Sample records for gradient-based optimization algorithms

  1. On the usefulness of gradient information in multi-objective deformable image registration using a B-spline-based dual-dynamic transformation model: comparison of three optimization algorithms

    NASA Astrophysics Data System (ADS)

    Pirpinia, Kleopatra; Bosman, Peter A. N.; Sonke, Jan-Jakob; van Herk, Marcel; Alderliesten, Tanja

    2015-03-01

    The use of gradient information is well-known to be highly useful in single-objective optimization-based image registration methods. However, its usefulness has not yet been investigated for deformable image registration from a multi-objective optimization perspective. To this end, within a previously introduced multi-objective optimization framework, we use a smooth B-spline-based dual-dynamic transformation model that allows us to derive gradient information analytically, while still being able to account for large deformations. Within the multi-objective framework, we previously employed a powerful evolutionary algorithm (EA) that computes and advances multiple outcomes at once, resulting in a set of solutions (a so-called Pareto front) that represents efficient trade-offs between the objectives. With the addition of the B-spline-based transformation model, we studied the usefulness of gradient information in multiobjective deformable image registration using three different optimization algorithms: the (gradient-less) EA, a gradientonly algorithm, and a hybridization of these two. We evaluated the algorithms to register highly deformed images: 2D MRI slices of the breast in prone and supine positions. Results demonstrate that gradient-based multi-objective optimization significantly speeds up optimization in the initial stages of optimization. However, allowing sufficient computational resources, better results could still be obtained with the EA. Ultimately, the hybrid EA found the best overall approximation of the optimal Pareto front, further indicating that adding gradient-based optimization for multiobjective optimization-based deformable image registration can indeed be beneficial

  2. Improving the FLORIS wind plant model for compatibility with gradient-based optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Jared J.; Gebraad, Pieter MO; Ning, Andrew

    The FLORIS (FLOw Redirection and Induction in Steady-state) model, a parametric wind turbine wake model that predicts steady-state wake characteristics based on wind turbine position and yaw angle, was developed for optimization of control settings and turbine locations. This article provides details on changes made to the FLORIS model to make the model more suitable for gradient-based optimization. Changes to the FLORIS model were made to remove discontinuities and add curvature to regions of non-physical zero gradient. Exact gradients for the FLORIS model were obtained using algorithmic differentiation. A set of three case studies demonstrate that using exact gradients withmore » gradient-based optimization reduces the number of function calls by several orders of magnitude. The case studies also show that adding curvature improves convergence behavior, allowing gradient-based optimization algorithms used with the FLORIS model to more reliably find better solutions to wind farm optimization problems.« less

  3. Speed and convergence properties of gradient algorithms for optimization of IMRT.

    PubMed

    Zhang, Xiaodong; Liu, Helen; Wang, Xiaochun; Dong, Lei; Wu, Qiuwen; Mohan, Radhe

    2004-05-01

    Gradient algorithms are the most commonly employed search methods in the routine optimization of IMRT plans. It is well known that local minima can exist for dose-volume-based and biology-based objective functions. The purpose of this paper is to compare the relative speed of different gradient algorithms, to investigate the strategies for accelerating the optimization process, to assess the validity of these strategies, and to study the convergence properties of these algorithms for dose-volume and biological objective functions. With these aims in mind, we implemented Newton's, conjugate gradient (CG), and the steepest decent (SD) algorithms for dose-volume- and EUD-based objective functions. Our implementation of Newton's algorithm approximates the second derivative matrix (Hessian) by its diagonal. The standard SD algorithm and the CG algorithm with "line minimization" were also implemented. In addition, we investigated the use of a variation of the CG algorithm, called the "scaled conjugate gradient" (SCG) algorithm. To accelerate the optimization process, we investigated the validity of the use of a "hybrid optimization" strategy, in which approximations to calculated dose distributions are used during most of the iterations. Published studies have indicated that getting trapped in local minima is not a significant problem. To investigate this issue further, we first obtained, by trial and error, and starting with uniform intensity distributions, the parameters of the dose-volume- or EUD-based objective functions which produced IMRT plans that satisfied the clinical requirements. Using the resulting optimized intensity distributions as the initial guess, we investigated the possibility of getting trapped in a local minimum. For most of the results presented, we used a lung cancer case. To illustrate the generality of our methods, the results for a prostate case are also presented. For both dose-volume and EUD based objective functions, Newton's method far outperforms other algorithms in terms of speed. The SCG algorithm, which avoids expensive "line minimization," can speed up the standard CG algorithm by at least a factor of 2. For the same initial conditions, all algorithms converge essentially to the same plan. However, we demonstrate that for any of the algorithms studied, starting with previously optimized intensity distributions as the initial guess but for different objective function parameters, the solution frequently gets trapped in local minima. We found that the initial intensity distribution obtained from IMRT optimization utilizing objective function parameters, which favor a specific anatomic structure, would lead to a local minimum corresponding to that structure. Our results indicate that from among the gradient algorithms tested, Newton's method appears to be the fastest by far. Different gradient algorithms have the same convergence properties for dose-volume- and EUD-based objective functions. The hybrid dose calculation strategy is valid and can significantly accelerate the optimization process. The degree of acceleration achieved depends on the type of optimization problem being addressed (e.g., IMRT optimization, intensity modulated beam configuration optimization, or objective function parameter optimization). Under special conditions, gradient algorithms will get trapped in local minima, and reoptimization, starting with the results of previous optimization, will lead to solutions that are generally not significantly different from the local minimum.

  4. Policy Gradient Adaptive Dynamic Programming for Data-Based Optimal Control.

    PubMed

    Luo, Biao; Liu, Derong; Wu, Huai-Ning; Wang, Ding; Lewis, Frank L

    2017-10-01

    The model-free optimal control problem of general discrete-time nonlinear systems is considered in this paper, and a data-based policy gradient adaptive dynamic programming (PGADP) algorithm is developed to design an adaptive optimal controller method. By using offline and online data rather than the mathematical system model, the PGADP algorithm improves control policy with a gradient descent scheme. The convergence of the PGADP algorithm is proved by demonstrating that the constructed Q -function sequence converges to the optimal Q -function. Based on the PGADP algorithm, the adaptive control method is developed with an actor-critic structure and the method of weighted residuals. Its convergence properties are analyzed, where the approximate Q -function converges to its optimum. Computer simulation results demonstrate the effectiveness of the PGADP-based adaptive control method.

  5. Switching neuronal state: optimal stimuli revealed using a stochastically-seeded gradient algorithm.

    PubMed

    Chang, Joshua; Paydarfar, David

    2014-12-01

    Inducing a switch in neuronal state using energy optimal stimuli is relevant to a variety of problems in neuroscience. Analytical techniques from optimal control theory can identify such stimuli; however, solutions to the optimization problem using indirect variational approaches can be elusive in models that describe neuronal behavior. Here we develop and apply a direct gradient-based optimization algorithm to find stimulus waveforms that elicit a change in neuronal state while minimizing energy usage. We analyze standard models of neuronal behavior, the Hodgkin-Huxley and FitzHugh-Nagumo models, to show that the gradient-based algorithm: (1) enables automated exploration of a wide solution space, using stochastically generated initial waveforms that converge to multiple locally optimal solutions; and (2) finds optimal stimulus waveforms that achieve a physiological outcome condition, without a priori knowledge of the optimal terminal condition of all state variables. Analysis of biological systems using stochastically-seeded gradient methods can reveal salient dynamical mechanisms underlying the optimal control of system behavior. The gradient algorithm may also have practical applications in future work, for example, finding energy optimal waveforms for therapeutic neural stimulation that minimizes power usage and diminishes off-target effects and damage to neighboring tissue.

  6. A Gradient-Based Multistart Algorithm for Multimodal Aerodynamic Shape Optimization Problems Based on Free-Form Deformation

    NASA Astrophysics Data System (ADS)

    Streuber, Gregg Mitchell

    Environmental and economic factors motivate the pursuit of more fuel-efficient aircraft designs. Aerodynamic shape optimization is a powerful tool in this effort, but is hampered by the presence of multimodality in many design spaces. Gradient-based multistart optimization uses a sampling algorithm and multiple parallel optimizations to reliably apply fast gradient-based optimization to moderately multimodal problems. Ensuring that the sampled geometries remain physically realizable requires manually developing specialized linear constraints for each class of problem. Utilizing free-form deformation geometry control allows these linear constraints to be written in a geometry-independent fashion, greatly easing the process of applying the algorithm to new problems. This algorithm was used to assess the presence of multimodality when optimizing a wing in subsonic and transonic flows, under inviscid and viscous conditions, and a blended wing-body under transonic, viscous conditions. Multimodality was present in every wing case, while the blended wing-body was found to be generally unimodal.

  7. Research on particle swarm optimization algorithm based on optimal movement probability

    NASA Astrophysics Data System (ADS)

    Ma, Jianhong; Zhang, Han; He, Baofeng

    2017-01-01

    The particle swarm optimization algorithm to improve the control precision, and has great application value training neural network and fuzzy system control fields etc.The traditional particle swarm algorithm is used for the training of feed forward neural networks,the search efficiency is low, and easy to fall into local convergence.An improved particle swarm optimization algorithm is proposed based on error back propagation gradient descent. Particle swarm optimization for Solving Least Squares Problems to meme group, the particles in the fitness ranking, optimization problem of the overall consideration, the error back propagation gradient descent training BP neural network, particle to update the velocity and position according to their individual optimal and global optimization, make the particles more to the social optimal learning and less to its optimal learning, it can avoid the particles fall into local optimum, by using gradient information can accelerate the PSO local search ability, improve the multi beam particle swarm depth zero less trajectory information search efficiency, the realization of improved particle swarm optimization algorithm. Simulation results show that the algorithm in the initial stage of rapid convergence to the global optimal solution can be near to the global optimal solution and keep close to the trend, the algorithm has faster convergence speed and search performance in the same running time, it can improve the convergence speed of the algorithm, especially the later search efficiency.

  8. Preliminary Structural Design Using Topology Optimization with a Comparison of Results from Gradient and Genetic Algorithm Methods

    NASA Technical Reports Server (NTRS)

    Burt, Adam O.; Tinker, Michael L.

    2014-01-01

    In this paper, genetic algorithm based and gradient-based topology optimization is presented in application to a real hardware design problem. Preliminary design of a planetary lander mockup structure is accomplished using these methods that prove to provide major weight savings by addressing the structural efficiency during the design cycle. This paper presents two alternative formulations of the topology optimization problem. The first is the widely-used gradient-based implementation using commercially available algorithms. The second is formulated using genetic algorithms and internally developed capabilities. These two approaches are applied to a practical design problem for hardware that has been built, tested and proven to be functional. Both formulations converged on similar solutions and therefore were proven to be equally valid implementations of the process. This paper discusses both of these formulations at a high level.

  9. Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.

    PubMed

    Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou

    2015-01-01

    Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1) βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.

  10. Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models

    PubMed Central

    Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou

    2015-01-01

    Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1)β k ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations. PMID:26502409

  11. Multidisciplinary design optimization using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1994-01-01

    Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared with efficient gradient methods. Applicaiton of GA is underway for a cost optimization study for a launch-vehicle fuel-tank and structural design of a wing. The strengths and limitations of GA for launch vehicle design optimization is studied.

  12. Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms.

    PubMed

    Xu, Dongpo; Xia, Yili; Mandic, Danilo P

    2016-02-01

    The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel generalized Hamilton-real (GHR) calculus, thus making a possible efficient derivation of general optimization algorithms directly in the quaternion field, rather than using the isomorphism with the real domain, as is current practice. In addition, unlike the existing quaternion gradients, the GHR calculus allows for the product and chain rule, and for a one-to-one correspondence of the novel quaternion gradient and Hessian with their real counterparts. Properties of the quaternion gradient and Hessian relevant to numerical applications are also introduced, opening a new avenue of research in quaternion optimization and greatly simplified the derivations of learning algorithms. The proposed GHR calculus is shown to yield the same generic algorithm forms as the corresponding real- and complex-valued algorithms. Advantages of the proposed framework are illuminated over illustrative simulations in quaternion signal processing and neural networks.

  13. Gradient-based Optimization for Poroelastic and Viscoelastic MR Elastography

    PubMed Central

    Tan, Likun; McGarry, Matthew D.J.; Van Houten, Elijah E.W.; Ji, Ming; Solamen, Ligin; Weaver, John B.

    2017-01-01

    We describe an efficient gradient computation for solving inverse problems arising in magnetic resonance elastography (MRE). The algorithm can be considered as a generalized ‘adjoint method’ based on a Lagrangian formulation. One requirement for the classic adjoint method is assurance of the self-adjoint property of the stiffness matrix in the elasticity problem. In this paper, we show this property is no longer a necessary condition in our algorithm, but the computational performance can be as efficient as the classic method, which involves only two forward solutions and is independent of the number of parameters to be estimated. The algorithm is developed and implemented in material property reconstructions using poroelastic and viscoelastic modeling. Various gradient- and Hessian-based optimization techniques have been tested on simulation, phantom and in vivo brain data. The numerical results show the feasibility and the efficiency of the proposed scheme for gradient calculation. PMID:27608454

  14. Optimal Design of Gradient Materials and Bi-Level Optimization of Topology Using Targets (BOTT)

    NASA Astrophysics Data System (ADS)

    Garland, Anthony

    The objective of this research is to understand the fundamental relationships necessary to develop a method to optimize both the topology and the internal gradient material distribution of a single object while meeting constraints and conflicting objectives. Functionally gradient material (FGM) objects possess continuous varying material properties throughout the object, and they allow an engineer to tailor individual regions of an object to have specific mechanical properties by locally modifying the internal material composition. A variety of techniques exists for topology optimization, and several methods exist for FGM optimization, but combining the two together is difficult. Understanding the relationship between topology and material gradient optimization enables the selection of an appropriate model and the development of algorithms, which allow engineers to design high-performance parts that better meet design objectives than optimized homogeneous material objects. For this research effort, topology optimization means finding the optimal connected structure with an optimal shape. FGM optimization means finding the optimal macroscopic material properties within an object. Tailoring the material constitutive matrix as a function of position results in gradient properties. Once, the target macroscopic properties are known, a mesostructure or a particular material nanostructure can be found which gives the target material properties at each macroscopic point. This research demonstrates that topology and gradient materials can both be optimized together for a single part. The algorithms use a discretized model of the domain and gradient based optimization algorithms. In addition, when considering two conflicting objectives the algorithms in this research generate clear 'features' within a single part. This tailoring of material properties within different areas of a single part (automated design of 'features') using computational design tools is a novel benefit of gradient material designs. A macroscopic gradient can be achieved by varying the microstructure or the mesostructures of an object. The mesostructure interpretation allows for more design freedom since the mesostructures can be tuned to have non-isotropic material properties. A new algorithm called Bi-level Optimization of Topology using Targets (BOTT) seeks to find the best distribution of mesostructure designs throughout a single object in order to minimize an objective value. On the macro level, the BOTT algorithm optimizes the macro topology and gradient material properties within the object. The BOTT algorithm optimizes the material gradient by finding the best constitutive matrix at each location with the object. In order to enhance the likelihood that a mesostructure can be generated with the same equivalent constitutive matrix, the variability of the constitutive matrix is constrained to be an orthotropic material. The stiffness in the X and Y directions (of the base coordinate system) can change in addition to rotating the orthotropic material to align with the loading at each region. Second, the BOTT algorithm designs mesostructures with macroscopic properties equal to the target properties found in step one while at the same time the algorithm seeks to minimize material usage in each mesostructure. The mesostructure algorithm maximizes the strain energy of the mesostructures unit cell when a pseudo strain is applied to the cell. A set of experiments reveals the fundamental relationship between target cell density and the strain (or pseudo strain) applied to a unit cell and the output effective properties of the mesostructure. At low density, a few mesostructure unit cell design are possible, while at higher density the mesostructure unit cell designs have many possibilities. Therefore, at low densities the effective properties of the mesostructure are a step function of the applied pseudo strain. At high densities, the effective properties of the mesostructure are continuous function of the applied pseudo strain. Finally, the macro and mesostructure designs are coordinated so that the macro and meso levels agree on the material properties at each macro region. In addition, a coordination effort seeks to coordinate the boundaries of adjacent mesostructure designs so that the macro load path is transmitted from one mesostructure design to its neighbors. The BOTT algorithm has several advantages over existing algorithms within the literature. First, the BOTT algorithm significantly reduces the computational power required to run the algorithm. Second, the BOTT algorithm indirectly enforces a minimum mesostructure density constraint which increases the manufacturability of the final design. Third, the BOTT algorithm seeks to transfer the load from one mesostructure to its neighbors by coordinating the boundaries of adjacent mesostructure designs. However, the BOTT algorithm can still be improved since it may have difficulty converging due to the step function nature of the mesostructure design problem at low density.

  15. Spiral bacterial foraging optimization method: Algorithm, evaluation and convergence analysis

    NASA Astrophysics Data System (ADS)

    Kasaiezadeh, Alireza; Khajepour, Amir; Waslander, Steven L.

    2014-04-01

    A biologically-inspired algorithm called Spiral Bacterial Foraging Optimization (SBFO) is investigated in this article. SBFO, previously proposed by the same authors, is a multi-agent, gradient-based algorithm that minimizes both the main objective function (local cost) and the distance between each agent and a temporary central point (global cost). A random jump is included normal to the connecting line of each agent to the central point, which produces a vortex around the temporary central point. This random jump is also suitable to cope with premature convergence, which is a feature of swarm-based optimization methods. The most important advantages of this algorithm are as follows: First, this algorithm involves a stochastic type of search with a deterministic convergence. Second, as gradient-based methods are employed, faster convergence is demonstrated over GA, DE, BFO, etc. Third, the algorithm can be implemented in a parallel fashion in order to decentralize large-scale computation. Fourth, the algorithm has a limited number of tunable parameters, and finally SBFO has a strong certainty of convergence which is rare in existing global optimization algorithms. A detailed convergence analysis of SBFO for continuously differentiable objective functions has also been investigated in this article.

  16. Multiple-Point Temperature Gradient Algorithm for Ring Laser Gyroscope Bias Compensation

    PubMed Central

    Li, Geng; Zhang, Pengfei; Wei, Guo; Xie, Yuanping; Yu, Xudong; Long, Xingwu

    2015-01-01

    To further improve ring laser gyroscope (RLG) bias stability, a multiple-point temperature gradient algorithm is proposed for RLG bias compensation in this paper. Based on the multiple-point temperature measurement system, a complete thermo-image of the RLG block is developed. Combined with the multiple-point temperature gradients between different points of the RLG block, the particle swarm optimization algorithm is used to tune the support vector machine (SVM) parameters, and an optimized design for selecting the thermometer locations is also discussed. The experimental results validate the superiority of the introduced method and enhance the precision and generalizability in the RLG bias compensation model. PMID:26633401

  17. Particle swarm optimization-based automatic parameter selection for deep neural networks and its applications in large-scale and high-dimensional data

    PubMed Central

    2017-01-01

    In this paper, we propose a new automatic hyperparameter selection approach for determining the optimal network configuration (network structure and hyperparameters) for deep neural networks using particle swarm optimization (PSO) in combination with a steepest gradient descent algorithm. In the proposed approach, network configurations were coded as a set of real-number m-dimensional vectors as the individuals of the PSO algorithm in the search procedure. During the search procedure, the PSO algorithm is employed to search for optimal network configurations via the particles moving in a finite search space, and the steepest gradient descent algorithm is used to train the DNN classifier with a few training epochs (to find a local optimal solution) during the population evaluation of PSO. After the optimization scheme, the steepest gradient descent algorithm is performed with more epochs and the final solutions (pbest and gbest) of the PSO algorithm to train a final ensemble model and individual DNN classifiers, respectively. The local search ability of the steepest gradient descent algorithm and the global search capabilities of the PSO algorithm are exploited to determine an optimal solution that is close to the global optimum. We constructed several experiments on hand-written characters and biological activity prediction datasets to show that the DNN classifiers trained by the network configurations expressed by the final solutions of the PSO algorithm, employed to construct an ensemble model and individual classifier, outperform the random approach in terms of the generalization performance. Therefore, the proposed approach can be regarded an alternative tool for automatic network structure and parameter selection for deep neural networks. PMID:29236718

  18. The q-G method : A q-version of the Steepest Descent method for global optimization.

    PubMed

    Soterroni, Aline C; Galski, Roberto L; Scarabello, Marluce C; Ramos, Fernando M

    2015-01-01

    In this work, the q-Gradient (q-G) method, a q-version of the Steepest Descent method, is presented. The main idea behind the q-G method is the use of the negative of the q-gradient vector of the objective function as the search direction. The q-gradient vector, or simply the q-gradient, is a generalization of the classical gradient vector based on the concept of Jackson's derivative from the q-calculus. Its use provides the algorithm an effective mechanism for escaping from local minima. The q-G method reduces to the Steepest Descent method when the parameter q tends to 1. The algorithm has three free parameters and it is implemented so that the search process gradually shifts from global exploration in the beginning to local exploitation in the end. We evaluated the q-G method on 34 test functions, and compared its performance with 34 optimization algorithms, including derivative-free algorithms and the Steepest Descent method. Our results show that the q-G method is competitive and has a great potential for solving multimodal optimization problems.

  19. Gradient gravitational search: An efficient metaheuristic algorithm for global optimization.

    PubMed

    Dash, Tirtharaj; Sahu, Prabhat K

    2015-05-30

    The adaptation of novel techniques developed in the field of computational chemistry to solve the concerned problems for large and flexible molecules is taking the center stage with regard to efficient algorithm, computational cost and accuracy. In this article, the gradient-based gravitational search (GGS) algorithm, using analytical gradients for a fast minimization to the next local minimum has been reported. Its efficiency as metaheuristic approach has also been compared with Gradient Tabu Search and others like: Gravitational Search, Cuckoo Search, and Back Tracking Search algorithms for global optimization. Moreover, the GGS approach has also been applied to computational chemistry problems for finding the minimal value potential energy of two-dimensional and three-dimensional off-lattice protein models. The simulation results reveal the relative stability and physical accuracy of protein models with efficient computational cost. © 2015 Wiley Periodicals, Inc.

  20. Noise-shaping gradient descent-based online adaptation algorithms for digital calibration of analog circuits.

    PubMed

    Chakrabartty, Shantanu; Shaga, Ravi K; Aono, Kenji

    2013-04-01

    Analog circuits that are calibrated using digital-to-analog converters (DACs) use a digital signal processor-based algorithm for real-time adaptation and programming of system parameters. In this paper, we first show that this conventional framework for adaptation yields suboptimal calibration properties because of artifacts introduced by quantization noise. We then propose a novel online stochastic optimization algorithm called noise-shaping or ΣΔ gradient descent, which can shape the quantization noise out of the frequency regions spanning the parameter adaptation trajectories. As a result, the proposed algorithms demonstrate superior parameter search properties compared to floating-point gradient methods and better convergence properties than conventional quantized gradient-methods. In the second part of this paper, we apply the ΣΔ gradient descent algorithm to two examples of real-time digital calibration: 1) balancing and tracking of bias currents, and 2) frequency calibration of a band-pass Gm-C biquad filter biased in weak inversion. For each of these examples, the circuits have been prototyped in a 0.5-μm complementary metal-oxide-semiconductor process, and we demonstrate that the proposed algorithm is able to find the optimal solution even in the presence of spurious local minima, which are introduced by the nonlinear and non-monotonic response of calibration DACs.

  1. Accelerating IMRT optimization by voxel sampling

    NASA Astrophysics Data System (ADS)

    Martin, Benjamin C.; Bortfeld, Thomas R.; Castañon, David A.

    2007-12-01

    This paper presents a new method for accelerating intensity-modulated radiation therapy (IMRT) optimization using voxel sampling. Rather than calculating the dose to the entire patient at each step in the optimization, the dose is only calculated for some randomly selected voxels. Those voxels are then used to calculate estimates of the objective and gradient which are used in a randomized version of a steepest descent algorithm. By selecting different voxels on each step, we are able to find an optimal solution to the full problem. We also present an algorithm to automatically choose the best sampling rate for each structure within the patient during the optimization. Seeking further improvements, we experimented with several other gradient-based optimization algorithms and found that the delta-bar-delta algorithm performs well despite the randomness. Overall, we were able to achieve approximately an order of magnitude speedup on our test case as compared to steepest descent.

  2. A PDE Sensitivity Equation Method for Optimal Aerodynamic Design

    NASA Technical Reports Server (NTRS)

    Borggaard, Jeff; Burns, John

    1996-01-01

    The use of gradient based optimization algorithms in inverse design is well established as a practical approach to aerodynamic design. A typical procedure uses a simulation scheme to evaluate the objective function (from the approximate states) and its gradient, then passes this information to an optimization algorithm. Once the simulation scheme (CFD flow solver) has been selected and used to provide approximate function evaluations, there are several possible approaches to the problem of computing gradients. One popular method is to differentiate the simulation scheme and compute design sensitivities that are then used to obtain gradients. Although this black-box approach has many advantages in shape optimization problems, one must compute mesh sensitivities in order to compute the design sensitivity. In this paper, we present an alternative approach using the PDE sensitivity equation to develop algorithms for computing gradients. This approach has the advantage that mesh sensitivities need not be computed. Moreover, when it is possible to use the CFD scheme for both the forward problem and the sensitivity equation, then there are computational advantages. An apparent disadvantage of this approach is that it does not always produce consistent derivatives. However, for a proper combination of discretization schemes, one can show asymptotic consistency under mesh refinement, which is often sufficient to guarantee convergence of the optimal design algorithm. In particular, we show that when asymptotically consistent schemes are combined with a trust-region optimization algorithm, the resulting optimal design method converges. We denote this approach as the sensitivity equation method. The sensitivity equation method is presented, convergence results are given and the approach is illustrated on two optimal design problems involving shocks.

  3. ANOTHER LOOK AT THE FAST ITERATIVE SHRINKAGE/THRESHOLDING ALGORITHM (FISTA)*

    PubMed Central

    Kim, Donghwan; Fessler, Jeffrey A.

    2017-01-01

    This paper provides a new way of developing the “Fast Iterative Shrinkage/Thresholding Algorithm (FISTA)” [3] that is widely used for minimizing composite convex functions with a nonsmooth term such as the ℓ1 regularizer. In particular, this paper shows that FISTA corresponds to an optimized approach to accelerating the proximal gradient method with respect to a worst-case bound of the cost function. This paper then proposes a new algorithm that is derived by instead optimizing the step coefficients of the proximal gradient method with respect to a worst-case bound of the composite gradient mapping. The proof is based on the worst-case analysis called Performance Estimation Problem in [11]. PMID:29805242

  4. Smart Phase Tuning in Microwave Photonic Integrated Circuits Toward Automated Frequency Multiplication by Design

    NASA Astrophysics Data System (ADS)

    Nabavi, N.

    2018-07-01

    The author investigates the monitoring methods for fine adjustment of the previously proposed on-chip architecture for frequency multiplication and translation of harmonics by design. Digital signal processing (DSP) algorithms are utilized to create an optimized microwave photonic integrated circuit functionality toward automated frequency multiplication. The implemented DSP algorithms are formed on discrete Fourier transform and optimization-based algorithms (Greedy and gradient-based algorithms), which are analytically derived and numerically compared based on the accuracy and speed of convergence criteria.

  5. Stationary-phase optimized selectivity liquid chromatography: development of a linear gradient prediction algorithm.

    PubMed

    De Beer, Maarten; Lynen, Fréderic; Chen, Kai; Ferguson, Paul; Hanna-Brown, Melissa; Sandra, Pat

    2010-03-01

    Stationary-phase optimized selectivity liquid chromatography (SOS-LC) is a tool in reversed-phase LC (RP-LC) to optimize the selectivity for a given separation by combining stationary phases in a multisegment column. The presently (commercially) available SOS-LC optimization procedure and algorithm are only applicable to isocratic analyses. Step gradient SOS-LC has been developed, but this is still not very elegant for the analysis of complex mixtures composed of components covering a broad hydrophobicity range. A linear gradient prediction algorithm has been developed allowing one to apply SOS-LC as a generic RP-LC optimization method. The algorithm allows operation in isocratic, stepwise, and linear gradient run modes. The features of SOS-LC in the linear gradient mode are demonstrated by means of a mixture of 13 steroids, whereby baseline separation is predicted and experimentally demonstrated.

  6. A penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography.

    PubMed

    Shang, Shang; Bai, Jing; Song, Xiaolei; Wang, Hongkai; Lau, Jaclyn

    2007-01-01

    Conjugate gradient method is verified to be efficient for nonlinear optimization problems of large-dimension data. In this paper, a penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography (FMT) is presented. The algorithm combines the linear conjugate gradient method and the nonlinear conjugate gradient method together based on a restart strategy, in order to take advantage of the two kinds of conjugate gradient methods and compensate for the disadvantages. A quadratic penalty method is adopted to gain a nonnegative constraint and reduce the illposedness of the problem. Simulation studies show that the presented algorithm is accurate, stable, and fast. It has a better performance than the conventional conjugate gradient-based reconstruction algorithms. It offers an effective approach to reconstruct fluorochrome information for FMT.

  7. Gradient Evolution-based Support Vector Machine Algorithm for Classification

    NASA Astrophysics Data System (ADS)

    Zulvia, Ferani E.; Kuo, R. J.

    2018-03-01

    This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.

  8. Data-driven gradient algorithm for high-precision quantum control

    NASA Astrophysics Data System (ADS)

    Wu, Re-Bing; Chu, Bing; Owens, David H.; Rabitz, Herschel

    2018-04-01

    In the quest to achieve scalable quantum information processing technologies, gradient-based optimal control algorithms (e.g., grape) are broadly used for implementing high-precision quantum gates, but their performance is often hindered by deterministic or random errors in the system model and the control electronics. In this paper, we show that grape can be taught to be more effective by jointly learning from the design model and the experimental data obtained from process tomography. The resulting data-driven gradient optimization algorithm (d-grape) can in principle correct all deterministic gate errors, with a mild efficiency loss. The d-grape algorithm may become more powerful with broadband controls that involve a large number of control parameters, while other algorithms usually slow down due to the increased size of the search space. These advantages are demonstrated by simulating the implementation of a two-qubit controlled-not gate.

  9. Subpixel displacement measurement method based on the combination of particle swarm optimization and gradient algorithm

    NASA Astrophysics Data System (ADS)

    Guang, Chen; Qibo, Feng; Keqin, Ding; Zhan, Gao

    2017-10-01

    A subpixel displacement measurement method based on the combination of particle swarm optimization (PSO) and gradient algorithm (GA) was proposed for accuracy and speed optimization in GA, which is a subpixel displacement measurement method better applied in engineering practice. An initial integer-pixel value was obtained according to the global searching ability of PSO, and then gradient operators were adopted for a subpixel displacement search. A comparison was made between this method and GA by simulated speckle images and rigid-body displacement in metal specimens. The results showed that the computational accuracy of the combination of PSO and GA method reached 0.1 pixel in the simulated speckle images, or even 0.01 pixels in the metal specimen. Also, computational efficiency and the antinoise performance of the improved method were markedly enhanced.

  10. Learning Incoherent Sparse and Low-Rank Patterns from Multiple Tasks

    PubMed Central

    Chen, Jianhui; Liu, Ji; Ye, Jieping

    2013-01-01

    We consider the problem of learning incoherent sparse and low-rank patterns from multiple tasks. Our approach is based on a linear multi-task learning formulation, in which the sparse and low-rank patterns are induced by a cardinality regularization term and a low-rank constraint, respectively. This formulation is non-convex; we convert it into its convex surrogate, which can be routinely solved via semidefinite programming for small-size problems. We propose to employ the general projected gradient scheme to efficiently solve such a convex surrogate; however, in the optimization formulation, the objective function is non-differentiable and the feasible domain is non-trivial. We present the procedures for computing the projected gradient and ensuring the global convergence of the projected gradient scheme. The computation of projected gradient involves a constrained optimization problem; we show that the optimal solution to such a problem can be obtained via solving an unconstrained optimization subproblem and an Euclidean projection subproblem. We also present two projected gradient algorithms and analyze their rates of convergence in details. In addition, we illustrate the use of the presented projected gradient algorithms for the proposed multi-task learning formulation using the least squares loss. Experimental results on a collection of real-world data sets demonstrate the effectiveness of the proposed multi-task learning formulation and the efficiency of the proposed projected gradient algorithms. PMID:24077658

  11. Learning Incoherent Sparse and Low-Rank Patterns from Multiple Tasks.

    PubMed

    Chen, Jianhui; Liu, Ji; Ye, Jieping

    2012-02-01

    We consider the problem of learning incoherent sparse and low-rank patterns from multiple tasks. Our approach is based on a linear multi-task learning formulation, in which the sparse and low-rank patterns are induced by a cardinality regularization term and a low-rank constraint, respectively. This formulation is non-convex; we convert it into its convex surrogate, which can be routinely solved via semidefinite programming for small-size problems. We propose to employ the general projected gradient scheme to efficiently solve such a convex surrogate; however, in the optimization formulation, the objective function is non-differentiable and the feasible domain is non-trivial. We present the procedures for computing the projected gradient and ensuring the global convergence of the projected gradient scheme. The computation of projected gradient involves a constrained optimization problem; we show that the optimal solution to such a problem can be obtained via solving an unconstrained optimization subproblem and an Euclidean projection subproblem. We also present two projected gradient algorithms and analyze their rates of convergence in details. In addition, we illustrate the use of the presented projected gradient algorithms for the proposed multi-task learning formulation using the least squares loss. Experimental results on a collection of real-world data sets demonstrate the effectiveness of the proposed multi-task learning formulation and the efficiency of the proposed projected gradient algorithms.

  12. A conjugate gradients/trust regions algorithms for training multilayer perceptrons for nonlinear mapping

    NASA Technical Reports Server (NTRS)

    Madyastha, Raghavendra K.; Aazhang, Behnaam; Henson, Troy F.; Huxhold, Wendy L.

    1992-01-01

    This paper addresses the issue of applying a globally convergent optimization algorithm to the training of multilayer perceptrons, a class of Artificial Neural Networks. The multilayer perceptrons are trained towards the solution of two highly nonlinear problems: (1) signal detection in a multi-user communication network, and (2) solving the inverse kinematics for a robotic manipulator. The research is motivated by the fact that a multilayer perceptron is theoretically capable of approximating any nonlinear function to within a specified accuracy. The algorithm that has been employed in this study combines the merits of two well known optimization algorithms, the Conjugate Gradients and the Trust Regions Algorithms. The performance is compared to a widely used algorithm, the Backpropagation Algorithm, that is basically a gradient-based algorithm, and hence, slow in converging. The performances of the two algorithms are compared with the convergence rate. Furthermore, in the case of the signal detection problem, performances are also benchmarked by the decision boundaries drawn as well as the probability of error obtained in either case.

  13. A hybrid multi-objective evolutionary algorithm for wind-turbine blade optimization

    NASA Astrophysics Data System (ADS)

    Sessarego, M.; Dixon, K. R.; Rival, D. E.; Wood, D. H.

    2015-08-01

    A concurrent-hybrid non-dominated sorting genetic algorithm (hybrid NSGA-II) has been developed and applied to the simultaneous optimization of the annual energy production, flapwise root-bending moment and mass of the NREL 5 MW wind-turbine blade. By hybridizing a multi-objective evolutionary algorithm (MOEA) with gradient-based local search, it is believed that the optimal set of blade designs could be achieved in lower computational cost than for a conventional MOEA. To measure the convergence between the hybrid and non-hybrid NSGA-II on a wind-turbine blade optimization problem, a computationally intensive case was performed using the non-hybrid NSGA-II. From this particular case, a three-dimensional surface representing the optimal trade-off between the annual energy production, flapwise root-bending moment and blade mass was achieved. The inclusion of local gradients in the blade optimization, however, shows no improvement in the convergence for this three-objective problem.

  14. Pixel-based OPC optimization based on conjugate gradients.

    PubMed

    Ma, Xu; Arce, Gonzalo R

    2011-01-31

    Optical proximity correction (OPC) methods are resolution enhancement techniques (RET) used extensively in the semiconductor industry to improve the resolution and pattern fidelity of optical lithography. In pixel-based OPC (PBOPC), the mask is divided into small pixels, each of which is modified during the optimization process. Two critical issues in PBOPC are the required computational complexity of the optimization process, and the manufacturability of the optimized mask. Most current OPC optimization methods apply the steepest descent (SD) algorithm to improve image fidelity augmented by regularization penalties to reduce the complexity of the mask. Although simple to implement, the SD algorithm converges slowly. The existing regularization penalties, however, fall short in meeting the mask rule check (MRC) requirements often used in semiconductor manufacturing. This paper focuses on developing OPC optimization algorithms based on the conjugate gradient (CG) method which exhibits much faster convergence than the SD algorithm. The imaging formation process is represented by the Fourier series expansion model which approximates the partially coherent system as a sum of coherent systems. In order to obtain more desirable manufacturability properties of the mask pattern, a MRC penalty is proposed to enlarge the linear size of the sub-resolution assistant features (SRAFs), as well as the distances between the SRAFs and the main body of the mask. Finally, a projection method is developed to further reduce the complexity of the optimized mask pattern.

  15. Feedback-Based Projected-Gradient Method for Real-Time Optimization of Aggregations of Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Bernstein, Andrey; Simonetto, Andrea

    This paper develops an online optimization method to maximize operational objectives of distribution-level distributed energy resources (DERs), while adjusting the aggregate power generated (or consumed) in response to services requested by grid operators. The design of the online algorithm is based on a projected-gradient method, suitably modified to accommodate appropriate measurements from the distribution network and the DERs. By virtue of this approach, the resultant algorithm can cope with inaccuracies in the representation of the AC power flows, it avoids pervasive metering to gather the state of noncontrollable resources, and it naturally lends itself to a distributed implementation. Optimality claimsmore » are established in terms of tracking of the solution of a well-posed time-varying convex optimization problem.« less

  16. Feedback-Based Projected-Gradient Method For Real-Time Optimization of Aggregations of Energy Resources: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Bernstein, Andrey; Simonetto, Andrea

    This paper develops an online optimization method to maximize the operational objectives of distribution-level distributed energy resources (DERs) while adjusting the aggregate power generated (or consumed) in response to services requested by grid operators. The design of the online algorithm is based on a projected-gradient method, suitably modified to accommodate appropriate measurements from the distribution network and the DERs. By virtue of this approach, the resultant algorithm can cope with inaccuracies in the representation of the AC power, it avoids pervasive metering to gather the state of noncontrollable resources, and it naturally lends itself to a distributed implementation. Optimality claimsmore » are established in terms of tracking of the solution of a well-posed time-varying optimization problem.« less

  17. Gradient descent for robust kernel-based regression

    NASA Astrophysics Data System (ADS)

    Guo, Zheng-Chu; Hu, Ting; Shi, Lei

    2018-06-01

    In this paper, we study the gradient descent algorithm generated by a robust loss function over a reproducing kernel Hilbert space (RKHS). The loss function is defined by a windowing function G and a scale parameter σ, which can include a wide range of commonly used robust losses for regression. There is still a gap between theoretical analysis and optimization process of empirical risk minimization based on loss: the estimator needs to be global optimal in the theoretical analysis while the optimization method can not ensure the global optimality of its solutions. In this paper, we aim to fill this gap by developing a novel theoretical analysis on the performance of estimators generated by the gradient descent algorithm. We demonstrate that with an appropriately chosen scale parameter σ, the gradient update with early stopping rules can approximate the regression function. Our elegant error analysis can lead to convergence in the standard L 2 norm and the strong RKHS norm, both of which are optimal in the mini-max sense. We show that the scale parameter σ plays an important role in providing robustness as well as fast convergence. The numerical experiments implemented on synthetic examples and real data set also support our theoretical results.

  18. The effect of model uncertainty on some optimal routing problems

    NASA Technical Reports Server (NTRS)

    Mohanty, Bibhu; Cassandras, Christos G.

    1991-01-01

    The effect of model uncertainties on optimal routing in a system of parallel queues is examined. The uncertainty arises in modeling the service time distribution for the customers (jobs, packets) to be served. For a Poisson arrival process and Bernoulli routing, the optimal mean system delay generally depends on the variance of this distribution. However, as the input traffic load approaches the system capacity the optimal routing assignment and corresponding mean system delay are shown to converge to a variance-invariant point. The implications of these results are examined in the context of gradient-based routing algorithms. An example of a model-independent algorithm using online gradient estimation is also included.

  19. Hybrid DFP-CG method for solving unconstrained optimization problems

    NASA Astrophysics Data System (ADS)

    Osman, Wan Farah Hanan Wan; Asrul Hery Ibrahim, Mohd; Mamat, Mustafa

    2017-09-01

    The conjugate gradient (CG) method and quasi-Newton method are both well known method for solving unconstrained optimization method. In this paper, we proposed a new method by combining the search direction between conjugate gradient method and quasi-Newton method based on BFGS-CG method developed by Ibrahim et al. The Davidon-Fletcher-Powell (DFP) update formula is used as an approximation of Hessian for this new hybrid algorithm. Numerical result showed that the new algorithm perform well than the ordinary DFP method and proven to posses both sufficient descent and global convergence properties.

  20. Gradient Optimization for Analytic conTrols - GOAT

    NASA Astrophysics Data System (ADS)

    Assémat, Elie; Machnes, Shai; Tannor, David; Wilhelm-Mauch, Frank

    Quantum optimal control becomes a necessary step in a number of studies in the quantum realm. Recent experimental advances showed that superconducting qubits can be controlled with an impressive accuracy. However, most of the standard optimal control algorithms are not designed to manage such high accuracy. To tackle this issue, a novel quantum optimal control algorithm have been introduced: the Gradient Optimization for Analytic conTrols (GOAT). It avoids the piecewise constant approximation of the control pulse used by standard algorithms. This allows an efficient implementation of very high accuracy optimization. It also includes a novel method to compute the gradient that provides many advantages, e.g. the absence of backpropagation or the natural route to optimize the robustness of the control pulses. This talk will present the GOAT algorithm and a few applications to transmons systems.

  1. Nested Conjugate Gradient Algorithm with Nested Preconditioning for Non-linear Image Restoration.

    PubMed

    Skariah, Deepak G; Arigovindan, Muthuvel

    2017-06-19

    We develop a novel optimization algorithm, which we call Nested Non-Linear Conjugate Gradient algorithm (NNCG), for image restoration based on quadratic data fitting and smooth non-quadratic regularization. The algorithm is constructed as a nesting of two conjugate gradient (CG) iterations. The outer iteration is constructed as a preconditioned non-linear CG algorithm; the preconditioning is performed by the inner CG iteration that is linear. The inner CG iteration, which performs preconditioning for outer CG iteration, itself is accelerated by an another FFT based non-iterative preconditioner. We prove that the method converges to a stationary point for both convex and non-convex regularization functionals. We demonstrate experimentally that proposed method outperforms the well-known majorization-minimization method used for convex regularization, and a non-convex inertial-proximal method for non-convex regularization functional.

  2. Multi-sensor image fusion algorithm based on multi-objective particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Xie, Xia-zhu; Xu, Ya-wei

    2017-11-01

    On the basis of DT-CWT (Dual-Tree Complex Wavelet Transform - DT-CWT) theory, an approach based on MOPSO (Multi-objective Particle Swarm Optimization Algorithm) was proposed to objectively choose the fused weights of low frequency sub-bands. High and low frequency sub-bands were produced by DT-CWT. Absolute value of coefficients was adopted as fusion rule to fuse high frequency sub-bands. Fusion weights in low frequency sub-bands were used as particles in MOPSO. Spatial Frequency and Average Gradient were adopted as two kinds of fitness functions in MOPSO. The experimental result shows that the proposed approach performances better than Average Fusion and fusion methods based on local variance and local energy respectively in brightness, clarity and quantitative evaluation which includes Entropy, Spatial Frequency, Average Gradient and QAB/F.

  3. Particle Swarm Optimization of Low-Thrust, Geocentric-to-Halo-Orbit Transfers

    NASA Astrophysics Data System (ADS)

    Abraham, Andrew J.

    Missions to Lagrange points are becoming increasingly popular amongst spacecraft mission planners. Lagrange points are locations in space where the gravity force from two bodies, and the centrifugal force acting on a third body, cancel. To date, all spacecraft that have visited a Lagrange point have done so using high-thrust, chemical propulsion. Due to the increasing availability of low-thrust (high efficiency) propulsive devices, and their increasing capability in terms of fuel efficiency and instantaneous thrust, it has now become possible for a spacecraft to reach a Lagrange point orbit without the aid of chemical propellant. While at any given time there are many paths for a low-thrust trajectory to take, only one is optimal. The traditional approach to spacecraft trajectory optimization utilizes some form of gradient-based algorithm. While these algorithms offer numerous advantages, they also have a few significant shortcomings. The three most significant shortcomings are: (1) the fact that an initial guess solution is required to initialize the algorithm, (2) the radius of convergence can be quite small and can allow the algorithm to become trapped in local minima, and (3) gradient information is not always assessable nor always trustworthy for a given problem. To avoid these problems, this dissertation is focused on optimizing a low-thrust transfer trajectory from a geocentric orbit to an Earth-Moon, L1, Lagrange point orbit using the method of Particle Swarm Optimization (PSO). The PSO method is an evolutionary heuristic that was originally written to model birds swarming to locate hidden food sources. This PSO method will enable the exploration of the invariant stable manifold of the target Lagrange point orbit in an effort to optimize the spacecraft's low-thrust trajectory. Examples of these optimized trajectories are presented and contrasted with those found using traditional, gradient-based approaches. In summary, the results of this dissertation find that the PSO method does, indeed, successfully optimize the low-thrust trajectory transfer problem without the need for initial guessing. Furthermore, a two-degree-of-freedom PSO problem formulation significantly outperformed a one-degree-of-freedom formulation by at least an order of magnitude, in terms of CPU time. Finally, the PSO method is also used to solve a traditional, two-burn, impulsive transfer to a Lagrange point orbit using a hybrid optimization algorithm that incorporates a gradient-based shooting algorithm as a pre-optimizer. Surprisingly, the results of this study show that "fast" transfers outperform "slow" transfers in terms of both Deltav and time of flight.

  4. Turbopump Performance Improved by Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Oyama, Akira; Liou, Meng-Sing

    2002-01-01

    The development of design optimization technology for turbomachinery has been initiated using the multiobjective evolutionary algorithm under NASA's Intelligent Synthesis Environment and Revolutionary Aeropropulsion Concepts programs. As an alternative to the traditional gradient-based methods, evolutionary algorithms (EA's) are emergent design-optimization algorithms modeled after the mechanisms found in natural evolution. EA's search from multiple points, instead of moving from a single point. In addition, they require no derivatives or gradients of the objective function, leading to robustness and simplicity in coupling any evaluation codes. Parallel efficiency also becomes very high by using a simple master-slave concept for function evaluations, since such evaluations often consume the most CPU time, such as computational fluid dynamics. Application of EA's to multiobjective design problems is also straightforward because EA's maintain a population of design candidates in parallel. Because of these advantages, EA's are a unique and attractive approach to real-world design optimization problems.

  5. Solar collector parameter identification from unsteady data by a discrete-gradient optimization algorithm

    NASA Technical Reports Server (NTRS)

    Hotchkiss, G. B.; Burmeister, L. C.; Bishop, K. A.

    1980-01-01

    A discrete-gradient optimization algorithm is used to identify the parameters in a one-node and a two-node capacitance model of a flat-plate collector. Collector parameters are first obtained by a linear-least-squares fit to steady state data. These parameters, together with the collector heat capacitances, are then determined from unsteady data by use of the discrete-gradient optimization algorithm with less than 10 percent deviation from the steady state determination. All data were obtained in the indoor solar simulator at the NASA Lewis Research Center.

  6. Generalized gradient algorithm for trajectory optimization

    NASA Technical Reports Server (NTRS)

    Zhao, Yiyuan; Bryson, A. E.; Slattery, R.

    1990-01-01

    The generalized gradient algorithm presented and verified as a basis for the solution of trajectory optimization problems improves the performance index while reducing path equality constraints, and terminal equality constraints. The algorithm is conveniently divided into two phases, of which the first, 'feasibility' phase yields a solution satisfying both path and terminal constraints, while the second, 'optimization' phase uses the results of the first phase as initial guesses.

  7. Parallelization of Program to Optimize Simulated Trajectories (POST3D)

    NASA Technical Reports Server (NTRS)

    Hammond, Dana P.; Korte, John J. (Technical Monitor)

    2001-01-01

    This paper describes the parallelization of the Program to Optimize Simulated Trajectories (POST3D). POST3D uses a gradient-based optimization algorithm that reaches an optimum design point by moving from one design point to the next. The gradient calculations required to complete the optimization process, dominate the computational time and have been parallelized using a Single Program Multiple Data (SPMD) on a distributed memory NUMA (non-uniform memory access) architecture. The Origin2000 was used for the tests presented.

  8. An historical survey of computational methods in optimal control.

    NASA Technical Reports Server (NTRS)

    Polak, E.

    1973-01-01

    Review of some of the salient theoretical developments in the specific area of optimal control algorithms. The first algorithms for optimal control were aimed at unconstrained problems and were derived by using first- and second-variation methods of the calculus of variations. These methods have subsequently been recognized as gradient, Newton-Raphson, or Gauss-Newton methods in function space. A much more recent addition to the arsenal of unconstrained optimal control algorithms are several variations of conjugate-gradient methods. At first, constrained optimal control problems could only be solved by exterior penalty function methods. Later algorithms specifically designed for constrained problems have appeared. Among these are methods for solving the unconstrained linear quadratic regulator problem, as well as certain constrained minimum-time and minimum-energy problems. Differential-dynamic programming was developed from dynamic programming considerations. The conditional-gradient method, the gradient-projection method, and a couple of feasible directions methods were obtained as extensions or adaptations of related algorithms for finite-dimensional problems. Finally, the so-called epsilon-methods combine the Ritz method with penalty function techniques.

  9. On the convergence of a linesearch based proximal-gradient method for nonconvex optimization

    NASA Astrophysics Data System (ADS)

    Bonettini, S.; Loris, I.; Porta, F.; Prato, M.; Rebegoldi, S.

    2017-05-01

    We consider a variable metric linesearch based proximal gradient method for the minimization of the sum of a smooth, possibly nonconvex function plus a convex, possibly nonsmooth term. We prove convergence of this iterative algorithm to a critical point if the objective function satisfies the Kurdyka-Łojasiewicz property at each point of its domain, under the assumption that a limit point exists. The proposed method is applied to a wide collection of image processing problems and our numerical tests show that our algorithm results to be flexible, robust and competitive when compared to recently proposed approaches able to address the optimization problems arising in the considered applications.

  10. A modified conjugate gradient coefficient with inexact line search for unconstrained optimization

    NASA Astrophysics Data System (ADS)

    Aini, Nurul; Rivaie, Mohd; Mamat, Mustafa

    2016-11-01

    Conjugate gradient (CG) method is a line search algorithm mostly known for its wide application in solving unconstrained optimization problems. Its low memory requirements and global convergence properties makes it one of the most preferred method in real life application such as in engineering and business. In this paper, we present a new CG method based on AMR* and CD method for solving unconstrained optimization functions. The resulting algorithm is proven to have both the sufficient descent and global convergence properties under inexact line search. Numerical tests are conducted to assess the effectiveness of the new method in comparison to some previous CG methods. The results obtained indicate that our method is indeed superior.

  11. Hybrid intelligent optimization methods for engineering problems

    NASA Astrophysics Data System (ADS)

    Pehlivanoglu, Yasin Volkan

    The purpose of optimization is to obtain the best solution under certain conditions. There are numerous optimization methods because different problems need different solution methodologies; therefore, it is difficult to construct patterns. Also mathematical modeling of a natural phenomenon is almost based on differentials. Differential equations are constructed with relative increments among the factors related to yield. Therefore, the gradients of these increments are essential to search the yield space. However, the landscape of yield is not a simple one and mostly multi-modal. Another issue is differentiability. Engineering design problems are usually nonlinear and they sometimes exhibit discontinuous derivatives for the objective and constraint functions. Due to these difficulties, non-gradient-based algorithms have become more popular in recent decades. Genetic algorithms (GA) and particle swarm optimization (PSO) algorithms are popular, non-gradient based algorithms. Both are population-based search algorithms and have multiple points for initiation. A significant difference from a gradient-based method is the nature of the search methodologies. For example, randomness is essential for the search in GA or PSO. Hence, they are also called stochastic optimization methods. These algorithms are simple, robust, and have high fidelity. However, they suffer from similar defects, such as, premature convergence, less accuracy, or large computational time. The premature convergence is sometimes inevitable due to the lack of diversity. As the generations of particles or individuals in the population evolve, they may lose their diversity and become similar to each other. To overcome this issue, we studied the diversity concept in GA and PSO algorithms. Diversity is essential for a healthy search, and mutations are the basic operators to provide the necessary variety within a population. After having a close scrutiny of the diversity concept based on qualification and quantification studies, we improved new mutation strategies and operators to provide beneficial diversity within the population. We called this new approach as multi-frequency vibrational GA or PSO. They were applied to different aeronautical engineering problems in order to study the efficiency of these new approaches. These implementations were: applications to selected benchmark test functions, inverse design of two-dimensional (2D) airfoil in subsonic flow, optimization of 2D airfoil in transonic flow, path planning problems of autonomous unmanned aerial vehicle (UAV) over a 3D terrain environment, 3D radar cross section minimization problem for a 3D air vehicle, and active flow control over a 2D airfoil. As demonstrated by these test cases, we observed that new algorithms outperform the current popular algorithms. The principal role of this multi-frequency approach was to determine which individuals or particles should be mutated, when they should be mutated, and which ones should be merged into the population. The new mutation operators, when combined with a mutation strategy and an artificial intelligent method, such as, neural networks or fuzzy logic process, they provided local and global diversities during the reproduction phases of the generations. Additionally, the new approach also introduced random and controlled diversity. Due to still being population-based techniques, these methods were as robust as the plain GA or PSO algorithms. Based on the results obtained, it was concluded that the variants of the present multi-frequency vibrational GA and PSO were efficient algorithms, since they successfully avoided all local optima within relatively short optimization cycles.

  12. Multidisciplinary Optimization of a Transport Aircraft Wing using Particle Swarm Optimization

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Venter, Gerhard

    2002-01-01

    The purpose of this paper is to demonstrate the application of particle swarm optimization to a realistic multidisciplinary optimization test problem. The paper's new contributions to multidisciplinary optimization is the application of a new algorithm for dealing with the unique challenges associated with multidisciplinary optimization problems, and recommendations as to the utility of the algorithm in future multidisciplinary optimization applications. The selected example is a bi-level optimization problem that demonstrates severe numerical noise and has a combination of continuous and truly discrete design variables. The use of traditional gradient-based optimization algorithms is thus not practical. The numerical results presented indicate that the particle swarm optimization algorithm is able to reliably find the optimum design for the problem presented here. The algorithm is capable of dealing with the unique challenges posed by multidisciplinary optimization as well as the numerical noise and truly discrete variables present in the current example problem.

  13. A Class of Prediction-Correction Methods for Time-Varying Convex Optimization

    NASA Astrophysics Data System (ADS)

    Simonetto, Andrea; Mokhtari, Aryan; Koppel, Alec; Leus, Geert; Ribeiro, Alejandro

    2016-09-01

    This paper considers unconstrained convex optimization problems with time-varying objective functions. We propose algorithms with a discrete time-sampling scheme to find and track the solution trajectory based on prediction and correction steps, while sampling the problem data at a constant rate of $1/h$, where $h$ is the length of the sampling interval. The prediction step is derived by analyzing the iso-residual dynamics of the optimality conditions. The correction step adjusts for the distance between the current prediction and the optimizer at each time step, and consists either of one or multiple gradient steps or Newton steps, which respectively correspond to the gradient trajectory tracking (GTT) or Newton trajectory tracking (NTT) algorithms. Under suitable conditions, we establish that the asymptotic error incurred by both proposed methods behaves as $O(h^2)$, and in some cases as $O(h^4)$, which outperforms the state-of-the-art error bound of $O(h)$ for correction-only methods in the gradient-correction step. Moreover, when the characteristics of the objective function variation are not available, we propose approximate gradient and Newton tracking algorithms (AGT and ANT, respectively) that still attain these asymptotical error bounds. Numerical simulations demonstrate the practical utility of the proposed methods and that they improve upon existing techniques by several orders of magnitude.

  14. A Novel Hybrid Firefly Algorithm for Global Optimization.

    PubMed

    Zhang, Lina; Liu, Liqiang; Yang, Xin-She; Dai, Yuntao

    Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA), is proposed by combining the advantages of both the firefly algorithm (FA) and differential evolution (DE). FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA), differential evolution (DE) and particle swarm optimization (PSO) in the sense of avoiding local minima and increasing the convergence rate.

  15. A Novel Hybrid Firefly Algorithm for Global Optimization

    PubMed Central

    Zhang, Lina; Liu, Liqiang; Yang, Xin-She; Dai, Yuntao

    2016-01-01

    Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA), is proposed by combining the advantages of both the firefly algorithm (FA) and differential evolution (DE). FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA), differential evolution (DE) and particle swarm optimization (PSO) in the sense of avoiding local minima and increasing the convergence rate. PMID:27685869

  16. Implementation of a dose gradient method into optimization of dose distribution in prostate cancer 3D-CRT plans

    PubMed Central

    Giżyńska, Marta K.; Kukołowicz, Paweł F.; Kordowski, Paweł

    2014-01-01

    Aim The aim of this work is to present a method of beam weight and wedge angle optimization for patients with prostate cancer. Background 3D-CRT is usually realized with forward planning based on a trial and error method. Several authors have published a few methods of beam weight optimization applicable to the 3D-CRT. Still, none on these methods is in common use. Materials and methods Optimization is based on the assumption that the best plan is achieved if dose gradient at ICRU point is equal to zero. Our optimization algorithm requires beam quality index, depth of maximum dose, profiles of wedged fields and maximum dose to femoral heads. The method was tested for 10 patients with prostate cancer, treated with the 3-field technique. Optimized plans were compared with plans prepared by 12 experienced planners. Dose standard deviation in target volume, and minimum and maximum doses were analyzed. Results The quality of plans obtained with the proposed optimization algorithms was comparable to that prepared by experienced planners. Mean difference in target dose standard deviation was 0.1% in favor of the plans prepared by planners for optimization of beam weights and wedge angles. Introducing a correction factor for patient body outline for dose gradient at ICRU point improved dose distribution homogeneity. On average, a 0.1% lower standard deviation was achieved with the optimization algorithm. No significant difference in mean dose–volume histogram for the rectum was observed. Conclusions Optimization shortens very much time planning. The average planning time was 5 min and less than a minute for forward and computer optimization, respectively. PMID:25337411

  17. Numerical experience with a class of algorithms for nonlinear optimization using inexact function and gradient information

    NASA Technical Reports Server (NTRS)

    Carter, Richard G.

    1989-01-01

    For optimization problems associated with engineering design, parameter estimation, image reconstruction, and other optimization/simulation applications, low accuracy function and gradient values are frequently much less expensive to obtain than high accuracy values. Here, researchers investigate the computational performance of trust region methods for nonlinear optimization when high accuracy evaluations are unavailable or prohibitively expensive, and confirm earlier theoretical predictions when the algorithm is convergent even with relative gradient errors of 0.5 or more. The proper choice of the amount of accuracy to use in function and gradient evaluations can result in orders-of-magnitude savings in computational cost.

  18. Development of gradient descent adaptive algorithms to remove common mode artifact for improvement of cardiovascular signal quality.

    PubMed

    Ciaccio, Edward J; Micheli-Tzanakou, Evangelia

    2007-07-01

    Common-mode noise degrades cardiovascular signal quality and diminishes measurement accuracy. Filtering to remove noise components in the frequency domain often distorts the signal. Two adaptive noise canceling (ANC) algorithms were tested to adjust weighted reference signals for optimal subtraction from a primary signal. Update of weight w was based upon the gradient term of the steepest descent equation: [see text], where the error epsilon is the difference between primary and weighted reference signals. nabla was estimated from Deltaepsilon(2) and Deltaw without using a variable Deltaw in the denominator which can cause instability. The Parallel Comparison (PC) algorithm computed Deltaepsilon(2) using fixed finite differences +/- Deltaw in parallel during each discrete time k. The ALOPEX algorithm computed Deltaepsilon(2)x Deltaw from time k to k + 1 to estimate nabla, with a random number added to account for Deltaepsilon(2) . Deltaw--> 0 near the optimal weighting. Using simulated data, both algorithms stably converged to the optimal weighting within 50-2000 discrete sample points k even with a SNR = 1:8 and weights which were initialized far from the optimal. Using a sharply pulsatile cardiac electrogram signal with added noise so that the SNR = 1:5, both algorithms exhibited stable convergence within 100 ms (100 sample points). Fourier spectral analysis revealed minimal distortion when comparing the signal without added noise to the ANC restored signal. ANC algorithms based upon difference calculations can rapidly and stably converge to the optimal weighting in simulated and real cardiovascular data. Signal quality is restored with minimal distortion, increasing the accuracy of biophysical measurement.

  19. A Study of Penalty Function Methods for Constraint Handling with Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Ortiz, Francisco

    2004-01-01

    COMETBOARDS (Comparative Evaluation Testbed of Optimization and Analysis Routines for Design of Structures) is a design optimization test bed that can evaluate the performance of several different optimization algorithms. A few of these optimization algorithms are the sequence of unconstrained minimization techniques (SUMT), sequential linear programming (SLP) and the sequential quadratic programming techniques (SQP). A genetic algorithm (GA) is a search technique that is based on the principles of natural selection or "survival of the fittest". Instead of using gradient information, the GA uses the objective function directly in the search. The GA searches the solution space by maintaining a population of potential solutions. Then, using evolving operations such as recombination, mutation and selection, the GA creates successive generations of solutions that will evolve and take on the positive characteristics of their parents and thus gradually approach optimal or near-optimal solutions. By using the objective function directly in the search, genetic algorithms can be effectively applied in non-convex, highly nonlinear, complex problems. The genetic algorithm is not guaranteed to find the global optimum, but it is less likely to get trapped at a local optimum than traditional gradient-based search methods when the objective function is not smooth and generally well behaved. The purpose of this research is to assist in the integration of genetic algorithm (GA) into COMETBOARDS. COMETBOARDS cast the design of structures as a constrained nonlinear optimization problem. One method used to solve constrained optimization problem with a GA to convert the constrained optimization problem into an unconstrained optimization problem by developing a penalty function that penalizes infeasible solutions. There have been several suggested penalty function in the literature each with there own strengths and weaknesses. A statistical analysis of some suggested penalty functions is performed in this study. Also, a response surface approach to robust design is used to develop a new penalty function approach. This new penalty function approach is then compared with the other existing penalty functions.

  20. Comparison of genetic algorithms with conjugate gradient methods

    NASA Technical Reports Server (NTRS)

    Bosworth, J. L.; Foo, N. Y.; Zeigler, B. P.

    1972-01-01

    Genetic algorithms for mathematical function optimization are modeled on search strategies employed in natural adaptation. Comparisons of genetic algorithms with conjugate gradient methods, which were made on an IBM 1800 digital computer, show that genetic algorithms display superior performance over gradient methods for functions which are poorly behaved mathematically, for multimodal functions, and for functions obscured by additive random noise. Genetic methods offer performance comparable to gradient methods for many of the standard functions.

  1. A New Artificial Neural Network Enhanced by the Shuffled Complex Evolution Optimization with Principal Component Analysis (SP-UCI) for Water Resources Management

    NASA Astrophysics Data System (ADS)

    Hayatbini, N.; Faridzad, M.; Yang, T.; Akbari Asanjan, A.; Gao, X.; Sorooshian, S.

    2016-12-01

    The Artificial Neural Networks (ANNs) are useful in many fields, including water resources engineering and management. However, due to the non-linear and chaotic characteristics associated with natural processes and human decision making, the use of ANNs in real-world applications is still limited, and its performance needs to be further improved for a broader practical use. The commonly used Back-Propagation (BP) scheme and gradient-based optimization in training the ANNs have already found to be problematic in some cases. The BP scheme and gradient-based optimization methods are associated with the risk of premature convergence, stuck in local optimums, and the searching is highly dependent on initial conditions. Therefore, as an alternative to BP and gradient-based searching scheme, we propose an effective and efficient global searching method, termed the Shuffled Complex Evolutionary Global optimization algorithm with Principal Component Analysis (SP-UCI), to train the ANN connectivity weights. Large number of real-world datasets are tested with the SP-UCI-based ANN, as well as various popular Evolutionary Algorithms (EAs)-enhanced ANNs, i.e., Particle Swarm Optimization (PSO)-, Genetic Algorithm (GA)-, Simulated Annealing (SA)-, and Differential Evolution (DE)-enhanced ANNs. Results show that SP-UCI-enhanced ANN is generally superior over other EA-enhanced ANNs with regard to the convergence and computational performance. In addition, we carried out a case study for hydropower scheduling in the Trinity Lake in the western U.S. In this case study, multiple climate indices are used as predictors for the SP-UCI-enhanced ANN. The reservoir inflows and hydropower releases are predicted up to sub-seasonal to seasonal scale. Results show that SP-UCI-enhanced ANN is able to achieve better statistics than other EAs-based ANN, which implies the usefulness and powerfulness of proposed SP-UCI-enhanced ANN for reservoir operation, water resources engineering and management. The SP-UCI-enhanced ANN is universally applicable to many other regression and prediction problems, and it has a good potential to be an alternative to the classical BP scheme and gradient-based optimization methods.

  2. Medical image registration by combining global and local information: a chain-type diffeomorphic demons algorithm.

    PubMed

    Liu, Xiaozheng; Yuan, Zhenming; Zhu, Junming; Xu, Dongrong

    2013-12-07

    The demons algorithm is a popular algorithm for non-rigid image registration because of its computational efficiency and simple implementation. The deformation forces of the classic demons algorithm were derived from image gradients by considering the deformation to decrease the intensity dissimilarity between images. However, the methods using the difference of image intensity for medical image registration are easily affected by image artifacts, such as image noise, non-uniform imaging and partial volume effects. The gradient magnitude image is constructed from the local information of an image, so the difference in a gradient magnitude image can be regarded as more reliable and robust for these artifacts. Then, registering medical images by considering the differences in both image intensity and gradient magnitude is a straightforward selection. In this paper, based on a diffeomorphic demons algorithm, we propose a chain-type diffeomorphic demons algorithm by combining the differences in both image intensity and gradient magnitude for medical image registration. Previous work had shown that the classic demons algorithm can be considered as an approximation of a second order gradient descent on the sum of the squared intensity differences. By optimizing the new dissimilarity criteria, we also present a set of new demons forces which were derived from the gradients of the image and gradient magnitude image. We show that, in controlled experiments, this advantage is confirmed, and yields a fast convergence.

  3. Optimization for high-dose-rate brachytherapy of cervical cancer with adaptive simulated annealing and gradient descent.

    PubMed

    Yao, Rui; Templeton, Alistair K; Liao, Yixiang; Turian, Julius V; Kiel, Krystyna D; Chu, James C H

    2014-01-01

    To validate an in-house optimization program that uses adaptive simulated annealing (ASA) and gradient descent (GD) algorithms and investigate features of physical dose and generalized equivalent uniform dose (gEUD)-based objective functions in high-dose-rate (HDR) brachytherapy for cervical cancer. Eight Syed/Neblett template-based cervical cancer HDR interstitial brachytherapy cases were used for this study. Brachytherapy treatment plans were first generated using inverse planning simulated annealing (IPSA). Using the same dwell positions designated in IPSA, plans were then optimized with both physical dose and gEUD-based objective functions, using both ASA and GD algorithms. Comparisons were made between plans both qualitatively and based on dose-volume parameters, evaluating each optimization method and objective function. A hybrid objective function was also designed and implemented in the in-house program. The ASA plans are higher on bladder V75% and D2cc (p=0.034) and lower on rectum V75% and D2cc (p=0.034) than the IPSA plans. The ASA and GD plans are not significantly different. The gEUD-based plans have higher homogeneity index (p=0.034), lower overdose index (p=0.005), and lower rectum gEUD and normal tissue complication probability (p=0.005) than the physical dose-based plans. The hybrid function can produce a plan with dosimetric parameters between the physical dose-based and gEUD-based plans. The optimized plans with the same objective value and dose-volume histogram could have different dose distributions. Our optimization program based on ASA and GD algorithms is flexible on objective functions, optimization parameters, and can generate optimized plans comparable with IPSA. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  4. A modified three-term PRP conjugate gradient algorithm for optimization models.

    PubMed

    Wu, Yanlin

    2017-01-01

    The nonlinear conjugate gradient (CG) algorithm is a very effective method for optimization, especially for large-scale problems, because of its low memory requirement and simplicity. Zhang et al. (IMA J. Numer. Anal. 26:629-649, 2006) firstly propose a three-term CG algorithm based on the well known Polak-Ribière-Polyak (PRP) formula for unconstrained optimization, where their method has the sufficient descent property without any line search technique. They proved the global convergence of the Armijo line search but this fails for the Wolfe line search technique. Inspired by their method, we will make a further study and give a modified three-term PRP CG algorithm. The presented method possesses the following features: (1) The sufficient descent property also holds without any line search technique; (2) the trust region property of the search direction is automatically satisfied; (3) the steplengh is bounded from below; (4) the global convergence will be established under the Wolfe line search. Numerical results show that the new algorithm is more effective than that of the normal method.

  5. Use of the preconditioned conjugate gradient algorithm as a generic solver for mixed-model equations in animal breeding applications.

    PubMed

    Tsuruta, S; Misztal, I; Strandén, I

    2001-05-01

    Utility of the preconditioned conjugate gradient algorithm with a diagonal preconditioner for solving mixed-model equations in animal breeding applications was evaluated with 16 test problems. The problems included single- and multiple-trait analyses, with data on beef, dairy, and swine ranging from small examples to national data sets. Multiple-trait models considered low and high genetic correlations. Convergence was based on relative differences between left- and right-hand sides. The ordering of equations was fixed effects followed by random effects, with no special ordering within random effects. The preconditioned conjugate gradient program implemented with double precision converged for all models. However, when implemented in single precision, the preconditioned conjugate gradient algorithm did not converge for seven large models. The preconditioned conjugate gradient and successive overrelaxation algorithms were subsequently compared for 13 of the test problems. The preconditioned conjugate gradient algorithm was easy to implement with the iteration on data for general models. However, successive overrelaxation requires specific programming for each set of models. On average, the preconditioned conjugate gradient algorithm converged in three times fewer rounds of iteration than successive overrelaxation. With straightforward implementations, programs using the preconditioned conjugate gradient algorithm may be two or more times faster than those using successive overrelaxation. However, programs using the preconditioned conjugate gradient algorithm would use more memory than would comparable implementations using successive overrelaxation. Extensive optimization of either algorithm can influence rankings. The preconditioned conjugate gradient implemented with iteration on data, a diagonal preconditioner, and in double precision may be the algorithm of choice for solving mixed-model equations when sufficient memory is available and ease of implementation is essential.

  6. Efficient Geometry Minimization and Transition Structure Optimization Using Interpolated Potential Energy Surfaces and Iteratively Updated Hessians.

    PubMed

    Zheng, Jingjing; Frisch, Michael J

    2017-12-12

    An efficient geometry optimization algorithm based on interpolated potential energy surfaces with iteratively updated Hessians is presented in this work. At each step of geometry optimization (including both minimization and transition structure search), an interpolated potential energy surface is properly constructed by using the previously calculated information (energies, gradients, and Hessians/updated Hessians), and Hessians of the two latest geometries are updated in an iterative manner. The optimized minimum or transition structure on the interpolated surface is used for the starting geometry of the next geometry optimization step. The cost of searching the minimum or transition structure on the interpolated surface and iteratively updating Hessians is usually negligible compared with most electronic structure single gradient calculations. These interpolated potential energy surfaces are often better representations of the true potential energy surface in a broader range than a local quadratic approximation that is usually used in most geometry optimization algorithms. Tests on a series of large and floppy molecules and transition structures both in gas phase and in solutions show that the new algorithm can significantly improve the optimization efficiency by using the iteratively updated Hessians and optimizations on interpolated surfaces.

  7. Generation of structural topologies using efficient technique based on sorted compliances

    NASA Astrophysics Data System (ADS)

    Mazur, Monika; Tajs-Zielińska, Katarzyna; Bochenek, Bogdan

    2018-01-01

    Topology optimization, although well recognized is still widely developed. It has gained recently more attention since large computational ability become available for designers. This process is stimulated simultaneously by variety of emerging, innovative optimization methods. It is observed that traditional gradient-based mathematical programming algorithms, in many cases, are replaced by novel and e cient heuristic methods inspired by biological, chemical or physical phenomena. These methods become useful tools for structural optimization because of their versatility and easy numerical implementation. In this paper engineering implementation of a novel heuristic algorithm for minimum compliance topology optimization is discussed. The performance of the topology generator is based on implementation of a special function utilizing information of compliance distribution within the design space. With a view to cope with engineering problems the algorithm has been combined with structural analysis system Ansys.

  8. Cooperative Optimal Coordination for Distributed Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tao; Wu, Di; Ren, Wei

    In this paper, we consider the optimal coordination problem for distributed energy resources (DERs) including distributed generators and energy storage devices. We propose an algorithm based on the push-sum and gradient method to optimally coordinate storage devices and distributed generators in a distributed manner. In the proposed algorithm, each DER only maintains a set of variables and updates them through information exchange with a few neighbors over a time-varying directed communication network. We show that the proposed distributed algorithm solves the optimal DER coordination problem if the time-varying directed communication network is uniformly jointly strongly connected, which is a mildmore » condition on the connectivity of communication topologies. The proposed distributed algorithm is illustrated and validated by numerical simulations.« less

  9. High-Lift Optimization Design Using Neural Networks on a Multi-Element Airfoil

    NASA Technical Reports Server (NTRS)

    Greenman, Roxana M.; Roth, Karlin R.; Smith, Charles A. (Technical Monitor)

    1998-01-01

    The high-lift performance of a multi-element airfoil was optimized by using neural-net predictions that were trained using a computational data set. The numerical data was generated using a two-dimensional, incompressible, Navier-Stokes algorithm with the Spalart-Allmaras turbulence model. Because it is difficult to predict maximum lift for high-lift systems, an empirically-based maximum lift criteria was used in this study to determine both the maximum lift and the angle at which it occurs. Multiple input, single output networks were trained using the NASA Ames variation of the Levenberg-Marquardt algorithm for each of the aerodynamic coefficients (lift, drag, and moment). The artificial neural networks were integrated with a gradient-based optimizer. Using independent numerical simulations and experimental data for this high-lift configuration, it was shown that this design process successfully optimized flap deflection, gap, overlap, and angle of attack to maximize lift. Once the neural networks were trained and integrated with the optimizer, minimal additional computer resources were required to perform optimization runs with different initial conditions and parameters. Applying the neural networks within the high-lift rigging optimization process reduced the amount of computational time and resources by 83% compared with traditional gradient-based optimization procedures for multiple optimization runs.

  10. Particle Swarm Optimization

    NASA Technical Reports Server (NTRS)

    Venter, Gerhard; Sobieszczanski-Sobieski Jaroslaw

    2002-01-01

    The purpose of this paper is to show how the search algorithm known as particle swarm optimization performs. Here, particle swarm optimization is applied to structural design problems, but the method has a much wider range of possible applications. The paper's new contributions are improvements to the particle swarm optimization algorithm and conclusions and recommendations as to the utility of the algorithm, Results of numerical experiments for both continuous and discrete applications are presented in the paper. The results indicate that the particle swarm optimization algorithm does locate the constrained minimum design in continuous applications with very good precision, albeit at a much higher computational cost than that of a typical gradient based optimizer. However, the true potential of particle swarm optimization is primarily in applications with discrete and/or discontinuous functions and variables. Additionally, particle swarm optimization has the potential of efficient computation with very large numbers of concurrently operating processors.

  11. SU-E-T-295: Simultaneous Beam Sampling and Aperture Shape Optimization for Station Parameter Optimized Radiation Therapy (SPORT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarepisheh, M; Li, R; Xing, L

    Purpose: Station Parameter Optimized Radiation Therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital LINACs, in which the station parameters of a delivery system, (such as aperture shape and weight, couch position/angle, gantry/collimator angle) are optimized altogether. SPORT promises to deliver unprecedented radiation dose distributions efficiently, yet there does not exist any optimization algorithm to implement it. The purpose of this work is to propose an optimization algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: We build a mathematical model whose variables are beam angles (including non-coplanar and/or even nonisocentric beams) andmore » aperture shapes. To solve the resulting large scale optimization problem, we devise an exact, convergent and fast optimization algorithm by integrating three advanced optimization techniques named column generation, gradient method, and pattern search. Column generation is used to find a good set of aperture shapes as an initial solution by adding apertures sequentially. Then we apply the gradient method to iteratively improve the current solution by reshaping the aperture shapes and updating the beam angles toward the gradient. Algorithm continues by pattern search method to explore the part of the search space that cannot be reached by the gradient method. Results: The proposed technique is applied to a series of patient cases and significantly improves the plan quality. In a head-and-neck case, for example, the left parotid gland mean-dose, brainstem max-dose, spinal cord max-dose, and mandible mean-dose are reduced by 10%, 7%, 24% and 12% respectively, compared to the conventional VMAT plan while maintaining the same PTV coverage. Conclusion: Combined use of column generation, gradient search and pattern search algorithms provide an effective way to optimize simultaneously the large collection of station parameters and significantly improves quality of resultant treatment plans as compared with conventional VMAT or IMRT treatments.« less

  12. RES: Regularized Stochastic BFGS Algorithm

    NASA Astrophysics Data System (ADS)

    Mokhtari, Aryan; Ribeiro, Alejandro

    2014-12-01

    RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.

  13. A hybrid linear/nonlinear training algorithm for feedforward neural networks.

    PubMed

    McLoone, S; Brown, M D; Irwin, G; Lightbody, A

    1998-01-01

    This paper presents a new hybrid optimization strategy for training feedforward neural networks. The algorithm combines gradient-based optimization of nonlinear weights with singular value decomposition (SVD) computation of linear weights in one integrated routine. It is described for the multilayer perceptron (MLP) and radial basis function (RBF) networks and then extended to the local model network (LMN), a new feedforward structure in which a global nonlinear model is constructed from a set of locally valid submodels. Simulation results are presented demonstrating the superiority of the new hybrid training scheme compared to second-order gradient methods. It is particularly effective for the LMN architecture where the linear to nonlinear parameter ratio is large.

  14. Momentum-weighted conjugate gradient descent algorithm for gradient coil optimization.

    PubMed

    Lu, Hanbing; Jesmanowicz, Andrzej; Li, Shi-Jiang; Hyde, James S

    2004-01-01

    MRI gradient coil design is a type of nonlinear constrained optimization. A practical problem in transverse gradient coil design using the conjugate gradient descent (CGD) method is that wire elements move at different rates along orthogonal directions (r, phi, z), and tend to cross, breaking the constraints. A momentum-weighted conjugate gradient descent (MW-CGD) method is presented to overcome this problem. This method takes advantage of the efficiency of the CGD method combined with momentum weighting, which is also an intrinsic property of the Levenberg-Marquardt algorithm, to adjust step sizes along the three orthogonal directions. A water-cooled, 12.8 cm inner diameter, three axis torque-balanced gradient coil for rat imaging was developed based on this method, with an efficiency of 2.13, 2.08, and 4.12 mT.m(-1).A(-1) along X, Y, and Z, respectively. Experimental data demonstrate that this method can improve efficiency by 40% and field uniformity by 27%. This method has also been applied to the design of a gradient coil for the human brain, employing remote current return paths. The benefits of this design include improved gradient field uniformity and efficiency, with a shorter length than gradient coil designs using coaxial return paths. Copyright 2003 Wiley-Liss, Inc.

  15. Adjoint Algorithm for CAD-Based Shape Optimization Using a Cartesian Method

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.

    2004-01-01

    Adjoint solutions of the governing flow equations are becoming increasingly important for the development of efficient analysis and optimization algorithms. A well-known use of the adjoint method is gradient-based shape optimization. Given an objective function that defines some measure of performance, such as the lift and drag functionals, its gradient is computed at a cost that is essentially independent of the number of design variables (geometric parameters that control the shape). More recently, emerging adjoint applications focus on the analysis problem, where the adjoint solution is used to drive mesh adaptation, as well as to provide estimates of functional error bounds and corrections. The attractive feature of this approach is that the mesh-adaptation procedure targets a specific functional, thereby localizing the mesh refinement and reducing computational cost. Our focus is on the development of adjoint-based optimization techniques for a Cartesian method with embedded boundaries.12 In contrast t o implementations on structured and unstructured grids, Cartesian methods decouple the surface discretization from the volume mesh. This feature makes Cartesian methods well suited for the automated analysis of complex geometry problems, and consequently a promising approach to aerodynamic optimization. Melvin et developed an adjoint formulation for the TRANAIR code, which is based on the full-potential equation with viscous corrections. More recently, Dadone and Grossman presented an adjoint formulation for the Euler equations. In both approaches, a boundary condition is introduced to approximate the effects of the evolving surface shape that results in accurate gradient computation. Central to automated shape optimization algorithms is the issue of geometry modeling and control. The need to optimize complex, "real-life" geometry provides a strong incentive for the use of parametric-CAD systems within the optimization procedure. In previous work, we presented an effective optimization framework that incorporates a direct-CAD interface. In this work, we enhance the capabilities of this framework with efficient gradient computations using the discrete adjoint method. We present details of the adjoint numerical implementation, which reuses the domain decomposition, multigrid, and time-marching schemes of the flow solver. Furthermore, we explain and demonstrate the use of CAD in conjunction with the Cartesian adjoint approach. The final paper will contain a number of complex geometry, industrially relevant examples with many design variables to demonstrate the effectiveness of the adjoint method on Cartesian meshes.

  16. Classical Optimal Control for Energy Minimization Based On Diffeomorphic Modulation under Observable-Response-Preserving Homotopy.

    PubMed

    Soley, Micheline B; Markmann, Andreas; Batista, Victor S

    2018-06-12

    We introduce the so-called "Classical Optimal Control Optimization" (COCO) method for global energy minimization based on the implementation of the diffeomorphic modulation under observable-response-preserving homotopy (DMORPH) gradient algorithm. A probe particle with time-dependent mass m( t;β) and dipole μ( r, t;β) is evolved classically on the potential energy surface V( r) coupled to an electric field E( t;β), as described by the time-dependent density of states represented on a grid, or otherwise as a linear combination of Gaussians generated by the k-means clustering algorithm. Control parameters β defining m( t;β), μ( r, t;β), and E( t;β) are optimized by following the gradients of the energy with respect to β, adapting them to steer the particle toward the global minimum energy configuration. We find that the resulting COCO algorithm is capable of resolving near-degenerate states separated by large energy barriers and successfully locates the global minima of golf potentials on flat and rugged surfaces, previously explored for testing quantum annealing methodologies and the quantum optimal control optimization (QuOCO) method. Preliminary results show successful energy minimization of multidimensional Lennard-Jones clusters. Beyond the analysis of energy minimization in the specific model systems investigated, we anticipate COCO should be valuable for solving minimization problems in general, including optimization of parameters in applications to machine learning and molecular structure determination.

  17. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Ghaffari, Azad

    Power map and Maximum Power Point (MPP) of Photovoltaic (PV) and Wind Energy Conversion Systems (WECS) highly depend on system dynamics and environmental parameters, e.g., solar irradiance, temperature, and wind speed. Power optimization algorithms for PV systems and WECS are collectively known as Maximum Power Point Tracking (MPPT) algorithm. Gradient-based Extremum Seeking (ES), as a non-model-based MPPT algorithm, governs the system to its peak point on the steepest descent curve regardless of changes of the system dynamics and variations of the environmental parameters. Since the power map shape defines the gradient vector, then a close estimate of the power map shape is needed to create user assignable transients in the MPPT algorithm. The Hessian gives a precise estimate of the power map in a neighborhood around the MPP. The estimate of the inverse of the Hessian in combination with the estimate of the gradient vector are the key parts to implement the Newton-based ES algorithm. Hence, we generate an estimate of the Hessian using our proposed perturbation matrix. Also, we introduce a dynamic estimator to calculate the inverse of the Hessian which is an essential part of our algorithm. We present various simulations and experiments on the micro-converter PV systems to verify the validity of our proposed algorithm. The ES scheme can also be used in combination with other control algorithms to achieve desired closed-loop performance. The WECS dynamics is slow which causes even slower response time for the MPPT based on the ES. Hence, we present a control scheme, extended from Field-Oriented Control (FOC), in combination with feedback linearization to reduce the convergence time of the closed-loop system. Furthermore, the nonlinear control prevents magnetic saturation of the stator of the Induction Generator (IG). The proposed control algorithm in combination with the ES guarantees the closed-loop system robustness with respect to high level parameter uncertainty in the IG dynamics. The simulation results verify the effectiveness of the proposed algorithm.

  18. Energy minimization in medical image analysis: Methodologies and applications.

    PubMed

    Zhao, Feng; Xie, Xianghua

    2016-02-01

    Energy minimization is of particular interest in medical image analysis. In the past two decades, a variety of optimization schemes have been developed. In this paper, we present a comprehensive survey of the state-of-the-art optimization approaches. These algorithms are mainly classified into two categories: continuous method and discrete method. The former includes Newton-Raphson method, gradient descent method, conjugate gradient method, proximal gradient method, coordinate descent method, and genetic algorithm-based method, while the latter covers graph cuts method, belief propagation method, tree-reweighted message passing method, linear programming method, maximum margin learning method, simulated annealing method, and iterated conditional modes method. We also discuss the minimal surface method, primal-dual method, and the multi-objective optimization method. In addition, we review several comparative studies that evaluate the performance of different minimization techniques in terms of accuracy, efficiency, or complexity. These optimization techniques are widely used in many medical applications, for example, image segmentation, registration, reconstruction, motion tracking, and compressed sensing. We thus give an overview on those applications as well. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Gradient-Based Aerodynamic Shape Optimization Using ADI Method for Large-Scale Problems

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Baysal, Oktay

    1997-01-01

    A gradient-based shape optimization methodology, that is intended for practical three-dimensional aerodynamic applications, has been developed. It is based on the quasi-analytical sensitivities. The flow analysis is rendered by a fully implicit, finite volume formulation of the Euler equations.The aerodynamic sensitivity equation is solved using the alternating-direction-implicit (ADI) algorithm for memory efficiency. A flexible wing geometry model, that is based on surface parameterization and platform schedules, is utilized. The present methodology and its components have been tested via several comparisons. Initially, the flow analysis for for a wing is compared with those obtained using an unfactored, preconditioned conjugate gradient approach (PCG), and an extensively validated CFD code. Then, the sensitivities computed with the present method have been compared with those obtained using the finite-difference and the PCG approaches. Effects of grid refinement and convergence tolerance on the analysis and shape optimization have been explored. Finally the new procedure has been demonstrated in the design of a cranked arrow wing at Mach 2.4. Despite the expected increase in the computational time, the results indicate that shape optimization, which require large numbers of grid points can be resolved with a gradient-based approach.

  20. A Parallel Particle Swarm Optimization Algorithm Accelerated by Asynchronous Evaluations

    NASA Technical Reports Server (NTRS)

    Venter, Gerhard; Sobieszczanski-Sobieski, Jaroslaw

    2005-01-01

    A parallel Particle Swarm Optimization (PSO) algorithm is presented. Particle swarm optimization is a fairly recent addition to the family of non-gradient based, probabilistic search algorithms that is based on a simplified social model and is closely tied to swarming theory. Although PSO algorithms present several attractive properties to the designer, they are plagued by high computational cost as measured by elapsed time. One approach to reduce the elapsed time is to make use of coarse-grained parallelization to evaluate the design points. Previous parallel PSO algorithms were mostly implemented in a synchronous manner, where all design points within a design iteration are evaluated before the next iteration is started. This approach leads to poor parallel speedup in cases where a heterogeneous parallel environment is used and/or where the analysis time depends on the design point being analyzed. This paper introduces an asynchronous parallel PSO algorithm that greatly improves the parallel e ciency. The asynchronous algorithm is benchmarked on a cluster assembled of Apple Macintosh G5 desktop computers, using the multi-disciplinary optimization of a typical transport aircraft wing as an example.

  1. Radiofrequency pulse design using nonlinear gradient magnetic fields.

    PubMed

    Kopanoglu, Emre; Constable, R Todd

    2015-09-01

    An iterative k-space trajectory and radiofrequency (RF) pulse design method is proposed for excitation using nonlinear gradient magnetic fields. The spatial encoding functions (SEFs) generated by nonlinear gradient fields are linearly dependent in Cartesian coordinates. Left uncorrected, this may lead to flip angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a matching pursuit algorithm, and the RF pulse is designed using a conjugate gradient algorithm. Three variants of the proposed approach are given: the full algorithm, a computationally cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. The method is compared with other iterative (matching pursuit and conjugate gradient) and noniterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity. An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. © 2014 Wiley Periodicals, Inc.

  2. Topology optimization of finite strain viscoplastic systems under transient loads [Dynamic topology optimization based on finite strain visco-plasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivarsson, Niklas; Wallin, Mathias; Tortorelli, Daniel

    In this paper, a transient finite strain viscoplastic model is implemented in a gradient-based topology optimization framework to design impact mitigating structures. The model's kinematics relies on the multiplicative split of the deformation gradient, and the constitutive response is based on isotropic hardening viscoplasticity. To solve the mechanical balance laws, the implicit Newmark-beta method is used together with a total Lagrangian finite element formulation. The optimization problem is regularized using a partial differential equation filter and solved using the method of moving asymptotes. Sensitivities required to solve the optimization problem are derived using the adjoint method. To demonstrate the capabilitymore » of the algorithm, several protective systems are designed, in which the absorbed viscoplastic energy is maximized. Finally, the numerical examples demonstrate that transient finite strain viscoplastic effects can successfully be combined with topology optimization.« less

  3. Topology optimization of finite strain viscoplastic systems under transient loads [Dynamic topology optimization based on finite strain visco-plasticity

    DOE PAGES

    Ivarsson, Niklas; Wallin, Mathias; Tortorelli, Daniel

    2018-02-08

    In this paper, a transient finite strain viscoplastic model is implemented in a gradient-based topology optimization framework to design impact mitigating structures. The model's kinematics relies on the multiplicative split of the deformation gradient, and the constitutive response is based on isotropic hardening viscoplasticity. To solve the mechanical balance laws, the implicit Newmark-beta method is used together with a total Lagrangian finite element formulation. The optimization problem is regularized using a partial differential equation filter and solved using the method of moving asymptotes. Sensitivities required to solve the optimization problem are derived using the adjoint method. To demonstrate the capabilitymore » of the algorithm, several protective systems are designed, in which the absorbed viscoplastic energy is maximized. Finally, the numerical examples demonstrate that transient finite strain viscoplastic effects can successfully be combined with topology optimization.« less

  4. WS-BP: An efficient wolf search based back-propagation algorithm

    NASA Astrophysics Data System (ADS)

    Nawi, Nazri Mohd; Rehman, M. Z.; Khan, Abdullah

    2015-05-01

    Wolf Search (WS) is a heuristic based optimization algorithm. Inspired by the preying and survival capabilities of the wolves, this algorithm is highly capable to search large spaces in the candidate solutions. This paper investigates the use of WS algorithm in combination with back-propagation neural network (BPNN) algorithm to overcome the local minima problem and to improve convergence in gradient descent. The performance of the proposed Wolf Search based Back-Propagation (WS-BP) algorithm is compared with Artificial Bee Colony Back-Propagation (ABC-BP), Bat Based Back-Propagation (Bat-BP), and conventional BPNN algorithms. Specifically, OR and XOR datasets are used for training the network. The simulation results show that the WS-BP algorithm effectively avoids the local minima and converge to global minima.

  5. Contribution to the optimal shape design of two-dimensional internal flows with embedded shocks

    NASA Technical Reports Server (NTRS)

    Iollo, Angelo; Salas, Manuel D.

    1995-01-01

    We explore the practicability of optimal shape design for flows modeled by the Euler equations. We define a functional whose minimum represents the optimality condition. The gradient of the functional with respect to the geometry is calculated with the Lagrange multipliers, which are determined by solving a co-state equation. The optimization problem is then examined by comparing the performance of several gradient-based optimization algorithms. In this formulation, the flow field can be computed to an arbitrary order of accuracy. Finally, some results for internal flows with embedded shocks are presented, including a case for which the solution to the inverse problem does not belong to the design space.

  6. Aerodynamic Design of Complex Configurations Using Cartesian Methods and CAD Geometry

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.

    2003-01-01

    The objective for this paper is to present the development of an optimization capability for the Cartesian inviscid-flow analysis package of Aftosmis et al. We evaluate and characterize the following modules within the new optimization framework: (1) A component-based geometry parameterization approach using a CAD solid representation and the CAPRI interface. (2) The use of Cartesian methods in the development Optimization techniques using a genetic algorithm. The discussion and investigations focus on several real world problems of the optimization process. We examine the architectural issues associated with the deployment of a CAD-based design approach in a heterogeneous parallel computing environment that contains both CAD workstations and dedicated compute nodes. In addition, we study the influence of noise on the performance of optimization techniques, and the overall efficiency of the optimization process for aerodynamic design of complex three-dimensional configurations. of automated optimization tools. rithm and a gradient-based algorithm.

  7. Artificial Bee Colony Optimization of Capping Potentials for Hybrid Quantum Mechanical/Molecular Mechanical Calculations.

    PubMed

    Schiffmann, Christoph; Sebastiani, Daniel

    2011-05-10

    We present an algorithmic extension of a numerical optimization scheme for analytic capping potentials for use in mixed quantum-classical (quantum mechanical/molecular mechanical, QM/MM) ab initio calculations. Our goal is to minimize bond-cleavage-induced perturbations in the electronic structure, measured by means of a suitable penalty functional. The optimization algorithm-a variant of the artificial bee colony (ABC) algorithm, which relies on swarm intelligence-couples deterministic (downhill gradient) and stochastic elements to avoid local minimum trapping. The ABC algorithm outperforms the conventional downhill gradient approach, if the penalty hypersurface exhibits wiggles that prevent a straight minimization pathway. We characterize the optimized capping potentials by computing NMR chemical shifts. This approach will increase the accuracy of QM/MM calculations of complex biomolecules.

  8. Study of genetic direct search algorithms for function optimization

    NASA Technical Reports Server (NTRS)

    Zeigler, B. P.

    1974-01-01

    The results are presented of a study to determine the performance of genetic direct search algorithms in solving function optimization problems arising in the optimal and adaptive control areas. The findings indicate that: (1) genetic algorithms can outperform standard algorithms in multimodal and/or noisy optimization situations, but suffer from lack of gradient exploitation facilities when gradient information can be utilized to guide the search. (2) For large populations, or low dimensional function spaces, mutation is a sufficient operator. However for small populations or high dimensional functions, crossover applied in about equal frequency with mutation is an optimum combination. (3) Complexity, in terms of storage space and running time, is significantly increased when population size is increased or the inversion operator, or the second level adaptation routine is added to the basic structure.

  9. Gradient maintenance: A new algorithm for fast online replanning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahunbay, Ergun E., E-mail: eahunbay@mcw.edu; Li, X. Allen

    2015-06-15

    Purpose: Clinical use of online adaptive replanning has been hampered by the unpractically long time required to delineate volumes based on the image of the day. The authors propose a new replanning algorithm, named gradient maintenance (GM), which does not require the delineation of organs at risk (OARs), and can enhance automation, drastically reducing planning time and improving consistency and throughput of online replanning. Methods: The proposed GM algorithm is based on the hypothesis that if the dose gradient toward each OAR in daily anatomy can be maintained the same as that in the original plan, the intended plan qualitymore » of the original plan would be preserved in the adaptive plan. The algorithm requires a series of partial concentric rings (PCRs) to be automatically generated around the target toward each OAR on the planning and the daily images. The PCRs are used in the daily optimization objective function. The PCR dose constraints are generated with dose–volume data extracted from the original plan. To demonstrate this idea, GM plans generated using daily images acquired using an in-room CT were compared to regular optimization and image guided radiation therapy repositioning plans for representative prostate and pancreatic cancer cases. Results: The adaptive replanning using the GM algorithm, requiring only the target contour from the CT of the day, can be completed within 5 min without using high-power hardware. The obtained adaptive plans were almost as good as the regular optimization plans and were better than the repositioning plans for the cases studied. Conclusions: The newly proposed GM replanning algorithm, requiring only target delineation, not full delineation of OARs, substantially increased planning speed for online adaptive replanning. The preliminary results indicate that the GM algorithm may be a solution to improve the ability for automation and may be especially suitable for sites with small-to-medium size targets surrounded by several critical structures.« less

  10. Sail Plan Configuration Optimization for a Modern Clipper Ship

    NASA Astrophysics Data System (ADS)

    Gerritsen, Margot; Doyle, Tyler; Iaccarino, Gianluca; Moin, Parviz

    2002-11-01

    We investigate the use of gradient-based and evolutionary algorithms for sail shape optimization. We present preliminary results for the optimization of sheeting angles for the rig of the future three-masted clipper yacht Maltese Falcon. This yacht will be equipped with square-rigged masts made up of yards of circular arc cross sections. This design is especially attractive for megayachts because it provides a large sail area while maintaining aerodynamic and structural efficiency. The rig remains almost rigid in a large range of wind conditions and therefore a simple geometrical model can be constructed without accounting for the true flying shape. The sheeting angle optimization studies are performed using both gradient-based cost function minimization and evolutionary algorithms. The fluid flow is modeled by the Reynolds-averaged Navier-Stokes equations with the Spallart-Allmaras turbulence model. Unstructured non-conforming grids are used to increase robustness and computational efficiency. The optimization process is automated by integrating the system components (geometry construction, grid generation, flow solver, force calculator, optimization). We compare the optimization results to those done previously by user-controlled parametric studies using simple cost functions and user intuition. We also investigate the effectiveness of various cost functions in the optimization (driving force maximization, ratio of driving force to heeling force maximization).

  11. Reentry-Vehicle Shape Optimization Using a Cartesian Adjoint Method and CAD Geometry

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.

    2006-01-01

    A DJOINT solutions of the governing flow equations are becoming increasingly important for the development of efficient analysis and optimization algorithms. A well-known use of the adjoint method is gradient-based shape. Given an objective function that defines some measure of performance, such as the lift and drag functionals, its gradient is computed at a cost that is essentially independent of the number of design variables (e.g., geometric parameters that control the shape). Classic aerodynamic applications of gradient-based optimization include the design of cruise configurations for transonic and supersonic flow, as well as the design of high-lift systems. are perhaps the most promising approach for addressing the issues of flow solution automation for aerodynamic design problems. In these methods, the discretization of the wetted surface is decoupled from that of the volume mesh. This not only enables fast and robust mesh generation for geometry of arbitrary complexity, but also facilitates access to geometry modeling and manipulation using parametric computer-aided design (CAD). In previous work on Cartesian adjoint solvers, Melvin et al. developed an adjoint formulation for the TRANAIR code, which is based on the full-potential equation with viscous corrections. More recently, Dadone and Grossman presented an adjoint formulation for the two-dimensional Euler equations using a ghost-cell method to enforce the wall boundary conditions. In Refs. 18 and 19, we presented an accurate and efficient algorithm for the solution of the adjoint Euler equations discretized on Cartesian meshes with embedded, cut-cell boundaries. Novel aspects of the algorithm were the computation of surface shape sensitivities for triangulations based on parametric-CAD models and the linearization of the coupling between the surface triangulation and the cut-cells. The accuracy of the gradient computation was verified using several three-dimensional test cases, which included design variables such as the free stream parameters and the planform shape of an isolated wing. The objective of the present work is to extend our adjoint formulation to problems involving general shape changes. Factors under consideration include the computation of mesh sensitivities that provide a reliable approximation of the objective function gradient, as well as the computation of surface shape sensitivities based on a direct-CAD interface. We present detailed gradient verification studies and then focus on a shape optimization problem for an Apollo-like reentry vehicle. The goal of the optimization is to enhance the lift-to-drag ratio of the capsule by modifying the shape of its heat-shield in conjunction with a center-of-gravity (c.g.) offset. This multipoint and multi-objective optimization problem is used to demonstrate the overall effectiveness of the Cartesian adjoint method for addressing the issues of complex aerodynamic design.

  12. Optimal trajectories of aircraft and spacecraft

    NASA Technical Reports Server (NTRS)

    Miele, A.

    1990-01-01

    Work done on algorithms for the numerical solutions of optimal control problems and their application to the computation of optimal flight trajectories of aircraft and spacecraft is summarized. General considerations on calculus of variations, optimal control, numerical algorithms, and applications of these algorithms to real-world problems are presented. The sequential gradient-restoration algorithm (SGRA) is examined for the numerical solution of optimal control problems of the Bolza type. Both the primal formulation and the dual formulation are discussed. Aircraft trajectories, in particular, the application of the dual sequential gradient-restoration algorithm (DSGRA) to the determination of optimal flight trajectories in the presence of windshear are described. Both take-off trajectories and abort landing trajectories are discussed. Take-off trajectories are optimized by minimizing the peak deviation of the absolute path inclination from a reference value. Abort landing trajectories are optimized by minimizing the peak drop of altitude from a reference value. Abort landing trajectories are optimized by minimizing the peak drop of altitude from a reference value. The survival capability of an aircraft in a severe windshear is discussed, and the optimal trajectories are found to be superior to both constant pitch trajectories and maximum angle of attack trajectories. Spacecraft trajectories, in particular, the application of the primal sequential gradient-restoration algorithm (PSGRA) to the determination of optimal flight trajectories for aeroassisted orbital transfer are examined. Both the coplanar case and the noncoplanar case are discussed within the frame of three problems: minimization of the total characteristic velocity; minimization of the time integral of the square of the path inclination; and minimization of the peak heating rate. The solution of the second problem is called nearly-grazing solution, and its merits are pointed out as a useful engineering compromise between energy requirements and aerodynamics heating requirements.

  13. A trust region-based approach to optimize triple response systems

    NASA Astrophysics Data System (ADS)

    Fan, Shu-Kai S.; Fan, Chihhao; Huang, Chia-Fen

    2014-05-01

    This article presents a new computing procedure for the global optimization of the triple response system (TRS) where the response functions are non-convex quadratics and the input factors satisfy a radial constrained region of interest. The TRS arising from response surface modelling can be approximated using a nonlinear mathematical program that considers one primary objective function and two secondary constraint functions. An optimization algorithm named the triple response surface algorithm (TRSALG) is proposed to determine the global optimum for the non-degenerate TRS. In TRSALG, the Lagrange multipliers of the secondary functions are determined using the Hooke-Jeeves search method and the Lagrange multiplier of the radial constraint is located using the trust region method within the global optimality space. The proposed algorithm is illustrated in terms of three examples appearing in the quality-control literature. The results of TRSALG compared to a gradient-based method are also presented.

  14. Topology optimization of finite strain viscoplastic systems under transient loads

    DOE PAGES

    Ivarsson, Niklas; Wallin, Mathias; Tortorelli, Daniel

    2018-02-08

    In this paper, a transient finite strain viscoplastic model is implemented in a gradient-based topology optimization framework to design impact mitigating structures. The model's kinematics relies on the multiplicative split of the deformation gradient, and the constitutive response is based on isotropic hardening viscoplasticity. To solve the mechanical balance laws, the implicit Newmark-beta method is used together with a total Lagrangian finite element formulation. The optimization problem is regularized using a partial differential equation filter and solved using the method of moving asymptotes. Sensitivities required to solve the optimization problem are derived using the adjoint method. To demonstrate the capabilitymore » of the algorithm, several protective systems are designed, in which the absorbed viscoplastic energy is maximized. Finally, the numerical examples demonstrate that transient finite strain viscoplastic effects can successfully be combined with topology optimization.« less

  15. A new optimal seam method for seamless image stitching

    NASA Astrophysics Data System (ADS)

    Xue, Jiale; Chen, Shengyong; Cheng, Xu; Han, Ying; Zhao, Meng

    2017-07-01

    A novel optimal seam method which aims to stitch those images with overlapping area more seamlessly has been propos ed. Considering the traditional gradient domain optimal seam method and fusion algorithm result in bad color difference measurement and taking a long time respectively, the input images would be converted to HSV space and a new energy function is designed to seek optimal stitching path. To smooth the optimal stitching path, a simplified pixel correction and weighted average method are utilized individually. The proposed methods exhibit performance in eliminating the stitching seam compared with the traditional gradient optimal seam and high efficiency with multi-band blending algorithm.

  16. Deterministic Design Optimization of Structures in OpenMDAO Framework

    NASA Technical Reports Server (NTRS)

    Coroneos, Rula M.; Pai, Shantaram S.

    2012-01-01

    Nonlinear programming algorithms play an important role in structural design optimization. Several such algorithms have been implemented in OpenMDAO framework developed at NASA Glenn Research Center (GRC). OpenMDAO is an open source engineering analysis framework, written in Python, for analyzing and solving Multi-Disciplinary Analysis and Optimization (MDAO) problems. It provides a number of solvers and optimizers, referred to as components and drivers, which users can leverage to build new tools and processes quickly and efficiently. Users may download, use, modify, and distribute the OpenMDAO software at no cost. This paper summarizes the process involved in analyzing and optimizing structural components by utilizing the framework s structural solvers and several gradient based optimizers along with a multi-objective genetic algorithm. For comparison purposes, the same structural components were analyzed and optimized using CometBoards, a NASA GRC developed code. The reliability and efficiency of the OpenMDAO framework was compared and reported in this report.

  17. Analysis of deformable image registration accuracy using computational modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong Hualiang; Kim, Jinkoo; Chetty, Indrin J.

    2010-03-15

    Computer aided modeling of anatomic deformation, allowing various techniques and protocols in radiation therapy to be systematically verified and studied, has become increasingly attractive. In this study the potential issues in deformable image registration (DIR) were analyzed based on two numerical phantoms: One, a synthesized, low intensity gradient prostate image, and the other a lung patient's CT image data set. Each phantom was modeled with region-specific material parameters with its deformation solved using a finite element method. The resultant displacements were used to construct a benchmark to quantify the displacement errors of the Demons and B-Spline-based registrations. The results showmore » that the accuracy of these registration algorithms depends on the chosen parameters, the selection of which is closely associated with the intensity gradients of the underlying images. For the Demons algorithm, both single resolution (SR) and multiresolution (MR) registrations required approximately 300 iterations to reach an accuracy of 1.4 mm mean error in the lung patient's CT image (and 0.7 mm mean error averaged in the lung only). For the low gradient prostate phantom, these algorithms (both SR and MR) required at least 1600 iterations to reduce their mean errors to 2 mm. For the B-Spline algorithms, best performance (mean errors of 1.9 mm for SR and 1.6 mm for MR, respectively) on the low gradient prostate was achieved using five grid nodes in each direction. Adding more grid nodes resulted in larger errors. For the lung patient's CT data set, the B-Spline registrations required ten grid nodes in each direction for highest accuracy (1.4 mm for SR and 1.5 mm for MR). The numbers of iterations or grid nodes required for optimal registrations depended on the intensity gradients of the underlying images. In summary, the performance of the Demons and B-Spline registrations have been quantitatively evaluated using numerical phantoms. The results show that parameter selection for optimal accuracy is closely related to the intensity gradients of the underlying images. Also, the result that the DIR algorithms produce much lower errors in heterogeneous lung regions relative to homogeneous (low intensity gradient) regions, suggests that feature-based evaluation of deformable image registration accuracy must be viewed cautiously.« less

  18. Algorithms for the optimization of RBE-weighted dose in particle therapy.

    PubMed

    Horcicka, M; Meyer, C; Buschbacher, A; Durante, M; Krämer, M

    2013-01-21

    We report on various algorithms used for the nonlinear optimization of RBE-weighted dose in particle therapy. Concerning the dose calculation carbon ions are considered and biological effects are calculated by the Local Effect Model. Taking biological effects fully into account requires iterative methods to solve the optimization problem. We implemented several additional algorithms into GSI's treatment planning system TRiP98, like the BFGS-algorithm and the method of conjugated gradients, in order to investigate their computational performance. We modified textbook iteration procedures to improve the convergence speed. The performance of the algorithms is presented by convergence in terms of iterations and computation time. We found that the Fletcher-Reeves variant of the method of conjugated gradients is the algorithm with the best computational performance. With this algorithm we could speed up computation times by a factor of 4 compared to the method of steepest descent, which was used before. With our new methods it is possible to optimize complex treatment plans in a few minutes leading to good dose distributions. At the end we discuss future goals concerning dose optimization issues in particle therapy which might benefit from fast optimization solvers.

  19. Algorithms for the optimization of RBE-weighted dose in particle therapy

    NASA Astrophysics Data System (ADS)

    Horcicka, M.; Meyer, C.; Buschbacher, A.; Durante, M.; Krämer, M.

    2013-01-01

    We report on various algorithms used for the nonlinear optimization of RBE-weighted dose in particle therapy. Concerning the dose calculation carbon ions are considered and biological effects are calculated by the Local Effect Model. Taking biological effects fully into account requires iterative methods to solve the optimization problem. We implemented several additional algorithms into GSI's treatment planning system TRiP98, like the BFGS-algorithm and the method of conjugated gradients, in order to investigate their computational performance. We modified textbook iteration procedures to improve the convergence speed. The performance of the algorithms is presented by convergence in terms of iterations and computation time. We found that the Fletcher-Reeves variant of the method of conjugated gradients is the algorithm with the best computational performance. With this algorithm we could speed up computation times by a factor of 4 compared to the method of steepest descent, which was used before. With our new methods it is possible to optimize complex treatment plans in a few minutes leading to good dose distributions. At the end we discuss future goals concerning dose optimization issues in particle therapy which might benefit from fast optimization solvers.

  20. RF Pulse Design using Nonlinear Gradient Magnetic Fields

    PubMed Central

    Kopanoglu, Emre; Constable, R. Todd

    2014-01-01

    Purpose An iterative k-space trajectory and radio-frequency (RF) pulse design method is proposed for Excitation using Nonlinear Gradient Magnetic fields (ENiGMa). Theory and Methods The spatial encoding functions (SEFs) generated by nonlinear gradient fields (NLGFs) are linearly dependent in Cartesian-coordinates. Left uncorrected, this may lead to flip-angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a Matching-Pursuit algorithm, and the RF pulse is designed using a Conjugate-Gradient algorithm. Three variants of the proposed approach are given: the full-algorithm, a computationally-cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. Results The method is compared to other iterative (Matching-Pursuit and Conjugate Gradient) and non-iterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity significantly. Conclusion An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. PMID:25203286

  1. New approaches to optimization in aerospace conceptual design

    NASA Technical Reports Server (NTRS)

    Gage, Peter J.

    1995-01-01

    Aerospace design can be viewed as an optimization process, but conceptual studies are rarely performed using formal search algorithms. Three issues that restrict the success of automatic search are identified in this work. New approaches are introduced to address the integration of analyses and optimizers, to avoid the need for accurate gradient information and a smooth search space (required for calculus-based optimization), and to remove the restrictions imposed by fixed complexity problem formulations. (1) Optimization should be performed in a flexible environment. A quasi-procedural architecture is used to conveniently link analysis modules and automatically coordinate their execution. It efficiently controls a large-scale design tasks. (2) Genetic algorithms provide a search method for discontinuous or noisy domains. The utility of genetic optimization is demonstrated here, but parameter encodings and constraint-handling schemes must be carefully chosen to avoid premature convergence to suboptimal designs. The relationship between genetic and calculus-based methods is explored. (3) A variable-complexity genetic algorithm is created to permit flexible parameterization, so that the level of description can change during optimization. This new optimizer automatically discovers novel designs in structural and aerodynamic tasks.

  2. An interior-point method for total variation regularized positron emission tomography image reconstruction

    NASA Astrophysics Data System (ADS)

    Bai, Bing

    2012-03-01

    There has been a lot of work on total variation (TV) regularized tomographic image reconstruction recently. Many of them use gradient-based optimization algorithms with a differentiable approximation of the TV functional. In this paper we apply TV regularization in Positron Emission Tomography (PET) image reconstruction. We reconstruct the PET image in a Bayesian framework, using Poisson noise model and TV prior functional. The original optimization problem is transformed to an equivalent problem with inequality constraints by adding auxiliary variables. Then we use an interior point method with logarithmic barrier functions to solve the constrained optimization problem. In this method, a series of points approaching the solution from inside the feasible region are found by solving a sequence of subproblems characterized by an increasing positive parameter. We use preconditioned conjugate gradient (PCG) algorithm to solve the subproblems directly. The nonnegativity constraint is enforced by bend line search. The exact expression of the TV functional is used in our calculations. Simulation results show that the algorithm converges fast and the convergence is insensitive to the values of the regularization and reconstruction parameters.

  3. Two-Dimensional High-Lift Aerodynamic Optimization Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Greenman, Roxana M.

    1998-01-01

    The high-lift performance of a multi-element airfoil was optimized by using neural-net predictions that were trained using a computational data set. The numerical data was generated using a two-dimensional, incompressible, Navier-Stokes algorithm with the Spalart-Allmaras turbulence model. Because it is difficult to predict maximum lift for high-lift systems, an empirically-based maximum lift criteria was used in this study to determine both the maximum lift and the angle at which it occurs. The 'pressure difference rule,' which states that the maximum lift condition corresponds to a certain pressure difference between the peak suction pressure and the pressure at the trailing edge of the element, was applied and verified with experimental observations for this configuration. Multiple input, single output networks were trained using the NASA Ames variation of the Levenberg-Marquardt algorithm for each of the aerodynamic coefficients (lift, drag and moment). The artificial neural networks were integrated with a gradient-based optimizer. Using independent numerical simulations and experimental data for this high-lift configuration, it was shown that this design process successfully optimized flap deflection, gap, overlap, and angle of attack to maximize lift. Once the neural nets were trained and integrated with the optimizer, minimal additional computer resources were required to perform optimization runs with different initial conditions and parameters. Applying the neural networks within the high-lift rigging optimization process reduced the amount of computational time and resources by 44% compared with traditional gradient-based optimization procedures for multiple optimization runs.

  4. GPU-based stochastic-gradient optimization for non-rigid medical image registration in time-critical applications

    NASA Astrophysics Data System (ADS)

    Bhosale, Parag; Staring, Marius; Al-Ars, Zaid; Berendsen, Floris F.

    2018-03-01

    Currently, non-rigid image registration algorithms are too computationally intensive to use in time-critical applications. Existing implementations that focus on speed typically address this by either parallelization on GPU-hardware, or by introducing methodically novel techniques into CPU-oriented algorithms. Stochastic gradient descent (SGD) optimization and variations thereof have proven to drastically reduce the computational burden for CPU-based image registration, but have not been successfully applied in GPU hardware due to its stochastic nature. This paper proposes 1) NiftyRegSGD, a SGD optimization for the GPU-based image registration tool NiftyReg, 2) random chunk sampler, a new random sampling strategy that better utilizes the memory bandwidth of GPU hardware. Experiments have been performed on 3D lung CT data of 19 patients, which compared NiftyRegSGD (with and without random chunk sampler) with CPU-based elastix Fast Adaptive SGD (FASGD) and NiftyReg. The registration runtime was 21.5s, 4.4s and 2.8s for elastix-FASGD, NiftyRegSGD without, and NiftyRegSGD with random chunk sampling, respectively, while similar accuracy was obtained. Our method is publicly available at https://github.com/SuperElastix/NiftyRegSGD.

  5. Low Complexity Models to improve Incomplete Sensitivities for Shape Optimization

    NASA Astrophysics Data System (ADS)

    Stanciu, Mugurel; Mohammadi, Bijan; Moreau, Stéphane

    2003-01-01

    The present global platform for simulation and design of multi-model configurations treat shape optimization problems in aerodynamics. Flow solvers are coupled with optimization algorithms based on CAD-free and CAD-connected frameworks. Newton methods together with incomplete expressions of gradients are used. Such incomplete sensitivities are improved using reduced models based on physical assumptions. The validity and the application of this approach in real-life problems are presented. The numerical examples concern shape optimization for an airfoil, a business jet and a car engine cooling axial fan.

  6. A homotopy algorithm for digital optimal projection control GASD-HADOC

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G., Jr.; Richter, Stephen; Davis, Lawrence D.

    1993-01-01

    The linear-quadratic-gaussian (LQG) compensator was developed to facilitate the design of control laws for multi-input, multi-output (MIMO) systems. The compensator is computed by solving two algebraic equations for which standard closed-loop solutions exist. Unfortunately, the minimal dimension of an LQG compensator is almost always equal to the dimension of the plant and can thus often violate practical implementation constraints on controller order. This deficiency is especially highlighted when considering control-design for high-order systems such as flexible space structures. This deficiency motivated the development of techniques that enable the design of optimal controllers whose dimension is less than that of the design plant. A homotopy approach based on the optimal projection equations that characterize the necessary conditions for optimal reduced-order control. Homotopy algorithms have global convergence properties and hence do not require that the initializing reduced-order controller be close to the optimal reduced-order controller to guarantee convergence. However, the homotopy algorithm previously developed for solving the optimal projection equations has sublinear convergence properties and the convergence slows at higher authority levels and may fail. A new homotopy algorithm for synthesizing optimal reduced-order controllers for discrete-time systems is described. Unlike the previous homotopy approach, the new algorithm is a gradient-based, parameter optimization formulation and was implemented in MATLAB. The results reported may offer the foundation for a reliable approach to optimal, reduced-order controller design.

  7. Inherent smoothness of intensity patterns for intensity modulated radiation therapy generated by simultaneous projection algorithms

    NASA Astrophysics Data System (ADS)

    Xiao, Ying; Michalski, Darek; Censor, Yair; Galvin, James M.

    2004-07-01

    The efficient delivery of intensity modulated radiation therapy (IMRT) depends on finding optimized beam intensity patterns that produce dose distributions, which meet given constraints for the tumour as well as any critical organs to be spared. Many optimization algorithms that are used for beamlet-based inverse planning are susceptible to large variations of neighbouring intensities. Accurately delivering an intensity pattern with a large number of extrema can prove impossible given the mechanical limitations of standard multileaf collimator (MLC) delivery systems. In this study, we apply Cimmino's simultaneous projection algorithm to the beamlet-based inverse planning problem, modelled mathematically as a system of linear inequalities. We show that using this method allows us to arrive at a smoother intensity pattern. Including nonlinear terms in the simultaneous projection algorithm to deal with dose-volume histogram (DVH) constraints does not compromise this property from our experimental observation. The smoothness properties are compared with those from other optimization algorithms which include simulated annealing and the gradient descent method. The simultaneous property of these algorithms is ideally suited to parallel computing technologies.

  8. Airfoil optimization for unsteady flows with application to high-lift noise reduction

    NASA Astrophysics Data System (ADS)

    Rumpfkeil, Markus Peer

    The use of steady-state aerodynamic optimization methods in the computational fluid dynamic (CFD) community is fairly well established. In particular, the use of adjoint methods has proven to be very beneficial because their cost is independent of the number of design variables. The application of numerical optimization to airframe-generated noise, however, has not received as much attention, but with the significant quieting of modern engines, airframe noise now competes with engine noise. Optimal control techniques for unsteady flows are needed in order to be able to reduce airframe-generated noise. In this thesis, a general framework is formulated to calculate the gradient of a cost function in a nonlinear unsteady flow environment via the discrete adjoint method. The unsteady optimization algorithm developed in this work utilizes a Newton-Krylov approach since the gradient-based optimizer uses the quasi-Newton method BFGS, Newton's method is applied to the nonlinear flow problem, GMRES is used to solve the resulting linear problem inexactly, and last but not least the linear adjoint problem is solved using Bi-CGSTAB. The flow is governed by the unsteady two-dimensional compressible Navier-Stokes equations in conjunction with a one-equation turbulence model, which are discretized using structured grids and a finite difference approach. The effectiveness of the unsteady optimization algorithm is demonstrated by applying it to several problems of interest including shocktubes, pulses in converging-diverging nozzles, rotating cylinders, transonic buffeting, and an unsteady trailing-edge flow. In order to address radiated far-field noise, an acoustic wave propagation program based on the Ffowcs Williams and Hawkings (FW-H) formulation is implemented and validated. The general framework is then used to derive the adjoint equations for a novel hybrid URANS/FW-H optimization algorithm in order to be able to optimize the shape of airfoils based on their calculated far-field pressure fluctuations. Validation and application results for this novel hybrid URANS/FW-H optimization algorithm show that it is possible to optimize the shape of an airfoil in an unsteady flow environment to minimize its radiated far-field noise while maintaining good aerodynamic performance.

  9. Numerical optimization in Hilbert space using inexact function and gradient evaluations

    NASA Technical Reports Server (NTRS)

    Carter, Richard G.

    1989-01-01

    Trust region algorithms provide a robust iterative technique for solving non-convex unstrained optimization problems, but in many instances it is prohibitively expensive to compute high accuracy function and gradient values for the method. Of particular interest are inverse and parameter estimation problems, since function and gradient evaluations involve numerically solving large systems of differential equations. A global convergence theory is presented for trust region algorithms in which neither function nor gradient values are known exactly. The theory is formulated in a Hilbert space setting so that it can be applied to variational problems as well as the finite dimensional problems normally seen in trust region literature. The conditions concerning allowable error are remarkably relaxed: relative errors in the gradient error condition is automatically satisfied if the error is orthogonal to the gradient approximation. A technique for estimating gradient error and improving the approximation is also presented.

  10. Stan : A Probabilistic Programming Language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.

    Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the No-U-Turn sampler, an adaptive form of Hamiltonian Monte Carlo sampling. Penalized maximum likelihood estimates are calculated using optimization methods such as the limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm. Stan is also a platform for computing log densities and their gradients and Hessians, which can be used in alternative algorithms such as variational Bayes, expectationmore » propagation, and marginal inference using approximate integration. To this end, Stan is set up so that the densities, gradients, and Hessians, along with intermediate quantities of the algorithm such as acceptance probabilities, are easily accessible. Stan can also be called from the command line using the cmdstan package, through R using the rstan package, and through Python using the pystan package. All three interfaces support sampling and optimization-based inference with diagnostics and posterior analysis. rstan and pystan also provide access to log probabilities, gradients, Hessians, parameter transforms, and specialized plotting.« less

  11. Stan : A Probabilistic Programming Language

    DOE PAGES

    Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.; ...

    2017-01-01

    Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the No-U-Turn sampler, an adaptive form of Hamiltonian Monte Carlo sampling. Penalized maximum likelihood estimates are calculated using optimization methods such as the limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm. Stan is also a platform for computing log densities and their gradients and Hessians, which can be used in alternative algorithms such as variational Bayes, expectationmore » propagation, and marginal inference using approximate integration. To this end, Stan is set up so that the densities, gradients, and Hessians, along with intermediate quantities of the algorithm such as acceptance probabilities, are easily accessible. Stan can also be called from the command line using the cmdstan package, through R using the rstan package, and through Python using the pystan package. All three interfaces support sampling and optimization-based inference with diagnostics and posterior analysis. rstan and pystan also provide access to log probabilities, gradients, Hessians, parameter transforms, and specialized plotting.« less

  12. Nonlinear optimization with linear constraints using a projection method

    NASA Technical Reports Server (NTRS)

    Fox, T.

    1982-01-01

    Nonlinear optimization problems that are encountered in science and industry are examined. A method of projecting the gradient vector onto a set of linear contraints is developed, and a program that uses this method is presented. The algorithm that generates this projection matrix is based on the Gram-Schmidt method and overcomes some of the objections to the Rosen projection method.

  13. [Preliminary application of an improved Demons deformable registration algorithm in tumor radiotherapy].

    PubMed

    Zhou, Lu; Zhen, Xin; Lu, Wenting; Dou, Jianhong; Zhou, Linghong

    2012-01-01

    To validate the efficiency of an improved Demons deformable registration algorithm and evaluate its application in registration of the treatment image and the planning image in image-guided radiotherapy (IGRT). Based on Brox's gradient constancy assumption and Malis's efficient second-order minimization algorithm, a grey value gradient similarity term was added into the original energy function, and a formula was derived to calculate the update of transformation field. The limited Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm was used to optimize the energy function for automatic determination of the iteration number. The proposed algorithm was validated using mathematically deformed images, physically deformed phantom images and clinical tumor images. Compared with the original Additive Demons algorithm, the improved Demons algorithm achieved a higher precision and a faster convergence speed. Due to the influence of different scanning conditions in fractionated radiation, the density range of the treatment image and the planning image may be different. The improved Demons algorithm can achieve faster and more accurate radiotherapy.

  14. Stochastic parallel gradient descent based adaptive optics used for a high contrast imaging coronagraph

    NASA Astrophysics Data System (ADS)

    Dong, Bing; Ren, De-Qing; Zhang, Xi

    2011-08-01

    An adaptive optics (AO) system based on a stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve the contrast. The principle of the SPGD algorithm is described briefly and a metric suitable for point source imaging optimization is given. The feasibility and good performance of the SPGD algorithm is demonstrated by an experimental system featured with a 140-actuator deformable mirror and a Hartmann-Shark wavefront sensor. Then the SPGD based AO is applied to a liquid crystal array (LCA) based coronagraph to improve the contrast. The LCA can modulate the incoming light to generate a pupil apodization mask of any pattern. A circular stepped pattern is used in our preliminary experiment and the image contrast shows improvement from 10-3 to 10-4.5 at an angular distance of 2λ/D after being corrected by SPGD based AO.

  15. An enhanced artificial bee colony algorithm (EABC) for solving dispatching of hydro-thermal system (DHTS) problem.

    PubMed

    Yu, Yi; Wu, Yonggang; Hu, Binqi; Liu, Xinglong

    2018-01-01

    The dispatching of hydro-thermal system is a nonlinear programming problem with multiple constraints and high dimensions and the solution techniques of the model have been a hotspot in research. Based on the advantage of that the artificial bee colony algorithm (ABC) can efficiently solve the high-dimensional problem, an improved artificial bee colony algorithm has been proposed to solve DHTS problem in this paper. The improvements of the proposed algorithm include two aspects. On one hand, local search can be guided in efficiency by the information of the global optimal solution and its gradient in each generation. The global optimal solution improves the search efficiency of the algorithm but loses diversity, while the gradient can weaken the loss of diversity caused by the global optimal solution. On the other hand, inspired by genetic algorithm, the nectar resource which has not been updated in limit generation is transformed to a new one by using selection, crossover and mutation, which can ensure individual diversity and make full use of prior information for improving the global search ability of the algorithm. The two improvements of ABC algorithm are proved to be effective via a classical numeral example at last. Among which the genetic operator for the promotion of the ABC algorithm's performance is significant. The results are also compared with those of other state-of-the-art algorithms, the enhanced ABC algorithm has general advantages in minimum cost, average cost and maximum cost which shows its usability and effectiveness. The achievements in this paper provide a new method for solving the DHTS problems, and also offer a novel reference for the improvement of mechanism and the application of algorithms.

  16. Solving traveling salesman problems with DNA molecules encoding numerical values.

    PubMed

    Lee, Ji Youn; Shin, Soo-Yong; Park, Tai Hyun; Zhang, Byoung-Tak

    2004-12-01

    We introduce a DNA encoding method to represent numerical values and a biased molecular algorithm based on the thermodynamic properties of DNA. DNA strands are designed to encode real values by variation of their melting temperatures. The thermodynamic properties of DNA are used for effective local search of optimal solutions using biochemical techniques, such as denaturation temperature gradient polymerase chain reaction and temperature gradient gel electrophoresis. The proposed method was successfully applied to the traveling salesman problem, an instance of optimization problems on weighted graphs. This work extends the capability of DNA computing to solving numerical optimization problems, which is contrasted with other DNA computing methods focusing on logical problem solving.

  17. An approach to multiobjective optimization of rotational therapy. II. Pareto optimal surfaces and linear combinations of modulated blocked arcs for a prostate geometry.

    PubMed

    Pardo-Montero, Juan; Fenwick, John D

    2010-06-01

    The purpose of this work is twofold: To further develop an approach to multiobjective optimization of rotational therapy treatments recently introduced by the authors [J. Pardo-Montero and J. D. Fenwick, "An approach to multiobjective optimization of rotational therapy," Med. Phys. 36, 3292-3303 (2009)], especially regarding its application to realistic geometries, and to study the quality (Pareto optimality) of plans obtained using such an approach by comparing them with Pareto optimal plans obtained through inverse planning. In the previous work of the authors, a methodology is proposed for constructing a large number of plans, with different compromises between the objectives involved, from a small number of geometrically based arcs, each arc prioritizing different objectives. Here, this method has been further developed and studied. Two different techniques for constructing these arcs are investigated, one based on image-reconstruction algorithms and the other based on more common gradient-descent algorithms. The difficulty of dealing with organs abutting the target, briefly reported in previous work of the authors, has been investigated using partial OAR unblocking. Optimality of the solutions has been investigated by comparison with a Pareto front obtained from inverse planning. A relative Euclidean distance has been used to measure the distance of these plans to the Pareto front, and dose volume histogram comparisons have been used to gauge the clinical impact of these distances. A prostate geometry has been used for the study. For geometries where a blocked OAR abuts the target, moderate OAR unblocking can substantially improve target dose distribution and minimize hot spots while not overly compromising dose sparing of the organ. Image-reconstruction type and gradient-descent blocked-arc computations generate similar results. The Pareto front for the prostate geometry, reconstructed using a large number of inverse plans, presents a hockey-stick shape comprising two regions: One where the dose to the target is close to prescription and trade-offs can be made between doses to the organs at risk and (small) changes in target dose, and one where very substantial rectal sparing is achieved at the cost of large target underdosage. Plans computed following the approach using a conformal arc and four blocked arcs generally lie close to the Pareto front, although distances of some plans from high gradient regions of the Pareto front can be greater. Only around 12% of plans lie a relative Euclidean distance of 0.15 or greater from the Pareto front. Using the alternative distance measure of Craft ["Calculating and controlling the error of discrete representations of Pareto surfaces in convex multi-criteria optimization," Phys. Medica (to be published)], around 2/5 of plans lie more than 0.05 from the front. Computation of blocked arcs is quite fast, the algorithms requiring 35%-80% of the running time per iteration needed for conventional inverse plan computation. The geometry-based arc approach to multicriteria optimization of rotational therapy allows solutions to be obtained that lie close to the Pareto front. Both the image-reconstruction type and gradient-descent algorithms produce similar modulated arcs, the latter one perhaps being preferred because it is more easily implementable in standard treatment planning systems. Moderate unblocking provides a good way of dealing with OARs which abut the PTV. Optimization of geometry-based arcs is faster than usual inverse optimization of treatment plans, making this approach more rapid than an inverse-based Pareto front reconstruction.

  18. Convex Optimization over Classes of Multiparticle Entanglement

    NASA Astrophysics Data System (ADS)

    Shang, Jiangwei; Gühne, Otfried

    2018-02-01

    A well-known strategy to characterize multiparticle entanglement utilizes the notion of stochastic local operations and classical communication (SLOCC), but characterizing the resulting entanglement classes is difficult. Given a multiparticle quantum state, we first show that Gilbert's algorithm can be adapted to prove separability or membership in a certain entanglement class. We then present two algorithms for convex optimization over SLOCC classes. The first algorithm uses a simple gradient approach, while the other one employs the accelerated projected-gradient method. For demonstration, the algorithms are applied to the likelihood-ratio test using experimental data on bound entanglement of a noisy four-photon Smolin state [Phys. Rev. Lett. 105, 130501 (2010), 10.1103/PhysRevLett.105.130501].

  19. Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machnes, S.; Institute for Theoretical Physics, University of Ulm, D-89069 Ulm; Sander, U.

    2011-08-15

    For paving the way to novel applications in quantum simulation, computation, and technology, increasingly large quantum systems have to be steered with high precision. It is a typical task amenable to numerical optimal control to turn the time course of pulses, i.e., piecewise constant control amplitudes, iteratively into an optimized shape. Here, we present a comparative study of optimal-control algorithms for a wide range of finite-dimensional applications. We focus on the most commonly used algorithms: GRAPE methods which update all controls concurrently, and Krotov-type methods which do so sequentially. Guidelines for their use are given and open research questions aremore » pointed out. Moreover, we introduce a unifying algorithmic framework, DYNAMO (dynamic optimization platform), designed to provide the quantum-technology community with a convenient matlab-based tool set for optimal control. In addition, it gives researchers in optimal-control techniques a framework for benchmarking and comparing newly proposed algorithms with the state of the art. It allows a mix-and-match approach with various types of gradients, update and step-size methods as well as subspace choices. Open-source code including examples is made available at http://qlib.info.« less

  20. An enhanced artificial bee colony algorithm (EABC) for solving dispatching of hydro-thermal system (DHTS) problem

    PubMed Central

    Yu, Yi; Hu, Binqi; Liu, Xinglong

    2018-01-01

    The dispatching of hydro-thermal system is a nonlinear programming problem with multiple constraints and high dimensions and the solution techniques of the model have been a hotspot in research. Based on the advantage of that the artificial bee colony algorithm (ABC) can efficiently solve the high-dimensional problem, an improved artificial bee colony algorithm has been proposed to solve DHTS problem in this paper. The improvements of the proposed algorithm include two aspects. On one hand, local search can be guided in efficiency by the information of the global optimal solution and its gradient in each generation. The global optimal solution improves the search efficiency of the algorithm but loses diversity, while the gradient can weaken the loss of diversity caused by the global optimal solution. On the other hand, inspired by genetic algorithm, the nectar resource which has not been updated in limit generation is transformed to a new one by using selection, crossover and mutation, which can ensure individual diversity and make full use of prior information for improving the global search ability of the algorithm. The two improvements of ABC algorithm are proved to be effective via a classical numeral example at last. Among which the genetic operator for the promotion of the ABC algorithm’s performance is significant. The results are also compared with those of other state-of-the-art algorithms, the enhanced ABC algorithm has general advantages in minimum cost, average cost and maximum cost which shows its usability and effectiveness. The achievements in this paper provide a new method for solving the DHTS problems, and also offer a novel reference for the improvement of mechanism and the application of algorithms. PMID:29324743

  1. Method for optimizing channelized quadratic observers for binary classification of large-dimensional image datasets

    PubMed Central

    Kupinski, M. K.; Clarkson, E.

    2015-01-01

    We present a new method for computing optimized channels for channelized quadratic observers (CQO) that is feasible for high-dimensional image data. The method for calculating channels is applicable in general and optimal for Gaussian distributed image data. Gradient-based algorithms for determining the channels are presented for five different information-based figures of merit (FOMs). Analytic solutions for the optimum channels for each of the five FOMs are derived for the case of equal mean data for both classes. The optimum channels for three of the FOMs under the equal mean condition are shown to be the same. This result is critical since some of the FOMs are much easier to compute. Implementing the CQO requires a set of channels and the first- and second-order statistics of channelized image data from both classes. The dimensionality reduction from M measurements to L channels is a critical advantage of CQO since estimating image statistics from channelized data requires smaller sample sizes and inverting a smaller covariance matrix is easier. In a simulation study we compare the performance of ideal and Hotelling observers to CQO. The optimal CQO channels are calculated using both eigenanalysis and a new gradient-based algorithm for maximizing Jeffrey's divergence (J). Optimal channel selection without eigenanalysis makes the J-CQO on large-dimensional image data feasible. PMID:26366764

  2. Peak-Seeking Optimization of Trim for Reduced Fuel Consumption: Flight-Test Results

    NASA Technical Reports Server (NTRS)

    Brown, Nelson Andrew; Schaefer, Jacob Robert

    2013-01-01

    A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These results show that the algorithm has good performance in a relevant environment.

  3. Peak-Seeking Optimization of Trim for Reduced Fuel Consumption: Flight-test Results

    NASA Technical Reports Server (NTRS)

    Brown, Nelson Andrew; Schaefer, Jacob Robert

    2013-01-01

    A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These results show that the algorithm has good performance in a relevant environment.

  4. Robust resolution enhancement optimization methods to process variations based on vector imaging model

    NASA Astrophysics Data System (ADS)

    Ma, Xu; Li, Yanqiu; Guo, Xuejia; Dong, Lisong

    2012-03-01

    Optical proximity correction (OPC) and phase shifting mask (PSM) are the most widely used resolution enhancement techniques (RET) in the semiconductor industry. Recently, a set of OPC and PSM optimization algorithms have been developed to solve for the inverse lithography problem, which are only designed for the nominal imaging parameters without giving sufficient attention to the process variations due to the aberrations, defocus and dose variation. However, the effects of process variations existing in the practical optical lithography systems become more pronounced as the critical dimension (CD) continuously shrinks. On the other hand, the lithography systems with larger NA (NA>0.6) are now extensively used, rendering the scalar imaging models inadequate to describe the vector nature of the electromagnetic field in the current optical lithography systems. In order to tackle the above problems, this paper focuses on developing robust gradient-based OPC and PSM optimization algorithms to the process variations under a vector imaging model. To achieve this goal, an integrative and analytic vector imaging model is applied to formulate the optimization problem, where the effects of process variations are explicitly incorporated in the optimization framework. The steepest descent algorithm is used to optimize the mask iteratively. In order to improve the efficiency of the proposed algorithms, a set of algorithm acceleration techniques (AAT) are exploited during the optimization procedure.

  5. Efficient boundary hunting via vector quantization

    NASA Astrophysics Data System (ADS)

    Diamantini, Claudia; Panti, Maurizio

    2001-03-01

    A great amount of information about a classification problem is contained in those instances falling near the decision boundary. This intuition dates back to the earliest studies in pattern recognition, and in the more recent adaptive approaches to the so called boundary hunting, such as the work of Aha et alii on Instance Based Learning and the work of Vapnik et alii on Support Vector Machines. The last work is of particular interest, since theoretical and experimental results ensure the accuracy of boundary reconstruction. However, its optimization approach has heavy computational and memory requirements, which limits its application on huge amounts of data. In the paper we describe an alternative approach to boundary hunting based on adaptive labeled quantization architectures. The adaptation is performed by a stochastic gradient algorithm for the minimization of the error probability. Error probability minimization guarantees the accurate approximation of the optimal decision boundary, while the use of a stochastic gradient algorithm defines an efficient method to reach such approximation. In the paper comparisons to Support Vector Machines are considered.

  6. Fast optimal wavefront reconstruction for multi-conjugate adaptive optics using the Fourier domain preconditioned conjugate gradient algorithm.

    PubMed

    Vogel, Curtis R; Yang, Qiang

    2006-08-21

    We present two different implementations of the Fourier domain preconditioned conjugate gradient algorithm (FD-PCG) to efficiently solve the large structured linear systems that arise in optimal volume turbulence estimation, or tomography, for multi-conjugate adaptive optics (MCAO). We describe how to deal with several critical technical issues, including the cone coordinate transformation problem and sensor subaperture grid spacing. We also extend the FD-PCG approach to handle the deformable mirror fitting problem for MCAO.

  7. Vectorial mask optimization methods for robust optical lithography

    NASA Astrophysics Data System (ADS)

    Ma, Xu; Li, Yanqiu; Guo, Xuejia; Dong, Lisong; Arce, Gonzalo R.

    2012-10-01

    Continuous shrinkage of critical dimension in an integrated circuit impels the development of resolution enhancement techniques for low k1 lithography. Recently, several pixelated optical proximity correction (OPC) and phase-shifting mask (PSM) approaches were developed under scalar imaging models to account for the process variations. However, the lithography systems with larger-NA (NA>0.6) are predominant for current technology nodes, rendering the scalar models inadequate to describe the vector nature of the electromagnetic field that propagates through the optical lithography system. In addition, OPC and PSM algorithms based on scalar models can compensate for wavefront aberrations, but are incapable of mitigating polarization aberrations in practical lithography systems, which can only be dealt with under the vector model. To this end, we focus on developing robust pixelated gradient-based OPC and PSM optimization algorithms aimed at canceling defocus, dose variation, wavefront and polarization aberrations under a vector model. First, an integrative and analytic vector imaging model is applied to formulate the optimization problem, where the effects of process variations are explicitly incorporated in the optimization framework. A steepest descent algorithm is then used to iteratively optimize the mask patterns. Simulations show that the proposed algorithms can effectively improve the process windows of the optical lithography systems.

  8. A new design approach based on differential evolution algorithm for geometric optimization of magnetorheological brakes

    NASA Astrophysics Data System (ADS)

    Le-Duc, Thang; Ho-Huu, Vinh; Nguyen-Thoi, Trung; Nguyen-Quoc, Hung

    2016-12-01

    In recent years, various types of magnetorheological brakes (MRBs) have been proposed and optimized by different optimization algorithms that are integrated in commercial software such as ANSYS and Comsol Multiphysics. However, many of these optimization algorithms often possess some noteworthy shortcomings such as the trap of solutions at local extremes, or the limited number of design variables or the difficulty of dealing with discrete design variables. Thus, to overcome these limitations and develop an efficient computation tool for optimal design of the MRBs, an optimization procedure that combines differential evolution (DE), a gradient-free global optimization method with finite element analysis (FEA) is proposed in this paper. The proposed approach is then applied to the optimal design of MRBs with different configurations including conventional MRBs and MRBs with coils placed on the side housings. Moreover, to approach a real-life design, some necessary design variables of MRBs are considered as discrete variables in the optimization process. The obtained optimal design results are compared with those of available optimal designs in the literature. The results reveal that the proposed method outperforms some traditional approaches.

  9. Simulations of Flame Acceleration and DDT in Mixture Composition Gradients

    NASA Astrophysics Data System (ADS)

    Zheng, Weilin; Kaplan, Carolyn; Houim, Ryan; Oran, Elaine

    2017-11-01

    Unsteady, multidimensional, fully compressible numerical simulations of methane-air in an obstructed channel with spatial gradients in equivalence ratios have been carried to determine the effects of the gradients on flame acceleration and transition to detonation. Results for gradients perpendicular to the propagation direction were considered here. A calibrated, optimized chemical-diffusive model that reproduces correct flame and detonation properties for methane-air over a range of equivalence ratios was derived from a combination of a genetic algorithm with a Nelder-Mead optimization scheme. Inhomogeneous mixtures of methane-air resulted in slower flame acceleration and longer distance to DDT. Detonations were more likely to decouple into a flame and a shock under sharper concentration gradients. Detailed analyses of temperature and equivalence ratio illustrated that vertical gradients can greatly affect the formation of hot spots that initiate detonation by changing the strength of leading shock wave and local equivalence ratio near the base of obstacles. This work is supported by the Alpha Foundation (Grant No. AFC215-20).

  10. Panel flutter optimization by gradient projection

    NASA Technical Reports Server (NTRS)

    Pierson, B. L.

    1975-01-01

    A gradient projection optimal control algorithm incorporating conjugate gradient directions of search is described and applied to several minimum weight panel design problems subject to a flutter speed constraint. New numerical solutions are obtained for both simply-supported and clamped homogeneous panels of infinite span for various levels of inplane loading and minimum thickness. The minimum thickness inequality constraint is enforced by a simple transformation of variables.

  11. A Single-Lap Joint Adhesive Bonding Optimization Method Using Gradient and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Finckenor, Jeffrey L.

    1999-01-01

    A natural process for any engineer, scientist, educator, etc. is to seek the most efficient method for accomplishing a given task. In the case of structural design, an area that has a significant impact on the structural efficiency is joint design. Unless the structure is machined from a solid block of material, the individual components which compose the overall structure must be joined together. The method for joining a structure varies depending on the applied loads, material, assembly and disassembly requirements, service life, environment, etc. Using both metallic and fiber reinforced plastic materials limits the user to two methods or a combination of these methods for joining the components into one structure. The first is mechanical fastening and the second is adhesive bonding. Mechanical fastening is by far the most popular joining technique; however, in terms of structural efficiency, adhesive bonding provides a superior joint since the load is distributed uniformly across the joint. The purpose of this paper is to develop a method for optimizing single-lap joint adhesive bonded structures using both gradient and genetic algorithms and comparing the solution process for each method. The goal of the single-lap joint optimization is to find the most efficient structure that meets the imposed requirements while still remaining as lightweight, economical, and reliable as possible. For the single-lap joint, an optimum joint is determined by minimizing the weight of the overall joint based on constraints from adhesive strengths as well as empirically derived rules. The analytical solution of the sin-le-lap joint is determined using the classical Goland-Reissner technique for case 2 type adhesive joints. Joint weight minimization is achieved using a commercially available routine, Design Optimization Tool (DOT), for the gradient solution while an author developed method is used for the genetic algorithm solution. Results illustrate the critical design variables as a function of adhesive properties and convergences of different joints based on the two optimization methods.

  12. Oscillator strengths, first-order properties, and nuclear gradients for local ADC(2).

    PubMed

    Schütz, Martin

    2015-06-07

    We describe theory and implementation of oscillator strengths, orbital-relaxed first-order properties, and nuclear gradients for the local algebraic diagrammatic construction scheme through second order. The formalism is derived via time-dependent linear response theory based on a second-order unitary coupled cluster model. The implementation presented here is a modification of our previously developed algorithms for Laplace transform based local time-dependent coupled cluster linear response (CC2LR); the local approximations thus are state specific and adaptive. The symmetry of the Jacobian leads to considerable simplifications relative to the local CC2LR method; as a result, a gradient evaluation is about four times less expensive. Test calculations show that in geometry optimizations, usually very similar geometries are obtained as with the local CC2LR method (provided that a second-order method is applicable). As an exemplary application, we performed geometry optimizations on the low-lying singlet states of chlorophyllide a.

  13. Comparison of SIRT and SQS for Regularized Weighted Least Squares Image Reconstruction

    PubMed Central

    Gregor, Jens; Fessler, Jeffrey A.

    2015-01-01

    Tomographic image reconstruction is often formulated as a regularized weighted least squares (RWLS) problem optimized by iterative algorithms that are either inherently algebraic or derived from a statistical point of view. This paper compares a modified version of SIRT (Simultaneous Iterative Reconstruction Technique), which is of the former type, with a version of SQS (Separable Quadratic Surrogates), which is of the latter type. We show that the two algorithms minimize the same criterion function using similar forms of preconditioned gradient descent. We present near-optimal relaxation for both based on eigenvalue bounds and include a heuristic extension for use with ordered subsets. We provide empirical evidence that SIRT and SQS converge at the same rate for all intents and purposes. For context, we compare their performance with an implementation of preconditioned conjugate gradient. The illustrative application is X-ray CT of luggage for aviation security. PMID:26478906

  14. Tunable, Flexible and Efficient Optimization of Control Pulses for Superconducting Qubits, part I - Theory

    NASA Astrophysics Data System (ADS)

    Machnes, Shai; AsséMat, Elie; Tannor, David; Wilhelm, Frank

    Quantum computation places very stringent demands on gate fidelities, and experimental implementations require both the controls and the resultant dynamics to conform to hardware-specific ansatzes and constraints. Superconducting qubits present the additional requirement that pulses have simple parametrizations, so they can be further calibrated in the experiment, to compensate for uncertainties in system characterization. We present a novel, conceptually simple and easy-to-implement gradient-based optimal control algorithm, GOAT, which satisfies all the above requirements. In part II we shall demonstrate the algorithm's capabilities, by using GOAT to optimize fast high-accuracy pulses for two leading superconducting qubits architectures - Xmons and IBM's flux-tunable couplers.

  15. A Parallel Nonrigid Registration Algorithm Based on B-Spline for Medical Images.

    PubMed

    Du, Xiaogang; Dang, Jianwu; Wang, Yangping; Wang, Song; Lei, Tao

    2016-01-01

    The nonrigid registration algorithm based on B-spline Free-Form Deformation (FFD) plays a key role and is widely applied in medical image processing due to the good flexibility and robustness. However, it requires a tremendous amount of computing time to obtain more accurate registration results especially for a large amount of medical image data. To address the issue, a parallel nonrigid registration algorithm based on B-spline is proposed in this paper. First, the Logarithm Squared Difference (LSD) is considered as the similarity metric in the B-spline registration algorithm to improve registration precision. After that, we create a parallel computing strategy and lookup tables (LUTs) to reduce the complexity of the B-spline registration algorithm. As a result, the computing time of three time-consuming steps including B-splines interpolation, LSD computation, and the analytic gradient computation of LSD, is efficiently reduced, for the B-spline registration algorithm employs the Nonlinear Conjugate Gradient (NCG) optimization method. Experimental results of registration quality and execution efficiency on the large amount of medical images show that our algorithm achieves a better registration accuracy in terms of the differences between the best deformation fields and ground truth and a speedup of 17 times over the single-threaded CPU implementation due to the powerful parallel computing ability of Graphics Processing Unit (GPU).

  16. Optimal control of switching time in switched stochastic systems with multi-switching times and different costs

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomei; Li, Shengtao; Zhang, Kanjian

    2017-08-01

    In this paper, we solve an optimal control problem for a class of time-invariant switched stochastic systems with multi-switching times, where the objective is to minimise a cost functional with different costs defined on the states. In particular, we focus on problems in which a pre-specified sequence of active subsystems is given and the switching times are the only control variables. Based on the calculus of variation, we derive the gradient of the cost functional with respect to the switching times on an especially simple form, which can be directly used in gradient descent algorithms to locate the optimal switching instants. Finally, a numerical example is given, highlighting the validity of the proposed methodology.

  17. Gaussian process regression to accelerate geometry optimizations relying on numerical differentiation

    NASA Astrophysics Data System (ADS)

    Schmitz, Gunnar; Christiansen, Ove

    2018-06-01

    We study how with means of Gaussian Process Regression (GPR) geometry optimizations, which rely on numerical gradients, can be accelerated. The GPR interpolates a local potential energy surface on which the structure is optimized. It is found to be efficient to combine results on a low computational level (HF or MP2) with the GPR-calculated gradient of the difference between the low level method and the target method, which is a variant of explicitly correlated Coupled Cluster Singles and Doubles with perturbative Triples correction CCSD(F12*)(T) in this study. Overall convergence is achieved if both the potential and the geometry are converged. Compared to numerical gradient-based algorithms, the number of required single point calculations is reduced. Although introducing an error due to the interpolation, the optimized structures are sufficiently close to the minimum of the target level of theory meaning that the reference and predicted minimum only vary energetically in the μEh regime.

  18. Adaptive Constrained Optimal Control Design for Data-Based Nonlinear Discrete-Time Systems With Critic-Only Structure.

    PubMed

    Luo, Biao; Liu, Derong; Wu, Huai-Ning

    2018-06-01

    Reinforcement learning has proved to be a powerful tool to solve optimal control problems over the past few years. However, the data-based constrained optimal control problem of nonaffine nonlinear discrete-time systems has rarely been studied yet. To solve this problem, an adaptive optimal control approach is developed by using the value iteration-based Q-learning (VIQL) with the critic-only structure. Most of the existing constrained control methods require the use of a certain performance index and only suit for linear or affine nonlinear systems, which is unreasonable in practice. To overcome this problem, the system transformation is first introduced with the general performance index. Then, the constrained optimal control problem is converted to an unconstrained optimal control problem. By introducing the action-state value function, i.e., Q-function, the VIQL algorithm is proposed to learn the optimal Q-function of the data-based unconstrained optimal control problem. The convergence results of the VIQL algorithm are established with an easy-to-realize initial condition . To implement the VIQL algorithm, the critic-only structure is developed, where only one neural network is required to approximate the Q-function. The converged Q-function obtained from the critic-only VIQL method is employed to design the adaptive constrained optimal controller based on the gradient descent scheme. Finally, the effectiveness of the developed adaptive control method is tested on three examples with computer simulation.

  19. Ion flux through membrane channels--an enhanced algorithm for the Poisson-Nernst-Planck model.

    PubMed

    Dyrka, Witold; Augousti, Andy T; Kotulska, Malgorzata

    2008-09-01

    A novel algorithmic scheme for numerical solution of the 3D Poisson-Nernst-Planck model is proposed. The algorithmic improvements are universal and independent of the detailed physical model. They include three major steps: an adjustable gradient-based step value, an adjustable relaxation coefficient, and an optimized segmentation of the modeled space. The enhanced algorithm significantly accelerates the speed of computation and reduces the computational demands. The theoretical model was tested on a regular artificial channel and validated on a real protein channel-alpha-hemolysin, proving its efficiency. (c) 2008 Wiley Periodicals, Inc.

  20. Geometry Design Optimization of Functionally Graded Scaffolds for Bone Tissue Engineering: A Mechanobiological Approach.

    PubMed

    Boccaccio, Antonio; Uva, Antonio Emmanuele; Fiorentino, Michele; Mori, Giorgio; Monno, Giuseppe

    2016-01-01

    Functionally Graded Scaffolds (FGSs) are porous biomaterials where porosity changes in space with a specific gradient. In spite of their wide use in bone tissue engineering, possible models that relate the scaffold gradient to the mechanical and biological requirements for the regeneration of the bony tissue are currently missing. In this study we attempt to bridge the gap by developing a mechanobiology-based optimization algorithm aimed to determine the optimal graded porosity distribution in FGSs. The algorithm combines the parametric finite element model of a FGS, a computational mechano-regulation model and a numerical optimization routine. For assigned boundary and loading conditions, the algorithm builds iteratively different scaffold geometry configurations with different porosity distributions until the best microstructure geometry is reached, i.e. the geometry that allows the amount of bone formation to be maximized. We tested different porosity distribution laws, loading conditions and scaffold Young's modulus values. For each combination of these variables, the explicit equation of the porosity distribution law-i.e the law that describes the pore dimensions in function of the spatial coordinates-was determined that allows the highest amounts of bone to be generated. The results show that the loading conditions affect significantly the optimal porosity distribution. For a pure compression loading, it was found that the pore dimensions are almost constant throughout the entire scaffold and using a FGS allows the formation of amounts of bone slightly larger than those obtainable with a homogeneous porosity scaffold. For a pure shear loading, instead, FGSs allow to significantly increase the bone formation compared to a homogeneous porosity scaffolds. Although experimental data is still necessary to properly relate the mechanical/biological environment to the scaffold microstructure, this model represents an important step towards optimizing geometry of functionally graded scaffolds based on mechanobiological criteria.

  1. Performance seeking control excitation mode

    NASA Technical Reports Server (NTRS)

    Schkolnik, Gerard

    1995-01-01

    Flight testing of the performance seeking control (PSC) excitation mode was successfully completed at NASA Dryden on the F-15 highly integrated digital electronic control (HIDEC) aircraft. Although the excitation mode was not one of the original objectives of the PSC program, it was rapidly prototyped and implemented into the architecture of the PSC algorithm, allowing valuable and timely research data to be gathered. The primary flight test objective was to investigate the feasibility of a future measurement-based performance optimization algorithm. This future algorithm, called AdAPT, which stands for adaptive aircraft performance technology, generates and applies excitation inputs to selected control effectors. Fourier transformations are used to convert measured response and control effector data into frequency domain models which are mapped into state space models using multiterm frequency matching. Formal optimization principles are applied to produce an integrated, performance optimal effector suite. The key technical challenge of the measurement-based approach is the identification of the gradient of the performance index to the selected control effector. This concern was addressed by the excitation mode flight test. The AdAPT feasibility study utilized the PSC excitation mode to apply separate sinusoidal excitation trims to the controls - one aircraft, inlet first ramp (cowl), and one engine, throat area. Aircraft control and response data were recorded using on-board instrumentation and analyzed post-flight. Sensor noise characteristics, axial acceleration performance gradients, and repeatability were determined. Results were compared to pilot comments to assess the ride quality. Flight test results indicate that performance gradients were identified at all flight conditions, sensor noise levels were acceptable at the frequencies of interest, and excitations were generally not sensed by the pilot.

  2. EEG Artifact Removal Using a Wavelet Neural Network

    NASA Technical Reports Server (NTRS)

    Nguyen, Hoang-Anh T.; Musson, John; Li, Jiang; McKenzie, Frederick; Zhang, Guangfan; Xu, Roger; Richey, Carl; Schnell, Tom

    2011-01-01

    !n this paper we developed a wavelet neural network. (WNN) algorithm for Electroencephalogram (EEG) artifact removal without electrooculographic (EOG) recordings. The algorithm combines the universal approximation characteristics of neural network and the time/frequency property of wavelet. We. compared the WNN algorithm with .the ICA technique ,and a wavelet thresholding method, which was realized by using the Stein's unbiased risk estimate (SURE) with an adaptive gradient-based optimal threshold. Experimental results on a driving test data set show that WNN can remove EEG artifacts effectively without diminishing useful EEG information even for very noisy data.

  3. Joint design of large-tip-angle parallel RF pulses and blipped gradient trajectories.

    PubMed

    Cao, Zhipeng; Donahue, Manus J; Ma, Jun; Grissom, William A

    2016-03-01

    To design multichannel large-tip-angle kT-points and spokes radiofrequency (RF) pulses and gradient waveforms for transmit field inhomogeneity compensation in high field magnetic resonance imaging. An algorithm to design RF subpulse weights and gradient blip areas is proposed to minimize a magnitude least-squares cost function that measures the difference between realized and desired state parameters in the spin domain, and penalizes integrated RF power. The minimization problem is solved iteratively with interleaved target phase updates, RF subpulse weights updates using the conjugate gradient method with optimal control-based derivatives, and gradient blip area updates using the conjugate gradient method. Two-channel parallel transmit simulations and experiments were conducted in phantoms and human subjects at 7 T to demonstrate the method and compare it to small-tip-angle-designed pulses and circularly polarized excitations. The proposed algorithm designed more homogeneous and accurate 180° inversion and refocusing pulses than other methods. It also designed large-tip-angle pulses on multiple frequency bands with independent and joint phase relaxation. Pulses designed by the method improved specificity and contrast-to-noise ratio in a finger-tapping spin echo blood oxygen level dependent functional magnetic resonance imaging study, compared with circularly polarized mode refocusing. A joint RF and gradient waveform design algorithm was proposed and validated to improve large-tip-angle inversion and refocusing at ultrahigh field. © 2015 Wiley Periodicals, Inc.

  4. A heuristic approach to optimization of structural topology including self-weight

    NASA Astrophysics Data System (ADS)

    Tajs-Zielińska, Katarzyna; Bochenek, Bogdan

    2018-01-01

    Topology optimization of structures under a design-dependent self-weight load is investigated in this paper. The problem deserves attention because of its significant importance in the engineering practice, especially nowadays as topology optimization is more often applied when designing large engineering structures, for example, bridges or carrying systems of tall buildings. It is worth noting that well-known approaches of topology optimization which have been successfully applied to structures under fixed loads cannot be directly adapted to the case of design-dependent loads, so that topology generation can be a challenge also for numerical algorithms. The paper presents the application of a simple but efficient non-gradient method to topology optimization of elastic structures under self-weight loading. The algorithm is based on the Cellular Automata concept, the application of which can produce effective solutions with low computational cost.

  5. Hybrid Quantum-Classical Approach to Quantum Optimal Control.

    PubMed

    Li, Jun; Yang, Xiaodong; Peng, Xinhua; Sun, Chang-Pu

    2017-04-14

    A central challenge in quantum computing is to identify more computational problems for which utilization of quantum resources can offer significant speedup. Here, we propose a hybrid quantum-classical scheme to tackle the quantum optimal control problem. We show that the most computationally demanding part of gradient-based algorithms, namely, computing the fitness function and its gradient for a control input, can be accomplished by the process of evolution and measurement on a quantum simulator. By posing queries to and receiving answers from the quantum simulator, classical computing devices update the control parameters until an optimal control solution is found. To demonstrate the quantum-classical scheme in experiment, we use a seven-qubit nuclear magnetic resonance system, on which we have succeeded in optimizing state preparation without involving classical computation of the large Hilbert space evolution.

  6. Application of the sequential quadratic programming algorithm for reconstructing the distribution of optical parameters based on the time-domain radiative transfer equation.

    PubMed

    Qi, Hong; Qiao, Yao-Bin; Ren, Ya-Tao; Shi, Jing-Wen; Zhang, Ze-Yu; Ruan, Li-Ming

    2016-10-17

    Sequential quadratic programming (SQP) is used as an optimization algorithm to reconstruct the optical parameters based on the time-domain radiative transfer equation (TD-RTE). Numerous time-resolved measurement signals are obtained using the TD-RTE as forward model. For a high computational efficiency, the gradient of objective function is calculated using an adjoint equation technique. SQP algorithm is employed to solve the inverse problem and the regularization term based on the generalized Gaussian Markov random field (GGMRF) model is used to overcome the ill-posed problem. Simulated results show that the proposed reconstruction scheme performs efficiently and accurately.

  7. Optimal trajectories for aeroassisted orbital transfer

    NASA Technical Reports Server (NTRS)

    Miele, A.; Venkataraman, P.

    1983-01-01

    Consideration is given to classical and minimax problems involved in aeroassisted transfer from high earth orbit (HEO) to low earth orbit (LEO). The transfer is restricted to coplanar operation, with trajectory control effected by means of lift modulation. The performance of the maneuver is indexed to the energy expenditure or, alternatively, the time integral of the heating rate. Firist-order optimality conditions are defined for the classical approach, as are a sequential gradient-restoration algorithm and a combined gradient-restoration algorithm. Minimization techniques are presented for the aeroassisted transfer energy consumption and time-delay integral of the heating rate, as well as minimization of the pressure. It is shown that the eigenvalues of the Jacobian matrix of the differential system is both stiff and unstable, implying that the sequential gradient restoration algorithm in its present version is unsuitable. A new method, involving a multipoint approach to the two-poing boundary value problem, is recommended.

  8. An image morphing technique based on optimal mass preserving mapping.

    PubMed

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2007-06-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L(2) mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods.

  9. An Image Morphing Technique Based on Optimal Mass Preserving Mapping

    PubMed Central

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2013-01-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L2 mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods. PMID:17547128

  10. Optimization of neural network architecture for classification of radar jamming FM signals

    NASA Astrophysics Data System (ADS)

    Soto, Alberto; Mendoza, Ariadna; Flores, Benjamin C.

    2017-05-01

    The purpose of this study is to investigate several artificial Neural Network (NN) architectures in order to design a cognitive radar system capable of optimally distinguishing linear Frequency-Modulated (FM) signals from bandlimited Additive White Gaussian Noise (AWGN). The goal is to create a theoretical framework to determine an optimal NN architecture to achieve a Probability of Detection (PD) of 95% or higher and a Probability of False Alarm (PFA) of 1.5% or lower at 5 dB Signal to Noise Ratio (SNR). Literature research reveals that the frequency-domain power spectral densities characterize a signal more efficiently than its time-domain counterparts. Therefore, the input data is preprocessed by calculating the magnitude square of the Discrete Fourier Transform of the digitally sampled bandlimited AWGN and linear FM signals to populate a matrix containing N number of samples and M number of spectra. This matrix is used as input for the NN, and the spectra are divided as follows: 70% for training, 15% for validation, and 15% for testing. The study begins by experimentally deducing the optimal number of hidden neurons (1-40 neurons), then the optimal number of hidden layers (1-5 layers), and lastly, the most efficient learning algorithm. The training algorithms examined are: Resilient Backpropagation, Scaled Conjugate Gradient, Conjugate Gradient with Powell/Beale Restarts, Polak-Ribiére Conjugate Gradient, and Variable Learning Rate Backpropagation. We determine that an architecture with ten hidden neurons (or higher), one hidden layer, and a Scaled Conjugate Gradient for training algorithm encapsulates an optimal architecture for our application.

  11. Accelerated gradient-based free form deformable registration for online adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Yu, Gang; Liang, Yueqiang; Yang, Guanyu; Shu, Huazhong; Li, Baosheng; Yin, Yong; Li, Dengwang

    2015-04-01

    The registration of planning fan-beam computed tomography (FBCT) and daily cone-beam CT (CBCT) is a crucial step in adaptive radiation therapy. The current intensity-based registration algorithms, such as Demons, may fail when they are used to register FBCT and CBCT, because the CT numbers in CBCT cannot exactly correspond to the electron densities. In this paper, we investigated the effects of CBCT intensity inaccuracy on the registration accuracy and developed an accurate gradient-based free form deformation algorithm (GFFD). GFFD distinguishes itself from other free form deformable registration algorithms by (a) measuring the similarity using the 3D gradient vector fields to avoid the effect of inconsistent intensities between the two modalities; (b) accommodating image sampling anisotropy using the local polynomial approximation-intersection of confidence intervals (LPA-ICI) algorithm to ensure a smooth and continuous displacement field; and (c) introducing a ‘bi-directional’ force along with an adaptive force strength adjustment to accelerate the convergence process. It is expected that such a strategy can decrease the effect of the inconsistent intensities between the two modalities, thus improving the registration accuracy and robustness. Moreover, for clinical application, the algorithm was implemented by graphics processing units (GPU) through OpenCL framework. The registration time of the GFFD algorithm for each set of CT data ranges from 8 to 13 s. The applications of on-line adaptive image-guided radiation therapy, including auto-propagation of contours, aperture-optimization and dose volume histogram (DVH) in the course of radiation therapy were also studied by in-house-developed software.

  12. A study on the performance comparison of metaheuristic algorithms on the learning of neural networks

    NASA Astrophysics Data System (ADS)

    Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline

    2017-08-01

    The learning or training process of neural networks entails the task of finding the most optimal set of parameters, which includes translation vectors, dilation parameter, synaptic weights, and bias terms. Apart from the traditional gradient descent-based methods, metaheuristic methods can also be used for this learning purpose. Since the inception of genetic algorithm half a century ago, the last decade witnessed the explosion of a variety of novel metaheuristic algorithms, such as harmony search algorithm, bat algorithm, and whale optimization algorithm. Despite the proof of the no free lunch theorem in the discipline of optimization, a survey in the literature of machine learning gives contrasting results. Some researchers report that certain metaheuristic algorithms are superior to the others, whereas some others argue that different metaheuristic algorithms give comparable performance. As such, this paper aims to investigate if a certain metaheuristic algorithm will outperform the other algorithms. In this work, three metaheuristic algorithms, namely genetic algorithms, particle swarm optimization, and harmony search algorithm are considered. The algorithms are incorporated in the learning of neural networks and their classification results on the benchmark UCI machine learning data sets are compared. It is found that all three metaheuristic algorithms give similar and comparable performance, as captured in the average overall classification accuracy. The results corroborate the findings reported in the works done by previous researchers. Several recommendations are given, which include the need of statistical analysis to verify the results and further theoretical works to support the obtained empirical results.

  13. Static and Dynamic Model Update of an Inflatable/Rigidizable Torus Structure

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, mercedes C.

    2006-01-01

    The present work addresses the development of an experimental and computational procedure for validating finite element models. A torus structure, part of an inflatable/rigidizable Hexapod, is used to demonstrate the approach. Because of fabrication, materials, and geometric uncertainties, a statistical approach combined with optimization is used to modify key model parameters. Static test results are used to update stiffness parameters and dynamic test results are used to update the mass distribution. Updated parameters are computed using gradient and non-gradient based optimization algorithms. Results show significant improvements in model predictions after parameters are updated. Lessons learned in the areas of test procedures, modeling approaches, and uncertainties quantification are presented.

  14. A reliable algorithm for optimal control synthesis

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1992-01-01

    In recent years, powerful design tools for linear time-invariant multivariable control systems have been developed based on direct parameter optimization. In this report, an algorithm for reliable optimal control synthesis using parameter optimization is presented. Specifically, a robust numerical algorithm is developed for the evaluation of the H(sup 2)-like cost functional and its gradients with respect to the controller design parameters. The method is specifically designed to handle defective degenerate systems and is based on the well-known Pade series approximation of the matrix exponential. Numerical test problems in control synthesis for simple mechanical systems and for a flexible structure with densely packed modes illustrate positively the reliability of this method when compared to a method based on diagonalization. Several types of cost functions have been considered: a cost function for robust control consisting of a linear combination of quadratic objectives for deterministic and random disturbances, and one representing an upper bound on the quadratic objective for worst case initial conditions. Finally, a framework for multivariable control synthesis has been developed combining the concept of closed-loop transfer recovery with numerical parameter optimization. The procedure enables designers to synthesize not only observer-based controllers but also controllers of arbitrary order and structure. Numerical design solutions rely heavily on the robust algorithm due to the high order of the synthesis model and the presence of near-overlapping modes. The design approach is successfully applied to the design of a high-bandwidth control system for a rotorcraft.

  15. Peak-Seeking Control For Reduced Fuel Consumption: Flight-Test Results For The Full-Scale Advanced Systems Testbed FA-18 Airplane

    NASA Technical Reports Server (NTRS)

    Brown, Nelson

    2013-01-01

    A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. This presentation also focuses on the design of the flight experiment and the practical challenges of conducting the experiment.

  16. Medial-based deformable models in nonconvex shape-spaces for medical image segmentation.

    PubMed

    McIntosh, Chris; Hamarneh, Ghassan

    2012-01-01

    We explore the application of genetic algorithms (GA) to deformable models through the proposition of a novel method for medical image segmentation that combines GA with nonconvex, localized, medial-based shape statistics. We replace the more typical gradient descent optimizer used in deformable models with GA, and the convex, implicit, global shape statistics with nonconvex, explicit, localized ones. Specifically, we propose GA to reduce typical deformable model weaknesses pertaining to model initialization, pose estimation and local minima, through the simultaneous evolution of a large number of models. Furthermore, we constrain the evolution, and thus reduce the size of the search-space, by using statistically-based deformable models whose deformations are intuitive (stretch, bulge, bend) and are driven in terms of localized principal modes of variation, instead of modes of variation across the entire shape that often fail to capture localized shape changes. Although GA are not guaranteed to achieve the global optima, our method compares favorably to the prevalent optimization techniques, convex/nonconvex gradient-based optimizers and to globally optimal graph-theoretic combinatorial optimization techniques, when applied to the task of corpus callosum segmentation in 50 mid-sagittal brain magnetic resonance images.

  17. A Parallel Nonrigid Registration Algorithm Based on B-Spline for Medical Images

    PubMed Central

    Wang, Yangping; Wang, Song

    2016-01-01

    The nonrigid registration algorithm based on B-spline Free-Form Deformation (FFD) plays a key role and is widely applied in medical image processing due to the good flexibility and robustness. However, it requires a tremendous amount of computing time to obtain more accurate registration results especially for a large amount of medical image data. To address the issue, a parallel nonrigid registration algorithm based on B-spline is proposed in this paper. First, the Logarithm Squared Difference (LSD) is considered as the similarity metric in the B-spline registration algorithm to improve registration precision. After that, we create a parallel computing strategy and lookup tables (LUTs) to reduce the complexity of the B-spline registration algorithm. As a result, the computing time of three time-consuming steps including B-splines interpolation, LSD computation, and the analytic gradient computation of LSD, is efficiently reduced, for the B-spline registration algorithm employs the Nonlinear Conjugate Gradient (NCG) optimization method. Experimental results of registration quality and execution efficiency on the large amount of medical images show that our algorithm achieves a better registration accuracy in terms of the differences between the best deformation fields and ground truth and a speedup of 17 times over the single-threaded CPU implementation due to the powerful parallel computing ability of Graphics Processing Unit (GPU). PMID:28053653

  18. A parallel Jacobson-Oksman optimization algorithm. [parallel processing (computers)

    NASA Technical Reports Server (NTRS)

    Straeter, T. A.; Markos, A. T.

    1975-01-01

    A gradient-dependent optimization technique which exploits the vector-streaming or parallel-computing capabilities of some modern computers is presented. The algorithm, derived by assuming that the function to be minimized is homogeneous, is a modification of the Jacobson-Oksman serial minimization method. In addition to describing the algorithm, conditions insuring the convergence of the iterates of the algorithm and the results of numerical experiments on a group of sample test functions are presented. The results of these experiments indicate that this algorithm will solve optimization problems in less computing time than conventional serial methods on machines having vector-streaming or parallel-computing capabilities.

  19. Chiral stationary phase optimized selectivity liquid chromatography: A strategy for the separation of chiral isomers.

    PubMed

    Hegade, Ravindra Suryakant; De Beer, Maarten; Lynen, Frederic

    2017-09-15

    Chiral Stationary-Phase Optimized Selectivity Liquid Chromatography (SOSLC) is proposed as a tool to optimally separate mixtures of enantiomers on a set of commercially available coupled chiral columns. This approach allows for the prediction of the separation profiles on any possible combination of the chiral stationary phases based on a limited number of preliminary analyses, followed by automated selection of the optimal column combination. Both the isocratic and gradient SOSLC approach were implemented for prediction of the retention times for a mixture of 4 chiral pairs on all possible combinations of the 5 commercial chiral columns. Predictions in isocratic and gradient mode were performed with a commercially available and with an in-house developed Microsoft visual basic algorithm, respectively. Optimal predictions in the isocratic mode required the coupling of 4 columns whereby relative deviations between the predicted and experimental retention times ranged between 2 and 7%. Gradient predictions led to the coupling of 3 chiral columns allowing baseline separation of all solutes, whereby differences between predictions and experiments ranged between 0 and 12%. The methodology is a novel tool allowing optimizing the separation of mixtures of optical isomers. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Concurrent Monte Carlo transport and fluence optimization with fluence adjusting scalable transport Monte Carlo

    PubMed Central

    Svatos, M.; Zankowski, C.; Bednarz, B.

    2016-01-01

    Purpose: The future of radiation therapy will require advanced inverse planning solutions to support single-arc, multiple-arc, and “4π” delivery modes, which present unique challenges in finding an optimal treatment plan over a vast search space, while still preserving dosimetric accuracy. The successful clinical implementation of such methods would benefit from Monte Carlo (MC) based dose calculation methods, which can offer improvements in dosimetric accuracy when compared to deterministic methods. The standard method for MC based treatment planning optimization leverages the accuracy of the MC dose calculation and efficiency of well-developed optimization methods, by precalculating the fluence to dose relationship within a patient with MC methods and subsequently optimizing the fluence weights. However, the sequential nature of this implementation is computationally time consuming and memory intensive. Methods to reduce the overhead of the MC precalculation have been explored in the past, demonstrating promising reductions of computational time overhead, but with limited impact on the memory overhead due to the sequential nature of the dose calculation and fluence optimization. The authors propose an entirely new form of “concurrent” Monte Carlo treat plan optimization: a platform which optimizes the fluence during the dose calculation, reduces wasted computation time being spent on beamlets that weakly contribute to the final dose distribution, and requires only a low memory footprint to function. In this initial investigation, the authors explore the key theoretical and practical considerations of optimizing fluence in such a manner. Methods: The authors present a novel derivation and implementation of a gradient descent algorithm that allows for optimization during MC particle transport, based on highly stochastic information generated through particle transport of very few histories. A gradient rescaling and renormalization algorithm, and the concept of momentum from stochastic gradient descent were used to address obstacles unique to performing gradient descent fluence optimization during MC particle transport. The authors have applied their method to two simple geometrical phantoms, and one clinical patient geometry to examine the capability of this platform to generate conformal plans as well as assess its computational scaling and efficiency, respectively. Results: The authors obtain a reduction of at least 50% in total histories transported in their investigation compared to a theoretical unweighted beamlet calculation and subsequent fluence optimization method, and observe a roughly fixed optimization time overhead consisting of ∼10% of the total computation time in all cases. Finally, the authors demonstrate a negligible increase in memory overhead of ∼7–8 MB to allow for optimization of a clinical patient geometry surrounded by 36 beams using their platform. Conclusions: This study demonstrates a fluence optimization approach, which could significantly improve the development of next generation radiation therapy solutions while incurring minimal additional computational overhead. PMID:27277051

  1. Application of Artificial Neural Networks in the Design and Optimization of a Nanoparticulate Fingolimod Delivery System Based on Biodegradable Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate).

    PubMed

    Shahsavari, Shadab; Rezaie Shirmard, Leila; Amini, Mohsen; Abedin Dokoosh, Farid

    2017-01-01

    Formulation of a nanoparticulate Fingolimod delivery system based on biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was optimized according to artificial neural networks (ANNs). Concentration of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PVA and amount of Fingolimod is considered as the input value, and the particle size, polydispersity index, loading capacity, and entrapment efficacy as output data in experimental design study. In vitro release study was carried out for best formulation according to statistical analysis. ANNs are employed to generate the best model to determine the relationships between various values. In order to specify the model with the best accuracy and proficiency for the in vitro release, a multilayer percepteron with different training algorithm has been examined. Three training model formulations including Levenberg-Marquardt (LM), gradient descent, and Bayesian regularization were employed for training the ANN models. It is demonstrated that the predictive ability of each training algorithm is in the order of LM > gradient descent > Bayesian regularization. Also, optimum formulation was achieved by LM training function with 15 hidden layers and 20 neurons. The transfer function of the hidden layer for this formulation and the output layer were tansig and purlin, respectively. Also, the optimization process was developed by minimizing the error among the predicted and observed values of training algorithm (about 0.0341). Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. A niching genetic algorithm applied to optimize a SiC-bulk crystal growth system

    NASA Astrophysics Data System (ADS)

    Su, Juan; Chen, Xuejiang; Li, Yuan; Pons, Michel; Blanquet, Elisabeth

    2017-06-01

    A niching genetic algorithm (NGA) was presented to optimize a SiC-bulk crystal growth system by PVT. The NGA based on clearing mechanism and its combination method with heat transfer model for SiC crystal growth were described in details. Then three inverse problems for optimization of growth system were carried out by NGA. Firstly, the radius of blind hole was optimized to decrease the radial temperature gradient along the substrate while the center temperature on the surface of substrate is fixed at 2500 K. Secondly, insulation materials with anisotropic thermal conductivities were selected to obtain much higher growth rate as 600, 800 and 1000 μm/h. Finally, the density of coils was also rearranged to minimize the temperature variation in the SiC powder. All the results were analyzed and discussed.

  3. A deep belief network with PLSR for nonlinear system modeling.

    PubMed

    Qiao, Junfei; Wang, Gongming; Li, Wenjing; Li, Xiaoli

    2018-08-01

    Nonlinear system modeling plays an important role in practical engineering, and deep learning-based deep belief network (DBN) is now popular in nonlinear system modeling and identification because of the strong learning ability. However, the existing weights optimization for DBN is based on gradient, which always leads to a local optimum and a poor training result. In this paper, a DBN with partial least square regression (PLSR-DBN) is proposed for nonlinear system modeling, which focuses on the problem of weights optimization for DBN using PLSR. Firstly, unsupervised contrastive divergence (CD) algorithm is used in weights initialization. Secondly, initial weights derived from CD algorithm are optimized through layer-by-layer PLSR modeling from top layer to bottom layer. Instead of gradient method, PLSR-DBN can determine the optimal weights using several PLSR models, so that a better performance of PLSR-DBN is achieved. Then, the analysis of convergence is theoretically given to guarantee the effectiveness of the proposed PLSR-DBN model. Finally, the proposed PLSR-DBN is tested on two benchmark nonlinear systems and an actual wastewater treatment system as well as a handwritten digit recognition (nonlinear mapping and modeling) with high-dimension input data. The experiment results show that the proposed PLSR-DBN has better performances of time and accuracy on nonlinear system modeling than that of other methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A fast finite-difference algorithm for topology optimization of permanent magnets

    NASA Astrophysics Data System (ADS)

    Abert, Claas; Huber, Christian; Bruckner, Florian; Vogler, Christoph; Wautischer, Gregor; Suess, Dieter

    2017-09-01

    We present a finite-difference method for the topology optimization of permanent magnets that is based on the fast-Fourier-transform (FFT) accelerated computation of the stray-field. The presented method employs the density approach for topology optimization and uses an adjoint method for the gradient computation. Comparison to various state-of-the-art finite-element implementations shows a superior performance and accuracy. Moreover, the presented method is very flexible and easy to implement due to various preexisting FFT stray-field implementations that can be used.

  5. Air data system optimization using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Deshpande, Samir M.; Kumar, Renjith R.; Seywald, Hans; Siemers, Paul M., III

    1992-01-01

    An optimization method for flush-orifice air data system design has been developed using the Genetic Algorithm approach. The optimization of the orifice array minimizes the effect of normally distributed random noise in the pressure readings on the calculation of air data parameters, namely, angle of attack, sideslip angle and freestream dynamic pressure. The optimization method is applied to the design of Pressure Distribution/Air Data System experiment (PD/ADS) proposed for inclusion in the Aeroassist Flight Experiment (AFE). Results obtained by the Genetic Algorithm method are compared to the results obtained by conventional gradient search method.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y. M., E-mail: ymingy@gmail.com; Bednarz, B.; Svatos, M.

    Purpose: The future of radiation therapy will require advanced inverse planning solutions to support single-arc, multiple-arc, and “4π” delivery modes, which present unique challenges in finding an optimal treatment plan over a vast search space, while still preserving dosimetric accuracy. The successful clinical implementation of such methods would benefit from Monte Carlo (MC) based dose calculation methods, which can offer improvements in dosimetric accuracy when compared to deterministic methods. The standard method for MC based treatment planning optimization leverages the accuracy of the MC dose calculation and efficiency of well-developed optimization methods, by precalculating the fluence to dose relationship withinmore » a patient with MC methods and subsequently optimizing the fluence weights. However, the sequential nature of this implementation is computationally time consuming and memory intensive. Methods to reduce the overhead of the MC precalculation have been explored in the past, demonstrating promising reductions of computational time overhead, but with limited impact on the memory overhead due to the sequential nature of the dose calculation and fluence optimization. The authors propose an entirely new form of “concurrent” Monte Carlo treat plan optimization: a platform which optimizes the fluence during the dose calculation, reduces wasted computation time being spent on beamlets that weakly contribute to the final dose distribution, and requires only a low memory footprint to function. In this initial investigation, the authors explore the key theoretical and practical considerations of optimizing fluence in such a manner. Methods: The authors present a novel derivation and implementation of a gradient descent algorithm that allows for optimization during MC particle transport, based on highly stochastic information generated through particle transport of very few histories. A gradient rescaling and renormalization algorithm, and the concept of momentum from stochastic gradient descent were used to address obstacles unique to performing gradient descent fluence optimization during MC particle transport. The authors have applied their method to two simple geometrical phantoms, and one clinical patient geometry to examine the capability of this platform to generate conformal plans as well as assess its computational scaling and efficiency, respectively. Results: The authors obtain a reduction of at least 50% in total histories transported in their investigation compared to a theoretical unweighted beamlet calculation and subsequent fluence optimization method, and observe a roughly fixed optimization time overhead consisting of ∼10% of the total computation time in all cases. Finally, the authors demonstrate a negligible increase in memory overhead of ∼7–8 MB to allow for optimization of a clinical patient geometry surrounded by 36 beams using their platform. Conclusions: This study demonstrates a fluence optimization approach, which could significantly improve the development of next generation radiation therapy solutions while incurring minimal additional computational overhead.« less

  7. Evolutionary Optimization of Centrifugal Nozzles for Organic Vapours

    NASA Astrophysics Data System (ADS)

    Persico, Giacomo

    2017-03-01

    This paper discusses the shape-optimization of non-conventional centrifugal turbine nozzles for Organic Rankine Cycle applications. The optimal aerodynamic design is supported by the use of a non-intrusive, gradient-free technique specifically developed for shape optimization of turbomachinery profiles. The method is constructed as a combination of a geometrical parametrization technique based on B-Splines, a high-fidelity and experimentally validated Computational Fluid Dynamic solver, and a surrogate-based evolutionary algorithm. The non-ideal gas behaviour featuring the flow of organic fluids in the cascades of interest is introduced via a look-up-table approach, which is rigorously applied throughout the whole optimization process. Two transonic centrifugal nozzles are considered, featuring very different loading and radial extension. The use of a systematic and automatic design method to such a non-conventional configuration highlights the character of centrifugal cascades; the blades require a specific and non-trivial definition of the shape, especially in the rear part, to avoid the onset of shock waves. It is shown that the optimization acts in similar way for the two cascades, identifying an optimal curvature of the blade that both provides a relevant increase of cascade performance and a reduction of downstream gradients.

  8. Gradient design for liquid chromatography using multi-scale optimization.

    PubMed

    López-Ureña, S; Torres-Lapasió, J R; Donat, R; García-Alvarez-Coque, M C

    2018-01-26

    In reversed phase-liquid chromatography, the usual solution to the "general elution problem" is the application of gradient elution with programmed changes of organic solvent (or other properties). A correct quantification of chromatographic peaks in liquid chromatography requires well resolved signals in a proper analysis time. When the complexity of the sample is high, the gradient program should be accommodated to the local resolution needs of each analyte. This makes the optimization of such situations rather troublesome, since enhancing the resolution for a given analyte may imply a collateral worsening of the resolution of other analytes. The aim of this work is to design multi-linear gradients that maximize the resolution, while fulfilling some restrictions: all peaks should be eluted before a given maximal time, the gradient should be flat or increasing, and sudden changes close to eluting peaks are penalized. Consequently, an equilibrated baseline resolution for all compounds is sought. This goal is achieved by splitting the optimization problem in a multi-scale framework. In each scale κ, an optimization problem is solved with N κ  ≈ 2 κ variables that are used to build the gradients. The N κ variables define cubic splines written in terms of a B-spline basis. This allows expressing gradients as polygonals of M points approximating the splines. The cubic splines are built using subdivision schemes, a technique of fast generation of smooth curves, compatible with the multi-scale framework. Owing to the nature of the problem and the presence of multiple local maxima, the algorithm used in the optimization problem of each scale κ should be "global", such as the pattern-search algorithm. The multi-scale optimization approach is successfully applied to find the best multi-linear gradient for resolving a mixture of amino acid derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Validation of an improved 'diffeomorphic demons' algorithm for deformable image registration in image-guided radiation therapy.

    PubMed

    Zhou, Lu; Zhou, Linghong; Zhang, Shuxu; Zhen, Xin; Yu, Hui; Zhang, Guoqian; Wang, Ruihao

    2014-01-01

    Deformable image registration (DIR) was widely used in radiation therapy, such as in automatic contour generation, dose accumulation, tumor growth or regression analysis. To achieve higher registration accuracy and faster convergence, an improved 'diffeomorphic demons' registration algorithm was proposed and validated. Based on Brox et al.'s gradient constancy assumption and Malis's efficient second-order minimization (ESM) algorithm, a grey value gradient similarity term and a transformation error term were added into the demons energy function, and a formula was derived to calculate the update of transformation field. The limited Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm was used to optimize the energy function so that the iteration number could be determined automatically. The proposed algorithm was validated using mathematically deformed images and physically deformed phantom images. Compared with the original 'diffeomorphic demons' algorithm, the registration method proposed achieve a higher precision and a faster convergence speed. Due to the influence of different scanning conditions in fractionated radiation, the density range of the treatment image and the planning image may be different. In such a case, the improved demons algorithm can achieve faster and more accurate radiotherapy.

  10. Hybrid optimization and Bayesian inference techniques for a non-smooth radiation detection problem

    DOE PAGES

    Stefanescu, Razvan; Schmidt, Kathleen; Hite, Jason; ...

    2016-12-12

    In this paper, we propose several algorithms to recover the location and intensity of a radiation source located in a simulated 250 × 180 m block of an urban center based on synthetic measurements. Radioactive decay and detection are Poisson random processes, so we employ likelihood functions based on this distribution. Owing to the domain geometry and the proposed response model, the negative logarithm of the likelihood is only piecewise continuous differentiable, and it has multiple local minima. To address these difficulties, we investigate three hybrid algorithms composed of mixed optimization techniques. For global optimization, we consider simulated annealing, particlemore » swarm, and genetic algorithm, which rely solely on objective function evaluations; that is, they do not evaluate the gradient in the objective function. By employing early stopping criteria for the global optimization methods, a pseudo-optimum point is obtained. This is subsequently utilized as the initial value by the deterministic implicit filtering method, which is able to find local extrema in non-smooth functions, to finish the search in a narrow domain. These new hybrid techniques, combining global optimization and implicit filtering address, difficulties associated with the non-smooth response, and their performances, are shown to significantly decrease the computational time over the global optimization methods. To quantify uncertainties associated with the source location and intensity, we employ the delayed rejection adaptive Metropolis and DiffeRential Evolution Adaptive Metropolis algorithms. Finally, marginal densities of the source properties are obtained, and the means of the chains compare accurately with the estimates produced by the hybrid algorithms.« less

  11. A dynamic feedforward neural network based on gaussian particle swarm optimization and its application for predictive control.

    PubMed

    Han, Min; Fan, Jianchao; Wang, Jun

    2011-09-01

    A dynamic feedforward neural network (DFNN) is proposed for predictive control, whose adaptive parameters are adjusted by using Gaussian particle swarm optimization (GPSO) in the training process. Adaptive time-delay operators are added in the DFNN to improve its generalization for poorly known nonlinear dynamic systems with long time delays. Furthermore, GPSO adopts a chaotic map with Gaussian function to balance the exploration and exploitation capabilities of particles, which improves the computational efficiency without compromising the performance of the DFNN. The stability of the particle dynamics is analyzed, based on the robust stability theory, without any restrictive assumption. A stability condition for the GPSO+DFNN model is derived, which ensures a satisfactory global search and quick convergence, without the need for gradients. The particle velocity ranges could change adaptively during the optimization process. The results of a comparative study show that the performance of the proposed algorithm can compete with selected algorithms on benchmark problems. Additional simulation results demonstrate the effectiveness and accuracy of the proposed combination algorithm in identifying and controlling nonlinear systems with long time delays.

  12. Online Coregularization for Multiview Semisupervised Learning

    PubMed Central

    Li, Guohui; Huang, Kuihua

    2013-01-01

    We propose a novel online coregularization framework for multiview semisupervised learning based on the notion of duality in constrained optimization. Using the weak duality theorem, we reduce the online coregularization to the task of increasing the dual function. We demonstrate that the existing online coregularization algorithms in previous work can be viewed as an approximation of our dual ascending process using gradient ascent. New algorithms are derived based on the idea of ascending the dual function more aggressively. For practical purpose, we also propose two sparse approximation approaches for kernel representation to reduce the computational complexity. Experiments show that our derived online coregularization algorithms achieve risk and accuracy comparable to offline algorithms while consuming less time and memory. Specially, our online coregularization algorithms are able to deal with concept drift and maintain a much smaller error rate. This paper paves a way to the design and analysis of online coregularization algorithms. PMID:24194680

  13. Solving the optimal attention allocation problem in manual control

    NASA Technical Reports Server (NTRS)

    Kleinman, D. L.

    1976-01-01

    Within the context of the optimal control model of human response, analytic expressions for the gradients of closed-loop performance metrics with respect to human operator attention allocation are derived. These derivatives serve as the basis for a gradient algorithm that determines the optimal attention that a human should allocate among several display indicators in a steady-state manual control task. Application of the human modeling techniques are made to study the hover control task for a CH-46 VTOL flight tested by NASA.

  14. A Comparative Study of Probability Collectives Based Multi-agent Systems and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Huang, Chien-Feng; Wolpert, David H.; Bieniawski, Stefan; Strauss, Charles E. M.

    2005-01-01

    We compare Genetic Algorithms (GA's) with Probability Collectives (PC), a new framework for distributed optimization and control. In contrast to GA's, PC-based methods do not update populations of solutions. Instead they update an explicitly parameterized probability distribution p over the space of solutions. That updating of p arises as the optimization of a functional of p. The functional is chosen so that any p that optimizes it should be p peaked about good solutions. The PC approach works in both continuous and discrete problems. It does not suffer from the resolution limitation of the finite bit length encoding of parameters into GA alleles. It also has deep connections with both game theory and statistical physics. We review the PC approach using its motivation as the information theoretic formulation of bounded rationality for multi-agent systems. It is then compared with GA's on a diverse set of problems. To handle high dimensional surfaces, in the PC method investigated here p is restricted to a product distribution. Each distribution in that product is controlled by a separate agent. The test functions were selected for their difficulty using either traditional gradient descent or genetic algorithms. On those functions the PC-based approach significantly outperforms traditional GA's in both rate of descent, trapping in false minima, and long term optimization.

  15. Geometry Design Optimization of Functionally Graded Scaffolds for Bone Tissue Engineering: A Mechanobiological Approach

    PubMed Central

    Boccaccio, Antonio; Uva, Antonio Emmanuele; Fiorentino, Michele; Mori, Giorgio; Monno, Giuseppe

    2016-01-01

    Functionally Graded Scaffolds (FGSs) are porous biomaterials where porosity changes in space with a specific gradient. In spite of their wide use in bone tissue engineering, possible models that relate the scaffold gradient to the mechanical and biological requirements for the regeneration of the bony tissue are currently missing. In this study we attempt to bridge the gap by developing a mechanobiology-based optimization algorithm aimed to determine the optimal graded porosity distribution in FGSs. The algorithm combines the parametric finite element model of a FGS, a computational mechano-regulation model and a numerical optimization routine. For assigned boundary and loading conditions, the algorithm builds iteratively different scaffold geometry configurations with different porosity distributions until the best microstructure geometry is reached, i.e. the geometry that allows the amount of bone formation to be maximized. We tested different porosity distribution laws, loading conditions and scaffold Young’s modulus values. For each combination of these variables, the explicit equation of the porosity distribution law–i.e the law that describes the pore dimensions in function of the spatial coordinates–was determined that allows the highest amounts of bone to be generated. The results show that the loading conditions affect significantly the optimal porosity distribution. For a pure compression loading, it was found that the pore dimensions are almost constant throughout the entire scaffold and using a FGS allows the formation of amounts of bone slightly larger than those obtainable with a homogeneous porosity scaffold. For a pure shear loading, instead, FGSs allow to significantly increase the bone formation compared to a homogeneous porosity scaffolds. Although experimental data is still necessary to properly relate the mechanical/biological environment to the scaffold microstructure, this model represents an important step towards optimizing geometry of functionally graded scaffolds based on mechanobiological criteria. PMID:26771746

  16. Optimization Based Efficiencies in First Order Reliability Analysis

    NASA Technical Reports Server (NTRS)

    Peck, Jeffrey A.; Mahadevan, Sankaran

    2003-01-01

    This paper develops a method for updating the gradient vector of the limit state function in reliability analysis using Broyden's rank one updating technique. In problems that use commercial code as a black box, the gradient calculations are usually done using a finite difference approach, which becomes very expensive for large system models. The proposed method replaces the finite difference gradient calculations in a standard first order reliability method (FORM) with Broyden's Quasi-Newton technique. The resulting algorithm of Broyden updates within a FORM framework (BFORM) is used to run several example problems, and the results compared to standard FORM results. It is found that BFORM typically requires fewer functional evaluations that FORM to converge to the same answer.

  17. Phase unwrapping with graph cuts optimization and dual decomposition acceleration for 3D high-resolution MRI data.

    PubMed

    Dong, Jianwu; Chen, Feng; Zhou, Dong; Liu, Tian; Yu, Zhaofei; Wang, Yi

    2017-03-01

    Existence of low SNR regions and rapid-phase variations pose challenges to spatial phase unwrapping algorithms. Global optimization-based phase unwrapping methods are widely used, but are significantly slower than greedy methods. In this paper, dual decomposition acceleration is introduced to speed up a three-dimensional graph cut-based phase unwrapping algorithm. The phase unwrapping problem is formulated as a global discrete energy minimization problem, whereas the technique of dual decomposition is used to increase the computational efficiency by splitting the full problem into overlapping subproblems and enforcing the congruence of overlapping variables. Using three dimensional (3D) multiecho gradient echo images from an agarose phantom and five brain hemorrhage patients, we compared this proposed method with an unaccelerated graph cut-based method. Experimental results show up to 18-fold acceleration in computation time. Dual decomposition significantly improves the computational efficiency of 3D graph cut-based phase unwrapping algorithms. Magn Reson Med 77:1353-1358, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Inverse modeling of rainfall infiltration with a dual permeability approach using different matrix-fracture coupling variants.

    NASA Astrophysics Data System (ADS)

    Blöcher, Johanna; Kuraz, Michal

    2017-04-01

    In this contribution we propose implementations of the dual permeability model with different inter-domain exchange descriptions and metaheuristic optimization algorithms for parameter identification and mesh optimization. We compare variants of the coupling term with different numbers of parameters to test if a reduction of parameters is feasible. This can reduce parameter uncertainty in inverse modeling, but also allow for different conceptual models of the domain and matrix coupling. The different variants of the dual permeability model are implemented in the open-source objective library DRUtES written in FORTRAN 2003/2008 in 1D and 2D. For parameter identification we use adaptations of the particle swarm optimization (PSO) and Teaching-learning-based optimization (TLBO), which are population-based metaheuristics with different learning strategies. These are high-level stochastic-based search algorithms that don't require gradient information or a convex search space. Despite increasing computing power and parallel processing, an overly fine mesh is not feasible for parameter identification. This creates the need to find a mesh that optimizes both accuracy and simulation time. We use a bi-objective PSO algorithm to generate a Pareto front of optimal meshes to account for both objectives. The dual permeability model and the optimization algorithms were tested on virtual data and field TDR sensor readings. The TDR sensor readings showed a very steep increase during rapid rainfall events and a subsequent steep decrease. This was theorized to be an effect of artificial macroporous envelopes surrounding TDR sensors creating an anomalous region with distinct local soil hydraulic properties. One of our objectives is to test how well the dual permeability model can describe this infiltration behavior and what coupling term would be most suitable.

  19. Real-time 2D spatially selective MRI experiments: Comparative analysis of optimal control design methods

    NASA Astrophysics Data System (ADS)

    Maximov, Ivan I.; Vinding, Mads S.; Tse, Desmond H. Y.; Nielsen, Niels Chr.; Shah, N. Jon

    2015-05-01

    There is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy. The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community.

  20. Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach

    NASA Astrophysics Data System (ADS)

    Vaz, Miguel; Luersen, Marco A.; Muñoz-Rojas, Pablo A.; Trentin, Robson G.

    2016-04-01

    Application of optimization techniques to the identification of inelastic material parameters has substantially increased in recent years. The complex stress-strain paths and high nonlinearity, typical of this class of problems, require the development of robust and efficient techniques for inverse problems able to account for an irregular topography of the fitness surface. Within this framework, this work investigates the application of the gradient-based Sequential Quadratic Programming method, of the Nelder-Mead downhill simplex algorithm, of Particle Swarm Optimization (PSO), and of a global-local PSO-Nelder-Mead hybrid scheme to the identification of inelastic parameters based on a deep drawing operation. The hybrid technique has shown to be the best strategy by combining the good PSO performance to approach the global minimum basin of attraction with the efficiency demonstrated by the Nelder-Mead algorithm to obtain the minimum itself.

  1. Genetic algorithms for multicriteria shape optimization of induction furnace

    NASA Astrophysics Data System (ADS)

    Kůs, Pavel; Mach, František; Karban, Pavel; Doležel, Ivo

    2012-09-01

    In this contribution we deal with a multi-criteria shape optimization of an induction furnace. We want to find shape parameters of the furnace in such a way, that two different criteria are optimized. Since they cannot be optimized simultaneously, instead of one optimum we find set of partially optimal designs, so called Pareto front. We compare two different approaches to the optimization, one using nonlinear conjugate gradient method and second using variation of genetic algorithm. As can be seen from the numerical results, genetic algorithm seems to be the right choice for this problem. Solution of direct problem (coupled problem consisting of magnetic and heat field) is done using our own code Agros2D. It uses finite elements of higher order leading to fast and accurate solution of relatively complicated coupled problem. It also provides advanced scripting support, allowing us to prepare parametric model of the furnace and simply incorporate various types of optimization algorithms.

  2. Control Theory based Shape Design for the Incompressible Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Cowles, G.; Martinelli, L.

    2003-12-01

    A design method for shape optimization in incompressible turbulent viscous flow has been developed and validated for inverse design. The gradient information is determined using a control theory based algorithm. With such an approach, the cost of computing the gradient is negligible. An additional adjoint system must be solved which requires the cost of a single steady state flow solution. Thus, this method has an enormous advantage over traditional finite-difference based algorithms. The method of artificial compressibility is utilized to solve both the flow and adjoint systems. An algebraic turbulence model is used to compute the eddy viscosity. The method is validated using several inverse wing design test cases. In each case, the program must modify the shape of the initial wing such that its pressure distribution matches that of the target wing. Results are shown for the inversion of both finite thickness wings as well as zero thickness wings which can be considered a model of yacht sails.

  3. Automated correction of improperly rotated diffusion gradient orientations in diffusion weighted MRI.

    PubMed

    Jeurissen, Ben; Leemans, Alexander; Sijbers, Jan

    2014-10-01

    Ensuring one is using the correct gradient orientations in a diffusion MRI study can be a challenging task. As different scanners, file formats and processing tools use different coordinate frame conventions, in practice, users can end up with improperly oriented gradient orientations. Using such wrongly oriented gradient orientations for subsequent diffusion parameter estimation will invalidate all rotationally variant parameters and fiber tractography results. While large misalignments can be detected by visual inspection, small rotations of the gradient table (e.g. due to angulation of the acquisition plane), are much more difficult to detect. In this work, we propose an automated method to align the coordinate frame of the gradient orientations with that of the corresponding diffusion weighted images, using a metric based on whole brain fiber tractography. By transforming the gradient table and measuring the average fiber trajectory length, we search for the transformation that results in the best global 'connectivity'. To ensure a fast calculation of the metric we included a range of algorithmic optimizations in our tractography routine. To make the optimization routine robust to spurious local maxima, we use a stochastic optimization routine that selects a random set of seed points on each evaluation. Using simulations, we show that our method can recover the correct gradient orientations with high accuracy and precision. In addition, we demonstrate that our technique can successfully recover rotated gradient tables on a wide range of clinically realistic data sets. As such, our method provides a practical and robust solution to an often overlooked pitfall in the processing of diffusion MRI. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Multigrid optimal mass transport for image registration and morphing

    NASA Astrophysics Data System (ADS)

    Rehman, Tauseef ur; Tannenbaum, Allen

    2007-02-01

    In this paper we present a computationally efficient Optimal Mass Transport algorithm. This method is based on the Monge-Kantorovich theory and is used for computing elastic registration and warping maps in image registration and morphing applications. This is a parameter free method which utilizes all of the grayscale data in an image pair in a symmetric fashion. No landmarks need to be specified for correspondence. In our work, we demonstrate significant improvement in computation time when our algorithm is applied as compared to the originally proposed method by Haker et al [1]. The original algorithm was based on a gradient descent method for removing the curl from an initial mass preserving map regarded as 2D vector field. This involves inverting the Laplacian in each iteration which is now computed using full multigrid technique resulting in an improvement in computational time by a factor of two. Greater improvement is achieved by decimating the curl in a multi-resolutional framework. The algorithm was applied to 2D short axis cardiac MRI images and brain MRI images for testing and comparison.

  5. Hybrid Differential Dynamic Programming with Stochastic Search

    NASA Technical Reports Server (NTRS)

    Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob

    2016-01-01

    Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASAs Dawn mission. The Dawn trajectory was designed with the DDP-based Static Dynamic Optimal Control algorithm used in the Mystic software. Another recently developed method, Hybrid Differential Dynamic Programming (HDDP) is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.

  6. A study of optimization techniques in HDR brachytherapy for the prostate

    NASA Astrophysics Data System (ADS)

    Pokharel, Ghana Shyam

    Several studies carried out thus far are in favor of dose escalation to the prostate gland to have better local control of the disease. But optimal way of delivery of higher doses of radiation therapy to the prostate without hurting neighboring critical structures is still debatable. In this study, we proposed that real time high dose rate (HDR) brachytherapy with highly efficient and effective optimization could be an alternative means of precise delivery of such higher doses. This approach of delivery eliminates the critical issues such as treatment setup uncertainties and target localization as in external beam radiation therapy. Likewise, dosimetry in HDR brachytherapy is not influenced by organ edema and potential source migration as in permanent interstitial implants. Moreover, the recent report of radiobiological parameters further strengthen the argument of using hypofractionated HDR brachytherapy for the management of prostate cancer. Firstly, we studied the essential features and requirements of real time HDR brachytherapy treatment planning system. Automating catheter reconstruction with fast editing tools, fast yet accurate dose engine, robust and fast optimization and evaluation engine are some of the essential requirements for such procedures. Moreover, in most of the cases we performed, treatment plan optimization took significant amount of time of overall procedure. So, making treatment plan optimization automatic or semi-automatic with sufficient speed and accuracy was the goal of the remaining part of the project. Secondly, we studied the role of optimization function and constraints in overall quality of optimized plan. We have studied the gradient based deterministic algorithm with dose volume histogram (DVH) and more conventional variance based objective functions for optimization. In this optimization strategy, the relative weight of particular objective in aggregate objective function signifies its importance with respect to other objectives. Based on our study, DVH based objective function performed better than traditional variance based objective function in creating a clinically acceptable plan when executed under identical conditions. Thirdly, we studied the multiobjective optimization strategy using both DVH and variance based objective functions. The optimization strategy was to create several Pareto optimal solutions by scanning the clinically relevant part of the Pareto front. This strategy was adopted to decouple optimization from decision such that user could select final solution from the pool of alternative solutions based on his/her clinical goals. The overall quality of treatment plan improved using this approach compared to traditional class solution approach. In fact, the final optimized plan selected using decision engine with DVH based objective was comparable to typical clinical plan created by an experienced physicist. Next, we studied the hybrid technique comprising both stochastic and deterministic algorithm to optimize both dwell positions and dwell times. The simulated annealing algorithm was used to find optimal catheter distribution and the DVH based algorithm was used to optimize 3D dose distribution for given catheter distribution. This unique treatment planning and optimization tool was capable of producing clinically acceptable highly reproducible treatment plans in clinically reasonable time. As this algorithm was able to create clinically acceptable plans within clinically reasonable time automatically, it is really appealing for real time procedures. Next, we studied the feasibility of multiobjective optimization using evolutionary algorithm for real time HDR brachytherapy for the prostate. The algorithm with properly tuned algorithm specific parameters was able to create clinically acceptable plans within clinically reasonable time. However, the algorithm was let to run just for limited number of generations not considered optimal, in general, for such algorithms. This was done to keep time window desirable for real time procedures. Therefore, it requires further study with improved conditions to realize the full potential of the algorithm.

  7. 3-D phononic crystals with ultra-wide band gaps

    PubMed Central

    Lu, Yan; Yang, Yang; Guest, James K.; Srivastava, Ankit

    2017-01-01

    In this paper gradient based topology optimization (TO) is used to discover 3-D phononic structures that exhibit ultra-wide normalized all-angle all-mode band gaps. The challenging computational task of repeated 3-D phononic band-structure evaluations is accomplished by a combination of a fast mixed variational eigenvalue solver and distributed Graphic Processing Unit (GPU) parallel computations. The TO algorithm utilizes the material distribution-based approach and a gradient-based optimizer. The design sensitivity for the mixed variational eigenvalue problem is derived using the adjoint method and is implemented through highly efficient vectorization techniques. We present optimized results for two-material simple cubic (SC), body centered cubic (BCC), and face centered cubic (FCC) crystal structures and show that in each of these cases different initial designs converge to single inclusion network topologies within their corresponding primitive cells. The optimized results show that large phononic stop bands for bulk wave propagation can be achieved at lower than close packed spherical configurations leading to lighter unit cells. For tungsten carbide - epoxy crystals we identify all angle all mode normalized stop bands exceeding 100%, which is larger than what is possible with only spherical inclusions. PMID:28233812

  8. 3-D phononic crystals with ultra-wide band gaps.

    PubMed

    Lu, Yan; Yang, Yang; Guest, James K; Srivastava, Ankit

    2017-02-24

    In this paper gradient based topology optimization (TO) is used to discover 3-D phononic structures that exhibit ultra-wide normalized all-angle all-mode band gaps. The challenging computational task of repeated 3-D phononic band-structure evaluations is accomplished by a combination of a fast mixed variational eigenvalue solver and distributed Graphic Processing Unit (GPU) parallel computations. The TO algorithm utilizes the material distribution-based approach and a gradient-based optimizer. The design sensitivity for the mixed variational eigenvalue problem is derived using the adjoint method and is implemented through highly efficient vectorization techniques. We present optimized results for two-material simple cubic (SC), body centered cubic (BCC), and face centered cubic (FCC) crystal structures and show that in each of these cases different initial designs converge to single inclusion network topologies within their corresponding primitive cells. The optimized results show that large phononic stop bands for bulk wave propagation can be achieved at lower than close packed spherical configurations leading to lighter unit cells. For tungsten carbide - epoxy crystals we identify all angle all mode normalized stop bands exceeding 100%, which is larger than what is possible with only spherical inclusions.

  9. An optimization-based approach for solving a time-harmonic multiphysical wave problem with higher-order schemes

    NASA Astrophysics Data System (ADS)

    Mönkölä, Sanna

    2013-06-01

    This study considers developing numerical solution techniques for the computer simulations of time-harmonic fluid-structure interaction between acoustic and elastic waves. The focus is on the efficiency of an iterative solution method based on a controllability approach and spectral elements. We concentrate on the model, in which the acoustic waves in the fluid domain are modeled by using the velocity potential and the elastic waves in the structure domain are modeled by using displacement. Traditionally, the complex-valued time-harmonic equations are used for solving the time-harmonic problems. Instead of that, we focus on finding periodic solutions without solving the time-harmonic problems directly. The time-dependent equations can be simulated with respect to time until a time-harmonic solution is reached, but the approach suffers from poor convergence. To overcome this challenge, we follow the approach first suggested and developed for the acoustic wave equations by Bristeau, Glowinski, and Périaux. Thus, we accelerate the convergence rate by employing a controllability method. The problem is formulated as a least-squares optimization problem, which is solved with the conjugate gradient (CG) algorithm. Computation of the gradient of the functional is done directly for the discretized problem. A graph-based multigrid method is used for preconditioning the CG algorithm.

  10. Numerical optimization methods for controlled systems with parameters

    NASA Astrophysics Data System (ADS)

    Tyatyushkin, A. I.

    2017-10-01

    First- and second-order numerical methods for optimizing controlled dynamical systems with parameters are discussed. In unconstrained-parameter problems, the control parameters are optimized by applying the conjugate gradient method. A more accurate numerical solution in these problems is produced by Newton's method based on a second-order functional increment formula. Next, a general optimal control problem with state constraints and parameters involved on the righthand sides of the controlled system and in the initial conditions is considered. This complicated problem is reduced to a mathematical programming one, followed by the search for optimal parameter values and control functions by applying a multimethod algorithm. The performance of the proposed technique is demonstrated by solving application problems.

  11. Detection of buried magnetic objects by a SQUID gradiometer system

    NASA Astrophysics Data System (ADS)

    Meyer, Hans-Georg; Hartung, Konrad; Linzen, Sven; Schneider, Michael; Stolz, Ronny; Fried, Wolfgang; Hauspurg, Sebastian

    2009-05-01

    We present a magnetic detection system based on superconducting gradiometric sensors (SQUID gradiometers). The system provides a unique fast mapping of large areas with a high resolution of the magnetic field gradient as well as the local position. A main part of this work is the localization and classification of magnetic objects in the ground by automatic interpretation of geomagnetic field gradients, measured by the SQUID system. In accordance with specific features the field is decomposed into segments, which allow inferences to possible objects in the ground. The global consideration of object describing properties and their optimization using error minimization methods allows the reconstruction of superimposed features and detection of buried objects. The analysis system of measured geomagnetic fields works fully automatically. By a given surface of area-measured gradients the algorithm determines within numerical limits the absolute position of objects including depth with sub-pixel accuracy and allows an arbitrary position and attitude of sources. Several SQUID gradiometer data sets were used to show the applicability of the analysis algorithm.

  12. Peak Seeking Control for Reduced Fuel Consumption with Preliminary Flight Test Results

    NASA Technical Reports Server (NTRS)

    Brown, Nelson

    2012-01-01

    The Environmentally Responsible Aviation project seeks to accomplish the simultaneous reduction of fuel burn, noise, and emissions. A project at NASA Dryden Flight Research Center is contributing to ERAs goals by exploring the practical application of real-time trim configuration optimization for enhanced performance and reduced fuel consumption. This peak-seeking control approach is based on Newton-Raphson algorithm using a time-varying Kalman filter to estimate the gradient of the performance function. In real-time operation, deflection of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of a modified F-18 are directly optimized, and the horizontal stabilators and angle of attack are indirectly optimized. Preliminary results from three research flights are presented herein. The optimization system found a trim configuration that required approximately 3.5% less fuel flow than the baseline trim at the given flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These preliminary results show the algorithm has good performance and is expected to show similar results at other flight conditions and aircraft configurations.

  13. Research on HDR image fusion algorithm based on Laplace pyramid weight transform with extreme low-light CMOS

    NASA Astrophysics Data System (ADS)

    Guan, Wen; Li, Li; Jin, Weiqi; Qiu, Su; Zou, Yan

    2015-10-01

    Extreme-Low-Light CMOS has been widely applied in the field of night-vision as a new type of solid image sensor. But if the illumination in the scene has drastic changes or the illumination is too strong, Extreme-Low-Light CMOS can't both clearly present the high-light scene and low-light region. According to the partial saturation problem in the field of night-vision, a HDR image fusion algorithm based on the Laplace Pyramid was researched. The overall gray value and the contrast of the low light image is very low. We choose the fusion strategy based on regional average gradient for the top layer of the long exposure image and short exposure image, which has rich brightness and textural features. The remained layers which represent the edge feature information of the target are based on the fusion strategy based on regional energy. In the process of source image reconstruction with Laplacian pyramid image, we compare the fusion results with four kinds of basal images. The algorithm is tested using Matlab and compared with the different fusion strategies. We use information entropy, average gradient and standard deviation these three objective evaluation parameters for the further analysis of the fusion result. Different low illumination environment experiments show that the algorithm in this paper can rapidly get wide dynamic range while keeping high entropy. Through the verification of this algorithm features, there is a further application prospect of the optimized algorithm. Keywords: high dynamic range imaging, image fusion, multi-exposure image, weight coefficient, information fusion, Laplacian pyramid transform.

  14. Algorithm for Training a Recurrent Multilayer Perceptron

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Rais, Omar T.; Menon, Sunil K.; Atiya, Amir F.

    2004-01-01

    An improved algorithm has been devised for training a recurrent multilayer perceptron (RMLP) for optimal performance in predicting the behavior of a complex, dynamic, and noisy system multiple time steps into the future. [An RMLP is a computational neural network with self-feedback and cross-talk (both delayed by one time step) among neurons in hidden layers]. Like other neural-network-training algorithms, this algorithm adjusts network biases and synaptic-connection weights according to a gradient-descent rule. The distinguishing feature of this algorithm is a combination of global feedback (the use of predictions as well as the current output value in computing the gradient at each time step) and recursiveness. The recursive aspect of the algorithm lies in the inclusion of the gradient of predictions at each time step with respect to the predictions at the preceding time step; this recursion enables the RMLP to learn the dynamics. It has been conjectured that carrying the recursion to even earlier time steps would enable the RMLP to represent a noisier, more complex system.

  15. An objective algorithm for reconstructing the three-dimensional ocean temperature field based on Argo profiles and SST data

    NASA Astrophysics Data System (ADS)

    Zhou, Chaojie; Ding, Xiaohua; Zhang, Jie; Yang, Jungang; Ma, Qiang

    2017-12-01

    While global oceanic surface information with large-scale, real-time, high-resolution data is collected by satellite remote sensing instrumentation, three-dimensional (3D) observations are usually obtained from in situ measurements, but with minimal coverage and spatial resolution. To meet the needs of 3D ocean investigations, we have developed a new algorithm to reconstruct the 3D ocean temperature field based on the Array for Real-time Geostrophic Oceanography (Argo) profiles and sea surface temperature (SST) data. The Argo temperature profiles are first optimally fitted to generate a series of temperature functions of depth, with the vertical temperature structure represented continuously. By calculating the derivatives of the fitted functions, the calculation of the vertical temperature gradient of the Argo profiles at an arbitrary depth is accomplished. A gridded 3D temperature gradient field is then found by applying inverse distance weighting interpolation in the horizontal direction. Combined with the processed SST, the 3D temperature field reconstruction is realized below the surface using the gridded temperature gradient. Finally, to confirm the effectiveness of the algorithm, an experiment in the Pacific Ocean south of Japan is conducted, for which a 3D temperature field is generated. Compared with other similar gridded products, the reconstructed 3D temperature field derived by the proposed algorithm achieves satisfactory accuracy, with correlation coefficients of 0.99 obtained, including a higher spatial resolution (0.25° × 0.25°), resulting in the capture of smaller-scale characteristics. Finally, both the accuracy and the superiority of the algorithm are validated.

  16. A blind deconvolution method based on L1/L2 regularization prior in the gradient space

    NASA Astrophysics Data System (ADS)

    Cai, Ying; Shi, Yu; Hua, Xia

    2018-02-01

    In the process of image restoration, the result of image restoration is very different from the real image because of the existence of noise, in order to solve the ill posed problem in image restoration, a blind deconvolution method based on L1/L2 regularization prior to gradient domain is proposed. The method presented in this paper first adds a function to the prior knowledge, which is the ratio of the L1 norm to the L2 norm, and takes the function as the penalty term in the high frequency domain of the image. Then, the function is iteratively updated, and the iterative shrinkage threshold algorithm is applied to solve the high frequency image. In this paper, it is considered that the information in the gradient domain is better for the estimation of blur kernel, so the blur kernel is estimated in the gradient domain. This problem can be quickly implemented in the frequency domain by fast Fast Fourier Transform. In addition, in order to improve the effectiveness of the algorithm, we have added a multi-scale iterative optimization method. This paper proposes the blind deconvolution method based on L1/L2 regularization priors in the gradient space can obtain the unique and stable solution in the process of image restoration, which not only keeps the edges and details of the image, but also ensures the accuracy of the results.

  17. A ℓ2, 1 norm regularized multi-kernel learning for false positive reduction in Lung nodule CAD.

    PubMed

    Cao, Peng; Liu, Xiaoli; Zhang, Jian; Li, Wei; Zhao, Dazhe; Huang, Min; Zaiane, Osmar

    2017-03-01

    The aim of this paper is to describe a novel algorithm for False Positive Reduction in lung nodule Computer Aided Detection(CAD). In this paper, we describes a new CT lung CAD method which aims to detect solid nodules. Specially, we proposed a multi-kernel classifier with a ℓ 2, 1 norm regularizer for heterogeneous feature fusion and selection from the feature subset level, and designed two efficient strategies to optimize the parameters of kernel weights in non-smooth ℓ 2, 1 regularized multiple kernel learning algorithm. The first optimization algorithm adapts a proximal gradient method for solving the ℓ 2, 1 norm of kernel weights, and use an accelerated method based on FISTA; the second one employs an iterative scheme based on an approximate gradient descent method. The results demonstrates that the FISTA-style accelerated proximal descent method is efficient for the ℓ 2, 1 norm formulation of multiple kernel learning with the theoretical guarantee of the convergence rate. Moreover, the experimental results demonstrate the effectiveness of the proposed methods in terms of Geometric mean (G-mean) and Area under the ROC curve (AUC), and significantly outperforms the competing methods. The proposed approach exhibits some remarkable advantages both in heterogeneous feature subsets fusion and classification phases. Compared with the fusion strategies of feature-level and decision level, the proposed ℓ 2, 1 norm multi-kernel learning algorithm is able to accurately fuse the complementary and heterogeneous feature sets, and automatically prune the irrelevant and redundant feature subsets to form a more discriminative feature set, leading a promising classification performance. Moreover, the proposed algorithm consistently outperforms the comparable classification approaches in the literature. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. A Gradient Taguchi Method for Engineering Optimization

    NASA Astrophysics Data System (ADS)

    Hwang, Shun-Fa; Wu, Jen-Chih; He, Rong-Song

    2017-10-01

    To balance the robustness and the convergence speed of optimization, a novel hybrid algorithm consisting of Taguchi method and the steepest descent method is proposed in this work. Taguchi method using orthogonal arrays could quickly find the optimum combination of the levels of various factors, even when the number of level and/or factor is quite large. This algorithm is applied to the inverse determination of elastic constants of three composite plates by combining numerical method and vibration testing. For these problems, the proposed algorithm could find better elastic constants in less computation cost. Therefore, the proposed algorithm has nice robustness and fast convergence speed as compared to some hybrid genetic algorithms.

  19. Taming the Wild: A Unified Analysis of Hogwild!-Style Algorithms.

    PubMed

    De Sa, Christopher; Zhang, Ce; Olukotun, Kunle; Ré, Christopher

    2015-12-01

    Stochastic gradient descent (SGD) is a ubiquitous algorithm for a variety of machine learning problems. Researchers and industry have developed several techniques to optimize SGD's runtime performance, including asynchronous execution and reduced precision. Our main result is a martingale-based analysis that enables us to capture the rich noise models that may arise from such techniques. Specifically, we use our new analysis in three ways: (1) we derive convergence rates for the convex case (Hogwild!) with relaxed assumptions on the sparsity of the problem; (2) we analyze asynchronous SGD algorithms for non-convex matrix problems including matrix completion; and (3) we design and analyze an asynchronous SGD algorithm, called Buckwild!, that uses lower-precision arithmetic. We show experimentally that our algorithms run efficiently for a variety of problems on modern hardware.

  20. Aerodynamic Shape Sensitivity Analysis and Design Optimization of Complex Configurations Using Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Newman, James C., III; Barnwell, Richard W.

    1997-01-01

    A three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed and is extended to model geometrically complex configurations. The advantage of unstructured grids (when compared with a structured-grid approach) is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional geometry and a Gauss-Seidel algorithm for the three-dimensional; similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Simple parameterization techniques are utilized for demonstrative purposes. Once the surface has been deformed, the unstructured grid is adapted by considering the mesh as a system of interconnected springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR (which is an advanced automatic-differentiation software tool). To demonstrate the ability of this procedure to analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been performed for a two-dimensional high-lift multielement airfoil and for a three-dimensional Boeing 747-200 aircraft.

  1. Observations on computational methodologies for use in large-scale, gradient-based, multidisciplinary design incorporating advanced CFD codes

    NASA Technical Reports Server (NTRS)

    Newman, P. A.; Hou, G. J.-W.; Jones, H. E.; Taylor, A. C., III; Korivi, V. M.

    1992-01-01

    How a combination of various computational methodologies could reduce the enormous computational costs envisioned in using advanced CFD codes in gradient based optimized multidisciplinary design (MdD) procedures is briefly outlined. Implications of these MdD requirements upon advanced CFD codes are somewhat different than those imposed by a single discipline design. A means for satisfying these MdD requirements for gradient information is presented which appear to permit: (1) some leeway in the CFD solution algorithms which can be used; (2) an extension to 3-D problems; and (3) straightforward use of other computational methodologies. Many of these observations have previously been discussed as possibilities for doing parts of the problem more efficiently; the contribution here is observing how they fit together in a mutually beneficial way.

  2. A coarse-to-fine kernel matching approach for mean-shift based visual tracking

    NASA Astrophysics Data System (ADS)

    Liangfu, L.; Zuren, F.; Weidong, C.; Ming, J.

    2009-03-01

    Mean shift is an efficient pattern match algorithm. It is widely used in visual tracking fields since it need not perform whole search in the image space. It employs gradient optimization method to reduce the time of feature matching and realize rapid object localization, and uses Bhattacharyya coefficient as the similarity measure between object template and candidate template. This thesis presents a mean shift algorithm based on coarse-to-fine search for the best kernel matching. This paper researches for object tracking with large motion area based on mean shift. To realize efficient tracking of such an object, we present a kernel matching method from coarseness to fine. If the motion areas of the object between two frames are very large and they are not overlapped in image space, then the traditional mean shift method can only obtain local optimal value by iterative computing in the old object window area, so the real tracking position cannot be obtained and the object tracking will be disabled. Our proposed algorithm can efficiently use a similarity measure function to realize the rough location of motion object, then use mean shift method to obtain the accurate local optimal value by iterative computing, which successfully realizes object tracking with large motion. Experimental results show its good performance in accuracy and speed when compared with background-weighted histogram algorithm in the literature.

  3. A new modified conjugate gradient coefficient for solving system of linear equations

    NASA Astrophysics Data System (ADS)

    Hajar, N.; ‘Aini, N.; Shapiee, N.; Abidin, Z. Z.; Khadijah, W.; Rivaie, M.; Mamat, M.

    2017-09-01

    Conjugate gradient (CG) method is an evolution of computational method in solving unconstrained optimization problems. This approach is easy to implement due to its simplicity and has been proven to be effective in solving real-life application. Although this field has received copious amount of attentions in recent years, some of the new approaches of CG algorithm cannot surpass the efficiency of the previous versions. Therefore, in this paper, a new CG coefficient which retains the sufficient descent and global convergence properties of the original CG methods is proposed. This new CG is tested on a set of test functions under exact line search. Its performance is then compared to that of some of the well-known previous CG methods based on number of iterations and CPU time. The results show that the new CG algorithm has the best efficiency amongst all the methods tested. This paper also includes an application of the new CG algorithm for solving large system of linear equations

  4. Frequency-domain beamformers using conjugate gradient techniques for speech enhancement.

    PubMed

    Zhao, Shengkui; Jones, Douglas L; Khoo, Suiyang; Man, Zhihong

    2014-09-01

    A multiple-iteration constrained conjugate gradient (MICCG) algorithm and a single-iteration constrained conjugate gradient (SICCG) algorithm are proposed to realize the widely used frequency-domain minimum-variance-distortionless-response (MVDR) beamformers and the resulting algorithms are applied to speech enhancement. The algorithms are derived based on the Lagrange method and the conjugate gradient techniques. The implementations of the algorithms avoid any form of explicit or implicit autocorrelation matrix inversion. Theoretical analysis establishes formal convergence of the algorithms. Specifically, the MICCG algorithm is developed based on a block adaptation approach and it generates a finite sequence of estimates that converge to the MVDR solution. For limited data records, the estimates of the MICCG algorithm are better than the conventional estimators and equivalent to the auxiliary vector algorithms. The SICCG algorithm is developed based on a continuous adaptation approach with a sample-by-sample updating procedure and the estimates asymptotically converge to the MVDR solution. An illustrative example using synthetic data from a uniform linear array is studied and an evaluation on real data recorded by an acoustic vector sensor array is demonstrated. Performance of the MICCG algorithm and the SICCG algorithm are compared with the state-of-the-art approaches.

  5. Application of genetic algorithms to focal mechanism determination

    NASA Astrophysics Data System (ADS)

    Kobayashi, Reiji; Nakanishi, Ichiro

    1994-04-01

    Genetic algorithms are a new class of methods for global optimization. They resemble Monte Carlo techniques, but search for solutions more efficiently than uniform Monte Carlo sampling. In the field of geophysics, genetic algorithms have recently been used to solve some non-linear inverse problems (e.g., earthquake location, waveform inversion, migration velocity estimation). We present an application of genetic algorithms to focal mechanism determination from first-motion polarities of P-waves and apply our method to two recent large events, the Kushiro-oki earthquake of January 15, 1993 and the SW Hokkaido (Japan Sea) earthquake of July 12, 1993. Initial solution and curvature information of the objective function that gradient methods need are not required in our approach. Moreover globally optimal solutions can be efficiently obtained. Calculation of polarities based on double-couple models is the most time-consuming part of the source mechanism determination. The amount of calculations required by the method designed in this study is much less than that of previous grid search methods.

  6. Gradient descent algorithm applied to wavefront retrieval from through-focus images by an extreme ultraviolet microscope with partially coherent source

    DOE PAGES

    Yamazoe, Kenji; Mochi, Iacopo; Goldberg, Kenneth A.

    2014-12-01

    The wavefront retrieval by gradient descent algorithm that is typically applied to coherent or incoherent imaging is extended to retrieve a wavefront from a series of through-focus images by partially coherent illumination. For accurate retrieval, we modeled partial coherence as well as object transmittance into the gradient descent algorithm. However, this modeling increases the computation time due to the complexity of partially coherent imaging simulation that is repeatedly used in the optimization loop. To accelerate the computation, we incorporate not only the Fourier transform but also an eigenfunction decomposition of the image. As a demonstration, the extended algorithm is appliedmore » to retrieve a field-dependent wavefront of a microscope operated at extreme ultraviolet wavelength (13.4 nm). The retrieved wavefront qualitatively matches the expected characteristics of the lens design.« less

  7. Gradient descent algorithm applied to wavefront retrieval from through-focus images by an extreme ultraviolet microscope with partially coherent source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamazoe, Kenji; Mochi, Iacopo; Goldberg, Kenneth A.

    The wavefront retrieval by gradient descent algorithm that is typically applied to coherent or incoherent imaging is extended to retrieve a wavefront from a series of through-focus images by partially coherent illumination. For accurate retrieval, we modeled partial coherence as well as object transmittance into the gradient descent algorithm. However, this modeling increases the computation time due to the complexity of partially coherent imaging simulation that is repeatedly used in the optimization loop. To accelerate the computation, we incorporate not only the Fourier transform but also an eigenfunction decomposition of the image. As a demonstration, the extended algorithm is appliedmore » to retrieve a field-dependent wavefront of a microscope operated at extreme ultraviolet wavelength (13.4 nm). The retrieved wavefront qualitatively matches the expected characteristics of the lens design.« less

  8. Three-Dimensional Viscous Alternating Direction Implicit Algorithm and Strategies for Shape Optimization

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Baysal, Oktay

    1997-01-01

    A gradient-based shape optimization based on quasi-analytical sensitivities has been extended for practical three-dimensional aerodynamic applications. The flow analysis has been rendered by a fully implicit, finite-volume formulation of the Euler and Thin-Layer Navier-Stokes (TLNS) equations. Initially, the viscous laminar flow analysis for a wing has been compared with an independent computational fluid dynamics (CFD) code which has been extensively validated. The new procedure has been demonstrated in the design of a cranked arrow wing at Mach 2.4 with coarse- and fine-grid based computations performed with Euler and TLNS equations. The influence of the initial constraints on the geometry and aerodynamics of the optimized shape has been explored. Various final shapes generated for an identical initial problem formulation but with different optimization path options (coarse or fine grid, Euler or TLNS), have been aerodynamically evaluated via a common fine-grid TLNS-based analysis. The initial constraint conditions show significant bearing on the optimization results. Also, the results demonstrate that to produce an aerodynamically efficient design, it is imperative to include the viscous physics in the optimization procedure with the proper resolution. Based upon the present results, to better utilize the scarce computational resources, it is recommended that, a number of viscous coarse grid cases using either a preconditioned bi-conjugate gradient (PbCG) or an alternating-direction-implicit (ADI) method, should initially be employed to improve the optimization problem definition, the design space and initial shape. Optimized shapes should subsequently be analyzed using a high fidelity (viscous with fine-grid resolution) flow analysis to evaluate their true performance potential. Finally, a viscous fine-grid-based shape optimization should be conducted, using an ADI method, to accurately obtain the final optimized shape.

  9. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis version 6.0 theory manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S

    The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the Dakota software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of Dakota-related research publications in the areas of surrogate-based optimization, uncertainty quanti cation, and optimization under uncertainty that provide the foundation for many of Dakota's iterative analysis capabilities.« less

  10. Scope of Gradient and Genetic Algorithms in Multivariable Function Optimization

    NASA Technical Reports Server (NTRS)

    Shaykhian, Gholam Ali; Sen, S. K.

    2007-01-01

    Global optimization of a multivariable function - constrained by bounds specified on each variable and also unconstrained - is an important problem with several real world applications. Deterministic methods such as the gradient algorithms as well as the randomized methods such as the genetic algorithms may be employed to solve these problems. In fact, there are optimization problems where a genetic algorithm/an evolutionary approach is preferable at least from the quality (accuracy) of the results point of view. From cost (complexity) point of view, both gradient and genetic approaches are usually polynomial-time; there are no serious differences in this regard, i.e., the computational complexity point of view. However, for certain types of problems, such as those with unacceptably erroneous numerical partial derivatives and those with physically amplified analytical partial derivatives whose numerical evaluation involves undesirable errors and/or is messy, a genetic (stochastic) approach should be a better choice. We have presented here the pros and cons of both the approaches so that the concerned reader/user can decide which approach is most suited for the problem at hand. Also for the function which is known in a tabular form, instead of an analytical form, as is often the case in an experimental environment, we attempt to provide an insight into the approaches focusing our attention toward accuracy. Such an insight will help one to decide which method, out of several available methods, should be employed to obtain the best (least error) output. *

  11. Efficient Online Learning Algorithms Based on LSTM Neural Networks.

    PubMed

    Ergen, Tolga; Kozat, Suleyman Serdar

    2017-09-13

    We investigate online nonlinear regression and introduce novel regression structures based on the long short term memory (LSTM) networks. For the introduced structures, we also provide highly efficient and effective online training methods. To train these novel LSTM-based structures, we put the underlying architecture in a state space form and introduce highly efficient and effective particle filtering (PF)-based updates. We also provide stochastic gradient descent and extended Kalman filter-based updates. Our PF-based training method guarantees convergence to the optimal parameter estimation in the mean square error sense provided that we have a sufficient number of particles and satisfy certain technical conditions. More importantly, we achieve this performance with a computational complexity in the order of the first-order gradient-based methods by controlling the number of particles. Since our approach is generic, we also introduce a gated recurrent unit (GRU)-based approach by directly replacing the LSTM architecture with the GRU architecture, where we demonstrate the superiority of our LSTM-based approach in the sequential prediction task via different real life data sets. In addition, the experimental results illustrate significant performance improvements achieved by the introduced algorithms with respect to the conventional methods over several different benchmark real life data sets.

  12. Aerodynamic optimization of supersonic compressor cascade using differential evolution on GPU

    NASA Astrophysics Data System (ADS)

    Aissa, Mohamed Hasanine; Verstraete, Tom; Vuik, Cornelis

    2016-06-01

    Differential Evolution (DE) is a powerful stochastic optimization method. Compared to gradient-based algorithms, DE is able to avoid local minima but requires at the same time more function evaluations. In turbomachinery applications, function evaluations are performed with time-consuming CFD simulation, which results in a long, non affordable, design cycle. Modern High Performance Computing systems, especially Graphic Processing Units (GPUs), are able to alleviate this inconvenience by accelerating the design evaluation itself. In this work we present a validated CFD Solver running on GPUs, able to accelerate the design evaluation and thus the entire design process. An achieved speedup of 20x to 30x enabled the DE algorithm to run on a high-end computer instead of a costly large cluster. The GPU-enhanced DE was used to optimize the aerodynamics of a supersonic compressor cascade, achieving an aerodynamic loss minimization of 20%.

  13. Layout optimization with algebraic multigrid methods

    NASA Technical Reports Server (NTRS)

    Regler, Hans; Ruede, Ulrich

    1993-01-01

    Finding the optimal position for the individual cells (also called functional modules) on the chip surface is an important and difficult step in the design of integrated circuits. This paper deals with the problem of relative placement, that is the minimization of a quadratic functional with a large, sparse, positive definite system matrix. The basic optimization problem must be augmented by constraints to inhibit solutions where cells overlap. Besides classical iterative methods, based on conjugate gradients (CG), we show that algebraic multigrid methods (AMG) provide an interesting alternative. For moderately sized examples with about 10000 cells, AMG is already competitive with CG and is expected to be superior for larger problems. Besides the classical 'multiplicative' AMG algorithm where the levels are visited sequentially, we propose an 'additive' variant of AMG where levels may be treated in parallel and that is suitable as a preconditioner in the CG algorithm.

  14. Aerodynamic optimization of supersonic compressor cascade using differential evolution on GPU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aissa, Mohamed Hasanine; Verstraete, Tom; Vuik, Cornelis

    Differential Evolution (DE) is a powerful stochastic optimization method. Compared to gradient-based algorithms, DE is able to avoid local minima but requires at the same time more function evaluations. In turbomachinery applications, function evaluations are performed with time-consuming CFD simulation, which results in a long, non affordable, design cycle. Modern High Performance Computing systems, especially Graphic Processing Units (GPUs), are able to alleviate this inconvenience by accelerating the design evaluation itself. In this work we present a validated CFD Solver running on GPUs, able to accelerate the design evaluation and thus the entire design process. An achieved speedup of 20xmore » to 30x enabled the DE algorithm to run on a high-end computer instead of a costly large cluster. The GPU-enhanced DE was used to optimize the aerodynamics of a supersonic compressor cascade, achieving an aerodynamic loss minimization of 20%.« less

  15. Wrinkle-free design of thin membrane structures using stress-based topology optimization

    NASA Astrophysics Data System (ADS)

    Luo, Yangjun; Xing, Jian; Niu, Yanzhuang; Li, Ming; Kang, Zhan

    2017-05-01

    Thin membrane structures would experience wrinkling due to local buckling deformation when compressive stresses are induced in some regions. Using the stress criterion for membranes in wrinkled and taut states, this paper proposed a new stress-based topology optimization methodology to seek the optimal wrinkle-free design of macro-scale thin membrane structures under stretching. Based on the continuum model and linearly elastic assumption in the taut state, the optimization problem is defined as to maximize the structural stiffness under membrane area and principal stress constraints. In order to make the problem computationally tractable, the stress constraints are reformulated into equivalent ones and relaxed by a cosine-type relaxation scheme. The reformulated optimization problem is solved by a standard gradient-based algorithm with the adjoint-variable sensitivity analysis. Several examples with post-bulking simulations and experimental tests are given to demonstrate the effectiveness of the proposed optimization model for eliminating stress-related wrinkles in the novel design of thin membrane structures.

  16. Differential evolution algorithm based photonic structure design: numerical and experimental verification of subwavelength λ/5 focusing of light.

    PubMed

    Bor, E; Turduev, M; Kurt, H

    2016-08-01

    Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction.

  17. Differential evolution algorithm based photonic structure design: numerical and experimental verification of subwavelength λ/5 focusing of light

    PubMed Central

    Bor, E.; Turduev, M.; Kurt, H.

    2016-01-01

    Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction. PMID:27477060

  18. Hybrid Differential Dynamic Programming with Stochastic Search

    NASA Technical Reports Server (NTRS)

    Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob A.

    2016-01-01

    Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASA's Dawn mission. The Dawn trajectory was designed with the DDP-based Static/Dynamic Optimal Control algorithm used in the Mystic software.1 Another recently developed method, Hybrid Differential Dynamic Programming (HDDP),2, 3 is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.

  19. Interior point techniques for LP and NLP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evtushenko, Y.

    By using surjective mapping the initial constrained optimization problem is transformed to a problem in a new space with only equality constraints. For the numerical solution of the latter problem we use the generalized gradient-projection method and Newton`s method. After inverse transformation to the initial space we obtain the family of numerical methods for solving optimization problems with equality and inequality constraints. In the linear programming case after some simplification we obtain Dikin`s algorithm, affine scaling algorithm and generalized primal dual interior point linear programming algorithm.

  20. Application of GA, PSO, and ACO algorithms to path planning of autonomous underwater vehicles

    NASA Astrophysics Data System (ADS)

    Aghababa, Mohammad Pourmahmood; Amrollahi, Mohammad Hossein; Borjkhani, Mehdi

    2012-09-01

    In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwater vehicles were computed using a numerical solution of a nonlinear optimal control problem (NOCP). An energy performance index as a cost function, which should be minimized, was defined. The resulting problem was a two-point boundary value problem (TPBVP). A genetic algorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) algorithms were applied to solve the resulting TPBVP. Applying an Euler-Lagrange equation to the NOCP, a conjugate gradient penalty method was also adopted to solve the TPBVP. The problem of energetic environments, involving some energy sources, was discussed. Some near-optimal paths were found using a GA, PSO, and ACO algorithms. Finally, the problem of collision avoidance in an energetic environment was also taken into account.

  1. A deterministic global optimization using smooth diagonal auxiliary functions

    NASA Astrophysics Data System (ADS)

    Sergeyev, Yaroslav D.; Kvasov, Dmitri E.

    2015-04-01

    In many practical decision-making problems it happens that functions involved in optimization process are black-box with unknown analytical representations and hard to evaluate. In this paper, a global optimization problem is considered where both the goal function f (x) and its gradient f‧ (x) are black-box functions. It is supposed that f‧ (x) satisfies the Lipschitz condition over the search hyperinterval with an unknown Lipschitz constant K. A new deterministic 'Divide-the-Best' algorithm based on efficient diagonal partitions and smooth auxiliary functions is proposed in its basic version, its convergence conditions are studied and numerical experiments executed on eight hundred test functions are presented.

  2. A multi-material topology optimization approach for wrinkle-free design of cable-suspended membrane structures

    NASA Astrophysics Data System (ADS)

    Luo, Yangjun; Niu, Yanzhuang; Li, Ming; Kang, Zhan

    2017-06-01

    In order to eliminate stress-related wrinkles in cable-suspended membrane structures and to provide simple and reliable deployment, this study presents a multi-material topology optimization model and an effective solution procedure for generating optimal connected layouts for membranes and cables. On the basis of the principal stress criterion of membrane wrinkling behavior and the density-based interpolation of multi-phase materials, the optimization objective is to maximize the total structural stiffness while satisfying principal stress constraints and specified material volume requirements. By adopting the cosine-type relaxation scheme to avoid the stress singularity phenomenon, the optimization model is successfully solved through a standard gradient-based algorithm. Four-corner tensioned membrane structures with different loading cases were investigated to demonstrate the effectiveness of the proposed method in automatically finding the optimal design composed of curved boundary cables and wrinkle-free membranes.

  3. Real-time 2D spatially selective MRI experiments: Comparative analysis of optimal control design methods.

    PubMed

    Maximov, Ivan I; Vinding, Mads S; Tse, Desmond H Y; Nielsen, Niels Chr; Shah, N Jon

    2015-05-01

    There is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy. The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Large-Scale Optimization for Bayesian Inference in Complex Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willcox, Karen; Marzouk, Youssef

    2013-11-12

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of themore » SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their speedups.« less

  5. Design of two-channel filter bank using nature inspired optimization based fractional derivative constraints.

    PubMed

    Kuldeep, B; Singh, V K; Kumar, A; Singh, G K

    2015-01-01

    In this article, a novel approach for 2-channel linear phase quadrature mirror filter (QMF) bank design based on a hybrid of gradient based optimization and optimization of fractional derivative constraints is introduced. For the purpose of this work, recently proposed nature inspired optimization techniques such as cuckoo search (CS), modified cuckoo search (MCS) and wind driven optimization (WDO) are explored for the design of QMF bank. 2-Channel QMF is also designed with particle swarm optimization (PSO) and artificial bee colony (ABC) nature inspired optimization techniques. The design problem is formulated in frequency domain as sum of L2 norm of error in passband, stopband and transition band at quadrature frequency. The contribution of this work is the novel hybrid combination of gradient based optimization (Lagrange multiplier method) and nature inspired optimization (CS, MCS, WDO, PSO and ABC) and its usage for optimizing the design problem. Performance of the proposed method is evaluated by passband error (ϕp), stopband error (ϕs), transition band error (ϕt), peak reconstruction error (PRE), stopband attenuation (As) and computational time. The design examples illustrate the ingenuity of the proposed method. Results are also compared with the other existing algorithms, and it was found that the proposed method gives best result in terms of peak reconstruction error and transition band error while it is comparable in terms of passband and stopband error. Results show that the proposed method is successful for both lower and higher order 2-channel QMF bank design. A comparative study of various nature inspired optimization techniques is also presented, and the study singles out CS as a best QMF optimization technique. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Recent developments of axial flow compressors under transonic flow conditions

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Raghunandana, K.; Satish Shenoy, B.

    2017-05-01

    The objective of this paper is to give a holistic view of the most advanced technology and procedures that are practiced in the field of turbomachinery design. Compressor flow solver is the turbulence model used in the CFD to solve viscous problems. The popular techniques like Jameson’s rotated difference scheme was used to solve potential flow equation in transonic condition for two dimensional aero foils and later three dimensional wings. The gradient base method is also a popular method especially for compressor blade shape optimization. Various other types of optimization techniques available are Evolutionary algorithms (EAs) and Response surface methodology (RSM). It is observed that in order to improve compressor flow solver and to get agreeable results careful attention need to be paid towards viscous relations, grid resolution, turbulent modeling and artificial viscosity, in CFD. The advanced techniques like Jameson’s rotated difference had most substantial impact on wing design and aero foil. For compressor blade shape optimization, Evolutionary algorithm is quite simple than gradient based technique because it can solve the parameters simultaneously by searching from multiple points in the given design space. Response surface methodology (RSM) is a method basically used to design empirical models of the response that were observed and to study systematically the experimental data. This methodology analyses the correct relationship between expected responses (output) and design variables (input). RSM solves the function systematically in a series of mathematical and statistical processes. For turbomachinery blade optimization recently RSM has been implemented successfully. The well-designed high performance axial flow compressors finds its application in any air-breathing jet engines.

  7. Solution of nonlinear multivariable constrained systems using a gradient projection digital algorithm that is insensitive to the initial state

    NASA Technical Reports Server (NTRS)

    Hargrove, A.

    1982-01-01

    Optimal digital control of nonlinear multivariable constrained systems was studied. The optimal controller in the form of an algorithm was improved and refined by reducing running time and storage requirements. A particularly difficult system of nine nonlinear state variable equations was chosen as a test problem for analyzing and improving the controller. Lengthy analysis, modeling, computing and optimization were accomplished. A remote interactive teletype terminal was installed. Analysis requiring computer usage of short duration was accomplished using Tuskegee's VAX 11/750 system.

  8. A Sampling-Based Bayesian Approach for Cooperative Multiagent Online Search With Resource Constraints.

    PubMed

    Xiao, Hu; Cui, Rongxin; Xu, Demin

    2018-06-01

    This paper presents a cooperative multiagent search algorithm to solve the problem of searching for a target on a 2-D plane under multiple constraints. A Bayesian framework is used to update the local probability density functions (PDFs) of the target when the agents obtain observation information. To obtain the global PDF used for decision making, a sampling-based logarithmic opinion pool algorithm is proposed to fuse the local PDFs, and a particle sampling approach is used to represent the continuous PDF. Then the Gaussian mixture model (GMM) is applied to reconstitute the global PDF from the particles, and a weighted expectation maximization algorithm is presented to estimate the parameters of the GMM. Furthermore, we propose an optimization objective which aims to guide agents to find the target with less resource consumptions, and to keep the resource consumption of each agent balanced simultaneously. To this end, a utility function-based optimization problem is put forward, and it is solved by a gradient-based approach. Several contrastive simulations demonstrate that compared with other existing approaches, the proposed one uses less overall resources and shows a better performance of balancing the resource consumption.

  9. An optimal algorithm for reconstructing images from binary measurements

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Lu, Yue M.; Sbaiz, Luciano; Vetterli, Martin

    2010-01-01

    We have studied a camera with a very large number of binary pixels referred to as the gigavision camera [1] or the gigapixel digital film camera [2, 3]. Potential advantages of this new camera design include improved dynamic range, thanks to its logarithmic sensor response curve, and reduced exposure time in low light conditions, due to its highly sensitive photon detection mechanism. We use maximum likelihood estimator (MLE) to reconstruct a high quality conventional image from the binary sensor measurements of the gigavision camera. We prove that when the threshold T is "1", the negative loglikelihood function is a convex function. Therefore, optimal solution can be achieved using convex optimization. Base on filter bank techniques, fast algorithms are given for computing the gradient and the multiplication of a vector and Hessian matrix of the negative log-likelihood function. We show that with a minor change, our algorithm also works for estimating conventional images from multiple binary images. Numerical experiments with synthetic 1-D signals and images verify the effectiveness and quality of the proposed algorithm. Experimental results also show that estimation performance can be improved by increasing the oversampling factor or the number of binary images.

  10. Multigrid one shot methods for optimal control problems: Infinite dimensional control

    NASA Technical Reports Server (NTRS)

    Arian, Eyal; Taasan, Shlomo

    1994-01-01

    The multigrid one shot method for optimal control problems, governed by elliptic systems, is introduced for the infinite dimensional control space. ln this case, the control variable is a function whose discrete representation involves_an increasing number of variables with grid refinement. The minimization algorithm uses Lagrange multipliers to calculate sensitivity gradients. A preconditioned gradient descent algorithm is accelerated by a set of coarse grids. It optimizes for different scales in the representation of the control variable on different discretization levels. An analysis which reduces the problem to the boundary is introduced. It is used to approximate the two level asymptotic convergence rate, to determine the amplitude of the minimization steps, and the choice of a high pass filter to be used when necessary. The effectiveness of the method is demonstrated on a series of test problems. The new method enables the solutions of optimal control problems at the same cost of solving the corresponding analysis problems just a few times.

  11. Ultrasound image edge detection based on a novel multiplicative gradient and Canny operator.

    PubMed

    Zheng, Yinfei; Zhou, Yali; Zhou, Hao; Gong, Xiaohong

    2015-07-01

    To achieve the fast and accurate segmentation of ultrasound image, a novel edge detection method for speckle noised ultrasound images was proposed, which was based on the traditional Canny and a novel multiplicative gradient operator. The proposed technique combines a new multiplicative gradient operator of non-Newtonian type with the traditional Canny operator to generate the initial edge map, which is subsequently optimized by the following edge tracing step. To verify the proposed method, we compared it with several other edge detection methods that had good robustness to noise, with experiments on the simulated and in vivo medical ultrasound image. Experimental results showed that the proposed algorithm has higher speed for real-time processing, and the edge detection accuracy could be 75% or more. Thus, the proposed method is very suitable for fast and accurate edge detection of medical ultrasound images. © The Author(s) 2014.

  12. A fast, preconditioned conjugate gradient Toeplitz solver

    NASA Technical Reports Server (NTRS)

    Pan, Victor; Schrieber, Robert

    1989-01-01

    A simple factorization is given of an arbitrary hermitian, positive definite matrix in which the factors are well-conditioned, hermitian, and positive definite. In fact, given knowledge of the extreme eigenvalues of the original matrix A, an optimal improvement can be achieved, making the condition numbers of each of the two factors equal to the square root of the condition number of A. This technique is to applied to the solution of hermitian, positive definite Toeplitz systems. Large linear systems with hermitian, positive definite Toeplitz matrices arise in some signal processing applications. A stable fast algorithm is given for solving these systems that is based on the preconditioned conjugate gradient method. The algorithm exploits Toeplitz structure to reduce the cost of an iteration to O(n log n) by applying the fast Fourier Transform to compute matrix-vector products. Matrix factorization is used as a preconditioner.

  13. A Convex Formulation for Learning a Shared Predictive Structure from Multiple Tasks

    PubMed Central

    Chen, Jianhui; Tang, Lei; Liu, Jun; Ye, Jieping

    2013-01-01

    In this paper, we consider the problem of learning from multiple related tasks for improved generalization performance by extracting their shared structures. The alternating structure optimization (ASO) algorithm, which couples all tasks using a shared feature representation, has been successfully applied in various multitask learning problems. However, ASO is nonconvex and the alternating algorithm only finds a local solution. We first present an improved ASO formulation (iASO) for multitask learning based on a new regularizer. We then convert iASO, a nonconvex formulation, into a relaxed convex one (rASO). Interestingly, our theoretical analysis reveals that rASO finds a globally optimal solution to its nonconvex counterpart iASO under certain conditions. rASO can be equivalently reformulated as a semidefinite program (SDP), which is, however, not scalable to large datasets. We propose to employ the block coordinate descent (BCD) method and the accelerated projected gradient (APG) algorithm separately to find the globally optimal solution to rASO; we also develop efficient algorithms for solving the key subproblems involved in BCD and APG. The experiments on the Yahoo webpages datasets and the Drosophila gene expression pattern images datasets demonstrate the effectiveness and efficiency of the proposed algorithms and confirm our theoretical analysis. PMID:23520249

  14. A gradient based algorithm to solve inverse plane bimodular problems of identification

    NASA Astrophysics Data System (ADS)

    Ran, Chunjiang; Yang, Haitian; Zhang, Guoqing

    2018-02-01

    This paper presents a gradient based algorithm to solve inverse plane bimodular problems of identifying constitutive parameters, including tensile/compressive moduli and tensile/compressive Poisson's ratios. For the forward bimodular problem, a FE tangent stiffness matrix is derived facilitating the implementation of gradient based algorithms, for the inverse bimodular problem of identification, a two-level sensitivity analysis based strategy is proposed. Numerical verification in term of accuracy and efficiency is provided, and the impacts of initial guess, number of measurement points, regional inhomogeneity, and noisy data on the identification are taken into accounts.

  15. A New Efficient Hybrid Intelligent Model for Biodegradation Process of DMP with Fuzzy Wavelet Neural Networks

    NASA Astrophysics Data System (ADS)

    Huang, Mingzhi; Zhang, Tao; Ruan, Jujun; Chen, Xiaohong

    2017-01-01

    A new efficient hybrid intelligent approach based on fuzzy wavelet neural network (FWNN) was proposed for effectively modeling and simulating biodegradation process of Dimethyl phthalate (DMP) in an anaerobic/anoxic/oxic (AAO) wastewater treatment process. With the self learning and memory abilities of neural networks (NN), handling uncertainty capacity of fuzzy logic (FL), analyzing local details superiority of wavelet transform (WT) and global search of genetic algorithm (GA), the proposed hybrid intelligent model can extract the dynamic behavior and complex interrelationships from various water quality variables. For finding the optimal values for parameters of the proposed FWNN, a hybrid learning algorithm integrating an improved genetic optimization and gradient descent algorithm is employed. The results show, compared with NN model (optimized by GA) and kinetic model, the proposed FWNN model have the quicker convergence speed, the higher prediction performance, and smaller RMSE (0.080), MSE (0.0064), MAPE (1.8158) and higher R2 (0.9851) values. which illustrates FWNN model simulates effluent DMP more accurately than the mechanism model.

  16. A New Efficient Hybrid Intelligent Model for Biodegradation Process of DMP with Fuzzy Wavelet Neural Networks

    PubMed Central

    Huang, Mingzhi; Zhang, Tao; Ruan, Jujun; Chen, Xiaohong

    2017-01-01

    A new efficient hybrid intelligent approach based on fuzzy wavelet neural network (FWNN) was proposed for effectively modeling and simulating biodegradation process of Dimethyl phthalate (DMP) in an anaerobic/anoxic/oxic (AAO) wastewater treatment process. With the self learning and memory abilities of neural networks (NN), handling uncertainty capacity of fuzzy logic (FL), analyzing local details superiority of wavelet transform (WT) and global search of genetic algorithm (GA), the proposed hybrid intelligent model can extract the dynamic behavior and complex interrelationships from various water quality variables. For finding the optimal values for parameters of the proposed FWNN, a hybrid learning algorithm integrating an improved genetic optimization and gradient descent algorithm is employed. The results show, compared with NN model (optimized by GA) and kinetic model, the proposed FWNN model have the quicker convergence speed, the higher prediction performance, and smaller RMSE (0.080), MSE (0.0064), MAPE (1.8158) and higher R2 (0.9851) values. which illustrates FWNN model simulates effluent DMP more accurately than the mechanism model. PMID:28120889

  17. Wavelet-based edge correlation incorporated iterative reconstruction for undersampled MRI.

    PubMed

    Hu, Changwei; Qu, Xiaobo; Guo, Di; Bao, Lijun; Chen, Zhong

    2011-09-01

    Undersampling k-space is an effective way to decrease acquisition time for MRI. However, aliasing artifacts introduced by undersampling may blur the edges of magnetic resonance images, which often contain important information for clinical diagnosis. Moreover, k-space data is often contaminated by the noise signals of unknown intensity. To better preserve the edge features while suppressing the aliasing artifacts and noises, we present a new wavelet-based algorithm for undersampled MRI reconstruction. The algorithm solves the image reconstruction as a standard optimization problem including a ℓ(2) data fidelity term and ℓ(1) sparsity regularization term. Rather than manually setting the regularization parameter for the ℓ(1) term, which is directly related to the threshold, an automatic estimated threshold adaptive to noise intensity is introduced in our proposed algorithm. In addition, a prior matrix based on edge correlation in wavelet domain is incorporated into the regularization term. Compared with nonlinear conjugate gradient descent algorithm, iterative shrinkage/thresholding algorithm, fast iterative soft-thresholding algorithm and the iterative thresholding algorithm using exponentially decreasing threshold, the proposed algorithm yields reconstructions with better edge recovery and noise suppression. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Efficient methods for overlapping group lasso.

    PubMed

    Yuan, Lei; Liu, Jun; Ye, Jieping

    2013-09-01

    The group Lasso is an extension of the Lasso for feature selection on (predefined) nonoverlapping groups of features. The nonoverlapping group structure limits its applicability in practice. There have been several recent attempts to study a more general formulation where groups of features are given, potentially with overlaps between the groups. The resulting optimization is, however, much more challenging to solve due to the group overlaps. In this paper, we consider the efficient optimization of the overlapping group Lasso penalized problem. We reveal several key properties of the proximal operator associated with the overlapping group Lasso, and compute the proximal operator by solving the smooth and convex dual problem, which allows the use of the gradient descent type of algorithms for the optimization. Our methods and theoretical results are then generalized to tackle the general overlapping group Lasso formulation based on the l(q) norm. We further extend our algorithm to solve a nonconvex overlapping group Lasso formulation based on the capped norm regularization, which reduces the estimation bias introduced by the convex penalty. We have performed empirical evaluations using both a synthetic and the breast cancer gene expression dataset, which consists of 8,141 genes organized into (overlapping) gene sets. Experimental results show that the proposed algorithm is more efficient than existing state-of-the-art algorithms. Results also demonstrate the effectiveness of the nonconvex formulation for overlapping group Lasso.

  19. Cost Optimal Design of a Power Inductor by Sequential Gradient Search

    NASA Astrophysics Data System (ADS)

    Basak, Raju; Das, Arabinda; Sanyal, Amarnath

    2018-05-01

    Power inductors are used for compensating VAR generated by long EHV transmission lines and in electronic circuits. For the EHV-lines, the rating of the inductor is decided upon by techno-economic considerations on the basis of the line-susceptance. It is a high voltage high current device, absorbing little active power and large reactive power. The cost is quite high- hence the design should be made cost-optimally. The 3-phase power inductor is similar in construction to a 3-phase core-type transformer with the exception that it has only one winding per phase and each limb is provided with an air-gap, the length of which is decided upon by the inductance required. In this paper, a design methodology based on sequential gradient search technique and the corresponding algorithm leading to cost-optimal design of a 3-phase EHV power inductor has been presented. The case-study has been made on a 220 kV long line of NHPC running from Chukha HPS to Birpara of Coochbihar.

  20. Analysis of Artificial Neural Network Backpropagation Using Conjugate Gradient Fletcher Reeves In The Predicting Process

    NASA Astrophysics Data System (ADS)

    Wanto, Anjar; Zarlis, Muhammad; Sawaluddin; Hartama, Dedy

    2017-12-01

    Backpropagation is a good artificial neural network algorithm used to predict, one of which is to predict the rate of Consumer Price Index (CPI) based on the foodstuff sector. While conjugate gradient fletcher reeves is a suitable optimization method when juxtaposed with backpropagation method, because this method can shorten iteration without reducing the quality of training and testing result. Consumer Price Index (CPI) data that will be predicted to come from the Central Statistics Agency (BPS) Pematangsiantar. The results of this study will be expected to contribute to the government in making policies to improve economic growth. In this study, the data obtained will be processed by conducting training and testing with artificial neural network backpropagation by using parameter learning rate 0,01 and target error minimum that is 0.001-0,09. The training network is built with binary and bipolar sigmoid activation functions. After the results with backpropagation are obtained, it will then be optimized using the conjugate gradient fletcher reeves method by conducting the same training and testing based on 5 predefined network architectures. The result, the method used can increase the speed and accuracy result.

  1. Optimization-based image reconstruction in x-ray computed tomography by sparsity exploitation of local continuity and nonlocal spatial self-similarity

    NASA Astrophysics Data System (ADS)

    Han-Ming, Zhang; Lin-Yuan, Wang; Lei, Li; Bin, Yan; Ai-Long, Cai; Guo-En, Hu

    2016-07-01

    The additional sparse prior of images has been the subject of much research in problems of sparse-view computed tomography (CT) reconstruction. A method employing the image gradient sparsity is often used to reduce the sampling rate and is shown to remove the unwanted artifacts while preserve sharp edges, but may cause blocky or patchy artifacts. To eliminate this drawback, we propose a novel sparsity exploitation-based model for CT image reconstruction. In the presented model, the sparse representation and sparsity exploitation of both gradient and nonlocal gradient are investigated. The new model is shown to offer the potential for better results by introducing a similarity prior information of the image structure. Then, an effective alternating direction minimization algorithm is developed to optimize the objective function with a robust convergence result. Qualitative and quantitative evaluations have been carried out both on the simulation and real data in terms of accuracy and resolution properties. The results indicate that the proposed method can be applied for achieving better image-quality potential with the theoretically expected detailed feature preservation. Project supported by the National Natural Science Foundation of China (Grant No. 61372172).

  2. Performance analysis of a GPS Interferometric attitude determination system for a gravity gradient stabilized spacecraft. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Stoll, John C.

    1995-01-01

    The performance of an unaided attitude determination system based on GPS interferometry is examined using linear covariance analysis. The modelled system includes four GPS antennae onboard a gravity gradient stabilized spacecraft, specifically the Air Force's RADCAL satellite. The principal error sources are identified and modelled. The optimal system's sensitivities to these error sources are examined through an error budget and by varying system parameters. The effects of two satellite selection algorithms, Geometric and Attitude Dilution of Precision (GDOP and ADOP, respectively) are examined. The attitude performance of two optimal-suboptimal filters is also presented. Based on this analysis, the limiting factors in attitude accuracy are the knowledge of the relative antenna locations, the electrical path lengths from the antennae to the receiver, and the multipath environment. The performance of the system is found to be fairly insensitive to torque errors, orbital inclination, and the two satellite geometry figures-of-merit tested.

  3. Selectivity optimization in green chromatography by gradient stationary phase optimized selectivity liquid chromatography.

    PubMed

    Chen, Kai; Lynen, Frédéric; De Beer, Maarten; Hitzel, Laure; Ferguson, Paul; Hanna-Brown, Melissa; Sandra, Pat

    2010-11-12

    Stationary phase optimized selectivity liquid chromatography (SOSLC) is a promising technique to optimize the selectivity of a given separation by using a combination of different stationary phases. Previous work has shown that SOSLC offers excellent possibilities for method development, especially after the recent modification towards linear gradient SOSLC. The present work is aimed at developing and extending the SOSLC approach towards selectivity optimization and method development for green chromatography. Contrary to current LC practices, a green mobile phase (water/ethanol/formic acid) is hereby preselected and the composition of the stationary phase is optimized under a given gradient profile to obtain baseline resolution of all target solutes in the shortest possible analysis time. With the algorithm adapted to the high viscosity property of ethanol, the principle is illustrated with a fast, full baseline resolution for a randomly selected mixture composed of sulphonamides, xanthine alkaloids and steroids. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Optimization of the sources in local hyperthermia using a combined finite element-genetic algorithm method.

    PubMed

    Siauve, N; Nicolas, L; Vollaire, C; Marchal, C

    2004-12-01

    This article describes an optimization process specially designed for local and regional hyperthermia in order to achieve the desired specific absorption rate in the patient. It is based on a genetic algorithm coupled to a finite element formulation. The optimization method is applied to real human organs meshes assembled from computerized tomography scans. A 3D finite element formulation is used to calculate the electromagnetic field in the patient, achieved by radiofrequency or microwave sources. Space discretization is performed using incomplete first order edge elements. The sparse complex symmetric matrix equation is solved using a conjugate gradient solver with potential projection pre-conditionning. The formulation is validated by comparison of calculated specific absorption rate distributions in a phantom to temperature measurements. A genetic algorithm is used to optimize the specific absorption rate distribution to predict the phases and amplitudes of the sources leading to the best focalization. The objective function is defined as the specific absorption rate ratio in the tumour and healthy tissues. Several constraints, regarding the specific absorption rate in tumour and the total power in the patient, may be prescribed. Results obtained with two types of applicators (waveguides and annular phased array) are presented and show the faculties of the developed optimization process.

  5. Thermodynamics of Gas Turbine Cycles with Analytic Derivatives in OpenMDAO

    NASA Technical Reports Server (NTRS)

    Gray, Justin; Chin, Jeffrey; Hearn, Tristan; Hendricks, Eric; Lavelle, Thomas; Martins, Joaquim R. R. A.

    2016-01-01

    A new equilibrium thermodynamics analysis tool was built based on the CEA method using the OpenMDAO framework. The new tool provides forward and adjoint analytic derivatives for use with gradient based optimization algorithms. The new tool was validated against the original CEA code to ensure an accurate analysis and the analytic derivatives were validated against finite-difference approximations. Performance comparisons between analytic and finite difference methods showed a significant speed advantage for the analytic methods. To further test the new analysis tool, a sample optimization was performed to find the optimal air-fuel equivalence ratio, , maximizing combustion temperature for a range of different pressures. Collectively, the results demonstrate the viability of the new tool to serve as the thermodynamic backbone for future work on a full propulsion modeling tool.

  6. Algorithms for Mathematical Programming with Emphasis on Bi-level Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldfarb, Donald; Iyengar, Garud

    2014-05-22

    The research supported by this grant was focused primarily on first-order methods for solving large scale and structured convex optimization problems and convex relaxations of nonconvex problems. These include optimal gradient methods, operator and variable splitting methods, alternating direction augmented Lagrangian methods, and block coordinate descent methods.

  7. Compressive sensing of electrocardiogram signals by promoting sparsity on the second-order difference and by using dictionary learning.

    PubMed

    Pant, Jeevan K; Krishnan, Sridhar

    2014-04-01

    A new algorithm for the reconstruction of electrocardiogram (ECG) signals and a dictionary learning algorithm for the enhancement of its reconstruction performance for a class of signals are proposed. The signal reconstruction algorithm is based on minimizing the lp pseudo-norm of the second-order difference, called as the lp(2d) pseudo-norm, of the signal. The optimization involved is carried out using a sequential conjugate-gradient algorithm. The dictionary learning algorithm uses an iterative procedure wherein a signal reconstruction and a dictionary update steps are repeated until a convergence criterion is satisfied. The signal reconstruction step is implemented by using the proposed signal reconstruction algorithm and the dictionary update step is implemented by using the linear least-squares method. Extensive simulation results demonstrate that the proposed algorithm yields improved reconstruction performance for temporally correlated ECG signals relative to the state-of-the-art lp(1d)-regularized least-squares and Bayesian learning based algorithms. Also for a known class of signals, the reconstruction performance of the proposed algorithm can be improved by applying it in conjunction with a dictionary obtained using the proposed dictionary learning algorithm.

  8. Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization.

    PubMed

    Nishio, Mizuho; Nishizawa, Mitsuo; Sugiyama, Osamu; Kojima, Ryosuke; Yakami, Masahiro; Kuroda, Tomohiro; Togashi, Kaori

    2018-01-01

    We aimed to evaluate a computer-aided diagnosis (CADx) system for lung nodule classification focussing on (i) usefulness of the conventional CADx system (hand-crafted imaging feature + machine learning algorithm), (ii) comparison between support vector machine (SVM) and gradient tree boosting (XGBoost) as machine learning algorithms, and (iii) effectiveness of parameter optimization using Bayesian optimization and random search. Data on 99 lung nodules (62 lung cancers and 37 benign lung nodules) were included from public databases of CT images. A variant of the local binary pattern was used for calculating a feature vector. SVM or XGBoost was trained using the feature vector and its corresponding label. Tree Parzen Estimator (TPE) was used as Bayesian optimization for parameters of SVM and XGBoost. Random search was done for comparison with TPE. Leave-one-out cross-validation was used for optimizing and evaluating the performance of our CADx system. Performance was evaluated using area under the curve (AUC) of receiver operating characteristic analysis. AUC was calculated 10 times, and its average was obtained. The best averaged AUC of SVM and XGBoost was 0.850 and 0.896, respectively; both were obtained using TPE. XGBoost was generally superior to SVM. Optimal parameters for achieving high AUC were obtained with fewer numbers of trials when using TPE, compared with random search. Bayesian optimization of SVM and XGBoost parameters was more efficient than random search. Based on observer study, AUC values of two board-certified radiologists were 0.898 and 0.822. The results show that diagnostic accuracy of our CADx system was comparable to that of radiologists with respect to classifying lung nodules.

  9. [Accurate 3D free-form registration between fan-beam CT and cone-beam CT].

    PubMed

    Liang, Yueqiang; Xu, Hongbing; Li, Baosheng; Li, Hongsheng; Yang, Fujun

    2012-06-01

    Because the X-ray scatters, the CT numbers in cone-beam CT cannot exactly correspond to the electron densities. This, therefore, results in registration error when the intensity-based registration algorithm is used to register planning fan-beam CT and cone-beam CT. In order to reduce the registration error, we have developed an accurate gradient-based registration algorithm. The gradient-based deformable registration problem is described as a minimization of energy functional. Through the calculus of variations and Gauss-Seidel finite difference method, we derived the iterative formula of the deformable registration. The algorithm was implemented by GPU through OpenCL framework, with which the registration time was greatly reduced. Our experimental results showed that the proposed gradient-based registration algorithm could register more accurately the clinical cone-beam CT and fan-beam CT images compared with the intensity-based algorithm. The GPU-accelerated algorithm meets the real-time requirement in the online adaptive radiotherapy.

  10. A new algorithm for real-time optimal dispatch of active and reactive power generation retaining nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, L.; Rao, N.D.

    1983-04-01

    This paper presents a new method for optimal dispatch of real and reactive power generation which is based on cartesian coordinate formulation of economic dispatch problem and reclassification of state and control variables associated with generator buses. The voltage and power at these buses are classified as parametric and functional inequality constraints, and are handled by reduced gradient technique and penalty factor approach respectively. The advantage of this classification is the reduction in the size of the equality constraint model, leading to less storage requirement. The rectangular coordinate formulation results in an exact equality constraint model in which the coefficientmore » matrix is real, sparse, diagonally dominant, smaller in size and need be computed and factorized once only in each gradient step. In addition, Lagragian multipliers are calculated using a new efficient procedure. A natural outcome of these features is the solution of the economic dispatch problem, faster than other methods available to date in the literature. Rapid and reliable convergence is an additional desirable characteristic of the method. Digital simulation results are presented on several IEEE test systems to illustrate the range of application of the method visa-vis the popular Dommel-Tinney (DT) procedure. It is found that the proposed method is more reliable, 3-4 times faster and requires 20-30 percent less storage compared to the DT algorithm, while being just as general. Thus, owing to its exactness, robust mathematical model and less computational requirements, the method developed in the paper is shown to be a practically feasible algorithm for on-line optimal power dispatch.« less

  11. Reliable numerical computation in an optimal output-feedback design

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1991-01-01

    A reliable algorithm is presented for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters. The algorithm is a part of a design algorithm for optimal linear dynamic output-feedback controller that minimizes a finite-time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control-law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed-loop eigensystem. This approach through the use of an accurate Pade series approximation does not require the closed-loop system matrix to be diagonalizable. The algorithm was included in a control design package for optimal robust low-order controllers. Usefulness of the proposed numerical algorithm was demonstrated using numerous practical design cases where degeneracies occur frequently in the closed-loop system under an arbitrary controller design initialization and during the numerical search.

  12. Advanced rotorcraft control using parameter optimization

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1991-01-01

    A reliable algorithm for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters is presented. The algorithm is part of a design algorithm for an optimal linear dynamic output feedback controller that minimizes a finite time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed loop eigensystem. This approach through the use of a accurate Pade series approximation does not require the closed loop system matrix to be diagonalizable. The algorithm has been included in a control design package for optimal robust low order controllers. Usefulness of the proposed numerical algorithm has been demonstrated using numerous practical design cases where degeneracies occur frequently in the closed loop system under an arbitrary controller design initialization and during the numerical search.

  13. Lateral Penumbra Modelling Based Leaf End Shape Optimization for Multileaf Collimator in Radiotherapy.

    PubMed

    Zhou, Dong; Zhang, Hui; Ye, Peiqing

    2016-01-01

    Lateral penumbra of multileaf collimator plays an important role in radiotherapy treatment planning. Growing evidence has revealed that, for a single-focused multileaf collimator, lateral penumbra width is leaf position dependent and largely attributed to the leaf end shape. In our study, an analytical method for leaf end induced lateral penumbra modelling is formulated using Tangent Secant Theory. Compared with Monte Carlo simulation and ray tracing algorithm, our model serves well the purpose of cost-efficient penumbra evaluation. Leaf ends represented in parametric forms of circular arc, elliptical arc, Bézier curve, and B-spline are implemented. With biobjective function of penumbra mean and variance introduced, genetic algorithm is carried out for approximating the Pareto frontier. Results show that for circular arc leaf end objective function is convex and convergence to optimal solution is guaranteed using gradient based iterative method. It is found that optimal leaf end in the shape of Bézier curve achieves minimal standard deviation, while using B-spline minimum of penumbra mean is obtained. For treatment modalities in clinical application, optimized leaf ends are in close agreement with actual shapes. Taken together, the method that we propose can provide insight into leaf end shape design of multileaf collimator.

  14. Model-Free Optimal Tracking Control via Critic-Only Q-Learning.

    PubMed

    Luo, Biao; Liu, Derong; Huang, Tingwen; Wang, Ding

    2016-10-01

    Model-free control is an important and promising topic in control fields, which has attracted extensive attention in the past few years. In this paper, we aim to solve the model-free optimal tracking control problem of nonaffine nonlinear discrete-time systems. A critic-only Q-learning (CoQL) method is developed, which learns the optimal tracking control from real system data, and thus avoids solving the tracking Hamilton-Jacobi-Bellman equation. First, the Q-learning algorithm is proposed based on the augmented system, and its convergence is established. Using only one neural network for approximating the Q-function, the CoQL method is developed to implement the Q-learning algorithm. Furthermore, the convergence of the CoQL method is proved with the consideration of neural network approximation error. With the convergent Q-function obtained from the CoQL method, the adaptive optimal tracking control is designed based on the gradient descent scheme. Finally, the effectiveness of the developed CoQL method is demonstrated through simulation studies. The developed CoQL method learns with off-policy data and implements with a critic-only structure, thus it is easy to realize and overcome the inadequate exploration problem.

  15. A Differential Evolution Based Approach to Estimate the Shape and Size of Complex Shaped Anomalies Using EIT Measurements

    NASA Astrophysics Data System (ADS)

    Rashid, Ahmar; Khambampati, Anil Kumar; Kim, Bong Seok; Liu, Dong; Kim, Sin; Kim, Kyung Youn

    EIT image reconstruction is an ill-posed problem, the spatial resolution of the estimated conductivity distribution is usually poor and the external voltage measurements are subject to variable noise. Therefore, EIT conductivity estimation cannot be used in the raw form to correctly estimate the shape and size of complex shaped regional anomalies. An efficient algorithm employing a shape based estimation scheme is needed. The performance of traditional inverse algorithms, such as the Newton Raphson method, used for this purpose is below par and depends upon the initial guess and the gradient of the cost functional. This paper presents the application of differential evolution (DE) algorithm to estimate complex shaped region boundaries, expressed as coefficients of truncated Fourier series, using EIT. DE is a simple yet powerful population-based, heuristic algorithm with the desired features to solve global optimization problems under realistic conditions. The performance of the algorithm has been tested through numerical simulations, comparing its results with that of the traditional modified Newton Raphson (mNR) method.

  16. Comparison of a discrete steepest ascent method with the continuous steepest ascent method for optimal programing

    NASA Technical Reports Server (NTRS)

    Childs, A. G.

    1971-01-01

    A discrete steepest ascent method which allows controls which are not piecewise constant (for example, it allows all continuous piecewise linear controls) was derived for the solution of optimal programming problems. This method is based on the continuous steepest ascent method of Bryson and Denham and new concepts introduced by Kelley and Denham in their development of compatible adjoints for taking into account the effects of numerical integration. The method is a generalization of the algorithm suggested by Canon, Cullum, and Polak with the details of the gradient computation given. The discrete method was compared with the continuous method for an aerodynamics problem for which an analytic solution is given by Pontryagin's maximum principle, and numerical results are presented. The discrete method converges more rapidly than the continuous method at first, but then for some undetermined reason, loses its exponential convergence rate. A comparsion was also made for the algorithm of Canon, Cullum, and Polak using piecewise constant controls. This algorithm is very competitive with the continuous algorithm.

  17. Determination of full piezoelectric complex parameters using gradient-based optimization algorithm

    NASA Astrophysics Data System (ADS)

    Kiyono, C. Y.; Pérez, N.; Silva, E. C. N.

    2016-02-01

    At present, numerical techniques allow the precise simulation of mechanical structures, but the results are limited by the knowledge of the material properties. In the case of piezoelectric ceramics, the full model determination in the linear range involves five elastic, three piezoelectric, and two dielectric complex parameters. A successful solution to obtaining piezoceramic properties consists of comparing the experimental measurement of the impedance curve and the results of a numerical model by using the finite element method (FEM). In the present work, a new systematic optimization method is proposed to adjust the full piezoelectric complex parameters in the FEM model. Once implemented, the method only requires the experimental data (impedance modulus and phase data acquired by an impedometer), material density, geometry, and initial values for the properties. This method combines a FEM routine implemented using an 8-noded axisymmetric element with a gradient-based optimization routine based on the method of moving asymptotes (MMA). The main objective of the optimization procedure is minimizing the quadratic difference between the experimental and numerical electrical conductance and resistance curves (to consider resonance and antiresonance frequencies). To assure the convergence of the optimization procedure, this work proposes restarting the optimization loop whenever the procedure ends in an undesired or an unfeasible solution. Two experimental examples using PZ27 and APC850 samples are presented to test the precision of the method and to check the dependency of the frequency range used, respectively.

  18. Optimum gradient material for a functionally graded dental implant using metaheuristic algorithms.

    PubMed

    Sadollah, Ali; Bahreininejad, Ardeshir

    2011-10-01

    Despite dental implantation being a great success, one of the key issues facing it is a mismatch of mechanical properties between engineered and native biomaterials, which makes osseointegration and bone remodeling problematical. Functionally graded material (FGM) has been proposed as a potential upgrade to some conventional implant materials such as titanium for selection in prosthetic dentistry. The idea of an FGM dental implant is that the property would vary in a certain pattern to match the biomechanical characteristics required at different regions in the hosting bone. However, matching the properties does not necessarily guarantee the best osseointegration and bone remodeling. Little existing research has been reported on developing an optimal design of an FGM dental implant for promoting long-term success. Based upon remodeling results, metaheuristic algorithms such as the genetic algorithms (GAs) and simulated annealing (SA) have been adopted to develop a multi-objective optimal design for FGM implantation design. The results are compared with those in literature. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. A Fast Gradient Method for Nonnegative Sparse Regression With Self-Dictionary

    NASA Astrophysics Data System (ADS)

    Gillis, Nicolas; Luce, Robert

    2018-01-01

    A nonnegative matrix factorization (NMF) can be computed efficiently under the separability assumption, which asserts that all the columns of the given input data matrix belong to the cone generated by a (small) subset of them. The provably most robust methods to identify these conic basis columns are based on nonnegative sparse regression and self dictionaries, and require the solution of large-scale convex optimization problems. In this paper we study a particular nonnegative sparse regression model with self dictionary. As opposed to previously proposed models, this model yields a smooth optimization problem where the sparsity is enforced through linear constraints. We show that the Euclidean projection on the polyhedron defined by these constraints can be computed efficiently, and propose a fast gradient method to solve our model. We compare our algorithm with several state-of-the-art methods on synthetic data sets and real-world hyperspectral images.

  20. Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map.

    PubMed

    Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen

    2015-09-11

    This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate.

  1. OPC and PSM design using inverse lithography: a nonlinear optimization approach

    NASA Astrophysics Data System (ADS)

    Poonawala, Amyn; Milanfar, Peyman

    2006-03-01

    We propose a novel method for the fast synthesis of low complexity model-based optical proximity correction (OPC) and phase shift masks (PSM) to improve the resolution and pattern fidelity of optical microlithography. We use the pixel-based mask representation, a continuous function formulation, and gradient based iterative optimization techniques to solve the above inverse problem. The continuous function formulation allows analytic calculation of the gradient. Pixel-based parametrization provides tremendous liberty in terms of the features possible in the synthesized masks, but also suffers the inherent disadvantage that the masks are very complex and difficult to manufacture. We therefore introduce the regularization framework; a useful tool which provides the flexibility to promote certain desirable properties in the solution. We employ the above framework to ensure that the estimated masks have only two or three (allowable) transmission values and are also comparatively simple and easy to manufacture. The results demonstrate that we are able to bring the CD on target using OPC masks. Furthermore, we were also able to boost the contrast of the aerial image using attenuated, strong, and 100% transmission phase shift masks. Our algorithm automatically (and optimally) adds assist-bars, dog-ears, serifs, anti-serifs, and other custom structures best suited for printing the desired pattern.

  2. MO-G-17A-07: Improved Image Quality in Brain F-18 FDG PET Using Penalized-Likelihood Image Reconstruction Via a Generalized Preconditioned Alternating Projection Algorithm: The First Patient Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidtlein, CR; Beattie, B; Humm, J

    2014-06-15

    Purpose: To investigate the performance of a new penalized-likelihood PET image reconstruction algorithm using the 1{sub 1}-norm total-variation (TV) sum of the 1st through 4th-order gradients as the penalty. Simulated and brain patient data sets were analyzed. Methods: This work represents an extension of the preconditioned alternating projection algorithm (PAPA) for emission-computed tomography. In this new generalized algorithm (GPAPA), the penalty term is expanded to allow multiple components, in this case the sum of the 1st to 4th order gradients, to reduce artificial piece-wise constant regions (“staircase” artifacts typical for TV) seen in PAPA images penalized with only the 1stmore » order gradient. Simulated data were used to test for “staircase” artifacts and to optimize the penalty hyper-parameter in the root-mean-squared error (RMSE) sense. Patient FDG brain scans were acquired on a GE D690 PET/CT (370 MBq at 1-hour post-injection for 10 minutes) in time-of-flight mode and in all cases were reconstructed using resolution recovery projectors. GPAPA images were compared PAPA and RMSE-optimally filtered OSEM (fully converged) in simulations and to clinical OSEM reconstructions (3 iterations, 32 subsets) with 2.6 mm XYGaussian and standard 3-point axial smoothing post-filters. Results: The results from the simulated data show a significant reduction in the 'staircase' artifact for GPAPA compared to PAPA and lower RMSE (up to 35%) compared to optimally filtered OSEM. A simple power-law relationship between the RMSE-optimal hyper-parameters and the noise equivalent counts (NEC) per voxel is revealed. Qualitatively, the patient images appear much sharper and with less noise than standard clinical images. The convergence rate is similar to OSEM. Conclusions: GPAPA reconstructions using the 1{sub 1}-norm total-variation sum of the 1st through 4th-order gradients as the penalty show great promise for the improvement of image quality over that currently achieved with clinical OSEM reconstructions.« less

  3. Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method

    NASA Astrophysics Data System (ADS)

    Sun, Yong; Meng, Zhaohai; Li, Fengting

    2018-03-01

    Following the development of gravity gradiometer instrument technology, the full tensor gravity (FTG) data can be acquired on airborne and marine platforms. Large-scale geophysical data can be obtained using these methods, making such data sets a number of the "big data" category. Therefore, a fast and effective inversion method is developed to solve the large-scale FTG data inversion problem. Many algorithms are available to accelerate the FTG data inversion, such as conjugate gradient method. However, the conventional conjugate gradient method takes a long time to complete data processing. Thus, a fast and effective iterative algorithm is necessary to improve the utilization of FTG data. Generally, inversion processing is formulated by incorporating regularizing constraints, followed by the introduction of a non-monotone gradient-descent method to accelerate the convergence rate of FTG data inversion. Compared with the conventional gradient method, the steepest descent gradient algorithm, and the conjugate gradient algorithm, there are clear advantages of the non-monotone iterative gradient-descent algorithm. Simulated and field FTG data were applied to show the application value of this new fast inversion method.

  4. Structural optimization of framed structures using generalized optimality criteria

    NASA Technical Reports Server (NTRS)

    Kolonay, R. M.; Venkayya, Vipperla B.; Tischler, V. A.; Canfield, R. A.

    1989-01-01

    The application of a generalized optimality criteria to framed structures is presented. The optimality conditions, Lagrangian multipliers, resizing algorithm, and scaling procedures are all represented as a function of the objective and constraint functions along with their respective gradients. The optimization of two plane frames under multiple loading conditions subject to stress, displacement, generalized stiffness, and side constraints is presented. These results are compared to those found by optimizing the frames using a nonlinear mathematical programming technique.

  5. Application of IFT and SPSA to servo system control.

    PubMed

    Rădac, Mircea-Bogdan; Precup, Radu-Emil; Petriu, Emil M; Preitl, Stefan

    2011-12-01

    This paper treats the application of two data-based model-free gradient-based stochastic optimization techniques, i.e., iterative feedback tuning (IFT) and simultaneous perturbation stochastic approximation (SPSA), to servo system control. The representative case of controlled processes modeled by second-order systems with an integral component is discussed. New IFT and SPSA algorithms are suggested to tune the parameters of the state feedback controllers with an integrator in the linear-quadratic-Gaussian (LQG) problem formulation. An implementation case study concerning the LQG-based design of an angular position controller for a direct current servo system laboratory equipment is included to highlight the pros and cons of IFT and SPSA from an application's point of view. The comparison of IFT and SPSA algorithms is focused on an insight into their implementation.

  6. Data Sufficiency Assessment and Pumping Test Design for Groundwater Prediction Using Decision Theory and Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    McPhee, J.; William, Y. W.

    2005-12-01

    This work presents a methodology for pumping test design based on the reliability requirements of a groundwater model. Reliability requirements take into consideration the application of the model results in groundwater management, expressed in this case as a multiobjective management model. The pumping test design is formulated as a mixed-integer nonlinear programming (MINLP) problem and solved using a combination of genetic algorithm (GA) and gradient-based optimization. Bayesian decision theory provides a formal framework for assessing the influence of parameter uncertainty over the reliability of the proposed pumping test. The proposed methodology is useful for selecting a robust design that will outperform all other candidate designs under most potential 'true' states of the system

  7. Statistical efficiency of adaptive algorithms.

    PubMed

    Widrow, Bernard; Kamenetsky, Max

    2003-01-01

    The statistical efficiency of a learning algorithm applied to the adaptation of a given set of variable weights is defined as the ratio of the quality of the converged solution to the amount of data used in training the weights. Statistical efficiency is computed by averaging over an ensemble of learning experiences. A high quality solution is very close to optimal, while a low quality solution corresponds to noisy weights and less than optimal performance. In this work, two gradient descent adaptive algorithms are compared, the LMS algorithm and the LMS/Newton algorithm. LMS is simple and practical, and is used in many applications worldwide. LMS/Newton is based on Newton's method and the LMS algorithm. LMS/Newton is optimal in the least squares sense. It maximizes the quality of its adaptive solution while minimizing the use of training data. Many least squares adaptive algorithms have been devised over the years, but no other least squares algorithm can give better performance, on average, than LMS/Newton. LMS is easily implemented, but LMS/Newton, although of great mathematical interest, cannot be implemented in most practical applications. Because of its optimality, LMS/Newton serves as a benchmark for all least squares adaptive algorithms. The performances of LMS and LMS/Newton are compared, and it is found that under many circumstances, both algorithms provide equal performance. For example, when both algorithms are tested with statistically nonstationary input signals, their average performances are equal. When adapting with stationary input signals and with random initial conditions, their respective learning times are on average equal. However, under worst-case initial conditions, the learning time of LMS can be much greater than that of LMS/Newton, and this is the principal disadvantage of the LMS algorithm. But the strong points of LMS are ease of implementation and optimal performance under important practical conditions. For these reasons, the LMS algorithm has enjoyed very widespread application. It is used in almost every modem for channel equalization and echo cancelling. Furthermore, it is related to the famous backpropagation algorithm used for training neural networks.

  8. Influence of measuring algorithm on shape accuracy in the compensating turning of high gradient thin-wall parts

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wang, Guilin; Zhu, Dengchao; Li, Shengyi

    2015-02-01

    In order to meet the requirement of aerodynamics, the infrared domes or windows with conformal and thin-wall structure becomes the development trend of high-speed aircrafts in the future. But these parts usually have low stiffness, the cutting force will change along with the axial position, and it is very difficult to meet the requirement of shape accuracy by single machining. Therefore, on-machine measurement and compensating turning are used to control the shape errors caused by the fluctuation of cutting force and the change of stiffness. In this paper, on the basis of ultra precision diamond lathe, a contact measuring system with five DOFs is developed to achieve on-machine measurement of conformal thin-wall parts with high accuracy. According to high gradient surface, the optimizing algorithm is designed on the distribution of measuring points by using the data screening method. The influence rule of sampling frequency is analyzed on measuring errors, the best sampling frequency is found out based on planning algorithm, the effect of environmental factors and the fitting errors are controlled within lower range, and the measuring accuracy of conformal dome is greatly improved in the process of on-machine measurement. According to MgF2 conformal dome with high gradient, the compensating turning is implemented by using the designed on-machine measuring algorithm. The shape error is less than PV 0.8μm, greatly superior compared with PV 3μm before compensating turning, which verifies the correctness of measuring algorithm.

  9. A hybrid neural learning algorithm using evolutionary learning and derivative free local search method.

    PubMed

    Ghosh, Ranadhir; Yearwood, John; Ghosh, Moumita; Bagirov, Adil

    2006-06-01

    In this paper we investigate a hybrid model based on the Discrete Gradient method and an evolutionary strategy for determining the weights in a feed forward artificial neural network. Also we discuss different variants for hybrid models using the Discrete Gradient method and an evolutionary strategy for determining the weights in a feed forward artificial neural network. The Discrete Gradient method has the advantage of being able to jump over many local minima and find very deep local minima. However, earlier research has shown that a good starting point for the discrete gradient method can improve the quality of the solution point. Evolutionary algorithms are best suited for global optimisation problems. Nevertheless they are cursed with longer training times and often unsuitable for real world application. For optimisation problems such as weight optimisation for ANNs in real world applications the dimensions are large and time complexity is critical. Hence the idea of a hybrid model can be a suitable option. In this paper we propose different fusion strategies for hybrid models combining the evolutionary strategy with the discrete gradient method to obtain an optimal solution much quicker. Three different fusion strategies are discussed: a linear hybrid model, an iterative hybrid model and a restricted local search hybrid model. Comparative results on a range of standard datasets are provided for different fusion hybrid models.

  10. Parallel Implementations of Gradient Based Iterative Algorithms for a Class of Discrete Optimal Control Problems.

    DTIC Science & Technology

    1987-02-28

    g Ru + Ft~FzQZ...0 otherwise, and let X be the nN costate vector X =(Xt, X, , t,)t )X in E defined by X = Fz-tQz. Then, given u and z 0, the gradient g may be...34 ’ ’-" ’.’.’.’ ’ ". ."’.’,’,’ ./, ’ ’- ," ," .- ’- ". %.’’.’ "- ’" " ,,’’ " "- . "-" ’ ,r .’’"" ’ "." .r -".’ ". ." ." ." " . ." " . €"". ’.- -8- g Ru + FIX. (6) With the notation

  11. A Novel Shape Parameterization Approach

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    1999-01-01

    This paper presents a novel parameterization approach for complex shapes suitable for a multidisciplinary design optimization application. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft objects animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity analysis tools (e.g., nonlinear computational fluid dynamics and detailed finite element modeling). This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, and camber. The results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, performance, and a simple propulsion module.

  12. Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2000-01-01

    This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.

  13. A numerical and theoretical study on the aerodynamics of a rhinoceros beetle (Trypoxlyus dichotomus) and optimization of its wing kinematics in hover

    NASA Astrophysics Data System (ADS)

    Oh, Sehyeong; Lee, Boogeon; Park, Hyungmin; Choi, Haecheon

    2017-11-01

    We investigate a hovering rhinoceros beetle using numerical simulation and blade element theory. Numerical simulations are performed using an immersed boundary method. In the simulation, the hindwings are modeled as a rigid flat plate, and three-dimensionally scanned elytra and body are used. The results of simulation indicate that the lift force generated by the hindwings alone is sufficient to support the weight, and the elytra generate negligible lift force. Considering the hindwings only, we present a blade element model based on quasi-steady assumptions to identify the mechanisms of aerodynamic force generation and power expenditure in the hovering flight of a rhinoceros beetle. We show that the results from the present blade element model are in excellent agreement with numerical ones. Based on the current blade element model, we find the optimal wing kinematics minimizing the aerodynamic power requirement using a hybrid optimization algorithm combining a clustering genetic algorithm with a gradient-based optimizer. We show that the optimal wing kinematics reduce the aerodynamic power consumption, generating enough lift force to support the weight. This research was supported by a Grant to Bio-Mimetic Robot Research Center Funded by Defense Acquisition Program Administration, and by Agency for Defense Development (UD130070ID) and NRF-2016R1E1A1A02921549 of the MSIP of Korea.

  14. Accurate modeling of switched reluctance machine based on hybrid trained WNN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Shoujun, E-mail: sunnyway@nwpu.edu.cn; Ge, Lefei; Ma, Shaojie

    2014-04-15

    According to the strong nonlinear electromagnetic characteristics of switched reluctance machine (SRM), a novel accurate modeling method is proposed based on hybrid trained wavelet neural network (WNN) which combines improved genetic algorithm (GA) with gradient descent (GD) method to train the network. In the novel method, WNN is trained by GD method based on the initial weights obtained per improved GA optimization, and the global parallel searching capability of stochastic algorithm and local convergence speed of deterministic algorithm are combined to enhance the training accuracy, stability and speed. Based on the measured electromagnetic characteristics of a 3-phase 12/8-pole SRM, themore » nonlinear simulation model is built by hybrid trained WNN in Matlab. The phase current and mechanical characteristics from simulation under different working conditions meet well with those from experiments, which indicates the accuracy of the model for dynamic and static performance evaluation of SRM and verifies the effectiveness of the proposed modeling method.« less

  15. Very Large Scale Optimization

    NASA Technical Reports Server (NTRS)

    Vanderplaats, Garrett; Townsend, James C. (Technical Monitor)

    2002-01-01

    The purpose of this research under the NASA Small Business Innovative Research program was to develop algorithms and associated software to solve very large nonlinear, constrained optimization tasks. Key issues included efficiency, reliability, memory, and gradient calculation requirements. This report describes the general optimization problem, ten candidate methods, and detailed evaluations of four candidates. The algorithm chosen for final development is a modern recreation of a 1960s external penalty function method that uses very limited computer memory and computational time. Although of lower efficiency, the new method can solve problems orders of magnitude larger than current methods. The resulting BIGDOT software has been demonstrated on problems with 50,000 variables and about 50,000 active constraints. For unconstrained optimization, it has solved a problem in excess of 135,000 variables. The method includes a technique for solving discrete variable problems that finds a "good" design, although a theoretical optimum cannot be guaranteed. It is very scalable in that the number of function and gradient evaluations does not change significantly with increased problem size. Test cases are provided to demonstrate the efficiency and reliability of the methods and software.

  16. Redundant interferometric calibration as a complex optimization problem

    NASA Astrophysics Data System (ADS)

    Grobler, T. L.; Bernardi, G.; Kenyon, J. S.; Parsons, A. R.; Smirnov, O. M.

    2018-05-01

    Observations of the redshifted 21 cm line from the epoch of reionization have recently motivated the construction of low-frequency radio arrays with highly redundant configurations. These configurations provide an alternative calibration strategy - `redundant calibration' - and boost sensitivity on specific spatial scales. In this paper, we formulate calibration of redundant interferometric arrays as a complex optimization problem. We solve this optimization problem via the Levenberg-Marquardt algorithm. This calibration approach is more robust to initial conditions than current algorithms and, by leveraging an approximate matrix inversion, allows for further optimization and an efficient implementation (`redundant STEFCAL'). We also investigated using the preconditioned conjugate gradient method as an alternative to the approximate matrix inverse, but found that its computational performance is not competitive with respect to `redundant STEFCAL'. The efficient implementation of this new algorithm is made publicly available.

  17. Linear feasibility algorithms for treatment planning in interstitial photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Rendon, A.; Beck, J. C.; Lilge, Lothar

    2008-02-01

    Interstitial Photodynamic therapy (IPDT) has been under intense investigation in recent years, with multiple clinical trials underway. This effort has demanded the development of optimization strategies that determine the best locations and output powers for light sources (cylindrical or point diffusers) to achieve an optimal light delivery. Furthermore, we have recently introduced cylindrical diffusers with customizable emission profiles, placing additional requirements on the optimization algorithms, particularly in terms of the stability of the inverse problem. Here, we present a general class of linear feasibility algorithms and their properties. Moreover, we compare two particular instances of these algorithms, which are been used in the context of IPDT: the Cimmino algorithm and a weighted gradient descent (WGD) algorithm. The algorithms were compared in terms of their convergence properties, the cost function they minimize in the infeasible case, their ability to regularize the inverse problem, and the resulting optimal light dose distributions. Our results show that the WGD algorithm overall performs slightly better than the Cimmino algorithm and that it converges to a minimizer of a clinically relevant cost function in the infeasible case. Interestingly however, treatment plans resulting from either algorithms were very similar in terms of the resulting fluence maps and dose volume histograms, once the diffuser powers adjusted to achieve equal prostate coverage.

  18. A hybrid neural network model for noisy data regression.

    PubMed

    Lee, Eric W M; Lim, Chee Peng; Yuen, Richard K K; Lo, S M

    2004-04-01

    A hybrid neural network model, based on the fusion of fuzzy adaptive resonance theory (FA ART) and the general regression neural network (GRNN), is proposed in this paper. Both FA and the GRNN are incremental learning systems and are very fast in network training. The proposed hybrid model, denoted as GRNNFA, is able to retain these advantages and, at the same time, to reduce the computational requirements in calculating and storing information of the kernels. A clustering version of the GRNN is designed with data compression by FA for noise removal. An adaptive gradient-based kernel width optimization algorithm has also been devised. Convergence of the gradient descent algorithm can be accelerated by the geometric incremental growth of the updating factor. A series of experiments with four benchmark datasets have been conducted to assess and compare effectiveness of GRNNFA with other approaches. The GRNNFA model is also employed in a novel application task for predicting the evacuation time of patrons at typical karaoke centers in Hong Kong in the event of fire. The results positively demonstrate the applicability of GRNNFA in noisy data regression problems.

  19. Adaptive estimation of nonlinear parameters of a nonholonomic spherical robot using a modified fuzzy-based speed gradient algorithm

    NASA Astrophysics Data System (ADS)

    Roozegar, Mehdi; Mahjoob, Mohammad J.; Ayati, Moosa

    2017-05-01

    This paper deals with adaptive estimation of the unknown parameters and states of a pendulum-driven spherical robot (PDSR), which is a nonlinear in parameters (NLP) chaotic system with parametric uncertainties. Firstly, the mathematical model of the robot is deduced by applying the Newton-Euler methodology for a system of rigid bodies. Then, based on the speed gradient (SG) algorithm, the states and unknown parameters of the robot are estimated online for different step length gains and initial conditions. The estimated parameters are updated adaptively according to the error between estimated and true state values. Since the errors of the estimated states and parameters as well as the convergence rates depend significantly on the value of step length gain, this gain should be chosen optimally. Hence, a heuristic fuzzy logic controller is employed to adjust the gain adaptively. Simulation results indicate that the proposed approach is highly encouraging for identification of this NLP chaotic system even if the initial conditions change and the uncertainties increase; therefore, it is reliable to be implemented on a real robot.

  20. Contour Detection and Completion for Inpainting and Segmentation Based on Topological Gradient and Fast Marching Algorithms

    PubMed Central

    Auroux, Didier; Cohen, Laurent D.; Masmoudi, Mohamed

    2011-01-01

    We combine in this paper the topological gradient, which is a powerful method for edge detection in image processing, and a variant of the minimal path method in order to find connected contours. The topological gradient provides a more global analysis of the image than the standard gradient and identifies the main edges of an image. Several image processing problems (e.g., inpainting and segmentation) require continuous contours. For this purpose, we consider the fast marching algorithm in order to find minimal paths in the topological gradient image. This coupled algorithm quickly provides accurate and connected contours. We present then two numerical applications, to image inpainting and segmentation, of this hybrid algorithm. PMID:22194734

  1. Multi-disciplinary optimization of aeroservoelastic systems

    NASA Technical Reports Server (NTRS)

    Karpel, Mordechay

    1990-01-01

    Efficient analytical and computational tools for simultaneous optimal design of the structural and control components of aeroservoelastic systems are presented. The optimization objective is to achieve aircraft performance requirements and sufficient flutter and control stability margins with a minimal weight penalty and without violating the design constraints. Analytical sensitivity derivatives facilitate an efficient optimization process which allows a relatively large number of design variables. Standard finite element and unsteady aerodynamic routines are used to construct a modal data base. Minimum State aerodynamic approximations and dynamic residualization methods are used to construct a high accuracy, low order aeroservoelastic model. Sensitivity derivatives of flutter dynamic pressure, control stability margins and control effectiveness with respect to structural and control design variables are presented. The performance requirements are utilized by equality constraints which affect the sensitivity derivatives. A gradient-based optimization algorithm is used to minimize an overall cost function. A realistic numerical example of a composite wing with four controls is used to demonstrate the modeling technique, the optimization process, and their accuracy and efficiency.

  2. Multidisciplinary optimization of aeroservoelastic systems using reduced-size models

    NASA Technical Reports Server (NTRS)

    Karpel, Mordechay

    1992-01-01

    Efficient analytical and computational tools for simultaneous optimal design of the structural and control components of aeroservoelastic systems are presented. The optimization objective is to achieve aircraft performance requirements and sufficient flutter and control stability margins with a minimal weight penalty and without violating the design constraints. Analytical sensitivity derivatives facilitate an efficient optimization process which allows a relatively large number of design variables. Standard finite element and unsteady aerodynamic routines are used to construct a modal data base. Minimum State aerodynamic approximations and dynamic residualization methods are used to construct a high accuracy, low order aeroservoelastic model. Sensitivity derivatives of flutter dynamic pressure, control stability margins and control effectiveness with respect to structural and control design variables are presented. The performance requirements are utilized by equality constraints which affect the sensitivity derivatives. A gradient-based optimization algorithm is used to minimize an overall cost function. A realistic numerical example of a composite wing with four controls is used to demonstrate the modeling technique, the optimization process, and their accuracy and efficiency.

  3. New recursive-least-squares algorithms for nonlinear active control of sound and vibration using neural networks.

    PubMed

    Bouchard, M

    2001-01-01

    In recent years, a few articles describing the use of neural networks for nonlinear active control of sound and vibration were published. Using a control structure with two multilayer feedforward neural networks (one as a nonlinear controller and one as a nonlinear plant model), steepest descent algorithms based on two distinct gradient approaches were introduced for the training of the controller network. The two gradient approaches were sometimes called the filtered-x approach and the adjoint approach. Some recursive-least-squares algorithms were also introduced, using the adjoint approach. In this paper, an heuristic procedure is introduced for the development of recursive-least-squares algorithms based on the filtered-x and the adjoint gradient approaches. This leads to the development of new recursive-least-squares algorithms for the training of the controller neural network in the two networks structure. These new algorithms produce a better convergence performance than previously published algorithms. Differences in the performance of algorithms using the filtered-x and the adjoint gradient approaches are discussed in the paper. The computational load of the algorithms discussed in the paper is evaluated for multichannel systems of nonlinear active control. Simulation results are presented to compare the convergence performance of the algorithms, showing the convergence gain provided by the new algorithms.

  4. Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map

    PubMed Central

    Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen

    2015-01-01

    This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate. PMID:26378543

  5. A modular approach to large-scale design optimization of aerospace systems

    NASA Astrophysics Data System (ADS)

    Hwang, John T.

    Gradient-based optimization and the adjoint method form a synergistic combination that enables the efficient solution of large-scale optimization problems. Though the gradient-based approach struggles with non-smooth or multi-modal problems, the capability to efficiently optimize up to tens of thousands of design variables provides a valuable design tool for exploring complex tradeoffs and finding unintuitive designs. However, the widespread adoption of gradient-based optimization is limited by the implementation challenges for computing derivatives efficiently and accurately, particularly in multidisciplinary and shape design problems. This thesis addresses these difficulties in two ways. First, to deal with the heterogeneity and integration challenges of multidisciplinary problems, this thesis presents a computational modeling framework that solves multidisciplinary systems and computes their derivatives in a semi-automated fashion. This framework is built upon a new mathematical formulation developed in this thesis that expresses any computational model as a system of algebraic equations and unifies all methods for computing derivatives using a single equation. The framework is applied to two engineering problems: the optimization of a nanosatellite with 7 disciplines and over 25,000 design variables; and simultaneous allocation and mission optimization for commercial aircraft involving 330 design variables, 12 of which are integer variables handled using the branch-and-bound method. In both cases, the framework makes large-scale optimization possible by reducing the implementation effort and code complexity. The second half of this thesis presents a differentiable parametrization of aircraft geometries and structures for high-fidelity shape optimization. Existing geometry parametrizations are not differentiable, or they are limited in the types of shape changes they allow. This is addressed by a novel parametrization that smoothly interpolates aircraft components, providing differentiability. An unstructured quadrilateral mesh generation algorithm is also developed to automate the creation of detailed meshes for aircraft structures, and a mesh convergence study is performed to verify that the quality of the mesh is maintained as it is refined. As a demonstration, high-fidelity aerostructural analysis is performed for two unconventional configurations with detailed structures included, and aerodynamic shape optimization is applied to the truss-braced wing, which finds and eliminates a shock in the region bounded by the struts and the wing.

  6. Spatial-Spectral Approaches to Edge Detection in Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Cox, Cary M.

    This dissertation advances geoinformation science at the intersection of hyperspectral remote sensing and edge detection methods. A relatively new phenomenology among its remote sensing peers, hyperspectral imagery (HSI) comprises only about 7% of all remote sensing research - there are five times as many radar-focused peer reviewed journal articles than hyperspectral-focused peer reviewed journal articles. Similarly, edge detection studies comprise only about 8% of image processing research, most of which is dedicated to image processing techniques most closely associated with end results, such as image classification and feature extraction. Given the centrality of edge detection to mapping, that most important of geographic functions, improving the collective understanding of hyperspectral imagery edge detection methods constitutes a research objective aligned to the heart of geoinformation sciences. Consequently, this dissertation endeavors to narrow the HSI edge detection research gap by advancing three HSI edge detection methods designed to leverage HSI's unique chemical identification capabilities in pursuit of generating accurate, high-quality edge planes. The Di Zenzo-based gradient edge detection algorithm, an innovative version of the Resmini HySPADE edge detection algorithm and a level set-based edge detection algorithm are tested against 15 traditional and non-traditional HSI datasets spanning a range of HSI data configurations, spectral resolutions, spatial resolutions, bandpasses and applications. This study empirically measures algorithm performance against Dr. John Canny's six criteria for a good edge operator: false positives, false negatives, localization, single-point response, robustness to noise and unbroken edges. The end state is a suite of spatial-spectral edge detection algorithms that produce satisfactory edge results against a range of hyperspectral data types applicable to a diverse set of earth remote sensing applications. This work also explores the concept of an edge within hyperspectral space, the relative importance of spatial and spectral resolutions as they pertain to HSI edge detection and how effectively compressed HSI data improves edge detection results. The HSI edge detection experiments yielded valuable insights into the algorithms' strengths, weaknesses and optimal alignment to remote sensing applications. The gradient-based edge operator produced strong edge planes across a range of evaluation measures and applications, particularly with respect to false negatives, unbroken edges, urban mapping, vegetation mapping and oil spill mapping applications. False positives and uncompressed HSI data presented occasional challenges to the algorithm. The HySPADE edge operator produced satisfactory results with respect to localization, single-point response, oil spill mapping and trace chemical detection, and was challenged by false positives, declining spectral resolution and vegetation mapping applications. The level set edge detector produced high-quality edge planes for most tests and demonstrated strong performance with respect to false positives, single-point response, oil spill mapping and mineral mapping. False negatives were a regular challenge for the level set edge detection algorithm. Finally, HSI data optimized for spectral information compression and noise was shown to improve edge detection performance across all three algorithms, while the gradient-based algorithm and HySPADE demonstrated significant robustness to declining spectral and spatial resolutions.

  7. Model and algorithm based on accurate realization of dwell time in magnetorheological finishing.

    PubMed

    Song, Ci; Dai, Yifan; Peng, Xiaoqiang

    2010-07-01

    Classically, a dwell-time map is created with a method such as deconvolution or numerical optimization, with the input being a surface error map and influence function. This dwell-time map is the numerical optimum for minimizing residual form error, but it takes no account of machine dynamics limitations. The map is then reinterpreted as machine speeds and accelerations or decelerations in a separate operation. In this paper we consider combining the two methods in a single optimization by the use of a constrained nonlinear optimization model, which regards both the two-norm of the surface residual error and the dwell-time gradient as an objective function. This enables machine dynamic limitations to be properly considered within the scope of the optimization, reducing both residual surface error and polishing times. Further simulations are introduced to demonstrate the feasibility of the model, and the velocity map is reinterpreted from the dwell time, meeting the requirement of velocity and the limitations of accelerations or decelerations. Indeed, the model and algorithm can also apply to other computer-controlled subaperture methods.

  8. A Matrix-Free Algorithm for Multidisciplinary Design Optimization

    NASA Astrophysics Data System (ADS)

    Lambe, Andrew Borean

    Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and constraints. On the aerostructural test problem formulated with thousands of constraints, the matrix-free optimizer is estimated to reduce the total computational time by up to 90% compared to conventional optimizers.

  9. A Matrix-Free Algorithm for Multidisciplinary Design Optimization

    NASA Astrophysics Data System (ADS)

    Lambe, Andrew Borean

    Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation. motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and constraints. On the aerostructural test problem formulated with thousands of constraints, the matrix-free optimizer is estimated to reduce the total computational time by up to 90% compared to conventional optimizers.

  10. Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems.

    PubMed

    Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan

    2015-01-01

    Based on the neural network (NN) approximator, an online reinforcement learning algorithm is proposed for a class of affine multiple input and multiple output (MIMO) nonlinear discrete-time systems with unknown functions and disturbances. In the design procedure, two networks are provided where one is an action network to generate an optimal control signal and the other is a critic network to approximate the cost function. An optimal control signal and adaptation laws can be generated based on two NNs. In the previous approaches, the weights of critic and action networks are updated based on the gradient descent rule and the estimations of optimal weight vectors are directly adjusted in the design. Consequently, compared with the existing results, the main contributions of this paper are: 1) only two parameters are needed to be adjusted, and thus the number of the adaptation laws is smaller than the previous results and 2) the updating parameters do not depend on the number of the subsystems for MIMO systems and the tuning rules are replaced by adjusting the norms on optimal weight vectors in both action and critic networks. It is proven that the tracking errors, the adaptation laws, and the control inputs are uniformly bounded using Lyapunov analysis method. The simulation examples are employed to illustrate the effectiveness of the proposed algorithm.

  11. Adjoint shape optimization for fluid-structure interaction of ducted flows

    NASA Astrophysics Data System (ADS)

    Heners, J. P.; Radtke, L.; Hinze, M.; Düster, A.

    2018-03-01

    Based on the coupled problem of time-dependent fluid-structure interaction, equations for an appropriate adjoint problem are derived by the consequent use of the formal Lagrange calculus. Solutions of both primal and adjoint equations are computed in a partitioned fashion and enable the formulation of a surface sensitivity. This sensitivity is used in the context of a steepest descent algorithm for the computation of the required gradient of an appropriate cost functional. The efficiency of the developed optimization approach is demonstrated by minimization of the pressure drop in a simple two-dimensional channel flow and in a three-dimensional ducted flow surrounded by a thin-walled structure.

  12. Error field optimization in DIII-D using extremum seeking control

    DOE PAGES

    Lanctot, M. J.; Olofsson, K. E. J.; Capella, M.; ...

    2016-06-03

    A closed-loop error field control algorithm is implemented in the Plasma Control System of the DIII-D tokamak and used to identify optimal control currents during a single plasma discharge. The algorithm, based on established extremum seeking control theory, exploits the link in tokamaks between maximizing the toroidal angular momentum and minimizing deleterious non-axisymmetric magnetic fields. Slowly-rotating n = 1 fields (the dither), generated by external coils, are used to perturb the angular momentum, monitored in real-time using a charge-exchange spectroscopy diagnostic. Simple signal processing of the rotation measurements extracts information about the rotation gradient with respect to the control coilmore » currents. This information is used to converge the control coil currents to a point that maximizes the toroidal angular momentum. The technique is well-suited for multi-coil, multi-harmonic error field optimizations in disruption sensitive devices as it does not require triggering locked tearing modes or plasma current disruptions. Control simulations highlight the importance of the initial search direction on the rate of the convergence, and identify future algorithm upgrades that may allow more rapid convergence that projects to convergence times in ITER on the order of tens of seconds.« less

  13. A Simulation-Optimization Model for the Management of Seawater Intrusion

    NASA Astrophysics Data System (ADS)

    Stanko, Z.; Nishikawa, T.

    2012-12-01

    Seawater intrusion is a common problem in coastal aquifers where excessive groundwater pumping can lead to chloride contamination of a freshwater resource. Simulation-optimization techniques have been developed to determine optimal management strategies while mitigating seawater intrusion. The simulation models are often density-independent groundwater-flow models that may assume a sharp interface and/or use equivalent freshwater heads. The optimization methods are often linear-programming (LP) based techniques that that require simplifications of the real-world system. However, seawater intrusion is a highly nonlinear, density-dependent flow and transport problem, which requires the use of nonlinear-programming (NLP) or global-optimization (GO) techniques. NLP approaches are difficult because of the need for gradient information; therefore, we have chosen a GO technique for this study. Specifically, we have coupled a multi-objective genetic algorithm (GA) with a density-dependent groundwater-flow and transport model to simulate and identify strategies that optimally manage seawater intrusion. GA is a heuristic approach, often chosen when seeking optimal solutions to highly complex and nonlinear problems where LP or NLP methods cannot be applied. The GA utilized in this study is the Epsilon-Nondominated Sorted Genetic Algorithm II (ɛ-NSGAII), which can approximate a pareto-optimal front between competing objectives. This algorithm has several key features: real and/or binary variable capabilities; an efficient sorting scheme; preservation and diversity of good solutions; dynamic population sizing; constraint handling; parallelizable implementation; and user controlled precision for each objective. The simulation model is SEAWAT, the USGS model that couples MODFLOW with MT3DMS for variable-density flow and transport. ɛ-NSGAII and SEAWAT were efficiently linked together through a C-Fortran interface. The simulation-optimization model was first tested by using a published density-independent flow model test case that was originally solved using a sequential LP method with the USGS's Ground-Water Management Process (GWM). For the problem formulation, the objective is to maximize net groundwater extraction, subject to head and head-gradient constraints. The decision variables are pumping rates at fixed wells and the system's state is represented with freshwater hydraulic head. The results of the proposed algorithm were similar to the published results (within 1%); discrepancies may be attributed to differences in the simulators and inherent differences between LP and GA. The GWM test case was then extended to a density-dependent flow and transport version. As formulated, the optimization problem is infeasible because of the density effects on hydraulic head. Therefore, the sum of the squared constraint violation (SSC) was used as a second objective. The result is a pareto curve showing optimal pumping rates versus the SSC. Analysis of this curve indicates that a similar net-extraction rate to the test case can be obtained with a minor violation in vertical head-gradient constraints. This study shows that a coupled ɛ-NSGAII/SEAWAT model can be used for the management of groundwater seawater intrusion. In the future, the proposed methodology will be applied to a real-world seawater intrusion and resource management problem for Santa Barbara, CA.

  14. Non-Rigid Structure Estimation in Trajectory Space from Monocular Vision

    PubMed Central

    Wang, Yaming; Tong, Lingling; Jiang, Mingfeng; Zheng, Junbao

    2015-01-01

    In this paper, the problem of non-rigid structure estimation in trajectory space from monocular vision is investigated. Similar to the Point Trajectory Approach (PTA), based on characteristic points’ trajectories described by a predefined Discrete Cosine Transform (DCT) basis, the structure matrix was also calculated by using a factorization method. To further optimize the non-rigid structure estimation from monocular vision, the rank minimization problem about structure matrix is proposed to implement the non-rigid structure estimation by introducing the basic low-rank condition. Moreover, the Accelerated Proximal Gradient (APG) algorithm is proposed to solve the rank minimization problem, and the initial structure matrix calculated by the PTA method is optimized. The APG algorithm can converge to efficient solutions quickly and lessen the reconstruction error obviously. The reconstruction results of real image sequences indicate that the proposed approach runs reliably, and effectively improves the accuracy of non-rigid structure estimation from monocular vision. PMID:26473863

  15. An Energy-Aware Trajectory Optimization Layer for sUAS

    NASA Astrophysics Data System (ADS)

    Silva, William A.

    The focus of this work is the implementation of an energy-aware trajectory optimization algorithm that enables small unmanned aircraft systems (sUAS) to operate in unknown, dynamic severe weather environments. The software is designed as a component of an Energy-Aware Dynamic Data Driven Application System (EA-DDDAS) for sUAS. This work addresses the challenges of integrating and executing an online trajectory optimization algorithm during mission operations in the field. Using simplified aircraft kinematics, the energy-aware algorithm enables extraction of kinetic energy from measured winds to optimize thrust use and endurance during flight. The optimization layer, based upon a nonlinear program formulation, extracts energy by exploiting strong wind velocity gradients in the wind field, a process known as dynamic soaring. The trajectory optimization layer extends the energy-aware path planner developed by Wenceslao Shaw-Cortez te{Shaw-cortez2013} to include additional mission configurations, simulations with a 6-DOF model, and validation of the system with flight testing in June 2015 in Lubbock, Texas. The trajectory optimization layer interfaces with several components within the EA-DDDAS to provide an sUAS with optimal flight trajectories in real-time during severe weather. As a result, execution timing, data transfer, and scalability are considered in the design of the software. Severe weather also poses a measure of unpredictability to the system with respect to communication between systems and available data resources during mission operations. A heuristic mission tree with different cost functions and constraints is implemented to provide a level of adaptability to the optimization layer. Simulations and flight experiments are performed to assess the efficacy of the trajectory optimization layer. The results are used to assess the feasibility of flying dynamic soaring trajectories with existing controllers as well as to verify the interconnections between EA-DDDAS components. Results also demonstrate the usage of the trajectory optimization layer in conjunction with a lattice-based path planner as a method of guiding the optimization layer and stitching together subsequent trajectories.

  16. Conditional nonlinear optimal perturbations based on the particle swarm optimization and their applications to the predictability problems

    NASA Astrophysics Data System (ADS)

    Zheng, Qin; Yang, Zubin; Sha, Jianxin; Yan, Jun

    2017-02-01

    In predictability problem research, the conditional nonlinear optimal perturbation (CNOP) describes the initial perturbation that satisfies a certain constraint condition and causes the largest prediction error at the prediction time. The CNOP has been successfully applied in estimation of the lower bound of maximum predictable time (LBMPT). Generally, CNOPs are calculated by a gradient descent algorithm based on the adjoint model, which is called ADJ-CNOP. This study, through the two-dimensional Ikeda model, investigates the impacts of the nonlinearity on ADJ-CNOP and the corresponding precision problems when using ADJ-CNOP to estimate the LBMPT. Our conclusions are that (1) when the initial perturbation is large or the prediction time is long, the strong nonlinearity of the dynamical model in the prediction variable will lead to failure of the ADJ-CNOP method, and (2) when the objective function has multiple extreme values, ADJ-CNOP has a large probability of producing local CNOPs, hence making a false estimation of the LBMPT. Furthermore, the particle swarm optimization (PSO) algorithm, one kind of intelligent algorithm, is introduced to solve this problem. The method using PSO to compute CNOP is called PSO-CNOP. The results of numerical experiments show that even with a large initial perturbation and long prediction time, or when the objective function has multiple extreme values, PSO-CNOP can always obtain the global CNOP. Since the PSO algorithm is a heuristic search algorithm based on the population, it can overcome the impact of nonlinearity and the disturbance from multiple extremes of the objective function. In addition, to check the estimation accuracy of the LBMPT presented by PSO-CNOP and ADJ-CNOP, we partition the constraint domain of initial perturbations into sufficiently fine grid meshes and take the LBMPT obtained by the filtering method as a benchmark. The result shows that the estimation presented by PSO-CNOP is closer to the true value than the one by ADJ-CNOP with the forecast time increasing.

  17. On the Use of CAD and Cartesian Methods for Aerodynamic Optimization

    NASA Technical Reports Server (NTRS)

    Nemec, M.; Aftosmis, M. J.; Pulliam, T. H.

    2004-01-01

    The objective for this paper is to present the development of an optimization capability for Curt3D, a Cartesian inviscid-flow analysis package. We present the construction of a new optimization framework and we focus on the following issues: 1) Component-based geometry parameterization approach using parametric-CAD models and CAPRI. A novel geometry server is introduced that addresses the issue of parallel efficiency while only sparingly consuming CAD resources; 2) The use of genetic and gradient-based algorithms for three-dimensional aerodynamic design problems. The influence of noise on the optimization methods is studied. Our goal is to create a responsive and automated framework that efficiently identifies design modifications that result in substantial performance improvements. In addition, we examine the architectural issues associated with the deployment of a CAD-based approach in a heterogeneous parallel computing environment that contains both CAD workstations and dedicated compute engines. We demonstrate the effectiveness of the framework for a design problem that features topology changes and complex geometry.

  18. A Model-Free No-arbitrage Price Bound for Variance Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnans, J. Frederic, E-mail: frederic.bonnans@inria.fr; Tan Xiaolu, E-mail: xiaolu.tan@polytechnique.edu

    2013-08-01

    We suggest a numerical approximation for an optimization problem, motivated by its applications in finance to find the model-free no-arbitrage bound of variance options given the marginal distributions of the underlying asset. A first approximation restricts the computation to a bounded domain. Then we propose a gradient projection algorithm together with the finite difference scheme to solve the optimization problem. We prove the general convergence, and derive some convergence rate estimates. Finally, we give some numerical examples to test the efficiency of the algorithm.

  19. Optimal design of solidification processes

    NASA Technical Reports Server (NTRS)

    Dantzig, Jonathan A.; Tortorelli, Daniel A.

    1991-01-01

    An optimal design algorithm is presented for the analysis of general solidification processes, and is demonstrated for the growth of GaAs crystals in a Bridgman furnace. The system is optimal in the sense that the prespecified temperature distribution in the solidifying materials is obtained to maximize product quality. The optimization uses traditional numerical programming techniques which require the evaluation of cost and constraint functions and their sensitivities. The finite element method is incorporated to analyze the crystal solidification problem, evaluate the cost and constraint functions, and compute the sensitivities. These techniques are demonstrated in the crystal growth application by determining an optimal furnace wall temperature distribution to obtain the desired temperature profile in the crystal, and hence to maximize the crystal's quality. Several numerical optimization algorithms are studied to determine the proper convergence criteria, effective 1-D search strategies, appropriate forms of the cost and constraint functions, etc. In particular, we incorporate the conjugate gradient and quasi-Newton methods for unconstrained problems. The efficiency and effectiveness of each algorithm is presented in the example problem.

  20. Generalized and efficient algorithm for computing multipole energies and gradients based on Cartesian tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Dejun, E-mail: dejun.lin@gmail.com

    2015-09-21

    Accurate representation of intermolecular forces has been the central task of classical atomic simulations, known as molecular mechanics. Recent advancements in molecular mechanics models have put forward the explicit representation of permanent and/or induced electric multipole (EMP) moments. The formulas developed so far to calculate EMP interactions tend to have complicated expressions, especially in Cartesian coordinates, which can only be applied to a specific kernel potential function. For example, one needs to develop a new formula each time a new kernel function is encountered. The complication of these formalisms arises from an intriguing and yet obscured mathematical relation between themore » kernel functions and the gradient operators. Here, I uncover this relation via rigorous derivation and find that the formula to calculate EMP interactions is basically invariant to the potential kernel functions as long as they are of the form f(r), i.e., any Green’s function that depends on inter-particle distance. I provide an algorithm for efficient evaluation of EMP interaction energies, forces, and torques for any kernel f(r) up to any arbitrary rank of EMP moments in Cartesian coordinates. The working equations of this algorithm are essentially the same for any kernel f(r). Recently, a few recursive algorithms were proposed to calculate EMP interactions. Depending on the kernel functions, the algorithm here is about 4–16 times faster than these algorithms in terms of the required number of floating point operations and is much more memory efficient. I show that it is even faster than a theoretically ideal recursion scheme, i.e., one that requires 1 floating point multiplication and 1 addition per recursion step. This algorithm has a compact vector-based expression that is optimal for computer programming. The Cartesian nature of this algorithm makes it fit easily into modern molecular simulation packages as compared with spherical coordinate-based algorithms. A software library based on this algorithm has been implemented in C++11 and has been released.« less

  1. A Conjugate Gradient Algorithm with Function Value Information and N-Step Quadratic Convergence for Unconstrained Optimization

    PubMed Central

    Li, Xiangrong; Zhao, Xupei; Duan, Xiabin; Wang, Xiaoliang

    2015-01-01

    It is generally acknowledged that the conjugate gradient (CG) method achieves global convergence—with at most a linear convergence rate—because CG formulas are generated by linear approximations of the objective functions. The quadratically convergent results are very limited. We introduce a new PRP method in which the restart strategy is also used. Moreover, the method we developed includes not only n-step quadratic convergence but also both the function value information and gradient value information. In this paper, we will show that the new PRP method (with either the Armijo line search or the Wolfe line search) is both linearly and quadratically convergent. The numerical experiments demonstrate that the new PRP algorithm is competitive with the normal CG method. PMID:26381742

  2. A Conjugate Gradient Algorithm with Function Value Information and N-Step Quadratic Convergence for Unconstrained Optimization.

    PubMed

    Li, Xiangrong; Zhao, Xupei; Duan, Xiabin; Wang, Xiaoliang

    2015-01-01

    It is generally acknowledged that the conjugate gradient (CG) method achieves global convergence--with at most a linear convergence rate--because CG formulas are generated by linear approximations of the objective functions. The quadratically convergent results are very limited. We introduce a new PRP method in which the restart strategy is also used. Moreover, the method we developed includes not only n-step quadratic convergence but also both the function value information and gradient value information. In this paper, we will show that the new PRP method (with either the Armijo line search or the Wolfe line search) is both linearly and quadratically convergent. The numerical experiments demonstrate that the new PRP algorithm is competitive with the normal CG method.

  3. Stochastic derivative-free optimization using a trust region framework

    DOE PAGES

    Larson, Jeffrey; Billups, Stephen C.

    2016-02-17

    This study presents a trust region algorithm to minimize a function f when one has access only to noise-corrupted function values f¯. The model-based algorithm dynamically adjusts its step length, taking larger steps when the model and function agree and smaller steps when the model is less accurate. The method does not require the user to specify a fixed pattern of points used to build local models and does not repeatedly sample points. If f is sufficiently smooth and the noise is independent and identically distributed with mean zero and finite variance, we prove that our algorithm produces iterates suchmore » that the corresponding function gradients converge in probability to zero. As a result, we present a prototype of our algorithm that, while simplistic in its management of previously evaluated points, solves benchmark problems in fewer function evaluations than do existing stochastic approximation methods.« less

  4. A density based algorithm to detect cavities and holes from planar points

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Sun, Yizhong; Pang, Yueyong

    2017-12-01

    Delaunay-based shape reconstruction algorithms are widely used in approximating the shape from planar points. However, these algorithms cannot ensure the optimality of varied reconstructed cavity boundaries and hole boundaries. This inadequate reconstruction can be primarily attributed to the lack of efficient mathematic formulation for the two structures (hole and cavity). In this paper, we develop an efficient algorithm for generating cavities and holes from planar points. The algorithm yields the final boundary based on an iterative removal of the Delaunay triangulation. Our algorithm is mainly divided into two steps, namely, rough and refined shape reconstructions. The rough shape reconstruction performed by the algorithm is controlled by a relative parameter. Based on the rough result, the refined shape reconstruction mainly aims to detect holes and pure cavities. Cavity and hole are conceptualized as a structure with a low-density region surrounded by the high-density region. With this structure, cavity and hole are characterized by a mathematic formulation called as compactness of point formed by the length variation of the edges incident to point in Delaunay triangulation. The boundaries of cavity and hole are then found by locating a shape gradient change in compactness of point set. The experimental comparison with other shape reconstruction approaches shows that the proposed algorithm is able to accurately yield the boundaries of cavity and hole with varying point set densities and distributions.

  5. Mixed Transportation Network Design under a Sustainable Development Perspective

    PubMed Central

    Qin, Jin; Ni, Ling-lin; Shi, Feng

    2013-01-01

    A mixed transportation network design problem considering sustainable development was studied in this paper. Based on the discretization of continuous link-grade decision variables, a bilevel programming model was proposed to describe the problem, in which sustainability factors, including vehicle exhaust emissions, land-use scale, link load, and financial budget, are considered. The objective of the model is to minimize the total amount of resources exploited under the premise of meeting all the construction goals. A heuristic algorithm, which combined the simulated annealing and path-based gradient projection algorithm, was developed to solve the model. The numerical example shows that the transportation network optimized with the method above not only significantly alleviates the congestion on the link, but also reduces vehicle exhaust emissions within the network by up to 41.56%. PMID:23476142

  6. Mixed transportation network design under a sustainable development perspective.

    PubMed

    Qin, Jin; Ni, Ling-lin; Shi, Feng

    2013-01-01

    A mixed transportation network design problem considering sustainable development was studied in this paper. Based on the discretization of continuous link-grade decision variables, a bilevel programming model was proposed to describe the problem, in which sustainability factors, including vehicle exhaust emissions, land-use scale, link load, and financial budget, are considered. The objective of the model is to minimize the total amount of resources exploited under the premise of meeting all the construction goals. A heuristic algorithm, which combined the simulated annealing and path-based gradient projection algorithm, was developed to solve the model. The numerical example shows that the transportation network optimized with the method above not only significantly alleviates the congestion on the link, but also reduces vehicle exhaust emissions within the network by up to 41.56%.

  7. CO 2 water-alternating-gas injection for enhanced oil recovery: Optimal well controls and half-cycle lengths

    DOE PAGES

    Chen, Bailian; Reynolds, Albert C.

    2018-03-11

    We report that CO 2 water-alternating-gas (WAG) injection is an enhanced oil recovery method designed to improve sweep efficiency during CO 2 injection with the injected water to control the mobility of CO 2 and to stabilize the gas front. Optimization of CO 2 -WAG injection is widely regarded as a viable technique for controlling the CO 2 and oil miscible process. Poor recovery from CO 2 -WAG injection can be caused by inappropriately designed WAG parameters. In previous study (Chen and Reynolds, 2016), we proposed an algorithm to optimize the well controls which maximize the life-cycle net-present-value (NPV). However,more » the effect of injection half-cycle lengths for each injector on oil recovery or NPV has not been well investigated. In this paper, an optimization framework based on augmented Lagrangian method and the newly developed stochastic-simplex-approximate-gradient (StoSAG) algorithm is proposed to explore the possibility of simultaneous optimization of the WAG half-cycle lengths together with the well controls. Finally, the proposed framework is demonstrated with three reservoir examples.« less

  8. CO 2 water-alternating-gas injection for enhanced oil recovery: Optimal well controls and half-cycle lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bailian; Reynolds, Albert C.

    We report that CO 2 water-alternating-gas (WAG) injection is an enhanced oil recovery method designed to improve sweep efficiency during CO 2 injection with the injected water to control the mobility of CO 2 and to stabilize the gas front. Optimization of CO 2 -WAG injection is widely regarded as a viable technique for controlling the CO 2 and oil miscible process. Poor recovery from CO 2 -WAG injection can be caused by inappropriately designed WAG parameters. In previous study (Chen and Reynolds, 2016), we proposed an algorithm to optimize the well controls which maximize the life-cycle net-present-value (NPV). However,more » the effect of injection half-cycle lengths for each injector on oil recovery or NPV has not been well investigated. In this paper, an optimization framework based on augmented Lagrangian method and the newly developed stochastic-simplex-approximate-gradient (StoSAG) algorithm is proposed to explore the possibility of simultaneous optimization of the WAG half-cycle lengths together with the well controls. Finally, the proposed framework is demonstrated with three reservoir examples.« less

  9. Simultaneous digital super-resolution and nonuniformity correction for infrared imaging systems.

    PubMed

    Meza, Pablo; Machuca, Guillermo; Torres, Sergio; Martin, Cesar San; Vera, Esteban

    2015-07-20

    In this article, we present a novel algorithm to achieve simultaneous digital super-resolution and nonuniformity correction from a sequence of infrared images. We propose to use spatial regularization terms that exploit nonlocal means and the absence of spatial correlation between the scene and the nonuniformity noise sources. We derive an iterative optimization algorithm based on a gradient descent minimization strategy. Results from infrared image sequences corrupted with simulated and real fixed-pattern noise show a competitive performance compared with state-of-the-art methods. A qualitative analysis on the experimental results obtained with images from a variety of infrared cameras indicates that the proposed method provides super-resolution images with significantly less fixed-pattern noise.

  10. CP decomposition approach to blind separation for DS-CDMA system using a new performance index

    NASA Astrophysics Data System (ADS)

    Rouijel, Awatif; Minaoui, Khalid; Comon, Pierre; Aboutajdine, Driss

    2014-12-01

    In this paper, we present a canonical polyadic (CP) tensor decomposition isolating the scaling matrix. This has two major implications: (i) the problem conditioning shows up explicitly and could be controlled through a constraint on the so-called coherences and (ii) a performance criterion concerning the factor matrices can be exactly calculated and is more realistic than performance metrics used in the literature. Two new algorithms optimizing the CP decomposition based on gradient descent are proposed. This decomposition is illustrated by an application to direct-sequence code division multiplexing access (DS-CDMA) systems; computer simulations are provided and demonstrate the good behavior of these algorithms, compared to others in the literature.

  11. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S.

    The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.« less

  12. Towards computational materials design from first principles using alchemical changes and derivatives.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Lilienfeld-Toal, Otto Anatole

    2010-11-01

    The design of new materials with specific physical, chemical, or biological properties is a central goal of much research in materials and medicinal sciences. Except for the simplest and most restricted cases brute-force computational screening of all possible compounds for interesting properties is beyond any current capacity due to the combinatorial nature of chemical compound space (set of stoichiometries and configurations). Consequently, when it comes to computationally optimizing more complex systems, reliable optimization algorithms must not only trade-off sufficient accuracy and computational speed of the models involved, they must also aim for rapid convergence in terms of number of compoundsmore » 'visited'. I will give an overview on recent progress on alchemical first principles paths and gradients in compound space that appear to be promising ingredients for more efficient property optimizations. Specifically, based on molecular grand canonical density functional theory an approach will be presented for the construction of high-dimensional yet analytical property gradients in chemical compound space. Thereafter, applications to molecular HOMO eigenvalues, catalyst design, and other problems and systems shall be discussed.« less

  13. Aircraft Trajectories Computation-Prediction-Control. Volume 1 (La Trajectoire de l’Avion Calcul-Prediction-Controle)

    DTIC Science & Technology

    1990-03-01

    knowledge covering problems of this type is called calculus of variations or optimal control theory (Refs. 1-8). As stated before, appli - cations occur...to the optimality conditions and the feasibility equations of Problem (GP), respectively. Clearly, after the transformation (26) is applied , the...trajectories, the primal sequential gradient-restoration algorithm (PSGRA) is applied to compute optimal trajectories for aeroassisted orbital transfer

  14. Resonator reset in circuit QED by optimal control for large open quantum systems

    NASA Astrophysics Data System (ADS)

    Boutin, Samuel; Andersen, Christian Kraglund; Venkatraman, Jayameenakshi; Ferris, Andrew J.; Blais, Alexandre

    2017-10-01

    We study an implementation of the open GRAPE (gradient ascent pulse engineering) algorithm well suited for large open quantum systems. While typical implementations of optimal control algorithms for open quantum systems rely on explicit matrix exponential calculations, our implementation avoids these operations, leading to a polynomial speedup of the open GRAPE algorithm in cases of interest. This speedup, as well as the reduced memory requirements of our implementation, are illustrated by comparison to a standard implementation of open GRAPE. As a practical example, we apply this open-system optimization method to active reset of a readout resonator in circuit QED. In this problem, the shape of a microwave pulse is optimized such as to empty the cavity from measurement photons as fast as possible. Using our open GRAPE implementation, we obtain pulse shapes, leading to a reset time over 4 times faster than passive reset.

  15. Numerical and Experimental Validation of the Optimization Methodologies for a Wing-Tip Structure Equipped with Conventional and Morphing Ailerons =

    NASA Astrophysics Data System (ADS)

    Koreanschi, Andreea

    In order to answer the problem of 'how to reduce the aerospace industry's environment footprint?' new morphing technologies were developed. These technologies were aimed at reducing the aircraft's fuel consumption through reduction of the wing drag. The morphing concept used in the present research consists of replacing the conventional aluminium upper surface of the wing with a flexible composite skin for morphing abilities. For the ATR-42 'Morphing wing' project, the wing models were manufactured entirely from composite materials and the morphing region was optimized for flexibility. In this project two rigid wing models and an active morphing wing model were designed, manufactured and wind tunnel tested. For the CRIAQ MDO 505 project, a full scale wing-tip equipped with two types of ailerons, conventional and morphing, was designed, optimized, manufactured, bench and wind tunnel tested. The morphing concept was applied on a real wing internal structure and incorporated aerodynamic, structural and control constraints specific to a multidisciplinary approach. Numerical optimization, aerodynamic analysis and experimental validation were performed for both the CRIAQ MDO 505 full scale wing-tip demonstrator and the ATR-42 reduced scale wing models. In order to improve the aerodynamic performances of the ATR-42 and CRIAQ MDO 505 wing airfoils, three global optimization algorithms were developed, tested and compared. The three algorithms were: the genetic algorithm, the artificial bee colony and the gradient descent. The algorithms were coupled with the two-dimensional aerodynamic solver XFoil. XFoil is known for its rapid convergence, robustness and use of the semi-empirical e n method for determining the position of the flow transition from laminar to turbulent. Based on the performance comparison between the algorithms, the genetic algorithm was chosen for the optimization of the ATR-42 and CRIAQ MDO 505 wing airfoils. The optimization algorithm was improved during the CRIAQ MDO 505 project for convergence speed by introducing a two-step cross-over function. Structural constraints were introduced in the algorithm at each aero-structural optimization interaction, allowing a better manipulation of the algorithm and giving it more capabilities of morphing combinations. The CRIAQ MDO 505 project envisioned a morphing aileron concept for the morphing upper surface wing. For this morphing aileron concept, two optimization methods were developed. The methods used the already developed genetic algorithm and each method had a different design concept. The first method was based on the morphing upper surface concept, using actuation points to achieve the desired shape. The second method was based on the hinge rotation concept of the conventional aileron but applied at multiple nodes along the aileron camber to achieve the desired shape. Both methods were constrained by manufacturing and aerodynamic requirements. The purpose of the morphing aileron methods was to obtain an aileron shape with a smoother pressure distribution gradient during deflection than the conventional aileron. The aerodynamic optimization results were used for the structural optimization and design of the wing, particularly the flexible composite skin. Due to the structural changes performed on the initial wing-tip structure, an aeroelastic behaviour analysis, more specific on flutter phenomenon, was performed. The analyses were done to ensure the structural integrity of the wing-tip demonstrator during wind tunnel tests. Three wind tunnel tests were performed for the CRIAQ MDO 505 wing-tip demonstrator at the IAR-NRC subsonic wind tunnel facility in Ottawa. The first two tests were performed for the wing-tip equipped with conventional aileron. The purpose of these tests was to validate the control system designed for the morphing upper surface, the numerical optimization and aerodynamic analysis and to evaluate the optimization efficiency on the boundary layer behaviour and the wing drag. The third set of wind tunnel tests was performed on the wing-tip equipped with a morphing aileron. The purpose of this test was to evaluate the performances of the morphing aileron, in conjunction with the active morphing upper surface, and their effect on the lift, drag and boundary layer behaviour. Transition data, obtained from Infrared Thermography, and pressure data, extracted from Kulite and pressure taps recordings, were used to validate the numerical optimization and aerodynamic performances of the wing-tip demonstrator. A set of wind tunnel tests was performed on the ATR-42 rigid wing models at the Price-Paidoussis subsonic wind tunnel at Ecole de technologie Superieure. The results from the pressure taps recordings were used to validate the numerical optimization. A second derivative of the pressure distribution method was applied to evaluate the transition region on the upper surface of the wing models for comparison with the numerical transition values. (Abstract shortened by ProQuest.).

  16. A look-ahead variant of the Lanczos algorithm and its application to the quasi-minimal residual method for non-Hermitian linear systems. Ph.D. Thesis - Massachusetts Inst. of Technology, Aug. 1991

    NASA Technical Reports Server (NTRS)

    Nachtigal, Noel M.

    1991-01-01

    The Lanczos algorithm can be used both for eigenvalue problems and to solve linear systems. However, when applied to non-Hermitian matrices, the classical Lanczos algorithm is susceptible to breakdowns and potential instabilities. In addition, the biconjugate gradient (BCG) algorithm, which is the natural generalization of the conjugate gradient algorithm to non-Hermitian linear systems, has a second source of breakdowns, independent of the Lanczos breakdowns. Here, we present two new results. We propose an implementation of a look-ahead variant of the Lanczos algorithm which overcomes the breakdowns by skipping over those steps where a breakdown or a near-breakdown would occur. The new algorithm can handle look-ahead steps of any length and requires the same number of matrix-vector products and inner products per step as the classical Lanczos algorithm without look-ahead. Based on the proposed look-ahead Lanczos algorithm, we then present a novel BCG-like approach, the quasi-minimal residual (QMR) method, which avoids the second source of breakdowns in the BCG algorithm. We present details of the new method and discuss some of its properties. In particular, we discuss the relationship between QMR and BCG, showing how one can recover the BCG iterates, when they exist, from the QMR iterates. We also present convergence results for QMR, showing the connection between QMR and the generalized minimal residual (GMRES) algorithm, the optimal method in this class of methods. Finally, we give some numerical examples, both for eigenvalue computations and for non-Hermitian linear systems.

  17. Fuzzy multiobjective models for optimal operation of a hydropower system

    NASA Astrophysics Data System (ADS)

    Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.

    2013-06-01

    Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.

  18. Investigation and appreciation of optimal output feedback. Volume 1: A convergent algorithm for the stochastic infinite-time discrete optimal output feedback problem

    NASA Technical Reports Server (NTRS)

    Halyo, N.; Broussard, J. R.

    1984-01-01

    The stochastic, infinite time, discrete output feedback problem for time invariant linear systems is examined. Two sets of sufficient conditions for the existence of a stable, globally optimal solution are presented. An expression for the total change in the cost function due to a change in the feedback gain is obtained. This expression is used to show that a sequence of gains can be obtained by an algorithm, so that the corresponding cost sequence is monotonically decreasing and the corresponding sequence of the cost gradient converges to zero. The algorithm is guaranteed to obtain a critical point of the cost function. The computational steps necessary to implement the algorithm on a computer are presented. The results are applied to a digital outer loop flight control problem. The numerical results for this 13th order problem indicate a rate of convergence considerably faster than two other algorithms used for comparison.

  19. Realizable optimal control for a remotely piloted research vehicle. [stability augmentation

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1980-01-01

    The design of a control system using the linear-quadratic regulator (LQR) control law theory for time invariant systems in conjunction with an incremental gradient procedure is presented. The incremental gradient technique reduces the full-state feedback controller design, generated by the LQR algorithm, to a realizable design. With a realizable controller, the feedback gains are based only on the available system outputs instead of being based on the full-state outputs. The design is for a remotely piloted research vehicle (RPRV) stability augmentation system. The design includes methods for accounting for noisy measurements, discrete controls with zero-order-hold outputs, and computational delay errors. Results from simulation studies of the response of the RPRV to a step in the elevator and frequency analysis techniques are included to illustrate these abnormalities and their influence on the controller design.

  20. Accelerating atomic structure search with cluster regularization

    NASA Astrophysics Data System (ADS)

    Sørensen, K. H.; Jørgensen, M. S.; Bruix, A.; Hammer, B.

    2018-06-01

    We present a method for accelerating the global structure optimization of atomic compounds. The method is demonstrated to speed up the finding of the anatase TiO2(001)-(1 × 4) surface reconstruction within a density functional tight-binding theory framework using an evolutionary algorithm. As a key element of the method, we use unsupervised machine learning techniques to categorize atoms present in a diverse set of partially disordered surface structures into clusters of atoms having similar local atomic environments. Analysis of more than 1000 different structures shows that the total energy of the structures correlates with the summed distances of the atomic environments to their respective cluster centers in feature space, where the sum runs over all atoms in each structure. Our method is formulated as a gradient based minimization of this summed cluster distance for a given structure and alternates with a standard gradient based energy minimization. While the latter minimization ensures local relaxation within a given energy basin, the former enables escapes from meta-stable basins and hence increases the overall performance of the global optimization.

  1. Numerical simulations of detonation propagation in gaseous fuel-air mixtures

    NASA Astrophysics Data System (ADS)

    Honhar, Praveen; Kaplan, Carolyn; Houim, Ryan; Oran, Elaine

    2017-11-01

    Unsteady multidimensional numerical simulations of detonation propagation and survival in mixtures of fuel (hydrogen or methane) diluted with air were carried out with a fully compressible Navier-Stokes solver using a simplified chemical-diffusive model (CDM). The CDM was derived using a genetic algorithm combined with the Nelder-Mead optimization algorithm and reproduces physically correct laminar flame and detonation properties. Cases studied are overdriven detonations propagating through confined mediums, with or without gradients in composition. Results from simulations confirm that the survival of the detonation depends on the channel heights. In addition, the simulations show that the propagation of the detonation waves depends on the steepness in composition gradients.

  2. Lateral Penumbra Modelling Based Leaf End Shape Optimization for Multileaf Collimator in Radiotherapy

    PubMed Central

    Zhou, Dong; Zhang, Hui; Ye, Peiqing

    2016-01-01

    Lateral penumbra of multileaf collimator plays an important role in radiotherapy treatment planning. Growing evidence has revealed that, for a single-focused multileaf collimator, lateral penumbra width is leaf position dependent and largely attributed to the leaf end shape. In our study, an analytical method for leaf end induced lateral penumbra modelling is formulated using Tangent Secant Theory. Compared with Monte Carlo simulation and ray tracing algorithm, our model serves well the purpose of cost-efficient penumbra evaluation. Leaf ends represented in parametric forms of circular arc, elliptical arc, Bézier curve, and B-spline are implemented. With biobjective function of penumbra mean and variance introduced, genetic algorithm is carried out for approximating the Pareto frontier. Results show that for circular arc leaf end objective function is convex and convergence to optimal solution is guaranteed using gradient based iterative method. It is found that optimal leaf end in the shape of Bézier curve achieves minimal standard deviation, while using B-spline minimum of penumbra mean is obtained. For treatment modalities in clinical application, optimized leaf ends are in close agreement with actual shapes. Taken together, the method that we propose can provide insight into leaf end shape design of multileaf collimator. PMID:27110274

  3. Adaptive behaviors in multi-agent source localization using passive sensing.

    PubMed

    Shaukat, Mansoor; Chitre, Mandar

    2016-12-01

    In this paper, the role of adaptive group cohesion in a cooperative multi-agent source localization problem is investigated. A distributed source localization algorithm is presented for a homogeneous team of simple agents. An agent uses a single sensor to sense the gradient and two sensors to sense its neighbors. The algorithm is a set of individualistic and social behaviors where the individualistic behavior is as simple as an agent keeping its previous heading and is not self-sufficient in localizing the source. Source localization is achieved as an emergent property through agent's adaptive interactions with the neighbors and the environment. Given a single agent is incapable of localizing the source, maintaining team connectivity at all times is crucial. Two simple temporal sampling behaviors, intensity-based-adaptation and connectivity-based-adaptation, ensure an efficient localization strategy with minimal agent breakaways. The agent behaviors are simultaneously optimized using a two phase evolutionary optimization process. The optimized behaviors are estimated with analytical models and the resulting collective behavior is validated against the agent's sensor and actuator noise, strong multi-path interference due to environment variability, initialization distance sensitivity and loss of source signal.

  4. Space mapping method for the design of passive shields

    NASA Astrophysics Data System (ADS)

    Sergeant, Peter; Dupré, Luc; Melkebeek, Jan

    2006-04-01

    The aim of the paper is to find the optimal geometry of a passive shield for the reduction of the magnetic stray field of an axisymmetric induction heater. For the optimization, a space mapping algorithm is used that requires two models. The first is an accurate model with a high computational effort as it contains finite element models. The second is less accurate, but it has a low computational effort as it uses an analytical model: the shield is replaced by a number of mutually coupled coils. The currents in the shield are found by solving an electrical circuit. Space mapping combines both models to obtain the optimal passive shield fast and accurately. The presented optimization technique is compared with gradient, simplex, and genetic algorithms.

  5. Development and Application of a Tool for Optimizing Composite Matrix Viscoplastic Material Parameters

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Naghipour Ghezeljeh, Paria; Bednarcyk, Brett A.

    2018-01-01

    This document describes a recently developed analysis tool that enhances the resident capabilities of the Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) and its application. MAC/GMC is a composite material and laminate analysis software package developed at NASA Glenn Research Center. The primary focus of the current effort is to provide a graphical user interface (GUI) capability that helps users optimize highly nonlinear viscoplastic constitutive law parameters by fitting experimentally observed/measured stress-strain responses under various thermo-mechanical conditions for braided composites. The tool has been developed utilizing the MATrix LABoratory (MATLAB) (The Mathworks, Inc., Natick, MA) programming language. Illustrative examples shown are for a specific braided composite system wherein the matrix viscoplastic behavior is represented by a constitutive law described by seven parameters. The tool is general enough to fit any number of experimentally observed stress-strain responses of the material. The number of parameters to be optimized, as well as the importance given to each stress-strain response, are user choice. Three different optimization algorithms are included: (1) Optimization based on gradient method, (2) Genetic algorithm (GA) based optimization and (3) Particle Swarm Optimization (PSO). The user can mix and match the three algorithms. For example, one can start optimization with either 2 or 3 and then use the optimized solution to further fine tune with approach 1. The secondary focus of this paper is to demonstrate the application of this tool to optimize/calibrate parameters for a nonlinear viscoplastic matrix to predict stress-strain curves (for constituent and composite levels) at different rates, temperatures and/or loading conditions utilizing the Generalized Method of Cells. After preliminary validation of the tool through comparison with experimental results, a detailed virtual parametric study is presented wherein the combined effects of temperature and loading rate on the predicted response of a braided composite is investigated.

  6. Identification of integrated airframe: Propulsion effects on an F-15 aircraft for application to drag minimization

    NASA Technical Reports Server (NTRS)

    Schkolnik, Gerard S.

    1993-01-01

    The application of an adaptive real-time measurement-based performance optimization technique is being explored for a future flight research program. The key technical challenge of the approach is parameter identification, which uses a perturbation-search technique to identify changes in performance caused by forced oscillations of the controls. The controls on the NASA F-15 highly integrated digital electronic control (HIDEC) aircraft were perturbed using inlet cowl rotation steps at various subsonic and supersonic flight conditions to determine the effect on aircraft performance. The feasibility of the perturbation-search technique for identifying integrated airframe-propulsion system performance effects was successfully shown through flight experiments and postflight data analysis. Aircraft response and control data were analyzed postflight to identify gradients and to determine the minimum drag point. Changes in longitudinal acceleration as small as 0.004 g were measured, and absolute resolution was estimated to be 0.002 g or approximately 50 lbf of drag. Two techniques for identifying performance gradients were compared: a least-squares estimation algorithm and a modified maximum likelihood estimator algorithm. A complementary filter algorithm was used with the least squares estimator.

  7. Identification of integrated airframe-propulsion effects on an F-15 aircraft for application to drag minimization

    NASA Technical Reports Server (NTRS)

    Schkolnik, Gerald S.

    1993-01-01

    The application of an adaptive real-time measurement-based performance optimization technique is being explored for a future flight research program. The key technical challenge of the approach is parameter identification, which uses a perturbation-search technique to identify changes in performance caused by forced oscillations of the controls. The controls on the NASA F-15 highly integrated digital electronic control (HIDEC) aircraft were perturbed using inlet cowl rotation steps at various subsonic and supersonic flight conditions to determine the effect on aircraft performance. The feasibility of the perturbation-search technique for identifying integrated airframe-propulsion system performance effects was successfully shown through flight experiments and postflight data analysis. Aircraft response and control data were analyzed postflight to identify gradients and to determine the minimum drag point. Changes in longitudinal acceleration as small as 0.004 g were measured, and absolute resolution was estimated to be 0.002 g or approximately 50 lbf of drag. Two techniques for identifying performance gradients were compared: a least-squares estimation algorithm and a modified maximum likelihood estimator algorithm. A complementary filter algorithm was used with the least squares estimator.

  8. The Modified HZ Conjugate Gradient Algorithm for Large-Scale Nonsmooth Optimization.

    PubMed

    Yuan, Gonglin; Sheng, Zhou; Liu, Wenjie

    2016-01-01

    In this paper, the Hager and Zhang (HZ) conjugate gradient (CG) method and the modified HZ (MHZ) CG method are presented for large-scale nonsmooth convex minimization. Under some mild conditions, convergent results of the proposed methods are established. Numerical results show that the presented methods can be better efficiency for large-scale nonsmooth problems, and several problems are tested (with the maximum dimensions to 100,000 variables).

  9. Gradient-Modulated SWIFT

    PubMed Central

    Zhang, Jinjin; Idiyatullin, Djaudat; Corum, Curtis A.; Kobayashi, Naoharu; Garwood, Michael

    2017-01-01

    Purpose Methods designed to image fast-relaxing spins, such as sweep imaging with Fourier transformation (SWIFT), often utilize high excitation bandwidth and duty cycle, and in some applications the optimal flip angle cannot be used without exceeding safe specific absorption rate (SAR) levels. The aim is to reduce SAR and increase the flexibility of SWIFT by applying time-varying gradient-modulation (GM). The modified sequence is called GM-SWIFT. Theory and Methods The method known as gradient-modulated offset independent adiabaticity was used to modulate the radiofrequency (RF) pulse and gradients. An expanded correlation algorithm was developed for GM-SWIFT to correct the phase and scale effects. Simulations and phantom and in vivo human experiments were performed to verify the correlation algorithm and to evaluate imaging performance. Results GM-SWIFT reduces SAR, RF amplitude, and acquisition time by up to 90%, 70%, and 45%, respectively, while maintaining image quality. The choice of GM parameter influences the lower limit of short T2* sensitivity, which can be exploited to suppress unwanted image haze from unresolvable ultrashort T2* signals originating from plastic materials in the coil housing and fixatives. Conclusions GM-SWIFT reduces peak and total RF power requirements and provides additional flexibility for optimizing SAR, RF amplitude, scan time, and image quality. PMID:25800547

  10. A dynamical regularization algorithm for solving inverse source problems of elliptic partial differential equations

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten

    2018-06-01

    This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.

  11. Algorithmic cooling in liquid-state nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Atia, Yosi; Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2016-01-01

    Algorithmic cooling is a method that employs thermalization to increase qubit purification level; namely, it reduces the qubit system's entropy. We utilized gradient ascent pulse engineering, an optimal control algorithm, to implement algorithmic cooling in liquid-state nuclear magnetic resonance. Various cooling algorithms were applied onto the three qubits of C132-trichloroethylene, cooling the system beyond Shannon's entropy bound in several different ways. In particular, in one experiment a carbon qubit was cooled by a factor of 4.61. This work is a step towards potentially integrating tools of NMR quantum computing into in vivo magnetic-resonance spectroscopy.

  12. Formulation for Simultaneous Aerodynamic Analysis and Design Optimization

    NASA Technical Reports Server (NTRS)

    Hou, G. W.; Taylor, A. C., III; Mani, S. V.; Newman, P. A.

    1993-01-01

    An efficient approach for simultaneous aerodynamic analysis and design optimization is presented. This approach does not require the performance of many flow analyses at each design optimization step, which can be an expensive procedure. Thus, this approach brings us one step closer to meeting the challenge of incorporating computational fluid dynamic codes into gradient-based optimization techniques for aerodynamic design. An adjoint-variable method is introduced to nullify the effect of the increased number of design variables in the problem formulation. The method has been successfully tested on one-dimensional nozzle flow problems, including a sample problem with a normal shock. Implementations of the above algorithm are also presented that incorporate Newton iterations to secure a high-quality flow solution at the end of the design process. Implementations with iterative flow solvers are possible and will be required for large, multidimensional flow problems.

  13. Superfast maximum-likelihood reconstruction for quantum tomography

    NASA Astrophysics Data System (ADS)

    Shang, Jiangwei; Zhang, Zhengyun; Ng, Hui Khoon

    2017-06-01

    Conventional methods for computing maximum-likelihood estimators (MLE) often converge slowly in practical situations, leading to a search for simplifying methods that rely on additional assumptions for their validity. In this work, we provide a fast and reliable algorithm for maximum-likelihood reconstruction that avoids this slow convergence. Our method utilizes the state-of-the-art convex optimization scheme, an accelerated projected-gradient method, that allows one to accommodate the quantum nature of the problem in a different way than in the standard methods. We demonstrate the power of our approach by comparing its performance with other algorithms for n -qubit state tomography. In particular, an eight-qubit situation that purportedly took weeks of computation time in 2005 can now be completed in under a minute for a single set of data, with far higher accuracy than previously possible. This refutes the common claim that MLE reconstruction is slow and reduces the need for alternative methods that often come with difficult-to-verify assumptions. In fact, recent methods assuming Gaussian statistics or relying on compressed sensing ideas are demonstrably inapplicable for the situation under consideration here. Our algorithm can be applied to general optimization problems over the quantum state space; the philosophy of projected gradients can further be utilized for optimization contexts with general constraints.

  14. A convex optimization method for self-organization in dynamic (FSO/RF) wireless networks

    NASA Astrophysics Data System (ADS)

    Llorca, Jaime; Davis, Christopher C.; Milner, Stuart D.

    2008-08-01

    Next generation communication networks are becoming increasingly complex systems. Previously, we presented a novel physics-based approach to model dynamic wireless networks as physical systems which react to local forces exerted on network nodes. We showed that under clear atmospheric conditions the network communication energy can be modeled as the potential energy of an analogous spring system and presented a distributed mobility control algorithm where nodes react to local forces driving the network to energy minimizing configurations. This paper extends our previous work by including the effects of atmospheric attenuation and transmitted power constraints in the optimization problem. We show how our new formulation still results in a convex energy minimization problem. Accordingly, an updated force-driven mobility control algorithm is presented. Forces on mobile backbone nodes are computed as the negative gradient of the new energy function. Results show how in the presence of atmospheric obscuration stronger forces are exerted on network nodes that make them move closer to each other, avoiding loss of connectivity. We show results in terms of network coverage and backbone connectivity and compare the developed algorithms for different scenarios.

  15. A Fast Deep Learning System Using GPU

    DTIC Science & Technology

    2014-06-01

    hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...widely used in data modeling until three decades later when efficient training algorithm for RBM is invented by Hinton [3] and the computing power is...be trained using most of optimization algorithms , such as BP, conjugate gradient descent (CGD) or Levenberg-Marquardt (LM). The advantage of this

  16. Algorithm based on the Thomson problem for determination of equilibrium structures of metal nanoclusters

    NASA Astrophysics Data System (ADS)

    Arias, E.; Florez, E.; Pérez-Torres, J. F.

    2017-06-01

    A new algorithm for the determination of equilibrium structures suitable for metal nanoclusters is proposed. The algorithm performs a stochastic search of the minima associated with the nuclear potential energy function restricted to a sphere (similar to the Thomson problem), in order to guess configurations of the nuclear positions. Subsequently, the guessed configurations are further optimized driven by the total energy function using the conventional gradient descent method. This methodology is equivalent to using the valence shell electron pair repulsion model in guessing initial configurations in the traditional molecular quantum chemistry. The framework is illustrated in several clusters of increasing complexity: Cu7, Cu9, and Cu11 as benchmark systems, and Cu38 and Ni9 as novel systems. New equilibrium structures for Cu9, Cu11, Cu38, and Ni9 are reported.

  17. Algorithm based on the Thomson problem for determination of equilibrium structures of metal nanoclusters.

    PubMed

    Arias, E; Florez, E; Pérez-Torres, J F

    2017-06-28

    A new algorithm for the determination of equilibrium structures suitable for metal nanoclusters is proposed. The algorithm performs a stochastic search of the minima associated with the nuclear potential energy function restricted to a sphere (similar to the Thomson problem), in order to guess configurations of the nuclear positions. Subsequently, the guessed configurations are further optimized driven by the total energy function using the conventional gradient descent method. This methodology is equivalent to using the valence shell electron pair repulsion model in guessing initial configurations in the traditional molecular quantum chemistry. The framework is illustrated in several clusters of increasing complexity: Cu 7 , Cu 9 , and Cu 11 as benchmark systems, and Cu 38 and Ni 9 as novel systems. New equilibrium structures for Cu 9 , Cu 11 , Cu 38 , and Ni 9 are reported.

  18. Spiral trajectory design: a flexible numerical algorithm and base analytical equations.

    PubMed

    Pipe, James G; Zwart, Nicholas R

    2014-01-01

    Spiral-based trajectories for magnetic resonance imaging can be advantageous, but are often cumbersome to design or create. This work presents a flexible numerical algorithm for designing trajectories based on explicit definition of radial undersampling, and also gives several analytical expressions for charactering the base (critically sampled) class of these trajectories. Expressions for the gradient waveform, based on slew and amplitude limits, are developed such that a desired pitch in the spiral k-space trajectory is followed. The source code for this algorithm, written in C, is publicly available. Analytical expressions approximating the spiral trajectory (ignoring the radial component) are given to characterize measurement time, gradient heating, maximum gradient amplitude, and off-resonance phase for slew-limited and gradient amplitude-limited cases. Several numerically calculated trajectories are illustrated, and base Archimedean spirals are compared with analytically obtained results. Several different waveforms illustrate that the desired slew and amplitude limits are reached, as are the desired undersampling patterns, using the numerical method. For base Archimedean spirals, the results of the numerical and analytical approaches are in good agreement. A versatile numerical algorithm was developed, and was written in publicly available code. Approximate analytical formulas are given that help characterize spiral trajectories. Copyright © 2013 Wiley Periodicals, Inc.

  19. SAGRAD: A Program for Neural Network Training with Simulated Annealing and the Conjugate Gradient Method.

    PubMed

    Bernal, Javier; Torres-Jimenez, Jose

    2015-01-01

    SAGRAD (Simulated Annealing GRADient), a Fortran 77 program for computing neural networks for classification using batch learning, is discussed. Neural network training in SAGRAD is based on a combination of simulated annealing and Møller's scaled conjugate gradient algorithm, the latter a variation of the traditional conjugate gradient method, better suited for the nonquadratic nature of neural networks. Different aspects of the implementation of the training process in SAGRAD are discussed, such as the efficient computation of gradients and multiplication of vectors by Hessian matrices that are required by Møller's algorithm; the (re)initialization of weights with simulated annealing required to (re)start Møller's algorithm the first time and each time thereafter that it shows insufficient progress in reaching a possibly local minimum; and the use of simulated annealing when Møller's algorithm, after possibly making considerable progress, becomes stuck at a local minimum or flat area of weight space. Outlines of the scaled conjugate gradient algorithm, the simulated annealing procedure and the training process used in SAGRAD are presented together with results from running SAGRAD on two examples of training data.

  20. Seamline Determination Based on PKGC Segmentation for Remote Sensing Image Mosaicking

    PubMed Central

    Dong, Qiang; Liu, Jinghong

    2017-01-01

    This paper presents a novel method of seamline determination for remote sensing image mosaicking. A two-level optimization strategy is applied to determine the seamline. Object-level optimization is executed firstly. Background regions (BRs) and obvious regions (ORs) are extracted based on the results of parametric kernel graph cuts (PKGC) segmentation. The global cost map which consists of color difference, a multi-scale morphological gradient (MSMG) constraint, and texture difference is weighted by BRs. Finally, the seamline is determined in the weighted cost from the start point to the end point. Dijkstra’s shortest path algorithm is adopted for pixel-level optimization to determine the positions of seamline. Meanwhile, a new seamline optimization strategy is proposed for image mosaicking with multi-image overlapping regions. The experimental results show the better performance than the conventional method based on mean-shift segmentation. Seamlines based on the proposed method bypass the obvious objects and take less time in execution. This new method is efficient and superior for seamline determination in remote sensing image mosaicking. PMID:28749446

  1. Two-step reconstruction method using global optimization and conjugate gradient for ultrasound-guided diffuse optical tomography.

    PubMed

    Tavakoli, Behnoosh; Zhu, Quing

    2013-01-01

    Ultrasound-guided diffuse optical tomography (DOT) is a promising method for characterizing malignant and benign lesions in the female breast. We introduce a new two-step algorithm for DOT inversion in which the optical parameters are estimated with the global optimization method, genetic algorithm. The estimation result is applied as an initial guess to the conjugate gradient (CG) optimization method to obtain the absorption and scattering distributions simultaneously. Simulations and phantom experiments have shown that the maximum absorption and reduced scattering coefficients are reconstructed with less than 10% and 25% errors, respectively. This is in contrast with the CG method alone, which generates about 20% error for the absorption coefficient and does not accurately recover the scattering distribution. A new measure of scattering contrast has been introduced to characterize benign and malignant breast lesions. The results of 16 clinical cases reconstructed with the two-step method demonstrates that, on average, the absorption coefficient and scattering contrast of malignant lesions are about 1.8 and 3.32 times higher than the benign cases, respectively.

  2. A novel retinal vessel extraction algorithm based on matched filtering and gradient vector flow

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Xia, Mingliang; Xuan, Li

    2013-10-01

    The microvasculature network of retina plays an important role in the study and diagnosis of retinal diseases (age-related macular degeneration and diabetic retinopathy for example). Although it is possible to noninvasively acquire high-resolution retinal images with modern retinal imaging technologies, non-uniform illumination, the low contrast of thin vessels and the background noises all make it difficult for diagnosis. In this paper, we introduce a novel retinal vessel extraction algorithm based on gradient vector flow and matched filtering to segment retinal vessels with different likelihood. Firstly, we use isotropic Gaussian kernel and adaptive histogram equalization to smooth and enhance the retinal images respectively. Secondly, a multi-scale matched filtering method is adopted to extract the retinal vessels. Then, the gradient vector flow algorithm is introduced to locate the edge of the retinal vessels. Finally, we combine the results of matched filtering method and gradient vector flow algorithm to extract the vessels at different likelihood levels. The experiments demonstrate that our algorithm is efficient and the intensities of vessel images exactly represent the likelihood of the vessels.

  3. Optimizing wavefront-guided corrections for highly aberrated eyes in the presence of registration uncertainty

    PubMed Central

    Shi, Yue; Queener, Hope M.; Marsack, Jason D.; Ravikumar, Ayeswarya; Bedell, Harold E.; Applegate, Raymond A.

    2013-01-01

    Dynamic registration uncertainty of a wavefront-guided correction with respect to underlying wavefront error (WFE) inevitably decreases retinal image quality. A partial correction may improve average retinal image quality and visual acuity in the presence of registration uncertainties. The purpose of this paper is to (a) develop an algorithm to optimize wavefront-guided correction that improves visual acuity given registration uncertainty and (b) test the hypothesis that these corrections provide improved visual performance in the presence of these uncertainties as compared to a full-magnitude correction or a correction by Guirao, Cox, and Williams (2002). A stochastic parallel gradient descent (SPGD) algorithm was used to optimize the partial-magnitude correction for three keratoconic eyes based on measured scleral contact lens movement. Given its high correlation with logMAR acuity, the retinal image quality metric log visual Strehl was used as a predictor of visual acuity. Predicted values of visual acuity with the optimized corrections were validated by regressing measured acuity loss against predicted loss. Measured loss was obtained from normal subjects viewing acuity charts that were degraded by the residual aberrations generated by the movement of the full-magnitude correction, the correction by Guirao, and optimized SPGD correction. Partial-magnitude corrections optimized with an SPGD algorithm provide at least one line improvement of average visual acuity over the full magnitude and the correction by Guirao given the registration uncertainty. This study demonstrates that it is possible to improve the average visual acuity by optimizing wavefront-guided correction in the presence of registration uncertainty. PMID:23757512

  4. Online selective kernel-based temporal difference learning.

    PubMed

    Chen, Xingguo; Gao, Yang; Wang, Ruili

    2013-12-01

    In this paper, an online selective kernel-based temporal difference (OSKTD) learning algorithm is proposed to deal with large scale and/or continuous reinforcement learning problems. OSKTD includes two online procedures: online sparsification and parameter updating for the selective kernel-based value function. A new sparsification method (i.e., a kernel distance-based online sparsification method) is proposed based on selective ensemble learning, which is computationally less complex compared with other sparsification methods. With the proposed sparsification method, the sparsified dictionary of samples is constructed online by checking if a sample needs to be added to the sparsified dictionary. In addition, based on local validity, a selective kernel-based value function is proposed to select the best samples from the sample dictionary for the selective kernel-based value function approximator. The parameters of the selective kernel-based value function are iteratively updated by using the temporal difference (TD) learning algorithm combined with the gradient descent technique. The complexity of the online sparsification procedure in the OSKTD algorithm is O(n). In addition, two typical experiments (Maze and Mountain Car) are used to compare with both traditional and up-to-date O(n) algorithms (GTD, GTD2, and TDC using the kernel-based value function), and the results demonstrate the effectiveness of our proposed algorithm. In the Maze problem, OSKTD converges to an optimal policy and converges faster than both traditional and up-to-date algorithms. In the Mountain Car problem, OSKTD converges, requires less computation time compared with other sparsification methods, gets a better local optima than the traditional algorithms, and converges much faster than the up-to-date algorithms. In addition, OSKTD can reach a competitive ultimate optima compared with the up-to-date algorithms.

  5. Dynamic Modeling, Model-Based Control, and Optimization of Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Spivey, Benjamin James

    2011-07-01

    Solid oxide fuel cells are a promising option for distributed stationary power generation that offers efficiencies ranging from 50% in stand-alone applications to greater than 80% in cogeneration. To advance SOFC technology for widespread market penetration, the SOFC should demonstrate improved cell lifetime and load-following capability. This work seeks to improve lifetime through dynamic analysis of critical lifetime variables and advanced control algorithms that permit load-following while remaining in a safe operating zone based on stress analysis. Control algorithms typically have addressed SOFC lifetime operability objectives using unconstrained, single-input-single-output control algorithms that minimize thermal transients. Existing SOFC controls research has not considered maximum radial thermal gradients or limits on absolute temperatures in the SOFC. In particular, as stress analysis demonstrates, the minimum cell temperature is the primary thermal stress driver in tubular SOFCs. This dissertation presents a dynamic, quasi-two-dimensional model for a high-temperature tubular SOFC combined with ejector and prereformer models. The model captures dynamics of critical thermal stress drivers and is used as the physical plant for closed-loop control simulations. A constrained, MIMO model predictive control algorithm is developed and applied to control the SOFC. Closed-loop control simulation results demonstrate effective load-following, constraint satisfaction for critical lifetime variables, and disturbance rejection. Nonlinear programming is applied to find the optimal SOFC size and steady-state operating conditions to minimize total system costs.

  6. Optimization with artificial neural network systems - A mapping principle and a comparison to gradient based methods

    NASA Technical Reports Server (NTRS)

    Leong, Harrison Monfook

    1988-01-01

    General formulae for mapping optimization problems into systems of ordinary differential equations associated with artificial neural networks are presented. A comparison is made to optimization using gradient-search methods. The performance measure is the settling time from an initial state to a target state. A simple analytical example illustrates a situation where dynamical systems representing artificial neural network methods would settle faster than those representing gradient-search. Settling time was investigated for a more complicated optimization problem using computer simulations. The problem was a simplified version of a problem in medical imaging: determining loci of cerebral activity from electromagnetic measurements at the scalp. The simulations showed that gradient based systems typically settled 50 to 100 times faster than systems based on current neural network optimization methods.

  7. Optimal structural design of the midship of a VLCC based on the strategy integrating SVM and GA

    NASA Astrophysics Data System (ADS)

    Sun, Li; Wang, Deyu

    2012-03-01

    In this paper a hybrid process of modeling and optimization, which integrates a support vector machine (SVM) and genetic algorithm (GA), was introduced to reduce the high time cost in structural optimization of ships. SVM, which is rooted in statistical learning theory and an approximate implementation of the method of structural risk minimization, can provide a good generalization performance in metamodeling the input-output relationship of real problems and consequently cuts down on high time cost in the analysis of real problems, such as FEM analysis. The GA, as a powerful optimization technique, possesses remarkable advantages for the problems that can hardly be optimized with common gradient-based optimization methods, which makes it suitable for optimizing models built by SVM. Based on the SVM-GA strategy, optimization of structural scantlings in the midship of a very large crude carrier (VLCC) ship was carried out according to the direct strength assessment method in common structural rules (CSR), which eventually demonstrates the high efficiency of SVM-GA in optimizing the ship structural scantlings under heavy computational complexity. The time cost of this optimization with SVM-GA has been sharply reduced, many more loops have been processed within a small amount of time and the design has been improved remarkably.

  8. Numerical approach of collision avoidance and optimal control on robotic manipulators

    NASA Technical Reports Server (NTRS)

    Wang, Jyhshing Jack

    1990-01-01

    Collision-free optimal motion and trajectory planning for robotic manipulators are solved by a method of sequential gradient restoration algorithm. Numerical examples of a two degree-of-freedom (DOF) robotic manipulator are demonstrated to show the excellence of the optimization technique and obstacle avoidance scheme. The obstacle is put on the midway, or even further inward on purpose, of the previous no-obstacle optimal trajectory. For the minimum-time purpose, the trajectory grazes by the obstacle and the minimum-time motion successfully avoids the obstacle. The minimum-time is longer for the obstacle avoidance cases than the one without obstacle. The obstacle avoidance scheme can deal with multiple obstacles in any ellipsoid forms by using artificial potential fields as penalty functions via distance functions. The method is promising in solving collision-free optimal control problems for robotics and can be applied to any DOF robotic manipulators with any performance indices and mobile robots as well. Since this method generates optimum solution based on Pontryagin Extremum Principle, rather than based on assumptions, the results provide a benchmark against which any optimization techniques can be measured.

  9. Asynchronous Incremental Stochastic Dual Descent Algorithm for Network Resource Allocation

    NASA Astrophysics Data System (ADS)

    Bedi, Amrit Singh; Rajawat, Ketan

    2018-05-01

    Stochastic network optimization problems entail finding resource allocation policies that are optimum on an average but must be designed in an online fashion. Such problems are ubiquitous in communication networks, where resources such as energy and bandwidth are divided among nodes to satisfy certain long-term objectives. This paper proposes an asynchronous incremental dual decent resource allocation algorithm that utilizes delayed stochastic {gradients} for carrying out its updates. The proposed algorithm is well-suited to heterogeneous networks as it allows the computationally-challenged or energy-starved nodes to, at times, postpone the updates. The asymptotic analysis of the proposed algorithm is carried out, establishing dual convergence under both, constant and diminishing step sizes. It is also shown that with constant step size, the proposed resource allocation policy is asymptotically near-optimal. An application involving multi-cell coordinated beamforming is detailed, demonstrating the usefulness of the proposed algorithm.

  10. A Darwinian approach to control-structure design

    NASA Technical Reports Server (NTRS)

    Zimmerman, David C.

    1993-01-01

    Genetic algorithms (GA's), as introduced by Holland (1975), are one form of directed random search. The form of direction is based on Darwin's 'survival of the fittest' theories. GA's are radically different from the more traditional design optimization techniques. GA's work with a coding of the design variables, as opposed to working with the design variables directly. The search is conducted from a population of designs (i.e., from a large number of points in the design space), unlike the traditional algorithms which search from a single design point. The GA requires only objective function information, as opposed to gradient or other auxiliary information. Finally, the GA is based on probabilistic transition rules, as opposed to deterministic rules. These features allow the GA to attack problems with local-global minima, discontinuous design spaces and mixed variable problems, all in a single, consistent framework.

  11. Wideband dichroic-filter design for LED-phosphor beam-combining

    DOEpatents

    Falicoff, Waqidi

    2010-12-28

    A general method is disclosed of designing two-component dichroic short-pass filters operable for incidence angle distributions over the 0-30.degree. range, and specific preferred embodiments are listed. The method is based on computer optimization algorithms for an N-layer design, specifically the N-dimensional conjugate-gradient minimization of a merit function based on difference from a target transmission spectrum, as well as subsequent cycles of needle synthesis for increasing N. A key feature of the method is the initial filter design, upon which the algorithm proceeds to iterate successive design candidates with smaller merit functions. This initial design, with high-index material H and low-index L, is (0.75 H, 0.5 L, 0.75 H)^m, denoting m (20-30) repetitions of a three-layer motif, giving rise to a filter with N=2 m+1.

  12. Simulation-based optimization of lattice support structures for offshore wind energy converters with the simultaneous perturbation algorithm

    NASA Astrophysics Data System (ADS)

    Molde, H.; Zwick, D.; Muskulus, M.

    2014-12-01

    Support structures for offshore wind turbines are contributing a large part to the total project cost, and a cost saving of a few percent would have considerable impact. At present support structures are designed with simplified methods, e.g., spreadsheet analysis, before more detailed load calculations are performed. Due to the large number of loadcases only a few semimanual design iterations are typically executed. Computer-assisted optimization algorithms could help to further explore design limits and avoid unnecessary conservatism. In this study the simultaneous perturbation stochastic approximation method developed by Spall in the 1990s was assessed with respect to its suitability for support structure optimization. The method depends on a few parameters and an objective function that need to be chosen carefully. In each iteration the structure is evaluated by time-domain analyses, and joint fatigue lifetimes and ultimate strength utilization are computed from stress concentration factors. A pseudo-gradient is determined from only two analysis runs and the design is adjusted in the direction that improves it the most. The algorithm is able to generate considerably improved designs, compared to other methods, in a few hundred iterations, which is demonstrated for the NOWITECH 10 MW reference turbine.

  13. Adjoint Sensitivity Computations for an Embedded-Boundary Cartesian Mesh Method and CAD Geometry

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis,Michael J.

    2006-01-01

    Cartesian-mesh methods are perhaps the most promising approach for addressing the issues of flow solution automation for aerodynamic design problems. In these methods, the discretization of the wetted surface is decoupled from that of the volume mesh. This not only enables fast and robust mesh generation for geometry of arbitrary complexity, but also facilitates access to geometry modeling and manipulation using parametric Computer-Aided Design (CAD) tools. Our goal is to combine the automation capabilities of Cartesian methods with an eficient computation of design sensitivities. We address this issue using the adjoint method, where the computational cost of the design sensitivities, or objective function gradients, is esseutially indepeudent of the number of design variables. In previous work, we presented an accurate and efficient algorithm for the solution of the adjoint Euler equations discretized on Cartesian meshes with embedded, cut-cell boundaries. Novel aspects of the algorithm included the computation of surface shape sensitivities for triangulations based on parametric-CAD models and the linearization of the coupling between the surface triangulation and the cut-cells. The objective of the present work is to extend our adjoint formulation to problems involving general shape changes. Central to this development is the computation of volume-mesh sensitivities to obtain a reliable approximation of the objective finction gradient. Motivated by the success of mesh-perturbation schemes commonly used in body-fitted unstructured formulations, we propose an approach based on a local linearization of a mesh-perturbation scheme similar to the spring analogy. This approach circumvents most of the difficulties that arise due to non-smooth changes in the cut-cell layer as the boundary shape evolves and provides a consistent approximation tot he exact gradient of the discretized abjective function. A detailed gradient accurace study is presented to verify our approach. Thereafter, we focus on a shape optimization problem for an Apollo-like reentry capsule. The optimization seeks to enhance the lift-to-drag ratio of the capsule by modifyjing the shape of its heat-shield in conjunction with a center-of-gravity (c.g.) offset. This multipoint and multi-objective optimization problem is used to demonstrate the overall effectiveness of the Cartesian adjoint method for addressing the issues of complex aerodynamic design. This abstract presents only a brief outline of the numerical method and results; full details will be given in the final paper.

  14. Modified Newton-Raphson GRAPE methods for optimal control of spin systems

    NASA Astrophysics Data System (ADS)

    Goodwin, D. L.; Kuprov, Ilya

    2016-05-01

    Quadratic convergence throughout the active space is achieved for the gradient ascent pulse engineering (GRAPE) family of quantum optimal control algorithms. We demonstrate in this communication that the Hessian of the GRAPE fidelity functional is unusually cheap, having the same asymptotic complexity scaling as the functional itself. This leads to the possibility of using very efficient numerical optimization techniques. In particular, the Newton-Raphson method with a rational function optimization (RFO) regularized Hessian is shown in this work to require fewer system trajectory evaluations than any other algorithm in the GRAPE family. This communication describes algebraic and numerical implementation aspects (matrix exponential recycling, Hessian regularization, etc.) for the RFO Newton-Raphson version of GRAPE and reports benchmarks for common spin state control problems in magnetic resonance spectroscopy.

  15. Acceleration of the direct reconstruction of linear parametric images using nested algorithms.

    PubMed

    Wang, Guobao; Qi, Jinyi

    2010-03-07

    Parametric imaging using dynamic positron emission tomography (PET) provides important information for biological research and clinical diagnosis. Indirect and direct methods have been developed for reconstructing linear parametric images from dynamic PET data. Indirect methods are relatively simple and easy to implement because the image reconstruction and kinetic modeling are performed in two separate steps. Direct methods estimate parametric images directly from raw PET data and are statistically more efficient. However, the convergence rate of direct algorithms can be slow due to the coupling between the reconstruction and kinetic modeling. Here we present two fast gradient-type algorithms for direct reconstruction of linear parametric images. The new algorithms decouple the reconstruction and linear parametric modeling at each iteration by employing the principle of optimization transfer. Convergence speed is accelerated by running more sub-iterations of linear parametric estimation because the computation cost of the linear parametric modeling is much less than that of the image reconstruction. Computer simulation studies demonstrated that the new algorithms converge much faster than the traditional expectation maximization (EM) and the preconditioned conjugate gradient algorithms for dynamic PET.

  16. New knowledge-based genetic algorithm for excavator boom structural optimization

    NASA Astrophysics Data System (ADS)

    Hua, Haiyan; Lin, Shuwen

    2014-03-01

    Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the configurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, are taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.

  17. Smooth function approximation using neural networks.

    PubMed

    Ferrari, Silvia; Stengel, Robert F

    2005-01-01

    An algebraic approach for representing multidimensional nonlinear functions by feedforward neural networks is presented. In this paper, the approach is implemented for the approximation of smooth batch data containing the function's input, output, and possibly, gradient information. The training set is associated to the network adjustable parameters by nonlinear weight equations. The cascade structure of these equations reveals that they can be treated as sets of linear systems. Hence, the training process and the network approximation properties can be investigated via linear algebra. Four algorithms are developed to achieve exact or approximate matching of input-output and/or gradient-based training sets. Their application to the design of forward and feedback neurocontrollers shows that algebraic training is characterized by faster execution speeds and better generalization properties than contemporary optimization techniques.

  18. Compressive Sensing of Foot Gait Signals and Its Application for the Estimation of Clinically Relevant Time Series.

    PubMed

    Pant, Jeevan K; Krishnan, Sridhar

    2016-07-01

    A new signal reconstruction algorithm for compressive sensing based on the minimization of a pseudonorm which promotes block-sparse structure on the first-order difference of the signal is proposed. Involved optimization is carried out by using a sequential version of Fletcher-Reeves' conjugate-gradient algorithm, and the line search is based on Banach's fixed-point theorem. The algorithm is suitable for the reconstruction of foot gait signals which admit block-sparse structure on the first-order difference. An additional algorithm for the estimation of stride-interval, swing-interval, and stance-interval time series from the reconstructed foot gait signals is also proposed. This algorithm is based on finding zero crossing indices of the foot gait signal and using the resulting indices for the computation of time series. Extensive simulation results demonstrate that the proposed signal reconstruction algorithm yields improved signal-to-noise ratio and requires significantly reduced computational effort relative to several competing algorithms over a wide range of compression ratio. For a compression ratio in the range from 88% to 94%, the proposed algorithm is found to offer improved accuracy for the estimation of clinically relevant time-series parameters, namely, the mean value, variance, and spectral index of stride-interval, stance-interval, and swing-interval time series, relative to its nearest competitor algorithm. The improvement in performance for compression ratio as high as 94% indicates that the proposed algorithms would be useful for designing compressive sensing-based systems for long-term telemonitoring of human gait signals.

  19. Arbitrary magnetic field gradient waveform correction using an impulse response based pre-equalization technique.

    PubMed

    Goora, Frédéric G; Colpitts, Bruce G; Balcom, Bruce J

    2014-01-01

    The time-varying magnetic fields used in magnetic resonance applications result in the induction of eddy currents on conductive structures in the vicinity of both the sample under investigation and the gradient coils. These eddy currents typically result in undesired degradations of image quality for MRI applications. Their ubiquitous nature has resulted in the development of various approaches to characterize and minimize their impact on image quality. This paper outlines a method that utilizes the magnetic field gradient waveform monitor method to directly measure the temporal evolution of the magnetic field gradient from a step-like input function and extracts the system impulse response. With the basic assumption that the gradient system is sufficiently linear and time invariant to permit system theory analysis, the impulse response is used to determine a pre-equalized (optimized) input waveform that provides a desired gradient response at the output of the system. An algorithm has been developed that calculates a pre-equalized waveform that may be accurately reproduced by the amplifier (is physically realizable) and accounts for system limitations including system bandwidth, amplifier slew rate capabilities, and noise inherent in the initial measurement. Significant improvements in magnetic field gradient waveform fidelity after pre-equalization have been realized and are summarized. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Hybrid Genetic Algorithm - Local Search Method for Ground-Water Management

    NASA Astrophysics Data System (ADS)

    Chiu, Y.; Nishikawa, T.; Martin, P.

    2008-12-01

    Ground-water management problems commonly are formulated as a mixed-integer, non-linear programming problem (MINLP). Relying only on conventional gradient-search methods to solve the management problem is computationally fast; however, the methods may become trapped in a local optimum. Global-optimization schemes can identify the global optimum, but the convergence is very slow when the optimal solution approaches the global optimum. In this study, we developed a hybrid optimization scheme, which includes a genetic algorithm and a gradient-search method, to solve the MINLP. The genetic algorithm identifies a near- optimal solution, and the gradient search uses the near optimum to identify the global optimum. Our methodology is applied to a conjunctive-use project in the Warren ground-water basin, California. Hi- Desert Water District (HDWD), the primary water-manager in the basin, plans to construct a wastewater treatment plant to reduce future septic-tank effluent from reaching the ground-water system. The treated wastewater instead will recharge the ground-water basin via percolation ponds as part of a larger conjunctive-use strategy, subject to State regulations (e.g. minimum distances and travel times). HDWD wishes to identify the least-cost conjunctive-use strategies that control ground-water levels, meet regulations, and identify new production-well locations. As formulated, the MINLP objective is to minimize water-delivery costs subject to constraints including pump capacities, available recharge water, water-supply demand, water-level constraints, and potential new-well locations. The methodology was demonstrated by an enumerative search of the entire feasible solution and comparing the optimum solution with results from the branch-and-bound algorithm. The results also indicate that the hybrid method identifies the global optimum within an affordable computation time. Sensitivity analyses, which include testing different recharge-rate scenarios, pond layouts, and water-supply constraints, indicate that the number of new wells is insensitive to water-supply constraints; however, pumping rates and patterns of the existing wells are sensitive. The locations of new wells are mildly sensitive to the pond layout.

  1. An Orthogonal Evolutionary Algorithm With Learning Automata for Multiobjective Optimization.

    PubMed

    Dai, Cai; Wang, Yuping; Ye, Miao; Xue, Xingsi; Liu, Hailin

    2016-12-01

    Research on multiobjective optimization problems becomes one of the hottest topics of intelligent computation. In order to improve the search efficiency of an evolutionary algorithm and maintain the diversity of solutions, in this paper, the learning automata (LA) is first used for quantization orthogonal crossover (QOX), and a new fitness function based on decomposition is proposed to achieve these two purposes. Based on these, an orthogonal evolutionary algorithm with LA for complex multiobjective optimization problems with continuous variables is proposed. The experimental results show that in continuous states, the proposed algorithm is able to achieve accurate Pareto-optimal sets and wide Pareto-optimal fronts efficiently. Moreover, the comparison with the several existing well-known algorithms: nondominated sorting genetic algorithm II, decomposition-based multiobjective evolutionary algorithm, decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes, multiobjective optimization by LA, and multiobjective immune algorithm with nondominated neighbor-based selection, on 15 multiobjective benchmark problems, shows that the proposed algorithm is able to find more accurate and evenly distributed Pareto-optimal fronts than the compared ones.

  2. Cooperative pulses for pseudo-pure state preparation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Daxiu; Chang, Yan; Yang, Xiaodong, E-mail: steffen.glaser@tum.de, E-mail: xiaodong.yang@sibet.ac.cn

    2014-06-16

    Using an extended version of the optimal-control-based gradient ascent pulse engineering algorithm, cooperative (COOP) pulses are designed for multi-scan experiments to prepare pseudo-pure states in quantum computation. COOP pulses can cancel undesired signal contributions, complementing and generalizing phase cycles. They also provide more flexibility and, in particular, eliminate the need to select specific individual target states and achieve the fidelity of theoretical limit by flexibly choosing appropriate number of scans and duration of pulses. The COOP approach is experimentally demonstrated for three-qubit and four-qubit systems.

  3. Using evolutionary algorithms for fitting high-dimensional models to neuronal data.

    PubMed

    Svensson, Carl-Magnus; Coombes, Stephen; Peirce, Jonathan Westley

    2012-04-01

    In the study of neurosciences, and of complex biological systems in general, there is frequently a need to fit mathematical models with large numbers of parameters to highly complex datasets. Here we consider algorithms of two different classes, gradient following (GF) methods and evolutionary algorithms (EA) and examine their performance in fitting a 9-parameter model of a filter-based visual neuron to real data recorded from a sample of 107 neurons in macaque primary visual cortex (V1). Although the GF method converged very rapidly on a solution, it was highly susceptible to the effects of local minima in the error surface and produced relatively poor fits unless the initial estimates of the parameters were already very good. Conversely, although the EA required many more iterations of evaluating the model neuron's response to a series of stimuli, it ultimately found better solutions in nearly all cases and its performance was independent of the starting parameters of the model. Thus, although the fitting process was lengthy in terms of processing time, the relative lack of human intervention in the evolutionary algorithm, and its ability ultimately to generate model fits that could be trusted as being close to optimal, made it far superior in this particular application than the gradient following methods. This is likely to be the case in many further complex systems, as are often found in neuroscience.

  4. Performance of Optimized Actuator and Sensor Arrays in an Active Noise Control System

    NASA Technical Reports Server (NTRS)

    Palumbo, D. L.; Padula, S. L.; Lyle, K. H.; Cline, J. H.; Cabell, R. H.

    1996-01-01

    Experiments have been conducted in NASA Langley's Acoustics and Dynamics Laboratory to determine the effectiveness of optimized actuator/sensor architectures and controller algorithms for active control of harmonic interior noise. Tests were conducted in a large scale fuselage model - a composite cylinder which simulates a commuter class aircraft fuselage with three sections of trim panel and a floor. Using an optimization technique based on the component transfer functions, combinations of 4 out of 8 piezoceramic actuators and 8 out of 462 microphone locations were evaluated against predicted performance. A combinatorial optimization technique called tabu search was employed to select the optimum transducer arrays. Three test frequencies represent the cases of a strong acoustic and strong structural response, a weak acoustic and strong structural response and a strong acoustic and weak structural response. Noise reduction was obtained using a Time Averaged/Gradient Descent (TAGD) controller. Results indicate that the optimization technique successfully predicted best and worst case performance. An enhancement of the TAGD control algorithm was also evaluated. The principal components of the actuator/sensor transfer functions were used in the PC-TAGD controller. The principal components are shown to be independent of each other while providing control as effective as the standard TAGD.

  5. Blind retrospective motion correction of MR images.

    PubMed

    Loktyushin, Alexander; Nickisch, Hannes; Pohmann, Rolf; Schölkopf, Bernhard

    2013-12-01

    Subject motion can severely degrade MR images. A retrospective motion correction algorithm, Gradient-based motion correction, which significantly reduces ghosting and blurring artifacts due to subject motion was proposed. The technique uses the raw data of standard imaging sequences; no sequence modifications or additional equipment such as tracking devices are required. Rigid motion is assumed. The approach iteratively searches for the motion trajectory yielding the sharpest image as measured by the entropy of spatial gradients. The vast space of motion parameters is efficiently explored by gradient-based optimization with a convergence guarantee. The method has been evaluated on both synthetic and real data in two and three dimensions using standard imaging techniques. MR images are consistently improved over different kinds of motion trajectories. Using a graphics processing unit implementation, computation times are in the order of a few minutes for a full three-dimensional volume. The presented technique can be an alternative or a complement to prospective motion correction methods and is able to improve images with strong motion artifacts from standard imaging sequences without requiring additional data. Copyright © 2013 Wiley Periodicals, Inc., a Wiley company.

  6. FSMRank: feature selection algorithm for learning to rank.

    PubMed

    Lai, Han-Jiang; Pan, Yan; Tang, Yong; Yu, Rong

    2013-06-01

    In recent years, there has been growing interest in learning to rank. The introduction of feature selection into different learning problems has been proven effective. These facts motivate us to investigate the problem of feature selection for learning to rank. We propose a joint convex optimization formulation which minimizes ranking errors while simultaneously conducting feature selection. This optimization formulation provides a flexible framework in which we can easily incorporate various importance measures and similarity measures of the features. To solve this optimization problem, we use the Nesterov's approach to derive an accelerated gradient algorithm with a fast convergence rate O(1/T(2)). We further develop a generalization bound for the proposed optimization problem using the Rademacher complexities. Extensive experimental evaluations are conducted on the public LETOR benchmark datasets. The results demonstrate that the proposed method shows: 1) significant ranking performance gain compared to several feature selection baselines for ranking, and 2) very competitive performance compared to several state-of-the-art learning-to-rank algorithms.

  7. SAGRAD: A Program for Neural Network Training with Simulated Annealing and the Conjugate Gradient Method

    PubMed Central

    Bernal, Javier; Torres-Jimenez, Jose

    2015-01-01

    SAGRAD (Simulated Annealing GRADient), a Fortran 77 program for computing neural networks for classification using batch learning, is discussed. Neural network training in SAGRAD is based on a combination of simulated annealing and Møller’s scaled conjugate gradient algorithm, the latter a variation of the traditional conjugate gradient method, better suited for the nonquadratic nature of neural networks. Different aspects of the implementation of the training process in SAGRAD are discussed, such as the efficient computation of gradients and multiplication of vectors by Hessian matrices that are required by Møller’s algorithm; the (re)initialization of weights with simulated annealing required to (re)start Møller’s algorithm the first time and each time thereafter that it shows insufficient progress in reaching a possibly local minimum; and the use of simulated annealing when Møller’s algorithm, after possibly making considerable progress, becomes stuck at a local minimum or flat area of weight space. Outlines of the scaled conjugate gradient algorithm, the simulated annealing procedure and the training process used in SAGRAD are presented together with results from running SAGRAD on two examples of training data. PMID:26958442

  8. A new edge detection algorithm based on Canny idea

    NASA Astrophysics Data System (ADS)

    Feng, Yingke; Zhang, Jinmin; Wang, Siming

    2017-10-01

    The traditional Canny algorithm has poor self-adaptability threshold, and it is more sensitive to noise. In order to overcome these drawbacks, this paper proposed a new edge detection method based on Canny algorithm. Firstly, the media filtering and filtering based on the method of Euclidean distance are adopted to process it; secondly using the Frei-chen algorithm to calculate gradient amplitude; finally, using the Otsu algorithm to calculate partial gradient amplitude operation to get images of thresholds value, then find the average of all thresholds that had been calculated, half of the average is high threshold value, and the half of the high threshold value is low threshold value. Experiment results show that this new method can effectively suppress noise disturbance, keep the edge information, and also improve the edge detection accuracy.

  9. Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2000-01-01

    This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in the same manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminate plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling) analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.

  10. Grid sensitivity for aerodynamic optimization and flow analysis

    NASA Technical Reports Server (NTRS)

    Sadrehaghighi, I.; Tiwari, S. N.

    1993-01-01

    After reviewing relevant literature, it is apparent that one aspect of aerodynamic sensitivity analysis, namely grid sensitivity, has not been investigated extensively. The grid sensitivity algorithms in most of these studies are based on structural design models. Such models, although sufficient for preliminary or conceptional design, are not acceptable for detailed design analysis. Careless grid sensitivity evaluations, would introduce gradient errors within the sensitivity module, therefore, infecting the overall optimization process. Development of an efficient and reliable grid sensitivity module with special emphasis on aerodynamic applications appear essential. The organization of this study is as follows. The physical and geometric representations of a typical model are derived in chapter 2. The grid generation algorithm and boundary grid distribution are developed in chapter 3. Chapter 4 discusses the theoretical formulation and aerodynamic sensitivity equation. The method of solution is provided in chapter 5. The results are presented and discussed in chapter 6. Finally, some concluding remarks are provided in chapter 7.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodwin, D. L.; Kuprov, Ilya, E-mail: i.kuprov@soton.ac.uk

    Quadratic convergence throughout the active space is achieved for the gradient ascent pulse engineering (GRAPE) family of quantum optimal control algorithms. We demonstrate in this communication that the Hessian of the GRAPE fidelity functional is unusually cheap, having the same asymptotic complexity scaling as the functional itself. This leads to the possibility of using very efficient numerical optimization techniques. In particular, the Newton-Raphson method with a rational function optimization (RFO) regularized Hessian is shown in this work to require fewer system trajectory evaluations than any other algorithm in the GRAPE family. This communication describes algebraic and numerical implementation aspects (matrixmore » exponential recycling, Hessian regularization, etc.) for the RFO Newton-Raphson version of GRAPE and reports benchmarks for common spin state control problems in magnetic resonance spectroscopy.« less

  12. Elimination of Hot Tears in Steel Castings by Means of Solidification Pattern Optimization

    NASA Astrophysics Data System (ADS)

    Kotas, Petr; Tutum, Cem Celal; Thorborg, Jesper; Hattel, Jesper Henri

    2012-06-01

    A methodology of how to exploit the Niyama criterion for the elimination of various defects such as centerline porosity, macrosegregation, and hot tearing in steel castings is presented. The tendency of forming centerline porosity is governed by the temperature distribution close to the end of the solidification interval, specifically by thermal gradients and cooling rates. The physics behind macrosegregation and hot tears indicate that these two defects also are dependent heavily on thermal gradients and pressure drop in the mushy zone. The objective of this work is to show that by optimizing the solidification pattern, i.e., establishing directional and progressive solidification with the help of the Niyama criterion, macrosegregation and hot tearing issues can be both minimized or eliminated entirely. An original casting layout was simulated using a transient three-dimensional (3-D) thermal fluid model incorporated in a commercial simulation software package to determine potential flaws and inadequacies. Based on the initial casting process assessment, multiobjective optimization of the solidification pattern of the considered steel part followed. That is, the multiobjective optimization problem of choosing the proper riser and chill designs has been investigated using genetic algorithms while simultaneously considering their impact on centerline porosity, the macrosegregation pattern, and primarily on hot tear formation.

  13. 2D Seismic Imaging of Elastic Parameters by Frequency Domain Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Brossier, R.; Virieux, J.; Operto, S.

    2008-12-01

    Thanks to recent advances in parallel computing, full waveform inversion is today a tractable seismic imaging method to reconstruct physical parameters of the earth interior at different scales ranging from the near- surface to the deep crust. We present a massively parallel 2D frequency-domain full-waveform algorithm for imaging visco-elastic media from multi-component seismic data. The forward problem (i.e. the resolution of the frequency-domain 2D PSV elastodynamics equations) is based on low-order Discontinuous Galerkin (DG) method (P0 and/or P1 interpolations). Thanks to triangular unstructured meshes, the DG method allows accurate modeling of both body waves and surface waves in case of complex topography for a discretization of 10 to 15 cells per shear wavelength. The frequency-domain DG system is solved efficiently for multiple sources with the parallel direct solver MUMPS. The local inversion procedure (i.e. minimization of residuals between observed and computed data) is based on the adjoint-state method which allows to efficiently compute the gradient of the objective function. Applying the inversion hierarchically from the low frequencies to the higher ones defines a multiresolution imaging strategy which helps convergence towards the global minimum. In place of expensive Newton algorithm, the combined use of the diagonal terms of the approximate Hessian matrix and optimization algorithms based on quasi-Newton methods (Conjugate Gradient, LBFGS, ...) allows to improve the convergence of the iterative inversion. The distribution of forward problem solutions over processors driven by a mesh partitioning performed by METIS allows to apply most of the inversion in parallel. We shall present the main features of the parallel modeling/inversion algorithm, assess its scalability and illustrate its performances with realistic synthetic case studies.

  14. Comparing implementations of penalized weighted least-squares sinogram restoration.

    PubMed

    Forthmann, Peter; Koehler, Thomas; Defrise, Michel; La Riviere, Patrick

    2010-11-01

    A CT scanner measures the energy that is deposited in each channel of a detector array by x rays that have been partially absorbed on their way through the object. The measurement process is complex and quantitative measurements are always and inevitably associated with errors, so CT data must be preprocessed prior to reconstruction. In recent years, the authors have formulated CT sinogram preprocessing as a statistical restoration problem in which the goal is to obtain the best estimate of the line integrals needed for reconstruction from the set of noisy, degraded measurements. The authors have explored both penalized Poisson likelihood (PL) and penalized weighted least-squares (PWLS) objective functions. At low doses, the authors found that the PL approach outperforms PWLS in terms of resolution-noise tradeoffs, but at standard doses they perform similarly. The PWLS objective function, being quadratic, is more amenable to computational acceleration than the PL objective. In this work, the authors develop and compare two different methods for implementing PWLS sinogram restoration with the hope of improving computational performance relative to PL in the standard-dose regime. Sinogram restoration is still significant in the standard-dose regime since it can still outperform standard approaches and it allows for correction of effects that are not usually modeled in standard CT preprocessing. The authors have explored and compared two implementation strategies for PWLS sinogram restoration: (1) A direct matrix-inversion strategy based on the closed-form solution to the PWLS optimization problem and (2) an iterative approach based on the conjugate-gradient algorithm. Obtaining optimal performance from each strategy required modifying the naive off-the-shelf implementations of the algorithms to exploit the particular symmetry and sparseness of the sinogram-restoration problem. For the closed-form approach, the authors subdivided the large matrix inversion into smaller coupled problems and exploited sparseness to minimize matrix operations. For the conjugate-gradient approach, the authors exploited sparseness and preconditioned the problem to speed up convergence. All methods produced qualitatively and quantitatively similar images as measured by resolution-variance tradeoffs and difference images. Despite the acceleration strategies, the direct matrix-inversion approach was found to be uncompetitive with iterative approaches, with a computational burden higher by an order of magnitude or more. The iterative conjugate-gradient approach, however, does appear promising, with computation times half that of the authors' previous penalized-likelihood implementation. Iterative conjugate-gradient based PWLS sinogram restoration with careful matrix optimizations has computational advantages over direct matrix PWLS inversion and over penalized-likelihood sinogram restoration and can be considered a good alternative in standard-dose regimes.

  15. Quantitative Microplate-Based Respirometry with Correction for Oxygen Diffusion

    PubMed Central

    2009-01-01

    Respirometry using modified cell culture microplates offers an increase in throughput and a decrease in biological material required for each assay. Plate based respirometers are susceptible to a range of diffusion phenomena; as O2 is consumed by the specimen, atmospheric O2 leaks into the measurement volume. Oxygen also dissolves in and diffuses passively through the polystyrene commonly used as a microplate material. Consequently the walls of such respirometer chambers are not just permeable to O2 but also store substantial amounts of gas. O2 flux between the walls and the measurement volume biases the measured oxygen consumption rate depending on the actual [O2] gradient. We describe a compartment model-based correction algorithm to deconvolute the biological oxygen consumption rate from the measured [O2]. We optimize the algorithm to work with the Seahorse XF24 extracellular flux analyzer. The correction algorithm is biologically validated using mouse cortical synaptosomes and liver mitochondria attached to XF24 V7 cell culture microplates, and by comparison to classical Clark electrode oxygraph measurements. The algorithm increases the useful range of oxygen consumption rates, the temporal resolution, and durations of measurements. The algorithm is presented in a general format and is therefore applicable to other respirometer systems. PMID:19555051

  16. Phase retrieval via incremental truncated amplitude flow algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Quanbing; Wang, Zhifa; Wang, Linjie; Cheng, Shichao

    2017-10-01

    This paper considers the phase retrieval problem of recovering the unknown signal from the given quadratic measurements. A phase retrieval algorithm based on Incremental Truncated Amplitude Flow (ITAF) which combines the ITWF algorithm and the TAF algorithm is proposed. The proposed ITAF algorithm enhances the initialization by performing both of the truncation methods used in ITWF and TAF respectively, and improves the performance in the gradient stage by applying the incremental method proposed in ITWF to the loop stage of TAF. Moreover, the original sampling vector and measurements are preprocessed before initialization according to the variance of the sensing matrix. Simulation experiments verified the feasibility and validity of the proposed ITAF algorithm. The experimental results show that it can obtain higher success rate and faster convergence speed compared with other algorithms. Especially, for the noiseless random Gaussian signals, ITAF can recover any real-valued signal accurately from the magnitude measurements whose number is about 2.5 times of the signal length, which is close to the theoretic limit (about 2 times of the signal length). And it usually converges to the optimal solution within 20 iterations which is much less than the state-of-the-art algorithms.

  17. WE-AB-209-06: Dynamic Collimator Trajectory Algorithm for Use in VMAT Treatment Deliveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, L; Thomas, C; Syme, A

    2016-06-15

    Purpose: To develop advanced dynamic collimator positioning algorithms for optimal beam’s-eye-view (BEV) fitting of targets in VMAT procedures, including multiple metastases stereotactic radiosurgery procedures. Methods: A trajectory algorithm was developed, which can dynamically modify the angle of the collimator as a function of VMAT control point to provide optimized collimation of target volume(s). Central to this algorithm is a concept denoted “whitespace”, defined as area within the jaw-defined BEV field, outside of the PTV, and not shielded by the MLC when fit to the PTV. Calculating whitespace at all collimator angles and every control point, a two-dimensional topographical map depictingmore » the tightness-of-fit of the MLC was generated. A variety of novel searching algorithms identified a number of candidate trajectories of continuous collimator motion. Ranking these candidate trajectories according to their accrued whitespace value produced an optimal solution for navigation of this map. Results: All trajectories were normalized to minimum possible (i.e. calculated without consideration of collimator motion constraints) accrued whitespace. On an acoustic neuroma case, a random walk algorithm generated a trajectory with 151% whitespace; random walk including a mandatory anchor point improved this to 148%; gradient search produced a trajectory with 137%; and bi-directional gradient search generated a trajectory with 130% whitespace. For comparison, a fixed collimator angle of 30° and 330° accumulated 272% and 228% of whitespace, respectively. The algorithm was tested on a clinical case with two metastases (single isocentre) and identified collimator angles that allow for simultaneous irradiation of the PTVs while minimizing normal tissue irradiation. Conclusion: Dynamic collimator trajectories have the potential to improve VMAT deliveries through increased efficiency and reduced normal tissue dose, especially in treatment of multiple cranial metastases, without significant safety concerns that hinder immediate clinical implementation.« less

  18. An optimized resistor pattern for temperature gradient control in microfluidics

    NASA Astrophysics Data System (ADS)

    Selva, Bertrand; Marchalot, Julien; Jullien, Marie-Caroline

    2009-06-01

    In this paper, we demonstrate the possibility of generating high-temperature gradients with a linear temperature profile when heating is provided in situ. Thanks to improved optimization algorithms, the shape of resistors, which constitute the heating source, is optimized by applying the genetic algorithm NSGA-II (acronym for the non-dominated sorting genetic algorithm) (Deb et al 2002 IEEE Trans. Evol. Comput. 6 2). Experimental validation of the linear temperature profile within the cavity is carried out using a thermally sensitive fluorophore, called Rhodamine B (Ross et al 2001 Anal. Chem. 73 4117-23, Erickson et al 2003 Lab Chip 3 141-9). The high level of agreement obtained between experimental and numerical results serves to validate the accuracy of this method for generating highly controlled temperature profiles. In the field of actuation, such a device is of potential interest since it allows for controlling bubbles or droplets moving by means of thermocapillary effects (Baroud et al 2007 Phys. Rev. E 75 046302). Digital microfluidics is a critical area in the field of microfluidics (Dreyfus et al 2003 Phys. Rev. Lett. 90 14) as well as in the so-called lab-on-a-chip technology. Through an example, the large application potential of such a technique is demonstrated, which entails handling a single bubble driven along a cavity using simple and tunable embedded resistors.

  19. Deterministic and stochastic algorithms for resolving the flow fields in ducts and networks using energy minimization

    NASA Astrophysics Data System (ADS)

    Sochi, Taha

    2016-09-01

    Several deterministic and stochastic multi-variable global optimization algorithms (Conjugate Gradient, Nelder-Mead, Quasi-Newton and global) are investigated in conjunction with energy minimization principle to resolve the pressure and volumetric flow rate fields in single ducts and networks of interconnected ducts. The algorithms are tested with seven types of fluid: Newtonian, power law, Bingham, Herschel-Bulkley, Ellis, Ree-Eyring and Casson. The results obtained from all those algorithms for all these types of fluid agree very well with the analytically derived solutions as obtained from the traditional methods which are based on the conservation principles and fluid constitutive relations. The results confirm and generalize the findings of our previous investigations that the energy minimization principle is at the heart of the flow dynamics systems. The investigation also enriches the methods of computational fluid dynamics for solving the flow fields in tubes and networks for various types of Newtonian and non-Newtonian fluids.

  20. Improved Seam-Line Searching Algorithm for UAV Image Mosaic with Optical Flow.

    PubMed

    Zhang, Weilong; Guo, Bingxuan; Li, Ming; Liao, Xuan; Li, Wenzhuo

    2018-04-16

    Ghosting and seams are two major challenges in creating unmanned aerial vehicle (UAV) image mosaic. In response to these problems, this paper proposes an improved method for UAV image seam-line searching. First, an image matching algorithm is used to extract and match the features of adjacent images, so that they can be transformed into the same coordinate system. Then, the gray scale difference, the gradient minimum, and the optical flow value of pixels in adjacent image overlapped area in a neighborhood are calculated, which can be applied to creating an energy function for seam-line searching. Based on that, an improved dynamic programming algorithm is proposed to search the optimal seam-lines to complete the UAV image mosaic. This algorithm adopts a more adaptive energy aggregation and traversal strategy, which can find a more ideal splicing path for adjacent UAV images and avoid the ground objects better. The experimental results show that the proposed method can effectively solve the problems of ghosting and seams in the panoramic UAV images.

  1. Nonuniformity correction for an infrared focal plane array based on diamond search block matching.

    PubMed

    Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian

    2016-05-01

    In scene-based nonuniformity correction algorithms, artificial ghosting and image blurring degrade the correction quality severely. In this paper, an improved algorithm based on the diamond search block matching algorithm and the adaptive learning rate is proposed. First, accurate transform pairs between two adjacent frames are estimated by the diamond search block matching algorithm. Then, based on the error between the corresponding transform pairs, the gradient descent algorithm is applied to update correction parameters. During the process of gradient descent, the local standard deviation and a threshold are utilized to control the learning rate to avoid the accumulation of matching error. Finally, the nonuniformity correction would be realized by a linear model with updated correction parameters. The performance of the proposed algorithm is thoroughly studied with four real infrared image sequences. Experimental results indicate that the proposed algorithm can reduce the nonuniformity with less ghosting artifacts in moving areas and can also overcome the problem of image blurring in static areas.

  2. Local gravity field modeling using spherical radial basis functions and a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mahbuby, Hany; Safari, Abdolreza; Foroughi, Ismael

    2017-05-01

    Spherical Radial Basis Functions (SRBFs) can express the local gravity field model of the Earth if they are parameterized optimally on or below the Bjerhammar sphere. This parameterization is generally defined as the shape of the base functions, their number, center locations, bandwidths, and scale coefficients. The number/location and bandwidths of the base functions are the most important parameters for accurately representing the gravity field; once they are determined, the scale coefficients can then be computed accordingly. In this study, the point-mass kernel, as the simplest shape of SRBFs, is chosen to evaluate the synthesized free-air gravity anomalies over the rough area in Auvergne and GNSS/Leveling points (synthetic height anomalies) are used to validate the results. A two-step automatic approach is proposed to determine the optimum distribution of the base functions. First, the location of the base functions and their bandwidths are found using the genetic algorithm; second, the conjugate gradient least squares method is employed to estimate the scale coefficients. The proposed methodology shows promising results. On the one hand, when using the genetic algorithm, the base functions do not need to be set to a regular grid and they can move according to the roughness of topography. In this way, the models meet the desired accuracy with a low number of base functions. On the other hand, the conjugate gradient method removes the bias between derived quasigeoid heights from the model and from the GNSS/leveling points; this means there is no need for a corrector surface. The numerical test on the area of interest revealed an RMS of 0.48 mGal for the differences between predicted and observed gravity anomalies, and a corresponding 9 cm for the differences in GNSS/leveling points.

  3. Direct handling of equality constraints in multilevel optimization

    NASA Technical Reports Server (NTRS)

    Renaud, John E.; Gabriele, Gary A.

    1990-01-01

    In recent years there have been several hierarchic multilevel optimization algorithms proposed and implemented in design studies. Equality constraints are often imposed between levels in these multilevel optimizations to maintain system and subsystem variable continuity. Equality constraints of this nature will be referred to as coupling equality constraints. In many implementation studies these coupling equality constraints have been handled indirectly. This indirect handling has been accomplished using the coupling equality constraints' explicit functional relations to eliminate design variables (generally at the subsystem level), with the resulting optimization taking place in a reduced design space. In one multilevel optimization study where the coupling equality constraints were handled directly, the researchers encountered numerical difficulties which prevented their multilevel optimization from reaching the same minimum found in conventional single level solutions. The researchers did not explain the exact nature of the numerical difficulties other than to associate them with the direct handling of the coupling equality constraints. The coupling equality constraints are handled directly, by employing the Generalized Reduced Gradient (GRG) method as the optimizer within a multilevel linear decomposition scheme based on the Sobieski hierarchic algorithm. Two engineering design examples are solved using this approach. The results show that the direct handling of coupling equality constraints in a multilevel optimization does not introduce any problems when the GRG method is employed as the internal optimizer. The optimums achieved are comparable to those achieved in single level solutions and in multilevel studies where the equality constraints have been handled indirectly.

  4. Efficient Gradient-Based Shape Optimization Methodology Using Inviscid/Viscous CFD

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay

    1997-01-01

    The formerly developed preconditioned-biconjugate-gradient (PBCG) solvers for the analysis and the sensitivity equations had resulted in very large error reductions per iteration; quadratic convergence was achieved whenever the solution entered the domain of attraction to the root. Its memory requirement was also lower as compared to a direct inversion solver. However, this memory requirement was high enough to preclude the realistic, high grid-density design of a practical 3D geometry. This limitation served as the impetus to the first-year activity (March 9, 1995 to March 8, 1996). Therefore, the major activity for this period was the development of the low-memory methodology for the discrete-sensitivity-based shape optimization. This was accomplished by solving all the resulting sets of equations using an alternating-direction-implicit (ADI) approach. The results indicated that shape optimization problems which required large numbers of grid points could be resolved with a gradient-based approach. Therefore, to better utilize the computational resources, it was recommended that a number of coarse grid cases, using the PBCG method, should initially be conducted to better define the optimization problem and the design space, and obtain an improved initial shape. Subsequently, a fine grid shape optimization, which necessitates using the ADI method, should be conducted to accurately obtain the final optimized shape. The other activity during this period was the interaction with the members of the Aerodynamic and Aeroacoustic Methods Branch of Langley Research Center during one stage of their investigation to develop an adjoint-variable sensitivity method using the viscous flow equations. This method had algorithmic similarities to the variational sensitivity methods and the control-theory approach. However, unlike the prior studies, it was considered for the three-dimensional, viscous flow equations. The major accomplishment in the second period of this project (March 9, 1996 to March 8, 1997) was the extension of the shape optimization methodology for the Thin-Layer Navier-Stokes equations. Both the Euler-based and the TLNS-based analyses compared with the analyses obtained using the CFL3D code. The sensitivities, again from both levels of the flow equations, also compared very well with the finite-differenced sensitivities. A fairly large set of shape optimization cases were conducted to study a number of issues previously not well understood. The testbed for these cases was the shaping of an arrow wing in Mach 2.4 flow. All the final shapes, obtained either from a coarse-grid-based or a fine-grid-based optimization, using either a Euler-based or a TLNS-based analysis, were all re-analyzed using a fine-grid, TLNS solution for their function evaluations. This allowed for a more fair comparison of their relative merits. From the aerodynamic performance standpoint, the fine-grid TLNS-based optimization produced the best shape, and the fine-grid Euler-based optimization produced the lowest cruise efficiency.

  5. Hierarchical optimal control of large-scale nonlinear chemical processes.

    PubMed

    Ramezani, Mohammad Hossein; Sadati, Nasser

    2009-01-01

    In this paper, a new approach is presented for optimal control of large-scale chemical processes. In this approach, the chemical process is decomposed into smaller sub-systems at the first level, and a coordinator at the second level, for which a two-level hierarchical control strategy is designed. For this purpose, each sub-system in the first level can be solved separately, by using any conventional optimization algorithm. In the second level, the solutions obtained from the first level are coordinated using a new gradient-type strategy, which is updated by the error of the coordination vector. The proposed algorithm is used to solve the optimal control problem of a complex nonlinear chemical stirred tank reactor (CSTR), where its solution is also compared with the ones obtained using the centralized approach. The simulation results show the efficiency and the capability of the proposed hierarchical approach, in finding the optimal solution, over the centralized method.

  6. Adaptive Aft Signature Shaping of a Low-Boom Supersonic Aircraft Using Off-Body Pressures

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Li, Wu

    2012-01-01

    The design and optimization of a low-boom supersonic aircraft using the state-of-the- art o -body aerodynamics and sonic boom analysis has long been a challenging problem. The focus of this paper is to demonstrate an e ective geometry parameterization scheme and a numerical optimization approach for the aft shaping of a low-boom supersonic aircraft using o -body pressure calculations. A gradient-based numerical optimization algorithm that models the objective and constraints as response surface equations is used to drive the aft ground signature toward a ramp shape. The design objective is the minimization of the variation between the ground signature and the target signature subject to several geometric and signature constraints. The target signature is computed by using a least-squares regression of the aft portion of the ground signature. The parameterization and the deformation of the geometry is performed with a NASA in- house shaping tool. The optimization algorithm uses the shaping tool to drive the geometric deformation of a horizontal tail with a parameterization scheme that consists of seven camber design variables and an additional design variable that describes the spanwise location of the midspan section. The demonstration cases show that numerical optimization using the state-of-the-art o -body aerodynamic calculations is not only feasible and repeatable but also allows the exploration of complex design spaces for which a knowledge-based design method becomes less effective.

  7. Digital transceiver design for two-way AF-MIMO relay systems with imperfect CSI

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Chang; Chou, Yu-Fei; Chen, Kui-He

    2013-09-01

    In the paper, combined optimization of the terminal precoders/equalizers and single-relay precoder is proposed for an amplify-and-forward (AF) multiple-input multiple-output (MIMO) two-way single-relay system with correlated channel uncertainties. Both terminal transceivers and relay precoding matrix are designed based on the minimum mean square error (MMSE) criterion when terminals are unable to erase completely self-interference due to imperfect correlated channel state information (CSI). This robust joint optimization problem of beamforming and precoding matrices under power constraints belongs to neither concave nor convex so that a nonlinear matrix-form conjugate gradient (MCG) algorithm is applied to explore local optimal solutions. Simulation results show that the robust transceiver design is able to overcome effectively the loss of bit-error-rate (BER) due to inclusion of correlated channel uncertainties and residual self-interference.

  8. Improvement of OMI Ozone Profile Retrievals in the Troposphere and Lower Troposphere by the Use of the Tropopause-Based Ozone Profile Climatology

    NASA Technical Reports Server (NTRS)

    Bak, Juseon; Liu, X.; Wei, J.; Kim, J. H.; Chance, K.; Barnet, C.

    2011-01-01

    An advance algorithm based on the optimal estimation technique has beeen developed to derive ozone profile from GOME UV radiances and have adapted it to OMI UV radiances. OMI vertical resolution : 7-11 km in the troposphere and 10-14 km in the stratosphere. Satellite ultraviolet measurements (GOME, OMI) contain little vertical information for the small scale of ozone, especially in the upper troposphere (UT) and lower stratosphere (LS) where the sharp O3 gradient across the tropopause and large ozone variability are observed. Therefore, retrievals depend greatly on the a-priori knowledge in the UTLS

  9. Gradient boosting machine for modeling the energy consumption of commercial buildings

    DOE PAGES

    Touzani, Samir; Granderson, Jessica; Fernandes, Samuel

    2017-11-26

    Accurate savings estimations are important to promote energy efficiency projects and demonstrate their cost-effectiveness. The increasing presence of advanced metering infrastructure (AMI) in commercial buildings has resulted in a rising availability of high frequency interval data. These data can be used for a variety of energy efficiency applications such as demand response, fault detection and diagnosis, and heating, ventilation, and air conditioning (HVAC) optimization. This large amount of data has also opened the door to the use of advanced statistical learning models, which hold promise for providing accurate building baseline energy consumption predictions, and thus accurate saving estimations. The gradientmore » boosting machine is a powerful machine learning algorithm that is gaining considerable traction in a wide range of data driven applications, such as ecology, computer vision, and biology. In the present work an energy consumption baseline modeling method based on a gradient boosting machine was proposed. To assess the performance of this method, a recently published testing procedure was used on a large dataset of 410 commercial buildings. The model training periods were varied and several prediction accuracy metrics were used to evaluate the model's performance. The results show that using the gradient boosting machine model improved the R-squared prediction accuracy and the CV(RMSE) in more than 80 percent of the cases, when compared to an industry best practice model that is based on piecewise linear regression, and to a random forest algorithm.« less

  10. Gradient boosting machine for modeling the energy consumption of commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touzani, Samir; Granderson, Jessica; Fernandes, Samuel

    Accurate savings estimations are important to promote energy efficiency projects and demonstrate their cost-effectiveness. The increasing presence of advanced metering infrastructure (AMI) in commercial buildings has resulted in a rising availability of high frequency interval data. These data can be used for a variety of energy efficiency applications such as demand response, fault detection and diagnosis, and heating, ventilation, and air conditioning (HVAC) optimization. This large amount of data has also opened the door to the use of advanced statistical learning models, which hold promise for providing accurate building baseline energy consumption predictions, and thus accurate saving estimations. The gradientmore » boosting machine is a powerful machine learning algorithm that is gaining considerable traction in a wide range of data driven applications, such as ecology, computer vision, and biology. In the present work an energy consumption baseline modeling method based on a gradient boosting machine was proposed. To assess the performance of this method, a recently published testing procedure was used on a large dataset of 410 commercial buildings. The model training periods were varied and several prediction accuracy metrics were used to evaluate the model's performance. The results show that using the gradient boosting machine model improved the R-squared prediction accuracy and the CV(RMSE) in more than 80 percent of the cases, when compared to an industry best practice model that is based on piecewise linear regression, and to a random forest algorithm.« less

  11. Jerk-level synchronous repetitive motion scheme with gradient-type and zeroing-type dynamics algorithms applied to dual-arm redundant robot system control

    NASA Astrophysics Data System (ADS)

    Chen, Dechao; Zhang, Yunong

    2017-10-01

    Dual-arm redundant robot systems are usually required to handle primary tasks, repetitively and synchronously in practical applications. In this paper, a jerk-level synchronous repetitive motion scheme is proposed to remedy the joint-angle drift phenomenon and achieve the synchronous control of a dual-arm redundant robot system. The proposed scheme is novelly resolved at jerk level, which makes the joint variables, i.e. joint angles, joint velocities and joint accelerations, smooth and bounded. In addition, two types of dynamics algorithms, i.e. gradient-type (G-type) and zeroing-type (Z-type) dynamics algorithms, for the design of repetitive motion variable vectors, are presented in detail with the corresponding circuit schematics. Subsequently, the proposed scheme is reformulated as two dynamical quadratic programs (DQPs) and further integrated into a unified DQP (UDQP) for the synchronous control of a dual-arm robot system. The optimal solution of the UDQP is found by the piecewise-linear projection equation neural network. Moreover, simulations and comparisons based on a six-degrees-of-freedom planar dual-arm redundant robot system substantiate the operation effectiveness and tracking accuracy of the robot system with the proposed scheme for repetitive motion and synchronous control.

  12. Aerodynamic design optimization using sensitivity analysis and computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Eleshaky, Mohamed E.

    1991-01-01

    A new and efficient method is presented for aerodynamic design optimization, which is based on a computational fluid dynamics (CFD)-sensitivity analysis algorithm. The method is applied to design a scramjet-afterbody configuration for an optimized axial thrust. The Euler equations are solved for the inviscid analysis of the flow, which in turn provides the objective function and the constraints. The CFD analysis is then coupled with the optimization procedure that uses a constrained minimization method. The sensitivity coefficients, i.e. gradients of the objective function and the constraints, needed for the optimization are obtained using a quasi-analytical method rather than the traditional brute force method of finite difference approximations. During the one-dimensional search of the optimization procedure, an approximate flow analysis (predicted flow) based on a first-order Taylor series expansion is used to reduce the computational cost. Finally, the sensitivity of the optimum objective function to various design parameters, which are kept constant during the optimization, is computed to predict new optimum solutions. The flow analysis of the demonstrative example are compared with the experimental data. It is shown that the method is more efficient than the traditional methods.

  13. A computational framework for simultaneous estimation of muscle and joint contact forces and body motion using optimization and surrogate modeling.

    PubMed

    Eskinazi, Ilan; Fregly, Benjamin J

    2018-04-01

    Concurrent estimation of muscle activations, joint contact forces, and joint kinematics by means of gradient-based optimization of musculoskeletal models is hindered by computationally expensive and non-smooth joint contact and muscle wrapping algorithms. We present a framework that simultaneously speeds up computation and removes sources of non-smoothness from muscle force optimizations using a combination of parallelization and surrogate modeling, with special emphasis on a novel method for modeling joint contact as a surrogate model of a static analysis. The approach allows one to efficiently introduce elastic joint contact models within static and dynamic optimizations of human motion. We demonstrate the approach by performing two optimizations, one static and one dynamic, using a pelvis-leg musculoskeletal model undergoing a gait cycle. We observed convergence on the order of seconds for a static optimization time frame and on the order of minutes for an entire dynamic optimization. The presented framework may facilitate model-based efforts to predict how planned surgical or rehabilitation interventions will affect post-treatment joint and muscle function. Copyright © 2018 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Spatial frequency performance limitations of radiation dose optimization and beam positioning

    NASA Astrophysics Data System (ADS)

    Stewart, James M. P.; Stapleton, Shawn; Chaudary, Naz; Lindsay, Patricia E.; Jaffray, David A.

    2018-06-01

    The flexibility and sophistication of modern radiotherapy treatment planning and delivery methods have advanced techniques to improve the therapeutic ratio. Contemporary dose optimization and calculation algorithms facilitate radiotherapy plans which closely conform the three-dimensional dose distribution to the target, with beam shaping devices and image guided field targeting ensuring the fidelity and accuracy of treatment delivery. Ultimately, dose distribution conformity is limited by the maximum deliverable dose gradient; shallow dose gradients challenge techniques to deliver a tumoricidal radiation dose while minimizing dose to surrounding tissue. In this work, this ‘dose delivery resolution’ observation is rigorously formalized for a general dose delivery model based on the superposition of dose kernel primitives. It is proven that the spatial resolution of a delivered dose is bounded by the spatial frequency content of the underlying dose kernel, which in turn defines a lower bound in the minimization of a dose optimization objective function. In addition, it is shown that this optimization is penalized by a dose deposition strategy which enforces a constant relative phase (or constant spacing) between individual radiation beams. These results are further refined to provide a direct, analytic method to estimate the dose distribution arising from the minimization of such an optimization function. The efficacy of the overall framework is demonstrated on an image guided small animal microirradiator for a set of two-dimensional hypoxia guided dose prescriptions.

  15. Guiding automated left ventricular chamber segmentation in cardiac imaging using the concept of conserved myocardial volume.

    PubMed

    Garson, Christopher D; Li, Bing; Acton, Scott T; Hossack, John A

    2008-06-01

    The active surface technique using gradient vector flow allows semi-automated segmentation of ventricular borders. The accuracy of the algorithm depends on the optimal selection of several key parameters. We investigated the use of conservation of myocardial volume for quantitative assessment of each of these parameters using synthetic and in vivo data. We predicted that for a given set of model parameters, strong conservation of volume would correlate with accurate segmentation. The metric was most useful when applied to the gradient vector field weighting and temporal step-size parameters, but less effective in guiding an optimal choice of the active surface tension and rigidity parameters.

  16. MO-FG-204-06: A New Algorithm for Gold Nano-Particle Concentration Identification in Dual Energy CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L; Shen, C; Ng, M

    Purpose: Gold nano-particle (GNP) has recently attracted a lot of attentions due to its potential as an imaging contrast agent and radiotherapy sensitiser. Imaging the GNP at its low contraction is a challenging problem. We propose a new algorithm to improve the identification of GNP based on dual energy CT (DECT). Methods: We consider three base materials: water, bone, and gold. Determining three density images from two images in DECT is an under-determined problem. We propose to solve this problem by exploring image domain sparsity via an optimization approach. The objective function contains four terms. A data-fidelity term ensures themore » fidelity between the identified material densities and the DECT images, while the other three terms enforces the sparsity in the gradient domain of the three images corresponding to the density of the base materials by using total variation (TV) regularization. A primal-dual algorithm is applied to solve the proposed optimization problem. We have performed simulation studies to test this model. Results: Our digital phantom in the tests contains water, bone regions and gold inserts of different sizes and densities. The gold inserts contain mixed material consisting of water with 1g/cm3 and gold at a certain density. At a low gold density of 0.0008 g/cm3, the insert is hardly visible in DECT images, especially for those with small sizes. Our algorithm is able to decompose the DECT into three density images. Those gold inserts at a low density can be clearly visualized in the density image. Conclusion: We have developed a new algorithm to decompose DECT images into three different material density images, in particular, to retrieve density of gold. Numerical studies showed promising results.« less

  17. Detection of maize kernels breakage rate based on K-means clustering

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Wang, Zhuo; Gao, Lei; Bai, Xiaoping

    2017-04-01

    In order to optimize the recognition accuracy of maize kernels breakage detection and improve the detection efficiency of maize kernels breakage, this paper using computer vision technology and detecting of the maize kernels breakage based on K-means clustering algorithm. First, the collected RGB images are converted into Lab images, then the original images clarity evaluation are evaluated by the energy function of Sobel 8 gradient. Finally, the detection of maize kernels breakage using different pixel acquisition equipments and different shooting angles. In this paper, the broken maize kernels are identified by the color difference between integrity kernels and broken kernels. The original images clarity evaluation and different shooting angles are taken to verify that the clarity and shooting angles of the images have a direct influence on the feature extraction. The results show that K-means clustering algorithm can distinguish the broken maize kernels effectively.

  18. Multi-Sensor Registration of Earth Remotely Sensed Imagery

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Cole-Rhodes, Arlene; Eastman, Roger; Johnson, Kisha; Morisette, Jeffrey; Netanyahu, Nathan S.; Stone, Harold S.; Zavorin, Ilya; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    Assuming that approximate registration is given within a few pixels by a systematic correction system, we develop automatic image registration methods for multi-sensor data with the goal of achieving sub-pixel accuracy. Automatic image registration is usually defined by three steps; feature extraction, feature matching, and data resampling or fusion. Our previous work focused on image correlation methods based on the use of different features. In this paper, we study different feature matching techniques and present five algorithms where the features are either original gray levels or wavelet-like features, and the feature matching is based on gradient descent optimization, statistical robust matching, and mutual information. These algorithms are tested and compared on several multi-sensor datasets covering one of the EOS Core Sites, the Konza Prairie in Kansas, from four different sensors: IKONOS (4m), Landsat-7/ETM+ (30m), MODIS (500m), and SeaWIFS (1000m).

  19. Fractional-order TV-L2 model for image denoising

    NASA Astrophysics Data System (ADS)

    Chen, Dali; Sun, Shenshen; Zhang, Congrong; Chen, YangQuan; Xue, Dingyu

    2013-10-01

    This paper proposes a new fractional order total variation (TV) denoising method, which provides a much more elegant and effective way of treating problems of the algorithm implementation, ill-posed inverse, regularization parameter selection and blocky effect. Two fractional order TV-L2 models are constructed for image denoising. The majorization-minimization (MM) algorithm is used to decompose these two complex fractional TV optimization problems into a set of linear optimization problems which can be solved by the conjugate gradient algorithm. The final adaptive numerical procedure is given. Finally, we report experimental results which show that the proposed methodology avoids the blocky effect and achieves state-of-the-art performance. In addition, two medical image processing experiments are presented to demonstrate the validity of the proposed methodology.

  20. Final Report: Large-Scale Optimization for Bayesian Inference in Complex Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghattas, Omar

    2013-10-15

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimiza- tion) Project focuses on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimiza- tion and inversion methods. Our research is directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. Our efforts are integrated in the context of a challenging testbed problem that considers subsurface reacting flow and transport. The MIT component of the SAGUAROmore » Project addresses the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas-Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to- observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as "reduce then sample" and "sample then reduce." In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their speedups.« less

  1. An efficient assisted history matching and uncertainty quantification workflow using Gaussian processes proxy models and variogram based sensitivity analysis: GP-VARS

    NASA Astrophysics Data System (ADS)

    Rana, Sachin; Ertekin, Turgay; King, Gregory R.

    2018-05-01

    Reservoir history matching is frequently viewed as an optimization problem which involves minimizing misfit between simulated and observed data. Many gradient and evolutionary strategy based optimization algorithms have been proposed to solve this problem which typically require a large number of numerical simulations to find feasible solutions. Therefore, a new methodology referred to as GP-VARS is proposed in this study which uses forward and inverse Gaussian processes (GP) based proxy models combined with a novel application of variogram analysis of response surface (VARS) based sensitivity analysis to efficiently solve high dimensional history matching problems. Empirical Bayes approach is proposed to optimally train GP proxy models for any given data. The history matching solutions are found via Bayesian optimization (BO) on forward GP models and via predictions of inverse GP model in an iterative manner. An uncertainty quantification method using MCMC sampling in conjunction with GP model is also presented to obtain a probabilistic estimate of reservoir properties and estimated ultimate recovery (EUR). An application of the proposed GP-VARS methodology on PUNQ-S3 reservoir is presented in which it is shown that GP-VARS provides history match solutions in approximately four times less numerical simulations as compared to the differential evolution (DE) algorithm. Furthermore, a comparison of uncertainty quantification results obtained by GP-VARS, EnKF and other previously published methods shows that the P50 estimate of oil EUR obtained by GP-VARS is in close agreement to the true values for the PUNQ-S3 reservoir.

  2. Optimal Battery Sizing in Photovoltaic Based Distributed Generation Using Enhanced Opposition-Based Firefly Algorithm for Voltage Rise Mitigation

    PubMed Central

    Wong, Ling Ai; Shareef, Hussain; Mohamed, Azah; Ibrahim, Ahmad Asrul

    2014-01-01

    This paper presents the application of enhanced opposition-based firefly algorithm in obtaining the optimal battery energy storage systems (BESS) sizing in photovoltaic generation integrated radial distribution network in order to mitigate the voltage rise problem. Initially, the performance of the original firefly algorithm is enhanced by utilizing the opposition-based learning and introducing inertia weight. After evaluating the performance of the enhanced opposition-based firefly algorithm (EOFA) with fifteen benchmark functions, it is then adopted to determine the optimal size for BESS. Two optimization processes are conducted where the first optimization aims to obtain the optimal battery output power on hourly basis and the second optimization aims to obtain the optimal BESS capacity by considering the state of charge constraint of BESS. The effectiveness of the proposed method is validated by applying the algorithm to the 69-bus distribution system and by comparing the performance of EOFA with conventional firefly algorithm and gravitational search algorithm. Results show that EOFA has the best performance comparatively in terms of mitigating the voltage rise problem. PMID:25054184

  3. Optimal battery sizing in photovoltaic based distributed generation using enhanced opposition-based firefly algorithm for voltage rise mitigation.

    PubMed

    Wong, Ling Ai; Shareef, Hussain; Mohamed, Azah; Ibrahim, Ahmad Asrul

    2014-01-01

    This paper presents the application of enhanced opposition-based firefly algorithm in obtaining the optimal battery energy storage systems (BESS) sizing in photovoltaic generation integrated radial distribution network in order to mitigate the voltage rise problem. Initially, the performance of the original firefly algorithm is enhanced by utilizing the opposition-based learning and introducing inertia weight. After evaluating the performance of the enhanced opposition-based firefly algorithm (EOFA) with fifteen benchmark functions, it is then adopted to determine the optimal size for BESS. Two optimization processes are conducted where the first optimization aims to obtain the optimal battery output power on hourly basis and the second optimization aims to obtain the optimal BESS capacity by considering the state of charge constraint of BESS. The effectiveness of the proposed method is validated by applying the algorithm to the 69-bus distribution system and by comparing the performance of EOFA with conventional firefly algorithm and gravitational search algorithm. Results show that EOFA has the best performance comparatively in terms of mitigating the voltage rise problem.

  4. Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient.

    PubMed

    Shi, Junwei; Zhang, Bin; Liu, Fei; Luo, Jianwen; Bai, Jing

    2013-09-15

    For the ill-posed fluorescent molecular tomography (FMT) inverse problem, the L1 regularization can protect the high-frequency information like edges while effectively reduce the image noise. However, the state-of-the-art L1 regularization-based algorithms for FMT reconstruction are expensive in memory, especially for large-scale problems. An efficient L1 regularization-based reconstruction algorithm based on nonlinear conjugate gradient with restarted strategy is proposed to increase the computational speed with low memory consumption. The reconstruction results from phantom experiments demonstrate that the proposed algorithm can obtain high spatial resolution and high signal-to-noise ratio, as well as high localization accuracy for fluorescence targets.

  5. Constrained H1-regularization schemes for diffeomorphic image registration

    PubMed Central

    Mang, Andreas; Biros, George

    2017-01-01

    We propose regularization schemes for deformable registration and efficient algorithms for their numerical approximation. We treat image registration as a variational optimal control problem. The deformation map is parametrized by its velocity. Tikhonov regularization ensures well-posedness. Our scheme augments standard smoothness regularization operators based on H1- and H2-seminorms with a constraint on the divergence of the velocity field, which resembles variational formulations for Stokes incompressible flows. In our formulation, we invert for a stationary velocity field and a mass source map. This allows us to explicitly control the compressibility of the deformation map and by that the determinant of the deformation gradient. We also introduce a new regularization scheme that allows us to control shear. We use a globalized, preconditioned, matrix-free, reduced space (Gauss–)Newton–Krylov scheme for numerical optimization. We exploit variable elimination techniques to reduce the number of unknowns of our system; we only iterate on the reduced space of the velocity field. Our current implementation is limited to the two-dimensional case. The numerical experiments demonstrate that we can control the determinant of the deformation gradient without compromising registration quality. This additional control allows us to avoid oversmoothing of the deformation map. We also demonstrate that we can promote or penalize shear whilst controlling the determinant of the deformation gradient. PMID:29075361

  6. Optimization of parameter values for complex pulse sequences by simulated annealing: application to 3D MP-RAGE imaging of the brain.

    PubMed

    Epstein, F H; Mugler, J P; Brookeman, J R

    1994-02-01

    A number of pulse sequence techniques, including magnetization-prepared gradient echo (MP-GRE), segmented GRE, and hybrid RARE, employ a relatively large number of variable pulse sequence parameters and acquire the image data during a transient signal evolution. These sequences have recently been proposed and/or used for clinical applications in the brain, spine, liver, and coronary arteries. Thus, the need for a method of deriving optimal pulse sequence parameter values for this class of sequences now exists. Due to the complexity of these sequences, conventional optimization approaches, such as applying differential calculus to signal difference equations, are inadequate. We have developed a general framework for adapting the simulated annealing algorithm to pulse sequence parameter value optimization, and applied this framework to the specific case of optimizing the white matter-gray matter signal difference for a T1-weighted variable flip angle 3D MP-RAGE sequence. Using our algorithm, the values of 35 sequence parameters, including the magnetization-preparation RF pulse flip angle and delay time, 32 flip angles in the variable flip angle gradient-echo acquisition sequence, and the magnetization recovery time, were derived. Optimized 3D MP-RAGE achieved up to a 130% increase in white matter-gray matter signal difference compared with optimized 3D RF-spoiled FLASH with the same total acquisition time. The simulated annealing approach was effective at deriving optimal parameter values for a specific 3D MP-RAGE imaging objective, and may be useful for other imaging objectives and sequences in this general class.

  7. Development, validation, and comparison of ICA-based gradient artifact reduction algorithms for simultaneous EEG-spiral in/out and echo-planar fMRI recordings

    PubMed Central

    Ryali, S; Glover, GH; Chang, C; Menon, V

    2009-01-01

    EEG data acquired in an MRI scanner are heavily contaminated by gradient artifacts that can significantly compromise signal quality. We developed two new methods based on Independent Component Analysis (ICA) for reducing gradient artifacts from spiral in-out and echo-planar pulse sequences at 3T, and compared our algorithms with four other commonly used methods: average artifact subtraction (Allen et al. 2000), principal component analysis (Niazy et al. 2005), Taylor series (Wan et al. 2006) and a conventional temporal ICA algorithm. Models of gradient artifacts were derived from simulations as well as a water phantom and performance of each method was evaluated on datasets constructed using visual event-related potentials (ERPs) as well as resting EEG. Our new methods recovered ERPs and resting EEG below the beta band (< 12.5 Hz) with high signal-to-noise ratio (SNR > 4). Our algorithms outperformed all of these methods on resting EEG in the theta- and alpha-bands (SNR > 4); however, for all methods, signal recovery was modest (SNR ~ 1) in the beta-band and poor (SNR < 0.3) in the gamma-band and above. We found that the conventional ICA algorithm performed poorly with uniformly low SNR (< 0.1). Taken together, our new ICA-based methods offer a more robust technique for gradient artifact reduction when scanning at 3T using spiral in-out and echo-planar pulse sequences. We provide new insights into the strengths and weaknesses of each method using a unified subspace framework. PMID:19580873

  8. Morphing Wings: A Study Using High-Fidelity Aerodynamic Shape Optimization

    NASA Astrophysics Data System (ADS)

    Curiale, Nathanael J.

    With the aviation industry under pressure to reduce fuel consumption, morphing wings have the capacity to improve aircraft performance, thereby making a significant contribution to reversing climate change. Through high-fidelity aerodynamic shape optimization, various forms of morphing wings are assessed for a hypothetical regional-class aircraft. The framework used solves the Reynolds-averaged Navier-Stokes equations and utilizes a gradient-based optimization algorithm. Baseline geometries are developed through multipoint optimization, where the average drag coefficient is minimized over a range of flight conditions with additional dive constraints. Morphing optimizations are then performed, beginning with these baseline shapes. Five distinct types of morphing are investigated and compared. Overall, a theoretical fully adaptable wing produces roughly a 2% improvement in average performance, whereas trailing-edge morphing with a 27-point multipoint baseline results in just over a 1% improvement in average performance. Trailing-edge morphing proves to be more beneficial than leading-edge morphing, upper-surface morphing, and a conventional flap.

  9. Teaching-learning-based Optimization Algorithm for Parameter Identification in the Design of IIR Filters

    NASA Astrophysics Data System (ADS)

    Singh, R.; Verma, H. K.

    2013-12-01

    This paper presents a teaching-learning-based optimization (TLBO) algorithm to solve parameter identification problems in the designing of digital infinite impulse response (IIR) filter. TLBO based filter modelling is applied to calculate the parameters of unknown plant in simulations. Unlike other heuristic search algorithms, TLBO algorithm is an algorithm-specific parameter-less algorithm. In this paper big bang-big crunch (BB-BC) optimization and PSO algorithms are also applied to filter design for comparison. Unknown filter parameters are considered as a vector to be optimized by these algorithms. MATLAB programming is used for implementation of proposed algorithms. Experimental results show that the TLBO is more accurate to estimate the filter parameters than the BB-BC optimization algorithm and has faster convergence rate when compared to PSO algorithm. TLBO is used where accuracy is more essential than the convergence speed.

  10. FWT2D: A massively parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data—Part 1: Algorithm

    NASA Astrophysics Data System (ADS)

    Sourbier, Florent; Operto, Stéphane; Virieux, Jean; Amestoy, Patrick; L'Excellent, Jean-Yves

    2009-03-01

    This is the first paper in a two-part series that describes a massively parallel code that performs 2D frequency-domain full-waveform inversion of wide-aperture seismic data for imaging complex structures. Full-waveform inversion methods, namely quantitative seismic imaging methods based on the resolution of the full wave equation, are computationally expensive. Therefore, designing efficient algorithms which take advantage of parallel computing facilities is critical for the appraisal of these approaches when applied to representative case studies and for further improvements. Full-waveform modelling requires the resolution of a large sparse system of linear equations which is performed with the massively parallel direct solver MUMPS for efficient multiple-shot simulations. Efficiency of the multiple-shot solution phase (forward/backward substitutions) is improved by using the BLAS3 library. The inverse problem relies on a classic local optimization approach implemented with a gradient method. The direct solver returns the multiple-shot wavefield solutions distributed over the processors according to a domain decomposition driven by the distribution of the LU factors. The domain decomposition of the wavefield solutions is used to compute in parallel the gradient of the objective function and the diagonal Hessian, this latter providing a suitable scaling of the gradient. The algorithm allows one to test different strategies for multiscale frequency inversion ranging from successive mono-frequency inversion to simultaneous multifrequency inversion. These different inversion strategies will be illustrated in the following companion paper. The parallel efficiency and the scalability of the code will also be quantified.

  11. Nonconvex Sparse Logistic Regression With Weakly Convex Regularization

    NASA Astrophysics Data System (ADS)

    Shen, Xinyue; Gu, Yuantao

    2018-06-01

    In this work we propose to fit a sparse logistic regression model by a weakly convex regularized nonconvex optimization problem. The idea is based on the finding that a weakly convex function as an approximation of the $\\ell_0$ pseudo norm is able to better induce sparsity than the commonly used $\\ell_1$ norm. For a class of weakly convex sparsity inducing functions, we prove the nonconvexity of the corresponding sparse logistic regression problem, and study its local optimality conditions and the choice of the regularization parameter to exclude trivial solutions. Despite the nonconvexity, a method based on proximal gradient descent is used to solve the general weakly convex sparse logistic regression, and its convergence behavior is studied theoretically. Then the general framework is applied to a specific weakly convex function, and a necessary and sufficient local optimality condition is provided. The solution method is instantiated in this case as an iterative firm-shrinkage algorithm, and its effectiveness is demonstrated in numerical experiments by both randomly generated and real datasets.

  12. Optimal configuration of power grid sources based on optimal particle swarm algorithm

    NASA Astrophysics Data System (ADS)

    Wen, Yuanhua

    2018-04-01

    In order to optimize the distribution problem of power grid sources, an optimized particle swarm optimization algorithm is proposed. First, the concept of multi-objective optimization and the Pareto solution set are enumerated. Then, the performance of the classical genetic algorithm, the classical particle swarm optimization algorithm and the improved particle swarm optimization algorithm are analyzed. The three algorithms are simulated respectively. Compared with the test results of each algorithm, the superiority of the algorithm in convergence and optimization performance is proved, which lays the foundation for subsequent micro-grid power optimization configuration solution.

  13. Automated treatment planning for a dedicated multi-source intracranial radiosurgery treatment unit using projected gradient and grassfire algorithms.

    PubMed

    Ghobadi, Kimia; Ghaffari, Hamid R; Aleman, Dionne M; Jaffray, David A; Ruschin, Mark

    2012-06-01

    The purpose of this work is to develop a framework to the inverse problem for radiosurgery treatment planning on the Gamma Knife(®) Perfexion™ (PFX) for intracranial targets. The approach taken in the present study consists of two parts. First, a hybrid grassfire and sphere-packing algorithm is used to obtain shot positions (isocenters) based on the geometry of the target to be treated. For the selected isocenters, a sector duration optimization (SDO) model is used to optimize the duration of radiation delivery from each collimator size from each individual source bank. The SDO model is solved using a projected gradient algorithm. This approach has been retrospectively tested on seven manually planned clinical cases (comprising 11 lesions) including acoustic neuromas and brain metastases. In terms of conformity and organ-at-risk (OAR) sparing, the quality of plans achieved with the inverse planning approach were, on average, improved compared to the manually generated plans. The mean difference in conformity index between inverse and forward plans was -0.12 (range: -0.27 to +0.03) and +0.08 (range: 0.00-0.17) for classic and Paddick definitions, respectively, favoring the inverse plans. The mean difference in volume receiving the prescribed dose (V(100)) between forward and inverse plans was 0.2% (range: -2.4% to +2.0%). After plan renormalization for equivalent coverage (i.e., V(100)), the mean difference in dose to 1 mm(3) of brainstem between forward and inverse plans was -0.24 Gy (range: -2.40 to +2.02 Gy) favoring the inverse plans. Beam-on time varied with the number of isocenters but for the most optimal plans was on average 33 min longer than manual plans (range: -17 to +91 min) when normalized to a calibration dose rate of 3.5 Gy/min. In terms of algorithm performance, the isocenter selection for all the presented plans was performed in less than 3 s, while the SDO was performed in an average of 215 min. PFX inverse planning can be performed using geometric isocenter selection and mathematical modeling and optimization techniques. The obtained treatment plans all meet or exceed clinical guidelines while displaying high conformity. © 2012 American Association of Physicists in Medicine.

  14. Compressed sensing with gradient total variation for low-dose CBCT reconstruction

    NASA Astrophysics Data System (ADS)

    Seo, Chang-Woo; Cha, Bo Kyung; Jeon, Seongchae; Huh, Young; Park, Justin C.; Lee, Byeonghun; Baek, Junghee; Kim, Eunyoung

    2015-06-01

    This paper describes the improvement of convergence speed with gradient total variation (GTV) in compressed sensing (CS) for low-dose cone-beam computed tomography (CBCT) reconstruction. We derive a fast algorithm for the constrained total variation (TV)-based a minimum number of noisy projections. To achieve this task we combine the GTV with a TV-norm regularization term to promote an accelerated sparsity in the X-ray attenuation characteristics of the human body. The GTV is derived from a TV and enforces more efficient computationally and faster in convergence until a desired solution is achieved. The numerical algorithm is simple and derives relatively fast convergence. We apply a gradient projection algorithm that seeks a solution iteratively in the direction of the projected gradient while enforcing a non-negatively of the found solution. In comparison with the Feldkamp, Davis, and Kress (FDK) and conventional TV algorithms, the proposed GTV algorithm showed convergence in ≤18 iterations, whereas the original TV algorithm needs at least 34 iterations in reducing 50% of the projections compared with the FDK algorithm in order to reconstruct the chest phantom images. Future investigation includes improving imaging quality, particularly regarding X-ray cone-beam scatter, and motion artifacts of CBCT reconstruction.

  15. Spectral edge: gradient-preserving spectral mapping for image fusion.

    PubMed

    Connah, David; Drew, Mark S; Finlayson, Graham D

    2015-12-01

    This paper describes a novel approach to image fusion for color display. Our goal is to generate an output image whose gradient matches that of the input as closely as possible. We achieve this using a constrained contrast mapping paradigm in the gradient domain, where the structure tensor of a high-dimensional gradient representation is mapped exactly to that of a low-dimensional gradient field which is then reintegrated to form an output. Constraints on output colors are provided by an initial RGB rendering. Initially, we motivate our solution with a simple "ansatz" (educated guess) for projecting higher-D contrast onto color gradients, which we expand to a more rigorous theorem to incorporate color constraints. The solution to these constrained optimizations is closed-form, allowing for simple and hence fast and efficient algorithms. The approach can map any N-D image data to any M-D output and can be used in a variety of applications using the same basic algorithm. In this paper, we focus on the problem of mapping N-D inputs to 3D color outputs. We present results in five applications: hyperspectral remote sensing, fusion of color and near-infrared or clear-filter images, multilighting imaging, dark flash, and color visualization of magnetic resonance imaging diffusion-tensor imaging.

  16. Improving Robot Locomotion Through Learning Methods for Expensive Black-Box Systems

    DTIC Science & Technology

    2013-11-01

    development of a class of “gradient free” optimization techniques; these include local approaches, such as a Nelder- Mead simplex search (c.f. [73]), and global...1Note that this simple method differs from the Nelder Mead constrained nonlinear optimization method [73]. 39 the Non-dominated Sorting Genetic Algorithm...Kober, and Jan Peters. Model-free inverse reinforcement learning. In International Conference on Artificial Intelligence and Statistics, 2011. [12] George

  17. Improving best-phase image quality in cardiac CT by motion correction with MAM optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohkohl, Christopher; Bruder, Herbert; Stierstorfer, Karl

    2013-03-15

    Purpose: Research in image reconstruction for cardiac CT aims at using motion correction algorithms to improve the image quality of the coronary arteries. The key to those algorithms is motion estimation, which is currently based on 3-D/3-D registration to align the structures of interest in images acquired in multiple heart phases. The need for an extended scan data range covering several heart phases is critical in terms of radiation dose to the patient and limits the clinical potential of the method. Furthermore, literature reports only slight quality improvements of the motion corrected images when compared to the most quiet phasemore » (best-phase) that was actually used for motion estimation. In this paper a motion estimation algorithm is proposed which does not require an extended scan range but works with a short scan data interval, and which markedly improves the best-phase image quality. Methods: Motion estimation is based on the definition of motion artifact metrics (MAM) to quantify motion artifacts in a 3-D reconstructed image volume. The authors use two different MAMs, entropy, and positivity. By adjusting the motion field parameters, the MAM of the resulting motion-compensated reconstruction is optimized using a gradient descent procedure. In this way motion artifacts are minimized. For a fast and practical implementation, only analytical methods are used for motion estimation and compensation. Both the MAM-optimization and a 3-D/3-D registration-based motion estimation algorithm were investigated by means of a computer-simulated vessel with a cardiac motion profile. Image quality was evaluated using normalized cross-correlation (NCC) with the ground truth template and root-mean-square deviation (RMSD). Four coronary CT angiography patient cases were reconstructed to evaluate the clinical performance of the proposed method. Results: For the MAM-approach, the best-phase image quality could be improved for all investigated heart phases, with a maximum improvement of the NCC value by 100% and of the RMSD value by 81%. The corresponding maximum improvements for the registration-based approach were 20% and 40%. In phases with very rapid motion the registration-based algorithm obtained better image quality, while the image quality of the MAM algorithm was superior in phases with less motion. The image quality improvement of the MAM optimization was visually confirmed for the different clinical cases. Conclusions: The proposed method allows a software-based best-phase image quality improvement in coronary CT angiography. A short scan data interval at the target heart phase is sufficient, no additional scan data in other cardiac phases are required. The algorithm is therefore directly applicable to any standard cardiac CT acquisition protocol.« less

  18. Combining Biomarkers Linearly and Nonlinearly for Classification Using the Area Under the ROC Curve

    PubMed Central

    Fong, Youyi; Yin, Shuxin; Huang, Ying

    2016-01-01

    In biomedical studies, it is often of interest to classify/predict a subject’s disease status based on a variety of biomarker measurements. A commonly used classification criterion is based on AUC - Area under the Receiver Operating Characteristic Curve. Many methods have been proposed to optimize approximated empirical AUC criteria, but there are two limitations to the existing methods. First, most methods are only designed to find the best linear combination of biomarkers, which may not perform well when there is strong nonlinearity in the data. Second, many existing linear combination methods use gradient-based algorithms to find the best marker combination, which often result in sub-optimal local solutions. In this paper, we address these two problems by proposing a new kernel-based AUC optimization method called Ramp AUC (RAUC). This method approximates the empirical AUC loss function with a ramp function, and finds the best combination by a difference of convex functions algorithm. We show that as a linear combination method, RAUC leads to a consistent and asymptotically normal estimator of the linear marker combination when the data is generated from a semiparametric generalized linear model, just as the Smoothed AUC method (SAUC). Through simulation studies and real data examples, we demonstrate that RAUC out-performs SAUC in finding the best linear marker combinations, and can successfully capture nonlinear pattern in the data to achieve better classification performance. We illustrate our method with a dataset from a recent HIV vaccine trial. PMID:27058981

  19. Peak-Seeking Optimization of Trim for Reduced Fuel Consumption: Architecture and Performance Predictions

    NASA Technical Reports Server (NTRS)

    Schaefer, Jacob; Brown, Nelson

    2013-01-01

    A peak-seeking control approach for real-time trim configuration optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control approach is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an FA-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) are controlled for optimization of fuel flow. This presentation presents the design and integration of this peak-seeking controller on a modified NASA FA-18 airplane with research flight control computers. A research flight was performed to collect data to build a realistic model of the performance function and characterize measurement noise. This model was then implemented into a nonlinear six-degree-of-freedom FA-18 simulation along with the peak-seeking control algorithm. With the goal of eventual flight tests, the algorithm was first evaluated in the improved simulation environment. Results from the simulation predict good convergence on minimum fuel flow with a 2.5-percent reduction in fuel flow relative to the baseline trim of the aircraft.

  20. Peak-Seeking Optimization of Trim for Reduced Fuel Consumption: Architecture and Performance Predictions

    NASA Technical Reports Server (NTRS)

    Schaefer, Jacob; Brown, Nelson A.

    2013-01-01

    A peak-seeking control approach for real-time trim configuration optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control approach is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) are controlled for optimization of fuel flow. This paper presents the design and integration of this peak-seeking controller on a modified NASA F/A-18 airplane with research flight control computers. A research flight was performed to collect data to build a realistic model of the performance function and characterize measurement noise. This model was then implemented into a nonlinear six-degree-of-freedom F/A-18 simulation along with the peak-seeking control algorithm. With the goal of eventual flight tests, the algorithm was first evaluated in the improved simulation environment. Results from the simulation predict good convergence on minimum fuel flow with a 2.5-percent reduction in fuel flow relative to the baseline trim of the aircraft.

  1. On the use of harmony search algorithm in the training of wavelet neural networks

    NASA Astrophysics Data System (ADS)

    Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline

    2015-10-01

    Wavelet neural networks (WNNs) are a class of feedforward neural networks that have been used in a wide range of industrial and engineering applications to model the complex relationships between the given inputs and outputs. The training of WNNs involves the configuration of the weight values between neurons. The backpropagation training algorithm, which is a gradient-descent method, can be used for this training purpose. Nonetheless, the solutions found by this algorithm often get trapped at local minima. In this paper, a harmony search-based algorithm is proposed for the training of WNNs. The training of WNNs, thus can be formulated as a continuous optimization problem, where the objective is to maximize the overall classification accuracy. Each candidate solution proposed by the harmony search algorithm represents a specific WNN architecture. In order to speed up the training process, the solution space is divided into disjoint partitions during the random initialization step of harmony search algorithm. The proposed training algorithm is tested onthree benchmark problems from the UCI machine learning repository, as well as one real life application, namely, the classification of electroencephalography signals in the task of epileptic seizure detection. The results obtained show that the proposed algorithm outperforms the traditional harmony search algorithm in terms of overall classification accuracy.

  2. 2D joint inversion of CSAMT and magnetic data based on cross-gradient theory

    NASA Astrophysics Data System (ADS)

    Wang, Kun-Peng; Tan, Han-Dong; Wang, Tao

    2017-06-01

    A two-dimensional forward and backward algorithm for the controlled-source audio-frequency magnetotelluric (CSAMT) method is developed to invert data in the entire region (near, transition, and far) and deal with the effects of artificial sources. First, a regularization factor is introduced in the 2D magnetic inversion, and the magnetic susceptibility is updated in logarithmic form so that the inversion magnetic susceptibility is always positive. Second, the joint inversion of the CSAMT and magnetic methods is completed with the introduction of the cross gradient. By searching for the weight of the cross-gradient term in the objective function, the mutual influence between two different physical properties at different locations are avoided. Model tests show that the joint inversion based on cross-gradient theory offers better results than the single-method inversion. The 2D forward and inverse algorithm for CSAMT with source can effectively deal with artificial sources and ensures the reliability of the final joint inversion algorithm.

  3. Infrared and visible image fusion based on total variation and augmented Lagrangian.

    PubMed

    Guo, Hanqi; Ma, Yong; Mei, Xiaoguang; Ma, Jiayi

    2017-11-01

    This paper proposes a new algorithm for infrared and visible image fusion based on gradient transfer that achieves fusion by preserving the intensity of the infrared image and then transferring gradients in the corresponding visible one to the result. The gradient transfer suffers from the problems of low dynamic range and detail loss because it ignores the intensity from the visible image. The new algorithm solves these problems by providing additive intensity from the visible image to balance the intensity between the infrared image and the visible one. It formulates the fusion task as an l 1 -l 1 -TV minimization problem and then employs variable splitting and augmented Lagrangian to convert the unconstrained problem to a constrained one that can be solved in the framework of alternating the multiplier direction method. Experiments demonstrate that the new algorithm achieves better fusion results with a high computation efficiency in both qualitative and quantitative tests than gradient transfer and most state-of-the-art methods.

  4. Iris Location Algorithm Based on the CANNY Operator and Gradient Hough Transform

    NASA Astrophysics Data System (ADS)

    Zhong, L. H.; Meng, K.; Wang, Y.; Dai, Z. Q.; Li, S.

    2017-12-01

    In the iris recognition system, the accuracy of the localization of the inner and outer edges of the iris directly affects the performance of the recognition system, so iris localization has important research meaning. Our iris data contain eyelid, eyelashes, light spot and other noise, even the gray transformation of the images is not obvious, so the general methods of iris location are unable to realize the iris location. The method of the iris location based on Canny operator and gradient Hough transform is proposed. Firstly, the images are pre-processed; then, calculating the gradient information of images, the inner and outer edges of iris are coarse positioned using Canny operator; finally, according to the gradient Hough transform to realize precise localization of the inner and outer edge of iris. The experimental results show that our algorithm can achieve the localization of the inner and outer edges of the iris well, and the algorithm has strong anti-interference ability, can greatly reduce the location time and has higher accuracy and stability.

  5. Longitudinal gradient coils with enhanced radial uniformity in restricted diameter: Single-current and multiple-current approaches.

    PubMed

    Romero, Javier A; Domínguez, Gabriela A; Anoardo, Esteban

    2017-03-01

    An important requirement for a gradient coil is that the uniformity of the generated magnetic field gradient should be maximal within the active volume of the coil. For a cylindrical geometry, the radial uniformity of the gradient turns critic, particularly in cases where the gradient-unit has to be designed to fit into the inner bore of a compact magnet of reduced dimensions, like those typically used in fast-field-cycling NMR. In this paper we present two practical solutions aimed to fulfill this requirement. We propose a matrix-inversion optimization algorithm based on the Biot-Savart law, that using a proper cost function, allows maximizing the uniformity of the gradient and power efficiency. The used methodology and the simulation code were validated in a single-current design, by comparing the computer simulated field map with the experimental data measured in a real prototype. After comparing the obtained results with the target field approach, a multiple-element coil driven by independent current sources is discussed, and a real prototype evaluated. Opposed equispaced independent windings are connected in pairs conforming an arrangement of independent anti-Helmholtz units. This last coil seizes 80% of its radial dimension with a gradient uniformity better than 5%. The design also provides an adaptable region of uniformity along with adjustable coil efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Validation of morphing wing methodologies on an unmanned aerial system and a wind tunnel technology demonstrator

    NASA Astrophysics Data System (ADS)

    Gabor, Oliviu Sugar

    To increase the aerodynamic efficiency of aircraft, in order to reduce the fuel consumption, a novel morphing wing concept has been developed. It consists in replacing a part of the wing upper and lower surfaces with a flexible skin whose shape can be modified using an actuation system placed inside the wing structure. Numerical studies in two and three dimensions were performed in order to determine the gains the morphing system achieves for the case of an Unmanned Aerial System and for a morphing technology demonstrator based on the wing tip of a transport aircraft. To obtain the optimal wing skin shapes in function of the flight condition, different global optimization algorithms were implemented, such as the Genetic Algorithm and the Artificial Bee Colony Algorithm. To reduce calculation times, a hybrid method was created by coupling the population-based algorithm with a fast, gradient-based local search method. Validations were performed with commercial state-of-the-art optimization tools and demonstrated the efficiency of the proposed methods. For accurately determining the aerodynamic characteristics of the morphing wing, two new methods were developed, a nonlinear lifting line method and a nonlinear vortex lattice method. Both use strip analysis of the span-wise wing section to account for the airfoil shape modifications induced by the flexible skin, and can provide accurate results for the wing drag coefficient. The methods do not require the generation of a complex mesh around the wing and are suitable for coupling with optimization algorithms due to the computational time several orders of magnitude smaller than traditional three-dimensional Computational Fluid Dynamics methods. Two-dimensional and three-dimensional optimizations of the Unmanned Aerial System wing equipped with the morphing skin were performed, with the objective of improving its performances for an extended range of flight conditions. The chordwise positions of the internal actuators, the spanwise number of actuation stations as well as the displacement limits were established. The performance improvements obtained and the limitations of the morphing wing concept were studied. To verify the optimization results, high-fidelity Computational Fluid Dynamics simulations were also performed, giving very accurate indications of the obtained gains. For the morphing model based on an aircraft wing tip, the skin shapes were optimized in order to control laminar flow on the upper surface. An automated structured mesh generation procedure was developed and implemented. To accurately capture the shape of the skin, a precision scanning procedure was done and its results were included in the numerical model. High-fidelity simulations were performed to determine the upper surface transition region and the numerical results were validated using experimental wind tunnel data.

  7. Correction method for stripe nonuniformity.

    PubMed

    Qian, Weixian; Chen, Qian; Gu, Guohua; Guan, Zhiqiang

    2010-04-01

    Stripe nonuniformity is very typical in line infrared focal plane arrays (IR-FPA) and uncooled staring IR-FPA. In this paper, the mechanism of the stripe nonuniformity is analyzed, and the gray-scale co-occurrence matrix theory and optimization theory are studied. Through these efforts, the stripe nonuniformity correction problem is translated into the optimization problem. The goal of the optimization is to find the minimal energy of the image's line gradient. After solving the constrained nonlinear optimization equation, the parameters of the stripe nonuniformity correction are obtained and the stripe nonuniformity correction is achieved. The experiments indicate that this algorithm is effective and efficient.

  8. SeGRAm - A practical and versatile tool for spacecraft trajectory optimization

    NASA Technical Reports Server (NTRS)

    Rishikof, Brian H.; Mccormick, Bernell R.; Pritchard, Robert E.; Sponaugle, Steven J.

    1991-01-01

    An implementation of the Sequential Gradient/Restoration Algorithm, SeGRAm, is presented along with selected examples. This spacecraft trajectory optimization and simulation program uses variational calculus to solve problems of spacecraft flying under the influence of one or more gravitational bodies. It produces a series of feasible solutions to problems involving a wide range of vehicles, environments and optimization functions, until an optimal solution is found. The examples included highlight the various capabilities of the program and emphasize in particular its versatility over a wide spectrum of applications from ascent to interplanetary trajectories.

  9. Topology Optimization - Engineering Contribution to Architectural Design

    NASA Astrophysics Data System (ADS)

    Tajs-Zielińska, Katarzyna; Bochenek, Bogdan

    2017-10-01

    The idea of the topology optimization is to find within a considered design domain the distribution of material that is optimal in some sense. Material, during optimization process, is redistributed and parts that are not necessary from objective point of view are removed. The result is a solid/void structure, for which an objective function is minimized. This paper presents an application of topology optimization to multi-material structures. The design domain defined by shape of a structure is divided into sub-regions, for which different materials are assigned. During design process material is relocated, but only within selected region. The proposed idea has been inspired by architectural designs like multi-material facades of buildings. The effectiveness of topology optimization is determined by proper choice of numerical optimization algorithm. This paper utilises very efficient heuristic method called Cellular Automata. Cellular Automata are mathematical, discrete idealization of a physical systems. Engineering implementation of Cellular Automata requires decomposition of the design domain into a uniform lattice of cells. It is assumed, that the interaction between cells takes place only within the neighbouring cells. The interaction is governed by simple, local update rules, which are based on heuristics or physical laws. The numerical studies show, that this method can be attractive alternative to traditional gradient-based algorithms. The proposed approach is evaluated by selected numerical examples of multi-material bridge structures, for which various material configurations are examined. The numerical studies demonstrated a significant influence the material sub-regions location on the final topologies. The influence of assumed volume fraction on final topologies for multi-material structures is also observed and discussed. The results of numerical calculations show, that this approach produces different results as compared with classical one-material problems.

  10. Joint estimation of motion and illumination change in a sequence of images

    NASA Astrophysics Data System (ADS)

    Koo, Ja-Keoung; Kim, Hyo-Hun; Hong, Byung-Woo

    2015-09-01

    We present an algorithm that simultaneously computes optical flow and estimates illumination change from an image sequence in a unified framework. We propose an energy functional consisting of conventional optical flow energy based on Horn-Schunck method and an additional constraint that is designed to compensate for illumination changes. Any undesirable illumination change that occurs in the imaging procedure in a sequence while the optical flow is being computed is considered a nuisance factor. In contrast to the conventional optical flow algorithm based on Horn-Schunck functional, which assumes the brightness constancy constraint, our algorithm is shown to be robust with respect to temporal illumination changes in the computation of optical flows. An efficient conjugate gradient descent technique is used in the optimization procedure as a numerical scheme. The experimental results obtained from the Middlebury benchmark dataset demonstrate the robustness and the effectiveness of our algorithm. In addition, comparative analysis of our algorithm and Horn-Schunck algorithm is performed on the additional test dataset that is constructed by applying a variety of synthetic bias fields to the original image sequences in the Middlebury benchmark dataset in order to demonstrate that our algorithm outperforms the Horn-Schunck algorithm. The superior performance of the proposed method is observed in terms of both qualitative visualizations and quantitative accuracy errors when compared to Horn-Schunck optical flow algorithm that easily yields poor results in the presence of small illumination changes leading to violation of the brightness constancy constraint.

  11. No-reference image quality assessment based on natural scene statistics and gradient magnitude similarity

    NASA Astrophysics Data System (ADS)

    Jia, Huizhen; Sun, Quansen; Ji, Zexuan; Wang, Tonghan; Chen, Qiang

    2014-11-01

    The goal of no-reference/blind image quality assessment (NR-IQA) is to devise a perceptual model that can accurately predict the quality of a distorted image as human opinions, in which feature extraction is an important issue. However, the features used in the state-of-the-art "general purpose" NR-IQA algorithms are usually natural scene statistics (NSS) based or are perceptually relevant; therefore, the performance of these models is limited. To further improve the performance of NR-IQA, we propose a general purpose NR-IQA algorithm which combines NSS-based features with perceptually relevant features. The new method extracts features in both the spatial and gradient domains. In the spatial domain, we extract the point-wise statistics for single pixel values which are characterized by a generalized Gaussian distribution model to form the underlying features. In the gradient domain, statistical features based on neighboring gradient magnitude similarity are extracted. Then a mapping is learned to predict quality scores using a support vector regression. The experimental results on the benchmark image databases demonstrate that the proposed algorithm correlates highly with human judgments of quality and leads to significant performance improvements over state-of-the-art methods.

  12. Solution algorithm of dwell time in slope-based figuring model

    NASA Astrophysics Data System (ADS)

    Li, Yong; Zhou, Lin

    2017-10-01

    Surface slope profile is commonly used to evaluate X-ray reflective optics, which is used in synchrotron radiation beam. Moreover, the measurement result of measuring instrument for X-ray reflective optics is usually the surface slope profile rather than the surface height profile. To avoid the conversion error, the slope-based figuring model is introduced introduced by processing the X-ray reflective optics based on surface height-based model. However, the pulse iteration method, which can quickly obtain the dell time solution of the traditional height-based figuring model, is not applied to the slope-based figuring model because property of the slope removal function have both positive and negative values and complex asymmetric structure. To overcome this problem, we established the optimal mathematical model for the dwell time solution, By introducing the upper and lower limits of the dwell time and the time gradient constraint. Then we used the constrained least squares algorithm to solve the dwell time in slope-based figuring model. To validate the proposed algorithm, simulations and experiments are conducted. A flat mirror with effective aperture of 80 mm is polished on the ion beam machine. After iterative polishing three times, the surface slope profile error of the workpiece is converged from RMS 5.65 μrad to RMS 1.12 μrad.

  13. Control of Complex Dynamic Systems by Neural Networks

    NASA Technical Reports Server (NTRS)

    Spall, James C.; Cristion, John A.

    1993-01-01

    This paper considers the use of neural networks (NN's) in controlling a nonlinear, stochastic system with unknown process equations. The NN is used to model the resulting unknown control law. The approach here is based on using the output error of the system to train the NN controller without the need to construct a separate model (NN or other type) for the unknown process dynamics. To implement such a direct adaptive control approach, it is required that connection weights in the NN be estimated while the system is being controlled. As a result of the feedback of the unknown process dynamics, however, it is not possible to determine the gradient of the loss function for use in standard (back-propagation-type) weight estimation algorithms. Therefore, this paper considers the use of a new stochastic approximation algorithm for this weight estimation, which is based on a 'simultaneous perturbation' gradient approximation that only requires the system output error. It is shown that this algorithm can greatly enhance the efficiency over more standard stochastic approximation algorithms based on finite-difference gradient approximations.

  14. Designing Waveform Sets with Good Correlation and Stopband Properties for MIMO Radar via the Gradient-Based Method

    PubMed Central

    Tang, Liang; Zhu, Yongfeng; Fu, Qiang

    2017-01-01

    Waveform sets with good correlation and/or stopband properties have received extensive attention and been widely used in multiple-input multiple-output (MIMO) radar. In this paper, we aim at designing unimodular waveform sets with good correlation and stopband properties. To formulate the problem, we construct two criteria to measure the correlation and stopband properties and then establish an unconstrained problem in the frequency domain. After deducing the phase gradient and the step size, an efficient gradient-based algorithm with monotonicity is proposed to minimize the objective function directly. For the design problem without considering the correlation weights, we develop a simplified algorithm, which only requires a few fast Fourier transform (FFT) operations and is more efficient. Because both of the algorithms can be implemented via the FFT operations and the Hadamard product, they are computationally efficient and can be used to design waveform sets with a large waveform number and waveform length. Numerical experiments show that the proposed algorithms can provide better performance than the state-of-the-art algorithms in terms of the computational complexity. PMID:28468308

  15. Designing Waveform Sets with Good Correlation and Stopband Properties for MIMO Radar via the Gradient-Based Method.

    PubMed

    Tang, Liang; Zhu, Yongfeng; Fu, Qiang

    2017-05-01

    Waveform sets with good correlation and/or stopband properties have received extensive attention and been widely used in multiple-input multiple-output (MIMO) radar. In this paper, we aim at designing unimodular waveform sets with good correlation and stopband properties. To formulate the problem, we construct two criteria to measure the correlation and stopband properties and then establish an unconstrained problem in the frequency domain. After deducing the phase gradient and the step size, an efficient gradient-based algorithm with monotonicity is proposed to minimize the objective function directly. For the design problem without considering the correlation weights, we develop a simplified algorithm, which only requires a few fast Fourier transform (FFT) operations and is more efficient. Because both of the algorithms can be implemented via the FFT operations and the Hadamard product, they are computationally efficient and can be used to design waveform sets with a large waveform number and waveform length. Numerical experiments show that the proposed algorithms can provide better performance than the state-of-the-art algorithms in terms of the computational complexity.

  16. Motion prediction of a non-cooperative space target

    NASA Astrophysics Data System (ADS)

    Zhou, Bang-Zhao; Cai, Guo-Ping; Liu, Yun-Meng; Liu, Pan

    2018-01-01

    Capturing a non-cooperative space target is a tremendously challenging research topic. Effective acquisition of motion information of the space target is the premise to realize target capture. In this paper, motion prediction of a free-floating non-cooperative target in space is studied and a motion prediction algorithm is proposed. In order to predict the motion of the free-floating non-cooperative target, dynamic parameters of the target must be firstly identified (estimated), such as inertia, angular momentum and kinetic energy and so on; then the predicted motion of the target can be acquired by substituting these identified parameters into the Euler's equations of the target. Accurate prediction needs precise identification. This paper presents an effective method to identify these dynamic parameters of a free-floating non-cooperative target. This method is based on two steps, (1) the rough estimation of the parameters is computed using the motion observation data to the target, and (2) the best estimation of the parameters is found by an optimization method. In the optimization problem, the objective function is based on the difference between the observed and the predicted motion, and the interior-point method (IPM) is chosen as the optimization algorithm, which starts at the rough estimate obtained in the first step and finds a global minimum to the objective function with the guidance of objective function's gradient. So the speed of IPM searching for the global minimum is fast, and an accurate identification can be obtained in time. The numerical results show that the proposed motion prediction algorithm is able to predict the motion of the target.

  17. A biconjugate gradient type algorithm on massively parallel architectures

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.; Hochbruck, Marlis

    1991-01-01

    The biconjugate gradient (BCG) method is the natural generalization of the classical conjugate gradient algorithm for Hermitian positive definite matrices to general non-Hermitian linear systems. Unfortunately, the original BCG algorithm is susceptible to possible breakdowns and numerical instabilities. Recently, Freund and Nachtigal have proposed a novel BCG type approach, the quasi-minimal residual method (QMR), which overcomes the problems of BCG. Here, an implementation is presented of QMR based on an s-step version of the nonsymmetric look-ahead Lanczos algorithm. The main feature of the s-step Lanczos algorithm is that, in general, all inner products, except for one, can be computed in parallel at the end of each block; this is unlike the other standard Lanczos process where inner products are generated sequentially. The resulting implementation of QMR is particularly attractive on massively parallel SIMD architectures, such as the Connection Machine.

  18. Transmit Designs for the MIMO Broadcast Channel With Statistical CSI

    NASA Astrophysics Data System (ADS)

    Wu, Yongpeng; Jin, Shi; Gao, Xiqi; McKay, Matthew R.; Xiao, Chengshan

    2014-09-01

    We investigate the multiple-input multiple-output broadcast channel with statistical channel state information available at the transmitter. The so-called linear assignment operation is employed, and necessary conditions are derived for the optimal transmit design under general fading conditions. Based on this, we introduce an iterative algorithm to maximize the linear assignment weighted sum-rate by applying a gradient descent method. To reduce complexity, we derive an upper bound of the linear assignment achievable rate of each receiver, from which a simplified closed-form expression for a near-optimal linear assignment matrix is derived. This reveals an interesting construction analogous to that of dirty-paper coding. In light of this, a low complexity transmission scheme is provided. Numerical examples illustrate the significant performance of the proposed low complexity scheme.

  19. Application of Adjoint Methodology in Various Aspects of Sonic Boom Design

    NASA Technical Reports Server (NTRS)

    Rallabhandi, Sriram K.

    2014-01-01

    One of the advances in computational design has been the development of adjoint methods allowing efficient calculation of sensitivities in gradient-based shape optimization. This paper discusses two new applications of adjoint methodology that have been developed to aid in sonic boom mitigation exercises. In the first, equivalent area targets are generated using adjoint sensitivities of selected boom metrics. These targets may then be used to drive the vehicle shape during optimization. The second application is the computation of adjoint sensitivities of boom metrics on the ground with respect to parameters such as flight conditions, propagation sampling rate, and selected inputs to the propagation algorithms. These sensitivities enable the designer to make more informed selections of flight conditions at which the chosen cost functionals are less sensitive.

  20. Deformed exponentials and portfolio selection

    NASA Astrophysics Data System (ADS)

    Rodrigues, Ana Flávia P.; Guerreiro, Igor M.; Cavalcante, Charles Casimiro

    In this paper, we present a method for portfolio selection based on the consideration on deformed exponentials in order to generalize the methods based on the gaussianity of the returns in portfolio, such as the Markowitz model. The proposed method generalizes the idea of optimizing mean-variance and mean-divergence models and allows a more accurate behavior for situations where heavy-tails distributions are necessary to describe the returns in a given time instant, such as those observed in economic crises. Numerical results show the proposed method outperforms the Markowitz portfolio for the cumulated returns with a good convergence rate of the weights for the assets which are searched by means of a natural gradient algorithm.

  1. Trajectory optimization of spacecraft high-thrust orbit transfer using a modified evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Shirazi, Abolfazl

    2016-10-01

    This article introduces a new method to optimize finite-burn orbital manoeuvres based on a modified evolutionary algorithm. Optimization is carried out based on conversion of the orbital manoeuvre into a parameter optimization problem by assigning inverse tangential functions to the changes in direction angles of the thrust vector. The problem is analysed using boundary delimitation in a common optimization algorithm. A method is introduced to achieve acceptable values for optimization variables using nonlinear simulation, which results in an enlarged convergence domain. The presented algorithm benefits from high optimality and fast convergence time. A numerical example of a three-dimensional optimal orbital transfer is presented and the accuracy of the proposed algorithm is shown.

  2. Portfolio optimization by using linear programing models based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.

    2018-01-01

    In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.

  3. A projected preconditioned conjugate gradient algorithm for computing many extreme eigenpairs of a Hermitian matrix [A projected preconditioned conjugate gradient algorithm for computing a large eigenspace of a Hermitian matrix

    DOE PAGES

    Vecharynski, Eugene; Yang, Chao; Pask, John E.

    2015-02-25

    Here, we present an iterative algorithm for computing an invariant subspace associated with the algebraically smallest eigenvalues of a large sparse or structured Hermitian matrix A. We are interested in the case in which the dimension of the invariant subspace is large (e.g., over several hundreds or thousands) even though it may still be small relative to the dimension of A. These problems arise from, for example, density functional theory (DFT) based electronic structure calculations for complex materials. The key feature of our algorithm is that it performs fewer Rayleigh–Ritz calculations compared to existing algorithms such as the locally optimalmore » block preconditioned conjugate gradient or the Davidson algorithm. It is a block algorithm, and hence can take advantage of efficient BLAS3 operations and be implemented with multiple levels of concurrency. We discuss a number of practical issues that must be addressed in order to implement the algorithm efficiently on a high performance computer.« less

  4. Fast gradient-based algorithm on extended landscapes for wave-front reconstruction of Earth observation satellite

    NASA Astrophysics Data System (ADS)

    Thiebaut, C.; Perraud, L.; Delvit, J. M.; Latry, C.

    2016-07-01

    We present an on-board satellite implementation of a gradient-based (optical flows) algorithm for the shifts estimation between images of a Shack-Hartmann wave-front sensor on extended landscapes. The proposed algorithm has low complexity in comparison with classical correlation methods which is a big advantage for being used on-board a satellite at high instrument data rate and in real-time. The electronic board used for this implementation is designed for space applications and is composed of radiation-hardened software and hardware. Processing times of both shift estimations and pre-processing steps are compatible of on-board real-time computation.

  5. An algorithm to locate optimal bond breaking points on a potential energy surface for applications in mechanochemistry and catalysis.

    PubMed

    Bofill, Josep Maria; Ribas-Ariño, Jordi; García, Sergio Pablo; Quapp, Wolfgang

    2017-10-21

    The reaction path of a mechanically induced chemical transformation changes under stress. It is well established that the force-induced structural changes of minima and saddle points, i.e., the movement of the stationary points on the original or stress-free potential energy surface, can be described by a Newton Trajectory (NT). Given a reactive molecular system, a well-fitted pulling direction, and a sufficiently large value of the force, the minimum configuration of the reactant and the saddle point configuration of a transition state collapse at a point on the corresponding NT trajectory. This point is called barrier breakdown point or bond breaking point (BBP). The Hessian matrix at the BBP has a zero eigenvector which coincides with the gradient. It indicates which force (both in magnitude and direction) should be applied to the system to induce the reaction in a barrierless process. Within the manifold of BBPs, there exist optimal BBPs which indicate what is the optimal pulling direction and what is the minimal magnitude of the force to be applied for a given mechanochemical transformation. Since these special points are very important in the context of mechanochemistry and catalysis, it is crucial to develop efficient algorithms for their location. Here, we propose a Gauss-Newton algorithm that is based on the minimization of a positively defined function (the so-called σ-function). The behavior and efficiency of the new algorithm are shown for 2D test functions and for a real chemical example.

  6. Novel maximum-margin training algorithms for supervised neural networks.

    PubMed

    Ludwig, Oswaldo; Nunes, Urbano

    2010-06-01

    This paper proposes three novel training methods, two of them based on the backpropagation approach and a third one based on information theory for multilayer perceptron (MLP) binary classifiers. Both backpropagation methods are based on the maximal-margin (MM) principle. The first one, based on the gradient descent with adaptive learning rate algorithm (GDX) and named maximum-margin GDX (MMGDX), directly increases the margin of the MLP output-layer hyperplane. The proposed method jointly optimizes both MLP layers in a single process, backpropagating the gradient of an MM-based objective function, through the output and hidden layers, in order to create a hidden-layer space that enables a higher margin for the output-layer hyperplane, avoiding the testing of many arbitrary kernels, as occurs in case of support vector machine (SVM) training. The proposed MM-based objective function aims to stretch out the margin to its limit. An objective function based on Lp-norm is also proposed in order to take into account the idea of support vectors, however, overcoming the complexity involved in solving a constrained optimization problem, usually in SVM training. In fact, all the training methods proposed in this paper have time and space complexities O(N) while usual SVM training methods have time complexity O(N (3)) and space complexity O(N (2)) , where N is the training-data-set size. The second approach, named minimization of interclass interference (MICI), has an objective function inspired on the Fisher discriminant analysis. Such algorithm aims to create an MLP hidden output where the patterns have a desirable statistical distribution. In both training methods, the maximum area under ROC curve (AUC) is applied as stop criterion. The third approach offers a robust training framework able to take the best of each proposed training method. The main idea is to compose a neural model by using neurons extracted from three other neural networks, each one previously trained by MICI, MMGDX, and Levenberg-Marquard (LM), respectively. The resulting neural network was named assembled neural network (ASNN). Benchmark data sets of real-world problems have been used in experiments that enable a comparison with other state-of-the-art classifiers. The results provide evidence of the effectiveness of our methods regarding accuracy, AUC, and balanced error rate.

  7. Dynamic Power Distribution System Management With a Locally Connected Communication Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Zhang, Kaiqing; Basar, Tamer

    Coordinated optimization and control of distribution-level assets can enable a reliable and optimal integration of massive amount of distributed energy resources (DERs) and facilitate distribution system management (DSM). Accordingly, the objective is to coordinate the power injection at the DERs to maintain certain quantities across the network, e.g., voltage magnitude, line flows, or line losses, to be close to a desired profile. By and large, the performance of the DSM algorithms has been challenged by two factors: i) the possibly non-strongly connected communication network over DERs that hinders the coordination; ii) the dynamics of the real system caused by themore » DERs with heterogeneous capabilities, time-varying operating conditions, and real-time measurement mismatches. In this paper, we investigate the modeling and algorithm design and analysis with the consideration of these two factors. In particular, a game theoretic characterization is first proposed to account for a locally connected communication network over DERs, along with the analysis of the existence and uniqueness of the Nash equilibrium (NE) therein. To achieve the equilibrium in a distributed fashion, a projected-gradient-based asynchronous DSM algorithm is then advocated. The algorithm performance, including the convergence speed and the tracking error, is analytically guaranteed under the dynamic setting. Extensive numerical tests on both synthetic and realistic cases corroborate the analytical results derived.« less

  8. Understanding and Optimizing Asynchronous Low-Precision Stochastic Gradient Descent

    PubMed Central

    De Sa, Christopher; Feldman, Matthew; Ré, Christopher; Olukotun, Kunle

    2018-01-01

    Stochastic gradient descent (SGD) is one of the most popular numerical algorithms used in machine learning and other domains. Since this is likely to continue for the foreseeable future, it is important to study techniques that can make it run fast on parallel hardware. In this paper, we provide the first analysis of a technique called Buckwild! that uses both asynchronous execution and low-precision computation. We introduce the DMGC model, the first conceptualization of the parameter space that exists when implementing low-precision SGD, and show that it provides a way to both classify these algorithms and model their performance. We leverage this insight to propose and analyze techniques to improve the speed of low-precision SGD. First, we propose software optimizations that can increase throughput on existing CPUs by up to 11×. Second, we propose architectural changes, including a new cache technique we call an obstinate cache, that increase throughput beyond the limits of current-generation hardware. We also implement and analyze low-precision SGD on the FPGA, which is a promising alternative to the CPU for future SGD systems. PMID:29391770

  9. Modeling level change in Lake Urmia using hybrid artificial intelligence approaches

    NASA Astrophysics Data System (ADS)

    Esbati, M.; Ahmadieh Khanesar, M.; Shahzadi, Ali

    2017-06-01

    The investigation of water level fluctuations in lakes for protecting them regarding the importance of these water complexes in national and regional scales has found a special place among countries in recent years. The importance of the prediction of water level balance in Lake Urmia is necessary due to several-meter fluctuations in the last decade which help the prevention from possible future losses. For this purpose, in this paper, the performance of adaptive neuro-fuzzy inference system (ANFIS) for predicting the lake water level balance has been studied. In addition, for the training of the adaptive neuro-fuzzy inference system, particle swarm optimization (PSO) and hybrid backpropagation-recursive least square method algorithm have been used. Moreover, a hybrid method based on particle swarm optimization and recursive least square (PSO-RLS) training algorithm for the training of ANFIS structure is introduced. In order to have a more fare comparison, hybrid particle swarm optimization and gradient descent are also applied. The models have been trained, tested, and validated based on lake level data between 1991 and 2014. For performance evaluation, a comparison is made between these methods. Numerical results obtained show that the proposed methods with a reasonable error have a good performance in water level balance prediction. It is also clear that with continuing the current trend, Lake Urmia will experience more drop in the water level balance in the upcoming years.

  10. DAKOTA Design Analysis Kit for Optimization and Terascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Dalbey, Keith R.; Eldred, Michael S.

    2010-02-24

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes (computational models) and iterative analysis methods. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and analysis of computational models on high performance computers.A user provides a set of DAKOTA commands in an input file and launches DAKOTA. DAKOTA invokes instances of the computational models, collects their results, and performs systems analyses. DAKOTA contains algorithms for optimization with gradient and nongradient-basedmore » methods; uncertainty quantification with sampling, reliability, polynomial chaos, stochastic collocation, and epistemic methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as hybrid optimization, surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. Services for parallel computing, simulation interfacing, approximation modeling, fault tolerance, restart, and graphics are also included.« less

  11. QuickVina: accelerating AutoDock Vina using gradient-based heuristics for global optimization.

    PubMed

    Handoko, Stephanus Daniel; Ouyang, Xuchang; Su, Chinh Tran To; Kwoh, Chee Keong; Ong, Yew Soon

    2012-01-01

    Predicting binding between macromolecule and small molecule is a crucial phase in the field of rational drug design. AutoDock Vina, one of the most widely used docking software released in 2009, uses an empirical scoring function to evaluate the binding affinity between the molecules and employs the iterated local search global optimizer for global optimization, achieving a significantly improved speed and better accuracy of the binding mode prediction compared its predecessor, AutoDock 4. In this paper, we propose further improvement in the local search algorithm of Vina by heuristically preventing some intermediate points from undergoing local search. Our improved version of Vina-dubbed QVina-achieved a maximum acceleration of about 25 times with the average speed-up of 8.34 times compared to the original Vina when tested on a set of 231 protein-ligand complexes while maintaining the optimal scores mostly identical. Using our heuristics, larger number of different ligands can be quickly screened against a given receptor within the same time frame.

  12. Moving force identification based on modified preconditioned conjugate gradient method

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Chan, Tommy H. T.; Nguyen, Andy

    2018-06-01

    This paper develops a modified preconditioned conjugate gradient (M-PCG) method for moving force identification (MFI) by improving the conjugate gradient (CG) and preconditioned conjugate gradient (PCG) methods with a modified Gram-Schmidt algorithm. The method aims to obtain more accurate and more efficient identification results from the responses of bridge deck caused by vehicles passing by, which are known to be sensitive to ill-posed problems that exist in the inverse problem. A simply supported beam model with biaxial time-varying forces is used to generate numerical simulations with various analysis scenarios to assess the effectiveness of the method. Evaluation results show that regularization matrix L and number of iterations j are very important influence factors to identification accuracy and noise immunity of M-PCG. Compared with the conventional counterpart SVD embedded in the time domain method (TDM) and the standard form of CG, the M-PCG with proper regularization matrix has many advantages such as better adaptability and more robust to ill-posed problems. More importantly, it is shown that the average optimal numbers of iterations of M-PCG can be reduced by more than 70% compared with PCG and this apparently makes M-PCG a preferred choice for field MFI applications.

  13. Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm

    USGS Publications Warehouse

    Chen, C.; Xia, J.; Liu, J.; Feng, G.

    2006-01-01

    Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant result is that final solution is determined by the average model derived from multiple trials instead of one computation due to the randomness in a genetic algorithm procedure. These advantages were demonstrated by synthetic and real-world examples of inversion of potential-field data. ?? 2005 Elsevier Ltd. All rights reserved.

  14. Comparing implementations of penalized weighted least-squares sinogram restoration

    PubMed Central

    Forthmann, Peter; Koehler, Thomas; Defrise, Michel; La Riviere, Patrick

    2010-01-01

    Purpose: A CT scanner measures the energy that is deposited in each channel of a detector array by x rays that have been partially absorbed on their way through the object. The measurement process is complex and quantitative measurements are always and inevitably associated with errors, so CT data must be preprocessed prior to reconstruction. In recent years, the authors have formulated CT sinogram preprocessing as a statistical restoration problem in which the goal is to obtain the best estimate of the line integrals needed for reconstruction from the set of noisy, degraded measurements. The authors have explored both penalized Poisson likelihood (PL) and penalized weighted least-squares (PWLS) objective functions. At low doses, the authors found that the PL approach outperforms PWLS in terms of resolution-noise tradeoffs, but at standard doses they perform similarly. The PWLS objective function, being quadratic, is more amenable to computational acceleration than the PL objective. In this work, the authors develop and compare two different methods for implementing PWLS sinogram restoration with the hope of improving computational performance relative to PL in the standard-dose regime. Sinogram restoration is still significant in the standard-dose regime since it can still outperform standard approaches and it allows for correction of effects that are not usually modeled in standard CT preprocessing. Methods: The authors have explored and compared two implementation strategies for PWLS sinogram restoration: (1) A direct matrix-inversion strategy based on the closed-form solution to the PWLS optimization problem and (2) an iterative approach based on the conjugate-gradient algorithm. Obtaining optimal performance from each strategy required modifying the naive off-the-shelf implementations of the algorithms to exploit the particular symmetry and sparseness of the sinogram-restoration problem. For the closed-form approach, the authors subdivided the large matrix inversion into smaller coupled problems and exploited sparseness to minimize matrix operations. For the conjugate-gradient approach, the authors exploited sparseness and preconditioned the problem to speed up convergence. Results: All methods produced qualitatively and quantitatively similar images as measured by resolution-variance tradeoffs and difference images. Despite the acceleration strategies, the direct matrix-inversion approach was found to be uncompetitive with iterative approaches, with a computational burden higher by an order of magnitude or more. The iterative conjugate-gradient approach, however, does appear promising, with computation times half that of the authors’ previous penalized-likelihood implementation. Conclusions: Iterative conjugate-gradient based PWLS sinogram restoration with careful matrix optimizations has computational advantages over direct matrix PWLS inversion and over penalized-likelihood sinogram restoration and can be considered a good alternative in standard-dose regimes. PMID:21158306

  15. Improved Seam-Line Searching Algorithm for UAV Image Mosaic with Optical Flow

    PubMed Central

    Zhang, Weilong; Guo, Bingxuan; Liao, Xuan; Li, Wenzhuo

    2018-01-01

    Ghosting and seams are two major challenges in creating unmanned aerial vehicle (UAV) image mosaic. In response to these problems, this paper proposes an improved method for UAV image seam-line searching. First, an image matching algorithm is used to extract and match the features of adjacent images, so that they can be transformed into the same coordinate system. Then, the gray scale difference, the gradient minimum, and the optical flow value of pixels in adjacent image overlapped area in a neighborhood are calculated, which can be applied to creating an energy function for seam-line searching. Based on that, an improved dynamic programming algorithm is proposed to search the optimal seam-lines to complete the UAV image mosaic. This algorithm adopts a more adaptive energy aggregation and traversal strategy, which can find a more ideal splicing path for adjacent UAV images and avoid the ground objects better. The experimental results show that the proposed method can effectively solve the problems of ghosting and seams in the panoramic UAV images. PMID:29659526

  16. Optimization of Turbine Engine Cycle Analysis with Analytic Derivatives

    NASA Technical Reports Server (NTRS)

    Hearn, Tristan; Hendricks, Eric; Chin, Jeffrey; Gray, Justin; Moore, Kenneth T.

    2016-01-01

    A new engine cycle analysis tool, called Pycycle, was built using the OpenMDAO framework. Pycycle provides analytic derivatives allowing for an efficient use of gradient-based optimization methods on engine cycle models, without requiring the use of finite difference derivative approximation methods. To demonstrate this, a gradient-based design optimization was performed on a turbofan engine model. Results demonstrate very favorable performance compared to an optimization of an identical model using finite-difference approximated derivatives.

  17. The performance of monotonic and new non-monotonic gradient ascent reconstruction algorithms for high-resolution neuroreceptor PET imaging.

    PubMed

    Angelis, G I; Reader, A J; Kotasidis, F A; Lionheart, W R; Matthews, J C

    2011-07-07

    Iterative expectation maximization (EM) techniques have been extensively used to solve maximum likelihood (ML) problems in positron emission tomography (PET) image reconstruction. Although EM methods offer a robust approach to solving ML problems, they usually suffer from slow convergence rates. The ordered subsets EM (OSEM) algorithm provides significant improvements in the convergence rate, but it can cycle between estimates converging towards the ML solution of each subset. In contrast, gradient-based methods, such as the recently proposed non-monotonic maximum likelihood (NMML) and the more established preconditioned conjugate gradient (PCG), offer a globally convergent, yet equally fast, alternative to OSEM. Reported results showed that NMML provides faster convergence compared to OSEM; however, it has never been compared to other fast gradient-based methods, like PCG. Therefore, in this work we evaluate the performance of two gradient-based methods (NMML and PCG) and investigate their potential as an alternative to the fast and widely used OSEM. All algorithms were evaluated using 2D simulations, as well as a single [(11)C]DASB clinical brain dataset. Results on simulated 2D data show that both PCG and NMML achieve orders of magnitude faster convergence to the ML solution compared to MLEM and exhibit comparable performance to OSEM. Equally fast performance is observed between OSEM and PCG for clinical 3D data, but NMML seems to perform poorly. However, with the addition of a preconditioner term to the gradient direction, the convergence behaviour of NMML can be substantially improved. Although PCG is a fast convergent algorithm, the use of a (bent) line search increases the complexity of the implementation, as well as the computational time involved per iteration. Contrary to previous reports, NMML offers no clear advantage over OSEM or PCG, for noisy PET data. Therefore, we conclude that there is little evidence to replace OSEM as the algorithm of choice for many applications, especially given that in practice convergence is often not desired for algorithms seeking ML estimates.

  18. Support Vector Machines Trained with Evolutionary Algorithms Employing Kernel Adatron for Large Scale Classification of Protein Structures.

    PubMed

    Arana-Daniel, Nancy; Gallegos, Alberto A; López-Franco, Carlos; Alanís, Alma Y; Morales, Jacob; López-Franco, Adriana

    2016-01-01

    With the increasing power of computers, the amount of data that can be processed in small periods of time has grown exponentially, as has the importance of classifying large-scale data efficiently. Support vector machines have shown good results classifying large amounts of high-dimensional data, such as data generated by protein structure prediction, spam recognition, medical diagnosis, optical character recognition and text classification, etc. Most state of the art approaches for large-scale learning use traditional optimization methods, such as quadratic programming or gradient descent, which makes the use of evolutionary algorithms for training support vector machines an area to be explored. The present paper proposes an approach that is simple to implement based on evolutionary algorithms and Kernel-Adatron for solving large-scale classification problems, focusing on protein structure prediction. The functional properties of proteins depend upon their three-dimensional structures. Knowing the structures of proteins is crucial for biology and can lead to improvements in areas such as medicine, agriculture and biofuels.

  19. Reconfigurable Model Execution in the OpenMDAO Framework

    NASA Technical Reports Server (NTRS)

    Hwang, John T.

    2017-01-01

    NASA's OpenMDAO framework facilitates constructing complex models and computing their derivatives for multidisciplinary design optimization. Decomposing a model into components that follow a prescribed interface enables OpenMDAO to assemble multidisciplinary derivatives from the component derivatives using what amounts to the adjoint method, direct method, chain rule, global sensitivity equations, or any combination thereof, using the MAUD architecture. OpenMDAO also handles the distribution of processors among the disciplines by hierarchically grouping the components, and it automates the data transfer between components that are on different processors. These features have made OpenMDAO useful for applications in aircraft design, satellite design, wind turbine design, and aircraft engine design, among others. This paper presents new algorithms for OpenMDAO that enable reconfigurable model execution. This concept refers to dynamically changing, during execution, one or more of: the variable sizes, solution algorithm, parallel load balancing, or set of variables-i.e., adding and removing components, perhaps to switch to a higher-fidelity sub-model. Any component can reconfigure at any point, even when running in parallel with other components, and the reconfiguration algorithm presented here performs the synchronized updates to all other components that are affected. A reconfigurable software framework for multidisciplinary design optimization enables new adaptive solvers, adaptive parallelization, and new applications such as gradient-based optimization with overset flow solvers and adaptive mesh refinement. Benchmarking results demonstrate the time savings for reconfiguration compared to setting up the model again from scratch, which can be significant in large-scale problems. Additionally, the new reconfigurability feature is applied to a mission profile optimization problem for commercial aircraft where both the parametrization of the mission profile and the time discretization are adaptively refined, resulting in computational savings of roughly 10% and the elimination of oscillations in the optimized altitude profile.

  20. Optimization of Turbine Engine Cycle Analysis with Analytic Derivatives

    NASA Technical Reports Server (NTRS)

    Hearn, Tristan; Hendricks, Eric; Chin, Jeffrey; Gray, Justin; Moore, Kenneth T.

    2016-01-01

    A new engine cycle analysis tool, called Pycycle, was recently built using the OpenMDAO framework. This tool uses equilibrium chemistry based thermodynamics, and provides analytic derivatives. This allows for stable and efficient use of gradient-based optimization and sensitivity analysis methods on engine cycle models, without requiring the use of finite difference derivative approximation methods. To demonstrate this, a gradient-based design optimization was performed on a multi-point turbofan engine model. Results demonstrate very favorable performance compared to an optimization of an identical model using finite-difference approximated derivatives.

  1. Faster PET reconstruction with a stochastic primal-dual hybrid gradient method

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Matthias J.; Markiewicz, Pawel; Chambolle, Antonin; Richtárik, Peter; Schott, Jonathan; Schönlieb, Carola-Bibiane

    2017-08-01

    Image reconstruction in positron emission tomography (PET) is computationally challenging due to Poisson noise, constraints and potentially non-smooth priors-let alone the sheer size of the problem. An algorithm that can cope well with the first three of the aforementioned challenges is the primal-dual hybrid gradient algorithm (PDHG) studied by Chambolle and Pock in 2011. However, PDHG updates all variables in parallel and is therefore computationally demanding on the large problem sizes encountered with modern PET scanners where the number of dual variables easily exceeds 100 million. In this work, we numerically study the usage of SPDHG-a stochastic extension of PDHG-but is still guaranteed to converge to a solution of the deterministic optimization problem with similar rates as PDHG. Numerical results on a clinical data set show that by introducing randomization into PDHG, similar results as the deterministic algorithm can be achieved using only around 10 % of operator evaluations. Thus, making significant progress towards the feasibility of sophisticated mathematical models in a clinical setting.

  2. Stochastic Spectral Descent for Discrete Graphical Models

    DOE PAGES

    Carlson, David; Hsieh, Ya-Ping; Collins, Edo; ...

    2015-12-14

    Interest in deep probabilistic graphical models has in-creased in recent years, due to their state-of-the-art performance on many machine learning applications. Such models are typically trained with the stochastic gradient method, which can take a significant number of iterations to converge. Since the computational cost of gradient estimation is prohibitive even for modestly sized models, training becomes slow and practically usable models are kept small. In this paper we propose a new, largely tuning-free algorithm to address this problem. Our approach derives novel majorization bounds based on the Schatten- norm. Intriguingly, the minimizers of these bounds can be interpreted asmore » gradient methods in a non-Euclidean space. We thus propose using a stochastic gradient method in non-Euclidean space. We both provide simple conditions under which our algorithm is guaranteed to converge, and demonstrate empirically that our algorithm leads to dramatically faster training and improved predictive ability compared to stochastic gradient descent for both directed and undirected graphical models.« less

  3. Classification of Medical Datasets Using SVMs with Hybrid Evolutionary Algorithms Based on Endocrine-Based Particle Swarm Optimization and Artificial Bee Colony Algorithms.

    PubMed

    Lin, Kuan-Cheng; Hsieh, Yi-Hsiu

    2015-10-01

    The classification and analysis of data is an important issue in today's research. Selecting a suitable set of features makes it possible to classify an enormous quantity of data quickly and efficiently. Feature selection is generally viewed as a problem of feature subset selection, such as combination optimization problems. Evolutionary algorithms using random search methods have proven highly effective in obtaining solutions to problems of optimization in a diversity of applications. In this study, we developed a hybrid evolutionary algorithm based on endocrine-based particle swarm optimization (EPSO) and artificial bee colony (ABC) algorithms in conjunction with a support vector machine (SVM) for the selection of optimal feature subsets for the classification of datasets. The results of experiments using specific UCI medical datasets demonstrate that the accuracy of the proposed hybrid evolutionary algorithm is superior to that of basic PSO, EPSO and ABC algorithms, with regard to classification accuracy using subsets with a reduced number of features.

  4. Learning and optimization with cascaded VLSI neural network building-block chips

    NASA Technical Reports Server (NTRS)

    Duong, T.; Eberhardt, S. P.; Tran, M.; Daud, T.; Thakoor, A. P.

    1992-01-01

    To demonstrate the versatility of the building-block approach, two neural network applications were implemented on cascaded analog VLSI chips. Weights were implemented using 7-b multiplying digital-to-analog converter (MDAC) synapse circuits, with 31 x 32 and 32 x 32 synapses per chip. A novel learning algorithm compatible with analog VLSI was applied to the two-input parity problem. The algorithm combines dynamically evolving architecture with limited gradient-descent backpropagation for efficient and versatile supervised learning. To implement the learning algorithm in hardware, synapse circuits were paralleled for additional quantization levels. The hardware-in-the-loop learning system allocated 2-5 hidden neurons for parity problems. Also, a 7 x 7 assignment problem was mapped onto a cascaded 64-neuron fully connected feedback network. In 100 randomly selected problems, the network found optimal or good solutions in most cases, with settling times in the range of 7-100 microseconds.

  5. An efficient impedance method for induced field evaluation based on a stabilized Bi-conjugate gradient algorithm.

    PubMed

    Wang, Hua; Liu, Feng; Xia, Ling; Crozier, Stuart

    2008-11-21

    This paper presents a stabilized Bi-conjugate gradient algorithm (BiCGstab) that can significantly improve the performance of the impedance method, which has been widely applied to model low-frequency field induction phenomena in voxel phantoms. The improved impedance method offers remarkable computational advantages in terms of convergence performance and memory consumption over the conventional, successive over-relaxation (SOR)-based algorithm. The scheme has been validated against other numerical/analytical solutions on a lossy, multilayered sphere phantom excited by an ideal coil loop. To demonstrate the computational performance and application capability of the developed algorithm, the induced fields inside a human phantom due to a low-frequency hyperthermia device is evaluated. The simulation results show the numerical accuracy and superior performance of the method.

  6. Focusing light through random photonic layers by four-element division algorithm

    NASA Astrophysics Data System (ADS)

    Fang, Longjie; Zhang, Xicheng; Zuo, Haoyi; Pang, Lin

    2018-02-01

    The propagation of waves in turbid media is a fundamental problem of optics with vast applications. Optical phase optimization approaches for focusing light through turbid media using phase control algorithm have been widely studied in recent years due to the rapid development of spatial light modulator. The existing approaches include element-based algorithms - stepwise sequential algorithm, continuous sequential algorithm and whole element optimization approaches - partitioning algorithm, transmission matrix approach and genetic algorithm. The advantage of element-based approaches is that the phase contribution of each element is very clear; however, because the intensity contribution of each element to the focal point is small especially for the case of large number of elements, the determination of the optimal phase for a single element would be difficult. In other words, the signal to noise ratio of the measurement is weak, leading to possibly local maximal during the optimization. As for whole element optimization approaches, all elements are employed for the optimization. Of course, signal to noise ratio during the optimization is improved. However, because more random processings are introduced into the processing, optimizations take more time to converge than the single element based approaches. Based on the advantages of both single element based approaches and whole element optimization approaches, we propose FEDA approach. Comparisons with the existing approaches show that FEDA only takes one third of measurement time to reach the optimization, which means that FEDA is promising in practical application such as for deep tissue imaging.

  7. Aerodynamic Optimization of Rocket Control Surface Geometry Using Cartesian Methods and CAD Geometry

    NASA Technical Reports Server (NTRS)

    Nelson, Andrea; Aftosmis, Michael J.; Nemec, Marian; Pulliam, Thomas H.

    2004-01-01

    Aerodynamic design is an iterative process involving geometry manipulation and complex computational analysis subject to physical constraints and aerodynamic objectives. A design cycle consists of first establishing the performance of a baseline design, which is usually created with low-fidelity engineering tools, and then progressively optimizing the design to maximize its performance. Optimization techniques have evolved from relying exclusively on designer intuition and insight in traditional trial and error methods, to sophisticated local and global search methods. Recent attempts at automating the search through a large design space with formal optimization methods include both database driven and direct evaluation schemes. Databases are being used in conjunction with surrogate and neural network models as a basis on which to run optimization algorithms. Optimization algorithms are also being driven by the direct evaluation of objectives and constraints using high-fidelity simulations. Surrogate methods use data points obtained from simulations, and possibly gradients evaluated at the data points, to create mathematical approximations of a database. Neural network models work in a similar fashion, using a number of high-fidelity database calculations as training iterations to create a database model. Optimal designs are obtained by coupling an optimization algorithm to the database model. Evaluation of the current best design then gives either a new local optima and/or increases the fidelity of the approximation model for the next iteration. Surrogate methods have also been developed that iterate on the selection of data points to decrease the uncertainty of the approximation model prior to searching for an optimal design. The database approximation models for each of these cases, however, become computationally expensive with increase in dimensionality. Thus the method of using optimization algorithms to search a database model becomes problematic as the number of design variables is increased.

  8. Edge Pushing is Equivalent to Vertex Elimination for Computing Hessians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mu; Pothen, Alex; Hovland, Paul

    We prove the equivalence of two different Hessian evaluation algorithms in AD. The first is the Edge Pushing algorithm of Gower and Mello, which may be viewed as a second order Reverse mode algorithm for computing the Hessian. In earlier work, we have derived the Edge Pushing algorithm by exploiting a Reverse mode invariant based on the concept of live variables in compiler theory. The second algorithm is based on eliminating vertices in a computational graph of the gradient, in which intermediate variables are successively eliminated from the graph, and the weights of the edges are updated suitably. We provemore » that if the vertices are eliminated in a reverse topological order while preserving symmetry in the computational graph of the gradient, then the Vertex Elimination algorithm and the Edge Pushing algorithm perform identical computations. In this sense, the two algorithms are equivalent. This insight that unifies two seemingly disparate approaches to Hessian computations could lead to improved algorithms and implementations for computing Hessians. Read More: http://epubs.siam.org/doi/10.1137/1.9781611974690.ch11« less

  9. Efficient implementation of one- and two-component analytical energy gradients in exact two-component theory

    NASA Astrophysics Data System (ADS)

    Franzke, Yannick J.; Middendorf, Nils; Weigend, Florian

    2018-03-01

    We present an efficient algorithm for one- and two-component analytical energy gradients with respect to nuclear displacements in the exact two-component decoupling approach to the one-electron Dirac equation (X2C). Our approach is a generalization of the spin-free ansatz by Cheng and Gauss [J. Chem. Phys. 135, 084114 (2011)], where the perturbed one-electron Hamiltonian is calculated by solving a first-order response equation. Computational costs are drastically reduced by applying the diagonal local approximation to the unitary decoupling transformation (DLU) [D. Peng and M. Reiher, J. Chem. Phys. 136, 244108 (2012)] to the X2C Hamiltonian. The introduced error is found to be almost negligible as the mean absolute error of the optimized structures amounts to only 0.01 pm. Our implementation in TURBOMOLE is also available within the finite nucleus model based on a Gaussian charge distribution. For a X2C/DLU gradient calculation, computational effort scales cubically with the molecular size, while storage increases quadratically. The efficiency is demonstrated in calculations of large silver clusters and organometallic iridium complexes.

  10. Comparison of Evolutionary (Genetic) Algorithm and Adjoint Methods for Multi-Objective Viscous Airfoil Optimizations

    NASA Technical Reports Server (NTRS)

    Pulliam, T. H.; Nemec, M.; Holst, T.; Zingg, D. W.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A comparison between an Evolutionary Algorithm (EA) and an Adjoint-Gradient (AG) Method applied to a two-dimensional Navier-Stokes code for airfoil design is presented. Both approaches use a common function evaluation code, the steady-state explicit part of the code,ARC2D. The parameterization of the design space is a common B-spline approach for an airfoil surface, which together with a common griding approach, restricts the AG and EA to the same design space. Results are presented for a class of viscous transonic airfoils in which the optimization tradeoff between drag minimization as one objective and lift maximization as another, produces the multi-objective design space. Comparisons are made for efficiency, accuracy and design consistency.

  11. Optimization of rotational arc station parameter optimized radiation therapy.

    PubMed

    Dong, P; Ungun, B; Boyd, S; Xing, L

    2016-09-01

    To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of matching VMAT in both plan quality and delivery efficiency by using three clinical cases of different disease sites. The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based proximal operator graph solver. To avoid being trapped in a local minimum in beamlet-based aperture selection using the gradient descent algorithm, a stochastic gradient descent was employed here. Apertures with zero or low weight were thrown out. To find out whether there was room to further improve the plan by adding more apertures or SPs, the authors repeated the above procedure with consideration of the existing dose distribution from the last iteration. At the end of the second iteration, the weights of all the apertures were reoptimized, including those of the first iteration. The above procedure was repeated until the plan could not be improved any further. The optimization technique was assessed by using three clinical cases (prostate, head and neck, and brain) with the results compared to that obtained using conventional VMAT in terms of dosimetric properties, treatment time, and total MU. Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. For the prostate case, the volume of the 50% prescription dose was decreased by 22% for the rectum and 6% for the bladder. For the head and neck case, SPORT improved the mean dose for the left and right parotids by 15% each. The maximum dose was lowered from 72.7 to 71.7 Gy for the mandible, and from 30.7 to 27.3 Gy for the spinal cord. The mean dose for the pharynx and larynx was reduced by 8% and 6%, respectively. For the brain case, the doses to the eyes, chiasm, and inner ears were all improved. SPORT shortened the treatment time by ∼1 min for the prostate case, ∼0.5 min for brain case, and ∼0.2 min for the head and neck case. The dosimetric quality and delivery efficiency presented here indicate that SPORT is an intriguing alternative treatment modality. With the widespread adoption of digital linac, SPORT should lead to improved patient care in the future.

  12. Optimization of rotational arc station parameter optimized radiation therapy

    PubMed Central

    Dong, P.; Ungun, B.; Boyd, S.; Xing, L.

    2016-01-01

    Purpose: To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of matching VMAT in both plan quality and delivery efficiency by using three clinical cases of different disease sites. Methods: The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based proximal operator graph solver. To avoid being trapped in a local minimum in beamlet-based aperture selection using the gradient descent algorithm, a stochastic gradient descent was employed here. Apertures with zero or low weight were thrown out. To find out whether there was room to further improve the plan by adding more apertures or SPs, the authors repeated the above procedure with consideration of the existing dose distribution from the last iteration. At the end of the second iteration, the weights of all the apertures were reoptimized, including those of the first iteration. The above procedure was repeated until the plan could not be improved any further. The optimization technique was assessed by using three clinical cases (prostate, head and neck, and brain) with the results compared to that obtained using conventional VMAT in terms of dosimetric properties, treatment time, and total MU. Results: Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. For the prostate case, the volume of the 50% prescription dose was decreased by 22% for the rectum and 6% for the bladder. For the head and neck case, SPORT improved the mean dose for the left and right parotids by 15% each. The maximum dose was lowered from 72.7 to 71.7 Gy for the mandible, and from 30.7 to 27.3 Gy for the spinal cord. The mean dose for the pharynx and larynx was reduced by 8% and 6%, respectively. For the brain case, the doses to the eyes, chiasm, and inner ears were all improved. SPORT shortened the treatment time by ∼1 min for the prostate case, ∼0.5 min for brain case, and ∼0.2 min for the head and neck case. Conclusions: The dosimetric quality and delivery efficiency presented here indicate that SPORT is an intriguing alternative treatment modality. With the widespread adoption of digital linac, SPORT should lead to improved patient care in the future. PMID:27587028

  13. Optimization of rotational arc station parameter optimized radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, P.; Ungun, B.

    Purpose: To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of matching VMAT in both plan quality and delivery efficiency by using three clinical cases of different disease sites. Methods: The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based proximal operator graph solver. To avoid being trappedmore » in a local minimum in beamlet-based aperture selection using the gradient descent algorithm, a stochastic gradient descent was employed here. Apertures with zero or low weight were thrown out. To find out whether there was room to further improve the plan by adding more apertures or SPs, the authors repeated the above procedure with consideration of the existing dose distribution from the last iteration. At the end of the second iteration, the weights of all the apertures were reoptimized, including those of the first iteration. The above procedure was repeated until the plan could not be improved any further. The optimization technique was assessed by using three clinical cases (prostate, head and neck, and brain) with the results compared to that obtained using conventional VMAT in terms of dosimetric properties, treatment time, and total MU. Results: Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. For the prostate case, the volume of the 50% prescription dose was decreased by 22% for the rectum and 6% for the bladder. For the head and neck case, SPORT improved the mean dose for the left and right parotids by 15% each. The maximum dose was lowered from 72.7 to 71.7 Gy for the mandible, and from 30.7 to 27.3 Gy for the spinal cord. The mean dose for the pharynx and larynx was reduced by 8% and 6%, respectively. For the brain case, the doses to the eyes, chiasm, and inner ears were all improved. SPORT shortened the treatment time by ∼1 min for the prostate case, ∼0.5 min for brain case, and ∼0.2 min for the head and neck case. Conclusions: The dosimetric quality and delivery efficiency presented here indicate that SPORT is an intriguing alternative treatment modality. With the widespread adoption of digital linac, SPORT should lead to improved patient care in the future.« less

  14. Fast and robust estimation of spectro-temporal receptive fields using stochastic approximations.

    PubMed

    Meyer, Arne F; Diepenbrock, Jan-Philipp; Ohl, Frank W; Anemüller, Jörn

    2015-05-15

    The receptive field (RF) represents the signal preferences of sensory neurons and is the primary analysis method for understanding sensory coding. While it is essential to estimate a neuron's RF, finding numerical solutions to increasingly complex RF models can become computationally intensive, in particular for high-dimensional stimuli or when many neurons are involved. Here we propose an optimization scheme based on stochastic approximations that facilitate this task. The basic idea is to derive solutions on a random subset rather than computing the full solution on the available data set. To test this, we applied different optimization schemes based on stochastic gradient descent (SGD) to both the generalized linear model (GLM) and a recently developed classification-based RF estimation approach. Using simulated and recorded responses, we demonstrate that RF parameter optimization based on state-of-the-art SGD algorithms produces robust estimates of the spectro-temporal receptive field (STRF). Results on recordings from the auditory midbrain demonstrate that stochastic approximations preserve both predictive power and tuning properties of STRFs. A correlation of 0.93 with the STRF derived from the full solution may be obtained in less than 10% of the full solution's estimation time. We also present an on-line algorithm that allows simultaneous monitoring of STRF properties of more than 30 neurons on a single computer. The proposed approach may not only prove helpful for large-scale recordings but also provides a more comprehensive characterization of neural tuning in experiments than standard tuning curves. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A different approach to estimate nonlinear regression model using numerical methods

    NASA Astrophysics Data System (ADS)

    Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.

    2017-11-01

    This research paper concerns with the computational methods namely the Gauss-Newton method, Gradient algorithm methods (Newton-Raphson method, Steepest Descent or Steepest Ascent algorithm method, the Method of Scoring, the Method of Quadratic Hill-Climbing) based on numerical analysis to estimate parameters of nonlinear regression model in a very different way. Principles of matrix calculus have been used to discuss the Gradient-Algorithm methods. Yonathan Bard [1] discussed a comparison of gradient methods for the solution of nonlinear parameter estimation problems. However this article discusses an analytical approach to the gradient algorithm methods in a different way. This paper describes a new iterative technique namely Gauss-Newton method which differs from the iterative technique proposed by Gorden K. Smyth [2]. Hans Georg Bock et.al [10] proposed numerical methods for parameter estimation in DAE’s (Differential algebraic equation). Isabel Reis Dos Santos et al [11], Introduced weighted least squares procedure for estimating the unknown parameters of a nonlinear regression metamodel. For large-scale non smooth convex minimization the Hager and Zhang (HZ) conjugate gradient Method and the modified HZ (MHZ) method were presented by Gonglin Yuan et al [12].

  16. Image denoising based on noise detection

    NASA Astrophysics Data System (ADS)

    Jiang, Yuanxiang; Yuan, Rui; Sun, Yuqiu; Tian, Jinwen

    2018-03-01

    Because of the noise points in the images, any operation of denoising would change the original information of non-noise pixel. A noise detection algorithm based on fractional calculus was proposed to denoise in this paper. Convolution of the image was made to gain direction gradient masks firstly. Then, the mean gray was calculated to obtain the gradient detection maps. Logical product was made to acquire noise position image next. Comparisons in the visual effect and evaluation parameters after processing, the results of experiment showed that the denoising algorithms based on noise were better than that of traditional methods in both subjective and objective aspects.

  17. Preliminary Analysis of Optimal Round Trip Lunar Missions

    NASA Astrophysics Data System (ADS)

    Gagg Filho, L. A.; da Silva Fernandes, S.

    2015-10-01

    A study of optimal bi-impulsive trajectories of round trip lunar missions is presented in this paper. The optimization criterion is the total velocity increment. The dynamical model utilized to describe the motion of the space vehicle is a full lunar patched-conic approximation, which embraces the lunar patched-conic of the outgoing trip and the lunar patched-conic of the return mission. Each one of these parts is considered separately to solve an optimization problem of two degrees of freedom. The Sequential Gradient Restoration Algorithm (SGRA) is employed to achieve the optimal solutions, which show a good agreement with the ones provided by literature, and, proved to be consistent with the image trajectories theorem.

  18. Image defog algorithm based on open close filter and gradient domain recursive bilateral filter

    NASA Astrophysics Data System (ADS)

    Liu, Daqian; Liu, Wanjun; Zhao, Qingguo; Fei, Bowen

    2017-11-01

    To solve the problems of fuzzy details, color distortion, low brightness of the image obtained by the dark channel prior defog algorithm, an image defog algorithm based on open close filter and gradient domain recursive bilateral filter, referred to as OCRBF, was put forward. The algorithm named OCRBF firstly makes use of weighted quad tree to obtain more accurate the global atmospheric value, then exploits multiple-structure element morphological open and close filter towards the minimum channel map to obtain a rough scattering map by dark channel prior, makes use of variogram to correct the transmittance map,and uses gradient domain recursive bilateral filter for the smooth operation, finally gets recovery images by image degradation model, and makes contrast adjustment to get bright, clear and no fog image. A large number of experimental results show that the proposed defog method in this paper can be good to remove the fog , recover color and definition of the fog image containing close range image, image perspective, the image including the bright areas very well, compared with other image defog algorithms,obtain more clear and natural fog free images with details of higher visibility, what's more, the relationship between the time complexity of SIDA algorithm and the number of image pixels is a linear correlation.

  19. An iterative method for the Helmholtz equation

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Goldstein, C. I.; Turkel, E.

    1983-01-01

    An iterative algorithm for the solution of the Helmholtz equation is developed. The algorithm is based on a preconditioned conjugate gradient iteration for the normal equations. The preconditioning is based on an SSOR sweep for the discrete Laplacian. Numerical results are presented for a wide variety of problems of physical interest and demonstrate the effectiveness of the algorithm.

  20. Asymptotic analysis of SPTA-based algorithms for no-wait flow shop scheduling problem with release dates.

    PubMed

    Ren, Tao; Zhang, Chuan; Lin, Lin; Guo, Meiting; Xie, Xionghang

    2014-01-01

    We address the scheduling problem for a no-wait flow shop to optimize total completion time with release dates. With the tool of asymptotic analysis, we prove that the objective values of two SPTA-based algorithms converge to the optimal value for sufficiently large-sized problems. To further enhance the performance of the SPTA-based algorithms, an improvement scheme based on local search is provided for moderate scale problems. New lower bound is presented for evaluating the asymptotic optimality of the algorithms. Numerical simulations demonstrate the effectiveness of the proposed algorithms.

  1. Asymptotic Analysis of SPTA-Based Algorithms for No-Wait Flow Shop Scheduling Problem with Release Dates

    PubMed Central

    Ren, Tao; Zhang, Chuan; Lin, Lin; Guo, Meiting; Xie, Xionghang

    2014-01-01

    We address the scheduling problem for a no-wait flow shop to optimize total completion time with release dates. With the tool of asymptotic analysis, we prove that the objective values of two SPTA-based algorithms converge to the optimal value for sufficiently large-sized problems. To further enhance the performance of the SPTA-based algorithms, an improvement scheme based on local search is provided for moderate scale problems. New lower bound is presented for evaluating the asymptotic optimality of the algorithms. Numerical simulations demonstrate the effectiveness of the proposed algorithms. PMID:24764774

  2. Modified Shuffled Frog Leaping Optimization Algorithm Based Distributed Generation Rescheduling for Loss Minimization

    NASA Astrophysics Data System (ADS)

    Arya, L. D.; Koshti, Atul

    2018-05-01

    This paper investigates the Distributed Generation (DG) capacity optimization at location based on the incremental voltage sensitivity criteria for sub-transmission network. The Modified Shuffled Frog Leaping optimization Algorithm (MSFLA) has been used to optimize the DG capacity. Induction generator model of DG (wind based generating units) has been considered for study. Standard test system IEEE-30 bus has been considered for the above study. The obtained results are also validated by shuffled frog leaping algorithm and modified version of bare bones particle swarm optimization (BBExp). The performance of MSFLA has been found more efficient than the other two algorithms for real power loss minimization problem.

  3. Fourier ptychographic reconstruction using Poisson maximum likelihood and truncated Wirtinger gradient.

    PubMed

    Bian, Liheng; Suo, Jinli; Chung, Jaebum; Ou, Xiaoze; Yang, Changhuei; Chen, Feng; Dai, Qionghai

    2016-06-10

    Fourier ptychographic microscopy (FPM) is a novel computational coherent imaging technique for high space-bandwidth product imaging. Mathematically, Fourier ptychographic (FP) reconstruction can be implemented as a phase retrieval optimization process, in which we only obtain low resolution intensity images corresponding to the sub-bands of the sample's high resolution (HR) spatial spectrum, and aim to retrieve the complex HR spectrum. In real setups, the measurements always suffer from various degenerations such as Gaussian noise, Poisson noise, speckle noise and pupil location error, which would largely degrade the reconstruction. To efficiently address these degenerations, we propose a novel FP reconstruction method under a gradient descent optimization framework in this paper. The technique utilizes Poisson maximum likelihood for better signal modeling, and truncated Wirtinger gradient for effective error removal. Results on both simulated data and real data captured using our laser-illuminated FPM setup show that the proposed method outperforms other state-of-the-art algorithms. Also, we have released our source code for non-commercial use.

  4. Filtered gradient reconstruction algorithm for compressive spectral imaging

    NASA Astrophysics Data System (ADS)

    Mejia, Yuri; Arguello, Henry

    2017-04-01

    Compressive sensing matrices are traditionally based on random Gaussian and Bernoulli entries. Nevertheless, they are subject to physical constraints, and their structure unusually follows a dense matrix distribution, such as the case of the matrix related to compressive spectral imaging (CSI). The CSI matrix represents the integration of coded and shifted versions of the spectral bands. A spectral image can be recovered from CSI measurements by using iterative algorithms for linear inverse problems that minimize an objective function including a quadratic error term combined with a sparsity regularization term. However, current algorithms are slow because they do not exploit the structure and sparse characteristics of the CSI matrices. A gradient-based CSI reconstruction algorithm, which introduces a filtering step in each iteration of a conventional CSI reconstruction algorithm that yields improved image quality, is proposed. Motivated by the structure of the CSI matrix, Φ, this algorithm modifies the iterative solution such that it is forced to converge to a filtered version of the residual ΦTy, where y is the compressive measurement vector. We show that the filtered-based algorithm converges to better quality performance results than the unfiltered version. Simulation results highlight the relative performance gain over the existing iterative algorithms.

  5. A Moving Mesh Finite Element Algorithm for Singular Problems in Two and Three Space Dimensions

    NASA Astrophysics Data System (ADS)

    Li, Ruo; Tang, Tao; Zhang, Pingwen

    2002-04-01

    A framework for adaptive meshes based on the Hamilton-Schoen-Yau theory was proposed by Dvinsky. In a recent work (2001, J. Comput. Phys.170, 562-588), we extended Dvinsky's method to provide an efficient moving mesh algorithm which compared favorably with the previously proposed schemes in terms of simplicity and reliability. In this work, we will further extend the moving mesh methods based on harmonic maps to deal with mesh adaptation in three space dimensions. In obtaining the variational mesh, we will solve an optimization problem with some appropriate constraints, which is in contrast to the traditional method of solving the Euler-Lagrange equation directly. The key idea of this approach is to update the interior and boundary grids simultaneously, rather than considering them separately. Application of the proposed moving mesh scheme is illustrated with some two- and three-dimensional problems with large solution gradients. The numerical experiments show that our methods can accurately resolve detail features of singular problems in 3D.

  6. Optimization in Cardiovascular Modeling

    NASA Astrophysics Data System (ADS)

    Marsden, Alison L.

    2014-01-01

    Fluid mechanics plays a key role in the development, progression, and treatment of cardiovascular disease. Advances in imaging methods and patient-specific modeling now reveal increasingly detailed information about blood flow patterns in health and disease. Building on these tools, there is now an opportunity to couple blood flow simulation with optimization algorithms to improve the design of surgeries and devices, incorporating more information about the flow physics in the design process to augment current medical knowledge. In doing so, a major challenge is the need for efficient optimization tools that are appropriate for unsteady fluid mechanics problems, particularly for the optimization of complex patient-specific models in the presence of uncertainty. This article reviews the state of the art in optimization tools for virtual surgery, device design, and model parameter identification in cardiovascular flow and mechanobiology applications. In particular, it reviews trade-offs between traditional gradient-based methods and derivative-free approaches, as well as the need to incorporate uncertainties. Key future challenges are outlined, which extend to the incorporation of biological response and the customization of surgeries and devices for individual patients.

  7. Efficient conjugate gradient algorithms for computation of the manipulator forward dynamics

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Scheid, Robert E.

    1989-01-01

    The applicability of conjugate gradient algorithms for computation of the manipulator forward dynamics is investigated. The redundancies in the previously proposed conjugate gradient algorithm are analyzed. A new version is developed which, by avoiding these redundancies, achieves a significantly greater efficiency. A preconditioned conjugate gradient algorithm is also presented. A diagonal matrix whose elements are the diagonal elements of the inertia matrix is proposed as the preconditioner. In order to increase the computational efficiency, an algorithm is developed which exploits the synergism between the computation of the diagonal elements of the inertia matrix and that required by the conjugate gradient algorithm.

  8. Design of a fuzzy differential evolution algorithm to predict non-deposition sediment transport

    NASA Astrophysics Data System (ADS)

    Ebtehaj, Isa; Bonakdari, Hossein

    2017-12-01

    Since the flow entering a sewer contains solid matter, deposition at the bottom of the channel is inevitable. It is difficult to understand the complex, three-dimensional mechanism of sediment transport in sewer pipelines. Therefore, a method to estimate the limiting velocity is necessary for optimal designs. Due to the inability of gradient-based algorithms to train Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for non-deposition sediment transport prediction, a new hybrid ANFIS method based on a differential evolutionary algorithm (ANFIS-DE) is developed. The training and testing performance of ANFIS-DE is evaluated using a wide range of dimensionless parameters gathered from the literature. The input combination used to estimate the densimetric Froude number ( Fr) parameters includes the volumetric sediment concentration ( C V ), ratio of median particle diameter to hydraulic radius ( d/R), ratio of median particle diameter to pipe diameter ( d/D) and overall friction factor of sediment ( λ s ). The testing results are compared with the ANFIS model and regression-based equation results. The ANFIS-DE technique predicted sediment transport at limit of deposition with lower root mean square error (RMSE = 0.323) and mean absolute percentage of error (MAPE = 0.065) and higher accuracy ( R 2 = 0.965) than the ANFIS model and regression-based equations.

  9. Cuckoo Search Algorithm Based on Repeat-Cycle Asymptotic Self-Learning and Self-Evolving Disturbance for Function Optimization

    PubMed Central

    Wang, Jie-sheng; Li, Shu-xia; Song, Jiang-di

    2015-01-01

    In order to improve convergence velocity and optimization accuracy of the cuckoo search (CS) algorithm for solving the function optimization problems, a new improved cuckoo search algorithm based on the repeat-cycle asymptotic self-learning and self-evolving disturbance (RC-SSCS) is proposed. A disturbance operation is added into the algorithm by constructing a disturbance factor to make a more careful and thorough search near the bird's nests location. In order to select a reasonable repeat-cycled disturbance number, a further study on the choice of disturbance times is made. Finally, six typical test functions are adopted to carry out simulation experiments, meanwhile, compare algorithms of this paper with two typical swarm intelligence algorithms particle swarm optimization (PSO) algorithm and artificial bee colony (ABC) algorithm. The results show that the improved cuckoo search algorithm has better convergence velocity and optimization accuracy. PMID:26366164

  10. A pipeline leakage locating method based on the gradient descent algorithm

    NASA Astrophysics Data System (ADS)

    Li, Yulong; Yang, Fan; Ni, Na

    2018-04-01

    A pipeline leakage locating method based on the gradient descent algorithm is proposed in this paper. The method has low computing complexity, which is suitable for practical application. We have built experimental environment in real underground pipeline network. A lot of real data has been gathered in the past three months. Every leak point has been certificated by excavation. Results show that positioning error is within 0.4 meter. Rate of false alarm and missing alarm are both under 20%. The calculating time is not above 5 seconds.

  11. A near-optimal guidance for cooperative docking maneuvers

    NASA Astrophysics Data System (ADS)

    Ciarcià, Marco; Grompone, Alessio; Romano, Marcello

    2014-09-01

    In this work we study the problem of minimum energy docking maneuvers between two Floating Spacecraft Simulators. The maneuvers are planar and conducted autonomously in a cooperative mode. The proposed guidance strategy is based on the direct method known as Inverse Dynamics in the Virtual Domain, and the nonlinear programming solver known as Sequential Gradient-Restoration Algorithm. The combination of these methods allows for the quick prototyping of near-optimal trajectories, and results in an implementable tool for real-time closed-loop maneuvering. The experimental results included in this paper were obtained by exploiting the recently upgraded Floating Spacecraft-Simulator Testbed of the Spacecraft Robotics Laboratory at the Naval Postgraduate School. A direct performances comparison, in terms of maneuver energy and propellant mass, between the proposed guidance strategy and a LQR controller, demonstrates the effectiveness of the method.

  12. Range image registration based on hash map and moth-flame optimization

    NASA Astrophysics Data System (ADS)

    Zou, Li; Ge, Baozhen; Chen, Lei

    2018-03-01

    Over the past decade, evolutionary algorithms (EAs) have been introduced to solve range image registration problems because of their robustness and high precision. However, EA-based range image registration algorithms are time-consuming. To reduce the computational time, an EA-based range image registration algorithm using hash map and moth-flame optimization is proposed. In this registration algorithm, a hash map is used to avoid over-exploitation in registration process. Additionally, we present a search equation that is better at exploration and a restart mechanism to avoid being trapped in local minima. We compare the proposed registration algorithm with the registration algorithms using moth-flame optimization and several state-of-the-art EA-based registration algorithms. The experimental results show that the proposed algorithm has a lower computational cost than other algorithms and achieves similar registration precision.

  13. Short-term solar flare prediction using image-case-based reasoning

    NASA Astrophysics Data System (ADS)

    Liu, Jin-Fu; Li, Fei; Zhang, Huai-Peng; Yu, Da-Ren

    2017-10-01

    Solar flares strongly influence space weather and human activities, and their prediction is highly complex. The existing solutions such as data based approaches and model based approaches have a common shortcoming which is the lack of human engagement in the forecasting process. An image-case-based reasoning method is introduced to achieve this goal. The image case library is composed of SOHO/MDI longitudinal magnetograms, the images from which exhibit the maximum horizontal gradient, the length of the neutral line and the number of singular points that are extracted for retrieving similar image cases. Genetic optimization algorithms are employed for optimizing the weight assignment for image features and the number of similar image cases retrieved. Similar image cases and prediction results derived by majority voting for these similar image cases are output and shown to the forecaster in order to integrate his/her experience with the final prediction results. Experimental results demonstrate that the case-based reasoning approach has slightly better performance than other methods, and is more efficient with forecasts improved by humans.

  14. Non-preconditioned conjugate gradient on cell and FPGA based hybrid supercomputer nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubois, David H; Dubois, Andrew J; Boorman, Thomas M

    2009-01-01

    This work presents a detailed implementation of a double precision, non-preconditioned, Conjugate Gradient algorithm on a Roadrunner heterogeneous supercomputer node. These nodes utilize the Cell Broadband Engine Architecture{sup TM} in conjunction with x86 Opteron{sup TM} processors from AMD. We implement a common Conjugate Gradient algorithm, on a variety of systems, to compare and contrast performance. Implementation results are presented for the Roadrunner hybrid supercomputer, SRC Computers, Inc. MAPStation SRC-6 FPGA enhanced hybrid supercomputer, and AMD Opteron only. In all hybrid implementations wall clock time is measured, including all transfer overhead and compute timings.

  15. Non-preconditioned conjugate gradient on cell and FPCA-based hybrid supercomputer nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubois, David H; Dubois, Andrew J; Boorman, Thomas M

    2009-03-10

    This work presents a detailed implementation of a double precision, Non-Preconditioned, Conjugate Gradient algorithm on a Roadrunner heterogeneous supercomputer node. These nodes utilize the Cell Broadband Engine Architecture{trademark} in conjunction with x86 Opteron{trademark} processors from AMD. We implement a common Conjugate Gradient algorithm, on a variety of systems, to compare and contrast performance. Implementation results are presented for the Roadrunner hybrid supercomputer, SRC Computers, Inc. MAPStation SRC-6 FPGA enhanced hybrid supercomputer, and AMD Opteron only. In all hybrid implementations wall clock time is measured, including all transfer overhead and compute timings.

  16. Combined use of algorithms for peak picking, peak tracking and retention modelling to optimize the chromatographic conditions for liquid chromatography-mass spectrometry analysis of fluocinolone acetonide and its degradation products.

    PubMed

    Fredriksson, Mattias J; Petersson, Patrik; Axelsson, Bengt-Olof; Bylund, Dan

    2011-10-17

    A strategy for rapid optimization of liquid chromatography column temperature and gradient shape is presented. The optimization as such is based on the well established retention and peak width models implemented in software like e.g. DryLab and LC simulator. The novel part of the strategy is a highly automated processing algorithm for detection and tracking of chromatographic peaks in noisy liquid chromatography-mass spectrometry (LC-MS) data. The strategy is presented and visualized by the optimization of the separation of two degradants present in ultraviolet (UV) exposed fluocinolone acetonide. It should be stressed, however, that it can be utilized for LC-MS analysis of any sample and application where several runs are conducted on the same sample. In the application presented, 30 components that were difficult or impossible to detect in the UV data could be automatically detected and tracked in the MS data by using the proposed strategy. The number of correctly tracked components was above 95%. Using the parameters from the reconstructed data sets to the model gave good agreement between predicted and observed retention times at optimal conditions. The area of the smallest tracked component was estimated to 0.08% compared to the main component, a level relevant for the characterization of impurities in the pharmaceutical industry. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Genetic programming assisted stochastic optimization strategies for optimization of glucose to gluconic acid fermentation.

    PubMed

    Cheema, Jitender Jit Singh; Sankpal, Narendra V; Tambe, Sanjeev S; Kulkarni, Bhaskar D

    2002-01-01

    This article presents two hybrid strategies for the modeling and optimization of the glucose to gluconic acid batch bioprocess. In the hybrid approaches, first a novel artificial intelligence formalism, namely, genetic programming (GP), is used to develop a process model solely from the historic process input-output data. In the next step, the input space of the GP-based model, representing process operating conditions, is optimized using two stochastic optimization (SO) formalisms, viz., genetic algorithms (GAs) and simultaneous perturbation stochastic approximation (SPSA). These SO formalisms possess certain unique advantages over the commonly used gradient-based optimization techniques. The principal advantage of the GP-GA and GP-SPSA hybrid techniques is that process modeling and optimization can be performed exclusively from the process input-output data without invoking the detailed knowledge of the process phenomenology. The GP-GA and GP-SPSA techniques have been employed for modeling and optimization of the glucose to gluconic acid bioprocess, and the optimized process operating conditions obtained thereby have been compared with those obtained using two other hybrid modeling-optimization paradigms integrating artificial neural networks (ANNs) and GA/SPSA formalisms. Finally, the overall optimized operating conditions given by the GP-GA method, when verified experimentally resulted in a significant improvement in the gluconic acid yield. The hybrid strategies presented here are generic in nature and can be employed for modeling and optimization of a wide variety of batch and continuous bioprocesses.

  18. VDLLA: A virtual daddy-long legs optimization

    NASA Astrophysics Data System (ADS)

    Yaakub, Abdul Razak; Ghathwan, Khalil I.

    2016-08-01

    Swarm intelligence is a strong optimization algorithm based on a biological behavior of insects or animals. The success of any optimization algorithm is depending on the balance between exploration and exploitation. In this paper, we present a new swarm intelligence algorithm, which is based on daddy long legs spider (VDLLA) as a new optimization algorithm with virtual behavior. In VDLLA, each agent (spider) has nine positions which represent the legs of spider and each position represent one solution. The proposed VDLLA is tested on four standard functions using average fitness, Medium fitness and standard deviation. The results of proposed VDLLA have been compared against Particle Swarm Optimization (PSO), Differential Evolution (DE) and Bat Inspired Algorithm (BA). Additionally, the T-Test has been conducted to show the significant deference between our proposed and other algorithms. VDLLA showed very promising results on benchmark test functions for unconstrained optimization problems and also significantly improved the original swarm algorithms.

  19. Improvement and implementation for Canny edge detection algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Qiu, Yue-hong

    2015-07-01

    Edge detection is necessary for image segmentation and pattern recognition. In this paper, an improved Canny edge detection approach is proposed due to the defect of traditional algorithm. A modified bilateral filter with a compensation function based on pixel intensity similarity judgment was used to smooth image instead of Gaussian filter, which could preserve edge feature and remove noise effectively. In order to solve the problems of sensitivity to the noise in gradient calculating, the algorithm used 4 directions gradient templates. Finally, Otsu algorithm adaptively obtain the dual-threshold. All of the algorithm simulated with OpenCV 2.4.0 library in the environments of vs2010, and through the experimental analysis, the improved algorithm has been proved to detect edge details more effectively and with more adaptability.

  20. Particle Swarm Optimization Toolbox

    NASA Technical Reports Server (NTRS)

    Grant, Michael J.

    2010-01-01

    The Particle Swarm Optimization Toolbox is a library of evolutionary optimization tools developed in the MATLAB environment. The algorithms contained in the library include a genetic algorithm (GA), a single-objective particle swarm optimizer (SOPSO), and a multi-objective particle swarm optimizer (MOPSO). Development focused on both the SOPSO and MOPSO. A GA was included mainly for comparison purposes, and the particle swarm optimizers appeared to perform better for a wide variety of optimization problems. All algorithms are capable of performing unconstrained and constrained optimization. The particle swarm optimizers are capable of performing single and multi-objective optimization. The SOPSO and MOPSO algorithms are based on swarming theory and bird-flocking patterns to search the trade space for the optimal solution or optimal trade in competing objectives. The MOPSO generates Pareto fronts for objectives that are in competition. A GA, based on Darwin evolutionary theory, is also included in the library. The GA consists of individuals that form a population in the design space. The population mates to form offspring at new locations in the design space. These offspring contain traits from both of the parents. The algorithm is based on this combination of traits from parents to hopefully provide an improved solution than either of the original parents. As the algorithm progresses, individuals that hold these optimal traits will emerge as the optimal solutions. Due to the generic design of all optimization algorithms, each algorithm interfaces with a user-supplied objective function. This function serves as a "black-box" to the optimizers in which the only purpose of this function is to evaluate solutions provided by the optimizers. Hence, the user-supplied function can be numerical simulations, analytical functions, etc., since the specific detail of this function is of no concern to the optimizer. These algorithms were originally developed to support entry trajectory and guidance design for the Mars Science Laboratory mission but may be applied to any optimization problem.

Top