A large-scale natural gradient tracer experiment was conducted on Cape Cod, Massachusetts, to examine the transport and dispersion of solutes in a sand and gravel aquifer. The nonreactive tracer, bromide, and the reactive tracers, lithium and molybdate, were injected as a pulse i...
Evaluation of multiple tracer methods to estimate low groundwater flow velocities.
Reimus, Paul W; Arnold, Bill W
2017-04-01
Four different tracer methods were used to estimate groundwater flow velocity at a multiple-well site in the saturated alluvium south of Yucca Mountain, Nevada: (1) two single-well tracer tests with different rest or "shut-in" periods, (2) a cross-hole tracer test with an extended flow interruption, (3) a comparison of two tracer decay curves in an injection borehole with and without pumping of a downgradient well, and (4) a natural-gradient tracer test. Such tracer methods are potentially very useful for estimating groundwater velocities when hydraulic gradients are flat (and hence uncertain) and also when water level and hydraulic conductivity data are sparse, both of which were the case at this test location. The purpose of the study was to evaluate the first three methods for their ability to provide reasonable estimates of relatively low groundwater flow velocities in such low-hydraulic-gradient environments. The natural-gradient method is generally considered to be the most robust and direct method, so it was used to provide a "ground truth" velocity estimate. However, this method usually requires several wells, so it is often not practical in systems with large depths to groundwater and correspondingly high well installation costs. The fact that a successful natural gradient test was conducted at the test location offered a unique opportunity to compare the flow velocity estimates obtained by the more easily deployed and lower risk methods with the ground-truth natural-gradient method. The groundwater flow velocity estimates from the four methods agreed very well with each other, suggesting that the first three methods all provided reasonably good estimates of groundwater flow velocity at the site. The advantages and disadvantages of the different methods, as well as some of the uncertainties associated with them are discussed. Published by Elsevier B.V.
Evaluation of multiple tracer methods to estimate low groundwater flow velocities
Reimus, Paul W.; Arnold, Bill W.
2017-02-20
Here, four different tracer methods were used to estimate groundwater flow velocity at a multiple-well site in the saturated alluvium south of Yucca Mountain, Nevada: (1) two single-well tracer tests with different rest or “shut-in” periods, (2) a cross-hole tracer test with an extended flow interruption, (3) a comparison of two tracer decay curves in an injection borehole with and without pumping of a downgradient well, and (4) a natural-gradient tracer test. Such tracer methods are potentially very useful for estimating groundwater velocities when hydraulic gradients are flat (and hence uncertain) and also when water level and hydraulic conductivity datamore » are sparse, both of which were the case at this test location. The purpose of the study was to evaluate the first three methods for their ability to provide reasonable estimates of relatively low groundwater flow velocities in such low-hydraulic-gradient environments. The natural-gradient method is generally considered to be the most robust and direct method, so it was used to provide a “ground truth” velocity estimate. However, this method usually requires several wells, so it is often not practical in systems with large depths to groundwater and correspondingly high well installation costs. The fact that a successful natural gradient test was conducted at the test location offered a unique opportunity to compare the flow velocity estimates obtained by the more easily deployed and lower risk methods with the ground-truth natural-gradient method. The groundwater flow velocity estimates from the four methods agreed very well with each other, suggesting that the first three methods all provided reasonably good estimates of groundwater flow velocity at the site. We discuss the advantages and disadvantages of the different methods, as well as some of the uncertainties associated with them.« less
Evaluation of multiple tracer methods to estimate low groundwater flow velocities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimus, Paul W.; Arnold, Bill W.
Here, four different tracer methods were used to estimate groundwater flow velocity at a multiple-well site in the saturated alluvium south of Yucca Mountain, Nevada: (1) two single-well tracer tests with different rest or “shut-in” periods, (2) a cross-hole tracer test with an extended flow interruption, (3) a comparison of two tracer decay curves in an injection borehole with and without pumping of a downgradient well, and (4) a natural-gradient tracer test. Such tracer methods are potentially very useful for estimating groundwater velocities when hydraulic gradients are flat (and hence uncertain) and also when water level and hydraulic conductivity datamore » are sparse, both of which were the case at this test location. The purpose of the study was to evaluate the first three methods for their ability to provide reasonable estimates of relatively low groundwater flow velocities in such low-hydraulic-gradient environments. The natural-gradient method is generally considered to be the most robust and direct method, so it was used to provide a “ground truth” velocity estimate. However, this method usually requires several wells, so it is often not practical in systems with large depths to groundwater and correspondingly high well installation costs. The fact that a successful natural gradient test was conducted at the test location offered a unique opportunity to compare the flow velocity estimates obtained by the more easily deployed and lower risk methods with the ground-truth natural-gradient method. The groundwater flow velocity estimates from the four methods agreed very well with each other, suggesting that the first three methods all provided reasonably good estimates of groundwater flow velocity at the site. We discuss the advantages and disadvantages of the different methods, as well as some of the uncertainties associated with them.« less
A New Kind of Single-Well Tracer Test for Assessing Subsurface Heterogeneity
NASA Astrophysics Data System (ADS)
Hansen, S. K.; Vesselinov, V. V.; Lu, Z.; Reimus, P. W.; Katzman, D.
2017-12-01
Single-well injection-withdrawal (SWIW) tracer tests have historically been interpreted using the idealized assumption of tracer path reversibility (i.e., negligible background flow), with background flow due to natural hydraulic gradient being an un-modeled confounding factor. However, we have recently discovered that it is possible to use background flow to our advantage to extract additional information about the subsurface. To wit: we have developed a new kind of single-well tracer test that exploits flow due to natural gradient to estimate the variance of the log hydraulic conductivity field of a heterogeneous aquifer. The test methodology involves injection under forced gradient and withdrawal under natural gradient, and makes use of a relationship, discovered using a large-scale Monte Carlo study and machine learning techniques, between power law breakthrough curve tail exponent and log-hydraulic conductivity variance. We will discuss how we performed the computational study and derived this relationship and then show an application example in which our new single-well tracer test interpretation scheme was applied to estimation of heterogeneity of a formation at the chromium contamination site at Los Alamos National Laboratory. Detailed core hole records exist at the same site, from which it was possible to estimate the log hydraulic conductivity variance using a Kozeny-Carman relation. The variances estimated using our new tracer test methodology and estimated by direct inspection of core were nearly identical, corroborating the new methodology. Assessment of aquifer heterogeneity is of critical importance to deployment of amendments associated with in-situ remediation strategies, since permeability contrasts potentially reduce the interaction between amendment and contaminant. Our new tracer test provides an easy way to obtain this information.
Combined use of heat and saline tracer to estimate aquifer properties in a forced gradient test
NASA Astrophysics Data System (ADS)
Colombani, N.; Giambastiani, B. M. S.; Mastrocicco, M.
2015-06-01
Usually electrolytic tracers are employed for subsurface characterization, but the interpretation of tracer test data collected by low cost techniques, such as electrical conductivity logging, can be biased by cation exchange reactions. To characterize the aquifer transport properties a saline and heat forced gradient test was employed. The field site, located near Ferrara (Northern Italy), is a well characterized site, which covers an area of 200 m2 and is equipped with a grid of 13 monitoring wells. A two-well (injection and pumping) system was employed to perform the forced gradient test and a straddle packer was installed in the injection well to avoid in-well artificial mixing. The contemporary continuous monitor of hydraulic head, electrical conductivity and temperature within the wells permitted to obtain a robust dataset, which was then used to accurately simulate injection conditions, to calibrate a 3D transient flow and transport model and to obtain aquifer properties at small scale. The transient groundwater flow and solute-heat transport model was built using SEAWAT. The result significance was further investigated by comparing the results with already published column experiments and a natural gradient tracer test performed in the same field. The test procedure shown here can provide a fast and low cost technique to characterize coarse grain aquifer properties, although some limitations can be highlighted, such as the small value of the dispersion coefficient compared to values obtained by natural gradient tracer test, or the fast depletion of heat signal due to high thermal diffusivity.
In situ measurement of methane oxidation in groundwater by using natural-gradient tracer tests
Smith, R.L.; Howes, B.L.; Garabedian, S.P.
1991-01-01
Methane oxidation was measured in an unconfined sand and gravel aquifer (Cape Cod, Mass.) by using in situ natural-gradient tracer tests at both a pristine, oxygenated site and an anoxic, sewage-contaminated site. The tracer sites were equipped with multilevel sampling devices to create target grids of sampling points; the injectate was prepared with groundwater from the tracer site to maintain the same geochemical conditions. Methane oxidation was calculated from breakthrough curves of methane relative to halide and inert gas (hexafluoroethane) tracers and was confirmed by the appearance of 13C-enriched carbon dioxide in experiments in which 13C-enriched methane was used as the tracer. A V(max) for methane oxidation could be calculated when the methane concentration was sufficiently high to result in zero-order kinetics throughout the entire transport interval. Methane breakthrough curves could be simulated by modifying a one-dimensional advection-dispersion transport model to include a Michaelis-Menten-based consumption term for methane oxidation. The K(m) values for methane oxidation that gave the best match for the breakthrough curve peaks were 6.0 and 9.0 ??M for the uncontaminated and contaminated sites, respectively. Natural-gradient tracer tests are a promising approach for assessing microbial processes and for testing in situ bioremediation potential in groundwater systems.
In situ measurement of methane oxidation in groundwater by using natural-gradient tracer tests.
Smith, R L; Howes, B L; Garabedian, S P
1991-01-01
Methane oxidation was measured in an unconfined sand and gravel aquifer (Cape Cod, Mass.) by using in situ natural-gradient tracer tests at both a pristine, oxygenated site and an anoxic, sewage-contaminated site. The tracer sites were equipped with multilevel sampling devices to create target grids of sampling points; the injectate was prepared with groundwater from the tracer site to maintain the same geochemical conditions. Methane oxidation was calculated from breakthrough curves of methane relative to halide and inert gas (hexafluroethane) tracers and was confirmed by the appearance of 13C-enriched carbon dioxide in experiments in which 13C-enriched methane was used as the tracer. A Vmax for methane oxidation could be calculated when the methane concentration was sufficiently high to result in zero-order kinetics throughout the entire transport interval. Methane breakthrough curves could be simulated by modifying a one-dimensional adevection-dispersion transport model to include a Michaelis-Menten-based consumption term for methane oxidation. The Km values for methane oxidation that gave the best match for the breakthrough curve peaks were 6.0 and 9.0 microM for the uncontaminated and contaminated sites, respectively. Natural-gradient tracer tests are a promising approach for assessing microbial processes and for testing in situ bioremediation potential in groundwater systems. PMID:1892389
Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers.
Wang, Fang; Annable, Michael D; Jawitz, James W
2013-09-01
The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E=0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution. © 2013.
Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers
NASA Astrophysics Data System (ADS)
Wang, Fang; Annable, Michael D.; Jawitz, James W.
2013-09-01
The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E = 0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution.
NASA Astrophysics Data System (ADS)
Wang, F.; Annable, M. D.; Jawitz, J. W.
2012-12-01
The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a PCE-contaminated dry cleaner site, located in Jacksonville, Florida. The EST is an analytical solution with field-measurable input parameters. Here, measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ alcohol (ethanol) flood. In addition, a simulated partitioning tracer test from a calibrated spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The ethanol prediction based on both the field partitioning tracer test and the UTCHEM tracer test simulation closely matched the field data. The PCE EST prediction showed a peak shift to an earlier arrival time that was concluded to be caused by well screen interval differences between the field tracer test and alcohol flood. This observation was based on a modeling assessment of potential factors that may influence predictions by using UTCHEM simulations. The imposed injection and pumping flow pattern at this site for both the partitioning tracer test and alcohol flood was more complex than the natural gradient flow pattern (NGFP). Both the EST model and UTCHEM were also used to predict PCE dissolution under natural gradient conditions, with much simpler flow patterns than the forced-gradient double five spot of the alcohol flood. The NGFP predictions based on parameters determined from tracer tests conducted with complex flow patterns underestimated PCE concentrations and total mass removal. This suggests that the flow patterns influence aqueous dissolution and that the aqueous dissolution under the NGFP is more efficient than dissolution under complex flow patterns.
This report discusses the transport of a group of reactive tracers over the course of a large-scale, natural gradient tracer test conducted at the USGS Cape Cod Toxic Substances Hydrology Research site, near Falmouth, Massachusetts. The overall objectives of the experiment were ...
Mohammadi, Zargham; Gharaat, Mohammad Javad; Field, Malcolm
2018-03-13
Tracer breakthrough curves provide valuable information about the traced media, especially in inherently heterogeneous karst aquifers. In order to study the effect of variations in hydraulic gradient and conduit systems on breakthrough curves, a bench scale karst model was constructed. The bench scale karst model contains both matrix and a conduit. Eight tracing tests were conducted under a wide range of hydraulic gradients from 1 to greater than 5 for branchwork and network-conduit systems. Sampling points at varying distances from the injection point were utilized. Results demonstrate that mean tracer velocities, tracer mass recovery and linear rising slope of the breakthrough curves were directly controlled by hydraulic gradient. As hydraulic gradient increased, both one half the time for peak concentration and one fifth the time for peak concentration decreased. The results demonstrate the variations in one half the time for peak concentration and one fifth the time for peak concentration of the descending limb for different sampling points under differing hydraulic gradients are mainly controlled by the interactions of advection with dispersion. The results are discussed from three perspectives: different conduit systems, different hydraulic-gradient conditions, and different sampling points. The research confirmed the undeniable role of hydrogeological setting (i.e., hydraulic gradient and conduit system) on the shape of the breakthrough curve. The extracted parameters (mobile-fluid velocity, tracer-mass recovery, linear rising limb, one half the time for peak concentration, and one fifth the time for peak concentration) allow for differentiating hydrogeological settings and enhance interpretations the tracing tests in karst aquifers. © 2018, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Lee, K. K.; Lee, S. S.; Kim, H. H.; Koh, E. H.; Kim, M. O.; Lee, K.; Kim, H. J.
2016-12-01
Multiple tracers were applied for source and pathway detection at two different sites. CO2 gas injected in the subsurface for a shallow-depth CO2 injection and leak test can be regarded as a potential contaminant source. Therefore, it is necessary to identify the migration pattern of CO2 gas. Also, at a DNAPL contaminated site, it is important to figure out the characteristics of plume evolution from the source zone. In this study, multiple tracers (SF6 and chloride) were used to evaluate the applicability of volatile and non-volatile tracers and to identify the characteristics of contaminant transport at each CO2 injection and leak test site and DNAPL contaminated site. Firstly, at the CO2 test site, multiple tracers were used to perform the single well push-drift-pull tracer test at total 3 specific depth zones. As results of tests, volatile and non-volatile tracers showed different mass recovery percentage. Most of chloride mass was recovered but less than half of SF6 mass was recovered due to volatile property. This means that only gaseous SF6 leak out to unsaturated zone. However, breakthrough curves of both tracers indicated similar peak time, effective porosity, and regional groundwater velocity. Also, at both contaminated sites, natural gradient tracer tests were performed with multiple tracers. With the results of natural gradient tracer test, it was possible to confirm the applicability of multiple tracers and to understand the contaminant transport in highly heterogeneous aquifer systems through the long-term monitoring of tracers. Acknowledgement: financial support was provided by the R&D Project on Environmental Management of Geologic CO2 Storage)" from the KEITI (Project Number: 2014001810003) and Korea Ministry of Environment as "The GAIA project (2014000540010)".
Small swimmers and sinkers structure the microenvironment by deforming ambient chemical gradients
NASA Astrophysics Data System (ADS)
Inman, B.; Franks, P. J. S.; Torres, C.
2016-02-01
Chemical gradients in the microscale environment determine the rates of fundamental planktonic processes such as signaling and sensing, grazing, predation, mating, infection, nutrient uptake, and primary production. We show that bodies swimming or sinking at low Reynolds number can deform and intensify ambient scalar gradients on the order of 10-1000 times. Over time, this restructuring of the microenvironment in the wake of a moving particle results in elevated diffusive fluxes of ecologically relevant tracers. We use diffusive Stokes flow to model the time evolution of planes of tracer particles that represent a gradient being deformed by a sinking sphere. Ultimately, the degree of gradient intensification and the corresponding diffusive flux enhancement depend on how far a moving body deforms a plane of tracer before it punches through. We derive a scaling for this distance, Ldef, as a function of the Péclet number and describe its importance in the microscale planktonic environment. We then test the modeled gradient deformation, diffusive flux enhancement, and Ldef using an experimental tank apparatus in which the marine copepod, Calanus pacificus, is induced to swim through a layer of tracer dye. We show that the gradient deformation due to the copepod swimming can enhance the apparent tracer diffusivity by 500% over 10 minutes, drawing the tracer out into centimeters-long tendrils. These swimming-induced gradient deformations may be an important source of structure in the microscale environment of the plankton.
Harvey, R.W.; George, L.H.; Smith, R.L.; LeBlanc, D.R.
1989-01-01
Transport of indigenous bacteria through sandy aquifer sediments was investigated in forced- and natural-gradient tracer teste. A diverse population of bacteria was collected and concentrated from groundwater at the site, stained with a DNA-specific fluorochrome, and injected back into the aquifer. Included with the injectate were a conservative tracer (Br- or Cl-) and bacteria-sized (0.2-1.3-??m) microspheres having carboxylated, carbonyl, or neutral surfaces. Transport of stained bacteria and all types and size classes of microspheres was evident. In the natural-gradient test, both surface characteristics and size of microspheres affected attenuation. Surface characteristics had the greatest effect upon retardation. Peak break-through of DAPI-stained bacteria (forced-gradient experiment) occurred well in advance of bromide at the more distal sampler. Transport behavior of bacteria was substantially different from that of carboxylated microspheres of comparable size. ?? 1988 American Chemical Society.
LeBlanc, Denis R.; Garabedian, Stephen P.; Hess, Kathryn M.; Gelhar, Lynn W.; Quadri, Richard D.; Stollenwerk, Kenneth G.; Wood, Warren W.
1991-01-01
A large-scale natural gradient tracer experiment was conducted on Cape Cod, Massachusetts, to examine the transport and dispersion of solutes in a sand and gravel aquifer. The nonreactive tracer, bromide, and the reactive tracers, lithium and molybdate, were injected as a pulse in July 1985 and monitored in three dimensions as they moved as far as 280 m down-gradient through an array of multilevel samplers. The bromide cloud moved horizontally at a rate of 0.42 m per day. It also moved downward about 4 m because of density-induced sinking early in the test and accretion of areal recharge from precipitation. After 200 m of transport, the bromide cloud had spread more than 80 m in the direction of flow, but was only 14 m wide and 4–6 m thick. The lithium and molybdate clouds followed the same path as the bromide cloud, but their rates of movement were retarded about 50% relative to bromide movement because of sorption onto the sediments.
3-D numerical evaluation of density effects on tracer tests.
Beinhorn, M; Dietrich, P; Kolditz, O
2005-12-01
In this paper we present numerical simulations carried out to assess the importance of density-dependent flow on tracer plume development. The scenario considered in the study is characterized by a short-term tracer injection phase into a fully penetrating well and a natural hydraulic gradient. The scenario is thought to be typical for tracer tests conducted in the field. Using a reference case as a starting point, different model parameters were changed in order to determine their importance to density effects. The study is based on a three-dimensional model domain. Results were interpreted using concentration contours and a first moment analysis. Tracer injections of 0.036 kg per meter of saturated aquifer thickness do not cause significant density effects assuming hydraulic gradients of at least 0.1%. Higher tracer input masses, as used for geoelectrical investigations, may lead to buoyancy-induced flow in the early phase of a tracer test which in turn impacts further plume development. This also holds true for shallow aquifers. Results of simulations with different tracer injection rates and durations imply that the tracer input scenario has a negligible effect on density flow. Employing model cases with different realizations of a log conductivity random field, it could be shown that small variations of hydraulic conductivity in the vicinity of the tracer injection well have a major control on the local tracer distribution but do not mask effects of buoyancy-induced flow.
Garabedian, Stephen P.; LeBlanc, Dennis R.; Gelhar, Lynn W.; Celia, Michael A.
1991-01-01
A large-scale natural gradient tracer test was conducted to examine the transport of reactive and nonreactive tracers in a sand and gravel aquifer on Cape Cod, Massachusetts. As part of this test the transport of bromide, a nonreactive tracer, was monitored for about 280 m and quantified using spatial moments. The calculated mass of bromide for each sampling date varied between 85% and 105% of the injected mass using an estimated porosity of 0.39, and the center of mass moved at a nearly constant horizontal velocity of 0.42 m per day. A nonlinear change in the bromide longitudinal variance was observed during the first 26 m of travel distance, but afterward the variance followed a linear trend, indicating the longitudinal dispersivity had reached a constant value of 0.96 m. The transverse dispersivities were much smaller; transverse horizontal dispersivity was 1.8 cm, and transverse vertical dispersivity was about 1.5 mm.
Becker, M.W.; Reimus, P.W.; Vilks, P.
1999-01-01
Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks of pathogen contamination in drinking water wells. Much has been learned through laboratory and field-scale colloid tracer tests, but progress has been hampered by a lack of consistent tracer testing methodology at different scales and fluid velocities. This paper presents laboratory and field tracer tests in fractured rock that use the same type of colloid tracer over an almost three orders-of-magnitude range in scale and fluid velocity. Fluorescently-dyed carboxylate-modified latex (CML) microspheres (0.19 to 0.98 ??m diameter) were used as tracers in (1) a naturally fractured tuff sample, (2) a large block of naturally fractured granite, (3) a fractured granite field site, and (4) another fractured granite/schist field site. In all cases, the mean transport time of the microspheres was shorter than the solutes, regardless of detection limit. In all but the smallest scale test, only a fraction of the injected microsphere mass was recovered, with the smaller microspheres being recovered to a greater extent than the larger microspheres. Using existing theory, we hypothesize that the observed microsphere early arrival was due to volume exclusion and attenuation was due to aggregation and/or settling during transport. In most tests, microspheres were detected using flow cytometry, which proved to be an excellent method of analysis. CML microspheres appear to be useful tracers for fractured rock in forced gradient and short-term natural gradient tests, but longer residence times may result in small microsphere recoveries.Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks of pathogen contamination in drinking water wells. Much has been learned through laboratory and field-scale colloid tracer tests, but progress has been hampered by a lack of consistent tracer testing methodology at different scales and fluid velocities. This paper presents laboratory and field tracer tests in fractured rock that use the same type of colloid tracer over an almost three orders-of-magnitude range in scale and fluid velocity. Fluorescently-dyed carboxylate-modified latex (CML) microspheres (0.19 to 0.98 ??m diameter) were used as tracers in (1) a naturally fractured tuff sample, (2) a large block of naturally fractured granite, (3) a fractured granite field site, and (4) another fractured granite/schist field site. In all cases, the mean transport time of the microspheres was shorter than the solutes, regardless of detection limit. In all but the smallest scale test, only a fraction of the injected microsphere mass was recovered, with the smaller microspheres being recovered to a greater extent than the larger microspheres. Using existing theory, we hypothesize that the observed microsphere early arrival was due to volume exclusion and attenuation was due to aggregation and/or settling during transport. In most tests, microspheres were detected using flow cytometry, which proved to be an excellent method of analysis. CML microspheres appear to be useful tracers for fractured rock in forced gradient and short-term natural gradient tests, but longer residence times may result in small microsphere recoveries.
Combining 3D Hydraulic Tomography with Tracer Tests for Improved Transport Characterization.
Sanchez-León, E; Leven, C; Haslauer, C P; Cirpka, O A
2016-07-01
Hydraulic tomography (HT) is a method for resolving the spatial distribution of hydraulic parameters to some extent, but many details important for solute transport usually remain unresolved. We present a methodology to improve solute transport predictions by combining data from HT with the breakthrough curve (BTC) of a single forced-gradient tracer test. We estimated the three dimensional (3D) hydraulic-conductivity field in an alluvial aquifer by inverting tomographic pumping tests performed at the Hydrogeological Research Site Lauswiesen close to Tübingen, Germany, using a regularized pilot-point method. We compared the estimated parameter field to available profiles of hydraulic-conductivity variations from direct-push injection logging (DPIL), and validated the hydraulic-conductivity field with hydraulic-head measurements of tests not used in the inversion. After validation, spatially uniform parameters for dual-domain transport were estimated by fitting tracer data collected during a forced-gradient tracer test. The dual-domain assumption was used to parameterize effects of the unresolved heterogeneity of the aquifer and deemed necessary to fit the shape of the BTC using reasonable parameter values. The estimated hydraulic-conductivity field and transport parameters were subsequently used to successfully predict a second independent tracer test. Our work provides an efficient and practical approach to predict solute transport in heterogeneous aquifers without performing elaborate field tracer tests with a tomographic layout. © 2015, National Ground Water Association.
Smith, Richard L.; Böhlke, John Karl; Garabedian, Stephen P.; Revesz, Kinga M.; Yoshinari, Tadashi
2004-01-01
Denitrification was measured within a nitrate‐contaminated aquifer on Cape Cod, Massachusetts, using natural gradient tracer tests with 15N nitrate. The aquifer contained zones of relatively high concentrations of nitrite (up to 77 μM) and nitrous oxide (up to 143 μM) and has been the site of previous studies examining ground water denitrification using the acetylene block technique. Small‐scale (15–24 m travel distance) tracer tests were conducted by injecting 15N nitrate and bromide as tracers into a depth interval that contained nitrate, nitrite, nitrous oxide, and excess nitrogen gas. The timing of the bromide breakthrough curves at down‐gradient wells matched peaks in 15N abundance above background for nitrate, nitrite, nitrous oxide, and nitrogen gas after more than 40 days of travel. Results were simulated with a one‐dimensional transport model using linked reaction kinetics for the individual steps of the denitrification reaction pathway. It was necessary to include within the model spatial variations in background concentrations of all nitrogen oxide species. The model indicated that nitrite production (0.036–0.047 μmol N (L aquifer)−1 d−1) was faster than the subsequent denitrification steps (0.013–0.016 μmol N (L aquifer)−1 d−1 for nitrous oxide and 0.013–0.020 μmol N (L aquifer)−1 d−1 for nitrogen gas) and that the total rate of reaction was slower than indicated by both acetylene block tracer tests and laboratory incubations. The rate of nitrate removal by denitrification was much slower than the rate of transport, indicating that nitrate would migrate several kilometers down‐gradient before being completely consumed.
NASA Astrophysics Data System (ADS)
Mosthaf, Klaus; Brauns, Bentje; Fjordbøge, Annika S.; Rohde, Magnus M.; Kerrn-Jespersen, Henriette; Bjerg, Poul L.; Binning, Philip J.; Broholm, Mette M.
2018-06-01
Limestone aquifers are of great interest as a drinking water resource in many countries. They often have a complex crushed and fractured geology, which makes the analysis and description of flow and transport processes in such aquifers a challenging task. In this study, the solute transport behavior including fracture-matrix interaction in hydrogeological units of a limestone aquifer in eastern Denmark was characterized by designing, conducting and interpreting six depth-specific tracer tests involving natural- and forced-gradient conditions with multiple tracers representing different diffusion properties. To determine flow parameters, the tracer tests were complemented by a comprehensive set of depth-specific borehole and hydraulic tests. Based on the tests, a new and stronger conceptual understanding was developed for the different aquifer units. The investigated limestone aquifer is composed of a glacially crushed unit and two fractured units, with calcarenitic and bryozoan limestone of similar hydraulic properties. Hydraulic tests revealed that the crushed unit has a lower hydraulic conductivity than the fractured limestone units, likely due to the crushed conditions with small limestone clusters and small-aperture fractures potentially filled with fine material. In the fractured limestone units, a distinct preferential flow and primary transport along major horizontal fractures was inferred from the tracer tests under forced-gradient conditions. The dominant horizontal fractures were identified on impeller flow logs and appear connected between wells, having an extent of up to several hundred meters. Connectivity between the aquifer units was investigated with a long-term pumping test and tracer tests, revealing restricted vertical flow and transport. A very pronounced hydraulic conductivity contrast between major fractures and matrix could also be inferred from the borehole and hydraulic tests, which is consistent with the findings from the tracer tests. The difference in the matrix diffusion behavior of the simultaneously injected tracers and a long tailing in the breakthrough curves revealed that matrix diffusion has a strong influence on the solute transport in the fractured limestone.
Smith, R.L.; Garabedian, S.P.; Brooks, M.H.
1996-01-01
The transport of many solutes in groundwater is dependent upon the relative rates of physical flow and microbial metabolism. Quantifying rates of microbial processes under subsurface conditions is difficult and is most commonly approximated using laboratory studies with aquifer materials. In this study, we measured in situ rates of denitrification in a nitrate- contaminated aquifer using small-scale, natural-gradient tracer tests and compared the results with rates obtained from laboratory incubations with aquifer core material. Activity was measured using the acetylene block technique. For the tracer tests, co-injection of acetylene and bromide into the aquifer produced a 30 ??M increase in nitrous oxide after 10 m of transport (23-30 days). An advection-dispersion transport model was modified to include an acetylene-dependent nitrous oxide production term and used to simulate the tracer breakthrough curves. The model required a 4-day lag period and a relatively low sensitivity to acetylene to match the narrow nitrous oxide breakthrough curves. Estimates of in situ denitrification rates were 0.60 and 1.51 nmol of N2O produced cm-3 aquifer day-1 for two successive tests. Aquifer core material collected from the tracer test site and incubated as mixed slurries in flasks and as intact cores yielded rates that were 1.2-26 times higher than the tracer test rate estimates. Results with the coring-dependent techniques were variable and subject to the small- scale heterogeneity within the aquifer, while the tracer tests integrated the heterogeneity along a flow path, giving a rate estimate that is more applicable to transport at the scale of the aquifer.
Olsen, Lisa D.; Tenbus, Frederick J.
2005-01-01
A natural-gradient ground-water tracer test was designed and conducted in a tidal freshwater wetland at West Branch Canal Creek, Aberdeen Proving Ground, Maryland. The objectives of the test were to characterize solute transport at the site, obtain data to more accurately determine the ground-water velocity in the upper wetland sediments, and to compare a conservative, ionic tracer (bromide) to a volatile tracer (sulfur hexafluoride) to ascertain whether volatilization could be an important process in attenuating volatile organic compounds in the ground water. The tracer test was conducted within the upper peat unit of a layer of wetland sediments that also includes a lower clayey unit; the combined layer overlies an aquifer. The area selected for the test was thought to have an above-average rate of ground-water discharge based on ground-water head distributions and near-surface detections of volatile organic compounds measured in previous studies. Because ground-water velocities in the wetland sediments were expected to be slow compared to the underlying aquifer, the test was designed to be conducted on a small scale. Ninety-seven ?-inch-diameter inverted-screen stainless-steel piezometers were installed in a cylindrical array within approximately 25 cubic feet (2.3 cubic meters) of wetland sediments, in an area with a vertically upward hydraulic gradient. Fluorescein dye was used to qualitatively evaluate the hydrologic integrity of the tracer array before the start of the tracer test, including verifying the absence of hydraulic short-circuiting due to nonnatural vertical conduits potentially created during piezometer installation. Bromide and sulfur hexafluoride tracers (0.139 liter of solution containing 100,000 milligrams per liter of bromide ion and 23.3 milligrams per liter of sulfur hexafluoride) were co-injected and monitored to generate a dataset that could be used to evaluate solute transport in three dimensions. Piezometers were sampled 2 to 15 times each, from July 1998 through September 1999, to assess background conditions and monitor tracer movement. During the test, 644 samples were analyzed for fluorescein, 617 samples were analyzed for bromide with an ion-selective electrode, 213 samples were analyzed for bromide with colorimetric methods, and 603 samples were analyzed for sulfur hexafluoride, including samples collected prior to tracer injection to determine background concentrations. Additional samples were analyzed for volatile organic compounds (96 samples) and methane (37 samples) to determine the distribution of these contaminants and the extent of methanogenic conditions within the tracer array; however, these data were not used for the analysis of the test. During the tracer test, the fluorescein dye, bromide, and sulfur hexafluoride were transported predominantly in the upward direction, although all three tracers also moved outward in all directions from the injection point, and it is likely that some tracer mass moved beyond the lateral edges of the array. An analysis of the tracer-test data was performed through the use of breakthrough curves and isoconcentration contour plots. Results show that movement of the fluorescein dye, a non-conservative tracer, was retarded compared to the other two tracers, likely as a result of sorption onto the wetland sediments. Suspected loss of tracer mass along the lateral edges of the array prevented a straightforward quantitative analysis of tracer transport and ground-water velocity from the bromide and sulfur-hexafluoride data. In addition, the initial density of the bromide/sulfur hexafluoride solution (calculated to be 1.097 grams per milli2 Ground-Water Tracer Test, West Branch Canal Creek, Aberdeen Proving Ground, MD liter) could have caused the solution to sink below the injection point before undergoing dilution and moving back up into the array. For these reasons, the data analysis in this report was performed largely through qualitative method
A line source tracer test - a better method for assessing high groundwater velocity
NASA Astrophysics Data System (ADS)
Magal, E.; Weisbrod, N.; Yakirevich, A.; Kurtzman, D.; Yechieli, Y.
2009-12-01
A line source injection is suggested as an effective method for assessing groundwater velocities and flow directions in subsurface characterized by high water fluxes. Modifying the common techniques of injecting a tracer into a well was necessary after frequently-used methods of natural and forced gradient tracer tests ended with no reliable information on the local groundwater flow. In a field experiment, tracers were injected into 8-m long line injection system constructed below the water table almost perpendicular to the assumed flow direction. The injection system was divided to four separate segments (each 2 m long) enabling the injection of four different tracers along the line source. An array of five boreholes located in an area of 10x10 m downstream was used for monitoring the tracers' transport. Two dye tracers (Uranine and Na Naphthionate) were injected in a long pulse of several hours into two of the injection pipe segments and two tracers (Rhenium oxide and Gd-DTPA) were instantaneously injected to the other two segments. The tracers were detected 0.7 to 2.3 hours after injection in four of the five observation wells, located 2.3 to 10 m from the injection system, respectively. Groundwater velocities were calculated directly from the tracers' arrival times and by fitting the observed breakthrough curves to simulations with one and two dimensions analytical solutions for conservative tracer transport. The groundwater velocity was determined to be ~100 m/d. The longitudinal dispersivity value, generated from fitting the tracer breakthrough curves, was in a range of 0.2-3m. The groundwater flow direction was derived based on the arrival of the tracers and was found to be consistent with the apparent direction of the hydraulic gradient. The hydraulic conductivity derived from the groundwater velocity was ~1200 m/d, which is in the upper range of gravel sediment.
NASA Astrophysics Data System (ADS)
Oudega, Thomas James; Derx, Julia; van Driezum, Inge; Cisneros, Anibal; Sommer, Regina; Kirschner, Alexander; Farnleitner, Andreas; Blaschke, Alfred Paul
2017-04-01
Subsurface media are being used around the world as a means to mitigate microbial contamination, but vary widely in their ability to remove pathogens. To help to provide accurate risk assessments of microbial contamination of groundwaters, and establish safe setback distances between receiving waters and disposal fields, this study aims to use aquifer tracer tests to evaluate the ability of subsurface media to attenuate these pathogens. The novelty of this work is the use of a variety of different tracer substances (e.g. phages, spores, microspheres, conservative tracers) together in field experiments. This will be done by means of injecting these substances under a forced gradient in a sandy gravel aquifer in Lobau, Austria. The extraction of the tracers will be monitored in a pumping well at a distrance of 50m downgradient. This will be able to provide us with insight to the characteristics of microbial transport and how the microorganisms react to the subsurface in the study site. Subsequent numerical modelling of the experiments can tell us more about quantification of subsurface processes such as attachment/detachment, inactivation and die-off of these substances. The first field experiment with conservative tracers (NaCl) has been carried out in December 2016, and subsequent tests are being planned for the next months.
NASA Astrophysics Data System (ADS)
Lee, S. S.; Joun, W.; Ju, Y. J.; Ha, S. W.; Jun, S. C.; Lee, K. K.
2017-12-01
Artificial carbon dioxide injection into a shallow aquifer system was performed with two injection types imitating short- and long-term CO2 leakage events into a shallow aquifer. One is pulse type leakage of CO2 (6 hours) under a natural hydraulic gradient (0.02) and the other is long-term continuous injection (30 days) under a forced hydraulic gradient (0.2). Injection and monitoring tests were performed at the K-COSEM site in Eumseong, Korea where a specially designed well field had been installed for artificial CO2 release tests. CO2-infused and tracer gases dissolved groundwater was injected through a well below groundwater table and monitoring were conducted in both saturated and unsaturated zones. Real-time monitoring data on CO2 concentration and hydrochemical parameters, and periodical measurements of several gas tracers (He, Ar, Kr, SF6) were obtained. The pulse type short-term injection test was carried out prior to the long-term injection test. Results of the short-term injection test, under natural hydraulic gradient, showed that CO2 plume migrated along the preferential pathway identified through hydraulic interference tests. On the other hand, results of the long-term injection test indicated the CO2 plume migration path was aligned to the forced hydraulic gradient. Compared to the short-term test, the long-term injection formed detectable CO2 concentration change in unsaturated wellbores. Recovery data of tracer gases made breakthrough curves compatible to numerical simulation results. The monitoring results indicated that detection of CO2 leakage into groundwater was more effectively performed by using a pumping and monitoring method in order to capture by-passing plume. With this concept, an effective real-time monitoring method was proposed. Acknowledgement: Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2storage" from the KEITI (Project number : 2014001810003)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xingyuan; Murakami, Haruko; Hahn, Melanie S.
2012-06-01
Tracer testing under natural or forced gradient flow holds the potential to provide useful information for characterizing subsurface properties, through monitoring, modeling and interpretation of the tracer plume migration in an aquifer. Non-reactive tracer experiments were conducted at the Hanford 300 Area, along with constant-rate injection tests and electromagnetic borehole flowmeter (EBF) profiling. A Bayesian data assimilation technique, the method of anchored distributions (MAD) [Rubin et al., 2010], was applied to assimilate the experimental tracer test data with the other types of data and to infer the three-dimensional heterogeneous structure of the hydraulic conductivity in the saturated zone of themore » Hanford formation. In this study, the Bayesian prior information on the underlying random hydraulic conductivity field was obtained from previous field characterization efforts using the constant-rate injection tests and the EBF data. The posterior distribution of the conductivity field was obtained by further conditioning the field on the temporal moments of tracer breakthrough curves at various observation wells. MAD was implemented with the massively-parallel three-dimensional flow and transport code PFLOTRAN to cope with the highly transient flow boundary conditions at the site and to meet the computational demands of MAD. A synthetic study proved that the proposed method could effectively invert tracer test data to capture the essential spatial heterogeneity of the three-dimensional hydraulic conductivity field. Application of MAD to actual field data shows that the hydrogeological model, when conditioned on the tracer test data, can reproduce the tracer transport behavior better than the field characterized without the tracer test data. This study successfully demonstrates that MAD can sequentially assimilate multi-scale multi-type field data through a consistent Bayesian framework.« less
Barns, Gareth L; Thornton, Steven F; Wilson, Ryan D
2015-01-01
Heterogeneity in aquifer permeability, which creates paths of varying mass flux and spatially complex contaminant plumes, can complicate the interpretation of contaminant fate and transport in groundwater. Identifying the location of high mass flux paths is critical for the reliable estimation of solute transport parameters and design of groundwater remediation schemes. Dipole flow tracer tests (DFTTs) and push-pull tests (PPTs) are single well forced-gradient tests which have been used at field-scale to estimate aquifer hydraulic and transport properties. In this study, the potential for PPTs and DFTTs to resolve the location of layered high- and low-permeability layers in granular porous media was investigated with a pseudo 2-D bench-scale aquifer model. Finite element fate and transport modelling was also undertaken to identify appropriate set-ups for in situ tests to determine the type, magnitude, location and extent of such layered permeability contrasts at the field-scale. The characteristics of flow patterns created during experiments were evaluated using fluorescent dye imaging and compared with the breakthrough behaviour of an inorganic conservative tracer. The experimental results show that tracer breakthrough during PPTs is not sensitive to minor permeability contrasts for conditions where there is no hydraulic gradient. In contrast, DFTTs are sensitive to the type and location of permeability contrasts in the host media and could potentially be used to establish the presence and location of high or low mass flux paths. Numerical modelling shows that the tracer peak breakthrough time and concentration in a DFTT is sensitive to the magnitude of the permeability contrast (defined as the permeability of the layer over the permeability of the bulk media) between values of 0.01-20. DFTTs are shown to be more sensitive to deducing variations in the contrast, location and size of aquifer layered permeability contrasts when a shorter central packer is used. However, larger packer sizes are more likely to be practical for field-scale applications, with fewer tests required to characterise a given aquifer section. The sensitivity of DFTTs to identify layered permeability contrasts was not affected by test flow rate. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Xingyuan; Murakami, Haruko; Hahn, Melanie S.; Hammond, Glenn E.; Rockhold, Mark L.; Zachara, John M.; Rubin, Yoram
2012-06-01
Tracer tests performed under natural or forced gradient flow conditions can provide useful information for characterizing subsurface properties, through monitoring, modeling, and interpretation of the tracer plume migration in an aquifer. Nonreactive tracer experiments were conducted at the Hanford 300 Area, along with constant-rate injection tests and electromagnetic borehole flowmeter tests. A Bayesian data assimilation technique, the method of anchored distributions (MAD) (Rubin et al., 2010), was applied to assimilate the experimental tracer test data with the other types of data and to infer the three-dimensional heterogeneous structure of the hydraulic conductivity in the saturated zone of the Hanford formation.In this study, the Bayesian prior information on the underlying random hydraulic conductivity field was obtained from previous field characterization efforts using constant-rate injection and borehole flowmeter test data. The posterior distribution of the conductivity field was obtained by further conditioning the field on the temporal moments of tracer breakthrough curves at various observation wells. MAD was implemented with the massively parallel three-dimensional flow and transport code PFLOTRAN to cope with the highly transient flow boundary conditions at the site and to meet the computational demands of MAD. A synthetic study proved that the proposed method could effectively invert tracer test data to capture the essential spatial heterogeneity of the three-dimensional hydraulic conductivity field. Application of MAD to actual field tracer data at the Hanford 300 Area demonstrates that inverting for spatial heterogeneity of hydraulic conductivity under transient flow conditions is challenging and more work is needed.
Tracer Lamination in the Stratosphere: A Global Climatology
NASA Technical Reports Server (NTRS)
Appenzeller, Christof; Holton, James R.
1997-01-01
Vertical soundings of stratospheric ozone often exhibit laminated tracer structures characterized by strong vertical tracer gradients. The change in time of these gradients is used to define a tracer lamination rate. It is shown that this quantity can be calculated by the cross product of the horizontal temperature and horizontal tracer gradients. A climatology based on UARS satellite-borne ozone data and on ozone-like pseudotracer data is presented. Three stratospheric regions with high lamination rates were found: the part of the stratospheric overworld which is influenced by the polar vortex, the part of the lowermost stratosphere which is influenced by the tropopause and a third region in the subtropical lower stratosphere mainly characterized with strong vertical shear. High lamination rates in the stratospheric overworld were absent during summer, whereas in the lowermost stratosphere high lamination rates were found year-round. This is consistent with the occurrence and seasonal variation of the horizontal tracer gradient and vertical shear necessary for tilting the tracer surfaces. During winter, high lamination rates associated with the stratospheric polar vortex are present down to approximately 100 hPa. Several features of the derived climatology are roughly consistent with earlier balloon-borne studies. The patterns in the southern and northern hemisphere are comparable, but details differ as anticipated from a less disturbed and more symmetric southern polar vortex.
A new tracer‐density criterion for heterogeneous porous media
Barth, Gilbert R.; Illangasekare, Tissa H.; Hill, Mary C.; Rajaram, Harihar
2001-01-01
Tracer experiments provide information about aquifer material properties vital for accurate site characterization. Unfortunately, density‐induced sinking can distort tracer movement, leading to an inaccurate assessment of material properties. Yet existing criteria for selecting appropriate tracer concentrations are based on analysis of homogeneous media instead of media with heterogeneities typical of field sites. This work introduces a hydraulic‐gradient correction for heterogeneous media and applies it to a criterion previously used to indicate density‐induced instabilities in homogeneous media. The modified criterion was tested using a series of two‐dimensional heterogeneous intermediate‐scale tracer experiments and data from several detailed field tracer tests. The intermediate‐scale experimental facility (10.0×1.2×0.06 m) included both homogeneous and heterogeneous (σln k2 = 1.22) zones. The field tracer tests were less heterogeneous (0.24 < σln k2 < 0.37), but measurements were sufficient to detect density‐induced sinking. Evaluation of the modified criterion using the experiments and field tests demonstrates that the new criterion appears to account for the change in density‐induced sinking due to heterogeneity. The criterion demonstrates the importance of accounting for heterogeneity to predict density‐induced sinking and differences in the onset of density‐induced sinking in two‐ and three‐dimensional systems.
Hess, Kathryn M.; Wolf, Steven H.; Celia, Michael A.
1992-01-01
Hydraulic conductivity (K) variability in a sand and gravel aquifer on Cape Cod, Massachusetts, was measured and subsequently used in stochastic transport theories to estimate macrodispersivities. Nearly 1500 K measurements were obtained by borehole flowmeter tests and permeameter analyses of cores. The geometric mean for the flowmeter tests (0.11 cm/s) is similar to that estimated from other field tests. The mean for the permeameter tests (0.035 cm/s) is significantly lower, possibly because of compaction of the cores. The variance for the flowmeter (0.24) is also greater than that for the permeameter (0.14). Geostatistical analyses applying negative exponential models with and without nuggets reveal similar spatial correlation structures for the two data sets. Estimated correlation scales range from 2.9 to 8 m in the horizontal and from 0.18 to 0.38 m in the vertical. Estimates of asymptotic longitudinal dispersivity (b.35–0.78 m) are similar in magnitude to that observed in the natural gradient tracer test (0.96 m) previously conducted at this site.
NASA Astrophysics Data System (ADS)
Chen, X.; Murakami, H.; Hahn, M. S.; Hammond, G. E.; Rockhold, M. L.; Rubin, Y.
2010-12-01
Tracer testing under natural or forced gradient flow provides useful information for characterizing subsurface properties, by monitoring and modeling the tracer plume migration in a heterogeneous aquifer. At the Hanford 300 Area, non-reactive tracer experiments, in addition to constant-rate injection tests and electromagnetic borehole flowmeter (EBF) profiling, were conducted to characterize the heterogeneous hydraulic conductivity field. A Bayesian data assimilation technique, method of anchored distributions (MAD), is applied to assimilate the experimental tracer test data and to infer the three-dimensional heterogeneous structure of the hydraulic conductivity in the saturated zone of the Hanford formation. In this study, the prior information of the underlying random hydraulic conductivity field was obtained from previous field characterization efforts using the constant-rate injection tests and the EBF data. The posterior distribution of the random field is obtained by further conditioning the field on the temporal moments of tracer breakthrough curves at various observation wells. The parallel three-dimensional flow and transport code PFLOTRAN is implemented to cope with the highly transient flow boundary conditions at the site and to meet the computational demand of the proposed method. The validation results show that the field conditioned on the tracer test data better reproduces the tracer transport behavior compared to the field characterized previously without the tracer test data. A synthetic study proves that the proposed method can effectively assimilate tracer test data to capture the essential spatial heterogeneity of the three-dimensional hydraulic conductivity field. These characterization results will improve conceptual models developed for the site, including reactive transport models. The study successfully demonstrates the capability of MAD to assimilate multi-scale multi-type field data within a consistent Bayesian framework. The MAD framework can potentially be applied to combine geophysical data with other types of data in site characterization.
The suitability of using dissolved gases to determine groundwater discharge to high gradient streams
Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Mathew; Clark, Jordan F.
2018-01-01
Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.
The suitability of using dissolved gases to determine groundwater discharge to high gradient streams
NASA Astrophysics Data System (ADS)
Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Matthew; Clark, Jordan F.
2018-02-01
Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.
Hydraulic conductivity (
NASA Astrophysics Data System (ADS)
Sanaga, S.; Vijay, S.; Kbvn, P.; Peddinti, S. R.; P S L, S.
2017-12-01
Fractured geologic media poses formidable challenges to hydrogeologists due of the strenuous mapping of fracture-matrix system and quantification of flow and transport processes. In this research, we demonstrated the efficacy of tracer-ERT studies coupled with numerical simulations to delineate preferential flow paths in a fractured granite aquifer of Deccan traps in India. A series of natural gradient saline tracer experiments were conducted from a depth window of 18 to 22 m in an injection well located inside the IIT Hyderabad campus. Tracer migration was monitored in a time-lapse mode using two cross-sectional surface ERT profiles placed in the direction of flow gradient. Dynamic changes in sub-surface electrical properties inferred via resistivity anomalies were used to highlight preferential flow paths of the study area. ERT-derived tracer breakthrough curves were in agreement with geochemical sample measurements (R2=0.74). Fracture geometry and hydraulic properties derived from ERT and pumping tests were then used to evaluate two mathematical conceptualizations that are relevant to fractured aquifers. Results of numerical analysis conclude that a dual continuum model that combines matrix and fracture systems through a flow exchange term has outperformed equivalent continuum model in reproducing tracer concentrations at the monitoring wells (evident by decrease in RMSE from 199 mg/l to 65 mg/l). A sensitivity analysis of the model parameters reveals that spatial variability in hydraulic conductivity, local-scale dispersion, and flow exchange at fracture-matrix interface have a profound effect on model simulations. Keywords: saline tracer, ERT, fractured granite, groundwater, preferential flow, numerical simulation
Heat tracer test in an alluvial aquifer: Field experiment and inverse modelling
NASA Astrophysics Data System (ADS)
Klepikova, Maria; Wildemeersch, Samuel; Hermans, Thomas; Jamin, Pierre; Orban, Philippe; Nguyen, Frédéric; Brouyère, Serge; Dassargues, Alain
2016-09-01
Using heat as an active tracer for aquifer characterization is a topic of increasing interest. In this study, we investigate the potential of using heat tracer tests for characterization of a shallow alluvial aquifer. A thermal tracer test was conducted in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in an injection well and monitoring the evolution of groundwater temperature and tracer concentration in the pumping well and in measurement intervals. To get insights in the 3D characteristics of the heat transport mechanisms, temperature data from a large number of observation wells closely spaced along three transects were used. Temperature breakthrough curves in observation wells are contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. The observed complex behavior of the heat plume is explained by the groundwater flow gradient on the site and heterogeneities in the hydraulic conductivity field. Moreover, due to high injection temperatures during the field experiment a temperature-induced fluid density effect on heat transport occurred. By using a flow and heat transport numerical model with variable density coupled with a pilot point approach for inversion of the hydraulic conductivity field, the main preferential flow paths were delineated. The successful application of a field heat tracer test at this site suggests that heat tracer tests is a promising approach to image hydraulic conductivity field. This methodology could be applied in aquifer thermal energy storage (ATES) projects for assessing future efficiency that is strongly linked to the hydraulic conductivity variability in the considered aquifer.
Wagner, Brian J.; Harvey, Judson W.
1997-01-01
Tracer experiments are valuable tools for analyzing the transport characteristics of streams and their interactions with shallow groundwater. The focus of this work is the design of tracer studies in high-gradient stream systems subject to advection, dispersion, groundwater inflow, and exchange between the active channel and zones in surface or subsurface water where flow is stagnant or slow moving. We present a methodology for (1) evaluating and comparing alternative stream tracer experiment designs and (2) identifying those combinations of stream transport properties that pose limitations to parameter estimation and therefore a challenge to tracer test design. The methodology uses the concept of global parameter uncertainty analysis, which couples solute transport simulation with parameter uncertainty analysis in a Monte Carlo framework. Two general conclusions resulted from this work. First, the solute injection and sampling strategy has an important effect on the reliability of transport parameter estimates. We found that constant injection with sampling through concentration rise, plateau, and fall provided considerably more reliable parameter estimates than a pulse injection across the spectrum of transport scenarios likely encountered in high-gradient streams. Second, for a given tracer test design, the uncertainties in mass transfer and storage-zone parameter estimates are strongly dependent on the experimental Damkohler number, DaI, which is a dimensionless combination of the rates of exchange between the stream and storage zones, the stream-water velocity, and the stream reach length of the experiment. Parameter uncertainties are lowest at DaI values on the order of 1.0. When DaI values are much less than 1.0 (owing to high velocity, long exchange timescale, and/or short reach length), parameter uncertainties are high because only a small amount of tracer interacts with storage zones in the reach. For the opposite conditions (DaI ≫ 1.0), solute exchange rates are fast relative to stream-water velocity and all solute is exchanged with the storage zone over the experimental reach. As DaI increases, tracer dispersion caused by hyporheic exchange eventually reaches an equilibrium condition and storage-zone exchange parameters become essentially nonidentifiable.
The three-dimensional movement of a tracer plume containing bromide and chloride is investigated using the data base from a large-scale natural gradient field experiment on groundwater solute transport. The analysis focuses on the zeroth-, first-, and second-order spatial moments...
Application of separable parameter space techniques to multi-tracer PET compartment modeling.
Zhang, Jeff L; Michael Morey, A; Kadrmas, Dan J
2016-02-07
Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg-Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models.
Application of separable parameter space techniques to multi-tracer PET compartment modeling
NASA Astrophysics Data System (ADS)
Zhang, Jeff L.; Morey, A. Michael; Kadrmas, Dan J.
2016-02-01
Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg-Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models.
Prediction of Down-Gradient Impacts of DNAPL Source Depletion Using Tracer Techniques
NASA Astrophysics Data System (ADS)
Basu, N. B.; Fure, A. D.; Jawitz, J. W.
2006-12-01
Four simplified DNAPL source depletion models that have been discussed in the literature recently are evaluated for the prediction of long-term effects of source depletion under natural gradient flow. These models are simple in form (a power function equation is an example) but are shown here to serve as mathematical analogs to complex multiphase flow and transport simulators. One of the source depletion models, the equilibrium streamtube model, is shown to be relatively easily parameterized using non-reactive and reactive tracers. Non-reactive tracers are used to characterize the aquifer heterogeneity while reactive tracers are used to describe the mean DNAPL mass and its distribution. This information is then used in a Lagrangian framework to predict source remediation performance. In a Lagrangian approach the source zone is conceptualized as a collection of non-interacting streamtubes with hydrodynamic and DNAPL heterogeneity represented by the variation of the travel time and DNAPL saturation among the streamtubes. The travel time statistics are estimated from the non-reactive tracer data while the DNAPL distribution statistics are estimated from the reactive tracer data. The combined statistics are used to define an analytical solution for contaminant dissolution under natural gradient flow. The tracer prediction technique compared favorably with results from a multiphase flow and transport simulator UTCHEM in domains with different hydrodynamic heterogeneity (variance of the log conductivity field = 0.2, 1 and 3).
NASA Astrophysics Data System (ADS)
Jawitz, J. W.; Basu, N.; Chen, X.
2007-05-01
Interwell application of coupled nonreactive and reactive tracers through aquifer contaminant source zones enables quantitative characterization of aquifer heterogeneity and contaminant architecture. Parameters obtained from tracer tests are presented here in a Lagrangian framework that can be used to predict the dissolution of nonaqueous phase liquid (NAPL) contaminants. Nonreactive tracers are commonly used to provide information about travel time distributions in hydrologic systems. Reactive tracers have more recently been introduced as a tool to quantify the amount of NAPL contaminant present within the tracer swept volume. Our group has extended reactive tracer techniques to also characterize NAPL spatial distribution heterogeneity. By conceptualizing the flow field through an aquifer as a collection of streamtubes, the aquifer hydrodynamic heterogeneities may be characterized by a nonreactive tracer travel time distribution, and NAPL spatial distribution heterogeneity may be similarly described using reactive travel time distributions. The combined statistics of these distributions are used to derive a simple analytical solution for contaminant dissolution. This analytical solution, and the tracer techniques used for its parameterization, were validated both numerically and experimentally. Illustrative applications are presented from numerical simulations using the multiphase flow and transport simulator UTCHEM, and laboratory experiments of surfactant-enhanced NAPL remediation in two-dimensional flow chambers.
Webster, D.A.
1996-01-01
Ground-water tracer test were conducted at two sites in the radioactive-waste disposal area of Oak Ridge National Laboratory from 1977 to 1982. The purpose of the tests was to determine if the regolith beds had weathered sufficiently to permit the substantial flow of water across them. About 50 curies of tritium dissolved in water were used as the tracer in one site, and about 100 curies at the other. Results demonstrated that ground water is able to flow through joints in the weathered bedding and that the direction of the water-table gradient is the primary factor governint flow direction. Nevertheless, the substantial lateral spread of the plume as it developed showed that bedding-plane openings can still exert a significant secondary influence on flow direction in weathered rock. About 3,500 water samples from the injection and observation wells were analyzed for tritium during the test period. Concentrations detected spanned 11 orders of magnitude. Measurable concentrations were still present in the two injection wells and most observation wells 5 years after the tracer was introduced. Matrix diffusion may have played a significant role in these tests. The process would account for the sustained concentrations of tritium at many of the observation wells, the long-term residual concentrations at the injection and observation wells, and the apparent slow movement of the centers of mass across the two well fields. The process also would have implications regarding aquifer remediation. Other tracer tests have been conducted in the regolith of the Conasauga Group. Results differ from the results described in this report.
Application of separable parameter space techniques to multi-tracer PET compartment modeling
Zhang, Jeff L; Morey, A Michael; Kadrmas, Dan J
2016-01-01
Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg–Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models. PMID:26788888
Comparison of tracer methods to quantify hydrodynamic exchange within the hyporheic zone
NASA Astrophysics Data System (ADS)
Engelhardt, I.; Piepenbrink, M.; Trauth, N.; Stadler, S.; Kludt, C.; Schulz, M.; Schüth, C.; Ternes, T. A.
2011-03-01
SummaryHydrodynamic exchange between surface-water and groundwater was studied at a river located within the Rhine Valley in Germany. Piezometric pressure heads and environmental tracers such as temperature, stable isotopes, chloride, X-ray contrast media, and artificial sweetener were investigated within the hyporheic zone and river water plume. Vertical profiles of environmental tracers were collected using multi-level wells within the neutral up-gradient zone, beneath the river bed, and within the horizontal proximal and distal down-gradient zone. Infiltration velocities were calculated from pressure heads, temperature fluctuations and gradients. The amount of river water within groundwater was estimated from vertical profiles of chloride, stable isotopes, and persistent pharmaceuticals. Profiles of stable isotopes and chloride reveal the existence of down-welling within the shallow hyporheic zone that is generated by river bed irregularities. Due to down-welling an above-average migration of river water into the hyporheic zone establishes even under upward hydraulic pressure gradients. The investigated environmental tracers could not distinctively display short-time-infiltration velocities representative for flood waves, while average infiltration velocities calculated over several months are uniform displayed. Based on vertical temperature profiles the down-gradient migration of the river water plume could be observed even after long periods of effluent conditions and over a distance of 200 m from the river bank. X-ray contrast media and artificial sweeteners were observed in high concentrations within the proximal zone, but were not detected at a distance of 200 m from the river bank. Using temperature as environmental tracer within the hyporheic zone may result in overestimating the migration of pollutants within the river water plume as the process of natural attenuation will be neglected. Furthermore, temperature was not able to display the effect of down-welling. Stable isotopes and chloride were found to be suitable environmental tracers to forecast the release and fate of organic contaminants within the hyporheic zone.
Modeling of natural organic matter transport processes in groundwater.
Yeh, T C; Mas-Pla, J; McCarthy, J F; Williams, T M
1995-01-01
A forced-gradient tracer test was conducted at the Georgetown site to study the transport of natural organic matter (NOM) in groundwater. In particular, the goal of this experiment was to investigate the interactions between NOM and the aquifer matrix. A detailed three-dimensional characterization of the hydrologic conductivity heterogeneity of the site was obtained using slug tests. The transport of a conservative tracer (chloride) was successfully reproduced using these conductivity data. Despite the good simulation of the flow field, NOM breakthrough curves could not be reproduced using a two-site sorption model with spatially constant parameters. Preliminary results suggest that different mechanisms for the adsorption/desorption processes, as well as their spatial variability, may significantly affect the transport and fate of NOM. PMID:7621798
Sreeparvathy, Vijay; Kambhammettu, B V N P; Peddinti, Srinivasa Rao; Sarada, P S L
2018-03-22
Accurate quantification of in situ heterogeneity and flow processes through fractured geologic media remains elusive for hydrogeologists due to the complexity in fracture characterization and its multiscale behavior. In this research, we demonstrated the efficacy of tracer-electrical resistivity tomography (ERT) experiments combined with numerical simulations to characterize heterogeneity and delineate preferential flow paths in a fractured granite aquifer. A series of natural gradient saline tracer experiments were conducted from a depth window of 18 to 22 m in an injection well (IW) located inside the Indian Institute of Technology Hyderabad campus. Tracer migration was monitored in a time-lapse mode using two cross-sectional surface ERT profiles placed in the direction of flow gradient. ERT data quality was improved by considering stacking, reciprocal measurements, resolution indicators, and geophysical logs. Dynamic changes in subsurface electrical properties inferred via resistivity anomalies were used to highlight preferential flow paths of the study area. Temporal changes in electrical resistivity and tracer concentration were monitored along the vertical in an observation well located at 48 m to the east of the IW. ERT-derived tracer breakthrough curves were in agreement with geochemical sample measurements. Fracture geometry and hydraulic properties derived from ERT and pumping tests were further used to evaluate two mathematical conceptualizations that are relevant to fractured aquifers. Results of numerical analysis conclude that dual continuum model that combines matrix and fracture systems through a flow exchange term has outperformed equivalent continuum model in reproducing tracer concentrations at the monitoring wells (evident by a decrease in RMSE from 199 to 65 mg/L). A sensitivity analysis on model simulations conclude that spatial variability in hydraulic conductivity, local-scale dispersion, and flow exchange at fracture-matrix interface have a profound effect on model simulations. © 2018, National Ground Water Association.
Harvey, Ronald W.; Metge, David W.; Shapiro, Allen M.; Renken, Robert A.; Osborn, Christina L.; Ryan, Joseph N.; Cunningham, Kevin J.; Landkamer, Lee L.
2008-01-01
The vulnerability of a municipal well in the Northwest well field in southeastern Florida to potential contamination by Cryptosporidium parvum oocysts was assessed in a large‐scale, forced‐gradient (convergent) injection and recovery test. The field study involved a simultaneous pulse introduction of a nonreactive tracer (SF6, an inert gas) and oocyst‐sized (1.6, 2.9, and 4.9 μm diameter) carboxylated polystyrene microspheres into karst limestone of the Biscayne aquifer characterized by a complex triple (matrix, touching‐vug, and conduit) porosity. Fractional recoveries 97 m down gradient were inversely related to diameter and ranged from 2.9% for the 4.9 μm microspheres to 5.8% for 1.6 μm microspheres. Their centers of mass arrived at the pumping well approximately threefold earlier than that of the nonreactive tracer SF6 (gas), underscoring the need for use of colloid tracers and field‐scale tracer tests for these kinds of evaluations. In a modified triaxial cell using near in situ chemical conditions, 2.9 and 4.9 μm microspheres underestimated by fourfold to sixfold the attachment potential of the less electronegative 2.9–4.1 μm oocysts in the matrix porosity of limestone core samples. The field and laboratory results collectively suggested that it may take 200–300 m of transport to ensure even a 1‐log unit removal of oocysts, even though the limestone surfaces exhibited a substantive capability for their sorptive removal. The study further demonstrated the utility of microspheres as oocyst surrogates in field‐scale assessments of well vulnerability in limestone, provided that differences in attachment behaviors between oocysts and microspheres are taken into account.
Irreversible transport in the stratosphere by internal waves of short vertical wavelength
NASA Technical Reports Server (NTRS)
Danielsen, Edwin F.; Hipskind, R. S.; Starr, Walter L.; Vedder, James F.; Gaines, Steven E.; Kley, Dieter; Kelley, Ken K.
1991-01-01
Measurements performed during stratospheric flights of the U-2 aircraft confirm that cross-jet transport is dominated by waves, not by large-scale circulations. Monotonic gradients of trace constituents normal to the jet axis, with upper stratospheric tracers increasing poleward and tropospheric tracers increasing equatorward, are augmented by large-scale confluence as the jet intensifies during cyclogenesis. These gradients are rotated, intensified, and significantly increased in areas as their mixing ratio surfaces are folded by the differential transport of a very low frequency transverse wave. The quasi-horizontal transport produces a laminar structure with stable layers rich in upper stratospheric tracers alternating vertically with less stable layers rich in tropospheric tracers. The transport proceeds toward irreversibility at higher frequency, shear-gravity waves extend the folding to smaller horizontal scales.
NASA Technical Reports Server (NTRS)
Auger, Ludovic; Tangborn, Andrew; Atlas, Robert (Technical Monitor)
2002-01-01
A suboptimal Kalman filter system which evolves error covariances in terms of a truncated set of wavelet coefficients has been developed for the assimilation of chemical tracer observations of CH4. The truncation is carried out in such a way that the resolution of the error covariance, is reduced only in the zonal direction, where gradients are smaller. Assimilation experiments which last 24 days, and used different degrees of truncation were carried out. These reduced the covariance, by 90, 97 and 99 % and the computational cost of covariance propagation by 80, 93 and 96 % respectively. The difference in both error covariance and the tracer field between the truncated and full systems over this period were found to be not growing in the first case, and a growing relatively slowly in the later two cases. The largest errors in the tracer fields were found to occur in regions of largest zonal gradients in the tracer field.
Smith, R.L.; Baumgartner, L.K.; Miller, D.N.; Repert, D.A.; Böhlke, J.K.
2006-01-01
Nitrification was measured within a sand and gravel aquifer on Cape Cod, MA, using a series of single-well injection tests. The aquifer contained a wastewater-derived contaminant plume, the core of which was anoxic and contained ammonium. The study was conducted near the downgradient end of the ammonium zone, which was characterized by inversely trending vertical gradients of oxygen (270 to 0 μM) and ammonium (19 to 625 μM) and appeared to be a potentially active zone for nitrification. The tests were conducted by injecting a tracer solution (ambient ground water + added constituents) into selected locations within the gradients using multilevel samplers. After injection, the tracers moved by natural ground water flow and were sampled with time from the injection port. Rates of nitrification were determined from changes in nitrate and nitrite concentration relative to bromide. Initial tests were conducted with 15N-enriched ammonium; subsequent tests examined the effect of adding ammonium, nitrite, or oxygen above background concentrations and of adding difluoromethane, a nitrification inhibitor. In situ net nitrate production exceeded net nitrite production by 3- to 6- fold and production rates of both decreased in the presence of difluoromethane. Nitrification rates were 0.02–0.28 μmol (L aquifer)−1 h−1 with in situ oxygen concentrations and up to 0.81 μmol (L aquifer)−1 h−1 with non-limiting substrate concentrations. Geochemical considerations indicate that the rates derived from single-well injection tests yielded overestimates of in situ rates, possibly because the injections promoted small-scale mixing within a transport-limited reaction zone. Nonetheless, these tests were useful for characterizing ground water nitrification in situ and for comparing potential rates of activity when the tracer cloud included non-limiting ammonium and oxygen concentrations.
NASA Astrophysics Data System (ADS)
Molz, F. J.; Guan, J.; Liu, H.; Zheng, C.
2005-12-01
During the late eighties and early nineties, several natural gradient tracer tests were conducted in a shallow unconfined fluvial aquifer at Columbus Air Force Base in Mississippi. The aquifer matrix was highly heterogeneous (natural log(K) variance of about 4.5) and consisted of poorly-sorted to well-sorted layered sandy gravel to gravely sand, with variable silt and clay content (Boggs et al., 1993). Prior to performing the tracer tests, the aquifer was characterized extensively using a borehole flow-meter. The resulting tracer plumes were highly elongated with dilute leading edges in the down-gradient direction, and transport appeared to be advection-dominated. Although there is still some controversy, reasonably successful simulations of the MADE tracer data have settled on an approximate dual porosity conceptualization of the aquifer matrix. Throughout the aquifer, high K zones (mobile porosity) are visualized as being in contact with low K zones (immobile porosity), with mass transfer between the zones governed by an effective mass transfer coefficient B. Such a transfer coefficient is analogous to the matrix diffusion coefficient Dm used to simulate transport in fractured rock with diffusion into the rock matrix (Foster, 1975). Recently, experiments and geometrically-based reasoning have been presented, implying that the effective Dm, like dispersivity, increases with travel distance (Liu et al., 2004; Zhou et al., 2005). Conversely, other studies based on multiple rate mass transfer between mobile and immobile porosities in granular media (Haggerty et al., 2004) have indicated that B will decrease with travel distance. Thus in geometrically complex granular media, like those at the MADE site, two opposing effects may be present. To further study this question, new 3-D simulations of tritium transport are being performed using flow-meter K data and the measured tritium concentrations at selected times. Results to date indicate that B generally decreases with scale, but changes will depend on the details of how the flow and mass transfer process at the MADE site is conceptualized. For example, did the tritium tracer injected initially all enter the mobile porosity, as commonly assumed, or was a significant portion of it forced into the immobile porosity? Was fluid in the immobile porosity essentially non-moving relative to mobile fluid, or did both fluid classes move significantly down-gradient. Alternatively, was tracer simply injected into an overall low K region, from which it slowly leaked out during the course of the 328 day experiment? Simulation results from different scenarios will be presented and implications discussed concerning the detailed scale-dependence of B at the MADE Site.
NASA Astrophysics Data System (ADS)
Clark, J. F.; Becker, T.; Johnson, T. A.
2013-12-01
Recycling wastewater for potable and nonpotable use by artificially recharging aquifers is a decades-old but increasingly popular practice. Natural attenuation processes in the subsurface, known as soil aquifer treatment (SAT), purify recycled water during recharge and subsequent groundwater flow. Travel time criteria are often used to regulate managed aquifer recharge (MAR) operations. California state draft regulations currently gives preference to groundwater tracers to quantify underground residence time, with a target retention time of >6 months from infiltration to drinking water extraction for surface spreading projects using tertiary treated wastewater (less time may be possible if full advanced treated water is utilized). In the past sulfur hexafluoride, a very strong greenhouse gas, has been the principle deliberate tracer for this work. However, its emission has recently become regulated in California and new tracers are needed. Here, two prospective tracers are evaluated: boron-10 (B-10), the least abundant boron isotope, and heat (with recharging water naturally warmed at the sewage treatment plants and in surface-spreading basins). An additional deliberate tracer, bromide (Br), which is a well-studied conservative tracer, was released as a control. Tracer injection occurred at the San Gabriel Spreading Grounds research test basin in Los Angeles County, CA, USA. The basin was constructed and characterized by the US Geological Survey in the mid-1990s. Recycled wastewater was piped directly to this basin at a known rate (about 1.5 m3/day). Down gradient from the test basin are nine high quality monitoring wells in a line that extends from the center of the basin to 150 m down gradient. All of the wells were equipped with temperature loggers that recorded groundwater temperatures every hour with an accuracy of one thousandth of a degree. The pre-experiment expected arrival times ranged from less than one day to six months. Arrival of Br was always coincident or preceded the B-10 arrival, reflecting retardation of B-10 presumably due to exchange with clay surfaces. B-10/Br travel time ratios determined from the center of mass range from 1 to 1.4. Temperature time series were developed from data loggers. The 1.5° C diurnal temperature variation observed in the spreading pond was only apparent at one well that is screen about 3 m below the pond bottom. At the other wells, we observed temperature increases over a period of days to weeks. Basic analysis of temperature profiles yields a reliable estimate of the underground residence time; heat flow travel times are in good agreement with those derived from the geochemical tracers.
A deliberate tracer experiment in Santa Monica Basin. [for ocean density strata diffusion
NASA Technical Reports Server (NTRS)
Ledwell, J. R.; Broecker, W. S.; Watson, A. J.
1986-01-01
A tracer technique was developed for measurements of diffusion across oceanic density strata using SF6 and perfluorodecalin (PFD) tracers in the Santa Monica Basin. Fifty days after injection, the tracers were found to have mixed along the isopycnal surface to nearly every part of the basin. The diapycnal spreading of the tracer distributions yielded an apparent eddy diffusivity of 0.33 + or - 0.08 sq cm/s at the ambient density gradient of 4.0 + or - 0.5 x 10 to the -9th g/cm to the 4th.
Biomarker Pigment Divinyl Chlorophyll a as a Tracer of Water Masses?
NASA Technical Reports Server (NTRS)
Mejdandzic, Maja; Mihanovic, Hrvoje; Silovic, Tina; Henderiks, Jorijntje; Supraha, Luka; Polovic, Dorotea; Bosak, Suncica; Bosnjak, Ivana; Cetinic, Ivona; Olujic, Goran;
2015-01-01
The ecological preferences of different Phytoplankton types drive their temporal and spatial distributions, reflecting their dependence on certain temperature ranges, light levels, nutrient availability and other environmental gradients. Hence, some phytoplankton taxa can be used as water mass tracers (biotracers).
Krueger, C.J.; Barber, L.B.; Metge, D.W.; Field, J.A.
1998-01-01
Two natural-gradient tracer tests were conducted to determine the transport and biodegradation behavior of linear alkylbenzenesulfonate (LAS) surfactant under in situ conditions in a sewage-contaminated aquifer. The tests were conducted in two biogeochemically distinct zones of the aquifer: (1) an aerobic uncontaminated zone (oxic zone) and (2) a moderately aerobic, sewage-contaminated zone (transition zone). Chromatographic separation of the surfactant mixture was observed in both zones and attributed to the retardation of the longer alkyl chain homologues during transport. No significant loss of IAS mass was observed for the oxic zone while 20% of the LAS mass injected into the transition zone was removed due to biodegradation. Biodegradation preferentially removed the longer alkyl chain homologues and the external isomers (i.e., 2- and 3-phenyl). The removal of LAS mass coincided with a decrease in dissolved oxygen concentrations, the appearance of LAS metabolites, and an increase in the number of free-living bacteria with a concomitant change in bacteria morphology. The formation of LAS metabolites accounted for 86% of the LAS mass removed in the transition zone. Over the duration of the test, sorption and biodegradation enriched the LAS mixture in the more water-soluble and biologically resistant components.Two natural-gradient tracer tests were conducted to determine the transport and biodegradation behavior of linear alkylbenzenesulfonate (LAS) surfactant under in situ conditions in a sewage-contaminated aquifer. The tests were conducted in two biogeochemically distinct zones of the aquifer: (1) an aerobic uncontaminated zone (oxic zone) and (2) a moderately aerobic, sewage-contaminated zone (transition zone). Chromatographic separation of the surfactant mixture was observed in both zones and attributed to the retardation of the longer alkyl chain homologues during transport. No significant loss of LAS mass was observed for the oxic zone while 20% of the LAS mass injected into the transition zone was removed due to biodegradation. Biodegradation preferentially removed the longer alkyl chain homologues and the external isomers (i.e., 2- and 3-phenyl). The removal of LAS mass coincided with a decrease in dissolved oxygen concentrations, the appearance of LAS metabolites, and an increase in the number of free-living bacteria with a concomitant change in bacteria morphology. The formation of LAS metabolites accounted for 86% of the LAS mass removed in the transition zone. Over the duration of the test, sorption and biodegradation enriched the LAS mixture in the more water-soluble and biologically resistant components.
Geophysical constraints on contaminant transport modeling in a heterogeneous fluvial aquifer.
Bowling, Jerry C; Zheng, Chunmiao; Rodriguez, Antonio B; Harry, Dennis L
2006-05-05
Approximately 3000 measurements of hydraulic conductivity in over 50 flowmeter boreholes were available at the Macro-Dispersion Experiment (MADE) site in Columbus, Mississippi, USA to quantify the heterogeneity in hydraulic conductivity at the site scale. This high-density measurement approach is perhaps infeasible for time and expense in typical groundwater remediation sites. A natural-gradient tracer experiment from the MADE site was simulated by a groundwater flow and solute transport model incorporating direct-current (DC) resistivity data collected over the observed plume location. Hydraulic conductivity from one borehole collected during the original site characterization was used to calibrate the electrical resistivity data to hydraulic conductivity using a previously derived log-log relationship. Application of this relationship, using site-specific empirical constants determined from the data, transforms the 3D electrical resistivity data into a 3D description of hydraulic conductivity that can be used in groundwater models. The validity of this approach was tested by using the geophysically derived hydraulic conductivity representation in numerical simulations of the natural-gradient tracer experiment. The agreement between the simulated and observed tracer plumes was quantified to gauge the effectiveness of geophysically derived and flowmeter based representations of the hydraulic conductivity field. This study demonstrates that a highly heterogeneous aquifer can be modeled with minimal hydrological data supplemented with geophysical data at least as well as previous models of the site using purely hydrologic data.
Renken, Robert A.; Cunningham, Kevin J.; Shapiro, Allen M.; Harvey, Ronald W.; Zygnerski, Michael R.; Metge, David W.; Wacker, Michael A.
2008-01-01
The Biscayne aquifer is a highly transmissive karst limestone that serves as the sole source of drinking water to over two million residents in south Florida. The aquifer is characterized by eogenetic karst, where the most transmissive void space can be an interconnected, touching‐vug, biogenically influenced porosity of biogenic origin. Public supply wells in the aquifer are in close proximity to lakes established by surface mining. The mining of the limestone has occurred to the same depths as the production wells, which has raised concerns about pathogen and chemical transport from these surface water bodies. Hydraulic and forced gradient tracer tests were conducted to augment geologic and geophysical studies and to develop a hydrogeologic conceptual model of groundwater flow and chemical transport in the Biscayne aquifer. Geologic and geophysical data indicate multiple, areally extensive subhorizontal preferential flow zones of vuggy limestone separated by rock with a matrix pore system. The hydraulic response from an aquifer test suggests that the Biscayne aquifer behaves as a dual‐porosity medium; however, the results of the tracer test showed rapid transport similar to other types of karst. The tracer test and concurrent temperature logging revealed that only one of the touching‐vug flow zones dominates transport near the production wells. On the basis of the rising limb of the breakthrough curve, the dispersivity is estimated to be less than 3% of the tracer travel distance, which suggests that the fastest flow paths in the formation are likely to yield limited dilution of chemical constituents.
NASA Astrophysics Data System (ADS)
Ghergut, Julia; Behrens, Horst; Huenges, Ernst; Rose, Peter; Sauter, Martin
2014-05-01
During Fall 2013, the Integrated Continental Scientific Drilling Programme (ICDP) set out to define a new Science Plan that shall replace its past-decade version (Harms et al., eds., 2005) for the decade to come. Geoscientists worldwide were welcomed to suggest new imaging and exploration methods, new sites to drill, new challenges to be addressed with a view at new 'societal needs' (Harms and Wiersberg 2013). Save for two outstanding exceptions at the Mutnovsky volcano in Russia and the KTB site in Germany, the use of artificial tracers, especially within forced-gradient tests, has not been on the agenda of most ICDP projects so far (other than for purposes of monitoring microbial contamination in conjunction with drilling activities); deep-reservoir exploration and characterization efforts were restrained to non-fluid-invasive techniques on the one hand, and to sites featuring some unique earth-historical traits, on the other hand. Surely, this was not for lack of interest in quantifying fluid transport in the deep subsurface in general, but mainly due to operational, technical, and financial constraints (lack of resources / lack of opportunity for significant fluid turnover within the target, deep-seated georeservoirs, and fear of persistent, large-scale georeservoir contamination by non-pristine fluids). - This is likely to change during the forthcoming decade(s), owing to worldwide increased interest in some 'georesource' or 'georeservoir' play types (Moeck 2013) that have not been in the ICDP focus so far, including non-volcanogenic geothermal, and allowing for man-made design and intervention into how those 'georesources' or 'georeservoirs' shall work for us. Among the latter, petrothermal systems (Jung 2013, Huenges and Jung 2004) acquire growing recognition as a promising (and maybe unique) option for baseload energy supply in vast areas of the Northern hemisphere, at very low emissions and (in the long run) moderate costs. With petrothermal coming into play, forced-gradient turnover of significant fluid amounts shall be on the agenda, and with it also a more comprehensive use of artificial tracers, for far more ambitious tasks than just the monitoring of drilling-related contamination. Since any ICDP project is likely to start (and mostly also end) with not more than one deep well, single-well forced-gradient test experience gained within the non-ICDP areas of hydrocarbon and geothermal exploration and engineering seem predestined for a specific knowledge transfer. Single-well 'push-then-pull' (SW) tracer methods appear as attractive for a number of reasons: less uncertainty of design and dimensioning, and lower tracer quantities required, than for inter-well (IW) tests; stronger tracer signals, enabling easier and cheaper metering, and shorter metering duration required, reaching higher tracer mass recovery, than in IW tests; last not least: no need for a second well! However, SW tracer signal inversion faces a major issue: the 'push-then-pull' design weakens the correlation between tracer residence time distribution (RTD) and fluid transport parameters, inducing insensitivity or ambiguity of tracer signal inversion against some of those georeservoir parameters that are supposed to be the target of tracer tests par excellence: pore velocity, transport-effective porosity, fracture aperture and spacing or density (where applicable), fluid/solid or fluid/fluid phase interface density. Hydraulic and geophysical methods cannot measure the transport-effective values of such parameters, because the signals they detect correlate neither with fluid motion, nor with material fluxes through (fluid-rock, or fluid-fluid) phase interfaces. Typically, pressure signals obtained in hydraulic tests do not enable to distinguish between geological formations with equal permeability, but different transport-effective porosity, nor between formations with equal permeability, equal transport-effective porosity, but different fluid-rock interface area. The ability to measure this latter parameter is crucial to lifetime predictability for geothermal, gas storage, waste disposal, or hydrocarbon reservoirs (especially in advanced depletion stages). From IW tracer signals, fluid RTD can be derived, whose statistical moments relate to major hydrogeological properties of target georeservoirs. By contrast, SW tests can be used to quantify processes other than advection-dispersion: typically, the exchange of some extensive quantity (mass, energy) between fluid and solid/fluid phases by matrix diffusion or sorption/partitioning, whose rate or amount depends on the phase saturation and/or interface area density. Flow-field reversal during the 'pull' stage of a SW test is supposed to largely compensate the effects of flow path heterogeneity, and to enhance the effects of tracer exchange processes at phase interfaces. However, it always destroys the equivalence between fluid RT and reservoir size; transport-effective porosities, closely relating to fluid RT, can only be measured reliably by means of conservative-tracer IW tests. The SW inability to determine porosity also (indirectly) impedes the SW-based ability to determine those complementary, non-advective parameters: increased sensitivity comes along with increased ambiguity. Reactive tracers can aid overcoming some of the limitations to parameter determinability associated with the SW design. Specific use of reactive tracers has first been made by Tomich et al. (1973), for a SW-based measurement of residual-oil saturation in (depleted) oil reservoirs; later on by Robinson (1985), for tracking temperature fronts in laboratory-scale geothermal-reservoir IW-test 'analogues'; more recently by Schaffer et al. (2013), for tracking brine-(sc)CO2 interfaces during CO2 injection within CCS research projects. The paper discusses some lessons derived from a twelve-year experience using artificial tracers in various IW and SW field tests in Germany, aimed at deep-georeservoir characterization and/or short- to mid-term process monitoring during reservoir operation: - if those tests have been successful to a certain extent, it was primarily owing to ascertainedly conservative tracer transport behavior; - if those tests have been of limited success, it was because of lack of reactive tracer species with well-defined, and reasonable properties (reasonable means: sensitive to 'something', but not to 'everything' that may 'happen' within the target georeservoir). If the artificial-tracer-based quantification of deep-georeservoir hydrogeology and of induced (short- to mid-term) transport processes therein is to become a task for some future ICDP projects, they will need to effectively address this dilemma. Further, if EGS, and especially the petrothermal type shall be on the agenda, then SW tests will be 'unavoidable'. Finally, if the most is to be made out of a SW test, then tailored reactive tracer pairs (Tomich et al. 1973, Ghergut et al. 2013) are a must: not just reactive, not just retarded, but: conservative alongside with reactive, and with contrasting retardation behavior between product and reactant. Selected references: Harms U, Koeberl C, Zoback M, eds (2005) Continental Scientific Drilling: A Decade of Progress, and Challenges for the Future. Springer, 366 pp. Harms U, Wiersberg T (2013) Conference on ICDP's New Science Plan. Scientific Drilling, 15: 77. Huenges E, Jung R (2004) Technologies for the Utilisation of Enhanced Geothermal Systems (www.bgr.de/ veransta/renewables_2004/presentations_DGP/Block1Introduction_pdf/2_Huenges_Jung.pdf) Jung R (2013) EGS - Goodbye or Back to the Future. Chapter 5, dx.doi.org/10.5772/56458 (www.intechopen.com/ books/effective-and-sustainable-hydraulic-fracturing) Moeck I (2013) Classification of geothermal plays according to geological habitats. IGA Academy Report 0101-2013 (www.geothermal-energy.org/iga_service_gmbh/projects/ifc_project/workshop_izmir.html) Robinson B A (1985) Non-reactive and chemically reactive tracers: Theory and applications. Ph D Thesis, MIT, Cambridge, MA, 551 pp. Rose P, Mella M, Kasteler C, Johnson S (2004) The estimation of reservoir pore volume from tracer data. Procs 29th Workshop on Geothermal Reservoir Engineering, Stanford University, SGP-TR-175 (pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2004/Rose.pdf) Schaffer M, Maier F, Licha T, Sauter M (2013) A new generation of tracers for the characterization of interfacial areas during supercritical carbon dioxide injections into deep saline aquifers: kinetic interface-sensitive (KIS) tracers. Intl J Greenhouse Gas Control, 14: 200-208. Tomich J F, Dalton R L Jr, Deans H A, Shallenberger L K (1973) Single-Well Tracer Method to Measure Residual Oil Saturation. J Petrol Technol Transact, 255: 211-218. Ghergut I, Behrens H, Sauter M (2013) Can Peclet numbers depend on tracer species? going beyond SW test insensitivity to advection or equilibrium exchange. Procs 38th Workshop on Geothermal Reservoir Engineering, Stanford University, SGP-TR-198 (pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2013/Ghergut5.pdf) Acknowledgements: The Göttingen group gratefully acknowledges financial support (to developing tracer SW methods for petrothermal-reservoir testing) from Baker Hughes (Celle) and the Lower-Saxonian Government within the interdisciplinary research project 'gebo' ('Geothermal Energy and High-Performance Drilling').
NASA Astrophysics Data System (ADS)
Brusseau, Mark L.; Guo, Zhilin
2018-01-01
It is evident based on historical data that groundwater contaminant plumes persist at many sites, requiring costly long-term management. High-resolution site-characterization methods are needed to support accurate risk assessments and to select, design, and operate effective remediation operations. Most subsurface characterization methods are generally limited in their ability to provide unambiguous, real-time delineation of specific processes affecting mass-transfer, transformation, and mass removal, and accurate estimation of associated rates. An integrated contaminant elution and tracer test toolkit, comprising a set of local-scale groundwater extraction-and injection tests, was developed to ameliorate the primary limitations associated with standard characterization methods. The test employs extended groundwater extraction to stress the system and induce hydraulic and concentration gradients. Clean water can be injected, which removes the resident aqueous contaminant mass present in the higher-permeability zones and isolates the test zone from the surrounding plume. This ensures that the concentrations and fluxes measured within the isolated area are directly and predominantly influenced by the local mass-transfer and transformation processes controlling mass removal. A suite of standard and novel tracers can be used to delineate specific mass-transfer and attenuation processes that are active at a given site, and to quantify the associated mass-transfer and transformation rates. The conceptual basis for the test is first presented, followed by an illustrative application based on simulations produced with a 3-D mathematical model and a brief case study application.
Clark, J.F.; Davisson, M.L.; Hudson, G.B.; Macfarlane, P.A.
1998-01-01
A suite of chemical and isotope tracers (dissolved noble gases, stable isotopes of water, radiocarbon, and CI) have been analyzed along a flow path in the Dakota aquifer system to determine likely recharge sources, ground water residence times, and the extent of mixing between local and intermediate flow systems, presumably caused by large well screens. Three water types were distinguished with the tracers, each having a very different history. Two of the water types were found in south-eastern Colorado where the Dakota is poorly confined. The tracer data suggest that the first group recharged locally during the last few thousand years and the second group was composed of ground water that recharged earlier during a cooler climate, presumably during the last glacial period (LGP) and mixed aged water. The paleotemperature record archived in this groundwater system indicates that south-eastern Colorado was about 5??C cooler during the LGP than during the late Holocene. Similar temperature changes derived from dissolved noble gases in other aquifer systems have been reported earlier for the south-western United States. The third water type was located down gradient of the first two in the confined Dakota in western and central Kansas. Groundwater residence time of this water mass is on the order of 104-105 yrs and its recharge location is near the Colorado and Kansas border down gradient of the other water types. The study shows the importance of using multiple tracers when investigating ground water systems.A suite of chemical and isotope tracers (dissolved noble gases, stable isotopes of water, radiocarbon, and CL) were analyzed along a flow path in the Dakota aquifer system to determine likely recharge sources, ground water residence times, and the extent of mixing between local and intermediate flow systems. Three water types were distinguished with the tracers, each having a very different history. Two of the water types were located in south-eastern Colorado where the Dakota is poorly confined. The third water type was located down gradient of the first two in the confined Dakota in western and central Kansas.
Encapsulated cell bioremediation: Evaluation on the basis of particle tracer tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrich, C.R.; Stormo, K.E.; Ralston, D.R.
1998-09-01
Microencapsulation of degradative organisms enhances microorganism survivability. The use of encapsulated cell microbeads for in situ biodegradation depends not only on microorganism survival but also on microbead transport characteristics. Two forced-gradient, recirculating-loop tracer experiments were conducted to evaluate the feasibility of encapsulated cell transport and bioremediation on the basis of polystyrene microsphere transport results. The tracer tests were conducted in a shallow, confined, unconsolidated, heterogeneous, sedimentary aquifer using bromide ion and 2 {micro}m, 5 {micro}m, and 15{micro}m microsphere tracers. Significant differences were observed in the transport of bromide solute and polystyrene microspheres. Microspheres reached peak concentrations in monitoring wells beforemore » bromide, which was thought to reflect the influence of aquifer heterogeneity. Greater decreases in microsphere C/C{sub 0} ratios were observed with distance from the injection wells than in bromide C/C{sub 0} ratios, which was attributed to particle filtration and/or settling. Several methods might be considered for introducing encapsulated cell microbeads into a subsurface environment, including direct injection into a contaminated aquifer zone, injection through a recirculating ground water flow system, or emplacement in a subsurface microbial curtain in advance of a plume. However, the in situ use of encapsulated cells in an aquifer is probably limited to aquifers containing sufficiently large pore spaces, allowing passage of at least some encapsulated cells. The use of encapsulated cells may also be limited by differences in solute and microbead transport patterns and flowpath clogging by larger encapsulated cell microbeads.« less
Subsurface fate and transport of sulfamethoxazole, 4-nonylphenol, and 17β-estradiol
Barber, L.B.; Meyer, M.T.; LeBlanc, D.R.; Kolpin, Dana W.; Radley, Paul; Chapelle, F.; Rubio, F.
2008-01-01
Subsurface fate and transport of the antibiotic sulfamethoxazole (SX), the non-ionic surfactant degradation product 4-nonylphenol (NP), and the sex hormone 17β-estradiol (E2) were evaluated in a plume of contaminated groundwater at Cape Cod, Massachusetts, USA. The plume is the result of 60 years of wastewater treatment plant effluent disposal into rapid infiltration beds. Natural-gradient, in situ tracer experiments were used to evaluate subsurface transport of SX, NP, and E2 (injected at 300, 530, and 0.55 µg/L, respectively) relative to the conservative tracer bromide. Two geochemical zones were evaluated: (1) uncontaminated groundwater overlying the plume, and (2) contaminated groundwater within the plume that has recently become oxic after decades of anoxic conditions. The uncontaminated groundwater is characterized by a microbial community unacclimated to treated wastewater, whereas the contaminated groundwater is characterized by microbes acclimated to wastewater contaminants. Results from the tracer tests in both zones showed that the antibiotic SX was co-transported with the conservative tracer bromide, with little retardation or mass removal. In contrast, NP and E2, which are more hydrophobic and biodegradable, showed sorption (relative retardation factors ranged up to 5.9) and mass loss at both the uncontaminated and contaminated sites.
Walvoord, Michelle Ann; Andraski, Brian J.; Green, Christopher T.; Stonestrom, David A.; Striegl, Robert G.
2014-01-01
A natural gradient SF6 tracer experiment provided an unprecedented evaluation of long distance gas transport in the deep unsaturated zone (UZ) under controlled (known) conditions. The field-scale gas tracer test in the 110-m-thick UZ was conducted at the U.S. Geological Survey’s Amargosa Desert Research Site (ADRS) in southwestern Nevada. A history of anomalous (theoretically unexpected) contaminant gas transport observed at the ADRS, next to the first commercial low-level radioactive waste disposal facility in the United States, provided motivation for the SF6 tracer study. Tracer was injected into a deep UZ borehole at depths of 15 and 48 m, and plume migration was observed in a monitoring borehole 9 m away at various depths (0.5–109 m) over the course of 1 yr. Tracer results yielded useful information about gas transport as applicable to the spatial scales of interest for off-site contaminant transport in arid unsaturated zones. Modeling gas diffusion with standard empirical expressions reasonably explained SF6 plume migration, but tended to underpredict peak concentrations for the field-scale experiment given previously determined porosity information. Despite some discrepancies between observations and model results, rapid SF6 gas transport commensurate with previous contaminant migration was not observed. The results provide ancillary support for the concept that apparent anomalies in historic transport behavior at the ADRS are the result of factors other than nonreactive gas transport properties or processes currently in effect in the undisturbed UZ.
Tracer concentration profiles measured in central London as part of the REPARTEE campaign
NASA Astrophysics Data System (ADS)
Martin, D.; Petersson, K. F.; White, I. R.; Henshaw, S. J.; Nickless, G.; Lovelock, A.; Barlow, J. F.; Dunbar, T.; Wood, C. R.; Shallcross, D. E.
2009-11-01
There have been relatively few tracer experiments carried out that have looked at vertical plume spread in urban areas. In this paper we present results from cyclic perfluorocarbon tracer experiments carried out in 2006 and 2007 in central London centred on the BT Tower as part of the REPARTEE (Regent's Park and Tower Environmental Experiment) campaign. The height of the tower gives a unique opportunity to study dispersion over a large vertical gradient. These gradients are then compared with classical Gaussian profiles of the relevant stability classes over a range of distances as well as interpretation of data with reference to both anemometry and LIDAR measurements made. Data are then compared with an operational model and contrasted with data taken in central London as part of the DAPPLE campaign looking at dosage compared with non-dimensionalised distance from source. Such analysis illustrates the feasibility of the use of these empirical correlations over these prescribed distances in central London.
Metge, D.W.; Harvey, R.W.; Anders, R.; Rosenberry, D.O.; Seymour, D.; Jasperse, James
2007-01-01
Carboxylated microspheres were employed as surrogates to assess the transport potential of Cryptosporidium parvumoocysts during forced- and natural-gradient tests conducted in July and October 2004. The tests involved poorly-sorted, near-surface sediments where groundwater is pumped from an alluvial aquifer underlying the Russian River, Sonoma County, CA. In an off channel infiltration basin and within the river, a mixture (2-, 3-, and 5- ??m diameters) of fluorescently-labeled carboxylated microspheres and bromide tracers were used in two injection and recovery test to assess sediment removal efficiency for the microspheres. Bottom sediments varied considerably in their filtration efficiency for Cryptosporidium.
Microbial response to environmental gradients in a ceramic-based diffusion system.
Wolfaardt, G M; Hendry, M J; Birkham, T; Bressel, A; Gardner, M N; Sousa, A J; Korber, D R; Pilaski, M
2008-05-01
A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two-dimensional, finite-element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid-liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid-liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long-term investigations, making this approach preferable to conventional gel-stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel. Copyright 2008 Wiley Periodicals, Inc.
A field comparison of multiple techniques to quantify groundwater - surface-water interactions
González-Pinzón, Ricardo; Ward, Adam S; Hatch, Christine E; Wlostowski, Adam N; Singha, Kamini; Gooseff, Michael N.; Haggerty, Roy; Harvey, Judson; Cirpka, Olaf A; Brock, James T
2015-01-01
Groundwater–surface-water (GW-SW) interactions in streams are difficult to quantify because of heterogeneity in hydraulic and reactive processes across a range of spatial and temporal scales. The challenge of quantifying these interactions has led to the development of several techniques, from centimeter-scale probes to whole-system tracers, including chemical, thermal, and electrical methods. We co-applied conservative and smart reactive solute-tracer tests, measurement of hydraulic heads, distributed temperature sensing, vertical profiles of solute tracer and temperature in the stream bed, and electrical resistivity imaging in a 450-m reach of a 3rd-order stream. GW-SW interactions were not spatially expansive, but were high in flux through a shallow hyporheic zone surrounding the reach. NaCl and resazurin tracers suggested different surface–subsurface exchange patterns in the upper ⅔ and lower ⅓ of the reach. Subsurface sampling of tracers and vertical thermal profiles quantified relatively high fluxes through a 10- to 20-cm deep hyporheic zone with chemical reactivity of the resazurin tracer indicated at 3-, 6-, and 9-cm sampling depths. Monitoring of hydraulic gradients along transects with MINIPOINT streambed samplers starting ∼40 m from the stream indicated that groundwater discharge prevented development of a larger hyporheic zone, which progressively decreased from the stream thalweg toward the banks. Distributed temperature sensing did not detect extensive inflow of ground water to the stream, and electrical resistivity imaging showed limited large-scale hyporheic exchange. We recommend choosing technique(s) based on: 1) clear definition of the questions to be addressed (physical, biological, or chemical processes), 2) explicit identification of the spatial and temporal scales to be covered and those required to provide an appropriate context for interpretation, and 3) maximizing generation of mechanistic understanding and reducing costs of implementing multiple techniques through collaborative research.
Cheng, Chih-Chung; Yang, Ya Lan; Liao, Kate Hsiurong; Lai, Ted Weita
2016-01-01
Conventional methods for therapeutic blood-brain barrier (BBB) disruption facilitate drug delivery but are cumbersome to perform. A previous study demonstrated that adenosine receptor (AR) stimulation by 5′-N-ethylcarboxamide adenosine (NECA) increased the extravasation of intravascular tracers into the brain and proposed that AR agonism may be an effective method for therapeutic BBB disruption. We attempted to confirm the extravasation of tracers into the brain and also investigated tracer extravasation into peripheral organs and tracer retention in the blood. We found that NECA not only increased the extravasation of intravascular fluorescein and low molecular weight dextran into the brain of mice but also increased the concentrations of these tracers in the blood. In fact, the brain:blood ratio-normalized BBB permeability for either tracer is actually decreased by NECA administration. Elevated blood urea nitrogen levels in mice following NECA treatment suggested that renal function impairment was a probable cause of tracer retention. Therefore, NECA has almost no effect on the extravasation of intravascular Evans blue dye (EBD), an albumin-binding tracer with little renal clearance. Rather than inducing BBB disruption, our study demonstrated that NECA increased tracer extravasation into the brain by increasing the concentration gradient of the tracer across the BBB. PMID:27025761
Cheng, Chih-Chung; Yang, Ya Lan; Liao, Kate Hsiurong; Lai, Ted Weita
2016-03-30
Conventional methods for therapeutic blood-brain barrier (BBB) disruption facilitate drug delivery but are cumbersome to perform. A previous study demonstrated that adenosine receptor (AR) stimulation by 5'-N-ethylcarboxamide adenosine (NECA) increased the extravasation of intravascular tracers into the brain and proposed that AR agonism may be an effective method for therapeutic BBB disruption. We attempted to confirm the extravasation of tracers into the brain and also investigated tracer extravasation into peripheral organs and tracer retention in the blood. We found that NECA not only increased the extravasation of intravascular fluorescein and low molecular weight dextran into the brain of mice but also increased the concentrations of these tracers in the blood. In fact, the brain:blood ratio-normalized BBB permeability for either tracer is actually decreased by NECA administration. Elevated blood urea nitrogen levels in mice following NECA treatment suggested that renal function impairment was a probable cause of tracer retention. Therefore, NECA has almost no effect on the extravasation of intravascular Evans blue dye (EBD), an albumin-binding tracer with little renal clearance. Rather than inducing BBB disruption, our study demonstrated that NECA increased tracer extravasation into the brain by increasing the concentration gradient of the tracer across the BBB.
Surface-tension-driven flow in a glass melt
NASA Technical Reports Server (NTRS)
Mcneil, Thomas J.; Cole, Robert; Shankar Subramanian, R.
1985-01-01
Motion driven by surface tension gradients was observed in a vertical capillary liquid bridge geometry in a sodium borate melt. The surface tension gradients were introduced by maintaining a temperature gradient on the free melt surface. The flow velocities at the free surface of the melt, which were measured using a tracer technique, were found to be proportional to the applied temperature difference and inversely proportional to the melt viscosity. The experimentally observed velocities were in reasonable accord with predictions from a theoretical model of the system.
Determination of necessary tracer mass, initial sample-collection time, and subsequent sample-collection frequency are the three most difficult aspects to estimate for a proposed tracer test prior to conducting the tracer test. To facilitate tracer-mass estimation, 33 mass-estima...
NASA Astrophysics Data System (ADS)
Barberá, J. A.; Mudarra, M.; Andreo, B.; De la Torre, B.
2018-02-01
Tracer concentration data from field experiments conducted in several carbonate aquifers (Malaga province, southern Spain) were analyzed following a dual approach based on the graphical evaluation method (GEM) and solute transport modeling to decipher flow mechanisms in karst systems at regional scale. The results show that conduit system geometry and flow conditions are the principal factors influencing tracer migration through the examined karst flow routes. Solute transport is mainly controlled by longitudinal advection and dispersion throughout the conduit length, but also by flow partitioning between mobile and immobile fluid phases, while the matrix diffusion process appears to be less relevant. The simulation of tracer breakthrough curves (BTCs) suggests that diffuse and concentrated flow through the unsaturated zone can have equivalent transport properties under extreme recharge, with high flow velocities and efficient mixing due to the high hydraulic gradients generated. Tracer mobilization within the saturated zone under low flow conditions mainly depends on the hydrodynamics (rather than on the karst conduit development), which promote a lower longitudinal advection and retardation in the tracer migration, resulting in a marked tailing effect of BTCs. The analytical advection-dispersion equation better approximates the effective flow velocity and longitudinal dispersion estimations provided by the GEM, while the non-equilibrium transport model achieves a better adjustment of most asymmetric and long-tailed BTCs. The assessment of karst underground flow properties from tracing tests at regional scale can aid design of groundwater management and protection strategies, particularly in large hydrogeological systems (i.e. transboundary carbonate aquifers) and/or in poorly investigated ones.
Assessing the vulnerability of a municipal well field to contamination in a karst aquifer
Renken, R.A.; Cunningham, K.J.; Zygnerski, M.R.; Wacker, M.A.; Shapiro, A.M.; Harvey, R.W.; Metge, D.W.; Osborn, C.L.; Ryan, J.N.
2005-01-01
Proposed expansion of extractive lime-rock mines near the Miami-Dade County Northwest well field and Everglades wetland areas has garnered intense scrutiny by government, public, environmental stakeholders, and the media because of concern that mining will increase the risk of pathogen contamination. Rock mines are excavated to the same depth as the well field's primary producing zone. The underlying karst Biscayne aquifer is a triple-porosity system characterized by (1) a matrix of interparticle porosity and separate vug porosity; (2) touching-vug porosity that forms preferred, stratiform passageways; and, less commonly, (3) conduit porosity formed by thin solution pipes, bedding-plane vugs, and cavernous vugs. Existing ground-water flow and particle tracking models do not provide adequate information regarding the ability the aquifer to limit the advective movement of pathogens and other contaminants. Chemical transport and colloidal mobility properties have been delineated using conservative and microsphere-surrogate tracers for Cryptosporidium parvum. Forced-gradient tests were executed by introducing conservative tracers into injection wells located 100 m (328 ft) from a municipal-supply well. Apparent mean advective velocity between the wells is one to two orders of magnitude greater than previously measured. Touching-vug, stratiform flow zones are efficient pathways for tracer movement at the well field. The effective porosity for a continuum model between the point of injection and tracer recovery ranges from 2 to 4 percent and is an order of magnitude smaller than previously assumed. Existing well-field protection zones were established using porosity estimates based on specific yield. The effective, or kinematic, porosity of a Biscayne aquifer continuum model is lower than the total porosity, because high velocities occur along preferential flow paths that result in faster times of travel than can be represented with the ground-water flow equation. Tracer tests indicate that the relative ease of contaminant movement to municipal supply wells is much greater than previously considered.
High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI)
NASA Astrophysics Data System (ADS)
Bauer, Lisa M.; Situ, Shu F.; Griswold, Mark A.; Samia, Anna Cristina S.
2016-06-01
Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal through selective doping of magnetite nanoparticles with zinc. Moreover, we demonstrated focused magnetic hyperthermia heating by adapting the field gradient used in MPI. By saturating the iron oxide nanoparticles outside of a field free region (FFR) with an external static field, we can selectively heat a target region in our test sample. By comparing zinc-doped magnetite cubic nanoparticles with undoped spherical nanoparticles, we could show a 5-fold improvement in the specific absorption rate (SAR) in magnetic hyperthermia while providing good MPI signal, thereby demonstrating the potential for high-performance focused hyperthermia therapy through an MPI-guided approach (hMPI).Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal through selective doping of magnetite nanoparticles with zinc. Moreover, we demonstrated focused magnetic hyperthermia heating by adapting the field gradient used in MPI. By saturating the iron oxide nanoparticles outside of a field free region (FFR) with an external static field, we can selectively heat a target region in our test sample. By comparing zinc-doped magnetite cubic nanoparticles with undoped spherical nanoparticles, we could show a 5-fold improvement in the specific absorption rate (SAR) in magnetic hyperthermia while providing good MPI signal, thereby demonstrating the potential for high-performance focused hyperthermia therapy through an MPI-guided approach (hMPI). Electronic supplementary information (ESI) available: Detailed IONP synthetic methods, description of magnetic particle relaxometer set-up, TEM of reference IONP (Senior Scientific PrecisionMRX™ 25 nm oleic acid-coated nanoparticles), concentration dependent PSF of all IONP samples, PSF and SAR of Zn-Sph and Zn-Cube mixture sample, upper right quadrant of field-dependent hysteresis curve labelled with static field strengths, and the magnetic hyperthermia temperature profiles with and without the presence of external magnetic fields. See DOI: 10.1039/c6nr01877g
Stollenwerk, Kenneth G.
1998-01-01
A natural-gradient tracer test was conducted in an unconfined sand and gravel aquifer on Cape Cod, Massachusetts. Molybdate was included in the injectate to study the effects of variable groundwater chemistry on its aqueous distribution and to evaluate the reliability of laboratory experiments for identifying and quantifying reactions that control the transport of reactive solutes in groundwater. Transport of molybdate in this aquifer was controlled by adsorption. The amount adsorbed varied with aqueous chemistry that changed with depth as freshwater recharge mixed with a plume of sewage-contaminated groundwater. Molybdate adsorption was strongest near the water table where pH (5.7) and the concentration of the competing solutes phosphate (2.3 micromolar) and sulfate (86 micromolar) were low. Adsorption of molybdate decreased with depth as pH increased to 6.5, phosphate increased to 40 micromolar, and sulfate increased to 340 micromolar. A one-site diffuse-layer surface-complexation model and a two-site diffuse-layer surface-complexation model were used to simulate adsorption. Reactions and equilibrium constants for both models were determined in laboratory experiments and used in the reactive-transport model PHAST to simulate the two-dimensional transport of molybdate during the tracer test. No geochemical parameters were adjusted in the simulation to improve the fit between model and field data. Both models simulated the travel distance of the molybdate cloud to within 10% during the 2-year tracer test; however, the two-site diffuse-layer model more accurately simulated the molybdate concentration distribution within the cloud.
A test of geographic assignment using isotope tracers in feathers of known origin
Wunder, Michael B.; Kester, C.L.; Knopf, F.L.; Rye, R.O.
2005-01-01
We used feathers of known origin collected from across the breeding range of a migratory shorebird to test the use of isotope tracers for assigning breeding origins. We analyzed δD, δ13C, and δ15N in feathers from 75 mountain plover (Charadrius montanus) chicks sampled in 2001 and from 119 chicks sampled in 2002. We estimated parameters for continuous-response inverse regression models and for discrete-response Bayesian probability models from data for each year independently. We evaluated model predictions with both the training data and by using the alternate year as an independent test dataset. Our results provide weak support for modeling latitude and isotope values as monotonic functions of one another, especially when data are pooled over known sources of variation such as sample year or location. We were unable to make even qualitative statements, such as north versus south, about the likely origin of birds using both δD and δ13C in inverse regression models; results were no better than random assignment. Probability models provided better results and a more natural framework for the problem. Correct assignment rates were highest when considering all three isotopes in the probability framework, but the use of even a single isotope was better than random assignment. The method appears relatively robust to temporal effects and is most sensitive to the isotope discrimination gradients over which samples are taken. We offer that the problem of using isotope tracers to infer geographic origin is best framed as one of assignment, rather than prediction.
Tracer-Test Planning Using the Efficient Hydrologic Tracer-Test Design (Ehtd) Program (2005)
Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test ...
Tracer-Test Planning Using the Efficient Hydrologic Tracer-Test Design (Ehtd) Program (2003)
Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test ...
Borehole flowmeter logging for the accurate design and analysis of tracer tests.
Basiricò, Stefano; Crosta, Giovanni B; Frattini, Paolo; Villa, Alberto; Godio, Alberto
2015-04-01
Tracer tests often give ambiguous interpretations that may be due to the erroneous location of sampling points and/or the lack of flow rate measurements through the sampler. To obtain more reliable tracer test results, we propose a methodology that optimizes the design and analysis of tracer tests in a cross borehole mode by using vertical borehole flow rate measurements. Experiments using this approach, herein defined as the Bh-flow tracer test, have been performed by implementing three sequential steps: (1) single-hole flowmeter test, (2) cross-hole flowmeter test, and (3) tracer test. At the experimental site, core logging, pumping tests, and static water-level measurements were previously carried out to determine stratigraphy, fracture characteristics, and bulk hydraulic conductivity. Single-hole flowmeter testing makes it possible to detect the presence of vertical flows as well as inflow and outflow zones, whereas cross-hole flowmeter testing detects the presence of connections along sets of flow conduits or discontinuities intercepted by boreholes. Finally, the specific pathways and rates of groundwater flow through selected flowpaths are determined by tracer testing. We conclude that the combined use of single and cross-borehole flowmeter tests is fundamental to the formulation of the tracer test strategy and interpretation of the tracer test results. © 2014, National Ground Water Association.
Bussell, S J; Koch, D L; Hammer, D A
1995-01-01
Tracer diffusion coefficients of integral membrane proteins (IMPs) in intact plasma membranes are often much lower than those found in blebbed, organelle, and reconstituted membranes. We calculate the contribution of hydrodynamic interactions to the tracer, gradient, and rotational diffusion of IMPs in plasma membranes. Because of the presence of immobile IMPs, Brinkman's equation governs the hydrodynamics in plasma membranes. Solutions of Brinkman's equation enable the calculation of short-time diffusion coefficients of IMPs. There is a large reduction in particle mobilities when a fraction of them is immobile, and as the fraction increases, the mobilities of the mobile particles continue to decrease. Combination of the hydrodynamic mobilities with Monte Carlo simulation results, which incorporate excluded area effects, enable the calculation of long-time diffusion coefficients. We use our calculations to analyze results for tracer diffusivities in several different systems. In erythrocytes, we find that the hydrodynamic theory, when combined with excluded area effects, closes the gap between existing theory and experiment for the mobility of band 3, with the remaining discrepancy likely due to direct obstruction of band 3 lateral mobility by the spectrin network. In lymphocytes, the combined hydrodynamic-excluded area theory provides a plausible explanation for the reduced mobility of sIg molecules induced by binding concanavalin A-coated platelets. However, the theory does not explain all reported cases of "anchorage modulation" in all cell types in which receptor mobilities are reduced after binding by concanavalin A-coated platelets. The hydrodynamic theory provides an explanation of why protein lateral mobilities are restricted in plasma membranes and why, in many systems, deletion of the cytoplasmic tail of a receptor has little effect on diffusion rates. However, much more data are needed to test the theory definitively. We also predict that gradient and tracer diffusivities are the same to leading order. Finally, we have calculated rotational diffusion coefficients in plasma membranes. They decrease less rapidly than translational diffusion coefficients with increasing protein immobilization, and the results agree qualitatively with the limited experimental data available. PMID:7612825
COMPARISON OF THREE TRACER TESTS AT THE RAFT RIVER GEOTHERMAL SITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Earl D Mattson; Mitchell Plummer; Carl Palmer
2011-02-01
Three conservative tracer tests have been conducted through the Bridge Fault fracture zone at the Raft River Geothermal (RRG) site. All three tests were conducted between injection well RRG-5 and production wells RRG-1 (790 m distance) and RRG-4 (740 m distance). The injection well is used during the summer months to provide pressure support to the production wells. The first test was conducted in 2008 using 136 kg of fluorescein tracer. Two additional tracers were injected in 2010. The first 2010 tracer injected was 100 kg fluorescein disodium hydrate salt on June, 21. The second tracer (100 kg 2,6-naphthalene disulfonicmore » acid sodium salt) was injected one month later on July 21. Sampling of the two productions wells is still being performed to obtain the tail end of the second 2010 tracer test. Tracer concentrations were measured using HPLC with a fluorescence detector. Results for the 2008 test, suggest 80% tracer recover at the two production wells. Of the tracer recovered, 85% of tracer mass was recovered in well RRG-4 indicating a greater flow pathway connection between injection well and RRG-4 than RRG-1. Fluorescein tracer results appear to be similar between the 2008 and 2010 tests for well RRG-4 with peak concentrations arriving approximately 20 days after injection despite the differences between the injection rates for the two tests (~950 gpm to 475 gpm) between the 2008 and 2010. The two 2010 tracer tests will be compared to determine if the results support the hypothesis that rock contraction along the flow pathway due to the 55 oC cooler water injection alters the flow through the ~140 oC reservoir.« less
NASA Technical Reports Server (NTRS)
Tangborn, Andrew; Auger, Ludovic
2003-01-01
A suboptimal Kalman filter system which evolves error covariances in terms of a truncated set of wavelet coefficients has been developed for the assimilation of chemical tracer observations of CH4. This scheme projects the discretized covariance propagation equations and covariance matrix onto an orthogonal set of compactly supported wavelets. Wavelet representation is localized in both location and scale, which allows for efficient representation of the inherently anisotropic structure of the error covariances. The truncation is carried out in such a way that the resolution of the error covariance is reduced only in the zonal direction, where gradients are smaller. Assimilation experiments which last 24 days, and used different degrees of truncation were carried out. These reduced the covariance size by 90, 97 and 99 % and the computational cost of covariance propagation by 80, 93 and 96 % respectively. The difference in both error covariance and the tracer field between the truncated and full systems over this period were found to be not growing in the first case, and growing relatively slowly in the later two cases. The largest errors in the tracer fields were found to occur in regions of largest zonal gradients in the constituent field. This results indicate that propagation of error covariances for a global two-dimensional data assimilation system are currently feasible. Recommendations for further reduction in computational cost are made with the goal of extending this technique to three-dimensional global assimilation systems.
Journal: Efficient Hydrologic Tracer-Test Design for Tracer ...
Hydrological tracer testing is the most reliable diagnostic technique available for the determination of basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed to facilitate the design of tracer tests by root determination of the one-dimensional advection-dispersion equation (ADE) using a preset average tracer concentration which provides a theoretical basis for an estimate of necessary tracer mass. The method uses basic measured field parameters (e.g., discharge, distance, cross-sectional area) that are combined in functional relatipnships that descrive solute-transport processes related to flow velocity and time of travel. These initial estimates for time of travel and velocity are then applied to a hypothetical continuous stirred tank reactor (CSTR) as an analog for the hydrological-flow system to develop initial estimates for tracer concentration, tracer mass, and axial dispersion. Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to be necessary for descri
Dunn, Kevin H.; Tsai, Candace Su-Jung; Woskie, Susan R.; Bennett, James S.; Garcia, Alberto; Ellenbecker, Michael J.
2015-01-01
The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tracer gas (sulfur hexafluoride) and nanoparticles as well as an active test using an operator handling nanoalumina were conducted. A commercially available particle generator was used to produce sodium chloride tracer nanoparticles. Containment effectiveness was evaluated by sampling both in the breathing zone (BZ) of a mannequin and operator as well as across the hood opening. These containment tests were conducted across a range of hood face velocities (60, 80, and 100 feet/minute) and with the room ventilation system turned off and on. For the tracer gas and tracer nanoparticle tests, leakage was much more prominent on the left side of the hood (closest to the room supply air diffuser) although some leakage was noted on the right side and in the BZ sample locations. During the tracer gas and tracer nanoparticle tests, leakage was primarily noted when the room air conditioner was on for both the low and medium hood exhaust air flows. When the room air conditioner was turned off, the static tracer gas tests showed good containment across most test conditions. The tracer gas and nanoparticle test results were well correlated showing hood leakage under the same conditions and at the same sample locations. The impact of a room air conditioner was demonstrated with containment being adversely impacted during the use of room air ventilation. The tracer nanoparticle approach is a simple method requiring minimal setup and instrumentation. However, the method requires the reduction in background concentrations to allow for increased sensitivity. PMID:25175285
Dunn, Kevin H; Tsai, Candace Su-Jung; Woskie, Susan R; Bennett, James S; Garcia, Alberto; Ellenbecker, Michael J
2014-01-01
The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tracer gas (sulfur hexafluoride) and nanoparticles as well as an active test using an operator handling nanoalumina were conducted. A commercially available particle generator was used to produce sodium chloride tracer nanoparticles. Containment effectiveness was evaluated by sampling both in the breathing zone (BZ) of a mannequin and operator as well as across the hood opening. These containment tests were conducted across a range of hood face velocities (60, 80, and 100 ft/min) and with the room ventilation system turned off and on. For the tracer gas and tracer nanoparticle tests, leakage was much more prominent on the left side of the hood (closest to the room supply air diffuser) although some leakage was noted on the right side and in the BZ sample locations. During the tracer gas and tracer nanoparticle tests, leakage was primarily noted when the room air conditioner was on for both the low and medium hood exhaust airflows. When the room air conditioner was turned off, the static tracer gas tests showed good containment across most test conditions. The tracer gas and nanoparticle test results were well correlated showing hood leakage under the same conditions and at the same sample locations. The impact of a room air conditioner was demonstrated with containment being adversely impacted during the use of room air ventilation. The tracer nanoparticle approach is a simple method requiring minimal setup and instrumentation. However, the method requires the reduction in background concentrations to allow for increased sensitivity.
The interaction of horizontal eddy transport and thermal drive in the stratosphere
NASA Technical Reports Server (NTRS)
Salby, Murry L.; O'Sullivan, Donal; Callaghan, Patrick; Garcia, Rolando R.
1990-01-01
The two processes that determine the average state of the circulation; i.e., horizontal eddy transport and thermal dissipation, are examined, and the effects of their interaction on circulation and on tracer distribution in the stratosphere are investigated using barotropic calculations on the sphere. It is shown that eddy advection tends to homogenize the meridional gradient Q at low latitudes, while thermal dissipation restores the gradient after episodes of mixing.
Using molecular-scale tracers to investigate transport of agricultural pollutants in soil and water
NASA Astrophysics Data System (ADS)
Lloyd, C.; Michaelides, K.; Chadwick, D.; Dungait, J.; Evershed, R. P.
2012-12-01
We explore the use of molecular-scale tracers to investigate the transport of potential pollutants due to the application of slurry to soil. The molecular-scale approach allows us to separate the pollutants which are moved to water bodies through sediment-bound and dissolved transport pathways. Slurry is applied to agricultural land to as a soil-improver across a wide-range of topographic and climatic regimes, hence a set of experiments were designed to assess the effect of changing slope gradient and rainfall intensity on the transport of pollutants. The experiments were carried out using University of Bristol's TRACE (Test Rig for Advancing Connectivity Experiments) facility. The facility includes a dual axis soil slope (6 x 2.5 x 0.3 m3) and 6-nozzle rainfall simulator, which enables the manipulation of the slope to simulate different slope gradient and rainfall scenarios. Cattle slurry was applied to the top 1 metre strip of the experimental soil slope followed by four rainfall simulations, where the gradient (5° & 10°) and the rainfall intensity (60 & 120 mm hr-1) were co-varied. Leachate was sampled from different flow pathways (surface, subsurface and percolated) via multiple outlets on the slope throughout the experiments and soil cores were taken from the slope after each experiment. Novel tracers were used to trace the pollutants in both dissolved and sediment-bound forms. Fluorescence spectroscopy was used to trace dissolved slurry-derived material via water flow pathways, as the slurry was found to have a distinct signature compared with the soil. The fluorescence signatures of the leachates were compared with those of many organic compounds in order to characterise the origin of the signal. This allowed the assessment of the longevity of the signal in the environment to establish if it could be used as a robust long-term tracer of slurry material in water or if would be subject to transform processes through time. 5-βstanols, organic compounds unique to ruminant faeces, were used to trace the transport of sediment-bound pollutants from the slurry which could be transported into water bodies via erosion processes. The results showed that contributions of potential pollutants from the surface and subsurface flow pathways and from the eroded sediment differ according to slope gradient and rainfall intensity. Therefore, as the contribution of each of these pathways changes in response to rainfall and slope gradient, the pollution risk also changes accordingly, as different organic compounds are mobilised at varying rates. Rapid hydrological response to rainfall results in erosion and surface transport of sediment-bound and dissolved pollutants, creating an immediate contamination threat. However, conditions resulting in a slower hydrological response and the predominance of flow percolation over surface runoff results in higher rates of dissolved pollutant transport through the soil layers which risks contamination of subsurface and deeper ground-water systems. These experiments provide insight into the pathways and timing of contaminant transport with potential implications for understanding contamination risk from the transfer of slurry from land to water bodies. Understanding this threat is critical at a time when pressure is on to develop land-management strategies to reduce pollution alongside maintaining food security.
NASA Astrophysics Data System (ADS)
Stanaway, D. J.; Haggerty, R.; Feris, K. P.
2010-12-01
Heavy metal contamination in lotic ecosystems is a major health and environmental concern worldwide. The Resazurin Resorufin (Raz Rru) Smart Tracer system (Haggerty et al., 2008) provides a novel approach to test current models of microbial ecosystem response to chronic stressors such as heavy metals. These models predict that functional redundancy of metabolic capabilities of community members (e.g. respiration rate and enzyme activity) will compensate for decreases in species diversity until a stress threshold is reached. At this point, species diversity and function are expected to decline rapidly. Contrary to this model, microbial communities of the Clark Fork River (CF), Montana, demonstrate high levels of species diversity along the contamination gradient, whereas community function is inversely proportional to the level of contamination. The Raz Rru tool, a metabolically reactive hydrologic tracer, allows for direct quantification of in-situ microbial respiration rates. Therefore, this tool provides an opportunity to build upon studies of ecosystem response to contamination previously limited to extrapolation of point scale measurements to reach scale processes. The Raz Rru tool is used here to quantify the magnitude of metal induced limits on heterotrophic microbial respiration in communities that have evolved to different levels of chronic metal exposure. In this way we propose to be able to test a novel hypothesis concerning the nature of evolution of community processes to chronic stress and persistent environmental pollutants. Specifically, we hypothesize that metal contamination produces a measureable metabolic cost to both tolerant and intolerant communities. To test this hypothesis, rates of respiration associated with hyporheic sediments, supporting intact microbial communities, were quantified in the presence and absence of an acute Cd exposure in column experiments. Hyporheic sediment was collected from differently contaminated locations within the CF and compared to sediment from pristine reference sites. The biological reduction rate of Raz to Rru, K_12 in the Advection Dispersion Equation (ADE) below, represents rates of sediment associated heterotrophic respiration. ∂C_Raz}/{∂t} = {α_Lν}/{R} {∂^2C_Raz}/{∂x^2} - {ν}/{R} {∂C_Raz}/{∂x} - k_1C_Raz -k_12C_Raz [/tex] {∂C_Rru}/{∂t} = {α_Lν}/{R} {∂^2C_Rru}/{∂x^2} -{ν}/{R} {∂C_Rru}/{∂x} - k_2C_Rru + k_12 {M_Rru}/{M_Raz}CRaz [/tex] The Raz-Rru ADE will be optimized through the Markov Chain Monte Carlo method. Preliminary analysis of Cl^- tracer data provides input estimation of physical parameters, populating the hydrological terms of the ADE necessary for elucidation of K_12. It is expected that sediment metal content and K_12 are inversely related and that acute Cd exposure will negatively affect K_12 of both communities, with communities inhabiting metal contaminated sediments demonstrating a smaller reduction in K_12. This project has the potential to contribute to a revised theory of community response to metal induced chronic ecosystem stress, while contributing to the further development and application of the Raz Rru Smart Tracer system.
Hydrological tracer testing is the most reliable diagnostic technique available for the determination of basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowl...
Journal: A Review of Some Tracer-Test Design Equations for ...
Determination of necessary tracer mass, initial sample-collection time, and subsequent sample-collection frequency are the three most difficult aspects to estimate for a proposed tracer test prior to conducting the tracer test. To facilitate tracer-mass estimation, 33 mass-estimation equations are reviewed here, 32 of which were evaluated using previously published tracer-test design examination parameters. Comparison of the results produced a wide range of estimated tracer mass, but no means is available by which one equation may be reasonably selected over the others. Each equation produces a simple approximation for tracer mass. Most of the equations are based primarily on estimates or measurements of discharge, transport distance, and suspected transport times. Although the basic field parameters commonly employed are appropriate for estimating tracer mass, the 33 equations are problematic in that they were all probably based on the original developers' experience in a particular field area and not necessarily on measured hydraulic parameters or solute-transport theory. Suggested sampling frequencies are typically based primarily on probable transport distance, but with little regard to expected travel times. This too is problematic in that tends to result in false negatives or data aliasing. Simulations from the recently developed efficient hydrologic tracer-test design methodology (EHTD) were compared with those obtained from 32 of the 33 published tracer-
NASA Astrophysics Data System (ADS)
Schemel, Laurence E.; Cox, Marisa H.; Runkel, Robert L.; Kimball, Briant A.
2006-08-01
The acidic discharge from Cement Creek, containing elevated concentrations of dissolved metals and sulphate, mixed with the circumneutral-pH Animas River over a several hundred metre reach (mixing zone) near Silverton, CO, during this study. Differences in concentrations of Ca, Mg, Si, Sr, and SO42- between the creek and the river were sufficiently large for these analytes to be used as natural tracers in the mixing zone. In addition, a sodium chloride (NaCl) tracer was injected into Cement Creek, which provided a Cl- reference tracer in the mixing zone. Conservative transport of the dissolved metals and sulphate through the mixing zone was verified by mass balances and by linear mixing plots relative to the injected reference tracer. At each of seven sites in the mixing zone, five samples were collected at evenly spaced increments of the observed across-channel gradients, as determined by specific conductance. This created sets of samples that adequately covered the ranges of mixtures (mixing ratios, in terms of the fraction of Animas River water, %AR). Concentratis measured in each mixing zone sample and in the upstream Animas River and Cement Creek were used to compute %AR for the reference and natural tracers. Values of %AR from natural tracers generally showed good agreement with values from the reference tracer, but variability in discharge and end-member concentrations and analytical errors contributed to unexpected outlier values for both injected and natural tracers. The median value (MV) %AR (calculated from all of the tracers) reduced scatter in the mixing plots for the dissolved metals, indicating that the MV estimate reduced the effects of various potential errors that could affect any tracer.
DESIGN OF A MTBE REMEDIATION TECHNOLOGY EVALUATION
This study examines the intrinsic variability of dissolved MTBE concentrations in ground water during the course of a pilot-scale bioremedial technology trial in Port Hueneme, California. A pre-trial natural gradient tracer experiment using bromide was conducted in an anaerobic t...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, G.A.; Sepehrnoori, K.
1992-12-31
This second annual report on innovative uses of tracers for reservoir characterization contains four sections each describing a novel use of oilfield tracers. The first section describes and illustrates the use of a new single-well tracer test to estimate wettability. This test consists of the injection of brine containing tracers followed by oil containing tracers, a shut-in period to allow some of the tracers to react, and then production of the tracers. The inclusion of the oil injection slug with tracers is unique to this test, and this is what makes the test work. We adapted our chemical simulator, UTCHEM,more » to enable us to study this tracer method and made an extensive simulation study to evaluate the effects of wettability based upon characteristic curves for relative permeability and capillary pressure for differing wetting states typical of oil reservoirs. The second section of this report describes a new method for analyzing interwell tracer data based upon a type-curve approach. Theoretical frequency response functions were used to build type curves of ``transfer function`` and ``phase spectrum`` that have dimensionless heterogeneity index as a parameter to characterize a stochastic permeability field. We illustrate this method by analyzing field tracer data. The third section of this report describes a new theory for interpreting interwell tracer data in terms of channeling and dispersive behavior for reservoirs. Once again, a stochastic approach to reservoir description is taken. The fourth section of this report describes our simulation of perfluorocarbon gas tracers. This new tracer technology developed at Brookhaven National Laboratory is being tested at the Elk Hills Naval Petroleum Reserve No. 1 in California. We report preliminary simulations made of these tracers in one of the oil reservoirs under evaluation with these tracers in this field. Our compostional simulator (UTCOMP) was used for this simulation study.« less
Lanthanide-labeled clay: A new method for tracing sediment transport in Karst
Mahler, B.J.; Bennett, P.C.; Zimmerman, M.
1998-01-01
Mobile sediment is a fundamental yet poorly characterized aspect of mass transport through karst aquifers. Here the development and field testing of an extremely sensitive particle tracer that may be used to characterize sediment transport in karst aquifers is described. The tracer consists of micron-size montmorillonite particles homoionized to the lanthanide form; after injection and retrieval from a ground water system, the lanthanide ions are chemically stripped from the clay and quantified by high performance liquid chromatography. The tracer meets the following desired criteria: low detection limit; a number of differentiable signatures; inexpensive production and quantification using standard methods; no environmental risks; and hydrodynamic properties similar to the in situ sediment it is designed to trace. The tracer was tested in laboratory batch experiments and field tested in both surface water and ground water systems. In surface water, arrival times of the tracer were similar to those of a conservative water tracer, although a significant amount of material was lost due to settling. Two tracer tests were undertaken in a karst aquifer under different flow conditions. Under normal flow conditions, the time of arrival and peak concentration of the tracer were similar to or preceded that of a conservative water tracer. Under low flow conditions, the particle tracer was not detected, suggesting that in low flow the sediment settles out of suspension and goes into storage.Mobile sediment is a fundamental yet poorly characterized aspect of mass transport through karst aquifers. Here the development and field testing of an extremely sensitive particle tracer that may be used to characterize sediment transport in karst aquifers is described. The tracer consists of micron-size montmorillonite particles homoionized to the lanthanide form; after injection and retrieval from a ground water system, the lanthanide ions are chemically stripped from the clay and quantified by high performance liquid chromatography. The tracer meets the following desired criteria: low detection limit; a number of differentiable signatures; inexpensive production and quantification using standard methods; no environmental risks; and hydrodynamic properties similar to the in situ sediment it is designed to trace. The tracer was tested in laboratory batch experiments and field tested in both surface water and ground water systems. In surface water, arrival times of the tracer were similar to those of a conservative water tracer, although a significant amount of material was lost due to settling. Two tracer tests were undertaken in a karst aquifer under different flow conditions. Under normal flow conditions, the time of arrival and peak concentration of the tracer were similar to or preceded that of a conservative water tracer. Under low flow conditions, the particle tracer was not detected, suggesting that in low flow the sediment settles out of suspension and goes into storage.
NASA Astrophysics Data System (ADS)
LaForce, T.; Ennis-King, J.; Paterson, L.
2013-12-01
Residual CO2 saturation is a critically important parameter in CO2 storage as it can have a large impact on the available secure storage volume and post-injection CO2 migration. A suite of single-well tests to measure residual trapping was conducted at the Otway test site in Victoria, Australia during 2011. One or more of these tests could be conducted at a prospective CO2 storage site before large-scale injection. The test involved injection of 150 tonnes of pure carbon dioxide followed by 454 tonnes of CO2-saturated formation water to drive the carbon dioxide to residual saturation. This work presents a brief overview of the full test sequence, followed by the analysis and interpretation of the tests using noble gas tracers. Prior to CO2 injection krypton (Kr) and xenon (Xe) tracers were injected and back-produced to characterise the aquifer under single-phase conditions. After CO2 had been driven to residual the two tracers were injected and produced again. The noble gases act as non-partitioning aqueous-phase tracers in the undisturbed aquifer and as partitioning tracers in the presence of residual CO2. To estimate residual saturation from the tracer test data a one-dimensional radial model of the near-well region is used. In the model there are only two independent parameters: the apparent dispersivity of each tracer and the residual CO2 saturation. Independent analysis of the Kr and Xe tracer production curves gives the same estimate of residual saturation to within the accuracy of the method. Furthermore the residual from the noble gas tracer tests is consistent with other measurements in the sequence of tests.
Six-hourly time series of horizontal troposphere gradients in VLBI analyis
NASA Astrophysics Data System (ADS)
Landskron, Daniel; Hofmeister, Armin; Mayer, David; Böhm, Johannes
2016-04-01
Consideration of horizontal gradients is indispensable for high-precision VLBI and GNSS analysis. As a rule of thumb, all observations below 15 degrees elevation need to be corrected for the influence of azimuthal asymmetry on the delay times, which is mainly a product of the non-spherical shape of the atmosphere and ever-changing weather conditions. Based on the well-known gradient estimation model by Chen and Herring (1997), we developed an augmented gradient model with additional parameters which are determined from ray-traced delays for the complete history of VLBI observations. As input to the ray-tracer, we used operational and re-analysis data from the European Centre for Medium-Range Weather Forecasts. Finally, we applied those a priori gradient parameters to VLBI analysis along with other empirical gradient models and assessed their impact on baseline length repeatabilities as well as on celestial and terrestrial reference frames.
Fractured-rock hydrogeophysics with electrically conductive and neutrally buoyant tracers
NASA Astrophysics Data System (ADS)
Shakas, A.; Linde, N.; Baron, L.; Le Borgne, T.; Bour, O.; Lavenant, N.; Gerard, M. F.
2016-12-01
Artificial tracer tests help to characterize and understand the dynamics of groundwater systems. This remains a challenging task, especially when dealing with highly heterogeneous formations in which flow can be very localized and the interpretation of tracer breakthrough curves may be ambiguous. As a complement to tracer tests, ground-penetrating radar (GPR) and electrical resistivity tomography can map the space-time migration of electrically conductive tracers. In hydrogeophysics, the most common tracer is dissolved table salt in water. However, conventional salt tracers lead to density effects that are often ignored. Even less than 1% density variations can have a dramatic effect on transport behavior and affect tracer tests in complex ways. Such effects have been demonstrated in our previous experiments that used single-hole GPR to monitor saline push-pull tests in fractured granite. It is possible to model density effects, but this leads to computational complexity and field dynamics that are not necessarily representative of the natural responses of the system. To minimize density effects, we performed a new set of push-pull tests using a neutrally buoyant and electrically conductive tracer at the same test site located close to Ploemeur, France. This novel tracer consists of a mixture of salt (NaCl), water and pure ethanol. Ethanol has a density of 789 g/L at 20° C and is used to counter-act the salt-induced density increase. Our GPR time-lapse images and tracer breakthrough data indicate a largely reversible transport process that confirms the neutral buoyancy of the tracer. Ethanol is biodegradable and does not pose significant environmental issues. Furthermore, calibration of the neutral-buoyant mixture is straightforward to perform in the field using Archimedes principle. Based on these results, we argue that neutrally buoyant ethanol-salt-water mixtures are ideal for a wide variety of hydrogeophysical tracer tests in porous or fractured media.
Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazarian, A.; Yuen, Ka Ho; Lee, Hyeseung
On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magneticmore » field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.« less
Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields
NASA Astrophysics Data System (ADS)
Lazarian, A.; Yuen, Ka Ho; Lee, Hyeseung; Cho, J.
2017-06-01
On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magnetic field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.
On parameterization of the inverse problem for estimating aquifer properties using tracer data
NASA Astrophysics Data System (ADS)
Kowalsky, M. B.; Finsterle, S.; Williams, K. H.; Murray, C.; Commer, M.; Newcomer, D.; Englert, A.; Steefel, C. I.; Hubbard, S. S.
2012-06-01
In developing a reliable approach for inferring hydrological properties through inverse modeling of tracer data, decisions made on how to parameterize heterogeneity (i.e., how to represent a heterogeneous distribution using a limited number of parameters that are amenable to estimation) are of paramount importance, as errors in the model structure are partly compensated for by estimating biased property values during the inversion. These biased estimates, while potentially providing an improved fit to the calibration data, may lead to wrong interpretations and conclusions and reduce the ability of the model to make reliable predictions. We consider the estimation of spatial variations in permeability and several other parameters through inverse modeling of tracer data, specifically synthetic and actual field data associated with the 2007 Winchester experiment from the Department of Energy Rifle site. Characterization is challenging due to the real-world complexities associated with field experiments in such a dynamic groundwater system. Our aim is to highlight and quantify the impact on inversion results of various decisions related to parameterization, such as the positioning of pilot points in a geostatistical parameterization; the handling of up-gradient regions; the inclusion of zonal information derived from geophysical data or core logs; extension from 2-D to 3-D; assumptions regarding the gradient direction, porosity, and the semivariogram function; and deteriorating experimental conditions. This work adds to the relatively limited number of studies that offer guidance on the use of pilot points in complex real-world experiments involving tracer data (as opposed to hydraulic head data).
Ambiguity in measuring matrix diffusion with single-well injection/recovery tracer tests
Lessoff, S.C.; Konikow, Leonard F.
1997-01-01
Single-well injection/recovery tracer tests are considered for use in characterizing and quantifying matrix diffusion in dual-porosity aquifers. Numerical modeling indicates that neither regional drift in homogeneous aquifers, nor heterogeneity in aquifers having no regional drift, nor hydrodynamic dispersion significantly affects these tests. However, when drift is coupled simultaneously with heterogeneity, they can have significant confounding effects on tracer return. This synergistic effect of drift and heterogeneity may help explain irreversible flow and inconsistent results sometimes encountered in previous single-well injection/recovery tracer tests. Numerical results indicate that in a hypothetical single-well injection/recovery tracer test designed to demonstrate and measure dual-porosity characteristics in a fractured dolomite, the simultaneous effects of drift and heterogeneity sometimes yields responses similar to those anticipated in a homogeneous dual-porosity formation. In these cases, tracer recovery could provide a false indication of the occurrence of matrix diffusion. Shortening the shut-in period between injection and recovery periods may make the test less sensitive to drift. Using multiple tracers having different diffusion characteristics, multiple tests having different pumping schedules, and testing the formation at more than one location would decrease the ambiguity in the interpretation of test data.
Nitrous oxide as a tracer gas in the ASHRAE 110-1995 Standard.
Burke, Martin; Wong, Larry; Gonzales, Ben A; Knutson, Gerhard
2014-01-01
ANSI/ASHRAE Standard 110 provides a quantitative method for testing the performance of laboratory fume hoods. Through release of a known quantity (4.0 Lpm) of a tracer gas, and subsequent monitoring of the tracer gas concentration in the "breathing zone" of a mannequin positioned in front of the hood, this method allows for evaluation of laboratory hood performance. Standard 110 specifies sulfur hexafluoride (SF6) as the tracer gas; however, suitable alternatives are allowed. Through three series of performance tests, this analysis serves to investigate the use of nitrous oxide (N2O) as an alternate tracer gas for hood performance testing. Single gas tests were performed according to ASHRAE Standard 110-1995 with each tracer gas individually. These tests showed identical results using an acceptance criterion of AU 0.1 with the sash half open, nominal 18 inches (0.46m) high, and the face velocity at a nominal 60 fpm (0.3 m/s). Most data collected in these single gas tests, for both tracer gases, were below the minimum detection limit, thus two dual gas tests were developed for simultaneous sampling of both tracer gases. Dual gas dual ejector tests were performed with both tracer gases released simultaneously through two ejectors, and the concentration measured with two detectors using a common sampling probe. Dual gas single ejector tests were performed with both tracer gases released though a single ejector, and the concentration measured in the same manner as the dual gas dual ejector tests. The dual gas dual ejector tests showed excellent correlation, with R typically greater than 0.9. Variance was observed in the resulting regression line for each hood, likely due to non-symmetry between the two challenges caused by variables beyond the control of the investigators. Dual gas single ejector tests resulted in exceptional correlation, with R>0.99 typically for the consolidated data, with a slope of 1.0. These data indicate equivalent results for ASHRAE 110 performance testing using either SF6 or N2O, indicating N2O as an applicable alternate tracer gas.
Tracer-Test Planning Using the Efficient Hydrologic Tracer ...
Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed that combines basic measured field parameters (e.g., discharge, distance, cross-sectional area) in functional relationships that describe solute-transport processes related to flow velocity and time of travel. The new method applies these initial estimates for time of travel and velocity to a hypothetical continuously stirred tank reactor as an analog for the hydrologic flow system to develop initial estimates for tracer concentration and axial dispersion, based on a preset average tracer concentration. Root determination of the one-dimensional advection-dispersion equation (ADE) using the preset average tracer concentration then provides a theoretical basis for an estimate of necessary tracer mass.Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to be
NASA Astrophysics Data System (ADS)
Pham, H. V.; Parashar, R.; Sund, N. L.; Pohlmann, K.
2017-12-01
Pahute Mesa, located in the north-western region of the Nevada National Security Site, is an area where numerous underground nuclear tests were conducted. The mesa contains several fractured aquifers that can potentially provide high permeability pathways for migration of radionuclides away from testing locations. The BULLION Forced-Gradient Experiment (FGE) conducted on Pahute Mesa injected and pumped solute and colloid tracers from a system of three wells for obtaining site-specific information about the transport of radionuclides in fractured rock aquifers. This study aims to develop reliable three-dimensional discrete fracture network (DFN) models to simulate the BULLION FGE as a means for computing realistic ranges of important parameters describing fractured rock. Multiple conceptual DFN models were developed using dfnWorks, a parallelized computational suite developed by Los Alamos National Laboratory, to simulate flow and conservative particle movement in subsurface fractured rocks downgradient from the BULLION test. The model domain is 100x200x100 m and includes the three tracer-test wells of the BULLION FGE and the Pahute Mesa Lava-flow aquifer. The model scenarios considered differ from each other in terms of boundary conditions and fracture density. For each conceptual model, a number of statistically equivalent fracture network realizations were generated using data from fracture characterization studies. We adopt the covariance matrix adaptation-evolution strategy (CMA-ES) as a global local stochastic derivative-free optimization method to calibrate the DFN models using groundwater levels and tracer breakthrough data obtained from the three wells. Models of fracture apertures based on fracture type and size are proposed and the values of apertures in each model are estimated during model calibration. The ranges of fracture aperture values resulting from this study are expected to enhance understanding of radionuclide transport in fractured rocks and support development of improved large-scale flow and transport models for Pahute Mesa.
Conceptual Model Evaluation using Advanced Parameter Estimation Techniques with Heat as a Tracer
NASA Astrophysics Data System (ADS)
Naranjo, R. C.; Morway, E. D.; Healy, R. W.
2016-12-01
Temperature measurements made at multiple depths beneath the sediment-water interface has proven useful for estimating seepage rates from surface-water channels and corresponding subsurface flow direction. Commonly, parsimonious zonal representations of the subsurface structure are defined a priori by interpretation of temperature envelopes, slug tests or analysis of soil cores. However, combining multiple observations into a single zone may limit the inverse model solution and does not take full advantage of the information content within the measured data. Further, simulating the correct thermal gradient, flow paths, and transient behavior of solutes may be biased by inadequacies in the spatial description of subsurface hydraulic properties. The use of pilot points in PEST offers a more sophisticated approach to estimate the structure of subsurface heterogeneity. This presentation evaluates seepage estimation in a cross-sectional model of a trapezoidal canal with intermittent flow representing four typical sedimentary environments. The recent improvements in heat as a tracer measurement techniques (i.e. multi-depth temperature probe) along with use of modern calibration techniques (i.e., pilot points) provides opportunities for improved calibration of flow models, and, subsequently, improved model predictions.
Anisotropic mesoscale eddy transport in ocean general circulation models
NASA Astrophysics Data System (ADS)
Reckinger, Scott; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank; Dennis, John; Danabasoglu, Gokhan
2014-11-01
In modern climate models, the effects of oceanic mesoscale eddies are introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically. However, the diffusive processes that the parameterization approximates, such as shear dispersion and potential vorticity barriers, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters from one to three: major diffusivity, minor diffusivity, and alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces temperature and salinity biases. These effects can be improved by parameterizing the oceanic anisotropic transport mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhil Datta-Gupta
2003-08-01
We explore the use of efficient streamline-based simulation approaches for modeling partitioning interwell tracer tests in hydrocarbon reservoirs. Specifically, we utilize the unique features of streamline models to develop an efficient approach for interpretation and history matching of field tracer response. A critical aspect here is the underdetermined and highly ill-posed nature of the associated inverse problems. We have adopted an integrated approach whereby we combine data from multiple sources to minimize the uncertainty and non-uniqueness in the interpreted results. For partitioning interwell tracer tests, these are primarily the distribution of reservoir permeability and oil saturation distribution. A novel approachmore » to multiscale data integration using Markov Random Fields (MRF) has been developed to integrate static data sources from the reservoir such as core, well log and 3-D seismic data. We have also explored the use of a finite difference reservoir simulator, UTCHEM, for field-scale design and optimization of partitioning interwell tracer tests. The finite-difference model allows us to include detailed physics associated with reactive tracer transport, particularly those related with transverse and cross-streamline mechanisms. We have investigated the potential use of downhole tracer samplers and also the use of natural tracers for the design of partitioning tracer tests. Finally, the behavior of partitioning tracer tests in fractured reservoirs is investigated using a dual-porosity finite-difference model.« less
NASA Astrophysics Data System (ADS)
LaForce, T.; Ennis-King, J.; Boreham, C.; Serno, S.; Cook, P. J.; Freifeld, B. M.; Gilfillan, S.; Jarrett, A.; Johnson, G.; Myers, M.; Paterson, L.
2015-12-01
Residual trapping efficiency is a critical parameter in the design of secure subsurface CO2 storage. Residual saturation is also a key parameter in oil and gas production when a field is under consideration for enhanced oil recovery. Tracers are an important tool that can be used to estimate saturation in field tests. A series of measurements of CO2 saturation in an aquifer were undertaken as part of the Otway stage 2B extension field project in Dec. 2014. These tests were a repeat of similar tests in the same well in 2011 with improvements to the data collection and handling method. Two single-well tracer tests using noble gas tracers were conducted. In the first test krypton and xenon are injected into the water-saturated formation to establish dispersivity of the tracers in single-phase flow. Near-residual CO2 saturation is then established near the well. In the second test krypton and xenon are injected with CO2-saturated water to measure the final CO2 saturation. The recovery rate of the tracers is similar to predicted rates using recently published partitioning coefficients. Due to technical difficulties, there was mobile CO2 in the reservoir throughout the second tracer test in 2014. As a consequence, it is necessary to use a variation of the previous simulation procedure to interpret the second tracer test. One-dimensional, radial simulations are used to estimate average saturation of CO2 near the well. Estimates of final average CO2 saturation are computed using two relative permeability models, thermal and isothermal simulations, and three sets of coefficients for the partitioning of the tracers between phases. Four of the partitioning coefficients used were not previously available in the literature. The noble gas tracer field test and analysis of the 2011 and 2014 data both give an average CO2 saturation that is consistent with other field measurements. This study has demonstrated the repeatability of the methodology for noble gas tracer tests in the field.
Tracer Tests in the Fractured Rock to Investigate Preferential Groundwater Flow
NASA Astrophysics Data System (ADS)
Chan, W.; Chung, L.; Lee, T.; Liu, C.; Chia, Y.; Teng, M.
2012-12-01
Hydraulic tests are often used to obtain hydraulic conductivity in the aquifer. Test results usually reflect the average hydraulic conductivity in the surrounding strat. However, in fractured rock, groundwater flows primarily through a few fractures. Saltwater tracer test can be used to detect the direction of groundwater flow, but it was difficult to know the hydraulic connectivity between fractures. In this study, we use a variety of field tests, including tracer test, hydraulic test, and heat-pulse flowmeter test, to locate the permeable fractures and detect the hydraulic connections between boreholes. There are eight test wells and two observation wells on field experimental site in central Taiwan. Geological survey results show that there are at least three sets of joint planes. In order to realize the location of the preferential pathway of groundwater flow, heat-pulse flowmeter measurement was adopted to identify the depth of permeable fractures. Multi-well pumping test was also performed to investigate the hydraulic connectivity between these wells. Tracer tests were then used to detect the hydraulic connectivity of permeable fractures between two wells. Injection of nano zero valent iron in one well and and collection of iron tracer with a magnet array in the other well can specifically locate the permeable fracture and determine the connectivity. Saltwater tracer test result can be used to support that of nano-iron tracer test, and verify the relationship between well water conductivity increases and rock fracture location. The results show that tracer test is a useful tool to investigate the preferential groundwater flow in the fractured rock, but it is essential to flush the mud in fractures prior to the test.
Re-Emergence of Excess Bomb Radiocarbon in Upwelling Waters with High-Latitude Origins
NASA Astrophysics Data System (ADS)
Lindsay, C. M.; Lehman, S.
2016-02-01
The quantity of radiocarbon (14C) in the atmosphere was nearly doubled by nuclear weapons testing in the 1960s. Since then, the terrestrial biosphere and the ocean have absorbed most of the excess 14C from the atmosphere, although atmospheric radiocarbon activity (∆14C) continues to decline due to ongoing emissions of 14C-free CO2 from combustion of fossil fuels. The large transient decline in atmospheric ∆14C combined with gas exchange at the surface and spatially variable time scales of ocean mixing have led to large ∆14C gradients in the surface ocean between upwelling- and downwelling-dominated regions. These gradients continue to evolve over time. We examine the rate of change of surface ocean ∆14C between CLIVAR (2000-2011) and WOCE era (1990s) or other slightly earlier (1980s) datasets and find spatial patterns that reveal mixing between 14C-enriched mode waters, 14C-depleted deep waters and surface waters that are well-equilibrated with the atmosphere. The ∆14C of mode water reaching equatorial upwelling regions has increased between the WOCE and CLIVAR time periods, and the greater contribution of 14C to the low-latitude surface ocean appears to have significantly offset the ∆14C decline otherwise imparted by air-sea gas exchange with the atmosphere. Consequently, ∆14C gradients between low-latitude upwelling regions and gyre centers have weakened proportionally more than between gyre centers and regions where pre-industrial water still upwells, such as the Southern Ocean. Properly accounting for the re-emergence of water with post-industrial characteristics is important to constrain earth system models that seek to explain DIC, pH and other anthropogenically perturbed tracers in the surface ocean. Because of the history of ∆14C in the atmosphere, ocean ∆14C is a useful tracer for this purpose.
NASA Astrophysics Data System (ADS)
Dhabal, Arnab; Mundy, Lee; Rizzo, Maxime; Storm, Shaye; Teuben, Peter; CLASSy Collaboration
2018-01-01
Filamentary structures are prevalent in molecular clouds over a wide range of scales, and are often associated with active star formation. The study of filament morphology and kinematics provide insights into the physical processes leading to core formation in clustered environments. As part of the CARMA Large Area Star Formation Survey (CLASSy) follow-up, we observed five Herschel filaments in the Serpens Main, Serpens South and NGC1333 molecular clouds using the J=1-0 transitions of dense gas tracers H13CO+, HNC and H13CN. Of these, H13CO+ and H13CN are optically thin and serve as a test of the kinematics previously seen by the CLASSy in N2H+. The observations have an angular resolution of 7'' and a spectral resolution of 0.16 km/s. Although the large scale structure compares well with the CARMA N2H+ (J=1-0) maps and Herschel dust continuum maps, we resolve finer structure within the filaments identified by Herschel. Most regions are found to have multiple structures and filaments partially overlapping in the line-of-sight. In two regions overlapping structures have velocity differences as high as 1.4 km/s. We identify 8 individual filaments with typical widths of 0.03-0.06 pc in these tracers, which is significantly less than widths observed in the Herschel dust column density maps. At least 50% of the filaments have distinct velocity gradients perpendicular to their major axis with average values in the range 4-10 km s-1 pc-1. These findings are in support of the theoretical models of filament formation by 2-D inflow in the shock layer created by colliding turbulent cells. We also find evidence of velocity gradients along the length of two filaments; the gradients suggest that these filaments are inflowing towards the cloud core.
EFFICIENT HYDROLOGICAL TRACER-TEST DESIGN (EHTD ...
Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed that combines basic measured field parameters (e.g., discharge, distance, cross-sectional area) in functional relationships that describe solute-transport processes related to flow velocity and time of travel. The new method applies these initial estimates for time of travel and velocity to a hypothetical continuously stirred tank reactor as an analog for the hydrologic flow system to develop initial estimates for tracer concentration and axial dispersion, based on a preset average tracer concentration. Root determination of the one-dimensional advection-dispersion equation (ADE) using the preset average tracer concentration then provides a theoretical basis for an estimate of necessary tracer mass.Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to
Tracer-monitored flow titrations.
Sasaki, Milton K; Rocha, Diogo L; Rocha, Fábio R P; Zagatto, Elias A G
2016-01-01
The feasibility of implementing tracer-monitored titrations in a flow system is demonstrated. A dye tracer is used to estimate the instant sample and titrant volumetric fractions without the need for volume, mass or peak width measurements. The approach was applied to spectrophotometric flow titrations involving variations of sample and titrant flow-rates (i.e. triangle programmed technique) or concentration gradients established along the sample zone (i.e. flow injection system). Both strategies required simultaneous monitoring of two absorbing species, namely the titration indicator and the dye tracer. Mixing conditions were improved by placing a chamber with mechanical stirring in the analytical path aiming at to minimize diffusional effects. Unlike most of flow-based titrations, the innovation is considered as a true titration, as it does not require a calibration curve thus complying with IUPAC definition. As an application, acidity evaluation in vinegars involving titration with sodium hydroxide was selected. Phenolphthalein and brilliant blue FCF were used as indicator and dye tracer, respectively. Effects of sample volume, titrand/titrant concentrations and flow rates were investigated aiming at improved accuracy and precision. Results were reliable and in agreement with those obtained by a reference titration procedure. Copyright © 2015 Elsevier B.V. All rights reserved.
Becker, M.W.; Shapiro, A.M.
2003-01-01
Conceptual and mathematical models are presented that explain tracer breakthrough tailing in the absence of significant matrix diffusion. Model predictions are compared to field results from radially convergent, weak-dipole, and push-pull tracer experiments conducted in a saturated crystalline bedrock. The models are based upon the assumption that flow is highly channelized, that the mass of tracer in a channel is proportional to the cube of the mean channel aperture, and the mean transport time in the channel is related to the square of the mean channel aperture. These models predict the consistent -2 straight line power law slope observed in breakthrough from radially convergent and weak-dipole tracer experiments and the variable straight line power law slope observed in push-pull tracer experiments with varying injection volumes. The power law breakthrough slope is predicted in the absence of matrix diffusion. A comparison of tracer experiments in which the flow field was reversed to those in which it was not indicates that the apparent dispersion in the breakthrough curve is partially reversible. We hypothesize that the observed breakthrough tailing is due to a combination of local hydrodynamic dispersion, which always increases in the direction of fluid velocity, and heterogeneous advection, which is partially reversed when the flow field is reversed. In spite of our attempt to account for heterogeneous advection using a multipath approach, a much smaller estimate of hydrodynamic dispersivity was obtained from push-pull experiments than from radially convergent or weak dipole experiments. These results suggest that although we can explain breakthrough tailing as an advective phenomenon, we cannot ignore the relationship between hydrodynamic dispersion and flow field geometry at this site. The design of the tracer experiment can severely impact the estimation of hydrodynamic dispersion and matrix diffusion in highly heterogeneous geologic media.
Validation of a new device to quantify groundwater-surface water exchange
NASA Astrophysics Data System (ADS)
Cremeans, Mackenzie M.; Devlin, J. F.
2017-11-01
Distributions of flow across the groundwater-surface water interface should be expected to be as complex as the geologic deposits associated with stream or lake beds and their underlying aquifers. In these environments, the conventional Darcy-based method of characterizing flow systems (near streams) has significant limitations, including reliance on parameters with high uncertainties (e.g., hydraulic conductivity), the common use of drilled wells in the case of streambank investigations, and potentially lengthy measurement times for aquifer characterization and water level measurements. Less logistically demanding tools for quantifying exchanges across streambeds have been developed and include drive-point mini-piezometers, seepage meters, and temperature profiling tools. This project adds to that toolbox by introducing the Streambed Point Velocity Probe (SBPVP), a reusable tool designed to quantify groundwater-surface water interactions (GWSWI) at the interface with high density sampling, which can effectively, rapidly, and accurately complement conventional methods. The SBPVP is a direct push device that measures in situ water velocities at the GWSWI with a small-scale tracer test on the probe surface. Tracer tests do not rely on hydraulic conductivity or gradient information, nor do they require long equilibration times. Laboratory testing indicated that the SBPVP has an average accuracy of ± 3% and an average precision of ± 2%. Preliminary field testing, conducted in the Grindsted Å in Jutland, Denmark, yielded promising agreement between groundwater fluxes determined by conventional methods and those estimated from the SBPVP tests executed at similar scales. These results suggest the SBPVP is a viable tool to quantify groundwater-surface water interactions in high definition in sandy streambeds.
Tracer transport in the tropical lower stratosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trepte, C.R.
1993-12-31
Distributions of aerosol extinction ratio ({beta}{sub r}) and ozone, derived from the Stratospheric Aerosol and Gas Experiment (SAGE I/II) satellite experiments (1979-1981 and 1984-1992), are used in conjunction with conventional meteorological analyses to deduce patterns of stratospheric tracer transport. Following volcanic eruptions at low latitudes, the aerosol observations suggest that two transport regimes exist in the tropical lower stratosphere. Aerosols disperse rapidly poleward and downward within a layer several kilometers above the tropopause. More pronounced transport is biased toward the winter hemisphere. At higher altitudes, however, volcanic aerosols tend to remain over the equator in a reservoir bounded by strongmore » meridional gradients near 20{degrees}N and S. Over the equator, enhanced lofting of aerosols occurs during QBO easterly shear, while subsidence relative to the mean meridional flow takes place during QBO westerly shear. While particle growth and evaporation effects are important, many interesting features of the aerosol distribution can only be explained by air motions. It is also shown that QBO induced ozone anomalies over the equator are also consistent with QBO aerosol variations. In the upper transport regime, the subtropical gradients of {beta}{sub r} coincide with the location of a meridional gradient in potential vorticity. Since isentropic transport is inhibited across potential vorticity gradients, the tropics are temporarily isolated from eddy mixing taking place in the winter extratropics. Zonal mean distributions of ozone; however, do not have similar meridional gradients in the subtropics. Detrainment of aerosol from the equatorial reservoir depends upon the phase of the QBO and the strength of winter eddy disturbances in the subtropics. Anticyclonic circulation systems form occasionally in the subtropics and can shear-off enhanced {beta}{sub r} air from the periphery of the aerosol reservoir.« less
Tracer transport in the tropical lower stratosphere. Ph.D. Thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trepte, C.R.
1993-01-01
Distributions of aerosol extinction ratio (beta r) and ozone, derived from the Stratospheric Aerosol and Gas Experiment (SAGE 1/2) satellite experiments (1979-1981 and 1984-1992), are used in conjunction with conventional meteorological analyses to deduce patterns of stratospheric tracer transport. Following volcanic eruptions at low latitudes, the aerosol observations suggest that two transport regimes exist in the tropical lower stratosphere. Aerosols disperse rapidly poleward and downward within a layer several kilometers above the tropopause. More pronounced transport is biased toward the winter hemisphere. At higher altitudes, however, volcanic aerosols tend to remain over the equator in a reservoir bounded by strongmore » meridional gradients near 20 deg N and S. Over the equator, enhanced lofting of aerosols occurs during QBO easterly shear, while subsidence relative to the mean meridional flow takes place during QBO westerly shear. While particle growth and evaporation effects are important, many interesting features of the aerosol distribution can only be explained by air motions. It is also shown that QBO induced ozone anomalies over the equator are also consistent with QBO aerosol variations. In the upper transport regime, the subtropical gradients of beta r coincide with the location of a meridional gradient in potential vorticity. Since isentropic transport is inhibited across potential vorticity gradients, the tropics are temporarily isolated from eddy mixing taking place in the winter extratropics. Zonal mean distributions of ozone; however, do not have similar meridional gradients in the subtropics. This difference probably reflects a different source/sink distribution for ozone in comparison to that for aerosol and potential vorticity. Detrainment of aerosol from the equatorial reservoir depends upon the phase of the QBO and the strength of winter eddy disturbances in the subtropics.« less
NASA Technical Reports Server (NTRS)
Tilmes, S.; Pan, L. L.; Hoor, P.; Atlas, E.; Avery, M. A.; Campos, T.; Christensen, L. E.; Diskin, G. S.; Gao, R.-S.; Herman, R. L.;
2010-01-01
We present a climatology of O3, CO, and H2O for the upper troposphere and lower stratosphere (UTLS), based on a large collection of high ]resolution research aircraft data taken between 1995 and 2008. To group aircraft observations with sparse horizontal coverage, the UTLS is divided into three regimes: the tropics, subtropics, and the polar region. These regimes are defined using a set of simple criteria based on tropopause height and multiple tropopause conditions. Tropopause ]referenced tracer profiles and tracer ]tracer correlations show distinct characteristics for each regime, which reflect the underlying transport processes. The UTLS climatology derived here shows many features of earlier climatologies. In addition, mixed air masses in the subtropics, identified by O3 ]CO correlations, show two characteristic modes in the tracer ]tracer space that are a result of mixed air masses in layers above and below the tropopause (TP). A thin layer of mixed air (1.2 km around the tropopause) is identified for all regions and seasons, where tracer gradients across the TP are largest. The most pronounced influence of mixing between the tropical transition layer and the subtropics was found in spring and summer in the region above 380 K potential temperature. The vertical extent of mixed air masses between UT and LS reaches up to 5 km above the TP. The tracer correlations and distributions in the UTLS derived here can serve as a reference for model and satellite data evaluation
NASA Astrophysics Data System (ADS)
Myers, M.; Stalker, L.; LaForce, T.; Pejcic, B.; Dyt, C.; Ho, K.; Ennis-King, J.
2013-12-01
Residual trapping, that is CO2 held in the rock pore space due to capillarity, is an important storage mechanism in geo-sequestration of over the short to medium term (up to 1000 years). As such residual CO2 saturation is a critical reservoir parameter for assessing the storage capacity and security of carbon capture and storage (CCS). As a component of the CO2CRC's Residual Gas Saturation and Dissolution Test at the CO2CRC Otway Project site in Victoria (Australia), we have recently tested a suite of reactive esters (triacetin, tripropionin and propylene glycol diacetate) in a single well chemical tracer test to determine residual CO2 saturation. The goal of this project was to assess and validate a suite of possible tests that could be implemented to determine residual CO2 saturation. For this test, the chemical tracers were injected with a saturated CO2/water mixture into the formation (that is already at residual CO2 saturation) where they were allowed to 'soak' for approximately 10 days allowing for the partial hydrolysis of the esters to their corresponding carboxylic acids and alcohols. Water containing the tracers was then produced from the well resulting in over 600 tracer samples over a period of 12 hours. A selection of these samples were analysed for tracer content and to establish tracer breakthrough curves. To understand the behaviour of these chemical tracers in the downhole environment containing residually trapped supercritical CO2 and formation water, it is necessary to determine the supercritical CO2/water partition coefficients. We have previously determined these in the laboratory (Myers et al., 2012) and they are used here to model the tracer behaviour and provide an estimate of the residual CO2 saturation. Two different computational simulators were used to analyse the tracer breakthrough profiles. The first is based on simple chromatographic retardation and has been used extensively in single well chemical tracer tests to determine residual oil saturation and the second is based on TOUGH2. The estimates of residual saturation given by these models were similar giving a very low residual CO2 saturation value. We suspect that this low value might be due to CO2 being inadvertently dissolved in the near wellbore region prior to this test. This possible dissolution of CO2 may be attributed to the complexity of the multi-test sequence (including other tracer tests prior to this particular test) used in the overall program at of the Residual Gas Saturation and Dissolution Test. References Myers, M., Stalker, L., Ross, A., Dyt, C., Ho, K.-B., 2012. Method for the determination of residual carbon dioxide saturation using reactive ester tracers. Applied Geochemistry 27, 2148-2156.
SIMULATIONS OF TWO-WELL TRACER TESTS IN STRATIFIED AQUIFERS AT THE CHALK RIVER AND THE MOBILE SITES
A simulation of two-well injection-withdrawal tracer tests in stratified granular aquifers is presented for two widely separated sites substantially different in terms of vertical distributions of hydraulic conductivity, well spacings, flow rates, test durations and tracer travel...
Containment testing of isolation rooms.
Rydock, J P; Eian, P K
2004-07-01
Results from the tracer containment testing of four 'state-of-the-art' airborne infection isolation rooms, in a new hospital, are presented. A testing technician exited an isolation room several minutes after a small quantity of tracer gas was injected over the patient bed in that room. Easily measurable tracer gas concentrations were then found in the anterooms outside the patient rooms and corridor outside the isolation room suites. Containment factors for the isolation rooms and dilution factors in the anterooms and corridor were calculated, based on the measured tracer concentrations. These results indicate the desirability of evidence-based design standards and guidelines for assessing performance of airborne infection isolation rooms. The study also demonstrates that the tracer testing procedure yields comparable results for equivalent isolation room suites, suggesting good reproducibility of the testing method.
NASA Astrophysics Data System (ADS)
de La Bernardie, J.; Klepikova, M.; Bour, O.; Le Borgne, T.; Dentz, M.; Guihéneuf, N.; Gerard, M. F.; Lavenant, N.
2017-12-01
The characterization of flow and transport in fractured media is particularly challenging because hydraulic conductivity and transport properties are often strongly dependent on the geometric structure of the fracture surfaces. Here we show how thermal tracer tests may be an excellent complement to conservative solute tracer tests to infer fracture geometry and flow channeling. We performed a series of thermal tracer tests at different scales in a crystalline rock aquifer at the experimental site of Ploemeur (H+ observatory network). The first type of thermal tracer tests are push-pull tracer tests at different scales. The temporal and spatial scaling of heat recovery, measured from thermal breakthrough curves, shows a clear signature of flow channeling. In particular, the late time tailing of heat recovery under channeled flow is shown to diverge from the T(t) α t-1,5 behavior expected for the classical parallel plate model and follow the scaling T(t) α 1/t(logt)2 for a simple channel modeled as a tube. Flow channeling is also manifested on the spatial scaling of heat recovery as flow channeling affects the decay of the thermal breakthrough peak amplitude and the increase of the peak time with scale. The second type of thermal tracer tests are flow-through tracer tests where a pulse of hot water was injected in a fracture isolated by a double straddle packer while pumping at the same flow rate in another fracture at a distance of about 10 meters to create a dipole flow field. Comparison with a solute tracer test performed under the same conditions also present a clear signature of flow channeling. We derive analytical expressions for the retardation and decay of the thermal breakthrough peak amplitude for different fracture geometries and show that the observed differences between thermal and solute breakthrough can be explained only by channelized flow. These results suggest that heat transport is much more sensitive to fracture heterogeneity and flow channeling than conservative solute transport. These findings, which bring new insights on the effect of flow channeling on heat transfer in fractured rocks, show how heat recovery in geothermal systems may be controlled by fracture geometry. This highlights the interest of thermal tracer tests as a complement to solute tracers tests to infer fracture aperture and geometry.
Tracer tomography: design concepts and field experiments using heat as a tracer.
Doro, Kennedy O; Cirpka, Olaf A; Leven, Carsten
2015-04-01
Numerical and laboratory studies have provided evidence that combining hydraulic tomography with tomographic tracer tests could improve the estimation of hydraulic conductivity compared with using hydraulic data alone. Field demonstrations, however, have been lacking so far, which we attribute to experimental difficulties. In this study, we present a conceptual design and experimental applications of tracer tomography at the field scale using heat as a tracer. In our experimental design, we improve active heat tracer testing by minimizing possible effects of heat losses, buoyancy, viscosity, and changing boundary conditions. We also utilize a cost-effective approach of measuring temperature changes in situ at high resolution. We apply the presented method to the 8 m thick heterogeneous, sandy gravel, alluvial aquifer at the Lauswiesen Hydrogeological Research Site in Tübingen, Germany. Results of our tomographic heat-tracer experiments are in line with earlier work on characterizing the aquifer at the test site. We demonstrate from the experimental perspective that tracer tomography is applicable and suitable at the field scale using heat as a tracer. The experimental results also demonstrate the potential of heat-tracer tomography as a cost-effective means for characterizing aquifer heterogeneity. © 2014, National Ground Water Association.
Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Mark D.; Reimus, Paul; Vermeul, Vincent R.
2013-05-01
A recent report found that power and heat produced from enhanced (or engineered) geothermal systems (EGSs) could have a major impact on the U.S energy production capability while having a minimal impact on the environment. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distribution, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for the design and commercial development of the geothermal energy of a potential EGS site. The goal of this project is to provide integrated tracermore » and tracer interpretation tools to facilitate this characterization. This project was initially focused on tracer development with the application of perfluorinated tracer (PFT) compounds, non-reactive tracers used in numerous applications from atmospheric transport to underground leak detection, to geothermal systems, and evaluation of encapsulated PFTs that would release tracers at targeted reservoir temperatures. After the 2011 midyear review and subsequent discussions with the U.S. Department of Energy Geothermal Technology Program (GTP), emphasis was shifted to interpretive tool development, testing, and validation. Subsurface modeling capabilities are an important component of this project for both the design of suitable tracers and the interpretation of data from in situ tracer tests, be they single- or multi-well tests. The purpose of this report is to describe the results of the tracer and model development for simulating and conducting tracer tests for characterizing EGS parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stetzenbach, K.; Farnham, I.
1996-06-01
Extensive tracer testing is expected to take place at the C-well complex in the Nevada Test Site as part of the Yucca Mountain Site Characterization Project. The C-well complex consists of one pumping well, C3, and two injection wells, C1 and C2 into which tracer will be introduced. The goal of this research was to provide USGS with numerous tracers to completed these tests. Several classes of fluorinated organic acids have been evaluated. These include numerous isomers of fluorinated benzoic acids, cinnamic acids, and salicylic acids. Also several derivatives of 2-hydroxy nicotinic acid (pyridone) have been tested. The stability ofmore » these compounds was determined using batch and column tests. Ames testing (mutagenicity/carcinogenicity) was conducted on the fluorinated benzoic acids and a literature review of toxicity of the fluorobenzoates and three perfluoro aliphatic acids was prepared. Solubilities were measured and method development work was performed to optimize the detection of these compounds. A Quality Assurance (QA) Program was developed under existing DOE and USGS guidelines. The program includes QA procedures and technical standard operating procedures. A tracer test, using sodium iodide, was performed at the C-well complex. HRC chemists performed analyses on site, to provide real time data for the USGS hydrologists and in the laboratories at UNLV. Over 2,500 analyses were performed. This report provides the results of the laboratory experiments and literature reviews used to evaluate the potential tracers and reports on the results of the iodide C-well tracer test.« less
Knopman, Debra S.; Voss, Clifford I.; Garabedian, Stephen P.
1991-01-01
Tests of a one-dimensional sampling design methodology on measurements of bromide concentration collected during the natural gradient tracer test conducted by the U.S. Geological Survey on Cape Cod, Massachusetts, demonstrate its efficacy for field studies of solute transport in groundwater and the utility of one-dimensional analysis. The methodology was applied to design of sparse two-dimensional networks of fully screened wells typical of those often used in engineering practice. In one-dimensional analysis, designs consist of the downstream distances to rows of wells oriented perpendicular to the groundwater flow direction and the timing of sampling to be carried out on each row. The power of a sampling design is measured by its effectiveness in simultaneously meeting objectives of model discrimination, parameter estimation, and cost minimization. One-dimensional models of solute transport, differing in processes affecting the solute and assumptions about the structure of the flow field, were considered for description of tracer cloud migration. When fitting each model using nonlinear regression, additive and multiplicative error forms were allowed for the residuals which consist of both random and model errors. The one-dimensional single-layer model of a nonreactive solute with multiplicative error was judged to be the best of those tested. Results show the efficacy of the methodology in designing sparse but powerful sampling networks. Designs that sample five rows of wells at five or fewer times in any given row performed as well for model discrimination as the full set of samples taken up to eight times in a given row from as many as 89 rows. Also, designs for parameter estimation judged to be good by the methodology were as effective in reducing the variance of parameter estimates as arbitrary designs with many more samples. Results further showed that estimates of velocity and longitudinal dispersivity in one-dimensional models based on data from only five rows of fully screened wells each sampled five or fewer times were practically equivalent to values determined from moments analysis of the complete three-dimensional set of 29,285 samples taken during 16 sampling times.
NASA Technical Reports Server (NTRS)
Abrams, M. C.; Manney, G. L.; Gunson, M. R.; Abbas, M. M.; Chang, A. Y.; Goldman, A.; Irion, F. W.; Michelsen, H. A.; Newchurch, M. J.; Rinsland, C. P.;
1996-01-01
Observations of the long-lived tracers N2O, CH4 and HF obtained by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument in early November 1994 are used to estimate average descent rates during winter in the Antarctic polar vortex of 0.5 to 1.5 km/month in the lower stratosphere, and 2.5 to 3.5 km/month in the middle and upper stratosphere. Descent rates inferred from ATMOS tracer observations agree well with theoretical estimates obtained using radiative heating calculations. Air of mesospheric origin (N2O less than 5 ppbV) was observed at altitudes above about 25 km within the vortex. Strong horizontal gradients of tracer mixing ratios, the presence of mesospheric air in the vortex in early spring, and the variation with altitude of inferred descent rates indicate that the Antarctic vortex is highly isolated from midlatitudes throughout the winter from approximately 20 km to the stratopause. The 1994 Antarctic vortex remained well isolated between 20 and 30 km through at least mid-November.
Nitrogen fate and impacts in temperate forests: roles of mycorrhizae and pH
NASA Astrophysics Data System (ADS)
Goodale, Christine
2017-04-01
Chronic nitrogen deposition has long been expected to enhance forest carbon uptakeep and storage, although the magnitude and mechanisms of these responses have been uncertain and sometimes may vary by tree species or be confounded by other biogeochemical constraints. Recent results from a 15N tracer study in central New York State, USA, show that ectomycorrhizal tree species acquire more tracer than trees with arbuscular mycorrhizae, but that both types of trees take up only a small fraction of added N, acquired shortly after tracer addition. Most 15N remained in the soil, even five years after the addition. A recent N x pH addition experiment nearby shows that added N can slow decomposition, regardless of pH response, with greater responses in ectomycorrhizal than arbuscular dominated stands, and that some mature stands can also still increase growth. These results add to other observations from tracer and N addition studies as well as N deposition gradients and model analyses to improve estimates of the magnitude and persistence of ecosystem C storage in response to past and projected changes in atmospheric deposition.
Tracer concentration profiles measured in central London as part of the REPARTEE campaign
NASA Astrophysics Data System (ADS)
Martin, D.; Petersson, K. F.; White, I. R.; Henshaw, S. J.; Nickless, G.; Lovelock, A.; Barlow, J. F.; Dunbar, T.; Wood, C. R.; Shallcross, D. E.
2011-01-01
There have been relatively few tracer experiments carried out that have looked at vertical plume spread in urban areas. In this paper we present results from two tracer (cyclic perfluorocarbon) experiments carried out in 2006 and 2007 in central London centred on the BT Tower as part of the REPARTEE (Regent's Park and Tower Environmental Experiment) campaign. The height of the tower gives a unique opportunity to study vertical dispersion profiles and transport times in central London. Vertical gradients are contrasted with the relevant Pasquill stability classes. Estimation of lateral advection and vertical mixing times are made and compared with previous measurements. Data are then compared with a simple operational dispersion model and contrasted with data taken in central London as part of the DAPPLE campaign. This correlates dosage with non-dimensionalised distance from source. Such analyses illustrate the feasibility of the use of these empirical correlations over these prescribed distances in central London.
Tracer testing is generally regarded as the most reliable and efficient method of gathering surface and subsurface hydraulic information. This is especially true for karstic and fractured-rock aquifers. Qualitative tracing tests have been conventionally employed in most karst s...
Reactive transport studies at the Raymond Field Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freifeld, B.; Karasaki, K.; Solbau, R.
1995-12-01
To ensure the safety of a nuclear waste repository, an understanding of the transport of radionuclides from the repository nearfield to the biosphere is necessary. At the Raymond Field Site, in Raymond, California, tracer tests are being conducted to test characterization methods for fractured media and to evaluate the equipment and tracers that will be used for Yucca Mountain`s fracture characterization. Recent tracer tests at Raymond have used reactive cations to demonstrate transport with sorption. A convective-dispersive model was used to simulate a two-well recirculating test with reasonable results. However, when the same model was used to simulate a radiallymore » convergent tracer test, the model poorly predicted the actual test data.« less
ANALYTICAL METHOD DEVELOPMENTS TO SUPPORT PARTITIONING INTERWELL TRACER TESTING
Partitioning Interwell Tracer Testing (PITT) uses alcohol tracer compounds in estimating subsurface contamination from non-polar pollutants. PITT uses the analysis of water samples for various alcohols as part of the overall measurement process. The water samples may contain many...
Vertical Diffusivities of Active and Passive Tracers
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Cheng, Y.; Howard, A. M.
2010-01-01
The climate models that include a carbon-cycle need the vertical diffusivity of a passive tracer. Since an expression for the latter is not available, it has been common practice to identify it with that of salt. The identification is questionable since T, S are active, not passive tracers. We present the first derivation of the diffusivity of a passive tracer in terms of Ri (Richardson number) and Rq (density ratio, ratio of salinity over temperature z-gradients). The following results have emerged: (a) The passive tracer diffusivity is an algebraic function of Ri, Rq. (b) In doubly stable regimes (DS, partial derivative of T with respect to z > 0, partial derivative of S with respect to z < 0), the passive scalar diffusivity is nearly the same as that of salt/heat for any values of Rq < 0 and Ri > 0. (c) In DC regimes (diffusive convection, partial derivative of T with respect to z < 0, partial derivative of S with respect to z < 0, Rq > 1), the passive scalar diffusivity is larger than that of salt. At Ri = O(1), it can be more than twice as large. (d) In SF regimes (salt fingers, partial derivative of T with respect to z > 0, partial derivative of S with respect to z > 0, Rq < 1), the passive scalar diffusivity is smaller than that of salt. At Ri = O(1), it can be less than half of it. (e) The passive tracer diffusivity predicted at the location of NATRE (North Atlantic Tracer Release Experiment) is discussed. (f) Perhaps the most relevant conclusion is that the common identification of the tracer diffusivity with that of salt is valid only in DS regimes. In the Southern Ocean, where there is the largest CO2 absorption, the dominant regime is diffusive convection discussed in (c) above.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantz, Jim; Su, Grace; Hatch, Christine
Both the measurement of temperature and the simulation of heat and water transport have benefited from significant recent advances in data acquisition and computer resources. This has afforded the opportunity for routine use of heat as a tracer in a variety of hydrological regimes. Heat is particularly well suited for investigations of stream/groundwater exchanges. Dynamic temperature patterns between the stream and underlying sediments are typical, due to large stream surface area to volume ratios relative to other surface water bodies. Heat is a naturally occurring tracer, free from (real or perceived) issues of contamination associated with use of chemical tracersmore » in stream environments. The use of heat as a tracer relies on the measurement of temperature gradients, and temperature is an extremely robust parameter to monitor. Temperature data is immediately available as opposed to chemical tracers, which often require significant laboratory analysis. In this work, we report on the progress in the use of heat as a tracer to determine the hydraulic conductance of the streambed along the middle reaches of the Russian River, located west of Santa Rosa, CA. The general hydrological setting is described and the unique matter in which the water resources are managed in an environment of increasing population, a rapid shift to agricultural crops requiring more irrigation, and a series of fishery related mandates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Yoojin; Han, Byunghyun; Mostafid, M. Erfan
2012-02-15
Highlights: Black-Right-Pointing-Pointer Photoacoustic infrared spectroscopy tested for measuring tracer gas in landfills. Black-Right-Pointing-Pointer Measurement errors for tracer gases were 1-3% in landfill gas. Black-Right-Pointing-Pointer Background signals from landfill gas result in elevated limits of detection. Black-Right-Pointing-Pointer Technique is much less expensive and easier to use than GC. - Abstract: Gas tracer tests can be used to determine gas flow patterns within landfills, quantify volatile contaminant residence time, and measure water within refuse. While gas chromatography (GC) has been traditionally used to analyze gas tracers in refuse, photoacoustic spectroscopy (PAS) might allow real-time measurements with reduced personnel costs and greater mobilitymore » and ease of use. Laboratory and field experiments were conducted to evaluate the efficacy of PAS for conducting gas tracer tests in landfills. Two tracer gases, difluoromethane (DFM) and sulfur hexafluoride (SF{sub 6}), were measured with a commercial PAS instrument. Relative measurement errors were invariant with tracer concentration but influenced by background gas: errors were 1-3% in landfill gas but 4-5% in air. Two partitioning gas tracer tests were conducted in an aerobic landfill, and limits of detection (LODs) were 3-4 times larger for DFM with PAS versus GC due to temporal changes in background signals. While higher LODs can be compensated by injecting larger tracer mass, changes in background signals increased the uncertainty in measured water saturations by up to 25% over comparable GC methods. PAS has distinct advantages over GC with respect to personnel costs and ease of use, although for field applications GC analyses of select samples are recommended to quantify instrument interferences.« less
Harvey, R.W.; Garabedian, S.P.
1991-01-01
??? A filtration model commonly used to describe removal of colloids during packed-bed filtration in water treatment applications was modified for describing downgradient transport of bacteria in sandy, aquifer sediments. The modified model was applied to the results of a small-scale (7 m), natural-gradient tracer test and to observations of an indigenous bacterial population moving downgradient within a plume of organically contaminated groundwater in Cape Cod, MA. The model reasonably accounted for concentration histories of labeled bacteria appearing at samplers downgradient from the injection well in the tracer experiment and for the observed 0.25-??m increase in average cell length for an unlabeled, indigenous bacterial population, 0.6 km downgradient from the source of the plume. Several uncertainties were apparent in applying filtration theory to problems involving transport of bacteria in groundwater. However, adsorption (attachment) appeared to be a major control of the extent of bacterial movement downgradient, which could be described, in part, by filtration theory. Estimates of the collision efficiency factor, which represents the physicochemical factors that determine adsorption of the bacteria onto the grain surfaces, ranged from 5.4 ?? 10-3 to 9.7 ?? 10-3.
IMAGE Project: Results of Laboratory Tests on Tracers for Supercritical Conditions.
NASA Astrophysics Data System (ADS)
Brandvoll, Øyvind; Opsahl Viig, Sissel; Nardini, Isabella; Muller, Jiri
2016-04-01
The use of tracers is a well-established technique for monitoring dynamic behaviour of water and gas through a reservoir. In geothermal reservoirs special challenges are encountered due to high temperatures and pressures. In this work, tracer candidates for monitoring water at supercritical conditions (temperature > 374°C, pressure ca 218 bar), are tested in laboratory experiments. Testing of tracers at supercritical water conditions requires experimental set-ups which tolerate harsh conditions with respect to high temperature and pressure. In addition stringent HES (health, environment and safety) factors have to be taken into consideration when designing and performing the experiments. The setup constructed in this project consists of a pressure vessel, high pressure pump, instrumentation for pressure and temperature control and instrumentation required for accurate sampling of tracers. In order to achieve accurate results, a special focus has been paid to the development of the tracer sampling technique. Perfluorinated cyclic hydrocarbons (PFCs) have been selected as tracer candidates. This group of compounds is today commonly used as gas tracers in oil reservoirs. According to the literature they are stable at temperatures up to 400°C. To start with, five PFCs have been tested for thermal stability in static experiments at 375°C and 108 bar in the experimental setup described above. The tracer candidates will be further tested for several months at the relevant conditions. Preliminary results indicate that some of the PFC compounds show stability after three months. However, in order to arrive at conclusive results, the experiments have to be repeated over a longer period and paying special attention to more accurate sampling procedures.
Tracer element for indoor PM2.5 in China migrated from outdoor
NASA Astrophysics Data System (ADS)
Ji, Wenjing; Li, Hongyu; Zhao, Bin; Deng, Furong
2018-03-01
Sulfur and nickel have been widely used as tracers of outdoor PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 μm) in the United States and Europe; however, their feasibility as tracers has not been verified yet in China. We aim to verify whether sulfur or nickel could be used as a tracer element and, if not, to identify a suitable tracer element for outdoor PM2.5 in China. We conduct two types of experiments, namely, preliminary and main-study experiments. We analyze 102 pairs of indoor and outdoor PM2.5 samples in Beijing. The correlation between the I/O (indoor/outdoor) ratio of an element and the I/O ratio of total PM2.5 is one of the criteria used to test whether this element can be used as a tracer element. The average concentrations of nickel are found to be below the detection limits in both preliminary and main-study tests. Thus, nickel cannot be used as a tracer element in China. Based on the correlations of elemental I/O ratios and the I/O ratio of total PM2.5 in the preliminary and main-study tests, sulfur also cannot be used as a tracer element; however, it should be feasible to use iron as a tracer element in Beijing according to the test results. The estimated infiltration factor obtained by using iron as tracer is extremely consistent with the calculations based on the mass balance model. In summary, iron is found to be more suitable as a tracer for outdoor PM2.5 in Beijing than sulfur or nickel.
Characterization of an alluvial aquifer with thermal tracer tomography
NASA Astrophysics Data System (ADS)
Somogyvári, Márk; Bayer, Peter
2017-04-01
In the summer of 2015, a series of thermal tracer tests was performed at the Widen field site in northeast Switzerland. At this site numerous hydraulic, tracer, geophysical and hydrogeophysical field tests have been conducted in the past to investigate a shallow alluvial aquifer. The goals of the campaign in 2015 were to design a cost-effective thermal tracer tomography setup and to validate the concept of travel time-based thermal tracer tomography under field conditions. Thermal tracer tomography uses repeated thermal tracer injections with different injection depths and distributed temperature measurements to map the hydraulic conductivity distribution of a heterogeneous aquifer. The tracer application was designed with minimal experimental time and cost. Water was heated in inflatable swimming pools using direct sunlight of the warm summer days, and it was injected as low temperature pulses in a well. Because of the small amount of injected heat, no long recovery times were required between the repeated heat tracer injections and every test started from natural thermal conditions. At Widen, four thermal tracer tests were performed during a period of three days. Temperatures were measured in one downgradient well using a distributed temperature measurement system installed at seven depth points. Totally 12 temperature breakthrough curves were collected. Travel time based tomographic inversion assumes that thermal transport is dominated by advection and the travel time of the thermal tracer can be related to the hydraulic conductivities of the aquifer. This assumption is valid in many shallow porous aquifers where the groundwater flow is fast. In our application, the travel time problem was treated by a tomographic solver, analogous to seismic tomography, to derive the hydraulic conductivity distribution. At the test site, a two-dimensional cross-well hydraulic conductivity profile was reconstructed with the travel time based inversion. The reconstructed profile corresponds well with the findings of the earlier hydraulic and geophysical experiments at the site.
A microvascular compartment model validated using 11C-methylglucose liver PET in pigs
NASA Astrophysics Data System (ADS)
Munk, Ole L.; Keiding, Susanne; Baker, Charles; Bass, Ludvik
2018-01-01
The standard compartment model (CM) is widely used to analyse dynamic PET data. The CM is fitted to time-activity curves to estimate rate constants that describe the transport of a tracer between well-mixed compartments. The aim of this study was to develop and validate a more realistic microvascular compartment model (MCM) that includes capillary tracer concentration gradients, backflux from cells into the perfused capillaries and multiple re-uptakes during the passage through a capillary. The MCM incorporates only parameters with clear physiological meaning, it is easy to implement, and it does not require numerical solution. We compared the MCM and CM for the analysis of 3 min dynamic PET data of pig livers (N = 5) following injection of 11C-methylglucose. During PET scans, the tracer concentrations in blood were measured in the abdominal aorta, portal vein and liver vein by manual sampling. We found that the MCM outperformed the CM and that dynamic PET data include information which cannot be extracted using standard CM. The MCM fitted dynamic PET data better than the CM (Akaike values were 46 ± 4 for best MCM fits, and 82 ± 8 for best CM fits; mean ± standard deviation) and extracted physiologically reasonable parameter estimates such as blood perfusion that were in agreement with independent measurements. The difference between model-independent perfusion estimates and the best MCM perfusion estimates was -0.01 ± 0.05 ml/ml/min, whereas the difference was 0.30 ± 0.13 ml/ml/min using the CM. In addition, the MCM predicted the time course of concentrations in the liver vein, a prediction fundamentally unobtainable using the CM as it does not return tracer backflux from cells to capillary blood. The results demonstrate the benefit of using models that include more physiology and that models including concentration gradients should be preferred when analysing the blood-cell exchange of any tracer in any capillary bed.
Isotopic Tracers for Delineating Non-Point Source Pollutants in Surface Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davisson, M L
2001-03-01
This study tested whether isotope measurements of surface water and dissolved constituents in surface water could be used as tracers of non-point source pollution. Oxygen-18 was used as a water tracer, while carbon-14, carbon-13, and deuterium were tested as tracers of DOC. Carbon-14 and carbon-13 were also used as tracers of dissolved inorganic carbon, and chlorine-36 and uranium isotopes were tested as tracers of other dissolved salts. In addition, large databases of water quality measurements were assembled for the Missouri River at St. Louis and the Sacramento-San Joaquin Delta in California to enhance interpretive results of the isotope measurements. Muchmore » of the water quality data has been under-interpreted and provides a valuable resource to investigative research, for which this report exploits and integrates with the isotope measurements.« less
Tracer SWIW tests in propped and un-propped fractures: parameter sensitivity issues, revisited
NASA Astrophysics Data System (ADS)
Ghergut, Julia; Behrens, Horst; Sauter, Martin
2017-04-01
Single-well injection-withdrawal (SWIW) or 'push-then-pull' tracer methods appear attractive for a number of reasons: less uncertainty on design and dimensioning, and lower tracer quantities required than for inter-well tests; stronger tracer signals, enabling easier and cheaper metering, and shorter metering duration required, reaching higher tracer mass recovery than in inter-well tests; last not least: no need for a second well. However, SWIW tracer signal inversion faces a major issue: the 'push-then-pull' design weakens the correlation between tracer residence times and georeservoir transport parameters, inducing insensitivity or ambiguity of tracer signal inversion w. r. to some of those georeservoir parameters that are supposed to be the target of tracer tests par excellence: pore velocity, transport-effective porosity, fracture or fissure aperture and spacing or density (where applicable), fluid/solid or fluid/fluid phase interface density. Hydraulic methods cannot measure the transport-effective values of such parameters, because pressure signals correlate neither with fluid motion, nor with material fluxes through (fluid-rock, or fluid-fluid) phase interfaces. The notorious ambiguity impeding parameter inversion from SWIW test signals has nourished several 'modeling attitudes': (i) regard dispersion as the key process encompassing whatever superposition of underlying transport phenomena, and seek a statistical description of flow-path collectives enabling to characterize dispersion independently of any other transport parameter, as proposed by Gouze et al. (2008), with Hansen et al. (2016) offering a comprehensive analysis of the various ways dispersion model assumptions interfere with parameter inversion from SWIW tests; (ii) regard diffusion as the key process, and seek for a large-time, asymptotically advection-independent regime in the measured tracer signals (Haggerty et al. 2001), enabling a dispersion-independent characterization of multiple-scale diffusion; (iii) attempt to determine both advective and non-advective transport parameters from one and the same conservative-tracer signal (relying on 'third-party' knowledge), or from twin signals of a so-called 'dual' tracer pair, e. g.: using tracers with contrasting reactivity and partitioning behavior to determine residual saturation in depleted oilfields (Tomich et al. 1973), or to determine advective parameters (Ghergut et al. 2014); using early-time signals of conservative and sorptive tracers for propped-fracture characterization (Karmakar et al. 2015); using mid-time signals of conservative tracers for a reservoir-borne inflow profiling in multi-frac systems (Ghergut et al. 2016), etc. The poster describes new uses of type-(iii) techniques for the specific purposes of shale-gas reservoir characterization, productivity monitoring, diagnostics and engineering of 're-frac' treatments, based on parameter sensitivity findings from German BMWi research project "TRENDS" (Federal Ministry for Economic Affairs and Energy, FKZ 0325515) and from the EU-H2020 project "FracRisk" (grant no. 640979).
Jung, Yoojin; Han, Byunghyun; Mostafid, M Erfan; Chiu, Pei; Yazdani, Ramin; Imhoff, Paul T
2012-02-01
Gas tracer tests can be used to determine gas flow patterns within landfills, quantify volatile contaminant residence time, and measure water within refuse. While gas chromatography (GC) has been traditionally used to analyze gas tracers in refuse, photoacoustic spectroscopy (PAS) might allow real-time measurements with reduced personnel costs and greater mobility and ease of use. Laboratory and field experiments were conducted to evaluate the efficacy of PAS for conducting gas tracer tests in landfills. Two tracer gases, difluoromethane (DFM) and sulfur hexafluoride (SF(6)), were measured with a commercial PAS instrument. Relative measurement errors were invariant with tracer concentration but influenced by background gas: errors were 1-3% in landfill gas but 4-5% in air. Two partitioning gas tracer tests were conducted in an aerobic landfill, and limits of detection (LODs) were 3-4 times larger for DFM with PAS versus GC due to temporal changes in background signals. While higher LODs can be compensated by injecting larger tracer mass, changes in background signals increased the uncertainty in measured water saturations by up to 25% over comparable GC methods. PAS has distinct advantages over GC with respect to personnel costs and ease of use, although for field applications GC analyses of select samples are recommended to quantify instrument interferences. Copyright © 2011 Elsevier Ltd. All rights reserved.
First Tracer Test After Circulation in Desert Peak 27-15
Rose, Peter
2013-11-16
Following the successful stimulation of Desert Peak target EGS well 27-15, a circulation test was initiated by injecting a conservative tracer (1,5-nds) in combination with a reactive tracer (7-amino-1,3-naphthalene disulfonate). The closest production well 74-21 was monitored over the subsequent several months.
The gas-phase partitioning tracer method was used to estimate non-aqueous phase liquid (NAPL), water, and air saturations in the vadose zone at a chlorinated-solvent contaminated field site in Tucson, AZ. The tracer test was conducted in a fractured-clay system that is the confin...
Mapping fracture flow paths with a nanoscale zero-valent iron tracer test and a flowmeter test
NASA Astrophysics Data System (ADS)
Chuang, Po-Yu; Chia, Yeeping; Chiu, Yung-Chia; Teng, Mao-Hua; Liou, Sofia Ya Hsuan
2018-02-01
The detection of preferential flow paths and the characterization of their hydraulic properties are important for the development of hydrogeological conceptual models in fractured-rock aquifers. In this study, nanoscale zero-valent iron (nZVI) particles were used as tracers to characterize fracture connectivity between two boreholes in fractured rock. A magnet array was installed vertically in the observation well to attract arriving nZVI particles and identify the location of the incoming tracer. Heat-pulse flowmeter tests were conducted to delineate the permeable fractures in the two wells for the design of the tracer test. The nZVI slurry was released in the screened injection well. The arrival of the slurry in the observation well was detected by an increase in electrical conductivity, while the depth of the connected fracture was identified by the distribution of nZVI particles attracted to the magnet array. The position where the maximum weight of attracted nZVI particles was observed coincides with the depth of a permeable fracture zone delineated by the heat-pulse flowmeter. In addition, a saline tracer test produced comparable results with the nZVI tracer test. Numerical simulation was performed using MODFLOW with MT3DMS to estimate the hydraulic properties of the connected fracture zones between the two wells. The study results indicate that the nZVI particle could be a promising tracer for the characterization of flow paths in fractured rock.
Interannual Variability in Intercontinental Transport
NASA Technical Reports Server (NTRS)
Gupta, Mohan; Douglass, Anne; Kawa, S. Randy; Pawson, Steven
2003-01-01
We have investigated the importance of intercontinental transport using source-receptor relationship. A global radon-like and seven regional tracers were used in three-dimensional model simulations to quantify their contributions to column burdens and vertical profiles at world-wide receptors. Sensitivity of these contributions to meteorological input was examined using different years of meteorology in two atmospheric simulations. Results show that Asian emission influences tracer distributions in its eastern downwind regions extending as far as Europe with major contributions in mid- and upper troposphere. On the western and eastern sides of the US, Asian contribution to annual average column burdens are 37% and 5% respectively with strong monthly variations. At an altitude of 10 km, these contributions are 75% and 25% respectively. North American emissions contribute more than 15% to annual average column burden and about 50% at 8 km altitude over the European region. Contributions from tropical African emissions are wide-spread in both the hemispheres. Differences in meteorological input cause non-uniform redistribution of tracer mass throughout the troposphere at all receptors. We also show that in model-model and model-data comparison, correlation analysis of tracer's spatial gradients provides an added measure of model's performance.
Preferential flow paths in fractured rock detected by cross-borehole nano-iron tracer test
NASA Astrophysics Data System (ADS)
Chia, Yeeping; Chuang, Po-Yu
2017-04-01
Characterization of the preferential flow paths and their hydraulic properties is desirable for developing a hydrogeological conceptual model in fractured rock. However, the heterogeneity and anisotropy of the hydraulic property often make it difficult to understand groundwater flow paths through fractures. In this study, we adopted nanoscale zero-valent iron (nZVI) as a tracer to characterize fracture connectivity and hydraulic properties. A magnet array was placed in an observation well to attract arriving nZVI particles for identifying the location of incoming tracer. This novel approach was developed for the investigation of fracture flow at a hydrogeological research station in central Taiwan. A heat-pulse flowmeter test was performed to delineate the vertical distribution of permeable fractures in two boreholes, making it possible to design a field tracer test. The nZVI slurry was released in the sealed injection well. The arrival of the slurry in the observation well was evidenced by a breakthrough curve recorded by the fluid conductivity sensor as well as the nZVI particles attracted to the magnets. The iron nanoparticles attracted to the magnets provide the quantitative criteria for locating the position of tracer inlet in the observation well. The position of the magnet attracting the maximum weight of iron nanoparticles agrees well with the depth of a permeable fracture zone delineated by the flowmeter. Besides, a conventional saline tracer test was conducted in the field, producing a similar outcome as the nZVI tracer test. Our study results indicate that the nano-iron tracer test could be a promising method for the characterization of the preferential flow paths in fractured rock.
Galaxy structure from multiple tracers - III. Radial variations in M87's IMF
NASA Astrophysics Data System (ADS)
Oldham, Lindsay; Auger, Matthew
2018-03-01
We present the first constraints on stellar mass-to-light ratio gradients in an early-type galaxy (ETG) using multiple dynamical tracer populations to model the dark and luminous mass structure simultaneously. We combine the kinematics of the central starlight, two globular cluster populations and satellite galaxies in a Jeans analysis to obtain new constraints on M87's mass structure, employing a flexible mass model which allows for radial gradients in the stellar-mass-to-light ratio. We find that, in the context of our model, a radially declining stellar-mass-to-light ratio is strongly favoured. Modelling the stellar-mass-to-light ratio as following a power law, ϒ⋆ ˜ R-μ, we infer a power-law slope μ = -0.54 ± 0.05; equally, parametrizing the stellar-mass-to-light ratio via a central mismatch parameter relative to a Salpeter initial mass function (IMF), α, and scale radius RM, we find α > 1.48 at 95% confidence and RM = 0.35 ± 0.04 kpc. We use stellar population modelling of high-resolution 11-band HST photometry to show that such a steep gradient cannot be achieved by variations in only the metallicity, age, dust extinction and star formation history if the stellar IMF remains spatially constant. On the other hand, the stellar-mass-to-light ratio gradient that we find is consistent with an IMF whose inner slope changes such that it is Salpeter-like in the central ˜0.5 kpc and becomes Chabrier-like within the stellar effective radius. This adds to recent evidence that the non-universality of the IMF in ETGs may be confined to their core regions, and points towards a picture in which the stars in these central regions may have formed in fundamentally different physical conditions.
Optical detection of tracer species in strongly scattering media.
Brauser, Eric M; Rose, Peter E; McLennan, John D; Bartl, Michael H
2015-03-01
A combination of optical absorption and scattering is used to detect tracer species in a strongly scattering medium. An optical setup was developed, consisting of a dual-beam scattering detection scheme in which sample scattering beam overlaps with the characteristic absorption feature of quantum dot tracer species, while the reference scattering beam is outside any absorption features of the tracer. This scheme was successfully tested in engineered breakthrough tests typical of wastewater and subsurface fluid analysis, as well as in batch analysis of oil and gas reservoir fluids and biological samples. Tracers were detected even under highly scattering conditions, conditions in which conventional absorption or fluorescence methods failed.
Evaluating the effect of oceanic striations on biogeochemistry in the eastern South Pacific
NASA Astrophysics Data System (ADS)
Auger, P. A.; Belmadani, A.; Donoso, D.; Hormazabal, S.
2017-12-01
In recent years, quasi-zonal mesoscale jet-like features or striations have been ubiquitously detected in the time-mean circulation of the world ocean using satellite altimetry and in situ data. Most likely the result of some organization of the mesoscale eddy field such as preferred eddy tracks, these striations may be able to advect and mix physical properties. Yet, their impact on biogeochemistry has not been assessed yet. Off central Chile, the interaction between striations and sharp background gradients of biogeochemical properties may spatially structure biogeochemistry, with potential implications for marine ecosystems. For instance, striations may affect the mean horizontal distribution of surface phytoplankton biomass in the coastal transition zone (CTZ), or the structure and variability of the oxygen-minimum zone (OMZ). Here, we evaluate the expression of striations in satellite records of ocean color and in a set of numerically simulated biogeochemical tracers off central Chile (chlorophyll, carbon, primary production, oxygen, nutrients), averaged over the surface productive layer, the OMZ at intermediate depths or the water column. A multi-decadal hindcast simulation of the physical-biogeochemical dynamics was run over the period 1984-2013 using the ROMS-PISCES (for Regional Oceanic Modeling System - Pelagic Interactions Scheme for Carbon and Ecosystem Studies) platform at an eddy-resolving resolution. Satellite data and model outputs are spatially high-pass filtered to remove the large-scale signal and evaluate the match between striations and biogeochemical tracer anomalies in the model and observations. The effect of striations on the mean shape of the zonal gradient of phytoplankton biomass in the CTZ between eutrophic coastal waters and oligotrophic offshore waters is then deduced. The fraction of tracer anomalies due to striations is quantified, and the structuring roles of stationary and transient striations are respectively explored by matching striations and biogeochemical tracers on moving frames of variable widths from 6 months to several years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuehne, David Patrick; Lattin, Rebecca Renee
The Rad-NESHAP program, part of the Air Quality Compliance team of LANL’s Compliance Programs group (EPC-CP), and the Radiation Instrumentation & Calibration team, part of the Radiation Protection Services group (RP-SVS), frequently partner on issues relating to characterizing air flow streams. This memo documents the most recent example of this partnership, involving performance testing of sulfur hexafluoride detectors for use in stack gas mixing tests. Additionally, members of the Rad-NESHAP program performed a functional trending test on a pair of optical particle counters, comparing results from a non-calibrated instrument to a calibrated instrument. Prior to commissioning a new stack samplingmore » system, the ANSI Standard for stack sampling requires that the stack sample location must meet several criteria, including uniformity of tracer gas and aerosol mixing in the air stream. For these mix tests, tracer media (sulfur hexafluoride gas or liquid oil aerosol particles) are injected into the stack air stream and the resulting air concentrations are measured across the plane of the stack at the proposed sampling location. The coefficient of variation of these media concentrations must be under 20% when evaluated over the central 2/3 area of the stack or duct. The instruments which measure these air concentrations must be tested prior to the stack tests in order to ensure their linear response to varying air concentrations of either tracer gas or tracer aerosol. The instruments used in tracer gas and aerosol mix testing cannot be calibrated by the LANL Standards and Calibration Laboratory, so they would normally be sent off-site for factory calibration by the vendor. Operational requirements can prevent formal factory calibration of some instruments after they have been used in hazardous settings, e.g., within a radiological facility with potential airborne contamination. The performance tests described in this document are intended to demonstrate the reliable performance of the test instruments for the specific tests used in stack flow characterization.« less
NASA Astrophysics Data System (ADS)
de La Bernardie, Jérôme; Bour, Olivier; Guihéneuf, Nicolas; Chatton, Eliot; Labasque, Thierry; Longuevergne, Laurent; Le Lay, Hugo; Koch, Floriant; Gerard, Marie-Françoise; Le Borgne, Tanguy
2017-04-01
Thermal transport in fractured media depends on the hydrological properties of fractures and thermal characteristics of rock. Tracer tests using heat as tracer can thus be a good alternative to characterize fractured media for shallow geothermal needs. This study investigates the possibility of implementing a new thermal tracer test set up, the single well thermal tracer test, to characterize hydraulic and thermal transport properties of fractured crystalline rock. The experimental setup is based on injecting hot water in a fracture isolated by a double straddle packer in the borehole while pumping and monitoring the temperature in a fracture crossing the same borehole at greater elevation. One difficulty comes from the fact that injection and withdrawal are achieved in the same borehole involving thermal losses along the injection tube that may disturb the heat recovery signal. To be able to well localize the heat influx, we implemented a Fiber-Optic Distributed Temperature Sensing (FO-DTS) which allows the temperature monitoring with high spatial and temporal resolution (29 centimeters and 30 seconds respectively). Several tests, at different pumping and injection rates, were performed in a crystalline rock aquifer at the experimental site of Ploemeur (H+ observatory network). We show through signal processing how the thermal breakthrough may be extracted thanks to Fiber-Optic distributed temperature measurements. In particular, we demonstrate how detailed distributed temperature measurements were useful to identify different inflows and to estimate how much heat was transported and stored within the fractures network. Thermal breakthrough curves of single well thermal tracer tests were then interpreted with a simple analytical model to characterize hydraulic and thermal characteristics of the fractured media. We finally discuss the advantages of these tests compared to cross-borehole thermal tracer tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halls, Benjamin R.; Meyer, Terrence R.; Kastengren, Alan L.
2015-01-01
The complex geometry and large index-of-refraction gradients that occur near the point of impingement of binary liquid jets present a challenging environment for optical interrogation. A simultaneous quadruple-tracer x-ray fluorescence and line-of-sight radiography technique is proposed as a means of distinguishing and quantifying individual liquid component distributions prior to, during, and after jet impact. Two different pairs of fluorescence tracers are seeded into each liquid stream to maximize their attenuation ratio for reabsorption correction and differentiation of the two fluids during mixing. This approach for instantaneous correction of x-ray fluorescence reabsorption is compared with a more time-intensive approach of usingmore » stereographic reconstruction of x-ray attenuation along multiple lines of sight. The proposed methodology addresses the need for a quantitative measurement technique capable of interrogating optically complex, near-field liquid distributions in many mixing systems of practical interest involving two or more liquid streams.« less
Halls, Benjamin R.; Meyer, Terrence R.; Kastengren, Alan L.
2015-01-23
The complex geometry and large index-of-refraction gradients that occur near the point of impingement of binary liquid jets present a challenging environment for optical interrogation. A simultaneous quadruple-tracer x-ray fluorescence and line-of-sight radiography technique is proposed as a means of distinguishing and quantifying individual liquid component distributions prior to, during, and after jet impact. Two different pairs of fluorescence tracers are seeded into each liquid stream to maximize their attenuation ratio for reabsorption correction and differentiation of the two fluids during mixing. This approach for instantaneous correction of x-ray fluorescence reabsorption is compared with a more time-intensive approach of usingmore » stereographic reconstruction of x-ray attenuation along multiple lines of sight. The proposed methodology addresses the need for a quantitative measurement technique capable of interrogating optically complex, near-field liquid distributions in many mixing systems of practical interest involving two or more liquid streams.« less
Calibrating binary lumped parameter models
NASA Astrophysics Data System (ADS)
Morgenstern, Uwe; Stewart, Mike
2017-04-01
Groundwater at its discharge point is a mixture of water from short and long flowlines, and therefore has a distribution of ages rather than a single age. Various transfer functions describe the distribution of ages within the water sample. Lumped parameter models (LPMs), which are mathematical models of water transport based on simplified aquifer geometry and flow configuration can account for such mixing of groundwater of different age, usually representing the age distribution with two parameters, the mean residence time, and the mixing parameter. Simple lumped parameter models can often match well the measured time varying age tracer concentrations, and therefore are a good representation of the groundwater mixing at these sites. Usually a few tracer data (time series and/or multi-tracer) can constrain both parameters. With the building of larger data sets of age tracer data throughout New Zealand, including tritium, SF6, CFCs, and recently Halon-1301, and time series of these tracers, we realised that for a number of wells the groundwater ages using a simple lumped parameter model were inconsistent between the different tracer methods. Contamination or degradation of individual tracers is unlikely because the different tracers show consistent trends over years and decades. This points toward a more complex mixing of groundwaters with different ages for such wells than represented by the simple lumped parameter models. Binary (or compound) mixing models are able to represent a more complex mixing, with mixing of water of two different age distributions. The problem related to these models is that they usually have 5 parameters which makes them data-hungry and therefore difficult to constrain all parameters. Two or more age tracers with different input functions, with multiple measurements over time, can provide the required information to constrain the parameters of the binary mixing model. We obtained excellent results using tritium time series encompassing the passage of the bomb-tritium through the aquifer, and SF6 with its steep gradient currently in the input. We will show age tracer data from drinking water wells that enabled identification of young water ingression into wells, which poses the risk of bacteriological contamination from the surface into the drinking water.
Long residence times - bad tracer tests?
NASA Astrophysics Data System (ADS)
Ghergut, Julia; Behrens, Horst; Sauter, Martin
2015-04-01
Tracer tests conducted at geothermal well doublets or triplets in the Upper Rhine Rift Valley [1] all face, with very few exceptions so far, one common issue: lack of conclusive tracer test results, or tracer signals still undetectable for longer than one or two years after tracer injection. While the reasons for this surely differ from site to site (Riehen, Landau, Insheim, Bruchsal, ...), its effects on how the usefulness of tracer tests is perceived by the non-tracer community are pretty much the same. The 'poor-signal' frustration keeps nourishing two major 'alternative' endeavours : (I) design and execute tracer tests in single-well injection-withdrawal (push-pull), 'instead of' inter-well flow-path tracing configurations; (II) use 'novel' tracer substances instead of the 'old' ones which have 'obviously failed'. Frustration experienced with most inter-well tracer tests in the Upper Rhine Rift Valley has also made them be regarded as 'maybe useful for EGS' ('enhanced', or 'engineered' geothermal systems, whose fluid RTD typically include a major share of values below one year), but 'no longer worthwhile a follow-up sampling' in natural, large-scale hydrothermal reservoirs. We illustrate some of these arguments with the ongoing Bruchsal case [2]. The inter-well tracer test conducted at Bruchsal was (and still is!) aimed at assessing inter-well connectivity, fluid residence times, and characterizing the reservoir structure [3]. Fluid samples taken at the geothermal production well after reaching a fluid turnover of about 700,000 m3 showed tracer concentrations in the range of 10-8 Minj per m3, in the liquid phase of each sample (Minj being the total quantity of tracer injected as a short pulse at the geothermal re-injection well). Tracer signals might actually be higher, owing to tracer amounts co-precipitated and/or adsorbed onto the solid phase whose accumulation in the samples was unavoidable (due to pressure relief and degassing during the very sampling process, and later on during sample aeration); the adsorbed and/or co-precipitated tracer amounts appear to be non-zero, but their accurate metering was not completed to date. Thus, a conservative estimate of cumulative tracer recovery amounts to (at least) 2 parts-per-thousand for the first 700,000 m3 of fluid turnover within the geothermal well doublet. Neither do such recovery values automatically imply 'bad news' (poor inter-well connectivity), nor do they appear as implausibly low (cf. fig. 2 of [3]), considering the possibility of major vertical drainage along the large-scale fault zone that isolates the 'aquifer basin' around the re-injection well from the 'aquifer catchment' around the production well, along with the prospect of transport-effective porosity and/or thickness within these 'aquifers' being rather high, due to extensive fissuring/fracturing. In more general terms, we argue that (a) inter-well flow-path spikings are still worthwhile being conducted even in large-scale hydrothermal reservoirs; (b) results gained from single-well tests [3] can never serve as a substitute for the kind of information (primarily: residence time distribution RTD, or flow-storage repartition FSR) being expected from inter-well tests; (c) tracer species that are 'novel' in terms of thermo-/reactivity/sorptivity/exchange at phase interfaces and thus involve some transport-retarding process cannot alleviate the frustration associated with long RT; (d) augmenting the tracer quantity Minj to use for inter-well spiking might render the tracer signal detectable, say, one or two years earlier, but it does not make FSR available sooner, since Minj cannot alter the RTD of fluids traveling through the reservoir; moreover, for inter-well configurations and reservoir structures typical of the Upper Rhine Rift Valley, the Minj augmenting factors necessary to render tracer signals detectable 1 or 2 years earlier mostly range beyond the limits of the reasonably-recommendable (e. g., for Bruchsal: 2 tons, instead of 100 kg of a particular tracer). Acknowledgements: We gratefully acknowledge financial support from Energie Baden-Württemberg (EnBW), from the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, and from the Federal Ministry for Economic Affairs and Energy (BMU and BMWi, Germany), within research projects with grant nos. 0327579, 0325111B, 0325515. References: [1] www.bfe.admin.ch/forschunggeothermie/02484/02766/index.html?lang=de&dossier_id=06049 [2] http://www.geothermal-energy.org/pdf/IGAstandard/WGC/2010/0619.pdf [3] presentations.copernicus.org/EGU2012-13687_presentation.pdf
NASA Astrophysics Data System (ADS)
Foley, Aidan; Cachandt, Gerd; Franklin, Janine; Willmore, Fergus; Atkinson, Tim
2012-05-01
The Corallian limestone of northern England (UK) is widely exploited for water supplies and exhibits the karstic phenomena of sinking rivers, conduit development and groundwater velocities of several kilometres per day. To test a number of model-derived source protection zones and elucidate contaminant transport mechanisms in the aquifer, three tracer tests were conducted from a set of swallow-holes draining the River Derwent toward public water supply wells in the eastern part of the aquifer. Tracers used included: Enterobacter cloacae (bacteriophage), Photine C (optical brightener), sodium fluorescein (fluorescent dye) and sulphur hexafluoride (dissolved gas), the varying properties of which make them suitable analogues for different types of potential contaminant. Observed tracer transport times and arrival patterns indicate that tracer transport occurs through karstic channels embedded in a network of primary fissures which exert control over tracer concentrations once initial tracer plumes have passed. A dipole flow system is observed between the swallow-holes and the closest abstraction well, whilst previously modelled source protection zones do not accurately reflect either groundwater velocity or those areas of the aquifer supplying the wells. These findings imply that managing such aquifers for potential contamination should rely upon empirical tracer evidence for source-protection zone modelling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsang, C.-F.; Doughty, C.
2009-08-06
The single-well injection withdrawal (SWIW) test, a tracer test utilizing only one well, is proposed as a useful contribution to site characterization of fractured rock, as well as providing parameters relevant to tracer diffusion and sorption. The usual conceptual model of flow and solute transport through fractured rock with low matrix permeability involves solute advection and dispersion through a fracture network coupled with diffusion and sorption into the surrounding rock matrix. Unlike two-well tracer tests, results of SWIW tests are ideally independent of advective heterogeneity, channeling and flow dimension, and, instead, focus on diffusive and sorptive characteristics of tracer (solute)more » transport. Thus, they can be used specifically to study such characteristics and evaluate the diffusive parameters associated with tracer transport through fractured media. We conduct simulations of SWIW tests on simple and complex fracture models, the latter being defined as having two subfractures with altered rock blocks in between and gouge material in their apertures. Using parameters from the Aspo site in Sweden, we calculate and study SWIW tracer breakthrough curves (BTCs) from a test involving four days of injection and then withdrawal. By examining the peak concentration C{sub pk} of the SWIW BTCs for a variety of parameters, we confirm that C{sub pk} is largely insensitive to the fracture advective flow properties, in particular to permeability heterogeneity over the fracture plane or to subdividing the flow into two subfractures in the third dimension orthogonal to the fracture plane. The peak arrival time t{sub pk} is not a function of fracture or rock properties, but is controlled by the time schedule of the SWIW test. The study shows that the SWIW test is useful for the study of tracer diffusion-sorption processes, including the effect of the so-called flow-wetted surface (FWS) of the fracture. Calculations with schematic models with different FWS values are conducted and the possibility of direct in situ measurement of FWS with SWIW tests is demonstrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodman, N.D., E-mail: n.d.woodman@soton.ac.uk; Rees-White, T.C.; Stringfellow, A.M.
2015-04-15
Highlights: • Multiple tracers were applied to saturated MSW to test dual-porosity properties. • Lithium demonstrated to be non-conservative as a tracer. • 260 mm diameter column too small to test transport properties of MSW. • The classical advection-dispersion mode was rejected due to high dispersivity. • Characteristic diffusion times did not vary with the tracer. - Abstract: Two column tests were performed in conditions emulating vertical flow beneath the leachate table in a biologically active landfill to determine dominant transport mechanisms occurring in landfills. An improved understanding of contaminant transport process in wastes is required for developing better predictionsmore » about potential length of the long term aftercare of landfills, currently measured in timescales of centuries. Three tracers (lithium, bromide and deuterium) were used. Lithium did not behave conservatively. Given that lithium has been used extensively for tracing in landfill wastes, the tracer itself and the findings of previous tests which assume that it has behaved conservatively may need revisiting. The smaller column test could not be fitted with continuum models, probably because the volume of waste was below a representative elemental volume. Modelling compared advection-dispersion (AD), dual porosity (DP) and hybrid AD–DP models. Of these models, the DP model was found to be the most suitable. Although there is good evidence to suggest that diffusion is an important transport mechanism, the breakthrough curves of the different tracers did not differ from each other as would be predicted based on the free-water diffusion coefficients. This suggested that solute diffusion in wastes requires further study.« less
Groundwater Monitoring and Engineered Geothermal Systems: The Newberry EGS Demonstration
NASA Astrophysics Data System (ADS)
Grasso, K.; Cladouhos, T. T.; Garrison, G.
2013-12-01
Engineered Geothermal Systems (EGS) represent the next generation of geothermal energy development. Stimulation of multiple zones within a single geothermal reservoir could significantly reduce the cost of geothermal energy production. Newberry Volcano in central Oregon represents an ideal location for EGS research and development. As such, the goals of the Newberry EGS Demonstration, operated by AltaRock Energy, Inc., include stimulation of a multiple-zone EGS reservoir, testing of single-well tracers and a demonstration of EGS reservoir viability through flow-back and circulation tests. A shallow, local aquifer supplied the approximately 41,630 m3 (11 million gals) of water used during stimulation of NWG 55-29, a deep geothermal well on the western flank of Newberry Volcano. Protection of the local aquifer is of primary importance to both the Newberry EGS Demonstration and the public. As part of the Demonstration, AltaRock Energy, Inc. has developed and implemented a groundwater monitoring plan to characterize the geochemistry of the local aquifer before, during and after stimulation. Background geochemical conditions were established prior to stimulation of NWG 55-29, which was completed in 2012. Nine sites were chosen for groundwater monitoring. These include the water supply well used during stimulation of NWG 55-29, three monitoring wells, three domestic water wells and two hot seeps located in the Newberry Caldera. Together, these nine monitoring sites represent up-, down- and cross-gradient locations. Groundwater samples are analyzed for 25 chemical constituents, stable isotopes, and geothermal tracers used during stimulation. In addition, water level data is collected at three monitoring sites in order to better characterize the effects of stimulation on the shallow aquifer. To date, no significant geochemical changes and no geothermal tracers have been detected in groundwater samples from these monitoring sites. The Newberry EGS Demonstration groundwater monitoring program is currently on-going.
A.S. Ward; M. Fitzgerald; M.N. Gooseff; A.M. Binley; K. Singha
2012-01-01
Hyporheic hydrodynamics are a control on stream ecosystems, yet we lack a thorough understanding of catchment controls on these flow paths, including valley constraint and hydraulic gradients in the valley bottom. We performed four whole-stream solute tracer injections under steady state flow conditions at the H. J. Andrews Experimental Forest (Oregon, United States)...
Nuclear relaxation and critical fluctuations in membranes containing cholesterol
NASA Astrophysics Data System (ADS)
McConnell, Harden
2009-04-01
Nuclear resonance frequencies in bilayer membranes depend on lipid composition. Our calculations describe the combined effects of composition fluctuations and diffusion on nuclear relaxation near a miscibility critical point. Both tracer and gradient diffusion are included. The calculations involve correlation functions and a correlation length ξ =ξ0T/(T -Tc), where T -Tc is temperature above the critical temperature and ξ0 is a parameter of molecular length. Several correlation functions are examined, each of which is related in some degree to the Ising model correlation function. These correlation functions are used in the calculation of transverse deuterium relaxation rates in magic angle spinning and quadrupole echo experiments. The calculations are compared with experiments that report maxima in deuterium and proton nuclear relaxation rates at the critical temperature [Veatch et al., Proc. Nat. Acad. Sci. U.S.A. 104, 17650 (2007)]. One Ising-model-related correlation function yields a maximum 1/T2 relaxation rate at the critical temperature for both magic angle spinning and quadrupole echo experiments. The calculated rates at the critical temperature are close to the experimental rates. The rate maxima involve relatively rapid tracer diffusion in a static composition gradient over distances of up to 10-100 nm.
NASA Astrophysics Data System (ADS)
Schaefer, T.; Blechschmidt, I.; Bouby, M.; Buechner, S.; Brendlé, J.; Geckeis, H.; Kupcik, T.; Goetz, R.; Hauser, W.; Heck, S.; Huber, F. M.; Lagos, M.; Martin, A. J.
2013-12-01
The influence of colloidal/nano-scale phases on the radionuclide (RNs) solubility and migration behavior is still one of the uncertainties in repository safety assessment [1]. Within the Colloid Formation and Migration (CFM) project at the Grimsel Test Site (GTS Switzerland) a huge geo-technical effort was taken to isolate hydraulically a shear-zone from the artificially introduced hydraulic gradient due to the tunnel construction. The construction is a combination of polymer resin impregnation of the tunnel surface and a steel torus to seal the tunnel surface. Natural outflow points of the MI shear zone were localized prior to the construction and sealed by surface packers. This design gives the opportunity to adjust the flow velocity in the fracture. After optimization of the experimental setup and injection procedure through a number of conservative tracer tests a license was granted in January 2012 by the Swiss regulator (BAG) to perform the first radionuclide tracer test under these low-flow conditions. The injection cocktail of 2.25L volume consisted of 101.4 × 2.5 mg/L montmorillonite clay colloids, whereas 8.9 × 0.4mg/L were present as synthetic montmorillonite with structural incorporated Ni. For details on the structural characterization of the Ni-montmorillonite phyllosilicate, see [2]. Beside the colloids and the conservative tracer Amino-G (1646 × 8ppb) the radioisotopes Na-22, Ba-133, Cs-137, Th-232, Np-237, Pu-242 and Am-243 were injected. The trivalent and tetravalent actinides were quantitatively associated with the colloids present as well as a part of the Cs, whereas Np(V) and Na are not bentonite colloid bond. For on-site colloid analysis a mobile Laser- Induced Breakdown Detection (LIBD) system similar to the one used in the CRR experiments [3] was transferred to Grimsel and installed in-line at the 'Pinkel' outlet to directly monitor the mobile colloid fraction throughout the experiment. The conservative tracer Amino-G was recovered quantitatively and for the weakly sorbing tracers analyzed by γ-spectrometry recoveries for Na-22, Cs-137 and Ba-133 of 64%, 10% and 1%, respectively, were found. The clay colloid recovery determined by LIBD and HR-ICP-MS analyzing Al and Ni as structural components of the clay particles provided 48-52%. For the initial quantitatively colloid associated actinides Am(III) and Pu(IV) a recovery of 21-22% and 30-35%, respectively, could be determined. Np recovery is significantly reduced to ~4 %, which hints to a kinetic controlled Np(V) reduction. The data obtained so far clearly show the mobility of bentonite derived montmorillonite colloids under near-natural flow conditions in the MI shear zone of the Grimsel Test Site [4]. The experimental data will be discussed in detail in the presentation. [1] T. Schäfer, et al. Appl. Geochem., 27 (2012) 390-403. [2] Reinholdt, et al., Nanomaterials, 3 (2013) 48-69. [3] H. Geckeis, et al., Radiochim. Acta, 92 (2004) 765-774. [4] www.grimsel.com
Using predictive uncertainty analysis to optimise tracer test design and data acquisition
NASA Astrophysics Data System (ADS)
Wallis, Ilka; Moore, Catherine; Post, Vincent; Wolf, Leif; Martens, Evelien; Prommer, Henning
2014-07-01
Tracer injection tests are regularly-used tools to identify and characterise flow and transport mechanisms in aquifers. Examples of practical applications are manifold and include, among others, managed aquifer recharge schemes, aquifer thermal energy storage systems and, increasingly important, the disposal of produced water from oil and shale gas wells. The hydrogeological and geochemical data collected during the injection tests are often employed to assess the potential impacts of injection on receptors such as drinking water wells and regularly serve as a basis for the development of conceptual and numerical models that underpin the prediction of potential impacts. As all field tracer injection tests impose substantial logistical and financial efforts, it is crucial to develop a solid a-priori understanding of the value of the various monitoring data to select monitoring strategies which provide the greatest return on investment. In this study, we demonstrate the ability of linear predictive uncertainty analysis (i.e. “data worth analysis”) to quantify the usefulness of different tracer types (bromide, temperature, methane and chloride as examples) and head measurements in the context of a field-scale aquifer injection trial of coal seam gas (CSG) co-produced water. Data worth was evaluated in terms of tracer type, in terms of tracer test design (e.g., injection rate, duration of test and the applied measurement frequency) and monitoring disposition to increase the reliability of injection impact assessments. This was followed by an uncertainty targeted Pareto analysis, which allowed the interdependencies of cost and predictive reliability for alternative monitoring campaigns to be compared directly. For the evaluated injection test, the data worth analysis assessed bromide as superior to head data and all other tracers during early sampling times. However, with time, chloride became a more suitable tracer to constrain simulations of physical transport processes, followed by methane. Temperature data was assessed as the least informative of the solute tracers. However, taking costs of data acquisition into account, it could be shown that temperature data when used in conjunction with other tracers was a valuable and cost-effective marker species due to temperatures low cost to worth ratio. In contrast, the high costs of acquisition of methane data compared to its muted worth, highlighted methanes unfavourable return on investment. Areas of optimal monitoring bore position as well as optimal numbers of bores for the investigated injection site were also established. The proposed tracer test optimisation is done through the application of common use groundwater flow and transport models in conjunction with publicly available tools for predictive uncertainty analysis to provide modelers and practitioners with a powerful yet efficient and cost effective tool which is generally applicable and easily transferrable from the present study to many applications beyond the case study of injection of treated CSG produced water.
Radiation-driven rotational motion of nanoparticles
Liang, Mengning; Harder, Ross; Robinson, Ian
2018-04-25
Focused synchrotron beams can influence a studied sample via heating, or radiation pressure effects due to intensity gradients. The high angular sensitivity of rotational X-ray tracking (RXT) of crystalline particles via their Bragg reflections can detect extremely small forces such as those caused by field gradients. By tracking the rotational motion of single crystal nanoparticles embedded in a viscous or viscoelastic medium, we observed the effects of heating in a uniform gradient beam and radiation pressure in a Gaussian profile beam. Heating of a few degrees Celsius was measured for 42μm crystals in glycerol and angular velocities of 10 -6rad/smore » due to torques of 10 - 24N∙m were measured for 340nm crystals in a colloidal gel matrix. These results show the ability to quantify small forces using rotation motion of tracer particles.« less
Radiation-driven rotational motion of nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Mengning; Harder, Ross; Robinson, Ian
Focused synchrotron beams can influence a studied sample via heating, or radiation pressure effects due to intensity gradients. The high angular sensitivity of rotational X-ray tracking (RXT) of crystalline particles via their Bragg reflections can detect extremely small forces such as those caused by field gradients. By tracking the rotational motion of single crystal nanoparticles embedded in a viscous or viscoelastic medium, we observed the effects of heating in a uniform gradient beam and radiation pressure in a Gaussian profile beam. Heating of a few degrees Celsius was measured for 42μm crystals in glycerol and angular velocities of 10 -6rad/smore » due to torques of 10 - 24N∙m were measured for 340nm crystals in a colloidal gel matrix. These results show the ability to quantify small forces using rotation motion of tracer particles.« less
Kay, Robert T.; Yeskis, Douglas J.; Prinos, Scott T.; Morrow, William S.; Vendl, Mark
1999-01-01
A study was conducted by the U.S. Geological Survey and the U.S. Environmental Protection Agency of the geohydrology of the dolomite bedrock at a waste-disposal site near Byron, Illinois. The study was designed to identify and characterize the flow pathways through the bedrock aquifer beneath the site. The geologic units of concern at the site are the Glenwood Formation of the Ancell Group, and the Platteville and Galena Groups. These deposits compose the Galena-Platteville aquifer and the underlying Harmony Hill Shale semiconfining unit. The Galena-Platteville aquifer is an unconfined aquifer. Geophysical logging, water levels, and aquifer-test data indicate the presence of interconnected, hydraulically active fractures in the middle of the Galena-Platteville aquifer (the upper flow pathway), and a second set of hydraulically active fractures (the lower flow pathway). The lower flow pathway may be present through much of the site. Few hydraulically active fractures are present in the upper part of the aquifer near the center of the site, but appear to be more numerous in the upper part of the aquifer in the western and northeastern parts of the site. Water-level data obtained during the tracer test indicate that pumping effects were present near the pumped wells. Pumping effects may have been present at several wells located along directions of identified fracture orientation from the pumped well. The upper part of the aquifer did not appear to be hydraulically well connected to the flow pathways supplying water to the pumped well. Large background changes in water levels obscured the effects of pumping and prevented calculation of aquifer properties. The velocity of the bromide tracer through the lower flow pathway under the hydraulic gradient resulting from the pumping was about 152 feet per day. Solution of the Darcy velocity equation results in a calculated effective porosity for this interval of 3.5 percent, indicating hydraulic interconnection between the fractures and the aquifer matrix. Ground-water velocity through the lower flow pathway was calculated to be 15.4 feet per day under hydrostatic conditions.
Multitracer Study of Flow to Tile Drains in Irrigated Macroporous Soil
NASA Astrophysics Data System (ADS)
Bishop, J. M.; Callaghan, M. V.; Cey, E.; Bentley, L. R.
2010-12-01
Multiple tracer experiments have been conducted to test the effectiveness of using irrigation along with a tile drain system for salt remediation in west central Alberta, Canada. The experiments were designed to characterize the shallow flow system as part of a salt flushing pilot study and to determine the role of macroporosity in groundwater flow and transport. Soils at the site are primarily silty glaciolacustrine material underlain by a relatively impermeable till layer at approximately 2.5 m below ground surface. A 20 m by 20 m infiltration test plot is underlain by two tile drains at 2 m depth that are separated by 10 m. The test plot contains a drip irrigation system and has been irrigated regularly in the summer months over the past three seasons (2008-2010). Two reportedly conservative tracers, 2,6-difluorobenzoic acid [2,6-DFBA] and pentafluorobenzoic acid [PFBA], have been used on the plot and the pre-existing soil salinity was also used as a tracer. In August of 2009 a 2,6-DFBA solution (865g/L) was applied to the surface of the plot. Irrigation of the study plot continued after tracer application on a schedule that averaged roughly 12mm/day, applied 3 days a week. During the 2010 field season, a PFBA solution (at 4.2 g/L) was injected into two separate monitoring wells. One monitoring well is situated 0.5 m directly above the north tile drain (in which samples were collected regularly). The other well is situated at 2 m depth in the center of the study plot and samples were collected from a down gradient well. Tracer concentrations in the subsurface were monitored through sampling of tile drain effluent and monitoring wells in and around the plot, in addition to soil core extractions taken at several locations within the test plot at the end of the 2009 field season. Initial breakthrough of the DFBA in the tile drains occurred 24 hours after application and remained in all subsequent water samples at concentrations of 2 to 6 mg/L. Results from the DFBA analysis showed that the tiles are highly affected by the lateral and vertical contributions to the drains. Distribution of the DFBA in the soil showed that 82% of the tracer remained in the top 75 cm of the soil profile at the end of the 2009 season. This indicates that macropore flow is occurring, but has a minor influence on the movement of the salt mass. This result is important because it illustrates that although the salt mass has migrated slowly, macroporosity can transport contaminants quickly enough to exceeded drinking water quality guidelines. Breakthrough of the PFBA occurred in the north tile drain 13 hrs after application and peaked at a concentration of 10 mg/L, followed by a sharp decrease and stabilization to concentrations of 1.0 mg/L. This shows that macropore flow is occurring at depth in addition to the surface and that contaminant transport can occur rapidly in soils with lower hydraulic conductivity. Salt concentrations in the effluent were measured at high concentrations, showing that effective salt flushing of the matrix is still occurring.
In this report, we summarize a portion of the results of a large-scale tracer test conducted at the U. S. Geological Survey research site on Cape Cod, Massachusetts. The site is located on a large sand and gravel glacial outwash plain in an unconfined aquifer. In April 1993, ab...
Characterization of thermal tracer tests and heat exchanges in fractured media
NASA Astrophysics Data System (ADS)
de La Bernardie, Jérôme; Bour, Olivier; Guihéneuf, Nicolas; Chatton, Eliot; Labasque, Thierry; Longuevergne, Laurent; Le Lay, Hugo; Koch, Florian; Gerard, Marie-Françoise; Lavenant, Nicolas; Le Borgne, Tanguy
2016-04-01
Geothermal energy is a renewable energy source particularly attractive due to associated low greenhouse gas emission rates. Crystalline rocks are in general considered of poor interest for geothermal applications at shallow depths (< 100m), because of the low permeability of the medium. In some cases, fractures may enhance permeability, but thermal energy storage at these shallow depths is still remaining very challenging because of the low storativity of the medium. Within this framework, the purpose of this study is to test the possibility of efficient thermal energy storage in shallow fractured rocks with a single well semi open loop heat exchanger (standing column well). For doing so, several heat tracer tests have been achieved along a borehole between two connected fractures. The heat tracer tests have been achieved at the experimental site of Ploemeur (H+ observatory network). The tracer tests consist in monitoring the temperature in the upper fracture while injecting hot water in the deeper one thanks to a field boiler. For such an experimental setup, the main difficulty to interpret the data comes from the requirement for separating the temperature advective signal of the tracer test (temperature recovery) from the heat increase due to injection of hot water through the borehole which induces heat losses all along the injection tube in the water column. For doing so, in addition to a double straddle packer used for isolating the injection chamber, the particularity of the experimental set up is the use of fiber optic distributed temperature sensing (FO-DTS); an innovative technology which allows spatial and temporal monitoring of the temperature all along the well. Thanks to this tool, we were able to estimate heat increases coming from diffusion along the injection tube which is found much lower than localized temperature increases resulting from tracer test recovery. With local temperatures probes, separating both effects would not have been feasible. We also show through signal processing how diffusive and advective effects may be differentiated. This allowed us to estimate temperature recovery for different heat tracer durations and setups. In particular we show that temperature recovery is highly dependent on hydraulic configuration such as perfect dipole or fully convergent heat tracer tests.
Implications of Lagrangian Tracer Transport for Coupled Chemistry-Climate Simulations
NASA Astrophysics Data System (ADS)
Stenke, A.
2009-05-01
Today's coupled chemistry-climate models (CCM) consider a large number of trace species and feedback processes. Due to the radiative effect of some species, errors in simulated tracer distributions can feed back to model dynamics. Thus, shortcomings of the applied transport schemes can have severe implications for the overall model performance. Traditional Eulerian approaches show a satisfactory performance in case of homogeneously distributed trace species, but they can lead to severe problems when applied to highly inhomogeneous tracer distributions. In case of sharp gradients many schemes show a considerable numerical diffusion. Lagrangian approaches, on the other hand, combine a number of favourable numerical properties: They are strictly mass-conserving and do not suffer from numerical diffusion. Therefore they are able to maintain steeper gradients. A further advantage is that they allow the transport of a large number of tracers without being prohibitively expensive. A variety of benefits for stratospheric dynamics and chemistry resulting from a Lagrangian transport algorithm are demonstrated by the example of the CCM E39C. In an updated version of E39C, called E39C-A, the operational semi-Lagrangian advection scheme has been replaced with the purely Lagrangian scheme ATTILA. It will be shown that several model deficiencies can be cured by the choice of an appropriate transport algorithm. The most important advancement concerns the reduction of a pronounced wet bias in the extra- tropical lowermost stratosphere. In turn, the associated temperature error ("cold bias") is significantly reduced. Stratospheric wind variations are now in better agreement with observations, e.g. E39C-A is able to reproduce the stratospheric wind reversal in the Southern Hemisphere in summer which was not captured by the previous model version. Resulting changes in wave propagation and dissipation lead to a weakening of the simulated mean meridional circulation and therefore a more realistic representation of tropical upwelling. Simulated distributions of chemical tracers in the stratosphere are clearly improved. For example, the vertical distribution of stratospheric chlorine (Cly) is now in agreement with analyses derived from observations and other CCMs. As a consequence the model realistically covers the altitude of maximum ozone depletion in the stratosphere. Furthermore, the simulated temporal evolution of stratospheric Cly in the past agrees is realistically reproduced which is an important step towards more reliable projections of future changes, especially of stratospheric ozone.
76 FR 71610 - Market Test of First-Class Tracer
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-18
... POSTAL REGULATORY COMMISSION [Docket No. MT2012-1; Order No. 959] Market Test of First-Class... recently-field Postal Service proposal to conduct a market test of a market dominant product, First- Class Tracer. This document describes the proposed test, addresses procedural aspects of the filing, and...
Simple Spreadsheet Models For Interpretation Of Fractured Media Tracer Tests
An analysis of a gas-phase partitioning tracer test conducted through fractured media is discussed within this paper. The analysis employed matching eight simple mathematical models to the experimental data to determine transport parameters. All of the models tested; two porous...
NASA Astrophysics Data System (ADS)
Schlueter-Kuck, Kristy; Dabiri, John
2017-11-01
In recent years, there has been a proliferation of techniques that aim to characterize fluid flow kinematics on the basis of Lagrangian trajectories of collections of tracer particles. Most of these techniques depend on presence of tracer particles that are initially closely-spaced, in order to compute local gradients of their trajectories. In many applications, the requirement of close tracer spacing cannot be satisfied, especially when the tracers are naturally occurring and their distribution is dictated by the underlying flow. Moreover, current methods often focus on determination of the boundaries of coherent sets, whereas in practice it is often valuable to identify the complete set of trajectories that are coherent with an individual trajectory of interest. We extend the concept of Coherent Structure Coloring to achieve identification of the coherent set associated with individual Lagrangian trajectories. This algorithm is proven successful in identifying coherent structures of varying complexities in canonical unsteady flows. Importantly, although the method is demonstrated here in the context of fluid flow kinematics, the generality of the approach allows for its potential application to other unsupervised clustering problems in dynamical systems. This work was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
High Temperature Aquifer Storage
NASA Astrophysics Data System (ADS)
Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas
2015-04-01
Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Apart from the hydrogeological conditions, high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. After one year of planning, construction, and the successful drilling of a research well to 495 m b.s.l. the first large scale heat storage test in the Malm aquifer was finished just before Christmas 2014. An enormous technical challenge was the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10-50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye. Injection and production rates were 15 L/s. About 4 TJ of heat energy were necessary to achieve the desired water temperatures. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for the analysis of the concentration of the tracers and the cation concentrations at sampling intervals of down to 15 minutes. Additional water samples were taken and analyzed for major ions and trace elements in the laboratory. The disassembled heat exchanger proved that precipitation was successfully prevented by adding CO2 to the water before heating. Energy recovery during the first pulses was above 35 % and rising. As a side effect of the extremely good hydraulic conditions, the research well was flowing freely with 20 L/s which resulted in a significant mixing of the injected water with formation waters during production. The recovery rates for the tracers were above 60 % depending on the type of tracer.
Revisitation of the dipole tracer test for heterogeneous porous formations
NASA Astrophysics Data System (ADS)
Zech, Alraune; D'Angelo, Claudia; Attinger, Sabine; Fiori, Aldo
2018-05-01
In this paper, a new analytical solution for interpreting dipole tests in heterogeneous media is derived by associating the shape of the tracer breakthrough curve with the log-conductivity variance. It is presented how the solution can be used for interpretation of dipole field test in view of geostatistical aquifer characterization on three illustrative examples. The analytical solution for the tracer breakthrough curve at the pumping well in a dipole tracer test is developed by considering a perfectly stratified formation. The analysis is carried out making use of the travel time of a generic solute particle, from the injection to the pumping well. Injection conditions are adapted to different possible field setting. Solutions are presented for resident and flux proportional injection mode as well as for an instantaneous pulse of solute and continuous solute injections. The analytical form of the solution allows a detailed investigation on the impact of heterogeneity, the tracer input conditions and ergodicity conditions at the well. The impact of heterogeneity manifests in a significant spreading of solute particles that increases the natural tendency to spreading induced by the dipole setup. Furthermore, with increasing heterogeneity the number of layers needed to reach ergodic conditions become larger. Thus, dipole test in highly heterogeneous aquifers might take place under non-ergodic conditions giving that the log-conductivity variance is underestimated. The method is a promising geostatistical analyzing tool being the first analytical solution for dipole tracer test analysis taking heterogeneity of hydraulic conductivity into account.
NASA Technical Reports Server (NTRS)
Plumb, R. A.
1985-01-01
Two dimensional modeling has become an established technique for the simulation of the global structure of trace constituents. Such models are simpler to formulate and cheaper to operate than three dimensional general circulation models, while avoiding some of the gross simplifications of one dimensional models. Nevertheless, the parameterization of eddy fluxes required in a 2-D model is not a trivial problem. This fact has apparently led some to interpret the shortcomings of existing 2-D models as indicating that the parameterization procedure is wrong in principle. There are grounds to believe that these shortcomings result primarily from incorrect implementations of the predictions of eddy transport theory and that a properly based parameterization may provide a good basis for atmospheric modeling. The existence of these GCM-derived coefficients affords an unprecedented opportunity to test the validity of the flux-gradient parameterization. To this end, a zonally averaged (2-D) model was developed, using these coefficients in the transport parameterization. Results from this model for a number of contrived tracer experiments were compared with the parent GCM. The generally good agreement substantially validates the flus-gradient parameterization, and thus the basic principle of 2-D modeling.
Plasma transport in an Eulerian AMR code
Vold, E. L.; Rauenzahn, R. M.; Aldrich, C. H.; ...
2017-04-04
A plasma transport model has been implemented in an Eulerian AMR radiation-hydrodynamics code, xRage, which includes plasma viscosity in the momentum tensor, viscous dissipation in the energy equations, and binary species mixing with consistent species mass and energy fluxes driven by concentration gradients, ion and electron baro-diffusion terms and temperature gradient forces. The physics basis, computational issues, numeric options, and results from several test problems are discussed. The transport coefficients are found to be relatively insensitive to the kinetic correction factors when the concentrations are expressed with the molar fractions and the ion mass differences are large. The contributions tomore » flow dynamics from plasma viscosity and mass diffusion were found to increase significantly as scale lengths decrease in an inertial confinement fusion relevant Kelvin-Helmholtz instability mix layer. The mixing scale lengths in the test case are on the order of 100 μm and smaller for viscous effects to appear and 10 μm or less for significant ion species diffusion, evident over durations on the order of nanoseconds. The temperature gradient driven mass flux is seen to deplete a high Z tracer ion at the ion shock front. The plasma transport model provides the generation of the atomic mix per unit of interfacial area between two species with no free parameters. The evolution of the total atomic mix then depends also on an accurate resolution or estimate of the interfacial area between the species mixing by plasma transport. High resolution simulations or a more Lagrangian-like treatment of species interfaces may be required to distinguish plasma transport and numerical diffusion in an Eulerian computation of complex and dynamically evolving mix regions.« less
Plasma transport in an Eulerian AMR code
NASA Astrophysics Data System (ADS)
Vold, E. L.; Rauenzahn, R. M.; Aldrich, C. H.; Molvig, K.; Simakov, A. N.; Haines, B. M.
2017-04-01
A plasma transport model has been implemented in an Eulerian AMR radiation-hydrodynamics code, xRage, which includes plasma viscosity in the momentum tensor, viscous dissipation in the energy equations, and binary species mixing with consistent species mass and energy fluxes driven by concentration gradients, ion and electron baro-diffusion terms and temperature gradient forces. The physics basis, computational issues, numeric options, and results from several test problems are discussed. The transport coefficients are found to be relatively insensitive to the kinetic correction factors when the concentrations are expressed with the molar fractions and the ion mass differences are large. The contributions to flow dynamics from plasma viscosity and mass diffusion were found to increase significantly as scale lengths decrease in an inertial confinement fusion relevant Kelvin-Helmholtz instability mix layer. The mixing scale lengths in the test case are on the order of 100 μm and smaller for viscous effects to appear and 10 μm or less for significant ion species diffusion, evident over durations on the order of nanoseconds. The temperature gradient driven mass flux is seen to deplete a high Z tracer ion at the ion shock front. The plasma transport model provides the generation of the atomic mix per unit of interfacial area between two species with no free parameters. The evolution of the total atomic mix then depends also on an accurate resolution or estimate of the interfacial area between the species mixing by plasma transport. High resolution simulations or a more Lagrangian-like treatment of species interfaces may be required to distinguish plasma transport and numerical diffusion in an Eulerian computation of complex and dynamically evolving mix regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimus, Paul W.
2012-08-30
In February and March 2012, a tracer test involving the injection of a radionuclide-colloid cocktail was conducted in the MI shear zone at the Grimsel Test Site, Switzerland, as part of the Colloids Formation and Migration (CFM) project. The colloids were derived from FEBEX bentonite, which is mined in Spain and is being considered as a potential waste package backfill in a Spanish nuclear waste repository. The tracer test, designated test 12-02 (second test in 2012), involved the injection of the tracer cocktail into borehole CFM 06.002i2 and extraction from the Pinkel surface packer at the main access tunnel wallmore » approximately 6.1 m from the injection interval. The test configuration is depicted in Figure 1. This configuration has been used in several conservative tracer tests and two colloid-homologue tracer tests since 2007, and it is will be employed in an upcoming test involving the emplacement of a radionuclide-doped bentonite plug into CFM 06.002i2 to evaluate the swelling and erosion of the bentonite and the transport of bentonite colloids and radionuclides from the source to the extraction point at the tunnel wall. Interpretive analyses of several of the previous tracer tests, from 09-01 through 12-02 were provided in two previous Used Fuel Disposition Program milestone reports (Arnold et al., 2011; Kersting et al., 2012). However, only the data for the conservative tracer Amino-G Acid was previously analyzed from test 12-02 because the other tracer data from this test were not available at the time. This report documents the first attempt to quantitatively analyze the radionuclide and colloid breakthrough curves from CFM test 12-02. This report was originally intended to also include an experimental assessment of colloid-facilitated transport of uranium by bentonite colloids in the Grimsel system, but this assessment was not conducted because it was reported by German collaborators at the Karlsruhe Institute of Technology (KIT) that neither uranium nor neptunium adsorbed appreciably to FEBEX bentonite colloids in Grimsel groundwater (Huber et al., 2011). The Grimsel groundwater has a relatively high pH of {approx}9, so the lack of uranium and neptunium adsorption to clay is not surprising given the tendency for these actinides to form very stable negative or neutrally-charged uranyl- or calcium-uranyl-carbonate complexes at these pH, particularly in a water that is effectively saturated with respect to calcite. It was also observed in testing conducted at LANL earlier in 2012 that uranium did not adsorb measurably to Grimsel granodiorite in a synthetic Grimsel groundwater at pH {approx}8.5 (Kersting et al., 2012). Thus, the planned experimental work was not pursued because all the available information clearly pointed to an expected result that uranium transport would not be facilitated by clay colloids in the Grimsel system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolley, R.L.; Begovich, J.M.; Brashear, H.R.
1983-12-01
Stimulus-response measurements using radiotracers to measure residence time distribution (RTD) and hydrodynamic parameters for the preheaters and dissolvers at the Ft. Lewis Solvent Refined Coal (SRC) and the Exxon Donor Solvent (EDS) coal conversion pilot plants are reviewed. A plan is also presented for a series of radioactive tracer studies proposed for the Advanced Coal Liquefaction Facility at Wilsonville, Alabama, to measure the RTD for the preheater and dissolvers in the SRC-I mode. The tracer for the gas phase will be /sup 133/Xe, and /sup 198/Au (on carbonized resin or as an aqueous colloidal suspension) will be used as themore » slurry tracer. Four experimental phases are recommended for the RTD tracer studies: (1) preheater; (2) dissolver with 100% takeoff; (3) dissolver with 100% takeoff and solids withdrawal; and (4) dissolver with 50% takeoff. Eighteen gas-tracer and 22 liquid-tracer injections are projected to accomplish the four experimental phases. Two to four tracer injections are projected for preliminary tests to ensure the capability of safe injection of the radiotracers and the collection of statistically significant data. A complete projected cost and time schedule is provided, including procurement of necessary components, preparation of the radiotracers, assembly and testing of tracer injection apparatus and detection systems, onsite work and tracer injections, laboratory experimentation, data analysis, and report writing.« less
Analytical solutions for efficient interpretation of single-well push-pull tracer tests
Single-well push-pull tracer tests have been used to characterize the extent, fate, and transport of subsurface contamination. Analytical solutions provide one alternative for interpreting test results. In this work, an exact analytical solution to two-dimensional equations descr...
NASA Astrophysics Data System (ADS)
Lochbühler, T.; Linde, N.
2012-04-01
Geophysical methods are widely used for aquifer characterization, but they usually fail to directly provide models of hydraulic conductivity. Here, a method is presented to jointly invert crosshole ground-penetrating radar (GPR) travel times and hydrological data to estimate the 2-D distribution of both GPR velocities and hydraulic conductivities. The hydrological data are the first temporal moments of tracer breakthrough curves measured at different depths (i.e., the mean arrival times of the tracer at the given locations). Structural resemblance between the geophysical and the hydrological model is enforced by strongly penalizing models for which the cross products of the model gradients are non-zero. The proposed method was first tested on a synthetic categorical facies model. The high resolution of the GPR velocity model markedly improves the hydraulic conductivity model by adding small-scale structures that remain unresolved by the individual inversion of the hydrological data. The method was then applied to field data acquired within a gravel aquifer located close to the Thur River, northeastern Switzerland. The hydrological data used were derived from transfer functions obtained by deconvolving groundwater electrical conductivity time series with electrical conductivity variations of the river water. These data were recorded over several years at three depth levels in three boreholes aligned along the main groundwater flow direction. The transfer functions are interpreted as breakthrough curves of a pulse injection in the river from which we retrieve the first temporal moments. These data were complemented with crosshole GPR data acquired between the three boreholes. Both the individual and joint inversion models provide a smooth hydraulic conductivity model that retrieves the same general trend as EM flowmeter data, but does not resolve small-scale variability.
Field-scale simulation of chemical flooding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saad, N.
1989-01-01
A three-dimensional compositional chemical flooding simulator (UTCHEM) has been improved. The new mathematical formulation, boundary conditions, and a description of the physicochemical models of the simulator are presented. This improved simulator has been used for the study of the low tension pilot project at the Big Muddy field near Casper, Wyoming. Both the tracer injection conducted prior to the injection of the chemical slug, and the chemical flooding stages of the pilot project, have been analyzed. Not only the oil recovery but also the tracers, polymer, alcohol and chloride histories have been successfully matched with field results. Simulation results indicatemore » that, for this fresh water reservoir, the salinity gradient during the preflush and the resulting calcium pickup by the surfactant slug played a major role in the success of the project. In addition, analysis of the effects of the crossflow on the performance of the pilot project indicates that, for the well spacing of the pilot, crossflow does not play as important a role as it might for a large-scale project. To improve the numerical efficiency of the simulator, a third order convective differencing scheme has been applied to the simulator. This method can be used with non-uniform mesh, and therefore is suited for simulation studies of large-scale multiwell heterogeneous reservoirs. Comparison of the results with one and two dimensional analytical solutions shows that this method is effective in eliminating numerical dispersion using relatively large grid blocks. Results of one, two and three-dimensional miscible water/tracer flow, water flooding, polymer flooding, and micellar-polymer flooding test problems, and results of grid orientation studies, are presented.« less
Sensitivity models and design protocol for partitioning tracer tests in alluvial aquifers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, M.; Butler, G.W.; Jackson, R.E.
1997-11-01
Zones of dense, nonaqueous phase liquids (DNAPLs) are difficult to characterize as to their volume, composition, and spatial distribution using conventional ground-water extraction and soil-sampling methods. Such incompletely characterized sites have negative consequences for those responsible for their remedial design, e.g., the uncertainties in the optimal placement of ground-water extraction wells and in the duration of remediation. However, the recent use of the partitioning interwell tracer test (PITT) to characterize DNAPL zones at sites in New Mexico [unsaturated alluvium] and in Ohio, Texas, and Utah [saturated alluvium] demonstrates that the volume and spatial distribution of residual DNAPL can be determinedmore » with accuracy. The PITT involves injection of a suite of tracers which reversibly partition to different degrees between the DNAPL and the ground water or soil air resulting in the chromatographic separation of the tracer signals observed at the extraction well(s). The design of a PITT requires careful consideration of the hydrostratigraphic, hydraulic, and certain geochemical properties of the alluvium being tested. A three-dimensional, numerical model of a heterogeneous alluvial aquifer containing DNAPL has been developed for use with the UTCHEM simulator to demonstrate partitioning tracer testing and to address questions that are frequently raised in its application. The simulations include (1) the estimation of DNAPL volume for the simple case where only residual DNAPL is present in heterogeneous alluvium, (2) sensitivity studies to demonstrate the effect of increasingly low residual DNAPL saturation on the tracer signal, and (3) the effect of free-phase DNAPL on the estimation of the volume of DNAPL present. Furthermore, the potential interference of sedimentary organic carbon as a DNAPL surrogate on the tracer signal is considered and shown to be readily resolved by the careful choice of tracers.« less
Acceleration effects observed in optical data taken in Spacelab 3 FES
NASA Technical Reports Server (NTRS)
Trolinger, James; Lal, Ravindra; Ruff, Rudy
1990-01-01
Optical instrumentation in the Fluids Experiment System (FES) is briefly described. Samples of the data produced by the schlieren and holography systems during the Spacelab 3 flight are then presented with some of the holographic interferometry data being presented for the first time. Acceleration effects that can be observed in these data are discussed and the potential for using them as a basis for measurement is explored. This includes the tracking of deliberately introduced tracer particles and density gradients in the FES, the analysis of the existing concentration gradients, and a new fiber optic G-meter concept. Finally, some of the plans for acceleration measurement in the upcoming International Microgravity-1/FES are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dombrowski, T.; Stetzenbach, K.
1993-08-01
This report is in two parts one for the fluorinated benzoic acids and one for the fluorinated aliphatic acids. The assumptions made in the report regarding the amount of tracer that will be used, dilution of the tracer during the test and the length of exposure (if any) to individuals drinking the water were made by the authors. These assumptions must really come from the USGS hydrologists in charge of the c-well tracer testing program. Accurate estimates of dilution of the tracer during the test are also important because of solubility limitations of some of the tracers. Three of themore » difluorobenzoic acids have relatively low solubilities and may not be usable if the dilution estimates are large. The toxicologist that reviewed the document agreed with our conclusion that the fluorinated benzoic and toluic acids do not represent a health hazard if used under the conditions as outlined in the report. We are currently testing 15 of these compounds, and if even if three difluorobenzoic acids cannot be used because of solubility limitations we will still have 12 tracers. The toxicologist felt that the aliphatic fluorinated acids potentially present more of a health risk than the aromatic. This assessment was based on the fact of a known allergic response to halothane anesthetic. This risk, although minimal, is known and he felt that was enough reason to recommend against their use. The authors feel that the toxicologists interpretation of this risk was overly conservative, however, we will not go against his recommendation at this time for the following reasons. First, without the aliphatic compounds we still have 12 to 15 fluorinated aromatic acids which, should be enough for the c-well tests. Second, to get a permit to use aliphatic compounds would undoubtedly require a hearing which could be quite lengthy.« less
Sample stream distortion modeled in continuous-flow electrophoresis
NASA Technical Reports Server (NTRS)
Rhodes, P. H.
1979-01-01
Buoyancy-induced disturbances in an electrophoresis-type chamber were investigated. Five tracer streams (latex) were used to visualize the flows while a nine-thermistor array sensed the temperature field. The internal heating to the chamber was provided by a 400 Hz electrical field. Cooling to the chamber was provided on the front and back faces and, in addition, on both chamber side walls. Disturbances to the symmetric base flow in the chamber occurred in the broad plane of the chamber and resulted from the formation of lateral and axial temperature gradients. The effect of these gradients was to retard or increase local flow velocities at different positions in the chamber cross section, which resulted in lateral secondary flows being induced in the broad plane of the chamber. As the adverse temperature gradients increased in magnitude, the critical Rayleigh number was approached and reverse (separated) flow became apparent, which, subsequently, led to the onset of time variant secondary flows.
NASA Technical Reports Server (NTRS)
Hitchman, Matthew H.; Brasseur, Guy
1988-01-01
A parameterization of the effects of Rossby waves in the middle atmosphere is proposed for use in two-dimensional models. By adding an equation for conservation of Rossby wave activity, closure is obtained for the meridional eddy fluxes and body force due to Rossby waves. Rossby wave activity is produced in a climatological fashion at the tropopause, is advected by a group velocity which is determined solely by model zonal winds, and is absorbed where it converges. Absorption of Rossby wave activity causes both an easterly torque and an irreversible mixing of potential vorticity, represented by the meridional eddy diffusivity, K(yy). The distribution of Rossby wave driving determines the distribution of K(yy), which is applied to all of the chemical constituents. This provides a self-consistent coupling of the wave activity with the winds, tracer distributions and the radiative field. Typical winter stratospheric values for K(yy) of 2 million sq m/sec are obtained. Poleward tracer advection is enhanced and meridional tracer gradients are reduced where Rossby wave activity is absorbed in the model.
NASA Astrophysics Data System (ADS)
Chuang, Po-Yu; Chia, Yeeping; Chiu, Yung-Chia; Liou, Ya-Hsuan; Teng, Mao-Hua; Liu, Ching-Yi; Lee, Tsai-Ping
2016-04-01
Deterministic delineation of the preferential flow paths and their hydraulic properties are desirable for developing hydrogeological conceptual models in bedrock aquifers. In this study, we proposed using nanoscale zero-valent iron (nZVI) as a tracer to characterize the fractured connectivity and hydraulic properties. Since nZVI particles are magnetic, we designed a magnet array to attract the arriving nZVI particles in the observation well for identifying the location of incoming tracer. This novel approach was examined at two experiment wells with well hydraulic connectivity in a hydrogeological research station in the fractured aquifer. Heat-pulse flowmeter test was used to detect the vertical distribution of permeable zones in the borehole, providing the design basis of tracer test. Then, the less permeable zones in the injection well were sealed by casing to prevent the injected nZVI particles from being stagnated at the bottom hole. Afterwards, hydraulic test was implemented to examine the hydraulic connectivity between two wells. When nZVI slurry was released in the injection well, they could migrate through connected permeable fractures to the observation well. A breakthrough curve was obtained by the fluid conductivity sensor in the observation well, indicating the arrival of nZVI slurry. The iron nanoparticles that were attracted to the magnets in the observation well provide the quantitative information to locate the position of tracer inlet, which corroborates well with the depth of a permeable zone delineated by the flowmeter. Finally, the numerical method was utilized to simulate the process of tracer migration. This article demonstrates that nano-iron tracer test can be a promising approach for characterizing connectivity patterns and transmissivities of the flow paths in the fractured rock.
NASA Astrophysics Data System (ADS)
Chuang, P. Y.; Chiu, Y.; Liou, Y. H.; Teng, M. H.; Chia, Y.
2016-12-01
Fracture flow is of importance for water resources as well as the investigation of contaminant pathways. In this study, a novel characterization approach of nanoscale zero-valent iron (nZVI) tracer test was developed to accurately identify the connecting fracture zones of preferential flow between a screened well and an open well. Iron nanoparticles are magnetic and can be attracted by a magnet. This feature make it possible to design a magnet array for attracting nZVI particles at the tracer inlet to characterize the location of incoming tracer in the observation well. This novel approach was tested at two experiment wells with well hydraulic connectivity in a hydrogeological research station in central Taiwan. A heat-pulse flowmeter can be used to detect changes in flow velocity for delineating permeable fracture zones in the borehole and providing the design basis for the tracer test. Then, the most permeable zone in the injection well was hydraulically isolated by well screen to prevent the injected nZVI particles from being stagnated at the hole bottom. Afterwards, another hydraulic test was implemented to re-examine the hydraulic connectivity between the two wells. When nZVI slurry was injected in the injection well, they migrated through connected permeable fractures to the observation well. A breakthrough curve, observed by the fluid conductivity sensor in the observation well, indicated the arrival of nZVI slurry. The iron nanoparticles attracted to the magnets in the observation well provide the position of tracer inlet, which corroborates well with the depth of a permeable zone delineated by the flowmeter. This article demonstrates the potential of nano-iron tracer test to provide the quantitative information of fracture flow paths in fractured rock.
NASA Astrophysics Data System (ADS)
Roback, R. C.; Jones, C. L.; Hull, L. C.; McLing, T. L.; Baker, K. E.; Abdel-Fattah, A. I.; Adams, J. D.; Nichols, E. M.
2003-12-01
The Vadose Zone Research Park (VZRP) provides a unique opportunity to investigate flow and transport in a thick, fractured and layered vadose zone. The VZRP includes two newly constructed percolation ponds each approximately 160000 square ft in area, which receive roughly 1.0 to 1.5 million gallons/day of uncontaminated process water. Monitoring wells and instrumented boreholes surround the percolation ponds. These are distributed in nested sets that allow continuous monitoring and sample collection along two important hydrologic contacts; one located at roughly 60' bls along a contact between alluvium and basalt and the other at 125' bls, along a sedimentary interbed in basalt. Both of these contacts support perched water zones. Hydraulic data have been collected nearly continuously since the first use of the percolation ponds in August 2002. Samples for geochemical studies were also collected during the first few weeks of discharge to the south pond to observe geochemical trends during initial wetting of the subsurface. During the summer of 2003, two tracer tests were performed. The first test consisted of injecting a conservative tracer (2,4,5-trifluorobenzoic acid) into the south pond, which had been receiving water for almost 10 months prior and for which hydraulic data indicated a steady state hydraulic system. The second tracer test was conducted in the north pond and consisted of simultaneous injection of two conservative tracers with different diffusion coefficients (2,4-difluorobenzoic acid, and Br- ion). Tracer injection coincided with the switching of water from the south to the north pond, which had been dry for 10 months prior. Thus, this test afforded us the opportunity to evaluate transport behavior in a relatively dry vadose zone, and to compare this to observed transport behavior under the earlier steady state, more saturated flow condition. Results from the first tracer test show tracer breakthrough in a shallow well, close to the south pond within approximately 30 hours with the peak at approximately 70 hours. In an adjacent, though deeper well located in a perched water zone at the 125' interbed, two tracer peaks were observed, one at approximately 50 hours and the other at approximately 200 hours, indicating multiple flow pathways and different travel times. Flow velocities calculated from this test are on the order of 100 m/day, in good agreement with velocities determined through hydraulic data. Initial results from the second tracer test show tracer recovery in at least four of the sampled wells. During this test, the discharge and four wells were also sampled for colloid concentration and particle size distribution. Colloid concentrations in the wells are roughly equivalent to, or larger than, those from the discharge and show sharp peaks up to an order of magnitude above background values. Comparison of colloid concentration data from the discharge, shallow wells located in the alluvium, and deeper wells in fractured basalt suggest that colloids are liberated in the alluvium and that advection through the fractured basalt does not affect the stability of the colloids. Preliminary tracer data show that tracer breakthrough in the monitoring wells occurred at similar times to colloid peaks. Further analytical work will yield breakthrough curves for the 2,4-tFBA that will be quantitatively compared with the colloid peaks.
Modification of Rhodamine WT tracer tests procedure in activated sludge reactors
NASA Astrophysics Data System (ADS)
Knap, Marta; Balbierz, Piotr
2017-11-01
One of the tracers recommended for use in wastewater treatment plants and natural waters is Rhodamine WT, which is a fluorescent dye, allowing to work at low concentrations, but may be susceptible to sorption to activated sludge flocs and chemical quenching of fluorescence by dissolved water constituents. Additionally raw sewage may contain other natural materials or pollutants exhibiting limited fluorescent properties, which are responsible for background fluorescence interference. This paper presents the proposed modifications to the Rhodamine WT tracer tests procedure in activated sludge reactors, which allow to reduce problems with background fluorescence and tracer loss over time, developed on the basis of conducted laboratory and field experiments.
Capesius, Joseph P.; Sullivan, Joseph R.; O'Neill, Gregory B.; Williams, Cory A.
2005-01-01
Accurate ice-affected streamflow records are difficult to obtain for several reasons, which makes the management of instream-flow water rights in the wintertime a challenging endeavor. This report documents a method to improve ice-affected streamflow records for two gaging stations in Colorado. In January and February 2002, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, conducted an experiment using a sodium chloride tracer to measure streamflow under ice cover by the tracer-dilution discharge method. The purpose of this study was to determine the feasibility of obtaining accurate ice-affected streamflow records by using a sodium chloride tracer that was injected into the stream. The tracer was injected at two gaging stations once per day for approximately 20 minutes for 25 days. Multiple-parameter water-quality sensors at the two gaging stations monitored background and peak chloride concentrations. These data were used to determine discharge at each site. A comparison of the current-meter streamflow record to the tracer-dilution streamflow record shows different levels of accuracy and precision of the tracer-dilution streamflow record at the two sites. At the lower elevation and warmer site, Brandon Ditch near Whitewater, the tracer-dilution method overestimated flow by an average of 14 percent, but this average is strongly biased by outliers. At the higher elevation and colder site, Keystone Gulch near Dillon, the tracer-dilution method experienced problems with the tracer solution partially freezing in the injection line. The partial freezing of the tracer contributed to the tracer-dilution method underestimating flow by 52 percent at Keystone Gulch. In addition, a tracer-pump-reliability test was conducted to test how accurately the tracer pumps can discharge the tracer solution in conditions similar to those used at the gaging stations. Although the pumps were reliable and consistent throughout the 25-day study period, the pumps underdischarged the tracer by 5.8-15.9 percent as compared to the initial pumping rate setting, which may explain some of the error in the tracer-dilution streamflow record as compared to current-meter streamflow record.
76 FR 71087 - Market Test of Experimental Product: “First-Class Tracer”
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-16
... POSTAL SERVICE Market Test of Experimental Product: ``First-Class Tracer'' AGENCY: Postal Service \\TM\\. ACTION: Notice. SUMMARY: The Postal Service gives notice of a market test of an experimental... ``First-Class Tracer'' experimental product on or after December 7, 2011. The Postal Service has filed...
Krueger, C.J.; Radakovich, K.M.; Sawyer, T.E.; Barber, L.B.; Smith, R.L.; Field, J.A.
1998-01-01
Transport and biodegradation of linear alkylbenzenesulfonate (LAS) in sewage-contaminated groundwater were investigated for a range of dissolved oxygen concentrations. Both laboratory column and an 80-day continuous injection tracer test field experiments were conducted. The rates of LAS biodegradation increased with increasing dissolved oxygen concentrations and indicated the preferential biodegradation of the longer alkyl chain LAS homologues (i.e., C12 and C13) and external isomers (i.e., 2-and 3- phenyl). However, for similar dissolved oxygen concentrations, mass removal rates for LAS generally were 2-3 times greater in laboratory column experiments than in the field tracer test. Under low oxygen conditions (<1 mg/L) only a fraction of the LAS mixture biodegraded in both laboratory and field experiments. Biodegradation rate constants for the continuous injection field test (0.002-0.08 day-1) were comparable to those estimated for a 3-h injection (pulsed) tracer test conducted under similar biogeochemical conditions, indicating that increasing the exposure time of aquifer sediments to LAS did not increase biodegradation rates.Transport and biodegradation of linear alkylbenzenesulfonate (LAS) in sewage-contaminated groundwater were investigated for a range of dissolved oxygen concentrations. Both laboratory column and an 80-day continuous injection tracer test field experiments were conducted. The rates of LAS biodegradation increased with increasing dissolved oxygen concentrations and indicated the preferential biodegradation of the longer alkyl chain LAS homologues (i.e., C12 and C13) and external isomers (i.e., 2- and 3-phenyl). However, for similar dissolved oxygen concentrations, mass removal rates for LAS generally were 2-3 times greater in laboratory column experiments than in the field tracer test. Under low oxygen conditions (<1 mg/L) only a fraction of the LAS mixture biodegraded in both laboratory and field experiments. Biodegradation rate constants for the continuous injection field test (0.002-0.08 day-1) were comparable to those estimated for a 3-h injection (pulsed) tracer test conducted under similar biogeochemical conditions, indicating that increasing the exposure time of aquifer sediments to LAS did not increase biodegradation rates.
In situ monitoring of tracer tests: how to distinguish tracer recovery from natural background
NASA Astrophysics Data System (ADS)
Bailly-Comte, V.; Durepaire, X.; Batiot-Guilhe, C.; Schnegg, P.-A.
2018-03-01
Hydrogeological tracer tests are primarily conducted with fluorescent tracers. Field fluorometers make it possible to monitor tracers at very low concentrations (<1 ppb) and at high frequency. However, changes in natural fluorescence at a site resulting from variations of dissolved and suspended inorganic and organic material may compromise the measurement of useful signals, thereby limiting the chances of identifying or quantifying the real tracer recovery. An elevated natural signal can mask small concentrations of the tracer while its variability can give the impression of a false recovery. This article shows how the use of a combination of several continuous measurements at different wavelengths allows a better extraction of the natural signal. Field multispectral fluorometers were installed at two Mediterranean karst outlets; both drain carbonate systems but have different environmental conditions. The fluorometers functioned over several hydrologic cycles, in periods affected or not by artificial tracers, making it possible to observe natural signal variations at these sites. The optical properties of this type of field fluorometer were used to calculate the spectral response of the different optics of the measuring probe. These responses, superimposed on three-dimensional excitation/emission matrices produced from laboratory fluorescence measurements, allowed an understanding of what the fluorometer sees under natural flow conditions. The result is an innovative method for correcting artificial tracer results. This type of correction makes it possible to fine-tune the effect of natural background variation on tracer recovery curves for a clear identification of the tracer presence and a more precise quantification of its recovery.
Wright, Winfield G.; Moore, Bryan
2003-01-01
Tracer-injection studies were done in Belcher Gulch in the upper Animas River watershed, southwestern Colorado, to determine whether the alpine stream infiltrates into underground mine workings of the North Star Mine and other nearby mines in the area. The tracer-injection studies were designed to determine if and where along Belcher Gulch the stream infiltrates into the mine. Four separate tracer-injec-tion tests were done using lithium bromide (LiBr), optical brightener dye, and sodium chloride (NaCl) as tracer solu-tions. Two of the tracers (LiBr and dye) were injected con-tinuously for 24 hours, one of the NaCl tracers was injected continuously for 12 hours, and one of the NaCl tracers was injected over a period of 1 hour. Concentration increases of tracer constituents were detected in water discharging from the North Star Mine, substantiating a surface-water and ground-water connection between Belcher Gulch and the North Star Mine. Different timing and magnitude of tracer breakthroughs indicated multiple flow paths with different residence times from the stream to the mine. The Pittsburgh and Sultan Mines were thought to physically connect to the North Star Mine, but tracer breakthroughs were inconclusive in water from these mines. From the tracer-injection tests and synoptic measure-ments of streamflow discharge, a conceptual model was devel-oped for surface-water and ground-water interactions between Belcher Gulch and the North Star Mine. This information, combined with previous surface geophysical surveys indicat-ing the presence of subsurface voids, may assist with decision-making process for preventing infiltration and for the remedia-tion of mine drainage from these mines.
NASA Astrophysics Data System (ADS)
Karmakar, Shyamal; Ghergut, Julia; Sauter, Martin
2015-04-01
Artificial-fracture design, and fracture characterization during or following stimulation treatment is a central aspect of many EGS ('enhanced' or 'engineered' geothermal system) projects. During the creation or stimulation of an EGS, the injection of fluids, followed by flowback and production stages offers the opportunity for conducting various tracer tests in a single-well (SW) configuration, and given the typical operational and time limitations associated with such tests, along with the need to assess treatment success in real time, investigators mostly favour using short-time tracer-test data, rather than awaiting long-term 'tailings' of tracer signals. Late-time tracer signals from SW injection-flowback and production tests have mainly been used for the purpose of multiple-fracture inflow profiling in multi-layer reservoirs [1]. However, the potential of using SW short-term tracer signals for fracture characterization [2, 3] remained little explored as yet. Dealing with short-term flowback signals, we face a certain degree of parameter interplay, leading to ambiguity in fracture parameter inversion from the measured signal of a single tracer. This ambiguity can, to a certain extent, be overcome by - combining different sources of information (lithostratigraphy, and hydraulic monitoring) in order to constrain the variation range of hydrogeologic parameters (matrix and fracture permeability and porosity, fracture size), - using different types of tracers, such as conservative tracer pairs with contrasting diffusivity, or tracers pairs with contrasting sorptivity onto target surfaces. Fracture height is likely to be constrained by lithostratigraphy, while fracture length is supposed to be determinable from hydraulic monitoring (pressure recordings); the flowback rate can be assumed as a known (measurable) quantity during individual-fracture flowback. This leaves us with one or two unknown parameters to be determined from tracer signals: - the transport-effective aperture, in a water fracture (WF), or - fracture thickness and porosity, for a gel-proppant fracture (GPF). We find that parameter determination from SW early signals can significantly be improved by concomitantly using a number of solute tracers with different transport and retardation behaviour. We considered tracers of different sorptivity to proppant coatings, and to matrix rock surfaces, for GPF, as well as contrasting-diffusivity or -sorptivity tracers, for WF. An advantage of this SW approach is that it requires only small chaser volumes (few times the fracture volume), not relying on advective penetration into the rock matrix. Thus, selected tracer species are to be injected during the very last stage of the fracturing process, when fracture sizes and thus target parameters are supposed to attain more or less stable values. We illustrate the application of these tracer test design principles using hydro- and lithostratigraphy data from the Geothermal Research Platform at Groß Schönebeck [4], targeting a multi-layer reservoir (sedimentary and crystalline formations in 4-5 km depth) in the NE-German Sedimentary Basin. Acknowledgments: This work benefited from long-term support from Baker Hughes (Celle) and from the Lower-Saxonian Science and Culture Ministry (MWK Niedersachsen) within the applied research project gebo (Geothermal Energy and High-Performance Drilling, 2009-2014). The first author gratefully acknowledges continued financial support from the DAAD (German Academic Exchange Service) to pursuing Ph. D. work. References: [1] http://www.sciencedirect.com/science/article/pii/S1876610214017391 [2] http://www.geothermal-energy.org/cpdb/record_detail.php?id=7215 [3] http://www.geothermal-energy.org/cpdb/record_detail.php?id=19034 [4] http://www.gfz-potsdam.de/en/scientific-services/laboratories/gross-schoenebeck/
Feasibility of Rapid Multitracer PET Tumor Imaging
NASA Astrophysics Data System (ADS)
Kadrmas, D. J.; Rust, T. C.
2005-10-01
Positron emission tomography (PET) can characterize different aspects of tumor physiology using various tracers. PET scans are usually performed using only one tracer since there is no explicit signal for distinguishing multiple tracers. We tested the feasibility of rapidly imaging multiple PET tracers using dynamic imaging techniques, where the signals from each tracer are separated based upon differences in tracer half-life, kinetics, and distribution. Time-activity curve populations for FDG, acetate, ATSM, and PTSM were simulated using appropriate compartment models, and noisy dual-tracer curves were computed by shifting and adding the single-tracer curves. Single-tracer components were then estimated from dual-tracer data using two methods: principal component analysis (PCA)-based fits of single-tracer components to multitracer data, and parallel multitracer compartment models estimating single-tracer rate parameters from multitracer time-activity curves. The PCA analysis found that there is information content present for separating multitracer data, and that tracer separability depends upon tracer kinetics, injection order and timing. Multitracer compartment modeling recovered rate parameters for individual tracers with good accuracy but somewhat higher statistical uncertainty than single-tracer results when the injection delay was >10 min. These approaches to processing rapid multitracer PET data may potentially provide a new tool for characterizing multiple aspects of tumor physiology in vivo.
Bezati, F; Froelich, D; Massardier, V; Maris, E
2010-04-01
This study focused on the detection of rare earth oxides, used as tracers for the identification of polymer materials, using XRF (X-ray fluorescence) spectrometry. The tests were carried out in a test system device which allows the collection of static measurements of the samples' spectrum through the use of energy dispersive X-ray fluorescence technology. A sorting process based on tracers added into the polymer matrix is proposed in order to increase sorting selectivity of polypropylene during end-of-life recycling. Tracers consist of systems formed by one or by several substances dispersed into a material, to add a selective property to it, with the aim of improving the efficiency of sorting and high speed identification. Several samples containing rare earth oxides (Y(2)O(3), CeO(2), Nd(2)O(3), Gd(2)O(3), Dy(2)O(3), Er(2)O(3) and Yb(2)O(3)) in different concentrations were prepared in order to analyse some of the parameters which can influence the detection, such as the concentration of tracers, the acquisition time and the possible overlapping among the tracers. This work shows that by using the XRF test system device, it was possible to detect 5 of the 7 tracers tested for 1min exposure time and at a concentration level of 1000ppm. These two parameters will play an important role in the development of an industrial device, which indicates the necessity of further works that needs to be conducted in order to reduce them. Copyright 2009 Elsevier Ltd. All rights reserved.
Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water
Rosenberry, Donald O.; LaBaugh, James W.
2008-01-01
This report focuses on measuring the flow of water across the interface between surface water and ground water, rather than the hydrogeological or geochemical processes that occur at or near this interface. The methods, however, that use hydrogeological and geochemical evidence to quantify water fluxes are described herein. This material is presented as a guide for those who have to examine the interaction of surface water and ground water. The intent here is that both the overview of the many available methods and the in-depth presentation of specific methods will enable the reader to choose those study approaches that will best meet the requirements of the environments and processes they are investigating, as well as to recognize the merits of using more than one approach. This report is designed to make the reader aware of the breadth of approaches available for the study of the exchange between surface and ground water. To accomplish this, the report is divided into four chapters. Chapter 1 describes many well-documented approaches for defining the flow between surface and ground waters. Subsequent chapters provide an in-depth presentation of particular methods. Chapter 2 focuses on three of the most commonly used methods to either calculate or directly measure flow of water between surface-water bodies and the ground-water domain: (1) measurement of water levels in well networks in combination with measurement of water level in nearby surface water to determine water-level gradients and flow; (2) use of portable piezometers (wells) or hydraulic potentiomanometers to measure hydraulic gradients; and (3) use of seepage meters to measure flow directly. Chapter 3 focuses on describing the techniques involved in conducting water-tracer tests using fluorescent dyes, a method commonly used in the hydrogeologic investigation and characterization of karst aquifers, and in the study of water fluxes in karst terranes. Chapter 4 focuses on heat as a tracer in hydrological investigations of the near-surface environment.
NASA Astrophysics Data System (ADS)
Majumdar, S.; Miller, G. R.; Smith, B.; Sheng, Z.
2017-12-01
Aquifer Storage and Recovery (ASR) system is a powerful tool for managing our present and future freshwater supplies. It involves injection of excess water into an aquifer, storing and later recovering it when needed, such as in a drought or during peak demand periods. Multi-well ASR systems, such as the Twin Oaks Facility in San Antonio, consist of a group of wells that are used for simultaneous injection and extraction of stored water. While significant research has gone into examining the effects of hydraulic and operational factors on recovery efficiency for single ASR well, little is known about how multi-well systems respond to these factors and how energy uses may vary. In this study, we created a synthetic ASR model in MODFLOW to test a range of multi-well scenarios. We altered design parameters (well spacing, pumping capacity, well configuration), hydrogeologic factors (regional hydraulic gradient, hydraulic conductivity, dispersivity), and operational variables (injection and withdrawal durations; pumping rates) to determine the response of the system across a realistic range of interrelated parameters. We then computed energy use for each simulation, based on the hydraulic head in each well and standard pump factors, as well as recovery efficiency, based on tracer concentration in recovered water from the wells. The tracer concentration in the groundwater was determined using MT3DMS. We observed that the recovery and energy efficiencies for the Multi-well ASR system decrease with the increase in well spacing and hydraulic gradient. When longitudinal dispersivity was doubled, the recovery and energy efficiencies were nearly halved. Another finding from our study suggests that we can recover nearly 90% of the water after two successive cycles of operation. The results will be used to develop generalized operational guidelines for meeting freshwater demands and also optimise the energy consumed during pumping.
Fahy, M.F.
1997-01-01
A radially convergent conservative tracer injection test was conducted between boreholes UE-25 #2 and UE-25 c #3 of the C-hole complex at Yucca Mountain to determine effective porosity and longitudinal dispersivity. Approximately 47% of the tracer mass was recovered and a dual-porosity analytical model replicates the breakthrough curve. Fractured-rock analyses focus on the fracture-porosity and geometry as the controlling factors in transport.
Nauditt, A; Soulsby, C; Birkel, C; Rusman, A; Schüth, C; Ribbe, L; Álvarez, P; Kretschmer, N
2017-09-01
Headwater catchments in the Andes provide critical sources of water for downstream areas with large agricultural communities dependent upon irrigation. Data from such remote headwater catchments are sparse, and there is limited understanding of their hydrological function to guide sustainable water management. Here, we present the findings of repeat synoptic tracer surveys as rapid appraisal tools to understand dominant hydrological flow paths in the semi-arid Rio Grande basin, a 572-km 2 headwater tributary of the 11,696-km 2 Limarí basin in central Chile. Stable isotopes in stream water show a typical altitudinal effect, with downstream enrichment in δ 2 H and δ 18 O ratios. Seasonal signals are displayed in the isotopic composition of the springtime melting season water line with a steeper gradient, whilst evaporative effects are represented by lower seasonal gradients for autumn and summer. Concentrations of solutes indexed by electrical conductivity indicate that there are limited contributions of deeper mineralised groundwater to streamflow and that weathering rates vary in the different sub-catchments. Although simplistic, the insights gained from the study could be used to inform the structure and parameterisation of rainfall runoff models to provide seasonal discharge predictions as an evidence base for decision making in local water management.
NASA Astrophysics Data System (ADS)
Ender, Anna; Goeppert, Nadine; Goldscheider, Nico
2018-04-01
Karst aquifers are characterized by a high degree of hydrologic variability and spatial heterogeneity of transport parameters. Tracer tests allow the quantification of these parameters, but conventional point-to-point experiments fail to capture spatiotemporal variations of flow and transport. The goal of this study was to elucidate the spatial distribution of transport parameters in a karst conduit system at different flow conditions. Therefore, six tracer tests were conducted in an active and accessible cave system in Vietnam during dry and wet seasons. Injections and monitoring were done at five sites along the flow system: a swallow hole, two sites inside the cave, and two springs draining the system. Breakthrough curves (BTCs) were modeled with CXTFIT software using the one-dimensional advection-dispersion model and the two-region nonequilibrium model. In order to obtain transport parameters in the individual sections of the system, a multi-pulse injection approach was used, which was realized by using the BTCs from one section as input functions for the next section. Major findings include: (1) In the entire system, mean flow velocities increase from 183 to 1,043 m/h with increasing discharge, while (2) the proportion of immobile fluid regions decrease; (3) the lowest dispersivity was found at intermediate discharge; (4) in the individual cave sections, flow velocities decrease along the flow direction, related to decreasing gradients, while (5) dispersivity is highest in the middle section of the cave. The obtained results provide a valuable basis for the development of an adapted water management strategy for a projected water-supply system.
a Borehole-Dilution Method for Quantifying Vertical Darcy Fluxes in the Hyporheic Zone
NASA Astrophysics Data System (ADS)
Augustine, S. D.; Annable, M. D.; Cho, J.
2017-12-01
The borehole dilution method has consistently and successfully been used for estimating local water fluxes, however, this method can be relatively labor intensive and expensive. The focus of this research is aimed at developing a low-cost, borehole dilution method for quantifying vertical water fluxes in the hyporheic zone at the surface-groundwater interface. This would allow for the deployment of multiple units within a targeted surface water body and thus produce high-resolution, spatially distributed data on the infiltration rates over a short period of time with minimal set-up requirements. The device consists of a 2-inch, inner diameter PVC pipe containing short, screened sections in its upper and lower segments. The working unit is driven into the sediment and acts as a continuous flow reactor creating a pathway between the subsurface pore-water and the overlying surface water where the presence of a hydraulic gradient facilitates vertical movement. We developed a simple electrode and tracer-injection system housed within the unit to inject and measure salt tracer concentrations at the desired intervals while monitoring and storing those measurements using open-source Arduino technology. Preliminary lab and field scale trials provided data that was fit to both zero and first order reaction rate functions for analysis. The field test was conducted over approximately one day within a wet retention basin. The initial results estimated a vertical Darcy flux of 113.5 cm/d. Additional testing over a range of expected Darcy fluxes will be presented along with an evaluation considering enhanced water flow due to the high hydraulic conductivity of the device.
NASA Astrophysics Data System (ADS)
Dahlke, H. E.; Wang, C.; McNew, C.; McLaughlin, S.; Lyon, S. W.
2016-12-01
Recent research on time-varying transport through hydrologic systems proposed using decomposed over-printed tracer breakthrough curves to directly observe transport through complex flow systems. This method, also known as the PERTH (Periodic Tracer Hierarchy) method requires periodic flow and multiple tracer injections to reveal changes in flow pathways and transport behavior. Time-variable transit time distributions (TTD) estimated from tracer breakthrough curves often vary with the storage state of the system, which in turn is influenced by internal and external variabilities, such as the arrangement of flow pathways and fluctuations in system inputs. Deciphering internal from external variabilities in TTDs might help to advance the use of TTDs for estimating the physical state of a system; however, thus far the finite number of unique conservative tracers available for tracing has limited deeper insights. Synthetic DNA tracers consisting of short strands of synthetic DNA encapsulated by polylactic acid (PLA) microspheres could potentially provide multiple unique tracers with identical transport properties needed to explore time varying transport through hydrologic systems in more detail. An experiment was conducted on the miniLeo hillslope, a 1 m3 sloping lysimeter, within the Biosphere 2 Landscape Evolution Observatory near Tucson, AZ to investigate transit time variability. The goal of the experiment was to 1) test the suitability of using synthetic DNA tracers for estimating TTDs in a hydrologic system and 2) to determine the TTDs of individual tracer pulses under periodic steady-state conditions. Five DNA tracers, consisting of four unique, encapsulated DNA sequences and one free/non-encapsulated DNA sequence, were applied as reference and probe tracers together with deuterium, using the PERTH method. The lysimeter received three 2-hour pulses of rainfall at a rate of 30 mm/hr for 10 days. Initial results show that both the encapsulated and free DNA tracers were successfully transported in a pulsed manner through the system, but had overall longer breakthrough times than the reference deuterium tracer. Comparison of the DNA probe tracers indicate differences in transit times, likely related to differences in tracer mobilization in response to the time-variant rainfall input.
PARTITIONING TRACERS FOR MEASURING RESIDUAL NAPL: FIELD-SCALE TEST RESULTS
The difficult task of locating and quantifying nonaqueous phase liquids (NAPLs) present in the vadose and saturated zones has prompted the development of innovative, nondestructive characterization techniques. The use of the interwell partitioning tracer's (IWPT) test, in which ...
Taylor, Charles J.
1994-01-01
Dye-tracer tests were done during 1985-92 to investigate the hydraulic connection between fractures in Pennsylvanian coal-bearing strata at a ridge-and-valley-wall site near Fishtrap Lake, Pike County, Ky. Fluorescent dye was injected into a core hole penetrating near-surface and mining-induced fractures near the crest of the ridge. The rate and direction of migration of dye in the subsurface were determined by measuring the relative concentration of dye in water samples collected from piezometers completed in conductive fracture zones and fractured coal beds at various stratigraphic horizons within the ridge. Dye-concentration data and water-level measurements for each piezometer were plotted as curves on dye-recovery hydrographs. The dye-recovery hydrographs were used to evaluate trends in the fluctuation of dye concentrations and hydraulic heads in order to identify geologic and hydrologic factors affecting the subsurface transport of dye. The principal factors affecting the transport of dye in the subsurface hydrologic system were determined to be (1) the distribution, interconnection, and hydraulic properties of fractures; (2) hydraulic-head conditions in the near-fracture zone at the time of dye injection; and (3) subsequent short- and long-term fluctuations in recharge to the hydrologic system. In most of the dye-tracer tests, dye-recovery hydrographs are characterized by complex, multipeaked dye-concentration curves that are indicative of a splitting of dye flow as ground water moved through fractures. Intermittent dye pulses (distinct upward spikes in dye concentration) mark the arrivals of dye-labeled water to piezometers by way of discrete fracture-controlled flow paths that vary in length, complexity, and hydraulic conductivity. Dye injections made during relatively high- or increasinghead conditions resulted in rapid transport of dye (within several days or weeks) from near-surf ace fractures to piezometers. Injections made during relatively low- or decreasing-head conditions resulted in dye being trapped in hydraulically dead zones in water-depleted fractures. Residual dye was remobilized from storage and transported (over periods ranging from several months to about 2 years) by increased recharge to the hydrologic system. Subsequent fluctuations in hydraulic gradients, resulting from increases or decreases in recharge to the hydrologic system, acted to speed or slow the transport of dye along the fracture-controlled flow paths. The dye-tracer tests also demonstrated that mining-related disturbances significantly altered the natural fracture-controlled flow paths of the hydrologic system over time. An abandoned underground mine and subsidence-related surface cracks extend to within 250 ft of the principal dye-injection core hole. Results from two of the dye-tracer tests at the site indicate that the annular seal in the core hole was breached by subsurface propagation of the mining-induced fractures. This propagation of fractures resulted in hydraulic short-circuiting between the dye-injection zone in the core hole and two lower piezometer zones, and a partial disruption of the hydraulic connection between the injection core hole and downgradient piezometers on the ridge crest and valley wall. In addition, injected dye was detected in piezometers monitoring a flooded part of the abandoned underground mine. Dye was apparently transported into the mine through a hydraulic connection between the injection core hole and subsidence-related fractures.
NASA Astrophysics Data System (ADS)
Klotzsch, Stephan; Binder, Martin; Händel, Falk
2017-06-01
While planning tracer tests, uncertainties in geohydraulic parameters should be considered as an important factor. Neglecting these uncertainties can lead to missing the tracer breakthrough, for example. One way to consider uncertainties during tracer test design is the so called ensemble forecast. The applicability of this method to geohydrological problems is demonstrated by coupling the method with two analytical solute transport models. The algorithm presented in this article is suitable for prediction as well as parameter estimation. The parameter estimation function can be used in a tracer test for reducing the uncertainties in the measured data which can improve the initial prediction. The algorithm was implemented into a software tool which is freely downloadable from the website of the Institute for Groundwater Management at TU Dresden, Germany.
PARTITIONING INTERWELL TRACER TEST FOR NAPL SOURCE CHARACTERIZATION: A GENERAL OVERVIEW
Innovative and nondestructive characterization techniques have been developed to locate and quantify nonaqueous phase liquids (NAPLs) in the vadose and saturated zones in the subsurface environment. One such technique is the partitioning interwell tracer test (PITT). The PITT i...
Woodman, N D; Rees-White, T C; Beaven, R P; Stringfellow, A M; Barker, J A
2017-08-01
This paper describes a programme of research investigating horizontal fluid flow and solute transport through saturated municipal solid waste (MSW) landfill. The purpose is to inform engineering strategies for future contaminant flushing. Solute transport between injection/abstraction well pairs (doublets) is investigated using three tracers over five separate tests at well separations between 5m and 20m. Two inorganic tracers (lithium and bromide) were used, plus the fluorescent dye tracer, rhodamine-WT. There was no evidence for persistent preferential horizons or pathways at the inter-well scale. The time for tracer movement to the abstraction wells varied with well spacing as predicted for a homogeneous isotropic continuum. The time for tracer movement to remote observation wells was also as expected. Mobile porosity was estimated as ~0.02 (~4% of total porosity). Good fits to the tracer breakthrough data were achieved using a dual-porosity model, with immobile regions characterised by block diffusion timescales in the range of about one to ten years. This implies that diffusional exchanges are likely to be very significant for engineering of whole-site contaminant flushing and possibly rate-limiting. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Woodman, N. D.; Rees-White, T. C.; Beaven, R. P.; Stringfellow, A. M.; Barker, J. A.
2017-08-01
This paper describes a programme of research investigating horizontal fluid flow and solute transport through saturated municipal solid waste (MSW) landfill. The purpose is to inform engineering strategies for future contaminant flushing. Solute transport between injection/abstraction well pairs (doublets) is investigated using three tracers over five separate tests at well separations between 5 m and 20 m. Two inorganic tracers (lithium and bromide) were used, plus the fluorescent dye tracer, rhodamine-WT. There was no evidence for persistent preferential horizons or pathways at the inter-well scale. The time for tracer movement to the abstraction wells varied with well spacing as predicted for a homogeneous isotropic continuum. The time for tracer movement to remote observation wells was also as expected. Mobile porosity was estimated as 0.02 ( 4% of total porosity). Good fits to the tracer breakthrough data were achieved using a dual-porosity model, with immobile regions characterised by block diffusion timescales in the range of about one to ten years. This implies that diffusional exchanges are likely to be very significant for engineering of whole-site contaminant flushing and possibly rate-limiting.
Kelvin wave-induced trace constituent oscillations in the equatorial stratosphere
NASA Technical Reports Server (NTRS)
Randel, William J.
1990-01-01
Kelvin wave induced oscillations in ozone (O3), water vapor (H2O), nitric acid (HNO3) and nitrogen dioxide (NO2) in the equatorial stratosphere are analyzed using Limb Infrared Monitor of the Stratosphere (LIMS) data. Power and cross-spectrum analyses reveal coherent eastward propagating zonal wave 1 and 2 constituent fluctuations, due to the influence of Kelvin waves previously documented in the LIMS data. Comparison is made between a preliminary and the archival versions of the LIMS data; significant differences are found, demonstrating the sensitivity of constituent retrievals to derived temperature profiles. Because Kelvin waves have vanishing meridional velocity, analysis of tracer transport in the meridional plane is substantially simplified. Kelvin wave vertical advection is demonstrated by coherent, in-phase temperature-tracer oscillations, co-located near regions of strong background vertical gradients.
Measuring air-water interfacial area for soils using the mass balance surfactant-tracer method.
Araujo, Juliana B; Mainhagu, Jon; Brusseau, Mark L
2015-09-01
There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sarris, Theo S.; Close, Murray; Abraham, Phillip
2018-03-01
A test using Rhodamine WT and heat as tracers, conducted over a 78 day period in a strongly heterogeneous alluvial aquifer, was used to evaluate the utility of the combined observation dataset for aquifer characterization. A highly parameterized model was inverted, with concentration and temperature time-series as calibration targets. Groundwater heads recorded during the experiment were boundary dependent and were ignored during the inversion process. The inverted model produced a high resolution depiction of the hydraulic conductivity and porosity fields. Statistical properties of these fields are in very good agreement with estimates from previous studies at the site. Spatially distributed sensitivity analysis suggests that both solute and heat transport were most sensitive to the hydraulic conductivity and porosity fields and less sensitive to dispersivity and thermal distribution factor, with sensitivity to porosity greatly reducing outside the monitored area. The issues of model over-parameterization and non-uniqueness are addressed through identifiability analysis. Longitudinal dispersivity and thermal distribution factor are highly identifiable, however spatially distributed parameters are only identifiable near the injection point. Temperature related density effects became observable for both heat and solute, as the temperature anomaly increased above 12 degrees centigrade, and affected down gradient propagation. Finally we demonstrate that high frequency and spatially dense temperature data cannot inform a dual porosity model in the absence of frequent solute concentration measurements.
NASA Astrophysics Data System (ADS)
Ghergut, J.; Sauter, M.; Behrens, H.; (Steffen) Fischer, S.; (Steffi) Fischer, S.; Licha, T.; Nottebohm, M.
2009-04-01
Two somewhat contrasting model approaches are presented, both aimed at interpreting long-term return signals from tracer push-pull tests conducted at single wells penetrating increased-permeability features in crystalline rock, about 4 km deep. The general idea is that single-well tracer push-pull tests, owing to the flow-field reversal, should provide privileged access to advection-independent parameters of solute transport, like the density of fluid-rock contact surface areas (Sauter et al., 2002). The latter is equivalent to the heat exchange area for a liquid-based geothermal system. At the geothermal site of Soultz-sous-Forêts in the Upper Rhine Graben, the French BRGM, in cooperation with EGI Utah and other partners, conducted a comprehensive tracer testing programme, whose results were presented in detail by Sanjuan et al. (2004, 2006), Rose et al. (2006). Of these results, we pick the tracer return signals detected during post-stimulation backflow periods at borehole GPK-2 between 2000 and 2002 (as published by Sanjuan et al., 2004) and attempt to interpret them in terms of a single-well injection-withdrawal sequence. Two chemically dissimilar organic tracers have been used by BRGM; however the difference between their return signals seems not significant enough to allow quantifying fluid-rock contact surfaces from this difference alone (additional / a priori information on coefficients of solute exchange across these surfaces would be required). Instead, the tracer return signals enable characterizing the nature of solute exchange processes within the spiked volume of the assumed fractured-porous formation (highly altered crystalline rock). At least one rapid-exchange (E-7 / d), slightly dispersive (Pe~12) component and one moderate-exchange (2E-8 / d), less dispersive (Pe~20) component appear to act within few hundred metres and, respectively, within at least 1 km radial distance from the borehole. - An alternative component of extremely fast exchange (increase of solute exchange fluxes by factor E+5) can as well reproduce the available data, but is physically implausible. For a reliable determination of heat exchange areas at geothermally relevant space scales, additional tracer testings (including heat backflow tests) would be required. At the German site of ICDP (Intl. Continental Scientific Drilling Program, with 'Kontinentale Tiefbohrung' at Windischeschenbach in NE Bavaria), a sequence of multi-tracer push-pull tests was conducted by the Göttingen Group between 2004 and 2006 at the pilot hole (KTB-VB) in hydraulically depleted, stimulated and post-stimulated states (following a long-term pumping test, and massive injection tests, respectively). Here, the spiking design was such that significant differences occurred between the signals of various simultaneously-injected tracers, enabling - at least theoretically - to quantify fracture densities; furthermore, the differences between solute and heat backflow signals produced under different hydraulic regimes can be used to characterize hydro-thermo-mechanical processes induced by massive cold-water injection. Both spiking-derived informations are relevant to a future geothermal project at this site. References: - P. E. Rose, M. Mella, J. McCulloch (2006) A Comparison of Hydraulic Stimulation Experiments at the Soultz/France and Coso/California Engineered Geothermal Systems. Stanford University, SGP-TR-179. - B. Sanjuan, P. Rose, J.-C. Foucher, M. Brach, G. Braibant (2004) Tracer testing at Soultz-sous-Forêts (France) using Na-benzoate, 1,5- and 2,7-napththalene disulfonate. Stanford University, SGP-TR-175. - B. Sanjuan, J.-L. Pinault, P. Rose, A. Gérard, M. Brach, G. Braibant, C. Crouzet, J.-C. Foucher, A. Gautier, S. Touzelet (2006) Tracer testing of the geothermal heat exchanger at Soultz-sous-Forêts (France) between 2000 and 2005. Geothermics, 35, 622-653. - M. Sauter, et al. (2002) Tracer push-pull experiment at the deep borehole Urach-3. Report, University of Göttingen.
Multispecies reactive tracer test in an aquifer with spatially variable chemical conditions
Davis, J.A.; Kent, D.B.; Coston, J.A.; Hess, K.M.; Joye, J.L.
2000-01-01
A field investigation of multispecies reactive transport was conducted in a well‐characterized, sand and gravel aquifer on Cape Cod, Massachusetts. The aquifer is characterized by regions of differing chemical conditions caused by the disposal of secondary sewage effluent. Ten thousand liters of groundwater with added tracers (Br, Cr(VI), and EDTA complexed with Pb, Zn, Cu, and Ni) were injected into the aquifer and distributions of the tracers were monitored for 15 months. Most of the tracers were transported more than 200 m; transport was quantified using spatial moments computed from the results of a series of synoptic samplings. Cr(VI) transport was retarded relative to Br; the retardation factor varied from 1.1 to 2.4 and was dependent on chemical conditions. At 314 days after the injection, dissolved Cr(VI) mass in the tracer cloud had decreased 85%, with the likely cause being reduction to Cr(III) in a suboxic region of the aquifer. Transport of the metal‐EDTA complexes was affected by aqueous complexation, adsorption, and dissolution‐precipitation reactions of Fe oxyhydroxide minerals in the aquifer sediments. Dissolved Pb‐EDTA complexes disappeared from the tracer cloud within 85 days, probably due to metal exchange reactions with Fe and adsorbed Zn (present prior to the injection from contamination by the sewage effluent). About 30% of the Cu‐EDTA complexes remained within the tracer cloud 314 days after injection, even though the thermodynamic stability of the Pb‐EDTA complex is greater than Cu‐EDTA. It is hypothesized that stronger adsorption of Pb2+ to the aquifer sediments causes the Pb‐EDTA complex to disassociate to a greater degree than the Cu‐EDTA complex. The mass of dissolved Zn‐EDTA increased during the first 175 days of the tracer test to 140% of the mass injected, with the increase due to desorption of sewage‐derived Zn. Dissolved Ni‐EDTA mass remained nearly constant throughout the tracer test, apparently only participating in reversible adsorption reactions. The results of the field experiment provide a chemically complex data set that can be used in the testing of reactive transport models of flow coupled with chemical reactions.
Is the dark halo of the Milky Way prolate?
NASA Astrophysics Data System (ADS)
Bowden, A.; Evans, N. W.; Williams, A. A.
2016-07-01
We introduce the flattening equation, which relates the shape of the dark halo to the angular velocity dispersions and the density of a tracer population of stars. It assumes spherical alignment of the velocity dispersion tensor, as seen in the data on stellar halo stars in the Milky Way. The angular anisotropy and gradients in the angular velocity dispersions drive the solutions towards prolateness, whilst the gradient in the stellar density is a competing effect favouring oblateness. We provide an efficient numerical algorithm to integrate the flattening equation. Using tests on mock data, we show that there is a strong degeneracy between circular speed and flattening, which can be circumvented with informative priors. Therefore, we advocate the use of the flattening equation to test for oblateness or prolateness, though the precise value of q can only be measured with the addition of the radial Jeans equation. We apply the flattening equation to a sample extracted from the Sloan Digital Sky Survey of ˜15 000 halo stars with full phase space information and errors. We find that between Galactocentric radii of 5 and 10 kpc, the shape of the dark halo is prolate, whilst even mildly oblate models are disfavoured. Strongly oblate models are ruled out. Specifically, for a logarithmic halo model, if the asymptotic circular speed v0 lies between 210 and 250 km s-1, then we find the axis ratio of the equipotentials q satisfies 1.5 ≲ q ≲ 2.
A Lagrangian particle method with remeshing for tracer transport on the sphere
Bosler, Peter Andrew; Kent, James; Krasny, Robert; ...
2017-03-30
A Lagrangian particle method (called LPM) based on the flow map is presented for tracer transport on the sphere. The particles carry tracer values and are located at the centers and vertices of triangular Lagrangian panels. Remeshing is applied to control particle disorder and two schemes are compared, one using direct tracer interpolation and another using inverse flow map interpolation with sampling of the initial tracer density. Test cases include a moving-vortices flow and reversing-deformational flow with both zero and nonzero divergence, as well as smooth and discontinuous tracers. We examine the accuracy of the computed tracer density and tracermore » integral, and preservation of nonlinear correlation in a pair of tracers. Here, we compare results obtained using LPM and the Lin–Rood finite-volume scheme. An adaptive particle/panel refinement scheme is demonstrated.« less
A Lagrangian particle method with remeshing for tracer transport on the sphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosler, Peter Andrew; Kent, James; Krasny, Robert
A Lagrangian particle method (called LPM) based on the flow map is presented for tracer transport on the sphere. The particles carry tracer values and are located at the centers and vertices of triangular Lagrangian panels. Remeshing is applied to control particle disorder and two schemes are compared, one using direct tracer interpolation and another using inverse flow map interpolation with sampling of the initial tracer density. Test cases include a moving-vortices flow and reversing-deformational flow with both zero and nonzero divergence, as well as smooth and discontinuous tracers. We examine the accuracy of the computed tracer density and tracermore » integral, and preservation of nonlinear correlation in a pair of tracers. Here, we compare results obtained using LPM and the Lin–Rood finite-volume scheme. An adaptive particle/panel refinement scheme is demonstrated.« less
Recover Act. Verification of Geothermal Tracer Methods in Highly Constrained Field Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, Matthew W.
2014-05-16
The prediction of the geothermal system efficiency is strong linked to the character of the flow system that connects injector and producer wells. If water flow develops channels or “short circuiting” between injection and extraction wells thermal sweep is poor and much of the reservoir is left untapped. The purpose of this project was to understand how channelized flow develops in fracture geothermal reservoirs and how it can be measured in the field. We explored two methods of assessing channelization: hydraulic connectivity tests and tracer tests. These methods were tested at a field site using two verification methods: ground penetratingmore » radar (GPR) images of saline tracer and heat transfer measurements using distributed temperature sensing (DTS). The field site for these studies was the Altona Flat Fractured Rock Research Site located in northeastern New York State. Altona Flat Rock is an experimental site considered a geologic analog for some geothermal reservoirs given its low matrix porosity. Because soil overburden is thin, it provided unique access to saturated bedrock fractures and the ability image using GPR which does not effectively penetrate most soils. Five boreholes were drilled in a “five spot” pattern covering 100 m2 and hydraulically isolated in a single bedding plane fracture. This simple system allowed a complete characterization of the fracture. Nine small diameter boreholes were drilled from the surface to just above the fracture to allow the measurement of heat transfer between the fracture and the rock matrix. The focus of the hydraulic investigation was periodic hydraulic testing. In such tests, rather than pumping or injection in a well at a constant rate, flow is varied to produce an oscillating pressure signal. This pressure signal is sensed in other wells and the attenuation and phase lag between the source and receptor is an indication of hydraulic connection. We found that these tests were much more effective than constant pumping tests in identifying a poorly connected well. As a result, we were able to predict which well pairs would demonstrate channelized flow. The focus of the tracer investigation was multi-ionic tests. In multi-ionic tests several ionic tracers are injected simultaneously and the detected in a nearby pumping well. The time history of concentration, or breakthrough curve, will show a separation of the tracers. Anionic tracers travel with the water but cationic tracer undergo chemical exchange with cations on the surface of the rock. The degree of separation is indicative of the surface area exposed to the tracer. Consequently, flow channelization will tend to decrease the separation in the breakthrough. Estimation of specific surface area (the ration of fracture surface area to formation volume) is performed through matching the breakthrough curve with a transport model. We found that the tracer estimates of surface area were confirmed the prediction of channelized flow between well pairs produced by the periodic hydraulic tests. To confirm that the hydraulic and tracer tests were correctly predicting channelize flow, we imaged the flow field using surface GPR. Saline water was injected between the well pairs which produced a change in the amplitude and phase of the reflected radar signal. A map was produced of the migration of saline tracer from these tests which qualitatively confirmed the flow channelization predicted by the hydraulic and tracer tests. The resolution of the GPR was insufficient to quantitatively estimate swept surface area, however. Surface GPR is not applicable in typical geothermal fields because the penetration depths do not exceed 10’s of meters. Nevertheless, the method of using of phase to measure electrical conductivity and the assessment of antennae polarization represent a significant advancement in the field of surface GPR. The effect of flow character on fracture / rock thermal exchange was evaluated using heated water as a tracer. Water elevated 30 degrees C above the formation water was circulated between two wells pairs. One well pair had been identified in hydraulic and tracer testing as well connected and the other poorly connected. Temperature rise was measured in the adjacent rock matrix using coiled fiber optic cable interrogated for temperature using a DTS. This experimental design produced over 4000 temperature measurements every hour. We found that heat transfer between the fracture and the rock matrix was highly impacted by the character of the flow field. The strongly connected wells which had demonstrated flow channelization produced heat rise in a much more limited area than the more poorly connected wells. In addition, the heat increase followed the natural permeability of the fracture rather than the induced flow field. The primary findings of this work are (1) even in a single relatively planar fracture, the flow field can be highly heterogeneous and exhibit flow channeling, (2) channeling results from a combination of fracture permeability structure and the induced flow field, and (3) flow channeling leads to reduced heat transfer. Multi-ionic tracers effectively estimate relative surface area but an estimate of ion-exchange coefficients are necessary to provide an absolute measure of specific surface area. Periodic hydraulic tests also proved a relative indicator of connectivity but cannot prove an absolute measure of specific surface area.« less
Hirschmann, Michael T; Mathis, Dominic; Rasch, Helmut; Amsler, Felix; Friederich, Niklaus F; Arnold, Markus P
2013-02-01
SPECT/CT is a hybrid imaging modality, which combines a 3D scintigraphy (SPECT) and a conventional computerised tomography (CT). SPECT/CT allows accurate anatomical localisation of metabolic tracer activity. It allows the correlation of surgical factors such as tunnel position and orientation with mechanical alignment, clinical outcome and biological factors. The purpose of this study was to investigate whether the SPECT/CT tracer uptake (intensity and distribution) correlates with the stability and laxity of the knee joint and the position and orientation of the tibial and femoral tunnels in patients after anterior cruciate ligament (ACL) reconstruction. A consecutive series of knees (n=66), with symptoms of pain and/or instability after ACL reconstruction were prospectively evaluated using clinical examination and 99mTc-HDP-SPECT/CT. Clinical laxity testing was performed using the Rolimeter (Ormed, Freiburg, Germany) including Lachman testing (0-2 mm, 3-5 mm, 6-10 mm, >10 mm), anterior drawer test (0-2 mm, 3-5 mm, 6-10 mm, >10 mm), pivot shift test (positive versus negative) and patient-based subjective instability (yes versus no). For analysis of SPECT/CT tracer uptake a previously validated SPECT/CT localisation scheme consisting of 17 tibial, nine femoral and four patellar regions on standardised axial, coronal, and sagittal slices was used. The tracer activity on SPECT/CT was localised and recorded using a 3D volumetric and quantitative analysis software. Mean, standard deviation, minimum and maximum of grading for each area of the localisation scheme were recorded. The position and orientation of the tibial and femoral tunnel was assessed using a previously published method on 3D-CT. Correlation of instability, pivot shift as well as clinical laxity testing with 99mTc-HDP-SPECT/CT tracer uptake intensity and distribution showed no significant correlation. 99mTc-HDP-SPECT/CT tracer uptake correlated significantly with the position and orientation of the ACL graft. A more horizontal femoral graft position showed significantly increased tracer uptake within the superior and posterior femoral regions. A more posteriorly-placed femoral insertion site showed significantly more tracer uptake within the femoral and tibial tunnel regions. A more vertical or a less medial tibial tunnel orientation showed significant increased uptake within the tibial and femoral tunnel regions. A more anterior tibial tunnel position showed significantly more tracer uptake in the femoral and tibial tunnel regions as well as the entire tibiofemoral joint. SPECT/CT tracer uptake intensity and distribution showed a significant correlation with the femoral and tibial tunnel position and orientation in patients with symptomatic knees after ACL reconstruction. No correlation was found with stability or clinical laxity. SPECT/CT tracer uptake distribution has the potential to give us important information on joint homeostasis and remodelling after ACL reconstruction. It might help to predict ACL graft failure and improve our surgical ACL reconstruction technique in finding the optimal tunnel and graft position and orientation.
Fluorescence-based monitoring of tracer and substrate distribution in an UASB reactor.
Lou, S J; Tartakovsky, B; Zeng, Y; Wu, P; Guiot, S R
2006-11-01
In this work, rhodamine-related fluorescence was measured on-line at four reactor heights in order to study hydrodynamics within an upflow anaerobic sludge bed reactor. A linear dependence of the dispersion coefficient (D) on the upflow velocity was observed, while the influence of the organic loading rate (OLR) was insignificant. Furthermore, the Bodenstein number of the reactor loaded with granulated sludge was found to be position-dependent with the largest values measured at the bottom of the sludge bed. This trend was not observed in the reactor without sludge. Chemical oxygen demand (COD) and volatile fatty acid (VFA) concentrations were measured at the same reactor heights as in rhodamine tests using conventional off-line analytical methods and on-line multiwavelength fluorometry. Significant spatial COD and VFA gradients were observed at organic loading rates above 6g COD l(R)(-1)d(-1) and linear upflow velocities below 0.8m h(-1).
Use of deuterated water as a conservative artificial ground water tracer
Becker, M.W.; Coplen, T.B.
2001-01-01
Conservative tracers are necessary to obtain groundwater transport velocities at the field scale. Deuterated water is an effective tracer for this purpose due to its similarity to water, chemical stability, non-reactivity, ease of handling and sampling, relatively neutral buoyancy, and reasonable price. Reliable detection limits of 0.1 mg deuterium/L may be obtained in field tests. A field example is presented in which deuterated water, bromide, and pentafluorobenzoic acid are used as groundwater tracers. Deuterated water appeared to be transported conservatively, producing almost identical breakthrough curves as that of other soluble tracers. ?? Springer-Verlag 2001.
Morphology and Kinematics of Filaments in the Serpens and Perseus Molecular Clouds
NASA Astrophysics Data System (ADS)
Dhabal, Arnab; Mundy, Lee G.; Rizzo, Maxime J.; Storm, Shaye; Teuben, Peter
2018-02-01
We present H13CO+ (J = 1–0) and HNC (J = 1–0) maps of regions in Serpens South, Serpens Main, and NGC 1333 containing filaments. We also observe the Serpens regions using H13CN (J = 1–0). These dense gas tracer molecular line observations carried out with CARMA have an angular resolution of ∼7″, a spectral resolution of ∼0.16 km s‑1, and a sensitivity of 50–100 mJy beam‑1. Although the large-scale structure compares well with the Herschel dust continuum maps, we resolve finer structure within the filaments identified by Herschel. The H13CO+ emission distribution agrees with the existing CARMA N2H+ (J = 1–0) maps, so they trace the same morphology and kinematics of the filaments. The H13CO+ maps additionally reveal that many regions have multiple structures partially overlapping in the line of sight. In two regions, the velocity differences are as high as 1.4 km s‑1. We identify eight filamentary structures having typical widths of 0.03–0.08 pc in these tracers. At least 50% of the filamentary structures have distinct velocity gradients perpendicular to their major axis, with average values in the range of 4–10 km s‑1 pc‑1. These findings are in support of the theoretical models of filament formation by 2D inflow in the shock layer created by colliding turbulent cells. We also find evidence of velocity gradients along the length of two filamentary structures; the gradients suggest that these filaments are inflowing toward the cloud core.
A MULTI-STREAM MODEL FOR VERTICAL MIXING OF A PASSIVE TRACER IN THE CONVECTIVE BOUNDARY LAYER
We study a multi-stream model (MSM) for vertical mixing of a passive tracer in the convective boundary layer, in which the tracer is advected by many vertical streams with different probabilities and diffused by small scale turbulence. We test the MSM algorithm for investigatin...
Barth, Gilbert R.; Illangasekare, T.H.; Rajaram, H.
2003-01-01
This work considers the applicability of conservative tracers for detecting high-saturation nonaqueous-phase liquid (NAPL) entrapment in heterogeneous systems. For this purpose, a series of experiments and simulations was performed using a two-dimensional heterogeneous system (10??1.2 m), which represents an intermediate scale between laboratory and field scales. Tracer tests performed prior to injecting the NAPL provide the baseline response of the heterogeneous porous medium. Two NAPL spill experiments were performed and the entrapped-NAPL saturation distribution measured in detail using a gamma-ray attenuation system. Tracer tests following each of the NAPL spills produced breakthrough curves (BTCs) reflecting the impact of entrapped NAPL on conservative transport. To evaluate significance, the impact of NAPL entrapment on the conservative-tracer breakthrough curves was compared to simulated breakthrough curve variability for different realizations of the heterogeneous distribution. Analysis of the results reveals that the NAPL entrapment has a significant impact on the temporal moments of conservative-tracer breakthrough curves. ?? 2003 Elsevier B.V. All rights reserved.
The fluorescent tracer experiment on Holiday Beach near Mugu Canyon, Southern California
Kinsman, Nicole; Xu, J. P.
2012-01-01
After revisiting sand tracer techniques originally developed in the 1960s, a range of fluorescent coating formulations were tested in the laboratory. Explicit steps are presented for the preparation of the formulation evaluated to have superior attributes, a thermoplastic pigment/dye in a colloidal mixture with a vinyl chloride/vinyl acetate copolymer. In September 2010, 0.59 cubic meters of fluorescent tracer material was injected into the littoral zone about 4 kilometers upcoast of Mugu submarine canyon in California. The movement of tracer was monitored in three dimensions over the course of 4 days using manual and automated techniques. Detailed observations of the tracer's behavior in the coastal zone indicate that this tracer successfully mimicked the native beach sand and similar methods could be used to validate models of tracer movement in this type of environment. Recommendations including how to time successful tracer studies and how to scale the field of view of automated camera systems are presented along with the advantages and disadvantages of the described tracer methodology.
Tracer-based characterization of hyporheic exchange and benthic biolayers in streams
NASA Astrophysics Data System (ADS)
Knapp, Julia L. A.; González-Pinzón, Ricardo; Drummond, Jennifer D.; Larsen, Laurel G.; Cirpka, Olaf A.; Harvey, Judson W.
2017-02-01
Shallow benthic biolayers at the top of the streambed are believed to be places of enhanced biogeochemical turnover within the hyporheic zone. They can be investigated by reactive stream tracer tests with tracer recordings in the streambed and in the stream channel. Common in-stream measurements of such reactive tracers cannot localize where the processing primarily takes place, whereas isolated vertical depth profiles of solutes within the hyporheic zone are usually not representative of the entire stream. We present results of a tracer test where we injected the conservative tracer bromide together with the reactive tracer resazurin into a third-order stream and combined the recording of in-stream breakthrough curves with multidepth sampling of the hyporheic zone at several locations. The transformation of resazurin was used as an indicator of metabolism, and high-reactivity zones were identified from depth profiles. The results from our subsurface analysis indicate that the potential for tracer transformation (i.e., the reaction rate constant) varied with depth in the hyporheic zone. This highlights the importance of the benthic biolayer, which we found to be on average 2 cm thick in this study, ranging from one third to one half of the full depth of the hyporheic zone. The reach-scale approach integrated the effects of processes along the reach length, isolating hyporheic processes relevant for whole-stream chemistry and estimating effective reaction rates.
Tracer-based characterization of hyporheic exchange and benthic biolayers in streams
Knapp, Julia L.A.; González-Pinzón, Ricardo; Drummond, Jennifer D.; Larsen, Laurel G.; Cirpka, Olaf A.; Harvey, Judson W.
2017-01-01
Shallow benthic biolayers at the top of the streambed are believed to be places of enhanced biogeochemical turnover within the hyporheic zone. They can be investigated by reactive stream tracer tests with tracer recordings in the streambed and in the stream channel. Common in-stream measurements of such reactive tracers cannot localize where the processing primarily takes place, whereas isolated vertical depth profiles of solutes within the hyporheic zone are usually not representative of the entire stream. We present results of a tracer test where we injected the conservative tracer bromide together with the reactive tracer resazurin into a third-order stream and combined the recording of in-stream breakthrough curves with multidepth sampling of the hyporheic zone at several locations. The transformation of resazurin was used as an indicator of metabolism, and high-reactivity zones were identified from depth profiles. The results from our subsurface analysis indicate that the potential for tracer transformation (i.e., the reaction rate constant) varied with depth in the hyporheic zone. This highlights the importance of the benthic biolayer, which we found to be on average 2 cm thick in this study, ranging from one third to one half of the full depth of the hyporheic zone. The reach-scale approach integrated the effects of processes along the reach length, isolating hyporheic processes relevant for whole-stream chemistry and estimating effective reaction rates.
Preservation of commonly applied fluorescent tracers in complex water samples
NASA Astrophysics Data System (ADS)
Cao, Viet; Schaffer, Mario; Jin, Yulan; Licha, Tobias
2017-06-01
Water sample preservation and pre-treatment are important steps for achieving accurate and reproductive results from tracer tests. However, this is particularly challenging for complex water mixtures prior to fluorescence analysis. In this study, the interference of iron and calcium precipitation with nine commonly applied conservative tracers, uranine, eosin, 1-naphthalene sulfonate, 1,5-naphthalene disulfonate, 2,6-naphthalene disulfonate, 4-amino-1-naphthalene sulfonate, 6-hydroxy-2-naphthalene sulfonate, 1,3,6-naphthalene trisulfonate, and 1,3,6,8-pyrene tetrasulfonate, was investigated in batch experiments. In general, the observed results are influenced by precipitates. A technique consisting of pH adjustment and centrifugation is described for preserving samples and avoiding the impact of these precipitates on the tracer test results.
Coupled Hydrogeophysical Inversion and Hydrogeological Data Fusion
NASA Astrophysics Data System (ADS)
Cirpka, O. A.; Schwede, R. L.; Li, W.
2012-12-01
Tomographic geophysical monitoring methods give the opportunity to observe hydrogeological tests at higher spatial resolution than is possible with classical hydraulic monitoring tools. This has been demonstrated in a substantial number of studies in which electrical resistivity tomography (ERT) has been used to monitor salt-tracer experiments. It is now accepted that inversion of such data sets requires a fully coupled framework, explicitly accounting for the hydraulic processes (groundwater flow and solute transport), the relationship between solute and geophysical properties (petrophysical relationship such as Archie's law), and the governing equations of the geophysical surveying techniques (e.g., the Poisson equation) as consistent coupled system. These data sets can be amended with data from other - more direct - hydrogeological tests to infer the distribution of hydraulic aquifer parameters. In the inversion framework, meaningful condensation of data does not only contribute to inversion efficiency but also increases the stability of the inversion. In particular, transient concentration data themselves only weakly depend on hydraulic conductivity, and model improvement using gradient-based methods is only possible when a substantial agreement between measurements and model output already exists. The latter also holds when concentrations are monitored by ERT. Tracer arrival times, by contrast, show high sensitivity and a more monotonic dependence on hydraulic conductivity than concentrations themselves. Thus, even without using temporal-moment generating equations, inverting travel times rather than concentrations or related geoelectrical signals themselves is advantageous. We have applied this approach to concentrations measured directly or via ERT, and to heat-tracer data. We present a consistent inversion framework including temporal moments of concentrations, geoelectrical signals obtained during salt-tracer tests, drawdown data from hydraulic tomography and flowmeter measurements to identify mainly the hydraulic-conductivity distribution. By stating the inversion as geostatistical conditioning problem, we obtain parameter sets together with their correlated uncertainty. While we have applied the quasi-linear geostatistical approach as inverse kernel, other methods - such as ensemble Kalman methods - may suit the same purpose, particularly when many data points are to be included. In order to identify 3-D fields, discretized by about 50 million grid points, we use the high-performance-computing framework DUNE to solve the involved partial differential equations on midrange computer cluster. We have quantified the worth of different data types in these inference problems. In practical applications, the constitutive relationships between geophysical, thermal, and hydraulic properties can pose a problem, requiring additional inversion. However, not well constrained transient boundary conditions may put inversion efforts on larger (e.g. regional) scales even more into question. We envision that future hydrogeophysical inversion efforts will target boundary conditions, such as groundwater recharge rates, in conjunction with - or instead of - aquifer parameters. By this, the distinction between data assimilation and parameter estimation will gradually vanish.
NASA Astrophysics Data System (ADS)
Jin, Minquan; Delshad, Mojdeh; Dwarakanath, Varadarajan; McKinney, Daene C.; Pope, Gary A.; Sepehrnoori, Kamy; Tilburg, Charles E.; Jackson, Richard E.
1995-05-01
In this paper we present a partitioning interwell tracer test (PITT) technique for the detection, estimation, and remediation performance assessment of the subsurface contaminated by nonaqueous phase liquids (NAPLs). We demonstrate the effectiveness of this technique by examples of experimental and simulation results. The experimental results are from partitioning tracer experiments in columns packed with Ottawa sand. Both the method of moments and inverse modeling techniques for estimating NAPL saturation in the sand packs are demonstrated. In the simulation examples we use UTCHEM, a comprehensive three-dimensional, chemical flood compositional simulator developed at the University of Texas, to simulate a hypothetical two-dimensional aquifer with properties similar to the Borden site contaminated by tetrachloroethylene (PCE), and we show how partitioning interwell tracer tests can be used to estimate the amount of PCE contaminant before remedial action and as the remediation process proceeds. Tracer tests results from different stages of remediation are compared to determine the quantity of PCE removed and the amount remaining. Both the experimental (small-scale) and simulation (large-scale) results demonstrate that PITT can be used as an innovative and effective technique to detect and estimate the amount of residual NAPL and for remediation performance assessment in subsurface formations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, M.; Delshad, M.; Dwarakanath, V.
1995-05-01
In this paper we present a partitioning interwell tracer test (PITT) technique for the detection, estimation, and remediation performance assessment of the subsurface contaminated by nonaqueous phase liquids (NAPLs). We demonstrate the effectiveness of this technique by examples of experimental and simulation results. The experimental results are from partitioning tracer experiments in columns packed with Ottawa sand. Both the method of moments and inverse modeling techniques for estimating NAPL saturation in the sand packs are demonstrated. In the simulation examples we use UTCHEM, a comprehensive three-dimensional, chemical flood compositional simulator developed at the University of Texas, to simulate a hypotheticalmore » two-dimensional aquifer with properties similar to the Borden site contaminated by tetrachloroethylene (PCE), and we show how partitioning interwell tracer tests can be used to estimate the amount of PCE contaminant before remedial action and as the remediation process proceeds. Tracer test results from different stages of remediation are compared to determine the quantity of PCE removed and the amount remaining. Both the experimental (small-scale) and simulation (large-scale) results demonstrate that PITT can be used as an innovative and effective technique to detect and estimate the amount of residual NAPL and for remediation performance assessment in subsurface formations. 43 refs., 10 figs., 1 tab.« less
A Tracer Test to Characterize Treatment of TCE in a Permeable Reactive Barrier
A tracer test was conducted to characterize the flow of ground water surrounding a permeable reactive barrier constructed with plant mulch (a biowall) at the OU-1 site on Altus Air Force Base, Oklahoma. This biowall is intended to intercept and treat ground water contaminated by ...
Qtracer Program for Tracer-Breakthrough Curve Analysis for Karst and Fractured-Rock Aquifers (2000)
Tracer tests are generally regarded as being the most reliable and efficient means of gathering subsurface hydraulic information. This is true for all types of aquifers, but especially so for karst and fractured-rock aquifers. Qualitative tracing tests have been conventionally em...
Time-lapse Mise-á-la-Masse measurements and modeling for tracer test monitoring in a shallow aquifer
NASA Astrophysics Data System (ADS)
Perri, Maria Teresa; De Vita, Pantaleone; Masciale, Rita; Portoghese, Ivan; Chirico, Giovanni Battista; Cassiani, Giorgio
2018-06-01
The main goal of this study is to evaluate the reliability of the Mise-á-la-Masse (MALM) technique associated with saline tracer tests for the characterization of groundwater flow direction and velocity. The experimental site is located in the upper part of the Alento River alluvial plain (Campania Region, Southern Italy). In this paper we present the hydrogeological setting, the experimental setup and the relevant field results. Subsequently, we compare those data against the simulated results obtained with a 3D resistivity model of the test area, coupled with a model describing the Advection - Dispersion equation for continuous tracer injection. In particular, we calculate a series of 3D forward solutions starting from a reference model, all derived from electrical tomography results, but taking into consideration different values of mean flow velocity and directions. Each electrical resistivity 3D model is used to produce synthetic voltage maps for MALM surveys. Finally, the synthetic MALM voltage maps are compared with the ones measured in the field in order to assess the information content of the MALM dataset with respect to the groundwater field characteristics. The results demonstrate that the information content of the MALM data is sufficient to define important characteristics of the aquifer geometry and properties. This work shows how a combination of three-dimensional time-lapse modeling of flow, tracer transport and electrical current can substantially contribute towards a quantitative interpretation of MALM measurements during a saline tracer test. This approach can thus revive the use of MALM as a practical, low cost field technique for tracer test monitoring and aquifer hydrodynamic characterization.
NASA Astrophysics Data System (ADS)
Kittilä, Anniina; Evans, Keith; Puddu, Michela; Mikutis, Gediminas; Grass, Robert N.; Deuber, Claudia; Saar, Martin O.
2016-04-01
Groundwater flow in fractured media is heterogeneous and takes place in structures with complex geometry and scale effects, which make the characterization and modeling of the groundwater flow technically challenging. Surface geophysical surveys have limited resolution of permeable structures, and often provide ambiguous results, whereas the interpretation of borehole flow logs to infer hydraulic flow paths within fractured reservoirs is usually non-unique. Nonetheless, knowledge of the hydraulic properties of individual fractures and the role they play in determining the larger-scale flow within the fracture network (i.e. the overall flow conditions) is required in many hydrogeological and geo-engineering situations, such as in geothermal reservoir studies. Tracer tests can overcome some of the aforementioned limitations by providing strong constraints on the geometry and characteristics of flow paths linking boreholes within both porous media and fracture-dominated types of reservoirs. In the case of geothermal reservoirs, tracer tests are often used to provide estimates of the pore/fracture volume swept by flow between injection and production wells. This in turn places constraints on the swept surface area, a parameter that is key for estimating the commercial longevity of the geothermal system. A problem with conventional tracer tests is that the solute species used as the tracer tend to persist in detectable quantities within the reservoir for a long time, thereby impeding repeat tracer tests. DNA nanotracers do not suffer from this problem as they can be designed with a unique signature for each test. DNA nanotracers are environmentally friendly, sub-micron sized silica particles encapsulating small fragments of synthetic DNA which can be fabricated to have a specified, uniquely detectable configuration. For this reason, repeat tracer tests conducted with a differently-encoded DNA fragment to that used in the original will not suffer interference from the earlier test. In this study, we present the results of tests of applying novel DNA nanotracers to characterize groundwater flow properties and the flow pathways in a fracture-dominated reservoir in the Deep Underground Geothermal (DUG) Laboratory at the Grimsel Test Site in the Swiss Alps. This study is motivated by subsequent comparisons of similar characterizations of fractured rock masses after hydraulic stimulation. These will take place at the DUG Lab at the end of 2016. The results of the flow-path characterization are also compared with those obtained from classical solute tracer tests.
Bone marrow uptake of 99mTc-MIBI in patients with multiple myeloma.
Fonti, R; Del Vecchio, S; Zannetti, A; De Renzo, A; Di Gennaro, F; Catalano, L; Califano, C; Pace, L; Rotoli, B; Salvatore, M
2001-02-01
In a previous study, we showed the ability of technetium-99m methoxyisobutylisonitrile (99mTc-MIBI) scan to identify active disease in patients with multiple myeloma (Eur J Nucl Med 1998; 25: 714-720). In particular, a semiquantitative score of the extension and intensity of bone marrow uptake was derived and correlated with both the clinical status of the disease and plasma cell bone marrow infiltration. In order to estimate quantitatively 99mTc-MIBI bone marrow uptake and to verify the intracellular localization of the tracer, bone marrow samples obtained from 24 multiple myeloma patients, three patients with monoclonal gammopathy of undetermined significance (MGUS) and two healthy donors were studied for in vitro uptake. After centrifugation over Ficoll-Hypaque gradient, cell suspensions were incubated with 99mTc-MIBI and the uptake was expressed as the percentage of radioactivity specifically retained within the cells. The cellular localization of the tracer was assessed by micro-autoradiography. Twenty-two out of 27 patients underwent 99mTc-MIBI scan within a week of bone marrow sampling. Whole-body images were obtained 10 min after intravenous injection of 555 MBq of the tracer; the extension and intensity of 99mTc-MIBI uptake were graded using the semiquantitative score. A statistically significant correlation was found between in vitro uptake of 99mTc-MIBI and both plasma cell infiltration (Pearson's coefficient of correlation r=0.69, P<0.0001) and in vivo score (Spearman rank correlation coefficient r=0.60, P<0.01). No specific tracer uptake was found in bone marrow samples obtained from the two healthy donors. Micro-autoradiography showed localization of 99mTc-MIBI inside the plasma cells infiltrating the bone marrow. Therefore, our findings show that the degree of tracer uptake both in vitro and in vivo is related to the percentage of infiltrating plasma cells which accumulate the tracer in their inner compartments.
NASA Astrophysics Data System (ADS)
Weathers, T. S.; Fisher, A. T.; Winslow, D. M.; Stauffer, P. H.; Gable, C. W.
2017-12-01
The flanks of mid-ocean ridges experience coupled flows of fluid, heat, and solutes that are critical for a wide range of global processes, including the cycling of carbon and nutrients, which supports a vast crustal biosphere. Only a few ridge-flank sites have been studied in detail; hydrogeologic conditions and processes in the volcanic crust are best understood on the eastern flank of the Juan de Fuca Ridge. This area has been extensively explored with decades of drilling, submersible, observatory, and survey expeditions and experiments, including the first hole-to-hole tracer injection experiment in the ocean crust. This study describes the development of reactive transport simulations for this ridge-flank setting using three-dimensional coupled (thermal-hydrological) models of crustal-scale circulation, beginning with the exploration of tracer transport. The prevailing flow direction is roughly south to north as a result of outcrop-to-outcrop flow, with a bulk flow rate in the range of meters/year. However, tracer was detected 500 m south ("upstream") from the injection borehole during the first year following injection. This may be explained by local mixing and/or formation fluid discharge from the southern borehole during and after injection. The constraints and parameters required to fit the observed tracer behavior can be used as a basis for modeling reactive transport processes such as nutrient delivery or microbial community evolution as a function of fluid flow. For example, the sulfate concentration in fluid samples from Baby Bare outcrop ( 8 km south of the tracer transport experiment) was 17.8 mmol/kg, whereas at Mama Bare outcrop ( 8 km to north of the tracer transport experiment) the sulfate concentration was 16.3 mmol/mg. By integrating laboratory-derived sulfate reduction rates from microbial samples originating from Juan de Fuca borehole observatories into reactive transport models, we can explore the range of microbial activity that supports the observed concentration gradients of sulfate and other solutes in the volcanic ocean crust.
Wellskins and slug tests: where's the bias?
NASA Astrophysics Data System (ADS)
Rovey, C. W.; Niemann, W. L.
2001-03-01
Pumping tests in an outwash sand at the Camp Dodge Site give hydraulic conductivities ( K) approximately seven times greater than conventional slug tests in the same wells. To determine if this difference is caused by skin bias, we slug tested three sets of wells, each in a progressively greater stage of development. Results were analyzed with both the conventional Bouwer-Rice method and the deconvolution method, which quantifies the skin and eliminates its effects. In 12 undeveloped wells the average skin is +4.0, causing underestimation of conventional slug-test K (Bouwer-Rice method) by approximately a factor of 2 relative to the deconvolution method. In seven nominally developed wells the skin averages just +0.34, and the Bouwer-Rice method gives K within 10% of that calculated with the deconvolution method. The Bouwer-Rice K in this group is also within 5% of that measured by natural-gradient tracer tests at the same site. In 12 intensely developed wells the average skin is <-0.82, consistent with an average skin of -1.7 measured during single-well pumping tests. At this site the maximum possible skin bias is much smaller than the difference between slug and pumping-test Ks. Moreover, the difference in K persists even in intensely developed wells with negative skins. Therefore, positive wellskins do not cause the difference in K between pumping and slug tests at this site.
Single well surfactant test to evaluate surfactant floods using multi tracer method
Sheely, Clyde Q.
1979-01-01
Data useful for evaluating the effectiveness of or designing an enhanced recovery process said process involving mobilizing and moving hydrocarbons through a hydrocarbon bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well, comprising (a) determining hydrocarbon saturation in a volume in the formation near a well bore penetrating formation, (b) injecting sufficient mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore, and (c) determining the hydrocarbon saturation in a volume including at least a part of the volume of (b) by an improved single well surfactant method comprising injecting 2 or more slugs of water containing the primary tracer separated by water slugs containing no primary tracer. Alternatively, the plurality of ester tracers can be injected in a single slug said tracers penetrating varying distances into the formation wherein the esters have different partition coefficients and essentially equal reaction times. The single well tracer method employed is disclosed in U.S. Pat. No. 3,623,842. This method designated the single well surfactant test (SWST) is useful for evaluating the effect of surfactant floods, polymer floods, carbon dioxide floods, micellar floods, caustic floods and the like in subterranean formations in much less time and at much reduced cost compared to conventional multiwell pilot tests.
Interannual variability of trace gases in the subtropical winter stratosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, L.J.; Russell, J.M. III
1999-04-01
Measurements of water vapor and methane from the Halogen Occultation Experiment instrument on board the Upper Atmosphere Research Satellite are used to study the interannual variability of trace gas distributions in the atmosphere. Particular attention is paid to the mechanisms influencing trace gas distributions in the subtropics. The study highlights the quasi-biennial oscillation (QBO) dependence of subtropical tracer distributions more clearly than in previous studies. There is a strong correlation between the equatorial wind QBO and the slope of the tracer isolines in the Northern Hemisphere subtropics, with steeper subtropical isoline slopes in the easterly phase compared with the westerlymore » phase. This is particularly so in the lower stratosphere. Two possible mechanisms for the QBO signal in subtropical isoline slopes are identified: advection by the mean circulation and isentropic mixing. A comparison between the QBO signal in the slope of the tracer isolines and the isentropic tracer gradients is proposed as a method of determining which process is dominant. The authors suggest that the behavior of these two data diagnostics provides a stringent constraint on computer models of the atmosphere. On the basis of these diagnostics three height regions of the subtropical atmosphere are identified. (1) Below 450--500 K isentropic mixing associated with tropospheric disturbances penetrating the lower stratosphere is dominant. (2) In the region 500--750 K the data suggest that advection by the mean meridional circulation is important and that the role of isentropic mixing by eddies is relatively small. (3) Above 750 K isentropic mixing becomes increasingly important with height, and both advection and mixing are influential in determining the subtropical tracer distributions.« less
Singha, Kamini; Gorelick, Steven M.
2005-01-01
Cross-well electrical resistivity tomography (ERT) was used to monitor the migration of a saline tracer in a two-well pumping-injection experiment conducted at the Massachusetts Military Reservation in Cape Cod, Massachusetts. After injecting 2200 mg/L of sodium chloride for 9 hours, ERT data sets were collected from four wells every 6 hours for 20 days. More than 180,000 resistance measurements were collected during the tracer test. Each ERT data set was inverted to produce a sequence of 3-D snapshot maps that track the plume. In addition to the ERT experiment a pumping test and an infiltration test were conducted to estimate horizontal and vertical hydraulic conductivity values. Using modified moment analysis of the electrical conductivity tomograms, the mass, center of mass, and spatial variance of the imaged tracer plume were estimated. Although the tomograms provide valuable insights into field-scale tracer migration behavior and aquifer heterogeneity, standard tomographic inversion and application of Archie's law to convert electrical conductivities to solute concentration results in underestimation of tracer mass. Such underestimation is attributed to (1) reduced measurement sensitivity to electrical conductivity values with distance from the electrodes and (2) spatial smoothing (regularization) from tomographic inversion. The center of mass estimated from the ERT inversions coincided with that given by migration of the tracer plume using 3-D advective-dispersion simulation. The 3-D plumes seen using ERT exhibit greater apparent dispersion than the simulated plumes and greater temporal spreading than observed in field data of concentration breakthrough at the pumping well.
A Lagrangian model for the age of tracer in surface water
NASA Astrophysics Data System (ADS)
Ding, Yu; Liu, Haifei; Yi, Yujun
The age of tracer is a spatio-temporal scale, indicating the transition time of solute particles, which is helpful to monitor and manage the pollutant leakage accidents. In this study, an effective Lagrangian model for the age of tracer is developed based on the lattice Boltzmann method in D2Q5 lattices. A tracer age problem in an asymmetrical circular reservoir is then employed as a benchmark test to verify this method. Then it is applied to computing the age of tracers under two different reservoir operation schemes in the Danjiangkou Reservoir, the drinking water source for the Middle Route of South-to-North Water Transfer Project.
NASA Astrophysics Data System (ADS)
Chuang, Po-Yu; Chia, Yeeping; Liou, Ya-Hsuan; Teng, Mao-Hua; Liu, Ching-Yi; Lee, Tsai-Ping
2016-11-01
Recent advances in borehole geophysical techniques have improved characterization of cross-hole fracture flow. The direct detection of preferential flow paths in fractured rock, however, remains to be resolved. In this study, a novel approach using nanoscale zero-valent iron (nZVI or `nano-iron') as a tracer was developed for detecting fracture flow paths directly. Generally, only a few rock fractures are permeable while most are much less permeable. A heat-pulse flowmeter can be used to detect changes in flow velocity for delineating permeable fracture zones in the borehole and providing the design basis for the tracer test. When nano-iron particles are released in an injection well, they can migrate through the connecting permeable fracture and be attracted to a magnet array when arriving in an observation well. Such an attraction of incoming iron nanoparticles by the magnet can provide quantitative information for locating the position of the tracer inlet. A series of field experiments were conducted in two wells in fractured rock at a hydrogeological research station in Taiwan, to test the cross-hole migration of the nano-iron tracer through permeable connected fractures. The fluid conductivity recorded in the observation well confirmed the arrival of the injected nano-iron slurry. All of the iron nanoparticles attracted to the magnet array in the observation well were found at the depth of a permeable fracture zone delineated by the flowmeter. This study has demonstrated that integrating the nano-iron tracer test with flowmeter measurement has the potential to characterize preferential flow paths in fractured rock.
A revised velocity-reversal and sediment-sorting model for a high-gradient, pool-riffle stream
Thompson, D.M.; Wohl, E.E.; Jarrett, R.D.
1996-01-01
Sediment-sorting processes related to varying channel-bed morphology were investigated from April to November 1993 along a 1-km pool-riffle and step-pool reach of North Saint Vrain Creek, a small mountain stream in the Rocky Mountains of northern Colorado. Measured cross-sectional areas of flow were used to suggest higher velocities in pools than in riffles at high flow. Three hundred and sixteen tracer particles, ranging in size from 16 mm to 256 mm, were placed in two separate pool-riffle-pool sequences and used to assess sediment-sorting patterns and sediment-transport competence variations. Tracer-particle depositional evidence indicated higher sediment-transport competence in pools than in riffles at high flow. Pool-riffle sediment sorting may be created by velocity reversals, and more localized sorting results from gravitational forces along the upstream sloping portion of the channel bed located at the downstream end of pools.
Percolation and transport in a sandy soil under a natural hydraulic gradient
Green, Christopher T.; Stonestrom, David A.; Bekins, Barbara A.; Akstin, Katherine C.; Schulz, Marjorie S.
2005-01-01
Unsaturated flow and transport under a natural hydraulic gradient in a Mediterranean climate were investigated with a field tracer experiment combined with laboratory analyses and numerical modeling. Bromide was applied to the surface of a sandy soil during the dry season. During the subsequent rainy season, repeated sediment sampling tracked the movement of bromide through the profile. Analysis of data on moisture content, matric pressure, unsaturated hydraulic conductivity, bulk density, and soil texture and structure provides insights into parameterization and use of the advective‐dispersive modeling approach. Capturing the gross features of tracer and moisture movement with model simulations required an order‐of‐magnitude increase in laboratory‐measured hydraulic conductivity. Wetting curve characteristics better represented field results, calling into question the routine estimation of hydraulic characteristics based only on drying conditions. Measured increases in profile moisture exceeded cumulative precipitation in early winter, indicating that gains from dew drip can exceed losses from evapotranspiration during periods of heavy (“Tule”) fog. A single‐continuum advective‐dispersive modeling approach could not reproduce a peak of bromide that was retained near the soil surface for over 3 years. Modeling of this feature required slow exchange of solute at a transfer rate of 0.5–1 × 10−4 d−1 with an immobile volume approaching the residual moisture content.
Methodology for quantitative rapid multi-tracer PET tumor characterizations.
Kadrmas, Dan J; Hoffman, John M
2013-10-04
Positron emission tomography (PET) can image a wide variety of functional and physiological parameters in vivo using different radiotracers. As more is learned about the molecular basis for disease and treatment, the potential value of molecular imaging for characterizing and monitoring disease status has increased. Characterizing multiple aspects of tumor physiology by imaging multiple PET tracers in a single patient provides additional complementary information, and there is a significant body of literature supporting the potential value of multi-tracer PET imaging in oncology. However, imaging multiple PET tracers in a single patient presents a number of challenges. A number of techniques are under development for rapidly imaging multiple PET tracers in a single scan, where signal-recovery processing algorithms are employed to recover various imaging endpoints for each tracer. Dynamic imaging is generally used with tracer injections staggered in time, and kinetic constraints are utilized to estimate each tracers' contribution to the multi-tracer imaging signal. This article summarizes past and ongoing work in multi-tracer PET tumor imaging, and then organizes and describes the main algorithmic approaches for achieving multi-tracer PET signal-recovery. While significant advances have been made, the complexity of the approach necessitates protocol design, optimization, and testing for each particular tracer combination and application. Rapid multi-tracer PET techniques have great potential for both research and clinical cancer imaging applications, and continued research in this area is warranted.
Methodology for Quantitative Rapid Multi-Tracer PET Tumor Characterizations
Kadrmas, Dan J.; Hoffman, John M.
2013-01-01
Positron emission tomography (PET) can image a wide variety of functional and physiological parameters in vivo using different radiotracers. As more is learned about the molecular basis for disease and treatment, the potential value of molecular imaging for characterizing and monitoring disease status has increased. Characterizing multiple aspects of tumor physiology by imaging multiple PET tracers in a single patient provides additional complementary information, and there is a significant body of literature supporting the potential value of multi-tracer PET imaging in oncology. However, imaging multiple PET tracers in a single patient presents a number of challenges. A number of techniques are under development for rapidly imaging multiple PET tracers in a single scan, where signal-recovery processing algorithms are employed to recover various imaging endpoints for each tracer. Dynamic imaging is generally used with tracer injections staggered in time, and kinetic constraints are utilized to estimate each tracers' contribution to the multi-tracer imaging signal. This article summarizes past and ongoing work in multi-tracer PET tumor imaging, and then organizes and describes the main algorithmic approaches for achieving multi-tracer PET signal-recovery. While significant advances have been made, the complexity of the approach necessitates protocol design, optimization, and testing for each particular tracer combination and application. Rapid multi-tracer PET techniques have great potential for both research and clinical cancer imaging applications, and continued research in this area is warranted. PMID:24312149
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karingithi, C.W.
Tracer and injection tests were performed in the Olkaria North East Field with the objective to reduce uncertainty in the engineering design and to determine the suitability of well OW-704 as a re-injection well for the waste brine from the steam field during production. An organic dye (sodium fluorescein) was injected into well OW-704 as a slug. The tracer returns were observed in well OW-M2 which is 580 m deep, 620 m from well OW-704 and well OW-716 which is 900 m from well OW-704. The other wells on discharge, OW-714, and OW-725 did not show any tracer returns. However,more » other chemical constituents suggested., that well OW-716 experienced a chemical breakthrough earlier than OW-M2. Tracer return velocities of 0.31 m/hr and 1.3 m/hr were observed. Results of the tracer and injection tests indicate that OW-704 may be used as a re-injection well provided a close monitoring program is put in place.« less
Hartwig, Jason; Mittal, Gaurav; Kumar, Kamal; Sung, Chih-Jen
2018-04-01
This paper presents a set of system validation experiments that can be used to qualify either static or flow experimental systems for gathering tracer photophysical data or conducting laser diagnostics at high pressure and temperature in order to establish design and operation limits and reduce uncertainty in data interpretation. Tests demonstrated here quantify the effect of tracer absorption at the test cell walls, stratification, photolysis, pyrolysis, adequacy of mixing and seeding, and reabsorption of laser light using acetone as the tracer and 282 nm excitation. Results show that acetone exhibits a 10% decrease in fluorescence signal over 36 000 shots at 127.4 mJ/cm 2 , and photolysis is negligible below 1000 shots collected. Meanwhile, appropriately chosen gas residence times can mitigate risks due to pyrolysis and inadequate mixing and seeding; for the current work 100 ms residence time ensured <0.5% alteration of tracer number density due to thermal destruction. Experimental results here are compared to theoretical values from the literature.
Kronholm, Scott C.; Capel, Paul D.
2016-01-01
Mixing models are a commonly used method for hydrograph separation, but can be hindered by the subjective choice of the end-member tracer concentrations. This work tests a new variant of mixing model that uses high-frequency measures of two tracers and streamflow to separate total streamflow into water from slowflow and fastflow sources. The ratio between the concentrations of the two tracers is used to create a time-variable estimate of the concentration of each tracer in the fastflow end-member. Multiple synthetic data sets, and data from two hydrologically diverse streams, are used to test the performance and limitations of the new model (two-tracer ratio-based mixing model: TRaMM). When applied to the synthetic streams under many different scenarios, the TRaMM produces results that were reasonable approximations of the actual values of fastflow discharge (±0.1% of maximum fastflow) and fastflow tracer concentrations (±9.5% and ±16% of maximum fastflow nitrate concentration and specific conductance, respectively). With real stream data, the TRaMM produces high-frequency estimates of slowflow and fastflow discharge that align with expectations for each stream based on their respective hydrologic settings. The use of two tracers with the TRaMM provides an innovative and objective approach for estimating high-frequency fastflow concentrations and contributions of fastflow water to the stream. This provides useful information for tracking chemical movement to streams and allows for better selection and implementation of water quality management strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruess, K.; Doughty, C.
2010-01-15
Single-well injection-withdrawal (SWIW) tracer tests involve injection of traced fluid and subsequent tracer recovery from the same well, usually with some quiescent time between the injection and withdrawal periods. SWIW are insensitive to variations in advective processes that arise from formation heterogeneities, because upon withdrawal, fluid parcels tend to retrace the paths taken during injection. However, SWIW are sensitive to diffusive processes, such as diffusive exchange of conservative or reactive solutes between fractures and rock matrix. This paper focuses on SWIW tests in which temperature itself is used as a tracer. Numerical simulations demonstrate the sensitivity of temperature returns tomore » fracture-matrix interaction. We consider thermal SWIW response to the two primary reservoir improvements targeted with stimulation, (1) making additional fractures accessible to injected fluids, and (2) increasing the aperture and permeability of pre-existing fractures. It is found that temperature returns in SWIW tests are insensitive to (2), while providing a strong signal of more rapid temperature recovery during the withdrawal phase for (1).« less
Comparison of different tracers for PIV measurements in EHD airflow
NASA Astrophysics Data System (ADS)
Hamdi, M.; Havet, M.; Rouaud, O.; Tarlet, D.
2014-04-01
In this study, a proposed method for selecting a tracer for particle imaging velocimetry (PIV) measurement in electrohydrodynamics flows was developed. To begin with, several published studies were identified that exploit different tracers, such as oil smoke, cigarette smoke and titanium dioxide (TiO2). An assortment of tracers was then selected based on comparisons with conventional dimensionless numbers; Stokes number ( St), Archimedes number ( Ar) and electrical mobility ratio ( M). Subsequently, an experimental study for testing tracers was developed, which enabled the velocity profile of an ionic wind generated by a needle/ring configuration to be measured. Air velocity measurements carried out with a Pitot tube, considered as the reference measurements, were compared to PIV measurements for each tracer. In addition, the current-voltage curves and the evolution of the current during seeding were measured. All the experimental results show that TiO2, SiO2 microballoons and incense smoke are the ideal tracers in the series of tracers investigated.
Vanderborght, Jan; Vereecken, Harry
2002-01-01
The local scale dispersion tensor, Dd, is a controlling parameter for the dilution of concentrations in a solute plume that is displaced by groundwater flow in a heterogeneous aquifer. In this paper, we estimate the local scale dispersion from time series or breakthrough curves, BTCs, of Br concentrations that were measured at several points in a fluvial aquifer during a natural gradient tracer test at Krauthausen. Locally measured BTCs were characterized by equivalent convection dispersion parameters: equivalent velocity, v(eq)(x) and expected equivalent dispersivity, [lambda(eq)(x)]. A Lagrangian framework was used to approximately predict these equivalent parameters in terms of the spatial covariance of log(e) transformed conductivity and the local scale dispersion coefficient. The approximate Lagrangian theory illustrates that [lambda(eq)(x)] increases with increasing travel distance and is much larger than the local scale dispersivity, lambda(d). A sensitivity analysis indicates that [lambda(eq)(x)] is predominantly determined by the transverse component of the local scale dispersion and by the correlation scale of the hydraulic conductivity in the transverse to flow direction whereas it is relatively insensitive to the longitudinal component of the local scale dispersion. By comparing predicted [lambda(eq)(x)] for a range of Dd values with [lambda(eq)(x)] obtained from locally measured BTCs, the transverse component of Dd, DdT, was estimated. The estimated transverse local scale dispersivity, lambda(dT) = DdT/U1 (U1 = mean advection velocity) is in the order of 10(1)-10(2) mm, which is relatively large but realistic for the fluvial gravel sediments at Krauthausen.
NASA Astrophysics Data System (ADS)
Schreiber, M. E.; Zwolinski, M. D.; Taglia, P. J.; Bahr, J. M.; Hickey, W. J.
2001-05-01
We are investigating the role of anaerobic processes that control field-scale BTEX loss using a variety of experimental and numerical techniques. Tracer tests, laboratory microcosms, and in situ microcosms (ISMs) were designed to examine BTEX biodegradation under intrinsic and enhanced anaerobic conditions in a BTEX plume at Fort McCoy, WI. In the tracer tests, addition of nitrate resulted in loss of toluene, ethylbenzene, and m, p-xylenes but not benzene. Laboratory microcosm and ISM experiments confirmed that nitrate addition is not likely to enhance benzene biodegradation at the site. Excess nitrate losses were observed in both field and laboratory experiments, indicating that reliance on theoretical stoichiometric equations to estimate contaminant mass losses should be re-evaluated. To examine changes in microbial community during biodegradation of BTEX under enhanced nitrate-reducing conditions, DNA was extracted from laboratory microcosm sediment, the 16S-rRNA gene was amplified using eubacterial primers, and products were separated by denaturing gradient gel electrophoresis. Banding patterns suggest that nitrate caused more of a community change than BTEX. These data suggest that nitrate plays an important role in microbial population selection. Numerical simulations were conducted to simulate the evolution of the BTEX plume and to quantify BTEX losses due to intrinsic and nitrate-enhanced biodegradation. Results suggest that the majority of intrinsic BTEX mass loss has occurred under aerobic and iron-reducing conditions. Due to depletion of solid-phase Fe(III) over time, however, future BTEX losses under iron-reducing conditions will decrease, and methanogenesis will play an increasingly important role in controlling biodegradation. The simulations also suggest that although nitrate addition will decrease TEX concentrations, source removal with intrinsic biodegradation is likely the most effective treatment method for the site.
Determination of stream reaeration coefficients by use of tracers
Kilpatrick, F.A.; Rathbun, R.E.; Yotsukura, N.; Parker, G.W.; DeLong, L.L.
1987-01-01
Stream reaeration is the physical absorption of oxygen from the atmosphere by a flowing stream. This is the primary process by which a stream replenishes the oxygen consumed in the biodegradation of organic wastes.Prior to 1965, reaeration rate coefficients could be estimated only by indirect methods. In 1965, a direct method of measuring stream reaeration coefficients was developed in which a radioactive tracer gas was injected into a stream--the tracer gas being desorbed from the stream inversely to how oxygen would be absorbed. The technique has since been modified by substituting hydrocarbon gases for the radioactive tracer gas.This manual describes the slug-injection and constant-rate injection methods of performing gas-tracer desorption measurements. Emphasis is on the use of rhodamine WT dye as a relatively conservative tracer and propane as the nonconservative gas tracer, on planning field tests, methods of injection, sampling and analysis, and computational techniques to compute desorption and reaeration coefficients.
Qualification of oil-based tracer particles for heated Ludwieg tubes
NASA Astrophysics Data System (ADS)
Casper, Marcus; Stephan, Sören; Scholz, Peter; Radespiel, Rolf
2014-06-01
The generation, insertion, pressurization and use of oil-based tracer particles is qualified for the application in heated flow facilities, typically hypersonic facilities such as Ludwieg tubes. The operative challenges are to ensure a sub-critical amount of seeding material in the heated part, to qualify the methods that are used to generate the seeding, pressurize it to storage tube pressure, as well as to test specific oil types. The mass of the seeding material is held below the lower explosion limit such that operation is safe. The basis for the tracers is qualified in off-situ particle size measurements. In the main part different methods and operational procedures are tested with respect to their ability to generate a suitable amount of seeding in the test section. For the best method the relaxation time of the tracers is qualified by the oblique shock wave test. The results show that the use of a special temperature resistant lubricant oil "Plantfluid" is feasible under the conditions of a Mach-6 Ludwieg tube with heated storage tube. The method gives high-quality tracers with high seeding densities. Although the experimental results of the oblique shock wave test differ from theoretical predictions of relaxation time, still the relaxation time of 3.2 μs under the more dense tunnel conditions with 18 bar storage tube pressure is low enough to allow the use of the seeding for meaningful particle image velocimetry studies.
Fractional flow in fractured chalk; a flow and tracer test revisited.
Odling, N E; West, L J; Hartmann, S; Kilpatrick, A
2013-04-01
A multi-borehole pumping and tracer test in fractured chalk is revisited and reinterpreted in the light of fractional flow. Pumping test data analyzed using a fractional flow model gives sub-spherical flow dimensions of 2.2-2.4 which are interpreted as due to the partially penetrating nature of the pumped borehole. The fractional flow model offers greater versatility than classical methods for interpreting pumping tests in fractured aquifers but its use has been hampered because the hydraulic parameters derived are hard to interpret. A method is developed to convert apparent transmissivity and storativity (L(4-n)/T and S(2-n)) to conventional transmissivity and storativity (L2/T and dimensionless) for the case where flow dimension, 2
NASA Astrophysics Data System (ADS)
Camporese, M.; Cassiani, G.; Deiana, R.; Salandin, P.
2011-12-01
In recent years geophysical methods have become increasingly popular for hydrological applications. Time-lapse electrical resistivity tomography (ERT) represents a potentially powerful tool for subsurface solute transport characterization since a full picture of the spatiotemporal evolution of the process can be obtained. However, the quantitative interpretation of tracer tests is difficult because of the uncertainty related to the geoelectrical inversion, the constitutive models linking geophysical and hydrological quantities, and the a priori unknown heterogeneous properties of natural formations. Here an approach based on the Lagrangian formulation of transport and the ensemble Kalman filter (EnKF) data assimilation technique is applied to assess the spatial distribution of hydraulic conductivity K by incorporating time-lapse cross-hole ERT data. Electrical data consist of three-dimensional cross-hole ERT images generated for a synthetic tracer test in a heterogeneous aquifer. Under the assumption that the solute spreads as a passive tracer, for high Peclet numbers the spatial moments of the evolving plume are dominated by the spatial distribution of the hydraulic conductivity. The assimilation of the electrical conductivity 4D images allows updating of the hydrological state as well as the spatial distribution of K. Thus, delineation of the tracer plume and estimation of the local aquifer heterogeneity can be achieved at the same time by means of this interpretation of time-lapse electrical images from tracer tests. We assess the impact on the performance of the hydrological inversion of (i) the uncertainty inherently affecting ERT inversions in terms of tracer concentration and (ii) the choice of the prior statistics of K. Our findings show that realistic ERT images can be integrated into a hydrological model even within an uncoupled inverse modeling framework. The reconstruction of the hydraulic conductivity spatial distribution is satisfactory in the portion of the domain directly covered by the passage of the tracer. Aside from the issues commonly affecting inverse models, the proposed approach is subject to the problem of the filter inbreeding and the retrieval performance is sensitive to the choice of K prior geostatistical parameters.
NASA Astrophysics Data System (ADS)
Liang, Ching-Ping; Hsu, Shao-Yiu; Chen, Jui-Sheng
2016-09-01
It is recommended that an in-situ infiltration tracer test is considered for simultaneously determining the longitudinal and transverse dispersion coefficients in soil. Analytical solutions have been derived for two-dimensional advective-dispersive transport in a radial geometry in the literature which can be used for interpreting the result of such a tracer test. However, these solutions were developed for a transport domain with an unbounded-radial extent and an infinite thickness of vadose zone which might not be realistically manifested in the actual solute transport during a field infiltration tracer test. Especially, the assumption of infinite thickness of vadose zone should be invalid for infiltration tracer tests conducted in soil with a shallow groundwater table. This paper describes an analytical model for interpreting the results of an infiltration tracer test based on improving the transport domain with a bounded-radial extent and a finite thickness of vadose zone. The analytical model is obtained with the successive application of appropriate integral transforms and their corresponding inverse transforms. A comparison of the newly derived analytical solution against the previous analytical solutions in which two distinct sets of radial extent and thickness of vadose zone are considered is conducted to determine the influence of the radial and exit boundary conditions on the solute transport. The results shows that both the radial and exit boundary conditions substantially affect the trailing segment of the breakthrough curves for a soil medium with large dispersion coefficients. Previous solutions derived for a transport domain with an unbounded-radial and an infinite thickness of vadose zone boundary conditions give lower concentration predictions compared with the proposed solution at late times. Moreover, the differences between two solutions are amplified when the observation positions are near the groundwater table. In addition, we compare our solution against the approximate solutions that derived from the previous analytical solution and has been suggested to serve as fast tools for simultaneously estimating the longitudinal and transverse dispersion coefficients. The results indicate that the approximate solutions offer predictions that are markedly distinct from our solution for the entire range of dispersion coefficient values. Thus, it is not appropriate to use the approximate solution for interpreting the results of an infiltration tracer test.
TRAC, a collaborative computer tool for tracer-test interpretation
NASA Astrophysics Data System (ADS)
Gutierrez, A.; Klinka, T.; Thiéry, D.; Buscarlet, E.; Binet, S.; Jozja, N.; Défarge, C.; Leclerc, B.; Fécamp, C.; Ahumada, Y.; Elsass, J.
2013-05-01
Artificial tracer tests are widely used by consulting engineers for demonstrating water circulation, proving the existence of leakage, or estimating groundwater velocity. However, the interpretation of such tests is often very basic, with the result that decision makers and professionals commonly face unreliable results through hasty and empirical interpretation. There is thus an increasing need for a reliable interpretation tool, compatible with the latest operating systems and available in several languages. BRGM, the French Geological Survey, has developed a project together with hydrogeologists from various other organizations to build software assembling several analytical solutions in order to comply with various field contexts. This computer program, called TRAC, is very light and simple, allowing the user to add his own analytical solution if the formula is not yet included. It aims at collaborative improvement by sharing the tool and the solutions. TRAC can be used for interpreting data recovered from a tracer test as well as for simulating the transport of a tracer in the saturated zone (for the time being). Calibration of a site operation is based on considering the hydrodynamic and hydrodispersive features of groundwater flow as well as the amount, nature and injection mode of the artificial tracer. The software is available in French, English and Spanish, and the latest version can be downloaded from the web site http://trac.brgm.fr">http://trac.brgm.fr.
NASA Astrophysics Data System (ADS)
Yu, Xiao-Ying; Barnett, J. Matthew; Amidan, Brett G.; Recknagle, Kurtis P.; Flaherty, Julia E.; Antonio, Ernest J.; Glissmeyer, John A.
2018-03-01
The ANSI/HPS N13.1-2011 standard requires gaseous tracer uniformity testing for sampling associated with stacks used in radioactive air emissions. Sulfur hexafluoride (SF6), a greenhouse gas with a high global warming potential, has long been the gas tracer used in such testing. To reduce the impact of gas tracer tests on the environment, nitrous oxide (N2O) was evaluated as a potential replacement to SF6. The physical evaluation included the development of a test plan to record percent coefficient of variance and the percent maximum deviation between the two gases while considering variables such as fan configuration, injection position, and flow rate. Statistical power was calculated to determine how many sample sets were needed, and computational fluid dynamic modeling was utilized to estimate overall mixing in stacks. Results show there are no significant differences between the behaviors of the two gases, and SF6 modeling corroborated N2O test results. Although, in principle, all tracer gases should behave in an identical manner for measuring mixing within a stack, the series of physical tests guided by statistics was performed to demonstrate the equivalence of N2O testing to SF6 testing in the context of stack qualification tests. The results demonstrate that N2O is a viable choice leading to a four times reduction in global warming impacts for future similar compliance driven testing.
Repeated tracer tests in a karst system with concentrated allogenic recharge (Johnsbachtal, Austria)
NASA Astrophysics Data System (ADS)
Birk, Steffen; Wagner, Thomas; Pauritsch, Marcus; Winkler, Gerfried
2015-04-01
The Johnsbachtal (Austria) is a high Alpine headwater catchment covering an area of approximately 65 km², which is equipped with a hydrometeorological monitoring network (Strasser at al. 2013). The catchment is composed of carbonate rocks and crystalline rocks belonging to the Northern Calceraous Alps and the Greywacke Zone. The largest spring within the catchment, the Etzbach spring, is bound on karstified carbonate rocks of the Greywacke Zone. A stream sink located at a distance of approximately 1 km from the spring was used as injection point for repeated tracer tests in the years 2012, 2013, and 2014. In each case the tracer was recovered at the spring indicating an allogenic recharge component from the crystalline parts of the catchment. The spring discharge at the times of the three tracer tests varied between approximately 0.3 and 0.6 m³/s. Likewise the tracer travel times and thus the flow velocities were found to be different. Surprisingly, the largest tracer travel time (and thus lowest flow velocity) was obtained in 2013 when the spring discharge was highest (0.6 m³/s). In addition, the flow velocities in 2012 and 2014 were found to be clearly different, although the spring discharge was similar (roughly 0.3 m³/s) in both tests. Thus, the tracer velocity appears to be not correlated with the spring discharge. Field observations indicate that this finding can potentially be attributed to complexities at both the injection location (e.g., plugging of injection points and thus different flow paths) and the sampling point (i.e., the spring, which is composed of several outlet points representing different subcatchments). References: Strasser, U., Marke, T., Sass, O., Birk, S., Winkler, G. (2013): John's creek valley: a mountainous catchment for long-term interdisciplinary human-environment system research in Upper Styria (Austria). Environmental Earth Sciences, doi: 10.1007/s12665-013-2318-y
Lee, Kyung-Min; Armstrong, Paul R; Thomasson, J Alex; Sui, Ruixiu; Casada, Mark; Herrman, Timothy J
2010-10-27
Tracing grain from the farm to its final processing destination as it moves through multiple grain-handling systems, storage bins, and bulk carriers presents numerous challenges to existing record-keeping systems. This study examines the suitability of coded caplets to trace grain, in particular, to evaluate methodology to test tracers' ability to withstand the rigors of a commercial grain handling and storage systems as defined by physical properties using measurement technology commonly applied to assess grain hardness and end-use properties. Three types of tracers to dispense into bulk grains for tracing the grain back to its field of origin were developed using three food-grade substances [processed sugar, pregelatinized starch, and silicified microcrystalline cellulose (SMCC)] as a major component in formulations. Due to a different functionality of formulations, the manufacturing process conditions varied for each tracer type, resulting in unique variations in surface roughness, weight, dimensions, and physical and spectroscopic properties before and after coating. The applied two types of coating [pregelatinized starch and hydroxypropylmethylcellulose (HPMC)] using an aqueous coating system containing appropriate plasticizers showed uniform coverage and clear coating. Coating appeared to act as a barrier against moisture penetration, to protect against mechanical damage of the surface of the tracers, and to improve the mechanical strength of tracers. The results of analysis of variance (ANOVA) tests showed the type of tracer, coating material, conditioning time, and a theoretical weight gain significantly influenced the morphological and physical properties of tracers. Optimization of these factors needs to be pursued to produce desirable tracers with consistent quality and performance when they flow with bulk grains throughout the grain marketing channels.
Bivolarova, M; Ondráček, J; Melikov, A; Ždímal, V
2017-11-01
The study investigated the separate and combined effects of ventilation rate, free convection flow produced by a thermal manikin, and the presence of objects on the distribution of tracer gas and particles in indoor air. The concentration of aerosol particles and tracer gas was measured in a test room with mixing ventilation. Three layouts were arranged: an empty room, an office room with an occupant sitting in front of a table, and a single-bed hospital room. The room occupant was simulated by a thermal manikin. Monodisperse particles of three sizes (0.07, 0.7, and 3.5 μm) and nitrous oxide tracer gas were generated simultaneously at the same location in the room. The particles and gas concentrations were measured in the bulk room air, in the breathing zone of the manikin, and in the exhaust air. Within the breathing zone of the sitting occupant, the tracer gas emerged as reliable predictor for the exposure to all different-sized test particles. A change in the ventilation rate did not affect the difference in concentration distribution between tracer gas and larger particle sizes. Increasing the room surface area did not influence the similarity in the dispersion of the aerosol particles and the tracer gas. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Bookbinder, Marilyn; Hugodot, Amandine; Freeman, Katherine; Homel, Peter; Santiago, Elisabeth; Riggs, Alexa; Gavin, Maggie; Chu, Alice; Brady, Ellen; Lesage, Pauline; Portenoy, Russell K
2018-02-01
Quality improvement in end-of-life care generally acquires data from charts or caregivers. "Tracer" methodology, which assesses real-time information from multiple sources, may provide complementary information. The objective of this study was to develop a valid brief audit tool that can guide assessment and rate care when used in a clinician tracer to evaluate the quality of care for the dying patient. To identify items for a brief audit tool, 248 items were created to evaluate overall quality, quality in specific content areas (e.g., symptom management), and specific practices. Collected into three instruments, these items were used to interview professional caregivers and evaluate the charts of hospitalized patients who died. Evidence that this information could be validly captured using a small number of items was obtained through factor analyses, canonical correlations, and group comparisons. A nurse manager field tested tracer methodology using candidate items to evaluate the care provided to other patients who died. The survey of 145 deaths provided chart data and data from 445 interviews (26 physicians, 108 nurses, 18 social workers, and nine chaplains). The analyses yielded evidence of construct validity for a small number of items, demonstrating significant correlations between these items and content areas identified as latent variables in factor analyses. Criterion validity was suggested by significant differences in the ratings on these items between the palliative care unit and other units. The field test evaluated 127 deaths, demonstrated the feasibility of tracer methodology, and informed reworking of the candidate items into the 14-item Tracer EoLC v1. The Tracer EoLC v1 can be used with tracer methodology to guide the assessment and rate the quality of end-of-life care. Copyright © 2017 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.
Fracture characterization in a deep geothermal reservoir
NASA Astrophysics Data System (ADS)
Rühaak, Wolfram; Hehn, Vera; Hassanzadegan, Alireza; Tischner, Torsten
2017-04-01
At the geothermal research drilling Horstberg in North West Germany studies for the characterization of a vertical fracture are performed. The fracture was created by a massive hydraulic stimulation in 2003 in approx. 3700 m depth within rocks of the middle Buntsandstein. The fracture surface is in the order of 100,000 m2, depending on the flow rate at which water is injected. Besides hydraulic characterization, multiple tracer tests are planned. At the depth of interest the reservoir temperature is around 150 °C, pressure is around 600 bar (60 MPa) and due to salinity the water density is around 1200 kg/m3. Knowledge of tracer stability and behavior at these reservoir conditions is limited. Additionally, the planned tracer tests will be performed within one single borehole. In a closed cycle water is injected into the inner pipe of the well (tubing), which is separated by a permanent packer from the outer pipe (annulus). The water is produced back from the annulus approximately 150 m above the injection point. Thus, the circulation of thermal water between two sandstone layers via an artificial fracture can be achieved. Tests will be carried out with different flow rates and accordingly with different pressures, resulting in different fracture areas. Due to this test setup tracer signals will be stacked and will remain for a longer time in the fracture - which is the reason why different tracers are required. For an optimal characterization both conservative and reactive tracers will be used and different injection methods (continuous, instantaneous and pulsed) will be applied. For a proper setup of the tracer test numerical modelling studies are performed in advance. The relevant thermal, hydraulic and chemical processes (mainly adsorption and degredation) are coupled, resulting in a THC model; additionally the dependence of fracture aperture and area on fluid pressure has to be considered. Instead of applying a mechanically coupled model (THMC) a simplified approach is applied which takes the pressure dependence of the fracture permeability into account by using constitutive relations. Results of this modeling study will be presented together with details of the planned field study.
Böhlke, J.K.; Smith, Richard L.; Miller, Daniel N.
2006-01-01
Ammonium (NH4+) is a major constituent of many contaminated groundwaters, but its movement through aquifers is complex and poorly documented. In this study, processes affecting NH4+ movement in a treated wastewater plume were studied by a combination of techniques including large‐scale monitoring of NH4+ distribution; isotopic analyses of coexisting aqueous NH4+, NO3−, N2, and sorbed NH4+; and in situ natural gradient 15NH4+tracer tests with numerical simulations of 15NH4+, 15NO3−, and 15N2 breakthrough data. Combined results indicate that the main mass of NH4+ was moving downgradient at a rate about 0.25 times the groundwater velocity. Retardation factors and groundwater ages indicate that much of the NH4+ in the plume was recharged early in the history of the wastewater disposal. NO3− and excess N2 gas, which were related to each other by denitrification near the plume source, were moving downgradient more rapidly and were largely unrelated to coexisting NH4+. The δ15N data indicate areas of the plume affected by nitrification (substantial isotope fractionation) and sorption (no isotope fractionation). There was no conclusive evidence for NH4+‐consuming reactions (nitrification or anammox) in the anoxic core of the plume. Nitrification occurred along the upper boundary of the plume but was limited by a low rate of transverse dispersive mixing of wastewater NH4+ and O2 from overlying uncontaminated groundwater. Without induced vertical mixing or displacement of plume water with oxic groundwater from upgradient sources, the main mass of NH4+ could reach a discharge area without substantial reaction long after the more mobile wastewater constituents are gone. Multiple approaches including in situ isotopic tracers and fractionation studies provided critical information about processes affecting NH4+ movement and N speciation.
NASA Astrophysics Data System (ADS)
Dewi, Dina Silvia; Osaigbovo Enomayo, Augustine; Mohsin, Rizwan; Karmakar, Shyamal; Ghergut, Julia; Sauter, Martin
2016-04-01
Flow-storage repartition (FSR) analysis (Shook 2003) is a versatile tool for characterizing subsurface flow and transport systems. FSR can be derived from measured signals of inter-well tracer tests, if certain requirements are met - basically, the same as required for equivalence between fluid residence time distribution (RTD) and a measured inter-well tracer signal (pre-processed and de-convolved if necessary). Nominally, a FSR is derived from a RTD as a trajectory in normalized {1st, 0th}-order statistical moment space; more intuitively, as a parametric plot of 0th-order against 1st-order statistical moments of RTD truncated at time t, with t as a parameter running from the first tracer input to the latest available tracer sampling; 0th-order moments being normalized by the total tracer recovery, and 1st-order moments by the mean RT. Fracture-dominated systems plot in the upper left (high F , low S) region of FSR diagrams; a homogeneous single-continuum with no dispersion (infinite Peclet number) displays a straight line from {F ,S}={0,0} to {F ,S}={1,1}. This analysis tool appears particularly attractive for characterizing markedly-heterogeneous, porous-fissured-fractured (partly karstified) formations like those targeted by geothermal exploration in the Malm-Molasse basin in Southern Germany, and especially for quantifying flow and transport contributions from contrasting facies types ('reef' versus 'bedded'). However, tracer tests conducted in such systems with inter-well distances of some hundreds of metres (as required by economic considerations on geothermal reservoir sizing) face the problem of very long residence times - and thus the need to deal with incomplete (truncated) signals. For the geothermal well triplet at the Sauerlach site near Munich, tracer peak arrival times exceeding 2 years have been predicted, and signal tails decreasing by less than 50% over >10 years, which puts great uncertainty on the (extrapolation-based) normalizing factors needed to calculate FSR. Looking at the Sauerlach example, we find that premature interruption of tracer sampling systematically leads to overestimating the reservoir's storage capacity and underestimating its flow capacity, with misestimation generally increasing as the bedded/reef interfacial area per volume is increased. It is interesting to correlate these findings with the tracer-based approach to facies identification for the shallower Malm aquifers of the Southern Franconian Alb, proposed by Seiler et al. (1989, 1995) and with expectations from the direct (i. e., distributed-parameter) modeling of matrix-diffusive effects (Maloszewski and Zuber 1985) on measured tracer signals. References: Maloszewski P, Zuber A (1985) On the theory of tracer experiments in fissured rocks with a porous matrix, Journal of Hydrology, 79, 333-358 Seiler K-P, Behrens H, Wolf M (1995) Use of artificial and environmental tracers to study storage and drainage of groundwater in the Franconian Alb, Germany, and the consequences for groundwater protection, Proc Isotopes in Water Resources Management, 2, 135-146 (IAEA, Vienna) Seiler K-P, Maloszewski P, Behrens H (1989) Hydrodynamic dispersion in karstified limestones and dolomites in the Upper Jurassic of the Franconian Alb, FRG, Journal of Hydrology, 108, 235-247 Shook G M (2003) A Simple, Fast Method of Estimating Fractured Reservoir Geometry from Tracer Tests, Geothermal Resources Council Transactions, 27, 407-411 Financial support from the German Federal Ministry for Economic Affairs and Energy is gratefully acknowledged. - Gefördert durch BMWi aufgrund eines Beschlusses des Deutschen Bundestages (FKZ 0325515 "TRENDS").
Blackmore, S; Pedretti, D; Mayer, K U; Smith, L; Beckie, R D
2018-05-30
Accurate predictions of solute release from waste-rock piles (WRPs) are paramount for decision making in mining-related environmental processes. Tracers provide information that can be used to estimate effective transport parameters and understand mechanisms controlling the hydraulic and geochemical behavior of WRPs. It is shown that internal tracers (i.e. initially present) together with external (i.e. applied) tracers provide complementary and quantitative information to identify transport mechanisms. The analysis focuses on two experimental WRPs, Piles 4 and Pile 5 at the Antamina Mine site (Peru), where both an internal chloride tracer and externally applied bromide tracer were monitored in discharge over three years. The results suggest that external tracers provide insight into transport associated with relatively fast flow regions that are activated during higher-rate recharge events. In contrast, internal tracers provide insight into mechanisms controlling solutes release from lower-permeability zones within the piles. Rate-limited diffusive processes, which can be mimicked by nonlocal mass-transfer models, affect both internal and external tracers. The sensitivity of the mass-transfer parameters to heterogeneity is higher for external tracers than for internal tracers, as indicated by the different mean residence times characterizing the flow paths associated with each tracer. The joint use of internal and external tracers provides a more comprehensive understanding of the transport mechanisms in WRPs. In particular, the tracer tests support the notion that a multi-porosity conceptualization of WRPs is more adequate for capturing key mechanisms than a dual-porosity conceptualization. Copyright © 2018 Elsevier B.V. All rights reserved.
Anisotropic Mesoscale Eddy Transport in Ocean General Circulation Models
NASA Astrophysics Data System (ADS)
Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.
2014-12-01
Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale eddies. The effects of eddies are typically introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the eddy diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale eddies on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.
Gas-partitioning tracer test to qualify trapped gas during recharge
Heilweil, Victor M.; Kip, Solomon D.; Perkins, Kim S.; Ellett, Kevin M.
2004-01-01
Dissolved helium and bromide tracers were used to evaluate trapped gas during an infiltration pond experiment. Dissolved helium preferentially partitioned into trapped gas bubbles, or other pore air, because of its low solubility in water. This produced observed helium retardation factors of as much as 12 relative to bromide. Numerical simulations of helium breakthrough with both equilibrium and kinetically limited advection/dispersion/retardation did not match observed helium concentrations. However, better fits were obtained by including a decay term representing the diffusive loss of helium through interconnected, gas-filled pores. Calculations indicate that 7% to more than 26% of the porosity beneath the pond was filled with gas. Measurements of laboratory hydraulic properties indicate that a 10% decrease in saturation would reduce the hydraulic conductivity by at least one order of magnitude in the well-sorted sandstone, but less in the overlying soils. This is consistent with in situ measurements during the experiment, which show steeper hydraulic gradients in sandstone than in soil. Intrinsic permeability of the soil doubled during the first six months of the experiment, likely caused by a combination of dissolution and thermal contraction of trapped gas. Managers of artificial recharge basins may consider minimizing the amount of trapped gas by using wet, rather than dry, tilling to optimize infiltration rates, particularly in well-sorted porous media in which reintroduced trapped gas may cause substantial reductions in permeability. Trapped gas may also inhibit the amount of focused infiltration that occurs naturally during ephemeral flood events along washes and playas.
Gas-partitioning tracer test to quantify trapped gas during recharge
Heilweil, V.M.; Solomon, D.K.; Perkins, K.S.; Ellett, K.M.
2004-01-01
Dissolved helium and bromide tracers were used to evaluate trapped gas during an infiltration pond experiment. Dissolved helium preferentially partitioned into trapped gas bubbles, or other pore air, because of its low solubility in water. This produced observed helium retardation factors of as much as 12 relative to bromide. Numerical simulations of helium breakthrough with both equilibrium and kinetically limited advection/dispersion/retardation did not match observed helium concentrations. However, better fits were obtained by including a decay term representing the diffusive loss of helium through interconnected, gas-filled pores. Calculations indicate that 7% to more than 26% of the porosity beneath the pond was filled with gas. Measurements of laboratory hydraulic properties indicate that a 10% decrease in saturation would reduce the hydraulic conductivity by at least one order of magnitude in the well-sorted sandstone, but less in the overlying soils. This is consistent with in situ measurements during the experiment, which show steeper hydraulic gradients in sandstone than in soil. Intrinsic permeability of the soil doubled during the first six months of the experiment, likely caused by a combination of dissolution and thermal contraction of trapped gas. Managers of artificial recharge basins may consider minimizing the amount of trapped gas by using wet, rather than dry, tilling to optimize infiltration rates, particularly in well-sorted porous media in which reintroduced trapped gas may cause substantial reductions in permeability. Trapped gas may also inhibit the amount of focused infiltration that occurs naturally during ephemeral flood events along washes and playas.
Trötzmüller, Martin; Triebl, Alexander; Ajsic, Amra; Hartler, Jürgen; Köfeler, Harald; Regittnig, Werner
2017-11-21
Multiple-tracer approaches for investigating glucose metabolism in humans usually involve the administration of stable and radioactive glucose tracers and the subsequent determination of tracer enrichments in sampled blood. When using conventional, low-resolution mass spectrometry (LRMS), the number of spectral interferences rises rapidly with the number of stable tracers employed. Thus, in LRMS, both computational effort and statistical uncertainties associated with the correction for spectral interferences limit the number of stable tracers that can be simultaneously employed (usually two). Here we show that these limitations can be overcome by applying high-resolution mass spectrometry (HRMS). The HRMS method presented is based on the use of an Orbitrap mass spectrometer operated at a mass resolution of 100 000 to allow electrospray-generated ions of the deprotonated glucose molecules to be monitored at their exact masses. The tracer enrichment determination in blood plasma is demonstrated for several triple combinations of 13 C- and 2 H-labeled glucose tracers (e.g., [1- 2 H 1 ]-, [6,6- 2 H 2 ]-, [1,6- 13 C 2 ]glucose). For each combination it is shown that ions arising from 2 H-labeled tracers are completely differentiated from those arising from 13 C-labeled tracers, thereby allowing the enrichment of a tracer to be simply calculated from the observed ion intensities using a standard curve with curve parameters unaffected by the presence of other tracers. For each tracer, the HRMS method exhibits low limits of detection and good repeatability in the tested 0.1-15.0% enrichment range. Additionally, due to short sample preparation and analysis times, the method is well-suited for high-throughput determination of multiple glucose tracer enrichments in plasma samples.
Umari, Amjad; Fahy, Michael F.; Earle, John D.; Tucci, Patrick
2008-01-01
To evaluate the potential for transport of radionuclides in ground water from the proposed high-level nuclear-waste repository at Yucca Mountain, Nevada, conservative (nonsorbing) tracer tests were conducted among three boreholes, known as the C-hole Complex, and values for transport (or flow) porosity, storage (or matrix) porosity, longitudinal dispersivity, and the extent of matrix diffusion were obtained. The C-holes are completed in a sequence of Miocene tuffaceous rock, consisting of nonwelded to densely welded ash-flow tuff with intervals of ash-fall tuff and volcaniclastic rocks, covered by Quaternary alluvium. The lower part of the tuffaceous-rock sequence includes the Prow Pass, Bullfrog, and Tram Tuffs of the Crater Flat Group. The rocks are pervaded by tectonic and cooling fractures. Paleozoic limestone and dolomite underlie the tuffaceous rocks. Four radially convergent and one partially recirculating conservative (nonsorbing) tracer tests were conducted at the C-hole Complex from 1996 to 1998 to establish values for flow porosity, storage porosity, longitudinal dispersivity, and extent of matrix diffusion in the Bullfrog and Tram Tuffs and the Prow Pass Tuff. Tracer tests included (1) injection of iodide into the combined Bullfrog-Tram interval; (2) injection of 2,6 difluorobenzoic acid into the Lower Bullfrog interval; (3) injection of 3-carbamoyl-2-pyridone into the Lower Bullfrog interval; and (4) injection of iodide and 2,4,5 trifluorobenzoic acid, followed by 2,3,4,5 tetrafluorobenzoic acid, into the Prow Pass Tuff. All tracer tests were analyzed by the Moench single- and dual-porosity analytical solutions to the advection-dispersion equation or by superposition of these solutions. Nonlinear regression techniques were used to corroborate tracer solution results, to obtain optimal parameter values from the solutions, and to quantify parameter uncertainty resulting from analyzing two of the three radially convergent conservative tracer tests conducted in the Bullfrog and Tram intervals. Longitudinal dispersivity values in the Bullfrog and Tram Tuffs ranged from 1.83 to 2.6 meters, flow-porosity values from 0.072 to 0.099, and matrix-porosity values from 0.088 to 0.19. The flow-porosity values indicate that the pathways between boreholes UE-25 c#2 and UE-25 c#3 in the Bullfrog and Tram intervals are not connected well. Tracer testing in the Prow Pass interval indicates different transport characteristics than those obtained in the Bullfrog and Tram intervals. In the Prow Pass Tuff, longitudinal dispersivity was 0.27 meter, flow porosity was 4.5 ? 10?4, and matrix porosity was 0.01. This indicates that the flow network in the Prow Pass is dominated by interconnected fractures, whereas in the Bullfrog and Tram, the flow network is dominated by discontinuous fractures with connecting segments of matrix.
NASA Astrophysics Data System (ADS)
Morales, T.; Angulo, B.; Uriarte, J. A.; Olazar, M.; Arandes, J. M.; Antiguedad, I.
2017-04-01
Protection of water resources is a major challenge today, given that territory occupation and land use are continuously increasing. In the case of karst aquifers, its dynamic complexity requires the use of specific methodologies that allow establishing local and regional flow and transport patterns. This information is particularly necessary when springs and wells harnessed for water supply are concerned. In view of the present state of the art, this work shows a new approach based on the use of a LiCl based tracer injection test through a borehole for transport characterization from a local to a regional scale. Thus a long term tracer injection test was conducted in a particularly sensitive sector of the Egino karst massif (Basque Country, Spain). The initial displacement of tracer in the vicinity of the injection was monitored in a second borehole at a radial distance of 10.24 m. This first information, assessed by a radial divergent model, allows obtaining transport characteristic parameters in this immediate vicinity during injection. At a larger (regional) scale, the tracer reaches a highly transmissive network with mean traveling velocities to the main springs being from 4.3 to 13.7 m/h. The responses obtained, particularly clear in the main spring used for water supply, and the persistence of part of the tracer in the injection zone, pose reconsidering the need for their protection. Thus, although the test allows establishing the 24-h isochrone, which is the ceiling value in present European vulnerability approaches, the results obtained advise widening the zone to protect in order to guarantee water quality in the springs. Overall, this stimulus-response test allows furthering the knowledge on the dynamics of solute transport in karst aquifers and is a particularly useful tool in studies related to source vulnerability and protection in such a complex medium.
Determination of stream reaeration coefficients by use of tracers
Kilpatrick, F.A.; Rathbun, R.E.; Yotsukura, Nobuhiro; Parker, G.W.; DeLong, L.L.
1989-01-01
Stream reaeration is the physical absorption of oxygen from the atmosphere by a flowing stream. This is the primary process by which a stream replenishes the oxygen consumed in the biodegradation of organic wastes. Prior to 1965, reaeration rate coefficients could be estimated only by indirect methods. In 1965, a direct method of measuring stream reaeration coefficients was developed whereby a radioactive tracer gas was injected into a stream-the principle being that the tracer gas would be desorbed from the stream inversely to how oxygen would be absorbed. The technique has since been modified by substituting hydrocarbon gases for the radioactive tracer gas. This manual describes the slug-injection and constant-rate-injection methods of measuring gas-tracer desorption. Emphasis is on the use of rhodamine WT dye as a relatively conservative tracer and propane as the nonconservative gas tracer, on planning field tests, on methods of injection, sampling, and analysis, and on techniques for computing desorption and reaeration coefficients.
Freeze core sampling to validate time-lapse resistivity monitoring of the hyporheic zone.
Toran, Laura; Hughes, Brian; Nyquist, Jonathan; Ryan, Robert
2013-01-01
A freeze core sampler was used to characterize hyporheic zone storage during a stream tracer test. The pore water from the frozen core showed tracer lingered in the hyporheic zone after the tracer had returned to background concentration in collocated well samples. These results confirmed evidence of lingering subsurface tracer seen in time-lapse electrical resistivity tomographs. The pore water exhibited brine exclusion (ion concentrations in ice lower than source water) in a sediment matrix, despite the fast freezing time. Although freeze core sampling provided qualitative evidence of lingering tracer, it proved difficult to quantify tracer concentration because the amount of brine exclusion during freezing could not be accurately determined. Nonetheless, the additional evidence for lingering tracer supports using time-lapse resistivity to detect regions of low fluid mobility within the hyporheic zone that can act as chemically reactive zones of importance in stream health. © 2012, The Author(s). GroundWater © 2012, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Ozaki, Tatsuya; Ishikawa, Hitoshi; Sakaue, Hirotaka
2009-11-01
We have developed anodized-aluminum pressuresensitive paint (AA-PSP) for flow visualization in water using dissolved oxygen as a tracer. Developed AA-PSP is characterized using water calibration setup by controlling a dissolved oxygen concentration. It is shown that the developed AA-PSP gives 4.0 percent change in luminescence per 1 mg/l of oxygen concentration. This AA-PSP is applied to visualize flows in a water tunnel. Oxygen concentrations of the water tunnel and the dissolved oxygen are 9.5 mg/l and 20 mg/l, respectively. We can capture horseshoe vortices over the base of 10 mm cylinder by using this technique at Reynolds number of 1000 and a water speed of 100 mm/s, respectively. Unlike conventional tracers such as ink, milk, and fluorescent dyes, this visualization technique gives flow information on the AA-PSP coated surface without integrating flows between the AA-PSP and an optical detector. Because of using dissolved oxygen as a tracer, it holds the material properties of testing water except for the amount of oxygen. The tracer does not interfere with optical measurements and it does not contaminate the testing water. A conventional visualization technique using milk as a tracer is also employed for comparison.
Costanza-Robinson, Molly S.; Carlson, Tyson D.; Brusseau, Mark L.
2013-01-01
Gas-phase miscible-displacement experiments were conducted using a large weighing lysimeter to evaluate retention processes for volatile organic compounds (VOCs) in water-unsaturated (vadoze-zone) systems, and to test the utility of gas-phase tracers for predicting VOC retardation. Trichloroethene (TCE) served as a model VOC, while trichlorofluoromethane (CFM) and heptane were used as partitioning tracers to independently characterize retention by water and the air-water interface, respectively. Retardation factors for TCE ranged between 1.9 and 3.5, depending on water content. The results indicate that dissolution into the bulk water was the primary retention mechanism for TCE under all conditions studied, contributing approximately two thirds of the total measured retention. Accumulation at the air-water interface comprised a significant fraction of the observed retention for all experiments, with an average contribution of approximately 24%. Sorption to the solid phase contributed approximately 10% to retention. Water contents and air-water interfacial areas estimated based on the CFM and heptane tracer data, respectively, were similar to independently measured values. Retardation factors for TCE predicted using the partitioning-tracer data were in reasonable agreement with the measured values. These results suggest that gas-phase tracer tests hold promise for characterizing the retention and transport of VOCs in the vadose-zone. PMID:23333418
Yu, Xiao-Ying; Barnett, J. Matthew; Amidan, Brett G.; ...
2017-12-12
The ANSI/HPS N13.1–2011 standard requires gaseous tracer uniformity testing for sampling associated with stacks used in radioactive air emissions. Sulfur hexafluoride (SF 6), a greenhouse gas with a high global warming potential, has long been the gas tracer used in such testing. To reduce the impact of gas tracer tests on the environment, nitrous oxide (N 2O) was evaluated as a potential replacement to SF 6. The physical evaluation included the development of a test plan to record percent coefficient of variance and the percent maximum deviation between the two gases while considering variables such as fan configuration, injection position,more » and flow rate. Statistical power was calculated to determine how many sample sets were needed, and computational fluid dynamic modeling was utilized to estimate overall mixing in stacks. Results show there are no significant differences between the behaviors of the two gases, and SF 6 modeling corroborated N 2O test results. Although, in principle, all tracer gases should behave in an identical manner for measuring mixing within a stack, the series of physical tests guided by statistics was performed to demonstrate the equivalence of N 2O testing to SF 6 testing in the context of stack qualification tests. In conclusion, the results demonstrate that N 2O is a viable choice leading to a four times reduction in global warming impacts for future similar compliance driven testing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Xiao-Ying; Barnett, J. Matthew; Amidan, Brett G.
The ANSI/HPS N13.1–2011 standard requires gaseous tracer uniformity testing for sampling associated with stacks used in radioactive air emissions. Sulfur hexafluoride (SF 6), a greenhouse gas with a high global warming potential, has long been the gas tracer used in such testing. To reduce the impact of gas tracer tests on the environment, nitrous oxide (N 2O) was evaluated as a potential replacement to SF 6. The physical evaluation included the development of a test plan to record percent coefficient of variance and the percent maximum deviation between the two gases while considering variables such as fan configuration, injection position,more » and flow rate. Statistical power was calculated to determine how many sample sets were needed, and computational fluid dynamic modeling was utilized to estimate overall mixing in stacks. Results show there are no significant differences between the behaviors of the two gases, and SF 6 modeling corroborated N 2O test results. Although, in principle, all tracer gases should behave in an identical manner for measuring mixing within a stack, the series of physical tests guided by statistics was performed to demonstrate the equivalence of N 2O testing to SF 6 testing in the context of stack qualification tests. In conclusion, the results demonstrate that N 2O is a viable choice leading to a four times reduction in global warming impacts for future similar compliance driven testing.« less
NASA Astrophysics Data System (ADS)
Turuban, R.; Jimenez-Martinez, J.; De Anna, P.; Tabuteau, H.; Meheust, Y.; Le Borgne, T.
2014-12-01
As dissolved chemical elements are transported in the subsurface, their mixing with other compounds and potential reactivity depends on the creation of local scale chemical gradients, which ultimately drive diffusive mass transfer and reaction. The distribution of concentration gradients is in turn shaped by the spatial gradients of flow velocity arising from the random distribution of solid grains. We present an experimental investigation of the relationship between the microscale flow stretching properties and the effective large scale mixing dynamics in porous media. We use a flow cell that models a horizontal quasi two-dimensional (2D) porous medium, the grains of which are cylinders randomly positioned between two glass plates [de Anna et al. 2013]. In this setup, we perform both non diffusive and diffusive transport tests, by injecting respectively microsphere solid tracers and a fluorescent dye. While the dye front propagates through the medium, it undergoes in time a kinematic stretching that is controlled by the flow heterogeneity, as it encounters stagnation zones and high velocity channels between the grains. The spatial distribution of the dye can then be described as a set of stretched lamellae whose rate of diffusive smoothing is locally enhanced by kinematic stretching [Le Borgne et al., 2013]. We show that this representation allows predicting the temporal evolution of the mixing rate and the probability distribution of concentration gradients for a range of Peclet numbers. This upscaling framework hence provides a quantification of the dynamics of effective mixing from the microscale Lagrangian velocity statistics. References:[1] P. de Anna, J. Jimenez-Martinez, H. Tabuteau, R. Turuban, T. Le Borgne, M. Derrien,and Yves Méheust, Mixing and reaction kinetics in porous media : an experimental pore scale quantification, Environ. Sci. Technol. 48, 508-516, 2014. [2] Le Borgne, T., M. Dentz, E. Villermaux, Stretching, coalescence and mixing in porous media, Phys. Rev. Lett., 110, 204501 (2013)
Simulation of soluble waste transport and buildup in surface waters using tracers
Kilpatrick, F.A.
1993-01-01
Soluble tracers can be used to simulate the transport and dispersion of soluble wastes that might have been introduced or are planned for introduction into surface waters. Measured tracer-response curves produced from the injection of a known quantity of soluble tracer can be used in conjunction with the superposition principle to simulate potential waste buildup in streams, lakes, and estuaries. Such information is particularly valuable to environmental and water-resource planners in determining the effects of proposed waste discharges. The theory, techniques, analysis, and presentation of results of tracer-waste simulation tests in rivers, lakes, and estuaries are described. This manual builds on other manuals dealing with dye tracing by emphasizing the expanded use of data from time-of-travel studies.
Simulation of soluble waste transport and buildup in surface waters using tracers
Kilpatrick, Frederick A.
1992-01-01
Soluble tracers can be used to simulate the transport and dispersion of soluble wastes that might have been introduced or are planned for introduction into surface waters. Measured tracer-response curves produced from the injection of a known quantity of soluble tracer can be used in conjunction with the superposition principle to simulate potential waste buildup in streams, lakes, and estuaries. Such information is particularly valuable to environmental and water-resource planners in determining the effects of proposed waste discharges.The theory, techniques, analysis, and presentation of results of tracer-waste simulation tests in rivers, lakes, and estuaries are described. This manual builds on other manuals on dye tracing with emphasis on the expanded use of time-of-travel type data.
Production of plutonium, yttrium and strontium tracers for using in environmental research
NASA Astrophysics Data System (ADS)
Arzumanov, A.; Batischev, V.; Berdinova, N.; Borissenko, A.; Chumikov, G.; Lukashenko, S.; Lysukhin, S.; Popov, Yu.; Sychikov, G.
2001-12-01
Summary of cyclotron production methods of 237Pu (45,2 d), 88Y (106,65 d) and 85Sr (64,84 d) tracers via nuclear reactions with protons and alphas on 235U, 88Sr and 85Rb targets in wide energy range is given. Chemical methods of separation and purification of the tracers from the irradiated uranium, strontium and rubidium targets are described. The tracers were used for determination of Pu (239-240), Sr-90 and Am-241 in the samples (soil, plants, underground waters) from Semipalatinsk Test Site. Obtained results are discussed.
Assessment of the Revised 3410 Building Filtered Exhaust Stack Sampling Probe Location
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Xiao-Ying; Recknagle, Kurtis P.; Glissmeyer, John A.
2013-12-01
In order to support the air emissions permit for the 3410 Building, Pacific Northwest National Laboratory performed a series of tests in the exhaust air discharge from the reconfigured 3410 Building Filtered Exhaust Stack. The objective was to determine whether the location of the air sampling probe for emissions monitoring meets the applicable regulatory criteria governing such effluent monitoring systems. In particular, the capability of the air sampling probe location to meet the acceptance criteria of ANSI/HPS N13.1-2011 , Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities was determined. The qualification criteriamore » for these types of stacks address 1) uniformity of air velocity, 2) sufficiently small flow angle with respect to the axis of the duct, 3) uniformity of tracer gas concentration, and 4) uniformity of tracer particle concentration. Testing was performed to conform to the quality requirements of NQA-1-2000. Fan configurations tested included all fan combinations of any two fans at a time. Most of the tests were conducted at the normal flow rate, while a small subset of tests was performed at a slightly higher flow rate achieved with the laboratory hood sashes fully open. The qualification criteria for an air monitoring probe location are taken from ANSI/HPS N13.1-2011 and are paraphrased as follows with key results summarized: 1. Angular Flow—The average air velocity angle must not deviate from the axis of the stack or duct by more than 20°. Our test results show that the mean angular flow angles at the center two-thirds of the ducts are smaller than 4.5% for all testing conditions. 2. Uniform Air Velocity—The acceptance criterion is that the COV of the air velocity must be ≤ 20% across the center two thirds of the area of the stack. Our results show that the COVs of the air velocity across the center two-thirds of the stack are smaller than 2.9% for all testing conditions. 3. Uniform Concentration of Tracer Gases—The uniformity of the concentration of potential contaminants is first tested using a tracer gas to represent gaseous effluents. The tracer is injected downstream of the fan outlets and at the junction downstream fan discharges meet. The acceptance criteria are that 1) the COV of the measured tracer gas concentration is ≤20% across the center two-thirds of the sampling plane and 2) at no point in the sampling plane does the concentration vary from the mean by >30%. Our test results show that 1) the COV of the measured tracer gas concentration is < 2.9% for all test conditions and 2) at no point in the sampling plane does the concentration vary from the mean by >6.5%. 4. Uniform Concentration of Tracer Particles—Tracer particles of 10-μm aerodynamic diameter are used for the second demonstration of concentration uniformity. The acceptance criterion is that the COV of particle concentration is ≤ 20% across the center two thirds of the sampling plane. Our test results indicate that the COV of particle concentration is <9.9% across the center two-thirds of the sampling plane among all testing conditions. Thus, the reconfigured 3410 Building Filtered Exhaust Stack was determined to meet the qualification criteria given in the ANSI/HPS N13.1-2011 standard. Changes to the system configuration or operations outside the bounds described in this report (e.g., exhaust stack velocity changes, relocation of sampling probe, and addition of fans) may require re-testing or re-evaluation to determine compliance.« less
Bioturbation, advection, and diffusion of a conserved tracer in a laboratory flume
NASA Astrophysics Data System (ADS)
Work, P. A.; Moore, P. R.; Reible, D. D.
2002-06-01
Laboratory experiments indicating the relative influences of advection, diffusion, and bioturbation on transport of NaCl tracer between a stream and streambed are described. Data were collected in a recirculating flume housing a box filled with test sediments. Peclet numbers ranged from 0 to 1.5. Sediment components included a medium sand (d50 = 0.31 mm), kaolinite, and topsoil. Lumbriculus variegatus were introduced as bioturbators. Conductivity probes were employed to document the flux of the tracer solution out of the bed. Measurements are compared to one-dimensional effective diffusion models assuming one or two horizontal sediment layers. These simple models provide a good indication of tracer half-life in the bed if a suitable effective diffusion coefficient is chosen but underpredict initial flux and overpredict flux at long times. Organism activity was limited to the upper reaches of the sediment test box but eventually exerts a secondary influence on flux from deeper regions.
Zhang, Shu-Xin; Jiang, Ran; Chai, Xin-Sheng
2017-09-01
This paper reports on a new method for the determination of swelling capacity of superabsorbent polymers by a volatile tracer-assisted headspace gas chromatography (HS-GC). Toluene was used as a tracer and added to the solution for polymers swelling test. Based on the differences of the tracer partitioned between the vapor and hydrogel phase before and after the polymer's swelling capacity, a transition point (corresponding to the material swelling capacity) can be observed when plotting the GC signal of toluene vs. the ratio of solution added to polymers. The present method has good precision (RSD<2.1%) and good accuracy, in which the relative deference between the data measured by the HS-GC method and the reference method were within 8.0%. The present method is very suitable to be used for testing the swelling capacity of polymers at the elevated temperatures. Copyright © 2017 Elsevier B.V. All rights reserved.
Delre, Antonio; Mønster, Jacob; Samuelsson, Jerker; Fredenslund, Anders M; Scheutz, Charlotte
2018-09-01
The tracer gas dispersion method (TDM) is a remote sensing method used for quantifying fugitive emissions by relying on the controlled release of a tracer gas at the source, combined with concentration measurements of the tracer and target gas plumes. The TDM was tested at a wastewater treatment plant for plant-integrated methane emission quantification, using four analytical instruments simultaneously and four different tracer gases. Measurements performed using a combination of an analytical instrument and a tracer gas, with a high ratio between the tracer gas release rate and instrument precision (a high release-precision ratio), resulted in well-defined plumes with a high signal-to-noise ratio and a high methane-to-tracer gas correlation factor. Measured methane emission rates differed by up to 18% from the mean value when measurements were performed using seven different instrument and tracer gas combinations. Analytical instruments with a high detection frequency and good precision were established as the most suitable for successful TDM application. The application of an instrument with a poor precision could only to some extent be overcome by applying a higher tracer gas release rate. A sideward misplacement of the tracer gas release point of about 250m resulted in an emission rate comparable to those obtained using a tracer gas correctly simulating the methane emission. Conversely, an upwind misplacement of about 150m resulted in an emission rate overestimation of almost 50%, showing the importance of proper emission source simulation when applying the TDM. Copyright © 2018 Elsevier B.V. All rights reserved.
Fractional calculus phenomenology in two-dimensional plasma models
NASA Astrophysics Data System (ADS)
Gustafson, Kyle; Del Castillo Negrete, Diego; Dorland, Bill
2006-10-01
Transport processes in confined plasmas for fusion experiments, such as ITER, are not well-understood at the basic level of fully nonlinear, three-dimensional kinetic physics. Turbulent transport is invoked to describe the observed levels in tokamaks, which are orders of magnitude greater than the theoretical predictions. Recent results show the ability of a non-diffusive transport model to describe numerical observations of turbulent transport. For example, resistive MHD modeling of tracer particle transport in pressure-gradient driven turbulence for a three-dimensional plasma reveals that the superdiffusive (2̂˜t^α where α> 1) radial transport in this system is described quantitatively by a fractional diffusion equation Fractional calculus is a generalization involving integro-differential operators, which naturally describe non-local behaviors. Our previous work showed the quantitative agreement of special fractional diffusion equation solutions with numerical tracer particle flows in time-dependent linearized dynamics of the Hasegawa-Mima equation (for poloidal transport in a two-dimensional cold-ion plasma). In pursuit of a fractional diffusion model for transport in a gyrokinetic plasma, we now present numerical results from tracer particle transport in the nonlinear Hasegawa-Mima equation and a planar gyrokinetic model. Finite Larmor radius effects will be discussed. D. del Castillo Negrete, et al, Phys. Rev. Lett. 94, 065003 (2005).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhil Datta-Gupta
2006-12-31
We explore the use of efficient streamline-based simulation approaches for modeling partitioning interwell tracer tests in hydrocarbon reservoirs. Specifically, we utilize the unique features of streamline models to develop an efficient approach for interpretation and history matching of field tracer response. A critical aspect here is the underdetermined and highly ill-posed nature of the associated inverse problems. We have investigated the relative merits of the traditional history matching ('amplitude inversion') and a novel travel time inversion in terms of robustness of the method and convergence behavior of the solution. We show that the traditional amplitude inversion is orders of magnitudemore » more non-linear and the solution here is likely to get trapped in local minimum, leading to inadequate history match. The proposed travel time inversion is shown to be extremely efficient and robust for practical field applications. The streamline approach is generalized to model water injection in naturally fractured reservoirs through the use of a dual media approach. The fractures and matrix are treated as separate continua that are connected through a transfer function, as in conventional finite difference simulators for modeling fractured systems. A detailed comparison with a commercial finite difference simulator shows very good agreement. Furthermore, an examination of the scaling behavior of the computation time indicates that the streamline approach is likely to result in significant savings for large-scale field applications. We also propose a novel approach to history matching finite-difference models that combines the advantage of the streamline models with the versatility of finite-difference simulation. In our approach, we utilize the streamline-derived sensitivities to facilitate history matching during finite-difference simulation. The use of finite-difference model allows us to account for detailed process physics and compressibility effects. The approach is very fast and avoids much of the subjective judgments and time-consuming trial-and-errors associated with manual history matching. We demonstrate the power and utility of our approach using a synthetic example and two field examples. We have also explored the use of a finite difference reservoir simulator, UTCHEM, for field-scale design and optimization of partitioning interwell tracer tests. The finite-difference model allows us to include detailed physics associated with reactive tracer transport, particularly those related with transverse and cross-streamline mechanisms. We have investigated the potential use of downhole tracer samplers and also the use of natural tracers for the design of partitioning tracer tests. Finally, we discuss several alternative ways of using partitioning interwell tracer tests (PITTs) in oil fields for the calculation of oil saturation, swept pore volume and sweep efficiency, and assess the accuracy of such tests under a variety of reservoir conditions.« less
NASA Astrophysics Data System (ADS)
Zeilfelder, Sarah; Hebig, Klaus; Ito, Narimitsu; Machida, Isao; Scheytt, Traugott; Marui, Atsunao
2013-04-01
What method is appropriate to investigate an aquifer when there is only one well available? A single well "push-pull" tracer test (PP Test) may be a suitable method in order to characterize an aquifer and to obtain information about the hydraulic and chemical properties when only one well is available for the investigations. In a PP test, a test solution that contains a known amount of solutes and a conservative tracer is injected into the aquifer ("push") and extracted afterwards ("pull"). Optionally, the test solution is flushed out of the well and the casing with untreated test solution with a so called "chaser" before being extracted. Also between the injection and the extraction phase a drifting time may be included. The breakthrough of the tracer during the extraction phase is measured and used for analyses and interpretation. In the last three years, several PP Test campaigns were conducted at two different test sites in Japan (Hebig et al. 2011, Zeilfelder et al. 2012). The aim was to investigate the applicability of the PP Test method in different geological settings and in different types of aquifers. The latest field campaign thus focussed on the question how variations of the setup are influencing the breakthrough curve of the PP Test in order to develop and enhance this method. Also the standardization of the PP Test was an aim of this study. During the campaign, a total of seven PP Tests were performed, while only single aspects of the setup were varied from test to test. The tests differed in injection and extraction rate, in the salinity of the injected test solution and in the use of a chaser solution. The general shapes of the breakthrough curves were similar and conclusions about the repeatability of the PP Test could be drawn. However, a sharp anomaly was observed in the breakthrough curve of one specific setup type. By repeating this PP test under the same boundary conditions, we were able to recreate the anomaly and could exclude any technical aspects as a source. In this version of the PP test higher salinized test solution was injected into the aquifer. There are several hypotheses that could explain the behavior of the breakthrough curves of the tracer in this test design. Of all the possibilities (like sorption processes, unexpected tracer reactions, inhomogeneities in the aquifer, influence of the well design), we assume that ion exchange processes and density driven flow are the main reasons for the repeatedly observed anomaly. References: Hebig, K.H., Ito, N., Scheytt, T.J. & Marui, A. (2011). Hydraulic and hydrochemical characterization of deep coastal sedimentary basins by single-well Push-Pull tests. GSA Annual Meeting, 9-12 October 2011, Minneapolis, USA. Zeilfelder, S., Ito, N., Marui, A., Hebig, K. & Scheytt, T. (2012). Push-Pull-Test und Tracer-Test in einem tiefen Grundwasserleiter in Kameoka, Japan. Kurzfassung in: Liedl, R., Burghardt, D., Simon, E., Reimann, T. & Kaufmann-Knoke (Hg.). Grundwasserschutz und Grundwassernutzung. Tagung der Fachsektion Hydrogeologie in der DGG (FH-DGG). 16. - 20. Mai 2012, Dresden. Kurfassungen der Vorträge und Poster. Schriftenreihe der DGG, Heft 78, S. 192.
Model to interpret pulsed-field-gradient NMR data including memory and superdispersion effects.
Néel, Marie-Christine; Bauer, Daniela; Fleury, Marc
2014-06-01
We propose a versatile model specifically designed for the quantitative interpretation of NMR velocimetry data. We use the concept of mobile or immobile tracer particles applied in dispersion theory in its Lagrangian form, adding two mechanisms: (i) independent random arrests of finite average representing intermittent periods of very low velocity zones in the mean flow direction and (ii) the possibility of unexpectedly long (but rare) displacements simulating the occurrence of very high velocities in the porous medium. Based on mathematical properties related to subordinated Lévy processes, we give analytical expressions of the signals recorded in pulsed-field-gradient NMR experiments. We illustrate how to use the model for quantifying dispersion from NMR data recorded for water flowing through a homogeneous grain pack column in single- and two-phase flow conditions.
Physical Sciences Laboratory 1 Rooftop Stack Mixing Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flaherty, Julia E.; Antonio, Ernest J.
To address concerns about worker exposures on the Physical Science Laboratory (PSL) rooftop, a tracer study was conducted to measure gaseous tracer concentrations downwind of six stacks on the southern half of the PSL building (PSL-1). These concerns were raised, in part, due to the non-standard configuration of the stacks on this building. Five of the six stacks were only about 8 feet tall, with one shorter stack that was essentially level with the roof deck. These stacks were reconfigured in August 2016, and these exhaust points on PSL-1 are now 18 feet tall. This report describes the objectives ofmore » the tracer tests performed on PSL-1, provides an overview of how the tests were executed, and presents results of the tests. The tests on the PSL rooftop were a follow-on project from a similar study performed on the LSL-II ventilation exhaust (Flaherty and Antonio, 2016).« less
Investigating the effect of compression on solute transport through degrading municipal solid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodman, N.D., E-mail: n.d.woodman@soton.ac.uk; Rees-White, T.C.; Stringfellow, A.M.
2014-11-15
Highlights: • The influence of compression on MSW flushing was evaluated using 13 tracer tests. • Compression has little effect on solute diffusion times in MSW. • Lithium tracer was conservative in non-degrading waste but not in degrading waste. • Bromide tracer was conservative, but deuterium was not. - Abstract: The effect of applied compression on the nature of liquid flow and hence the movement of contaminants within municipal solid waste was examined by means of thirteen tracer tests conducted on five separate waste samples. The conservative nature of bromide, lithium and deuterium tracers was evaluated and linked to themore » presence of degradation in the sample. Lithium and deuterium tracers were non-conservative in the presence of degradation, whereas the bromide remained effectively conservative under all conditions. Solute diffusion times into and out of less mobile blocks of waste were compared for each test under the assumption of dominantly dual-porosity flow. Despite the fact that hydraulic conductivity changed strongly with applied stress, the block diffusion times were found to be much less sensitive to compression. A simple conceptual model, whereby flow is dominated by sub-parallel low permeability obstructions which define predominantly horizontally aligned less mobile zones, is able to explain this result. Compression tends to narrow the gap between the obstructions, but not significantly alter the horizontal length scale. Irrespective of knowledge of the true flow pattern, these results show that simple models of solute flushing from landfill which do not include depth dependent changes in solute transport parameters are justified.« less
Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.
2009-01-01
Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6 km valley segment. For each reach, we estimated net change in discharge, gross hydrologic loss, and gross hydrologic gain from tracer dilution and mass recovery. Four series of tracer tests were performed during relatively high, intermediate, and low base flow conditions. The relative distribution of channel water along the stream was strongly related to a transition in valley structure, with a general increase in gross losses through the recession. During tracer tests at intermediate and low flows, there were frequent substantial losses of tracer mass (>10%) that could not be explained by net loss in flow over the reach, indicating that many of the study reaches were concurrently losing and gaining water. For example, one reach with little net change in discharge exchanged nearly 20% of upstream flow with gains and losses along the reach. These substantial bidirectional exchanges suggest that some channel interactions with subsurface flow paths were not measurable by net change in flow or transient storage of recovered tracer. Understanding bidirectional channel water balances in stream reaches along valleys is critical to an accurate assessment of stream solute fate and transport and to a full assessment of exchanges between the stream channel and surrounding subsurface.
Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.
2009-01-01
Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6 km valley segment. For each reach, we estimated net change in discharge, gross hydrologic loss, and gross hydrologic gain from tracer dilution and mass recovery. Four series of tracer tests were performed during relatively high, intermediate, and low base flow conditions. The relative distribution of channel water along the stream was strongly related to a transition in valley structure, with a general increase in gross losses through the recession. During tracer tests at intermediate and low flows, there were frequent substantial losses of tracer mass (>10%) that could not be explained by net loss in flow over the reach, indicating that many of the study reaches were concurrently losing and gaining water. For example, one reach with little net change in discharge exchanged nearly 20% of upstream flow with gains and losses along the reach. These substantial bidirectional exchanges suggest that some channel interactions with subsurface flow paths were not measurable by net change in flow or transient storage of recovered tracer. Understanding bidirectional channel water balances in stream reaches along valleys is critical to an accurate assessment of stream solute fate and transport and to a full assessment of exchanges between the stream channel and surrounding subsurface. Copyright 2009 by the American Geophysical Union.
Cozzetto, Karen D.; Bencala, Kenneth E.; Gooseff, Michael N.; McKnight, Diane M.
2013-01-01
Given projected increases in stream temperatures attributable to global change, improved understanding of relationships between stream temperatures and hyporheic exchange would be useful. We conducted two conservative tracer injection experiments in a glacial meltwater stream, to evaluate the effects of hyporheic thermal gradients on exchange processes, including preferential flow paths (PFPs). The experiments were conducted on the same day, the first (a stream injection) during a cool, morning period and the second (dual stream and hyporheic injections) during a warm, afternoon period. In the morning, the hyporheic zone was thermally uniform at 4°C, whereas by the afternoon the upper 10 cm had warmed to 6–12°C and exhibited greater temperature heterogeneity. Solute transport modeling showed that hyporheic cross-sectional areas (As) at two downstream sites were two and seven times lower during the warm experiment. Exchange metrics indicated that the hyporheic zone had less influence on downstream solute transport during the warm, afternoon experiment. Calculated hyporheic depths were less than 5 cm, contrasting with tracer detection at 10 and 25 cm depths. The hyporheic tracer arrival at one downstream site was rapid, comparable to the in-stream tracer arrival, providing evidence for PFPs. We thus propose a conceptual view of the hyporheic zone in this reach as being dominated by discrete PFPs weaving through hydraulically isolated areas. One explanation for the simultaneous increase in temperature heterogeneity and As decrease in a warmer hyporheic zone may be a flow path preferentiality feedback mechanism resulting from a combination of temperature-related viscosity decreases and streambed heterogeneity.
Fluid Exchange Across the Seafloor of the Continental Shelf in the South Atlantic Bight
NASA Astrophysics Data System (ADS)
White, S. M.; Wilson, A. M.; Moore, W. S.; Smoak, E. A.; George, C.
2014-12-01
Increasing evidence suggests that saline submarine groundwater discharges from the seafloor in volumes that rival river discharge, but this discharge occurs far from shore, spread regionally across the continental shelves. The very limited observational data suggest that saline discharge occurs via long-term regional flow systems and rapid flushing of porewaters from sandy sediment during storm events. This study aims to overcome the paucity of available observational constraints on characterizing regional-scale fluid exchange on passive margin continental shelves. We are developing a detailed hydrostratigraphic framework based on 200 km of CHIRP seismic lines 5-20 km offshore from Charleston, SC and 13 sediment cores up to 6.5 m long. This survey revealed varying thicknesses (0-15 m) of sediment overlying Cretaceous limestone basement, and a filled paleochannel fluvial system. We have installed 3 sets of nested wells and an additional 10 temperature-gradient arrays to observe a wide variety of environments across the shelf. The wells and thermal arrays have been recently installed in the upper 5 m of the sediment, to allow monitoring of pressure and temperature. The wells will also be sampled for Ra tracers and nutrient concentrations. The combination of wells and survey data will allow us to estimate rates of submarine groundwater discharge via hydraulic gradients and by using heat and geochemical tracers. We have developed a numerical model to invert thermal data to estimate both long-term regional groundwater flow and rapid flushing associated with storm events.
Are single-well "push-pull" tests suitable tracer methods for aquifer characterization?
NASA Astrophysics Data System (ADS)
Hebig, Klaus; Zeilfelder, Sarah; Ito, Narimitsu; Machida, Isao; Scheytt, Traugott; Marui, Atsunao
2013-04-01
Recently, investigations were conducted for geological and hydrogeological characterisation of the sedimentary coastal basin of Horonobe (Hokkaido, Japan). Coastal areas are typical geological settings in Japan, which are less tectonically active than the mountain ranges. In Asia, and especially in Japan, these areas are often densely populated. Therefore, it is important to investigate the behaviour of solutes in such unconsolidated aquifers. In such settings sometimes only single boreholes or groundwater monitoring wells are available for aquifer testing for various reasons, e.g. depths of more than 100 m below ground level and slow groundwater velocities due to density driven flow. A standard tracer test with several involved groundwater monitoring wells is generally very difficult or even not possible at these depths. One of the most important questions in our project was how we can obtain information about chemical and hydraulic properties in such aquifers. Is it possible to characterize solute transport behaviour parameters with only one available groundwater monitoring well or borehole? A so-called "push-pull" test may be one suitable method for aquifer testing with only one available access point. In a push-pull test a known amount of several solutes including a conservative tracer is injected into the aquifer ("push") and afterwards extracted ("pull"). The measured breakthrough curve during the pumping back phase can then be analysed. This method has already been used previously with various aims, also in the recent project (e.g. Hebig et al. 2011, Zeilfelder et al. 2012). However, different test setups produced different tracer breakthrough curves. As no systematic evaluation of this aquifer tracer test method was done so far, nothing is known about its repeatability. Does the injection and extraction rate influence the shape of the breakthrough curve? Which role plays the often applied "chaser", which is used to push the test solution out from the borehole and gravel pack? How does density difference between the original groundwater and the test solution influence the tracer breakthrough curves? To solve these questions, seven push-pull tests were performed under controlled boundary conditions in the same well DD-2 (100 m depth). Only single parameters, as e.g. flow rate or salinization of the test solution, were varied during the experiments. By conducting these different test setups, conclusions could be drawn about the application of the push-pull method under different settings. References: Hebig, K.H., Ito, N., Scheytt, T.J. & Marui, A. (2011). Hydraulic and hydrochemical characterization of deep coastal sedimentary basins by single-well Push-Pull tests. GSA Annual Meeting, 9-12 October 2011, Minneapolis, USA. Zeilfelder, S., Ito, N., Marui, A., Hebig, K. & Scheytt, T. (2012). Push-Pull-Test und Tracer-Test in ei-nem tiefen Grundwasserleiter in Kameoka, Japan. Kurzfassung in: Liedl, R., Burghardt, D., Simon, E., Reimann, T. & Kaufmann-Knoke (Hg.). Grundwasserschutz und Grundwassernutzung. Tagung der Fachsektion Hydrogeologie in der DGG (FH-DGG). 16. - 20. Mai 2012, Dresden. Kurfassungen der Vorträge und Poster. Schriftenreihe der DGG, Heft 78, S. 192.
Park, D Y; Fessler, J A; Yost, M G; Levine, S P
2000-03-01
Computed tomographic (CT) reconstructions of air contaminant concentration fields were conducted in a room-sized chamber employing a single open-path Fourier transform infrared (OP-FTIR) instrument and a combination of 52 flat mirrors and 4 retroreflectors. A total of 56 beam path data were repeatedly collected for around 1 hr while maintaining a stable concentration gradient. The plane of the room was divided into 195 pixels (13 x 15) for reconstruction. The algebraic reconstruction technique (ART) failed to reconstruct the original concentration gradient patterns for most cases. These poor results were caused by the "highly underdetermined condition" in which the number of unknown values (156 pixels) exceeds that of known data (56 path integral concentrations) in the experimental setting. A new CT algorithm, called the penalized weighted least-squares (PWLS), was applied to remedy this condition. The peak locations were correctly positioned in the PWLS-CT reconstructions. A notable feature of the PWLS-CT reconstructions was a significant reduction of highly irregular noise peaks found in the ART-CT reconstructions. However, the peak heights were slightly reduced in the PWLS-CT reconstructions due to the nature of the PWLS algorithm. PWLS could converge on the original concentration gradient even when a fairly high error was embedded into some experimentally measured path integral concentrations. It was also found in the simulation tests that the PWLS algorithm was very robust with respect to random errors in the path integral concentrations. This beam geometry and the use of a single OP-FTIR scanning system, in combination with the PWLS algorithm, is a system applicable to both environmental and industrial settings.
Park, Doo Y; Fessier, Jeffrey A; Yost, Michael G; Levine, Steven P
2000-03-01
Computed tomographic (CT) reconstructions of air contaminant concentration fields were conducted in a room-sized chamber employing a single open-path Fourier transform infrared (OP-FTIR) instrument and a combination of 52 flat mirrors and 4 retroreflectors. A total of 56 beam path data were repeatedly collected for around 1 hr while maintaining a stable concentration gradient. The plane of the room was divided into 195 pixels (13 × 15) for reconstruction. The algebraic reconstruction technique (ART) failed to reconstruct the original concentration gradient patterns for most cases. These poor results were caused by the "highly underdetermined condition" in which the number of unknown values (156 pixels) exceeds that of known data (56 path integral concentrations) in the experimental setting. A new CT algorithm, called the penalized weighted least-squares (PWLS), was applied to remedy this condition. The peak locations were correctly positioned in the PWLS-CT reconstructions. A notable feature of the PWLS-CT reconstructions was a significant reduction of highly irregular noise peaks found in the ART-CT reconstructions. However, the peak heights were slightly reduced in the PWLS-CT reconstructions due to the nature of the PWLS algorithm. PWLS could converge on the original concentration gradient even when a fairly high error was embedded into some experimentally measured path integral concentrations. It was also found in the simulation tests that the PWLS algorithm was very robust with respect to random errors in the path integral concentrations. This beam geometry and the use of a single OP-FTIR scanning system, in combination with the PWLS algorithm, is a system applicable to both environmental and industrial settings.
Bell, Christopher; Puttick, Simon; Rose, Stephen; Smith, Jye; Thomas, Paul; Dowson, Nicholas
2017-06-21
Imaging using more than one biological process using PET could be of great utility, but despite previously proposed approaches to dual-tracer imaging, it is seldom performed. The alternative of performing multiple scans is often infeasible for clinical practice or even in research studies. Dual-tracer PET scanning allows for multiple PET radiotracers to be imaged within the same imaging session. In this paper we describe our approach to utilise the basis pursuit method to aid in the design of dual-tracer PET imaging experiments, and later in separation of the signals. The advantage of this approach is that it does not require a compartment model architecture to be specified or even that both signals are distinguishable in all cases. This means the method for separating dual-tracer signals can be used for many feasible and useful combinations of biology or radiotracer, once an appropriate scanning protocol has been decided upon. Following a demonstration in separating the signals from two consecutively injected radionuclides in a controlled experiment, phantom and list-mode mouse experiments demonstrated the ability to test the feasibility of dual-tracer imaging protocols for multiple injection delays. Increases in variances predicted for kinetic macro-parameters V D and K I in brain and tumoral tissue were obtained when separating the synthetically combined data. These experiments confirmed previous work using other approaches that injections delays of 10-20 min ensured increases in variance were kept minimal for the test tracers used. On this basis, an actual dual-tracer experiment using a 20 min delay was performed using these radio tracers, with the kinetic parameters (V D and K I ) extracted for each tracer in agreement with the literature. This study supports previous work that dual-tracer PET imaging can be accomplished provided certain constraints are adhered to. The utilisation of basis pursuit techniques, with its removed need to specify a model architecture, allows the feasibility of a range of imaging protocols to be investigated via simulation in a straight-forward manner for a wide range of possible scenarios. The hope is that the ease of utilising this approach during feasibility studies and in practice removes any perceived technical barrier to performing dual-tracer imaging.
NASA Astrophysics Data System (ADS)
Bell, Christopher; Puttick, Simon; Rose, Stephen; Smith, Jye; Thomas, Paul; Dowson, Nicholas
2017-06-01
Imaging using more than one biological process using PET could be of great utility, but despite previously proposed approaches to dual-tracer imaging, it is seldom performed. The alternative of performing multiple scans is often infeasible for clinical practice or even in research studies. Dual-tracer PET scanning allows for multiple PET radiotracers to be imaged within the same imaging session. In this paper we describe our approach to utilise the basis pursuit method to aid in the design of dual-tracer PET imaging experiments, and later in separation of the signals. The advantage of this approach is that it does not require a compartment model architecture to be specified or even that both signals are distinguishable in all cases. This means the method for separating dual-tracer signals can be used for many feasible and useful combinations of biology or radiotracer, once an appropriate scanning protocol has been decided upon. Following a demonstration in separating the signals from two consecutively injected radionuclides in a controlled experiment, phantom and list-mode mouse experiments demonstrated the ability to test the feasibility of dual-tracer imaging protocols for multiple injection delays. Increases in variances predicted for kinetic macro-parameters V D and K I in brain and tumoral tissue were obtained when separating the synthetically combined data. These experiments confirmed previous work using other approaches that injections delays of 10-20 min ensured increases in variance were kept minimal for the test tracers used. On this basis, an actual dual-tracer experiment using a 20 min delay was performed using these radio tracers, with the kinetic parameters (V D and K I) extracted for each tracer in agreement with the literature. This study supports previous work that dual-tracer PET imaging can be accomplished provided certain constraints are adhered to. The utilisation of basis pursuit techniques, with its removed need to specify a model architecture, allows the feasibility of a range of imaging protocols to be investigated via simulation in a straight-forward manner for a wide range of possible scenarios. The hope is that the ease of utilising this approach during feasibility studies and in practice removes any perceived technical barrier to performing dual-tracer imaging.
100-NR-2 Apatite Treatability Test: Fall 2010 Tracer Infiltration Test (White Paper)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vermeul, Vincent R.; Fritz, Brad G.; Fruchter, Jonathan S.
The primary objectives of the tracer infiltration test were to 1) determine whether field-scale hydraulic properties for the compacted roadbed materials and underlying Hanford fm. sediments comprising the zone of water table fluctuation beneath the site are consistent with estimates based laboratory-scale measurements on core samples and 2) characterize wetting front advancement and distribution of soil moisture achieved for the selected application rate. These primary objectives were met. The test successfully demonstrated that 1) the remaining 2 to 3 ft of compacted roadbed material below the infiltration gallery does not limit infiltration rates to levels that would be expected tomore » eliminate near surface application as a viable amendment delivery approach and 2) the combined aqueous and geophysical monitoring approaches employed at this site, with some operational adjustments based on lessons learned, provides an effective means of assessing wetting front advancement and the distribution of soil moisture achieved for a given solution application. Reasonably good agreement between predicted and observed tracer and moisture front advancement rates was observed. During the first tracer infiltration test, which used a solution application rate of 0.7 cm/hr, tracer arrivals were observed at the water table (10 to 12 ft below the bottom of the infiltration gallery) after approximately 5 days, for an advancement rate of approximately 2 ft/day. This advancement rate is generally consistent with pre-test modeling results that predicted tracer arrival at the water table after approximately 5 days (see Figure 8, bottom left panel). This agreement indicates that hydraulic property values specified in the model for the compacted roadbed materials and underlying Hanford formation sediments, which were based on laboratory-scale measurements, are reasonable estimates of actual field-scale conditions. Additional work is needed to develop a working relationship between resistivity change and the associated change in moisture content so that 4D images of moisture content change can be generated. Results from this field test will be available for any future Ca-citrate-PO4 amendment infiltration tests, which would be designed to evaluate the efficacy of using near surface application of amendments to form apatite mineral phases in the upper portion of the zone of water table fluctuation.« less
NASA Astrophysics Data System (ADS)
Takeda, M.; Nakajima, H.; Zhang, M.; Hiratsuka, T.
2008-04-01
To obtain reliable diffusion parameters for diffusion testing, multiple experiments should not only be cross-checked but the internal consistency of each experiment should also be verified. In the through- and in-diffusion tests with solution reservoirs, test interpretation of different phases often makes use of simplified analytical solutions. This study explores the feasibility of steady, quasi-steady, equilibrium and transient-state analyses using simplified analytical solutions with respect to (i) valid conditions for each analytical solution, (ii) potential error, and (iii) experimental time. For increased generality, a series of numerical analyses are performed using unified dimensionless parameters and the results are all related to dimensionless reservoir volume (DRV) which includes only the sorptive parameter as an unknown. This means the above factors can be investigated on the basis of the sorption properties of the testing material and/or tracer. The main findings are that steady, quasi-steady and equilibrium-state analyses are applicable when the tracer is not highly sorptive. However, quasi-steady and equilibrium-state analyses become inefficient or impractical compared to steady state analysis when the tracer is non-sorbing and material porosity is significantly low. Systematic and comprehensive reformulation of analytical models enables the comparison of experimental times between different test methods. The applicability and potential error of each test interpretation can also be studied. These can be applied in designing, performing, and interpreting diffusion experiments by deducing DRV from the available information for the target material and tracer, combined with the results of this study.
Heat and solute tracers: how do they compare in heterogeneous aquifers?
Irvine, Dylan J; Simmons, Craig T; Werner, Adrian D; Graf, Thomas
2015-04-01
A comparison of groundwater velocity in heterogeneous aquifers estimated from hydraulic methods, heat and solute tracers was made using numerical simulations. Aquifer heterogeneity was described by geostatistical properties of the Borden, Cape Cod, North Bay, and MADE aquifers. Both heat and solute tracers displayed little systematic under- or over-estimation in velocity relative to a hydraulic control. The worst cases were under-estimates of 6.63% for solute and 2.13% for the heat tracer. Both under- and over-estimation of velocity from the heat tracer relative to the solute tracer occurred. Differences between the estimates from the tracer methods increased as the mean velocity decreased, owing to differences in rates of molecular diffusion and thermal conduction. The variance in estimated velocity using all methods increased as the variance in log-hydraulic conductivity (K) and correlation length scales increased. The variance in velocity for each scenario was remarkably small when compared to σ2 ln(K) for all methods tested. The largest variability identified was for the solute tracer where 95% of velocity estimates ranged by a factor of 19 in simulations where 95% of the K values varied by almost four orders of magnitude. For the same K-fields, this range was a factor of 11 for the heat tracer. The variance in estimated velocity was always lowest when using heat as a tracer. The study results suggest that a solute tracer will provide more understanding about the variance in velocity caused by aquifer heterogeneity and a heat tracer provides a better approximation of the mean velocity. © 2013, National Ground Water Association.
Can nanotechnology help advance glaciological research?
NASA Astrophysics Data System (ADS)
Dahlke, H. E.; McNew, C.; Wang, C.; McLaughlin, S.; Kocis, T. N.
2017-12-01
In a rapidly changing cryosphere, identifying sources, pathways, and residence times of snow and glacier meltwater is critical to developing improved understanding of watershed-stream connections and hydrological/glaciological melt models. Traditionally, glaciologists have used a variety of tracers, including chloride, microparticles, and dyes, to identify the structure and morphology of subglacial drainage systems. However, minimum detection limits, tracer expense, and the ability of watersheds to retain a memory of past tracer inputs have restricted both the scale of tracer application and the repeated or simultaneous use of most known tracers, thus limiting our ability to study complex glacial systems. These shortcomings in hydrologic tracers can be overcome by utilizing a tracer that allows for the unique identification between spatial and temporal inputs while maintaining identical transport characteristics. Here, we present the use of DNA-labeled nanoparticles, developed for nano-medicine and drug delivery, as environmental tracers. The DNA-labeled particle tracers consist of short DNA strands encapsulated within biodegradable polymer microspheres, which allow for repeatable production of numerous uniquely labelled tracers of pre-determined size and physical transport properties. Each batch of tracers are independently quantifiable; even a single DNA molecule can be detected with cost-effective quantitative polymerase chain reaction (qPCR). We have tested our tracer technology in complex systems such as valley glaciers in Sweden and Alaska and in both laboratory and field studies of channel flow, overland flow, and flow in porous media; these proof-of-concept studies indicate that nanotechnology allows for powerful characterization, description, and, ultimately, prediction of flow pathways in glacial systems and the environment.
Bauer, Katharina Christin; Schermeyer, Marie-Therese; Seidel, Jonathan; Hubbuch, Jürgen
2016-05-30
Microrheological measurements prove to be suitable to identify rheological parameters of biopharmaceutical solutions. These give information about the flow characteristics but also about the interactions and network structures in protein solutions. For the microrheological measurement tracer particles are required. Due to their specific surface characteristic not all are suitable for reliable measurement results in biopharmaceutical systems. In the present work a screening of melamine, PMMA, polystyrene and surface modified polystyrene as tracer particles were investigated at various protein solution conditions. The surface characteristics of the screened tracer particles were evaluated by zeta potential measurements. Furthermore each tracer particle was used to determine the dynamic viscosity of lysozyme solutions by microrheology and compared to a standard. The results indicate that the selection of the tracer particle had a strong impact on the quality of the microrheological measurement dependent on pH and additive type. Surface modified polystyrene was the only tracer particle that yielded good microrheological results for all tested conditions. The study indicated that the electrostatic surface charge of the tracer particle had a minor impact than its hydrophobicity. This characteristic was the crucial surface property that needs to be considered for the selection of a suitable tracer particle to achieve high measurement accuracy. Copyright © 2016 Elsevier B.V. All rights reserved.
Kent, D.B.; Davis, J.A.; Anderson, L.C.D.; Rea, B.A.; Coston, J.A.
2002-01-01
Adsorption, complexation, and dissolution reactions strongly influenced the transport of metal ions complexed with ethylenediaminetetraacetic acid (EDTA) in a predominantly quartz-sand aquifer during two tracer tests conducted under mildly reducing conditions at pH 5.8 to 6.1. In tracer test M89, EDTA complexes of zinc (Zn) and nickel (Ni), along with excess free EDTA, were injected such that the lower portion of the tracer cloud traveled through a region with adsorbed manganese (Mn) and the upper portion of the tracer cloud traveled through a region with adsorbed Zn. In tracer test S89, Ni- and Zn-EDTA complexes, along with excess EDTA complexed with calcium (Ca), were injected into a region with adsorbed Mn. The only discernable chemical reaction between Ni-EDTA and the sediments was a small degree of reversible adsorption leading to minor retardation. In the absence of adsorbed Zn, the injected Zn was displaced from EDTA complexes by iron(III) [Fe(III)] dissolved from the sediments. Displacement of Zn by Fe(III) on EDTA became increasingly thermodynamically favorable with decreasing total EDTA concentration. The reaction was slow compared to the time-scale of transport. Free EDTA rapidly dissolved aluminum (Al) from the sediments, which was subsequently displaced slowly by Fe. In the portion of tracer cloud M89 that traveled through the region contaminated with adsorbed Zn, little displacement of Zn complexed with EDTA was observed, and Al was rapidly displaced from EDTA by Zn desorbed from the sediments, in agreement with equilibrium calculations. In tracer test S89, desorption of Mn dominated over the more thermodynamically favorable dissolution of Al oxyhydroxides. Comparison with results from M89 suggests that dissolution of Al oxyhydroxides in coatings on these sediment grains by Ca-EDTA was rate-limited whereas that by free EDTA reached equilibrium on the time-scale of transport. Rates of desorption are much faster than rates of dissolution of Fe oxyhydroxides from sediment-grain surfaces and, therefore, adsorbed metal ions can strongly influence the speciation of ligands like EDTA in soils and sediments, especially over small temporal and spatial scales. Copyright ?? 2002 Elsevier Science Ltd.
NASA Astrophysics Data System (ADS)
Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.
1988-03-01
A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.
1988-01-01
A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.
Forests fuel fish growth in freshwater deltas
Tanentzap, Andrew J.; Szkokan-Emilson, Erik J.; Kielstra, Brian W.; Arts, Michael T.; Yan, Norman D.; Gunn, John M.
2014-01-01
Aquatic ecosystems are fuelled by biogeochemical inputs from surrounding lands and within-lake primary production. Disturbances that change these inputs may affect how aquatic ecosystems function and deliver services vital to humans. Here we test, using a forest cover gradient across eight separate catchments, whether disturbances that remove terrestrial biomass lower organic matter inputs into freshwater lakes, thereby reducing food web productivity. We focus on deltas formed at the stream-lake interface where terrestrial-derived particulate material is deposited. We find that organic matter export increases from more forested catchments, enhancing bacterial biomass. This transfers energy upwards through communities of heavier zooplankton, leading to a fourfold increase in weights of planktivorous young-of-the-year fish. At least 34% of fish biomass is supported by terrestrial primary production, increasing to 66% with greater forest cover. Habitat tracers confirm fish were closely associated with individual catchments, demonstrating that watershed protection and restoration increase biomass in critical life-stages of fish. PMID:24915965
NASA Astrophysics Data System (ADS)
Beltrán, M. T.; Sánchez-Monge, Á.; Cesaroni, R.; Kumar, M. S. N.; Galli, D.; Walmsley, C. M.; Etoka, S.; Furuya, R. S.; Moscadelli, L.; Stanke, T.; van der Tak, F. F. S.; Vig, S.; Wang, K.-S.; Zinnecker, H.; Elia, D.; Schisano, E.
2014-11-01
Context. Theoretical scenarios propose that high-mass stars are formed by disk-mediated accretion. Aims: To test the theoretical predictions on the formation of massive stars, we wish to make a thorough study at high-angular resolution of the structure and kinematics of the dust and gas emission toward the high-mass star-forming region G35.03+0.35, which harbors a disk candidate around a B-type (proto)star. Methods: We carried out ALMA Cycle 0 observations at 870 μm of dust of typical high-density, molecular outflow, and cloud tracers with resolutions of < 0''&dotbelow;5. Complementary Subaru COMICS 25 μm observations were carried out to trace the mid-infrared emission toward this star-forming region. Results: The submillimeter continuum emission has revealed a filamentary structure fragmented into six cores, called A-F. The filament could be in quasi-equilibrium taking into account that the mass per unit length of the filament, 200-375 M⊙/pc, is similar to the critical mass of a thermally and turbulently supported infinite cylinder, ~335 M⊙/pc. The cores, which are on average separated by ~0.02 pc, have deconvolved sizes of 1300-3400 AU, temperatures of 35-240 K, H2 densities >107 cm -3, and masses in the range 1-5 M⊙, and they are subcritical. Core A, which is associated with a hypercompact Hii region and could be the driving source of the molecular outflow observed in the region, is the most chemically rich source in G35.03+0.35 with strong emission of typical hot core tracers such as CH3CN. Tracers of high density and excitation show a clear velocity gradient along the major axis of the core, which is consistent with a disk rotating about the axis of the associated outflow. The PV plots along the SE-NW direction of the velocity gradient show clear signatures of Keplerian rotation, although infall could also be present, and they are consistent with the pattern of an edge-on Keplerian disk rotating about a star with a mass in the range 5-13 M⊙. The high tff/trot ratio for core A suggests that the structure rotates fast and that the accreting material has time to settle into a centrifugally supported disk. Conclusions: G35.03+0.35 is one of the most convincing examples of Keplerian disks rotating about high-mass (proto)stars. This supports theoretical scenarios according to which high-mass stars, at least B-type stars, would form through disk-mediated accretion. Appendices are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Ford, R.; Boser, B.
2012-12-01
Bioremediation processes depend on contact between microbial populations and the groundwater contaminants that they biodegrade. Chemotaxis, the ability of bacteria to sense a chemical gradient and swim preferentially toward locations of higher concentration, can enhance the transport of bacteria toward contaminant sources that may not be readily accessible by advection and dispersion alone. A two-dimensional rectangular-shaped microcosm packed with quartz sand was used to quantify the effect of chemotaxis on the migration of bacteria within a saturated model aquifer system. Artificial groundwater was pumped through the microcosm at a rate of approximately 1 m/day. A plume of sodium benzoate was created by continuous injection into an upper port of the microcosm to generate a chemical gradient in the vertical direction transverse to flow. Chemotactic bacteria, Pseudomonas putida F1, or the nonchemotactic mutant, P. putida F1 CheA, were injected with a conservative tracer in a port several centimeters below the benzoate position. As the injectates traversed the one-meter length of the microcosm, samples were collected from a dozen effluent ports to determine vertical concentration distributions for the bacteria, benzoate and tracer. A moment analysis was implemented to estimate the center of mass, variance, and skewness of the concentration profiles. The transverse dispersion coefficient and the transverse dispersivity for chemotactic and nonchemotactic bacteria were also evaluated. Experiments performed with a continuous injection of bacteria showed that the center of mass for chemotactic bacteria was closer to the benzoate source on average than the nonchemotactic control (relative to the conservative tracer). These results demonstrated that chemotaxis can increase bacterial transport toward contaminants, potentially enhancing the effectiveness of in situ bioremediation. Experiments with 2 cm and 3 cm spacing between bacteria and benzoate injection locations were performed to explore the relationship between the exposure time of the bacteria to benzoate and the transverse migration of bacteria due to chemotaxis. Experimentally determined transport parameters were then used as input to a two-dimensional mathematical model for bacterial transport. Model results showed the shift in center of mass for chemotactic bacteria was greater for 2 cm and 3 cm spacing than for 4 cm spacing for a given chemotactic sensitivity coefficient value, which showed that an increase in the exposure time of the bacteria to the model contaminant benzoate increased the transverse migration of bacteria. Modeling was used to test the effects of changing the chemotactic sensitivity coefficient and the chemotaxis receptor constant at three different bacteria and benzoate separation distances: 2 cm, 3 cm, and 4 cm. Mathematical models from this work can be applied to future field-scale studies to select design parameters that maximize transverse migration of chemotactic bacteria.
Impact of Distance Determinations on Galactic Structure. I. Young and Intermediate-Age Tracers
NASA Astrophysics Data System (ADS)
Matsunaga, Noriyuki; Bono, Giuseppe; Chen, Xiaodian; de Grijs, Richard; Inno, Laura; Nishiyama, Shogo
2018-06-01
Here we discuss impacts of distance determinations on the Galactic disk traced by relatively young objects. The Galactic disk, ˜40 kpc in diameter, is a cross-road of studies on the methods of measuring distances, interstellar extinction, evolution of galaxies, and other subjects of interest in astronomy. A proper treatment of interstellar extinction is, for example, crucial for estimating distances to stars in the disk outside the small range of the solar neighborhood. We'll review the current status of relevant studies and discuss some new approaches to the extinction law. When the extinction law is reasonably constrained, distance indicators found in today and future surveys are telling us stellar distribution and more throughout the Galactic disk. Among several useful distance indicators, the focus of this review is Cepheids and open clusters (especially contact binaries in clusters). These tracers are particularly useful for addressing the metallicity gradient of the Galactic disk, an important feature for which comparison between observations and theoretical models can reveal the evolution of the disk.
Phoretic forces on convex particles from kinetic theory and nonequilibrium thermodynamics
NASA Astrophysics Data System (ADS)
Hütter, Markus; Kröger, Martin
2006-01-01
In this article we derive the phoretic forces acting on a tracer particle, which is assumed to be small compared to the mean free path of the surrounding nonequilibrium gas, but large compared to the size of the surrounding gas molecules. First, we review and extend the calculations of Waldmann [Z. Naturforsch. A 14A, 589 (1959)] using half-sphere integrations and an accommodation coefficient characterizing the collision process. The presented methodology is applied to a gas subject to temperature, pressure, and velocity gradients. Corresponding thermophoretic, barophoretic, and rheophoretic forces are derived, and explicit expressions for spherical particles are compared to known results. Second, nonequilibrium thermodynamics is used to join the diffusion equation for the tracer particle with the continuum equations of nonisothermal hydrodynamics of the solvent. So doing, the distinct origin of the thermophoretic and barophoretic forces is demonstrated. While the latter enters similarly to an interaction potential, the former is given by flux-flux correlations in terms of a Green-Kubo relation, as shown in detail.
Characteristics of stratosphere-troposphere exchange in a general circulation model
NASA Technical Reports Server (NTRS)
Mote, Philip W.; Holton, James R.; Boville, Byron A.
1994-01-01
In this study we examine mass exchange, water vapor exchange, and the behavior of idealized tracers and parcels to diagnose Stratosphere-Troposphere Exchange (STE) in the National Center for Atmospheric Research (NCAR) General Circulation Model (GCM), the Community Climate Model (CCM2). The CCM2 correctly represents the seasonality of mass exchange across 100 hPa, but values are uniformly too strong. Water vapor, however, indicates that tropical STE is not well represented in the CCM2; even though mean tropopause temperatures are colder than observed, the lower stratosphere is too moist. Most net mass flux occurs at water vapor mixing ratios of about 4-5 parts per million by volume (ppmv), about 1 ppmv too moist. Vertical resolution has little impact on the nature of tropical STE. In midlatitudes, CCM2 more successfully represents STE, which occurs in developing baroclinic waves and stationary anticyclones. Exchange from troposphere to stratosphere does occur but only influences the lowest few kilometers of the extratropical stratosphere, even for tracers with large vertical gradients.
Projection x-space magnetic particle imaging.
Goodwill, Patrick W; Konkle, Justin J; Zheng, Bo; Saritas, Emine U; Conolly, Steven M
2012-05-01
Projection magnetic particle imaging (MPI) can improve imaging speed by over 100-fold over traditional 3-D MPI. In this work, we derive the 2-D x-space signal equation, 2-D image equation, and introduce the concept of signal fading and resolution loss for a projection MPI imager. We then describe the design and construction of an x-space projection MPI scanner with a field gradient of 2.35 T/m across a 10 cm magnet free bore. The system has an expected resolution of 3.5 × 8.0 mm using Resovist tracer, and an experimental resolution of 3.8 × 8.4 mm resolution. The system images 2.5 cm × 5.0 cm partial field-of views (FOVs) at 10 frames/s, and acquires a full field-of-view of 10 cm × 5.0 cm in 4 s. We conclude by imaging a resolution phantom, a complex "Cal" phantom, mice injected with Resovist tracer, and experimentally confirm the theoretically predicted x-space spatial resolution.
Statistical Perspectives on Stratospheric Transport
NASA Technical Reports Server (NTRS)
Sparling, L. C.
1999-01-01
Long-lived tropospheric source gases, such as nitrous oxide, enter the stratosphere through the tropical tropopause, are transported throughout the stratosphere by the Brewer-Dobson circulation, and are photochemically destroyed in the upper stratosphere. These chemical constituents, or "tracers" can be used to track mixing and transport by the stratospheric winds. Much of our understanding about the stratospheric circulation is based on large scale gradients and other spatial features in tracer fields constructed from satellite measurements. The point of view presented in this paper is different, but complementary, in that transport is described in terms of tracer probability distribution functions (PDFs). The PDF is computed from the measurements, and is proportional to the area occupied by tracer values in a given range. The flavor of this paper is tutorial, and the ideas are illustrated with several examples of transport-related phenomena, annotated with remarks that summarize the main point or suggest new directions. One example shows how the multimodal shape of the PDF gives information about the different branches of the circulation. Another example shows how the statistics of fluctuations from the most probable tracer value give insight into mixing between different regions of the atmosphere. Also included is an analysis of the time-dependence of the PDF during the onset and decline of the winter circulation, and a study of how "bursts" in the circulation are reflected in transient periods of rapid evolution of the PDF. The dependence of the statistics on location and time are also shown to be important for practical problems related to statistical robustness and satellite sampling. The examples illustrate how physically-based statistical analysis can shed some light on aspects of stratospheric transport that may not be obvious or quantifiable with other types of analyses. An important motivation for the work presented here is the need for synthesis of the large and growing database of observations of the atmosphere and the vast quantities of output generated by atmospheric models.
Costanza-Robinson, Molly S; Carlson, Tyson D; Brusseau, Mark L
2013-02-01
Gas-phase transport experiments were conducted using a large weighing lysimeter to evaluate retention processes for volatile organic compounds (VOCs) in water-unsaturated (vadose-zone) systems, and to test the utility of gas-phase tracers for predicting VOC retardation. Trichloroethene (TCE) served as a model VOC, while trichlorofluoromethane (CFM) and heptane were used as partitioning tracers to independently characterize retention by water and the air-water interface, respectively. Retardation factors for TCE ranged between 1.9 and 3.5, depending on water content. The results indicate that dissolution into the bulk water was the primary retention mechanism for TCE under all conditions studied, contributing approximately two-thirds of the total measured retention. Accumulation at the air-water interface comprised a significant fraction of the observed retention for all experiments, with an average contribution of approximately 24%. Sorption to the solid phase contributed approximately 10% to retention. Water contents and air-water interfacial areas estimated based on the CFM and heptane tracer data, respectively, were similar to independently measured values. Retardation factors for TCE predicted using the partitioning-tracer data were in reasonable agreement with the measured values. These results suggest that gas-phase tracer tests hold promise for characterizing the retention and transport of VOCs in the vadose-zone. Copyright © 2012 Elsevier B.V. All rights reserved.
Nyquist, Jonathan E.; Toran, Laura; Fang, Allison C.; Ryan, Robert J.; Rosenberry, Donald O.
2010-01-01
Characterization of the hyporheic zone is of critical importance for understanding stream ecology, contaminant transport, and groundwater‐surface water interaction. A salt water tracer test was used to probe the hyporheic zone of a recently re‐engineered portion of Crabby Creek, a stream located near Philadelphia, PA. The tracer solution was tracked through a 13.5 meter segment of the stream using both a network of 25 wells sampled every 5–15 minutes and time‐lapse electrical resistivity tomographs collected every 11 minutes for six hours, with additional tomographs collected every 100 minutes for an additional 16 hours. The comparison of tracer monitoring methods is of keen interest because tracer tests are one of the few techniques available for characterizing this dynamic zone, and logistically it is far easier to collect resistivity tomographs than to install and monitor a dense network of wells. Our results show that resistivity monitoring captured the essential shape of the breakthrough curve and may indicate portions of the stream where the tracer lingered in the hyporheic zone. Time‐lapse resistivity measurements, however, represent time averages over the period required to collect a tomographic data set, and spatial averages over a volume larger than captured by a well sample. Smoothing by the resistivity data inversion algorithm further blurs the resulting tomograph; consequently resistivity monitoring underestimates the degree of fine‐scale heterogeneity in the hyporheic zone.
Measuring gravel transport and dispersion in a mountain river using passive radio tracers
Bradley, D. N.; Tucker, G. E.
2012-01-01
Random walk models of fluvial sediment transport recognize that grains move intermittently, with short duration steps separated by rests that are comparatively long. These models are built upon the probability distributions of the step length and the resting time. Motivated by these models, tracer experiments have attempted to measure directly the steps and rests of sediment grains in natural streams. This paper describes results from a large tracer experiment designed to test stochastic transport models. We used passive integrated transponder (PIT) tags to label 893 coarse gravel clasts and placed them in Halfmoon Creek, a small alpine stream near Leadville, Colorado, USA. The PIT tags allow us to locate and identify tracers without picking them up or digging them out of the streambed. They also enable us to find a very high percentage of our rocks, 98% after three years and 96% after the fourth year. We use the annual tracer displacement to test two stochastic transport models, the Einstein–Hubbell–Sayre (EHS) model and the Yang–Sayre gamma-exponential model (GEM). We find that the GEM is a better fit to the observations, particularly for slower moving tracers and suggest that the strength of the GEM is that the gamma distribution of step lengths approximates a compound Poisson distribution. Published in 2012. This article is a US Government work and is in the public domain in the USA.
TRACER DISPERSION STUDIES FOR HYDRAULIC CHARACTERIZATION OF PIPES
A series of experiments were conducted at the U. S. Environmental Protection Agency (EPA) Test & Evaluation (T&E) Facility in Cincinnati, Ohio, to quantify longitudinal dispersion of a sodium fluoride tracer in polyvinyl chloride (PVC) pipe and ductile iron pipe under laminar, tr...
NASA Astrophysics Data System (ADS)
Ma, Rui; Zheng, Chunmiao; Zachara, John M.; Tonkin, Matthew
2012-08-01
A tracer test using both bromide and heat tracers conducted at the Integrated Field Research Challenge site in Hanford 300 Area (300A), Washington, provided an instrument for evaluating the utility of bromide and heat tracers for aquifer characterization. The bromide tracer data were critical to improving the calibration of the flow model complicated by the highly dynamic nature of the flow field. However, most bromide concentrations were obtained from fully screened observation wells, lacking depth-specific resolution for vertical characterization. On the other hand, depth-specific temperature data were relatively simple and inexpensive to acquire. However, temperature-driven fluid density effects influenced heat plume movement. Moreover, the temperature data contained "noise" caused by heating during fluid injection and sampling events. Using the hydraulic conductivity distribution obtained from the calibration of the bromide transport model, the temperature depth profiles and arrival times of temperature peaks simulated by the heat transport model were in reasonable agreement with observations. This suggested that heat can be used as a cost-effective proxy for solute tracers for calibration of the hydraulic conductivity distribution, especially in the vertical direction. However, a heat tracer test must be carefully designed and executed to minimize fluid density effects and sources of noise in temperature data. A sensitivity analysis also revealed that heat transport was most sensitive to hydraulic conductivity and porosity, less sensitive to thermal distribution factor, and least sensitive to thermal dispersion and heat conduction. This indicated that the hydraulic conductivity remains the primary calibration parameter for heat transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Rui; Zheng, Chunmiao; Zachara, John M.
A tracer test using both bromide and heat tracers conducted at the Integrated Field Research Challenge site in Hanford 300 Area (300A), Washington, provided an instrument for evaluating the utility of bromide and heat tracers for aquifer characterization. The bromide tracer data were critical to improving the calibration of the flow model complicated by the highly dynamic nature of the flow field. However, most bromide concentrations were obtained from fully screened observation wells, lacking depth-specific resolution for vertical characterization. On the other hand, depth-specific temperature data were relatively simple and inexpensive to acquire. However, temperature-driven fluid density effects influenced heatmore » plume movement. Moreover, the temperature data contained “noise” caused by heating during fluid injection and sampling events. Using the hydraulic conductivity distribution obtained from the calibration of the bromide transport model, the temperature depth profiles and arrival times of temperature peaks simulated by the heat transport model were in reasonable agreement with observations. This suggested that heat can be used as a cost-effective proxy for solute tracers for calibration of the hydraulic conductivity distribution, especially in the vertical direction. However, a heat tracer test must be carefully designed and executed to minimize fluid density effects and sources of noise in temperature data. A sensitivity analysis also revealed that heat transport was most sensitive to hydraulic conductivity and porosity, less sensitive to thermal distribution factor, and least sensitive to thermal dispersion and heat conduction. This indicated that the hydraulic conductivity remains the primary calibration parameter for heat transport.« less
Ruffino, Barbara
2015-07-01
The water treatment plant (WTP) of the city of Torino (NW Italy), which treats about 40 · 10(6) m(3)/year of raw water from Po river, has a 15-ha basin used as a lagooning pre-treatment facility. Since the efficiency of the lagooning process in the removal of pollutants from raw water depends on the internal hydrodynamics of the basin, the hydraulic performance of the basin was studied by combining the results of a stimulus-response tracer test with the monitoring of the tracer (fluoride) concentration throughout the basin at different times. The outcomes of the test demonstrated that the system was efficiently mixed and could be assimilated to a continuous stirred reactor presenting no flow anomalies, with an actual mean residence time (RT) of 12.7 days, compared with a nominal RT of 18 days. This assured that dissolved contaminants (such as fluoride) coming from the river were efficiently diluted before entering the WTP. The axial dispersion coefficient calculated from the RT distribution was approximately 47,300 m(2)/day. Three of the most popular formulae developed for the calculation of the axial dispersion coefficient provided results spreading over three orders of magnitude, thus showing their limitations. Finally, because of the width extent of the basin and the characteristics of its inflow, the 1-D advection-dispersion model failed in predicting the tracer concentration values in time at the outlet channel. On the contrary, the analytical solution of the 2-D advection-dispersion model proved to be suitable to fit the tracer concentration data over time at the outlet channel but it failed in describing the tracer distribution throughout the basin on the monitoring dates.
Analytical solutions for efficient interpretation of single-well push-pull tracer tests
NASA Astrophysics Data System (ADS)
Huang, Junqi; Christ, John A.; Goltz, Mark N.
2010-08-01
Single-well push-pull tracer tests have been used to characterize the extent, fate, and transport of subsurface contamination. Analytical solutions provide one alternative for interpreting test results. In this work, an exact analytical solution to two-dimensional equations describing the governing processes acting on a dissolved compound during a modified push-pull test (advection, longitudinal and transverse dispersion, first-order decay, and rate-limited sorption/partitioning in steady, divergent, and convergent flow fields) is developed. The coupling of this solution with inverse modeling to estimate aquifer parameters provides an efficient methodology for subsurface characterization. Synthetic data for single-well push-pull tests are employed to demonstrate the utility of the solution for determining (1) estimates of aquifer longitudinal and transverse dispersivities, (2) sorption distribution coefficients and rate constants, and (3) non-aqueous phase liquid (NAPL) saturations. Employment of the solution to estimate NAPL saturations based on partitioning and non-partitioning tracers is designed to overcome limitations of previous efforts by including rate-limited mass transfer. This solution provides a new tool for use by practitioners when interpreting single-well push-pull test results.
Deuterium used as artificial tracer in column studies under saturated water flow conditions
NASA Astrophysics Data System (ADS)
Koeniger, P.; Geiges, M.; Leibundgut, Ch.
2003-04-01
In contrast to numerous investigations using deuterium as an environmental tracer, hydrological investigations with deuterium-labelled water are rather rare. Currently applications in groundwater studies are restricted due to increasing costs of spiking large water quantities but an application as intelligent tracer might be of advantage especially in combination with other tracers and under distinct environmental conditions. Therefore deuterium was applied as artificial tracer in column experiments that are well proved as a tool to characterise tracer behaviour in recent studies. Deuterium was tested in comparison to the more familiar conservative tracer fluorescein. Varying experimental conditions, e.g. column length (0.5, 1.0, 1.5 m), initial tracer concentration (0.01, 0.02, 0.2 mg) and flow velocity (1.5 to 6.0 m/d) were used to investigate tracer behaviour under saturated water flow conditions. Deuterium was analysed using an H/Device with chrome reduction connected to an isotope ratio mass spectrometer and expressed in relative concentrations [per mill V-SMOW]. Theoretical tracer breakthrough curves were calculated using a one dimensional dispersion model. The results indicate higher mean transport velocities and smaller dispersion for deuterium in all experiments. Due to different molecule properties that also determine the interaction of soil substrate and tracer, deuterium indicates a more conservative transport behaviour. Deuterium is non-toxic, completely soluble, chemically and biologically stable and not subject to light-influenced decay. Furthermore, it shows promise for investigations of water flow in the unsaturated zone, and of interactions of water in soil-plant-atmosphere systems. A further discussion of problems, together with possibilities for applying deuterium as an artificial tracer, will be presented.
van Es, Suzanne C; Venema, Clasina M; Glaudemans, Andor W J M; Lub-de Hooge, Marjolijn N; Elias, Sjoerd G; Boellaard, Ronald; Hospers, Geke A P; Schröder, Carolina P; de Vries, Elisabeth G E
2016-02-01
Molecular imaging with PET is a rapidly emerging technique. In breast cancer patients, more than 45 different PET tracers have been or are presently being tested. With a good rationale, after development of the tracer and proven feasibility, it is of interest to evaluate whether there is a potential meaningful role for the tracer in the clinical setting-such as in staging, in the (early) prediction of a treatment response, or in supporting drug choices. So far, only (18)F-FDG PET has been incorporated into breast cancer guidelines. For proof of the clinical relevance of tracers, especially for analysis in a multicenter setting, standardization of the technology and access to the novel PET tracer are required. However, resources for PET implementation research are limited. Therefore, next to randomized studies, novel approaches are required for proving the clinical value of PET tracers with the smallest possible number of patients. The aim of this review is to describe the process of the development of PET tracers and the level of evidence needed for the use of these tracers in breast cancer. Several breast cancer trials have been performed with the PET tracers (18)F-FDG, 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT), and (18)F-fluoroestradiol ((18)F-FES). We studied them to learn lessons for the implementation of novel tracers. After defining the gap between a good rationale for a tracer and implementation in the clinical setting, we propose solutions to fill the gap to try to bring more PET tracers to daily clinical practice. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Effects of crude oil on water and tracer movement in the unsaturated and saturated zones.
Delin, Geoffrey N; Herkelrath, William N
2017-05-01
A tracer test was conducted to aid in the investigation of water movement and solute transport at a crude-oil spill site near Bemidji, Minnesota. Time of travel was measured using breakthrough curves for rhodamine WT and bromide tracers moving from the soil surface through oil-contaminated and oil-free unsaturated zones to the saturated zone. Results indicate that the rates of tracer movement were similar in the oil-free unsaturated and saturated zones compared to the oily zones. These results are somewhat surprising given the oil contamination in the unsaturated and saturated zones. Rhodamine tracer breakthrough in the unsaturated and saturated zones in general was delayed in comparison to bromide tracer breakthrough. Peak tracer concentrations for the lysimeters and wells in the oily zone were much greater than at the corresponding depths in the oil-free zone. Water and tracer movement in the oily zone was complicated by soil hydrophobicity and decreased oil saturations toward the periphery of the oil. Preferential flow resulted in reduced tracer interaction with the soil, adsorption, and dispersion and faster tracer movement in the oily zone than expected. Tracers were freely transported through the oily zone to the water table. Recharge calculations support the idea that the oil does not substantially affect recharge in the oily zone. This is an important result indicating that previous model-based assumptions of decreased recharge beneath the oil were incorrect. Results have important implications for modeling the fate and transport of dissolved contaminants at hydrocarbon spill sites. Published by Elsevier B.V.
Marangoni-Benard Convection in a Evaporating Liquid Thin Layer
NASA Technical Reports Server (NTRS)
Chai, An-Ti; Zhang, Nengli
1996-01-01
Marangoni-Benard convection in evaporating liquid thin layers has been investigated through flow visualization and temperature profile measurement. Twelve liquids, namely ethyl alcohol, methanol, chloroform, acetone, cyclohexane, benzine, methylene chloride, carbon tetrachloride, ethyl acetate, n-pentane, silicone oil (0.65 cSt.), and freon-113, were tested and convection patterns in thin layers of these samples were observed. Comparison among these tested samples shows that some liquids are sensitive to surface contamination from aluminum powder but some are not. The latter is excellent to be used for the investigation of surface-tension driven convection through visualization using the tracer. Two sample liquids, alcohol and freon-113 were particularly selected for systematic study. It was found that the wavelength of Benard cells would not change with thickness of the layer when it evaporates at room temperature. Special attention was focused on cases in which a liquid layer was cooled from below, and some interesting results were obtained. Convection patterns were recorded during the evaporation process and the patterns at certain time frame were compared. Benard cells were observed in thin layers with a nonlinear temperature profile and even with a zero or positive temperature gradient. Wavelength of the cells was found to increase as the evaporation progressed.
Application of zinc isotope tracer technology in tracing soil heavy metal pollution
NASA Astrophysics Data System (ADS)
Norbu, Namkha; Wang, Shuguang; Xu, Yan; Yang, Jianqiang; Liu, Qiang
2017-08-01
Recent years the soil heavy metal pollution has become increasingly serious, especially the zinc pollution. Due to the complexity of this problem, in order to prevent and treat the soil pollution, it's crucial to accurately and quickly find out the pollution sources and control them. With the development of stable isotope tracer technology, it's able to determine the composition of zinc isotope. Based on the theory of zinc isotope tracer technique, and by means of doing some latest domestic and overseas literature research about the zinc isotope multi-receiving cups of inductively coupled plasma mass spectrometer (MC-ICP-MS) testing technology, this paper summarized the latest research results about the pollution tracer of zinc isotope, and according to the deficiencies and existing problems of previous research, made outlooks of zinc isotope fractionation mechanism, repository establishment and tracer multiple solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruijf, Willy J.M. de, E-mail: kruijf.de.w@bvi.nl; Verstraete, Jan; Neustadter, David
2013-02-01
Purpose: To evaluate the performance and safety of a radiation therapy positioning system (RealEye) based on tracking a radioactive marker (Tracer) implanted in patients with localized prostate cancer. Methods and Materials: We performed a single-arm multi-institutional trial in 20 patients. The iridium-192 ({sup 192}Ir)-containing Tracer was implanted in the patient together with 4 standard gold seed fiducials. Patient prostate-related symptoms were evaluated with the International Prostate Symptom Score (IPSS) questionnaire. Computed tomography (CT) was performed for treatment planning, during treatment, and after treatment to evaluate the migration stability of the Tracer. At 5 treatment sessions, cone beam CT was performedmore » to test the positioning accuracy of the RealEye. Results: The Tracer was successfully implanted in all patients. No device or procedure-related adverse events occurred. Changes in IPSS scores were limited. The difference between the mean change in Tracer-fiducial distance and the mean change in fiducial-fiducial distance was -0.39 mm (95% confidence interval [CI] upper boundary, -0.22 mm). The adjusted mean difference between Tracer position according to RealEye and the Tracer position on the CBCT for all patients was 1.34 mm (95% CI upper boundary, 1.41 mm). Conclusions: Implantation of the Tracer is feasible and safe. Migration stability of the Tracer is good. Prostate patients can be positioned and monitored accurately by using RealEye.« less
de Kruijf, Willy J M; Verstraete, Jan; Neustadter, David; Corn, Benjamin W; Hol, Sandra; Venselaar, Jack L M; Davits, Rob J; Wijsman, Bart P; Van den Bergh, Laura; Budiharto, Tom; Oyen, Raymond; Haustermans, Karin; Poortmans, Philip M P
2013-02-01
To evaluate the performance and safety of a radiation therapy positioning system (RealEye) based on tracking a radioactive marker (Tracer) implanted in patients with localized prostate cancer. We performed a single-arm multi-institutional trial in 20 patients. The iridium-192 ((192)Ir)-containing Tracer was implanted in the patient together with 4 standard gold seed fiducials. Patient prostate-related symptoms were evaluated with the International Prostate Symptom Score (IPSS) questionnaire. Computed tomography (CT) was performed for treatment planning, during treatment, and after treatment to evaluate the migration stability of the Tracer. At 5 treatment sessions, cone beam CT was performed to test the positioning accuracy of the RealEye. The Tracer was successfully implanted in all patients. No device or procedure-related adverse events occurred. Changes in IPSS scores were limited. The difference between the mean change in Tracer-fiducial distance and the mean change in fiducial-fiducial distance was -0.39 mm (95% confidence interval [CI] upper boundary, -0.22 mm). The adjusted mean difference between Tracer position according to RealEye and the Tracer position on the CBCT for all patients was 1.34 mm (95% CI upper boundary, 1.41 mm). Implantation of the Tracer is feasible and safe. Migration stability of the Tracer is good. Prostate patients can be positioned and monitored accurately by using RealEye. Copyright © 2013 Elsevier Inc. All rights reserved.
2014-12-01
Simulated Solute Transport in a Numerical Replication of Britt’s 2005 Experiment Figure 44 In-Well Flow Inhibitor Figure 45 Results of a Preliminary Dye ...Tracer Experiment Conducted at INL Figure 46 Results Horizontally-Oriented Dye Tracer Experiment Conducted at INL ER-1704 Final Report 2014 vii...possible sources of well convection and mixing. Specifically, the modeling explored: • 2D and 3D physical tank models. Dye tracer testing was conducted
NASA Astrophysics Data System (ADS)
Ronayne, Michael J.; Gorelick, Steven M.; Zheng, Chunmiao
2010-10-01
We developed a new model of aquifer heterogeneity to analyze data from a single-well injection-withdrawal tracer test conducted at the Macrodispersion Experiment (MADE) site on the Columbus Air Force Base in Mississippi (USA). The physical heterogeneity model is a hybrid that combines 3-D lithofacies to represent submeter scale, highly connected channels within a background matrix based on a correlated multivariate Gaussian hydraulic conductivity field. The modeled aquifer architecture is informed by a variety of field data, including geologic core sampling. Geostatistical properties of this hybrid heterogeneity model are consistent with the statistics of the hydraulic conductivity data set based on extensive borehole flowmeter testing at the MADE site. The representation of detailed, small-scale geologic heterogeneity allows for explicit simulation of local preferential flow and slow advection, processes that explain the complex tracer response from the injection-withdrawal test. Based on the new heterogeneity model, advective-dispersive transport reproduces key characteristics of the observed tracer recovery curve, including a delayed concentration peak and a low-concentration tail. Importantly, our results suggest that intrafacies heterogeneity is responsible for local-scale mass transfer.
NASA Astrophysics Data System (ADS)
Kessels, W.; Wuttke, M. W.
2007-05-01
A single well technique to determine groundwater flow values and transport parameters is presented. Multielectrode arrays are placed at the filtered casing depth by an inflatable packer or are installed on the borehole wall behind the casing.Tracer water with a higher or lower specific electrical conductivity (salinity) which is injected between the electrodes. This tracer plume then moves into the natural groundwater flow field. The observation of this movement by geoelectric logging enables the determination of the groundwater velocity and salinity. The transport parameters "effective porosity" and "dispersion length" can also be derived. The geoelectric logging uses n borehole electrodes and two grounding electrodes. Thus, either n independent two point measurements or n*(n-1)/2 pole-to-pole measurements can be conducted to obtain a full set of geoelectric measurements. This set is used to derive all electrode combinations by applying the law of superposition and reciprocity. The tracer distribution around the borehole during and after injection depends on the hydraulic and transport parameters of the aquifer and the filter sand. The transport parameter "porosity" plus the total injected tracer volume determines the tracer distribution around the borehole. The transport parameter "dispersivity" determines the abruptness of the tracer front. The method was tested by undertaking measurements in a lab aquifer filled with sand. The results are discussed and the limitations of the method are shown. Multielectrode installations behind casing were tested in situ in the two scientific boreholes CAT-LUD-1 and CAT- LUD-1A drilled in the northern part of Germany. A multielectrode packer system was designed, built and tested in these boreholes. The results are compared with colloid observations in the borehole and hydraulic triangulation in surrounded observation wells. Here, the interpretation of these in situ measurements is mainly restricted to two point geoelectric measurements and vertical four point electrode interpretations. The transport equation for NaCl-tracered water is the basic rule to determine the groundwater transport velocity. Numerical calculations to simulate the measurement are carried out with the program FEFLOW. Due to the density contrast, the tracer undergoes vertical movement. Kessels, W., Zoth, G.(1998): Doppelmantel - Packer mit geoelektrischer Meßtechnik zur Bestimmung der Abstandsgeschwindigkeit des Grundwassers, Patent Az:19855048.0, GGA-Institut, Germany, Hannover. KESSELS, W., RIFAI, H., THORENZ, C., ZOTH, G.(2002): Multi Electrode Geoelectric on the Borehole Wall- Determination of groundwater velocity and dispersion parameters, AGU spring meeting, Washington KESSELS, W., ZOTH, G., WONIK, T., FULDA, C. (1999): THE USE OF SALT CARTRIDGES FOR FLUID LOGGING. XXIV GENERAL ASSEMBLY OF E.G.S. THE HAGUE, THE NETHERLANDS PANTELEIT,B., KESSELS, W., BINOT, F (2006): MUD TRACER TEST DURING SOFT ROCK DRILLING; W.R.R., VOL. 42, W11415, DOI:10.1029/2005WR004487
Post-Explosion Tracer Gas Study in Fractured Granite
NASA Astrophysics Data System (ADS)
Avendano, S.; Horne, M.; Herrera, C.; Person, M. A.; Gorman, E.; Stroujkova, A. F.; Gomez-Velez, J. D.
2017-12-01
Radioactive noble gas detection at suspected underground nuclear test sites is the only proven way to confirm that a nuclear test has occurred. However, the migration of gas effluent through fracture networks is still poorly understood. A pilot field study of the gas migration through rock damaged by explosions was conducted in a rock quarry in New Hampshire in the summer of 2017. Tracer gas (SF6), used as a proxy for the noble gas, was released into a cavity created by an explosion (63 kg of TNT at a depth of 13 m) conducted during the summer of 2016. The upper 5 m of borehole were grouted with stainless steel tubing sealed in the concrete and the gas was pumped through the tubing. Before the gas release, we conducted a series of geophysical and hydrologic tests: a pump test, several slug tests, a salt tracer release in two boreholes, and TEM and ERT surveys. Pressure and electrical conductivity transducers were placed in the surrounding boreholes to monitor the pressure changes and tracer arrival during the pumping. The results of the pump test show that the rock is well connected and has high permeability. Interestingly, the injection of gas resulted in a substantial increase of the local hydraulic conductivity, as evidenced by slug test results before and after injection. The pressure changes in the surrounding boreholes were also monitored during the gas release. We observed gas breakthrough immediately after the release. During the first minute after injection, a pressure wave was observed in two boreholes suggestive of inertial effects and hydraulic fracturing after gas release. The concentrations observed at each monitoring site are consistent with the pump testing. The results of this study will be used in our upcoming experiments and to test detailed mathematical models.
Retention time and flow patterns in Lake Marion, South Carolina, 1984
Patterson, G.G.; Harvey, R.M.
1995-01-01
In 1984, six dye tracer tests were made on Lake Marion to determine flow patterns and retention times under conditions of high and low flow. During the high-flow tests, with an average inflow of about 29,000 cubic feet per second, the approximate travel time through the lake for the peak tracer concentration was 14 days. The retention time was about 20 days. During the low-flow tests, with an average inflow of about 9,000 cubic feet per second, the approximate travel time was 41 days, and the retention time was about 60 days. The primary factors controlling movement of water in the lake are lake inflow and outflow. The tracer cloud moved consistently downstream, slowing as the lake widened. Flow patterns in most of the coves, and in some areas along the northeastern shore, are influenced more by tributary inflow than by factors attributable to water from the main body of the lake.
Harvey, R.W.; Metge, D.W.; Kinner, N.; Mayberry, N.
1997-01-01
Buoyant densities were determined for groundwater bacteria and microflagellates (protozoa) from a sandy aquifer (Cape Cod, MA) using two methods: (1) density-gradient centrifugation (DGC) and (2) Stoke's law approximations using sedimentation rates observed during natural-gradient injection and recovery tests. The dwarf (average cell size, 0.3 ??m), unattached bacteria inhabiting a pristine zone just beneath the water table and a majority (~80%) of the morphologically diverse community of free- living bacteria inhabiting a 5-km-long plume of organically-contaminated groundwater had DGC-determined buoyant densities <1.019 g/cm3 before culturing. In the aquifer, sinking rates for the uncultured 2-??m size class of contaminant plume bacteria were comparable to that of the bromide tracer (1.9 x 10-3 M), also suggesting a low buoyant density. Culturing groundwater bacteria resulted in larger (0.8-1.3 ??m), less neutrally- buoyant (1.043-1.081 g/cm3) cells with potential sedimentation rates up to 64-fold higher than those predicted for the uncultured populations. Although sedimentation generally could be neglected in predicting subsurface transport for the community of free-living groundwater bacteria, it appeared to be important for the cultured isolates, at least until they readapt to aquifer conditions. Culturing-induced alterations in size of the contaminant-plume microflagellates (2-3 ??m) were ameliorated by using a lower nutrient, acidic (pH 5) porous growth medium. Buoyant densities of the cultured microflagellates were low, i.e., 1.024-1.034 g/cm3 (using the DGC assay) and 1.017-1.039 g/cm3 (estimated from in-situ sedimentation rates), suggesting good potential for subsurface transport under favorable conditions.
Toxicological and ecotoxicological assessment of water tracers
NASA Astrophysics Data System (ADS)
Behrens, H.; Beims, U.; Dieter, H.; Dietze, G.; Eikmann, T.; Grummt, T.; Hanisch, H.; Henseling, H.; Käß, W.; Kerndorff, H.; Leibundgut, C.; Müller-Wegener, U.; Rönnefahrt, I.; Scharenberg, B.; Schleyer, R.; Schloz, W.; Tilkes, F.
2001-06-01
Uncertainties regarding possible negative effects on the environment or on human health of authorizing tracing experiments in groundwater and surface waters led to the establishment of a Working Group at the German Federal Environmental Agency (Umweltbundesamt - UBA) for conducting a toxicological and ecotoxicological assessment. A total of 17 water tracers was assessed by the Working Group on the basis of the results of toxicological tests, the available literature, and the group's expert knowledge. In the future, tracers that pose a risk to the environment or to human health should no longer be used. Nevertheless, there are a number of tracers that could be used in hydrogeological and hydrological investigations for water-pollution-control purposes with no adverse environmental impact.
Contamination Tracer Testing With Seabed Rock Drills: IODP Expedition 357
NASA Astrophysics Data System (ADS)
Orcutt, B.; Bergenthal, M.; Freudenthal, T.; Smith, D. J.; Lilley, M. D.; Schneiders, L.; Fruh-Green, G. L.
2016-12-01
IODP Expedition 357 utilized seabed rock drills for the first time in the history of the ocean drilling program, with the aim of collecting intact core of shallow mantle sequences from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This new drilling approach required the development of a new system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.
Contamination tracer testing with seabed drills: IODP Expedition 357
NASA Astrophysics Data System (ADS)
Orcutt, Beth N.; Bergenthal, Markus; Freudenthal, Tim; Smith, David; Lilley, Marvin D.; Schnieders, Luzie; Green, Sophie; Früh-Green, Gretchen L.
2017-11-01
IODP Expedition 357 utilized seabed drills for the first time in the history of the ocean drilling program, with the aim of collecting intact sequences of shallow mantle core from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This novel drilling approach required the development of a new remote seafloor system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.
NASA Astrophysics Data System (ADS)
Ars, Sébastien; Broquet, Grégoire; Yver Kwok, Camille; Roustan, Yelva; Wu, Lin; Arzoumanian, Emmanuel; Bousquet, Philippe
2017-12-01
This study presents a new concept for estimating the pollutant emission rates of a site and its main facilities using a series of atmospheric measurements across the pollutant plumes. This concept combines the tracer release method, local-scale atmospheric transport modelling and a statistical atmospheric inversion approach. The conversion between the controlled emission and the measured atmospheric concentrations of the released tracer across the plume places valuable constraints on the atmospheric transport. This is used to optimise the configuration of the transport model parameters and the model uncertainty statistics in the inversion system. The emission rates of all sources are then inverted to optimise the match between the concentrations simulated with the transport model and the pollutants' measured atmospheric concentrations, accounting for the transport model uncertainty. In principle, by using atmospheric transport modelling, this concept does not strongly rely on the good colocation between the tracer and pollutant sources and can be used to monitor multiple sources within a single site, unlike the classical tracer release technique. The statistical inversion framework and the use of the tracer data for the configuration of the transport and inversion modelling systems should ensure that the transport modelling errors are correctly handled in the source estimation. The potential of this new concept is evaluated with a relatively simple practical implementation based on a Gaussian plume model and a series of inversions of controlled methane point sources using acetylene as a tracer gas. The experimental conditions are chosen so that they are suitable for the use of a Gaussian plume model to simulate the atmospheric transport. In these experiments, different configurations of methane and acetylene point source locations are tested to assess the efficiency of the method in comparison to the classic tracer release technique in coping with the distances between the different methane and acetylene sources. The results from these controlled experiments demonstrate that, when the targeted and tracer gases are not well collocated, this new approach provides a better estimate of the emission rates than the tracer release technique. As an example, the relative error between the estimated and actual emission rates is reduced from 32 % with the tracer release technique to 16 % with the combined approach in the case of a tracer located 60 m upwind of a single methane source. Further studies and more complex implementations with more advanced transport models and more advanced optimisations of their configuration will be required to generalise the applicability of the approach and strengthen its robustness.
Estimating fracture spacing from natural tracers in shale-gas production
NASA Astrophysics Data System (ADS)
Bauer, S. J.; McKenna, S. A.; Heath, J. E.; Gardner, P.
2012-12-01
Resource appraisal and long-term recovery potential of shale gas relies on the characteristics of the fracture networks created within the formation. Both well testing and analysis of micro-seismic data can provide information on fracture characteristics, but approaches that directly utilize observations of gas transport through the fractures are not well-developed. We examine transport of natural tracers and analyze the breakthrough curves (BTC's) of these tracers with a multi-rate mass transfer (MMT) model to elucidate fracture characteristics. The focus here is on numerical simulation studies to determine constraints on the ability to accurately estimate fracture network characteristics as a function of the diffusion coefficients of the natural tracers, the number and timing of observations, the flow rates from the well, and the noise in the observations. Traditional tracer testing approaches for dual-porosity systems analyze the BTC of an injected tracer to obtain fracture spacing considering a single spacing value. An alternative model is the MMT model where diffusive mass transfer occurs simultaneously over a range of matrix block sizes defined by a statistical distribution (e.g., log-normal, gamma, or power-law). The goal of the estimation is defining the parameters of the fracture spacing distribution. The MMT model has not yet been applied to analysis of natural in situ natural tracers. Natural tracers are omnipresent in the subsurface, potentially obviating the needed for introduced tracers, and could be used to improve upon fracture characteristics estimated from pressure transient and decline curve production analysis. Results of this study provide guidance for data collection and analysis of natural tracers in fractured shale formations. Parameter estimation on simulated BTC's will provide guidance on the necessary timing of BTC sampling in field experiments. The MMT model can result in non-unique or nonphysical parameter estimates. We address this with Bayesian estimation approaches that can define uncertainty in estimated parameters as a posterior probability distribution. We will also use Bayesian estimation to examine model identifiability (e.g., selecting between parametric distributions of fracture spacing) from various BTC's. Application of the MMT model to natural tracers and hydraulic fractures in shale will require extension of the model to account for partitioning of the tracers between multiple phases and different mass transfer behavior in mixed gas-liquid (e.g., oil or groundwater rich) systems. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
A new in-situ method to determine the apparent gas diffusion coefficient of soils
NASA Astrophysics Data System (ADS)
Laemmel, Thomas; Paulus, Sinikka; Schack-Kirchner, Helmer; Maier, Martin
2015-04-01
Soil aeration is an important factor for the biological activity in the soil and soil respiration. Generally, gas exchange between soil and atmosphere is assumed to be governed by diffusion and Fick's Law is used to describe the fluxes in the soil. The "apparent soil gas diffusion coefficient" represents the proportional factor between the flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gases through the soil. One common way to determine this coefficient is to take core samples in the field and determine it in the lab. Unfortunately this method is destructive and needs laborious field work and can only reflect a small fraction of the whole soil. As a consequence insecurity about the resulting effective diffusivity on the profile scale must remain. We developed a new in-situ method using new gas sampling device, tracer gas and inverse soil gas modelling. The gas sampling device contains several sampling depths and can be easily installed into vertical holes of an auger, which allows for fast installation of the system. At the lower end of the device inert tracer gas is injected continuously. The tracer gas diffuses into the surrounding soil. The resulting distribution of the tracer gas concentrations is used to deduce the diffusivity profile of the soil. For Finite Element Modeling of the gas sampling device/soil system the program COMSOL is used. We will present the results of a field campaign comparing the new in-situ method with lab measurements on soil cores. The new sampling pole has several interesting advantages: it can be used in-situ and over a long time; so it allows following modifications of diffusion coefficients in interaction with rain but also vegetation cycle and wind.
Labile Dissolved Organic Carbon Availability Controls Hyporheic Denitrification: a 15N Tracer Study
NASA Astrophysics Data System (ADS)
Zarnetske, J. P.; Haggerty, R.; Wondzell, S. M.; Baker, M. A.
2009-12-01
We used an in situ 15N-labeled nitrate (15NO3-) and acetate injection experiment to determine how the availability of labile dissolved organic carbon (DOC) as acetate influences microbial denitrification in the hyporheic zone (HZ) of an upland (3rd-order) agricultural stream. A 48 h steady-state injection of a conservative tracer, chloride, and 15NO3- was used to quantify ambient HZ denitrification via 15N2 production. Following ambient plateau measurements of denitrification during the first 24 h, a second conservative tracer, bromide, and labile DOC source, acetate, were co-injected for an additional 24 h to measure HZ denitrification under increased DOC supply. Conservative tracers were observed at 4 of the 6 down gradient wells. Receiving wells represented HZ median residence times of 7.0 to 13.1 h, nominal flowpath lengths of 0.7 to 3.7 m, and hypoxic conditions (7.5 to 9.3 mg-O2 L-1 deficit). All 4 receiving wells demonstrated 15N2 production during ambient conditions indicating that the HZ was an active denitrification environment. Acetate addition stimulated significant increases in 15N2 production by factors of 2.7 to 26.1 in all receiving wells, and significant decreases of NO3- and DOC aromaticity (via SUVA254) in the two wells most hydrologically connected to the injection. In all receiving wells, increases of bromide and 15N2 production occurred without concurrent increases in acetate indicating that 100% of acetate was retained in the HZ, a portion of which is due to biological consumption. These results support our hypothesis that microbial denitrification in anaerobic portions of the hyporheic zone is limited by labile DOC supply.
Heilweil, Victor M.; Solomon, D. Kip; Darrah, Thomas H.; Gilmore, Troy E.; Genereux, David P.
2016-01-01
Methane emissions from streams and rivers have recently been recognized as an important component of global greenhouse budgets. Stream methane is lost as evasion to the atmosphere or in-stream methane oxidation. Previous studies have quantified evasion and oxidation with point-scale measurements. In this study, dissolved gases (methane, krypton) were injected into a coastal plain stream in North Carolina to quantify stream CH4 losses at the watershed scale. Stream-reach modeling yielded gas transfer and oxidation rate constants of 3.2 ± 0.5 and 0.5 ± 1.5 d–1, respectively, indicating a ratio of about 6:1. The resulting evasion and oxidation rates of 2.9 mmol m–2 d–1 and 1,140 nmol L–1 d–1, respectively, lie within ranges of published values. Similarly, the gas transfer velocity (K600) of 2.1 m d–1 is consistent with other gas tracer studies. This study illustrates the utility of dissolved-gas tracers for evaluating stream methane fluxes. In contrast to point measurements, this approach provides a larger watershed-scale perspective. Further work is needed to quantify the magnitude of these fluxes under varying conditions (e.g., stream temperature, nutrient load, gradient, flow rate) at regional and global scales before reliable bottom-up estimates of methane evasion can be determined at global scales.
NASA Astrophysics Data System (ADS)
Schroth, M. H.; Kleikemper, J.; Pombo, S. A.; Zeyer, J.
2002-12-01
In the past, studies on microbial communities in natural environments have typically focused on either their structure or on their metabolic function. However, linking structure and function is important for understanding microbial community dynamics, in particular in contaminated environments. We will present results of a novel combination of a hydrogeological field method (push-pull tests) with molecular tools and stable isotope analysis, which was employed to quantify anaerobic activities and associated microbial diversity in a petroleum-contaminated aquifer in Studen, Switzerland. Push-pull tests consisted of the injection of test solution containing a conservative tracer and reactants (electron acceptors, 13C-labeled carbon sources) into the aquifer anoxic zone. Following an incubation period, the test solution/groundwater mixture was extracted from the same location. Metabolic activities were computed from solute concentrations measured during extraction. Simultaneously, microbial diversity in sediment and groundwater was characterized by using fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE), as well as phospholipids fatty acid (PLFA) analysis in combination with 13C isotopic measurements. Results from DGGE analyses provided information on the general community structure before, during and after the tests, while FISH yielded information on active populations. Moreover, using 13C-labeling of microbial PLFA we were able to directly link carbon source assimilation in an aquifer to indigenous microorganisms while providing quantitative information on respective carbon source consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cotte, F.P.; Doughty, C.; Birkholzer, J.
2010-11-01
The ability to reliably predict flow and transport in fractured porous rock is an essential condition for performance evaluation of geologic (underground) nuclear waste repositories. In this report, a suite of programs (TRIPOLY code) for calculating and analyzing flow and transport in two-dimensional fracture-matrix systems is used to model single-well injection-withdrawal (SWIW) tracer tests. The SWIW test, a tracer test using one well, is proposed as a useful means of collecting data for site characterization, as well as estimating parameters relevant to tracer diffusion and sorption. After some specific code adaptations, we numerically generated a complex fracture-matrix system for computationmore » of steady-state flow and tracer advection and dispersion in the fracture network, along with solute exchange processes between the fractures and the porous matrix. We then conducted simulations for a hypothetical but workable SWIW test design and completed parameter sensitivity studies on three physical parameters of the rock matrix - namely porosity, diffusion coefficient, and retardation coefficient - in order to investigate their impact on the fracture-matrix solute exchange process. Hydraulic fracturing, or hydrofracking, is also modeled in this study, in two different ways: (1) by increasing the hydraulic aperture for flow in existing fractures and (2) by adding a new set of fractures to the field. The results of all these different tests are analyzed by studying the population of matrix blocks, the tracer spatial distribution, and the breakthrough curves (BTCs) obtained, while performing mass-balance checks and being careful to avoid some numerical mistakes that could occur. This study clearly demonstrates the importance of matrix effects in the solute transport process, with the sensitivity studies illustrating the increased importance of the matrix in providing a retardation mechanism for radionuclides as matrix porosity, diffusion coefficient, or retardation coefficient increase. Interestingly, model results before and after hydrofracking are insensitive to adding more fractures, while slightly more sensitive to aperture increase, making SWIW tests a possible means of discriminating between these two potential hydrofracking effects. Finally, we investigate the possibility of inferring relevant information regarding the fracture-matrix system physical parameters from the BTCs obtained during SWIW testing.« less
Applicability of ELISA-based Determination of Pesticides for Groundwater Quality Monitoring
NASA Astrophysics Data System (ADS)
Tsuchihara, Takeo; Yoshimoto, Shuhei; Ishida, Satoshi; Imaizumi, Masayuki
The principals and procedures of ELISA (Enzyme-linked Immunosorbent Assay)-based determination of pesticides (Fenitrothion) in environmental samples were reviewed, and the applicability of the ELISA method for groundwater quality monitoring were validated through the experimental tracer tests in soil columns and the field test in Okinoerabu Island. The test results showed that the ELISA method could be useful not only for screening but also for quantitative analysis of pesticides. In the experimental tracer tests in soil columns, the retardation of pesticides leaching compared with conservative tracers were observed. In the field test, the contamination of the pesticide was detected in groundwater samples in Okinoerabu Island, even though the targeted pesticide was considered to be applied to the upland field 4 months ago. In order to investigate the transport and fate of pesticides in groundwater taking into account retardation from the field to groundwater table and the residue in groundwater, continuous observations of pesticides in groundwater are in a strong need, and the ELISA method is applicable to the long-term quality groundwater monitoring.
Assessing the Accuracy of the Tracer Dilution Method with Atmospheric Dispersion Modeling
NASA Astrophysics Data System (ADS)
Taylor, D.; Delkash, M.; Chow, F. K.; Imhoff, P. T.
2015-12-01
Landfill methane emissions are difficult to estimate due to limited observations and data uncertainty. The mobile tracer dilution method is a widely used and cost-effective approach for predicting landfill methane emissions. The method uses a tracer gas released on the surface of the landfill and measures the concentrations of both methane and the tracer gas downwind. Mobile measurements are conducted with a gas analyzer mounted on a vehicle to capture transects of both gas plumes. The idea behind the method is that if the measurements are performed far enough downwind, the methane plume from the large area source of the landfill and the tracer plume from a small number of point sources will be sufficiently well-mixed to behave similarly, and the ratio between the concentrations will be a good estimate of the ratio between the two emissions rates. The mobile tracer dilution method is sensitive to different factors of the setup such as placement of the tracer release locations and distance from the landfill to the downwind measurements, which have not been thoroughly examined. In this study, numerical modeling is used as an alternative to field measurements to study the sensitivity of the tracer dilution method and provide estimates of measurement accuracy. Using topography and wind conditions for an actual landfill, a landfill emissions rate is prescribed in the model and compared against the emissions rate predicted by application of the tracer dilution method. Two different methane emissions scenarios are simulated: homogeneous emissions over the entire surface of the landfill, and heterogeneous emissions with a hot spot containing 80% of the total emissions where the daily cover area is located. Numerical modeling of the tracer dilution method is a useful tool for evaluating the method without having the expense and labor commitment of multiple field campaigns. Factors tested include number of tracers, distance between tracers, distance from landfill to transect path, and location of tracers with respect to the hot spot. Results show that location of the tracers relative to the hot spot of highest landfill emissions makes the largest difference in accuracy of the tracer dilution method.
USING CONTINUOUS MONITORS FOR CONDUCTING TRACER STUDIES IN WATER DISTRIBUTION SYSTEMS
The use of online monitors for conducting a distribution system tracer study is proving to be an essential tool to accurately understand the flow dynamics in a distribution system. In a series of field testing sponsored by U. S. Environmental Protection Agency (EPA) and Greater ...
EVALUATION AND SENSITIVITY ANALYSES RESULTS OF THE MESOPUFF II MODEL WITH CAPTEX MEASUREMENTS
The MESOPUFF II regional Lagrangian puff model has been evaluated and tested against measurements from the Cross-Appalachian Tracer Experiment (CAPTEX) data base in an effort to assess its abilIty to simulate the transport and dispersion of a nonreactive, nondepositing tracer plu...
White, Mark D.; Esser, R. P.; McPherson, B. P.; ...
2017-07-01
The Southwest Carbon Partnership (SWP), one of the U.S. Department of Energy (U.S. DOE) seven Regional Carbon Sequestration Partnerships, is currently working to demonstrate the utilization and storage of CO 2 in the Farnsworth Unit (FWU) Enhanced Oil Recovery (EOR) site under the final development phase of this U.S. DOE initiative. A component of the research is to use fluid tracers to understand the multifluid flow patterns that develop between injection and production wells via collected field data and supporting numerical reservoir models. The FWU, located in the Anadarko Basin, Ochiltree County, Texas, and being operated by Chaparral Energy, ismore » a mature EOR water-flood field, which is currently being converted to a CO 2 flow, with inverted 5-spot patterns transitioning from pure water to alternating CO 2 and water floods (i.e., water alternating gas (WAG)) at an approximate rate of one every 6 to 10 months. The SWP tracer program is conducting a suite of tracer injections into the active 5-spot patterns at the FWU. Tracers have been selected to be nonreactive and either principally soluble in CO 2 (gas soluble) or water (aqueous soluble). In addition to characterizing the multifluid flow behaviour within reservoir, the gas and aqueous tracers have roles in detecting any leakage from the reservoir. A total of seven unique perfluorocarbon tracer (PFT) compounds make up the suite of gas soluble tracers and eight unique naphthalene sulfonate tracer (NPT) compounds comprise the aqueous soluble tracers. Lastly, all selected tracers are significantly detectable below the parts per billion concentrations, allowing for high resolution for the inter-well tests at relatively low injection volumes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Mark D.; Esser, R. P.; McPherson, B. P.
The Southwest Carbon Partnership (SWP), one of the U.S. Department of Energy (U.S. DOE) seven Regional Carbon Sequestration Partnerships, is currently working to demonstrate the utilization and storage of CO 2 in the Farnsworth Unit (FWU) Enhanced Oil Recovery (EOR) site under the final development phase of this U.S. DOE initiative. A component of the research is to use fluid tracers to understand the multifluid flow patterns that develop between injection and production wells via collected field data and supporting numerical reservoir models. The FWU, located in the Anadarko Basin, Ochiltree County, Texas, and being operated by Chaparral Energy, ismore » a mature EOR water-flood field, which is currently being converted to a CO 2 flow, with inverted 5-spot patterns transitioning from pure water to alternating CO 2 and water floods (i.e., water alternating gas (WAG)) at an approximate rate of one every 6 to 10 months. The SWP tracer program is conducting a suite of tracer injections into the active 5-spot patterns at the FWU. Tracers have been selected to be nonreactive and either principally soluble in CO 2 (gas soluble) or water (aqueous soluble). In addition to characterizing the multifluid flow behaviour within reservoir, the gas and aqueous tracers have roles in detecting any leakage from the reservoir. A total of seven unique perfluorocarbon tracer (PFT) compounds make up the suite of gas soluble tracers and eight unique naphthalene sulfonate tracer (NPT) compounds comprise the aqueous soluble tracers. Lastly, all selected tracers are significantly detectable below the parts per billion concentrations, allowing for high resolution for the inter-well tests at relatively low injection volumes.« less
Larson, James H.; Richardson, William B.; Vallazza, Jon; Bartsch, Lynn; Bartsch, Michelle
2017-01-01
Inferences about ecological structure and function are often made using elemental or macromolecular tracers of food web structure. For example, inferences about food chain length are often made using stable isotope ratios of top predators and consumer food sources are often inferred from both stable isotopes and fatty acid (FA) content in consumer tissues. The use of FAs as tracers implies some degree of macromolecular conservation across trophic interactions, but many FAs are subject to physiological alteration and animals may produce those FAs from precursors in response to food deficiencies. We measured 41 individual FAs and several aggregate FA metrics in two filter-feeding taxa to (1) assess ecological variation in food availability and (2) identify potential drivers of among-site variation in FA content. These taxa were filter feeding caddisflies (Family Hydropyschidae) and dreissenid mussels (Genus Dreissena), which both consume seston. Stable isotopic composition (C and N) in these taxa co-varied across 13 sites in the Great Lakes region of North America, indicating they fed on very similar food resources. However, co-variation in FA content was very limited, with only one common FA co-varying across this gradient (α-linolenic acid; ALA), suggesting these taxa accumulate FAs very differently even when exposed to the same foods. Based on these results, among-site variation in ALA content in both consumers does appear to be driven by food resources, along with several other FAs in dreissenid mussels. We conclude that single-taxa measurements of FA content cannot be used to infer FA availability in food resources.
Simulations of eddy kinetic energy transport in barotropic turbulence
NASA Astrophysics Data System (ADS)
Grooms, Ian
2017-11-01
Eddy energy transport in rotating two-dimensional turbulence is investigated using numerical simulation. Stochastic forcing is used to generate an inhomogeneous field of turbulence and the time-mean energy profile is diagnosed. An advective-diffusive model for the transport is fit to the simulation data by requiring the model to accurately predict the observed time-mean energy distribution. Isotropic harmonic diffusion of energy is found to be an accurate model in the case of uniform, solid-body background rotation (the f plane), with a diffusivity that scales reasonably well with a mixing-length law κ ∝V ℓ , where V and ℓ are characteristic eddy velocity and length scales. Passive tracer dynamics are added and it is found that the energy diffusivity is 75 % of the tracer diffusivity. The addition of a differential background rotation with constant vorticity gradient β leads to significant changes to the energy transport. The eddies generate and interact with a mean flow that advects the eddy energy. Mean advection plus anisotropic diffusion (with reduced diffusivity in the direction of the background vorticity gradient) is moderately accurate for flows with scale separation between the eddies and mean flow, but anisotropic diffusion becomes a much less accurate model of the transport when scale separation breaks down. Finally, it is observed that the time-mean eddy energy does not look like the actual eddy energy distribution at any instant of time. In the future, stochastic models of the eddy energy transport may prove more useful than models of the mean transport for predicting realistic eddy energy distributions.
Dual pore-connectivity and flow-paths affect shale hydrocarbon production
NASA Astrophysics Data System (ADS)
Hayman, N. W.; Daigle, H.; Kelly, E. D.; Milliken, K. L.; Jiang, H.
2016-12-01
Aided with integrated characterization approaches of droplet contact angle measurement, mercury intrusion capillary pressure, low-pressure gas physisorption, scanning electron microscopy, and small angle neutron scattering, we have systematically studied how pore connectivity and wettability are associated with mineral and organic matter phases of shales (Barnett, Bakken, Eagle Ford), as well as their influence on macroscopic fluid flow and hydrocarbon movement, from the following complementary tests: vacuum saturation with vacuum-pulling on dry shale followed with tracer introduction and high-pressure intrusion, tracer diffusion into fluid-saturated shale, fluid and tracer imbibition into partially-saturated shale, and Wood's metal intrusion followed with imaging and elemental mapping. The first three tests use tracer-bearing fluids (hydrophilic API brine and hydrophobic n-decane) fluids with a suite of wettability tracers of different sizes and reactivities developed in our laboratory. These innovative and integrated approaches indicate a Dalmatian wettability behavior at a scale of microns, limited connectivity (<500 microns from shale sample edge) shale pores, and disparity of well-connected hydrophobic pore network ( 10 nm) and sparsely connected hydrophilic pore systems (>50-100 nm), which is linked to the steep initial decline and low overall recovery because of the limited connection of hydrocarbon molecules in the shale matrix to the stimulated fracture network.
Travel-time-based thermal tracer tomography
NASA Astrophysics Data System (ADS)
Somogyvári, Márk; Bayer, Peter; Brauchler, Ralf
2016-05-01
Active thermal tracer testing is a technique to get information about the flow and transport properties of an aquifer. In this paper we propose an innovative methodology using active thermal tracers in a tomographic setup to reconstruct cross-well hydraulic conductivity profiles. This is facilitated by assuming that the propagation of the injected thermal tracer is mainly controlled by advection. To reduce the effects of density and viscosity changes and thermal diffusion, early-time diagnostics are used and specific travel times of the tracer breakthrough curves are extracted. These travel times are inverted with an eikonal solver using the staggered grid method to reduce constraints from the pre-defined grid geometry and to improve the resolution. Finally, non-reliable pixels are removed from the derived hydraulic conductivity tomograms. The method is applied to successfully reconstruct cross-well profiles as well as a 3-D block of a high-resolution fluvio-aeolian aquifer analog data set. Sensitivity analysis reveals a negligible role of the injection temperature, but more attention has to be drawn to other technical parameters such as the injection rate. This is investigated in more detail through model-based testing using diverse hydraulic and thermal conditions in order to delineate the feasible range of applications for the new tomographic approach.
Dual pore-connectivity and flow-paths affect shale hydrocarbon production
NASA Astrophysics Data System (ADS)
Hu, Q.; Barber, T.; Zhang, Y.; Md Golam, K.
2017-12-01
Aided with integrated characterization approaches of droplet contact angle measurement, mercury intrusion capillary pressure, low-pressure gas physisorption, scanning electron microscopy, and small angle neutron scattering, we have systematically studied how pore connectivity and wettability are associated with mineral and organic matter phases of shales (Barnett, Bakken, Eagle Ford), as well as their influence on macroscopic fluid flow and hydrocarbon movement, from the following complementary tests: vacuum saturation with vacuum-pulling on dry shale followed with tracer introduction and high-pressure intrusion, tracer diffusion into fluid-saturated shale, fluid and tracer imbibition into partially-saturated shale, and Wood's metal intrusion followed with imaging and elemental mapping. The first three tests use tracer-bearing fluids (hydrophilic API brine and hydrophobic n-decane) fluids with a suite of wettability tracers of different sizes and reactivities developed in our laboratory. These innovative and integrated approaches indicate a Dalmatian wettability behavior at a scale of microns, limited connectivity (<500 microns from shale sample edge) shale pores, and disparity of well-connected hydrophobic pore network ( 10 nm) and sparsely connected hydrophilic pore systems (>50-100 nm), which is linked to the steep initial decline and low overall recovery because of the limited connection of hydrocarbon molecules in the shale matrix to the stimulated fracture network.
Barth, Vanessa; Need, Anne
2014-12-17
Nuclear medicine imaging biomarker applications are limited by the radiotracers available. Radiotracers enable the measurement of target engagement, or occupancy in relation to plasma exposure. These tracers can also be used as pharmacodynamic biomarkers to demonstrate functional consequences of binding a target. More recently, radiotracers have also been used for patient tailoring in Alzheimer's disease seen with amyloid imaging. Radiotracers for the central nervous system (CNS) are challenging to identify, as they require a unique intersection of multiple properties. Recent advances in tangential technologies, along with the use of iterative learning for the purposes of deriving in silico models, have opened up additional opportunities to identify radiotracers. Mass spectral technologies and in silico modeling have made it possible to measure and predict in vivo characteristics of molecules to indicate potential tracer performance. By analyzing these data alongside other measures, it is possible to delineate guidelines to increase the likelihood of selecting compounds that can perform as radiotracers or serve as the best starting point to develop a radiotracer following additional structural modification. The application of mass spectrometry based technologies is an efficient way to evaluate compounds as tracers in vivo, but more importantly enables the testing of potential tracers that have either no label site or complex labeling chemistry which may deter assessment by traditional means; therefore, use of this technology allows for more rapid iterative learning. The ability to differentially distribute toward target rich tissues versus tissue with no/less target present is a unique defining feature of a tracer. By testing nonlabeled compounds in vivo and analyzing tissue levels by LC-MS/MS, rapid assessment of a compound's ability to differentially distribute in a manner consistent with target expression biology guides the focus of chemistry resources for both designing and labeling tracer candidates. LC-MS/MS has only recently been used for de novo tracer identification; however, this connection of mass spectral technology to imaging has initiated engagement from a wider community that brings diverse backgrounds into the tracer discovery arena.
Harvey, R.W.; Kinner, N.E.; Bunn, A.; MacDonald, D.; Metge, D.
1995-01-01
Transport behaviors of unidentified flagellated protozoa (flagellates) and flagellate-sized carboxylated microspheres in sandy, organically contaminated aquifer sediments were investigated in a small-scale (1 to 4-m travel distance) natural-gradient tracer test on Cape Cod and in flow-through columns packed with sieved (0.5-to 1.0-mm grain size) aquifer sediments. The minute (average in situ cell size, 2 to 3 ??m) flagellates, which are relatively abundant in the Cape Cod aquifer, were isolated from core samples, grown in a grass extract medium, labeled with hydroethidine (a vital eukaryotic stain), and coinjected into aquifer sediments along with bromide, a conservative tracer. The 2-??m flagellates appeared to be near the optimal size for transport, judging from flowthrough column experiments involving a polydispersed (0.7 to 6.2 ??m in diameter) suspension of carboxylated microspheres. However, immobilization within the aquifer sediments accounted for a log unit reduction over the first meter of travel compared with a log unit reduction over the first 10 m of travel for indigenous, free-living groundwater bacteria in earlier tests. High rates of flagellate immobilization in the presence of aquifer sediments also was observed in the laboratory. However, immobilization rates for the laboratory-grown flagellates (initially 4 to 5 ??m) injected into the aquifer were not constant and decreased noticeably with increasing time and distance of travel. The decrease in propensity for grain surfaces was accompanied by a decrease in cell size, as the flagellates presumably readapted to aquifer conditions. Retardation and apparent dispersion were generally at least twofold greater than those observed earlier for indigenous groundwater bacteria but were much closer to those observed for highly surface active carboxylated latex microspheres. Field and laboratory results suggest that 2- ??m carboxylated microspheres may be useful as analogs in investigating several abiotic aspects of flagellate transport behavior in groundwater.
The Evolution of Metallicity and Metallicity Gradients from z = 2.7 to 0.6 with KMOS3D
NASA Astrophysics Data System (ADS)
Wuyts, Eva; Wisnioski, Emily; Fossati, Matteo; Förster Schreiber, Natascha M.; Genzel, Reinhard; Davies, Ric; Mendel, J. Trevor; Naab, Thorsten; Röttgers, Bernhard; Wilman, David J.; Wuyts, Stijn; Bandara, Kaushala; Beifiori, Alessandra; Belli, Sirio; Bender, Ralf; Brammer, Gabriel B.; Burkert, Andreas; Chan, Jeffrey; Galametz, Audrey; Kulkarni, Sandesh K.; Lang, Philipp; Lutz, Dieter; Momcheva, Ivelina G.; Nelson, Erica J.; Rosario, David; Saglia, Roberto P.; Seitz, Stella; Tacconi, Linda J.; Tadaki, Ken-ichi; Übler, Hannah; van Dokkum, Pieter
2016-08-01
We present measurements of the [N II]/Hα ratio as a probe of gas-phase oxygen abundance for a sample of 419 star-forming galaxies at z = 0.6-2.7 from the KMOS3D near-IR multi-integral field unit (IFU) survey. The mass-metallicity relation (MZR) is determined consistently with the same sample selection, metallicity tracer, and methodology over the wide redshift range probed by the survey. We find good agreement with long-slit surveys in the literature, except for the low-mass slope of the relation at z˜ 2.3, where this sample is less biased than previous samples based on optical spectroscopic redshifts. In this regime we measure a steeper slope than some literature results. Excluding the contribution from active galactic nuclei from the MZR reduces sensitivity at the high-mass end, but produces otherwise consistent results. There is no significant dependence of the [N II]/Hα ratio on star formation rate at fixed redshift and stellar mass. The IFU data allow spatially resolved measurements of [N II]/Hα, from which we can infer abundance gradients for 180 galaxies, thus tripling the current sample in the literature. The observed gradients are on average flat, with only 15 gradients statistically offset from zero at \\gt 3σ . We have modeled the effect of beam smearing, assuming a smooth intrinsic radial gradient and known seeing, inclination, and effective radius for each galaxy. Our seeing-limited observations can recover up to 70% of the intrinsic gradient for the largest, face-on disks, but only 30% for the smaller, more inclined galaxies. We do not find significant trends between observed or corrected gradients and any stellar population, dynamical, or structural galaxy parameters, mostly in agreement with existing studies with much smaller sample sizes. In cosmological simulations, strong feedback is generally required to produce flat gradients at high redshift.
River banks and channel axis curvature: Effects on the longitudinal dispersion in alluvial rivers
NASA Astrophysics Data System (ADS)
Lanzoni, Stefano; Ferdousi, Amena; Tambroni, Nicoletta
2018-03-01
The fate and transport of soluble contaminants released in natural streams are strongly dependent on the spatial variations of the flow field and of the bed topography. These variations are essentially related to the presence of the channel banks and to the planform configuration of the channel. Large velocity gradients arise near to the channel banks, where the flow depth decreases to zero. Moreover, single thread alluvial rivers are seldom straight, and usually exhibit meandering planforms and a bed topography that deviates from the plane configuration. Channel axis curvature and movable bed deformations drive secondary helical currents which enhance both cross sectional velocity gradients and transverse mixing, thus crucially influencing longitudinal dispersion. The present contribution sets up a rational framework which, assuming mild sloping banks and taking advantage of the weakly meandering character often exhibited by natural streams, leads to an analytical estimate of the contribution to longitudinal dispersion associated with spatial non-uniformities of the flow field. The resulting relationship stems from a physics-based modeling of the flow in natural rivers, and expresses the bend averaged longitudinal dispersion coefficient as a function of the relevant hydraulic and morphologic parameters. The treatment of the problem is river specific, since it relies on an explicit spatial description, although linearized, of the flow field that establishes in the investigated river. Comparison with field data available from tracer tests supports the robustness of the proposed framework, given also the complexity of the processes that affect dispersion dynamics in real streams.
NASA Technical Reports Server (NTRS)
Fleming, Eric L.; Jackman, Charles H.; Considine, David B.; Stolarski, Richard S.
1999-01-01
In this study, we examine the sensitivity of long lived tracers to changes in the base transport components in our 2-D model. Changes to the strength of the residual circulation in the upper troposphere and stratosphere and changes to the lower stratospheric K(sub zz) had similar effects in that increasing the transport rates decreased the overall stratospheric mean age, and increased the rate of removal of material from the stratosphere. Increasing the stratospheric K(sub yy) increased the mean age due to the greater recycling of air parcels through the middle atmosphere, via the residual circulation, before returning to the troposphere. However, increasing K(sub yy) along with self-consistent increases in the corresponding planetary wave drive, which leads to a stronger residual circulation, more than compensates for the K(sub yy)-effect, and produces significantly younger ages throughout the stratosphere. Simulations with very small tropical stratospheric K(sub yy) decreased the globally averaged age of air by as much as 25% in the middle and upper stratosphere, and resulted in substantially weaker vertical age gradients above 20 km in the extratropics. We found only very small stratospheric tracer sensitivity to the magnitude of the horizontal mixing across the tropopause, and to the strength of the mesospheric gravity wave drag and diffusion used in the model. We also investigated the transport influence on chemically active tracers and found a strong age-tracer correlation, both in concentration and calculated lifetimes. The base model transport gives the most favorable overall comparison with a variety of inert tracer observations, and provides a significant improvement over our previous 1995 model transport. Moderate changes to the base transport were found to provide modest agreement with some of the measurements. Transport scenarios with residence times ranging from moderately shorter to slightly longer relative to the base case simulated N2O lifetimes that were within the observational estimates of Volk et al. [1997]. However, only scenarios with rather fast transport rates were comparable with the Volk et al. estimates of CFCl3 lifetimes. This is inconsistent with model-measurement comparisons of mean age in which the base model or slightly slower transport rates compared the most favorably with balloon SF6 data. For all comparisons shown, large transport changes away from the base case resulted in simulations that were outside the range of measurements, and in many cases, far outside this range.
Kim, Young-Il; Bae, Byung-Uk
2007-05-01
Based on the concept of hydraulic flocculator, a baffled-channel powdered activated carbon (PAC) contactor, placed before the rapid-mixing basin, was designed and evaluated for removal of taste and odor (T&O) in drinking water. PAC adsorption kinetic tests for raw water samples were conducted for selection of design parameters related to contact time and degree of mixing. Within the tested range of velocity gradient (G) from 18 to 83s(-1), mixing had a relatively minor effect on the adsorption kinetics of the PAC. The hydrodynamic characteristics of the pilot-scale horizontally and vertically baffled-channel PAC contactor were investigated by tracer tests. It was found that the plug flow fractions of vertically baffled-channel PAC contactor (vBPC) were higher than those of the horizontally baffled-channel PAC contactor (hBPC) for the same bend width or bend height. However, the hBPC seems to be more appropriate than the vBPC in terms of construction and maintenance. The geosmin and MIB removal rate increased with the number of baffles, PAC dose and contact time increased regardless of bend width in the pilot-scale hBPC. The pair of full-scale hBPCs at Pohang water treatment plant, having a design capacity of 6.5x10(4)m(3)/d with 20min of hydraulic retention time with a safety factor of 2, was designed based on lab- and pilot-scale experimental results. Under a velocity gradient of 20s(-1), the number of baffles to be installed was calculated to be 20 with a space of about 2m between each baffle, resulting in a hydraulic head loss through the contactor of about 0.056m. The successful application of hBPC for T&O removal from drinking water supplies should provide momentum for developing more effective treatment methods.
Adaptive spectral filtering of PIV cross correlations
NASA Astrophysics Data System (ADS)
Giarra, Matthew; Vlachos, Pavlos; Aether Lab Team
2016-11-01
Using cross correlations (CCs) in particle image velocimetry (PIV) assumes that tracer particles in interrogation regions (IRs) move with the same velocity. But this assumption is nearly always violated because real flows exhibit velocity gradients, which degrade the signal-to-noise ratio (SNR) of the CC and are a major driver of error in PIV. Iterative methods help reduce these errors, but even they can fail when gradients are large within individual IRs. We present an algorithm to mitigate the effects of velocity gradients on PIV measurements. Our algorithm is based on a model of the CC, which predicts a relationship between the PDF of particle displacements and the variation of the correlation's SNR across the Fourier spectrum. We give an algorithm to measure this SNR from the CC, and use this insight to create a filter that suppresses the low-SNR portions of the spectrum. Our algorithm extends to the ensemble correlation, where it accelerates the convergence of the measurement and also reveals the PDF of displacements of the ensemble (and therefore of statistical metrics like diffusion coefficient). Finally, our model provides theoretical foundations for a number of "rules of thumb" in PIV, like the quarter-window rule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semprini, L.; Istok, J.
'The objective of this research is to develop a unique method of using naturally occurring radon-222 as a tracer for locating and quantitatively describing the presence of subsurface NAPL contamination. The research will evaluate using radon as an inexpensive, yet highly accurate, means of detecting NAPL contamination and assessing the effectiveness of NAPL remediation. Laboratory, field, and modeling studies are being performed to evaluate this technique, and to develop methods for its successful implementation in practice. This report summarizes work that has been accomplished after 1-year of a 3-year project. The research to date has included radon tracer tests inmore » physical aquifer models (PAMs) and field studies at Site 300 of the Lawrence Livermore National Laboratory, CA, and Site 100D at Hanford DOE Facility, WA. The PAM tests have evaluated the ability of radon as a tracer to monitor the remediation of TCE NAPL contamination using surfactant treatment, and oxidation with permanganate. The surfactant tests were performed in collaboration with Dr. Jack Istok and Dr. Jennifer Field and their EMSP project ``In-situ, Field-Scale Evaluation of Surfactant Enhanced DNAPL Recovery Using a Single-Well-Push-Pull Test.'''' This collaboration enabled the EMSP radon project to make rapid progress. The PAM surfactant tests were performed in a radial flow geometry to simulate the push-pull-method that is being developed for surfactant field tests. The radon tests were easily incorporated into these experiments, since they simply rely on measuring the natural radon present in the subsurface fluids. Two types of radon tests were performed: (1) static tests where radon was permitted to build-up to steady-state concentrations in the pore fluids and the groundwater concentrations were monitored, and (2) dynamic tests were the radon response during push-pull surfactant tests was measured. Both methods were found to be useful in determining how NAPL remediation was progressing.'« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, T. M.; Wilke, R. J.; Roberts, T.
Atmospheric Tracer Depletion tests were conducted at the Wolf Creek Nuclear Power Plant to quantify the unfiltered in-leakage (UI) into the Control Room (CR), Control Building (CB), and Equipment Rooms (ER) at the Wolf Creek Nuclear Power Plant. Wolf Creek has two independent charcoal filter Emergency Ventilation Systems (EVS) that can be used to purify air entering the control building and control room. The Bravo System contains a filtration system in Room 1501 in the Auxiliary Building for the Control Room and another filtration system (FGK02B) on Elevation 2016 for the Control Building. The Alpha system contains a filtration systemmore » in Room 1512 in the Auxiliary Building for the Control Room and another filtration system (FGK02A) on Elevation 2016 for the Control Building. The Atmospheric Tracer Depletion (ATD) test is a technique to measure in-leakage using the concentration of perfluorocarbon compounds that have a constant atmospheric background. These levels are present in the Control Room and Control Building under normal operating conditions. When air is supplied by either of the EVS, most of the PFTS are removed by the charcoal filters. If the concentrations of the PFTs measured in protected areas are the same as the levels at the output of the EVS, the in-leakage of outside air into the protected area would be zero. If the concentration is higher in the protected area than at the output of the filter system, there is in-leakage and the in-leakage can be quantified by the difference. Sampling was performed using state-of-the-art Brookhaven Atmospheric Tracer Samplers (BATS) air sampling equipment and analysis performed on Brookhaven National Laboratory (BNL) dedicated PFT analytical systems. In the Alpha test two tracers PMCH and mcPDCH were used to determine in-leakage into the control building. The analytical system was tuned to maximize sensitivity after initial analysis of the Alpha test. The increased sensitivity permitted accurate quantification of five isomers of the PFT PDCH (mtPDCH, pcPDCH, otPDCH, mcPDCH, and ptPDCH). These isomers were quantified in the low concentration samples in the Alpha test and in all samples in the Bravo test. The best estimates of UI (Rui) for the four zones are provided in Table ES-1. For the CB, this estimate averages the four tracers at the four elevations. For the CR, this estimate uses the four sampling units located in the Control Room.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, T. M.; Wilke, R. J.; Roberts, T.
Atmospheric Tracer Depletion tests were conducted at the Wolf Creek Nuclear Power Plant to quantify the unfiltered in-leakage (UI) into the Control Room (CR), Control Building (CB), and Equipment Rooms (ER) at the Wolf Creek Nuclear Power Plant. Wolf Creek has two independent charcoal filter Emergency Ventilation Systems (EVS) that can be used to purify air entering the control building and control room. The Bravo System contains a filtration system in Room 1501 in the Auxiliary Building for the Control Room and another filtration system (FGK02B) on Elevation 2016 for the Control Building. The Alpha system contains a filtration systemmore » in Room 1512 in the Auxiliary Building for the Control Room and another filtration system (FGK02A) on Elevation 2016 for the Control Building.The Atmospheric Tracer Depletion (ATD) test is a technique to measure in-leakage using the concentration of perfluorocarbon compounds that have a constant atmospheric background. These levels are present in the Control Room and Control Building under normal operating conditions. When air is supplied by either of the EVS, most of the PFTS are removed by the charcoal filters. If the concentrations of the PFTs measured in protected areas are the same as the levels at the output of the EVS, the in-leakage of outside air into the protected area would be zero. If the concentration is higher in the protected area than at the output of the filter system, there is in-leakage and the in-leakage can be quantified by the difference.Sampling was performed using state-of-the-art Brookhaven Atmospheric Tracer Samplers (BATS) air sampling equipment and analysis performed on Brookhaven National Laboratory (BNL) dedicated PFT analytical systems. In the Alpha test two tracers PMCH and mcPDCH were used to determine in-leakage into the control building. The analytical system was tuned to maximize sensitivity after initial analysis of the Alpha test. The increased sensitivity permitted accurate quantification of five isomers of the PFT PDCH (mtPDCH, pcPDCH, otPDCH, mcPDCH, and ptPDCH). These isomers were quantified in the low concentration samples in the Alpha test and in all samples in the Bravo test.The best estimates of UI (Rui) for the four zones are provided in Table ES-1. For the CB, this estimate averages the four tracers at the four elevations. For the CR, this estimate uses the four sampling units located in the Control Room.« less
THE NEW YORK CITY URBAN DISPERSION PROGRAM MARCH 2005 FIELD STUDY: TRACER METHODS AND RESULTS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
WATSON, T.B.; HEISER, J.; KALB, P.
The Urban Dispersion Program March 2005 Field Study tracer releases, sampling, and analytical methods are described in detail. There were two days where tracer releases and sampling were conducted. A total of 16.0 g of six tracers were released during the first test day or Intensive Observation Period (IOP) 1 and 15.7 g during IOP 2. Three types of sampling instruments were used in this study. Sequential air samplers, or SAS, collected six-minute samples, while Brookhaven atmospheric tracer samplers (BATS) and personal air samplers (PAS) collected thirty-minute samples. There were a total of 1300 samples resulting from the two IOPs.more » Confidence limits in the sampling and analysis method were 20% as determined from 100 duplicate samples. The sample recovery rate was 84%. The integrally averaged 6-minute samples were compared to the 30-minute samples. The agreement was found to be good in most cases. The validity of using a background tracer to calculate sample volumes was examined and also found to have a confidence level of 20%. Methods for improving sampling and analysis are discussed. The data described in this report are available as Excel files. An additional Excel file of quality assured tracer data for use in model validation efforts is also available. The file consists of extensively quality assured BATS tracer data with background concentrations subtracted.« less
Petrothermal heat extraction using a single deviated well (Horstberg, revisited)
NASA Astrophysics Data System (ADS)
Ghergut, Julia; Behrens, Horst; Vogt, Esther; Bartetzko, Anne; Sauter, Martin
2013-04-01
The single-well tracer test conducted (Behrens et al. 2006) in conjunction with waterfrac experiments at Horstberg is re-examined with a view at four basic issues: why single-well? why fracturing? why tracers? does this only work at Horstberg, or can it work almost anywhere else in the Northern-German sedimentary basin? Heat and tracer transport within a composite reservoir (impermeable matrix + waterfrac + permeable layer), as accessed by a single deviated well, turn out to fit into a surprisingly simple description, as the plain (arithmetic) sum of certain petrothermal-type and aquifer-type contributions, whose weighting relative to each other can vary from site to site, depending upon stratigraphy and upon wellbore geometry. At Horstberg, within the particular formations tested ('Volpriehausen', 'Detfurth', 'Solling', comprising mainly claystone and sandstone layers), thermal lifetime results to be petrothermally-dominated, while tracer residence times prove to be 'aquifer'-dominated. Despite this disparity, the reservoir's thermal lifetime can reliably be predicted from tracer test results. What cannot be determined from waterfrac flow-path tracing is the very waterfrac's aperture. Aperture uncertainty, however, does not impede upon thermal lifetime predictability. The results of the semi-analytical approach are confirmed by numerical simulations using a FE model that includes more details of hydrogeological heterogeneity for the Horstberg site. They are complemented by a parameter sensitivity analysis. ACKNOWLEDGEMENT: This study is funded by MWK Niedersachsen (Lower-Saxony's Science and Culture Ministry) and by Baker Hughes (Celle) within task unit G6 of the Collaborative Research Project 'gebo' ('Geothermal Energy and High-Performance Drilling').
NASA Astrophysics Data System (ADS)
Lekmine, G.; Auradou, H.; Pessel, M.; Rayner, J. L.
2017-04-01
Cross-borehole ERT imaging was tested to quantify the average velocity and transport parameters of tracer plumes in saturated porous media. Seven tracer tests were performed at different flow rates and monitored by either a vertical or horizontal dipole-dipole ERT sequence. These sequences were tested to reconstruct the shape and temporally follow the spread of the tracer plumes through a background regularization procedure. Data sets were inverted with the same inversion parameters and 2D model sections of resistivity ratios were converted to tracer concentrations. Both array types provided an accurate estimation of the average pore velocity vz. The total mass Mtot recovered was always overestimated by the horizontal dipole-dipole and underestimated by the vertical dipole-dipole. The vertical dipole-dipole was however reliable to quantify the longitudinal dispersivity λz, while the horizontal dipole-dipole returned better estimation for the transverse component λx. λ and Mtot were mainly influenced by the 2D distribution of the cumulated electrical sensitivity and the Shadow Effects induced by the third dimension. The size reduction of the edge of the plume was also related to the inability of the inversion process to reconstruct sharp resistivity contrasts at the interface. Smoothing was counterbalanced by a non-realistic rise of the ERT concentrations around the centre of mass returning overpredicted total masses. A sensitivity analysis on the cementation factor m and the porosity ϕ demonstrated that a change in one of these parameters by 8% involved non negligible variations by 30 and 40% of the dispersion coefficients and mass recovery.
Tracer gas studies were conducted around four model houses in a wind tunnel, and around one house in the field, to quantify re-entrainment and dispersion of exhaust gases released from residential indoor radon reduction systems. Re-entrainment tests in the field suggest that acti...
Field Test of Enhanced Remedial Amendment Delivery Using a Shear-Thinning Fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truex, Michael J.; Vermeul, Vincent R.; Adamson, David
2015-03-01
Heterogeneity of hydraulic properties in aquifers may lead to contaminants residing in lower-permeability zones where it is difficult to deliver remediation amendments using conventional injection processes. The focus of this effort is to examine use of a shear-thinning fluid (STF) to improve the uniformity of remedial amendment distribution within a heterogeneous aquifer. Previous studies have demonstrated the significant potential of STFs for improving remedial amendment delivery in heterogeneous aquifers, but quantitative evaluation of these improvements from field applications are lacking. A field-scale test was conducted that compares data from successive injection of a tracer in water followed by injection ofmore » a tracer in a STF to evaluate the impact of the STF on tracer distribution uniformity in the presence of permeability contrasts within the targeted injection zone. Data from tracer breakthrough at multiple depth-discrete monitoring intervals and electrical resistivity tomography showed that inclusion of STF in the injection solution slowed movement in high-permeability pathways, improved delivery of amendment to low-permeability materials, and resulted in better uniformity in injected fluid distribution within the targeted treatment zone.« less
On the mound of Macrotermes michaelseni as an organ of respiratory gas exchange.
Turner, J S
2001-01-01
Patterns and rates of air movements in the mounds and nests of Macrotermes michaelseni were studied using tracer methods. Wind is a significant source of energy for powering nest ventilation, despite the mound being a completely enclosed structure. Nests are ventilated by a tidal movement of air driven by temporal variation in wind speed and wind direction. Density gradients sufficiently steep to drive bulk flow by natural convection will be rare. However, metabolism-induced buoyant forces may interact with wind energy in a way that promotes homeostasis of the mound atmosphere.
NASA Astrophysics Data System (ADS)
Solomon, D. Kip; Genereux, David P.; Plummer, L. Niel; Busenberg, Eurybiades
2010-04-01
We tested three models of mixing between old interbasin groundwater flow (IGF) and young, locally derived groundwater in a lowland rain forest in Costa Rica using a large suite of environmental tracers. We focus on the young fraction of water using the transient tracers CFC-11, CFC-12, CFC-113, SF6, 3H, and bomb 14C. We measured 3He, but 3H/3He dating is generally problematic due to the presence of mantle 3He. Because of their unique concentration histories in the atmosphere, combinations of transient tracers are sensitive not only to subsurface travel times but also to mixing between waters having different travel times. Samples fall into three distinct categories: (1) young waters that plot along a piston flow line, (2) old samples that have near-zero concentrations of the transient tracers, and (3) mixtures of 1 and 2. We have modeled the concentrations of the transient tracers using (1) a binary mixing model (BMM) of old and young water with the young fraction transported via piston flow, (2) an exponential mixing model (EMM) with a distribution of groundwater travel times characterized by a mean value, and (3) an exponential mixing model for the young fraction followed by binary mixing with an old fraction (EMM/BMM). In spite of the mathematical differences in the mixing models, they all lead to a similar conceptual model of young (0 to 10 year) groundwater that is locally derived mixing with old (>1000 years) groundwater that is recharged beyond the surface water boundary of the system.
NASA Astrophysics Data System (ADS)
Doummar, Joanna; Margane, Armin; Geyer, Tobias; Sauter, Martin
2018-03-01
Artificial tracer experiments were conducted in the mature karst system of Jeita (Lebanon) under various flow conditions using surface and subsurface tracer injection points, to determine the variation of transport parameters (attenuation of peak concentration, velocity, transit times, dispersivity, and proportion of immobile and mobile regions) along fast and slow flow pathways. Tracer breakthrough curves (TBCs) observed at the karst spring were interpreted using a two-region nonequilibrium approach (2RNEM) to account for the skewness in the TBCs' long tailings. The conduit test results revealed a discharge threshold in the system dynamics, beyond which the transport parameters vary significantly. The polynomial relationship between transport velocity and discharge can be related to the variation of the conduit's cross-sectional area. Longitudinal dispersivity in the conduit system is not a constant value (α = 7-10 m) and decreases linearly with increasing flow rate because of dilution effects. Additionally, the proportion of immobile regions (arising from conduit irregularities) increases with decreasing water level in the conduit system. From tracer tests with injection at the surface, longitudinal dispersivity values are found to be large (8-27 m). The tailing observed in some TBCs is generated in the unsaturated zone before the tracer actually arrives at the major subsurface conduit draining the system. This work allows the estimation and prediction of the key transport parameters in karst aquifers. It shows that these parameters vary with time and flow dynamics, and they reflect the geometry of the flow pathway and the origin of infiltrating (potentially contaminated) recharge.
Hybrid dynamic radioactive particle tracking (RPT) calibration technique for multiphase flow systems
NASA Astrophysics Data System (ADS)
Khane, Vaibhav; Al-Dahhan, Muthanna H.
2017-04-01
The radioactive particle tracking (RPT) technique has been utilized to measure three-dimensional hydrodynamic parameters for multiphase flow systems. An analytical solution to the inverse problem of the RPT technique, i.e. finding the instantaneous tracer positions based upon instantaneous counts received in the detectors, is not possible. Therefore, a calibration to obtain a counts-distance map is needed. There are major shortcomings in the conventional RPT calibration method due to which it has limited applicability in practical applications. In this work, the design and development of a novel dynamic RPT calibration technique are carried out to overcome the shortcomings of the conventional RPT calibration method. The dynamic RPT calibration technique has been implemented around a test reactor with 1foot in diameter and 1 foot in height using Cobalt-60 as an isotopes tracer particle. Two sets of experiments have been carried out to test the capability of novel dynamic RPT calibration. In the first set of experiments, a manual calibration apparatus has been used to hold a tracer particle at known static locations. In the second set of experiments, the tracer particle was moved vertically downwards along a straight line path in a controlled manner. The obtained reconstruction results about the tracer particle position were compared with the actual known position and the reconstruction errors were estimated. The obtained results revealed that the dynamic RPT calibration technique is capable of identifying tracer particle positions with a reconstruction error between 1 to 5.9 mm for the conditions studied which could be improved depending on various factors outlined here.
NASA Astrophysics Data System (ADS)
Moortgat, J.
2015-12-01
Reservoir simulators are widely used to constrain uncertainty in the petrophysical properties of subsurface formations by matching the history of injection and production data. However, such measurements may be insufficient to uniquely characterize a reservoir's properties. Monitoring of natural (isotopic) and introduced tracers is a developing technology to further interrogate the subsurface for applications such as enhanced oil recovery from conventional and unconventional resources, and CO2 sequestration. Oak Ridge National Laboratory has been piloting this tracer technology during and following CO2 injection at the Cranfield, Mississippi, CO2 sequestration test site. Two campaigns of multiple perfluorocarbon tracers were injected together with CO2 and monitored at two wells at 68 m and 112 m from the injection site. The tracer data suggest that multiple CO2 flow paths developed towards the monitoring wells, indicative of either channeling through high permeability pathways or of fingering. The results demonstrate that tracers provide an important complement to transient pressure data. Numerical modeling is essential to further explain and interpret the observations. To aid the development of tracer technology, we enhanced a compositional multiphase reservoir simulator to account for tracer transport. Our research simulator uses higher-order finite element (FE) methods that can capture the small-scale onset of fingering on the coarse grids required for field-scale modeling, and allows for unstructured grids and anisotropic heterogeneous permeability fields. Mass transfer between fluid phases and phase behavior are modeled with rigorous equation-of-state based phase-split calculations. We present our tracer simulator and preliminary results related to the Cranfield experiments. Applications to noble gas tracers in unconventional resources are presented by Darrah et al.
Batterman, Stuart; Jia, Chunrong; Hatzivasilis, Gina; Godwin, Chris
2006-02-01
Air exchange rates and interzonal flows are critical ventilation parameters that affect thermal comfort, air migration, and contaminant exposure in buildings and other environments. This paper presents the development of an updated approach to measure these parameters using perfluorocarbon tracer (PFT) gases, the constant injection rate method, and adsorbent-based sampling of PFT concentrations. The design of miniature PFT sources using hexafluorotoluene and octafluorobenzene tracers, and the development and validation of an analytical GC/MS method for these tracers are described. We show that simultaneous deployment of sources and passive samplers, which is logistically advantageous, will not cause significant errors over multiday measurement periods in building, or over shorter periods in rapidly ventilated spaces like vehicle cabins. Measurement of the tracers over periods of hours to a week may be accomplished using active or passive samplers, and low method detection limits (<0.025 microg m(-3)) and high precisions (<10%) are easily achieved. The method obtains the effective air exchange rate (AER), which is relevant to characterizing long-term exposures, especially when ventilation rates are time-varying. In addition to measuring the PFT tracers, concentrations of other volatile organic compounds (VOCs) are simultaneously determined. Pilot tests in three environments (residence, garage, and vehicle cabin) demonstrate the utility of the method. The 4 day effective AER in the house was 0.20 h(-1), the 4 day AER in the attached garage was 0.80 h(-1), and 16% of the ventilation in the house migrated from the garage. The 5 h AER in a vehicle traveling at 100 km h(-1) under a low-to-medium vent condition was 92 h(-1), and this represents the highest speed test found in the literature. The method is attractive in that it simultaneously determines AERs, interzonal flows, and VOC concentrations over long and representative test periods. These measurements are practical, cost-effective, and helpful in indoor air quality and other investigations.
The orbital PDF: general inference of the gravitational potential from steady-state tracers
NASA Astrophysics Data System (ADS)
Han, Jiaxin; Wang, Wenting; Cole, Shaun; Frenk, Carlos S.
2016-02-01
We develop two general methods to infer the gravitational potential of a system using steady-state tracers, I.e. tracers with a time-independent phase-space distribution. Combined with the phase-space continuity equation, the time independence implies a universal orbital probability density function (oPDF) dP(λ|orbit) ∝ dt, where λ is the coordinate of the particle along the orbit. The oPDF is equivalent to Jeans theorem, and is the key physical ingredient behind most dynamical modelling of steady-state tracers. In the case of a spherical potential, we develop a likelihood estimator that fits analytical potentials to the system and a non-parametric method (`phase-mark') that reconstructs the potential profile, both assuming only the oPDF. The methods involve no extra assumptions about the tracer distribution function and can be applied to tracers with any arbitrary distribution of orbits, with possible extension to non-spherical potentials. The methods are tested on Monte Carlo samples of steady-state tracers in dark matter haloes to show that they are unbiased as well as efficient. A fully documented C/PYTHON code implementing our method is freely available at a GitHub repository linked from http://icc.dur.ac.uk/data/#oPDF.
Nano-iron Tracer Test for Characterizing Preferential Flow Path in Fractured Rock
NASA Astrophysics Data System (ADS)
Chia, Y.; Chuang, P. Y.
2015-12-01
Deterministic description of the discrete features interpreted from site characterization is desirable for developing a discrete fracture network conceptual model. It is often difficult, however, to delineate preferential flow path through a network of discrete fractures in the field. A preliminary cross-borehole nano-iron tracer test was conducted to characterize the preferential flow path in fractured shale bedrock at a hydrogeological research station. Prior to the test, heat-pulse flowmeter measurements were performed to detect permeable fracture zones at both the injection well and the observation well. While a few fracture zones are found permeable, most are not really permeable. Chemical reduction method was used to synthesize nano zero-valent iron particles with a diameter of 50~150 nm. The conductivity of nano-iron solution is about 3100 μs/cm. The recorded fluid conductivity shows the arrival of nano-iron solution in the observation well 11.5 minutes after it was released from the injection well. The magnetism of zero-valent iron enables it to be absorbed on magnet array designed to locate the depth of incoming tracer. We found nearly all of absorbed iron on the magnet array in the observation well were distributed near the most permeable fracture zone. The test results revealed a preferential flow path through a permeable fracture zone between the injection well and the observation well. The estimated hydraulic conductivity of the connected fracture is 2.2 × 10-3 m/s. This preliminary study indicated that nano-iron tracer test has the potential to characterize preferential flow path in fractured rock.
Effects of vertical shear in modelling horizontal oceanic dispersion
NASA Astrophysics Data System (ADS)
Lanotte, A. S.; Corrado, R.; Palatella, L.; Pizzigalli, C.; Schipa, I.; Santoleri, R.
2016-02-01
The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of the South Mediterranean is investigated by means of observation and model data. In situ current measurements reveal that vertical gradients of horizontal velocities in the upper mixing layer decorrelate quite fast ( ˜ 1 day), whereas an eddy-permitting ocean model, such as the Mediterranean Forecasting System, tends to overestimate such decorrelation time because of finite resolution effects. Horizontal dispersion, simulated by the Mediterranean sea Forecasting System, is mostly affected by: (1) unresolved scale motions, and mesoscale motions that are largely smoothed out at scales close to the grid spacing; (2) poorly resolved time variability in the profiles of the horizontal velocities in the upper layer. For the case study we have analysed, we show that a suitable use of deterministic kinematic parametrizations is helpful to implement realistic statistical features of tracer dispersion in two and three dimensions. The approach here suggested provides a functional tool to control the horizontal spreading of small organisms or substance concentrations, and is thus relevant for marine biology, pollutant dispersion as well as oil spill applications.
The role of vertical shear on the horizontal oceanic dispersion
NASA Astrophysics Data System (ADS)
Lanotte, A. S.; Corrado, R.; Lacorata, G.; Palatella, L.; Pizzigalli, C.; Schipa, I.; Santoleri, R.
2015-09-01
The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of South Mediterranean is investigated by means of observative and model data. In-situ current measurements reveal that vertical velocity gradients in the upper mixed layer decorrelate quite fast (∼ 1 day), whereas basin-scale ocean circulation models tend to overestimate such decorrelation time because of finite resolution effects. Horizontal dispersion simulated by an eddy-permitting ocean model, like, e.g., the Mediterranean Forecasting System, is mosty affected by: (1) unresolved scale motions, and mesoscale motions that are largely smoothed out; (2) poorly resolved time variability of vertical velocity profiles in the upper layer. For the case study we have analysed, we show that a suitable use of kinematic parameterisations is helpful to implement realistic statistical features of tracer dispersion in two and three dimensions. The approach here suggested provides a functional tool to control the horizontal spreading of small organisms or substance concentrations, and is thus relevant for marine biology, pollutant dispersion as well as oil spill applications.
Application of the UTCHEM simulator to DNAPL site characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, G.W.
1995-12-31
Numerical simulation using the University of Texas Chemical Flood Simulator (UTCHEM) was used to evaluate two dense, nonaqueous phase liquid (DNAPL) characterization methods. The methods involved the use of surfactants and partitioning tracers to characterize a suspected trichloroethene (TCE) DNAPL zone beneath a US Air Force Plant in Texas. The simulations were performed using a cross-sectional model of the alluvial aquifer in an area that is believed to contain residual TCE at the base of the aquifer. Characterization simulations compared standard groundwater sampling, an interwell NAPL Solubilization Test, and an interwell NAPL Partitioning Tracer Test. The UTCHEM simulations illustrated howmore » surfactants and partitioning tracers can be used to give definite evidence of the presence and volume of DNAPL in a situation where conventional groundwater sampling can only indicate the existence of the dissolved contaminant plume.« less
Singer, Florian; Stern, Georgette; Thamrin, Cindy; Fuchs, Oliver; Riedel, Thomas; Gustafsson, Per; Frey, Urs; Latzin, Philipp
2011-03-10
Small airway disease frequently occurs in chronic lung diseases and may cause ventilation inhomogeneity (VI), which can be assessed by washout tests of inert tracer gas. Using two tracer gases with unequal molar mass (MM) and diffusivity increases specificity for VI in different lung zones. Currently washout tests are underutilised due to the time and effort required for measurements. The aim of this study was to develop and validate a simple technique for a new tidal single breath washout test (SBW) of sulfur hexafluoride (SF(6)) and helium (He) using an ultrasonic flowmeter (USFM). The tracer gas mixture contained 5% SF(6) and 26.3% He, had similar total MM as air, and was applied for a single tidal breath in 13 healthy adults. The USFM measured MM, which was then plotted against expired volume. USFM and mass spectrometer signals were compared in six subjects performing three SBW. Repeatability and reproducibility of SBW, i.e., area under the MM curve (AUC), were determined in seven subjects performing three SBW 24 hours apart. USFM reliably measured MM during all SBW tests (n = 60). MM from USFM reflected SF(6) and He washout patterns measured by mass spectrometer. USFM signals were highly associated with mass spectrometer signals, e.g., for MM, linear regression r-squared was 0.98. Intra-subject coefficient of variation of AUC was 6.8%, and coefficient of repeatability was 11.8%. The USFM accurately measured relative changes in SF(6) and He washout. SBW tests were repeatable and reproducible in healthy adults. We have developed a fast, reliable, and straightforward USFM based SBW method, which provides valid information on SF(6) and He washout patterns during tidal breathing.
Singer, Florian; Stern, Georgette; Thamrin, Cindy; Fuchs, Oliver; Riedel, Thomas; Gustafsson, Per; Frey, Urs; Latzin, Philipp
2011-01-01
Background Small airway disease frequently occurs in chronic lung diseases and may cause ventilation inhomogeneity (VI), which can be assessed by washout tests of inert tracer gas. Using two tracer gases with unequal molar mass (MM) and diffusivity increases specificity for VI in different lung zones. Currently washout tests are underutilised due to the time and effort required for measurements. The aim of this study was to develop and validate a simple technique for a new tidal single breath washout test (SBW) of sulfur hexafluoride (SF6) and helium (He) using an ultrasonic flowmeter (USFM). Methods The tracer gas mixture contained 5% SF6 and 26.3% He, had similar total MM as air, and was applied for a single tidal breath in 13 healthy adults. The USFM measured MM, which was then plotted against expired volume. USFM and mass spectrometer signals were compared in six subjects performing three SBW. Repeatability and reproducibility of SBW, i.e., area under the MM curve (AUC), were determined in seven subjects performing three SBW 24 hours apart. Results USFM reliably measured MM during all SBW tests (n = 60). MM from USFM reflected SF6 and He washout patterns measured by mass spectrometer. USFM signals were highly associated with mass spectrometer signals, e.g., for MM, linear regression r-squared was 0.98. Intra-subject coefficient of variation of AUC was 6.8%, and coefficient of repeatability was 11.8%. Conclusion The USFM accurately measured relative changes in SF6 and He washout. SBW tests were repeatable and reproducible in healthy adults. We have developed a fast, reliable, and straightforward USFM based SBW method, which provides valid information on SF6 and He washout patterns during tidal breathing. PMID:21423739
Evaluation of sprayable fixatives on a sandy soil for potential use in a dirty bomb response.
Fritz, Brad G; Whitaker, John D
2008-06-01
After the events of 11 September 2001, the possibility of a dirty bomb being detonated within the United States seems more realistic. Development of tools for use in response to a dirty bomb detonation has become a topic of both discussion and research. While it has been reported that the health risk to the public from such an event would likely be small, it is thought that the psychological impact could be considerable. One response option that has been considered is adapting sprayable solutions for the purpose of fixing contamination in place, thereby limiting the spread of contamination by wind and rain and facilitating subsequent cleanup. This work evaluated two commercially available particle fixatives (IsoFIX-HT and IsoFIX-RC) for their effectiveness in preventing dispersal of simulated contamination. Nonradioactive cesium chloride and cobalt oxide particles were selected as the simulated contamination and applied to the surface of three outdoor test plots. Two test plots were treated with fixatives; the third plot provided a control. Samples were collected over 95 days to observe changes in tracer concentration on the surface of the test plots. One fixative (IsoFIX-RC) effectively held the tracer in place with no net loss of tracer, while the other fixative (IsoFIX-HT) had no impact on the loss of tracer relative to the control. Under the conditions tested, IsoFIX-RC appears capable of fixing surface contamination in place for at least several months.
Tumor Endothelial Marker Imaging in Melanomas Using Dual-Tracer Fluorescence Molecular Imaging
Tichauer, Kenneth M.; Deharvengt, Sophie J.; Samkoe, Kimberley S.; Gunn, Jason R.; Bosenberg, Marcus W.; Turk, Mary-Jo; Hasan, Tayyaba; Stan, Radu V.; Pogue, Brian W.
2014-01-01
Purpose Cancer-specific endothelial markers available for intravascular binding are promising targets for new molecular therapies. In this study, a molecular imaging approach of quantifying endothelial marker concentrations (EMCI) is developed and tested in highly light-absorbing melanomas. The approach involves injection of targeted imaging tracer in conjunction with an untargeted tracer, which is used to account for nonspecific uptake and tissue optical property effects on measured targeted tracer concentrations. Procedures Theoretical simulations and a mouse melanoma model experiment were used to test out the EMCI approach. The tracers used in the melanoma experiments were fluorescently labeled anti-Plvap/PV1 antibody (plasmalemma vesicle associated protein Plvap/PV1 is a transmembrane protein marker exposed on the luminal surface of endothelial cells in tumor vasculature) and a fluorescent isotype control antibody, the uptakes of which were measured on a planar fluorescence imaging system. Results The EMCI model was found to be robust to experimental noise under reversible and irreversible binding conditions and was capable of predicting expected overexpression of PV1 in melanomas compared to healthy skin despite a 5-time higher measured fluorescence in healthy skin compared to melanoma: attributable to substantial light attenuation from melanin in the tumors. Conclusions This study demonstrates the potential of EMCI to quantify endothelial marker concentrations in vivo, an accomplishment that is currently unavailable through any other methods, either in vivo or ex vivo. PMID:24217944
Day-Lewis, Frederick D.; Lane, John W.; Harris, Jerry M.; Gorelick, Steven M.
2003-01-01
Accurate characterization of fractured‐rock aquifer heterogeneity remains one of the most challenging and important problems in groundwater hydrology. We demonstrate a promising strategy to identify preferential flow paths in fractured rock using a combination of geophysical monitoring and conventional hydrogeologic tests. Cross‐well difference‐attenuation ground‐penetrating radar was used to monitor saline‐tracer migration in an experiment at the U.S. Geological Survey Fractured Rock Hydrology Research Site in Grafton County, New Hampshire. Radar data sets were collected every 10 min in three adjoining planes for 5 hours during each of 12 tracer tests. An innovative inversion method accounts for data acquisition times and temporal changes in attenuation during data collection. The inverse algorithm minimizes a combination of two functions. The first is the sum of weighted squared data residuals. Second is a measure of solution complexity based on an a priori space‐time covariance function, subject to constraints that limit radar‐attenuation changes to regions of the tomograms traversed by high difference‐attenuation ray paths. The time series of tomograms indicate relative tracer concentrations and tracer arrival times in the image planes; from these we infer the presence and location of a preferential flow path within a previously identified zone of transmissive fractures. These results provide new insights into solute channeling and the nature of aquifer heterogeneity at the site.
Ferguson, Jared O.; Jablonowski, Christiane; Johansen, Hans; ...
2016-11-09
Adaptive mesh refinement (AMR) is a technique that has been featured only sporadically in atmospheric science literature. This study aims to demonstrate the utility of AMR for simulating atmospheric flows. Several test cases are implemented in a 2D shallow-water model on the sphere using the Chombo-AMR dynamical core. This high-order finite-volume model implements adaptive refinement in both space and time on a cubed-sphere grid using a mapped-multiblock mesh technique. The tests consist of the passive advection of a tracer around moving vortices, a steady-state geostrophic flow, an unsteady solid-body rotation, a gravity wave impinging on a mountain, and the interactionmore » of binary vortices. Both static and dynamic refinements are analyzed to determine the strengths and weaknesses of AMR in both complex flows with small-scale features and large-scale smooth flows. The different test cases required different AMR criteria, such as vorticity or height-gradient based thresholds, in order to achieve the best accuracy for cost. The simulations show that the model can accurately resolve key local features without requiring global high-resolution grids. The adaptive grids are able to track features of interest reliably without inducing noise or visible distortions at the coarse–fine interfaces. Finally and furthermore, the AMR grids keep any degradations of the large-scale smooth flows to a minimum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, Jared O.; Jablonowski, Christiane; Johansen, Hans
Adaptive mesh refinement (AMR) is a technique that has been featured only sporadically in atmospheric science literature. This study aims to demonstrate the utility of AMR for simulating atmospheric flows. Several test cases are implemented in a 2D shallow-water model on the sphere using the Chombo-AMR dynamical core. This high-order finite-volume model implements adaptive refinement in both space and time on a cubed-sphere grid using a mapped-multiblock mesh technique. The tests consist of the passive advection of a tracer around moving vortices, a steady-state geostrophic flow, an unsteady solid-body rotation, a gravity wave impinging on a mountain, and the interactionmore » of binary vortices. Both static and dynamic refinements are analyzed to determine the strengths and weaknesses of AMR in both complex flows with small-scale features and large-scale smooth flows. The different test cases required different AMR criteria, such as vorticity or height-gradient based thresholds, in order to achieve the best accuracy for cost. The simulations show that the model can accurately resolve key local features without requiring global high-resolution grids. The adaptive grids are able to track features of interest reliably without inducing noise or visible distortions at the coarse–fine interfaces. Finally and furthermore, the AMR grids keep any degradations of the large-scale smooth flows to a minimum.« less
Quasi-horizontal transport and mixing in the Antarctic stratosphre
NASA Technical Reports Server (NTRS)
Chen, Ping; Holton, James R.; O'Neill, Alan; Swinbank, Richard
1994-01-01
The quasi-horizontal transport and mixing properties of the Antarctic stratosphere are investigated with a simi-Lagrangian transport model and a 'contour advection' technique for the winter and spring of 1992 using analyzed winds from the United Kingdom Meteorological Office data assimiliation system. Transport calculations show that passive tracers are well mixed inside the polar vortex as well as in the midlatitude 'surf zone.' A the vortex edge, strong radial gradients in the tracer fields are well preserved, and their evolutions follow that of the potential vorticity until some time after the breakdown of the polar vortex. In the middle stratosphere there is little tracer exchange across the vortex edge in August and September. Some vortex air is eroded into the surf zone in filamentary form in October, and very strong exchange of air occurs between high and middle latitudes in November. In the lower stratosphere the vortex is not so isolated from the midlatitudes as in the middle stratosphere, and there is more mass exchange across the vortex edge. Calculations of the lengthening of material contours using the contour advection technique show that in the middle stratosphere, strong stirring (i.e., stretching and folding of material elements) occurs in the inner vortex, while the strongest stirring occurs in the midlatitude surf zone and the weakest occurs at the vortex edge. In the lower strtosphere, strong stirring occurs in the inner vortex. Stirring is moderate at the vortex edge and in the midlatitudes.
Diurnal and seasonal variation of various carbon fluxes from an urban tower platform in Houston, TX
NASA Astrophysics Data System (ADS)
Schade, G. W.; Werner, N.; Hale, M. C.
2013-12-01
We measured carbon fluxes (CO2, CO, VOCs) from a tall lattice tower in Houston between 2007 and 2009, and 2011-2013. We present results from various analyses of (i) anthropogenic and biogenic CO2 fluxes using a quadrant segregation technique, (ii) seasonal and multi-year changes of CO fluxes as related to car traffic and industrial sources, and (iii) the accuracy of, and usefulness of a bulk flux footprint model to quantify pentane emissions form a distant source in comparison to permitted emission levels. Segregated and net anthropogenic CO2 fluxes were dominated by car traffic but industrial sources were identified as well. Emissions sank to minimal levels after hurricane Ike had passed over Houston, causing a traffic shutdown and lower population density. Segregated biogenic fluxes showed a clear seasonal variation with photosynthetic activity between April and November, and large effects of the 2011 Texas drought due to negligible irrigation in the study area. Carbon monoxide fluxes, measured via a flux gradient technique, are even stronger dominated by car traffic than CO2 fluxes and serve as a traffic tracer. Our data show a continued drop in emissions over time, seasonal changes with higher emissions during winter, and local influences due to industrial emissions. Lastly, we present the results of a tracer release study and a single point source quantification to test a bulk footprint model in this complex urban area. Known releases of volatile acetone and MEK were compered to measured fluxes using a REA-GC-FID system, and permit emissions of pentane from a foam plastics manufacturing facility were compared to measured pentane fluxes. Both comparisons reveal a surprisingly accurate performance of the footprint model within a factor of 2.
Perakis, Steven S.; Compton, J.E.; Hedin, L.O.
2005-01-01
Accelerated nitrogen (N) inputs can drive nonlinear changes in N cycling, retention, and loss in forest ecosystems. Nitrogen processing in soils is critical to understanding these changes, since soils typically are the largest N sink in forests. To elucidate soil mechanisms that underlie shifts in N cycling across a wide gradient of N supply, we added 15NH415NO3 at nine treatment levels ranging in geometric sequence from 0.2 kg to 640 kg NA? ha-1A? yr-1 to an unpolluted old-growth temperate forest in southern Chile. We recovered roughly half of tracers in 0-25 cm of soil, primarily in the surface 10 cm. Low to moderate rates of N supply failed to stimulate N leaching, which suggests that most unrecovered 15N was transferred from soils to unmeasured sinks above ground. However, soil solution losses of nitrate increased sharply at inputs > 160 kg NA? ha-1A? yr-1, corresponding to a threshold of elevated soil N availability and declining 15N retention in soil. Soil organic matter (15N in soils at the highest N inputs and may explain a substantial fraction of the 'missing N' often reported in studies of fates of N inputs to forests. Contrary to expectations, N additions did not stimulate gross N cycling, potential nitrification, or ammonium oxidizer populations. Our results indicate that the nonlinearity in N retention and loss resulted directly from excessive N supply relative to sinks, independent of plant-soil-microbial feedbacks. However, N additions did induce a sharp decrease in microbial biomass C:N that is predicted by N saturation theory, and which could increase long-term N storage in soil organic matter by lowering the critical C:N ratio for net N mineralization. All measured sinks accumulated 15N tracers across the full gradient of N supply, suggesting that short-term nonlinearity in N retention resulted from saturation of uptake kinetics, not uptake capacity, in plant, soil, and microbial pools.
Black Swans and the Effectiveness of Remediating Groundwater Contamination
NASA Astrophysics Data System (ADS)
Siegel, D. I.; Otz, M. H.; Otz, I.
2013-12-01
Black swans, outliers, dominate science far more than do predictable outcomes. Predictable success constitutes the Black Swan in groundwater remediation. Even the National Research Council concluded that remediating groundwater to drinking water standards has failed in typically complex hydrogeologic settings where heterogeneities and preferential flow paths deflect flow paths obliquely to hydraulic gradients. Natural systems, be they biological or physical, build upon a combination of large-scale regularity coupled to chaos at smaller scales. We show through a review of over 25 case studies that groundwater remediation efforts are best served by coupling parsimonious site characterization to natural and induced geochemical tracer tests to at least know where contamination advects with groundwater in the subsurface. In the majority of our case studies, actual flow paths diverge tens of degrees from anticipated flow paths because of unrecognized heterogeneities in the horizontal direction of transport, let alone the vertical direction. Consequently, regulatory agencies would better serve both the public and the environment by recognizing that long-term groundwater cleanup probably is futile in most hydrogeologic settings except to relaxed standards similar to brownfielding. A Black Swan
Assessment of a Geothermal Doublet in the Malm Aquifer Using a Push-Pull Tracer Test
NASA Astrophysics Data System (ADS)
Lafogler, Mark; Somogyi, Gabriella; Nießner, Reinhard; Baumann, Thomas
2013-04-01
Geothermal exploration of the Malm aquifer in Bavaria is highly successful. Data about the long-term operation, however, is still scarce, although detailed knowledge about the processes occurring in the aquifer is a key requirement to run geothermal facilities efficiently and economically. While there usually is a constant flow of data from the production well (temperatures, hydraulic data, hydrochemical conditions, gas composition) not even the temperatures in the immediate surrounding of the reinjection well are accessible or known. In 2011 the geothermal facility in Pullach was extended with a third geothermal well reaching into the Malm aquifer which is now used as a reinjection well. The former reinjection well was converted to a production well after 5 years of operation. This setting offers a unique opportunity to study the processes in the vicinity of a reinjection well and provides the data base to describe the hydraulic, thermal and hydrochemical performance of the reservoir. The viscosity of the reinjected cold water is increasing by 60% compared to the production well, thus one would expect an increase of the reinjection pressure as the cold water plume spreads around the reinjection well. Measurements, however, show a significant decrease of the reinjection pressure, suggesting processes in the aquifer which positively change the hydraulic properties and overcompensate the viscosity effects. Hydrochemical data and modeling indicate that a dissolution of the matrix along the flow pathways is responsible for the decreasing reinjection pressures. The change of the flow direction from reinjection to production was used to conduct a push-pull tracer test. Here, a series of fluorescent dye pulses was added to the reinjected water before the former reinjection well was shut down (push phase). These tracers included a conservative tracer (Fluorescein), surface-sensitive tracers (Eosin/Sulforhodamin B), and a NAPL-sensitive tracer (Na-Naphthionate). After changing to production mode in October 2012 the pull phase was started. The different behavior of the tracers within the reservoir delivers data about dispersion, sorption properties, matrix interaction and the regional flux. First tracer breakthrough curves point to a significant heterogeneity of the flow pathways and that regional flow is not negligible.
NASA Astrophysics Data System (ADS)
Hillebrand, O.; Nödler, K.; Licha, T.; Geyer, T.
2012-04-01
The application of organic micro-contaminants as indicators for contamination sources in aquifers and surface-water bodies has been increasingly discussed in the literature over the last years. One of the proposed substances was caffeine. It served as indicator for wastewater-leakage to various systems. As well, wastewater volumes could be estimated from caffeine concentrations. Although caffeine is known to be degradable, the degradation rates are normally only determined from mass balances or laboratory experiments. Degradation rates obtained from mass balances are relatively uncertain, as the input-function is difficult to be assessed. Laboratory experiments are hardly capable to consider the full complexity of natural systems and can rarely be transferred to those. To solve this problem, in-situ degradation rates of reactive indicators have to be determined. Especially multitracer tests can be used to access compound-specific transport parameters and degradation rates, relative to conservative tracers. A multitracer test with caffeine and uranine has been performed in a karst system (catchment of the Gallusquelle spring, SW Germany). From the breakthrough curves of the tracers, the transport behavior and the in-situ degradation rate of caffeine could be deduced. The tracers were injected into a sinkhole with a linear distance of 3000 m to the spring. The mean residence time of the tracers was found to be 84 h at a flow velocity of 35 m/h. Throughout the whole experiment, the spring discharge was constant at 187 L/s. Uranine served as conservative reference-tracer for the calibration of a one-dimensional transport model with respect to solute-unspecific parameters. Relative to that, the tracer breakthrough curve of caffeine was interpreted. As solute-specific parameters the retardation coefficient as well as degradation rate of caffeine in the investigated karst aquifer could be determined. The results indicate, that caffeine is slightly retarded in the investigated aquifer (R= 1.031-1.046) and is readily degradable (half-life t1/2= 90-105 h; temperature of the spring water T= 8-9 °C). The degradation rate is surprisingly high. In general, no significant degradation is believed to occur, during the rapid transport in karst systems. The high degradation rates of caffeine illustrate the potential to use this substance as reactive tracer to indicate biological activity within the aquifer. Due to the good degradability of caffeine it does not pose a threat as long-time contamination and can therefore safely be used as reactive tracer in aquifer systems.
Kwicklis, Edward M.; Wolfsberg, Andrew V.; Stauffer, Philip H.; Walvoord, Michelle Ann; Sully, Michael J.
2006-01-01
Multiphase, multicomponent numerical models of long-term unsaturated-zone liquid and vapor movement were created for a thick alluvial basin at the Nevada Test Site to predict present-day liquid and vapor fluxes. The numerical models are based on recently developed conceptual models of unsaturated-zone moisture movement in thick alluvium that explain present-day water potential and tracer profiles in terms of major climate and vegetation transitions that have occurred during the past 10 000 yr or more. The numerical models were calibrated using borehole hydrologic and environmental tracer data available from a low-level radioactive waste management site located in a former nuclear weapons testing area. The environmental tracer data used in the model calibration includes tracers that migrate in both the liquid and vapor phases (??D, ??18O) and tracers that migrate solely as dissolved solutes (Cl), thus enabling the estimation of some gas-phase as well as liquid-phase transport parameters. Parameter uncertainties and correlations identified during model calibration were used to generate parameter combinations for a set of Monte Carlo simulations to more fully characterize the uncertainty in liquid and vapor fluxes. The calculated background liquid and vapor fluxes decrease as the estimated time since the transition to the present-day arid climate increases. However, on the whole, the estimated fluxes display relatively little variability because correlations among parameters tend to create parameter sets for which changes in some parameters offset the effects of others in the set. Independent estimates on the timing since the climate transition established from packrat midden data were essential for constraining the model calibration results. The study demonstrates the utility of environmental tracer data in developing numerical models of liquid- and gas-phase moisture movement and the importance of considering parameter correlations when using Monte Carlo analysis to characterize the uncertainty in moisture fluxes. ?? Soil Science Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, Arthur W; Diehl, J Rodney; Strazisar, Brian R
2012-05-01
Near-surface monitoring and subsurface characterization activities were undertaken in collaboration with the Southwest Regional Carbon Sequestration Partnership on their San Juan Basin coal-bed methane pilot test site near Navajo City, New Mexico. Nearly 18,407 short tons (1.670 × 107 kg) of CO{sub 2} were injected into 3 seams of the Fruitland coal between July 2008 and April 2009. Between September 18 and October 30, 2008, two additions of approximately 20 L each of perfluorocarbon (PFC) tracers were mixed with the CO{sub 2} at the injection wellhead. PFC tracers in soil-gas and in the atmosphere were monitored over a period ofmore » 2 years using a rectangular array of permanent installations. Additional monitors were placed near existing well bores and at other locations of potential leakage identified during the pre-injection site survey. Monitoring was conducted using sorbent containing tubes to collect any released PFC tracer from soil-gas or the atmosphere. Near-surface monitoring activities also included CO{sub 2} surface flux and carbon isotopes, soil-gas hydrocarbon levels, and electrical conductivity in the soil. The value of the PFC tracers was demonstrated when a significant leakage event was detected near an offset production well. Subsurface characterization activities, including 3D seismic interpretation and attribute analysis, were conducted to evaluate reservoir integrity and the potential that leakage of injected CO{sub 2} might occur. Leakage from the injection reservoir was not detected. PFC tracers made breakthroughs at 2 of 3 offset wells which were not otherwise directly observable in produced gases containing 20–30% CO{sub 2}. These results have aided reservoir geophysical and simulation investigations to track the underground movement of CO{sub 2}. 3D seismic analysis provided a possible interpretation for the order of appearance of tracers at production wells.« less
de Diego-Castilla, Graciela; Cruz-Gil, Patricia; Mateo-Martí, Eva; Fernández-Calvo, Patricia; Rivas, Luis A; Parro, Víctor
2011-10-01
Antibody microarrays are becoming frequently used tools for analytical purposes. A key factor for optimal performance is the stability of the immobilized (capturing) antibodies as well as those that have been fluorescently labeled to achieve the immunological test (tracers). This is especially critical for long-distance transport, field testing, or planetary exploration. A number of different environmental stresses may affect the antibody integrity, such as dryness, sudden temperature shift cycles, or, as in the case of space science, exposure to large quantities of the highly penetrating gamma radiation. Here, we report on the effect of certain stabilizing solutions for long-term storage of printed antibody microarrays under different conditions. We tested the effect of gamma radiation on printed and freeze- or vacuum-dried fluorescent antibodies at working concentrations (tracer antibodies), as well as the effect of multiple cycles of sudden and prolonged temperature shifts on the stability of fluorescently labeled tracer antibody cocktails. Our results show that (i) antibody microarrays are stable at room temperature when printed on stabilizing spotting solutions for at least 6 months, (ii) lyophilized and vacuum-dried fluorescently labeled tracer antibodies are stable for more than 9 months of sudden temperature shift cycles (-20°C to 25°C and 50°C), and (iii) both printed and freeze- or vacuum-dried fluorescent tracer antibodies are stable after several-fold excess of the dose of gamma radiation expected during a mission to Mars. Although different antibodies may exhibit different susceptibilities, we conclude that, in general, antibodies are suitable for use in planetary exploration purposes if they are properly treated and stored with the use of stabilizing substances.
Impact of Dean Vortices on the Integrity Testing of a Continuous Viral Inactivation Reactor.
Amarikwa, Linus; Orozco, Raquel; Brown, Matthew; Coffman, Jon
2018-05-26
We propose a standard protocol for integrity testing the residence-time distribution (RTD) in a "Jig in a Box" design (JIB)-a previously described tortuous-path, tubular, low-pH, continuous viral inactivation reactor, ensuring that biopharmaceutical products will be incubated for the required minimum residence time, t min . t min is the time by which just 0.001% of the total product containing virus has exited the incubation chamber (i.e., t 0.00001 ). This t 0.00001 is selected to ensure a >4-log reduction in viral load. As current tracers and in-line analytical technologies may not be able to detect tracers at the 0.001% level, an alternative approach is required. The authors describe a method for deriving t min from t 0.005 (i.e., the time at which 0.5% of the product has emerged from the reactor outlet) and an experimentally confirmed offset value, t offset = t 0.005 -t 0.00001 . The authors also evaluate tracer candidates-including 100-nm-diameter gold nanoparticles, dextrose, monoclonal antibody, and riboflavin-for pre-process acceptability and the effects of viscosity, molecular diffusion coefficient, and particle size. The authors show that a JIB will yield t min and RTDs that are nearly identical for multiple tracers due to Dean vortex induced mixing. Results indicate that almost any small-molecule tracer that is generally recognized as safe can be used in pre-use integrity testing of a continuous viral inactivation reactor under the Deans values (De) of 119-595. © 2018 Boehringer Ingelheim Fremont Inc. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydrologic processes in deep vadose zones in interdrainage arid environments
Walvoord, Michelle Ann; Scanlon, Bridget R.; Hogan, James F.; Phillips, Fred M.; Scanlon, Bridget R.
2004-01-01
A unifying theory for the hydrology of desert vadose zones is particularly timely considering the rising population and water stresses in arid and semiarid regions. Conventional models cannot reconcile the apparent discrepancy between upward flow indicated by hydraulic gradient data and downward flow suggested by environmental tracer data in deep vadose zone profiles. A conceptual model described here explains both hydraulic and tracer data remarkably well by incorporating the hydrologic role of desert plants that encroached former juniper woodland 10 to 15 thousand years ago in the southwestern United States. Vapor transport also plays an important role in redistributing moisture through deep soils, particularly in coarse-grained sediments. Application of the conceptual model to several interdrainage arid settings reproduces measured matric potentials and chloride accumulation by simulating the transition from downward flow to upward flow just below the root zone initiated by climate and vegetation change. Model results indicate a slow hydraulic drying response in deep vadose zones that enables matric potential profiles to be used to distinguish whether precipitation episodically percolated below the root zone or was completely removed via evapotranspiration during the majority of the Holocene. Recharge declined dramatically during the Holocene in interdrainage basin floor settings of arid and semiarid basins. Current flux estimates across the water table in these environmental settings, are on the order of 0.01 to 0.1 mm yr-1 and may be recharge (downward) or discharge (upward) depending on vadose zone characteristics, such as soil texture, geothermal gradient, and water table depth. In summary, diffuse recharge through the basin floor probably contributes only minimally to the total recharge in arid and semiarid basins.
Peterson, Sarah; Ackerman, Joshua T.; Eagles-Smith, Collin A.
2017-01-01
Environmental contaminants are a concern for animal health, but contaminant exposure can also be used as a tracer of foraging ecology. In particular, mercury (Hg) concentrations are highly variable among aquatic and terrestrial food webs as a result of habitat- and site-specific biogeochemical processes that produce the bioaccumulative form, methylmercury (MeHg). We used stable isotopes and total Hg (THg) concentrations of a generalist consumer, the California gull (Larus californicus), to examine foraging ecology and illustrate the utility of using Hg contamination as an ecological tracer under certain conditions. We identified four main foraging clusters of gulls during pre-breeding and breeding, using a traditional approach based on light stable isotopes. The foraging cluster with the highest δ15N and δ34S values in gulls (cluster 4) had mean blood THg concentrations 614% (pre-breeding) and 250% (breeding) higher than gulls with the lowest isotope values (cluster 1). Using a traditional approach of stable-isotope mixing models, we showed that breeding birds with a higher proportion of garbage in their diet (cluster 2: 63–82% garbage) corresponded to lower THg concentrations and lower δ15N and δ34S values. In contrast, gull clusters with higher THg concentrations, which were more enriched in 15N and 34S isotopes, consumed a higher proportion of more natural, estuarine prey. δ34S values, which change markedly across the terrestrial to marine habitat gradient, were positively correlated with blood THg concentrations in gulls. The linkage we observed between stable isotopes and THg concentrations suggests that Hg contamination can be used as an additional tool for understanding animal foraging across coastal habitat gradients.
Schwarz, Timo; Seidl, Christof; Schiemann, Matthias; Senekowitsch-Schmidtke, Reingard; Krause, Bernd Joachim
2016-06-01
Inflammatory cells may contribute to the choline uptake in different prostate pathologies. The aim of this study was (i) to assess if inflammatory cells incorporate choline and (ii) to potentially detect differences compared to FDG uptake. Therefore we investigated the uptake of [(3)H]choline and [(18)F]FDG in human prostate carcinoma cells and human inflammatory cells. Macrophages were cultured from isolated mononuclear cells, gained by density gradient centrifugation of human buffy coats. T-lymphocytes, B-lymphocytes and granulocytes were enriched by density gradient centrifugation before cell sorting by means of flow cytometry was performed. [(3)H]choline and [(18)F]FDG uptake of isolated inflammatory cells as well as of LNCaP and PC-3 human prostate carcinoma cells was assessed simultaneously in dual tracer uptake experiments. Macrophages showed highest [(3)H]choline and [(18)F]FDG uptake compared to the tracer uptake rates of leukocytes. [(3)H]choline uptake of macrophages was in the same range as in prostate cancer cells. Lipopolysaccharide stimulation of macrophages resulted in an increase of [(18)F]FDG uptake in macrophages, but not in an increased [(3)H]choline uptake. The high [(3)H]choline uptake in macrophages may be a source of false-positive PET results in diagnosis of prostate cancer by choline-PET/CT. As already known from FDG-PET, discrimination between tumor and inflammation in prostate cancer patients is not possible via choline-PET. The application of choline-PET for reliable primary prostate cancer detection and delineation has to be queried. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Qiang, Z.; Zhiqiang, Z.; Xu, M.; Jinyu, S.; Jihong, Q.
2017-12-01
The Old Town of Lijiang is famous as the world cultural heritage since 1997, while characterized by its ancient buildings and natural scenery, water is the soul of the town. Around Heilongtan Springs, there are a large quantity of springs at the Old Town of Lijiang , which is an important part of the World Cultural Heritage. Heilongtan Springs is 2420m above the sea level, the annual variation of the flow rate varies greatly (0 8042 x 104 m3 / year). Recharge area Jiuzihai depressions is 6km long, 3km wide and 2800m above sea level, as main karst water recharge area karst funnel and the sink hole are developing on this planation surface, in the research area medium to thick layers of limestone made up Beiya formation (T2b) of Triassic system distributed widely, karst is strongly developed and the fissure caves water occurrence. In order to exploring the application of tracer test in karst hydrogeology, a tracer test was conducted from Jiuzihai depressions to Ganze Spring. Based on the hydrogeological conditions in the study area, tracer test was used for analysis of groundwater connectivity and flow field characteristics, quantitative analysis of Tracer Breakthrough Curves (BTC) with code Qtracer2. The results demonstated that there are hydraulic connection between Jiuzihai depressions with Ganze Spring, and there are other karst conduits in this area. The longitudinal dispersivity coefficient is 0.24 m2/s, longitudinal dispersivity is 12.06m, flow-channel volume is 3.08×104 m3, flow-channel surface area is 3.27×107m2, mean diameter is 1.42m, Reynolds number is 25187, Froude number is 0.0061, respectively. The groundwater in this area is in a slow turbulent state. The results are of great significance to understand the law of groundwater migration, establish groundwater quality prediction model and exploit karst water resources effectively.
Ceazan, M.L.; Thurman, E.M.; Smith, R.L.
1989-01-01
The role of cation exchange in the retardation of ammonium (NH4+) and potassium (K+) transport in a shallow sand and gravel aquifer was evaluated by use of observed distributions of NH4+ and K+ within a plume of sewage-contaminated groundwater, small-scale tracer injection tests, and batch sorption experiments on aquifer material. Both NH4+ and K+ were transported ???2 km in the 4-km-long contaminant plume (retardation factor, Rf = 2.0). Sediments from the NH4+-containing zone of the plume contained significant quantities of KCl-extractable NH4+ (extraction distribution coefficient, Kd,extr = 0.59-0.87 mL/g of dry sediment), and when added to uncontaminated sediments, NH4+ sorption followed a linear isotherm. Small-scale tracer tests demonstrated that NH4+ and K+ were retarded (Rf =3.5) relative to a nonreactive tracer (Br-). Sorption of dissolved NH4+ was accompanied by concomitant release of calcium (Ca2+), magnesium (Mg2+), and sodium (Na+) from aquifer sediments, suggesting involvement of cation exchange. In contrast, nitrate (NO3-) was not retarded and cleanly separated from NH4+ and K+ in the small-scale tracer tests. This study demonstrates that transport of NH4+ and K+ through a sand and gravel aquifer can be markedly affected by cation-exchange processes even at a clay content less than 0.1%.
Hydrologic control of nitrogen removal, storage, and export in a mountain stream
Hall, R.O.; Baker, M.A.; Arp, C.D.; Kocha, B.J.
2009-01-01
Nutrient cycling and export in streams and rivers should vary with flow regime, yet most studies of stream nutrient transformation do not include hydrologic variability. We used a stable isotope tracer of nitrogen (15N) to measure nitrate (NO3) uptake, storage, and export in a mountain stream, Spring Creek, Idaho, U.S.A. We conducted two tracer tests of 2-week duration during snowmelt and baseflow. Dissolved and particulate forms of 15N were monitored over three seasons to test the hypothesis that stream N cycling would be dominated by export during floods, and storage during low flow. Floods exported more N than during baseflow conditions; however, snowmelt floods had higher than expected demand for NO{3 because of hyporheic exchange. Residence times of benthic N during both tracer tests were longer than 100 d for ephemeral pools such as benthic algae and wood biofilms. Residence times were much longer in fine detritus, insects, and the particulate N from the hyporheic zone, showing that assimilation and hydrologic storage can be important mechanisms for retaining particulate N. Of the tracer N stored in the stream, the primary form of export was via seston during periods of high flows, produced by summer rainstorms or spring snowmelt the following year. Spring Creek is not necessarily a conduit for nutrients during high flow; hydrologic exchange between the stream and its valley represents an important storage mechanism.
Schaarschmidt, Benedikt Michael; Gomez, Benedikt; Buchbender, Christian; Grueneisen, Johannes; Nensa, Felix; Sawicki, Lino Morris; Ruhlmann, Verena; Wetter, Axel; Antoch, Gerald; Heusch, Philipp
2017-01-01
We aimed to investigate the accuracy of 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI) compared with contrast-enhanced 18F-FDG PET/computed tomography (PET/CT) for the characterization of incidental tracer uptake in examinations of the head and neck. A retrospective analysis of 81 oncologic patients who underwent contrast-enhanced 18F-FDG PET/CT and subsequent PET/MRI was performed by two readers for incidental tracer uptake. In a consensus reading, discrepancies were resolved. Each finding was either characterized as most likely benign, most likely malignant, or indeterminate. Using all available clinical information including results from histopathologic sampling and follow-up examinations, an expert reader classified each finding as benign or malignant. McNemar's test was used to compare the performance of both imaging modalities in characterizing incidental tracer uptake. Forty-six lesions were detected by both modalities. On PET/CT, 27 lesions were classified as most likely benign, one as most likely malignant, and 18 as indeterminate; on PET/MRI, 31 lesions were classified as most likely benign, one lesion as most likely malignant, and 14 as indeterminate. Forty-three lesions were benign and one lesion was malignant according to the reference standard. In two lesions, a definite diagnosis was not possible. McNemar's test detected no differences concerning the correct classification of incidental tracer uptake between PET/CT and PET/MRI (P = 0.125). In examinations of the head and neck area, incidental tracer uptake cannot be classified more accurately by PET/MRI than by PET/CT.
Solomon, D. Kip; Genereux, David P.; Plummer, Niel; Busenberg, Eurybiades
2010-01-01
We tested three models of mixing between old interbasin groundwater flow (IGF) and young, locally derived groundwater in a lowland rain forest in Costa Rica using a large suite of environmental tracers. We focus on the young fraction of water using the transient tracers CFC‐11, CFC‐12, CFC‐113, SF6, 3H, and bomb 14C. We measured 3He, but 3H/3He dating is generally problematic due to the presence of mantle 3He. Because of their unique concentration histories in the atmosphere, combinations of transient tracers are sensitive not only to subsurface travel times but also to mixing between waters having different travel times. Samples fall into three distinct categories: (1) young waters that plot along a piston flow line, (2) old samples that have near‐zero concentrations of the transient tracers, and (3) mixtures of 1 and 2. We have modeled the concentrations of the transient tracers using (1) a binary mixing model (BMM) of old and young water with the young fraction transported via piston flow, (2) an exponential mixing model (EMM) with a distribution of groundwater travel times characterized by a mean value, and (3) an exponential mixing model for the young fraction followed by binary mixing with an old fraction (EMM/BMM). In spite of the mathematical differences in the mixing models, they all lead to a similar conceptual model of young (0 to 10 year) groundwater that is locally derived mixing with old (>1000 years) groundwater that is recharged beyond the surface water boundary of the system.
NASA Astrophysics Data System (ADS)
White, J. R.; Wang, H.; Jawitz, J. W.; Sees, M. D.
2004-12-01
The Orlando Easterly Wetland (OEW), the largest municipal treatment wetland in Florida, began operation in 1987 mainly for reducing nutrient loads in tertiary treated domestic wastewater produced by the city of Orlando. After more than ten years of operation, a decrease in total P removal effectiveness has occurred since 1999, even though the effluent concentration of the wetland has remained below the permitted limit of 0.2 mg/L,. Hydraulic inefficiency in the wetland, especially in the front-end cells of the north flow train, was identified as a primary cause of the reduced treatment effectiveness. In order to improve the hydraulic performance of the OEW and maintain its efficient phosphorus treatment, a rejuvenation program (including muck removal followed by re-vegetation) was initiated on the front-end cells of the north flow train in 2002. The effectiveness of this activity for the improvement of hydraulic performance was evaluated with a tracer test and subsequent moment and model analyses for the tracer resident time distribution (RTDs). Results were compared to similar tracer tests conducted prior to rejuvenation activities. The models included one-path tank-in-series (TIS), two-path TIS, one-dimensional transport with inflow and storage (OTIS), plug flow with dispersion (PFD), and plug flow with fractional dispersion (PFFD). The hydraulic performance was characterized by both wetland hydraulic efficiency and the spreading of tracers. The results demonstrated that the rejuvenation considerably improved the hydraulic performance in the restored area. Also presented is a comparison of the wetland response between both bromide and lithium tracers, and the determination of the complete moments of residence time distributions (RTD) in cell-network wetlands.
Cardiac PET perfusion tracers: current status and future directions.
Maddahi, Jamshid; Packard, René R S
2014-09-01
PET myocardial perfusion imaging (MPI) is increasingly being used for noninvasive detection and evaluation of coronary artery disease. However, the widespread use of PET MPI has been limited by the shortcomings of the current PET perfusion tracers. The availability of these tracers is limited by the need for an onsite ((15)O water and (13)N ammonia) or nearby ((13)N ammonia) cyclotron or commitment to costly generators ((82)Rb). Owing to the short half-lives, such as 76 seconds for (82)Rb, 2.06 minutes for (15)O water, and 9.96 minutes for (13)N ammonia, their use in conjunction with treadmill exercise stress testing is either not possible ((82)Rb and (15)O water) or not practical ((13)N ammonia). Furthermore, the long positron range of (82)Rb makes image resolution suboptimal and its low myocardial extraction limits its defect resolution. In recent years, development of an (18)F-labeled PET perfusion tracer has gathered considerable interest. The longer half-life of (18)F (109 minutes) would make the tracer available as a unit dose from regional cyclotrons and allow use in conjunction with treadmill exercise testing. Furthermore, the short positron range of (18)F would result in better image resolution. Flurpiridaz F 18 is by far the most thoroughly studied in animal models and is the only (18)F-based PET MPI radiotracer currently undergoing clinical evaluation. Preclinical and clinical experience with Flurpiridaz F 18 demonstrated a high myocardial extraction fraction, high image and defect resolution, high myocardial uptake, slow myocardial clearance, and high myocardial-to-background contrast that was stable over time-important properties of an ideal PET MPI radiotracer. Preclinical data from other (18)F-labeled myocardial perfusion tracers are encouraging. Copyright © 2014. Published by Elsevier Inc.
Effects of plasma proteins on sieving of tracer macromolecules in glomerular basement membrane.
Lazzara, M J; Deen, W M
2001-11-01
It was found previously that the sieving coefficients of Ficoll and Ficoll sulfate across isolated glomerular basement membrane (GBM) were greatly elevated when BSA was present at physiological levels, and it was suggested that most of this increase might have been the result of steric interactions between BSA and the tracers (5). To test this hypothesis, we extended the theory for the sieving of macromolecular tracers to account for the presence of a second, abundant solute. Increasing the concentration of an abundant solute is predicted to increase the equilibrium partition coefficient of a tracer in a porous or fibrous membrane, thereby increasing the sieving coefficient. The magnitude of this partitioning effect depends on solute size and membrane structure. The osmotic reduction in filtrate velocity caused by an abundant, mostly retained solute will also tend to elevate the tracer sieving coefficient. The osmotic effect alone explained only about one-third of the observed increase in the sieving coefficients of Ficoll and Ficoll sulfate, whereas the effect of BSA on tracer partitioning was sufficient to account for the remainder. At physiological concentrations, predictions for tracer sieving in the presence of BSA were found to be insensitive to the assumed shape of the protein (sphere or prolate spheroid). For protein mixtures, the theoretical effect of 6 g/dl BSA on the partitioning of spherical tracers was indistinguishable from that of 3 g/dl BSA and 3 g/dl IgG. This suggests that for partitioning and sieving studies in vitro, a good experimental model for plasma is a BSA solution with a mass concentration matching that of total plasma protein. The effect of plasma proteins on tracer partitioning is expected to influence sieving not only in isolated GBM but also in intact glomerular capillaries in vivo.
Tracer Methods for Characterizing Fracture Creation in Engineered Geothermal Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Peter; Harris, Joel
2014-05-08
The aim of this proposal is to develop, through novel high-temperature-tracing approaches, three technologies for characterizing fracture creation within Engineered Geothermal Systems (EGS). The objective of a first task is to identify, develop and demonstrate adsorbing tracers for characterizing interwell reservoir-rock surface areas and fracture spacing. The objective of a second task is to develop and demonstrate a methodology for measuring fracture surface areas adjacent to single wells. The objective of a third task is to design, fabricate and test an instrument that makes use of tracers for measuring fluid flow between newly created fractures and wellbores. In one methodmore » of deployment, it will be used to identify qualitatively which fractures were activated during a hydraulic stimulation experiment. In a second method of deployment, it will serve to measure quantitatively the rate of fluid flowing from one or more activated fracture during a production test following a hydraulic stimulation.« less
Development and application of a modified wireless tracer for disaster prevention
NASA Astrophysics Data System (ADS)
Chung Yang, Han; Su, Chih Chiang
2016-04-01
Typhoon-induced flooding causes water overflow in a river channel, which results in general and bridge scour and soil erosion, thus leading to bridge failure, debris flow and landslide collapse. Therefore, dynamic measurement technology should be developed to assess scour in channels and landslide as a disaster-prevention measure against bridge failure and debris flow. This paper presents a wireless tracer that enables monitoring general scour in river channels and soil erosion in hillsides. The wireless tracer comprises a wireless high-power radio modem, various electronic components, and a self-designed printed circuit board that are all combined with a 9-V battery pack and an auto switch. The entire device is sealed in a jar by silicon. After it was modified, the wireless tracer underwent the following tests for practical applications: power continuation and durability, water penetration, and signal transmission during floating. A regression correlation between the wireless tracer's transmission signal and distance was also established. This device can be embedded at any location where scouring is monitored, and, in contrast to its counterparts that detect scour depth by identifying and analyzing received signals, it enables real-time observation of the scouring process. In summary, the wireless tracer developed in this study provides a dynamic technology for real-time monitoring of scouring (or erosion) and forecasting of landslide hazards. Keywords: wireless tracer; scour; real-time monitoring; landslide hazard.
Numerical model of a tracer test on the Santa Clara River, Ventura County, California
Nishikawa, Tracy; Paybins, Katherine S.; Izbicki, John A.; Reichard, Eric G.
1999-01-01
To better understand the flow processes, solute-transport processes, and ground-water/surface-water interactions on the Santa Clara River in Ventura County, California, a 24-hour fluorescent-dye tracer study was performed under steady-state flow conditions on a 45-km reach of the river. The study reach includes perennial (uppermost and lowermost) subreaches and ephemeral subreaches of the lower Piru Creek and the middle Santa Clara River. The tracer-test data were used to calibrate a one-dimensional flow model (DAFLOW) and a solute-transport model (BLTM). The dye-arrival times at each sample location were simulated by calibrating the velocity parameters in DAFLOW. The simulations of dye transport indicated that (1) ground-water recharge explains the loss of mass in the ephemeral middle subreaches, and (2) groundwater recharge does not explain the loss of mass in the perennial uppermost and lowermost subreaches. The observed tracer curves in the perennial subreaches were indicative of sorptive dye losses, transient storage, and (or) photodecay - these phenomena were simulated using a linear decay term. However, analysis of the linear decay terms indicated that photodecay was not a dominant source of dye loss.To better understand the flow processes, solute-transport processes, and ground-water/surface-water interactions on the Santa Clara River in Ventura County, California, a 24-hour fluorescent-dye tracer study was performed under steady-state flow conditions on a 45-km reach of the river. The study reach includes perennial (uppermost and lowermost) subreaches and ephemeral subreaches of the lower Piru Creek and the middle Santa Clara River. The tracer-test data were used to calibrate a one-dimension-al flow model (DAFLOW) and a solute-transport model (BLTM). The dye-arrival times at each sample location were simulated by calibrating the velocity parameters in DAFLOW. The simulations of dye transport indicated that (1) ground-water recharge explains the loss of mass in the ephemeral middle subreaches, and (2) ground-water recharge does not explain the loss of mass in the perennial uppermost and lowermost subreaches. The observed tracer curves in the perennial subreaches were indicative of sorptive dye losses, transient storage, and (or) photodecay - these phenomena were simulated using a linear decay term. However, analysis of the linear decay terms indicated that photodecay was not a dominant source of dye loss.
Simple test of intestinal calcium absorption measured by stable strontium.
Milsom, S; Ibbertson, K; Hannan, S; Shaw, D; Pybus, J
1987-01-01
A clinical test of intestinal calcium absorption has been developed using non-radioactive stable strontium as a calcium tracer. In nine elderly subjects there was a close correlation between the fractional absorption of strontium and radioactive calcium (45Ca) during a five hour period after the simultaneous oral administration of the two tracers. Comparable precision was achieved with each tracer in six subjects in whom the test was repeated after two weeks. The effect of food on strontium absorption was examined in a further 33 normal subjects (age 21-60 years), and the administration of the strontium with a standard breakfast was shown to reduce the variance at individual time points. A simplified test in which serum strontium concentration was measured four hours after the oral dose given with a standard breakfast was adopted as the routine procedure. The normal range (mean (2 SD], established over 97 tests in 53 patients, was 7.0-18.0% of the dose in the extracellular fluid. A further 30 patients with possible disorders of calcium absorption (10 with primary hyperparathyroidism and 20 with coeliac disease) were studied by this standard test. In both groups of patients the mean four hour strontium values were significantly different from normal. This standard strontium absorption test allows assessment of calcium absorption with sufficient sensitivity and precision to have a wide application in clinical practice. PMID:3115389
Temporal evolution of age data under transient pumping conditions
NASA Astrophysics Data System (ADS)
Leray, S.; De Dreuzy, J.; Aquilina, L.; Vergnaud, V.; Labasque, T.; Bour, O.; Le Borgne, T.
2013-12-01
While most age data derived from tracers have been analyzed in steady-state flow conditions, we determine their temporal evolution under transient pumping conditions. Starting pumping in a well modifies the natural flow patterns induced by the topographical gradient to a mainly convergent flow to the well. Our study is based on a set of models made up of a shallowly dipping aquifer overlain by a less permeable aquitard. These settings are characteristic of the crystalline aquifer of Plœmeur (Brittany, France) located in a highly fractured zone at the contact between a granite and micaschists. Under a pseudo steady-state flow assumption (instantaneous shift between two steady-state flow fields), we solve the transport equation with a backward particle-tracking method and determine the temporal evolution of the concentrations at the pumping well of the four atmospheric tracers CFC 11, CFC 12, CFC 113 and SF6. We show that apparent ages deduced from these concentrations evolve both because of the flow patterns modifications and because of the non-linear evolution of the atmospheric tracer concentrations. Flow patterns modifications only intervene just after the start of pumping, when the initially piston-like residence time distribution is transformed to a broader distribution mixing residence times from a wide variety of flow lines. Later, while flow patterns and the supplying volume of the pumping well still evolve, the residence time distributions are hardly modified and apparent ages are solely altered by the non-linear atmospheric tracer concentrations that progressively modifies the weighting of the residence time distribution. These results are confirmed by the observations at the site of Plœmeur in the pumping area. First, long term chloride observations confirm the quick evolution of the flow patterns after the start of pumping. Second, posterior and more recent evolutions of apparent ages derived from CFCs are consistent with the modeling results revealing in turn the marginal effect of the 20-year pumping on the first 70 years of the residence time distribution. We conclude that the temporal evolution of apparent ages should be used with great care for identifying the temporal evolution of the flow patterns as the apparent age evolution can have two sources - the transient flow patterns and transient tracer atmospheric concentrations. We argue that both evolutions either controlled by transient flow patterns or by transient tracer atmospheric concentrations provide key information that can be further used for the characterization of the hydrogeological system. This study illustrates that the temporal evolution of apparent ages could be used for models segregation and slightly compensate for the small number of tracers.
Hren, Janet
1983-01-01
Reaeration coefficients of the North Fork Licking River at Utica, Ohio were measured by the radioactive-tracer method. The tests were conducted on a 2.1-mile reach on September 23 and October 7, 1981, during low-flow conditions. Krypton-85 gas and tritium were the radioopactive tracers, which were used in conjunction with rhodamine-WT dye. The reaertion coefficients determined on September 23 were 3.09 days-1 (subreach 1-2) and 3.32 days-1 (subreach 2-3). On October 7, the values were 2.04 days -1 and 2.23 days-1 respectively.
Senior, Lisa A.; Gyves, Matthew C.
2010-01-01
Time-of-travel, dispersion characteristics, and oxygen reaeration coefficients were determined by use of dye and gas tracing for a 2-mile reach of Tacony/Frankford Creek in Philadelphia, southeastern Pennsylvania. The reach frequently has concentrations of dissolved oxygen (DO) below the water-quality standard of 4 milligrams per liter during warm months. Several large combined sewer overflows (CSOs), including one of the largest in Philadelphia (former Wingohocking Creek), discharge to the study reach in this urbanized watershed, affecting water quality and the timing and magnitude of storm peaks. In addition, a dam that commonly results in backwater conditions and reduced natural reaeration is present a few hundred feet from the end of the study reach. Time-of-travel and reaeration data were collected under base-flow conditions in August and September 2009 for three sub-reaches from Roosevelt Boulevard (U.S. Route 1) to Castor Avenue. Determination of traveltimes to the centroid of the dye cloud were needed for calculation of the reaeration coefficients. Results of the dye study in Tacony/Frankford Creek indicate that traveltimes were affected by the presence of man-made structures, such as the large scour hole and pool developed at the outfall of the T14 CSO and the dam, both of which reduce stream velocities. Mean stream velocities during the dye-tracer tests ranged from a maximum of 0.44 to 0.04 foot per second through a large pool. The dispersion efficiency of the stream was determined from relations between normalized unit concentrations to time to peak for use in water-quality modeling. Oxygen reaeration coefficients determined by a constant rate-injection method using propane as the tracer gas were as low as 0.04 unit per hour in a long pool affected by backwater conditions behind a dam. The highest reaeration coefficient was 2.29 units per hour for a steep-gradient reach with multiple winding channels through gravel deposits, just downstream of a large scour pool developed at the outlet of the T14 CSO. Reaeration coefficients determined from the field tracer-gas method were compared to values calculated by two other methods, one that is based on theoretical equations using physical properties of the stream as variables and the other that is based on equations using the timing of measured daily maximum DO concentrations in the stream. Reaeration coefficients from the two alternate methods were most similar to values determined from the field tracer-gas method for the upstream portion of the study reach, characterized by free-flowing riffle and pools. Values of reaeration coefficients determined by the tracer-gas method were 2 to 10 times higher than values determined by 2 alternate methods for most subreaches hydraulically affected by man-made structures. In addition to the tracer gas, propane, the gas analysis also included methane, ethane, and ethene, of which only methane was measured in concentrations above a few micrograms per liter. Methane, thought to occur naturally or because of ongoing processes in the stream, was measured in concentrations ranging from 6.6 to 78 micrograms per liter; the concentrations were greatest in sub-reaches dominated by pools.
Multimodel analysis of anisotropic diffusive tracer-gas transport in a deep arid unsaturated zone
Green, Christopher T.; Walvoord, Michelle Ann; Andraski, Brian J.; Striegl, Robert G.; Stonestrom, David A.
2015-01-01
Gas transport in the unsaturated zone affects contaminant flux and remediation, interpretation of groundwater travel times from atmospheric tracers, and mass budgets of environmentally important gases. Although unsaturated zone transport of gases is commonly treated as dominated by diffusion, the characteristics of transport in deep layered sediments remain uncertain. In this study, we use a multimodel approach to analyze results of a gas-tracer (SF6) test to clarify characteristics of gas transport in deep unsaturated alluvium. Thirty-five separate models with distinct diffusivity structures were calibrated to the tracer-test data and were compared on the basis of Akaike Information Criteria estimates of posterior model probability. Models included analytical and numerical solutions. Analytical models provided estimates of bulk-scale apparent diffusivities at the scale of tens of meters. Numerical models provided information on local-scale diffusivities and feasible lithological features producing the observed tracer breakthrough curves. The combined approaches indicate significant anisotropy of bulk-scale diffusivity, likely associated with high-diffusivity layers. Both approaches indicated that diffusivities in some intervals were greater than expected from standard models relating porosity to diffusivity. High apparent diffusivities and anisotropic diffusivity structures were consistent with previous observations at the study site of rapid lateral transport and limited vertical spreading of gas-phase contaminants. Additional processes such as advective oscillations may be involved. These results indicate that gases in deep, layered unsaturated zone sediments can spread laterally more quickly, and produce higher peak concentrations, than predicted by homogeneous, isotropic diffusion models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapuyade-Lahorgue, J; Ruan, S; Li, H
Purpose: Multi-tracer PET imaging is getting more attention in radiotherapy by providing additional tumor volume information such as glucose and oxygenation. However, automatic PET-based tumor segmentation is still a very challenging problem. We propose a statistical fusion approach to joint segment the sub-area of tumors from the two tracers FDG and FMISO PET images. Methods: Non-standardized Gamma distributions are convenient to model intensity distributions in PET. As a serious correlation exists in multi-tracer PET images, we proposed a new fusion method based on copula which is capable to represent dependency between different tracers. The Hidden Markov Field (HMF) model ismore » used to represent spatial relationship between PET image voxels and statistical dynamics of intensities for each modality. Real PET images of five patients with FDG and FMISO are used to evaluate quantitatively and qualitatively our method. A comparison between individual and multi-tracer segmentations was conducted to show advantages of the proposed fusion method. Results: The segmentation results show that fusion with Gaussian copula can receive high Dice coefficient of 0.84 compared to that of 0.54 and 0.3 of monomodal segmentation results based on individual segmentation of FDG and FMISO PET images. In addition, high correlation coefficients (0.75 to 0.91) for the Gaussian copula for all five testing patients indicates the dependency between tumor regions in the multi-tracer PET images. Conclusion: This study shows that using multi-tracer PET imaging can efficiently improve the segmentation of tumor region where hypoxia and glucidic consumption are present at the same time. Introduction of copulas for modeling the dependency between two tracers can simultaneously take into account information from both tracers and deal with two pathological phenomena. Future work will be to consider other families of copula such as spherical and archimedian copulas, and to eliminate partial volume effect by considering dependency between neighboring voxels.« less
NASA Astrophysics Data System (ADS)
JøRgensen, Peter R.; Hoffmann, Martin; Kistrup, Jens P.; Bryde, Claus; Bossi, Rossana; Villholth, Karen G.
2002-11-01
This study investigates vertical flow and pesticide transport along fractures in water saturated unoxidized clayey till. From two experimental fields, each 40 m2, 96% and 98%, respectively, of total vertical flow was conducted along fractures in the till, while the remaining 2-4% of flow occurred in the clay matrix at very slow flow rate. An applied dye tracer was observed only along 10-26% of the total fracture length measured on the horizontal surface of the experimental fields. In vertical sections the dyed fracture portions constituted root channels, which penetrated the till vertically along the fractures into the local aquifer at 5 m depth. No dye tracer was observed in the fractures without root channels or in the unfractured clay matrix, suggesting that root growth along the fracture surfaces was the principal agent of fracture aperture enhancement. Using hydraulic fracture aperture values determined from large undisturbed column (LUC) collected from one of the experimental fields, it was estimated that 94% of flow in the fractures was conducted along the fracture root channels, while only 6% of flow was conducted along the fracture sections without root channels. For natural vertical hydraulic gradients (0.8-2.3 at the site), flow rates of 0.8-2 km/d were determined for a fracture root channel, while fracture sections without root channels revealed flow rates of 9-22 m/d. Corresponding flow rates in the unfractured matrix were 7-19 mm/yr. For infiltrated bromide (nonreactive tracer) and mobile pesticides mecoprop (MCPP) and metsulfuron, very rapid migration (0.28-0.5 m/d) and high relative breakthrough concentrations (30-60%) into the aquifer were observed to occur along the fracture root channels using a constant hydraulic gradient of 1. Only traces were measured from infiltration of the strongly sorbed pesticide prochloraz. The concentrations of the bromide and pesticides in the monitoring wells were modeled with a discrete fracture matrix diffusion (DFDM) model coupled with a single porosity model (SP) for the till and aquifer, respectively. Using effective fracture spacings and mean fracture apertures for the fracture channel sections as modeling input parameters for the till, the concentrations observed in the wells of the aquifer could be reasonably approximated.
NASA Astrophysics Data System (ADS)
Hou, Xuewei; Zhu, Bin; Kang, Hanqing; Gao, Jinhui
2014-09-01
The ozone (O3) budget in the boundary layer of the Asia-Pacific region (AP) was studied from 2001 to 2007 using the output of Model of Ozone and Related chemical Tracers, version 4 (MOZART-4). The model-simulated O3 data agree well with observed values. O3 budget analysis using the model output confirms that the dominant factor controlling seasonal variation of O3 differs by region. Photochemistry was found to play a critical role over Japan, the Korean Peninsula and Eastern China. Over the northwestern Pacific Ocean, advective flux was found to drive the seasonal variation of O3 concentrations. The large latitudinal gradient in O3 with a maximum of 52 ppbv over the marine boundary layer around 35°N during the spring was mainly due to chemistry; meanwhile, advection was found to weaken the gradient. The contribution of stratospheric O3 was ranked second (20%) to the local contribution (25%) in Japan and the Korean Peninsula near 35°N. The rate of O3 export from China's boundary layer was the highest (approximately 30%) in low latitudes and decreased with increasing latitude, while the contribution of North America and Europe increased with increasing latitude, from 10% in lower latitudes to 24% in higher latitudes.
Flow Analysis of a Rising Crude Oil Micro-Droplet Affected by Attached Microbial Streamers
NASA Astrophysics Data System (ADS)
Amaro, Matthew; White, Andrew; Jalali, Maryam; Sheng, Jian
2017-11-01
Microfluidic experiments show bacteria flowing past a pinned crude oil droplet produce microbial aggregates and streamers on the oil-water interface. High speed DIC microscopy at 1000 fps for 1 sec with a sampling interval of 10 min captures the evolving flow and bacterial motility as well as adhesion, aggregation and streamer events. With bacteria as tracers, velocity measurements are acquired with in-house PIV-assisted PTV software. Flow fields with spatial resolution 2.5 μm are measured around an O(100) μm drop in a 700 ×700 μm window. Full budgets of the 2D Navier-Stokes equation are faithfully resolved to determine pressure gradients by performing the balance over a control volume enclosing the droplet. Pressure gradients are integrated over the border of the control region to obtain pressure profiles at the leading and trailing edges. A momentum balance can be used to determine the drag induced by the drop and any attached streamers. Cases with and without streamers and their differing flow features are presented. Additionally streamers produce nonzero curl in the pressure gradient field providing a tool for identifying the position of otherwise invisible streamers. Ongoing experiments and future applications of the tools presented here will be discussed. Funded by GoMRI, NSF, ARO.
Application of new point measurement device to quantify groundwater-surface water interactions
NASA Astrophysics Data System (ADS)
Cremeans, M. M.; Devlin, J. F.; McKnight, U. S.; Bjerg, P. L.
2018-04-01
The streambed point velocity probe (SBPVP) measures in situ groundwater velocities at the groundwater-surface water interface without reliance on hydraulic conductivity, porosity, or hydraulic gradient information. The tool operates on the basis of a mini-tracer test that occurs on the probe surface. The SBPVP was used in a meander of the Grindsted Å (stream), Denmark, to determine the distribution of flow through the streambed. These data were used to calculate the contaminant mass discharge of chlorinated ethenes into the stream. SBPVP data were compared with velocities estimated from hydraulic head and temperature gradient data collected at similar scales. Spatial relationships of water flow through the streambed were found to be similar by all three methods, and indicated a heterogeneous pattern of groundwater-surface water exchange. The magnitudes of estimated flow varied to a greater degree. It was found that pollutants enter the stream in localized regions of high flow which do not always correspond to the locations of highest pollutant concentration. The results show the combined influence of flow and concentration on contaminant discharge and illustrate the advantages of adopting a flux-based approach to risk assessment at the groundwater-surface water interface. Chlorinated ethene mass discharges, expressed in PCE equivalents, were determined to be up to 444 kg/yr (with SBPVP data) which compared well with independent estimates of mass discharge up to 438 kg/yr (with mini-piezometer data from the streambed) and up to 372 kg/yr crossing a control plane on the streambank (as determined in a previous, independent study).
Method and apparatus for container leakage testing
Kronberg, James W.
1995-01-01
An apparatus for use in one-hundred percent leak testing of food containers used in conjunction with a tracer gas. The apparatus includes a shell with entrance and exit air locks to create a controlled atmosphere through which a series of containers is conveyed by a conveyor belt. The pressure in the shell is kept lower than the pressure in the containers and the atmosphere is made to flow with the containers so that a tracer gas placed in the packages before sealing them will leak more readily, but the leaked tracer gas will remain associated with the leaking package as it moves through the shell. The leaks are detected with a sniffer probe in fluid communication with a gas chromatograph. The gas chromatograph issues a signal when it detects a leak to an ejector that will eject the leaking container from the conveyor. The system is timed so that the series of containers can move continuously into and out of the shell, past the probe and the ejector, without stopping, yet each package is tested for leaks and removed if leaking.
Chemical Tracers as an Indicator of Transport in the UT/LS
NASA Astrophysics Data System (ADS)
Moore, F. L.; Hurst, D. F.; Elkins, J. W.; Nance, J. D.; Dutton, G. S.; Hall, B. D.
2009-12-01
Previous airborne studies have proven the scientific value of chemical tracers in examining transport of the Upper Troposphere and Lower Stratosphere (UT/LS). ESRL scientists operated two airborne gas chromatographs on the NCAR G-V during the NSF sponsored Stratosphere-Troposphere Analyses of Regional Transport START-08 campaign over the midlatitudes of central North America. The Unmanned aircraft systems Chromatograph for Atmospheric Trace Species (UCATS) is comprised of a two-channel electron capture detection-gas chromatograph (ECD-GC), an ozone absorption photometer, and a water vapor tunable diode laser spectrometer. It measures N2O and SF6 every 70 seconds on one EC-GC channel, and H2, CO, and CH4 every 140 seconds on the second channel. PAN and Trace Hydrohalocarbon ExpeRiment (PANTHER) is a six-channel gas chromatograph with four ECD-GC channels and two mass selective detector-gas chromatograph (MSD-GC) channels that double the sampling rate to 180 seconds by using two traps and columns. The ECD-GC channels measure N2O, SF6, CFC-11, CFC-12, halon-1211, and PAN once every 70 seconds, H2, CH4, and CO once every 140 seconds. The two MSD-GC channels measure methyl halides (CH3I, CH3Cl, CH3I), HCFCs (22, 141b, 142b), HFC-134a, sulfur gases (COS and CS2) once every 180 seconds. These data represent a diversity of atmospheric lifetimes and are useful in examining transport in UT/LS. One example is the tracer-tracer correlation plot of N2O versus SF6, which shows three distinction regions of transport, LS, tropospause transition, and UT. Tropospheric gradients for both gases are apparent in the UT region. Other correlations will be shown in this presentation. A comparison of common species measured between UCATS and PANTHER shows a better than one percent agreement between the two instruments.
Briggs, Martin A.; Lautz, Laura; Hare, Danielle K.
2013-01-01
¨hler number seemed to overestimate the actual transition as indicated by multiple secondary electron acceptors, illustrating the gradient nature of anaerobic transition. Temporal flux variability in low-flux morphologies generated a much greater range in hyporheic redox conditions compared to high-flux zones, and chemical responses to changing flux rates were consistent with those predicted from the empirical relationship between redox condition and residence time. The Raz tracer revealed that hyporheic flow paths have strong net aerobic respiration, particularly at higher residence time, but this reactive exchange did not affect the net stream signal at the reach scale.
Tracing Thermal Creep Through Granular Media
NASA Astrophysics Data System (ADS)
Steinpilz, Tobias; Teiser, Jens; Koester, Marc; Schywek, Mathias; Wurm, Gerhard
2017-08-01
A temperature gradient within a granular medium at low ambient pressure drives a gas flow through the medium by thermal creep. We measured the resulting air flow for a sample of glass beads with particle diameters between 290 μ m and 420 μ m for random close packing. Ambient pressure was varied between 1 Pa and 1000 Pa. The gas flow was quantified by means of tracer particles during parabolic flights. The flow varies systematically with pressure between 0.2 cm/s and 6 cm/s. The measured flow velocities are in quantitative agreement to model calculations that treat the granular medium as a collection of linear capillaries.
Semiclassical Wheeler-DeWitt equation: Solutions for long-wavelength fields
NASA Astrophysics Data System (ADS)
Salopek, D. S.; Stewart, J. M.; Parry, J.
1993-07-01
In the long-wavelength approximation, a general set of semiclassical wave functionals is given for gravity and matter interacting in 3+1 dimensions. In the long-wavelength theory, one neglects second-order spatial gradients in the energy constraint. These solutions satisfy the Hamilton-Jacobi equation, the momentum constraint, and the equation of continuity. It is essential to introduce inhomogeneities to discuss the role of time. The time hypersurface is chosen to be a homogeneous field in the wave functional. It is shown how to introduce tracer particles through a dust field χ into the dynamical system. The formalism can be used to describe stochastic inflation.
NASA Astrophysics Data System (ADS)
Omori, Yuko; Tanimoto, Hiroshi; Inomata, Satoshi; Ikeda, Kohei; Iwata, Toru; Kameyama, Sohiko; Uematsu, Mitsuo; Gamo, Toshitaka; Ogawa, Hiroshi; Furuya, Ken
2017-07-01
Exchange of dimethyl sulfide (DMS) between the surface ocean and the lower atmosphere was examined by using proton transfer reaction-mass spectrometry coupled with the gradient flux (PTR-MS/GF) system. We deployed the PTR-MS/GF system and observed vertical gradients of atmospheric DMS just above the sea surface in the subtropical and transitional South Pacific Ocean and the subarctic North Pacific Ocean. In total, we obtained 370 in situ profiles, and of these we used 46 data sets to calculate the sea-to-air flux of DMS. The DMS flux determined was in the range from 1.9 to 31 μmol m-2 d-1 and increased with wind speed and biological activity, in reasonable accordance with previous observations in the open ocean. The gas transfer velocity of DMS derived from the PTR-MS/GF measurements was similar to either that of DMS determined by the eddy covariance technique or that of insoluble gases derived from the dual tracer experiments, depending on the observation sites located in different geographic regions. When atmospheric conditions were strongly stable during the daytime in the subtropical ocean, the PTR-MS/GF observations captured a daytime versus nighttime difference in DMS mixing ratios in the surface air overlying the ocean surface. The difference was mainly due to the sea-to-air DMS emissions and stable atmospheric conditions, thus affecting the gradient of DMS. This indicates that the DMS gradient is strongly controlled by diurnal variations in the vertical structure of the lower atmosphere above the ocean surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarman, Sten, E-mail: sarman@ownit.nu; Wang, Yong-Lei; Laaksonen, Aatto
The self-diffusion coefficients of nematic phases of various model systems consisting of regular convex calamitic and discotic ellipsoids and non-convex bodies such as bent-core molecules and soft ellipsoid strings have been obtained as functions of the shear rate in a shear flow. Then the self-diffusion coefficient is a second rank tensor with three different diagonal components and two off-diagonal components. These coefficients were found to be determined by a combination of two mechanisms, which previously have been found to govern the self-diffusion of shearing isotropic liquids, namely, (i) shear alignment enhancing the diffusion in the direction parallel to the streamlinesmore » and hindering the diffusion in the perpendicular directions and (ii) the distortion of the shell structure in the liquid whereby a molecule more readily can escape from a surrounding shell of nearest neighbors, so that the mobility increases in every direction. Thus, the diffusion parallel to the streamlines always increases with the shear rate since these mechanisms cooperate in this direction. In the perpendicular directions, these mechanisms counteract each other so that the behaviour becomes less regular. In the case of the nematic phases of the calamitic and discotic ellipsoids and of the bent core molecules, mechanism (ii) prevails so that the diffusion coefficients increase. However, the diffusion coefficients of the soft ellipsoid strings decrease in the direction of the velocity gradient because the broadsides of these molecules are oriented perpendicularly to this direction due the shear alignment (i). The cross coupling coefficient relating a gradient of tracer particles in the direction of the velocity gradient and their flow in the direction of the streamlines is negative and rather large, whereas the other coupling coefficient relating a gradient in the direction of the streamlines and a flow in the direction of the velocity gradient is very small.« less
NASA Astrophysics Data System (ADS)
McKain, K.; Sweeney, C.; Stephens, B. B.; Long, M. C.; Jacobson, A. R.; Basu, S.; Chatterjee, A.; Weir, B.; Wofsy, S. C.; Atlas, E. L.; Blake, D. R.; Montzka, S. A.; Stern, R.
2017-12-01
The Southern Ocean plays an important role in the global carbon cycle and climate system, but net CO2 flux into the Southern Ocean is difficult to measure and model because it results from large opposing and seasonally-varying fluxes due to thermal forcing, biological uptake, and deep-water mixing. We present an analysis to constrain the seasonal cycle of net CO2 exchange with the Southern Ocean, and the magnitude of summer uptake, using the vertical gradients in atmospheric CO2 observed during three aircraft campaigns in the southern polar region. The O2/N2 Ratio and CO2 Airborne Southern Ocean Study (ORCAS) was an airborne campaign that intensively sampled the atmosphere at 0-13 km altitude and 45-75 degrees south latitude in the austral summer (January-February) of 2016. The global airborne campaigns, the HIAPER Pole-to-Pole Observations (HIPPO) study and the Atmospheric Tomography Mission (ATom), provide additional measurements over the Southern Ocean from other seasons and multiple years (2009-2011, 2016-2017). Derivation of fluxes from measured vertical gradients requires robust estimates of the residence time of air in the polar tropospheric domain, and of the contribution of long-range transport from northern latitudes outside the domain to the CO2 gradient. We use diverse independent approaches to estimate both terms, including simulations using multiple transport and flux models, and observed gradients of shorter-lived tracers with specific sources regions and well-known loss processes. This study demonstrates the utility of aircraft profile measurements for constraining large-scale air-sea fluxes for the Southern Ocean, in contrast to those derived from the extrapolation of sparse ocean and atmospheric measurements and uncertain flux parameterizations.
NASA Astrophysics Data System (ADS)
Dhavalikar, Rohan; Rinaldi, Carlos
2016-12-01
Magnetic nanoparticles in alternating magnetic fields (AMFs) transfer some of the field's energy to their surroundings in the form of heat, a property that has attracted significant attention for use in cancer treatment through hyperthermia and in developing magnetic drug carriers that can be actuated to release their cargo externally using magnetic fields. To date, most work in this field has focused on the use of AMFs that actuate heat release by nanoparticles over large regions, without the ability to select specific nanoparticle-loaded regions for heating while leaving other nanoparticle-loaded regions unaffected. In parallel, magnetic particle imaging (MPI) has emerged as a promising approach to image the distribution of magnetic nanoparticle tracers in vivo, with sub-millimeter spatial resolution. The underlying principle in MPI is the application of a selection magnetic field gradient, which defines a small region of low bias field, superimposed with an AMF (of lower frequency and amplitude than those normally used to actuate heating by the nanoparticles) to obtain a signal which is proportional to the concentration of particles in the region of low bias field. Here we extend previous models for estimating the energy dissipation rates of magnetic nanoparticles in uniform AMFs to provide theoretical predictions of how the selection magnetic field gradient used in MPI can be used to selectively actuate heating by magnetic nanoparticles in the low bias field region of the selection magnetic field gradient. Theoretical predictions are given for the spatial decay in energy dissipation rate under magnetic field gradients representative of those that can be achieved with current MPI technology. These results underscore the potential of combining MPI and higher amplitude/frequency actuation AMFs to achieve selective magnetic fluid hyperthermia (MFH) guided by MPI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, S.C.
1993-08-01
This report discusses a field demonstration of a methodology for characterizing an aquifer's geohydrology in the detail required to design an optimum network of wells and/or infiltration galleries for bioreclamation systems. The project work was conducted on a 1-hectare test site at Columbus AFB, Mississippi. The technical report is divided into two volumes. Volume I describes the test site and the well network, the assumptions, and the application of equations that define groundwater flow to a well, the results of three large-scale aquifer tests, and the results of 160 single-pump tests. Volume II describes the bore hole flowmeter tests, themore » tracer tests, the geological investigations, the geostatistical analysis and the guidelines for using groundwater models to design bioreclamation systems. Site characterization, Hydraulic conductivity, Groundwater flow, Geostatistics, Geohydrology, Monitoring wells.« less
Comparison of gadopentetic acid (Gd-DTPA) and bromide in a dual-tracer field experiment
NASA Astrophysics Data System (ADS)
Dulski, Peter; Möller, Peter; Pekdeger, Asaf
2011-06-01
At a test site consisting of a storage pond and connected artificial aquifer, the long-time behaviour of gadopentetic acid (Gd-DTPA) was compared with the classic tracer bromide (Br-) in a 70-day dual-tracer experiment. The mixed tracer solution was injected into the oligotrophic pond, which is separated from the aquifer by an infiltration bank. The water drained from the aquifer was returned to the pond together with additional fresh groundwater, causing reduced concentrations of Gd-DTPA and Br- in the system. Transmetallation of Gd-DTPA by rare earth elements and yttrium was negligible but Cu2+ and Ni2+ might have played a role. Adsorption and/or biodegradation of Gd-DTPA were negligible. The decline of Gd-DTPA/Br ratios by 18% in the pond over 68 days was caused by reversible sorption of Br- in the aquifer, which caused variation of Br- background. Thus, Br- behaves less conservatively than Gd-DTPA in the aquifer. Comparison of both proves the suitability of Gd-chelates as tracers in hydrological studies. The advantage of Gd-DTPA as a tracer is that natural Gd3+ in water can continuously be monitored by analysing the suite of naturally occurring rare-earth elements. Thus, stable organic Gd-chelates are determinable with high precision at very low concentrations.
Ambient changes in tracer concentrations from a multilevel monitoring system in Basalt
Bartholomay, Roy C.; Twining, Brian V.; Rose, Peter E.
2014-01-01
Starting in 2008, a 4-year tracer study was conducted to evaluate ambient changes in groundwater concentrations of a 1,3,6-naphthalene trisulfonate tracer that was added to drill water. Samples were collected under open borehole conditions and after installing a multilevel groundwater monitoring system completed with 11 discrete monitoring zones within dense and fractured basalt and sediment layers in the eastern Snake River aquifer. The study was done in cooperation with the U.S. Department of Energy to test whether ambient fracture flow conditions were sufficient to remove the effects of injected drill water prior to sample collection. Results from thief samples indicated that the tracer was present in minor concentrations 28 days after coring, but was not present 6 months after coring or 7 days after reaming the borehole. Results from sampling the multilevel monitoring system indicated that small concentrations of the tracer remained in 5 of 10 zones during some period after installation. All concentrations were several orders of magnitude lower than the initial concentrations in the drill water. The ports that had remnant concentrations of the tracer were either located near sediment layers or were located in dense basalt, which suggests limited groundwater flow near these ports. The ports completed in well-fractured and vesicular basalt had no detectable concentrations.
New pharmacokinetic methods. III. Two simple test for deep pool effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browne, T.R.; Greenblatt, D.J.; Schumacher, G.E.
1990-08-01
If a portion of administered drug is distributed into a deep peripheral compartment, the drug's actual elimination half-life during the terminal exponential phase of elimination may be longer than determined by a single dose study or a tracer dose study (deep pool effect). Two simple methods of testing for deep pool effect applicable to drugs with either linear or nonlinear pharmacokinetic properties are described. The methods are illustrated with stable isotope labeled (13C15N2) tracer dose studies of phenytoin. No significant (P less than .05) deep pool effect was detected.
Kirsch, L E; Nguyen, L; Moeckly, C S
1997-01-01
The development of mass spectrometry-based leak detection for pharmaceutical container integrity was undertaken to provide an alternative to microbial challenge testing. Standard 10-mL vials were modified to contain pinholes (0.5 to 10 microns) by affixing micropipettes with epoxy into 2-mm vial side wall holes. The absolute leak rate was determined using vials that were sealed in a tracer (helium) environment with butyl rubber stoppers and crimps. Alternatively leak rates were determined using vials that were sealed in room air and exposed to tracer under pressure (charging or bombing). Tracer leak rates were measured with mass spectrometry leak rate detectors. The absolute leak rate was correlated the squared nominal leak radius which suggested that the mode of gas flow through the glass pipette leaks was more turbulent than viscous even at low leak rates typically associated with viscous flow. The minimum observed absolute leak rate was about 10(-6.6) std cc/sec and was likely due to helium permeation through the rubber stoppers. Heat-stressed rubber stoppers did not affect the baseline absolute leak rate. Adsorption of helium tracer to the test unit surfaces was found to confound baseline leak rate measurement reliability but was eliminated as a source of variation by exposing the test units to ambient air for > or = 12 hours. The absolute leak rate and the leak rate measured after charging were related in a mathematically predictable way.
Wave Dynamics and Transport in the Stratosphere
NASA Technical Reports Server (NTRS)
Holton, James R.; Alexander, M. Joan
1999-01-01
The report discusses: (1) Gravity waves generated by tropical convection: A study in which a two-dimensional cloud-resolving model was used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation was completed. (2) Gravity wave ray tracing studies:It was developed a linear ray tracing model of gravity wave propagation to extend the nonlinear storm model results into the mesosphere and thermosphere. (3) tracer filamentation: Vertical soundings of stratospheric ozone often exhibit laminated tracer structures characterized by strong vertical tracer gradients. (4) Mesospheric gravity wave modeling studies: Although our emphasis in numerical simulation of gravity waves generated by convection has shifted from simulation of idealized two-dimensional squall lines to the most realistic (and complex) study of wave generation by three-dimensional storms. (5) Gravity wave climatology studies: Mr. Alexander applied a linear gravity wave propagation model together with observations of the background wind and stability fields to compute climatologies of gravity wave activity for comparison to observations. (6) Convective forcing of gravity waves: Theoretical study of gravity wave forcing by convective heat sources has completed. (7) Gravity waves observation from UARS: The objective of this work is to apply ray tracing, and other model technique, in order to determine to what extend the horizontal and vertical variation in satellite observed distribution of small-scale temperature variance can be attributed to gravity waves from particular sources. (8) The annual and interannual variations in temperature and mass flux near the tropical tropopause. and (9) Three dimensional cloud model.
A Simple and Inexpensive Technique for Assessing Microbial Contamination during Drilling Operations
NASA Astrophysics Data System (ADS)
Friese, A.; Kallmeyer, J.; Wagner, D.; Kitte, J. A.
2016-12-01
Exploration of the Deep Biosphere relies on drilling, which inevitably causes infiltration of drilling fluids, containing non-indigenous microbes from the surface, into the core. Therefore it is absolutely necessary to trace contamination of the sediment core in order to identify uncontaminated samples for microbiological investigations in drill core samples. To do this, usually a tracer is mixed into the drilling fluid. In past drilling operations a variety of tracers have been used including dyes, salts, dissolved gasses, and microspheres. The latter are microbe-sized fluorescent particles that can be detected with very high sensitivity. Each tracer has its specific strengths and weaknesses, for microspheres the main problem was the high price, which limited the use to spot checks or drilling operations that require only small amounts of drilling fluid. Here, we present a modified microsphere tracer approach, using an aqueous fluorescent pigment dispersion that has a similar concentration of fluorescent particles as previously used microsphere tracers. However, compared to previous microsphere tracers, the cost of the new tracer is four orders of magnitude lower, allowing for a much more liberal use even in large-scale operations. Its suitability for large drilling campaigns was successfully tested at the ICDP Deep Drilling at Lake Towuti, Sulawesi, Indonesia and at the ICDP Deep Drilling at Lake Chalco, Mexico. Contamination can be detected by fluorescence microscopy or by flow cytometry at a sensitivity that is in the range of established techniques. Quantification of the tracer thus only requires a minimum of equipment and by using a small portable cytometer, high-resolution data can be obtained directly on-site within minutes and with minimal effort. Therefore this approach offers an inexpensive but powerful alternative technique for contamination assessment for future drilling campaigns.
Impact of fluid-rock chemical interactions on tracer transport in fractured rocks.
Mukhopadhyay, Sumit; Liu, H-H; Spycher, N; Kennedy, B M
2013-11-01
In this paper, we investigate the impact of chemical interactions, in the form of mineral precipitation and dissolution reactions, on tracer transport in fractured rocks. When a tracer is introduced in fractured rocks, it moves through the fracture primarily by advection and it also enters the stagnant water of the surrounding rock matrix through diffusion. Inside the porous rock matrix, the tracer chemically interacts with the solid materials of the rock, where it can precipitate depending on the local equilibrium conditions. Alternatively, it can be dissolved from the solid phase of the rock matrix into the matrix pore water, diffuse into the flowing fluids of the fracture and is advected out of it. We show that such chemical interactions between the fluid and solid phases have significant impact on tracer transport in fractured rocks. We invoke the dual-porosity conceptualization to represent the fractured rocks and develop a semi-analytical solution to describe the transient transport of tracers in interacting fluid-rock systems. To test the accuracy and stability of the semi-analytical solution, we compare it with simulation results obtained with the TOUGHREACT simulator. We observe that, in a chemically interacting system, the tracer breakthrough curve exhibits a pseudo-steady state, where the tracer concentration remains more or less constant over a finite period of time. Such a pseudo-steady condition is not observed in a non-reactive fluid-rock system. We show that the duration of the pseudo-state depends on the physical and chemical parameters of the system, and can be exploited to extract information about the fractured rock system, such as the fracture spacing and fracture-matrix interface area. © 2013.
Kinetic limitations on tracer partitioning in ganglia dominated source zones.
Ervin, Rhiannon E; Boroumand, Ali; Abriola, Linda M; Ramsburg, C Andrew
2011-11-01
Quantification of the relationship between dense nonaqueous phase liquid (DNAPL) source strength, source longevity and spatial distribution is increasingly recognized as important for effective remedial design. Partitioning tracers are one tool that may permit interrogation of DNAPL architecture. Tracer data are commonly analyzed under the assumption of linear, equilibrium partitioning, although the appropriateness of these assumptions has not been fully explored. Here we focus on elucidating the nonlinear and nonequilibrium partitioning behavior of three selected alcohol tracers - 1-pentanol, 1-hexanol and 2-octanol in a series of batch and column experiments. Liquid-liquid equilibria for systems comprising water, TCE and the selected alcohol illustrate the nonlinear distribution of alcohol between the aqueous and organic phases. Complete quantification of these equilibria facilitates delineation of the limits of applicability of the linear partitioning assumption, and assessment of potential inaccuracies associated with measurement of partition coefficients at a single concentration. Column experiments were conducted under conditions of non-equilibrium to evaluate the kinetics of the reversible absorption of the selected tracers in a sandy medium containing a uniform entrapped saturation of TCE-DNAPL. Experimental tracer breakthrough data were used, in conjunction with mathematical models and batch measurements, to evaluate alternative hypotheses for observed deviations from linear equilibrium partitioning behavior. Analyses suggest that, although all tracers accumulate at the TCE-DNAPL/aqueous interface, surface accumulation does not influence transport at concentrations typically employed for tracer tests. Moreover, results reveal that the kinetics of the reversible absorption process are well described using existing mass transfer correlations originally developed to model aqueous boundary layer resistance for pure-component NAPL dissolution. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, Kieran; Carroll, Kenneth C.; Brusseau, Mark L.
2016-07-01
Two different methods are currently used for measuring interfacial areas between immiscible fluids within 3-D porous media, high-resolution microtomographic imaging and interfacial partitioning tracer tests (IPTT). Both methods were used in this study to measure nonwetting/wetting interfacial areas for a natural sand. The microtomographic imaging was conducted on the same packed columns that were used for the IPTTs. This is in contrast to prior studies comparing the two methods, for which in all cases different samples were used for the two methods. In addition, the columns were imaged before and after the IPTTs to evaluate the potential impacts of themore » tracer solution on fluid configuration and attendant interfacial area. The interfacial areas measured using IPTT are ~5 times larger than the microtomographic-measured values, which is consistent with previous work. Analysis of the image data revealed no significant impact of the tracer solution on NAPL configuration or interfacial area. Other potential sources of error were evaluated, and all were demonstrated to be insignificant. The disparity in measured interfacial areas between the two methods is attributed to the limitation of the microtomography method to characterize interfacial area associated with microscopic surface roughness due to resolution constraints.« less
McDonald, Kieran; Carroll, Kenneth C; Brusseau, Mark L
2016-07-01
Two different methods are currently used for measuring interfacial areas between immiscible fluids within 3-D porous media, high-resolution microtomographic imaging and interfacial partitioning tracer tests (IPTT). Both methods were used in this study to measure non-wetting/wetting interfacial areas for a natural sand. The microtomographic imaging was conducted on the same packed columns that were used for the IPTTs. This is in contrast to prior studies comparing the two methods, for which in all cases different samples were used for the two methods. In addition, the columns were imaged before and after the IPTTs to evaluate the potential impacts of the tracer solution on fluid configuration and attendant interfacial area. The interfacial areas measured using IPTT are ~5 times larger than the microtomographic-measured values, which is consistent with previous work. Analysis of the image data revealed no significant impact of the tracer solution on NAPL configuration or interfacial area. Other potential sources of error were evaluated, and all were demonstrated to be insignificant. The disparity in measured interfacial areas between the two methods is attributed to the limitation of the microtomography method to characterize interfacial area associated with microscopic surface roughness due to resolution constraints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, D.F.; Schroeder, P.R.; Engler, R.M.
This technical note describes procedures for determining mean hydraulic retention time and efficiency of a confined disposal facility (CDF) from a dye tracer slug test. These parameters are required to properly design a CDF for solids retention and for effluent quality considerations. Detailed information on conduct and analysis of dye tracer studies can be found in Engineer Manual 1110-2-5027, Confined Dredged Material Disposal. This technical note documents the DYECON computer program which facilitates the analysis of dye tracer concentration data and computes the hydraulic efficiency of a CDF as part of the Automated Dredging and Disposal Alternatives Management System (ADDAMS).
Scalar dissipation rates in non-conservative transport systems
Engdahl, Nicholas B.; Ginn, Timothy R.; Fogg, Graham E.
2014-01-01
This work considers how the inferred mixing state of diffusive and advective-diffusive systems will vary over time when the solute masses are not constant over time. We develop a number of tools that allow the scalar dissipation rate to be used as a mixing measure in these systems without calculating local concentration gradients. The behavior of dissipation rates are investigated for single and multi-component kinetic reactions and a commonly studied equilibrium reaction. The scalar dissipation rate of a tracer experiencing first order decay can be determined exactly from the decay constant and the dissipation rate of a passive tracer, and the mixing rate of a conservative component is not the superposition of the solute specific mixing rates. We then show how the behavior of the scalar dissipation rate can be determined from a limited subset of an infinite domain. Corrections are derived for constant and time dependent limits of integration the latter is used to approximate dissipation rates in advective-diffusive systems. Several of the corrections exhibit similarities to the previous work on mixing, including non-Fickian mixing. This illustrates the importance of accounting for the effects that reaction systems or limited monitoring areas may have on the inferred mixing state. PMID:23584457
Mid-IR Atmospheric Tracers of Jupiter's Storm Oval BA
NASA Astrophysics Data System (ADS)
Shannon, Matthew J.; Orton, G.; Fletcher, L.
2010-10-01
The 2005-2006 reddening of a major anticyclonic storm, known as Oval BA, in Jupiter's turbulent atmosphere may well be a paradigm for the formation of red-colored vortices on the giant planets, including Jupiters Great Red Spot. Mid-infrared observations can be effectively used to determine physical and chemical properties of the atmosphere, and we present the results of mid-infrared thermal imaging observations, collected from NASAs Infrared Telescope Facility (IRTF) in Hawaii, ESOs Very Large Telescope (VLT) in Chile and the NAOJ Subaru Telescope in Hawaii between spring of 2005 and summer of 2006. These address the role of atmospheric tracers, including cloud opacity, the ammonia gas content, and the variation of the fraction of para- to ortho-hydrogen from local thermal equilibrium in assessing the rate of upwelling. These properties were retrieved with the Oxford-developed code, Nemesis, with the purpose of providing constraints on dynamical models in an effort to identify the mechanism for the color change. The most obvious change is that the temperature gradient from the inner to the outer part of Oval BA increased over the time of the color change, indicating a strengthening of the intensity of the vortex.
NASA Astrophysics Data System (ADS)
Pavelka, Jan; Smetanová, Anna; Rejman, Jerzy; Kováčik, Peter
2017-04-01
Despite recognising the role of tillage erosion in landforms evolution, little research has documented its effects in prehistoric times. Herein, an interdisciplinary archaeological-geomorphological experiment with reconstructed tillage tools and management was conducted in order to measure tillage erosion when a new field in grasslands was established in the Bronze Age-Iron Age. Three wooden ards were reconstructed based on archaeological findings. They were tested in a cross-tillage experiment, consisting of a tillage pass perpendicular to the primary slope (6.5-9.7%), and a second tillage pass parallel to the primary slope of a convex-convex ridge with mowed grass (0.2 m high, vegetation cover >90%). The standard sole ard proved to be the most effective, with a mean tillage depth of 0.12 m, a mean tillage speed of 3.8 km h-1, and a mean distance between furrows of 0.20-0.25 m. Only 13% of the 264 tracers placed on 6 transects were displaced, and the mean tracers displacement parallel to the primary slope was 0.04 ± 0.17 m. Contour tillage perpendicular to primary slope created V or U shaped furrows with a mean depth of 0.1-0.12 m, a mean width of 0.05-0.1 m, and incision under the main root zone. Only soil in direct contact with the ard was displaced, with a mean translocation distance of 0.06 ± 0.2 m parallel and 0.06 ± 0.3 m perpendicular to the primary slope. During tillage parallel to slope, soil clods of 0.20 x 0.25 x 0.10 m were created and slightly disturbed or turned over one another. The tracers moved within the furrows and with the soil clods. Loose soil, resembling a seedbed, was not covered by soil clods. Mean displacement during the second pass was 0.03 ± 0.19 m parallel and 0.00 ± 0.15 m perpendicular to primary slope. The displacement from cross-tillage with a wooden ard in permanent grasslands was lower than many previously measured values of traditional animal-powered metal ploughs in permanent fields. No relationship between mean soil displacement and slope gradient was found. Dense vegetation and root structure influenced ard soil-penetration, its movement within the soil, and the displacement of tracers packed between the roots. Cross-tillage with a wooden ard proved to be insufficient for seedbed preparation. The results suggest that grazing or fire management, followed by repeated tillage with ard or hoe in order to destroy soil clods were necessary to establish a new field in grasslands during the Bronze Age-Iron Age.
Anders, Robert; Yanko, William A.; Schroeder, Roy A.; Jackson, James L.
2004-01-01
Total and fecal coliform bacteria distributions in subsurface water samples collected at a research field site in Los Angeles County were found to increase from nondetectable levels immediately before artificial recharge using tertiary-treated municipal wastewater (recycled water). This rapid increase indicates that bacteria can move through the soil with the percolating recycled water over intervals of a few days and vertical and horizontal distances of about 3 meters. This conclusion formed the basis for three field-scale experiments using bacterial viruses (bacteriophage) MS2 and PRD1 as surrogates for human enteric viruses and bromide as a conservative tracer to determine the fate and transport of viruses in recycled water during subsurface transport under actual recharge conditions. The research field site consists of a test basin constructed adjacent to a large recharge facility (spreading grounds) located in the Montebello Forebay of Los Angeles County, California. The soil beneath the test basin is predominantly medium to coarse, moderately sorted, grayish-brown sand. The three tracer experiments were conducted during August 1997, August-September 1998, and August 2000. For each experiment, prepared solutions of bacteriophage and bromide were sprayed on the surface of the water in the test basin and injected, using peristaltic pumps, directly into the feed pipe delivering the recycled water to the test basin. Extensive data were obtained for water samples collected from the test basin itself and from depths of 0.3, 0.6, 1.0, 1.5, 3.0, and 7.6 meters below the bottom of the test basin. The rate of bacteriophage inactivation in the recycled water, independent of any processes occurring in the subsurface, was determined from measurements on water samples from the test basin. Regression analysis of the ratios of bacteriophage to bromide was used to determine the attenuation rates for MS2 and PRD1, defined as the logarithmic reduction in the ratio during each experiment. Although the inactivation rates increased during the third tracer experiment, they were nearly two orders of magnitude less than the attenuation rates. Therefore, adsorption, not inactivation, is the predominant removal mechanism for viruses during artificial recharge. Using the colloid-filtration model, the collision efficiency was determined for both bacteriophage during the second and third field-scale tracer experiments. The collision efficiency confirms that more favorable attachment conditions existed for PRD1, especially during the third tracer experiment. The different collision efficiencies between the second and third tracer experiments possibly were due to changing hydraulic conditions at the research field site during each experiment. The field data suggest that an optimal management scenario might exist to maximize the amount of recycled water that can be applied to the spreading grounds while still maintaining favorable attachment conditions for virus removal and thereby ensuring protection of the ground-water supply.
DOE Office of Scientific and Technical Information (OSTI.GOV)
George L. Scott III
2005-01-01
Finalized Phase 2-3 project work has field-proven two separate real-time reservoir processes that were co-developed via funding by the National Energy Technology Laboratory (NETL). Both technologies are presently patented in the United States and select foreign markets; a downhole-commingled reservoir stimulation procedure and a real-time tracer-logged fracturing diagnostic system. Phase 2 and early Phase 3 project work included the research, development and well testing of a U.S. patented gamma tracer fracturing diagnostic system. This stimulation logging process was successfully field-demonstrated; real-time tracer measurement of fracture height while fracturing was accomplished and proven technically possible. However, after the initial well tests,more » there were several licensing issues that developed between service providers that restricted and minimized Realtimezone's (RTZ) ability to field-test the real-time gamma diagnostic system as was originally outlined for this project. Said restrictions were encountered after when one major provider agreed to license their gamma logging tools to another. Both of these companies previously promised contributory support toward Realtimezone's DE-FC26-99FT40129 project work, however, actual support was less than desired when newly-licensed wireline gamma logging tools from one company were converted by the other from electric wireline into slickline, batter-powered ''memory'' tools for post-stimulation logging purposes. Unfortunately, the converted post-fracture measurement memory tools have no applications in experimentally monitoring real-time movement of tracers in the reservoir concurrent with the fracturing treatment. RTZ subsequently worked with other tracer gamma-logging tool companies for basic gamma logging services, but with lessened results due to lack of multiple-isotope detection capability. In addition to real-time logging system development and well testing, final Phase 2 and Phase 3 project work included the development of a real-time reservoir stimulation procedure, which was successfully field-demonstrated and is presently patented in the U.S. and select foreign countries, including Venezuela, Brazil and Canada. Said patents are co-owned by RTZ and the National Energy Technology Lab (NETL). In 2002, Realtimezone and the NETL licensed said patents to Halliburton Energy Services (HES). Additional licensing agreements (LA) are anticipated with other service industry companies in 2005. Final Phase 3 work has led to commercial applications of the real-time reservoir stimulation procedure. Four successfully downhole-mixed well tests were conducted with commercially expected production results. The most recent, fourth field test was a downhole-mixed stimulated well completed in June, 2004, which currently produces 11 BOPD with 90 barrels of water per day. Conducted Phase 2 and Phase 3 field-test work to date has resulted in the fine-tuning of a real-time enhanced stimulation system that will significantly increase future petroleum well recoveries in the United States and foreign petroleum fields, both onshore and offshore, and in vertical and horizontal wells.« less
NASA Astrophysics Data System (ADS)
Vidmar, S.; Cencur Curk, B.
2009-04-01
The gravel sandy aquifer of Ljubljansko polje is the source of drinking water for nearly 300.000 inhabitants of the Ljubljana city and vicinity. There are two main waterworks: Kleče and Hrastje. The plain area of Ljubljansko polje is a tectonic sink and consists of river sediments that can reach in thickness more than 100 m in the deepest part. The bedrock is the impermeable permocarbonic clayey shale, mudstones and sandstones. The hydraulic conductivity of Ljubljansko polje sediments is very good, from 10-2 m/s in the central part to 3.7•10-3 m/s on the borders of the plain. The average groundwater level is 20 m below surface. A numerical groundwater flow model was established for the wider area of the Ljubljansko polje aquifer. The fore mentioned model was not calibrated on solute transport parameters but only on water levels and this lead to unreliability in the transport model and its predictions of pollution scenarios. The transport model needs to calculate reliable scenarios of pollution dispersion, which can only be achieved with the application of real transport parameters. Human activities in the area of the Hrastje waterworks of Ljubljana threaten to degrade groundwater quality. For this reason several tracer experiments were carried out in the past. Despite a great risk, the experiments were performed on the catchment area of the Hrastje waterworks, inside the second water protection zone. During the experiments the water from Hrastje waterworks was still in use for drinking water supply. The tracer experiments were carried out in order to determine the solute transport parameters such as advection, dispersion and sorption. The research proved that the tracers could be used safely on sensitive area and that the researchers are capable and qualified to carry it out with a highest level of security. Since none of the past tracer experiments, carried out in the same area, gave us any detailed information on pollutant spreading in unsaturated zone a new tracer experiment was performed. Uranine was used as a tracer with a single time injection (1 kg) directly into the unsaturated zone. To achieve no sorption on organic particles the top layer of the ground (approx. 1m) was removed. The concentrations of the tracer spreading were observed in the well which is down gradient (approx. 22m) from the injection point. The tracer experiment was monitored for 305 days with records recorded every 4 minutes. All major events observed from the breakthrough curve, corresponded to rain events with a different delay depending on the water content in the unsaturated zone. When the unsaturated zone contains water the response in the observation well was faster than when the unsaturated zone was dry. The obtained data have been used in an analytical method (Multi-Dispersion-Model (MDM)). This solution provided the following transport parameters: mean transit time, mean velocity, longitudinal dispersion and dispersivity. The obtained parameters from the analytical solution will also be verified in the numerical model. The final results should enable better knowledge of the solute transport parameters and thus a better understanding of pollution dispersion as a help for water supply management system including measures for pollution prevention and as an actions/measure scenario in case of pollution.
A new statistical dispersion model for tracer tests and contaminant spread in porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ates, H.; Kasap, E.
Dispersion of solutes moving in permeable media is an essential control to describe fluid flow in permeable media. Dispersion can be thought of as a spreading of a solute caused by the presence of microscopic inhomogeneities. An accurate model for dispersion is needed for accurate estimation of oil recovery efficiencies and clean up costs of subsurface contaminants. Current approaches utilizing the fickian assumption fall short in describing the real physics of spreading during a solute transport process. Numerous field investigations have shown that dispersivities measured in the field are much larger than those measured in the lab for the samemore » type of porous material. Moreover, field measured dispersivities have been shown to be scale dependent, that is, a tracer test conducted over a longer travel path will yield a larger dispersivity value than a tracer test conducted in the same geologic formation over a shorter travel path. Numerous approaches to address this problem have been developed yet none attempted to go beyond the Fickian dispersion assumption. In this study, a convective dispersivity is introduced. New model assumes that dispersion is dimensionless and mainly determined by pore size distribution. The new model results in a spread that increases linearly with time contrary to conventional model, which predicts a mixing zone length that increases with square root of time. Therefore, new model explains the field test results that indicate increasing dispersivity with distance. The model validations are in perfect agreement with experimental results, which include; Ganapathy et al.`s slug experiment on Antolini sandstone, Handy`s radioactive tracer experiment on Alhambra sandstone, and CT experiment conducted at BDM-OK/NIPER facilities on Tallant sandstone.« less
Tracer gauge: An automated dye dilution gauging system for ice‐affected streams
Clow, David W.; Fleming, Andrea C.
2008-01-01
In‐stream flow protection programs require accurate, real‐time streamflow data to aid in the protection of aquatic ecosystems during winter base flow periods. In cold regions, however, winter streamflow often can only be estimated because in‐channel ice causes variable backwater conditions and alters the stage‐discharge relation. In this study, an automated dye dilution gauging system, a tracer gauge, was developed for measuring discharge in ice‐affected streams. Rhodamine WT is injected into the stream at a constant rate, and downstream concentrations are measured with a submersible fluorometer. Data loggers control system operations, monitor key variables, and perform discharge calculations. Comparison of discharge from the tracer gauge and from a Cipoletti weir during periods of extensive ice cover indicated that the root‐mean‐square error of the tracer gauge was 0.029 m3 s−1, or 6.3% of average discharge for the study period. The tracer gauge system can provide much more accurate data than is currently available for streams that are strongly ice affected and, thus, could substantially improve management of in‐stream flow protection programs during winter in cold regions. Care must be taken, however, to test for the validity of key assumptions, including complete mixing and conservative behavior of dye, no changes in storage, and no gains or losses of water to or from the stream along the study reach. These assumptions may be tested by measuring flow‐weighted dye concentrations across the stream, performing dye mass balance analyses, and evaluating breakthrough curve behavior.
Short-term landfill methane emissions dependency on wind.
Delkash, Madjid; Zhou, Bowen; Han, Byunghyun; Chow, Fotini K; Rella, Chris W; Imhoff, Paul T
2016-09-01
Short-term (2-10h) variations of whole-landfill methane emissions have been observed in recent field studies using the tracer dilution method for emissions measurement. To investigate the cause of these variations, the tracer dilution method is applied using 1-min emissions measurements at Sandtown Landfill (Delaware, USA) for a 2-h measurement period. An atmospheric dispersion model is developed for this field test site, which is the first application of such modeling to evaluate atmospheric effects on gas plume transport from landfills. The model is used to examine three possible causes of observed temporal emissions variability: temporal variability of surface wind speed affecting whole landfill emissions, spatial variability of emissions due to local wind speed variations, and misaligned tracer gas release and methane emissions locations. At this site, atmospheric modeling indicates that variation in tracer dilution method emissions measurements may be caused by whole-landfill emissions variation with wind speed. Field data collected over the time period of the atmospheric model simulations corroborate this result: methane emissions are correlated with wind speed on the landfill surface with R(2)=0.51 for data 2.5m above ground, or R(2)=0.55 using data 85m above ground, with emissions increasing by up to a factor of 2 for an approximately 30% increase in wind speed. Although the atmospheric modeling and field test are conducted at a single landfill, the results suggest that wind-induced emissions may affect tracer dilution method emissions measurements at other landfills. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gierczak, R F D; Devlin, J F; Rudolph, D L
2006-01-05
Elevated nitrate concentrations within a municipal water supply aquifer led to pilot testing of a field-scale, in situ denitrification technology based on carbon substrate injections. In advance of the pilot test, detailed characterization of the site was undertaken. The aquifer consisted of complex, discontinuous and interstratified silt, sand and gravel units, similar to other well studied aquifers of glaciofluvial origin, 15-40 m deep. Laboratory and field tests, including a conservative tracer test, a pumping test, a borehole flowmeter test, grain-size analysis of drill cuttings and core material, and permeameter testing performed on core samples, were performed on the most productive depth range (27-40 m), and the results were compared. The velocity profiles derived from the tracer tests served as the basis for comparison with other methods. The spatial variation in K, based on grain-size analysis, using the Hazen method, were poorly correlated with the breakthrough data. Trends in relative hydraulic conductivity (K/K(avg)) from permeameter testing compared somewhat better. However, the trends in transient drawdown with depth, measured in multilevel sampling points, corresponded particularly well with those of solute mass flux. Estimates of absolute K, based on standard pumping test analysis of the multilevel drawdown data, were inversely correlated with the tracer test data. The inverse nature of the correlation was attributed to assumptions in the transient drawdown packages that were inconsistent with the variable diffusivities encountered at the scale of the measurements. Collectively, the data showed that despite a relatively low variability in K within the aquifer under study (within a factor of 3), water and solute mass fluxes were concentrated in discrete intervals that could be targeted for later bioremediation.
Characterization of Preferential Flow Path in Fractured Rock Using Heat-pulse Flowmeter
NASA Astrophysics Data System (ADS)
Lee, Tsai-Ping; Lin, Ming-Hsuan; Chuang, Po-Yu; Chia, Yeeping
2015-04-01
Rigorous thinking on how to dispose radioactive wastes safely is essential to mankind and living environment. The concepts of multiple barriers and deep geologic disposal remain the preferred option to retard the radionuclide migration in most countries. However, the investigation of preferential groundwater flow path in a fractured rock is a challenge to the characterization of potential disposal site. Heat-pulse flowmeter is a developing logging tool for measuring the vertical flow velocity in a borehole under a constant pumping or injection rate and provides a promising direct measurement method for determining the vertical distribution of hydraulic conductivity of formation. As heat-pulse flowmeter is a potential technique to measure low-velocity borehole flow, we adopted it to test the feasibility of detecting permeable fractures. Besides, a new magnetic tracer made by nano-iron particles is developed to identify the possible flow path precisely and to verify the permeable section detected by the heat-pulse flowmeter. The magnetic tracer was received by a magnet array and can also be detected by a sensor of electric conductivity. The test site is located in the Heshe of Taiwan. Eight wells were established in a fractured sandy siltstone for characterizing the fracture network. The test wells are 25 to 45 m depth and opened ranging from 15 to 45 m. Prior to the heat-pulse flowmeter measurement, we also performed surface geological investigation, pumping test, geophysical logging, and salt tracer test. Field measurements using heat-pulse flowmeter were then conducted at a constant pumping rate. The measurement interval is 50 to 100 cm in depth but improved to 25 cm near the relatively permeable zone. Based on the results of heat-pulse flowmeter, several permeable sections were identified. The magnetic tracer tests were then conducted to verify the potential preferential flow pathway between adjacent wells. Test results indicated that water flow in borehole is produced primarily from a few fractures. However, the large aperture and high density of fractures did not certainly correlate well to the permeable section. Integration of heat-pulse flowmeter measurement with other in-situ tests, it is possible to identify the exact location of the highly permeable fractures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Findlay, Rick
The Gnome-Coach, New Mexico, Site was the location of a 3-kiloton-yield underground nuclear test in 1961 and a groundwater tracer test in 1963. The U.S. Geological Survey conducted the groundwater tracer test using four dissolved radionuclides--tritium, iodine-131, strontium-90, and cesium-137--as tracers. Site reclamation and remediation began after the underground testing, and was conducted in several phases at the site. The New Mexico Environment Department (NMED) issued a Conditional Certificate of Completion in September 2014, which documents that surface remediation activities have been successfully completed in accordance with the Voluntary Remediation Program. Subsurface activities have included annual sampling and monitoring ofmore » wells at and near the site since 1972. These annual monitoring activities were enhanced in 2008 to include monitoring hydraulic head and collecting samples from the onsite wells USGS-4, USGS-8, and LRL-7 using the low-flow sampling method. In 2010, the annual monitoring was focused to the monitoring wells within the site boundary. A site inspection and annual sampling were conducted on January 27-28, 2015. A second site visit was conducted on April 21, 2015, to install warning/notification signs to fulfill a requirement of the Conditional Certificate of Completion that was issued by the NMED for the surface.« less
Wieser, Stefan; Axmann, Markus; Schütz, Gerhard J.
2008-01-01
We propose here an approach for the analysis of single-molecule trajectories which is based on a comprehensive comparison of an experimental data set with multiple Monte Carlo simulations of the diffusion process. It allows quantitative data analysis, particularly whenever analytical treatment of a model is infeasible. Simulations are performed on a discrete parameter space and compared with the experimental results by a nonparametric statistical test. The method provides a matrix of p-values that assess the probability for having observed the experimental data at each setting of the model parameters. We show the testing approach for three typical situations observed in the cellular plasma membrane: i), free Brownian motion of the tracer, ii), hop diffusion of the tracer in a periodic meshwork of squares, and iii), transient binding of the tracer to slowly diffusing structures. By plotting the p-value as a function of the model parameters, one can easily identify the most consistent parameter settings but also recover mutual dependencies and ambiguities which are difficult to determine by standard fitting routines. Finally, we used the test to reanalyze previous data obtained on the diffusion of the glycosylphosphatidylinositol-protein CD59 in the plasma membrane of the human T24 cell line. PMID:18805933
Zhou, Quanlin; Liu, Hui-Hai; Molz, Fred J; Zhang, Yingqi; Bodvarsson, Gudmundur S
2007-08-15
Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D(m)(e), a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D(m)(e) values were calculated, either directly using data reported in the literature, or by reanalyzing the corresponding field tracer tests. The reanalysis was conducted for the selected tracer tests using analytic or semi-analytic solutions for tracer transport in linear, radial, or interwell flow fields. Surveyed data show that the scale factor of the effective matrix diffusion coefficient (defined as the ratio of D(m)(e) to the lab-scale matrix diffusion coefficient, D(m), of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate, on average trend toward systematic increase in the scale factor with observation scale. This trend suggests that the effective matrix diffusion coefficient is likely to be statistically scale-dependent. The scale-factor value ranges from 0.5 to 884 for observation scales from 5 to 2000 m. At a given scale, the scale factor varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different geologic sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation.
Zhang, Hubao; Schwartz, Frank W.; Wood, Warren W.; Garabedian, S.P.; LeBlanc, D.R.
1998-01-01
A multispecies numerical code was developed to simulate flow and mass transport with kinetic adsorption in variable-density flow systems. The two-dimensional code simulated the transport of bromide (Br−), a nonreactive tracer, and lithium (Li+), a reactive tracer, in a large-scale tracer test performed in a sand-and-gravel aquifer at Cape Cod, Massachusetts. A two-fraction kinetic adsorption model was implemented to simulate the interaction of Li+ with the aquifer solids. Initial estimates for some of the transport parameters were obtained from a nonlinear least squares curve-fitting procedure, where the breakthrough curves from column experiments were matched with one-dimensional theoretical models. The numerical code successfully simulated the basic characteristics of the two plumes in the tracer test. At early times the centers of mass of Br− and Li+ sank because the two plumes were closely coupled to the density-driven velocity field. At later times the rate of downward movement in the Br− plume due to gravity slowed significantly because of dilution by dispersion. The downward movement of the Li+ plume was negligible because the two plumes moved in locally different velocity regimes, where Li+ transport was retarded relative to Br−. The maximum extent of downward transport of the Li+ plume was less than that of the Br− plume. This study also found that at early times the downward movement of a plume created by a three-dimensional source could be much more extensive than the case with a two-dimensional source having the same cross-sectional area. The observed shape of the Br− plume at Cape Cod was simulated by adding two layers with different hydraulic conductivities at shallow depth across the region. The large dispersion and asymmetrical shape of the Li+ plume were simulated by including kinetic adsorption-desorption reactions.
VARIABILITY OF VISUAL FIELD MEASUREMENTS IS CORRELATED WITH THE GRADIENT OF VISUAL SENSITIVITY
Wyatt, Harry J.; Dul, Mitchell W.; Swanson, William H.
2007-01-01
Conventional static automated perimetry provides important clinical information, but its utility is limited by considerable test-retest variability. Fixational eye movements during testing could contribute to variability. To assess this possibility, it is important to know how much sensitivity change would be caused by a given eye movement. To investigate this, we have evaluated the gradient, the rate at which sensitivity changes with location. We tested one eye each, twice within 3 weeks, of 29 patients with glaucoma, 17 young normal subjects and 13 older normal subjects. The 10-2 test pattern with the SITA Standard algorithm was used to assess sensitivity at locations with 2° spacing. Variability and gradient were calculated at individual test locations. Matrix correlations were determined between variability and gradient, and were substantial for the patients with glaucoma. The results were consistent with a substantial contribution to test-retest variability from small fixational eye movements interacting with visual field gradient. Successful characterization of the gradient of sensitivity appears to require sampling at relatively close spacing, as in the 10-2 test pattern. PMID:17320924
Variability of visual field measurements is correlated with the gradient of visual sensitivity.
Wyatt, Harry J; Dul, Mitchell W; Swanson, William H
2007-03-01
Conventional static automated perimetry provides important clinical information, but its utility is limited by considerable test-retest variability. Fixational eye movements during testing could contribute to variability. To assess this possibility, it is important to know how much sensitivity change would be caused by a given eye movement. To investigate this, we have evaluated the gradient, the rate at which sensitivity changes with location. We tested one eye each, twice within 3 weeks, of 29 patients with glaucoma, 17 young normal subjects and 13 older normal subjects. The 10-2 test pattern with the SITA Standard algorithm was used to assess sensitivity at locations with 2 degrees spacing. Variability and gradient were calculated at individual test locations. Matrix correlations were determined between variability and gradient, and were substantial for the patients with glaucoma. The results were consistent with a substantial contribution to test-retest variability from small fixational eye movements interacting with visual field gradient. Successful characterization of the gradient of sensitivity appears to require sampling at relatively close spacing, as in the 10-2 test pattern.
NASA Astrophysics Data System (ADS)
Kuppel, S.; Tetzlaff, D.; Maneta, M. P.; Soulsby, C.
2017-12-01
Stable water isotope tracing has been extensively used in a wide range of geographical environments as a means to understand the sources, flow paths and ages of water stored and exiting a landscape via evapotranspiration, surface runoff and/or stream flow. Comparisons of isotopic signatures of precipitation and water in streams, soils, groundwater and plant xylem facilitates the assessment of how plant water use may affect preferential hydrologic pathways, storage dynamics and transit times in the critical zone. While tracers are also invaluable for testing model structure and accuracy, in most cases the measured isotopic signatures have been used to guide the calibration of conceptual runoff models with simplified vegetation and energy balance representation, which lacks sufficient detail to constrain key ecohydrological controls on flow paths and water ages. Here, we use a physically-based, distributed ecohydrological model (EcH2O) which we have extended to track 2H and 18O (including fractionation processes), and water age. This work is part of the "VeWa" project which aims at understanding ecohydrological couplings across climatic gradients in the wider North, where the hydrological implications of projected environmental change are essentially unknown though expected to be high. EcH2O combines a hydrologic scheme with an explicit representation of plant growth and phenology while resolving the energy balance across the soil-vegetation-atmosphere continuum. We focus on a montane catchment in Scotland, where unique long-term, high resolution hydrometric, ecohydrological and isotopic data allows for extensive model testing and projections. Results show the importance of incorporating soil fractionation processes to explain stream isotope dynamics, particularly seasonal enrichment in this humid, energy-limited catchment. This generic process-based approach facilitates analysis of dynamics in isotopes, storage and ages for the different hydrological compartments (canopy to groundwater) and, in particular, the explicit partitioning between soil evaporation and plant transpiration. Our study clearly advances our understanding of dynamics in water storage, flux and age in northern ecosystems, integrating ecohydrology, unsaturated zone, surface water, and groundwater hydrology.
Suitability of 239+240Pu and 137Cs as tracers for soil erosion assessment in mountain grasslands.
Alewell, Christine; Meusburger, Katrin; Juretzko, Gregor; Mabit, Lionel; Ketterer, Michael E
2014-05-01
Anthropogenic radionuclides have been distributed globally due to nuclear weapons testing, nuclear accidents, nuclear weapons fabrication, and nuclear fuel reprocessing. While the negative consequences of this radioactive contamination are self-evident, the ubiquitous fallout radionuclides (FRNs) distribution form the basis for the use as tracers in ecological studies, namely for soil erosion assessment. Soil erosion is a major threat to mountain ecosystems worldwide. We compare the suitability of the anthropogenic FRNs, 137Cs and 239+240Pu as soil erosion tracers in two alpine valleys of Switzerland (Urseren Valley, Canton Uri, Central Swiss Alps and Val Piora, Ticino, Southern Alps). We sampled reference and potentially erosive sites in transects along both valleys. 137Cs measurements of soil samples were performed with a Li-drifted Germanium detector and 239+240Pu with ICP-MS. Our data indicates a heterogeneous deposition of the 137Cs, since most of the fallout origins from the Chernobyl April/May 1986 accident, when large parts of the European Alps were still snow-covered. In contrast, 239+240Pu fallout originated mainly from 1950s to 1960s atmospheric nuclear weapons tests, resulting in a more homogenous distribution and thus seems to be a more suitable tracer in mountainous grasslands. Soil erosion assessment using 239+240Pu as a tracer pointed to a huge dynamic and high heterogeneity of erosive processes (between sedimentation of 1.9 and 7 t ha(-1) yr(-1) and erosion of 0.2-16.4 t ha(-1) yr(-1) in the Urseren Valley and sedimentation of 0.4-20.3 t ha(-1) yr(-1) and erosion of 0.1-16.4 t ha(-1) yr(-1) at Val Piora). Our study represents a novel and successful application of 239+240Pu as a tracer of soil erosion in a mountain environment. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Measuring In-Cabin School Bus Tailpipe and Crankcase PM2.5: A New Dual Tracer Method.
Ireson, Robert G; Ondov, John M; Zielinska, Barbara; Weaver, Christopher S; Easter, Michael D; Lawson, Douglas R; Hesterberg, Thomas W; Davey, Mark E; Liu, L-J Sally
2011-05-01
Exposures of occupants in school buses to on-road vehicle emissions, including emissions from the bus itself, can be substantially greater than those in outdoor settings. A dual tracer method was developed and applied to two school buses in Seattle in 2005 to quantify in-cabin fine particulate matter (PM 2.5 ) concentrations attributable to the buses' diesel engine tailpipe (DPM tp ) and crankcase vent (PM ck ) emissions. The new method avoids the problem of differentiating bus emissions from chemically identical emissions of other vehicles by using a fuel-based organometallic iridium tracer for engine exhaust and by adding deuterated hexatriacontane to engine oil. Source testing results showed consistent PM:tracer ratios for the primary tracer for each type of emissions. Comparisons of the PM:tracer ratios indicated that there was a small amount of unburned lubricating oil emitted from the tailpipe; however, virtually no diesel fuel combustion products were found in the crankcase emissions. For the limited testing conducted here, although PM ck emission rates (averages of 0.028 and 0.099 g/km for the two buses) were lower than those from the tailpipe (0.18 and 0.14 g/km), in-cabin PM ck concentrations averaging 6.8 μg/m 3 were higher than DPM tp (0.91 μg/m 3 average). In-cabin DPM tp and PM ck concentrations were significantly higher with bus windows closed (1.4 and 12 μg/m 3 , respectively) as compared with open (0.44 and 1.3 μg/m 3 , respectively). For comparison, average closed- and open-window in-cabin total PM 2.5 concentrations were 26 and 12 μg/m 3 , respectively. Despite the relatively short in-cabin sampling times, very high sensitivities were achieved, with detection limits of 0.002 μg/m 3 for DPM tp and 0.05 μg/m 3 for PM ck . [Box: see text].
Measuring in-cabin school bus tailpipe and crankcase PM2.5: a new dual tracer method.
Ireson, Robert G; Ondov, John M; Zielinska, Barbara; Weaver, Christopher S; Easter, Michael D; Lawson, Douglas R; Hesterberg, Thomas W; Davey, Mark E; Liu, L-J Sally
2011-05-01
Exposures of occupants in school buses to on-road vehicle emissions, including emissions from the bus itself, can be substantially greater than those in outdoor settings. A dual tracer method was developed and applied to two school buses in Seattle in 2005 to quantify in-cabin fine particulate matter (PM2.5) concentrations attributable to the buses' diesel engine tailpipe (DPMtp) and crankcase vent (PMck) emissions. The new method avoids the problem of differentiating bus emissions from chemically identical emissions of other vehicles by using a fuel-based organometallic iridium tracer for engine exhaust and by adding deuterated hexatriacontane to engine oil. Source testing results showed consistent PM:tracer ratios for the primary tracer for each type of emissions. Comparisons of the PM:tracer ratios indicated that there was a small amount of unburned lubricating oil emitted from the tailpipe; however, virtually no diesel fuel combustion products were found in the crankcase emissions. For the limited testing conducted here, although PMck emission rates (averages of 0.028 and 0.099 g/km for the two buses) were lower than those from the tailpipe (0.18 and 0.14 g/km), in-cabin PMck concentrations averaging 6.8 microg/m3 were higher than DPMtp (0.91 microg/m3 average). In-cabin DPMtp and PMck concentrations were significantly higher with bus windows closed (1.4 and 12 microg/m3, respectively) as compared with open (0.44 and 1.3 microg/m3, respectively). For comparison, average closed- and open-window in-cabin total PM2.5 concentrations were 26 and 12 microg/m3, respectively. Despite the relatively short in-cabin sampling times, very high sensitivities were achieved, with detection limits of 0.002 microg/m3 for DPMtp and 0.05 microg/m3 for PMck.
Nitrate vulnerability projections from Bayesian inference of multiple groundwater age tracers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alikhani, Jamal; Deinhart, Amanda L.; Visser, Ate
Nitrate is a major source of contamination of groundwater in the United States and around the world. We tested the applicability of multiple groundwater age tracers ( 3H, 3He, 4He, 14C, 13C, and 85Kr) in projecting future trends of nitrate concentration in 9 long-screened, public drinking water wells in Turlock, California, where nitrate concentrations are increasing toward the regulatory limit. Very low 85Kr concentrations and apparent 3H/ 3He ages point to a relatively old modern fraction (40–50 years), diluted with pre-modern groundwater, corroborated by the onset and slope of increasing nitrate concentrations. An inverse Gaussian–Dirac model was chosen to representmore » the age distribution of the sampled groundwater at each well. Model parameters were estimated using a Bayesian inference, resulting in the posterior probability distribution – including the associated uncertainty – of the parameters and projected nitrate concentrations. Three scenarios were considered, including combined historic nitrate and age tracer data, the sole use of nitrate and the sole use of age tracer data. Each scenario was evaluated based on the ability of the model to reproduce the data and the level of reliability of the nitrate projections. The tracer-only scenario closely reproduced tracer concentrations, but not observed trends in the nitrate concentration. Both cases that included nitrate data resulted in good agreement with historical nitrate trends. Use of combined tracers and nitrate data resulted in a narrower range of projections of future nitrate levels. However, use of combined tracer and nitrate resulted in a larger discrepancy between modeled and measured tracers for some of the tracers. In conclusion, despite nitrate trend slopes between 0.56 and 1.73 mg/L/year in 7 of the 9 wells, the probability that concentrations will increase to levels above the MCL by 2040 are over 95% for only two of the wells, and below 15% in the other wells, due to a leveling off of reconstructed historical nitrate loadings to groundwater since about 1990.« less
Nitrate vulnerability projections from Bayesian inference of multiple groundwater age tracers
Alikhani, Jamal; Deinhart, Amanda L.; Visser, Ate; ...
2016-04-20
Nitrate is a major source of contamination of groundwater in the United States and around the world. We tested the applicability of multiple groundwater age tracers ( 3H, 3He, 4He, 14C, 13C, and 85Kr) in projecting future trends of nitrate concentration in 9 long-screened, public drinking water wells in Turlock, California, where nitrate concentrations are increasing toward the regulatory limit. Very low 85Kr concentrations and apparent 3H/ 3He ages point to a relatively old modern fraction (40–50 years), diluted with pre-modern groundwater, corroborated by the onset and slope of increasing nitrate concentrations. An inverse Gaussian–Dirac model was chosen to representmore » the age distribution of the sampled groundwater at each well. Model parameters were estimated using a Bayesian inference, resulting in the posterior probability distribution – including the associated uncertainty – of the parameters and projected nitrate concentrations. Three scenarios were considered, including combined historic nitrate and age tracer data, the sole use of nitrate and the sole use of age tracer data. Each scenario was evaluated based on the ability of the model to reproduce the data and the level of reliability of the nitrate projections. The tracer-only scenario closely reproduced tracer concentrations, but not observed trends in the nitrate concentration. Both cases that included nitrate data resulted in good agreement with historical nitrate trends. Use of combined tracers and nitrate data resulted in a narrower range of projections of future nitrate levels. However, use of combined tracer and nitrate resulted in a larger discrepancy between modeled and measured tracers for some of the tracers. In conclusion, despite nitrate trend slopes between 0.56 and 1.73 mg/L/year in 7 of the 9 wells, the probability that concentrations will increase to levels above the MCL by 2040 are over 95% for only two of the wells, and below 15% in the other wells, due to a leveling off of reconstructed historical nitrate loadings to groundwater since about 1990.« less
Use of isotopically-tagged isolates of E. coli for tracking bacterial movement in karst environments
NASA Astrophysics Data System (ADS)
Bandy, A.; Fryar, A. E.; Macko, S. A.; Cook, K.
2014-12-01
Because of limited filtration and turbulent flow, karst aquifers are more susceptible to microbial contamination than clastic aquifers. Assessment of microbial transport in groundwater is complicated by the need to identify tracers that have a low detection limit, have minimal background concentrations, behave like the organisms of interest, and are non-pathogenic. We are assessing transport of two non-pathogenic isolates of Escherichia coli (E. coli) compared to traditional groundwater tracers in epikarst above Cave Springs Cavern near Bowling Green, KY, and in a karst conduit that emerges at Royal Spring in Georgetown, KY. The E. coli isolate exhibiting higher attachment efficiency in saturated granular columns contains the iha gene, while the isolate exhibiting lower attachment efficiency contains the kps gene. For the field experiments, bacteria are being grown on media enriched in 13C or 15N. Isotopically-tagged bacteria will be injected with rhodamine WT as a solute tracer and fluorescent microspheres as an abiotic particulate tracer. We will monitor breakthrough of the tracers in the cave and at the spring; based on a previous field test, we anticipate that particulate tracers may be remobilized during subsequent storm events. E. coli will be quantified by molecular methods (qPCR) and dual isotope analysis. Preliminary findings suggest that these two methods may be complementary, with each method having detection limitations.
NASA Astrophysics Data System (ADS)
Knöll, Paul; Scheytt, Traugott
2018-03-01
A dye tracer experiment was conducted between the rivers Lauchert and Danube near Sigmaringen (Swabian Alb, southern Germany). After a flood event in the River Lauchert, it was suspected that flood water infiltrated into the karst system and drained towards springs in the Danube Valley. A potential connection of the two rivers is provided by the margin of a tectonic graben crossing the valleys. The aim of the tracer experiment was to gain insight into the dominant groundwater flow direction as well as to study a possible preferential connection between the Lauchert surface catchment area and springs in the Danube Valley. After introducing sodium-fluorescein into the unsaturated zone, six springs in the Danube Valley and the River Lauchert itself were observed. Tracer breakthrough at three springs showed that these springs are fed by groundwater originating in the Lauchert surface catchment. Adjacent springs were not affected by the experiment, indicating a rather sharp divide between separate spring catchments. Analyses of tracer breakthrough curves suggest that springs with a tracer occurrence are fed by the same conduit system. It was possible to show that spring catchments in Sigmaringen reach significantly into the Lauchert surface catchment. As a consequence, a drinking-water supplier has changed its supply strategy. The results also help to explain significant differences between flood damage in the central and lower courses of the River Lauchert.
Assessment of the Content of Fluorescent Tracer in Granular Feed Mixture.
Matuszek, Dominika B; Wojtkiewicz, Krystian
2018-05-03
Background: This paper describes the use of fluorescence induced by UV radiation to evaluate the share of tracer in feed mixture. Methods: For the purpose of this study, three substances were used. They are as follows: Tinopal, Rhodamine B, and Uranine. Tracer in the form of maize or kardi was added to chicken feed before the mixing process. Grains used in the process were grinded in the mill sieve with a mesh size of 4 and 6 mm. The drawn samples of the mixture were illuminated with UV radiation to make grain tracer light, and then the photo was taken with a digital camera. The acquired images were analyzed with the use of a computer program running on the RGB color model, which was the way to obtain essential information about the percentage share of tracer. Results: It was observed that, in the case of kardi grains, the proposed method gives results significantly deviating from the verification method. Conclusions: Only the tests with the use of maize having an average particle diameter of 2.4 mm and tinted with the solution of Rhodamine B led to acceptable results (consensual with the predetermined verification level).
Trajectory-based modeling of fluid transport in a medium with smoothly varying heterogeneity
Vasco, D. W.; Pride, Steven R.; Commer, Michael
2016-03-04
Using an asymptotic methodology, valid in the presence of smoothly varying heterogeneity and prescribed boundaries, we derive a trajectory-based solution for tracer transport. The analysis produces a Hamilton-Jacobi partial differential equation for the phase of the propagating tracer front. The trajectories follow from the characteristic equations that are equivalent to the Hamilton-Jacobi equation. The paths are determined by the fluid velocity field, the total porosity, and the dispersion tensor. Due to their dependence upon the local hydrodynamic dispersion, they differ from conventional streamlines. This difference is borne out in numerical calculations for both uniform and dipole flow fields. In anmore » application to the computational X-ray imaging of a saline tracer test, we illustrate that the trajectories may serve as the basis for a form of tracer tomography. In particular, we use the onset time of a change in attenuation for each volume element of the X-ray image as a measure of the arrival time of the saline tracer. In conclusion, the arrival times are used to image the spatial variation of the effective hydraulic conductivity within the laboratory sample.« less
NASA Astrophysics Data System (ADS)
Dijkstra, P.; van Groenigen, K.; Hagerty, S.; Salpas, E.; Fairbanks, D. E.; Hungate, B. A.; KOCH, G. W.; Schwartz, E.
2012-12-01
The production of energy and metabolic precursors occurs in well-known processes such as glycolysis and Krebs cycle. We use position-specific 13C-labeled metabolic tracers, combined with models of microbial metabolic organization, to analyze the response of microbial community energy production, biosynthesis, and C use efficiency (CUE) in soils, decomposing litter, and aquatic communities. The method consists of adding position-specific 13C -labeled metabolic tracers to parallel soil incubations, in this case 1-13C and 2,3-13C pyruvate and 1-13C and U-13C glucose. The measurement of CO2 released from the labeled tracers is used to calculate the C flux rates through the various metabolic pathways. A simplified metabolic model consisting of 23 reactions is solved using results of the metabolic tracer experiments and assumptions of microbial precursor demand. This new method enables direct estimation of fundamental aspects of microbial energy production, CUE, and soil organic matter formation in relatively undisturbed microbial communities. We will present results showing the range of metabolic patterns observed in these communities and discuss results from testing metabolic models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsang, Chin-Fu
Many current development and utilization of groundwater resources include a study of their flow and transport properties. These properties are needed in evaluating possible changes in groundwater quality and potential transport of hazardous solutes through the groundwater system. Investigation of transport properties of fractured rocks is an active area of research. Most of the current approaches to the study of flow and transport in fractured rocks cannot be easily used for analysis of tracer transport field data. A new approach is proposed based on a detailed study of transport through a fracture of variable aperture. This is a two-dimensional stronglymore » heterogeneous permeable system. It is suggested that tracer breakthrough curves can be analyzed based on an aperture or permeability probability distribution function that characterizes the tracer flow through the fracture. The results are extended to a multi-fracture system and can be equally applied to a strongly heterogeneous porous medium. Finally, the need for multi-point or line and areal tracer injection and observation tests is indicated as a way to avoid the sensitive dependence of point measurements on local permeability variability. 30 refs., 15 figs.« less
NASA Astrophysics Data System (ADS)
Schaffer, Mario; Warner, Wiebke; Kutzner, Susann; Börnick, Hilmar; Worch, Eckhard; Licha, Tobias
2017-03-01
Based on the assumption that the specific surface area to volume ratio Asurf/V of consolidated rock materials is proportional to the surface area available for sorption, several inorganic cations were recently proposed as sorbing (cation exchanging) tracers for estimating these ratios in aquifers (e.g., for deriving the efficient heat exchange area of geothermal reservoirs). The main disadvantages of inorganic ions, however, are the limited number of suitable ions, their potential geogenic background, and their challenging online detection at trace concentrations. In this work, the spectrum of chemical substances used as sorbing tracers expands by considering fluorescent organic compounds that are cationic. They have the advantage of being highly water soluble and easy to measure online at very low concentrations. Results from systematic lab column experiments with seven selected organic cations under various conditions (different salinities and temperatures) are presented, emphasizing the potential of organic molecules as alternative sorbing tracers especially in consolidated aquifer systems. This work is a first stepping stone in identifying suitable molecular structures that can be selected or even individually adapted to the requirements of the tracer tests and prevailing aquifer conditions.
CI as a Tracer of Gas Mass in Star Forming Galaxies
NASA Astrophysics Data System (ADS)
Bourne, Nathan
2018-01-01
Research in galaxy evolution aims to understand the cosmic industry of converting gas into stars. While SFR and stellar mass evolution are well constrained by current data, our knowledge of gas in galaxies throughout cosmic time is comparatively lacking. Almost all high-redshift gas measurements to date rely on CO as a tracer, but this is subject to systematic uncertainties due to optically thick emission and poorly constrained dependences on gas density, distribution and metallicity. Recently, some attention has been given to dust continuum as an alternative gas tracer, which shows promise for large samples but still requires accurate calibration on a direct gas tracer at high redshift. The [CI] 492GHz emission line could overcome much of the systematic uncertainty, as it is optically thin and has similar excitation conditions to CO(1-0), but observational limitations have so far restricted CI measurements to very small samples. I will presen t some new data from ALMA, for the first time testing the CI/dust correlation in a representative sample of star-forming galaxies at z=1, and discuss how future observations could be designed to more widely exploit this independent gas tracer.
NASA Astrophysics Data System (ADS)
Foster-wittig, T. A.; Thoma, E.; Green, R.; Hater, G.; Swan, N.; Chanton, J.
2013-12-01
Improved understanding of air emissions from large area sources such as landfills, waste water ponds, open-source processing, and agricultural operations is a topic of increasing environmental importance. In many cases, the size of the area source, coupled with spatial-heterogeneity, make direct (on-site) emission assessment difficult; methane emissions, from landfills for example, can be particularly complex [Thoma et al, 2009]. Recently, whole-facility (remote) measurement approaches based on tracer correlation have been utilized [Scheutz et al, 2011]. The approach uses a mobile platform to simultaneously measure a metered-release of a conservative gas (the tracer) along with the target compound (methane in the case of landfills). The known-rate tracer release provides a measure of atmospheric dispersion at the downwind observing location allowing the area source emission to be determined by a ratio calculation [Green et al, 2010]. Although powerful in concept, the approach has been somewhat limited to research applications due to the complexities and cost of the high-sensitivity measurement equipment required to quantify the part-per billion levels of tracer and target gas at kilometer-scale distances. The advent of compact, robust, and easy to use near-infrared optical measurement systems (such as cavity ring down spectroscopy) allow the tracer correlation approach to be investigated for wider use. Over the last several years, Waste Management Inc., the U.S. EPA, and collaborators have conducted method evaluation activities to determine the viability of a standardized approach through execution of a large number of field measurement trials at U.S. landfills. As opposed to previous studies [Scheutz et al, 2011] conducted at night (optimal plume transport conditions), the current work evaluated realistic use-scenarios; these scenarios include execution by non-scientist personnel, daylight operation, and full range of atmospheric condition (all plume transport conditions). The trials tested a novel tracer gas (acetylene), chosen for its performance and cost characteristics. This presentation will summarize method development activities for the field test trials (107 test days, with repeat measurements at 14 separate landfill sites). In addition to a brief description of the measurement technology, the method performance will be described, and primary data quality indicators and use conditions will be explored. Because measurements were taken under daylight and a variety of atmospheric conditions, the range of distance and wind conditions allows us to make conclusions about the strengths and limitations of the method. This enables us to show when and where it is possible to make a quality measurement using this technique and therefore develop a standardized method for large area emission measurements. Green, R. et al (2010). 'Methane Emission Measured at Two California Landfills by OTM-10 and an Acetylene Tracer Method.' Global Waste Management Symposium. San Antonio, Texas. Scheutz, C. et al. (2011). 'Quantification of multiple methane emission sources at landfills using a double tracer technique." Waste Management 31(5): 1009-1017. Thoma, E., et al (2009). 'Development of EPA OTM 10 for landfill applications." Journal of Environmental Engineering 136(8): 769-776.
STORM-SEWER FLOW MEASUREMENT AND RECORDING SYSTEM.
Kilpatrick, Frederick A.; Kaehrle, William R.
1986-01-01
A comprehensive study and development of instruments and techniques for measuring all components of flow in a storm-sewer drainage system were undertaken by the U. S. Geological Survey under the sponsorship of FHWA. The study involved laboratory and field calibration and testing of measuring flumes, pipe insert meters, weirs, and electromagnetic velocity meters as well as the development and calibration of pneumatic bubbler and pressure transducer head-measuring systems. Tracer dilution and acoustic-flowmeter measurements were used in field verification tests. A single micrologger was used to record data from all the instruments and also to activate on command the electromagnetic velocity meter and tracer dilution systems.
NASA Astrophysics Data System (ADS)
Efseaff, Matthew
Rubidium-82 positron emission tomography (PET) imaging has been proposed for routine myocardial blood flow (MBF) quantification. Few studies have investigated the test-retest repeatability of this method. Same-day repeatability of rest MBF imaging was optimized with a highly automated analysis program using image-derived input functions and a dual spillover correction (SOC). The effects of heterogeneous tracer infusion profiles and subject hemodynamics on test-retest repeatability were investigated at rest and during hyperemic stress. Factors affecting rest MBF repeatability included gender, suspected coronary artery disease, and dual SOC (p < 0.001). The best repeatability coefficient for same-day rest MBF was 0.20 mL/min/g using a six-minute scan-time, iterative reconstruction, dual SOC, resting rate-pressure-product (RPP) adjustment, and a left atrium image-derived input function. The serial study repeatabilities of the optimized protocol in subjects with homogeneous RPPs and tracer infusion profiles was 0.19 and 0.53 mL/min/g at rest and stress, and 0.95 for stress / rest myocardial flow reserve (MFR). Subjects with heterogeneous tracer infusion profiles and hemodynamic conditions had significantly less repeatable MBF measurements at rest, stress, and stress/rest flow reserve (p < 0.05).
NASA Astrophysics Data System (ADS)
Khaska, Mahmoud; Le Gal La Salle, Corinne; Sassine, Lara; Cary, Lise; Bruguier, Olivier; Verdoux, Patrick
2018-03-01
One decade after closure of the Salsigne mine (SW France), As contamination persisted in surface water, groundwater and soil near and down-gradient from the reclaimed ore processing site (OPS). We assess the fate of As and other associated chalcophilic MTEs, and their transport in the surface-water/groundwater/soil continuum down-gradient from the reclaimed OPS, using Sr-isotopic fingerprinting. The Sr-isotope ratio was used as a tracer of transfer processes in this hydro-geosystem and was combined to sequential extraction of soil samples to evaluate the impact of contaminated soil on the underlying phreatic groundwater. The contrast in Sr isotope compositions of the different soil fractions reflects several Sr sources in the soil. In the complex hydro-geosystem around the OPS, the transport of As and MTEs is affected by a succession of factors, such as (1) Existence of a reducing zone in the aquifer below the reclaimed OPS, where groundwater shows relatively high As and MTEs contents, (2) Groundwater discharge into the stream near the reclaimed OPS causing an increase in As and MTE concentrations in surface water; (3) Partial co-precipitation of As with Fe-oxyhydroxides, contributing to some attenuation of As contents in surface water; (4) Infiltration of contaminated stream water into the unconfined aquifer down-gradient from the reclaimed OPS; (5) Accumulation of As and MTEs in soil irrigated with contaminated stream- and groundwater; (6) Release of As and MTEs from labile soil fractions to underlying the groundwater.
Quantifying rates of glucose production in vivo following an intraperitoneal tracer bolus.
Wang, Sheng-Ping; Zhou, Dan; Yao, Zuliang; Satapati, Santhosh; Chen, Ying; Daurio, Natalie A; Petrov, Aleksandr; Shen, Xiaolan; Metzger, Daniel; Yin, Wu; Nawrocki, Andrea R; Eiermann, George J; Hwa, Joyce; Fancourt, Craig; Miller, Corin; Herath, Kithsiri; Roddy, Thomas P; Slipetz, Deborah; Erion, Mark D; Previs, Stephen F; Kelley, David E
2016-12-01
Aberrant regulation of glucose production makes a critical contribution to the impaired glycemic control that is observed in type 2 diabetes. Although isotopic tracer methods have proven to be informative in quantifying the magnitude of such alterations, it is presumed that one must rely on venous access to administer glucose tracers which therein presents obstacles for the routine application of tracer methods in rodent models. Since intraperitoneal injections are readily used to deliver glucose challenges and/or dose potential therapeutics, we hypothesized that this route could also be used to administer a glucose tracer. The ability to then reliably estimate glucose flux would require attention toward setting a schedule for collecting samples and choosing a distribution volume. For example, glucose production can be calculated by multiplying the fractional turnover rate by the pool size. We have taken a step-wise approach to examine the potential of using an intraperitoneal tracer administration in rat and mouse models. First, we compared the kinetics of [U- 13 C]glucose following either an intravenous or an intraperitoneal injection. Second, we tested whether the intraperitoneal method could detect a pharmacological manipulation of glucose production. Finally, we contrasted a potential application of the intraperitoneal method against the glucose-insulin clamp. We conclude that it is possible to 1) quantify glucose production using an intraperitoneal injection of tracer and 2) derive a "glucose production index" by coupling estimates of basal glucose production with measurements of fasting insulin concentration; this yields a proxy for clamp-derived assessments of insulin sensitivity of endogenous production. Copyright © 2016 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Herrington, C.; Gonzalez-Pinzon, R.; Covino, T. P.; Mortensen, J.
2015-12-01
Solute transport studies in streams and rivers often begin with the introduction of conservative and reactive tracers into the water column. Information on the transport of these substances is then captured within tracer breakthrough curves (BTCs) and used to estimate, for instance, travel times and dissolved nutrient and carbon dynamics. Traditionally, these investigations have been limited to systems with small discharges (< 200 L/s) and with small reach lengths (< 500 m), partly due to the need for a priori information of the reach's hydraulic characteristics (e.g., channel geometry, resistance and dispersion coefficients) to predict arrival times, times to peak concentrations of the solute and mean travel times. Current techniques to acquire these channel characteristics through preliminary tracer injections become cost prohibitive at higher stream orders and the use of semi-continuous water quality sensors for collecting real-time information may be affected from erroneous readings that are masked by high turbidity (e.g., nitrate signals with SUNA instruments or fluorescence measures) and/or high total dissolved solids (e.g., making prohibitively expensive the use of salt tracers such as NaCl) in larger systems. Additionally, a successful time-of-travel study is valuable for only a single discharge and river stage. We have developed a method to predict tracer BTCs to inform sampling frequencies at small and large stream orders using empirical relationships developed from multiple tracer injections spanning several orders of magnitude in discharge and reach length. This method was successfully tested in 1st to 8th order systems along the Middle Rio Grande River Basin in New Mexico, USA.
Yücel, Yeni H; Cardinell, Kirsten; Khattak, Shireen; Zhou, Xun; Lapinski, Michael; Cheng, Fang; Gupta, Neeru
2018-06-01
To visualize and quantify lymphatic drainage of aqueous humor from the eye to cervical lymph nodes in the dynamic state. A near-infrared tracer was injected into the right eye anterior chamber of 10 mice under general anesthesia. Mice were imaged with photoacoustic tomography before and 20 minutes, 2, 4, and 6 hours after injection. Tracer signal intensity was measured in both eyes and right and left neck lymph nodes at every time point and signal intensity slopes were calculated. Slope differences between right and left eyes and right and left nodes were compared using paired t-test. Neck nodes were examined with fluorescence optical imaging and histologically for the presence of tracer. Following right eye intracameral injection of tracer, an exponential decrease in tracer signal was observed from 20 minutes to 6 hours in all mice. Slope differences of the signal intensity between right and left eyes were significant (P < 0.001). Simultaneously, increasing tracer signal was observed in the right neck node from 20 minutes to 6 hours. Slope differences of the signal intensity between right and left neck nodes were significant (P = 0.0051). Ex vivo optical fluorescence imaging and histopathologic examination of neck nodes confirmed tracer presence within submandibular nodes. Active lymphatic drainage of aqueous from the eye to cervical lymph nodes was measured noninvasively by photoacoustic imaging of near-infrared nanoparticles. This unique in vivo assay may help to uncover novel drugs that target alternative outflow routes to lower IOP in glaucoma and may provide new insights into lymphatic drainage in eye health and disease.
Cremers, Charlotte H P; Dankbaar, Jan Willem; Vergouwen, Mervyn D I; Vos, Pieter C; Bennink, Edwin; Rinkel, Gabriel J E; Velthuis, Birgitta K; van der Schaaf, Irene C
2015-05-01
Tracer delay-sensitive perfusion algorithms in CT perfusion (CTP) result in an overestimation of the extent of ischemia in thromboembolic stroke. In diagnosing delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH), delayed arrival of contrast due to vasospasm may also overestimate the extent of ischemia. We investigated the diagnostic accuracy of tracer delay-sensitive and tracer delay-insensitive algorithms for detecting DCI. From a prospectively collected series of aSAH patients admitted between 2007-2011, we included patients with any clinical deterioration other than rebleeding within 21 days after SAH who underwent NCCT/CTP/CTA imaging. Causes of clinical deterioration were categorized into DCI and no DCI. CTP maps were calculated with tracer delay-sensitive and tracer delay-insensitive algorithms and were visually assessed for the presence of perfusion deficits by two independent observers with different levels of experience. The diagnostic value of both algorithms was calculated for both observers. Seventy-one patients were included. For the experienced observer, the positive predictive values (PPVs) were 0.67 for the delay-sensitive and 0.66 for the delay-insensitive algorithm, and the negative predictive values (NPVs) were 0.73 and 0.74. For the less experienced observer, PPVs were 0.60 for both algorithms, and NPVs were 0.66 for the delay-sensitive and 0.63 for the delay-insensitive algorithm. Test characteristics are comparable for tracer delay-sensitive and tracer delay-insensitive algorithms for the visual assessment of CTP in diagnosing DCI. This indicates that both algorithms can be used for this purpose.