cod, Massachusetts: Dispersive transport of bromide and nickel

    USGS Publications Warehouse

    Hess, K.M.; Davis, J.A.; Kent, D.B.; Coston, J.A.

    2002-01-01

    Dispersive transport of groundwater solutes was investigated as part of a multispecies reactive tracer test conducted under spatially variable chemical conditions in an unconfined, sewage-contaminated sand and gravel aquifer on Cape Cod, Massachusetts. Transport of the nonreactive tracer bromide (Br) reflected physical and hydrologic processes. Transport of the reactive tracer nickel (Ni) complexed with an organic ligand (NiEDTA) varied in response to pH and other chemical conditions within the aquifer. A loss of about 14% of the Ni mass was calculated from the distribution of tracers through time. This loss is consistent with reversible adsorption of NiEDTA onto the iron and aluminum oxyhydroxide coatings on the aquifer sediments. The Ni consistently lagged behind Br with a calculated retardation coefficient of 1.2. Longitudinal dispersivities reached constant values of 2.2 and 1.1 m for Br and Ni, respectively, by at least 69 m of travel. The smaller dispersivity for Ni possibly was due to nonlinear or spatially variant adsorption of NiEDTA. In the upper, uncontaminated zone of the aquifer, longitudinal dispersion of Ni was greater than that of Br early in the test as a result of reversible adsorption of NiEDTA. In general, transverse dispersivities were much smaller (horizontal: 1.4-1.5 ?? 10-2 m; vertical: 0.5-3.8 ?? 10-3 m) than the longitudinal dispersivities. The Br results are similar to those from a test conducted eight years earlier, suggesting that transport parameters are spatially stationary within the aquifer at the scale of 300 m covered by the spatially overlapping tests. A significant difference between the two tests was the travel distance (69 and 26 m) needed to reach a constant longitudinal dispersivity.

  10. Multispecies reactive tracer test in an aquifer with spatially variable chemical conditions, Cape Cod, Massachusetts: Dispersive transport of bromide and nickel

    NASA Astrophysics Data System (ADS)

    Hess, Kathryn M.; Davis, James A.; Kent, Douglas B.; Coston, Jennifer A.

    2002-08-01

    Dispersive transport of groundwater solutes was investigated as part of a multispecies reactive tracer test conducted under spatially variable chemical conditions in an unconfined, sewage-contaminated sand and gravel aquifer on Cape Cod, Massachusetts. Transport of the nonreactive tracer bromide (Br) reflected physical and hydrologic processes. Transport of the reactive tracer nickel (Ni) complexed with an organic ligand (NiEDTA) varied in response to pH and other chemical conditions within the aquifer. A loss of about 14% of the Ni mass was calculated from the distribution of tracers through time. This loss is consistent with reversible adsorption of NiEDTA onto the iron and aluminum oxyhydroxide coatings on the aquifer sediments. The Ni consistently lagged behind Br with a calculated retardation coefficient of 1.2. Longitudinal dispersivities reached constant values of 2.2 and 1.1 m for Br and Ni, respectively, by at least 69 m of travel. The smaller dispersivity for Ni possibly was due to nonlinear or spatially variant adsorption of NiEDTA. In the upper, uncontaminated zone of the aquifer, longitudinal dispersion of Ni was greater than that of Br early in the test as a result of reversible adsorption of NiEDTA. In general, transverse dispersivities were much smaller (horizontal: 1.4-1.5 × 10-2 m; vertical: 0.5-3.8 × 10-3 m) than the longitudinal dispersivities. The Br results are similar to those from a test conducted eight years earlier, suggesting that transport parameters are spatially stationary within the aquifer at the scale of 300 m covered by the spatially overlapping tests. A significant difference between the two tests was the travel distance (69 and 26 m) needed to reach a constant longitudinal dispersivity.

  11. Application of the re-circulating tracer well test method to determine nitrate reaction rates in shallow unconfined aquifers.

    PubMed

    Burbery, Lee F; Flintoft, Mark J; Close, Murray E

    2013-02-01

    Five re-circulating tracer well tests (RCTWTs) have been conducted in a variety of aquifer settings, at four sites across New Zealand. The tests constitute the first practical assessment of the two-well RCTWT methodology described by Burbery and Wang (Journal of Hydrology, 2010; 382:163-173) and were aimed at evaluating nitrate reaction rates in situ. The performance of the RCTWTs differed significantly at the different sites. The RCTWT method performed well when it was applied to determine potential nitrate reaction rates in anoxic, electro-chemically reductive, nitrate-free aquifers of volcanic lithology, on the North Island, New Zealand. Regional groundwater flow was not fast-flowing in this setting. An effective first-order nitrate reaction rate in the region of 0.09 d(-1) to 0.26 d(-1) was determined from two RCTWTs applied at one site where a reaction rate of 0.37 d(-1) had previously been estimated from a push-pull test. The RCTWT method performed poorly, however, in a fast-flowing, nitrate-impacted fluvio-glacial gravel aquifer that was examined on the South Island, New Zealand. This setting was more akin to the hypothetical physiochemical problem described by Burbery and Wang (2010). Although aerobic conditions were identified as the primary reason for failure to measure any nitrate reaction in the gravel aquifer, failure to establish significant interflow in the re-circulation cell due to the heterogeneous nature of the aquifer structure, and natural variability exhibited in nitrate contaminant levels of the ambient groundwater further contributed to the poor performance of the test. Our findings suggest that in practice, environmental conditions are more complex than assumed by the RCTWT methodology, which compromises the practicability of the method as one for determining attenuation rates in groundwater based on tracing ambient contaminant levels. Although limited, there appears to be a scope for RCTWTs to provide useful information on potential

  12. Tracer Tests in a Fractured Dolomite: 3. Analysis of Mass Transfer in Single-Well Injection-Withdrawal Tests

    SciTech Connect

    Haggerty, R.; Fleming, S.W.; Meigs, L.C.; McKenna, S.A.

    1999-03-04

    We investigated multiple-rate diffusion as a possible explanation for observed behavior in a suite of single-well injection-withdrawal (SWIW) tests conducted in a fractured dolomite. We first investigated the ability of a conventional double-porosity model and a multirate diffusion model to explain the data. This revealed that the multirate diffusion hypothesis/model is most consistent with all available data, and is the only model to date that is capable of matching each of the recovery curves entirely. Second, we studied the sensitivity of the SWIW recovery curves to the distribution of diffusion rate coefficients and other parameters. We concluded that the SWIW test is very sensitive to the distribution of rate coefficients, but is relatively insensitive to other flow and transport parameters such as advective porosity and dispersivity. Third, we examined the significance of the constant double-log late-time slopes ({minus}2. 1 to {minus}2.8), which are present in several data sets. The observed late-time slopes are significantly different than would be predicted by either conventional double-porosity or single-porosity media, and are found to be a distinctive feature of multirate diffusion under SWIW test conditions. Fourth, we found that the estimated distributions of diffusion rate coefficients are very broad, with the distributions spanning a range of at least 3.6 to 5.7 orders of magnitude.

  13. Impact of non-idealities in gas-tracer tests on the estimation of reaeration, respiration, and photosynthesis rates in streams.

    PubMed

    Knapp, Julia L A; Osenbrück, Karsten; Cirpka, Olaf A

    2015-10-15

    Estimating respiration and photosynthesis rates in streams usually requires good knowledge of reaeration at the given locations. For this purpose, gas-tracer tests can be conducted, and reaeration rate coefficients are determined from the decrease in gas concentration along the river stretch. The typical procedure for analysis of such tests is based on simplifying assumptions, as it neglects dispersion altogether and does not consider possible fluctuations and trends in the input signal. We mathematically derive the influence of these non-idealities on estimated reaeration rates and how they are propagated onto the evaluation of aerobic respiration and photosynthesis rates from oxygen monitoring. We apply the approach to field data obtained from a gas-tracer test using propane in a second-order stream in Southwest Germany. We calculate the reaeration rate coefficients accounting for dispersion as well as trends and uncertainty in the input signals and compare them to the standard approach. We show that neglecting dispersion significantly underestimates reaeration, and results between sections cannot be compared if trends in the input signal of the gas tracer are disregarded. Using time series of dissolved oxygen and the various estimates of reaeration, we infer respiration and photosynthesis rates for the same stream section, demonstrating that the bias and uncertainty of reaeration using the different approaches significantly affects the calculation of metabolic rates.

  14. Analysis of tracer and thermal transients during reinjection

    SciTech Connect

    Kocabas, I.

    1989-10-01

    This work studied tracer and thermal transients during reinjection in geothermal reserviors and developed a new technique which combines the results from interwell tracer tests and thermal injection-backflow tests to estimate the thermal breakthrough times. Tracer tests are essential to determine the degree of connectivity between the injection wells and the producing wells. To analyze the tracer return profiles quantitatively, we employed three mathematical models namely, the convection-dispersion (CD) model, matrix diffusion (MD) model, and the Avodnin (AD) model, which were developed to study tracer and heat transport in a single vertical fracture. We considered three types of tracer tests namely, interwell tracer tests without recirculation, interwell tracer tests with recirculation, and injection-backflow tracer tests. To estimate the model parameters, we used a nonlinear regression program to match tracer return profiles to the solutions.

  15. Towards Truly Quiet MRI: animal MRI magnetic field gradients as a test platform for acoustic noise reduction

    NASA Astrophysics Data System (ADS)

    Edelstein, William; El-Sharkawy, Abdel-Monem

    2013-03-01

    Clinical MRI acoustic noise, often substantially exceeding 100 dB, causes patient anxiety and discomfort and interferes with functional MRI (fMRI) and interventional MRI. MRI acoustic noise reduction is a long-standing and difficult technical challenge. The noise is basically caused by large Lorentz forces on gradient windings--surrounding the patient bore--situated in strong magnetic fields (1.5 T, 3 T or higher). Pulsed currents of 300 A or more are switched through the gradient windings in sub-milliseconds. Experimenting with hardware noise reduction on clinical scanners is difficult and expensive because of the large scale and weight of clinical scanner components (gradient windings ~ 1000 kg) that require special handling equipment in large engineering test facilities. Our approach is to produce a Truly Quiet (<70 dB) small-scale animal imager. Results serve as a test platform for acoustic noise reduction measures that can be implemented in clinical scanners. We have so far decreased noise in an animal scale imager from 108 dB to 71 dB, a 37 dB reduction. Our noise reduction measures include: a gradient container that can be evacuated; inflatable antivibration mounts to prevent transmission of vibrations from gradient winding to gradient container; vibration damping of wires going from gradient to the outside world via the gradient container; and a copper passive shield to prevent the generation of eddy currents in the metal cryostat inner bore, which in turn can vibrate and produce noise.

  16. Single-well tracer test sensitivity w. r. to hydrofrac and matrix parameters (case study for the Horstberg site in the N-German Sedimentary Basin)

    NASA Astrophysics Data System (ADS)

    Ghergut, I.; Behrens, H.; Holzbecher, E.; Jung, R.; Sauter, M.; Tischner, T.

    2012-04-01

    At the geothermal pilot site Horstberg in the N-German Sedimentary Basin, a complex field experiment program was conducted (2003-2007) by the Federal Institute for Geosciences and Natural Resources (BGR) together with the Leibniz Institute for Applied Geosciences (GGA), aimed at evaluating the performance of innovative technologies for heat extraction, for direct use, from a single geothermal well[1],[2]. The envisaged single-well operation schemes comprised inter-layer circulation through a large-area hydrofrac (whose successful creation could thus be demonstrated), and single-screen 'huff-puff' in suitable (stimulated) layers, seated in sandstone-claystone formations in 3-4 km depth, with temperatures exceeding 160 ° C. Relying on Horstberg tracer-test data, we analyze heat and solute tracer transport in three characteristic hydraulic settings: (A) single-screen, multi-layer push-pull, with spiking and sampling at lower well-screen in low-permeability sandstone layer ('Detfurth'), from which hydrofrac propagation (through several adjacent layers) was initiated; (B) single-screen, single-layer push-pull, with spiking and sampling at upper well-screen within a more permeable sandstone layer ('Solling'); (C) inter-layer vertical push through above-mentioned hydrofrac, with spiking at well-screen of A, and sampling at well-screen of B. Owing to drill-hole deviation, the hydraulically-induced frac will, in its vertical propagation, reach the upper sandstone layer in a certain horizontal distance X from the upper well-screen, whose value turns out to be the major controlling parameter for the system's thermal lifetime under operation scheme C (values of X below ~8 m leading to premature thermal breakthrough, with the minimum-target rate of fluid turnover; however, the injection pressure required for maintaining the target outflow rate will also increase with X, which renders scheme C uneconomical, or technically-infeasible, when X exceeds ~15 m). Tracer signals in C

  17. Using a Gas-Phase Tracer Test to Characterize the Impact of Landfill Gas Generation on Advective-Dispersive Transport of VOCs in the Vadose Zone

    PubMed Central

    Monger, Gregg R.; Duncan, Candice Morrison; Brusseau, Mark L.

    2015-01-01

    A gas-phase tracer test (GTT) was conducted at a landfill in Tucson, AZ, to help elucidate the impact of landfill gas generation on the transport and fate of chlorinated aliphatic volatile organic contaminants (VOCs). Sulfur hexafluoride (SF6) was used as the non-reactive gas tracer. Gas samples were collected from a multiport monitoring well located 15.2 m from the injection well, and analyzed for SF6, CH4, CO2, and VOCs. The travel times determined for SF6 from the tracer test are approximately two to ten times smaller than estimated travel times that incorporate transport by only gas-phase diffusion. In addition, significant concentrations of CH4 and CO2 were measured, indicating production of landfill gas. Based on these results, it is hypothesized that the enhanced rates of transport observed for SF6 are caused by advective transport associated with landfill gas generation. The rates of transport varied vertically, which is attributed to multiple factors including spatial variability of water content, refuse mass, refuse permeability, and gas generation. PMID:26380532

  18. Using a Gas-Phase Tracer Test to Characterize the Impact of Landfill Gas Generation on Advective-Dispersive Transport of VOCs in the Vadose Zone.

    PubMed

    Monger, Gregg R; Duncan, Candice Morrison; Brusseau, Mark L

    2014-12-01

    A gas-phase tracer test (GTT) was conducted at a landfill in Tucson, AZ, to help elucidate the impact of landfill gas generation on the transport and fate of chlorinated aliphatic volatile organic contaminants (VOCs). Sulfur hexafluoride (SF6) was used as the non-reactive gas tracer. Gas samples were collected from a multiport monitoring well located 15.2 m from the injection well, and analyzed for SF6, CH4, CO2, and VOCs. The travel times determined for SF6 from the tracer test are approximately two to ten times smaller than estimated travel times that incorporate transport by only gas-phase diffusion. In addition, significant concentrations of CH4 and CO2 were measured, indicating production of landfill gas. Based on these results, it is hypothesized that the enhanced rates of transport observed for SF6 are caused by advective transport associated with landfill gas generation. The rates of transport varied vertically, which is attributed to multiple factors including spatial variability of water content, refuse mass, refuse permeability, and gas generation.

  19. Long term culture of epithelia in a continuous fluid gradient for biomaterial testing and tissue engineering.

    PubMed

    Minuth, W W; Strehl, R; Schumacher, K; de Vries, U

    2001-01-01

    Epithelia perform barrier functions being exposed to different fluids on the luminal and basal side. For long-term testing of new biomaterials as artificial basement membrane substitutes, it is important to simulate this fluid gradient. Individually-selected biomaterials can be placed in tissue carriers and in gradient containers, where different media are superfused. Epithelia growing on the tissue carriers form a physiological barrier during the whole culture period. Frequently however, pressure differences between the luminal and basal compartments occur. This is caused by a unilateral accumulation of gas bubbles in the container compartments resulting in tissue damage. Consequently, the occurence of gas bubbles has to be minimized. Air bubbles in the perfusion culture medium preferentially accumulate at sites where different materials come into contact. The first development is new screw caps for media bottles, specifically designed to allow fluid contact with only the tube and not the cap material. The second development is the separation of remaining gas bubbles from the liquid phase in the medium using newly-developed gas expander modules. By the application of these new tools, the yield of embryonic renal collecting duct epithelia with intact barrier function on a fragile natural support material can be significantly increased compared to earlier experiments.

  20. Analysis of Conservative Tracer Tests in the Bullfrog, Tram, and Prow Pass Tuffs, 1996 to 1998, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Umari, Amjad; Fahy, Michael F.; Earle, John D.; Tucci, Patrick

    2008-01-01

    To evaluate the potential for transport of radionuclides in ground water from the proposed high-level nuclear-waste repository at Yucca Mountain, Nevada, conservative (nonsorbing) tracer tests were conducted among three boreholes, known as the C-hole Complex, and values for transport (or flow) porosity, storage (or matrix) porosity, longitudinal dispersivity, and the extent of matrix diffusion were obtained. The C-holes are completed in a sequence of Miocene tuffaceous rock, consisting of nonwelded to densely welded ash-flow tuff with intervals of ash-fall tuff and volcaniclastic rocks, covered by Quaternary alluvium. The lower part of the tuffaceous-rock sequence includes the Prow Pass, Bullfrog, and Tram Tuffs of the Crater Flat Group. The rocks are pervaded by tectonic and cooling fractures. Paleozoic limestone and dolomite underlie the tuffaceous rocks. Four radially convergent and one partially recirculating conservative (nonsorbing) tracer tests were conducted at the C-hole Complex from 1996 to 1998 to establish values for flow porosity, storage porosity, longitudinal dispersivity, and extent of matrix diffusion in the Bullfrog and Tram Tuffs and the Prow Pass Tuff. Tracer tests included (1) injection of iodide into the combined Bullfrog-Tram interval; (2) injection of 2,6 difluorobenzoic acid into the Lower Bullfrog interval; (3) injection of 3-carbamoyl-2-pyridone into the Lower Bullfrog interval; and (4) injection of iodide and 2,4,5 trifluorobenzoic acid, followed by 2,3,4,5 tetrafluorobenzoic acid, into the Prow Pass Tuff. All tracer tests were analyzed by the Moench single- and dual-porosity analytical solutions to the advection-dispersion equation or by superposition of these solutions. Nonlinear regression techniques were used to corroborate tracer solution results, to obtain optimal parameter values from the solutions, and to quantify parameter uncertainty resulting from analyzing two of the three radially convergent conservative tracer tests

  1. Testing the performance of a cryogenic visualization system on thermal counterflow by using hydrogen and deuterium solid tracers.

    PubMed

    La Mantia, M; Chagovets, T V; Rotter, M; Skrbek, L

    2012-05-01

    An experimental apparatus has been designed to analyze by visualization cryogenic flows of liquid (4)He and consequently address unresolved problems of quantum turbulence. The newly implemented flow visualization setup is described and its specific features discussed. Thermal counterflow experiments have been performed and the motion of solid hydrogen and deuterium tracers studied by using the particle tracking velocimetry technique in order to probe the system capabilities. It is shown that the obtained results are consistent with the two-fluid model describing the behavior of superfluid (4)He. A number of technical and fundamental issues, such as particles' aggregation, role of rotating particles in counterflow and evidence of non-Gaussian distribution of tracers' velocities, are also discussed. The apparatus appears to be well-suited to the task of analyzing cryogenic flows and potentially capable of obtaining new results stimulating further understanding of the underlying physics.

  2. Accounting for Dispersion and time-dependent Input Signals during Gas Tracer Tests and their Effect on the Estimation of Reaeration, Respiration and Photosynthesis in Streams

    NASA Astrophysics Data System (ADS)

    Knapp, Julia; Osenbrück, Karsten; Olaf, Cirpka

    2015-04-01

    The variation of dissolved oxygen (DO) in streams, are caused by a number of processes, of which respiration and primary production are considered to be the most important ones (Odum, 1956; Staehr et al., 2012). Measuring respiration and photosynthesis rates in streams based on recorded time series of DO requires good knowledge on the reaeration fluxes at the given locations. For this, gas tracer tests can be conducted, and reaeration coefficients determined from the observed decrease in gas concentration along the stretch (Genereux and Hemond, 1990): ( ) --1- -cup- k2 = t2 - t1 ln Rcdown (1) with the gas concentrations measured at an upstream location, cup[ML-3], and a downstream location, cdown. t1[T] andt2 [T] denote the measurement times at the two locations and R [-] represents the recovery rate which can also be obtained from conservative tracer data. The typical procedure for analysis, however, contains a number of assumptions, as it neglects dispersion and does not take into account possible fluctuations of the input signal. We derive the influence of these aspects mathematically and illustrate them on the basis of field data obtained from a propane gas tracer test. For this, we compare the reaeration coefficients obtained from approaches with dispersion and/or a time-dependent input signals to the standard approach. Travel times and travel time distributions between the different measurement stations are obtained from a simultaneously performed conservative tracer test with fluorescein. In order to show the carry-over effect to metabolic rates, we furthermore estimate respiration and photosynthesis rates from the calculated reaeration coefficients and measured oxygen data. This way, we are able to show that neglecting dispersion significantly underestimates reaeration, and the impact of the time-dependent input concentration cannot be disregarded either. When estimated reaeration rates are used to calculate respiration and photosynthesis from measured

  3. Comparison of fluid-fluid interfacial areas measured with X-ray microtomography and interfacial partitioning tracer tests for the same samples

    NASA Astrophysics Data System (ADS)

    McDonald, Kieran; Carroll, Kenneth C.; Brusseau, Mark L.

    2016-07-01

    Two different methods are currently used for measuring interfacial areas between immiscible fluids within 3-D porous media, high-resolution microtomographic imaging and interfacial partitioning tracer tests (IPTT). Both methods were used in this study to measure nonwetting/wetting interfacial areas for a natural sand. The microtomographic imaging was conducted on the same packed columns that were used for the IPTTs. This is in contrast to prior studies comparing the two methods, for which in all cases different samples were used for the two methods. In addition, the columns were imaged before and after the IPTTs to evaluate the potential impacts of the tracer solution on fluid configuration and attendant interfacial area. The interfacial areas measured using IPTT are ˜5 times larger than the microtomographic-measured values, which is consistent with previous work. Analysis of the image data revealed no significant impact of the tracer solution on NAPL configuration or interfacial area. Other potential sources of error were evaluated, and all were demonstrated to be insignificant. The disparity in measured interfacial areas between the two methods is attributed to the limitation of the microtomography method to characterize interfacial area associated with microscopic surface roughness due to resolution constraints.

  4. Effect of Spatial Variations in Temperature, Permeability, and Water Saturation on Partitioning Gas Tracer Tests to Quantify Water in the Vadose Zone and in Landfills

    NASA Astrophysics Data System (ADS)

    Li, L.; Imhoff, P. T.

    2006-12-01

    The measurement of water saturation is important in the vadose zone and in the unsaturated porous media (refuse) in bioreactor landfills. The partitioning gas tracer test (PGTT) has been successfully used to measure water saturations in soils and landfills. However, the effectiveness of the this technique for obtaining average water saturations may depend on spatial variations in temperature (landfills), which result in spatially varying Henry's law constants, as well as spatial variability in water saturations and gas permeability. Investigations of the performance of PGTTs in heterogeneous porous media are needed to assess the utility of this measurement technique in such systems. A two dimensional modeling approach was used to investigate PGTT performance in soils and landfills with spatially varying properties. Temperature, permeability and water saturations were varied spatially to examine their effect on the accuracy of water saturation measurements. The influence of tracer diffusion on PGTT results was also examined. These simulations provide guidelines for applying PGTTs in soils and landfills where spatial variability of properties is significant. Keywords: water saturation, gas tracers, spatial heterogeneity, landfills

  5. Push-pull tracer tests: Their information content and use for characterizing non-Fickian, mobile-immobile behavior: INFORMATION CONTENT OF PUSH-PULL TESTS

    DOE PAGES

    Hansen, Scott K.; Berkowitz, Brian; Vesselinov, Velimir V.; ...

    2016-12-01

    Path reversibility and radial symmetry are often assumed in push-pull tracer test analysis. In reality, heterogeneous flow fields mean that both assumptions are idealizations. In this paper, to understand their impact, we perform a parametric study which quantifies the scattering effects of ambient flow, local-scale dispersion, and velocity field heterogeneity on push-pull breakthrough curves and compares them to the effects of mobile-immobile mass transfer (MIMT) processes including sorption and diffusion into secondary porosity. We identify specific circumstances in which MIMT overwhelmingly determines the breakthrough curve, which may then be considered uninformative about drift and local-scale dispersion. Assuming path reversibility, wemore » develop a continuous-time-random-walk-based interpretation framework which is flow-field-agnostic and well suited to quantifying MIMT. Adopting this perspective, we show that the radial flow assumption is often harmless: to the extent that solute paths are reversible, the breakthrough curve is uninformative about velocity field heterogeneity. Our interpretation method determines a mapping function (i.e., subordinator) from travel time in the absence of MIMT to travel time in its presence. A mathematical theory allowing this function to be directly “plugged into” an existing Laplace-domain transport model to incorporate MIMT is presented and demonstrated. Algorithms implementing the calibration are presented and applied to interpretation of data from a push-pull test performed in a heterogeneous environment. A successful four-parameter fit is obtained, of comparable fidelity to one obtained using a million-node 3-D numerical model. In conclusion, we demonstrate analytically and numerically how push-pull tests quantifying MIMT are sensitive to remobilization, but not immobilization, kinetics.« less

  6. Push-pull tracer tests: Their information content and use for characterizing non-Fickian, mobile-immobile behavior: INFORMATION CONTENT OF PUSH-PULL TESTS

    SciTech Connect

    Hansen, Scott K.; Berkowitz, Brian; Vesselinov, Velimir V.; O'Malley, Daniel; Karra, Satish

    2016-12-01

    Path reversibility and radial symmetry are often assumed in push-pull tracer test analysis. In reality, heterogeneous flow fields mean that both assumptions are idealizations. In this paper, to understand their impact, we perform a parametric study which quantifies the scattering effects of ambient flow, local-scale dispersion, and velocity field heterogeneity on push-pull breakthrough curves and compares them to the effects of mobile-immobile mass transfer (MIMT) processes including sorption and diffusion into secondary porosity. We identify specific circumstances in which MIMT overwhelmingly determines the breakthrough curve, which may then be considered uninformative about drift and local-scale dispersion. Assuming path reversibility, we develop a continuous-time-random-walk-based interpretation framework which is flow-field-agnostic and well suited to quantifying MIMT. Adopting this perspective, we show that the radial flow assumption is often harmless: to the extent that solute paths are reversible, the breakthrough curve is uninformative about velocity field heterogeneity. Our interpretation method determines a mapping function (i.e., subordinator) from travel time in the absence of MIMT to travel time in its presence. A mathematical theory allowing this function to be directly “plugged into” an existing Laplace-domain transport model to incorporate MIMT is presented and demonstrated. Algorithms implementing the calibration are presented and applied to interpretation of data from a push-pull test performed in a heterogeneous environment. A successful four-parameter fit is obtained, of comparable fidelity to one obtained using a million-node 3-D numerical model. In conclusion, we demonstrate analytically and numerically how push-pull tests quantifying MIMT are sensitive to remobilization, but not immobilization, kinetics.

  7. Miniaturized Antimicrobial Susceptibility Test by Combining Concentration Gradient Generation and Rapid Cell Culturing

    PubMed Central

    Kim, Samuel C.; Cestellos-Blanco, Stefano; Inoue, Keisuke; Zare, Richard N.

    2015-01-01

    Effective treatment of bacterial infection relies on timely diagnosis and proper prescription of antibiotic drugs. The antimicrobial susceptibility test (AST) is one of the most crucial experimental procedures, providing the baseline information for choosing effective antibiotic agents and their dosages. Conventional methods, however, require long incubation times or significant instrumentation costs to obtain test results. We propose a lab-on-a-chip approach to perform AST in a simple, economic, and rapid manner. Our assay platform miniaturizes the standard broth microdilution method on a microfluidic device (20 × 20 mm) that generates an antibiotic concentration gradient and delivers antibiotic-containing culture media to eight 30-nL chambers for cell culture. When tested with 20 μL samples of a model bacterial strain (E. coli ATCC 25922) treated with ampicillin or streptomycin, our method allows for the determination of minimum inhibitory concentrations consistent with the microdilution test in three hours, which is almost a factor of ten more rapid than the standard method. PMID:27025635

  8. Site characterization methodology for aquifers in support of bioreclamation activities. Volume 2: Borehole flowmeter technique, tracer tests, geostatistics and geology. Final report, August 1987-September 1989

    SciTech Connect

    Young, S.C.

    1993-08-01

    This report discusses a field demonstration of a methodology for characterizing an aquifer's geohydrology in the detail required to design an optimum network of wells and/or infiltration galleries for bioreclamation systems. The project work was conducted on a 1-hectare test site at Columbus AFB, Mississippi. The technical report is divided into two volumes. Volume I describes the test site and the well network, the assumptions, and the application of equations that define groundwater flow to a well, the results of three large-scale aquifer tests, and the results of 160 single-pump tests. Volume II describes the bore hole flowmeter tests, the tracer tests, the geological investigations, the geostatistical analysis and the guidelines for using groundwater models to design bioreclamation systems. Site characterization, Hydraulic conductivity, Groundwater flow, Geostatistics, Geohydrology, Monitoring wells.

  9. Damage Characterization of EBC-SiCSiC Ceramic Matrix Composites Under Imposed Thermal Gradient Testing

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew P.; Morscher, Gregory N.; Zhu, Dongming

    2014-01-01

    Due to their high temperature capabilities, Ceramic Matrix Composite (CMC) components are being developed for use in hot-section aerospace engine applications. Harsh engine environments have led to the development of Environmental Barrier Coatings (EBCs) for silicon-based CMCs to further increase thermal and environmental capabilities. This study aims at understanding the damage mechanisms associated with these materials under simulated operating conditions. A high heat-flux laser testing rig capable of imposing large through-thickness thermal gradients by means of controlled laser beam heating and back-side air cooling is used. Tests are performed on uncoated composites, as well as CMC substrates that have been coated with state-of-the-art ceramic EBC systems. Results show that the use of the EBCs may help increase temperature capability and creep resistance by reducing the effects of stressed oxidation and environmental degradation. Also, the ability of electrical resistance (ER) and acoustic emission (AE) measurements to monitor material condition and damage state during high temperature testing is shown; suggesting their usefulness as a valuable health monitoring technique. Micromechanics models are used to describe the localized stress state of the composite system, which is utilized along with ER modeling concepts to develop an electromechanical model capable of characterizing material behavior.

  10. Gradient limiting defects in 9-cell cavities EP processed and RF tested at Jefferson Lab

    SciTech Connect

    Geng, Rongli; Ciovati, Giovanni; Crawford, Anthony C.

    2009-11-01

    Several 9-cell cavities processed by electropolishing (EP) and RF tested at Jefferson Lab are found to be quench-limited. Pass-band mode excitation measurements provide the first clue of candidate cells responsible for the limit. A second RF test with thermometers attached to the equator region of candidate cells (typically only 2 candidates) reveals a hot spot caused by excessive heating of the operational defect and hence determines its location. High resolution optical tools inspect the RF surface corresponding to the hot spot to image and document the defect. All defects in cavities quench limited < 21 MV/m are sub-mm sized irregularities near but outside of the equator EBW. In contrast, no observable irregularities are found in some other cavities that are quench-limited ~ 30 MV/m. These two types of quench limited cavities have different response to a second EP processing. In this paper, we will give a summary of the test results and attempt to catalog the observed defects. An equation for quench gradient is given.

  11. Summary and interpretation of dye-tracer tests to investigate the hydraulic connection of fractures at a ridge-and-valley-wall site near Fishtrap Lake, Pike County, Kentucky

    USGS Publications Warehouse

    Taylor, C.J.

    1994-01-01

    decreasing-head conditions resulted in dye being trapped in hydraulically dead zones in water- depleted fractures. Residual dye was remobilized from storage and transported (over periods ranging from several months to about 2 years) by increased recharge to the hydrologic system. Subsequent fluctuations in hydraulic gradients, resulting from increases or decreases in recharge to the hydrologic system, acted to speed or slow the transport of dye along the fracture-controlled flow paths. The dye-tracer tests also demonstrated that mining-related disturbances significantly altered the natural fracture-controlled flow paths of the hydrologic system over time. An abandoned underground mine and subsidence-related surface cracks extend to within 250 ft of the principal dye- injection core hole. Results from two of the dye-tracer tests at the site indicate that the annular seal in the core hole was breached by subsurface propagation of the mining-induced fractures. This propagation of fractures resulted in hydraulic short-circuiting between the dye-injection zone in the core hole and two lower piezometer zones, and a partial disruption of the hydraulic connection between the injection core hole and downgradient piezometers on the ridge crest and valley wall. In addition, injected dye was detected in piezometers monitoring a flooded part of the abandoned underground mine. Dye was apparently transported into the mine through a hydraulic connection between the injection core hole and subsidence-related fractures.

  12. Dissolved gas dynamics in wetland soils: Root-mediated gas transfer kinetics determined via push-pull tracer tests

    NASA Astrophysics Data System (ADS)

    Reid, Matthew C.; Pal, David S.; Jaffé, Peter R.

    2015-09-01

    Gas transfer processes are fundamental to the biogeochemical and water quality functions of wetlands, yet there is limited knowledge of the rates and pathways of soil-atmosphere exchange for gases other than oxygen and methane (CH4). In this study, we use a novel push-pull technique with sulfur hexafluoride (SF6) and helium (He) as dissolved gas tracers to quantify the kinetics of root-mediated gas transfer, which is a critical efflux pathway for gases from wetland soils. This tracer approach disentangles the effects of physical transport from simultaneous reaction in saturated, vegetated wetland soils. We measured significant seasonal variation in first-order gas exchange rate constants, with smaller spatial variations between different soil depths and vegetation zones in a New Jersey tidal marsh. Gas transfer rates for most biogeochemical trace gases are expected to be bracketed by the rate constants for SF6 and He, which ranged from ˜10-2 to 2 × 10-1 h-1 at our site. A modified Damköhler number analysis is used to evaluate the balance between biochemical reaction and root-driven gas exchange in governing the fate of environmental trace gases in rooted, anaerobic soils. This approach confirmed the importance of plant gas transport for CH4, and showed that root-driven transport may affect nitrous oxide (N2O) balances in settings where N2O reduction rates are slow.

  13. Comparison of results of two dye-tracer tests at the Chestnut Ridge Security Pits, Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Goldstrand, P.M.; Haas, J.

    1994-01-01

    Personnel from Martin Marietta Energy Systems, Inc. (Energy Systems) manage a closed hazardous waste disposal unit the Chestnut Ridge Security Pits (CRSP), located on the crest of Chestnut Ridge near the Y-12 Plant, Oak Ridge, Tennessee. To investigate the discharge of groundwater from CRSP to springs and streams located along the flanks and base of Chestnut Ridge, an initial dye-tracer study was conducted during 1990. A hydraulic connection was inferred to exist between the injection well (GW-178) on Chestnut Ridge and several sites to the east-northeast, east, and southeast of CRSP. A second dye-tracer study was conducted in 1992 to verify the results of the initial test and identify additional discharge points that are active during wet-weather conditions. No definitive evidence for the presence of dye was identified at any of the 35 locations monitored during the second dye study. Although interpretations of the initial dye test suggest a hydraulic connection with several sites and CRSP, reevaluation of the spectrofluorescence data from this test suggests that dye may not have been detected during the initial test. A combination of relatively high analytical detection limits during the initial test, and high natural background interference spectral peaks observed during the second test, suggest that high natural background emission spectra near the wavelength of the dye used during the initial test may have caused the apparently high reported concentrations. The results of these two tests do not preclude that a hydraulic connection exists; dye may be present in concentrations below the analytical detection limits or has yet to emerge from the groundwater system. The dye injection well is not completed within any significant karst features. Dye migration therefore, may be within a diffuse, slow-flow portion of the aquifer, at least in the immediate vicinity of the source well.

  14. Testing thermal gradient driving force for grain boundary migration using molecular dynamics simulations

    SciTech Connect

    Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.

    2015-02-01

    Strong thermal gradients in low-thermal-conductivity ceramics may drive extended defects, such as grain boundaries and voids, to migrate in preferential directions. In this work, molecular dynamics simulations are conducted to study thermal gradient driven grain boundary migration and to verify a previously proposed thermal gradient driving force equation, using uranium dioxide as a model system. It is found that a thermal gradient drives grain boundaries to migrate up the gradient and the migration velocity increases under a constant gradient owing to the increase in mobility with temperature. Different grain boundaries migrate at very different rates due to their different intrinsic mobilities. The extracted mobilities from the thermal gradient driven simulations are compared with those calculated from two other well-established methods and good agreement between the three different methods is found, demonstrating that the theoretical equation of the thermal gradient driving force is valid, although a correction of one input parameter should be made. The discrepancy in the grain boundary mobilities between modeling and experiments is also discussed.

  15. Tracer tomography (in) rocks!

    NASA Astrophysics Data System (ADS)

    Somogyvári, Márk; Jalali, Mohammadreza; Jimenez Parras, Santos; Bayer, Peter

    2016-04-01

    Physical behavior of fractured aquifers is rigorously controlled by the presence of interconnected conductive fractures, as they represent the main pathways for flow and transport. Ideally, they are simulated as a discrete fracture network (DFN) in a model to capture the role of fracture system geometry, i.e. fracture length, height, and width (aperture/transmissivity). Such network may be constrained by prior geological information or direct data resources such as field mapping, borehole logging and geophysics. With the many geometric features, however, calibration of a DFN to measured data is challenging. This is especially the case when spatial properties of a fracture network need to be calibrated to flow and transport data. One way to increase the insight in a fractured rock is by combining the information from multiple field tests. In this study, a tomographic configuration that combines multiple tracer tests is suggested. These tests are conducted from a borehole with different injection levels that act as sources. In a downgradient borehole, the tracer is recorded at different levels or receivers, in order to maximize insight in the spatial heterogeneity of the rock. As tracer here we chose heat, and temperature breakthrough curves are recorded. The recorded tracer data is inverted using a novel stochastic trans-dimensional Markov Chain Monte Carlo procedure. An initial DFN solution is generated and sequentially modified given available geological information, such as expected fracture density, orientation, length distribution, spacing and persistency. During this sequential modification, the DFN evolves in a trans-dimensional inversion space through adding and/or deleting fracture segments. This stochastic inversion algorithm requires a large number of thousands of model runs to converge, and thus using a fast and robust forward model is essential to keep the calculation efficient. To reach this goal, an upwind coupled finite difference method is employed

  16. Evaluation of tracer tests completed in 1999 and 2000 on the upper Santa Clara River, Los Angeles and Ventura Counties, California

    USGS Publications Warehouse

    Cox, Marisa H.; Mendez, Gregory O.; Kratzer, Charles R.; Reichard, Eric G.

    2003-01-01

    The interaction of surface water and hyporheic water along the Santa Clara River in Los Angeles and Ventura Counties, California, was evaluated by conducting tracer tests and analyzing water-quality data under different flow conditions in October 1999 and May 2000. Tracer and water-quality samples were collected at multiple river and hyporheic sites as well as at the Los Angeles County Sanitation Districts Saugus and Valencia Water Reclamation Plants. These water reclamation plants provide the main source of base flow in the river. Rhodamine WT dye was injected into the river to determine river traveltimes and to indicate when Lagrangian water-quality sampling could be performed at each site. Sodium bromide was injected into the river at a constant rate at the water reclamation plants to evaluate the surface-water and shallow ground-water interactions in the hyporheic zone. In the upper reach of the study area, which extends 2.9 river miles downstream from the Saugus Water Reclamation Plant, traveltime was 3.2 hours during May 2000. In the lower reach, which extends 14.1 river miles downstream from the Valencia Water Reclamation Plant, traveltime was 9.6 hours during October 1999 and 7.1 hours during May 2000. The sodium bromide tracer was detected at both hyporheic locations sampled during October 1999, and at two of the three hyporheic locations sampled during May 2000. On the basis of Rhodamine dye tests, flow curves were constructed from the discharge measurements in the Valencia reach. Flow-curve results indicate net gains in flow throughout most, but not all, of the upper parts of the reach and net losses in flow at the lower part of the reach. Lagrangian water-quality sampling provides information on the changes in chemistry as the water flows downstream from the water reclamation plants. Along both reaches there is an increase in sulfate (40-60 mg/L in the Saugus reach and 160 mg/L in the Valencia reach) and a decrease in chloride (about 45 mg/L in the

  17. Tracer test with As(V) under variable redox conditions controlling arsenic transport in the presence of elevated ferrous iron concentrations

    USGS Publications Warehouse

    Hohn, R.; Isenbeck-Schroter, M.; Kent, D.B.; Davis, J.A.; Jakobsen, R.; Jann, S.; Niedan, V.; Scholz, C.; Stadler, S.; Tretner, A.

    2006-01-01

    To study transport and reactions of arsenic under field conditions, a small-scale tracer test was performed in an anoxic, iron-reducing zone of a sandy aquifer at the USGS research site on Cape Cod, Massachusetts, USA. For four weeks, a stream of groundwater with added As(V) (6.7????M) and bromide (1.6??mM), was injected in order to observe the reduction of As(V) to As(III). Breakthrough of bromide (Br-), As(V), and As(III) as well as additional parameters characterizing the geochemical conditions was observed at various locations downstream of the injection well over a period of 104??days. After a short lag period, nitrate and dissolved oxygen from the injectate oxidized ferrous iron and As(V) became bound to the freshly formed hydrous iron oxides. Approximately one week after terminating the injection, anoxic conditions had been reestablished and increases in As(III) concentrations were observed within 1??m of the injection. During the observation period, As(III) and As(V) were transported to a distance of 4.5??m downgradient indicating significant retardation by sorption processes for both species. Sediment assays as well as elevated concentrations of hydrogen reflected the presence of As(V) reducing microorganisms. Thus, microbial As(V) reduction was thought to be one major process driving the release of As(III) during the tracer test in the Cape Cod aquifer. ?? 2006 Elsevier B.V. All rights reserved.

  18. Testing Taxon Tenacity of Tortoises: evidence for a geographical selection gradient at a secondary contact zone

    PubMed Central

    Edwards, Taylor; Berry, Kristin H; Inman, Richard D; Esque, Todd C; Nussear, Kenneth E; Jones, Cristina A; Culver, Melanie

    2015-01-01

    We examined a secondary contact zone between two species of desert tortoise, Gopherus agassizii and G. morafkai. The taxa were isolated from a common ancestor during the formation of the Colorado River (4–8 mya) and are a classic example of allopatric speciation. However, an anomalous population of G. agassizii comes into secondary contact with G. morafkai east of the Colorado River in the Black Mountains of Arizona and provides an opportunity to examine reinforcement of species' boundaries under natural conditions. We sampled 234 tortoises representing G. agassizii in California (n - 103), G. morafkai in Arizona (n - 78), and 53 individuals of undetermined assignment in the contact zone including and surrounding the Black Mountains. We genotyped individuals for 25 STR loci and determined maternal lineage using mtDNA sequence data. We performed multilocus genetic clustering analyses and used multiple statistical methods to detect levels of hybridization. We tested hypotheses about habitat use between G. agassizii and G. morafkai in the region where they co-occur using habitat suitability models. Gopherus agassizii and G. morafkai maintain independent taxonomic identities likely due to ecological niche partitioning, and the maintenance of the hybrid zone is best described by a geographical selection gradient model. PMID:26045959

  19. Testing taxon tenacity of tortoises: evidence for a geographical selection gradient at a secondary contact zone

    USGS Publications Warehouse

    Edwards, Taylor; Berry, Kristin H.; Inman, Richard D.; Esque, Todd C.; Nussear, Kenneth E.; Jones, Cristina A.; Culver, Melanie

    2015-01-01

    We examined a secondary contact zone between two species of desert tortoise, Gopherus agassizii and G. morafkai. The taxa were isolated from a common ancestor during the formation of the Colorado River (4-8 mya) and are a classic example of allopatric speciation. However, an anomalous population of G. agassizii comes into secondary contact with G. morafkai east of the Colorado River in the Black Mountains of Arizona and provides an opportunity to examine reinforcement of species' boundaries under natural conditions. We sampled 234 tortoises representing G. agassizii in California (n = 103), G. morafkai in Arizona (n = 78), and 53 individuals of undetermined assignment in the contact zone including and surrounding the Black Mountains. We genotyped individuals for 25 STR loci and determined maternal lineage using mtDNA sequence data. We performed multilocus genetic clustering analyses and used multiple statistical methods to detect levels of hybridization. We tested hypotheses about habitat use between G. agassizii and G. morafkai in the region where they co-occur using habitat suitability models. Gopherus agassizii and G. morafkai maintain independent taxonomic identities likely due to ecological niche partitioning, and the maintenance of the hybrid zone is best described by a geographical selection gradient model.

  20. Perturbations and gradients as fundamental tests for modeling the soil carbon cycle

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B. P.; Bailey, V. L.; Becker, K.; Fansler, S.; Hinkle, C.; Liu, C.

    2013-12-01

    An important step in matching process-level knowledge to larger-scale measurements and model results is to challenge those models with site-specific perturbations and/or changing environmental conditions. Here we subject modified versions of an ecosystem process model to two stringent tests: replicating a long-term climate change dryland experiment (Rattlesnake Mountain) and partitioning the carbon fluxes of a soil drainage gradient in the northern Everglades (Disney Wilderness Preserve). For both sites, on-site measurements were supplemented by laboratory incubations of soil columns. We used a parameter-space search algorithm to optimize, within observational limits, the model's influential inputs, so that the spun-up carbon stocks and fluxes matched observed values. Modeled carbon fluxes (net primary production and net ecosystem exchange) agreed with measured values, within observational error limits, but the model's partitioning of soil fluxes (autotrophic versus heterotrophic), did not match laboratory measurements from either site. Accounting for site heterogeneity at DWP, modeled carbon exchange was reasonably consistent with values from eddy covariance. We discuss the implications of this work for ecosystem- to global scale modeling of ecosystems in a changing climate.

  1. Assessment of thermal gradient tube results from the HI series of fission product release tests

    SciTech Connect

    Norwood, K.S.

    1985-03-01

    A thermal gradient tube was used to analyze fission product vapors released from fuel heated in the HI test series. Complete deposition profiles were obtained for Cs, I, Ag, and Sb. The cesium profiles were complex and probably were dominated by Cs-S-O compounds formed by release of sulfur from furnace ceramics. The iodine profiles were simple, indicating that more than 99.5% of the released iodine behaved as a single nonvolatile species, probably CsI. Mass transfer coefficients for this species onto platinum were estimated to be 1.9 to 5.8 cm/s. Silver was probably released in elemental form, condensed to an aerosol, and captured by filters. Antimony was released as the element and reacted rapidly with platinum (or gold) as it deposited. Antimony profiles were calculated a priori with some success. A method was developed for isolating tellurium from platinum and mixed fission products in a form suitable for neutron activation analysis. The platinum samples were completely dissolved in acid (HCl/HNO/sub 3/), and the tellurium was precipitated on selenium carrier by reduction. Finally, tellurium was loaded onto Dowex 1X-4 ion-exchange resin for activation and analysis. Tellurium recovery was approx. 88%, and the theoretical sensitivity was approx. 30 ng.

  2. Field-scale migration of colloidal tracers in a fractured shale saprolite

    SciTech Connect

    McKay, L.D.; Sanford, W.E.; Strong, J.M.

    2000-02-01

    A field-scale tracer experiment carried out under natural gradient ground water flow conditions showed that colloids can be highly mobile in a fractured and highly weathered shale saprolite. Four colloidal tracers (0.100 {mu}m fluorescent latex microspheres, bacteriophage strains PRD-1 and MS-2, and INA, a dead strain of Pseudomonas syringae), were introduced to a 6.4 m deep well, and concentrations of the tracers were monitored in the source well and in downgradient monitoring wells as distances of 2 to 35 m. All of the colloidal tracers were detected to distances of at least 13.5 m and two of the tracers (microspheres and INA) were detected in all of the downgradient wells. In most wells the colloidal tracers appeared as a pulse, with rapid first arrival (corresponding to 5 to 200 m/d transport velocity), one to six days of high concentrations, and then a rapid decline to below the detection limit. The colloids were transported at velocities of up to 500 times faster than solute tracers (He, Ne, and rhodamine-WT) from previous tests at the site. This is believed to be largely due to greater diffusion of the solutes into the relatively immobile pore water of the fine-grained matrix between fractures. Peak colloid tracer concentrations in the monitoring wells varied substantially, with the microspheres exhibiting the highest relative concentrations and hence the least retention. Rates of concentration decline with distance also varied. indicating that retention is not a uniform process in this heterogeneous material. Two of the tracers, INA and PRD-1, reappeared in several monitoring wells one to five months after the initial pulse had passed, and the reappearance generally corresponds with increased seasonal precipitation. This is consistent with subsequent laboratory experiments that showed that colloid retention in these materials is sensitive to factors such as flow rate ad ionic strength, both of which are expected to vary with the amount of precipitation.

  3. The use of air as a natural tracer infractured hydrothermal systems, Los Azufres, Mexico, case study

    SciTech Connect

    Mario Cesar Sudrez Arriaga; Hector Gutierrez Puente, Josefina Moreno Ochoa

    1991-01-01

    Injection of atmospheric air mixed with cold water has been occurring since 1982 at the Los Azufres geothermal field. Several chemical and thermodynamical evidences show that air injection into this fractured hydrothermal system could be considered as a long term natural tracer test. Nitrogen and Argon separated from the air mixture migrate, under the action of the induced injection-extraction gradient, from reinjection sectors to production zones following preferential paths closely related to high permeability conduits. A coarse numerical estimation of the average permeability tensor existing at Tejamaniles, the southern sector, explains the unsuccessful recovery of the artificial tracer tests performed in past years: the anisotropic nature of the fractured volcanic rock would demand considerably quantities of tracer in order to be detected at the producing wells, especially when fluid extraction was low. At the same time concentrations of calcium, cesium, chloride, potassium, rubidium and sodium, are increasing in the liquid produced by the oldest wells of this field's sector.

  4. Analysis of single-hole and cross-hole tracer tests conducted at the Nye County early warning drilling program well complex, Nye County, Nevada

    USGS Publications Warehouse

    Umari, A.; Earle, J.D.; Fahy, M.F.

    2006-01-01

    As part of the effort to understand the flow and transport characteristics downgradient from the proposed high-level radioactive waste geologic repository at Yucca Mountain, Nevada, single- and cross-hole tracer tests were conducted from December 2004 through October 2005 in boreholes at the Nye County 22 well complex. The results were analyzed for transport properties using both numerical and analytical solutions of the governing advection dispersion equation. Preliminary results indicate effective flow porosity values ranging from 1.0 ?? 10-2 for an individual flow path to 2.0 ?? 10 -1 for composite flow paths, longitudinal dispersivity ranging from 0.3 to 3 m, and a transverse horizontal dispersivity of 0.03 m. Individual flow paths identified from the cross-hole testing indicate some solute diffusion into the stagnant portion of the alluvial aquifer.

  5. Analysis of Single-Hole and Cross-Hole Tracer Tests Conducted at the Nye County Earl Warning Drilling Program Well Complex, Nye County, Nevada

    SciTech Connect

    A. Umari; J.D. Earle; M.F. Fahy

    2006-03-17

    As part of the effort to understand the flow and transport characteristics downgradient from the proposed high-level radioactive waste geologic repository at Yucca Mountain, Nevada, single- and cross-hole tracer tests were conducted from December 2004 through October 2005 in boreholes at the Nye County 22 well complex. The results were analyzed for transport properties using both numerical and analytical solutions of the governing advection dispersion equation. Preliminary results indicate effective flow porosity values ranging from 1.0 x 10{sup -2} for an individual flow path to 2.0 x 10{sup -1} for composite flow paths, longitudinal dispersivity ranging from 0.3 to 3 m, and a transverse horizontal dispersivity of 0.03 m. Individual flow paths identified from the cross-hole testing indicate some solute diffusion into the stagnant portion of the alluvial aquifer.

  6. Ecological impacts of invasive alien species along temperature gradients: testing the role of environmental matching.

    PubMed

    Iacarella, Josephine C; Dick, Jaimie T A; Alexander, Mhairi E; Ricciardi, Anthony

    2015-04-01

    Invasive alien species (IAS) can cause substantive ecological impacts, and the role of temperature in mediating these impacts may become increasingly significant in a changing climate. Habitat conditions and physiological optima offer predictive information for IAS impacts in novel environments. Here, using meta-analysis and laboratory experiments, we tested the hypothesis that the impacts of IAS in the field are inversely correlated with the difference in their ambient and optimal temperatures. A meta-analysis of 29 studies of consumptive impacts of IAS in inland waters revealed that the impacts of fishes and crustaceans are higher at temperatures that more closely match their thermal growth optima. In particular, the maximum impact potential was constrained by increased differences between ambient and optimal temperatures, as indicated by the steeper slope of a quantile regression on the upper 25th percentile of impact data compared to that of a weighted linear regression on all data with measured variances. We complemented this study with an experimental analysis of the functional response (the relationship between predation rate and prey supply) of two invasive predators (freshwater mysid shrimp, Hemimysis anomala and Mysis diluviana) across. relevant temperature gradients; both of these species have previously been found to exert strong community-level impacts that are corroborated by their functional responses to different prey items. The functional response experiments showed that maximum feeding rates of H. anomala and M. diluviana have distinct peaks near their respective thermal optima. Although variation in impacts may be caused by numerous abiotic or biotic habitat characteristics, both our analyses point to temperature as a key mediator of IAS impact levels in inland waters and suggest that IAS management should prioritize habitats in the invaded range that more closely match the thermal optima of targeted invaders.

  7. Tracer Interpretation Using Temporal Moments on a Spreadsheet

    SciTech Connect

    G. Michael Shook; J. Hope Forsmann

    2005-06-01

    This report presents a method for interpreting geothermal tracer tests. The method is based on the first temporal moment (mean residence time) of the tracer in the subsurface. The individual steps required to interpret a tracer test are reviewed and discussed. And an example tracer test directs the user through the interpretation method. An Excel spreadsheet application of the interpretation method is a companion document to this report.

  8. Gradient Index Microlens Implanted in Prefrontal Cortex of Mouse Does Not Affect Behavioral Test Performance over Time

    PubMed Central

    Lee, Seon A.; Holly, Kevin S.; Voziyanov, Vladislav; Villalba, Stephanie L.; Tong, Rudi; Grigsby, Holly E.; Glasscock, Edward; Szele, Francis G.; Vlachos, Ioannis; Murray, Teresa A.

    2016-01-01

    Implanted gradient index lenses have extended the reach of standard multiphoton microscopy from the upper layers of the mouse cortex to the lower cortical layers and even subcortical regions. These lenses have the clarity to visualize dynamic activities, such as calcium transients, with subcellular and millisecond resolution and the stability to facilitate repeated imaging over weeks and months. In addition, behavioral tests can be used to correlate performance with observed changes in network function and structure that occur over time. Yet, this raises the questions, does an implanted microlens have an effect on behavioral tests, and if so, what is the extent of the effect? To answer these questions, we compared the performance of three groups of mice in three common behavioral tests. A gradient index lens was implanted in the prefrontal cortex of experimental mice. We compared their performance with mice that had either a cranial window or a sham surgery. Three presurgical and five postsurgical sets of behavioral tests were performed over seven weeks. Behavioral tests included rotarod, foot fault, and Morris water maze. No significant differences were found between the three groups, suggesting that microlens implantation did not affect performance. The results for the current study clear the way for combining behavioral studies with gradient index lens imaging in the prefrontal cortex, and potentially other regions of the mouse brain, to study structural, functional, and behavioral relationships in the brain. PMID:26799938

  9. Statistical analysis and mathematical modeling of a tracer test on the Santa Clara River, Ventura County, California

    USGS Publications Warehouse

    Paybins, Katherine S.; Nishikawa, Tracy; Izbicki, John A.; Reichard, Eric G.

    1998-01-01

    To better understand flow processes, solute-transport processes, and ground-water/surface-water interactions on the Santa Clara River in Ventura County, California, a 24-hour fluorescent-dye tracer study was performed under steady-state flow conditions on a 28-mile reach of the river. The study reach includes perennial (uppermost and lowermost) subreaches and ephemeral subreaches of the lower Piru Creek and the middle Santa Clara River. Dye was injected at a site on Piru Creek, and fluorescence of river water was measured continuously at four sites and intermittently at two sites. Discharge measurements were also made at the six sites. The time of travel of the dye, peak dye concentration, and time-variance of time-concentration curves were obtained at each site. The long tails of the time-concentration curves are indicative of sources/sinks within the river, such as riffles and pools, or transient bank storage. A statistical analysis of the data indicates that, in general, the transport characteristics follow Fickian theory. These data and previously collected discharge data were used to calibrate a one-dimensional flow model (DAFLOW) and a solute-transport model (BLTM). DAFLOW solves a simplified form of the diffusion-wave equation and uses empirical relations between flow rate and cross-sectional area, and flow rate and channel width. BLTM uses the velocity data from DAFLOW and solves the advection-dispersion transport equation, including first-order decay. The simulations of dye transport indicated that (1) ground-water recharge explains the loss of dye mass in the middle, ephemeral, subreaches, and (2) ground-water recharge does not explain the loss of dye mass in the uppermost and lowermost, perennial, subreaches. This loss of mass was simulated using a linear decay term. The loss of mass in the perennial subreaches may be caused by a combination of photodecay or adsorption/desorption.

  10. Comparison of Interfacial Partitioning Tracer Test and X-ray Microtomography Measurements of Immiscible Fluid-Fluid Interfacial Areas within the Identical System

    NASA Astrophysics Data System (ADS)

    Carroll, K. C.; McDonald, K.; Brusseau, M. L. L.

    2015-12-01

    The interfacial area between immiscible fluids in porous media has been demonstrated to be a critical entity for improved understanding, characterization, and simulation of multiphase flow and mass transport in the subsurface. Two general methods are available for measuring interfacial areas for 3-D porous-media systems, high-resolution microtomographic imaging and interfacial partitioning tracer tests (IPTT). Each method has their associated advantages and disadvantages. A few prior research efforts have conducted comparative analyses of the two methods, which have generally indicated disparities in measured values for natural geomedia. For these studies, however, interfacial areas were measured for separate samples with each method due to method restrictions. Thus, to date, there has been no comparative analysis conducted wherein the two measurement methods were applied to the exact same sample. To address this issue, trichloroethene-water interfacial areas were measured for a system comprising a well-sorted, natural sand (median grain diameter of 0.323 mm) using both X-ray microtomography and IPTTs. The microtomographic imaging was conducted on the same packed columns used to conduct the IPTTs. Columns were imaged before and after the IPTTs to evaluate potential impacts of the tracer tests on fluid configuration. The interfacial areas measured using IPTT were 4-6 times larger than the microtomography results, which is consistent with previous work. This disparity was attributed to the inability of the microtomography method to characterize interfacial area associated with microscopic surface roughness. The results indicate that both methods provide useful measures of interfacial area as long as their limitations are recognized.

  11. Generalization Gradients in Human Predictive Learning: Effects of Discrimination Training and within-Subjects Testing

    ERIC Educational Resources Information Center

    Vervliet, Bram; Iberico, Carlos; Vervoort, Ellen; Baeyens, Frank

    2011-01-01

    Generalization gradients have been investigated widely in animal conditioning experiments, but much less so in human predictive learning tasks. Here, we apply the experimental design of a recent study on conditioned fear generalization in humans (Lissek et al., 2008) to a predictive learning task, and examine the effects of a number of relevant…

  12. Combining Push Pull Tracer Tests and Microbial DNA and mRNA Analysis to Assess In-Situ Groundwater Nitrate Transformations

    NASA Astrophysics Data System (ADS)

    Henson, W.; Graham, W. D.; Huang, L.; Ogram, A.

    2015-12-01

    Nitrogen transformation mechanisms in the Upper Floridan Aquifer (UFA) are still poorly understood because of karst aquifer complexity and spatiotemporal variability in nitrate and carbon loading. Transformation rates have not been directly measured in the aquifer. This study quantifies nitrate-nitrogen transformation potential in the UFA using single well push-pull tracer injection (PPT) experiments combined with microbial characterization of extracted water via qPCR and RT-qPCR of selected nitrate reduction genes. Tracer tests with chloride and nitrate ± carbon were executed in two wells representing anoxic and oxic geochemical end members in a spring groundwater contributing area. A significant increase in number of microbes with carbon addition suggests stimulated growth. Increases in the activities of denitrification genes (nirK and nirS) as measured by RT-qPCR were not observed. However, only microbes suspended in the tracer were obtained, ignoring effects of aquifer material biofilms. Increases in nrfA mRNA and ammonia concentrations were observed, supporting Dissimilatory Reduction of Nitrate to Ammonia (DNRA) as a reduction mechanism. In the oxic aquifer, zero order nitrate loss rates ranged from 32 to 89 nmol /L*hr with no added carbon and 90 to 240 nmol /L*hr with carbon. In the anoxic aquifer, rates ranged from 18 to 95 nmol /L*hr with no added carbon and 34 to 207 nmol /L*hr with carbon. These loss rates are low; 13 orders of magnitude less than the loads applied in the contributing area each year, however they do indicate that losses can occur in oxic and anoxic aquifers with and without carbon. These rates may include, ammonia adsorption, uptake, or denitrification in aquifer material biofilms. Rates with and without carbon addition for both aquifers were similar, suggesting aquifer redox state and carbon availability alone are insufficient to predict response to nutrient additions without characterization of microbial response. Surprisingly, these

  13. Analysis of a Multi-Well Tracer Test at a Bank Filtration Site in an Arid Environment of El Paso, Texas

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, A. N.; Langford, R.; Schulze-Makuch, D.; Sheng, Z.

    2005-12-01

    River bank filtered water is an important component of the drinking water production in many areas of the world. In riverbank filtration, the removal of pathogens is an important task for the production of good quality drinking water. The hydrogeological factors and spatial changes in the water's microbiology during the transport from the river to the aquifer have important implications on the quality of the produced water. The goal of this study was to investigate riverbank infiltration effectiveness in arid environments such as that of El Paso, Texas. The hydrostratigraphic units and hydrogeologic conditions were characterized with lithologic samples obtained from all boreholes collected during the construction of twelve observation wells and one production well in the site, which were constructed near the artificial stream to provide geologic and hydrologic information. The shallow aquifer is composed of three unites: high hydraulic conductivity layers on the top and bottom, and low conductivity layer in the middle. In this study advective transport of microspheres was compared with a conservative tracer such as bromide. Bromide was injected into an observation well at the channel margin. Simultaneously, 1, 6 and 10 micron-diameter fluorescent microspheres equivalent to Giardia, Cryptosporidium, and bacteria sizes were injected into the stream bottom and two observation wells to assess the suitability of microspheres as abiotic analogs in future investigations involving the physical aspects of bacteria and protozoa transport behavior. The 17.8 day-tracer test provided valuable results that are relevant to the transport of pathogens through the subsurface under riverbank filtration conditions. The 1 micron-size microspheres were abundant in the pumping and observation wells and showed multiple peaks similar to the bromide results. Microspheres from the three injection sites had distinctly different transport paths and rates. The 6 and 10 micron-size microspheres

  14. A study of microindentation hardness tests by mechanism-based strain gradient plasticity

    SciTech Connect

    Huang, Y.; Xue, Z.; Gao, H.; Nix, W. D.; Xia, Z. C.

    2000-08-01

    We recently proposed a theory of mechanism-based strain gradient (MSG) plasticity to account for the size dependence of plastic deformation at micron- and submicron-length scales. The MSG plasticity theory connects micron-scale plasticity to dislocation theories via a multiscale, hierarchical framework linking Taylor's dislocation hardening model to strain gradient plasticity. Here we show that the theory of MSG plasticity, when used to study micro-indentation, indeed reproduces the linear dependence observed in experiments, thus providing an important self-consistent check of the theory. The effects of pileup, sink-in, and the radius of indenter tip have been taken into account in the indentation model. In accomplishing this objective, we have generalized the MSG plasticity theory to include the elastic deformation in the hierarchical framework. (c) 2000 Materials Research Society.

  15. Tracers for Characterizing Enhanced Geothermal Systems

    SciTech Connect

    Karen Wright; George Redden; Carl D. Palmer; Harry Rollins; Mark Stone; Mason Harrup; Laurence C. Hull

    2010-02-01

    Information about the times of thermal breakthrough and subsequent rates of thermal drawdown in enhanced geothermal systems (EGS) is necessary for reservoir management, designing fracture stimulation and well drilling programs, and forecasting economic return. Thermal breakthrough in heterogeneous porous media can be estimated using conservative tracers and assumptions about heat transfer rates; however, tracers that undergo temperature-dependent changes can provide more detailed information about the thermal profile along the flow path through the reservoir. To be effectively applied, the thermal reaction rates of such temperature sensitive traces must be well characterized for the range of conditions that exist in geothermal systems. Reactive tracers proposed in the literature include benzoic and carboxylic acids (Adams) and organic esters and amides (Robinson et al.); however, the practical temperature range over which these tracers can be applied (100-275°C) is somewhat limited. Further, for organic esters and amides, little is known about their sorption to the reservoir matrix and how such reactions impact data interpretation. Another approach involves tracers where the reference condition is internal to the tracer itself. Two examples are: 1) racemization of polymeric amino acids, and 2) mineral thermoluminescence. In these cases internal ratios of states are measured rather than extents of degradation and mass loss. Racemization of poly-L-lactic acid (for example) is temperature sensitive and therefore can be used as a temperature-recording tracer depending on the rates of racemization and stability of the amino acids. Heat-induced quenching of thermoluminescence of pre-irradiated LiF can also be used. To protect the tracers from alterations (extraneous reactions, dissolution) in geothermal environments we are encapsulating the tracers in core-shell colloidal structures that will subsequently be tested for their ability to be transported and to protect the

  16. First Beam and High-Gradient Cryomodule Commissioning Results of the Advanced Superconducting Test Accelerator at Fermilab

    SciTech Connect

    Crawford, Darren; et al.

    2015-06-01

    The advanced superconducting test accelerator at Fermilab has accelerated electrons to 20 MeV and, separately, the International Linear Collider (ILC) style 8-cavity cryomodule has achieved the ILC performance milestone of 31.5 MV/m per cavity. When fully completed, the accelerator will consist of a photoinjector, one ILC-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We report on the results of first beam, the achievement of our cryomodule to ILC gradient specifications, and near-term future plans for the facility.

  17. Monitoring High Velocity Salt Tracer via 4D Electrical Resistivity Tomography - Possibility for Salt Tracer Tomography

    NASA Astrophysics Data System (ADS)

    Doro, K. O.; Cirpka, O. A.; Patzelt, A.; Leven, C.

    2014-12-01

    Hydrogeological testing in a tomographic sequence as shown by the use of hydraulic tomography, allows an improvement of the spatial resolution of subsurface parameters. In this regard, recent studies show increasing interest in tracer tomography which involves sequential and spatially separated tracer injections and the measurement of their corresponding tracer breakthrough at different locations and depths. Such concentration measurements however require large experimental efforts and can be simplified by geophysical tracer monitoring techniques such as electrical resistivity. In this study, we present the use of 4-D, cross-hole electrical resistivity tomography (ERT) for monitoring salt tracer experiments in high velocity flow fields. For our study, we utilized a set up that enables the conduction of salt tracer experiments with complete recovery within 84 hours over a transport distance of 16 m. This allows the repetition of the experiments with different injection depths for a tomographic salt tracer testing. For ERT monitoring, we designed modular borehole electrodes for repeated usage in a flexible manner. We also assess the use of a high speed resistivity data acquisition mode for field scale tracer monitoring ensuring high spatial and temporal resolution without sacrificing data accuracy. We applied our approach at the Lauswiesen test site, Tübingen, Germany. In our 10 m × 10 m tracer monitoring domain with 16 borehole electrodes, we acquired 4650 data points in less than 18 minutes for each monitoring cycle. Inversion results show that the tracer could be successfully imaged using this approach. The results show that repeated salt tracer tests can be efficiently monitored at a high resolution with ERT which gives the possibility for salt tracer tomography at field scale. Our results also provide a data base for extending current hydrogeophysical inversion approaches to field scale data.

  18. Analysis of multicomopnent groundwater flow in karst aquifer by CFC, tritium, tracer test and modelling, case study at Skaistkalnes vicinity, Latvia

    NASA Astrophysics Data System (ADS)

    Bikshe, Janis; Babre, Alise; Delina, Aija; Popovs, Konrads

    2014-05-01

    Groundwater in karst environments tends to have difficulties to distinguish multiple flows if several sources of water are present. Skaistkalne vicinity faces with such situation where old groundwater, fresh groundwater and inflow from river Iecava occurs. Attempts were made to distinguish groundwater residence time of multiple components of water applying CFC and tritium dating techniques supplied by tracer test and numerical model of study area. Study area covers territory between two rivers Iecava and Memele with water level difference of 7 meters and horizontal distance of 2.2 kilometres between both. Study area consists of karst affected Devonian gypsum and carbonaceous rocks covered by Quaternary low to high permeable deposits. Confined groundwater at depth of 10-25 meters where analysed by CFC's and tritium. At this depth groundwater exhibits anoxic reducing environment that has caused degradation of CFC's at similar degree in all samples. Taking it into account, mean residence time based on CFC piston flow model is 22 - 42 years and 28 - 34 years based on binary mixing model. Tritium results show signs of incensement of groundwater residence time towards discharge area. CFC combined with tritium proved increased vertical velocity in middle part between the rivers likely caused by hydrogeological window in Quaternary deposits created by karst processes. Numerical model (Delina et al. 2012) was applied and calculations yielded groundwater flow velocity rate at 0.3 - 1 m/day in area between the rivers. Investigation of CFC data resulted in possible groundwater flow rate of at a minimum of 0.2 m/day although it's not applicable to all sampled wells due to specific hydrogeological conditions. Tracer test was made between the rivers in order to distinguish main water flow paths and flow velocity. Results showed that very high permeable conduits connect rivers and karst lakes with velocity rates of 800 - 1300 m/day. Complex investigation leads to conclude that

  19. Biological tracer method

    DOEpatents

    Strong-Gunderson, Janet M.; Palumbo, Anthony V.

    1998-01-01

    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer.

  20. Biological tracer method

    DOEpatents

    Strong-Gunderson, J.M.; Palumbo, A.V.

    1998-09-15

    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer. 2 figs.

  1. A tracer-based inversion method for diagnosing eddy-induced diffusivity and advection

    NASA Astrophysics Data System (ADS)

    Bachman, S. D.; Fox-Kemper, B.; Bryan, F. O.

    2015-02-01

    A diagnosis method is presented which inverts a set of tracer flux statistics into an eddy-induced transport intended to apply for all tracers. The underlying assumption is that a linear flux-gradient relationship describes eddy-induced tracer transport, but a full tensor coefficient is assumed rather than a scalar coefficient which allows for down-gradient and skew transports. Thus, Lagrangian advection and anisotropic diffusion not necessarily aligned with the tracer gradient can be diagnosed. In this method, multiple passive tracers are initialized in an eddy-resolving flow simulation. Their spatially-averaged gradients form a matrix, where the gradient of each tracer is assumed to satisfy an identical flux-gradient relationship. The resulting linear system, which is overdetermined when using more than three tracers, is then solved to obtain an eddy transport tensor R which describes the eddy advection (antisymmetric part of R) and potentially anisotropic diffusion (symmetric part of R) in terms of coarse-grained variables. The mathematical basis for this inversion method is presented here, along with practical guidelines for its implementation. We present recommendations for initialization of the passive tracers, maintaining the required misalignment of the tracer gradients, correcting for nonconservative effects, and quantifying the error in the diagnosed transport tensor. A method is proposed to find unique, tracer-independent, distinct rotational and divergent Lagrangian transport operators, but the results indicate that these operators are not meaningfully relatable to tracer-independent eddy advection or diffusion. With the optimal method of diagnosis, the diagnosed transport tensor is capable of predicting the fluxes of other tracers that are withheld from the diagnosis, including even active tracers such as buoyancy, such that relative errors of 14% or less are found.

  2. Evaluating the techniques for a tiered testing approach to dredged sediment assessment--a study over a metal concentration gradient

    SciTech Connect

    Porebski, L.M.; Doe, K.G.; Zajdlik, B.A.; Lee, D.; Pocklington, P.; Osborne, J.M.

    1999-11-01

    A sediment quality triad approach was used to evaluate Environment Canada's battery of marine bioassays and the proposed pass/fail criteria along a metals gradient in Belledune Harbour, New Brunswick, Canada. Most assays performed consistently, but certain tests provided less response than expected at the more contaminated stations (amphipod survival and light reduction in photoluminescent bacteria tests passed according to proposed pass/fail criteria). Echinoid fertilization tests were quite sensitive. Bioaccumulation of lead and benthic community structure were related to bulk sediment values. Test interpretation criteria appear reasonable, but as the response rate was low in certain tests, further assessment is recommended. With respect to species suitability, only the clam Macoma balthica used in the bioaccumulation test was thought to be less than optimal for routine use on a large scale because of practical handling and cost considerations. Canadian draft Interim Sediment Quality Guidelines, which the Disposal at Sea Program may use for screening purposes in a tiered testing approach, were used in this study as the chemical benchmarks to select test stations on the basis of the relative probability of effects. Guidelines at the threshold effects level (TEL) performed well in the study as levels below which unacceptable biological effects were unlikely to occur. The ratio of simultaneously extractable metals to acid volatile sulfides was also used in addition to the guideline levels to help explain responses (or lack thereof) along the gradient. Each of the chemical approaches was useful in the prediction/explanation of some but not all of the responses seen in the toxicity and/or benthic community results.

  3. Mississippian coral latitudinal diversity gradients (western interior United States): Testing the limits of high resolution diversity data

    USGS Publications Warehouse

    Webb, G.E.; Sando, W.J.; Raymond, A.

    1997-01-01

    Analysis of high resolution diversity data for Mississippian corals in the western interior United States yielded mild latitudinal diversity gradients despite the small geographic area covered by samples and a large influence on diversity patterns by geographic sampling intensity (sample bias). Three competing plate tectonic reconstructions were tested using the diversity patterns. Although none could be forcefully rejected, one reconstruction proved less consistent with diversity patterns than the other two and additional coral diversity data from farther north in Canada would better discriminate the two equivalent reconstructions. Despite the relatively high sampling intensity represented by the analyzed database, diversity patterns were greatly affected by sample abundance and distribution. Hence, some effort at recognizing and accounting for sample bias should be undertaken in any study of latitudinal diversity gradients. Small-scale geographic lumping of sample localities had only small effects on geographic diversity patterns. However, large-scale (e.g., regional) geographic lumping of diversity data may not yield latitudinally sensitive diversity patterns. Temporal changes in coral diversity in this region reflect changes in eustacy, local tectonism, and terrigenous sediment flux, far more than they do shifting latitude. Highest regional diversity occurred during the interval when the studied region occupied the highest latitude. Therefore, diversity data from different regions may not be comparable, in terms of latitudinal inference. Small-scale stratigraphic lumping of the data caused a nearly complete loss of the latitudinal diversity patterns apparent prior to lumping. Hence, the narrowest possible stratigraphic resolution should be maintained in analyzing latitudinal diversity gradients.

  4. Tracer-level radioactive pilot-scale test of in situ vitrification for the stabilization of contaminated soil sites at ORNL

    SciTech Connect

    Spalding, B.P.; Jacobs, G.K.; Naney, M.T. ); Dunbar, N.W. ); Tixier, J.S.; Powell, T.D. )

    1992-11-01

    A field demonstration of in situ vitrification (ISV) was completed in May 1991, and produced approximately 12 Mg of melted earthen materials containing 12.7 mCi of radioactivity within 500 g of sludge in amodel of an old seepage trench waste disposal unit. Past waste disposal operations at Oak Ridge National Laboratory have left several contaminated seepage sites. In planning for remediation of such sites, ISV technology has been identified as a leading candidate because of the high risks associated with any retrieval option and because of the usual high quality of vitreous waste form. Major isotopes placed in the test trench were [sup 137]Cs and [sup 90]Sr, with lesser amounts of [sup 6O]Co, [sup 241]Am, and [sup 239,240]Pu. A total of 29 MWh of electrical power was delivered to the ground over a 5-day period producing a melt depth of 8.5 ft. During melting, 2.4% of the [sup 137]Cs volatilized from the melt into an off-gas containment hood and was captured quantitatively on a high efficiency particulate air filter. No volatilization of [sup 90]Sr, [sup 241]Am, or [sup 239,240]Pu was detected and > 99.993% retention of these isotopes in the melt was estimated. The use of added rare earth tracers (Ce, La, and Nd), as surrogates for transuranic isotopes, led to estimated melt retentions of >99.9995% during the test. The molten material, composed of the native soil and dolomitic limestone used for filling the test trench, reached a processing temperature of 1500[degrees]C. Standardized leaching procedures using Product Consistency Testing indicated that the ISV product has excellent characteristics relative to other vitreous nuclear waste forms.

  5. TESTING 24 {mu}m AND INFRARED LUMINOSITY AS STAR FORMATION TRACERS FOR GALACTIC STAR-FORMING REGIONS

    SciTech Connect

    Vutisalchavakul, Nalin; Evans, Neal J. II

    2013-03-10

    We have tested some relations for star formation rates used in extragalactic studies for regions within the Galaxy. In nearby molecular clouds, where the initial mass function is not fully sampled, the dust emission at 24 {mu}m greatly underestimates star formation rates (by a factor of 100 on average) when compared to star formation rates determined from counting young stellar objects. The total infrared emission does no better. In contrast, the total far-infrared method agrees within a factor of two on average with star formation rates based on radio continuum emission for massive, dense clumps that are forming enough massive stars to have L{sub TIR} exceed 10{sup 4.5} L{sub Sun }. The total infrared and 24 {mu}m also agree well with each other for both nearby, low-mass star-forming regions and the massive, dense clump regions.

  6. Assessing the Feasibility of In-Situ Aerobic Cometabolism of Chlorinated Solvents by a Single-Well Push-Pull and Natural Gradient Drift Tests in McClellan AFB, CA

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Istok, J. D.; Semprini, L.

    2001-12-01

    A single-well push-pull test has been developed to evaluate in-situ aerobic cometabolic treatment of chlorinated aliphatic hydrocarbons (CAHs), such as trichloroethylene (TCE) and cis-1,2-dichloroethylene (c-DCE). A series of single-well natural gradient drift and push-pull tests were conducted in two monitoring wells at the McClellan Air Force Base, CA, where aquifer is contaminated mainly with c-DCE and TCE. Transport characteristics of dissolved solutes [bromide (tracer), propane (growth substrate), ethylene, propylene (nontoxic surrogates to probe for CAH transformation activity), DO and nitrate (nutrient)] were evaluated in push-pull transport tests by injecting 200-L of groundwater containing the solutes into the aquifer (Push), providing a rest period of 18 hours (Reaction), and then extracting 400-L of the test solution/groundwater mixtures (Pull). Mass balances showed over 95% of the injected bromide was recovered, and the recoveries of the other solutes were comparable with bromide. The dispersion of all the solutes was similar indicating sorption or other partitioning processes were minimal. These results indicate that bromide could be used as a conservative tracer for biological activity tests and that little loss of the dissolved gaseous substrates occurred prior to biostimulation of the aquifer. A series of biostimulation tests were performed by injecting 500 L-groundwater containing propane (6 mg/L), DO (25 mg/L), nitrate (9 mg/L as N) and bromide (100 mg/L) into the aquifer. Temporal groundwater samples were obtained from the injection well under natural gradient drift conditions. With repeating biostimulation tests the rates of both propane and DO utilization were increased significantly. The results demonstrated that the progress of biostimulation could be assessed by injecting and monitoring under natural gradient drift conditions. Successive push-pull activity tests were performed after biostimulation was achieved using the same procedures as

  7. Chemical bond as a test of density-gradient expansions for kinetic and exchange energies

    SciTech Connect

    Perdew, J.P.; Levy, M.; Painter, G.S.; Wei, S.; Lagowski, J.B.

    1988-01-15

    Errors in kinetic and exchange contributions to the molecular bonding energy are assessed for approximate density functionals by reference to near-exact Hartree-Fock values. From the molecular calculations of Allan et al. and of Lee and Ghosh, it is demonstrated that the density-gradient expansion does not accurately describe the noninteracting kinetic contribution to the bonding energy, even when this expansion is carried to fourth order and applied in its spin-density-functional form to accurate Hartree-Fock densities. In a related study, it is demonstrated that the overbinding of molecules such as N/sub 2/ and F/sub 2/, which occurs in the local-spin-density (LSD) approximation for the exchange-correlation energy, is not attributable to errors in the self-consistent LSD densities. Contrary to expectations based upon the Gunnarsson-Jones nodality argument, it is found that the LSD approximation for the exchange energy can seriously overbind a molecule even when bonding does not create additional nodes in the occupied valence orbitals. LSD and exact values for the exchange contribution to the bonding energy are displayed and discussed for several molecules.

  8. Tracer Lamination in the Stratosphere: A Global Climatology

    NASA Technical Reports Server (NTRS)

    Appenzeller, Christof; Holton, James R.

    1997-01-01

    Vertical soundings of stratospheric ozone often exhibit laminated tracer structures characterized by strong vertical tracer gradients. The change in time of these gradients is used to define a tracer lamination rate. It is shown that this quantity can be calculated by the cross product of the horizontal temperature and horizontal tracer gradients. A climatology based on UARS satellite-borne ozone data and on ozone-like pseudotracer data is presented. Three stratospheric regions with high lamination rates were found: the part of the stratospheric overworld which is influenced by the polar vortex, the part of the lowermost stratosphere which is influenced by the tropopause and a third region in the subtropical lower stratosphere mainly characterized with strong vertical shear. High lamination rates in the stratospheric overworld were absent during summer, whereas in the lowermost stratosphere high lamination rates were found year-round. This is consistent with the occurrence and seasonal variation of the horizontal tracer gradient and vertical shear necessary for tilting the tracer surfaces. During winter, high lamination rates associated with the stratospheric polar vortex are present down to approximately 100 hPa. Several features of the derived climatology are roughly consistent with earlier balloon-borne studies. The patterns in the southern and northern hemisphere are comparable, but details differ as anticipated from a less disturbed and more symmetric southern polar vortex.

  9. Tracer-based prediction of thermal reservoir lifetime: scope, limitations, and the role of thermosensitive tracers

    NASA Astrophysics Data System (ADS)

    Ghergut, I.; Behrens, H.; Karmakar, S.; Licha, T.; Nottebohm, M.; Sauter, M.

    2012-04-01

    Thermal-lifetime prediction is a traditional endeavour of inter-well tracer tests conducted in geothermal reservoirs. Early tracer test signals (detectable within the first few years of operation) are expected to correlate with late-time production temperature evolutions ('thermal breakthrough', supposed to not occur before some decades of operation) of a geothermal reservoir. Whenever a geothermal reservoir can be described as a single-fracture system, its thermal lifetime will, ideally, be determined by two parameters (say, fracture aperture and porosity), whose inversion from conservative-tracer test signals is straightforward and non-ambiguous (provided that the tracer tests, and their interpretation, are performed in accordance to the rules of the art). However, as soon as only 'few more' fractures are considered, this clear-cut correlation is broken. A given geothermal reservoir can simultaneously feature a single-fracture behaviour, in terms of heat transport, and a multiple-fracture behaviour, in terms of solute tracer transport (or vice-versa), whose effective values of fracture apertures, spacings, and porosities are essentially uncorrelated between heat and solute tracers. Solute transport parameters derived from conservative-tracer tests will no longer characterize the heat transport processes (and thus temperature evolutions) taking place in the same reservoir. Parameters determining its thermal lifetime will remain 'invisible' to conservative tracers in inter-well tests. We demonstrate this issue at the example of a five-fracture system, representing a deep-geothermal reservoir, with well-doublet placement inducing fluid flow 'obliquely' to the fractures. Thermal breakthrough in this system is found to strongly depend on fracture apertures, whereas conservative-solute tracer signals from inter-well tests in the same system do not show a clear-cut correlation with fracture apertures. Only by using thermosensitive substances as tracers, a reliable

  10. Identification and characterization of freshwater algae from a pollution gradient using rbcL sequencing and toxicity testing.

    PubMed

    Novis, Phil M; Halle, Cornelia; Wilson, Belinda; Tremblay, Louis A

    2009-10-01

    One approach in toxicity testing using microalgae is to assess the modulation of light energy absorbed as a result of exposure to contaminants. In this study, four strains of microalgae were isolated to obtain a variety of taxa for testing from sites receiving various levels of environmental stressors around Christchurch, New Zealand. The strains were characterized by partially sequencing rbcL, a routinely used gene in plant phylogenetics with a large existing database of strains. Based on morphological observation and gene sequences, the strains were identified as Chlorella sp., Neochloris sp., and Choricystis minor. The isolates were exposed to the herbicide glyphosate and the metal zinc, and their responses were measured using the ToxY-PAM system. Chlorella sp. was the most sensitive. Two strains of Choricystis minor were isolated from different ponds in an effluent gradient at a sewage treatment plant. Analysis of variance indicated that the isolate from the least contaminated pond was more sensitive to zinc (although regression analysis did not show this result). This suggests that the selective pressure exerted on algal strains by a contamination gradient over short a distance is detectable by both genetic and physiological methods, with implications for sourcing appropriate indicator organisms from the environment.

  11. Testing fine sediment connectivity hypotheses using fallout radionuclide tracers in a small catchment with badlands. Vallcebre Research Catchments (NE Spain)

    NASA Astrophysics Data System (ADS)

    Gallart, Francesc; Latron, Jérôme; Vuolo, Diego; Martínez-Carreras, Núria; Pérez-Gallego, Nuria; Ferrer, Laura; Estrany, Joan

    2016-04-01

    . Indeed, long residence time of stream bed sediments allowing FRN accumulation is suggested by (i) fine in-stream sediment activities higher than those measured at their sources and (ii) increasing activities downstream. Results showed a more intricate behaviour than expected. Pbx-210 activities of fine bed and suspended sediments were usually below detectable levels or had large uncertainty bounds, confirming that they come mainly from fresh rocks but making difficult the hypotheses testing. Fine sediments on the stream beds had low activities in contradiction with hypothesis 2. Activities of in-stream suspended sediments partly followed hypothesis 1 but they decreased with the increasing capacity of runoff events to mobilise low-activity sediments from the stream bed. Shorter-lived Be-7 activity was detectable only on badland regoliths and suspended sediments, with activities increasing downstream; this cannot be attributed to the accumulation of FRN in old sediments, because of the short life of Be-7. Instead, fine bed sediments might be brought into suspension by raindrop impacts, and most of the FRN content of these raindrops would be flushed with the suspended sediment, impeding its accumulation on bed sediments and disabling hypothesis 2. Overall, several lines of evidence suggest that FRNs were quickly sequestered by the more dynamic sediment particles, preventing its accumulation on coarser sediment particles and surfaces exposed to overland or stream flow.

  12. Dual-tracer transport experiments in a physically and chemically heterogeneous porous aquifer: effective transport parameters and spatial variability

    NASA Astrophysics Data System (ADS)

    Ptak, T.; Schmid, G.

    1996-08-01

    In order to investigate the effects of reactive transport processes within a heterogeneous porous aquifer, two small-scale forced gradient tracer tests were conducted at the 'Horkheimer Insel' field site. During the experiments, two fluorescent tracers were injected simultaneously in the same fully penetrating groundwater monitoring well, located approximately 10 m from the pumping well. Fluoresceine and Rhodamine WT were used to represent the classes of practically non-sorbing and sorbing solutes, respectively. Multilevel breakthrough curves with a temporal resolution of 1 min were measured for both tracers at different depths within the pumping well using fibre-optic fluorimeters. This paper presents the tracer test design, the fibre-optic fluorimetry instrumentation, the experimental results and the interpretation of the measured multilevel breakthrough curves in terms of temporal moments and effective transport parameters. Significant sorption of Rhodamine WT is apparent from the effective retardation factors. Furthermore, an enhanced tailing of Rhodamine WT breakthrough curves is observed, which is possibly caused by a variability of aquifer sorption properties. The determined effective parameters are spatially variable, suggesting that a complex numerical flow and transport modelling approach within a stochastic framework will be needed to adequately describe the transport behaviour observed in the two experiments. Therefore, the tracer test results will serve in future work for the validation of numerical stochastic transport simulations taking into account the spatial variability of hydraulic conductivity and sorption-related aquifer properties.

  13. Fires in Seasonally Dry Tropical Forest: Testing the Varying Constraints Hypothesis across a Regional Rainfall Gradient

    PubMed Central

    Mondal, Nandita; Sukumar, Raman

    2016-01-01

    The “varying constraints hypothesis” of fire in natural ecosystems postulates that the extent of fire in an ecosystem would differ according to the relative contribution of fuel load and fuel moisture available, factors that vary globally along a spatial gradient of climatic conditions. We examined if the globally widespread seasonally dry tropical forests (SDTFs) can be placed as a single entity in this framework by analyzing environmental influences on fire extent in a structurally diverse SDTF landscape in the Western Ghats of southern India, representative of similar forests in monsoonal south and southeast Asia. We used logistic regression to model fire extent with factors that represent fuel load and fuel moisture at two levels—the overall landscape and within four defined moisture regimes (between 700 and1700 mm yr-1)—using a dataset of area burnt and seasonal rainfall from 1990 to 2010. The landscape scale model showed that the extent of fire in a given year within this SDTF is dependent on the combined interaction of seasonal rainfall and extent burnt the previous year. Within individual moisture regimes the relative contribution of these factors to the annual extent burnt varied—early dry season rainfall (i.e., fuel moisture) was the predominant factor in the wettest regime, while wet season rainfall (i.e., fuel load) had a large influence on fire extent in the driest regime. Thus, the diverse structural vegetation types associated with SDTFs across a wide range of rainfall regimes would have to be examined at finer regional or local scales to understand the specific environmental drivers of fire. Our results could be extended to investigating fire-climate relationships in STDFs of monsoonal Asia. PMID:27441689

  14. Tracer Developments: Results of Experimental Studies

    SciTech Connect

    Adams, M.C.; Ahn, J.H.; Bentley, H.; Moore, J.N.; Veggeberg, S.

    1986-01-21

    Tracers can be used to monitor the movement of groundwaters and geothermal fluids and they can be used as a reference to quantify changes in fluid chemistry as a result of injection. Despite their potential importance to the geothermal operator, very few tracers are presently available and of those that are, little is known about their stability or behavior at the elevated temperatures that typify resources capable of electric power generation. During the past two years the University of Utah Research Institute has been involved in tracer research and testing, largely through the DOE Injection Research Program. The purpose of this paper is to summarize the results of these laboratory and field investigations.

  15. SOFI/Substrate integrity testing for cryogenic propellant tanks at extreme thermal gradient conditions

    NASA Astrophysics Data System (ADS)

    Haynes, M.; Fabian, P.

    2015-12-01

    Liquid propellant tank insulation for space flight requires low weight as well as high insulation factors. Use of Spray-On Foam Insulation (SOFI) is an accepted, cost effective technique for insulating a single wall cryogenic propellant tank and has been used extensively throughout the aerospace industry. Determining the bond integrity of the SOFI to the metallic substrate as well as its ability to withstand the in-service strains, both mechanical and thermal, is critical to the longevity of the insulation. This determination has previously been performed using highly volatile, explosive cryogens, which increases the test costs enormously, as well as greatly increasing the risk to both equipment and personnel. CTD has developed a new test system, based on a previous NASA test that simulates the mechanical and thermal strains associated with filling a large fuel tank with a cryogen. The test enables a relatively small SOFI/substrate sample to be monitored for any deformations, delaminations, or disjunctures during the cooling and mechanical straining process of the substrate, and enables the concurrent application of thermal and physical strains to two specimens at the same time. The thermal strains are applied by cooling the substrate to the desired cryogen temperature (from 4 K to 250 K) while maintaining the outside surface of the SOFI foam at ambient conditions. Multiple temperature monitoring points are exercised to ensure even cooling across the substrate, while at the same time, surface temperatures of the SOFI can be monitored to determine the heat flow. The system also allows for direct measurement of the strains in the substrate during the test. The test system as well as test data from testing at 20 K, for liquid Hydrogen simulation, will be discussed.

  16. The Correlation of the TBC Lifetimes in Burner Cycling Test with Thermal Gradient and Furnace Isothermal Cycling Test by TGO Effects

    NASA Astrophysics Data System (ADS)

    Li, Chang-Jiu; Dong, Hui; Ding, Hang; Yang, Guan-Jun; Li, Cheng-Xin

    2017-02-01

    Two types of typical thermal cycling tests are used for the evaluation of thermal cycling lifetime of thermal barrier coatings. Those are the burner cycling test with a thermal gradient and the isothermal furnace cycling test. There are diverse explanations to test results up to now. Although certain correlations should exist between the results obtained by two types of the tests, no evident parameters in two tests were directly related, possibly due to large range of difference test conditions. In this investigation, a series of TBC samples with carefully prepared Al2O3-based TGO of different thicknesses were used for both the burner cycling and the furnace cycling tests. The relationships between thermal cycling lifetime and TGO thickness were obtained for two types of the tests. It was found that TGO thickness presents the same influence tendency despite of different types of thermal cycling test. The results reveal the existence of the critical TGO thickness by which the transition of failure mode takes place. Moreover, the values of the critical TGO thickness for two tests are comparable. The results evidently suggest that the lifetimes during different thermal cycling tests can be correlated by TGO effects on failure behavior. However, it is clear that the apparent dominant driving factors to TBC failure are different in two types of tests. Accordingly, the burner cycling test could be used for optimizing the durability of ceramic top coat by separating the effect of individual factors through test condition design, while the furnace cycling test results represent the integrated TBC durable performance of the bond coat and top ceramic coating.

  17. Tracer attenuation in groundwater

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  18. Spatial resolution of the pain system: a proximal-to-distal gradient of sensitivity revealed with psychophysical testing.

    PubMed

    Weissman-Fogel, Irit; Brayer-Zwi, Nurit; Defrin, Ruth

    2012-01-01

    The spatial resolution of the pain system has not been studied in depth, and results are contradictory regarding the gradient of spatial resolution. Microneurographic recordings have revealed smaller receptive fields and higher density of nociceptors in more distal than proximal leg regions, whereas histological studies report higher density of C-fibers in more proximal than distal body regions. Due to this controversy, we conducted various psychophysical tests in order to examine the nociceptive spatial resolution and its gradient. Heat-pain threshold (HPT), perceived pain intensity, spatial summation (SS) of pain, two-point discrimination (2PD) of pain, and pain localization were measured in four body regions: upper back, thigh, lower leg, and foot. The highest HPT was demonstrated in the lower leg as compared with more proximal regions (P < 0.0001). SS was observed in all the regions and was found to be smallest in the foot (P < 0.05). The smallest 2PD and localization distances were found in the foot (P < 0.01) as compared with the lower leg and upper back. It appears that the nociceptive spatial resolution has a proximal-to-distal pattern of performance, namely that the spatial resolution of pain is finer in more distal than proximal body regions, similar to that of the touch system.

  19. Analytic energy gradient of excited electronic state within TDDFT/MMpol framework: Benchmark tests and parallel implementation

    SciTech Connect

    Zeng, Qiao; Liang, WanZhen

    2015-10-07

    The time-dependent density functional theory (TDDFT) has become the most popular method to calculate the electronic excitation energies, describe the excited-state properties, and perform the excited-state geometric optimization of medium and large-size molecules due to the implementation of analytic excited-state energy gradient and Hessian in many electronic structure software packages. To describe the molecules in condensed phase, one usually adopts the computationally efficient hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) models. Here, we extend our previous work on the energy gradient of TDDFT/MM excited state to account for the mutual polarization effects between QM and MM regions, which is believed to hold a crucial position in the potential energy surface of molecular systems when the photoexcitation-induced charge rearrangement in the QM region is drastic. The implementation of a simple polarizable TDDFT/MM (TDDFT/MMpol) model in Q-Chem/CHARMM interface with both the linear response and the state-specific features has been realized. Several benchmark tests and preliminary applications are exhibited to confirm our implementation and assess the effects of different treatment of environmental polarization on the excited-state properties, and the efficiency of parallel implementation is demonstrated as well.

  20. Testing the Paradox of Enrichment along a Land Use Gradient in a Multitrophic Aboveground and Belowground Community

    PubMed Central

    Meyer, Katrin M.; Vos, Matthijs; Mooij, Wolf M.; Hol, W. H. Gera; Termorshuizen, Aad J.; van der Putten, Wim H.

    2012-01-01

    In the light of ongoing land use changes, it is important to understand how multitrophic communities perform at different land use intensities. The paradox of enrichment predicts that fertilization leads to destabilization and extinction of predator-prey systems. We tested this prediction for a land use intensity gradient from natural to highly fertilized agricultural ecosystems. We included multiple aboveground and belowground trophic levels and land use-dependent searching efficiencies of insects. To overcome logistic constraints of field experiments, we used a successfully validated simulation model to investigate plant responses to removal of herbivores and their enemies. Consistent with our predictions, instability measured by herbivore-induced plant mortality increased with increasing land use intensity. Simultaneously, the balance between herbivores and natural enemies turned increasingly towards herbivore dominance and natural enemy failure. Under natural conditions, there were more frequently significant effects of belowground herbivores and their natural enemies on plant performance, whereas there were more aboveground effects in agroecosystems. This result was partly due to the “boom-bust” behavior of the shoot herbivore population. Plant responses to herbivore or natural enemy removal were much more abrupt than the imposed smooth land use intensity gradient. This may be due to the presence of multiple trophic levels aboveground and belowground. Our model suggests that destabilization and extinction are more likely to occur in agroecosystems than in natural communities, but the shape of the relationship is nonlinear under the influence of multiple trophic interactions. PMID:23145055

  1. Calorimeter measures high nuclear heating rates and their gradients across a reactor test hole

    NASA Technical Reports Server (NTRS)

    Burwell, D.; Coombe, J. R.; Mc Bride, J.

    1970-01-01

    Pedestal-type calorimeter measures gamma-ray heating rates from 0.5 to 7.0 watts per gram of aluminum. Nuclear heating rate is a function of cylinder temperature change, measured by four chromel-alumel thermocouples attached to the calorimeter, and known thermoconductivity of the tested material.

  2. Tracer diffusion inside fibrinogen layers

    NASA Astrophysics Data System (ADS)

    Cieśla, Michał; Gudowska-Nowak, Ewa; Sagués, Francesc; Sokolov, Igor M.

    2014-01-01

    We investigate the obstructed motion of tracer (test) particles in crowded environments by carrying simulations of two-dimensional Gaussian random walk in model fibrinogen monolayers of different orientational ordering. The fibrinogen molecules are significantly anisotropic and therefore they can form structures where orientational ordering, similar to the one observed in nematic liquid crystals, appears. The work focuses on the dependence between level of the orientational order (degree of environmental crowding) of fibrinogen molecules inside a layer and non-Fickian character of the diffusion process of spherical tracer particles moving within the domain. It is shown that in general particles motion is subdiffusive and strongly anisotropic, and its characteristic features significantly change with the orientational order parameter, concentration of fibrinogens, and radius of a diffusing probe.

  3. New physical Lagrangian tracer

    SciTech Connect

    Zak, B.D.

    1984-01-01

    A physical Lagrangian tracer will be operational and available for use within the near future. The tracer is an adjustable buoyancy constant volume balloon with an onboard microprocessor to serve an appropriate array of sensors, and to control buoyancy. Tracking and data reporting is to be accomplished via the ARGOS satellite-borne data system, yielding both a local and a world-wide capability. 5 references, 1 figure.

  4. PAH concentration gradients and fluxes through sand cap test cells installed in situ over river sediments containing coal tar.

    PubMed

    Kim, Yong Sang; Nyberg, Leila M; Jenkinson, Byron; Jafvert, Chad T

    2013-08-01

    Short-term performance of permeable sand cap test cells, installed over sediment containing liquid coal tar was monitored on the Grand Calumet River (Hammond, Indiana, USA). The sand cap test cells included two sand-only cells, two test cells containing a sand/peat mixed layer, two test cells containing a sand/organoclay mixed layer, and two sediment control cells. In each test cell, six monocyclic and twelve polycyclic aromatic hydrocarbons (MAHs and PAHs) were monitored over an 18 month period, and interfacial water flow was monitored periodically. Seepage velocities ranged from 3.8 cm per day into the sediments to 3.2 cm per day out of the sediments, with discharge out of the sediments being observed more often. A ferric iron test indicated that stratified oxic-anaerobic layers were formed in the caps. Within the sand caps, concentrations of MAHs and PAHs fluctuated with time, and this fluctuation was more significant near the bottom. Near the top, most of the MAHs and PAHs were attenuated above 95% in the first year of the study, but their attenuation rates decreased in the second year due to recontamination of the surface of the caps by the surrounding sediments. Functional genes involved in PAH degradation were detected by polymerase chain reaction (PCR) in upper and lower sections of the caps for each of the three treatments. Bacterial communities were characterized by PCR amplification of 16s rRNA genes and denaturing gradient gel electrophoresis (DGGE). The results indicate that the rate and direction of sediment porewater flow is an important factor for properly designing any remedial sand cap, and that biodegradation of many of the MAH and PAH compounds was likely a major removal mechanism leading to attenuation through the test cells.

  5. Testing the performance of freeform LED optics by gradient based measurement

    NASA Astrophysics Data System (ADS)

    Hilbig, David; Fleischmann, Friedrich; Henning, Thomas

    2016-08-01

    Light-emitting diodes (LED) increasingly replace conventional filaments in various illumination applications due to higher performance and efficiency. However, their common luminous intensity profiles do not match all requirements and need to be adapted using secondary beam shaping optics. Aside from reflectors, such optics are commonly realized by freeform optical components. More sophisticated tasks such as safety and security applications are covered by strict regulations and demand a well defined spatial distribution of the emitted light. Up to now, correct functionality is only verified at system level by determining the resulting radiation pattern with a photogoniometer after packaging the optic with the light source and the fixture. However, the correct functionality of the individual optical component is usually not verified and in a fail case, the actual error source cannot be identified. A new measurement method based on experimental ray tracing (ERT) is introduced that enables performance testing of beam shaping secondary optics at component level. Rays emerging from a virtual point source are traced through the device under test. The angle of the refracted ray is recorded as a function of the incident angle. In an additional step, the resulting radiation distribution is determined based on the energy conservation law. Measurement result of a freeform lens for marine application are presented as an example and compared to results from a photogoniometer.

  6. Effect of different transport observations on inverse modeling results: case study of a long-term groundwater tracer test monitored at high resolution

    PubMed Central

    Rasa, Ehsan; Foglia, Laura; Mackay, Douglas M.; Scow, Kate M.

    2014-01-01

    Conservative tracer experiments can provide information useful for characterizing various subsurface transport properties. This study examines the effectiveness of three different types of transport observations for sensitivity analysis and parameter estimation of a three-dimensional site-specific groundwater flow and transport model: conservative tracer breakthrough curves (BTCs), first temporal moments of BTCs (m1), and tracer cumulative mass discharge (Md) through control planes combined with hydraulic head observations (h). High-resolution data obtained from a 410-day controlled field experiment at Vandenberg Air Force Base, California (USA), have been used. In this experiment, bromide was injected to create two adjacent plumes monitored at six different transects (perpendicular to groundwater flow) with a total of 162 monitoring wells. A total of 133 different observations of transient hydraulic head, 1,158 of BTC concentration, 23 of first moment, and 36 of mass discharge were used for sensitivity analysis and parameter estimation of nine flow and transport parameters. The importance of each group of transport observations in estimating these parameters was evaluated using sensitivity analysis, and five out of nine parameters were calibrated against these data. Results showed the advantages of using temporal moment of conservative tracer BTCs and mass discharge as observations for inverse modeling. PMID:24672283

  7. Effect of different transport observations on inverse modeling results: case study of a long-term groundwater tracer test monitored at high resolution.

    PubMed

    Rasa, Ehsan; Foglia, Laura; Mackay, Douglas M; Scow, Kate M

    2013-11-01

    Conservative tracer experiments can provide information useful for characterizing various subsurface transport properties. This study examines the effectiveness of three different types of transport observations for sensitivity analysis and parameter estimation of a three-dimensional site-specific groundwater flow and transport model: conservative tracer breakthrough curves (BTCs), first temporal moments of BTCs (m1), and tracer cumulative mass discharge (Md) through control planes combined with hydraulic head observations (h). High-resolution data obtained from a 410-day controlled field experiment at Vandenberg Air Force Base, California (USA), have been used. In this experiment, bromide was injected to create two adjacent plumes monitored at six different transects (perpendicular to groundwater flow) with a total of 162 monitoring wells. A total of 133 different observations of transient hydraulic head, 1,158 of BTC concentration, 23 of first moment, and 36 of mass discharge were used for sensitivity analysis and parameter estimation of nine flow and transport parameters. The importance of each group of transport observations in estimating these parameters was evaluated using sensitivity analysis, and five out of nine parameters were calibrated against these data. Results showed the advantages of using temporal moment of conservative tracer BTCs and mass discharge as observations for inverse modeling.

  8. Experimental design for estimating parameters of rate-limited mass transfer: Analysis of stream tracer studies

    USGS Publications Warehouse

    Wagner, B.J.; Harvey, J.W.

    1997-01-01

    Tracer experiments are valuable tools for analyzing the transport characteristics of streams and their interactions with shallow groundwater. The focus of this work is the design of tracer studies in high-gradient stream systems subject to advection, dispersion, groundwater inflow, and exchange between the active channel and zones in surface or subsurface water where flow is stagnant or slow moving. We present a methodology for (1) evaluating and comparing alternative stream tracer experiment designs and (2) identifying those combinations of stream transport properties that pose limitations to parameter estimation and therefore a challenge to tracer test design. The methodology uses the concept of global parameter uncertainty analysis, which couples solute transport simulation with parameter uncertainty analysis in a Monte Carlo framework. Two general conclusions resulted from this work. First, the solute injection and sampling strategy has an important effect on the reliability of transport parameter estimates. We found that constant injection with sampling through concentration rise, plateau, and fall provided considerably more reliable parameter estimates than a pulse injection across the spectrum of transport scenarios likely encountered in high-gradient streams. Second, for a given tracer test design, the uncertainties in mass transfer and storage-zone parameter estimates are strongly dependent on the experimental Damkohler number, DaI, which is a dimensionless combination of the rates of exchange between the stream and storage zones, the stream-water velocity, and the stream reach length of the experiment. Parameter uncertainties are lowest at DaI values on the order of 1.0. When DaI values are much less than 1.0 (owing to high velocity, long exchange timescale, and/or short reach length), parameter uncertainties are high because only a small amount of tracer interacts with storage zones in the reach. For the opposite conditions (DaI >> 1.0), solute exchange

  9. Performance evaluation testing of wells in the gradient control system at a federally operated Confined Disposal Facility using single well aquifer tests, East Chicago, Indiana

    USGS Publications Warehouse

    Lampe, David C.; Unthank, Michael D.

    2016-12-08

    The U.S. Geological Survey (USGS) performed tests to evaluate the hydrologic connection between the open interval of the well and the surrounding Calumet aquifer in response to fouling of extraction well pumps onsite. Two rounds of air slug testing were performed on seven monitoring wells and step drawdown and subsequent recovery tests on three extraction wells on a U.S. Army Corps of Engineers Confined Disposal Facility (CDF) in East Chicago, Indiana. The wells were tested in 2014 and again in 2015. The extraction and monitoring wells are part of the gradient control system that establishes an inward gradient around the perimeter of the facility. The testing established a set of protocols that site personnel can use to evaluate onsite well integrity and develop a maintenance procedure to evaluate future well performance.The results of the slug test analysis data indicate that the hydraulic connection of the well screen to the surrounding aquifer material in monitoring wells on the CDF and the reliability of hydraulic conductivity estimates of the surrounding geologic media could be increased by implementing well development maintenance. Repeated air slug tests showed increasing hydraulic conductivity until, in the case of the monitoring wells located outside of the groundwater cutoff wall (MW–4B, MW–11B, MW–14B), the difference in hydraulic conductivity from test to test decreased, indicating the results were approaching the optimal hydraulic connection between the aquifer and the well screen. Hydraulic conductivity values derived from successive tests in monitoring well D40, approximately 0.25 mile south of the CDF, were substantially higher than those derived from wells on the CDF property. Also, values did not vary from test to test like those measured in monitoring wells located on the CDF property, which indicated that a process may be affecting the connectivity of the wells on the CDF property to the Calumet aquifer. Derived hydraulic conductivity

  10. Global mass fixer algorithms for conservative tracer transport in the ECMWF model

    NASA Astrophysics Data System (ADS)

    Diamantakis, M.; Flemming, J.

    2014-01-01

    Various mass fixer algorithms (MFA) have been implemented in the Integrated Forecasting System (IFS) of ECMWF to ensure mass conservation of atmospheric tracers within the Semi-Lagrangian (SL) advection scheme. Emphasis has been placed in implementing schemes that despite being primarily global in nature adjust the solution mostly in regions where the advected field has large gradients and therefore interpolation (transport) error is assumed larger. The MFA have been tested in weather forecast, idealised and atmospheric dispersion cases. Applying these fixers to specific humidity and cloud fields did not change the accuracy of 10 day forecasts. In other words, global mass tracer conservation is achieved without deteriorating the solution accuracy. However, for longer forecast timescales or for forecasts in which correlated species are transported, experiments suggest that MFA may improve IFS forecasts.

  11. Global mass fixer algorithms for conservative tracer transport in the ECMWF model

    NASA Astrophysics Data System (ADS)

    Diamantakis, M.; Flemming, J.

    2014-05-01

    Various mass fixer algorithms (MFAs) have been implemented in the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) to ensure mass conservation of atmospheric tracers within the semi-Lagrangian (SL) advection scheme. Emphasis has been placed in implementing schemes that despite being primarily global in nature adjust the solution mostly in regions where the advected field has large gradients and therefore interpolation (transport) error is assumed larger. The MFAs have been tested in weather forecast, idealised and atmospheric dispersion cases. Applying these fixers to specific humidity and cloud fields did not change the accuracy of 10-day forecasts. In other words, global mass tracer conservation is achieved without deteriorating the solution accuracy. However, for longer forecast timescales or for forecasts in which correlated species are transported, experiments suggest that MFAs may improve IFS forecasts.

  12. Geophysical monitoring of solute transport in dual-domain environments through laboratory experiments, field-scale solute tracer tests, and numerical simulation

    NASA Astrophysics Data System (ADS)

    Swanson, Ryan David

    The advection-dispersion equation (ADE) fails to describe non-Fickian solute transport breakthrough curves (BTCs) in saturated porous media in both laboratory and field experiments, necessitating the use of other models. The dual-domain mass transfer (DDMT) model partitions the total porosity into mobile and less-mobile domains with an exchange of mass between the two domains, and this model can reproduce better fits to BTCs in many systems than ADE-based models. However, direct experimental estimation of DDMT model parameters remains elusive and model parameters are often calculated a posteriori by an optimization procedure. Here, we investigate the use of geophysical tools (direct-current resistivity, nuclear magnetic resonance, and complex conductivity) to estimate these model parameters directly. We use two different samples of the zeolite clinoptilolite, a material shown to demonstrate solute mass transfer due to a significant internal porosity, and provide the first evidence that direct-current electrical methods can track solute movement into and out of a less-mobile pore space in controlled laboratory experiments. We quantify the effects of assuming single-rate DDMT for multirate mass transfer systems. We analyze pore structures using material characterization methods (mercury porosimetry, scanning electron microscopy, and X-ray computer tomography), and compare these observations to geophysical measurements. Nuclear magnetic resonance in conjunction with direct-current resistivity measurements can constrain mobile and less-mobile porosities, but complex conductivity may have little value in relation to mass transfer despite the hypothesis that mass transfer and complex conductivity lengths scales are related. Finally, we conduct a geoelectrical monitored tracer test at the Macrodispersion Experiment (MADE) site in Columbus, MS. We relate hydraulic and electrical conductivity measurements to generate a 3D hydraulic conductivity field, and compare to

  13. Is fully coupled hydrogeophysical inversion really better than uncoupled? A comparison study using ensemble Kalman filter assimilation of ERT-monitored tracer test data. (Invited)

    NASA Astrophysics Data System (ADS)

    Camporese, M.; Cassiani, G.; Deiana, R.; Salandin, P.; Binley, A. M.

    2013-12-01

    Recent advances in geophysical methods have been increasingly exploited as inverse modeling tools in groundwater hydrology. In particular, several attempts to constrain the hydrogeophysical inverse problem to reduce inversion error have been made using time-lapse geophysical measurements through both coupled and uncoupled inversion approaches. On one hand, the main advantage of coupled approaches is that the numerical models for the geophysical and hydrological processes are linked together such that the geophysical data are inverted directly for the hydrological properties of interest, avoiding artifacts related to the classical geophysical inversions. On the other hand, uncoupled approaches, relying upon a geophysical inversion that is carried out before estimating the hydrological variable of interest, could reveal something about the process that is not accounted for in a model, i.e., they are not constrained by the conceptualization of the hydrological model. In spite of the appeal and popularity of fully coupled inversion approaches, their superiority over more traditional uncoupled methods still needs to be objectively proven; the aim of this work is to shed some light on this debate. An approach based on the Lagrangian formulation of transport and the ensemble Kalman filter (EnKF) is here applied to assess the spatial distribution of hydraulic conductivity (K) by assimilating time-lapse cross-hole electrical resistivity tomography (ERT) data generated for a synthetic tracer test in a heterogeneous aquifer. In the coupled version of the proposed inverse modeling approach, the K distribution is retrieved by assimilating raw ERT resistance data without the need for a preliminary geoelectrical inversion. In the uncoupled version, K is estimated by assimilating electrical conductivity data derived from a previously performed classical geophysical inversion of the same resistance dataset. We compare the performance of the two approaches in a number of simulation

  14. Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish cell line (RTgill-W1)--towards water toxicity testing.

    PubMed

    Glawdel, Tomasz; Elbuken, Caglar; Lee, Lucy E J; Ren, Carolyn L

    2009-11-21

    This study presents a microfluidic system that incorporates electroosmotic pumps, a concentration gradient generator and a fish cell line (rainbow trout gill) to perform toxicity testing on fish cells seeded in the system. The system consists of three mechanical components: (1) a toxicity testing chip containing a microfluidic gradient generator which creates a linear concentration distribution of toxicant in a cell test chamber, (2) an electroosmotic (EO) pump chip that controls the flow rate and operation of the toxicity chip, and (3) indirect reservoirs that connect the two chips allowing for the toxicant solution to be pumped separately from the electroosmotic pump solution. The flow rate and stability of the EO pumps was measured and tested by monitoring the gradient generator using fluorescence microscopy. Furthermore, a lethality test was performed with this system setup using a rainbow trout gill cell line (RTgill-W1) as the test cells and sodium dodecyl sulfate as a model toxicant. A gradient of sodium dodecyl sulfate, from 0 to 50 microg mL(-1), was applied for 1 hr to the attached cells, and the results were quantified using a Live/Dead cell assay. This work is a preliminary study on the application of EO pumps in a living cell assay, with the potential to use the pumps in portable water quality testing devices with RTgill-W1 cells as the biosensors.

  15. Bias extension test on an unbalanced woven composite reinforcement: Experiments and modeling via a second-gradient continuum approach

    NASA Astrophysics Data System (ADS)

    Barbagallo, Gabriele; Madeo, Angela; Azehaf, Ismael; Giorgio, Ivan; Morestin, Fabrice; Boisse, Philippe

    2017-01-01

    The classical continuum models used for the woven fabrics do not fully describe the whole set of phenomena that occur during the testing of those materials. This incompleteness is partially due to the absence of energy terms related to some micro-structural properties of the fabric and, in particular, to the bending stiffness of the yarns. To account for the most fundamental microstructure-related deformation mechanisms occurring in unbalanced interlocks, a second-gradient, hyperelastic, initially orthotropic continuum model is proposed. A constitutive expression for the strain energy density is introduced to account for i) in-plane shear deformations, ii) highly different bending stiffnesses in the warp and weft directions and iii) fictive elongations in the warp and weft directions which eventually describe the relative sliding of the yarns. Numerical simulations which are able to reproduce the experimental behavior of unbalanced carbon interlocks subjected to a Bias Extension Test are presented. In particular, the proposed model captures the macroscopic asymmetric S-shaped deformation of the specimen, as well as the main features of the associated deformation patterns of the yarns at the mesoscopic scale.

  16. Does nitrogen saturation theory apply to unpolluted temperate forests? A test along a forest soil nitrogen gradient in Oregon

    NASA Astrophysics Data System (ADS)

    Perakis, S. S.; Sinkhorn, E. R.

    2011-12-01

    Natural gradients of soil nitrogen (N) can be used to evaluate the consequences of long-term ecosystem N enrichment, and to test the applicability of N saturation theory as a general framework for understanding ecosystem N dynamics. Temperate forest soils of the Oregon Coast Range experience low rates of atmospheric N deposition, yet display among the highest soil N accumulations ever reported worldwide. We measured plant and soil (0-1m) N stocks and natural abundance delta15N, plant production, N uptake and return in litterfall, soil gross and net N mineralization rates, and hydrologic N losses of nine Douglas-fir forests growing across an exceptionally wide soil N gradient in the Oregon Coast Range. Ecosystem N content ranged from 8,788 to 22,667 kg N/ha across sites, with highest N accumulations near the coast, and 96-98% of total ecosystem N residing in mineral soil. Ecosystem delta15N displayed a curvilinear relationship with ecosystem N content that reflected competing influences of N input from biological fixation at low-N sites and fractionating N losses at high-N sites. Simulation modeling of ecosystem N and delta15N mass balance suggest that cycles of wildfire can promote unusually high natural N accumulation by fostering early successional biological nitrogen fixation. Surface mineral soil (0 - 10 cm) N concentrations were tightly correlated to total soil N stocks to 1 m depth, and in contrast to predictions of N saturation theory, were linearly related to 10-fold variation in net N mineralization from 8 - 82 kg N/ha-yr. Net N mineralization was unrelated to soil C:N, soil texture, precipitation and temperature differences among sites. Net nitrification accounted for < 20% of net N mineralization at low N sites, increasing to 85 - 100% of net N mineralization at intermediate and high N sites, and was associated with soil pH decline from 5.8 to 4.1 across sites. The ratio of net:gross N mineralization and nitrification increased along the gradient

  17. Comparison of fluid-fluid interfacial areas measured with X-ray microtomography and interfacial partitioning tracer tests for the same samples: COMPARISON OF FLUID-FLUID INTERFACIAL AREAS

    SciTech Connect

    McDonald, Kieran; Carroll, Kenneth C.; Brusseau, Mark L.

    2016-07-01

    Two different methods are currently used for measuring interfacial areas between immiscible fluids within 3-D porous media, high-resolution microtomographic imaging and interfacial partitioning tracer tests (IPTT). Both methods were used in this study to measure nonwetting/wetting interfacial areas for a natural sand. The microtomographic imaging was conducted on the same packed columns that were used for the IPTTs. This is in contrast to prior studies comparing the two methods, for which in all cases different samples were used for the two methods. In addition, the columns were imaged before and after the IPTTs to evaluate the potential impacts of the tracer solution on fluid configuration and attendant interfacial area. The interfacial areas measured using IPTT are ~5 times larger than the microtomographic-measured values, which is consistent with previous work. Analysis of the image data revealed no significant impact of the tracer solution on NAPL configuration or interfacial area. Other potential sources of error were evaluated, and all were demonstrated to be insignificant. The disparity in measured interfacial areas between the two methods is attributed to the limitation of the microtomography method to characterize interfacial area associated with microscopic surface roughness due to resolution constraints.

  18. PROOF OF CONCEPT TEST OF A UNIQUE GASEOUS PERFLUROCARBON TRACER SYSTEM FOR VERIFICATION AND LONG TERM MONITORING OF CAPS AND COVER SYSTEMS CONDUCTED AT THE SAVANNAH RIVER SITE BENTONITE MAT TEST FACILITY.

    SciTech Connect

    HEISER,J.; SULLIVAN,T.; SERRATO,M.

    2002-02-24

    Engineered covers have been placed on top of buried/subsurface wastes to minimize water infiltration and therefore, release of hazardous contaminants. In order for the cover to protect the environment it must remain free of holes and breaches throughout its service life. Covers are subject to subsidence, erosion, animal intrusion, plant root infiltration, etc., all of which will affect the overall performance of the cover. The U.S. Department of Energy Environmental Management (DOE-EM) Program 2006 Accelerated Cleanup Plan is pushing for rapid closure of many of the DOE facilities. This will require a great number of new cover systems. Some of these new covers are expected to maintain their performance for periods of up to 1000 years. Long-term stewardship will require monitoring/verification of cover performance over the course of the designed lifetime. In addition, many existing covers are approaching the end of their design life and will need validation of current performance (if continued use is desired) or replacement (if degraded). The need for a reliable method of verification and long-term monitoring is readily apparent. Currently, failure is detected through monitoring wells downstream of the waste site. This is too late as the contaminants have already left the disposal area. The proposed approach is the use of gaseous Perfluorocarbon tracers (PFT) to verify and monitor cover performance. It is believed that PFTs will provide a technology that can verify a cover meets all performance objectives upon installation, be capable of predicting changes in cover performance and failure (defined as contaminants leaving the site) before it happens, and be cost-effective in supporting stewardship needs. The PFTs are injected beneath the cover and air samples taken above (either air samples or soil gas samples) at the top of the cover. The location, concentrations, and time of arrival of the tracer(s) provide a direct measure of cover performance. PFT technology can

  19. B-10 enriched boric acid, bromide, and heat as tracers of recycled groundwater flow near managed aquifer recharge operations

    NASA Astrophysics Data System (ADS)

    Clark, J. F.; Becker, T.; Johnson, T. A.

    2013-12-01

    Recycling wastewater for potable and nonpotable use by artificially recharging aquifers is a decades-old but increasingly popular practice. Natural attenuation processes in the subsurface, known as soil aquifer treatment (SAT), purify recycled water during recharge and subsequent groundwater flow. Travel time criteria are often used to regulate managed aquifer recharge (MAR) operations. California state draft regulations currently gives preference to groundwater tracers to quantify underground residence time, with a target retention time of >6 months from infiltration to drinking water extraction for surface spreading projects using tertiary treated wastewater (less time may be possible if full advanced treated water is utilized). In the past sulfur hexafluoride, a very strong greenhouse gas, has been the principle deliberate tracer for this work. However, its emission has recently become regulated in California and new tracers are needed. Here, two prospective tracers are evaluated: boron-10 (B-10), the least abundant boron isotope, and heat (with recharging water naturally warmed at the sewage treatment plants and in surface-spreading basins). An additional deliberate tracer, bromide (Br), which is a well-studied conservative tracer, was released as a control. Tracer injection occurred at the San Gabriel Spreading Grounds research test basin in Los Angeles County, CA, USA. The basin was constructed and characterized by the US Geological Survey in the mid-1990s. Recycled wastewater was piped directly to this basin at a known rate (about 1.5 m3/day). Down gradient from the test basin are nine high quality monitoring wells in a line that extends from the center of the basin to 150 m down gradient. All of the wells were equipped with temperature loggers that recorded groundwater temperatures every hour with an accuracy of one thousandth of a degree. The pre-experiment expected arrival times ranged from less than one day to six months. Arrival of Br was always

  20. Scaling up from traits to communities to ecosystems across broad climate gradients: Testing Metabolic Scaling Theories predictions for forests

    NASA Astrophysics Data System (ADS)

    Enquist, B. J.; Michaletz, S. T.; Buzzard, V.

    2015-12-01

    Key insights in global ecology will come from mechanistically linking pattern and process across scales. Macrosystems ecology specifically attempts to link ecological processes across spatiotemporal scales. The goal s to link the processing of energy and nutrients from cells all the way ecosystems and to understand how shifting climate influences ecosystem processes. Using new data collected from NSF funded Macrosystems project we report on new findings from forests sites across a broad temperature gradient. Our study sites span tropical, temperate, and high elevation forests we assess several key predictions and assumptions of Metabolic Scaling Theory (MST) as well as several other competing hypotheses for the role of climate, light, and plant traits on influencing forest demography and forest ecosystems. Specifically, we assess the importance of plant size, light limitation, size structure, and various climatic factors on forest growth, demography, and ecosystem functioning. We provide some of the first systematic tests of several key predictions from MST. We show that MST predictions are largely upheld and that new insights from assessing theories predictions yields new observations and findings that help modify and extend MST's predictions and applicability. We discuss how theory is critically needed to further our understanding of how to scale pattern and process in ecology - from traits to ecosystems - in order to develop a more predictive global change biology.

  1. Tracers of Past Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Lynch-Stieglitz, J.

    2003-12-01

    , tracers capable of giving information on deep-water flow rate, rather than nutrient content alone, were needed. Differences between surface water (measured on planktonic foraminifera) and deep-water (measured on coexisting benthic foraminifera) radiocarbon concentrations provided the first rate constraint (Broecker et al., 1988; Shackleton et al., 1988). Reduced amounts of protactinium relative to the more particle-reactive thorium in the glacial Atlantic suggested that deep water was exported from the Atlantic during glacial times ( Yu et al., 1996). More recently, density gradients in upper waters have been used to infer changes in the upper ocean return flow that compensates the deep-water export ( Lynch-Stieglitz et al., 1999b).Many of these tracers of paleo-ocean flow have been applied to all of the ocean basins, and have been extended in time throughout the Neogene. Despite this progress, a consistent picture of the circulation of the ocean during even the last ice age has yet to emerge. While circulation tracers suggest a rearrangement of water masses in the Atlantic, there is still considerable disagreement about the water masses and circulation in the rest of the World Ocean. Some of this arises from still insufficient data coverage, but some is the result of conflicting information from the various deep circulation tracers. In this chapter, we examine in more detail the methods used to reconstruct past ocean circulation, which will illuminate the source of some of this conflicting information.

  2. Results from Geothermal Logging, Air and Core-Water Chemistry Sampling, Air Injection Testing and Tracer Testing in the Northern Ghost Dance Fault, YUCCA Mountain, Nevada, November 1996 to August 1998

    SciTech Connect

    Lecain, G.D.; Anna, L.O.; Fahy, M.F.

    1998-08-01

    Geothermal logging, air and core-water chemistry sampling, air-injection testing, and tracer testing were done in the northern Ghost Dance Fault at Yucca Mountain, Nevada, from November 1996 to August 1998. The study was done by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy. The fault-testing drill room and test boreholes were located in the crystal-poor, middle nonlithophysal zone of the Topopah Spring Tuff, a tuff deposit of Miocene age. The drill room is located off the Yucca Mountain underground Exploratory Studies Facility at about 230 meters below ground surface. Borehole geothermal logging identified a temperature decrease of 0.1 degree Celsius near the Ghost Dance Fault. The temperature decrease could indicate movement of cooler air or water, or both, down the fault, or it may be due to drilling-induced evaporative or adiabatic cooling. In-situ pneumatic pressure monitoring indicated that barometric pressure changes were transmitted from the ground surface to depth through the Ghost Dance Fault. Values of carbon dioxide and delta carbon-13 from gas samples indicated that air from the underground drill room had penetrated the tuff, supporting the concept of a well-developed fracture system. Uncorrected carbon-14-age estimates from gas samples ranged from 2,400 to 4,500 years. Tritium levels in borehole core water indicated that the fault may have been a conduit for the transport of water from the ground surface to depth during the last 100 years.

  3. Tracer Simulation Study.

    DTIC Science & Technology

    1972-04-01

    32 3. Measurement of Ignition Time ......... . . ... 34 4. Relative Reflectance Measurement .... ............ . 36 5. Laser...most reflective. Conversely, the same anomaly that was true for the laser ignition performance and for ignition energy was also true for the reflectance ... measurement ; the best weapon performance lot was not the least reflective. The use of the laser for igniting spinning tracer bullets is a practical

  4. Biomarker Pigment Divinyl Chlorophyll a as a Tracer of Water Masses?

    NASA Technical Reports Server (NTRS)

    Mejdandzic, Maja; Mihanovic, Hrvoje; Silovic, Tina; Henderiks, Jorijntje; Supraha, Luka; Polovic, Dorotea; Bosak, Suncica; Bosnjak, Ivana; Cetinic, Ivona; Olujic, Goran; Ljubesic, Zrinka

    2015-01-01

    The ecological preferences of different Phytoplankton types drive their temporal and spatial distributions, reflecting their dependence on certain temperature ranges, light levels, nutrient availability and other environmental gradients. Hence, some phytoplankton taxa can be used as water mass tracers (biotracers).

  5. Determination of stream reaeration coefficients by use of tracers

    USGS Publications Warehouse

    Kilpatrick, F.A.; Rathbun, R.E.; Yotsukura, Nobuhiro; Parker, G.W.; DeLong, L.L.

    1987-01-01

    Stream reaeration is the physical absorption of oxygen from the atmosphere by a flowing stream. This is the primary process by which a stream replenishes the oxygen consumed in the biodegradation of organic wastes. Prior to 1965, reaeration rate coefficients could be estimated only by indirect methods. In 1965, a direct method of measuring stream reaeration coefficients was developed in which a radioactive tracer gas was injected into a stream--the tracer gas being desorbed from the stream inversely to how oxygen would be absorbed. The technique has since been modified by substituting hydrocarbon gases for the radioactive tracer gas. The slug-injection and constant-rate injection methods of performing gas tracer desorption measurements are described. Emphasis is on the use of rhodamine WT dye as a relatively conservative tracer and propane as the nonconservative gas tracer, on planning field tests, methods of injection, sampling and analysis, and computational techniques to compute desorption and reaeration coefficients. (Author 's abstract)

  6. Selection of Actinide Chemical Analogues for WIPP Tests: Potential Nonradioactive Sorbing and Nonsorbing Tracers for Study of Ion Transport in the Environment

    SciTech Connect

    Dale Spall; Robert Villarreal

    1998-08-01

    Chemical characteristics of the actinides (Th, U, Np, Pu, Am) have been studied relative to nonradioactive chemical elements that have similar characteristics in an attempt to identify a group of actinide chemical analogues that are nonradioactive. In general, the chemistries of the actinides, especially U, Np, Pu, and Am, are very complex and attempts to identify a single chemical analogue for each oxidation state were not successful. However, the rationale for selecting a group of chemical analogues that would mimic the actinides as a group is provided. The categorization of possible chemical analogues (tracers) with similar chemical properties was based on the following criteria. Categorization was studied according.

  7. Testing Cort-Fitness and Cort-Adaptation hypotheses in a habitat suitability gradient for roe deer

    NASA Astrophysics Data System (ADS)

    Escribano-Avila, Gema; Pettorelli, Nathalie; Virgós, Emilio; Lara-Romero, Carlos; Lozano, Jorge; Barja, Isabel; Cuadra, Felipe S.; Puerta, Marisa

    2013-11-01

    According to the Cort-Fitness Hypothesis, higher stress levels (glucocorticoids) in vertebrates are correlated to lower fitness. However, recent studies have failed to validate this hypothesis. A proposed wider framework suggests that reproduction can be perceived as an overload adds up to other environmental challenges that individuals must adjust to. In this case, elevated glucocorticoids could help individuals to allocate resources to reproduction without comprising other functions, leading to the expectation of a positive cort-fitness relationship. This has been proposed as the Cort-Adaptation Hypothesis. Stress levels result from a complex interaction between the environment and the neuroendocrine system of animals. Accounting for physiological functions involved in how animals cope with their environment would help to clarify the relationship between glucocorticoids and animal performance. We used roe deer (Capreolus capreolus) inhabiting diverse habitats in the Iberian Peninsula to: i) test the Cort-Fitness and Cort-Adaptation hypotheses by indexing fitness using a comprehensive physiological approach which takes into account fundamental physiological functions and their trade-offs; and ii) evaluate the link between primary productivity and individuals' condition in a seasonal environment. We evaluated spatial and temporal variation in stress levels, reproductive hormone levels, nutritional status and immune function from fecal samples collected in 2010. Lower stress levels were related to better condition in non-reproductive seasons but not to higher primary productivity. In contrast, stress levels were always positively related to reproductive condition, which was better in most productive habitats. Summer and winter were the less productive seasons and the more challenging for the species in the habitat gradient studied. In winter, reproductive condition traded off against immune function being biased toward immune function in less productive habitats. In

  8. Tracer for circulation determinations

    SciTech Connect

    Moore, H.; Santos, S.; Wysong, R. D.

    1985-03-19

    An improved tracer particle is described comprising an ion exchange core having a polymer coating thereon, the coated ion exchange core having a reaction site capable of reacting with a compound containing an oxirane group, said coated ion exchange core having been treated with a compound containing an oxirane group to react with said coated ion exchange core causing an increase in mass of the tracer particle. Preferably, the ion exchange core is labelled with a radionuclide. These particles have improved characteristics including improved stability against leaching and improved handling properties. Such particles are useful in circulatory determinations involving the injection of the particles as a suspension in a physiologically acceptable carrier or medium into the circulatory system of animals.

  9. Radiopharmaceutical Tracers for Neural Progenitor Cells

    SciTech Connect

    Mangner, Thomas J.

    2006-09-29

    The Technical Report summarizes the results of the synthesis and microPET animal scanning of several compounds labeled with positron-emitting isotopes in normal, neonatal and kainic acid treated (seizure induced) rats as potential PET tracers to image the process of neurogenesis using positron emission tomography (PET). The tracers tested were 3'-deoxy-3'-[F-18]fluorothymidine ([F-18]FLT) and 5'-benzoyl-FTL, 1-(2'-deoxy-2'-[F-18]fluoro-B-D-arabinofuranosyl)-5-bromouracil (FBAU) and 3',5'-dibenzoyl-FBAU, N-[F-18]fluoroacetyl-D-glucosamine (FLAG) and tetraacetyl-FLAG, and L-[1-C-11]leucine.

  10. Testing the stress-gradient hypothesis with aquatic detritivorous invertebrates: insights for biodiversity-ecosystem functioning research.

    PubMed

    Fugère, V; Andino, P; Espinosa, R; Anthelme, F; Jacobsen, D; Dangles, O

    2012-11-01

    1. The stress-gradient hypothesis (SGH) states that environmental stress modulates species interactions, causing a shift from negative interactions to net positive interactions with increasing stress. 2. Potentially, this modulation of species interactions could in turn influence biodiversity-ecosystem function (B-EF) relationships along stress gradients. Although the SGH has been extensively discussed in plant community ecology in the past two decades, it has received little attention from animal ecologists. 3. To explore whether the SGH could be applied to animal communities, we conducted a litter decomposition experiment with aquatic detritivorous invertebrates in which we manipulated litter quality and measured species interactions along this resource quality gradient. Litter quality was manipulated by presenting detritivores with leaves of plant species varying in specific leaf area and decomposition rate in streams. 4. We found a switch from negative to neutral interactions with increasing resource quality stress, in line with the SGH. However, by re-examining other published results with aquatic detritivores from the perspective of the SGH, we found that a diversity of patterns seem to characterize detritivore interactions along stress gradients. 5. Although the basic pattern proposed by the SGH may not apply to animal systems in general, we show that aquatic detritivore interactions do change along stress gradients, which underlines the importance of incorporating environmental stressors more explicitly in B-EF research.

  11. URCHIN: Reverse ray tracer

    NASA Astrophysics Data System (ADS)

    Altay, Gabriel; Theuns, Tom

    2014-12-01

    URCHIN is a Smoothed Particle Hydrodynamics (SPH) reverse ray tracer (i.e. from particles to sources). It calculates the amount of shielding from a uniform background that each particle experiences. Preservation of the adaptive density field resolution present in many gas dynamics codes and uniform sampling of gas resolution elements with rays are two of the benefits of URCHIN; it also offers preservation of Galilean invariance, high spectral resolution, and preservation of the standard uniform UV background in optically thin gas.

  12. Subsurface barrier integrity verification using perfluorocarbon tracers

    SciTech Connect

    Sullivan, T.M.; Heiser, J.; Milian, L.; Senum, G.

    1996-12-01

    Subsurface barriers are an extremely promising remediation option to many waste management problems. Gas phase tracers include perfluorocarbon tracers (PFT`s) and chlorofluorocarbon tracers (CFC`s). Both have been applied for leak detection in subsurface systems. The focus of this report is to describe the barrier verification tests conducted using PFT`s and analysis of the data from the tests. PFT verification tests have been performed on a simulated waste pit at the Hanford Geotechnical facility and on an actual waste pit at Brookhaven National Laboratory (BNL). The objective of these tests were to demonstrate the proof-of-concept that PFT technology can be used to determine if small breaches form in the barrier and for estimating the effectiveness of the barrier in preventing migration of the gas tracer to the monitoring wells. The subsurface barrier systems created at Hanford and BNL are described. The experimental results and the analysis of the data follow. Based on the findings of this study, conclusions are offered and suggestions for future work are presented.

  13. Results from air-injection and tracer testing in the Upper Tiva Canyon, Bow Ridge Fault, and upper Paintbrush contact alcoves of the Exploratory Studies Facility, August 1994 through July 1996, Yucca Mountain, Nevada

    SciTech Connect

    LeCain, G.D.

    1998-09-01

    The Yucca Mountain Project is a US Department of Energy (DOE) scientific study to evaluate the potential for geologic disposal of high-level radioactive waste in an unsaturated-zone desert environment. The US Geological Survey (USGS) has been conducting geologic and hydrologic studies of the potential repository site for the DOE. These studies are to quantify the geologic and hydrologic characteristics of Yucca Mountain and to conceptualize and model gas and liquid flow at the potential repository site. Single-hole and cross-hole air-injection and tracer testing was conducted in alcoves located in the underground Exploratory Studies Facility (ESF) to quantify the permeability and porosity values of the fractured and unfractured volcanic rocks (tuff). The permeability and porosity of these tuffs control the movement of fluids in Yucca Mountain. Study of these parameters provides an understanding of fluid flow in the unsaturated zone, and the parameters can be used in unsaturated-zone numerical modeling to estimate fluid flux through the mountain. This report presents the results from air-injection and tracer testing conducted in the upper Tiva Canyon alcove (UTCA), the Bow Ridge Fault alcove (BRFA), and the upper Paintbrush contact alcove (UPCA) by the USGS from August 1994 through July 1996. The locations of the alcoves and their relations to the potential repository are shown in a figure.

  14. Technical Note: Compact three-tesla magnetic resonance imager with high-performance gradients passes ACR image quality and acoustic noise tests

    PubMed Central

    Weavers, Paul T.; Shu, Yunhong; Tao, Shengzhen; Huston, John; Lee, Seung-Kyun; Graziani, Dominic; Mathieu, Jean-Baptiste; Trzasko, Joshua D.; Foo, Thomas K.-F.; Bernstein, Matt A.

    2016-01-01

    Purpose: A compact, three-tesla magnetic resonance imaging (MRI) system has been developed. It features a 37 cm patient aperture, allowing the use of commercial receiver coils. Its design allows simultaneously for gradient amplitudes of 85 millitesla per meter (mT/m) sustained and 700 tesla per meter per second (T/m/s) slew rates. The size of the gradient system allows for these simultaneous performance targets to be achieved with little or no peripheral nerve stimulation, but also raises a concern about the geometric distortion as much of the imaging will be done near the system’s maximum 26 cm field-of-view. Additionally, the fast switching capability raises acoustic noise concerns. This work evaluates the system for both the American College of Radiology’s (ACR) MRI image quality protocol and the Food and Drug Administration’s (FDA) nonsignificant risk (NSR) acoustic noise limits for MR. Passing these two tests is critical for clinical acceptance. Methods: In this work, the gradient system was operated at the maximum amplitude and slew rate of 80 mT/m and 500 T/m/s, respectively. The geometric distortion correction was accomplished by iteratively determining up to the tenth order spherical harmonic coefficients using a fiducial phantom and position-tracking software, with seventh order correction utilized in the ACR test. Acoustic noise was measured with several standard clinical pulse sequences. Results: The system passes all the ACR image quality tests. The acoustic noise as measured when the gradient coil was inserted into a whole-body MRI system conforms to the FDA NSR limits. Conclusions: The compact system simultaneously allows for high gradient amplitude and high slew rate. Geometric distortion concerns have been mitigated by extending the spherical harmonic correction to higher orders. Acoustic noise is within the FDA limits. PMID:26936710

  15. Measuring a Small Hydraulic Gradient in the Presence of Noise

    NASA Astrophysics Data System (ADS)

    McElwee, C. D.; Devlin, J. F.

    2004-12-01

    In naturally occurring flow systems the hydraulic gradient may be small, often less than 0.002- 0.001. These small gradients are hard to measure accurately at all scales. On regional flow maps, the accuracy of the head contour lines and the gradient is usually determined by the accuracy of the elevation of the top of the casing and of the well location on the regional map. These limitations on the regional scale accuracy will be improved in the future by the use of Global Positioning System (GPS) technology. However, for the present, some regional gradients and many local gradients - even those based on measurements made at local scales - are problematic in low gradient areas. This paper uses field data to demonstrate some of the problems associated with determining a small natural gradient in the vicinity of a research site, the Geohydrologic Experiment and Monitoring Site (GEMS) at the University of Kansas. The site is contained in an area of about 50 meters by 50 meters near the valley wall in the Kansas River valley north of Lawrence Kansas. The difficulty of determining the natural gradient was discovered about 10 years ago when attempting to design and run a bromide tracer test; the distances between wells at GEMS are too small (about 20m max.) to accurately determine the hydraulic gradient. The task is further complicated by the presence of rural water district wells some distance to the west of the site. Monitoring the water levels at the site reveals a noisy environment, primarily caused by the periodic pumping of the rural water district wells. In 2003 two additional wells were installed near the site, one to the east (96m) and one to the south (147m) of GEMS. With these larger distances between wells, monitored water level differences were more pronounced, permitting reliable gradient estimates to be calculated by accurately surveying the elevations and locations of the wells. Water levels were measured using accurately calibrated pressure transducers

  16. A CO2 concentration gradient facility for testing CO2 enrichment and soil effects on grassland ecosystem function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuing increases in atmospheric CO2 concentrations mandate techniques for examining impacts on terrestrial ecosystems. Most experiments examine only two or a few levels of CO2 concentration and a single soil type, but if CO2 can be varied as a gradient from subambient to superambient concentra...

  17. Analysis of groundwater contamination using concentration-time series recorded during an integral pumping test: bias introduced by strong concentration gradients within the plume.

    PubMed

    Zeru, Allelign; Schäfer, Gerhard

    2005-12-01

    When only few monitoring wells are available to assess the extent and level of groundwater contamination, inversion of concentration breakthrough curves acquired during an integral pumping test can be used as an alternative quantification method. The idea is to use concentration-time series recorded during integral pumping tests through an inversion technique to estimate contaminant mass fluxes crossing a control plane. In this paper, we examine how a longitudinal concentration gradient along a contaminant plume length scale affects the estimated inversed-concentration distribution and its associated mass flux. The analytically inversed-concentration distribution at the imaginary control plane (ICP) is compared to a numerically generated concentration distribution, treating the latter one as a "real contaminant plume" characterized by the presence of a longitudinal concentration gradient. It is found that the analytically inversed-concentration can lead to overestimation or underestimation of concentration distribution values depending on the transport time period and dispersivity values. At lower dispersivity values, with shorter transport time periods, the analytically inversed-concentration distribution overestimates the "real" concentration distribution. A better fit of the estimated concentration distribution to the "real" one is observed when the transport time period increases, i.e. when the advective front has already crossed the ICP. However, for higher dispersivity values, underestimation of the real concentration distribution is observed. Deviation of the inversed-concentration distribution from the "real" one is assessed for a site-specific concentration gradient term. A concentration gradient adjusted contaminant mass flux is thus formulated to evaluate groundwater contamination levels at a given time period through an ICP. This concentration gradient ratio can indicate whether the ICP is well positioned to evaluate accurately contaminant mass fluxes

  18. Analysis of Particle Transport Using a Particulate Tracer Modeling

    NASA Astrophysics Data System (ADS)

    Wang, P.; Linker, L. C.; Lung, W.; Batiuk, R. A.

    2002-05-01

    Understanding the transport of dissolved and particulate materials in the Chesapeake Bay estuary is critical to allocating nutrient and sediment load reduction goals to the seven watershed states. A computer simulation of a particulate conservative tracer was conducted to help determine the transport mechanism. Tracers were loaded daily at the fall-line of Potomac River (a middle Bay's tributary). The settling rate is set at 0.1 m/day, with the assumption of neither scour nor re-suspension of tracer from the bed to allow continuous accumulation of tracers on bed. The low settling rate was used to allow tracer to transport widely in the estuary to provide information on the transport of fine particulates such as dead algae. After the tracers reach the mouth of Potomac River, most of them are further transported into the lower main-stem Bay. Flood tide is the main force for tracers transported north to the upper main-stem Bay and to the upstream of non-source rivers. In the main stem of the Bay, there exist concentration gradients from the Potomac River mouth to the opposite shore (the Maryland and Virginia eastern shore), to the lower Bay, and to the upper Bay. Concentration gradients also exist from the fall-line to the mouth in the source river, and from the mouth to the upstream in non-source rivers. These gradients are usually disturbed across trenches, due to a so-called "trench effect". A trench either deposits more or less tracers than its shallower sides, depending on the trench to be hydrologically landward from the source (i.e., the Potomac fall line) or the sub-source (e.g., the Rappahannock River mouth for the trench in the upstream of Rappahannock River), or hydrologically seaward from the source or the sub-source. Depending on the layer (saline water-rich or fresh water-rich) in which tracers reside and the direction (landward or seaward) along which tracers transport, the transport/deposit of tracer may be favored along trench over its shallower sides

  19. Breakdown study based on direct in situ observation of inner surfaces of an rf accelerating cavity during a high-gradient test

    NASA Astrophysics Data System (ADS)

    Abe, Tetsuo; Kageyama, Tatsuya; Sakai, Hiroshi; Takeuchi, Yasunao; Yoshino, Kazuo

    2016-10-01

    We have developed normal-conducting accelerating single-cell cavities with a complete higher-order-mode (HOM) heavily damped structure, into which we feed a 508.9-MHz continuous wave. During a high-gradient test of the second production version of the cavity, we performed a breakdown study based on direct in situ observation of the inner surfaces of the cavity. This paper presents our experimental findings obtained from this observation.

  20. Ground-penetrating radar images of a dye tracer test within the unsaturated zone at the Susquehanna-Shale Hills CZO

    NASA Astrophysics Data System (ADS)

    Pitman, Lacey M.

    Dye tracer and time-lapse ground-penetrating radar (GPR) were used to image preferential flow paths in the shallow, unsaturated zone on hillslopes in two adjacent watersheds within the Susquehanna-Shale Hills Critical Zone Observatory (CZO). At each site we injected about 50 L of water mixed with brilliant blue dye (4 g/L) into a trench cut perpendicular to the slope (˜1.0 m long by ˜0.20 m wide by ˜0.20 m deep) to create a line of infiltration. GPR (800 MHz antennae with constant offset) was used to monitor the movement of the dye tracer downslope on a 1.0 m x 2.0 m grid with a 0.05 m line spacing. The site was then excavated and the stained pathways photographed to document the dye movement. We saw a considerable difference in the pattern of shallow preferential flow between the two sites despite similar soil characteristics and slope position. Both sites showed dye penetrating down to saprolite (˜0.40 m); however, lateral flow migration between the two sites was different. At the Missed Grouse field site, the lateral migration was ˜0.55 m as an evenly dispersed plume, but at distance of 0.70 m a finger of dye was observed. At the Shale Hills field site, the total lateral flow was ˜0.40 m, dye was barely visible until the excavation reached ˜0.10 m, and there was more evidence of distinct fingering in the vertical direction. Based on laboratory and field experiments as well as processing of the radargrams, the following conclusions were drawn: 1) time-lapse GPR successfully delineated the extent of lateral flow, but the GPR resolution was insufficient to detect small fingers of dye; 2) there was not a distinct GPR reflection at the regolith-saprock boundary, but this interface could be estimated from the extent of signal attenuation; 3) the preliminary soil moisture conditions may explain differences in the extent of infiltration at the two sites; 4) rapid infiltration into the underlying saprock limited the extent of shallow lateral flow at both sites and

  1. Travel-time-based thermal tracer tomography

    NASA Astrophysics Data System (ADS)

    Somogyvári, Márk; Bayer, Peter; Brauchler, Ralf

    2016-05-01

    Active thermal tracer testing is a technique to get information about the flow and transport properties of an aquifer. In this paper we propose an innovative methodology using active thermal tracers in a tomographic setup to reconstruct cross-well hydraulic conductivity profiles. This is facilitated by assuming that the propagation of the injected thermal tracer is mainly controlled by advection. To reduce the effects of density and viscosity changes and thermal diffusion, early-time diagnostics are used and specific travel times of the tracer breakthrough curves are extracted. These travel times are inverted with an eikonal solver using the staggered grid method to reduce constraints from the pre-defined grid geometry and to improve the resolution. Finally, non-reliable pixels are removed from the derived hydraulic conductivity tomograms. The method is applied to successfully reconstruct cross-well profiles as well as a 3-D block of a high-resolution fluvio-aeolian aquifer analog data set. Sensitivity analysis reveals a negligible role of the injection temperature, but more attention has to be drawn to other technical parameters such as the injection rate. This is investigated in more detail through model-based testing using diverse hydraulic and thermal conditions in order to delineate the feasible range of applications for the new tomographic approach.

  2. Tracer Migration in a Radially Divergent Flow Field: Longitudinal Dispersivity and Anionic Tracer Retardation

    SciTech Connect

    Seaman, J.C., P.M. Bertsch, M. Wilson, J. Singer, F. Majs and S.A. Aburime

    2007-01-01

    Hydrodynamic dispersion, the combined effects of chemical diffusion and differences in solute path length and flow velocity, is an important factor controlling contaminant migration in the subsurface environment. However, few comprehensive three-dimensional datasets exist for critically evaluating the impact of travel distance and site heterogeneity on solute dispersion, and the conservative nature of several commonly used groundwater tracers is still in question. Therefore, we conducted a series of field-scale experiments using tritiated water ({sup 3}H{sup 1}HO), bromide (Br{sup -}), and two fluorobenzoates (2,4 Di-FBA, 2,6 Di-FBA) as tracers in the water-table aquifer on the USDOE's Savannah River Site (SRS), located on the upper Atlantic Coastal Plain. For each experiment, tracer-free groundwater was injected for approximately 24 h (56.7 L min{sup -1}) to establish a steady-state forced radial gradient before the introduction of a tracer pulse. After the tracer pulse, which lasted from 256 to 560 min, the forced gradient was maintained throughout the experiment using nonlabeled groundwater. Tracer migration was monitored using six multilevel monitoring wells, radially spaced at approximate distances of 2.0, 3.0, and 4.5 m from the central injection well. Each sampling well was further divided into three discrete sampling depths that were pumped continuously ({approx}0.1 L min{sup -1}) throughout the course of the experiments. Longitudinal dispersivity ({alpha}{sub L}) and travel times for {sup 3}H{sup 1}HO breakthrough were estimated by fitting the field data to analytical approximations of the advection-dispersion equation (ADE) for uniform and radial flow conditions. Dispersivity varied greatly between wells located at similar transport distances and even between zones within a given well, which we attributed to variability in the hydraulic conductivity at the study site. The radial flow equation generally described tritium breakthrough better than the

  3. Gradient networks

    NASA Astrophysics Data System (ADS)

    Toroczkai, Zoltán; Kozma, Balázs; Bassler, Kevin E.; Hengartner, N. W.; Korniss, G.

    2008-04-01

    Gradient networks are defined (Toroczkai and Bassler 2004 Nature 428 716) as directed graphs formed by local gradients of a scalar field distributed on the nodes of a substrate network G. We present the derivation for some of the general properties of gradient graphs and give an exact expression for the in-degree distribution R(l) of the gradient network when the substrate is a binomial (Erd{\\;\\kern -0.10em \\raise -0.35ex \\{{^{^{\\prime\\prime}}}}\\kern -0.57em \\o} s-Rényi) random graph, G_{N,p} , and the scalars are independent identically distributed (i.i.d.) random variables. We show that in the limit N \\to \\infty, p \\to 0, z = pN = \\mbox{const} \\gg 1, R(l)\\propto l^{-1} for l < l_c = z , i.e., gradient networks become scale-free graphs up to a cut-off degree. This paper presents the detailed derivation of the results announced in Toroczkai and Bassler (2004 Nature 428 716).

  4. Nanoparticle tracers in calcium carbonate porous media

    NASA Astrophysics Data System (ADS)

    Li, Yan Vivian; Cathles, Lawrence M.; Archer, Lynden A.

    2014-08-01

    Tracers are perhaps the most direct way of diagnosing subsurface fluid flow pathways for ground water decontamination and for natural gas and oil production. Nanoparticle tracers could be particularly effective because they do not diffuse away from the fractures or channels where flow occurs and thus take much less time to travel between two points. In combination with a chemical tracer they can measure the degree of flow concentration. A prerequisite for tracer applications is that the particles are not retained in the porous media as the result of aggregation or sticking to mineral surfaces. By screening eight nanoparticles (3-100 nm in diameter) for retention when passed through calcium carbonate packed laboratory columns in artificial oil field brine solutions of variable ionic strength we show that the nanoparticles with the least retention are 3 nm in diameter, nearly uncharged, and decorated with highly hydrophilic polymeric ligands. The details of these column experiments and the tri-modal distribution of zeta potential of the calcite sand particles in the brine used in our tests suggests that parts of the calcite surface have positive zeta potential and the retention of negatively charged nanoparticles occurs at these sites. Only neutral nanoparticles are immune to at least some retention.

  5. Testing the Stress-Gradient Hypothesis at the Roof of the World: Effects of the Cushion Plant Thylacospermum caespitosum on Species Assemblages

    PubMed Central

    Dvorský, Miroslav; Doležal, Jiří; Kopecký, Martin; Chlumská, Zuzana; Janatková, Kateřina; Altman, Jan; de Bello, Francesco; Řeháková, Klára

    2013-01-01

    Many cushion plants ameliorate the harsh environment they inhabit in alpine ecosystems and act as nurse plants, with significantly more species growing within their canopy than outside. These facilitative interactions seem to increase with the abiotic stress, thus supporting the stress-gradient hypothesis. We tested this prediction by exploring the association pattern of vascular plants with the dominant cushion plant Thylacospermum caespitosum (Caryophyllaceae) in the arid Trans-Himalaya, where vascular plants occur at one of the highest worldwide elevational limits. We compared plant composition between 1112 pair-plots placed both inside cushions and in surrounding open areas, in communities from cold steppes to subnival zones along two elevational gradients (East Karakoram: 4850–5250 m and Little Tibet: 5350–5850 m). We used PERMANOVA to assess differences in species composition, Friedman-based permutation tests to determine individual species habitat preferences, species-area curves to assess whether interactions are size-dependent and competitive intensity and importance indices to evaluate plant-plant interactions. No indications for net facilitation were found along the elevation gradients. The open areas were not only richer in species, but not a single species preferred to grow exclusively inside cushions, while 39–60% of 56 species detected had a significant preference for the habitat outside cushions. Across the entire elevation range of T. caespitosum, the number and abundance of species were greater outside cushions, suggesting that competitive rather than facilitative interactions prevail. This was supported by lower soil nutrient contents inside cushions, indicating a resource preemption, and little thermal amelioration at the extreme end of the elevational gradient. We attribute the negative associations to competition for limited resources, a strong environmental filter in arid high-mountain environment selecting the stress-tolerant species

  6. Gradient Driven Fluctuations

    NASA Technical Reports Server (NTRS)

    Cannell, David

    2005-01-01

    We have worked with our collaborators at the University of Milan (Professor Marzio Giglio and his group-supported by ASI) to define the science required to measure gradient driven fluctuations in the microgravity environment. Such a study would provide an accurate test of the extent to which the theory of fluctuating hydrodynamics can be used to predict the properties of fluids maintained in a stressed, non-equilibrium state. As mentioned above, the results should also provide direct visual insight into the behavior of a variety of fluid systems containing gradients or interfaces, when placed in the microgravity environment. With support from the current grant, we have identified three key systems for detailed investigation. These three systems are: 1) A single-component fluid to be studied in the presence of a temperature gradient; 2) A mixture of two organic liquids to be studied both in the presence of a temperature gradient, which induces a steady-state concentration gradient, and with the temperature gradient removed, but while the concentration gradient is dying by means of diffusion; 3) Various pairs of liquids undergoing free diffusion, including a proteidbuffer solution and pairs of mixtures having different concentrations, to allow us to vary the differences in fluid properties in a controlled manner.

  7. Exotic tracers for atmospheric studies

    NASA Astrophysics Data System (ADS)

    Lovelock, James E.; Ferber, Gilbert J.

    Tracer materials can be injected into the atmosphere to study transport and dispersion processes and to validate air pollution model calculations. Tracers should be inert, non-toxic and harmless to the environment. Tracers for long-range experiments, where dilution is very great, must be measurable at extremely low concentrations, well below the parts per trillion level. Compounds suitable for long-range tracer work are rare and efforts should be made to reserve them for meteorological studies, barring them from commercial uses which would increase atmospheric background concentrations. The use of these exotic tracers, including certain perfluorocarbons and isotopically labelled methanes, should be coordinated within the meteorological community to minimize interferences and maximize research benefits.

  8. Innovative techniques for the description of reservoir heterogeneity using tracers. Final report, October 1992--December 1993

    SciTech Connect

    Pope, G.A.; Sepehrnoori, K.; Delshad, M.; Ferreira, L.; Gupta, A.; Maroongroge, V.

    1994-11-01

    This is the final report of a three year research project on the use of tracers for reservoir characterization. The objective of this research was to develop advanced, innovative techniques for the description of reservoir characteristics using both single-well backflow and interwell tracer tests. (1) The authors implemented and validated tracer modeling features in a compositional simulator (UTCOMP). (2) They developed and applied a new single well tracer test for estimating reservoir heterogeneity. (3) They developed and applied a new single well tracer test for estimating reservoir wettability in-situ. (4) They developed a new, simple and efficient method to analyze two well tracer tests based upon type curve matching and illustrated its use with actual field tracer data. (5) They developed a new method for deriving an integrated reservoir description based upon combinatorial optimization schemes. (6) They developed a new, interwell tracer test for reservoir heterogeneity called vertical tracer profiling (VTP) and demonstrated its advantages over conventional interwell tracer testing. (7) They developed a simple and easy analytical method to estimate swept pore volume from interwell tracer data and showed both the theoretical basis for this method and its practical utility. (8) They made numerous enhancements to our compositional reservoir simulator such as including the full permeability tensor, adding faster solvers, improving its speed and robustness and making it easier to use (better I/0) for tracer simulation problems. (9) They applied the enhanced version of UTCOMP to the analysis of interwell tracer data using perfluorocarbons at Elks Hill Naval Petroleum Reserve. All of these accomplishments taken together have significantly improved the state of reservoir tracer technology and have demonstrated that it is a far more powerful and useful tool for quantitative reservoir characterization than previously realized or practiced by the industry.

  9. Field-scale sulfur hexafluoride tracer experiment to understand long distance gas transport in the deep unsaturated zone

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Andraski, Brian; Green, Christopher T.; Stonestrom, David A.; Striegl, Robert G.

    2014-01-01

    A natural gradient SF6 tracer experiment provided an unprecedented evaluation of long distance gas transport in the deep unsaturated zone (UZ) under controlled (known) conditions. The field-scale gas tracer test in the 110-m-thick UZ was conducted at the U.S. Geological Survey’s Amargosa Desert Research Site (ADRS) in southwestern Nevada. A history of anomalous (theoretically unexpected) contaminant gas transport observed at the ADRS, next to the first commercial low-level radioactive waste disposal facility in the United States, provided motivation for the SF6 tracer study. Tracer was injected into a deep UZ borehole at depths of 15 and 48 m, and plume migration was observed in a monitoring borehole 9 m away at various depths (0.5–109 m) over the course of 1 yr. Tracer results yielded useful information about gas transport as applicable to the spatial scales of interest for off-site contaminant transport in arid unsaturated zones. Modeling gas diffusion with standard empirical expressions reasonably explained SF6 plume migration, but tended to underpredict peak concentrations for the field-scale experiment given previously determined porosity information. Despite some discrepancies between observations and model results, rapid SF6 gas transport commensurate with previous contaminant migration was not observed. The results provide ancillary support for the concept that apparent anomalies in historic transport behavior at the ADRS are the result of factors other than nonreactive gas transport properties or processes currently in effect in the undisturbed UZ.

  10. Field measurements of tracer gas transport by barometric pumping

    SciTech Connect

    Lagus, P.L.; McKinnis, W.B.; Hearst, J.R.; Burkhard, N.R.; Smith, C.F.

    1994-07-28

    Vertical gas motions induced by barometric pressure variations can carry radioactive gases out of the rubblized region produced by an underground nuclear explosion, through overburden rock, into the atmosphere. To better quantify transit time and amount of transport, field experiments were conducted at two sites on Pahute Mesa, Kapelli and Tierra, where radioactive gases had been earlier detected in surface cracks. At each site, two tracer gases were injected into the rubblized chimney 300-400 m beneath the surface and their arrival was monitored by concentration measurements in gas samples extracted from shallow collection holes. The first ``active`` tracer was driven by a large quantity of injected air; the second ``passive`` tracer was introduced with minimal gas drive to observe the natural transport by barometric pumping. Kapelli was injected in the fall of 1990, followed by Tierra in the fall of 1991. Data was collected at both sites through the summer of 1993. At both sites, no surface arrival of tracer was observed during the active phase of the experiment despite the injection of several million cubic feet of air, suggesting that cavity pressurization is likely to induce horizontal transport along high permeability layers rather than vertical transport to the surface. In contrast, the vertical pressure gradients associated with barometric pumping brought both tracers to the surface in comparable concentrations within three months at Kapelli, whereas 15 months elapsed before surface arrival at Tierra. At Kapelli, a quasisteady pumping regime was established, with tracer concentrations in effluent gases 1000 times smaller than concentrations thought to exist in the chimney. Tracer concentrations observed at Tierra were typically an order of magnitude smaller. Comparisons with theoretical calculations suggest that the gases are traveling through {approximately}1 millimeter vertical fractures spaced 2 to 4 meters apart. 6 refs., 18 figs., 3 tabs.

  11. Tracer airflow measurement system (TRAMS)

    DOEpatents

    Wang, Duo

    2007-04-24

    A method and apparatus for measuring fluid flow in a duct is disclosed. The invention uses a novel high velocity tracer injector system, an optional insertable folding mixing fan for homogenizing the tracer within the duct bulk fluid flow, and a perforated hose sampling system. A preferred embodiment uses CO.sub.2 as a tracer gas for measuring air flow in commercial and/or residential ducts. In extant commercial buildings, ducts not readily accessible by hanging ceilings may be drilled with readily plugged small diameter holes to allow for injection, optional mixing where desired using a novel insertable foldable mixing fan, and sampling hose.

  12. Comparison of different tracers for PIV measurements in EHD airflow

    NASA Astrophysics Data System (ADS)

    Hamdi, M.; Havet, M.; Rouaud, O.; Tarlet, D.

    2014-04-01

    In this study, a proposed method for selecting a tracer for particle imaging velocimetry (PIV) measurement in electrohydrodynamics flows was developed. To begin with, several published studies were identified that exploit different tracers, such as oil smoke, cigarette smoke and titanium dioxide (TiO2). An assortment of tracers was then selected based on comparisons with conventional dimensionless numbers; Stokes number ( St), Archimedes number ( Ar) and electrical mobility ratio ( M). Subsequently, an experimental study for testing tracers was developed, which enabled the velocity profile of an ionic wind generated by a needle/ring configuration to be measured. Air velocity measurements carried out with a Pitot tube, considered as the reference measurements, were compared to PIV measurements for each tracer. In addition, the current-voltage curves and the evolution of the current during seeding were measured. All the experimental results show that TiO2, SiO2 microballoons and incense smoke are the ideal tracers in the series of tracers investigated.

  13. A Wavelet Based Suboptimal Kalman Filter for Assimilation of Stratospheric Chemical Tracer Observations

    NASA Technical Reports Server (NTRS)

    Auger, Ludovic; Tangborn, Andrew; Atlas, Robert (Technical Monitor)

    2002-01-01

    A suboptimal Kalman filter system which evolves error covariances in terms of a truncated set of wavelet coefficients has been developed for the assimilation of chemical tracer observations of CH4. The truncation is carried out in such a way that the resolution of the error covariance, is reduced only in the zonal direction, where gradients are smaller. Assimilation experiments which last 24 days, and used different degrees of truncation were carried out. These reduced the covariance, by 90, 97 and 99 % and the computational cost of covariance propagation by 80, 93 and 96 % respectively. The difference in both error covariance and the tracer field between the truncated and full systems over this period were found to be not growing in the first case, and a growing relatively slowly in the later two cases. The largest errors in the tracer fields were found to occur in regions of largest zonal gradients in the tracer field.

  14. Mobility of Metal Tracers in Unsaturated Tuffs of Busted Butte

    NASA Astrophysics Data System (ADS)

    Groffman, A. R.

    2001-12-01

    A complex tracer mixture was injected continuously for over two years into a 10 m x 10 m x 7 m block of unsaturated tuff as part of the Busted Butte unsaturated-zone tracer test at Yucca Mountain. The test was designed to measure tracer transport within the Topopah Springs and Calico Hills tuffs, units that occur between the potential high-level nuclear waste repository at Yucca Mountain and the water table below. The mixture included nonreactive (Br, I, and fluorinated benzoic acids (FBAs)) and reactive tracers (Li, Ce, Sm, Ni, Co, and Mn). Bromide, I, FBAs, and Li were detected during the test on absorbent pads emplaced in a series of solute collection boreholes located beneath the injectors but the more strongly sorbing metals did not reach the collection boreholes during this period. To determine the distribution and mobility of these metals, tracer constituents were extracted from tuff samples collected during overcoring and mineback of the test block. Tracers were extracted from the tuff samples by leaching with a 5% nitric acid solution for metals and a bicarbonate-carbonate buffer for anions. Results from the overcore sample suite show that metals have migrated through the tuff in the region adjacent to and immediately below the tracer injectors. Consistent with laboratory sorption measurements and observed breakthrough in the collection boreholes, rock analyses showed that Li is the most mobile of the metals. Co and Ni behave similarly, traveling tens of cm from the injection sites, while Sm and Ce moved far less, possibly due to precipitation reactions in addition to sorption. Determination of Mn transport is complicated by high background concentrations in the tuff; additional background samples are currently being evaluated. As expected, our rock analyses show that the nonreactive tracers Br and FBAs have moved beyond the overcore region, corroborating results from collection boreholes.

  15. Manufacture and Testing of a High Field Gradient Magnetic Fractionation System for Quantitative Detection of Plasmodium falciparum Gametocytes

    NASA Astrophysics Data System (ADS)

    Karl, Stephan; Woodward, Robert C.; Davis, Timothy M. E.; St. Pierre, Tim G.

    2010-12-01

    Plasmodium falciparum is the most dangerous of the human malaria parasite species and accounts for millions of clinical episodes of malaria each year in tropical countries. The pathogenicity of Plasmodium falciparum is a result of its ability to infect erythrocytes where it multiplies asexually over 48 h or develops into sexual forms known as gametocytes. If sufficient male and female gametocytes are taken up by a mosquito vector, it becomes infectious. Therefore, the presence and density of gametocytes in human blood is an important indicator of human-to-mosquito transmission of malaria. Recently, we have shown that high field gradient magnetic fractionation improves gametocyte detection in human blood samples. Here we present two important new developments. Firstly we introduce a quantitative approach to replace the previous qualitative method and, secondly, we describe a novel method that enables cost-effective production of the magnetic fractionation equipment required to carry out gametocyte quantification. We show that our custom-made magnetic fractionation equipment can deliver results with similar sensitivity and convenience but for a small fraction of the cost.

  16. Testing the TPSS meta-generalized-gradient-approximation exchange-correlation functional in calculations of transition states and reaction barriers.

    PubMed

    Kanai, Yosuke; Wang, Xiaofei; Selloni, Annabella; Car, Roberto

    2006-12-21

    We have studied the performance of local and semilocal exchange-correlation functionals [meta-generalized-gradient-approximation (GGA)-TPSS, GGA-Perdew-Burke-Ernzerhof (PBE), and local density approximation (LDA)] in the calculation of transition states, reaction energies, and barriers for several molecular and one surface reaction, using the plane-wave pseudopotential approach. For molecular reactions, these results have been compared to all-electron Gaussian calculations using the B3LYP hybrid functional, as well as to experiment and high level quantum chemistry calculations, when available. We have found that the transition state structures are accurately identified irrespective of the level of the exchange-correlation functional, with the exception of a qualitatively incorrect LDA prediction for the H-transfer reaction in the hydrogen bonded complex between a water molecule and a OH radical. Both the meta-GGA-TPSS and the GGA-PBE functionals improve significantly the calculated LDA barrier heights. The meta-GGA-TPSS further improves systematically, albeit not always sufficiently, the GGA-PBE barriers. We have also found that, on the Si(001) surface, the meta-GGA-TPSS barriers for hydrogen adsorption agree significantly better than the corresponding GGA-PBE barriers with quantum Monte Carlo cluster results and experimental estimates.

  17. An automated method for producing synoptic regional maps of river gradient variation: Procedure, accuracy tests, and comparison with other knickpoint mapping methods

    NASA Astrophysics Data System (ADS)

    Gonga-Saholiariliva, Nahossio; Gunnell, Yanni; Harbor, David; Mering, Catherine

    2011-11-01

    The study of abrupt changes in longitudinal river profiles, or knickpoints, is currently approached through an empirical power law: the slope-area relationship. Results based on digital elevation model (DEM) analyses and stream extractions are generally intended to determine crustal uplift rates and identify transient landscape conditions. In this article, we present an alternative geomorphometric method for locating knickpoints and knickzones based on local slope gradient and curvature attributes. Intended as a rapid, regional scale, automated knickpoint detection technique, the accuracy of this slope-curvature method is tested on two digital elevation grids, NASA's SRTM (ground resolution of 90 m, resampled here to 75 m) and the ASTER DEM (15 m) in the Sierra Nacimiento (New Mexico, USA), a basement-cored mountain range recently exhumed by waves of headward drainage integration in response to remote tectonic deformation in the adjacent Rio Grande rift. Out of every 10 gradient anomalies detected by the SRTM-derived numeric routine, up to 8 are certifiable knickpoints recognized among a population of georeferenced occurrences surveyed in the field. An independent comparison with the slope-area method provided a further accuracy test, which was particularly useful at sites that could not be validated in the field for practical reasons. Given the low tectonic activity of the study area, the majority of knickpoints was also found to coincide with lithologic boundaries, making it difficult without further geomorphological data to single out dynamic knickpoints directly caused by the upstream propagation of channel instabilities relating to base level change.

  18. Quantifying capture efficiency of gas collection wells with gas tracers.

    PubMed

    Yazdani, Ramin; Imhoff, Paul; Han, Byunghyun; Mei, Changen; Augenstein, Don

    2015-09-01

    A new in situ method for directly measuring the gas collection efficiency in the region around a gas extraction well was developed. Thirteen tests were conducted by injecting a small volume of gas tracer sequentially at different locations in the landfill cell, and the gas tracer mass collected from each test was used to assess the collection efficiency at each injection point. For 11 tests the gas collection was excellent, always exceeding 70% with seven tests showing a collection efficiency exceeding 90%. For one test the gas collection efficiency was 8±6%. Here, the poor efficiency was associated with a water-laden refuse or remnant daily cover soil located between the point of tracer injection and the extraction well. The utility of in situ gas tracer tests for quantifying landfill gas capture at particular locations within a landfill cell was demonstrated. While there are certainly limitations to this technology, this method may be a valuable tool to help answer questions related to landfill gas collection efficiency and gas flow within landfills. Quantitative data from tracer tests may help assess the utility and cost-effectiveness of alternative cover systems, well designs and landfill gas collection management practices.

  19. High Gradient Accelerator Research

    SciTech Connect

    Temkin, Richard

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  20. Driven tracers in narrow channels

    NASA Astrophysics Data System (ADS)

    Cividini, J.; Mukamel, D.; Posch, H. A.

    2017-01-01

    Steady-state properties of a driven tracer moving in a narrow two-dimensional (2D) channel of quiescent medium are studied. The tracer drives the system out of equilibrium, perturbs the density and pressure fields, and gives the bath particles a nonzero average velocity, creating a current in the channel. Three models in which the confining effect of the channel is probed are analyzed and compared in this study: the first is the simple symmetric exclusion process (SSEP), for which the stationary density profile and the pressure on the walls in the frame of the tracer are computed. We show that the tracer acts like a dipolar source in an average velocity field. The spatial structure of this 2D strip is then simplified to a one-dimensional (1D) SSEP, in which exchanges of position between the tracer and the bath particles are allowed. Using a combination of mean-field theory and exact solution in the limit where no exchange is allowed gives good predictions of the velocity of the tracer and the density field. Finally, we show that results obtained for the 1D SSEP with exchanges also apply to a gas of overdamped hard disks in a narrow channel. The correspondence between the parameters of the SSEP and of the gas of hard disks is systematic and follows from simple intuitive arguments. Our analytical results are checked numerically.

  1. Assessing Intraspecific Variation in Effective Dispersal Along an Altitudinal Gradient: A Test in Two Mediterranean High-Mountain Plants

    PubMed Central

    Lara-Romero, Carlos; Robledo-Arnuncio, Juan J.; García-Fernández, Alfredo; Iriondo, Jose M.

    2014-01-01

    Background Plant recruitment depends among other factors on environmental conditions and their variation at different spatial scales. Characterizing dispersal in contrasting environments may thus be necessary to understand natural intraspecific variation in the processes underlying recruitment. Silene ciliata and Armeria caespitosa are two representative species of cryophilic pastures above the tree line in Mediterranean high mountains. No explicit estimations of dispersal kernels have been made so far for these or other high-mountain plants. Such data could help to predict their dispersal and recruitment patterns in a context of changing environments under ongoing global warming. Methods We used an inverse modelling approach to analyse effective seed dispersal patterns in five populations of both Silene ciliata and Armeria caespitosa along an altitudinal gradient in Sierra de Guadarrama (Madrid, Spain). We considered four commonly employed two-dimensional seedling dispersal kernels exponential-power, 2Dt, WALD and log-normal. Key Results No single kernel function provided the best fit across all populations, although estimated mean dispersal distances were short (<1 m) in all cases. S. ciliata did not exhibit significant among-population variation in mean dispersal distance, whereas significant differences in mean dispersal distance were found in A. caespitosa. Both S. ciliata and A. caespitosa exhibited among-population variation in the fecundity parameter and lacked significant variation in kernel shape. Conclusions This study illustrates the complexity of intraspecific variation in the processes underlying recruitment, showing that effective dispersal kernels can remain relatively invariant across populations within particular species, even if there are strong variations in demographic structure and/or physical environment among populations, while the invariant dispersal assumption may not hold for other species in the same environment. Our results call for a

  2. Latitudinal gradients in abundance, and the causes of rarity in the tropics: a test using Australian honeyeaters (Aves: Meliphagidae).

    PubMed

    Symonds, Matthew R E; Christidis, Les; Johnson, Christopher N

    2006-09-01

    Several studies have uncovered interspecific latitudinal gradients in abundance (population density) such that tropical species tend to be, on average, less abundant than species at higher latitudes. The causes of this relationship remain poorly studied, in contrast to the relative wealth of literature examining the relationship to latitude of other variables such as range size and body mass. We used a cross-species phylogenetic comparative approach and a spatial approach to examine three potential determining factors (distribution, reproductive output and climate) that might explain why abundance correlates with latitude, using data from 54 species of honeyeaters (Meliphagidae) in woodland environments in eastern Australia. There is a strong positive correlation between mean abundance and latitude in these birds. Reproductive output (clutch size) was positively linked to both abundance and latitude, but partial correlation analysis revealed that clutch size is not related to abundance once the effects of latitude are removed. A subsequent multiple regression model that also considered range size, clutch size and body mass showed that latitude is the only strong predictor of abundance in honeyeaters. In the separate spatial analysis, the climatic variables that we considered (temperature, rainfall and seasonality) were all strongly linked to latitude, but none served as a better predictor of abundance than latitude per se, either individually or collectively. The most intriguing result of our analyses was that the cross-species latitudinal pattern in abundance was not evident within species. This suggests an intrinsic cause of the pattern of 'rarity in the tropics' in Australian honeyeaters. We suggest that evolutionary age may provide a key to understanding patterns of abundance in these birds.

  3. In-Situ Characterization of Dense Non-Aqueous Phase Liquids Using Partitioning Tracers

    SciTech Connect

    Gary A. Pope; Daene C. McKinney; Akhil Datta Gupta; Richard E. Jackson; Minquan Jin

    2000-03-20

    Majors advances have been made during the past three years in our research on interwell partitioning tracers tests (PITTs). These advances include (1) progress on the inverse problem of how to estimate the three-dimensional distribution of NAPL in aquifers from the tracer data, (2) the first ever partitioning tracer experiments in dual porosity media, (3) the first modeling of partitioning tracers in dual porosity media (4) experiments with complex NAPLs such as coal tar, (5) the development of an accurate and simple method to predict partition coefficients using the equivalent alkane carbon number approach, (6) partitioning tracer experiments in large model aquifers with permeability layers, (7) the first ever analysis of partitioning tracer data to estimate the change in composition of a NAPL before and after remediation (8) the first ever analysis of partitioning tracer data after a field demonstration of surfactant foam to remediate NAPL and (9) experiments at elevated temperatures .

  4. Testing Associations of Plant Functional Diversity with Carbon and Nitrogen Storage along a Restoration Gradient of Sandy Grassland.

    PubMed

    Zuo, Xiaoan; Zhou, Xin; Lv, Peng; Zhao, Xueyong; Zhang, Jing; Wang, Shaokun; Yue, Xiyuan

    2016-01-01

    The trait-based approach shows that ecosystem function is strongly affected by plant functional diversity as reflected by the traits of the most abundant species (community-weighted mean, CWM) and functional dispersion (FDis). Effects of CWM and FDis individually support the biomass ratio hypothesis and the niche complementarity hypothesis. However, there is little empirical evidence on the relative roles of CWM traits and FDis in explaining the carbon (C) and nitrogen (N) storage in grassland ecosystems. We measured plant functional traits in the 34 most abundant species across 24 sites along a restoration gradient of sandy grassland (mobile dune, semi-fixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China. Thereafter, we calculated the CWM traits, the functional divergence of each single trait (FDvar) and the trait dispersion of multiple traits (FDis). We also measured the C and N storage in plant, litter, root, and soil. Using a stepwise multiple regression analysis, we further assessed which of the functional diversity components best explained C and N storage in the sandy grassland restoration. We found consistent links between C or N storage and leaf traits related to plant resource use strategy. However, the CWM of plant height was retained as an important predictor of C and N storage in plant, litter, soil, and total ecosystem in the final multiple models. CWMs of specific leaf area and plant height best predicted soil C and N storage and total ecosystem N storage. FDis was one of good predictors of litter C and N storage as well as total ecosystem C storage. These results suggest that ecosystem C and N pools in the sandy grassland restoration are primarily associated with the traits of the most abundant species in communities, thereby supporting the biomass ratio hypothesis. The positive associations of FDis with C storage in litter and total ecosystem provide evidence to support the niche complementarity hypothesis. Both functional

  5. Innovative techniques for the description of reservoir heterogeneity using tracers. Second technical annual progress report, October 1991--September 1992

    SciTech Connect

    Pope, G.A.; Sepehrnoori, K.

    1992-12-31

    This second annual report on innovative uses of tracers for reservoir characterization contains four sections each describing a novel use of oilfield tracers. The first section describes and illustrates the use of a new single-well tracer test to estimate wettability. This test consists of the injection of brine containing tracers followed by oil containing tracers, a shut-in period to allow some of the tracers to react, and then production of the tracers. The inclusion of the oil injection slug with tracers is unique to this test, and this is what makes the test work. We adapted our chemical simulator, UTCHEM, to enable us to study this tracer method and made an extensive simulation study to evaluate the effects of wettability based upon characteristic curves for relative permeability and capillary pressure for differing wetting states typical of oil reservoirs. The second section of this report describes a new method for analyzing interwell tracer data based upon a type-curve approach. Theoretical frequency response functions were used to build type curves of ``transfer function`` and ``phase spectrum`` that have dimensionless heterogeneity index as a parameter to characterize a stochastic permeability field. We illustrate this method by analyzing field tracer data. The third section of this report describes a new theory for interpreting interwell tracer data in terms of channeling and dispersive behavior for reservoirs. Once again, a stochastic approach to reservoir description is taken. The fourth section of this report describes our simulation of perfluorocarbon gas tracers. This new tracer technology developed at Brookhaven National Laboratory is being tested at the Elk Hills Naval Petroleum Reserve No. 1 in California. We report preliminary simulations made of these tracers in one of the oil reservoirs under evaluation with these tracers in this field. Our compostional simulator (UTCOMP) was used for this simulation study.

  6. TESTING THE FLORISTIC QUALITY ASSESSMENT INDEX AS AN INDICATOR OF WETLAND CONDITION ALONG GRADIENTS OF HUMAN INFLUENCE

    EPA Science Inventory

    Biological indicators of ecosystem integrity are increasingly being sought for use in ecosystem assessment and goal-setting for restoration projects. We tested the effectiveness of a plant community-based bioassessment tool, the floristic quality assessment index (FQAI) in 20 dep...

  7. Comparison of different undulator schemes with superimposed alternating gradients for the VUV-FEL at the TESLA Test Facility

    SciTech Connect

    Pflueger, J.; Nikitina, Y.M.

    1995-12-31

    For the VUV-FEL at the TESLA Test Facility an undulator with a total length of 30 m is needed. In this study three different approaches to realize an undulator with a sinusoidal plus a superimposed quadrupolar field were studied with the 3D code MAFIA.

  8. Tempest: Mesoscale test case suite results and the effect of order-of-accuracy on pressure gradient force errors

    NASA Astrophysics Data System (ADS)

    Guerra, J. E.; Ullrich, P. A.

    2014-12-01

    Tempest is a new non-hydrostatic atmospheric modeling framework that allows for investigation and intercomparison of high-order numerical methods. It is composed of a dynamical core based on a finite-element formulation of arbitrary order operating on cubed-sphere and Cartesian meshes with topography. The underlying technology is briefly discussed, including a novel Hybrid Finite Element Method (HFEM) vertical coordinate coupled with high-order Implicit/Explicit (IMEX) time integration to control vertically propagating sound waves. Here, we show results from a suite of Mesoscale testing cases from the literature that demonstrate the accuracy, performance, and properties of Tempest on regular Cartesian meshes. The test cases include wave propagation behavior, Kelvin-Helmholtz instabilities, and flow interaction with topography. Comparisons are made to existing results highlighting improvements made in resolving atmospheric dynamics in the vertical direction where many existing methods are deficient.

  9. Solute transport in heterogeneous karst systems: Dimensioning and estimation of the transport parameters via multi-sampling tracer-tests modelling using the OTIS (One-dimensional Transport with Inflow and Storage) program

    NASA Astrophysics Data System (ADS)

    Dewaide, Lorraine; Bonniver, Isabelle; Rochez, Gaëtan; Hallet, Vincent

    2016-03-01

    This paper presents the modelling results of several tracer-tests performed in the cave system of Han-sur-Lesse (South Belgium). In Han-sur-Lesse, solute flows along accessible underground river stretches and through flooded areas that are rather unknown in terms of geometry. This paper focus on the impact of those flooded areas on solute transport and their dimensioning. The program used (One-dimensional Transport with Inflow and Storage: OTIS) is based on the two-region non equilibrium model that supposes the existence of an immobile water zone along the main flow zone in which solute can be caught. The simulations aim to replicate experimental breakthrough curves (BTCs) by adapting the main transport and geometric parameters that govern solute transport in karst conduits. Furthermore, OTIS allows a discretization of the investigated system, which is particularly interesting in systems presenting heterogeneous geometries. Simulation results show that transient storage is a major process in flooded areas and that the crossing of these has a major effect on the BTCs shape. This influence is however rather complex and very dependent of the flooded areas geometry and transport parameters. Sensibility tests performed in this paper aim to validate the model and show the impact of the parametrization on the BTCs shape. Those tests demonstrate that transient storage is not necessarily transformed in retardation. Indeed, significant tailing effect is only observed in specific conditions (depending on the system geometry and/or the flow) that allow residence time in the storage area to be longer than restitution time. This study ends with a comparison of solute transport in river stretches and in flooded areas.

  10. Characteristics and Evolution of Passive Tracers in the Oceanic Mixed Layer

    NASA Astrophysics Data System (ADS)

    Smith, Katherine; Hamlington, Peter; Fox-Kemper, Baylor

    2015-11-01

    Ocean tracers such as CO2 and plankton reside primarily in the mixed layer where air-sea gas exchange occurs and light is plentiful for photosynthesis. There can be substantial heterogeneity in the distributions of these tracers due to turbulent mixing, particularly in the submesoscale range where partly geostrophic eddies and small-scale 3D turbulence are both active. In this talk, LES spanning scales from 20km down to 5m are used to examine the role of turbulent mixing on nonreactive passive ocean tracers. The simulations include the effects of both wave-driven Langmuir turbulence and submesoscale eddies, and tracers with different initial and boundary conditions are examined. Tracer properties are characterized using spatial fields, statistics, multiscale fluxes, and spectra, and results show that passive tracer mixing depends on air-sea flux rate, release depth, and flow regime. The results indicate that while submesoscale eddies transport buoyancy upward to extract potential energy, the same is not true of passive tracers, whose entrainment is instead suppressed. Early in the evolution of some tracers, counter-gradient transport occurs co-located with regions of negative potential vorticity, suggesting that symmetric instabilities may act to oppose turbulent mixing.

  11. Tracking effluent discharges in undisturbed stony soil and alluvial gravel aquifer using synthetic DNA tracers.

    PubMed

    Pang, Liping; Robson, Beth; Farkas, Kata; McGill, Erin; Varsani, Arvind; Gillot, Lea; Li, Jinhua; Abraham, Phillip

    2017-03-15

    With the intensification of human activities, fresh water resources are increasingly being exposed to contamination from effluent disposal to land. Thus, there is a greater need to identify the sources and pathways of water contamination to enable the development of better mitigation strategies. To track discharges of domestic effluent into soil and groundwater, 10 synthetic double-stranded DNA (dsDNA)(3) tracers were developed in this study. Laboratory column experiment and field groundwater and soil lysimeter studies were carried out spiking DNA with oxidation-pond domestic effluent. The selected DNA tracers were compared with a non-reactive bromide (Br) tracer with respect to their relative mass recoveries, speeds of travel and dispersions using the method of temporal moments. In intact stony soil and gravel aquifer media, the dsDNA tracers typically showed earlier breakthrough and less dispersion than the Br tracer, and underwent mass reduction. This suggests that the dsDNA tracers were predominantly transported through the network of larger pores or preferential flow paths. Effluent tracking experiments in soil and groundwater demonstrated that the dsDNA tracers were readily detectable in effluent-contaminated soil and groundwater using quantitative polymerase chain reaction. DNA tracer spiked in the effluent at quantities of 36μg was detected in groundwater 37m down-gradient at a concentration 3-orders of magnitude above the detection limit. It is anticipated it could be detected at far greater distances. Our findings suggest that synthetic dsDNA tracers are promising for tracking effluent discharges in soils and groundwater but further studies are needed to investigate DNA-effluent interaction and the impact of subsurface environmental conditions on DNA attenuation. With further validation, synthetic dsDNA tracers, especially when multiple DNA tracers are used concurrently, can be an effective new tool to track effluent discharge in soils and groundwater

  12. Changes in permeability and fluid chemistry of the Topopah Spring Member of the Paintbrush tuff (Nevada Test Site) when held in a temperature gradient: summary of results

    SciTech Connect

    Moore, D.E.; Morrow, C.A.; Byerlee, J.D.

    1984-06-01

    The permeability and groundwater chemistry results for the Topopah Spring Member are reported and compared with the results from the previous work on Bullfrog. Permeability measurements made on samples of the Topopah Spring Member of the Paintbrush Tuff at room-temperature and in a temperature gradient show that the initially high (3-65 {mu}da) permeabilities are little affected by heating to at least 150{sup 0}C. These permeability relationships are favvorable for the disposal of nuclear waste in this stuff in an unsaturated zone at the Nevada Test Site. The fluids discharged from the samples of tuff during the experiments are dilute, nearly neutral solutions that differ only slightly from the starting groundwater composition. 8 references, 10 figures, 5 tables.

  13. Determination of stream reaeration coefficients by use of tracers

    USGS Publications Warehouse

    Kilpatrick, F.A.; Rathbun, R.E.; Yotsukura, Nobuhiro; Parker, G.W.; DeLong, L.L.

    1989-01-01

    Stream reaeration is the physical absorption of oxygen from the atmosphere by a flowing stream. This is the primary process by which a stream replenishes the oxygen consumed in the biodegradation of organic wastes. Prior to 1965, reaeration rate coefficients could be estimated only by indirect methods. In 1965, a direct method of measuring stream reaeration coefficients was developed whereby a radioactive tracer gas was injected into a stream-the principle being that the tracer gas would be desorbed from the stream inversely to how oxygen would be absorbed. The technique has since been modified by substituting hydrocarbon gases for the radioactive tracer gas. This manual describes the slug-injection and constant-rate-injection methods of measuring gas-tracer desorption. Emphasis is on the use of rhodamine WT dye as a relatively conservative tracer and propane as the nonconservative gas tracer, on planning field tests, on methods of injection, sampling, and analysis, and on techniques for computing desorption and reaeration coefficients.

  14. Dyes as tracers for vadose zone hydrology

    NASA Astrophysics Data System (ADS)

    Flury, Markus; Wai, Nu Nu

    2003-03-01

    Dyes are important tracers to investigate subsurface water movement. For more than a century, dye tracers have provided clues about the hydrological cycle as well as flow and transport processes in the subsurface. Groundwater contamination often originates in the vadose zone. Agrochemicals applied to the soil surface, toxic compounds accidentally spilled by human activities, and contaminants released from waste repositories leach through the vadose zone and can ultimately pollute groundwater resources. Dyes are an important tool to assess flow pathways of such contaminants. This review compiles information on dyes used as hydrological tracers, with particular emphasis on vadose zone hydrology. We summarize briefly different human-applied tracers, including nondye tracers. We then provide a historical sketch of the use of dyes as tracers and describe newer developments in visualization and quantification of tracer experiments. Relevant chemical properties of dyes used as tracers are discussed and illustrated with dye intermediates and selected dye tracers. The types of dyes used as tracers in subsurface hydrology are summarized, and recommendations are made regarding the use of dye tracers. The review concludes with a toxicological assessment of dyes used as hydrological tracers. Many different dyes have been proposed as tracers for water movement in the subsurface. All of these compounds, however, are to some degree retarded by the subsurface medium. Nevertheless, dyes are useful tracers to visualize flow pathways.

  15. Variability of Interhemispheric Tracer Transport

    NASA Astrophysics Data System (ADS)

    Wu, X.; Waugh, D.; Orbe, C.; Yang, H.

    2015-12-01

    Understanding the interhemispheric transport helps us track the movement of air and potential dispersion of pollutions. Here we examine variations of the transport from NH mid-latitudes using NCAR CAM-chem model simulations of an idealized clock tracer (that yields the "mean age") and idealized tracers with 5-day and 50-day decay times. We examine the seasonal and interannual variations in the tracers (and inferred transport time scales), and relate to meteorological processes and climate modes. It is shown that there are large seasonal variations in the interhemispheric transport time scales but generally smaller interannual variations. The significant interannual variations are found over the Indian Ocean, and linked to the Asian monsoon and seasonal movement of intense convection. Smaller variations are found over the Eastern Pacific and linked to seasonality of the ITCZ and ENSO.

  16. Study of North Atlantic ventilation using transient tracers. Doctoral Thesis

    SciTech Connect

    Doney, S.C.

    1991-08-01

    Tritium, (3)He, and chlorofluorocarbon distributions in the North Atlantic provide constraints on the ventilation time-scales for the thermocline and abyssal water. A new model function based on a factor analysis of the WMO/IAEA precipitation data set is developed for predicting the spatial and temporal patterns of bomb-tritium in precipitation. Model atmospheric and advective tritium inputs to the North Atlantic are compared with the observed bomb-tritium inventories calculated from the 1972 GEOSECS and 1981-1983 TTO data sets. The observed growth of bomb-tritium levels in the deep North Atlantic are used, along with the tracer gradients ((3)H and (3)He) in the Deep Western Boundary Current, to estimate abyssal ventilation rates and boundary current recirculation. The surface boundary conditions for different transient tracers are found to profoundly effect thermocline ventilation rates estimates. Tracers that equilibrate rapidly with the atmosphere, such as (3)He and the CFCs, have faster apparent ventilation rates and are more appropriate for estimating oxygen utilization rates than tracers that are reset slowly in the surface ocean (e.g. (3)H and (14)C). The chlorofluorocarbon data for a new section in the eastern North Atlantic are presented and used to illustrate the ventilation time-scales for the major water masses in the region. (Copyright (c) Scott C. Doney, 1991.)

  17. Empirical tests of harvest-induced body-size evolution along a geographic gradient in Australian macropods.

    PubMed

    Prowse, Thomas A A; Correll, Rachel A; Johnson, Christopher N; Prideaux, Gavin J; Brook, Barry W

    2015-01-01

    Life-history theory predicts the progressive dwarfing of animal populations that are subjected to chronic mortality stress, but the evolutionary impact of harvesting terrestrial herbivores has seldom been tested. In Australia, marsupials of the genus Macropus (kangaroos and wallabies) are subjected to size-selective commercial harvesting. Mathematical modelling suggests that harvest quotas (c. 10-20% of population estimates annually) could be driving body-size evolution in these species. We tested this hypothesis for three harvested macropod species with continental-scale distributions. To do so, we measured more than 2000 macropod skulls sourced from wildlife collections spanning the last 130 years. We analysed these data using spatial Bayesian models that controlled for the age and sex of specimens as well as environmental drivers and island effects. We found no evidence for the hypothesized decline in body size for any species; rather, models that fit trend terms supported minor body size increases over time. This apparently counterintuitive result is consistent with reduced mortality due to a depauperate predator guild and increased primary productivity of grassland vegetation following European settlement in Australia. Spatial patterns in macropod body size supported the heat dissipation limit and productivity hypotheses proposed to explain geographic body-size variation (i.e. skull size increased with decreasing summer maximum temperature and increasing rainfall, respectively). There is no empirical evidence that size-selective harvesting has driven the evolution of smaller body size in Australian macropods. Bayesian models are appropriate for investigating the long-term impact of human harvesting because they can impute missing data, fit nonlinear growth models and account for non-random spatial sampling inherent in wildlife collections.

  18. Flow-through column experiments to determine the geochemical behavior of common hydrological tracers

    NASA Astrophysics Data System (ADS)

    Moola, P. S. N.; Sigfússon, B.; Stefansson, A.

    2015-12-01

    Tracer testing is one of the most effective methods used to study groundwater flow, reservoir characteristics and subsurface properties in geohydrology. Hydrological tracer tests were conducted with the basic assumption that the tracer is chemically inert and non-reactive. However, not all tracers behave non-reactive at different pH conditions, the particular tracer may interact with mineral surfaces in the reservoir. In order to study the geochemical behavior of some common hydrological tracers flow-through column experiments were conducted at 25°C. Six common hydrological tracers were investigated, amino G acid, fluorescein, napthionic acid, pyranine, rhodamine B and rhodamine G in porous rocks consisting of basaltic glass, quartz or rhyolite at pH 3, 6.5 and 9. Homogenous porous material of fixed grain size 45-125μm were dry packed in the column to conduct flow through column experiments. Tracers were pumped at fixed flow rates for 20 minutes and switched back to experimental blank solution and the tracer concentration monitored at the outlet. The measured break-through tracer curves were compared to theoretical 1-D reactive transport simulations calculated using the PHREEQC program (Parkhurst and Appelo, 1999). The data obtained from the breakthrough curves suggest that the tracers may be reactive, non-reactive and partially reactive depending on the rock type and solution pH. The tracers that were observed to be reactive showed the influence of adsorption and desorption. The results suggest that some tracers commonly used in ground water hydrology are not suitable under all conditions as they may react with the rocks of the groundwater system.

  19. Final Progress Report for Project Entitled: Quantum Dot Tracers for Use in Engineered Geothermal Systems

    SciTech Connect

    Rose, Peter; Bartl, Michael; Reimus, Paul; Williams, Mark; Mella, Mike

    2015-09-12

    The objective of this project was to develop and demonstrate a new class of tracers that offer great promise for use in characterizing fracture networks in EGS reservoirs. From laboratory synthesis and testing through numerical modeling and field demonstrations, we have demonstrated the amazing versatility and applicability of quantum dot tracers. This report summarizes the results of four years of research into the design, synthesis, and characterization of semiconductor nanocrystals (quantum dots) for use as geothermal tracers.

  20. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain Site Characterization Study; Progress report, June 1--December 31, 1990

    SciTech Connect

    Stetzenbach, K.J.

    1990-12-31

    Ground water tracers are solutes dissolved in or carried by ground water to delineate flow pathways. Tracers provide information on direction and speed of water movement and that of contaminants that might be conveyed by the water. Tracers can also be used to measure effective porosity, hydraulic conductivity, dispersivity and solute distribution coefficients. For most applications tracers should be conservative, that is, move at the same rate as the water and not sorb to aquifer materials. Tracers must have a number of properties to be functional. Regardless of the desired properties, the chemical and physical behavior of a tracer in ground water and the porous medium under study must be understood. Good estimates of tracer behavior can be obtained from laboratory studies. Studies in this proposal will address tracer properties with analytical method development, static sorption and degradation studies and column transport studies, Mutagenicity tests will be performed on promising candidates. The tracers that will be used for these experiments are fluorinated organic acids and other organic compounds that have the chemical and biological stability necessary to be effective in the Yucca Mountain environment. Special emphasis will be placed on compounds that fluoresce or have very large ultraviolet absorption coefficients for very high analytical sensitivity.

  1. Tracer transport in fractured crystalline rock: Evidence of nondiffusive breakthrough tailing

    USGS Publications Warehouse

    Becker, M.W.; Shapiro, A.M.

    2000-01-01

    Extended tailing of tracer breakthrough is often observed in pulse injection tracer tests conducted in fractured geologic media. This behavior has been attributed to diffusive exchange of tracer between mobile fluids traveling through channels in fractures and relatively stagnant fluid between fluid channels, along fracture walls, or within the bulk matrix. We present a field example where tracer breakthrough tailing apparently results from nondiffusive transport. Tracer tests were conducted in a fractured crystalline rock using both a convergent and weak dipole injection and pumping scheme. Deuterated water, bromide, and pentafluorobenzoic acid were selected as tracers for their wide range in molecular diffusivity. The late time behavior of the normalized breakthrough curves were consistent for all tracers, even when the pumping rate was changed. The lack of separation between tracers of varying diffusivity indicates that strong breakthrough tailing in fractured geologic media may be caused by advective transport processes. This finding has implications for the interpretation of tracer tests designed to measure matrix diffusion in situ and the prediction of contaminant transport in fractured rock.

  2. Partitioning Gas Tracer Technology for Measuring Water in Landfills

    NASA Astrophysics Data System (ADS)

    Briening, M. L.; Jakubowitch, A.; Imhoff, P. T.; Chiu, P. C.; Tittlebaum, M. E.

    2002-12-01

    Unstable landfills can result in significant environmental contamination and can become a risk to public health. To reduce this risk, water may be added to landfills to ensure that enough moisture exists for biodegradation of organic wastes. In this case risks associated with future breaks in the landfill cap are significantly reduced because organic material is degraded more rapidly. To modify moisture conditions and enhance biodegradation, leachate is typically collected from the bottom of the landfill and then recirculated near the top. It is difficult, though, to know how much leachate to add and where to add it to achieve uniform moisture conditions. This situation is exacerbated by the heterogeneous nature of landfill materials, which is known to cause short circuiting of infiltrating water, a process that has been virtually impossible to measure or model. Accurate methods for measuring the amount of water in landfills would be valuable aids for implementing leachate recirculation systems. Current methods for measuring water are inadequate, though, since they provide point measurements and are frequently affected by heterogeneity of the solid waste composition and solid waste compaction. The value of point measurements is significantly reduced in systems where water flows preferentially, such as in landfills. Here, spatially integrated measurements might be of greater value. In this research we are evaluating a promising technology, the partitioning gas tracer test, to measure the water saturation within landfills, the amount of free water in solid waste divided by the volume of the voids. The partitioning gas tracer test was recently developed by researchers working in the vadose zone. In this methodology two gas tracers are injected into a landfill. One tracer is non-reactive with landfill materials, while the second partitions into and out of free water trapped within the pore space of the solid waste. Chromatographic separation of the tracers occurs

  3. Following Footsteps: ECD Tracer Studies.

    ERIC Educational Resources Information Center

    Smale, Jim, Editor

    2002-01-01

    This document consists of the single 2002 issue of The Bernard van Leer Foundation's "Early Childhood Matters," a periodical addressed to practitioners in the field of early childhood education and including information on projects funded by the Foundation. Articles in this issue focus on early childhood development tracer studies of…

  4. Bioethics. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Martin, Cathy, Comp.; Cadoree, Michelle

    This guide lists published materials on many aspects of bioethics, the literature of which is varied and scattered. Related guides in the LC Science Tracer Bullet series are TB 80-9, Terminal Care, TB 80-11, Drug Research on Human Subjects, TB 83-4, Science Policy, and TB 84-7, Biotechnology. Not intended to be a comprehensive bibliography, this…

  5. Tracer Transport in the Middle Atmosphere

    NASA Astrophysics Data System (ADS)

    Arnold, Neil F.

    1990-01-01

    Available from UMI in association with The British Library. Requires signed TDF. The discovery of the ozone 'hole' over Antarctica has stimulated a great deal of interest in the interaction between dynamics, radiation and chemistry in the middle atmosphere. In this thesis, a hierarchy of tracer transport models has been adopted to help to understand the results of satellite observations and detailed computer simulations. Zonally averaged models have met with some success in simulating the atmosphere because it is close to radiative/chemical equilibrium in the summer. A zonally averaged circulation derived from satellite observations of temperature and ozone was used here to test various advection schemes and to reproduce the zonal mean seasonal cycle of long-lived tropospheric source gases. Three-dimensional models impose more severe demands and so a number of finite difference schemes have been reviewed and tested under idealized atmospheric conditions. To reduce the computational effort, winds were generated by the Meteorological Office Stratosphere Mesosphere model (SMM) and passed to a transport model. The best transport scheme was the one which most closely resembled that used for heat and momentum transport. Time averaging of the winds was necessary to produce representative fields in the mesosphere. When the transport scheme was incorporated into the SMM, agreement between the dynamically derived potential temperature and potential vorticity and the tracer equivalents were very good. During a major warming, the discrepancy between the vortex maximum between the model potential vorticity and the equivalent material tracer fields was 12% in the middle stratosphere and 50% in the upper stratosphere after twenty days. Most of this difference was due to the sensitivity of the potential vorticity to diabatic heating. Extensions of the work to include chemistry and more sophisticated satellite-derived circulations were suggested.

  6. Human calcium metabolism including bone resorption measured with {sup 41}Ca tracer

    SciTech Connect

    Freeman, S.P.H.T.; King, J.C.; Vieira, N.E.; Woodhouse, L.R.; Yergey, A.L.

    1996-08-01

    Accelerator mass spectrometry is so sensitive to small quantities of {sup 41}Ca that it might be used as a tracer in the study of human calcium kinetics to generate unique kinds of data. In contrast with the use of other Ca isotopic tracers, {sup 41}Ca tracer can be so administered that the tracer movements between the various body pools achieve a quasi steady state. Resorbing bone may thus be directly measured. We have tested such a protocol against a conventional stable isotope experiment with good agreement.

  7. Use of deuterated water as a conservative artificial ground water tracer

    USGS Publications Warehouse

    Becker, M.W.; Coplen, T.B.

    2001-01-01

    Conservative tracers are necessary to obtain groundwater transport velocities at the field scale. Deuterated water is an effective tracer for this purpose due to its similarity to water, chemical stability, non-reactivity, ease of handling and sampling, relatively neutral buoyancy, and reasonable price. Reliable detection limits of 0.1 mg deuterium/L may be obtained in field tests. A field example is presented in which deuterated water, bromide, and pentafluorobenzoic acid are used as groundwater tracers. Deuterated water appeared to be transported conservatively, producing almost identical breakthrough curves as that of other soluble tracers. ?? Springer-Verlag 2001.

  8. Human calcium metabolism including bone resorption measured with 41Ca tracer

    NASA Astrophysics Data System (ADS)

    Freeman, Stewart P. H. T.; King, Janet C.; Vieira, Nancy E.; Woodhouse, Leslie R.; Yergey, Alfred L.

    1997-03-01

    Accelerator mass spectrometry is so sensitive to small quantities of 41Ca that it might be used as a tracer in the study of human calcium kinetics to generate unique kinds of data. In contrast with the use of other Ca isotopic tracers, 41Ca tracer can be so administered that the tracer movements between the various body pools achieve a quasi steady state. Resorbing bone may thus be directly measured. We have tested such a protocol against a conventional stable isotope experiment with good agreement.

  9. Gradient-driven diffusion and pattern formation in crowded mixtures

    NASA Astrophysics Data System (ADS)

    Nandigrami, Prithviraj; Grove, Brandy; Konya, Andrew; Selinger, Robin L. B.

    2017-02-01

    Gradient-driven diffusion in crowded, multicomponent mixtures is a topic of high interest because of its role in biological processes such as transport in cell membranes. In partially phase-separated solutions, gradient-driven diffusion affects microstructure, which in turn affects diffusivity; a key question is how this complex coupling controls both transport and pattern formation. To examine these mechanisms, we study a two-dimensional multicomponent lattice gas model, where "tracer" molecules diffuse between a source and a sink separated by a solution of sticky "crowder" molecules that cluster to form dynamically evolving obstacles. In the high-temperature limit, crowders and tracers are miscible, and transport may be predicted analytically. At intermediate temperatures, crowders phase separate into clusters that drift toward the tracer sink. As a result, steady-state tracer diffusivity depends nonmonotonically on both temperature and crowder density, and we observe a variety of complex microstructures. In the low-temperature limit, crowders rapidly aggregate to form obstacles that are kinetically arrested; if crowder density is near the percolation threshold, resulting tracer diffusivity shows scaling behavior with the same scaling exponent as the random resistor network model. Though highly idealized, this simple model reveals fundamental mechanisms governing coupled gradient-driven diffusion, phase separation, and microstructural evolution in crowded mixtures.

  10. Plan for radionuclide tracer studies of the residence time distribution in the Wilsonville dissolver and preheater

    SciTech Connect

    Jolley, R.L.; Begovich, J.M.; Brashear, H.R.; Case, N.; Clark, T.G.; Emery, J.F.; Patton, B.D.; Rodgers, B.R.; Villiers-Fisher, J.F.; Watson, J.S.

    1983-12-01

    Stimulus-response measurements using radiotracers to measure residence time distribution (RTD) and hydrodynamic parameters for the preheaters and dissolvers at the Ft. Lewis Solvent Refined Coal (SRC) and the Exxon Donor Solvent (EDS) coal conversion pilot plants are reviewed. A plan is also presented for a series of radioactive tracer studies proposed for the Advanced Coal Liquefaction Facility at Wilsonville, Alabama, to measure the RTD for the preheater and dissolvers in the SRC-I mode. The tracer for the gas phase will be /sup 133/Xe, and /sup 198/Au (on carbonized resin or as an aqueous colloidal suspension) will be used as the slurry tracer. Four experimental phases are recommended for the RTD tracer studies: (1) preheater; (2) dissolver with 100% takeoff; (3) dissolver with 100% takeoff and solids withdrawal; and (4) dissolver with 50% takeoff. Eighteen gas-tracer and 22 liquid-tracer injections are projected to accomplish the four experimental phases. Two to four tracer injections are projected for preliminary tests to ensure the capability of safe injection of the radiotracers and the collection of statistically significant data. A complete projected cost and time schedule is provided, including procurement of necessary components, preparation of the radiotracers, assembly and testing of tracer injection apparatus and detection systems, onsite work and tracer injections, laboratory experimentation, data analysis, and report writing.

  11. Is the Woodcock-Johnson III a Test for All Seasons? Ceiling and Item Gradient Considerations in Its Use with Older Students

    ERIC Educational Resources Information Center

    Krasa, Nancy

    2007-01-01

    This study assesses the adequacy of item gradients and ceilings for the subtests of the Woodcock-Johnson III (WJ III) Cognitive and Achievement batteries, including the Diagnostic Supplement, in their use with participants ages 16 to 25 and Grades 10 to 18. Of the 52 subtests, 18 contain adequate item gradients and ceilings for the entire age and…

  12. Short-term fluid, heat, and solute transport in deep 'georeservoirs' likely to become 'EGS': some challenges to ICDP hydrogeologists who might like using artificial tracers

    NASA Astrophysics Data System (ADS)

    Ghergut, Julia; Behrens, Horst; Huenges, Ernst; Rose, Peter; Sauter, Martin

    2014-05-01

    During Fall 2013, the Integrated Continental Scientific Drilling Programme (ICDP) set out to define a new Science Plan that shall replace its past-decade version (Harms et al., eds., 2005) for the decade to come. Geoscientists worldwide were welcomed to suggest new imaging and exploration methods, new sites to drill, new challenges to be addressed with a view at new 'societal needs' (Harms and Wiersberg 2013). Save for two outstanding exceptions at the Mutnovsky volcano in Russia and the KTB site in Germany, the use of artificial tracers, especially within forced-gradient tests, has not been on the agenda of most ICDP projects so far (other than for purposes of monitoring microbial contamination in conjunction with drilling activities); deep-reservoir exploration and characterization efforts were restrained to non-fluid-invasive techniques on the one hand, and to sites featuring some unique earth-historical traits, on the other hand. Surely, this was not for lack of interest in quantifying fluid transport in the deep subsurface in general, but mainly due to operational, technical, and financial constraints (lack of resources / lack of opportunity for significant fluid turnover within the target, deep-seated georeservoirs, and fear of persistent, large-scale georeservoir contamination by non-pristine fluids). - This is likely to change during the forthcoming decade(s), owing to worldwide increased interest in some 'georesource' or 'georeservoir' play types (Moeck 2013) that have not been in the ICDP focus so far, including non-volcanogenic geothermal, and allowing for man-made design and intervention into how those 'georesources' or 'georeservoirs' shall work for us. Among the latter, petrothermal systems (Jung 2013, Huenges and Jung 2004) acquire growing recognition as a promising (and maybe unique) option for baseload energy supply in vast areas of the Northern hemisphere, at very low emissions and (in the long run) moderate costs. With petrothermal coming into

  13. Isotopic Tracers for Delineating Non-Point Source Pollutants in Surface Water

    SciTech Connect

    Davisson, M L

    2001-03-01

    This study tested whether isotope measurements of surface water and dissolved constituents in surface water could be used as tracers of non-point source pollution. Oxygen-18 was used as a water tracer, while carbon-14, carbon-13, and deuterium were tested as tracers of DOC. Carbon-14 and carbon-13 were also used as tracers of dissolved inorganic carbon, and chlorine-36 and uranium isotopes were tested as tracers of other dissolved salts. In addition, large databases of water quality measurements were assembled for the Missouri River at St. Louis and the Sacramento-San Joaquin Delta in California to enhance interpretive results of the isotope measurements. Much of the water quality data has been under-interpreted and provides a valuable resource to investigative research, for which this report exploits and integrates with the isotope measurements.

  14. Multiple-tracer gas analyzer

    SciTech Connect

    Uhl, J.E.

    1982-01-01

    A multi-gas tracer system has been designed, built, and used on an explosively fractured oil shale rubble bed. This paper deals exclusively with the hardware, software, and overall operation of the tracer system. This system is a field portable, self-contained unit, which utilizes a mass spectrometer for gas analysis. The unit has a 20 channel sample port capability and is controlled by a desk top computer. The system is configured to provide a dynamic sensitivity range of up to six orders of magnitude. A roots blower is manifolded to the unit to provide continuous flow in all sample lines. The continuous flow process allows representative samples as well as decreasing the time between each measurement. Typical multiplex cycle time to evaluate four unique gases is approximately 12 seconds.

  15. Chemical tracers of particulate emissions from commercial shipping.

    PubMed

    Viana, Mar; Amato, Fulvio; Alastuey, Andrés; Querol, Xavier; Moreno, Teresa; Dos Santos, Saúl García; Herce, María Dolores; Fernández-Patier, Rosalía

    2009-10-01

    Despite the increase of commercial shipping around the world, data are yet relatively scarce on the contribution of these emissions to ambient air particulates. One of the reasons is the complexity in the detection and estimation of shipping contributions to ambient particulates in harbor and urban environments, given the similarity with tracers of other combustion sources. This study aimed to identify specific tracers of shipping emissions in a Mediterranean city with an important harbor (Melilla, Spain). Results showed that for 24 h PM10 and PM2.5 samples, valid tracers of commercial shipping emissions were ratios of V/Ni = 4-5 and V/EC < 2, whereas V/EC > 8 excluded the influence of shipping emissions. Other ratios (V/ S, La/Ce, Zn/Ni, Pb/Zn, OC/EC) and tracers (Pb, Zn) were also tested but did not correlate with this source. Due to the changing composition of diesel fuels, tracers in the Mediterranean Sea may not be representative in other regions of the world and vice versa. The contribution of shipping emissions to ambient particulate matter (PM) urban background levels was quantified by positive matrix factorization (PMF), resulting in 2% and 4% of mean annual PM10 levels (0.8 microg/m3 primary particles and 1.7 microg/m3 secondary particles, with 20% uncertainty) and 14% of mean annual PM2.5 levels (2.6 microg/m3).

  16. Classification of amyloid status using machine learning with histograms of oriented 3D gradients.

    PubMed

    Cattell, Liam; Platsch, Günther; Pfeiffer, Richie; Declerck, Jérôme; Schnabel, Julia A; Hutton, Chloe

    2016-01-01

    Brain amyloid burden may be quantitatively assessed from positron emission tomography imaging using standardised uptake value ratios. Using these ratios as an adjunct to visual image assessment has been shown to improve inter-reader reliability, however, the amyloid positivity threshold is dependent on the tracer and specific image regions used to calculate the uptake ratio. To address this problem, we propose a machine learning approach to amyloid status classification, which is independent of tracer and does not require a specific set of regions of interest. Our method extracts feature vectors from amyloid images, which are based on histograms of oriented three-dimensional gradients. We optimised our method on 133 (18)F-florbetapir brain volumes, and applied it to a separate test set of 131 volumes. Using the same parameter settings, we then applied our method to 209 (11)C-PiB images and 128 (18)F-florbetaben images. We compared our method to classification results achieved using two other methods: standardised uptake value ratios and a machine learning method based on voxel intensities. Our method resulted in the largest mean distances between the subjects and the classification boundary, suggesting that it is less likely to make low-confidence classification decisions. Moreover, our method obtained the highest classification accuracy for all three tracers, and consistently achieved above 96% accuracy.

  17. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain Site characterization study. Progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Stetzenbach, K.; Farnham, I.

    1995-05-01

    Fluorinated organic acids were utilized in a test study as hydrologic tracers for the Yucca Mountain Project. Fluorinated acids included cinnamic acid; benzoic acid, and toluic acid. Results are discussed pertaining to retention time, elution time, and stability.

  18. Predictions of PuO sub 2 and tracer compound release from ISV melts

    SciTech Connect

    Cronenberg, A.W. ); Callow, R.A. )

    1992-04-01

    Two field tests were conducted at the Idaho National Engineering Laboratory (INEL) to assess in situ vitrification (ISV) suitability for long-term stabilization of buried radioactive waste. Both tests contained rare-earth oxide tracers (DY{sub 2}O{sub 3}, Yb{sub 2}O{sub 3}, and Tb{sub 4}O{sub 7}) to simulate the presence of plutonium in the form of PuO{sub 2}. In the first test, Intermediate Field Test (IFT)-l, approximately 4-% release of tracer material occurred during soil melting and associated off-gassing, while essentially nil release was observed for the second experiment (IFT-2) for which off-gassing was much reduced. This report presents an evaluation of the IFT test data in terms of governing release processes. Prediction of tracer release during ISV melting centered on an assessment of three potential transport mechanisms, (a) tracer diffusion through stagnant pool, (b) tracer transport by convective currents, and (c) tracer carry-off by escaping gas bubbles. Analysis indicates that tracer release by escaping gas is the dominant release mechanism, which is consistent with video records of gas bubble escape from the ISV melt surface. Quantitative mass transport predictions were also made for the IFT-I test conditions, indicating similarity between the 4-% release data and calculational results at viscosities of {approx} poise and tracer diffusivities of {approx}10{sub {minus}6} CM{sup 2}/s. Since PuO{sub 2} has similar chemical and transport (diffusivity) properties as the rare-earth tracers used in the rare earth tracers used in the IFT experiments, release of PuO{sub 2} is predicted for similar off-gassing conditions. Reduced off-gassing during ISV would thus be expected to improve the overall retention of heavy-oxides within vitrified soil.

  19. Predictions of PuO{sub 2} and tracer compound release from ISV melts

    SciTech Connect

    Cronenberg, A.W.; Callow, R.A.

    1992-04-01

    Two field tests were conducted at the Idaho National Engineering Laboratory (INEL) to assess in situ vitrification (ISV) suitability for long-term stabilization of buried radioactive waste. Both tests contained rare-earth oxide tracers (DY{sub 2}O{sub 3}, Yb{sub 2}O{sub 3}, and Tb{sub 4}O{sub 7}) to simulate the presence of plutonium in the form of PuO{sub 2}. In the first test, Intermediate Field Test (IFT)-l, approximately 4-% release of tracer material occurred during soil melting and associated off-gassing, while essentially nil release was observed for the second experiment (IFT-2) for which off-gassing was much reduced. This report presents an evaluation of the IFT test data in terms of governing release processes. Prediction of tracer release during ISV melting centered on an assessment of three potential transport mechanisms, (a) tracer diffusion through stagnant pool, (b) tracer transport by convective currents, and (c) tracer carry-off by escaping gas bubbles. Analysis indicates that tracer release by escaping gas is the dominant release mechanism, which is consistent with video records of gas bubble escape from the ISV melt surface. Quantitative mass transport predictions were also made for the IFT-I test conditions, indicating similarity between the 4-% release data and calculational results at viscosities of {approx} poise and tracer diffusivities of {approx}10{sub {minus}6} CM{sup 2}/s. Since PuO{sub 2} has similar chemical and transport (diffusivity) properties as the rare-earth tracers used in the rare earth tracers used in the IFT experiments, release of PuO{sub 2} is predicted for similar off-gassing conditions. Reduced off-gassing during ISV would thus be expected to improve the overall retention of heavy-oxides within vitrified soil.

  20. On gradient field theories: gradient magnetostatics and gradient elasticity

    NASA Astrophysics Data System (ADS)

    Lazar, Markus

    2014-09-01

    In this work, the fundamentals of gradient field theories are presented and reviewed. In particular, the theories of gradient magnetostatics and gradient elasticity are investigated and compared. For gradient magnetostatics, non-singular expressions for the magnetic vector gauge potential, the Biot-Savart law, the Lorentz force and the mutual interaction energy of two electric current loops are derived and discussed. For gradient elasticity, non-singular forms of all dislocation key formulas (Burgers equation, Mura equation, Peach-Koehler stress equation, Peach-Koehler force equation, and mutual interaction energy of two dislocation loops) are presented. In addition, similarities between an electric current loop and a dislocation loop are pointed out. The obtained fields for both gradient theories are non-singular due to a straightforward and self-consistent regularization.

  1. Comparison of tracer methods to quantify hydrodynamic exchange within the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Engelhardt, I.; Piepenbrink, M.; Trauth, N.; Stadler, S.; Kludt, C.; Schulz, M.; Schüth, C.; Ternes, T. A.

    2011-03-01

    SummaryHydrodynamic exchange between surface-water and groundwater was studied at a river located within the Rhine Valley in Germany. Piezometric pressure heads and environmental tracers such as temperature, stable isotopes, chloride, X-ray contrast media, and artificial sweetener were investigated within the hyporheic zone and river water plume. Vertical profiles of environmental tracers were collected using multi-level wells within the neutral up-gradient zone, beneath the river bed, and within the horizontal proximal and distal down-gradient zone. Infiltration velocities were calculated from pressure heads, temperature fluctuations and gradients. The amount of river water within groundwater was estimated from vertical profiles of chloride, stable isotopes, and persistent pharmaceuticals. Profiles of stable isotopes and chloride reveal the existence of down-welling within the shallow hyporheic zone that is generated by river bed irregularities. Due to down-welling an above-average migration of river water into the hyporheic zone establishes even under upward hydraulic pressure gradients. The investigated environmental tracers could not distinctively display short-time-infiltration velocities representative for flood waves, while average infiltration velocities calculated over several months are uniform displayed. Based on vertical temperature profiles the down-gradient migration of the river water plume could be observed even after long periods of effluent conditions and over a distance of 200 m from the river bank. X-ray contrast media and artificial sweeteners were observed in high concentrations within the proximal zone, but were not detected at a distance of 200 m from the river bank. Using temperature as environmental tracer within the hyporheic zone may result in overestimating the migration of pollutants within the river water plume as the process of natural attenuation will be neglected. Furthermore, temperature was not able to display the effect of down

  2. Measurement of discharge using tracers

    USGS Publications Warehouse

    Kilpatrick, F.A.; Cobb, Ernest D.

    1985-01-01

    The development of fluorescent dyes and fluorometers that can measure these dyes at very low concentrations has made dye-dilution methods practical for measuring discharge. These methods are particularly useful for determining discharge under certain flow conditions that are unfavorable for current meter measurements. These include small streams, canals, and pipes where 1. Turbulence is excessive for current-meter measurement but conducive to good mixing. 2. Moving rocks and debris may damage instruments placed in the flow. 3. Cross-sectional areas or velocities are indeterminate or changing. 4. The flow is unsteady, such as the flow that exists with storm-runoff events on small streams and urban storm-sewer systems. 5. The flow is physically inaccessible or unsafe. From a practical standpoint, such methods are limited primarily to small streams, because of the excessively long channel-mixing lengths required for larger streams. Very good accuracy can be obtained provided that 1. Adequate mixing length and time are allowed. 2. Careful field and laboratory techniques are used. 3. Dye losses are not significant. This manual describes the slug-injection and constant-rate injection methods of performing tracer-dilution measurements. Emphasis is on the use of fluorescent dyes as tracers and the equipment, field methods, and laboratory procedures for performing such measurements. The tracer-velocity method is also briefly discussed.

  3. Tracer mixing at fracture intersections

    SciTech Connect

    Li, Guomin

    2001-02-10

    Discrete network models are one of the approaches used to simulate a dissolved contaminant, which is usually represented as a tracer in modeling studies, in fractured rocks. The discrete models include large numbers of individual fractures within the network structure, with flow and transport described on the scale of an individual fracture. Numerical simulations for the mixing characteristics and transfer probabilities of a tracer through a fracture intersection are performed for this study. A random-walk, particle-tracking model is applied to simulate tracer transport in fracture intersections by moving particles through space using individual advective and diffusive steps. The simulation results are compared with existing numerical and analytical solutions for a continuous intersection over a wide range of Peclet numbers. This study attempts to characterize the relative concentration at the outflow branches for a continuous intersection with different flow fields. The simulation results demonstrate that the mixing characteristics at the fracture intersections are a function not only of the Peclet number but also of the flow field pattern.

  4. Carbon-14 as a tracer of groundwater discharge to streams

    NASA Astrophysics Data System (ADS)

    Bourke, Sarah; Harrington, Glenn; Cook, Peter; Post, Vincent; Dogramaci, Shawan

    2014-05-01

    The provenance of groundwater discharge to a stream can be determined by measuring the response of multiple groundwater age tracers within the stream across the discharge zone. The sampling interval required to detect groundwater discharge is limited by the rate of equilibration with the atmosphere downstream of the discharge zone, which is determined by the gas transfer velocity. Carbon-14 (14C) equilibration is driven by CO2 exchange, which is a small component of the dissolved inorganic carbon in most stream systems, and therefore the rate of equilibration is slower than for other gaseous age tracers. In this paper we use a step-wise approach to develop and demonstrate the use of 14C as a tracer in streams receiving groundwater discharge. Excess carbon dioxide (CO2) in the emerging groundwater degasses until equilibrium with atmospheric CO2 is reached; increasing pH and enriching the residual 14C by fractionation. In addition, the 14C gradient between groundwater and the atmosphere drives a slower process of isotopic equilibration. We have measured the rates of this chemical and isotopic equilibration experimentally by exposing 250 L of old groundwater to the atmosphere in an evaporation pan. Chemical equilibrium was achieved within 2 days, during which the 14C increased from 6 to 16 pMC. The influence of fractionation during the initial CO2 degassing on isotopic equilibrium rates was negligible. Isotopic equilibrium took over 2 months, with 14C in the evaporation pan increasing to 108 pMC over 71 days. This increase in 14C was simulated using a mass balance model with an effective 14C gas transfer velocity of 0.013 m d-1. Field testing of the method was conducted at two sites. Firstly, we measured the evolution of 14C in dewatering discharge as it flows along an ephemeral creek channel in the Pilbara, Western Australia. Measured 14C increased from 11 to 31 pMC along the 10km reach, which corresponds to a travel time of about 2 days. The measured increase was

  5. TRACER DISPERSION STUDIES FOR HYDRAULIC CHARACTERIZATION OF PIPES

    EPA Science Inventory

    A series of experiments were conducted at the U. S. Environmental Protection Agency (EPA) Test & Evaluation (T&E) Facility in Cincinnati, Ohio, to quantify longitudinal dispersion of a sodium fluoride tracer in polyvinyl chloride (PVC) pipe and ductile iron pipe under laminar, tr...

  6. A dynamic system for the simulation of fasting luminal pH-gradients using hydrogen carbonate buffers for dissolution testing of ionisable compounds.

    PubMed

    Garbacz, Grzegorz; Kołodziej, Bartosz; Koziolek, Mirko; Weitschies, Werner; Klein, Sandra

    2014-01-23

    The hydrogen carbonate buffer is considered as the most biorelevant buffer system for the simulation of intestinal conditions and covers the physiological pH range of the luminal fluids from pH 5.5 to about pH 8.4. The pH value of a hydrogen carbonate buffer is the result of a complex and dynamic interplay of the concentration of hydrogen carbonate ions, carbonic acid, the concentration of dissolved and solvated carbon dioxide and its partial pressure above the solution. The complex equilibrium between the different ions results in a thermodynamic instability of hydrogen carbonate solutions. In order to use hydrogen carbonate buffers with pH gradients in the physiological range and with the dynamics observed in vivo without changing the ionic strength of the solution, we developed a device (pHysio-grad®) that provides both acidification of the dissolution medium by microcomputer controlled carbon dioxide influx and alkalisation by degassing. This enables a continuous pH control and adjustment during dissolution of ionisable compounds. The results of the pH adjustment indicate that the system can compensate even rapid pH changes after addition of a basic or acidic moiety in amounts corresponding up to 90% of the overall buffer capacity. The results of the dissolution tests performed for a model formulation containing ionizable compounds (Nexium 20mg mups) indicate that both the simulated fasting intraluminal pH-profiles and the buffer species can significantly affect the dissolution process by changing the lag time prior to initial drug release and the release rate of the model compound. A prediction of the in vivo release behaviour of this formulation is thus most likely strongly related to the test conditions such as pH and buffer species.

  7. Matching tracer selection to georeservoir typology - A note on geothermal reservoir classification

    NASA Astrophysics Data System (ADS)

    Ghergut, Julia; Behrens, Horst; Licha, Tobias; Sauter, Martin

    2013-04-01

    Thermal-lifetime prediction is a traditional endeavor of inter-well tracer tests conducted in geothermal reservoirs. Early tracer test signals (detectable within the first few years of operation) are expected to correlate with late-time production temperature drop (so-called 'thermal breakthrough', supposed to not occur before some decades of operation) of a geothermal reservoir. Whenever a geothermal reservoir can be described as a single-fracture system, its thermal lifetime will, ideally, be determined by two parameters, whose inversion from conservative-tracer test signals is straightforward and non-ambiguous (provided that the tracer tests, and their interpretation, are performed in accordance to the rules of the art). However, as soon as just few more fractures are considered, this clear-cut correlation is broken. A given geothermal reservoir can simultaneously exhibit a single-fracture behavior, in terms of heat transport, and a multiple-fracture behavior, in terms of solute tracer transport (or vice-versa), whose effective values of fracture apertures, spacings, and porosities are essentially uncorrelated between heat and solute tracers. Solute transport parameters derived from conservative-tracer tests will no longer characterize the heat transport processes (and thus temperature evolutions) taking place in the same reservoir. Parameters determining its thermal lifetime will remain invisible to conservative tracers in inter-well tests. Non-conservative tracers, in particular sorptive and thermo-sensitive compounds, can be used to overcome this gap between heat and tracer transport. However, significant differences exist, w. r. to tracer functionality, between different geothermal systems: (I) hot natural aquifers (with predominantly 'porous media' character), (II) aquifer-based EGS, (III) petrothermally-based EGS, (IV) naturally-fractured systems. Conservative tracers are indispensable to characterizing any of (I) - (IV), but their residence time

  8. Stream solute tracer timescales changing with discharge and reach length confound process interpretation

    NASA Astrophysics Data System (ADS)

    Schmadel, Noah M.; Ward, Adam S.; Kurz, Marie J.; Fleckenstein, Jan H.; Zarnetske, Jay P.; Hannah, David M.; Blume, Theresa; Vieweg, Michael; Blaen, Phillip J.; Schmidt, Christian; Knapp, Julia L. A.; Klaar, Megan J.; Romeijn, Paul; Datry, Thibault; Keller, Toralf; Folegot, Silvia; Arricibita, Amaia I. Marruedo; Krause, Stefan

    2016-04-01

    Improved understanding of stream solute transport requires meaningful comparison of processes across a wide range of discharge conditions and spatial scales. At reach scales where solute tracer tests are commonly used to assess transport behavior, such comparison is still confounded due to the challenge of separating dispersive and transient storage processes from the influence of the advective timescale that varies with discharge and reach length. To better resolve interpretation of these processes from field-based tracer observations, we conducted recurrent conservative solute tracer tests along a 1 km study reach during a storm discharge period and further discretized the study reach into six segments of similar length but different channel morphologies. The resulting suite of data, spanning an order of magnitude in advective timescales, enabled us to (1) characterize relationships between tracer response and discharge in individual segments and (2) determine how combining the segments into longer reaches influences interpretation of dispersion and transient storage from tracer tests. We found that the advective timescale was the primary control on the shape of the observed tracer response. Most segments responded similarly to discharge, implying that the influence of morphologic heterogeneity was muted relative to advection. Comparison of tracer data across combined segments demonstrated that increased advective timescales could be misinterpreted as a change in dispersion or transient storage. Taken together, our results stress the importance of characterizing the influence of changing advective timescales on solute tracer responses before such reach-scale observations can be used to infer solute transport at larger network scales.

  9. Applied gas tracers for subsurface and surface hydrology

    NASA Astrophysics Data System (ADS)

    Elliot, T.; Kalin, R. M.; MacKinnon, P. A.; McNeill, G. W.; Murphy, J. L.

    2003-04-01

    -P Seiler, S. Wohnlich (Eds.) New Approaches to Characterizing Groundwater Flow. A.A.Balkema/Lisse, Vol. 1, pp.143--148. Murphy, J.L., Mackinnon, P.A., Zhao, Y.Q., Kalin, R.M. &Elliot, T. (2001) Measurement of the surface water re-aeration coefficient using Krypton as a gas tracer. In C.A. Brebbia (Ed.) Water Pollution VI, WIT Press, Southampton, UK. pp. 505--514. Mohrlok, U., McNeill, G., Elliot, T. &Kalin, R. (2002) Modelling tracer injection for the interpretation of a tracer test in layered fluvial sediments. Acta Universitatis Carolinae -- Geologica, 46(2/3): 395--399.

  10. Using molecular-scale tracers to investigate transport of agricultural pollutants in soil and water

    NASA Astrophysics Data System (ADS)

    Lloyd, C.; Michaelides, K.; Chadwick, D.; Dungait, J.; Evershed, R. P.

    2012-12-01

    We explore the use of molecular-scale tracers to investigate the transport of potential pollutants due to the application of slurry to soil. The molecular-scale approach allows us to separate the pollutants which are moved to water bodies through sediment-bound and dissolved transport pathways. Slurry is applied to agricultural land to as a soil-improver across a wide-range of topographic and climatic regimes, hence a set of experiments were designed to assess the effect of changing slope gradient and rainfall intensity on the transport of pollutants. The experiments were carried out using University of Bristol's TRACE (Test Rig for Advancing Connectivity Experiments) facility. The facility includes a dual axis soil slope (6 x 2.5 x 0.3 m3) and 6-nozzle rainfall simulator, which enables the manipulation of the slope to simulate different slope gradient and rainfall scenarios. Cattle slurry was applied to the top 1 metre strip of the experimental soil slope followed by four rainfall simulations, where the gradient (5° & 10°) and the rainfall intensity (60 & 120 mm hr-1) were co-varied. Leachate was sampled from different flow pathways (surface, subsurface and percolated) via multiple outlets on the slope throughout the experiments and soil cores were taken from the slope after each experiment. Novel tracers were used to trace the pollutants in both dissolved and sediment-bound forms. Fluorescence spectroscopy was used to trace dissolved slurry-derived material via water flow pathways, as the slurry was found to have a distinct signature compared with the soil. The fluorescence signatures of the leachates were compared with those of many organic compounds in order to characterise the origin of the signal. This allowed the assessment of the longevity of the signal in the environment to establish if it could be used as a robust long-term tracer of slurry material in water or if would be subject to transform processes through time. 5-βstanols, organic compounds

  11. Challenges of Tracer Analysis for Reach-Scale (Reactive) Transport (Invited)

    NASA Astrophysics Data System (ADS)

    Cirpka, O. A.; Lemke, D.; Liao, Z.; Diem, S.; Knapp, J.; Osenbrueck, K.; Schirmer, M.

    2013-12-01

    Both artificial and natural tracer signals are frequently used to analyze river-groundwater systems. Among the artificial tracer tests, injecting reactive compounds, such as resazurin, together with conservative compounds has recently gained recognition. Ideally, (1) the transformation would take place only in a certain compartment, such as the hyporheic zone (which is not guaranteed), (2) the reactive compounds would undergo only physical transport and a single reaction (but they also undergo unknown reactions and sorb), and (3) the observed reaction rates could uniquely be related to certain metabolic activity (which is difficult to prove). We have performed a series of tracer tests with the resazurin/resorufin system in streams and in sediment-filled columns to identify all processes affecting the tracer signals and develop methods for their quantification. We conclude that this tracer must be combined with other tracers to make a contribution for the understanding of biogeochemical processes in the river-aquifer system. We have also made good experience with the analysis of continuous natural tracer signals, both electric conductivity indicative for travel-time distributions and dissolved oxygen in piezometers and adjacent streams. For River Thur, we could come up with a simple zero-order model of oxygen consumption within the sediments, depending on temperature and discharge. Under conditions in which the time scales of velocity fluctuations and advective transport are comparable, however, a non-stationary analysis of the tracer signals is necessary to determine time-dependent travel-time distributions.

  12. Petroleum characterization by perfluorocarbon tracers

    SciTech Connect

    Senum, G.I.; Fajer, R.W. ); Harris, B.R. Jr. ); DeRose, W.E. ); Ottaviani, W.L. )

    1992-02-01

    Perfluorocarbon tracers (PFTs), a class of six compounds, were used to help characterize the Shallow Oil Zone (SOZ) reservoir at the Naval Petroleum Reserve in California (NPRC) at Elk Hills. The SOZ reservoir is undergoing a pilot gas injection program to assess the technical feasibility and economic viability of injecting gas into the SOZ for improved oil recovery. PFTs were utilized in the pilot gas injection to qualitatively assess the extent of the pilot gas injection so as to determine the degree of gas containment within the SOZ reservoir.

  13. Gradient Index Lens Research

    DTIC Science & Technology

    1981-10-19

    Finally, an assessment of the current technologies in gradient index has been made. This includes a series of recommendations w’iich will be...17 III. Ray Tracing in Anamorphic Gradient Index Media ......... 20 IV. Fabrication of Six Gradient Index Samples ............. 27 V. Technology ...for a basic understanding of what can and cannot be done with gradient index lenses, aside from any lack of technology for making a paricular gradient

  14. Effects of submesoscale turbulence on ocean tracers

    NASA Astrophysics Data System (ADS)

    Smith, Katherine M.; Hamlington, Peter E.; Fox-Kemper, Baylor

    2016-01-01

    Ocean tracers such as carbon dioxide, nutrients, plankton, and oil advect, diffuse, and react primarily in the oceanic mixed layer where air-sea gas exchange occurs and light is plentiful for photosynthesis. There can be substantial heterogeneity in the spatial distributions of these tracers due to turbulent stirring, particularly in the submesoscale range where partly geostrophic fronts and eddies and small-scale three-dimensional turbulence are simultaneously active. In this study, a large eddy simulation spanning horizontal scales from 20 km down to 5 m is used to examine the effects of multiscale turbulent mixing on nonreactive passive ocean tracers from interior and sea-surface sources. The simulation includes the effects of both wave-driven Langmuir turbulence and submesoscale eddies, and tracers with different initial and boundary conditions are examined in order to understand the respective impacts of small-scale and submesoscale motions on tracer transport. Tracer properties are characterized using spatial fields and statistics, multiscale fluxes, and spectra, and the results detail how tracer mixing depends on air-sea tracer flux rate, tracer release depth, and flow regime. Although vertical fluxes of buoyancy by submesoscale eddies compete with mixing by Langmuir turbulence, vertical fluxes of tracers are often dominated by Langmuir turbulence, particularly for tracers that are released near the mixed-layer base or that dissolve rapidly through the surface, even in regions with pronounced submesoscale activity. Early in the evolution of some tracers, negative eddy diffusivities occur co-located with regions of negative potential vorticity, suggesting that symmetric instabilities or other submesoscale phenomenon may act to oppose turbulent mixing.

  15. Open Clusters as Tracers of the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Cantat-Gaudin, Tristan

    2015-01-01

    for star formation mechanisms. * the study of the OCs can shed light on the disk properties, in particular on the presence of a chemical gradient. Studying the distribution of chemical elements across the Galactic disk has been a central question in astronomy for the past decade. The exact shape of this metallicity gradient, revealed by various tracers such as Cepheids, Planetary Nebulae or HII regions is not quite clear. OCs suggest a flattening of the gradient in the outer disk. Here I will investigate the issue using the GES data set. Methods: The data analysis of the GES is a complex task carried out by different groups. When dealing with a huge quantity of astronomical data, it is essential to have tools that economically process large amounts of information and produce repeatable results. As part of the GES I developed an automated tool to measure the EWs in spectra of FGK stars in a fully automatic way. This tool, called DAOSPEC Option Optimizer pipeline (DOOp), uses DAOSPEC and optimizes its key parameters in order to make the measurements as robust as possible. This tool was widely tested on synthetic and observational spectra. Stellar parameters and elemental abundances are derived with the code FAMA developed with the aim of dealing with large batches of stars. FAMA uses the widely used software MOOG and optimizes stellar parameters in order to satisfy the excitation and ionization balance, following the classical equivalent width procedure. The construction of a metallicity scale, based on high-quality spectra of benchmark stars is fundamental to interpret the spectroscopic results in the context of the Galaxy formation and evolution. We take advantage of the variety of analysis methods represented within the GES collaboration, including DOOp + FAMA in order to produce a homogeneous metallicity scale. Those reference stars can be used to assess the precision and accuracy of a given method. Results: Using archival photometric data, I presents an in