Process for radiation grafting hydrogels onto organic polymeric substrates
Ratner, Buddy D.; Hoffman, Allan S.
1976-01-01
An improved process for radiation grafting of hydrogels onto organic polymeric substrates is provided comprising the steps of incorporating an effective amount of cupric or ferric ions in an aqueous graft solution consisting of N-vinyl-2 - pyrrolidone or mixture of N-vinyl-2 - pyrrolidone and other monomers, e.g., 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, propylene glycol acrylate, acrylamide, methacrylic acid and methacrylamide, immersing an organic polymeric substrate in the aqueous graft solution and thereafter subjecting the contacted substrate with ionizing radiation.
Plasma-induced graft-polymerization of polyethylene glycol acrylate on polypropylene substrates
NASA Astrophysics Data System (ADS)
Zanini, S.; Orlandi, M.; Colombo, C.; Grimoldi, E.; Riccardi, C.
2009-08-01
A detailed study of argon plasma-induced graft-polymerization of polyethylene glycol acrylate (PEGA) on polypropylene (PP) substrates (membranes and films) is presented. The process consists of four steps: (a) plasma pre-activation of the PP substrates; (b) immersion in a PEGA solution; (c) argon plasma-induced graft-polymerization; (d) washing and drying of the samples. Influence of the solution and plasma parameters on the process efficiency evaluated in terms of amount of grafted polymer, coverage uniformity and substrates wettability, are investigated. The plasma-induced graft-polymerization of PEGA is then followed by sample weighting, water droplet adsorption time and contact angle measurements, attenuated total reflection infrared spectroscopy (ATR-IR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) analyses. The stability of the obtained thin films was evaluated in water and in phosphate buffer saline (PBS) at 37 °C. Results clearly indicates that plasma-induced graft-polymerization of PEGA is a practical methodology for anti-fouling surface modification of materials.
Xu, Lihua; Fang, Zhengping; Song, Ping'an; Peng, Mao
2010-03-01
Surface-initiated graft polymerization on multi-walled carbon nanotubes pretreated with a corona discharge at atmospheric pressure was explored. The mechanism of the corona-discharge-induced graft polymerization is discussed. The results indicate that MWCNTs were encapsulated by poly(glycidyl methacrylate) (PGMA), demonstrating the formation of PGMA-grafted MWCNTs (PGMA-g-MWCNTs), with a grafting ratio of about 22 wt%. The solubility of PGMA-g-MWCNTs in ethanol was dramatically improved compared to pristine MWCNTs, which could contribute to fabricating high-performance polymer/MWCNTs nanocomposites in the future. Compared with most plasma processes, which operate at low pressures, corona discharge has the merit of working at atmospheric pressure.
NASA Astrophysics Data System (ADS)
Niu, Jia; Lunn, David J.; Pusuluri, Anusha; Yoo, Justin I.; O'Malley, Michelle A.; Mitragotri, Samir; Soh, H. Tom; Hawker, Craig J.
2017-06-01
The capability to graft synthetic polymers onto the surfaces of live cells offers the potential to manipulate and control their phenotype and underlying cellular processes. Conventional grafting-to strategies for conjugating preformed polymers to cell surfaces are limited by low polymer grafting efficiency. Here we report an alternative grafting-from strategy for directly engineering the surfaces of live yeast and mammalian cells through cell surface-initiated controlled radical polymerization. By developing cytocompatible PET-RAFT (photoinduced electron transfer-reversible addition-fragmentation chain-transfer polymerization), synthetic polymers with narrow polydispersity (Mw/Mn < 1.3) could be obtained at room temperature in 5 minutes. This polymerization strategy enables chain growth to be initiated directly from chain-transfer agents anchored on the surface of live cells using either covalent attachment or non-covalent insertion, while maintaining high cell viability. Compared with conventional grafting-to approaches, these methods significantly improve the efficiency of grafting polymer chains and enable the active manipulation of cellular phenotypes.
Plasma Surface Modification of Polyaramid Fibers for Protective Clothing
NASA Astrophysics Data System (ADS)
Widodo, Mohamad
2011-12-01
The purpose of this research was to develop a novel process that would achieve biocidal properties on Kevlar fabric via atmospheric pressure plasma jet (APPJ) induced-graft polymerization of monomers. In the course of the study, experiments were carried out to understand plasma-monomer-substrate interactions, particularly, how each of the main parameters in the plasma processing affects the formation of surface radicals and eventually the degree of graft polymerization of monomers. The study also served to explore the possibility of developing plasma-initiated and plasma-controlled graft polymerization for continuous operation. In this regards, three methods of processing were studied, which included two-step plasma graft-polymerization with immersion, two-step and one-step plasma graft-polymerization with pad-dry. In general, plasma treatment did not cause visible damage to the surface of Kevlar fibers, except for the appearance of tiny globules distributed almost uniformly indicating a minor effect of plasma treatment to the surface morphology of the polymer. From the examination of SEM images, however, it was found that a very localized surface etching seemed to have taken place, especially at high RF power (800 W) and long time of exposure (60 s), even in plasma downstream mode of operation. It was suggested that a small amount of charged particles might have escaped and reached the substrate surface. High density of surface radicals, which is the prerequisite for high graft density and high antimicrobial activity, was achieved by the combination of high RF power and short exposure time or low RF power and long time of exposure. This was a clear indication that the formation of surface radicals is a function of amount of the dissipated energy, which also explained the two-factor interaction between the two process parameters. XPS results showed that hydrolysis of the anilide bond of PPTA chains took place to some extent on the surface of Kevlar, leading to the formation carboxylic and phenyl amine groups, which may provide additional active sites for grafting by way of hydrogen abstraction from the latter. Further analysis of XPS data, however, showed that macroradicals and active sites of grafting were formed at least at one of the carbon atoms in the aromatic ring. A reduction of microbial activity up to 3-log reduction was achieved by plasma treated Kevlar grafted by either diallyl diammonium chloride (DADMAC) or 3- ((trimethoxysilyl)-propyl) dimethylammonium chloride (TMS), with the latter being the one with better performance. It was found that high antimicrobial activity was obtained by the combination of high RF power, short time of exposure, and low concentration of monomer. Of the three processing methods studied, the one with immersion method produced higher graft yield. However, one-step plasma graft-polymerization with pad-dry method has proven itself more interesting due to its potential for an open continuous process. This research has been successful in producing effective antimicrobial properties on Kevlar fabric by plasma-initiated and plasma-controlled graft polymerization, which is unprecedented. The design of experiments showed that better results with higher order of log reduction can be obtained by process optimization, e.g. by using response surface methods. It would also be very beneficial to continue the research for the development of plasma graft-polymerization process with more rigorous design, which involves the use of crosslinker and antimicrobial monomers with different chemistry. A study that involves the development of a robust design for processes that perform consistently as intended under a wide range of user's conditions and yet produce high-level performance with high reliability would also be advantageous. The major implication of the findings from this research for the finishing of Kevlar is that a wide array of different surface functionalities may become more readily available now than ever. Plasma technology has made surface chemistry functionalization of Kevlar more straightforward and easier to perform, which opens new avenues for achieving functional and multifunctional Kevlar fabrics using a fast, more economic and environmentally friendly continuous process for niche market such as military applications and protective clothing for emergency responders.
Synthesis of ethylene-propylene rubber graft copolymers by borane approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, T.C.; Janvikul, W.; Bernard, R.
1994-01-01
This paper describes a new method to prepare graft copolymers which have an EP rubber backbone and several free radical polymerized polymers grafted thereto. The process involves hydroboration of commercial EPDM rubbers, such as poly(ethylene-co-propylene-co-1,4-hexadiene) and poly(ethylene-co-propylene-co-5-ethylidene-2-norbornene), with 9-borabicyclononane (9-BBN). The resulting secondary alkyl-9-BBN moieties in the EPDM copolymer were then exposed to oxygen in the presence of free radical polymerizable monomers. Under certain conditions, the selective autoxidation reaction of secondary alkyl-9-BBN took place to create desirable polymeric radicals which can in situ initiate free radical polymerization. High graft efficiency was observed with controllable copolymer compositions. The graft copolymer ofmore » EP-g-PMMA is used to show the chemistry as well as some of the physical properties.« less
Cowieson, D; Piletska, E; Moczko, E; Piletsky, S
2013-08-01
An application of plasma-induced grafting of polyethylene membranes with a thin layer of molecularly imprinted polymer (MIP) was presented. High-density polyethylene (HDPE) membranes, "Vyon," were used as a substrate for plasma grafting modification. The herbicide atrazine, one of the most popular targets of the molecular imprinting, was chosen as a template. The parameters of the plasma treatment were optimized in order to achieve a good balance between polymerization and ablation processes. Modified HDPE membranes were characterized, and the presence of the grafted polymeric layer was confirmed based on the observed weight gain, pore size measurements, and infrared spectrometry. Since there was no significant change in the porosity of the modified membranes, it was assumed that only a thin layer of the polymer was introduced on the surface. The experiments on the re-binding of the template atrazine to the membranes modified with MIP and blank polymers were performed. HDPE membranes which were grafted with polymer using continuous plasma polymerization demonstrated the best result which was expressed in an imprinted factor equal to 3, suggesting that molecular imprinting was successfully achieved.
In-Situ Immobilization of Ni Complex on Amine-Grafted SiO₂ for Ethylene Polymerization.
Lee, Sang Yun; Ko, Young Soo
2018-02-01
The results on the In-Situ synthesis of Ni complex on amine-grafted SiO2 and its ethylene polymerization were explained. SiO2/2NS/(DME)NiBr2 and SiO2/3NS/(DME)NiBr2(Ni(II) bromide ethylene glycol dimethyl ether) catalysts were active for ethylene polymerization. The highest activity was shown at the polymerization temperature of 25 °C, and SiO2/2NS/(DME)NiBr2 exhibited higher activity than SiO2/3NS/(DME)NiBr2. The PDI values of SiO2/2NS/(DME)NiBr2 were in the range of 8~18. The aminosilane compounds and Ni were evenly grafted and distributed in the silica. It was proposed that DME ligand was mostly removed during the supporting process, and only NiBr2 was complexed with the amine group of 2NS based on the results of FT-IR and ethylene polymerization.
NASA Astrophysics Data System (ADS)
Zhang, Xiaojin; Dai, Yu
2018-06-01
Amphiphilic graft polymer PSS- g-Pal/PEG with reduction breakable main chain was synthesized via click polymerization of dialkynyl (containing disulfide bond) and diazide (containing pendant diol) and one-pot grafting onto of hydrophobic palmitate (Pal) and hydrophilic methoxy poly(ethylene glycol) (PEG). PSS- g-Pal/PEG is able to form polymeric micelles by self-assembly in water via dialysis. Polymeric micelles are nano-sized spheres and the particle size is approximately 70 nm. Of note, polymeric micelles are reduction-responsive owing to the disulfide bonds in main chain of PSS- g-Pal/PEG. Therefore, polymeric micelles prepared from amphiphilic graft polymer PSS- g-Pal/PEG are able to fast release the drugs in the presence of the reducing agents such as DL-dithiothreitol (DTT).
Impact of solvent selection on graft polymerization of acrylamide onto starch
USDA-ARS?s Scientific Manuscript database
The impact on polymer properties [molecular weight, monomer conversion, graft content, graft efficiency and anhydroglucose units between grafts (AGU/graft)] that result from changing the solvent for the graft co-polymerization of acrylamide onto starch from water to dimethylsulfoxide (DMSO) was eval...
NASA Astrophysics Data System (ADS)
Cho, Hyunjung; Jin, Kyeong Sik; Lee, Jaegeun; Lee, Kun-Hong
2018-07-01
Small angle x-ray scattering (SAXS) was used to estimate the degree of polymerization of polymer-grafted carbon nanotubes (CNTs) synthesized using a ‘grafting from’ method. This analysis characterizes the grafted polymer chains without cleaving them from CNTs, and provides reliable data that can complement conventional methods such as thermogravimetric analysis or transmittance electron microscopy. Acrylonitrile was polymerized from the surface of the CNTs by using redox initiation to produce poly-acrylonitrile-grafted CNTs (PAN-CNTs). Polymerization time and the initiation rate were varied to control the degree of polymerization. Radius of gyration (R g ) of PAN-CNTs was determined using the Guinier plot obtained from SAXS solution analysis. The results showed consistent values according to the polymerization condition, up to a maximum R g = 125.70 Å whereas that of pristine CNTs was 99.23 Å. The dispersibility of PAN-CNTs in N,N-dimethylformamide was tested using ultraviolet–visible-near infrared spectroscopy and was confirmed to increase as the degree of polymerization increased. This analysis will be helpful to estimate the degree of polymerization of any polymer-grafted CNTs synthesized using the ‘grafting from’ method and to fabricate polymer/CNT composite materials.
Cho, Hyunjung; Jin, Kyeong Sik; Lee, Jaegeun; Lee, Kun-Hong
2018-07-06
Small angle x-ray scattering (SAXS) was used to estimate the degree of polymerization of polymer-grafted carbon nanotubes (CNTs) synthesized using a 'grafting from' method. This analysis characterizes the grafted polymer chains without cleaving them from CNTs, and provides reliable data that can complement conventional methods such as thermogravimetric analysis or transmittance electron microscopy. Acrylonitrile was polymerized from the surface of the CNTs by using redox initiation to produce poly-acrylonitrile-grafted CNTs (PAN-CNTs). Polymerization time and the initiation rate were varied to control the degree of polymerization. Radius of gyration (R g ) of PAN-CNTs was determined using the Guinier plot obtained from SAXS solution analysis. The results showed consistent values according to the polymerization condition, up to a maximum R g = 125.70 Å whereas that of pristine CNTs was 99.23 Å. The dispersibility of PAN-CNTs in N,N-dimethylformamide was tested using ultraviolet-visible-near infrared spectroscopy and was confirmed to increase as the degree of polymerization increased. This analysis will be helpful to estimate the degree of polymerization of any polymer-grafted CNTs synthesized using the 'grafting from' method and to fabricate polymer/CNT composite materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y Hu; D Samanta; S Parelkar
Controlled free radical polymerization chemistry is used to graft polymer chains to the corona of horse spleen ferritin (HSF) nanocages. Specifically, poly(methacryloyloxyethyl phosphorylcholine) (polyMPC) and poly(PEG methacrylate) (polyPEGMA) chains are grafted onto the nanocages by atom transfer radical polymerization (ATRP), in which the molecular weight of the polymer grafts is controlled by the monomer-to-initiator feed ratio. PolyMPC and polyPEGMA-grafted ferritin show a generally suppressed inclusion into diblock copolymer films relative to native ferritin, and the polymer coating is seen to mask the ferritin nanocages from antibody recognition. The solubility of polyPEGMA-coated ferritin in organic solvents enables its processing with polystyrene-block-poly(ethylenemore » oxide) copolymers, and selective integration into the PEO domains of microphase-separated copolymer structures.« less
NASA Astrophysics Data System (ADS)
Zhao, Jing; Chen, Miao; An, Yanqing; Liu, Jianxi; Yan, Fengyuan
2008-12-01
A radical chain-transfer polymerization technique has been applied to graft-polymerize brushes of polystyrene (PSt) on single-crystal silicon substrates. 3-Mercapto-propyltrimethoxysilane (MPTMS), as a chain-transfer agent for grafting, was immobilized on the silicon surface by a self-assembling process. The structure and morphology of the graft-functionalized silicon surfaces were characterized by the means of contact-angle measurement, ellipsometric thickness measurement, Fourier transformation infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The nanotribological and micromechanical properties of the as-prepared polymer brush films were investigated by frictional force microscopy (FFM), force-volume analysis and scratch test. The results indicate that the friction properties of the grafted polymer films can be improved significantly by the treatment of toluene, and the chemically bonded polystyrene film exhibits superior scratch resistance behavior compared with the spin-coated polystyrene film. The resultant polystyrene brush film is expected to develop as a potential lubrication coating for microelectromechanical systems (MEMS).
Poly(vinyl alcohol) stabilization of acrylic emulsion polymers using the miniemulsion approach
NASA Astrophysics Data System (ADS)
Kim, Noma
Miniemulsion approach was employed to obtain stable acrylic latexes of n-butyl acrylate and methyl methacrylate (50/50 wt%) stabilized with poly(vinyl alcohol) (PVA) and to enhance the grafting reaction between PVA and acrylic monomers at the water/droplet interface. The stability of miniemulsions were studied in terms of the type and concentration of' the stabilizer, and the PVA partitioning were determined as a function of the PVA concentration. Using the comparison of PVA partitioning at droplet surface and grafted PVA as a function of concentration, it was suggested that the water/monomer interface is the main grafting site in the miniemulsion polymerization. Seeded emulsion and miniemulsion copolymerizations initiated with water-soluble (hydrogen peroxide, HPO), partially water-soluble (t-butyl peroxide, TBHP), and oil-soluble (t-butyl peroxyoctoate, TBPO) initiators were carried out to further investigate the oil/water interface as the grafting site for PVA. The interaction between the capillary wall in the CHDF (capillary hydrodynamic fractionation) chromatographic particle sizer and the water-soluble polymers adsorbed on the particle surface was studied using different types of water-soluble polymers and eluants. Different grafting architectures depending on the initiation site were suggested based on the CHDF results. The amounts of grafted PVA produced in miniemulsion polymers initiated with TBHP and TBPO were substantially less than those in the corresponding seeded emulsion polymerizations. The effect on the internal viscosity at the interface was proposed to explain the difference in grafting in terms of polymerization methods. Aqueous phase and interface grafting were studied using the measurement of the degree of hydrolysis (DH) of the serum PVA and adsorbed PVA after miniemulsion polymerizations. Based on the results, it was found that aqueous phase and interface grafting occurred in the HPO system; however, interface grafting dominated the TBHP system. Colloidal instability in conventional emulsion polymerizations was investigated and compared with the corresponding miniemulsion polymerization. It was found that the grafted PVA in conventional emulsion polymerizations was more hydrophobic presumably due to a greater amount of grafted chains than that in similar miniemulsion polymerizations and this could be correlated with the colloidal instability during conventional emulsion polymerizations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Mingyi; Xu, Xiaoyang, E-mail: xiaoyangxu2012@163.com; Wu, Tao
Highlights: • Graphene oxide (GO) was modified by chemical reactions to functionalized GO (FGO). • The FGOs and the GO were then subjected to in situ free radical polymerization. • Hydroxyl groups of GO were the most reactive grafting sites. - Abstract: Graphene oxide (GO) was modified using chemical reactions to obtain three types of functionalized GO sheets (FGO). The FGO sheets and the GO were then subjected to in situ free radical polymerization in order to study the grafting polymerization. The FGO and grafted-.FGO were analyzed with Fourier transform infrared spectroscopy, scanning electronic microscopy, thermo-gravimetric analysis (TGA) and X-raymore » photoelectron spectroscopy (XPS). The grafting percentages in the materials were calculated using the TGA and XPS results. The FGO sheets with different functional groups exhibited different grafting abilities, and hydroxyl groups were proven to be the most reactive grafting sites for the in situ free radical grafting polymerization of polyacrylamide.« less
Survey Study of Trunk Materials for Direct ATRP Grafting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, Tomonori; Chatterjee, Sabornie; Johnson, Joseph C.
2015-02-01
In previous study, we demonstrated a new method to prepare polymeric fiber adsorbents via a chemical-grafting method, namely atom-transfer radical polymerization (ATRP), and identified parameters affecting their uranium adsorption capacity. However, ATRP chemical grafting in the previous study still utilized conventional radiation-induced graft polymerization (RIGP) to introduce initiation sites on fibers. Therefore, the objective of the present study is to perform survey study of trunk fiber materials for direct ATRP chemical grafting method without RIGP for the preparation of fiber adsorbents for uranium recovery from seawater.
Radzinski, Scott C; Foster, Jeffrey C; Matson, John B
2016-04-01
Bottlebrush polymers are synthesized using a tandem ring-opening polymerization (ROP) and ring-opening metathesis polymerization (ROMP) strategy. For the first time, ROP and ROMP are conducted sequentially in the same pot to yield well-defined bottlebrush polymers with molecular weights in excess of 10(6) Da. The first step of this process involves the synthesis of a polylactide macromonomer (MM) via ROP of d,l-lactide initiated by an alcohol-functionalized norbornene. ROMP grafting-through is then carried out in the same pot to produce the bottlebrush polymer. The applicability of this methodology is evaluated for different MM molecular weights and bottlebrush backbone degrees of polymerization. Size-exclusion chromatographic and (1)H NMR spectroscopic analyses confirm excellent control over both polymerization steps. In addition, bottlebrush polymers are imaged using atomic force microscopy and stain-free transmission electron microscopy on graphene oxide. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gao, Baojiao; Hu, Hongyan; Guo, Jianfeng; Li, Yanbin
2010-06-01
The crosslinked copolymeric microspheres (HEMA/NVP) of N-vinylpyrrolidone (NVP) and 2-hydroxyethyl methacrylate (HEMA) were prepared using inverse suspension polymerization method. Subsequently, the reaction of methacryloyl chloride with the hydroxyl groups on the surfaces of HEMA/NVP microspheres was performed, leading to the introduction of polymerisable double bonds onto the surfaces of microspheres HEMA/NVP. Afterward, methacrylic acid was allowed to be graft-polymerized on microspheres HEMA/NVP in the manner of "grafting from", resulting in the grafted microspheres PMAA-HEMA/NVP. The grafted microspheres PMAA-HEMA/NVP were fully characterized with several means. The graft-polymerization of MAA on microspheres HEMA/NVP was studied in detail, and the optimal reaction conditions were determined. Thereafter, the adsorption property of the grafted microspheres PMAA-HEMA/NVP for lysozyme as a basic protein model was preliminarily examined to explore the feasibility of removing deleterious basic protein such as density lipoprotein from blood. The experimental results indicate that the PMAA grafting degree on microspheres HEMA/NVP is limited because an enwinding polymer layer as a kinetic barrier on the surfaces of HEMA/NVP microspheres will be formed during the graft-polymerization, and block the graft-polymerization. In order to enhance PMAA grafting degree, reaction temperature, monomer concentration and the used amount of initiator should be effectively controlled. The experimental results also reveal that the grafted microspheres PMAA-HEMA/NVP possess very strong adsorption ability for lysozyme by right of strong electrostatic interaction. Copyright 2010 Elsevier B.V. All rights reserved.
Shiojima, Taro; Inoue, Yuuki; Kyomoto, Masayuki; Ishihara, Kazuhiko
2016-08-01
A highly efficient methodology for preparing a poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) layer on the surface of poly(ether ether ketone) (PEEK) was examined by photoinduced and self-initiated graft polymerization. To enhance the polymerization rate, we demonstrated the effects of inorganic salt additives in the feed monomer solution on thickness of grafted PMPC layer. Photoinduced polymerization occurred and the PMPC graft layer was successfully formed on the PEEK surface, regardless of inorganic salt additives. Moreover, it was clearly observed that the addition of inorganic salt enhanced the grafting thickness of PMPC layer on the surface even when the photoirradiation time was shortened. The addition of inorganic salt additives in the feed monomer solution enhanced the polymerization rate of MPC and resulted in thicker PMPC layers. In particular, we evaluated the effect of NaCl concentration and how this affected the polymerization rate and layer thickness. We considered that this phenomenon was due to the hydration of ions in the feed monomer solution and subsequent apparent increase in the MPC concentration. A PMPC layer with over 100-nm-thick, which was prepared by 5-min photoirradiation in 2.5mol/L inorganic salt aqueous solution, showed good wettability and protein adsorption resistance compared to that of untreated PEEK. Hence, we concluded that the addition of NaCl into the MPC feed solution would be a convenient and efficient method for preparing a graft layer on PEEK. Photoinduced and self-initiated graft polymerization on the PEEK surface is one of the several methodologies available for functionalization. However, in comparison with free-radical polymerization, the efficiency of polymerization at the solid-liquid interface is limited. Enhancement of the polymerization rate for grafting could solve the problem. In this study, we observed the acceleration of the polymerization rate of MPC in an aqueous solution by the addition of inorganic salt. The salt itself did not show any adverse effects on the radical polymerization; however, the apparent concentration of the monomer in feed may be increased due to the hydration of ions attributed to salt additives. We could obtain PMPC-grafted PEEK with sufficient PMPC thickness to obtain good functionality with only 5-min photoirradiation by using 2.5mol/L NaCl in the feed solution. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Antimicrobial fabric adsorbed iodine produced by radiation-induced graft polymerization
NASA Astrophysics Data System (ADS)
Aoki, Shoji; Fujiwara, Kunio; Sugo, Takanobu; Suzuki, Koichi
2013-03-01
Antimicrobial fabric was synthesized by radiation-induced graft polymerization of N-vinyl pyrrolidone onto polyolefine nonwoven fabric and subsequent adsorption of iodine. In response of the huge request for the antimicrobial material applied to face masks for swine flu in 2009, operation procedure of continuous radiation-induced graft polymerization apparatus was improved. The improved grafting production per week increased 3.8 times compared to the production by former operation procedure. Shipped antimicrobial fabric had reached 130,000 m2 from June until December, 2009.
Essawy, Hisham A; Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F
2016-08-01
Superabsorbent polymers fabricated via grafting polymerization of acrylic acid from chitosan (CTS) yields materials that suffer from poor mechanical strength. Hybridization of chitosan with cellulose (Cell) via chemical bonding using thiourea formaldehyde resin increases the flexibility of the produced hybrid (CTS/Cell). The hybridization process and post graft polymerization of acrylic acid was followed using Fourier transform infrared (FTIR). Also, the obtained structures were homogeneous and exhibited uniform surface as could be shown from imaging with scanning electron microscopy (SEM). Thus, the polymers derived from the grafting of polyacrylic acid from (CTS/Cell) gave rise to much more mechanically robust structures ((CTS/Cell)-g-PAA) that bear wide range of pH response due to presence of chitosan and polyacrylic acid in one homogeneous entity. Additionally, the obtained structures possessed greater water absorbency 390, 39.5g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced retention potential even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high grafting efficiency (GE%), 86.4%, and grafting yield (GY%), 750%. The new superabsorbent polymers proved to be very efficient devices for controlled release of fertilizers into the soil which expands their use in agriculture and horticultural applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F; Essawy, Hisham A
2016-10-01
Grafting polymerization of acrylic acid onto cellulose in presence of potassium fulvate (KF) as a co-interpenetrating agent results enhanced water sorption compared to materials prepared similarly in its absence. The insertion of potassium fulvate (KF) did not affect the grafting process and is thought to proceed in parallel to the graft polymerization via intensive polycondensation reactions of its function groups (-COOH and OH) with COOH of the monomer and OH groups of cellulose. The combination of graft copolymerization and polycondensation reactions is assumed to produce interpenetrating network structure. Fourier transform infrared (FTIR) confirmed successful incorporation within the network structure which is an evidence for formation of interpenetrating network. The obtained structures showed homogeneous uniform surface as revealed by scanning electron microscopy (SEM). The obtained superabsorbent possessed high water absorbency 422 and 48.8g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced water retention even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high content of hydrophilic groups. The new superabsorbents proved to be efficient devices for controlled release of fertilizers which expands their use in agricultural applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Synthesis of perm-selective membranes by grafting acrylic acid into air-irradiated Teflon-FEP films
NASA Astrophysics Data System (ADS)
Bozzi, Annick; Chapiro, Adolphe
Grafting acrylic acid into air-irradiated Teflon-FEP films was investigated. Pre-irradiation doses ranged from 0.5 to 10 kGy. Grafting occurred at 45 or 60°C. Homopolymerization inhibitors, ferrous ions or methylene blue, were added to the system. It was found that after completion of the reaction, within 40-100 min, membranes were obtained with very low electric resistivities. The influence of added inhibitors, pre-irradiation dose and grafting temperature was studied. From the results it is concluded that the initiating centers in air-irradiated Teflon-FEP are, on the one hand, peroxides of structure POOP', in which P is a polymeric radical and Pprime; a small fragment, and on the other trapped PO .2 radicals. The latter only react after losing their oxygen. In the presence of polymerization inhibitors, initiation involves a redox process which reduces the overall activation energy.
Sun, Hui; Wirsén, Anders; Albertsson, Ann-Christine
2004-01-01
Electron beam- (EB-) induced graft polymerization of acrylic acid and the subsequent immobilization of arginine-glycine-aspartic acid (RGD) peptide onto nanopatterned polycaprolactone with parallel grooves is reported. A high concentration of carboxylic groups was introduced onto the polymer substrate by EB-induced polymerization of acrylic acid. In the coupling of the RGD peptide to the carboxylated polymer surface, a three-step peptide immobilization process was used. This process included the activation of surface carboxylic acid into an active ester intermediate by use of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), the introduction of disulfide groups by use of 2-(2-pyridinyldithio)ethanamine hydrochloride (PDEA), and final immobilization of the peptide via a thiol-disulfide exchange reaction. The extent of coupling was measured by UV spectroscopy. A preliminary study of the in vitro behavior of keratinocytes (NCTC 2544) cultured on the acrylic acid-grafted and RGD peptide-coupled surface showed that most cells grown on the coupled samples had a spread-rounded appearance, while the majority of cells tended to be elongated along the grooves on uncoupled substrates.
USDA-ARS?s Scientific Manuscript database
Mixtures of high amylose corn starch and oleic acid were processed by steam jet-cooking, and the dispersions were rapidly cooled to yield amylose-oleic acid inclusion complexes as sub-micron spherulites and spherulite aggregates. Dispersions of these spherulite particles were then graft polymerized ...
NASA Astrophysics Data System (ADS)
Roghani-Mamaqani, Hossein; Khezri, Khezrollah
2016-01-01
(3-Aminopropyl) triethoxysilane was grafted at the surface of GO in low and high different graft densities to yield GOHAL and GOHAH, respectively. Subsequently, 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (RA) was attached at the surface of GOHAL and GOHAH by an amidation reaction to yield GOHRL and GOHRH, respectively. Then, GOHRL and GOHRH were used in grafting from RAFT polymerization of styrene. Grafting of APTES and RA was approved by Fourier transform infrared spectroscopy, X-ray photo electron spectroscopy, and Raman spectroscopy. Expansion of graphene interlayer by oxidation and functionalization processes was evaluated by X-ray diffraction. Conversion values of styrene were calculated using gas chromatography. Molecular weight and PDI values of attached polystyrene (PS) chains were studied by size exclusion chromatography. Thermogravimetric analysis was also used to investigate the degradation temperatures, char contents, and graft contents of modifiers and PS chains. GOHRH and GOHRL reach to char content of 55.3 and 45.2% at 600 °C, which shows that weight ratio of modifier (APTES and RA moieties) is 15.3 and 5.2%, respectively. Scanning and transmission electron microscopies show that graphite layers with flat and smooth surface wrinkled after oxidation and turned to opaque layers by grafting PS.
Elaboration of nano-structured grafted polymeric surface.
Vrlinic, Tjasa; Debarnot, Dominique; Mozetic, Miran; Vesel, Alenka; Kovac, Janez; Coudreuse, Arnaud; Legeay, Gilbert; Poncin-Epaillard, Fabienne
2011-10-15
The surface grafting of multi-polymeric materials can be achieved by grafting as components such as polymers poly(N-isopropylacrylamide) and/or surfactant molecules (hexatrimethylammonium bromide, polyoxyethylene sorbitan monolaurate). The chosen grafting techniques, i.e. plasma activation followed by coating, allow a large spectrum of functional groups that can be inserted on the surface controlling the surface properties like adhesion, wettability and biocompatibility. The grafted polypropylene surfaces were characterized by contact angle analyses, XPS and AFM analyses. The influence of He plasma activation, of the coating parameters such as concentrations of the various reactive agents are discussed in terms of hydrophilic character, chemical composition and morphologic surface heterogeneity. The plasma pre-activation was shown inevitable for a permanent polymeric grafting. PNIPAM was grafted alone or with a mixture of the surfactant molecules. Depending on the individual proportion of each component, the grafted surfaces are shown homogeneous or composed of small domains of one component leading to a nano-structuration of the grafted surface. Copyright © 2011 Elsevier Inc. All rights reserved.
Interfacial interactions between calcined hydroxyapatite nanocrystals and substrates.
Okada, Masahiro; Furukawa, Keiko; Serizawa, Takeshi; Yanagisawa, Yoshihiko; Tanaka, Hidekazu; Kawai, Tomoji; Furuzono, Tsutomu
2009-06-02
Interfacial interactions between calcined hydroxyapatite (HAp) nanocrystals and surface-modified substrates were investigated by measuring adsorption behavior and adhesion strength with a quartz crystal microbalance (QCM) and a contact-mode atomic force microscope (AFM), respectively. The goal was to develop better control of HAp-nanocrystal coatings on biomedical materials. HAp nanocrystals with rodlike or spherical morphology were prepared by a wet chemical process followed by calcination at 800 degrees C with an antisintering agent to prevent the formation of sintered polycrystals. The substrate surface was modified by chemical reaction with a low-molecular-weight compound, or graft polymerization with a functional monomer. QCM measurement showed that the rodlike HAp nanocrystals adsorbed preferentially onto anionic COOH-modified substrates compared to cationic NH2- or hydrophobic CH3-modified substrates. On the other hand, the spherical nanocrystals adsorbed onto NH2- and COOH-modified substrates, which indicates that the surface properties of the HAp nanocrystals determined their adsorption behavior. The adhesion strength, which was estimated from the force required to move the nanocrystal in contact-mode AFM, on a COOH-grafted substrate prepared by graft polymerization was almost 9 times larger than that on a COOH-modified substrate prepared by chemical reaction with a low-molecular-weight compound, indicating that the long-chain polymer grafted on the substrate mitigated the surface roughness mismatch between the nanocrystal and the substrate. The adhesion strength of the nanocrystal bonded covalently by the coupling reaction to a Si(OCH3)-grafted substrate prepared by graft polymerization was approximately 1.5 times larger than that when adsorbed on the COOH-grafted substrate.
Gamma radiation grafted polymers for immobilization of Brucella antigen in diagnostic test studies
NASA Astrophysics Data System (ADS)
Docters, E. H.; Smolko, E. E.; Suarez, C. E.
The radiation grafting process has a wide field of industrial applications, and in the recent years the immobilization of biocomponents in grafted polymeric materials obtained by means of ionizing radiations is a new and important contribution to biotechnology. In the present work, gamma preirradiation grafting method was employed to produce acrylics hydrogels onto polyethylene (PE), polyvinyl chloride (PVC) and polystyrene (PS). Two monomers were used to graft the previously mentioned polymers: methacrylic acid (MAAc) and acrylamide (AAm), and several working conditions were considered as influencing the degree of grafting. All this grafted polymers were used to study the possibility of a subsequent immobilization of Brucella antigen (BAg) in diagnostic test studies (ELISA).
Akiyama, Yoshikatsu; Kikuchi, Akihiko; Yamato, Masayuki; Okano, Teruo
2014-08-01
A double polymeric nanolayer consisting of poly(N-isopropylacrylamide) (PIPAAm) and hydrophilic polyacrylamide (PAAm) was deposited on tissue culture polystyrene (TCPS) surfaces using electron beam irradiation to form a new temperature-responsive cell culture surface in which the basal hydrophilic PAAm component in the double polymeric layer promotes the hydration of the upper PIPAAm layer and induces rapid cell detachment compared to a conventional temperature-responsive cell culture surface, PIPAAm-grafted TCPS (PIPAAm-TCPS). Take-off angle-dependent X-ray photoelectron spectroscopy spectral analysis demonstrated that the grafted PIPAAm and PAAm components were located in the upper and basal regions of the double polymeric layer, respectively, suggesting that the double polymeric layer forms an inter-penetrating-network-like structure with PAAm at the basal portion of the PIPAAm grafted chains. The wettability of the temperature-responsive cell culture surfaces with the double polymeric layer tended to be more hydrophilic, with an increase in the basal PAAm graft density at a constant PIPAAm graft density. However, when the graft densities of the upper PIPAAm and basal PAAm were optimized, the resulting temperature-responsive cell culture surface with the double polymeric layer exhibited rapid cell detachment while maintaining cell adhesive character comparable to that of PIPAAm-TCPS. The cell adhesive character was altered from cell-adhesive to cell-repellent with increasing PAAm or PIPAAm graft density. The cell adhesive character of the temperature-responsive cell culture surfaces was relatively consistent with their contact angles. These results strongly suggest that the basal PAAm surface properties affect the degree of hydration and dehydration of the subsequently grafted PIPAAm. In addition, the roles of the hydrophilic component in accelerating cell detachment are further discussed in terms of the mobility of the grafted PIPAAm chains. Applications of this insight might be useful for designing temperature-responsive cell culture surfaces for achieving efficient cell culture and quick target cell detachment. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Yu, W H; Kang, E T; Neoh, K G
2005-01-04
Surface modification of poly(tetrafluoroethylene) (PTFE) films by well-defined comb copolymer brushes was carried out. Peroxide initiators were generated directly on the PTFE film surface via radio frequency Ar plasma pretreatment, followed by air exposure. Poly(glycidyl methacrylate) (PGMA) brushes were first prepared by surface-initiated reversible addition-fragmentation chain transfer polymerization from the peroxide initiators on the PTFE surface in the presence of a chain transfer agent. Kinetics study revealed a linear increase in the graft concentration of PGMA with the reaction time, indicating that the chain growth from the surface was consistent with a "controlled" or "living" process. alpha-Bromoester moieties were attached to the grafted PGMA by reaction of the epoxide groups with 2-bromo-2-methylpropionic acid. The comb copolymer brushes were subsequently prepared via surface-initiated atom transfer radical polymerization of two hydrophilic vinyl monomers, including poly(ethylene glycol) methyl ether methacrylate and sodium salt of 4-styrenesulfonic acid. The chemical composition of the modified PTFE surfaces was characterized by X-ray photoelectron spectroscopy.
NASA Astrophysics Data System (ADS)
Valencia-Mora, Ricardo A.; Zavala-Lagunes, Edgar; Bucio, Emilio
2016-07-01
The modification of silicone rubber films (SR) was performed by radiation-induced graft polymerization of thermosensitive poly(N-vinylcaprolactam) (PNVCL) using gamma rays from a Co-60 source. The graft polymerization was obtained by a direct radiation method with doses from 5 to 70 kGy, at monomer concentrations between 5% and 70% in toluene. Grafting was confirmed by infrared, differential scanning calorimetry, thermogravimetric analysis, and swelling studies. The lower critical solution temperature (LCST) of the grafted SR was measured by swelling and differential scanning calorimetry.
Salimi, Kouroush; Yilmaz, Mehmet; Rzayev, Zakir M O; Piskin, Erhan
2014-12-19
This work presents a new approach for the synthesis of a starch-g-poly L-lactic acid (St-g-PLA) copolymer via the graft copolymerization of LA onto starch using stannous 2-ethyl hexanoate (Sn(Oct)2) as a catalyst in a supercritical carbon dioxide (scCO2) medium. The effects of several process parameters, including the pressure, temperature, scCO2 flow rate and reaction time, on the polymerization yield and grafting degree were studied. Amorphous graft St-g-PLA copolymers with increased thermal stability and processability were produced with a high efficiency. The maximum grafting degree (i.e., 52% PLA) was achieved with the following reaction conditions: 6h, 100°C, 200 bar and a 1:3 (w/w) ratio of St/LA. It was concluded that these low cost biobased graft biopolymers are potential candidates for several environment-friendly applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
Plasma-grafting polymerization on carbon fibers and its effect on their composite properties
NASA Astrophysics Data System (ADS)
Zhang, Huanxia; Li, Wei
2015-11-01
Interfacial adhesion between matrix and fibers plays a crucial role in controlling the performance of composites. Carbon fibers have the major constraint of chemical interness and hence have limited adhesion with the matrix. Surface treatment of fibers is the best solution to this problem. In this work, carbon fibers were activated by plasma and grafting polymerization. The grafting ratio of polymerization was obtained by acid-base titration. The chemical and physical changes induced by the treatments on carbon fiber surface was examined using contact angle measurements, X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. The interfacial adhesion of CF/EP (carbon fiber/epoxy) composites were analyzed by a single fiber composite (SFC) for filament fragmentation test. Experimental results show that the grafting rate was not only the function of the plasma-treat time but also the concentration of the grafting polymerization. The oxygen-containing groups (such as Csbnd O, Cdbnd O, and Osbnd Cdbnd O) and the interfacial shear strength (IFSS) of the plasma-grafting carbon fiber increased more significantly than the carbon fiber without plasma treatment grafted with MAH. This demonstrates that the surfaces of the carbon fiber samples are more active, hydrophilic, and rough after plasma-grafting treatments using a DBD operating in ambient argon mixture with oxygen. With DBD (dielectric barrier discharges) operating in ambient argon mixture with oxygen, the more active, hydrophilic, and rough surface was obtained by the plasma-grafting treatments.
NASA Astrophysics Data System (ADS)
Deng, Bo; Yu, Yang; Zhang, Bowu; Yang, Xuanxuan; Li, Linfan; Yu, Ming; Li, Jingye
2011-02-01
Poly(vinylidene fluoride) (PVDF) powder was grafted with acrylic acid (AAc) or methacrylic acid (MAA) by the pre-irradiation induced graft polymerization technique. The presence of graft chains was proven by FT-IR spectroscopy. The degree of grafting (DG) was calculated by the acid-base back titration method. The synergistic effect of acid and Mohr's salt on the grafting kinetics was examined. The results indicated that adding sulfuric acid and Mohr's salt simultaneously in AAc or MAA solutions led to a strong enhancement in the degree of grafting. The grafted PVDF powder was cast into microfiltration (MF) membranes using the phase inversion method and some properties of the obtained MF membranes were characterized.
Moreira, Guillaume; Charles, Laurence; Major, Mohamed; Vacandio, Florence; Guillaneuf, Yohann
2013-01-01
Summary The range of applications of cellulose, a glucose-based polysaccharide, is limited by its inherently poor mechanical properties. The grafting of synthetic polymer chains by, for example, a “grafting from” process may provide the means to broaden the range of applications. The nitroxide-mediated polymerization (NMP) method is a technique of choice to control the length, the composition and the architecture of the grafted copolymers. Nevertheless, cellulose is difficult to solubilize in organic media because of inter- and intramolecular hydrogen bonds. One possibility to circumvent this limitation is to solubilize cellulose in N,N-dimethylformamide (DMF) or N,N-dimethylacetamide (DMA) with 5 to 10 wt % of lithium salts (LiCl or LiBr), and carry out grafted polymerization in this medium. The stability of nitroxides such as SG1 has not been studied under these conditions yet, even though these parameters are of crucial importance to perform the graft modification of polysaccharide by NMP. The aim of this work is to offer a model study of the stability of the SG1 nitroxide in organic media in the presence of unprotected glucose or cellobiose (used as a model of cellulose) and in the presence of lithium salts (LiBr or LiCl) in DMF or DMA. Contrary to TEMPO, SG1 proved to be stable in the presence of unprotected sugar, even with an excess of 100 molar equivalents of glucose. On the other hand, lithium salts in DMF or DMA clearly degrade SG1 nitroxide as proven by electron-spin resonance measurements. The instability of SG1 in these lithium-containing solvents may be explained by the acidification of the medium by the hydrolysis of DMA in the presence of LiCl. This, in turn, enables the disproportionation of the SG1 nitroxide into an unstable hydroxylamine and an oxoammonium ion. Once the conditions to perform an SG1-based nitroxide-mediated graft polymerization from cellobiose have been established, the next stage of this work will be the modification of cellulose and cellulose derivatives by NMP. PMID:23946859
The Synthesis of Cellulose Graft Copolymers Using Cu(0)-Mediated Polymerization
NASA Astrophysics Data System (ADS)
Donaldson, Jason L.
Cellulose is the most abundant renewable polymer on the planet and there is great interest in expanding its use beyond its traditional applications. However, its hydrophilicity and insolubility in most common solvent systems are obstacles to its widespread use in advanced materials. One way to counteract this is to attach hydrophobic polymer chains to cellulose: this allows the properties of the copolymer to be tailored by the molecular weight, density, and physical properties of the grafts. Two methods were used here to synthesize the graft copolymers: a 'grafting-from' approach, where synthetic chains were grown outward from bromoester moieties on cellulose (Cell-BiB) via Cu(0)-mediated polymerization; and a 'grafting-to' approach, where fully formed synthetic chains with terminal sulfide functionality were added to cellulose acetate with methacrylate functionality (CA-MAA) via thiol-ene Michael addition. The Cell-BiB was synthesized in the ionic liquid 1-butyl-3-methylimidazolium chloride and had a degree of substitution of 1.13. Polymerization from Cell-BiB proceeded at similar but slightly slower rate than an analogous non-polymeric initiator (EBiB). The average graft density of poly(methyl acrylate) chains was 0.71 chains/ring, with a maximum of 1.0 obtained. The graft density when grafting poly(methyl methacrylate) was only 0.15, and this appeared to be due to the slow initiation of BiB groups. Using EBiB to model the reaction and improve the design should allow this to be overcome. Chain extension experiments demonstrated the living behaviour of the polymer. The CA-MAA was synthesized by esterification with methacrylic acid. Reactions of CA-MAA with thiophenol and dodecanethiol resulted in quantitative addition of the thiol to the alkene. The grafts were synthesized by Cu(0)-mediated polymerization from a bifunctional initiator containing a disulfide bond, followed by reduction to sulfides. The synthetic polymers were successfully grafted to CA-MAA but the grafting yield was limited by the low sulfide functionality. Better retention of sulfide functionality is necessary for more efficient grafting.
Preparation and characterization of poly(acrylic acid)-hydroxyethyl cellulose graft copolymer.
Abdel-Halim, E S
2012-10-01
Poly(acrylic acid) hydroxyethyl cellulose [poly(AA)-HEC] graft copolymer was prepared by polymerizing acrylic acid (AA) with hydroxyethyl cellulose (HEC) using potassium bromate/thiourea dioxide (KBrO(3)/TUD) as redox initiation system. The polymerization reaction was carried out under a variety of conditions including concentrations of AA, KBrO(3) and TUD, material to liquor ratio and polymerization temperature. The polymerization reaction was monitored by withdrawing samples from the reaction medium and measuring the total conversion. The rheological properties of the poly(AA)-HEC graft copolymer were investigated. The total conversion and rheological properties of the graft copolymer depended on the ratio of KBrO(3) to TUD and on acrylic acid concentration as well as temperature and material to liquor ratio. Optimum conditions of the graft copolymer preparation were 30 mmol KBrO(3) and 30 mmol TUD/100g HEC, 100% AA (based on weight of HEC), duration 2h at temperature 50 °C using a material to liquor ratio of 1:10. Copyright © 2012. Published by Elsevier Ltd.
Li, Jun; Chen, Xiaoru; Chang, Ying-Chih
2005-10-11
In this work, we report a gas-phase polymerization approach to create end-grafted vinyl based polymer films on silicon oxide based substrates. The "surface-initiated vapor deposition polymerization" (SI-VDP) of vaporized vinyl monomers, via the nitroxide-mediated free radical polymerization mechanism, was developed to fabricate various homo- and block copolymer brushes from surface-bound initiators, 1-(4'-oxa-2'-phenyl-12'-trimethoxysilyldodecyloxy)-2,2,6,6-tetra-methylpiperidine ("TEMPO"). The resulting polymer thin films were characterized by the Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, ellipsometry, and contact angle goniometry, respectively, to identify the surface composition, film thickness, surface coverage, and water contact angles. Through the SI-VDP, end-grafted polymer films of polystyrene (PSt), poly(acrylic acid) (PAAc), poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA), and poly(N-isopropylacrylamide) (PNIPAAm) with 10-200 nm thicknesses were fabricated. Furthermore, the block copolymer films of PAAc (1st block)-b-PSt (2nd block), PSt (1st block)-b-PAAc (2nd block), and a triblock copolymer film of PAAc (1st)-b-PSt (2nd)-b-PHPMA (3rd), were also fabricated, suggesting the "renewability" of the TEMPO-initiated polymerization in the SI-VDP scheme. It is also noticed that the SI-VDP is more efficient than the conventional solution phase polymerization in producing functional polymer brushes such as PNIPAAm, PAAc, or PAAc-b-PSt end-grafted films. In summary, our studies have shown clear advantages of the SI-VDP setup for the nitroxide-mediated polymerization scheme in controlling synthesis of end-grafted homo- and copolymer thin films.
Synthesis and characterization of hydrolysed starch-g-poly(methacrylic acid) composite.
Zahran, Magdy K; Ahmed, Enas M; El-Rafie, Mohamed H
2016-06-01
A novel method for the synthesis of starch-g-poly(methacrylic acid) composite was adopted by graft polymerization of hydrolysed starch (HS) and methacrylic acid (MAA) in aqueous medium using an efficient sodium perborate (SPB)-thiourea (TU) redox initiation system. The parameters influencing the redox system efficiency and thence the polymerization method were considered. These parameters comprehended the concentrations of MAA, SPB, TU and SPB/TU molar ratio as well as the polymerization temperature. The polymerization reaction was scrutinized through calculation of the MAA total conversion percent (TC%). The resultant poly(MAA-HS) composite was assessed by evaluating the polymer criteria (the graft yield, GY%; the grafting efficiency, GE%; the homopolymer, HP%; and the total conversion). The comportment of the apparent viscosity of the cooked poly(MAA)-starch composite paste, obtained under diverse polymerization conditions, was examined. Tentative mechanisms, which depict all occasions that happen amid the entire course of the polymerization reaction, have been proffered. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chaudhari, C. V.; Mondal, R. K.; Dubey, K. A.; Grover, V.; Panicker, L.; Bhardwaj, Y. K.; Varshney, L.
2016-08-01
A transparent, elastomeric, grafted matrix for several potential applications was synthesized by single-step simultaneous radiation grafting of methacrylic acid onto ethylene vinyl acetate (EVA). CuSO4 was found to be the most suitable homo-polymerization inhibitor among different inhibitors tried. The grafting kinetics was found to be a strong function of dose rate (D) and monomer content (M) and an equation relating grafting rate Rg=Kg [M]1.13D0.23 was deduced. Crystallinity of the grafted matrices as assessed from XRD and DSC measurements indicated decrease in crystalline content with increase in grafting yield, suggesting crystalline domain of EVA get disrupted on grafting. Elastic modulus increased linearly with the increase in grafting yield, though elongation at break decreased precipitously from 900% to 30% at even 9% grafting. Thermo-gravimetric analysis showed three step weight loss of the grafted EVA matrix. The grafting of MAA resulted in increase in surface energy mainly due to enhanced polar component.
Bourgeat-Lami, Elodie; Insulaire, Mickaelle; Reculusa, Stéphane; Perro, Adeline; Ravaine, Serge; Duguet, Etienne
2006-02-01
Silica/polystyrene nanocomposite particles with different morphologies were synthesized through emulsion polymerization of styrene in the presence of silica particles previously modified by gamma-methacryloxypropyltrimethoxysilane (MPS). Grafting of the silane molecule was performed by direct addition of MPS to the aqueous silica suspension in the presence of an anionic surfactant under basic conditions. The MPS grafting density on the silica surface was determined using the depletion method and plotted against the initial MPS concentration. The influence of the MPS grafting density, the silica particles size and concentration and the nature of the surfactant on the polymerization kinetics and the particles morphology was investigated. When the polymerization was performed in the presence of an anionic surfactant, transmission electron microscopy images showed the formation of polymer spheres around silica for MPS grafting densities lower than typically 1 micromole x m(-2) while the conversion versus time curves indicated a strong acceleration effect under such conditions. In contrast, polymerizations performed in the presence of a larger amount of MPS moieties or in the presence of a non ionic emulsifier resulted in the formation of "excentered" core-shell morphologies and lower polymerization rates. The paper identifies the parameters that allow to control particles morphology and polymerization kinetics and describes the mechanism of formation of the nanocomposite colloids.
NASA Astrophysics Data System (ADS)
Taimur, Shaista; Hassan, Muhammad Inaam ul; Yasin, Tariq; Ali, Syed Wasim
2018-07-01
In this study, polystyrene (PS) grafted sepiolite nanohybrid (MS-g-PS) was synthesized by using simultaneous radiation grafting technique in the presence of dichloromethane (DCM) as solvent. The radiation grafting process was carried out under inert atmosphere at room temperature using gamma rays from a Co-60 irradiator. The degree of grafting was affected by absorbed dose and monomer concentration in the mixture. Sulfonation of synthesized nanohybrid was carried out with sulfuric acid. Both the grafting of styrene and its sulfonate derivative were verified by Fourier transform infrared spectroscopy (FT-IR). The structural and morphological investigations of these nanohybrids have been investigated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The gravimetric investigations showed that grafting yield increases with the absorbed dose. Results showed that the system allows the controlled grafting of styrene onto sepiolite (Sep) in DCM.
Enzyme immobilization on ultrafine cellulose fibers via poly(acrylic acid) electrolyte grafts.
Chen, Hong; Hsieh, You-Lo
2005-05-20
Ultrafine cellulose fiber (diameter 200-400 nm) surfaces were grafted with polyacrylic acid (PAA) via either ceric ion initiated polymerization or methacrylation of cellulose with methacrylate chloride (MACl) and subsequent free-radical polymerization of acrylic acid. PAA grafts by ceric ion initiated polymerization increased with increasing reaction time (2-24 h), monomer (0.3-2.4 M), and initiator (1-10 mM) concentrations, and spanned a broad range from 5.5-850%. PAA grafts on the methacrylated cellulose fibers also increased with increasing molar ratios of MACl to cellulosic hydroxyl groups (MACl/OH, 2-6.4) and monomer acrylic acid (AA) to initiator potassium persulfate (KPS) ratios ([AA]/[KPS], 1.5-6), and were in a much narrower range between 12.8% and 29.4%. The adsorption of lipase (at 1 mg/ml lipase and pH 7) and the activity of adsorbed lipase (pH 8.5, 30 degrees C), in both cases decreased with increasing PAA grafts. The highest adsorption and activity of the lipase on the ceric ion initiated grafted fibers were 1.28 g/g PAA and 4.3 U/mg lipase, respectively, at the lowest grafting level of 5.5% PAA, whereas they were 0.33 g/g PAA and 7.1 U/mg lipase, respectively, at 12.8% PAA grafts on the methacrylated and grafted fibers. The properties of the grafted fibers and the absorption behavior and activity of lipase suggest that the PAA grafts are gel-like by ceric-initiated reaction and brush-like by methacrylation and polymerization. The adsorbed lipase on the ceric ion-initiated grafted surface possessed greatly improved organic solvent stability over the crude lipase. The adsorbed lipases exhibited 0.5 and 0.3 of the initial activity in the second and third assay cycles, respectively. (c) 2004 Wiley Periodicals, Inc.
Graft polymerization of acrylic acid onto chitin nanofiber to improve dispersibility in basic water.
Ifuku, Shinsuke; Iwasaki, Masayoshi; Morimoto, Minoru; Saimoto, Hiroyuki
2012-09-01
Graft copolymerization of acrylic acid (AA) on chitin nanofibers was carried out with potassium persulfate as a free radical initiator in an aqueous medium. The molar ratio of grafted AA increased with the AA concentration. The grafted chitin nanofibers were characterized by FT-IR, FE-SEM, UV-vis, XRD, and TGA. After polymerization, the characteristic morphology of chitin nanofibers was maintained. Chitin nanofibers grafted with AA were efficiently dissociated and dispersed homogeneously in basic water because of the electrostatic repulsion effect between nanofibers. AA was grafted on the surface and amorphous part of chitin nanofibers, and the original crystalline structure of α-chitin was maintained. At 330 °C, the weight residue of the graft copolymer increased with the grafted AA content. Copyright © 2012 Elsevier Ltd. All rights reserved.
Polyhedral oligomeric silsesquioxane grafted polymer in polymeric foam
King, Bruce A.; Patankar, Kshitish A.; Costeux, Stephane; Jeon, Hyun K.
2017-01-17
A polymeric foam article with a polymer matrix defining multiple cells therein has a polymer component with a first polymer that is a polyhedral oligomeric silsesquioxane grafted polymer that has a weight-average molecular weight of two kilograms per mole or higher and 200 kilograms per mole or lower.
Surface Modification of Nanocellulose Substrates
NASA Astrophysics Data System (ADS)
Zoppe, Justin Orazio
Cellulose fibers constitute an important renewable raw material that is utilized in many commercial applications in non-food, paper, textiles and composite materials. Chemical functionalization is an important approach for improving the properties of cellulose based materials. Different approaches are used to graft polymeric chains onto cellulose substrates, which can be classified by two principal routes, namely 'grafting onto' or 'grafting from' methods. Never-dried cellulose nanocrystals (CNCs) or nanowhiskers produced from sulfuric acid hydrolysis of ramie fibers were used as substrates for surface chemical functionalization with various macromolecules. In addition, the use of cellulose nanocrystals to reinforce poly(epsilon-caprolactone) (PCL) nanofibers was studied. Chemical grafting with low molecular weight polycaprolactone diol onto cellulose nanocrystals was carried out in an attempt to improve the interfacial adhesion with the fiber matrix. Significant improvements in the mechanical properties of the nanofibers after reinforcement with unmodified cellulose nanocrystals were confirmed. Fiber webs from PCL reinforced with 2.5% unmodified CNCs showed ca. 1.5-fold increase in Young's modulus and ultimate strength compared to PCL webs. The CNCs were also grafted with poly(N-isopropylacrylamide) (poly(NiPAAm)) brushes via surface-initiated single-electron transfer living radical polymerization (SI-SETLRP) under various conditions at room temperature. The grafting process depended on the initiator and/or monomer concentrations used. No observable damage occurred to the CNCs after grafting, as determined by X-ray diffraction. Size exclusion chromatography analyses of polymer chains cleaved from the cellulose nanocrystals indicated that a higher degree of polymerization was achieved by increasing initiator or monomer loading, most likely caused by local heterogeneities yielding higher rates of polymerization. In addition, the colloidal stability and thermo-responsive behavior of poly(NiPAAm) brushes grafted from nanoparticles of CNCs of varying graft densities and molecular weights was investigated. Halo areas surrounding grafted CNCs that were adsorbed on silica and imaged with an AFM were indicative of the grafted polymer brushes. Aggregation of nanoparticles carrying grafts of high degree of polymerization was observed. The responsiveness of CNCs in liquid medium and as spin-coated films was determined by using light scattering, viscometry and Colloidal Probe Microscopy (CPM). Light transmittance measurements showed temperaturedependent aggregation originating from the different graft densities and molecular weights and a sharp increase in dispersion viscosity as the temperature approached the LCST. The lower critical solution temperature (LCST) of grafted poly(NiPAAm) brushes was found to decrease with the ionic strength as is the case of neat poly(NiPAAm) in aqueous solution. CPM in aqueous media for asymmetric systems consisting of thin films of CNCs and a colloidal silica probe showed the distinctive effects of the grafted polymer brushes on the interaction (repulsive and adhesive) forces. The origin of such forces was mainly electrostatic and steric in the case of bare and grafted CNCs, respectively. A decrease in the onset of attractive and adhesion forces of grafted CNCs films was observed with the ionic strength of the aqueous solution medium. The decreased mobility of polymer brushes upon partial collapse and decreased availability of hydrogen bonding sites with higher electrolyte concentration were hypothesized as main reasons for the less prominent polymer bridging between interacting surfaces. Finally, poly(NiPAAm)-g-CNCs were utilized as a Pickering emulsions stabilizer. All emulsions formed were oil-in-water confirmed by a drop test. Various drop sizes were obtained as characterized by laser scattering particle size analysis and optical microscopy. Anisotropic colloidal assemblies of grafted CNCs at the oil-water interface were observed in freeze-fractured samples via Transmission Electron Microscopy. Emulsions were stable for over three months at the time of writing this thesis, however rapidly broke above the LCST as determined by rheometry.
Lin, Zhuangsheng; Goddard, Julie
2018-02-01
Synthetic metal chelators (for example, ethylenediaminetetraacetic acid, EDTA) are widely used as additives to control trace transition metal induced oxidation in consumer products. To enable removal of synthetic chelators in response to increasing consumer demand for clean label products, metal-chelating active food packaging technologies have been developed with demonstrated antioxidant efficacy in simulated food systems. However, prior work in fabrication of metal-chelating materials leveraged batch chemical reactions to tether metal-chelating ligands, a process with limited industrial translatability for large-scale fabrication. To improve the industrial translatability, we have designed a 2-step laminated photo-grafting process to introduce metal chelating functionality onto common polymeric packaging materials. Iminodiacetic acid (IDA) functionalized materials were fabricated by photo-grafting poly(acrylic acid) onto polypropylene (PP) films, followed by a second photo-grafting process to graft-polymerize an IDA functionalized vinyl monomer (GMA-IDA). The photo-grafting was conducted under atmospheric conditions and was completed in 2 min. The resulting IDA functionalized metal-chelating material was able to chelate iron and copper, and showed antioxidant efficacy against ascorbic acid degradation, supporting its potential to be used synergistically with natural antioxidants for preservation of food and beverage products. The 2-step photo-grafting process improves the throughput of active packaging coatings, enabling potential roll-to-roll fabrication of metal-chelating active packaging materials for antioxidant food packaging applications. To address consumer and retail demands for "clean label" foods and beverages without a corresponding loss in product quality and shelf life, producers are seeking next generation technologies such as active packaging. In this work, we will report the synthesis of metal-chelating active packaging films, which enable removal of the synthetic additive, ethylenediamine tetraacetic acid. The new synthesis technique improves the throughput of metal-chelating active packaging coatings, enabling potential roll-to-roll fabrication of the materials for antioxidant food packaging applications. © 2018 Institute of Food Technologists®.
NASA Astrophysics Data System (ADS)
Wu, Tao
We describe two new methodologies leading to the formation of novel surface-anchored polymer assemblies on solid substrates. While the main goal is to understand the fundamentals pertaining to the preparation and properties of the surface-bound polymer assemblies (including neutral and chargeable polymers), several examples also are mentioned throughout the Thesis that point out to practical applications of such structures. The first method is based on generating assemblies comprising anchored polymers with a gradual variation of grafting densities on solid substrates. These structures are prepared by first covering the substrate with a molecular gradient of the polymerization initiator, followed by polymerization from these substrate-bound initiator centers ("grafting from"). We apply this technique to prepare grafting density gradients of poly(acryl amide) (PAAm) and poly(acrylic acid) (PAA) on silica-covered substrates. We show that using the grafting density gradient geometry, the characteristics of surface-anchored polymers in both the low grafting density ("mushroom") regime as well as the high grafting density ("brush") regime can be accessed conveniently on a single sample. We use a battery of experimental methods, including Fourier transform infrared spectroscopy (FTIR), Near-edge absorption fine structure spectroscopy (NEXAFS), contact angle, ellipsometry, to study the characteristics of the surface-bound polymer layers. We also probe the scaling laws of neutral polymer as a function of grafting density, and for weak polyelectrolyte, in addition to the grafting density, we study the affect of solution ionic strength and pH values. In the second novel method, which we coined as "mechanically assisted polymer assembly" (MAPA), we form surface anchored polymers by "grafting from" polymerization initiators deposited on elastic surfaces that have been previously extended uniaxially by a certain length increment, Deltax. Upon releasing the strain in the substrate after completion of polymerization, we show the grafting density of the polymers grafted to flexible substrates can be tuned as a function of Deltax.
NASA Astrophysics Data System (ADS)
Ueki, Yuji; Chandra Dafader, Nirmal; Hoshina, Hiroyuki; Seko, Noriaki; Tamada, Masao
2012-07-01
Radiation-induced graft polymerization of glycidyl methacrylate (GMA) onto non-woven polyethylene (NWPE) fabric was achieved under normal pressure and air atmospheric conditions, without using unique apparatus such as glass ampoules or vacuum lines. To attain graft polymerization under normal pressure and air atmospheric conditions, the effects of the pre-irradiation dose, pre-irradiation atmosphere, pre-irradiation temperature, de-aeration of GMA-emulsion, grafting atmosphere in a reactor, and dissolved oxygen (DO) concentration in GMA-emulsion on the degree of grafting (Dg) were investigated in detail. It was found that the DO concentration had the strongest influence, the pre-irradiation dose, de-aeration of emulsion and grafting atmosphere had a relatively strong impact, and the pre-irradiation atmosphere and pre-irradiation temperature had the least effect on Dg. The optimum DO concentration before grafting was 2.0 mg/L or less. When a polyethylene bottle was used as a reactor instead of a glass ampoule, graft polymerization under normal pressure and air atmospheric conditions could be achieved under the following conditions; the pre-irradiation dose was more than 50 kGy, the volume ratio of GMA-emulsion to air was 50:1 or less, and the DO concentration in GMA-emulsion during grafting was below 2.0 mg/L. Under these grafting conditions, Dg was controlled within a range of up to 362%. The prepared GMA-grafted NWPE (GMA-g-NWPE) fabric was modified with a phosphoric acid to obtain an adsorbent for heavy metal ions. In the column-mode adsorption tests of Pb(II), the adsorption performance of the produced phosphorylated GMA-g-NWPE fabric (fibrous metal adsorbent) was not essentially dependent on the flow rate of the feed. The breakthrough points of 200, 500, and 1000 h-1 in space velocity were 483, 477 and 462 bed volumes, and the breakthrough capacities of the three flow rates were 1.16, 1.15 and 1.16 mmol-Pb(II)/g-adsorbent.
NASA Astrophysics Data System (ADS)
Barsbay, Murat; Güven, Olgun
2009-12-01
Surface grafting of polymeric materials is attracting increasing attention as it enables the preparation of new materials from known and commercially available polymers having desirable bulk properties such as thermal stability, elasticity, permeability, etc., in conjunction with advantageous newly tailored surface properties such as biocompatibility, biomimicry, adhesion, etc. Ionizing radiation, particularly γ radiation is one of the most powerful tools for preparing graft copolymers as it generates radicals on most substrates. With the advent of living free-radical polymerization techniques, application of γ radiation has been extended to a new era of grafting; grafting in a controlled manner to achieve surfaces with tailored and well-defined properties. This report presents the current use of γ radiation in living free-radical polymerization and highlights the use of both techniques together as a combination to present an advance in the ability to prepare surfaces with desired, tunable and well-defined properties.
Tissera, Nadeeka D; Wijesena, Ruchira N; Rathnayake, Samantha; de Silva, Rohini M; de Silva, K M Nalin
2018-04-15
Electrically conductive cotton fabric was fabricated by in situ one pot oxidative polymerization of aniline. Using a simple heterogeneous polymerization method, polyaniline (PANI) nano fibers with an average fiber diameter of 40-75 nm were grafted in situ onto cotton fabric. The electrical conductivity of the PANI nanofiber grafted fabric was improved 10 fold compared to fabric grafted with PANI nanoclusters having an average cluster size of 145-315 nm. The surface morphology of the cotton fibers was characterized using SEM and AFM. Electrical conductivity of PANI nanofibers on the cotton textile was further improved from 76 kΏ/cm to 1 kΏ/cm by increasing the HCl concentration from 1 M to 3 M in the polymerization medium. PANI grafted cotton fabrics were analyzed using FTIR, and the data showed the presence of polyaniline functional groups on the treated fabric. Further evidence was present for the chemical interaction of PANI with cellulose. Dopant level and morphology dependent electron transition behavior of PANI nanostructures grafted on cotton fabric was further characterized using UV-vis spectroscopy. The electrical conductivity of the PANI nano fiber grafted cotton fabric can be tuned by immersing the fabric in pH 2 and pH 6 solutions for multiple cycles. Copyright © 2018. Published by Elsevier Ltd.
From Comb-like Polymers to Bottle-Brushes
NASA Astrophysics Data System (ADS)
Liang, Heyi; Cao, Zhen; Dobrynin, Andrey; Sheiko, Sergei
We use a combination of the coarse-grained molecular dynamics simulations and scaling analysis to study conformations of bottle-brushes and comb-like polymers in a melt. Our analysis show that bottle-brushes and comb-like polymers can be in four different conformation regimes depending on the number of monomers between grafted side chains and side chain degree of polymerization. In loosely-grafted comb regime (LC) the degree of polymerization between side chains is longer than side chain degree of polymerization, such that the side chains belonging to the same macromolecule do not overlap. Crossover to a new densely-grafted comb regime (DC) takes place when side chains begin to overlap reducing interpenetration of side chains belonging to different macromolecules. In these two regimes both side-chains and backbone behave as unperturbed linear chains with the effective Kuhn length of the backbone being close to that of linear chain. Further decrease spacer degree of polymerization results in crossover to loosely-grafted bottle-brush regime (LB). In this regime, the bottle-brush backbone is stretched while the side-chains still maintain ideal chain conformation. Finally, for even shorter spacer between grafted side chains, which corresponds to densely-grafted bottle-brush regime (DB), the backbone adopts a fully extended chain conformation, and side-chains begin to stretch to maintain a constant monomer density. NSF DMR-1409710, DMR-1407645, DMR-1624569, DMR-1436201.
NASA Astrophysics Data System (ADS)
Lan, Yan; You, Qingliang; Cheng, Cheng; Zhang, Suzhen; Ni, Guohua; Nagatsu, M.; Meng, Yuedong
2011-02-01
Surface modification on a polytetrafluoroethylene (PTFE) panel was performed with sequential nitrogen plasma treatments and surface-initiated polymerization. By introducing COO- groups to the surface of the PTFE panel through grafting polymerization of acrylic acid (AA), a transparent poly (acrylic acid) (PAA) membrane was achieved from acrylic acid solution. Grafting polymerization initiating from the active groups was achieved on the PTFE panel surface after the nitrogen plasma treatment. Utilizing the acrylic acid as monomers, with COO- groups as cross link sites to form reticulation structure, a transparent poly (acrylic acid) membrane with arborescent macromolecular structure was formed on the PTFE panel surface. Analysis methods, such as fourier transform infrared spectroscopy (FTIR), microscopy and X-ray photoelectron spectroscopy (XPS), were utilized to characterize the structures of the macromolecule membrane on the PTFE panel surface. A contact angle measurement was performed to characterize the modified PTFE panels. The surface hydrophilicities of modified PTFE panels were significantly enhanced after the plasma treatment. It was shown that the grafting rate is related to the treating time and the power of plasma.
Preparing high-density polymer brushes by mechanically assisted polymer assembly (MAPA)
NASA Astrophysics Data System (ADS)
Wu, Tao; Efimenko, Kirill; Genzer, Jan
2001-03-01
We introduce a novel method of modifying the surface properties of materials. This technique, called MAPA (="mechanically assisted polymer assembly"), is based on: 1) chemically attaching polymerization initiators to the surface of an elastomeric network that has been previously stretched by a certain length, Δx, and 2) growing end-anchored macromolecules using surface initiated ("grafting from") atom transfer living radical polymerization. After the polymerization, the strain is removed from the substrate, which returns to its original size causing the grafted macromolecules to stretch away from the substrate and form a dense polymer brush. We demonstrate the feasibility of the MAPA method by preparing high-density polymer brushes of poly(acryl amide), PAAm. We show that, as expected, the grafting density of the PAAm brushes can be increased by increasing Δx. We demonstrate that polymer brushes with extremely high grafting densities can be successfully prepared by MAPA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolton, Justin; Rzayev, Javid
Polystyrene–poly(methyl methacrylate)–polylactide (PS–PMMA–PLA) triblock bottlebrush copolymer with nearly symmetric volume fractions was synthesized by grafting from a symmetrical triblock backbone and the resulting melt was characterized by scanning electron microscopy and small-angle X-ray scattering. The copolymer backbone was prepared by sequential reversible addition–fragmentation chain transfer (RAFT) polymerization of solketal methacrylate (SM), 2-(bromoisobutyryl)ethyl methacrylate (BIEM), and 5-(trimethylsilyl)-4-pentyn-1-ol methacrylate (TPYM). PMMA branches were grafted by atom transfer radical polymerization from the poly(BIEM) segment, PS branches were grafted by RAFT polymerization from the poly(TPYM) block after installment of the RAFT agents, while PLA side chains were grafted from the deprotected poly(SM) block. Themore » resulting copolymer was found to exhibit a lamellae morphology with a domain spacing of 79 nm. Differential scanning calorimetry analysis indicated that PMMA was preferentially mixing with PS while phase separating from PLA domains.« less
González-Sánchez, M Isabel; Perni, Stefano; Tommasi, Giacomo; Morris, Nathanael Glyn; Hawkins, Karl; López-Cabarcos, Enrique; Prokopovich, Polina
2015-05-01
Infections are frequent and very undesired occurrences after orthopedic procedures; furthermore, the growing concern caused by the rise in antibiotic resistance is progressively dwindling the efficacy of such drugs. Artificial bone graft materials could solve some of the problems associated with the gold standard use of natural bone graft such as limited bone material, pain at the donor site and rejections if donor tissue is used. We have previously described new acrylate base nanocomposite hydrogels as bone graft materials. In the present paper, we describe the integration of silver nanoparticles in the polymeric mineralized biomaterial to provide non-antibiotic antibacterial activity against Staphylococcus epidermidis and Methicillin-resistant Staphylococcus aureus. Two different crosslinking degrees were tested and the silver nanoparticles were integrated into the composite matrix by means of three different methods: entrapment in the polymeric hydrogel before the mineralization; diffusion during the process of calcium phosphate crystallization and adsorption post-mineralization. The latter being generally the most effective method of encapsulation; however, the adsorption of silver nanoparticles inside the pores of the biomaterial led to a decreasing antibacterial activity for adsorption time longer than 2 days. Copyright © 2015. Published by Elsevier B.V.
Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications
González-Sánchez, M. Isabel; Perni, Stefano; Tommasi, Giacomo; Morris, Nathanael Glyn; Hawkins, Karl; López-Cabarcos, Enrique; Prokopovich, Polina
2015-01-01
Infections are frequent and very undesired occurrences after orthopedic procedures; furthermore, the growing concern caused by the rise in antibiotic resistance is progressively dwindling the efficacy of such drugs. Artificial bone graft materials could solve some of the problems associated with the gold standard use of natural bone graft such as limited bone material, pain at the donor site and rejections if donor tissue is used. We have previously described new acrylate base nanocomposite hydrogels as bone graft materials. In the present paper, we describe the integration of silver nanoparticles in the polymeric mineralized biomaterial to provide non-antibiotic antibacterial activity against Staphylococcus epidermidis and Methicillin-resistant Staphylococcus aureus. Two different crosslinking degrees were tested and the silver nanoparticles were integrated into the composite matrix by means of three different methods: entrapment in the polymeric hydrogel before the mineralization; diffusion during the process of calcium phosphate crystallization and adsorption post-mineralization. The latter being generally the most effective method of encapsulation; however, the adsorption of silver nanoparticles inside the pores of the biomaterial led to a decreasing antibacterial activity for adsorption time longer than 2 days. PMID:25746278
Anionic polymerization of p-(2,2'-diphenylethyl)styrene and applications to graft copolymers.
Huang, Minglu; Han, Bingyong; Lu, Jianmin; Yang, Wantai; Fu, Zhifeng
2017-01-01
Well-controlled anionic polymerization of an initiator-functionalized monomer, p -(2,2'-diphenylethyl)styrene (DPES), was achieved for the first time. The polymerization was performed in a mixed solvent of cyclohexane and tetrahydrofuran (THF) at 40 °C with n -BuLi as initiator. When the volume ratio of cyclohexane to THF was 20, the anionic polymerization of DPES showed living polymerization characteristics, and well-defined block copolymer PDPES- b -PS was successfully synthesized. Furthermore, radical polymerization of methyl methacrylate in the presence of PDPES effectively afforded a graft copolymer composed of a polystyrene backbone and poly(methyl methacrylate) branches. The designation of analogous monomers and polymers was of great significance to synthesize a variety of sophisticated copolymer and functionalize polymer materials.
NASA Astrophysics Data System (ADS)
Baker, Kevin C.
Numerous clinical situations necessitate the use of bone graft materials to enhance bone formation. While autologous and allogenic materials are considered the gold standards in the setting of fracture healing and spine fusion, their disadvantages, which include donor site morbidity and finite supply have stimulated research and development of novel bone graft substitute materials. Among the most promising candidate materials are resorbable polymers, composed of lactic and/or glycolic acid. While the characteristics of these materials, such as predictable degradation kinetics and biocompatibility, make them an excellent choice for bone graft substitute applications, they lack mechanical strength when synthesized with the requisite porous morphology. As such, porous resorbable polymers are often reinforced with filler materials. In the presented work, we describe the use of supercritical carbon dioxide (scCO2) processing to create porous resorbable polymeric constructs reinforced by nanostructured, organically modified Montmorillonite clay (nanoclay). scCO2 processing simultaneously disperses the nanoclay throughout the polymeric matrix, while imparting a porous morphology to the construct conducive to facilitating cellular infiltration and neoangiogenesis, which are necessary components of bone growth. With the addition of as little as 2.5wt% of nanoclay, the compressive strength of the constructs nearly doubles putting them on par with human cortico-cancellous bone. Rheological measurements indicate that the dominant mode of reinforcement of the nanocomposite constructs is the restriction of polymer chain mobility. This restriction is a function of the positive interaction between polymer chains and the nanoclay. In vivo inflammation studies indicate biocompatibility of the constructs. Ectopic osteogenesis assays have determined that the scCO2-processed nanocomposites are capable of supporting growth-factor induced bone formation. scCO 2-processed resorbable polymer nanocomposites composed of resorbable polymers and nanocaly exhibit physical, mechanical and biologic properties that make them excellent candidate materials for structural bone graft substitute applications.
Ran, Jin; Wu, Liang; Wei, Bing; Chen, Yaoyao; Xu, Tongwen
2014-01-01
Polymeric materials as anion exchange membranes (AEMs) play an essential role in the field of energy and environment. The achievement of high performance AEMs by the precise manipulation of macromolecular architecture remains a daunting challenge. Herein, we firstly report a novel rod-coil graft copolymer AEM, possessing rigid hydrophobic main chains and soft hydrophilic graft chains. The low graft density, which can alleviate the adverse influences of ioinc graft chains on the main chains, was obtained by using the living polymerization technique. Consequently, the grafted ionic groups which result in the degradation of polymer backbone was decreased to a small degree. Moreover, the relatively long graft chains induced the nanophase separation between the hydrophobic polymer chains and hydrophilic graft chains, which creates a convinient pathway for high hydroxide ion mobility. Such an accurate molecular design simultaneously improves the hydroxide ion conductivity and alkaline stability as well as dimensional stability. PMID:25255843
Preparation and enhanced properties of polyaniline/grafted intercalated ZnAl-LDH nanocomposites
NASA Astrophysics Data System (ADS)
Hu, Jinlong; Gan, Mengyu; Ma, Li; Zhang, Jun; Xie, Shuang; Xu, Fenfang; Shen, JiYue Zheng Xiaoyu; Yin, Hui
2015-02-01
The polymeric nanocomposites (PANI/AD-LDH) were prepared by in situ polymerization based on polyaniline (PANI) and decavanadate-intercalated and γ-aminopropyltriethoxysilane (APTS)-grafted ZnAl-layered double hydroxide (AD-LDH). FTIR and XRD studies confirm the grafting of APTS with decavanadate-intercalated LDH (D-LDH). The extent of grafting (wt%) has also been estimated on the basis of the residue left in nitrogen atmosphere at 800 °C in TGA. SEM and XPS studies show the partial exfoliation of grafted LDH in the PANI matrix and the interfacial interaction between PANI and grafted LDH, respectively. The grafted intercalated layered double hydroxide in reinforcing the properties of the PANI nanocomposites has also been investigated by open circuit potential (OCP), tafel polarization curves (TAF), electrochemical impendence spectroscopy (EIS), salt spray test and TGA-DTA. The experimental results indicate that the PANI/AD-LDH has a higher thermal stability and anticorrosion properties relative to the PANI.
NASA Astrophysics Data System (ADS)
Ran, Jin; Wu, Liang; Wei, Bing; Chen, Yaoyao; Xu, Tongwen
2014-09-01
Polymeric materials as anion exchange membranes (AEMs) play an essential role in the field of energy and environment. The achievement of high performance AEMs by the precise manipulation of macromolecular architecture remains a daunting challenge. Herein, we firstly report a novel rod-coil graft copolymer AEM, possessing rigid hydrophobic main chains and soft hydrophilic graft chains. The low graft density, which can alleviate the adverse influences of ioinc graft chains on the main chains, was obtained by using the living polymerization technique. Consequently, the grafted ionic groups which result in the degradation of polymer backbone was decreased to a small degree. Moreover, the relatively long graft chains induced the nanophase separation between the hydrophobic polymer chains and hydrophilic graft chains, which creates a convinient pathway for high hydroxide ion mobility. Such an accurate molecular design simultaneously improves the hydroxide ion conductivity and alkaline stability as well as dimensional stability.
Kundu, Chanchal Kumar; Wang, Xin; Hou, Yanbei; Hu, Yuan
2018-02-01
Phosphorylated chitosan (PCS) was synthesized and grafted onto the surface of polyamide 6.6 (PA 6.6) fabrics via UV-induced grafting polymerization in order to improve the flame retardant properties. Subsequently, PCS grafted PA 6.6 fabrics were modified by (3-aminopropyl) triethoxysilane (APTES) through sol-gel process in order to form a cross-linking coating. The results obtained from the vertical burning test indicated that only the PCS grafted and simultaneously sol-gel treated fabrics could stop the melt dripping. A maximum reduction (30%) in the peak heat release rate was achieved for the PA6.6-PCS-4W-SG fabric sample. The optimal flame retardant effect was achieved for the PA6.6 fabrics treated by PCS and APTES simultaneously, which was attributed to the joint effect of thermal shielding exerted by the silica and char-forming effect derived from PCS. Copyright © 2017 Elsevier Ltd. All rights reserved.
Crownover, Emily; Duvall, Craig L.; Convertine, Anthony; Hoffman, Allan S.; Stayton, Patrick S.
2012-01-01
Here we describe a new graft copolymer architecture of poly(propylacrylic acid) (polyPAA) that displays potent pH-dependent, membrane-destabilizing activity and in addition is shown to enhance protein blood circulation kinetics. PolyPAA containing a single telechelic alkyne functionality was prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization with an alkyne-functional chain transfer agent (CTA) and coupled to RAFT polymerized poly(azidopropyl methacrylate) (polyAPMA) through azide-alkyne [3+2] Huisgen cycloaddition. The graft copolymers become membrane destabilizing at endosomal pH values and are active at significantly lower concentrations than the linear polyPAA. A biotin terminated polyPAA graft copolymer was prepared by grafting PAA onto polyAPMA polymerized with a biotin functional RAFT CTA. The blood circulation time and biodistribution of tritium labeled avidin conjugated to the polyPAA graft copolymer was characterized along with a clinically utilized 40 kDa branched polyethylene glycol (PEG) also possessing biotin functionalization. The linear and graft polyPAA increase the area under the curve (AUC) over avidin alone by 9 and 12 times, respectively. Furthermore, polyPAA graft copolymer conjugates accumulated in tumor tissue significantly more than the linear polyPAA and the branched PEG conjugates. The collective data presented in this report indicate that the polyPAA graft copolymers exhibit robust pH-dependent, membrane-destabilizing activity, low cytotoxicity and significantly enhance blood circulation time and tumor accumulation. PMID:21699931
Advances in acrylic-alkyd hybrid synthesis and characterization
NASA Astrophysics Data System (ADS)
Dziczkowski, Jamie
2008-10-01
In situ graft acrylic-alkyd hybrid resins were formed by polymerizing acrylic and acrylic-mixed monomers in the presence of alkyds by introduction of a free radical initiator to promote graft formation. Two-dimensional NMR, specifically gradient heteronuclear multiple quantum coherence (gHMQC), was used to clarify specific graft sites of the hybrid materials. Both individual and mixed-monomer systems were produced to determine any individual monomer preferences and to model current acrylic-alkyd systems. Different classes of initiators were used to determine any initiator effects on graft location. The 2D-NMR results confirm grafting at doubly allylic hydrogens located on the fatty acid chains and the polyol segment of the alkyd backbone. The gHMQC spectra show no evidence of grafting across double bonds on either pendant fatty acid groups or THPA unsaturation sites for any of the monomer or mixed monomer systems. It was also determined that choice of initiator has no effect on graft location. In addition, a design of experiments using response surface methodology was utilized to obtain a better understanding of this commercially available class of materials and relate both the chemical and physical properties to one another. A Box-Behnkin design was used, varying the oil length of the alkyd phase, the degree of unsaturation in the polyester backbone, and acrylic to alkyd ratio. Acrylic-alkyd hybrid resins were reduced with an amine/water mixture. Hydrolytic stability was tested and viscoelastic properties were obtained to determine crosslink density. Cured films were prepared and basic coatings properties were evaluated. It was found that the oil length of the alkyd is the most dominant factor for final coatings properties of the resins. Acrylic to alkyd ratio mainly influences the resin properties such as acid number, average molecular weight, and hydrolytic stability. The degree of unsaturation in the alkyd backbone has minimal effects on resin and film performance. Reversible-addition fragmentation polymerization techniques were employed to create a new class of acrylic-alkyd hybrid materials. Medium and long oil alkyds made from the monoglyceride process using soybean oil, glycerol, and phthalic anhydride were modified with a RAFT chain transfer agent. The alkyd macro-RAFT agents were reached by end-capping a medium oil soya-based alkyd with a carboxy-functional trithiocarbonate. The alkyd macro-RAFT agents were then used to create acrylic-alkyd block structures by polymerizing different acrylic monomers, including both acrylates and methacrylates in the presence of the macro-RAFT agent and 2, 2'-azobisisobutyronitrile (AIBN). Co-acrylic segments were reached by complete polymerization of one monomer followed by the addition of a second monomer and additional free radical initiator. The alkyds, macro-RAFT agents and, acrylic-alkyd blocks were characterized by size-exclusion chromatography (SEC), FTIR, and 1H-NMR. Pseudo-first-order kinetics behavior and conversion vs. molecular weight plots show that the RAFT-mediated reaction afforded a more controlled process for the synthesis of acrylated-alkyd materials. Preliminary coatings tests showed that material properties of acrylated-alkyds achieved by RAFT polymerization exhibit good overall coatings properties including adhesion, gloss, hardness, and impact resistance.
The use of radiation-induced graft polymerization for modification of polymer track membranes
NASA Astrophysics Data System (ADS)
Shtanko, N. I.; Kabanov, V. Ya.; Apel, P. Yu.; Yoshida, M.
1999-05-01
Track membranes (TM) made of poly(ethylene terephtalate) (PET) and polypropylene (PP) films have a number of peculiarities as compared with other ones. They have high mechanical strength at a low thickness, narrow pore size distribution, low content of extractables. However, TM have some disadvantages such as low chemical resistance in alkaline media (PET TM), the low water flow rate due to the hydrophobic nature of their surface. The use of radiation-induced graft polymerization makes it possible to improve the basic characteristics of TM. In this communication our results on the modification of PET and PP TM are presented. The modified membranes were prepared by radiation-induced graft polymerization from the liquid phase. Three methods of grafting were used: (a) the direct method in argon atmosphere; (b) the pre-irradiation of TM in air followed by grafting in argon atmosphere; (c) pre-irradiation in vacuum followed by grafting in vacuum without contacting oxygen. The aim of the work was to investigate some properties of TM modified by grafted poly(methylvinyl pyridine) (PMVP) and poly(N-isopropylacrylamide) (PNIPAAM). It was shown that the modification of TM with hydrophilic polymer results in the growth of the water flow rate. In the past few years many works have been devoted to the synthesis of new polymers - the so-called "intelligent" materials - such as PNIPAAM. However, it is very difficult to make thin membranes of this polymer. Recently, it has been proposed to manufacture composite membranes by grafting stimulus-responsive polymers onto TM. Following this principle, we prepared thermosensitive membranes by the radiation-induced graft polymerization of N-isopropylacrylamide (NIPAAM) onto PET TM. PET TM with the pore size of about 1 μm and pore density of 10 6 cm -2 were first inserted into a solution of NIPAAM containing inhibitor of homopolymerization (CuCl 2) and then exposed to the γ-rays from a 60Co source. The transport properties of the grafted TM were investigated. The permeation of water through the TM was controlled by temperature. The grafted TM exhibited almost the same transition temperature (about 33°C) as that of PNIPAAM.
Akbari, A; Homayonfal, M; Jabbari, V
2010-01-01
Composite nanofiltration (NF) membrane was developed polyacrylic acid (PAA) in situ UV graft polymerization process using ultrafiltration (UF) polysulfone (PSF) membrane as porous support. FT-IR spectra indicated that grafting was performed and it show peaks at 1,732 cm⁻¹ and 3,396 cm⁻¹ region for CO and OH starching bond of acrylic acid (AA) monomer, respectively. AFM microscopy showed the roughness of surface was reduced by increase of UV irradiation times. Effect of irradiation time on the grafting of acrylic acid (AA) in the same concentration was discussed. The salts rejection increase was accompanied with grafting of polysulfone (PSF) ultrafiltration (UF) membrane. The rejection of Na₂SO₄, MgSO₄, NaCl and CaCl₂ salts by PSF-grafted-PAA nanofiltration (NF) membrane was in 98, 60, 52 and 30% respectively, under 0.3 MPa.
Tian, Fang; Decker, Eric A; Goddard, Julie M
2012-08-08
Transition metal-promoted oxidation impacts the quality, shelf life, and nutrition of many packaged foods. Metal-chelating active packaging therefore offers a means to protect foods against oxidation. Herein, we report the development and characterization of nonmigratory metal-chelating active packaging. To prepare the films, carboxylic acids were grafted onto the surfaces of polypropylene films by photoinitiated graft polymerization of acrylic acid. Attenuated total reflectance/Fourier transform infrared spectroscopy, contact angle, scanning electron microscopy, and iron-chelating assay were used to characterize film properties. Graft polymerization yielded a carboxylic acid density of 68.67 ± 9.99 nmol per cm(2) film, with ferrous iron-chelating activity of 71.07 ± 12.95 nmol per cm(2). The functionalized films extended the lag phase of lipid oxidation in a soybean oil-in-water emulsion system from 2 to 9 days. The application of such nonmigratory active packaging films represents a promising approach to reduce additive use while maintaining food quality.
Neti, Venkata S.; Das, Sadananda; Brown, Suree; ...
2017-08-29
Brush-on-brush structures are proposed as one method to overcome support effects in grafted polymers. Utilizing glycidyl methacrylate (GMA) grafted on polyethylene (PE) fibers using radiation-induced graft polymerization (RIGP) provides a hydrophilic surface on the hydrophobic PE. When integrated with atom transfer radical polymerization (ATRP), the grafting of acrylonitrile (AN) and hydroxyethyl acrylate (HEA) can be controlled and manipulated more easily than with RIGP. Poly(acrylonitrile)-co-poly(hydroxyethyl acrylate) chains were grown via ATRP on PE-GMA fibers to generate an adsorbent for the extraction of uranium from seawater. The prepared adsorbents in this study demonstrated promise (159.9 g-U/kg of adsorbent) in laboratory screening testsmore » using a high uranium concentration brine and 1.24 g-U/Kg of adsorbent in the filtered natural seawater in 21-days. Here, the modest capacity in 21-days exceeds previous efforts to generate brush-on-brush adsorbents by ATRP while manipulating the apparent surface hydrophilicity of the trunk material (PE).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neti, Venkata S.; Das, Sadananda; Brown, Suree
Brush-on-brush structures are proposed as one method to overcome support effects in grafted polymers. Utilizing glycidyl methacrylate (GMA) grafted on polyethylene (PE) fibers using radiation-induced graft polymerization (RIGP) provides a hydrophilic surface on the hydrophobic PE. When integrated with atom transfer radical polymerization (ATRP), the grafting of acrylonitrile (AN) and hydroxyethyl acrylate (HEA) can be controlled and manipulated more easily than with RIGP. Poly(acrylonitrile)-co-poly(hydroxyethyl acrylate) chains were grown via ATRP on PE-GMA fibers to generate an adsorbent for the extraction of uranium from seawater. The prepared adsorbents in this study demonstrated promise (159.9 g-U/kg of adsorbent) in laboratory screening testsmore » using a high uranium concentration brine and 1.24 g-U/Kg of adsorbent in the filtered natural seawater in 21-days. Here, the modest capacity in 21-days exceeds previous efforts to generate brush-on-brush adsorbents by ATRP while manipulating the apparent surface hydrophilicity of the trunk material (PE).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neti, Venkata S.; Das, Sadananda; Brown, Suree
Brush-on-brush structures are proposed as one method to overcome support effects in grafted polymers. Utilizing glycidyl methacrylate (GMA) grafted on polyethylene (PE) fibers using radiation-induced graft polymerization (RIGP) provides a hydrophilic surface on the hydrophobic PE. When integrated with atom transfer radical polymerization (ATRP), the grafting of acrylonitrile (AN) and hydroxyethyl acrylate (HEA) can be controlled and manipulated more easily than with RIGP. Poly(acrylonitrile)-co-poly(hydroxyethyl acrylate) chains were grown via ATRP on PE-GMA fibers to generate an adsorbent for the extraction of uranium from seawater. The prepared adsorbents in this study demonstrated promise (159.9 g- U/kg of adsorbent) in laboratory screeningmore » tests using a high uranium concentration brine and 1.24 g-U/Kg of adsorbent in the filtered natural seawater in 21-days. The modest capacity in 21- days exceeds previous efforts to generate brush-on-brush adsorbents by ATRP while manipulating the apparent surface hydrophilicity of the trunk material (PE).« less
NASA Astrophysics Data System (ADS)
Wang, Fang; Zhang, Xianhong; Ma, Yuhong; Yang, Wantai
2018-01-01
The hybrid composite of poly(3,4-ethylenedioxythiophene) (PEDOT) and halloysite nanotubes (HNTs) was synthesized by a two-step process. First, poly(sodium styrene sulfonate) (PSSNa) was grafted onto HNTs via surface initiated atom transfer radical polymerization. Then with the HNTs-g-PSS as a template and the grafted PSS chains as the counterion dopant, PEDOT was precipitated onto the template via in situ oxidization polymerization of EDOT to form HNTs@PEDOT hybrid composites. The conductivity of HNTs@PEDOT can reach up to 9.35 S/cm with the content of 40% HNTs-g-PSS, which increased almost 78 times than that of pure PEDOT (about 0.12 S/cm) prepared at the similar condition. Further treated with p-toluenesulfonic acid (TsOH) as external dopant, the conductivity of HNTs@PEDOT increased to 24.3 S/cm. The electrochemical properties of the composites were investigated with cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy with three-electrode cell configuration. The results showed that the capacitance of HNTs@PEDOT composite increased 55% than that of pure PEDOT.
Structure-function properties of starch graft poly(methyl acrylate)copolymers
USDA-ARS?s Scientific Manuscript database
Spherulites, produced by steam jet-cooking high-amylose starch and oleic acid, were grafted with methyl acrylate, both before and after removal of un-complexed amylopectin. For comparison, granular high-amylose corn starch was graft polymerized in a similar manner. The amount of grafted and ungrafte...
Structure-function properties of starch spherulites grafted with poly(methyl acrylate)
USDA-ARS?s Scientific Manuscript database
Spherulites, produced by steam jet-cooking high-amylose starch and oleic acid, were grafted with methyl acrylate, both before and after removal of un-complexed amylopectin. For comparison, granular high-amylose corn starch was graft polymerized in a similar manner. The amount of grafted and ungrafte...
NASA Astrophysics Data System (ADS)
Sawada, Shin-ichi; Suzuki, Akihiro; Terai, Takayuki; Maekawa, Yasunari
2010-04-01
We prepared proton exchange membranes (PEMs) by 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO)-mediated living-radical graft polymerization (LRGP) of styrene into fluoropolymer films and subsequent sulfonation. Poly(vinylidene fluoride) (PVDF) and poly(ethylene- co-tetrafluoroethylene) (ETFE) films were first irradiated and then treated with TEMPO solutions in various solvents. TEMPO addition was confirmed by the test of styrene grafting into TEMPO-treated films at 60 °C, at which the LRGP never proceeds. This test enabled us to differentiate the LRGP from the conventional graft polymerization. In order to gain a deep insight about TEMPO-addition reaction, the TEMPO-penetration behavior into the base polymer films was examined by a permeation experiment and computer simulation. Xylene and dioxane were appropriate solvents for the complete introduction of TEMPO into PVDF and ETFE films, respectively. Then, the LRGP of styrene was performed based on the fully TEMPO-capped films at 125 °C with various solvents. By using an alcoholic solvent, the degree of grafting was enhanced and it reached a maximum of 38%. This grafted film was sulfonated to prepare a PEM showing an ion exchange capacity of 2.2 meq/g and proton conductivity of 1.6×10 -1 S/cm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Yoshihiro; Ochiai, Yasushi; Park, Y.S.
1997-02-19
Benzyl glutamate NCA was graft-polymerized onto a porous poly(tetrafluoroethylene) membrane in order to study the effects of pH and ionic strength on permeation rate. The membrane was first glow-discharged in the presence of ammonia in order to produce amino groups on the surface. Following graft polymerization the graft chains were hydrolyzed to yield poly(glutamic acid). The rate of water permeation through this poly(glutamic acid)-grafted polymer membrane was pH-dependent and found to be slow under high-pH conditions and fast under low-pH conditions. Under high-pH conditions, randomly coiled graft chains extend to close the pores. The chains form a helix structure andmore » open the pores under low-pH conditions. The magnitude of the permeation rate was dependent upon the length and density of graft chains. Ionic strength also affected the permeation rate. 39 refs., 7 figs., 2 tabs.« less
Grafting strategy to develop single site titanium on an amorphous silica surface.
Capel-Sanchez, M C; Blanco-Brieva, G; Campos-Martin, J M; de Frutos, M P; Wen, W; Rodriguez, J A; Fierro, J L G
2009-06-16
Titanium/silica systems were prepared by grafting a titanium alkoxide (titanium isopropoxide and titanium (triethanolaminate) isopropoxide) precursor onto amorphous silica. The grafting process, which consisted of the hydrolysis of the Ti precursor by the hydroxyl groups on the silica surface, yielded samples containing Ti-loadings of 1-1.6 wt %. The as synthesized and calcined TiO(2)-SiO(2) samples were characterized by UV-vis, FTIR, XPS, and XANES spectroscopic techniques. These systems were tested in the liquid-phase epoxidation of oct-1-ene with hydrogen peroxide reaction. Spectroscopic data indicated that titanium anchoring takes place by reaction between the alkoxide precursor and surface OH groups of the silica substrate. The nature of surface titanium species generated by chemical grafting depends largely on the titanium precursor employed. Thus, the titanium isopropoxide precursor yields tetrahedrally coordinated polymeric titanium species, which give rise to a low-efficiency catalyst. However, if an atrane precursor (titanium (triethanolaminate) isopropoxide) is employed, isolated titanium species are obtained. The fact that these species remain isolated even after calcination is due to the protective effect of the triethanolaminate ligand that avoids titanium polymerization. These differences in the titanium environment have a pivotal role in the performance of these systems in the epoxidation of alkenes with hydrogen peroxide.
Grafting Strategy to Develop Single Site Titanium on an Amorphous Silica Surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capel-Sanchez, M.; Blanco-Brieva, G; Campos-Martin, J
2009-01-01
Titanium/silica systems were prepared by grafting a titanium alkoxide (titanium isopropoxide and titanium (triethanolaminate) isopropoxide) precursor onto amorphous silica. The grafting process, which consisted of the hydrolysis of the Ti precursor by the hydroxyl groups on the silica surface, yielded samples containing Ti-loadings of 1-1.6 wt %. The as synthesized and calcined TiO2-SiO2 samples were characterized by UV-vis, FTIR, XPS, and XANES spectroscopic techniques. These systems were tested in the liquid-phase epoxidation of oct-1-ene with hydrogen peroxide reaction. Spectroscopic data indicated that titanium anchoring takes place by reaction between the alkoxide precursor and surface OH groups of the silica substrate.more » The nature of surface titanium species generated by chemical grafting depends largely on the titanium precursor employed. Thus, the titanium isopropoxide precursor yields tetrahedrally coordinated polymeric titanium species, which give rise to a low-efficiency catalyst. However, if an atrane precursor (titanium (triethanolaminate) isopropoxide) is employed, isolated titanium species are obtained. The fact that these species remain isolated even after calcination is due to the protective effect of the triethanolaminate ligand that avoids titanium polymerization. These differences in the titanium environment have a pivotal role in the performance of these systems in the epoxidation of alkenes with hydrogen peroxide.« less
Steinmetz, Hanna P; Rudnick-Glick, Safra; Natan, Michal; Banin, Ehud; Margel, Shlomo
2016-11-01
There has been increased concern during the past few decades over the role bacterial biofilms play in causing a variety of health problems, especially since they exhibit a high degree of resistance to antibiotics and are able to survive in hostile environments. Biofilms consist of bacterial aggregates enveloped by a self-produced matrix attached to the surface. Ca(2+) ions promote the formation of biofilms, and enhance their stability, viscosity, and strength. Bisphosphonates exhibit a high affinity for Ca(2+) ions, and may inhibit the formation of biofilms by acting as sequestering agents for Ca(2+) ions. Although the antibacterial activity of bisphosphonates is well known, research into their anti-biofilm behavior is still in its early stages. In this study, we describe the synthesis of a new thin coating composed of poly(styryl bisphosphonate) grafted onto oxidized polypropylene films for anti-biofilm applications. This grafting process was performed by graft polymerization of styryl bisphosphonate vinylic monomer onto O2 plasma-treated polypropylene films. The surface modification of the polypropylene films was confirmed using surface measurements, including X-ray photoelectron spectroscopy, atomic force microscopy, and water contact angle goniometry. Significant inhibition of biofilm formation was achieved for both Gram-negative and Gram-positive bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.
Akkaya, Alper; Pazarlioglu, Nurdan
2013-01-01
Poly(3-hydroxybutyrate) is nontoxic and biodegradable, with good biocompatibility and potential support for long-term implants. For this reason, it is a good support for enzyme immobilization. Enzyme immobilization could not be done directly because poly(3-hydroxybutyrate) has no functional groups. Therefore, modification should be done for enzyme immobilization. In this study, methacrylic acid was graft polymerized to poly(3-hydroxybutyrate) and thrombin was immobilized to polymethacrylic acid grafted poly(3-hydroxybutyrate). In fact, graft polymerization of methacrylic acid to poly(3-hydroxybutyrate) and thrombin immobilization was a model study. Biomolecule immobilized poly(3-hydroxybutyrate) could be used as an implant. Thrombin was selected as a biomolecule for this model study and it was immobilized to methacrylic acid grafted poly(3-hydroxybutyrate). Then the developed product was used to stop bleeding.
Fast Disinfecting Antimicrobial Surfaces
Madkour, Ahmad E.; Dabkowski, Jeffery M.; Nüsslein, Klaus; Tew, Gregory N.
2013-01-01
Silicon wafers and glass surfaces were functionalized with facially amphiphilic antimicrobial copolymers using the “grafting from” technique. Surface initiated atom transfer radical polymerization (ATRP) was used to grow poly(butylmethacrylate)-co-poly(Boc-aminoethyl methacrylate) from the surfaces. Upon Boc-deprotection, these surfaces became highly antimicrobial and killed S. aureus and E. coli 100% in less than 5 min. The molecular weight and grafting density of the polymer were controlled by varying the polymerization time and initiator surface density. Antimicrobial studies showed that the killing efficiency of these surfaces was independent of polymer layer thickness or grafting density within the range of surfaces studied. PMID:19177651
Wu, Jingxia; Li, Jingye; Deng, Bo; Jiang, Haiqing; Wang, Ziqiang; Yu, Ming; Li, Linfan; Xing, Chenyang; Li, Yongjin
2013-01-01
Self-healing of the superhydrophobic cotton fabric (SCF) obtained by the radiation-induced graft polymerization of lauryl methacrylate (LMA) and n-hexyl methacrylate (HMA), can be achieved by ironing. Through the steam ironing process, the superhydrophobicity of the SCFs will be regenerated even after the yarns are ruptured during the abrasion test under a load pressure of 44.8 kPa. SCFs made from LMA grafted cotton fabric can ultimately withstand at least 24,000 cycles of abrasion with periodic steam ironing. The FT-IR microscope results show that the migration of the polymethacrylates graft chains from the interior to the surface is responsible for the self-healing effect. PMID:24135813
Equilibrium Field Theoretic and Dynamic Mean Field Simulations of Inhomogeneous Polymeric Materials
NASA Astrophysics Data System (ADS)
Chao, Huikuan
Inhomogeneous polymeric materials is a large family of promising materials including but limited to block copolymers (BCPs), polymer nanocomposites (PNCs) and microscopically confined polymer films. The promising application of the materials originates from the materials' unique microstructures, which offer enhanced mechanical, thermal, optical and electrical properties to the materials. Due to the complex interactions and the large parameter space, behaviors of the microstructures formed by grafted nanoparticles and nanorods in PNCs are difficult to understand. Separately, because of relatively weak interactions, the microstructures are typically achieved through rapid processing that are kinetically controlled and beyond equilibrium. However, efficient simulation framework to study nonequilbrium dynamics of the materials is currently not available. To attack the first difficulty, I extended an efficient simulation framework, polymer nanocomposite field theory (PNC-FT), to incorporate grafted nanoparticles and nanorods. This extended framework is demonstrated against existing experimental studies and implemented to study how the nanoparticle design affects the nanoparticle distribution in binary homopolymer blends. The grafted nanoparticle model is also used as a platform to adopt an advanced optimization method to inversely design nanoparticles which are able to self-assemble into targeted two dimensional lattices. The nanorod model under PNC-FT framework is used to investigate the design of nanorod and block copolymer thin films to control the nanorod distribution. To attack the second difficulty, I established an efficient framework (SCMF-LD) based on a recently proposed dynamic mean field theory and used SCMF-LD to study how to kinetically control the nanoparticle distribution at the end of solvent annealing block copolymer thin films. The framework is then extended to incorporate hydrodynamics (SCMF-DPD) and the extended framework is implemented to study morphology development in phase inversion processing polymer thin films, where hydrodynamic effects play an important role. By exploring both equilibrium and nonequilibrium properties in a spectrum of inhomogeneous polymeric material systems, I successfully extended PNC-FT and established SCMF-LD and SCMF-DPD frameworks, which are expected to be efficient and powerful tools in studies of inhomogeneous polymeric material design and processing.
USDA-ARS?s Scientific Manuscript database
Spherulites, produced by steam jet-cooking high-amylose starch and oleic acid, were grafted with methyl acrylate, both before and after removal of un-complexed amylopectin. For comparison, granular high-amylose corn starch was graft polymerized in a similar manner. The amount of grafted and ungrafte...
NASA Astrophysics Data System (ADS)
Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu
2015-04-01
The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01439e
Foster, Rami N; Johansson, Patrik K; Tom, Nicole R; Koelsch, Patrick; Castner, David G
2015-09-01
A 2 4 factorial design was used to optimize the activators regenerated by electron transfer-atom transfer radical polymerization (ARGET-ATRP) grafting of sodium styrene sulfonate (NaSS) films from trichlorosilane/10-undecen-1-yl 2-bromo-2-methylpropionate (ester ClSi) functionalized titanium substrates. The process variables explored were: (1) ATRP initiator surface functionalization reaction time; (2) grafting reaction time; (3) CuBr 2 concentration; and (4) reducing agent (vitamin C) concentration. All samples were characterized using x-ray photoelectron spectroscopy (XPS). Two statistical methods were used to analyze the results: (1) analysis of variance with [Formula: see text], using average [Formula: see text] XPS atomic percent as the response; and (2) principal component analysis using a peak list compiled from all the XPS composition results. Through this analysis combined with follow-up studies, the following conclusions are reached: (1) ATRP-initiator surface functionalization reaction times have no discernable effect on NaSS film quality; (2) minimum (≤24 h for this system) grafting reaction times should be used on titanium substrates since NaSS film quality decreased and variability increased with increasing reaction times; (3) minimum (≤0.5 mg cm -2 for this system) CuBr 2 concentrations should be used to graft thicker NaSS films; and (4) no deleterious effects were detected with increasing vitamin C concentration.
Copolymer Synthesis and Characterization by Post-Polymerization Modification
NASA Astrophysics Data System (ADS)
Galvin, Casey James
This PhD thesis examines the physical behavior of surface-grafted polymer assemblies (SGPAs) derived from post-polymerization modification (PPM) reactions in aqueous and vapor enriched environments, and offers an alternative method of creating SGPAs using a PPM approach. SGPAs comprise typically polymer chains grafted covalently to solid substrates. These assemblies show promise in a number of applications and technologies due to the stability imparted by the covalent graft and ability to modify interfacial properties and stability. SGPAs also offer a set of rich physics to explore in fundamental investigations as a result of confining macromolecules to a solid substrate. PPM reactions (also called polymer analogous reactions) apply small molecule organic chemistry reactions to the repeat units of polymer chains in order to generate new chemistries. By applying a PPM strategy to SGPAs, a wide variety of functional groups can be introduced into a small number of well-studied and well-behaved model polymer systems. This approach offers the advantage of holding constant other properties of the SGPA (e.g., molecular weight, MW, and grafting density, sigma) to isolate the effect of chemistry on physical behavior. Using a combination of PPM and fabrication methods that facilitate the formation of SPGAs with position-dependent gradual variation of sigma on flat impenetrable substrate, the influence of polymer chemistry and sigma is examined on the stability of weak polyelectrolyte brushes in aqueous environments at different pH levels. Degrafting of polymer chains in SGPAs exhibits a complex dependence on side chain chemistry, sigma, pH and the charge fraction (alpha) within the brush. Results of these experiments support a proposed mechanism of degrafting, wherein extension of the grafted chains away from the substrate generates tension along the polymer backbone, which activates the grafting chemistry for hydrolysis. The implications of these findings are important in developing technologies that use SGPAs in aqueous environments, and point to a need for potential alternative grafting chemistries. The behavior of SGPAs in vapor environments remains an underexplored phenomenon. By changing systematically the chemistry of SGPAs derived from a parent sample, the influence of side chain functional groups on the swelling of weak and strong polyelectrolyte brushes in the presence of water, methanol and ethanol vapors is explored. The extent of swelling and solvent uptake depends strongly on the chemistry in the polymer side chain and of the solvent. Despite bearing a permanent electrostatic charge in the side chain, the strong polyelectrolyte brushes exhibit no behavior typical of polyelectrolytes in water due to no dissociation of the counterion. Of particular interest is the behavior in humid environments of an SGPA bearing a zwitterionic group in its side chain, which results in exposure of electrostatic charges without counterions. Using substrates bearing the aforementioned sigma gradient of polymeric grafts, evidence of inter- and intramolecular complex formation is presented. Finally, a method of developing SGPAs by polymerizing bulk polymer chains through surface-grafted monomers (SGMs) is described. The SGMs are incorporated onto a solid substrate using the same PPM reaction employed in the degrafting and vapor swelling experiments, highlighting the versatility of PPM. The thickness of these SGPAs is correlated to the bulk polymer chains MW, suggesting this technique can be used in existing industrial bulk polymerization processes.
Impact of reaction conditions on grafting acrylamide onto starch
USDA-ARS?s Scientific Manuscript database
We have explored the radical initiated graft polymerization reaction of acrylamide onto starch where the solvent, concentration, temperature and reaction times were varied. We have found that the morphology of the resulting grafted polymer is dramatically different and is dependent on the reaction c...
Li, Shuzhao; Xiao, Miaomiao; Zheng, Anna; Xiao, Huining
2011-09-12
Immobilizing poly(butyl acrylate) (PBA) on cellulose microfibrils (CMFs) by atom transfer radical polymerization (ATRP) of butyl acrylate (BA) on the surface of 2-bromoisobutyryl-functionalized CMF generated highly hydrophobic microfibrils (CMF-PBA) with a hard core and a soft-shell structure. TGA and static water contact angle results suggested that the surfaces of the modified CMF samples were not completely covered by PBA chains until the molecular weight of grafts became sufficiently long. The GPC results indicated that the grafts with low molecular weight showed controlled/"living" characteristics of the surface-initiated ATRP; however, there existed more side reactions with the increase in molecular weights. Biocomposites consisting of polypropylene (PP) and CMF-PBA samples exhibited significantly improved compatibility, interface adhesion, and mechanical properties with the increase in PBA graft length. The findings confirmed that the longer grafts facilitated the better entanglement of PBA grafts with PP macromolecules and thus further improved the mechanical properties.
Electron-beam-induced post-grafting polymerization of acrylic acid onto the surface of Kevlar fibers
NASA Astrophysics Data System (ADS)
Xu, Lu; Hu, Jiangtao; Ma, Hongjuan; Wu, Guozhong
2018-04-01
The surface of Kevlar fibers was successfully modified by electron beam (EB)-induced post-grafting of acrylic acid (AA). The generation of radicals in the fibers was confirmed by electron spin resonance (ESR) measurements, and the concentration of radicals was shown to increase as the absorbed dose increased, but decrease with increasing temperature. The influence of the synthesis conditions on the degree of grafting was also investigated. The surface microstructure and chemical composition of the modified Kevlar fibers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed that the surface of the grafted fibers was rougher than those of the pristine and irradiated fibers. XPS analysis confirmed an increase in C(O)OH groups on the surface of the Kevlar fibers, suggesting successful grafting of AA. These results indicate that EB-induced post-grafting polymerization is effective for modifying the surface properties of Kevlar fibers.
Macroradical initiated polymerisation of acrylic and methacrylic monomers.
Mijangos, Irene; Guerreiro, António; Piletska, Elena; Whitcombe, Michael J; Karim, Kal; Chianella, Iva; Piletsky, Sergey
2009-10-01
An approach has been developed for the grafting of monomers onto poly(trimethylolpropane trimethacrylate) (polyTRIM) particles using 2,2-diethyl dithiocarbamic acid benzyl ester (DDCABE) as an initiator. A set of polymers was prepared with this technique over different lengths of time and the kinetics of the reaction studied experimentally. It was found that the grafting of initiator to the polymeric support followed a second order reaction, while the subsequent addition of monomers from solution into the polyTRIM macroradicals followed a first order reaction. The living nature of the iniferter modified macroradicals permits easy consecutive grafting of multiple polymeric layers, allowing straightforward functionalisation of particles. However, the effectiveness of the grafted initiator decreased with each cycle of polymerisation. This technique can be used for a wide range of applications in analytical and biochemistry.
NASA Astrophysics Data System (ADS)
Yoshida, Wayne Hiroshi
Nanostructural engineering of inorganic substrates by free radical graft polymerization was studied with the goal of developing new membrane materials for pervaporation. Graft polymerization consisted of modification of surface hydroxyls with vinyl trimethoxysilane, followed by solution graft polymerization reaction using either vinyl acetate (VAc) or vinyl pyrrolidone (VP). The topology of the modified surfaces was studied by atomic force microscopy (AFM) on both atomically smooth silicon wafer substrates and microporous inorganic membrane supports in order to deduce the effects of modification on the nanostructural properties of the membrane. While unmodified wafers showed a root-mean-square (RMS) surface roughness of 0.21 +/- 0.03 nm, roughness increased to 3.15 +/- 0.23 nm upon silylation. Under poor solvent conditions (i.e., air), surfaces modified with higher poly(vinyl acetate) (PVAc) or poly(vinyl pyrrolidone) (PVP) polymer graft yields displayed lateral inhomogeneities in the polymer layer. Although RMS surface roughness was nearly identical (0.81--0.85 nm) for PVAc-modified surfaces grafted at different monomer concentrations, the skewness of the height distribution decreased from 2.22 to 0.78 as polymer graft yield increased from 0.8 to 3.5 mg/m2. The polymer-modified surfaces were used to create inorganic pervaporation membranes consisting of a single macromolecular separation layer formed by graft polymerization. PVAc grafted silica membranes (500A native pore size) were found selective for MTBE in the separation of 0.1--1% (v/v) MTBE from water, achieving MTBE enrichment factors as high as 371 at a permeate flux of 0.38 l/m2 hr and a Reynolds number of 6390; however, these membranes could not separate anhydrous organic mixtures. Pervaporative separation of methanol/MTBE mixtures was possible with PVAc and PVP-modified alumina supports of 50A native pore size, where the separation layer consisted of grafted polymer chains with estimated radius of gyration 4.5--6.8 times larger than the membrane pore radius. Methanol separation factors for the PVP and PVAc-grafted alumina pervaporation membranes reached values of 26 and 100 (respectively) at total permeate fluxes of 0.055--1.26 kg/m 2 hr and 0.55--6.19 kg/m2 hr. The present study demonstrated that selective pervaporation membranes for separation of both organic/organic and organic/aqueous mixtures can be effectively designed by careful selection of the surface-grafted polymer chain density and the ratio of the polymer chain size to the native support pore size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, X. T.; Showkat, A. M.; Wang, Z.
2015-03-30
Noble fluorescence nanocomposite compound based on barium titanate nanoparticles (BTO), polystyrene (PSt), and terbium ion (Tb{sup 3+}) was synthesized by a combination of surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization, Friedel-Crafts alkylation reaction and coordinate chemistry. Initially, a modification of surface of BTO was conducted by an exchange process with S-benzyl S’-trimethoxysilylpropyltrithiocarbonate to create macro-initiator for polymerization of styrene. Subsequently, aryl carboxylic acid functionalized polystyrene grafted barium titanate (BTO-g-PSt-COOH) was generated by substitution reaction between 4-(Chloromethyl) benzoic acid and PSt chains. The coordination of the nanohybrids with Tb{sup 3+} ions afforded fluorescent Tb{sup 3+} tagged aryl carboxylic acid functionalized polystyrenemore » grafted barium titanate (BTO-g-PSt-Tb{sup 3+}) complexes. Structure, morphology, and fluorescence properties of nanohybrid complexes were investigated by respective physical and spectral studies. FT-IR and SEM analyses confirmed the formation of BTO-g-PSt-Tb{sup 3+}nanohybrids. Furthermore, TGA profiles demonstrated the grafting of aryl carboxylic acid functionalized polystyrene on BTO surface. Optical properties of BTO-g-PSt-Tb{sup 3+} complexes were investigated by fluorescence spectroscopy.« less
Wang, Wenwen; Wang, Weiyu; Li, Hui; ...
2015-01-14
In this study, high molecular weight “comb-shaped” graft copolymers, poly(isoprene-g-styrene), with polyisoprene as the backbone and polystyrene as side chains, were synthesized via free radical emulsion polymerization by copolymerization of isoprene with a polystyrene macromonomer synthesized using anionic polymerization. A small amount of toluene was used in order to successfully disperse the macromonomer. Both a redox and thermal initiation system were used in the emulsion polymerization, and the latex particle size and distribution were investigated by dynamic light scattering. The structural characteristics of the macromonomer and comb graft copolymers were investigated through use of size exclusion chromatography, spectroscopy, microscopy, thermalmore » analysis, and rheology. While the macromonomer was successfully copolymerized to obtain the desired multigraft copolymers, small amounts of unreacted macromonomer remained in the products, reflecting its reduced reactivity due to steric effects. Nevertheless, the multigraft copolymers obtained were very high in molecular weight (5–12 × 10 5 g/mol) and up to 10 branches per chain, on average, could be incorporated. A material incorporating 29 wt% polystyrene exhibits a disordered microphase separated morphology and elastomeric properties. As a result, these materials show promise as new, highly tunable, and potentially low cost thermoplastic elastomers.« less
Hazer, Baki; Kalaycı, Özlem A
2017-05-01
Autoxidation of poly unsaturated fatty acids makes negative effect on foods. In this work, this negative effect was turned to a great advantage using autoxidized soybean oil as a macroperoxide nanocomposite initiator containing silver nano particles in free radical polymerization of vinyl monomers. The synthesis of soybean oil macro peroxide was carried out by exposing soybean oil to air oxygen with the presence of silver nanoparticles (Ag NPs) at room temperature. Autoxidized soybean oil macroperoxide containing silver nanoparticles (Agsbox) successfully initiated the free radical polymerization of styrene in order to obtain Polystyrene (PS)-g-soybean oil graft copolymer containing Ag NPs. Both autoxidized soybean oil and PS-g-sbox with Ag NPs showed a surface plasmon resonance and high fluorescence emission. Overall rate constant (K) of styrene polymerization initiated by autoxidized soybean oil macroperoxide with Ag NPs was found to be K=1.95.10 -4 Lmol -1 s -1 at 95°C. Antibacterial efficiency was observed in the PS-g-soybean oil graft copolymer film samples containing Ag NPs. 1 H NMR and GPC techniques were used for the structural analysis of the fractionated polymeric oils. Copyright © 2016 Elsevier B.V. All rights reserved.
Radiation induced graft copolymerization of methyl methacrylate onto chrome-tanned pig skins
NASA Astrophysics Data System (ADS)
Pietrucha, K.; Pȩkala, W.; Kroh, J.
Graft copolymerization of methyl methacrylate (MMA) onto chrome-tanned pig skins was carried out by the irradiation with 60Co ?-rays. The grafted polymethyl methacrylate (PMMA) chains were isolated by acid hydrolysis of the collagen backbone in order to characterize the graft copolymers. Proof of grafting was obtained through the detection of amino acid endgroups in the isolated grafts by reaction with ninhydrin. The grafting yield of MMA in aqueous emulsion was found to be higher than that for pure MMA and MMA in acetone. The degree of grafting increases with increasing monomer concentration in emulsion and reaches maximum at radiation dose ca 15 kGy. The yield of grafting is very high - ca 90% of monomer converts into copolymer and only 10% is converted into homopolymer. The present paper reports the physical properties of chrome-tanned pig skins after graft polymerization with MMA in emulsion. Modified leathers are more resistant against water absorption and abrasion in comparison with unmodified ones. They have more uniform structure over the whole surface, greater thickness and stiffness. The results reported seem to indicate that MMA may be used in the production of shoe upper and sole leathers. The mechanism of some of the processes occuring during radiation grafting of MMA in water emulsion on tanned leathers has been also suggested and discussed.
In situ characterization of N-carboxy anhydride polymerization in nanoporous anodic alumina.
Lau, K H Aaron; Duran, Hatice; Knoll, Wolfgang
2009-03-12
Poly(gamma-benzyl-L-glutamate) (PBLG) has been a popular model polypeptide for a range of physicochemical studies, and its modifiable ester side chains make it an attractive platform for various potential applications. Thin films of Poly(gamma-benzyl-L-glutamate) PBLG were surface grafted within nanoporous anodic alumina (AAO) by surface-initiated polymerization of the N-carboxy anhydride of benzyl-L-glutamate (BLG-NCA). The grafting process was characterized by optical waveguide spectroscopy (OWS), infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). OWS was able to track the PBLG layer thickness increase in situ, and ex situ FT-IR gave complementary information on the PBLG chain's secondary structure. Transitions in the PBLG growth rate could be correlated with transitions in the polypeptide secondary structure. The emergence of a three-dimensional, anisotropic PBLG morphology within the cylindrical pores of the AAO membrane was also identified as the grafted PBLG average layer thickness increased. Comparison of the PBLG/AAO results with those on a planar silicon dioxide surface indicated that both the conformational transitions and the PBLG nanostructure development could be attributed to the confining geometry within the pores of the nanoporous AAO matrix. The use of a nanoporous AAO matrix, combined with the surface grafting of a thin film of PBLG chains with multiple modifiable side chains, could potentially offer a nanoporous platform with a very high density of functional sites.
NASA Astrophysics Data System (ADS)
Wang, Jingjing; Wei, Jun
2016-09-01
Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.
Xu, Zhi-Kang; Dai, Qing-Wen; Wu, Jian; Huang, Xiao-Jun; Yang, Qian
2004-02-17
A novel method for the surface modification of a microporous polypropylene membrane by tethering phospholipid analogous polymers (PAPs) is given, which includes the photoinduced graft polymerization of N,N-dimethylaminoethyl methacrylate (DMAEMA) and the ring-opening reaction of grafted poly-(DMAEMA) with 2-alkyloxy-2-oxo-1,3,2-dioxaphospholanes. Five 2-alkyloxy-2-oxo-1,3,2-dioxaphospholanes, containing octyloxy, dodecyloxy, tetradecyloxy, hexadecyloxy, and octadecyloxy groups in the molecular structure, were used to fabricate the PAP-modified polypropylene membranes. The attenuated total reflectance FT-IR spectra of the original, poly(DMAEMA)-grafted, and PAP-modified membranes confirmed the chemical changes on the membrane surface. Scanning electron microscope pictures showed that, compared with the original membrane, the surface porosities ofpoly(DMAEMA)-grafted and PAP-modified membranes were somewhat reduced. Water contact angles measured by the sessile drop method on PAP-modified membranes were slightly lower than that on the original polypropylene membrane, but higher than those on poly(DMAEMA)-grafted membranes with the exception of octyloxy-containing PAP-modified membranes. However, BSA adsorption experiments indicated that the five PAP-modified membranes had a much better protein-resistant property than the original polypropylene membrane and the poly(DMAEMA)-grafted membranes. For hexadecyloxy- and octadecyloxy-containing PAP-modified membranes, almost no protein adsorption was observed when the grafting degree was above 6 wt %. It was also found that the platelet adhesion was remarkably suppressed on the PAP-modified membranes. All these results demonstrate that the described approach is an effective way to improve the surface biocompatibility for polymeric membranes.
Zeng, Jianxian; Dong, Zhihui; Zhang, Zhe; Liu, Yuan
2017-07-05
A surface-grafted imprinted ceramic membrane (IIP-PVI/CM) for recognizing molybdate (Mo(VI)) anion was prepared by surface-initiated graft-polymerization. Firstly, raw alumina ceramic membrane (CM) was deposited with SiO 2 active layer by situ hydrolysis deposition method. Subsequently, γ-methacryloxy propyl trimethoxyl silane (MPS) was used as a coupling agent to introduce double bonds onto the SiO 2 layer (MPS-CM). Then, 1-vinylimidazole (VI) was employed as a functional monomer to graft-polymerization onto the MPS-CM (PVI-CM). During the graft-polymerization, the influence factors of grafting degree of PVI were investigated in detail. Under optimum conditions (monomer concentration 20wt%, temperature 70°C, initiator amount 1.1wt% and reaction time 8h), the grafting degree of 20.39g/100g was obtained. Further, Mo(VI) anion was used as a template to imprint in the PVI-CM by employing 1,6-dibromohexane as a cross-linking agent, and then Mo(VI) was removed, obtaining the IIP-PVI/CM with many imprinted cavities for Mo(VI). Thereafter, static adsorption and dynamic separation properties of IIP-PVI/CM for Mo(VI) were studied. Results indicate that IIP-PVI/CM shows a specific selectivity for Mo(VI) with the adsorption capacity of 0.69mmol/100g, and the selectivity coefficient of IIP-PVI/CM is 7.48 for molybdate to tungstate anions. During the dynamic separation, IIP-PVI/CM has also good selectivity for separation of Mo(VI) and W(VI) anions. Copyright © 2017 Elsevier B.V. All rights reserved.
Synthesis and characterization of polypyrrole grafted chitin
NASA Astrophysics Data System (ADS)
Ramaprasad, A. T.; Latha, D.; Rao, Vijayalakshmi
2017-05-01
Synthesis and characterization of chitin grafted with polypyrrole (PPy) is reported in this paper. Chitin is soaked in pyrrole solution of various concentrations for different time intervals and polymerized using ammonium peroxy disulphate (APS) as an initiator. Grafting percentage of polypyrrole onto chitin is calculated from weight of chitin before and after grafting. Grafting of polymer is further verified by dissolution studies. The grafted polymer samples are characterized by FTIR, UV-Vis absorption spectrum, XRD, DSC, TGA, AFM, SEM and conductivity studies.
Radiation graft modification of EPDM rubber
NASA Astrophysics Data System (ADS)
Katbab, A. A.; Burford, R. P.; Garnett, J. L.
N-Vinyl pyrrolidone (NVP), 2-hydroxyethylmethacrylate (HEMA) and acrylamide (AAm) have been grafted to the surface of rubber vulcanizates based on ethylene-propylene-terpolymer (EPDM) using the simultaneous radiation method to alter surface properties such as wettability and therefore biocompatibility. The effect of monomer concentration, solvent and EPDM structural factors on the grafting behavior have been investigated. The inhibitory effect upon homopolymerization of various salts has also been evaluated for the three monomers. NVP and HEMA could be grafted onto EPDM rubber in the presence of aqueous solutions of cupric nitrate at 0.005 M and 1.0 M concentrations respectively. Aqueous solutions of Mohr's salt (ammonium ferrous sulphate) at 0.05 M not only suppressed the homopolymerization of AAm but also increased grafting yield. The percentage grafting also increased with increasing AAm concentration. A mechanism has been proposed to explain the behaviour of these monomers. The inclusion of multifunctional acrylates in additive amounts (1.0 vol%) enhanced the graft degree. Modified samples were able to be efficiently stained, allowing the depth of the graft copolymerization to be determined by light microscopy. Water was found to have an accelerating effect on the polymerization of these monomers, but methanol prevented their polymerization completely. The effect of EPDM structural factors upon degree of grafting was found to vary, depending upon the monomer type.
Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants.
Kan, Kevin H M; Li, Jian; Wijesekera, Kushlani; Cranston, Emily D
2013-09-09
Cellulose nanocrystals (CNCs) are a sustainable nanomaterial with applications spanning composites, coatings, gels, and foams. Surface modification routes to optimize CNC interfacial compatibility and functionality are required to exploit the full potential of this material in the design of new products. In this work, CNCs have been rendered pH-responsive by surface-initiated graft polymerization of 4-vinylpyridine with the initiator ceric(IV) ammonium nitrate. The polymerization is a one-pot, water-based synthesis carried out under sonication, which ensures even dispersion of the cellulose nanocrystals during the reaction. The resultant suspensions of poly(4-vinylpyridine)-grafted cellulose nanocrystals (P4VP-g-CNCs) show reversible flocculation and sedimentation with changes in pH; the loss of colloidal stability is visible by eye even at concentrations as low as 0.004 wt %. The presence of grafted polymer and the ability to tune the hydrophilic/hydrophobic properties of P4VP-g-CNCs were characterized by Fourier transform infrared spectroscopy, elemental analysis, electrophoretic mobility, mass spectrometry, transmittance spectroscopy, contact-angle measurements, thermal analysis, and various microscopies. Atomic force microscopy showed no observable changes in the CNC dimensions or degree of aggregation after polymer grafting, and a liquid crystalline nematic phase of the modified CNCs was detected by polarized light microscopy. Controlled stability and wettability of P4VP-g-CNCs is advantageous both in composite design, where cellulose nanocrystals generally have limited dispersibility in nonpolar matrices, and as biodegradable flocculants. The responsive nature of these novel nanoparticles may offer new applications for CNCs in biomedical devices, as clarifying agents, and in industrial separation processes.
Biodegradable metal adsorbent synthesized by graft polymerization onto nonwoven cotton fabric
NASA Astrophysics Data System (ADS)
Sekine, Ayako; Seko, Noriaki; Tamada, Masao; Suzuki, Yoshio
2010-01-01
A fibrous adsorbent for Hg ions was synthesized by radiation-induced emulsion graft polymerization of glycidyl methacrylate (GMA) onto a nonwoven cotton fabric and subsequent chemical modification. The optimal pre-irradiation dose for initiation of the graft polymerization of GMA, which minimized the effects of radiation damage on the mechanical strength of the nonwoven cotton fabric, was found to be 10 kGy. The GMA-grafted nonwoven cotton fabric was subsequently modified with ethylenediamine (EDA) or diethylenetriamine (DETA) to obtain a Hg adsorbent. The resulting amine-type adsorbents were evaluated for batch and continuous adsorption of Hg. In batch adsorption, the distribution coefficients of Hg reached 1.9×10 5 and 1.0×10 5 for EDA- and DETA-type adsorbents, respectively. A column packed with EDA-type adsorbent removed Hg from 1.8 ppm Hg solution at a space velocity of 100 h -1, which corresponds to 16,000 times the volume of the packed adsorbent. The adsorbed Hg on the EDA-type adsorbent could be completely eluted by 1 M HCl solution. A microbial oxidative degradation test revealed that the EDA-type adsorbent is biodegradable.
Koriyama, Takuya; Asoh, Taka-Aki; Kikuchi, Akihiko
2016-11-01
To develop aqueous microseparation columns for bioactive compounds, a thermoresponsive polymer grafted polymer monolith was prepared inside silica capillaries having an I.D. of 100μm by polymerization of styrene (St) with m/p-divinylbenzene (DVB) in the presence of polydimethylsiloxane as porogen, followed by surface-initiated atom transfer radical polymerization (SI-ATRP) of N-isopropylacrylamide (NIPAAm). SEM analysis indicated that the resulting poly(N-isopropylacrylamide) (PNIPAAm) grafted polystyrene monolith had a consecutive three-dimensionally interconnected structure and through-pores, similar to the base polystyrene (PSt) monolith. The elution behavior of steroids with different hydrophobicity was evaluated using micro-high-performance liquid chromatography in sole aqueous mobile phase. Temperature dependent interaction changes were observed between steroids and the PNIPAAm modified surfaces. Furthermore, the interaction between bioactive compounds and the PNIPAAm grafted PSt surfaces was controlled and eventually separate these molecules with different hydrophobicities by simple temperature modulation in aqueous environment. The PNIPAAm grafted PSt monolithic capillary showed improved separation properties of bioactive compounds, compared with a PNIPAAm grafted hollow capillary in aqueous environment. Copyright © 2016 Elsevier B.V. All rights reserved.
Chemistry and technology of radiation processed composite materials
NASA Astrophysics Data System (ADS)
Czvikovszky, T.
Composite materials of synthetics (based on monomers, oligomers and thermoplastics) and of natural polymers (wood and other fibrous cellulosics) prepared by radiation processing, offer valuable structural materials with enhanced coupling forces between the components. The applied polymer chemistry of such composites shows several common features with that of radiation grafting. E.g. the polymerization rate of oligomer-monomer mixtures in wood remains in most cases proportional to the square-root of the initiating dose-rate, just as in the simultaneous grafting, demonstrating that the chain termination kinetics remain regularly bimolecular in the corresponding dose-rate ranges. In the processing experiences of such composites, low dose requirement, easy process-control, and good technical feasibility have been found for composites of wood with oligomer-monomer mixtures, for coconut fibres with unsaturated polyesters and for pretreated wood fibre with polypropylene.
Functionalized and graft copolymers of chitosan and its pharmaceutical applications.
Bhavsar, Chintan; Momin, Munira; Gharat, Sankalp; Omri, Abdelwahab
2017-10-01
Chitosan is the second most abundant natural polysaccharide. It belongs a family of polycationic polymers comprised of repetitive units of glucosamine and N-acetylglucosamine. Its biodegradability, nontoxicity, non-immunogenicity and biocompatibility along with properties like mucoadhesion, fungistatic and bacteriogenic have made chitosan an appreciated polymer with numerous applications in the pharmaceutical, comestics and food industry. However, the limited solubility of chitosan at alkaline and neutral pH limits its widespread commercial use. This can be circumvented by fabrication of chitosan by graft copolymerization with acyl, alkyl, monomeric and polymeric moieties. Areas covered: Modifications like quarterization, thiolation, acylation and grafting result in copolymers with higher mucoadhesion strength, increased hydrophobic interactions (advantageous in hydrophobic drug entrapment), and increased solubility in alkaline pH, the ability for adsorption of metal ions, protein and peptide delivery and nutrient delivery. Insights on methods of polymerization, including atomic transfer radical polymerization and click chemistry are discussed. Applications of such modified chitosan copolymers in medical and surgical, and drug delivery, including nasal, oral and buccal delivery have also been covered. Expert opinion: Despite a number of successful investigations, commercialization of chitosan copolymers still remains a challenge. Further advancements in polymerization techniques may address the unmet needs of the healthcare industry.
Plasma-induced polymerization for enhancing paper hydrophobicity.
Song, Zhaoping; Tang, Jiebin; Li, Junrong; Xiao, Huining
2013-01-30
Hydrophobic modification of cellulose fibers was conducted via plasma-induced polymerization in an attempt to graft the hydrophobic polymer chains on paper surface, this increasing the hydrophobicity of paper. Two hydrophobic monomers, butyl acrylate (BA) and 2-ethylhexyl acrylate (2-EHA), were grafted on cellulose fibers, induced by atmospheric cold plasma. Various influencing factors associated with the plasma-induced grafting were investigated. Contact-angle measurement, Fourier Transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) were used to ascertain the occurrence of the grafting and characterized the changes of the cellulose fiber after modification. The results showed that the hydrophobicity of the modified paper sheet was improved significantly after the plasma-induced grafting. The water contact angle on the paper surface reached up to 130°. The morphological differences between modified and unmodified samples were also revealed by SEM observation. The resulting paper is promising as a green-based packaging material. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gogoi, Dolly; Choudhury, Arup Jyoti; Chutia, Joyanti; Pal, Arup Ratan; Khan, Mojibur; Choudhury, Manash; Pathak, Pallabi; Das, Gouranga; Patil, Dinkar S
2014-04-01
Surface modification of silk fibroin (SF) materials using environmentally friendly and non-hazardous process to tailor them for specific application as biomaterials has drawn a great deal of interest in the field of biomedical research. To further explore this area of research, in this report, polypropylene (PP) grafted muga (Antheraea assama) SF (PP-AASF) suture is developed using plasma treatment and plasma graft polymerization process. For this purpose, AASF is first sterilized in argon (Ar) plasma treatment followed by grafting PP onto its surface. AASF is a non-mulberry variety having superior qualities to mulberry SF and is still unexplored in the context of suture biomaterial. AASF, Ar plasma treated AASF (AASFAr) and PP-AASF are subjected to various characterization techniques for better comparison and the results are attempted to correlate with their observed properties. Excellent mechanical strength, hydrophobicity, antibacterial behavior, and remarkable wound healing activity of PP-AASF over AASF and AASFAr make it a promising candidate for application as sterilized suture biomaterial. Copyright © 2013 Wiley Periodicals, Inc.
Chen, Jinyuan; Liu, Zhoujie; Peng, Huaping; Zheng, Yanjie; Lin, Zhen; Liu, Ailin; Chen, Wei; Lin, Xinhua
2017-12-15
Previously reported electrochemical DNA biosensors based on in-situ polymerization approach reveal that terminal deoxynucleoside transferase (TdTase) has good amplifying performance and promising application in the design of electrochemical DNA biosensor. However, this method, in which the background is significantly affected by the amount of TdTase, suffers from being easy to produce false positive result and poor stability. Herein, we firstly present a novel electrochemical DNA biosensor based on grafting-to mode of TdTase-mediated extension, in which DNA targets are polymerized in homogeneous solution and then hybridized with DNA probes on BSA-based DNA carrier platform. It is surprising to find that the background in the grafting-to mode of TdTase-based electrochemical DNA biosensor have little interference from the employed TdTase. Most importantly, the proposed electrochemical DNA biosensor shows greatly improved detection performance over the in-situ polymerization approach-based electrochemical DNA biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.
PEG Molecular Net-Cloth Grafted on Polymeric Substrates and Its Bio-Merits
NASA Astrophysics Data System (ADS)
Zhao, Changwen; Lin, Zhifeng; Yin, Huabing; Ma, Yuhong; Xu, Fujian; Yang, Wantai
2014-05-01
Polymer brushes and hydrogels are sensitive to the environment, which can cause uncontrolled variations on their performance. Herein, for the first time, we report a non-swelling ``PEG molecular net-cloth'' on a solid surface, fabricated using a novel ``visible light induced surface controlled graft cross-linking polymerization'' (VSCGCP) technique. Via this method, we show that 1) the 3D-network structure of the net-cloth can be precisely modulated and its thickness controlled; 2) the PEG net-cloth has excellent resistance to non-specific protein adsorption and cell adhesion; 3) the mild polymerization conditions (i.e. visible light and room temperature) provided an ideal tool for in situ encapsulation of delicate biomolecules such as enzymes; 4) the successive grafting of reactive three-dimensional patterns on the PEG net-cloth enables the creation of protein microarrays with high signal to noise ratio. Importantly, this strategy is applicable to any C-H containing surface, and can be easily tailored for a broad range of applications.
Hernández-Meléndez, O; Peydecastaing, J; Bárzana, E; Vaca-Garcia, C; Hernández-Luna, M; Borredon, M E
2009-01-01
The graft polymerization reaction between ethylene carbonate (EC) and scots pine sawdust (SPS) or peat moss (PM) offers a solvent-free approach to the simple and inexpensive aliphatic derivatization of these lignocellulosic fibers. This reaction was studied with liquid or vapor EC phases in three different reactor configurations: batch stirred (BSR), semi-continuous stirred (SSR) and continuous tubular in the gas phase (CVTR). The use of a vapor phase allowed a satisfactory grafting yield and minimal production of non-grafted polyol by-products. The crosslinking agent 4,4'-methylenebis(phenylisocyanate) (MDI) achieved superior characteristics to form shaped tablets resistant to water disaggregation, a high water retention capacity and high compression strength, characteristics that conventional organic supports like PM or PM-polyurethane foam mixtures used in biofiltration of waste gases do not completely possess.
NASA Astrophysics Data System (ADS)
Zhang, Lingling; Chen, Xiaojuan; Liu, Pingsheng; Wang, Jing; Zhu, Haomiao; Li, Li
2018-06-01
A facile procedure to modify glass film with zwitterionic polymers for improving the blood compatibility was introduced. The glass slides were first silanized with 3-methacryloxypropyltrimethoxysilane (MPT) to generate methacrylate groups on the surface. Then, N, N’-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl) ammonium (DMMSA), a sulfobetaine zwitterionic monomer, was polymerized on the silanized glass substrates by free-radical polymerization in order to graft the zwitterionic polymers onto the substrates. X-ray Photoelectron Spectroscopy (XPS), water contact angle, scanning electron microscope (SEM) and atomic force microscopy (AFM) were utilized to analyze the surface properties of the grafted glass. The blood compatibility of the grafted glass was verified by whole blood contacting and platelet adhesion experiments in vitro. The results showed that the zwitterionic polymers were successfully grafted on the glass surface, and consequently significantly inhibited the platelet adhesion and whole blood cell attachment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakurada, I.; Okada, T.; Hutakeyama, S.
Experiments on radioinduced graft copolymerization of binary mixtures such as butadiene -- styrene, butadiene-acrylonitrile, styrene-- acrylonitrile and some other systems onto cellulose and PVA (polyvinyl alcohol) fibers were carried out with the use of methanol as a solvent. A very marked maximum of graft was observed in every case at a certain composition of the comonomer mixture. It seemed that such a marked maximum was closely connected with popcorn polymerization for the case of butadiene-- styrene, but popcorn polymerization was not a necessary condition for the appearance of the maximum. Only a combined effect of swelling of the gel, formationmore » of radicals in the gel, homocopolymerization, and some other unknown factors is considered likely to lead to a very high degree of grafting. (auth)« less
NASA Astrophysics Data System (ADS)
Wong, Chiow San; Lem, Hon Pong; Goh, Boon Tong; Wong, Cin Wie
2009-03-01
This paper reports on the proof of concept work on the novel process of producing metalized polyimide (PI) film by coating a layer of copper (Cu) thin film on the surface of the PI film without using any adhesive. The method which is employed to produce a metalized PI film used in flexible printed circuit (FPC) is based on plasma graft polymerization of 1-vinlyimidazole (VIDz) on plasma pre-treated PI surface. The plasma grafted PI film (VIDz-g-PI) surfaces are characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). AFM results show that the PI film surface has been successfully treated and grafted with VIDz. As post-thermal treatment is known to promote adhesion strength between the metallic film and the PI surface, the effects of post-thermal treatment environment and temperature on the adhesion property of Cu plated VIDz-g-PI (Cu/VIDz-g-PI) are evaluated. Post-thermal treatment in air shows better adhesion strength than in vacuum. The adhesion strength decreases as the post-thermal treatment temperature is increased. In the present development work, the adhesion strength obtained has met the initial market targeted 9-10 N/cm adhesion strength. Samples obtained at a pre-selected plasma power and time window are able to maintain their adhesion strength after being subjected to ageing at 100 °C for 168 h.
2011-01-01
Soxhlet extracted overnight with distilled water and methanol, and finally freeze-dried for 48 h to afford AF-MWCNT. Polymerization of PPy Pyrrole (10.0...Synthesis of PPy-g-MWCNT Composite In the same set-up for the synthesis of PPy, AF-MWCNT (1.0 g), pyrrole (9.0 g, 134 mmol), and 1 M aqueous HCl (120...sites for the covalent attachment of PPy. Thus, the PPy was grafted onto the surface of AF-MWCNT by chemical oxidation polymerization of pyrrole in
Surface modification of food contact materials for processing and packaging applications
NASA Astrophysics Data System (ADS)
Barish, Jeffrey A.
This body of work investigates various techniques for the surface modification of food contact materials for use in food packaging and processing applications. Nanoscale changes to the surface of polymeric food packaging materials enables changes in adhesion, wettability, printability, chemical functionality, and bioactivity, while maintaining desirable bulk properties. Polymer surface modification is used in applications such as antimicrobial or non-fouling materials, biosensors, and active packaging. Non-migratory active packagings, in which bioactive components are tethered to the package, offer the potential to reduce the need for additives in food products while maintaining safety and quality. A challenge in developing non-migratory active packaging materials is the loss of biomolecular activity that can occur when biomolecules are immobilized. Polyethylene glycol (PEG), a biocompatible polymer, is grafted from the surface of ozone treated low-density polyethylene (LDPE) resulting in a surface functionalized polyethylene to which a range of amine-terminated bioactive molecules can be immobilized. The grafting of PEG onto the surface of polymer packaging films is accomplished by free radical graft polymerization, and to covalently link an amine-terminated molecule to the PEG tether, demonstrating that amine-terminated bioactive compounds (such as peptides, enzymes, and some antimicrobials) can be immobilized onto PEG-grafted LDPE in the development of non-migratory active packaging. Fouling on food contact surfaces during food processing has a significant impact on operating efficiency and can promote biofilm development. Processing raw milk on plate heat exchangers results in significant fouling of proteins as well as minerals, and is exacerbated by the wall heating effect. An electroless nickel coating is co-deposited with polytetrafluoroethylene onto stainless steel to test its ability to resist fouling on a pilot plant scale plate heat exchanger. Further work was performed to test the stability of non-fouling material after extended exposure to an alkali detergent or acid sanitizer formulated for clean-in-place procedures in dairy processing facilities. Additionally, the anti-corrosive property of the surface coating was tested on carbon steel against chlorine ions, a common corrosive agent found in the food industry. Accelerated corrosion and long-term chemical exposure studies were conducted to measure the coating stability against the harsh corrosive agents.
Efficient synthetic access to thermo-responsive core/shell nanoparticles
NASA Astrophysics Data System (ADS)
Dine, Enaam Jamal Al; Ferjaoui, Zied; Roques-Carmes, Thibault; Schjen, Aleksandra; Meftah, Abdelaziz; Hamieh, Tayssir; Toufaily, Joumana; Schneider, Raphaël; Gaffet, Eric; Alem, Halima
2017-03-01
Core/shell nanostructures based on silica, fluorescent ZnO quantum dots (QDs) and superparamagnetic Fe3O4 nanoparticles (NPs) were prepared and fully characterized by the combination of different techniques and the physical properties of the nanostructures were studied. We demonstrate the efficiency of the atom transfer radical polymerization with activators regenerated by electron transfer process to graft (co-)polymers of different structures and polarity at the surface of metal oxide NPs. The influence of the polymer chain configuration on the optical properties of the ZnO/polymer core/shell QDs was enlightened. Concerning the magnetic properties of the Fe3O4/polymer nanostructures, only the amount of the grafted polymer plays a role on the saturation magnetization of the NPs and no influence of the aggregation was evidenced. The simple and fast process described in this work is efficient for the grafting of copolymers from surfaces and the derived NPs display the combination of the physical properties of the core and the macromolecular behavior of the shell.
Efficient synthetic access to thermo-responsive core/shell nanoparticles.
Dine, Enaam Jamal Al; Ferjaoui, Zied; Roques-Carmes, Thibault; Schjen, Aleksandra; Meftah, Abdelaziz; Hamieh, Tayssir; Toufaily, Joumana; Schneider, Raphaël; Gaffet, Eric; Alem, Halima
2017-03-24
Core/shell nanostructures based on silica, fluorescent ZnO quantum dots (QDs) and superparamagnetic Fe 3 O 4 nanoparticles (NPs) were prepared and fully characterized by the combination of different techniques and the physical properties of the nanostructures were studied. We demonstrate the efficiency of the atom transfer radical polymerization with activators regenerated by electron transfer process to graft (co-)polymers of different structures and polarity at the surface of metal oxide NPs. The influence of the polymer chain configuration on the optical properties of the ZnO/polymer core/shell QDs was enlightened. Concerning the magnetic properties of the Fe 3 O 4 /polymer nanostructures, only the amount of the grafted polymer plays a role on the saturation magnetization of the NPs and no influence of the aggregation was evidenced. The simple and fast process described in this work is efficient for the grafting of copolymers from surfaces and the derived NPs display the combination of the physical properties of the core and the macromolecular behavior of the shell.
Majoinen, Johanna; Walther, Andreas; McKee, Jason R; Kontturi, Eero; Aseyev, Vladimir; Malho, Jani Markus; Ruokolainen, Janne; Ikkala, Olli
2011-08-08
Herein we report the synthesis of cellulose nanocrystals (CNCs) grafted with poly(acrylic acid) (PAA) chains of different lengths using Cu-mediated surface initiated-controlled radical polymerization (SI-CRP). First, poly(tert-butylacrylate) (PtBA) brushes were synthesized; then, subsequent acid hydrolysis was used to furnish PAA brushes tethered onto the CNC surfaces. The CNCs were chemically modified to create initiator moieties on the CNC surfaces using chemical vapor deposition (CVD) and continued in solvent phase in DMF. A density of initiator groups of 4.6 bromine ester groups/nm(2) on the CNC surface was reached, suggesting a dense functionalization and a promising starting point for the controlled/living radical polymerization. The SI-CRP of tert-butylacrylate proceeded in a well-controlled manner with the aid of added sacrificial initiator, yielding polymer brushes with polydispersity values typically well below 1.12. We calculated the polymer brush grafting density to almost 0.3 chains/nm(2), corresponding to high grafting densities and dense polymer brush formation on the nanocrystals. Successful rapid acid hydrolysis to remove the tert-butyl groups yielded pH-responsive PAA-polyelectrolyte brushes bound to the CNC surface. Individually dispersed rod-like nanoparticles with brushes of PtBA or PAA were clearly visualized by AFM and TEM imaging.
NASA Astrophysics Data System (ADS)
Wada, Yuki; Seko, Noriaki; Nagasawa, Naotsugu; Tamada, Masao; Kasuya, Ken-ichi; Mitomo, Hiroshi
2007-06-01
Radiation-induced graft polymerization of vinyl acetate (VAc) onto poly(3-hydroxybutyrate) (PHB) film was carried out. At a degree of grafting higher than 5%, the grafted films (PHB-g-VAc) completely lost the enzymatic degradability that is characteristic of PHB due to the grafted VAc covering the surface of the PHB film. However, the biodegradability of the PHB-g-VAc films was recovered when the films were saponified in alkali solution under optimum conditions. Graft chains of the PHB-g-VAc film reacted selectively to become biodegradable polyvinyl alcohol (PVA). The biodegradability of the saponified PHB-g-VAc film increased rapidly with time.
Lizundia, Erlantz; Fortunati, Elena; Dominici, Franco; Vilas, José Luis; León, Luis Manuel; Armentano, Ilaria; Torre, Luigi; Kenny, Josè M
2016-05-20
Cellulose nanocrystals (CNC), extracted from microcrystalline cellulose by acid hydrolysis, were grafted by ring opening polymerization of L-Lactide initiated from the hydroxyl groups available at their surface and two different CNC:L-lactide ratios (20:80 and 5:95) were obtained. The resulting CNC-g-PLLA nanohybrids were incorporated in poly(lactic acid) (PLA) matrix by an optimized extrusion process at two different content (1 wt.% and 3 wt.%) and obtained bionanocomposite films were characterized by thermal, mechanical, optical and morphological properties. Thermal analysis showed CNC grafted with the higher ratio of lactide play a significant role as a nucleating agent. Moreover, they contribute to a significant increase in the crystallization rate of PLA, and the best efficiency was revealed with 3 wt.% of CNC-g-PLLA. This effect was confirmed by the increased in Young's modulus, suggesting the CNC graft ratio and content contribute significantly to the good dispersion in the matrix, positively affecting the final bionanocomposite properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cai, Junyan; Wang, Shuhui; Zhang, Junhong; Liu, Yang; Hang, Tao; Ling, Huiqin; Li, Ming
2018-04-01
In this paper, a superhydrophobic surface with hierarchical structure was fabricated by chemical deposition of Cu micro-cones array, followed by chemical grafting of poly(methyl methacrylate) (PMMA). Water contact measurements give contact angle of 131.0° on these surfaces after PMMA grafting of 2 min and 165.2° after 6 min. The superhydrophobicity results from two factors: (1) the hierarchical structure due to Cu micro-cones array and the second level structure caused by intergranular corrosion during grafting of PMMA (confirmed by the scanning electron microscopy) and (2) the chemical modification of a low surface energy PMMA layer (confirmed by Fourier transform infrared spectrometer and X-ray photoelectron spectroscopy). In the chemical grafting process, the spontaneous reduction of nitrobenzene diazonium (NBD) tetrafluoroborate not only causes the corrosion of the Cu surface that leads to a hierarchical structure, but also initiates the polymerization of methyl methacrylate (MMA) monomers and thus the low free energy surface. Such a robust approach to fabricate the hierarchical structured surface with superhydrophobicity is expected to have practical application in anti-corrosion industry.
Ryno, Lisa M; Reese, Cassandra; Tolan, McKenzie; O'Brien, Jeffrey; Short, Gabriel; Sorriano, Gerardo; Nettleton, Jason; Fulton, Kayleen; Iovine, Peter M
2014-08-11
End-functionalized macromolecular starch reagents, prepared by reductive amination, were grafted onto a urethane-linked polyester-based backbone using copper-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to produce novel amphiphilic hybrid graft copolymers. These copolymers represent the first examples of materials where the pendant chains derived from starch biopolymers have been incorporated into a host polymer by a grafting-to approach. The graft copolymers were prepared in good yields (63-90%) with high grafting efficiencies (66-98%). Rigorous quantitative spectroscopic analyses of both the macromolecular building blocks and the final graft copolymers provide a comprehensive analytical toolbox for deciphering the reaction chemistry. Due to the modular nature of both the urethane-linked polyester synthesis and the postpolymerization modification, the starch content of these novel hybrid graft copolymers was easily tuned from 28-53% (w/w). The uptake of two low molecular weight guest molecules into the hybrid polymer thin films was also studied. It was found that binding of 1-naphthol and pterostilbene correlated linearly with amount of starch present in the hybrid polymer. The newly synthesized graft copolymers were highly processable and thermally stable, therefore, opening up significant opportunities in film and coating applications. These results represent a proof-of-concept system for not only the construction of starch-containing copolymers, but also the loading of these novel polymeric materials with active agents.
Polymerization of perfluorobutadiene at near-ambient conditions
NASA Technical Reports Server (NTRS)
Toy, M. S.
1971-01-01
Peroxide catalyst under mild conditions initiates homopolymerization of perfluoro butadiene to new linear perfluoro polyenes and vulcanizable fluoro elastomers. Resulting polyperfluoro butadiene serves as hard elastomer for good chemical resistance, as intermediate in graft polymerizations, and as crosslink for high molecular weight materials.
3D-Printed Biodegradable Polymeric Vascular Grafts.
Melchiorri, A J; Hibino, N; Best, C A; Yi, T; Lee, Y U; Kraynak, C A; Kimerer, L K; Krieger, A; Kim, P; Breuer, C K; Fisher, J P
2016-02-04
Congenital heart defect interventions may benefit from the fabrication of patient-specific vascular grafts because of the wide array of anatomies present in children with cardiovascular defects. 3D printing is used to establish a platform for the production of custom vascular grafts, which are biodegradable, mechanically compatible with vascular tissues, and support neotissue formation and growth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Oluz, Zehra; Nayab, Sana; Kursun, Talya Tugana; Caykara, Tuncer; Yameen, Basit; Duran, Hatice
Azo initiator modified surface of silica nanoparticles were coated via reversible addition-fragmentation polymerization (RAFT) of methacrylic acid and ethylene glycol dimethacrylate using 2-phenylprop 2-yl dithobenzoate as chain transfer agent. Using L-phenylalanine anilide as template during polymerization led molecularly imprinted nanoparticles. RAFT polymerization offers an efficient control of grafting process, while molecularly imprinted polymers shows enhanced capacity as sensor. L-phenylalanine anilide imprinted silica particles were characterized by X-Ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM). Performances of the particles were followed by surface plasmon resonance spectroscopy (SPR) after coating the final product on gold deposited glass substrate against four different analogous of analyte molecules: D-henylalanine anilide, L-tyrosine, L-tryptophan and L-phenylalanine. Characterizations indicated that silica particles coated with polymer layer do contain binding sites for L-phenylalanine anilide, and are highly selective for the molecule of interest. This project was supported by TUBITAK (Project No:112M804).
Plasma polymerized high energy density dielectric films for capacitors
NASA Technical Reports Server (NTRS)
Yamagishi, F. G.
1983-01-01
High energy density polymeric dielectric films were prepared by plasma polymerization of a variety of gaseous monomers. This technique gives thin, reproducible, pinhole free, conformable, adherent, and insoluble coatings and overcomes the processing problems found in the preparation of thin films with bulk polymers. Thus, devices are prepared completely in a vacuum environment. The plasma polymerized films prepared all showed dielectric strengths of greater than 1000 kV/cm and in some cases values of greater than 4000 kV/cm were observed. The dielectric loss of all films was generally less than 1% at frequencies below 10 kHz, but this value increased at higher frequencies. All films were self healing. The dielectric strength was a function of the polymerization technique, whereas the dielectric constant varied with the structure of the starting material. Because of the thin films used (thickness in the submicron range) surface smoothness of the metal electrodes was found to be critical in obtaining high dielectric strengths. High dielectric strength graft copolymers were also prepared. Plasma polymerized ethane was found to be thermally stable up to 150 C in the presence of air and 250 C in the absence of air. No glass transitions were observed for this material.
Ma, Yi-Ming; Wei, Dai-Xu; Yao, Hui; Wu, Lin-Ping; Chen, Guo-Qiang
2016-08-08
A thermoresponsive graft copolymer polyhydroxyalkanoate-g-poly(N-isopropylacrylamide) or short as PHA-g-PNIPAm, was successfully synthesized via a three-step reaction. First, PNIPAm oligomer with a trithiocarbonate-based chain transfer agent (CTA), short as PNIPAm-CTA, with designed polymerization degree was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Subsequently, the PNIPAm-CTA was treated with n-butylamine for aminolysis in order to obtain a pendant thiol group at the end of the chain (PNIPAm-SH). Finally, the PNIPAm-SH was grafted onto unsaturated P(3HDD-co-3H10U), a random copolymer of 3-hydroxydodecanoate (3HDD) and 3-hydroxy-10-undecylenate (3H10U), via a thiol-ene click reaction. Enhanced hydrophilicity and thermoresponsive property of the resulted PHA-g-PNIPAm were confirmed by water contact angle studies. The biocompatibility of PHA-g-PNIPAm was comparable to poly-3-hydroxybutyrate (PHB). The graft copolymer PHA-g-PNIPAm based on biopolyester PHA could be a promising material for biomedical applications.
Lego, Béatrice; François, Marion; Skene, W G; Giasson, Suzanne
2009-05-05
The controlled grafting density of poly(tert-butyl acrylate) was studied on OH-activated mica substrates via surface-initiated atom-transfer radical polymerization (ATRP). By properly adjusting parameters such as the immobilization reaction time and the concentration of an ATRP initiator, a wide range of initiator surface coverages and hence polymer densities on mica were possible. The covalently immobilized initiator successfully promoted the polymerization of tert-butyl acrylate on mica surfaces. The resulting polymer layer thickness was measured by AFM using a step-height method. Linear relationships of the polymer thickness with respect to the molecular weight of the free polymer and with respect to the monomer conversion were observed, suggesting that ATRP is well controlled and relatively densely end-grafted layers were obtained. The polymer grafting density controlled by adjusting the initiator surface coverage was confirmed by the polymer layer swelling capacity and film thickness measurements.
He, Peng; He, Lin
2009-07-13
We report here an approach to grafting DNA-polymer bioconjugates on a planar solid support using reversible addition-fragmentation chain transfer (RAFT) polymerization. In particular, a trithiocarbonate compound as the RAFT chain transfer agent (CTA) is attached to the distal point of a surface-immobilized oligonucleotide. Initiation of RAFT polymerization leads to controlled growth of polymers atop DNA molecules on the surface. Growth kinetics of poly(monomethoxy-capped oligo(ethylene glycol) methacrylate) atop DNA molecules is investigated by monitoring the change of polymer film thickness as a function of reaction time. The reaction conditions, including the polymerization temperature, the initiator concentration, the CTA surface density, and the selection of monomers, are varied to examine their impacts on the grafting efficiency of DNA-polymer conjugates. Comparing to polymer growth atop small molecules, the experimental results suggest that DNA molecules significantly accelerate polymer growth, which is speculated as a result of the presence of highly charged DNA backbones and purine/pyrimidine moieties surrounding the reaction sites.
Liu, Ke; Gu, Pan; Hamaker, Kiri; Fan, Z. Hugh
2011-01-01
Thermoplastics have been increasingly used for fabricating microfluidic devices because of their low cost, mechanical/biocompatible attributes, and well-established manufacturing processes. However, there is sometimes a need to integrate such a device with components made from other materials such as polydimethylsiloxane (PDMS). Bonding thermoplastics with PDMS to produce hybrid devices is not straightforward. We have reported our method to modify the surface property of a cyclic olefin copolymer (COC) substrate by using corona discharge and grafting polymerization of 3-(trimethoxysilyl)propyl methacrylate; the modified surface enabled strong bonding of COC with PDMS. In this paper, we report our studies on the surface modification mechanism using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurement. Using this bonding method, we fabricated a three-layer (COC/PDMS/COC) hybrid device consisting of elastomer-based valve arrays. The microvalve operation was confirmed through the displacement of a dye solution in a fluidic channel when the elastomer membrane was pneumatically actuated. Valve-enabled microfluidic handling was demonstrated. PMID:21962541
Enhanced protein retention on poly(caprolactone) via surface initiated polymerization of acrylamide
NASA Astrophysics Data System (ADS)
Ma, Yuhao; Cai, Mengtan; He, Liu; Luo, Xianglin
2016-01-01
To enhance the biocompatibility or extend the biomedical application of poly(caprolactone) (PCL), protein retention on PCL surface is often required. In this study, poly(acrylamide) (PAAm) brushes were grown from PCL surface via surface-initiated atom transfer radical polymerization (SI-ATRP) and served as a protein-capturing platform. Grafted PAAm was densely packed on surface and exhibited superior protein retention ability. Captured protein was found to be resistant to washing under detergent environment. Furthermore, protein structure after being captured was investigated by circular dichroism (CD) spectroscopy, and the CD spectra verified that secondary structure of captured proteins was maintained, indicating no denaturation of protein happened for retention process.
Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu
2015-05-07
The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ∼21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.
Silane cross-linkable ethylene-propylene elastomer compositions prepared by reactive processing
NASA Astrophysics Data System (ADS)
Kozawa, Eiji; Nakajima, Yasuo; Kim, Jae Kyung
2015-05-01
Thermoplastic Elastomers (TPEs) have received attention as the alternative materials of EPDM due to an advantage for mass production. In recent years, by the progress of polymerization technology, Ethylene-propylene Elastomer (EP), one of the TPEs, is beginning to be applied to many products because of its good properties as rubber. However, as much as a complete replacement for EPDM, it is not provided with sufficient properties. In such circumstance, we found that EP's performance properties can be further enhanced via chemical modification such as cross-linking. The advent of a newer technique, involving the grafting of organo-functional silane onto the polymer chain in the reaction extrusion process is more attractive due to various industrial advantages. Although the functionalization of the EP by silane grafting through reactive processing is very useful, the silane grafting process of EP has a difficulty. It is most likely a consequence of the nature of the PP chain scission (β-scission), which is the dominant reaction in PP when subjected to free radicals at elevated temperature during processing. Therefore, the objective of our current work is to investigate a reactive extrusion process for the silane cross-linkable EP while minimizing the degradation, as well as evaluate the properties of the modified polymer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodwin, Andrew; Wang, Weiyu; Kang, Nam -Goo
We present in this paper the synthesis of poly(n-butyl acrylate)-g-poly(methyl methacrylate) (PnBA-g-PMMA) multigraft copolymers via a grafting-through (macromonomer) approach. The synthesis was performed using two controlled polymerization techniques. The PMMA macromonomer was obtained by high-vacuum anionic polymerization followed by the copolymerization of n-butyl acrylate and PMMA macromonomer using reversible addition–fragmentation chain transfer (RAFT) polymerization to yield the desired all-acrylic multigraft structures. The PnBA-g-PMMA multigraft structures exhibit randomly spaced branch points with various PMMA contents, ranging from 15 to 40 vol %, allowing an investigation into how physical properties vary with differences in the number of branch points and molecular weightmore » of grafted side chains. The determination of molecular weight and polydispersity indices of both the PMMA macromonomer and the graft copolymers was carried out using size exclusion chromatography with triple detection, and the structural characteristics of both the macromonomer and PnBA-g-PMMA graft materials were characterized by 1H and 13C NMR. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed for monitoring the macromonomer synthesis. Thermal characteristics of the materials were analyzed using differential scanning calorimetry and thermogravimetric analysis. The mechanical performance of the graft materials was characterized by rheology and dynamic mechanical analysis, revealing that samples with PMMA content of 25–40 vol % exhibit superior elastomeric properties as compared to materials containing short PMMA side chains or <25 vol % PMMA. In conclusion, atomic force microscopy showed a varying degree of microphase separation between the glassy and rubbery components that is strongly dependent on PMMA side chain molecular weight.« less
Frechet, Jean M. J. [Oakland, CA; Svec, Frantisek [Alameda, CA; Rohr, Thomas [Leiden, NL
2008-10-07
A microfluidic device preferably made of a thermoplastic polymer that includes a channel or a multiplicity of channels whose surfaces are modified by photografting. The device further includes a porous polymer monolith prepared via UV initiated polymerization within the channel, and functionalization of the pore surface of the monolith using photografting. Processes for making such surface modifications of thermoplastic polymers and porous polymer monoliths are set forth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Suree; Chatterjee, Sabornie; Li, Meijun
Seawater contains a large amount of uranium (~4.5 billion tons) which can serve as a limitless supply of an energy source. However, in order to make the recovery of uranium from seawater economically feasible, lower manufacturing and deployment costs are required, and thus, solid adsorbents must have high uranium uptake, reusability, and high selectivity toward uranium. In this study, atom-transfer radical polymerization (ATRP), without the radiation-induced graft polymerization (RIGP), was used for grafting acrylonitrile (AN) and tert-butyl acrylate (tBA) from a new class of trunk fibers, forming adsorbents in a readily deployable form. The new class of trunk fibers wasmore » prepared by the chlorination of PP round fiber, hollow-gear-shaped PP fiber, and hollow-gear-shaped PE fiber. During ATRP, degrees of grafting (d.g.) varied according to the structure of active chlorine sites on trunk fibers and ATRP conditions, and the d.g. as high as 2570% was obtained. Resulting adsorbent fibers were evaluated in U-spiked simulated seawater and the maximum adsorption capacity of 146.6 g U/kg, much higher than that of a standard adsorbent JAEA fiber (75.1 g/kg), was obtained. This new type of trunk fibers can be used for grafting a variety of uranium-interacting ligands, including designed ligands that are highly selective toward uranium.« less
Brown, Suree; Chatterjee, Sabornie; Li, Meijun; ...
2015-12-10
Seawater contains a large amount of uranium (~4.5 billion tons) which can serve as a limitless supply of an energy source. However, in order to make the recovery of uranium from seawater economically feasible, lower manufacturing and deployment costs are required, and thus, solid adsorbents must have high uranium uptake, reusability, and high selectivity toward uranium. In this study, atom-transfer radical polymerization (ATRP), without the radiation-induced graft polymerization (RIGP), was used for grafting acrylonitrile (AN) and tert-butyl acrylate (tBA) from a new class of trunk fibers, forming adsorbents in a readily deployable form. The new class of trunk fibers wasmore » prepared by the chlorination of PP round fiber, hollow-gear-shaped PP fiber, and hollow-gear-shaped PE fiber. During ATRP, degrees of grafting (d.g.) varied according to the structure of active chlorine sites on trunk fibers and ATRP conditions, and the d.g. as high as 2570% was obtained. Resulting adsorbent fibers were evaluated in U-spiked simulated seawater and the maximum adsorption capacity of 146.6 g U/kg, much higher than that of a standard adsorbent JAEA fiber (75.1 g/kg), was obtained. This new type of trunk fibers can be used for grafting a variety of uranium-interacting ligands, including designed ligands that are highly selective toward uranium.« less
Zhang, Wei; Yang, Zhe; Kaufman, Yair; Bernstein, Roy
2018-05-01
Zwitterion polymers have anti-fouling properties; therefore, grafting new zwitterions to surfaces, particularly as hydrogels, is one of the leading research directions for preventing fouling. Specifically, polyampholytes, polymers of random mixed charged subunits with a net-electric charge, offer a synthetically easy alternative for studying new zwitterions with a broad spectrum of charged moieties. Here, a novel polyampholyte hydrogel was grafted onto the surface of polyethersulfone membrane by copolymerizing a mixture of vinylsulfonic acid (VSA) and [2-(methacryloyloxy)ethyl]trimethylammonium chloride (METMAC) as the negatively and positively charged monomers, respectively, using various monomer ratios in the polymerization solution, and with N,N'-methylenebisacrylamide as the crosslinker. The physicochemical, morphological and anti-fouling properties of the modified membranes were systematically investigated. Hydrophilic hydrogels were successfully grafted using monomers at different molar ratios. A thin-film zwitterion hydrogel (∼90 nm) was achieved at a 3:1 [VSA:METMAC] molar ratio in the polymerization solution. Among all examined membranes, the zwitterion polyampholyte-modified membrane demonstrated the lowest adsorption of proteins, humic acid, and sodium alginate. It also had low fouling and high flux recovery following filtration with a protein or with an extracellular polymeric substance solution. These findings suggest that this polyampholyte hydrogel is applicable as a low fouling surface coating. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhao, Biao; Lin, Jiangfeng; Deng, Jianping; Liu, Dong
2018-05-14
Core/shell particles constructed by polymer shell and silica core have constituted a significant category of advanced functional materials. However, constructing microsized optically active helical polymer core/shell particles still remains as a big academic challenge due to the lack of effective and universal preparation methods. In this study, a seed-surface grafting precipitation polymerization (SSGPP) strategy is developed for preparing microsized core/shell particles with SiO 2 as core on which helically substituted polyacetylene is covalently bonded as shell. The resulting core/shell particles exhibit fascinating optical activity and efficiently induce enantioselective crystallization of racemic threonine. Taking advantage of the preparation strategy, novel achiral polymeric and hybrid core/shell particles are also expected. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Marinich, J A; Ferrero, C; Jiménez-Castellanos, M R
2009-05-01
Nowadays, graft copolymers are being used as an interesting option when developing a direct compression excipient for controlled release matrix tablets. New graft copolymers of ethyl methacrylate (EMA) on waxy maize starch (MS) and hydroxypropylstarch (MHS) were synthesised by free radical polymerization and alternatively dried in a vacuum oven (OD) or freeze-dried (FD). This paper evaluates the performance of these new macromolecules and discusses the effect of the carbohydrate nature and drying process on their physicochemical and technological properties. Grafting of EMA on the carbohydrate backbone was confirmed by IR and NMR spectroscopy, and the grafting yields revealed that graft copolymers present mainly a hydrophobic character. The graft copolymerization also leads to more amorphous materials with larger particle size and lower apparent density and water content than carbohydrates (MS, MHS). All the products show a lack of flow, except MHSEMA derivatives. MSEMA copolymers underwent much plastic flow and less elastic recovery than MHSEMA copolymers. Concerning the effect of drying method, FD derivatives were characterised by higher plastic deformation and less elasticity than OD derivatives. Tablets obtained from graft copolymers showed higher crushing strength and disintegration time than tablets obtained from raw starches. This behaviour suggests that these copolymers could be used as excipients in matrix tablets obtained by direct compression and with a potential use in controlled release.
Rapid, facile microwave-assisted synthesis of xanthan gum grafted polyaniline for chemical sensor.
Pandey, Sadanand; Ramontja, James
2016-08-01
Grafting method, through microwave radiation procedure is extremely productive in terms of time consumption, cost effectiveness and environmental friendliness. In this study, conductive and thermally stable composite (mwXG-g-PANi) was synthesized by grafting of aniline (ANi) on to xanthan gum (XG) using catalytic weight of initiator, ammonium peroxydisulfate in the process of microwave irradiation in an aqueous medium. The synthesis of mwXG-g-PANi were confirm by FTIR, XRD, TGA, and SEM. The influence of altering the microwave power, exposure time of microwave, concentration of monomer and the amount of initiator of graft polymerization were studied over the grafting parameters, for example, grafting percentage (%G) and grafting efficiency (%E). The maximum %G and %E achieved was 172 and 74.13 respectively. The outcome demonstrates that the microwave irradiation strategy can increase the reaction rate by 72 times over the conventional method. Electrical conductivity of XG and mwXG-g-PANi composite film was performed. The fabricated grafted sample film were then examined for the chemical sensor. The mwXG-g-PANi, effectively integrated and handled, are NH3 sensitive and exhibit a rapid sensing in presence of NH3 vapor. Chemiresistive NH3 sensors with superior room temperature sensing performance were produced with sensor response of 905 at 1ppb and 90% recovery within few second. Copyright © 2016 Elsevier B.V. All rights reserved.
Foster, Rami N; Keefe, Andrew J; Jiang, Shaoyi; Castner, David G
2013-11-01
This study investigates the grafting of poly-sodium styrene sulfonate (pNaSS) from trichlorosilane/10-undecen-1-yl 2-bromo-2-methylpropionate functionalized Si and Ti substrates by atom transfer radical polymerization (ATRP). The composition, molecular structure, thickness, and topography of the grafted pNaSS films were characterized with x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), variable angle spectroscopic ellipsometry (VASE), and atomic force microscopy (AFM), respectively. XPS and ToF-SIMS results were consistent with the successful grafting of a thick and uniform pNaSS film on both substrates. VASE and AFM scratch tests showed the films were between 25 and 49 nm thick on Si, and between 13 and 35 nm thick on Ti. AFM determined root-mean-square roughness values were ∼2 nm on both Si and Ti substrates. Therefore, ATRP grafting is capable of producing relatively smooth, thick, and chemically homogeneous pNaSS films on Si and Ti substrates. These films will be used in subsequent studies to test the hypothesis that pNaSS-grafted Ti implants preferentially adsorb certain plasma proteins in an orientation and conformation that modulates the foreign body response and promotes formation of new bone.
Foster, Rami N.; Keefe, Andrew J.; Jiang, Shaoyi; Castner, David G.
2013-01-01
This study investigates the grafting of poly-sodium styrene sulfonate (pNaSS) from trichlorosilane/10-undecen-1-yl 2-bromo-2-methylpropionate functionalized Si and Ti substrates by atom transfer radical polymerization (ATRP). The composition, molecular structure, thickness, and topography of the grafted pNaSS films were characterized with x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), variable angle spectroscopic ellipsometry (VASE), and atomic force microscopy (AFM), respectively. XPS and ToF-SIMS results were consistent with the successful grafting of a thick and uniform pNaSS film on both substrates. VASE and AFM scratch tests showed the films were between 25 and 49 nm thick on Si, and between 13 and 35 nm thick on Ti. AFM determined root-mean-square roughness values were ∼2 nm on both Si and Ti substrates. Therefore, ATRP grafting is capable of producing relatively smooth, thick, and chemically homogeneous pNaSS films on Si and Ti substrates. These films will be used in subsequent studies to test the hypothesis that pNaSS-grafted Ti implants preferentially adsorb certain plasma proteins in an orientation and conformation that modulates the foreign body response and promotes formation of new bone. PMID:24482558
NASA Astrophysics Data System (ADS)
Nezhad, Javad Razavi; Jafari, Arezou; Abdollahi, Mahdi
2018-01-01
Enhanced heavy oil recovery methods are widely utilized to increase oil recovery. For this purpose, polymer and surfactant flooding have been used extensively. Recently, polymeric surfactant flooding has become an attractive alternative to sole polymer flooding due to their capability of providing an increase in solution viscosity and a decrease in interfacial tension, which are both beneficial for efficiency of the process. Applying nanoparticles as an additive to polymer solutions is a method to improve viscosity and alter rock wettability. Therefore, in this research, multi-walled carbon nanotube (MWCNT) was mixed with a polymeric surfactant of polyacrylamide-graft-lignin copolymer (PAM-g-L) synthesized via radical grafting reaction. Moreover, several solutions with different concentrations of nanoparticles with PAM-g-L were prepared. The solutions were injected into a micromodel to evaluate the PAM-g-L flooding efficiency in presence of the multi-walled carbon nanotubes. The results of micromodel flooding showed that increasing MWCNT concentration results in lower sweep efficiencies; and consequently, oil production will decrease. Therefore, MWCNT along with PAM-g-L has an unacceptable performance in enhanced heavy oil recovery. But data of wettability tests revealed that MWCNT can change the wettability from oil-wet to water-wet. In addition, the combination of the PAM-g-L and MWCNT in a solution will cause more water-wet condition.
Polymer-Polymer Bilayer Actuator
NASA Technical Reports Server (NTRS)
Su, Ji (Inventor); Harrison, Joycelyn S. (Inventor); St.Clair, Terry L. (Inventor)
2003-01-01
A device for providing an electromechanical response includes two polymeric webs bonded to each other along their lengths. At least one polymeric web is activated upon application thereto of an electric field and exhibits electrostriction by rotation of polar graft moieties within the polymeric web. In one embodiment, one of the two polymeric webs in an active web upon application thereto of the electric field, and the other polymeric web is a non-active web upon application thereto of the electric field. In another embodiment, both of the two polymeric webs are capable of being active webs upon application thereto of the electric field. However, these two polymeric webs are alternately activated and non-activated by the electric field.
Design and Synthesis of Multigraft Copolymer Thermoplastic Elastomers: Superelastomers
Wang, Huiqun; Lu, Wei; Wang, Weiyu; ...
2017-09-28
Thermoplastic elastomers (TPEs) have been widely studied because of their recyclability, good processibility, low production cost, and unique performance. The building of graft-type architectures can greatly improve mechanical properties of TPEs. This review focuses on the advances in different approaches to synthesize multigraft copolymer TPEs. Anionic polymerization techniques allow for the synthesis of well-defined macromolecular structures and compositions, with great control over the molecular weight, polydispersity, branch spacing, number of branch points, and branch point functionality. Progress in emulsion polymerization offers potential approaches to commercialize these types of materials with low production cost via simple operations. Moreover, the use ofmore » multigraft architecturesprovides a solution to the limited elongational properties of all-acrylic TPEs, which can greatly expand their potential application range. The combination of different polymerization techniques, the introduction of new chemical compositions, and the incorporation of sustainable sources are expected to be further investigated in this area in coming years.« less
Polymeric blends for sensor and actuation dual functionality
NASA Technical Reports Server (NTRS)
St. Clair, Terry L. (Inventor); Harrison, Joycelyn S. (Inventor); Su, Ji (Inventor); Ounaies, Zoubeida (Inventor)
2004-01-01
The invention described herein supplies a new class of electroactive polymeric blend materials which offer both sensing and actuation dual functionality. The blend comprises two components, one component having a sensing capability and the other component having an actuating capability. These components should be co-processable and coexisting in a phase separated blend system. Specifically, the materials are blends of a sensing component selected from the group consisting of ferroelectric, piezoelectric, pyroelectric and photoelectric polymers and an actuating component that responds to an electric field in terms of dimensional change. Said actuating component includes, but is not limited to, electrostrictive graft elastomers, dielectric electroactive elastomers, liquid crystal electroactive elastomers and field responsive polymeric gels. The sensor functionality and actuation functionality are designed by tailoring the relative fraction of the two components. The temperature dependence of the piezoelectric response and the mechanical toughness of the dual functional blends are also tailored by the composition adjustment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huiqun; Lu, Wei; Wang, Weiyu
Thermoplastic elastomers (TPEs) have been widely studied because of their recyclability, good processibility, low production cost, and unique performance. The building of graft-type architectures can greatly improve mechanical properties of TPEs. This review focuses on the advances in different approaches to synthesize multigraft copolymer TPEs. Anionic polymerization techniques allow for the synthesis of well-defined macromolecular structures and compositions, with great control over the molecular weight, polydispersity, branch spacing, number of branch points, and branch point functionality. Progress in emulsion polymerization offers potential approaches to commercialize these types of materials with low production cost via simple operations. Moreover, the use ofmore » multigraft architecturesprovides a solution to the limited elongational properties of all-acrylic TPEs, which can greatly expand their potential application range. The combination of different polymerization techniques, the introduction of new chemical compositions, and the incorporation of sustainable sources are expected to be further investigated in this area in coming years.« less
Preparation of polymeric Janus particles by directional UV-induced reactions.
Liu, Lianying; Ren, Mingwei; Yang, Wantai
2009-09-15
Polymeric Janus particles are obtained by UV-induced selective surface grafting polymerizations and coupling reactions, in virtue of the light-absorption of photoreactive materials such as the immobilized photoinitiator and spread photoinitiator solution on the surfaces exposed to UV light and the sheltering of densely arrayed immovable particles from light. Varying the monomers or macromolecules applied in photografting polymerization or coupling reaction, and choosing diverse polymeric particles of various size, bicolor and amphiphilic Janus particles could be successfully achieved. Observations by fluorescence microscope, scanning electron microscope ,and transmission electron microscope confirmed the asymmetrical morphology of the resultant Janus particles.
Morigaki, Kenichi; Mizutani, Kazuyuki; Saito, Makoto; Okazaki, Takashi; Nakajima, Yoshihiro; Tatsu, Yoshiro; Imaishi, Hiromasa
2013-02-26
We describe a stable and functional model biological membrane based on a polymerized lipid bilayer with a chemically modified surface. A polymerized lipid bilayer was formed from a mixture of two diacetylene-containing phospholipids, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC) and 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphoethanolamine (DiynePE). DiynePC formed a stable bilayer structure, whereas the ethanolamine headgroup of DiynePE enabled functional molecules to be grafted onto the membrane surface. Copolymerization of DiynePC and DiynePE resulted in a robust bilayer. Functionalization of the polymeric bilayer provided a route to a robust and biomimetic surface that can be linked with biomolecules, cells, and three-dimensional (3D) microstructures. Biotin and peptides were grafted onto the polymeric bilayer for attaching streptavidin and cultured mammalian cells by molecular recognition, respectively. Nonspecific adsorption of proteins and cells on polymeric bilayers was minimum. DiynePE was also used to attach a microstructure made of an elastomer (polydimethylsiloxan: PDMS) onto the membrane, forming a confined aqueous solution between the two surfaces. The microcompartment enabled us to assay the activity of a membrane-bound enzyme (cyochrome P450). Natural (fluid) lipid bilayers were incorporated together with membrane-bound proteins by lithographically polymerizing DiynePC/DiynePE bilayers. The hybrid membrane of functionalized polymeric bilayers and fluid bilayers offers a novel platform for a wide range of biomedical applications including biosensor, bioassay, cell culture, and cell-based assay.
NASA Astrophysics Data System (ADS)
Akkaş Kavaklı, Pınar; Kavaklı, Cengiz; Seko, Noriaki; Tamada, Masao; Güven, Olgun
2016-10-01
A novel nonwoven fabric adsorbent having 4-vinylpyridine functional groups was prepared by using radiation-induced emulsion graft polymerization method and grafting 4-vinylpyridine monomer onto a polyethylene-coated polypropylene nonwoven fabric (NWF) in aqueous emulsion solution. The grafting conditions of the 4-vinylpyridine monomer onto the NWF were optimised and 150% Dg VP-g-NWF was prepared using 30 kGy pre-irradiation dose, 5% VP monomer concentration and 0.5% (w/w) Tween 20 in aqueous emulsion. Grafted 4-vinylpyridine chains on the NWF were then quaternized for the preparation of QVP-g-NWF adsorbent. All fabric structures were characterized by using Fourier-transform infrared spectrometer, x-ray photoelectron spectrometer and scanning electron microscope. QVP-g-NWF adsorbent was used in batch adsorption experiments for As(V) ions by studying the pH, contact time, and initial As(V) ion concentration parameters. Results showed that QVP-g-NWF adsorbent has significant As(V) adsorption and experimental As(V) adsorption capacity was 98.04 mg As(V)/g polymer from 500 mg/L initial As(V) concentration at pH 7.00.
Synthetic vascular graft fabrication by a precipitation-flotation method.
Kowligi, R R; von Maltzahn, W W; Eberhart, R C
1988-01-01
The authors report a new technique for fabricating synthetic vascular grafts. It involves spraying a polymer solution (generated by mixing polymer solution and nitrogen gas in a spray nozzle) onto the surface of a flowing nonsolvent liquid (water): polymer fibers form during precipitation of the spray drops as they travel on the water surface, until picked up by a partially submerged rotating mandrel. Depending on process conditions, these fibers may aggregate to form a continuous layer or remain separated until they are picked up. A number of independent process variables allow control of characteristics of the conduits: gas and polymer solution feed rates, nozzle traverse speed, nonsolvent (water) flow rate, spray-mandrel spacing, and mandrel rpm. The SEM reveals that the graft wall consists of numerous fused polymeric fibers arrayed in both the circumferential and axial directions. The inner surface resembles a mesh of closely spaced fused fibers. The conduits have walls with interconnected pores (water permeabilities between 0.05 to 7.0 ml/min-cm2); nonporous surfaces also can be made. Tensile stress of the grafts at failure (in radial direction) varied between 0.05 to 2.3 MPa, whereas elongation at break ranged between 150 to 600%, depending on the porosity and fabrication conditions. A major advantage of this technique is its ability to produce grafts of a wide variety of fiber sizes and fusion characteristics in an inexpensive, safe, and reliable fashion.
Mourão, Carlos Fernando de Almeida Barros; Valiense, Helder; Melo, Elias Rodrigues; Mourão, Natália Belmock Mascarenhas Freitas; Maia, Mônica Diuana-Calasans
2015-01-01
The use of autologous platelet concentrates, represent a promising and innovator tools in the medicine and dentistry today. The goal is to accelerate hard and soft tissue healing. Among them, the platelet-rich plasma (PRP) is the main alternative for use in liquid form (injectable). These injectable form of platelet concentrates are often used in regenerative procedures and demonstrate good results. The aim of this study is to present an alternative to these platelet concentrates using the platelet-rich fibrin in liquid form (injectable) and its use with particulated bone graft materials in the polymerized form.
Mizutani, Aya; Nagase, Kenichi; Kikuchi, Akihiko; Kanazawa, Hideko; Akiyama, Yoshikatsu; Kobayashi, Jun; Annaka, Masahiko; Okano, Teruo
2010-09-17
Poly(N-isopropylacrylamide-co-N-tert-butylacrylamide) [P(IPAAm-co-tBAAm)] brushes were prepared on poly(hydroxy methacrylate) (PHMA) [hydrolyzed poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)] beads having large pores by surface-initiated atom transfer radical polymerization (ATRP) and applied to the stationary phases of thermo-responsive chromatography. Optimized amount of copolymer brushes grafted PHMA beads were able to separate peptides and proteins with narrow peaks and a high resolution. The beads were found to have a specific surface area of 43.0 m(2)/g by nitrogen gas adsorption method. Copolymer brush of P(IPAAm-co-tBAAm) grafted PHMA beads improved the stationary phase of thermo-responsive chromatography for the all-aqueous separation of peptides and proteins. 2010 Elsevier B.V. All rights reserved.
Mussel inspired polymerized P(TA-TETA) for facile functionalization of carbon nanotube
NASA Astrophysics Data System (ADS)
Si, Shuxian; Gao, Tingting; Wang, Junhao; Liu, Qinze; Zhou, Guowei
2018-03-01
This article describes a novel and effective approach for non-covalent modification of carbon nanotube (CNT) via the mussel inspired polymerization of tannic acid (TA) and triethylenetetramine (TETA) and subsequent surface initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and photograph were used to study the successful preparation of polymer brush grafted CNT (CNT-P(TA-TETA)-PDMAEMA) composite as well as the pH-responsive behavior of the composite. Furthermore, by amine protonation and in situ reduction, gold nanoparticles were successfully uploaded and the catalytic property of CNT-P(TA-TETA)-PDMAEMA/Au was investigated. We believe that the surface functionalization strategy can be extended to graphene and other substrates, and the surface properties can be regulated by grafting polymer brushes with different functionalities.
USDA-ARS?s Scientific Manuscript database
Hydrophilic poly (vinyl alcohol-co-ethylene) (PVA-co-PE) copolymers with 27 mol %, 32 mol % and 44 mol % ethylene were functionalized by melt radical graft copolymerization with 2,4-diamino-6-diallylamino-1,3,5-triazine (NDAM) using reactive extrusion. This functionalization imparts antibacterial pr...
USDA-ARS?s Scientific Manuscript database
Corn starch granules have been previously investigated as fillers in polymers. In this study, much smaller particles in the form of spherulites produced by steam jet-cooking high-amylose corn starch and oleic acid to form amylose inclusion complexes were graft polymerized with methyl acrylate, both ...
Surface modification of chitin and chitosan with poly(3-hexylthiophene) via oxidative polymerization
NASA Astrophysics Data System (ADS)
Hai, Thien An Phung; Sugimoto, Ryuichi
2018-03-01
In the present work, the modification of biomaterials such as chitin and chitosan were successfully prepared by directly grafting poly(3-hexylthiophene) (P3HT) to their surfaces using simple oxidative polymerization with FeCl3. The thermal stability and crystallinity of grafted chitin and chitosan changed upon grafting with P3HT. The build-up of π-π* structure from the P3HT on the surface of chitin and chitosan resulted in the appearance of UV-vis absorption and fluorescence emission peaks in the range from 500 to 600 nm. Introducing P3HT to the surface of chitin and chitosan improved significantly the electrical property of chitin and chitosan with the increase in conductivity from 10-9 to 10-7 S/cm. Furthermore, the usual behavior of hydrophilic surface of chitin and chitosan that turned to hydrophobic with water contact angle of 97.7° and 107.0°, respectively in the presence of P3HT. The mechanism for graft reaction of P3HT to chitin and chitosan was also proposed and discussed.
Physical properties of agave cellulose graft polymethyl methacrylate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim
2013-11-27
The grafting polymerization of methyl methacrylate and Agave cellulose was prepared and their structural analysis and morphology were investigated. The grafting reaction was carried out in an aqueous medium using ceric ammonium nitrate as an initiator. The structural analysis of the graft copolymers was carried out by Fourier transform infrared and X-ray diffraction. The graft copolymers were also characterized by field emission scanning electron microscopy (FESEM). An additional peak at 1732 cm{sup −1} which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity indexmore » upon grafting was found from 0.74 to 0.68 for cellulose and grafted Agave cellulose, respectively. Another evidence of grafting showed in the FESEM observation, where the surface of the grafted cellulose was found to be roughed than the raw one.« less
Goodwin, Andrew; Wang, Weiyu; Kang, Nam -Goo; ...
2015-08-21
We present in this paper the synthesis of poly(n-butyl acrylate)-g-poly(methyl methacrylate) (PnBA-g-PMMA) multigraft copolymers via a grafting-through (macromonomer) approach. The synthesis was performed using two controlled polymerization techniques. The PMMA macromonomer was obtained by high-vacuum anionic polymerization followed by the copolymerization of n-butyl acrylate and PMMA macromonomer using reversible addition–fragmentation chain transfer (RAFT) polymerization to yield the desired all-acrylic multigraft structures. The PnBA-g-PMMA multigraft structures exhibit randomly spaced branch points with various PMMA contents, ranging from 15 to 40 vol %, allowing an investigation into how physical properties vary with differences in the number of branch points and molecular weightmore » of grafted side chains. The determination of molecular weight and polydispersity indices of both the PMMA macromonomer and the graft copolymers was carried out using size exclusion chromatography with triple detection, and the structural characteristics of both the macromonomer and PnBA-g-PMMA graft materials were characterized by 1H and 13C NMR. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed for monitoring the macromonomer synthesis. Thermal characteristics of the materials were analyzed using differential scanning calorimetry and thermogravimetric analysis. The mechanical performance of the graft materials was characterized by rheology and dynamic mechanical analysis, revealing that samples with PMMA content of 25–40 vol % exhibit superior elastomeric properties as compared to materials containing short PMMA side chains or <25 vol % PMMA. In conclusion, atomic force microscopy showed a varying degree of microphase separation between the glassy and rubbery components that is strongly dependent on PMMA side chain molecular weight.« less
Wang, Michael C P; Gates, Byron D
2012-09-04
Selenium nanostructures, which are otherwise susceptible to oxidative damage, were encapsulated with a thin layer of polystyrene. The thin layer of polystyrene was grafted onto the surfaces of selenium by a surface initiated atom transfer radical polymerization reaction. These encapsulated nanostructures demonstrate an enhanced resistance towards corrosion.
Kitayama, Yukiya; Takeuchi, Toshifumi
2014-10-28
CO2/N2-triggered stability-controllable gold nanoparticles (AuNPs) grafted with poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA) layers (PDEAEMA-g-AuNPs) were synthesized by the surface-initiated atom transfer radical polymerization of DEAEMA with AuNPs bearing the bis[2-(2-bromoisobutyryloxy)undecyl] layer (grafting from method). Extension of the PDEAEMA chain length increased the stability of the PDEAEMA-g-AuNPs in CO2-bubbled water because of the electrosteric repulsion of the protonated PDEAEMA layer. The chain-length-dependent stability of PDEAEMA-g-AuNPs was confirmed by DLS and UV-vis spectra by using the localized surface plasmon resonance property of the AuNPs, where the extinction wavelength was shifted toward shorter wavelength with increasing PDEAEMA chain length. The reversible stability change with the gas stimuli of CO2/N2 was also successfully demonstrated. Finally, the transfer across the immiscible interface between water and organic solvent was successfully demonstrated by N2-triggered insolubilization of PDEAEMA layer on AuNPs in the aqueous phase, leading to the successful collection of AuNPs using organic solvent from the aqueous phase. Our "grafting from" method of reversible stability-controllable AuNPs can be applied to develop advanced materials such as reusable optical AuNP-based nanosensors because the molecular recognition layer can be constructed by two-step polymerization.
Molecular architecture requirements for polymer-grafted lignin superplasticizers.
Gupta, Chetali; Sverdlove, Madeline J; Washburn, Newell R
2015-04-07
Superplasticizers are a class of anionic polymer dispersants used to inhibit aggregation in hydraulic cement, lowering the yield stress of cement pastes to improve workability and reduce water requirements. The plant-derived biopolymer lignin is commonly used as a low-cost/low-performance plasticizer, but attempts to improve its effects on cement rheology through copolymerization with synthetic monomers have not led to significant improvements. Here we demonstrate that kraft lignin can form the basis for high-performance superplasticizers in hydraulic cement, but the molecular architecture must be based on a lignin core with a synthetic-polymer corona that can be produced via controlled radical polymerization. Using slump tests of ordinary Portland cement pastes, we show that polyacrylamide-grafted lignin prepared via reversible addition-fragmentation chain transfer polymerization can reduce the yield stress of cement paste to similar levels as a leading commercial polycarboxylate ether superplasticizer at concentrations ten-fold lower, although the lignin material produced via controlled radical polymerization does not appear to reduce the dynamic viscosity of cement paste as effectively as the polycarboxylate superplasticizer, despite having a similar affinity for the individual mineral components of ordinary Portland cement. In contrast, polyacrylamide copolymerized with a methacrylated kraft lignin via conventional free radical polymerization having a similar overall composition did not reduce the yield stress or the viscosity of cement pastes. While further work is required to elucidate the mechanism of this effect, these results indicate that controlling the architecture of polymer-grafted lignin can significantly enhance its performance as a superplasticizer for cement.
Artificial Informational Polymers and Nanomaterials from Ring-Opening Metathesis Polymerization
NASA Astrophysics Data System (ADS)
James, Carrie Rae
Inspired by naturally occurring polymers (DNA, polypeptides, polysaccharides, etc.) that can self-assemble on the nanoscale into complex, information-rich architectures, we have synthesized nucleic acid based polymers using ROMP. These polymers were synthesized using a graft-through strategy, whereby nucleic acids bearing a strained cyclic olefin were directly polymerized. This is the first example of the graft-through polymerization of nucleic acids. Our approach takes advantage of non-charged peptide nucleic acids (PNAs) as elements to incorporate into ROMP polymer backbones. PNA is a synthetic nucleic acid analogue known for its increased affinity and specificity for complementary DNA or RNA. To accomplish the graft-through polymerization of PNA, we conjugated PNA to strained cyclic olefins using solid phase peptide conjugation chemistry. These PNA monomers were then directly polymerized into homo and block copolymers forming brushes, or comb-like arrangements, of information. Block copolymer amphiphiles of these materials, where the PNA brush served as the hydrophilic portion, were capable of self-assembly into spherical nanoparticles (PNA NPs). These PNA NPs were then studied with respect to their ability to hybridize complementary DNA sequences, as well as their ability to undergo cellular internalization. PNA NPs consisting of densely packed brushes of nucleic acids possessed increased thermal stability when mixed with their complementary DNA sequence, indicating a greater DNA binding affinity over their unpolymerized PNA counterparts. In addition, by arranging the PNA into dense brushes at the surface of the nanoparticle, Cy5.5 labeled PNA NPs were able to undergo cellular internalization into HeLa cells without the need for an additional cellular delivery device. Importantly, cellular internalization of PNA has remained a significant challenge in the literature due to the neutrally charged amino-ethyl glycine backbone of PNA. Therefore, this represents a novel way of facilitating cellular uptake of PNA. This materials strategy represents the first direct polymerization of nucleic acids, and presents a novel method for arranging biological information on the nanoscale at high density in order to confer novel attributes.
Zhao, Chuanliang; Zheng, Huaili; Sun, Yongjun; Zhang, Shixin; Liang, Jianjun; Liu, Yongzhi; An, Yanyan
2018-05-30
Graft modified flocculants have recently received increasing attention in the field of water treatment as they have the combinative advantages of synthetic and natural polymeric flocculants. In this work, surface-active monomer benzyl(methacryloyloxyethyl)dimethylammonium chloride (BMDAC) was selected to graft on dextran (DX) with high molecular weight (10.3 × 10 6 g/mol) produced through enzyme-catalyzed process in order to remove dissolved dyes from wastewater. The flocculant (DAB) was fabricated by ultrasound initiated polymerization technique, and the structure characterization of FTIR, 1 H/ 12 C NMR, XRD and XPS spectrum confirmed the successful grafting. Then the Congo red (CR) removal efficiency by DAB was optimized based on the flocculation conditions, including wastewater initial pH, flocculant dosage and initial dye concentration. The effect of suspended solids on the removal of dyes was evaluated in kaolin-CR simulated wastewater. The results indicated that the optimal removal efficiency of CR was 68.1% and 88.2% in single CR and kaolin-CR flocculation system, respectively. The improvement of removal efficiency was attributed to the fact that partial CR molecules were adsorbed onto kaolin particles before flocculation, and were synergistically flocculated accompanied by kaolin particles. Finally, the flocculation mechanism was discussed by a detailed investigation of the zeta potentials, FTIR and XPS spectra of flocs, which can provide important reference for optimizing the flocculation conditions and designing novel high-performance flocculants. Copyright © 2018. Published by Elsevier B.V.
Yu, Ming; Li, Wanxin; Wang, Ziqiang; Zhang, Bowu; Ma, Hongjuan; Li, Linfan; Li, Jingye
2016-01-01
The prevention of refractory organic pollution caused by conventional dyeing and the development of new fabrics with various functions are two issues to be solved urgently in the field of textile fabrication. Here, we report a new environmentally friendly route for the simultaneous coloration and functionalization of textiles by the covalent immobilization of a metal–organic framework, Cr-based MIL-101(Cr), onto the surfaces of nylon fabrics by co-graft polymerization with 2-hydroxyethyl acrylate initiated by γ-ray irradiation. The Cr(III) clusters color the nylon fabric, and the color intensity varies with the MIL-101 content, providing a “green” textile coloration method that is different from conventional dyeing processes. An X-ray diffraction (XRD) analysis shows that the nanoporous structure of the original MIL-101 particles is retained during radiation-induced graft polymerization. Numerous nanopores are introduced onto the surface of the nylon fabric, which demonstrated better sustained-release-of-aroma performance versus pristine nylon fabric in tests. The modified fabrics exhibit laundering durability, with MIL-101 nanoparticles intact on the nylon surface after 30 h of dry cleaning. PMID:26948405
Liu, Ke; Gu, Pan; Hamaker, Kiri; Fan, Z Hugh
2012-01-01
Thermoplastics have been increasingly used for fabricating microfluidic devices because of their low cost, mechanical/biocompatible attributes, and well-established manufacturing processes. However, there is sometimes a need to integrate such a device with components made from other materials such as polydimethylsiloxane (PDMS). Bonding thermoplastics with PDMS to produce hybrid devices is not straightforward. We have reported our method to modify the surface property of a cyclic olefin copolymer (COC) substrate by using corona discharge and grafting polymerization of 3-(trimethoxysilyl)propyl methacrylate; the modified surface enabled strong bonding of COC with PDMS. In this paper, we report our studies on the surface modification mechanism using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurement. Using this bonding method, we fabricated a three-layer (COC/PDMS/COC) hybrid device consisting of elastomer-based valve arrays. The microvalve operation was confirmed through the displacement of a dye solution in a fluidic channel when the elastomer membrane was pneumatically actuated. Valve-enabled microfluidic handling was demonstrated. Copyright © 2011 Elsevier Inc. All rights reserved.
Liu, Caihong; Lee, Jongho; Ma, Jun; Elimelech, Menachem
2017-02-21
In this study, we demonstrate a highly antifouling thin-film composite (TFC) membrane by grafting a zwitterionic polymer brush via atom-transfer radical-polymerization (ATRP), a controlled, environmentally benign chemical process. Initiator molecules for polymerization were immobilized on the membrane surface by bioinspired catechol chemistry, leading to the grafting of a dense zwitterionic polymer brush layer. Surface characterization revealed that the modified membrane exhibits reduced surface roughness, enhanced hydrophilicity, and lower surface charge. Chemical force microscopy demonstrated that the modified membrane displayed foulant-membrane interaction forces that were 1 order of magnitude smaller than those of the pristine TFC membrane. The excellent fouling resistance imparted by the zwitterionic brush layer was further demonstrated by significantly reduced adsorption of proteins and bacteria. In addition, forward osmosis fouling experiments with a feed solution containing a mixture of organic foulants (bovine-serum albumin, alginate, and natural organic matter) indicated that the modified membrane exhibited significantly lower water flux decline compared to the pristine TFC membrane. The controlled architecture of the zwitterionic polymer brush via ATRP has the potential for a facile antifouling modification of a wide range of water treatment membranes without compromising intrinsic transport properties.
Silicon tetrachloride plasma induced grafting for starch-based composites
NASA Astrophysics Data System (ADS)
Ma, Yonghui C.
Non-modified virgin starch is seldom used directly in industrial applications. Instead, it is often physically and/or chemically modified to achieve certain enhanced properties. For many of the non-food applications, these modifications involve changing its hydrophilicity to create hydrophobic starch. In this study, the hydrophobic starch was produced through silicon tetrachloride (SiCl4) plasma induced graft polymerization, so that it could be used as a renewable and biodegradable component of, or substitute for, the petrochemical-based plastics. It was suggested that this starch graft-copolymer might be used as reinforcing components in silicone-rubber materials for starch-based composites. To make this starch graft-copolymer, the ethyl ether-extracted starch powders were surface functionalized by SiCl4 plasma using a 13.56 MHz radio frequency rotating plasma reactor and subsequently stabilized by either ethylene diamine or dichlorodimethylsilane (DCDMS). The functionalized starch was then graft-polymerized with DCDMS to form polydimethylsiloxane (PDMS) layers around the starch granules. The presence of this PDMS layer was demonstrated by electron spectroscopy for chemical analysis (ESCA/XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), gas chromatography-mass spectroscopy (GC-MS), thermo gravimetry/differential thermal analysis (TG/DTA), and other analyses. It was shown that the surface morphology, thermal properties, swelling characteristic, and hydrophilicity of starch were all changed due to the existence of this protective hydrophobic PDMS layer. Several different procedures to carry out the functionalization and graft polymerization steps were evaluated to improve the effectiveness of the reactions and to prevent the samples from being hydrolyzed by the grafting byproduct HCl. Actinometry, GC-MS, and residual gas analyzer (RGA) were used to investigate the mechanisms of the SiCl4 discharge and to optimize the plasma modification. These plasma diagnostic results showed that, to achieve better plasma modification, higher plasma power and lower SiCl4 vapor pressure would be needed; however, it was found that the efficiency of the modification peaked at a certain point of plasma treatment time (˜10 minutes) and there was not much subsequent improvement with prolonged plasma treatment.
Yang, Rongbing; Nam, Kihoon; Kim, Sung Wan; Turkson, James; Zou, Ye; Zuo, Yi Y; Haware, Rahul V; Chougule, Mahavir B
2017-01-03
Desired characteristics of nanocarriers are crucial to explore its therapeutic potential. This investigation aimed to develop tunable bioresponsive newly synthesized unique arginine grafted poly(cystaminebis(acrylamide)-diaminohexane) [ABP] polymeric matrix based nanocarriers by using L9 Taguchi factorial design, desirability function, and multivariate method. The selected formulation and process parameters were ABP concentration, acetone concentration, the volume ratio of acetone to ABP solution, and drug concentration. The measured nanocarrier characteristics were particle size, polydispersity index, zeta potential, and percentage drug loading. Experimental validation of nanocarrier characteristics computed from initially developed predictive model showed nonsignificant differences (p > 0.05). The multivariate modeling based optimized cationic nanocarrier formulation of <100 nm loaded with hydrophilic acetaminophen was readapted for a hydrophobic etoposide loading without significant changes (p > 0.05) except for improved loading percentage. This is the first study focusing on ABP polymeric matrix based nanocarrier development. Nanocarrier particle size was stable in PBS 7.4 for 48 h. The increase of zeta potential at lower pH 6.4, compared to the physiological pH, showed possible endosomal escape capability. The glutathione triggered release at the physiological conditions indicated the competence of cytosolic targeting delivery of the loaded drug from bioresponsive nanocarriers. In conclusion, this unique systematic approach provides rational evaluation and prediction of a tunable bioresponsive ABP based matrix nanocarrier, which was built on selected limited number of smart experimentation.
Sun, Yongjun; Zhu, Chengyu; Sun, Wenquan; Xu, Yanhua; Xiao, Xuefeng; Zheng, Huaili; Wu, Huifang; Liu, Cuiyun
2017-05-15
In this work, a highly efficient and environmentally friendly chitosan-based graft flocculant, namely, acrylamide- and dimethyl diallyl ammonium chloride-grafted chitosan [CS-g-P(AM-DMDAAC)], was prepared successfully through plasma initiation. FTIR results confirmed the successful polymerization of CS-g-P(AM-DMDAAC) and P(AM-DMDAAC). P(AM-DMDAAC) was the copolymer of acrylamide- and dimethyl diallyl ammonium chloride. SEM results revealed that a densely cross-linked network structure formed on the surface. XRD results verified that the ordered crystal structure of chitosan in CS-g-P(AM-DMDAAC) was changed into an amorphous structure after plasma-induced polymerization. The flocculation results of low-algal-turbidity water further showed the optimal flocculation efficiency of turbidity removal rate, COD removal rate, and Chl-a removal rate were 99.02%, 96.11%, and 92.20%, respectively. The flocculation efficiency of CS-g-P(AM-DMDAAC) were significantly higher than those obtained by cationic polyacrylamide (CPAM) and Polymeric aluminum and iron (PAFC). This work provided a valuable basis for the design of eco-friendly naturally modified polymeric flocculants to enhance the flocculation of low-algal-turbidity water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states
NASA Astrophysics Data System (ADS)
Wåhlander, Martin; Nilsson, Fritjof; Carlmark, Anna; Gedde, Ulf W.; Edmondson, Steve; Malmström, Eva
2016-08-01
We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors.We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors. Electronic supplementary information (ESI) available: Figures of LCST, polymerization kinetics, melt-processed films, DLS, TGA, precipitated fiber and powder, TEM (of isotropic GO), birefringence, OP-data, DMTA-data and DSC. See DOI: 10.1039/c6nr01502f
Surface engineering: molecularly imprinted affinity membranes by photograft polymerization
NASA Astrophysics Data System (ADS)
Matuschewski, Heike; Sergeyeva, Tatiana A.; Bendig, Juergen; Piletsky, Sergey A.; Ulbricht, Matthies; Schedler, Uwe
2001-02-01
Commercial polymer microfiltration membranes were surface-modified with a graft copolymer of a functional monomer and a crosslinker in the presence of a template (triazine-herbicide). As result, membranes covered with a thin layer of imprinted polymer (MIP) selective to the template were obtained. The influence of the polymerization conditions on membrane recognition properties was studied by membranes
Anderson, Matthew; Shelke, Namdev B.; Manoukian, Ohan S.; Yu, Xiaojun; McCullough, Louise D.; Kumbar, Sangamesh G.
2017-01-01
Treatment of large peripheral nerve damages ranges from the use of an autologous nerve graft to a synthetic nerve growth conduit. Biological grafts, in spite of many merits, show several limitations in terms of availability and donor site morbidity, and outcomes are suboptimal due to fascicle mismatch, scarring, and fibrosis. Tissue engineered nerve graft substitutes utilize polymeric conduits in conjunction with cues both chemical and physical, cells alone and or in combination. The chemical and physical cues delivered through polymeric conduits play an important role and drive tissue regeneration. Electrical stimulation (ES) has been applied toward the repair and regeneration of various tissues such as muscle, tendon, nerve, and articular tissue both in laboratory and clinical settings. The underlying mechanisms that regulate cellular activities such as cell adhesion, proliferation, cell migration, protein production, and tissue regeneration following ES is not fully understood. Polymeric constructs that can carry the electrical stimulation along the length of the scaffold have been developed and characterized for possible nerve regeneration applications. We discuss the use of electrically conductive polymers and associated cell interaction, biocompatibility, tissue regeneration, and recent basic research for nerve regeneration. In conclusion, a multifunctional combinatorial device comprised of biomaterial, structural, functional, cellular, and molecular aspects may be the best way forward for effective peripheral nerve regeneration. PMID:27278739
Gu, Minghao; Kilduff, James E; Belfort, Georges
2012-02-01
Three critical aspects of searching for and understanding how to find highly resistant surfaces to protein adhesion are addressed here with specific application to synthetic membrane filtration. They include the (i) discovery of a series of previously unreported monomers from a large library of monomers with high protein resistance and subsequent low fouling characteristics for membrane ultrafiltration of protein-containing fluids, (ii) development of a new approach to investigate protein-resistant mechanisms from structure-property relationships, and (iii) adaptation of a new surface modification method, called atmospheric pressure plasma-induced graft polymerization (APP), together with a high throughput platform (HTP), for low cost vacuum-free synthesis of anti-fouling membranes. Several new high-performing chemistries comprising two polyethylene glycol (PEG), two amines and one zwitterionic monomers were identified from a library (44 commercial monomers) of five different classes of monomers as strong protein-resistant monomers. Combining our analysis here, using the Hansen solubility parameters (HSP) approach, and data from the literature, we conclude that strong interactions with water (hydrogen bonding) and surface flexibility are necessary for producing the highest protein resistance. Superior protein-resistant surfaces and subsequent anti-fouling performance was obtained with the HTP-APP as compared with our earlier HTP-photo graft-induced polymerization (PGP). Copyright © 2011 Elsevier Ltd. All rights reserved.
Flavonoids preservation and release by methacrylic acid-grafted (N-vinyl-pyrrolidone).
Parisi, Ortensia Ilaria; Puoci, Francesco; Iemma, Francesca; Curcio, Manuela; Cirillo, Giuseppe; Spizzirri, Umile Gianfranco; Picci, Nevio
2013-01-01
Flavonoids preservation and release. Synthesis of a polymeric material able to prevent thermal and photo degradation of a flavonoid model compound, such as (+)-catechin, and suitable for a controlled/sustained delivery of this molecule in gastro-intestinal simulating fluids. Methacrylic acid (MAA) was grafted onto poly(N-vinyl-pyrrolidone) (PVP) by a free radical grafting procedure involving a single-step reaction at room temperature. For this purpose, hydrogen peroxide/ascorbic acid redox pair was employed as water-soluble and biocompatible initiator system. FT-IR spectra confirmed the insertion of MAA onto the polymeric chain. Stability studies, performed under various conditions, such as freeze-thaw cycles, exposure to strong light, thermal stability studies under constant humidity and with light protection at different temperatures, showed the preservative properties of the polymeric material towards flavonoids. Furthermore, the biocompatibility was highlighted by Hen's Egg Test-Chorioallantoic Membrane assay and in vitro release studies demonstrated the possibility to employ PVP-MAA copolymer as a device for gastro-intestinal release of flavonoids. The coupling of good preservative properties together with biocompatibility and the usefulness as carrier in controlled release make this kind of material very interesting from an industrial point of view for different applications in food, pharmaceutical, and cosmetic fields.
Plasma graft-polymerization for synthesis of highly stable hydroxide exchange membrane
NASA Astrophysics Data System (ADS)
Hu, Jue; Zhang, Chengxu; Jiang, Lin; Fang, Shidong; Zhang, Xiaodong; Wang, Xiangke; Meng, Yuedong
2014-02-01
A novel plasma graft-polymerization approach is adopted to prepare hydroxide exchange membranes (HEMs) using cardo polyetherketone powders (PEK-C) and vinylbenzyl chloride. The benzylic chloromethyl groups can be successfully introduced into the PEK-C polymer matrix via plasma graft-polymerization. This approach enables a well preservation in the structure of functional groups and formation of a highly cross-linked structure in the membrane, leading to an improvement on the stability and performance of HEMs. The chemical stabilities, including alkaline and oxidative stability, are evaluated under severe conditions by measuring hydroxide conductivity and weight changes during aging. The obtained PGP-NOH membrane retains 86% of the initial hydroxide conductivity in 6 mol L-1 KOH solution at 60 °C for 120 h, and 94% of the initial weight in 3 wt% H2O2 solution at 60 °C for 262 h. The PGP-NOH membrane also possesses excellent thermal stability (safely used below 120 °C), alcohol resistance (ethanol permeability of 6.6 × 10-11 m2 s-1 and diffusion coefficient of 3.7 × 10-13 m2 s-1), and an acceptable hydroxide conductivity (8.3 mS cm-1 at 20 °C in deionized water), suggesting a good candidate of PGP-NOH membrane for HEMFC applications.
Barish, Jeffrey A; Goddard, Julie M
2011-01-01
Nonmigratory active packaging, in which bioactive components are tethered to the package, offers the potential to reduce the need for additives in food products while maintaining safety and quality. A challenge in developing nonmigratory active packaging materials is the loss of biomolecular activity that can occur when biomolecules are immobilized. In this work, we describe a method in which a biocompatible polymer (polyethylene glycol, PEG) is grafted from the surface of ozone-treated low-density polyethylene (LDPE) resulting in a surface functionalized polyethylene to which a range of amine-terminated bioactive molecules can be immobilized. Free radical graft polymerization is used to graft PEG onto the LDPE surface, followed by immobilization of ethylenediamine onto the PEG tether. Ethylenediamine was used to demonstrate that amine-terminated molecules could be covalently attached to the PEG-grafted film. Changes in surface chemistry and topography were measured by attenuated total reflectance Fourier transform infrared spectroscopy, contact angle, atomic force microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. We demonstrate the ability to graft PEG onto the surface of polymer packaging films by free radical graft polymerization, and to covalently link an amine-terminated molecule to the PEG tether, demonstrating that amine-terminated bioactive compounds (such as peptides, enzymes, and some antimicrobials) can be immobilized onto PEG-grafted LDPE in the development of nonmigratory active packaging. Nonmigratory active packaging offers the potential for improving food safety and quality while minimizing the migration of the active agent into food. In this paper, we describe a technique to modify polyethylene packaging films such that active agents can be covalently immobilized by a biocompatible tether. Such a technique can be adapted to a number of applications such as antimicrobial, antioxidant, or immobilized enzyme active packaging. © 2011 Institute of Food Technologists®
Effects of Grafting Density on Block Polymer Self-Assembly: From Linear to Bottlebrush.
Lin, Tzu-Pin; Chang, Alice B; Luo, Shao-Xiong; Chen, Hsiang-Yun; Lee, Byeongdu; Grubbs, Robert H
2017-11-28
Grafting density is an important structural parameter that exerts significant influences over the physical properties of architecturally complex polymers. In this report, the physical consequences of varying the grafting density (z) were studied in the context of block polymer self-assembly. Well-defined block polymers spanning the linear, comb, and bottlebrush regimes (0 ≤ z ≤ 1) were prepared via grafting-through ring-opening-metathesis polymerization. ω-Norbornenyl poly(d,l-lactide) and polystyrene macromonomers were copolymerized with discrete comonomers in different feed ratios, enabling precise control over both the grafting density and molecular weight. Small-angle X-ray scattering experiments demonstrate that these graft block polymers self-assemble into long-range-ordered lamellar structures. For 17 series of block polymers with variable z, the scaling of the lamellar period with the total backbone degree of polymerization (d* ∼ N bb α ) was studied. The scaling exponent α monotonically decreases with decreasing z and exhibits an apparent transition at z ≈ 0.2, suggesting significant changes in the chain conformations. Comparison of two block polymer systems, one that is strongly segregated for all z (System I) and one that experiences weak segregation at low z (System II), indicates that the observed trends are primarily caused by the polymer architectures, not segregation effects. A model is proposed in which the characteristic ratio (C ∞ ), a proxy for the backbone stiffness, scales with N bb as a function of the grafting density: C ∞ ∼ N bb f(z) . The scaling behavior disclosed herein provides valuable insights into conformational changes with grafting density, thus introducing opportunities for block polymer and material design.
NASA Technical Reports Server (NTRS)
Pradellok, W.; Nir, Z.; Vogl, O.
1981-01-01
Successful grafting of 2(2-hydroxy-5-vinylphenyl)2H-benzotriazole onto saturated aliphatic C-H groups of polymers has been accomplished. When the grafting reaction was carried out in chlorobenzene at 150 C = 160 C with di-tertiarybutylperoxide as the grafting initiator, grafts as high as 20 percent - 30 percent at a grafting efficiency of 50 percent and 80 percent have readily been obtained. The grafting reaction was carried out in tubes sealed under high vacuum since trace amounts of oxygen cause complete inhibition of the grafting reaction by the phenolic monomer. On a variety of different polymers including atactic polypropylene, ethylene/vinyl acetate copolymer, poly(methyl methacrylate), poly(butyl acrylate), and polycarbonate were used.
Wang, Su; Wang, Qiang; Fan, Xuerong; Xu, Jin; Zhang, Ying; Yuan, Jiugang; Jin, Heling; Cavaco-Paulo, Artur
2016-01-20
Horseradish peroxidase (HRP)-mediated graft polymerization in the presence of hydrogen peroxide (H2O2) and acetylacetone (Acac) has been successfully applied to the synthesis of starch-poly(methyl acrylate) (PMA). The graft copolymer was characterized by Fourier transform infrared (FT-IR), elemental analysis, nuclear magnetic resonance ((1)H NMR and (13)C NMR), and differential scanning calorimetry (DSC). FT-IR, elemental analysis and NMR confirmed that methyl acrylate (MA) was grafted onto starch successfully. DSC results showed the graft reaction had changed the crystalline regions of the gelatinized starch. The effects of pH, MA content, HRP dosage, incubation temperature and time on grafting percentage (GP) and grafting efficiency (GE) were also investigated. The GP and GE under optimal conditions reached 30.21% and 45.13%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Stetsyshyn, Yurij; Raczkowska, Joanna; Budkowski, Andrzej; Awsiuk, Kamil; Kostruba, Andriy; Nastyshyn, Svyatoslav; Harhay, Khrystyna; Lychkovskyy, Edward; Ohar, Halyna; Nastishin, Yuriy
2016-10-11
Novel alignment coating with temperature-tuned anchoring for nematic liquid crystals (NLCs) was successfully fabricated in three step process, involving polymerization of poly(cholesteryl methacrylate) (PChMa) from oligoproxide grafted to the glass surface premodified with 3-aminopropyltriethoxysilane. Molecular composition, thickness, wettability of the PChMa coating and its alignment action for a NLC were examined with time of flight-secondary ion mass spectrometry, ellipsometry, contact angle measurements, polarization optical microscopy and commercially produced PolScope technique allowing for mapping of the optic axis and optical retardance within the microscope field view. We find that the PChMa coating provides a specific monotonous increase (decrease) in the tilt angle of the NLC director with respect to the substrates normal upon heating (cooling) referred to as anchoring tuning.
de Rancourt, Yoann; Couturaud, Benoit; Mas, André; Robin, Jean Jacques
2013-07-15
Antibacterial polymer surfaces were designed using ZnO nanoparticles as a bactericide. Mineral encapsulated nanoparticles were grafted onto activated polymer surfaces through their shells. Polypropylene (PP) surfaces were treated using an innovative process coupling core-shell technology and plasma grafting, well-known techniques commonly used to obtain active surfaces for biomedical applications. First, ZnO nanoparticles were encapsulated by (co)polymers: poly(acrylic acid) (PAA) or a poly(methyl methacrylate-co-methacrylic acid) copolymer [P(MMA-MA)]. Second, PP substrates were activated using plasma treatment. Finally, plasma-treated surfaces were immersed in solutions containing the encapsulated nanoparticles dispersed in an organic solvent and allowed to graft onto it. The presence of nanoparticles on the substrates was demonstrated using Fourier-Transform Infrared Spectroscopy (FTIR) analysis, Scanning Electron Microspcopy (SEM)/Energy-Dispersive X-ray (EDX), and Atomic Force Microscopy (AFM) studies. Indeed, the ZnO-functionalized substrates exhibited an antibacterial response in Escherichia coli adhesion tests. Moreover, this study revealed that, surprisingly, native ZnO nanoparticles without any previous functionalization could be directly grafted onto polymeric surfaces through plasma activation. The antibacterial activity of the resulting sample was shown to be comparable to that of the other samples. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rahimabady, Mojtaba; Qun Xu, Li; Arabnejad, Saeid; Yao, Kui; Lu, Li; Shim, Victor P. W.; Gee Neoh, Koon; Kang, En-Tang
2013-12-01
A nonlinear dielectric poly(vinylidene fluoride-co-hexafluoropropylene)-graft-poly(dopamine methacrylamide) [P(VDF-HFP)-g-PDMA] graft copolymer with ultra-high energy density of 33 J/cm3 was obtained by thermally initiated radical graft polymerization. It was observed that the dielectric constant of the graft copolymer films was 63% higher than that of P(VDF-HFP), with a large dielectric breakdown strength (>850 MV/m). Theoretical analyses and experimental measurements showed that the significant improvement in the electric polarization was attributed to the introduction of the highly polarizable hydroxyl groups in the PDMA side chains, and the large breakdown strength arose from the strong adhesion bonding of the catechol-containing graft copolymer to the metal electrode.
Ramli, Ros Azlinawati; Hashim, Shahrir; Laftah, Waham Ashaier
2013-02-01
A novel microgels were polymerized using styrene (St), methyl methacrylate (MMA), acrylamide (AAm), and acrylic acid (AAc) monomers in the presence of N,N'-methylenebisacrylamide (MBA) cross-linker. Pre-emulsified monomer was first prepared followed by polymerizing monomers using semi-batch emulsion polymerization. Fourier Transform Infrared Spectroscopy (FTIR) and (1)H Nuclear Magnetic Resonance (NMR) were used to determine the chemical structure and to indentify the related functional group. Grafting and cross-linking of poly(acrylamide-co-acrilic acid)-grafted-poly(styrene-co-methyl methacrylate) [poly(AAm-co-AAc)-g-poly(St-co-MMA)] microgels are approved by the disappearance of band at 1300 cm(-1), 1200 cm(-1) and 1163 cm(-1) of FTIR spectrum and the appearance of CH peaks at 5.5-5.7 ppm in (1)H NMR spectrum. Scanning Electron Microscope (SEM) images indicated that poly(St-co-MMA) particle was lobed morphology coated by cross-linked poly(AAm-co-AAc) shell. Furthermore, SEM results revealed that poly(AAm-co-AAc)-g-poly(St-co-MMA) is composite particle that consist of "raspberry"-shape like structure core. Internal structures of the microgels showed homogeneous network of pores, an extensive interconnection among pores, thicker pore walls, and open network structures. Water absorbency test indicated that the sample with particle size 0.43 μm had lower equilibrium water content, % than the sample with particle size 7.39 μm. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rodríguez-Fernández, Oliverio S.; Rodríguez-Calzadíaz, C. A.; Yáñez-Flores, Isaura G.; Montemayor, Sagrario M.
In this work two kind of materials: (1) grafted, cross-linked and plasticized poly(vinyl chloride) (PVC) "plastic films" and (2) magnetic plastic films "magneto-polymeric nanocomposites" were prepared. Precursor solutions or "plastisols" used to obtain the plastic films were obtained by mixing PVC (emulsion grade) as polymeric matrix, di(2-ethylhexyl)phthalate (DOP) as plasticizer, a thermal stabilizer based in Ca/Zn salts, and a cross-linking agent, 3-mercaptopropyltrimethoxysilane (MTMS) or 3-aminopropyltriethoxysilane (ATES), at several concentrations. Flexible films were obtained from the plastisols using static casting. The stress-strain behavior and the gel content (determined by Soxhlet extraction with boiling THF) of the flexible films were measured in order to evaluate the effect of the cross-linking agent and their content on the degree of cross-linking. The magneto-polymeric nanocomposites were obtained by mixing the optimum composition of the plastisols (analyzed previously) with magnetite (Fe 3O 4)-based ferrofluid and DOP. Later, flexible films were obtained by static casting of the plastisol/ferrofluid systems. The magnetic films were characterized by the above-mentioned techniques and X-ray diffraction, vibrating sample magnetometry and thermogravimetrical analysis.
Zhao, Yi-Fan; Zhang, Pei-Bin; Sun, Jian; Liu, Cui-Jing; Yi, Zhuan; Zhu, Li-Ping; Xu, You-Yi
2015-06-15
Here we describe the development of versatile antifouling polyethersulfone (PES) filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive. Amphiphilic polyethersulfone-block-poly(2-hydroxyethyl methacrylate) (PES-b-PHEMA) was beforehand designed and used as the blending additive of PES membranes prepared by phase inversion technique. The surface enriched PHEMA blocks on membrane surface acted as an anchor to immobilize the initiating site. Poly(sulfobetaine methacrylate) (PSBMA) were subsequently grafted onto the PES blend membranes by surface-initiated atom transfer radical polymerization (SI-ATRP). The analysis of surface chemistry confirmed the successful grafting of zwitterionic PSBMA brushes on PES membrane surface. The resulted PES-g-PSBMA membranes were capable of separating proteins from protein solution and oil from oil/water emulsion efficiently. Furthermore, the modified membranes showed high hydrophilicity and strongly antifouling properties due to the incorporation of well-defined PSBMA layer. In addition, the PES-g-PSBMA membranes exhibited excellent blood compatibility and durability during the washing process. The developed antifouling PES membranes are versatile and can find their applications in protein filtration, blood purification and oil/water separation, etc. Copyright © 2015 Elsevier Inc. All rights reserved.
Song, Cunfeng; Yu, Shirong; Liu, Cheng; Deng, Yuanming; Xu, Yiting; Chen, Xiaoling; Dai, Lizong
2016-05-01
A methodology to prepare thermo-responsive graft copolymer by using a novel macro-RAFT agent was proposed. The macro-RAFT agent with pendant dithioester (ZC(S)SR) was facilely prepared via the combination of RAFT polymerization and esterification reaction. By means of ZC(S)SR-initiated RAFT polymerization, the thermo-responsive graft copolymer consisting of poly(methyl methacrylate-co-hydroxylethyl methacrylate) (P(MMA-co-HEMA)) backbone and hydrophilic poly(N-isopropylacrylamide) (PNIPAAm) side chains was constructed through the "grafting from" approach. The chemical compositions and molecular weight distributions of the synthesized polymers were respectively characterized by (1)H nuclear magnetic resonance ((1)H NMR) and gel permeation chromatography (GPC). Self-assembly behavior of the amphiphilic graft copolymers (P(MMA-co-HEMA)-g-PNIPAAm) was studied by transmission electron microscopy (TEM), dynamic light scattering (DLS) and spectrofluorimeter. The critical micelle concentration (CMC) value was 0.052 mg mL(-1). These micelles have thermo-responsibility and a low critical solution temperature (LCST) of 33.5°C. Further investigation indicated that the guest molecule release property of these micelles, which can be well described by a first-order kinetic model, was significantly affected by temperature. Besides, the micelles exhibited excellent biocompatibility and cellular uptake property. Hence, these micelles are considered to have potential application in controlled drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.
Pandey, Sadanand; Mishra, Shivani B
2011-11-01
Graft copolymer of xanthan gum (XG) and ethylacrylate (EA) has been synthesized by free radical polymerization using potassium peroxydisulfate (KPS) as an initiator in an air atmosphere. The grafting parameters, i.e. grafting ratio and efficiency decrease with increase in concentration of xanthan gum from 0.050 mg/25 mL to 0.350 mg/25 mL, but these grafting parameters increase with increase in concentration of ethylacrylate from 9×10(-2) to 17×10(-2) ML(-1), and KPS from 15×10(-3) to 35×10(-3) ML(-1). The graft copolymer has been characterized by FTIR, XRD, TGA and SEM analysis. The grafted copolymer was also evaluated as efficient Zn(2+) metal binder. The grafted copolymer shows improvement in the stability, solubility as well as their sorbing capacity. Thus graft copolymer formed could find applications in metal ion removal and in drug delivery. Copyright © 2011 Elsevier B.V. All rights reserved.
Lane, D D; Chiu, D Y; Su, F Y; Srinivasan, S; Kern, H B; Press, O W; Stayton, P S; Convertine, A J
2015-02-28
Aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization was employed to prepare a series of linear copolymers of N,N-dimethylacrylamide (DMA) and 2-hydroxyethylacrylamide (HEAm) with narrow Đ values over a molecular weight range spanning three orders of magnitude (10 3 to 10 6 Da). Trithiocarbonate-based RAFT chain transfer agents (CTAs) were grafted onto these scaffolds using carbodiimide chemistry catalyzed with DMAP. The resultant graft chain transfer agent (gCTA) was subsequently employed to synthesize polymeric brushes with a number of important vinyl monomer classes including acrylamido, methacrylamido, and methacrylate. Brush polymerization kinetics were evaluated for the aqueous RAFT polymerization of DMA from a 10 arm gCTA. Polymeric brushes containing hydroxyl functionality were further functionalized in order to prepare 2nd generation gCTAs which were subsequently employed to prepare polymers with a brushed-brush architecture with molecular weights in excess of 10 6 Da. These resultant single particle nanoparticles (SNPs) were employed as drug delivery vehicles for the anthracycline-based drug doxorubicin via copolymerization of DMA with a protected carbazate monomer (bocSMA). Cell-specific targeting functionality was also introduced via copolymerization with a biotin-functional monomer (bioHEMA). Drug release of the hydrazone linked doxorubicin was evaluated as function of pH and serum and chemotherapeutic activity was evaluated in SKOV3 ovarian cancer cells.
Orihara, Kouhei; Hikichi, Atsushi; Arita, Tomohiko; Muguruma, Hitoshi; Yoshimi, Yasuo
2018-03-20
Heparin, a highly sulfated glycosaminoglycan, is an important biomaterial having biological and therapeutic functionalities such as anticoagulation, regeneration, and protein stabilization. This study addresses a label-free quartz crystal microbalance (QCM) biosensor for heparin detection based on a macromolecularly imprinted polymer (MIP) as an artificial recognition element. We demonstrate the novel strategy for MIP in the form of thin film on a gold (Au) electrode with the plasma-induced graft polymerization (PIP) technique. The procedure of PIP is as follows: (i) Hexamethyldisiloxane plasma-polymerized thin film (PPF) as a pre-coating scaffold of active species for PIP (post-polymerization) is deposited on an Au electrode. (ii) The PPF/Au electrode is soaked in an water solution containing heparin (template), (2-(methacryloxy)-ethyl)trimethylammonium chloride acrylamide (functional monomer), acrylamide, and N,N-methylenebisacrylamide (crosslinker). Double bonds of monomer and crosslinker attacked by residually active species in pre-coating PPF cause radical chain reaction. Consequently, a growing polymer network of 20 nm thickness of PIP-MIP thin film is formed and grafted on the PPF/Au surface. (iii) The PIP-MIP/PPF/Au is washed by sodium chloride solution so as to remove the template. Non-imprinted polymer (NIP) is carried out like the same procedure without a template. The AFM, XPS, and QCM measurements show that the PIP process facilitates macromolecularly surface imprinting of template heparin where the template is easily removed and is rapidly rebound to PIP-MIP without a diffusional barrier. The heparin-PIP-MIP specifically binds to heparin compared with heparin analog chondroitin sulfate C (selective factor: 4.0) and a detectable range of heparin in the presence of CS (0.1 wt%) was 0.001-0.1 wt%. The PIP-NIP does not show selectivity between them. The evaluated binding kinetics are association (k a = 350 ± 100 M -1 s -1 ), dissociation (k d = (5.0 ± 2.0) × 10 -4 s -1 ), and binding (K D = 1.3 ± 0.6 μM) constants, demonstrating that the PIP-MIP as a synthetic antibody can be applied to analytical chemistry. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Seko, Noriaki; Hoshina, Hiroyuki; Kasai, Noboru; Shibata, Takuya; Saiki, Seiichi; Ueki, Yuji
2018-02-01
Six years after the Fukushima-nuclear accident, the dissolved radioactive cesium (Cs) is now hardly detected in environmental natural waters. These natural waters are directly used as source of drinking and domestic waters in disaster-stricken areas in Fukushima. However, the possibility that some radioactive Cs adsorbed on soil or leaves will contaminate these natural waters during heavy rains or typhoon is always present. In order for the returning residents to live with peace of mind, it is important to demonstrate the safety of the domestic waters that they will use for their daily life. For this purpose, we have synthesized a material for selective removal of radioactive Cs by introducing ammonium 12-molybdophosphate (AMP) onto polyethylene nonwoven fabric through radiation-induced emulsion graft polymerization technique. Water purifiers filled with the grafted Cs adsorbent were installed in selected houses in Fukushima. The capability of the grafted adsorbent to remove Cs from domestic waters was evaluated for a whole year. The results showed that the tap water filtered through the developed water purifier contained no radioactive Cs, signifying the very effective adsorption performance of the developed grafted adsorbent. From several demonstrations, we have commercialized the water purifier named "KranCsair®". Furthermore, we have also developed a method for the mass production of the grafted nonwoven fabric. Using a 30 L grafting reactor, it was possible to produce the grafted nonwoven fabric with a suitable range of degree of grafting. When an irradiated roll of nonwoven trunk fabric with a length of 10 m and a width of 30 cm was set in the reactor filled with glycidyl methacrylate (GMA), AMP, Tween 80 monomer emulsion solution at 40 °C for 1 h, the difference of Dgs in the length and the width on roll of fabrics was negligible.
Effects of Grafting Density on Block Polymer Self-Assembly: From Linear to Bottlebrush
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Tzu-Pin; Chang, Alice B.; Luo, Shao-Xiong
Grafting density is an important structural parameter that imparts significant influences over the physical properties of architecturally complex polymers. In this paper, the physical consequences of varying the grafting density (z) were studied in the context of block polymer self-assembly. Well-defined block polymers spanning the linear, comb, and bottlebrush regimes (0 ≤ z ≤ 1) were prepared via grafting-through ring-opening-metathesis polymerization (ROMP). ω-norbornenyl poly(D,L-lactide) (PLA) and polystyrene (PS) macromonomers were copolymerized with discrete co-monomers in different feed ratios, enabling precise control over the grafting density. Small-angle X-ray scattering (SAXS) experiments demonstrate that these graft block polymers can self-assemble into long-range-orderedmore » lamellar structures. For seventeen series of block polymers with variable z, the scaling of the lamellar period with the total backbone degree of polymerization (d* ~ N bb α) was studied. The scaling exponent α monotonically decreases with decreasing z and exhibits an apparent transition at z ≈ 0.2, suggesting significant changes in the chain conformations. Comparison of two block polymer systems, one that is strongly segregated for all z (System I) and one that experiences weak segregation at low z (System II), indicates that the observed trends are primarily caused by the polymer architectures, instead of segregation strengths. A model is pro-posed in which the characteristic ratio (C ∞), a proxy for the backbone stiffness, scales with N bb as a function of the grafting density: C ∞ ~ N bb f(z). To the best of our knowledge, this report represents the first study of scaling behavior for the self-assembly of block polymers with variable grafting density. Lastly, the relationships disclosed herein provide valuable insights into conformational changes with grafting density, thus introducing new opportunities for future block polymer design.« less
Effects of Grafting Density on Block Polymer Self-Assembly: From Linear to Bottlebrush
Lin, Tzu-Pin; Chang, Alice B.; Luo, Shao-Xiong; ...
2017-10-26
Grafting density is an important structural parameter that imparts significant influences over the physical properties of architecturally complex polymers. In this paper, the physical consequences of varying the grafting density (z) were studied in the context of block polymer self-assembly. Well-defined block polymers spanning the linear, comb, and bottlebrush regimes (0 ≤ z ≤ 1) were prepared via grafting-through ring-opening-metathesis polymerization (ROMP). ω-norbornenyl poly(D,L-lactide) (PLA) and polystyrene (PS) macromonomers were copolymerized with discrete co-monomers in different feed ratios, enabling precise control over the grafting density. Small-angle X-ray scattering (SAXS) experiments demonstrate that these graft block polymers can self-assemble into long-range-orderedmore » lamellar structures. For seventeen series of block polymers with variable z, the scaling of the lamellar period with the total backbone degree of polymerization (d* ~ N bb α) was studied. The scaling exponent α monotonically decreases with decreasing z and exhibits an apparent transition at z ≈ 0.2, suggesting significant changes in the chain conformations. Comparison of two block polymer systems, one that is strongly segregated for all z (System I) and one that experiences weak segregation at low z (System II), indicates that the observed trends are primarily caused by the polymer architectures, instead of segregation strengths. A model is pro-posed in which the characteristic ratio (C ∞), a proxy for the backbone stiffness, scales with N bb as a function of the grafting density: C ∞ ~ N bb f(z). To the best of our knowledge, this report represents the first study of scaling behavior for the self-assembly of block polymers with variable grafting density. Lastly, the relationships disclosed herein provide valuable insights into conformational changes with grafting density, thus introducing new opportunities for future block polymer design.« less
Polymer Grafted Nanoparticles for Designed Interfaces in Polymer Nanocomposites
NASA Astrophysics Data System (ADS)
Mohammadkhani, Mohammad
This dissertation presents the design, synthesis, and characterization of polymer nanocomposite interfaces and the property enhancement from this interface design. Through the use of reversible addition fragmentation chain transfer (RAFT) polymerization for the grafting of polymer chains to silica nanoparticles, the surface of silica nanoparticles can be manipulated to tune the properties of nanocomposites by controlling the interface between the particles and the polymer matrix. In the first part of this work, compatibility of 15 nm silica nanoparticles grafted with different alkyl methacrylates with linear low density polyethylene was investigated. SI-RAFT polymerization of hexyl, lauryl, and stearyl methacrylate on silica NPs was studied in detail and revealed living character for all these polymerizations. Composites of linear low density polyethylene filled with PHMA, PLMA, and PSMA-g-SiO2 NPs were prepared and analyzed to find the effects of side chain length on the dispersibility of particles throughout the matrix. PSMA brushes were the most "olefin-like" of the series and thus showed the highest compatibility with polyethylene. The effects of PSMA brush molecular weight and chain density on the dispersion of silica particles were investigated. Multiple characterizations such as DSC, WAXS, and SAXS were applied to study the interaction between PSMA-g-SiO2 NPs and the polyethylene matrix. In the next part, the compatibility of PSMA-g-SiO2 NPs with different molecular variables with isotactic polypropylene was investigated. Anthracene was used as a conjugated ligand to introduce to the surface of PSMA-g-SiO2 NPs to develop bimodal architecture on nanoparticles and use them in polypropylene dielectric nanocomposites. The dispersion of particles was investigated and showed that for both monomodal and bimodal particles where PSMA chains are medium density and relatively high molecular weight, they maintain an acceptable level of dispersion throughout of the matrix. Furthermore, the effects of anthracene surface modification and also level of dispersion towards improving the dielectric breakdown strength under AC and DC conditions were studied. Finally, the RAFT polymerizations of isoprene in solution and, for the first time, on the surface of silica particles using a high temperature stable trithiocarbonate RAFT agent were studied. The effects of different temperatures, initiators, and monomer feed ratios on the kinetics of the SI-RAFT polymerization were also investigated. Kinetic studies revealed that the rate of SI-RAFT polymerization increased with an increase in the density of grafted RAFT agent. Well-defined polyisoprene-grafted silica NPs (PIP-g-SiO2 NPs) were synthesized and mixed with a polyisoprene matrix to determine the compatibility and dispersion of these particles with the matrix. Hydrogenation of PIP-g-SiO2 NPs were performed using p-toluenesulfonyl hydrazide at high temperature to obtain hydrogenated (HPIP)-g-SiO2 NPs. A bimodal octadecylsilane (C18)-HPIP-g-SiO2 NPs sample was synthesized and mixed with isotactic PP matrix analyzed for the compatibility with polypropylene.
Defining an optimal surface chemistry for pluripotent stem cell culture in 2D and 3D
NASA Astrophysics Data System (ADS)
Zonca, Michael R., Jr.
Surface chemistry is critical for growing pluripotent stem cells in an undifferentiated state. There is great potential to engineer the surface chemistry at the nanoscale level to regulate stem cell adhesion. However, the challenge is to identify the optimal surface chemistry of the substrata for ES cell attachment and maintenance. Using a high-throughput polymerization and screening platform, a chemically defined, synthetic polymer grafted coating that supports strong attachment and high expansion capacity of pluripotent stem cells has been discovered using mouse embryonic stem (ES) cells as a model system. This optimal substrate, N-[3-(Dimethylamino)propyl] methacrylamide (DMAPMA) that is grafted on 2D synthetic poly(ether sulfone) (PES) membrane, sustains the self-renewal of ES cells (up to 7 passages). DMAPMA supports cell attachment of ES cells through integrin beta1 in a RGD-independent manner and is similar to another recently reported polymer surface. Next, DMAPMA has been able to be transferred to 3D by grafting to synthetic, polymeric, PES fibrous matrices through both photo-induced and plasma-induced polymerization. These 3D modified fibers exhibited higher cell proliferation and greater expression of pluripotency markers of mouse ES cells than 2D PES membranes. Our results indicated that desirable surfaces in 2D can be scaled to 3D and that both surface chemistry and structural dimension strongly influence the growth and differentiation of pluripotent stem cells. Lastly, the feasibility of incorporating DMAPMA into a widely used natural polymer, alginate, has been tested. Novel adhesive alginate hydrogels have been successfully synthesized by either direct polymerization of DMAPMA and methacrylic acid blended with alginate, or photo-induced DMAPMA polymerization on alginate nanofibrous hydrogels. In particular, DMAPMA-coated alginate hydrogels support strong ES cell attachment, exhibiting a concentration dependency of DMAPMA. This research provides a new avenue for stem cell culture and maintenance using an optimal organic-based chemistry.
Towards Well-Defined Polysilylenes and Polyphosphazenes
1992-05-25
distribution), non - controlled degrees of polymerization and unknown end cyclopentasilanes 2 8 . The anionic intermediates have been observed groups. Some... control in polysilanes will be presented: ring-opening polymerization, and polymer modications.. Block and graft copolymers based on polysilanes will be...34sticks" to the surface of alkali metal and continues to grow to high possible to prepare polymers with controlled molecular weight, with low m"m
Polymerizable ultraviolet stabilizers for outdoor use
NASA Technical Reports Server (NTRS)
Vogl, O.
1982-01-01
Polymeric materials that are stable enough to use outdoors without changes in excess of 20 years are investigated. Ultraviolet stabilizers or plastic materials were synthesized, polymerizable ultraviolet stabilizers, particularly of the 2(2-hydroxyphenyl)2H-benzotriazole family were prepared their polymerization, copolymerization and grafting onto other polymers were demonstrated, and ultraviolet stabilizing systems were devised. These materials were evaluated from the photophysical point of view.
Glickman, Marc; Gheissari, Ali; Money, Samuel; Martin, John; Ballard, Jeffrey L
2002-03-01
An experimental polymeric sealant (CoSeal [Cohesion Technologies, Palo Alto, Calif]) provides equivalent anastomotic sealing to Gelfoam (Upjohn, Kalamazoo, Mich)/thrombin during surgical placement of prosthetic vascular grafts. Randomized controlled trial. Nine university-affiliated medical centers. One hundred forty-eight patients scheduled for implantation of polytetrafluoroethylene grafts, mainly for infrainguinal revascularization procedures or the creation of dialysis access shunts, who were treated randomly with either an experimental intervention (n = 74) or control (n = 74). Following polytetrafluoroethylene graft placement, anastomotic suture hole bleeding was treated intraoperatively in all control subjects with Gelfoam/thrombin. Subjects in the experimental group had the polymeric sealant applied directly to the suture lines without concomitant manual compression. Primary treatment success was defined as the proportion of subjects in each group that achieved complete anastomotic sealing within 10 minutes. The proportion of subjects that achieved immediate sealing and the time required to fully inhibit suture hole bleeding also were compared between treatment groups. Overall 10-minute sealing success was equivalent (86% vs 80%; P =.29) between experimental and control subjects, respectively. However, subjects treated with CoSeal achieved immediate anastomotic sealing at more than twice the rate of subjects treated with Gelfoam/thrombin (47% vs 20%; P<.001). Consequently, the median time needed to inhibit bleeding in control subjects was more than 10 times longer than for experimental subjects (16.5 seconds vs 189.0 seconds; P =.01). Strikingly similar findings for all comparisons were observed separately for subgroups of subjects having infrainguinal bypass grafting and for those undergoing placement of dialysis access shunts. The experimental sealant offers equivalent anastomotic sealing performance compared with Gelfoam/thrombin, but it provides this desired effect in a significantly more rapid time frame.
NASA Astrophysics Data System (ADS)
Sarkar, Sumona
Lower back pain resulting from intervertebral disc degeneration is one of the leading musculoskeletal disorders confronting our health system. In order to mechanically stabilize the disc early in the degenerative cascade and prevent the need for spinal fusion surgeries, we have proposed the development of a hybrid-bio/synthetic biomimetic proteoglycan macromolecule for injection into the disc in the early stages of degeneration. The goal of this thesis was to incorporate natural chondroitin sulfate (CS) chains into bottle brush polymer synthesis strategies for the fabrication of CS-macromolecules which mimic the proteoglycan structure and function while resisting enzymatic degradation. Both the "grafting-to" and "grafting-through" techniques of bottle brush synthesis were explored. CS was immobilized via a terminal primary amine onto a model polymeric backbone (polyacrylic acid) for investigation of the "grafting-to" strategy and an epoxy-amine step-growth polymerization technique was utilized for the "grafting-through" synthesis of CS-macromolecules with polyethylene glycol backbone segments. Incorporation of a synthetic polymeric backbone at the terminal amine of CS was confirmed via biochemical assays, 1H-NMR and FTIR spectroscopy, and CS-macromolecule size was demonstrated to be higher than that of natural CS via gel permeation chromatography, transmission electron microscopy and viscosity measurements. Further analysis of CS-macromolecule functionality indicated maintenance of natural CS properties such as high fixed charge density, high osmotic potential and low cytotoxicity with nucleus pulposus cells. These studies are the first attempt at the incorporation of natural CS into biomimetic bottle brush structures. CS-macromolecules synthesized via the methods developed in these studies may be utilized in the treatment and prevention of debilitating back pain as well as act as mimetics for other proteoglycans implicated in cartilage, heart valve, and nervous system tissue function.
EUV lithographic radiation grafting of thermo-responsive hydrogel nanostructures
NASA Astrophysics Data System (ADS)
Farquet, Patrick; Padeste, Celestino; Solak, Harun H.; Gürsel, Selmiye Alkan; Scherer, Günther G.; Wokaun, Alexander
2007-12-01
Nanostructures of the thermoresponsive poly( N-isopropyl acrylamide) (PNIPAAm) and of PNIPAAm-block-poly(acrylic acid) copolymers were produced on poly(tetrafluoroethylene-co-ethyelene) (ETFE) films using extreme ultraviolet (EUV) lithographic exposure with subsequent graft-polymerization. The phase transition of PNIPAAm nanostructures at the low critical solution temperature (LCST) at 32 °C was imaged by atomic force microscopy (AFM) phase contrast measurements in pure water. Results show a higher phase contrast for samples measured below the LCST temperature than for samples above the LCST, proving that the soft PNIPAAm hydrogel transforms into a much more compact conformation above the LCST. EUV lithographic exposures were combined with the reversible addition-fragment chain transfer (RAFT)-mediated polymerization using cyanoisopropyl dithiobenzoate (CPDB) as chain transfer agent to synthesize PNIPAAm block-copolymer nanostructures.
Shivapooja, Phanindhar; Yu, Qian; Orihuela, Beatriz; Mays, Robin; Rittschof, Daniel; Genzer, Jan; López, Gabriel P
2015-11-25
We present a method for dual-mode-management of biofouling by modifying surface of silicone elastomers with zwitterionic polymeric grafts. Poly(sulfobetaine methacrylate) was grafted from poly(vinylmethylsiloxane) elastomer substrates using thiol-ene click chemistry and surface-initiated, controlled radical polymerization. These surfaces exhibited both fouling resistance and triggered fouling-release functionality. The zwitterionic polymers exhibited fouling resistance over short-term (∼hours) exposure to bacteria and barnacle cyprids. The biofilms that eventually accumulated over prolonged-exposure (∼days) were easily detached by applying mechanical strain to the elastomer substrate. Such dual-functional surfaces may be useful in developing environmentally and biologically friendly coatings for biofouling management on marine, industrial, and biomedical equipment because they can obviate the use of toxic compounds.
Zhang, Jun; Yuan, Jiang; Yuan, Youling; Zang, Xiaopeng; Shen, Jian; Lin, Sicong
2003-10-01
Platelet from human plasma adhered on the segmented poly(ether urethane) (SPEU) film grafted with N,N-dimethyl-N-(p-vinylbenyl)-N-(3-sulfopropyl) ammonium (DMVSA) was studied. SPEU films were hydroxylated by potassium peroxosulfate (KPS) and then grafted with DMVSA using ceric ammonium nitrate (CAN) as initiator. The mixing time of hydroxylated SPEU/CAN and the monomer concentration effect on graft polymerization yield were determined by ATR-FTIR. Surface analysis of the grafted films by ATR-FTIR and ESCA confirmed that DMVSA was successfully grafted onto the SPEU film surface. The grafted film possessed a relatively hydrophilic surface, as revealed by water contact angle measurement. The improved blood compatibility of the grafted films was preliminarily evaluated by a platelet-rich plasma adhesion study and scanning electron microscopy, using original SPEU and hydroxylated SPEU films as the controls. The results showed that platelet attachment was decreased greatly on the segmented polyurethane films grafted with DMVSA. This kind of new biomaterials grafted with sulfo ammonium zwitterionic monomers might have potential for biomedical applications.
Peng, Tao; Su, Jing; Cheng, Si-Xue; Zhuo, Ren-Xi
2006-01-01
A biodegradable amphiphilic graft polymer was successfully synthesized by grafting hydrophobic poly(1,3-trimethylene carbonate) (PTMC) sequences onto a hydrophilic poly-alpha,beta-(N-(2-hydroxyethyl)-L-aspartamide) (PHEA) backbone. The graft polymer, PHEA-g-PTMC, was synthesized by ring-opening polymerization initiated by the macroinitiator PHEA bearing hydroxyl groups without adding any catalyst. The graft polymer was characterized by Fourier transform infrared spectroscopy, 1H-nuclear magnetic resonance spectroscopy, combined size-exclusion chromatography and multiangle laser light scattering analysis. Two drugs with distinct water solubility, prednisone acetate and tegafur, were encapsulated in the PHEA-g-PTMC nanoparticles. The in vitro release of two drugs from PHEA-g-PTMC nanoparticle drug-delivery systems was investigated.
Wall stress reduction in abdominal aortic aneurysms as a result of polymeric endoaortic paving.
Ashton, John H; Ayyalasomayajula, Avinash; Simon, Bruce R; Vande Geest, Jonathan P
2011-06-01
Polymeric endoaortic paving (PEAP) may improve endovascular repair of abdominal aortic aneurysms (AAA) since it has the potential to treat patients with complex AAA geometries while reducing the incidence of migration and endoleak. Polycaprolactone (PCL)/polyurethane (PU) blends are proposed as PEAP materials due to their range of mechanical properties, thermoformability, and resistance to biodegradation. In this study, the reduction in AAA wall stress that can be achieved using PEAP was estimated and compared to that resulting from stent-grafts. This was accomplished by mechanically modeling the anisotropic response of PCL/PU blends and implementing these results into finite element model (FEM) simulations. We found that at the maximum diameter of the AAA, the 50/50 and 10/90 PCL/PU blends reduced wall stress by 99 and 98%, respectively, while a stent-graft reduced wall stress by 99%. Our results also show that wall stress reduction increases with increasing PEAP thickness and PCL content in the blend ratio. These results indicate that PEAP can reduce AAA wall stress as effectively as a stent-graft. As such, we propose that PEAP may provide an improved treatment alternative for AAA, since many of the limitations of stent-grafts have the potential to be solved using this approach.
Xia, Hongwei; Fu, Hailin; Zhang, Yanfeng; Shih, Kuo-Chih; Ren, Yuan; Anuganti, Murali; Nieh, Mu-Ping; Cheng, Jianjun; Lin, Yao
2017-08-16
Supramolecular polymerization or assembly of proteins or large macromolecular units by a homogeneous nucleation mechanism can be quite slow and require specific solution conditions. In nature, protein assembly is often regulated by molecules that modulate the electrostatic interactions of the protein subunits for various association strengths. The key to this regulation is the coupling of the assembly process with a reversible or irreversible chemical reaction that occurs within the constituent subunits. However, realizing this complex process by the rational design of synthetic molecules or macromolecules remains a challenge. Herein, we use a synthetic polypeptide-grafted comb macromolecule to demonstrate how the in situ modulation of interactions between the charged macromolecules affects their resulting supramolecular structures. The kinetics of structural formation was studied and can be described by a generalized model of nucleated polymerization containing secondary pathways. Basic thermodynamic analysis indicated the delicate role of the electrostatic interactions between the charged subunits in the reaction-induced assembly process. This approach may be applicable for assembling a variety of ionic soft matters that are amenable to chemical reactions in situ.
Pranantyo, Dicky; Xu, Li Qun; Neoh, Koon-Gee; Kang, En-Tang; Ng, Ying Xian; Teo, Serena Lay-Ming
2015-03-09
Inspired by tea stains, plant polyphenolic tannic acid (TA) was beneficially employed as the primer anchor for functional polymer brushes. The brominated TA (TABr) initiator primer was synthesized by partial modification of TA with alkyl bromide functionalities. TABr with trihydroxyphenyl moieties can readily anchor on a wide range of substrates, including metal, metal oxide, polymer, glass, and silicon. Concomitantly, the alkyl bromide terminals serve as initiation sites for atom transfer radical polymerization (ATRP). Cationic [2-(methacryloyloxy)ethyl]trimethylammonium chloride (META) and zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) and N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine (SBMA) were graft-polymerized from the TABr-anchored stainless steel (SS) surface. The cationic polymer brushes on the modified surfaces are bactericidal, while the zwitterionic coatings exhibit resistance against bacterial adhesion. In addition, microalgal attachment (microfouling) and barnacle cyprid settlement (macrofouling) on the functional polymer-grafted surfaces were significantly reduced, in comparison to the pristine SS surface. Thus, the bifunctional TABr initiator primer provides a unique surface anchor for the preparation of functional polymer brushes for inhibiting both microfouling and macrofouling.
Bo, Chun Miao; Wang, Chaozhan; Wei, Yin Mao
2017-12-01
A novel approach that involved the grafting of diblock copolymer with two types of monomer onto substrate by sequential surface initiated-atom transfer radical polymerization was proposed to prepare a mixed-mode chromatographic stationary phase. The distinguishing feature of this method is that it can be applied in the preparation of various mixed-mode stationary phases. In this study, a new reverse-phase/ion-exchange stationary phase was prepared by grafting hydrophobic styrene and cationic sodium 4-styrenesulfonate by the proposed approach onto silica surface. The chromatographic properties of the prepared stationary phase were evaluated by the separation of benzene derivatives, anilines, and β-agonists, and by the effect of pH values and acetonitrile content on the retention. Compared with typical RP columns, the prepared stationary phase achieved the better resolution and higher selectivity at a shorter separation time and lower organic content. Moreover, the application of the prepared column was proved by separating widely distributed polar and charged compounds simultaneously. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wei, Liangming; Chen, Changxin; Hou, Zhongyu; Wei, Hao
2016-01-01
The design of novel binder systems is required for the high capacity silicon (Si) anodes which usually undergo huge volume change during the charge/discharge cycling. Here, we introduce a poly (acrylic acid sodium)-grafted-carboxymethyl cellulose (NaPAA-g-CMC) copolymer as an excellent binder for Si anode in lithium ion batteries (LIBs). The NaPAA-g-CMC copolymer was prepared via a free radical graft polymerization method by using CMC and acrylic acid as precursors. Unlike the linear, one-dimensional binders, the NaPAA-g-CMC copolymer binder is expected to present multi-point interaction with Si surface, resulting in enhanced binding ability with Si particles as well as with the copper (Cu) current collectors, and building a stable solid electrolyte interface (SEI) layer on the Si surface. The NaPAA-g-CMC based Si anode shows much better cycle stability and higher coulombic efficiency than those made with the well-known linear polymeric binders such as CMC and NaPPA. PMID:26786315
Multi-functional Textiles for Military Applications
NASA Astrophysics Data System (ADS)
Malshe, Priyadarshini
The objective of this research was to develop the standard rip-stop weave military uniform fabric made of 50/50 nylon/cotton (NyCo) to achieve a repellent front surface and an antibacterial bulk for protection from chemical-biological warfare agents. Diallyldimethylammonium chloride (DADMAC), a quaternary ammonium salt monomer was graft polymerized on NyCo fabric to impart antimicrobial capability using atmospheric pressure glow discharge plasma. Plasma was used to induce free radical chain polymerization of the DADMAC monomer to introduce a graft polymerized network on the fabric with durable antimicrobial properties. Pentaerythritol tertraacrylate was used as a cross-linking agent to obtain a highly cross-linked, durable polymer network. The presence of polyDADMAC on the fabric surface was confirmed using acid dye staining, SEM, and TOF-SIMS. Antibacterial performance was evaluated using standard AATCC test method 100 for both gram positive and gram negative bacteria. Results showed 99.9% reduction in the bacterial activities of K. pneumoniae and S. aureus. To achieve repellency on NyCo front surface, an environmentally benign C6 fluorocarbon monomer, 2-(perfluorohexyl) ethyl acrylate was graft polymerized using plasma on the front surface of the NyCo fabric which was already grafted with polyDADMAC for anti-microbial properties. The surface was characterized by IR spectroscopy and XPS. The presence of fluorine on the surface was mapped and confirmed by TOF-SIMS. SEM images showed a uniform layer of fluorocarbon polymer on the fiber surface. High water contact angle of 144° was obtained on the surface. The surface also achieved a high AATCC Test Method 193 rating of 9 and AATCC Test Method 118 rating of 5, indicating that the surface could repel a fluid with surface tension as low as 24 dynes/cm. Appropriate experimental designs and statistical modeling of data helped identify the experimental space and optimal factor combinations for best response. The study helped create a multi-functional fabric with an anti-bacterial bulk, hydrophilic back surface and repellent front surface for enhanced protective and aesthetic values.
NASA Astrophysics Data System (ADS)
Chaouki, M.; Huguet, P.; Bribes, J.-L.
1996-06-01
Raman spectra of three specific, industrial, cation-exchange membranes (CEMs) have shown the existence of an extra vibrational band. The relative intensity of this band is different in each membrane spectrum recorded. Chlorosulfonation of polymeric ethylenetrifluoroethylene (ETFE) film grafted with polystyrene chains is used to obtain these CEMs involved in the electrodialysis process. A Raman study of the above reaction has been undertaken and has shown that non-sulfonated polystyrene rings give rise to this extra vibrational band. Different behavior of CEMs synthesized under similar conditions can be explained by a variable amount of non-sulfonated polystyrene rings contained in these materials.
Sen'kiv, Iu V; Heffeter, P; Riabtseva, A O; Boĭko, N M; Mitina, N Ie; Zaichenko, O S; Berger, W; Stoĭka, R S
2013-01-01
Development of novel nanoscale functionalized carriers is nowadays one of the most urgent problems in cancer treatment. The aim of our study was to compare the antineoplastic effect of free doxorubicin and its complex with a nanoscale polymeric carrier towards HTC116 colorectal carcinoma cells. It was established that application of the complex of poly(5-tret-butylperoxy)-5-methyl-1-hexene-3-in-co-glycydyl metacrylat)-graft-polyethyleneglycol (poly(VEP-GMA-PEG)-graft-PEG), where VEP--5-tret-butylperoxy)-5-methyl-1-hexene-3-in; GMA--glycydyl metacrylat; graft-PEG--graft-polyethyleneglycol accordingly, functionalized with phosphatidylcholine for doxorubicin delivery increased 10 times the efficiency of cytotoxic action of this drug, as compared wich such efficiency in case of the action of free doxorubicin. The encapsulated form of doxorubicin caused more intensive cleavage of the reparation enzyme PARP and longer delay in G2/M cell cycle arrest, compared to such effects of free doxorubicin. The developed carrier itself is non-toxic to the used mammalian cells and does not cause impairment in their cell cycle. A deletion in both alleles of p53 gene did not affect the antineoplastic action of doxorubicin that was immobilized on the nanoscale carrier. Thus, p53-dependent signaling pathways are not involved in the cytotoxic action of doxorubicin-carrier complex. It is suggested that novel nanoscale polymeric carrier poly(VEP-GMA-PEG)-graft-PEG functionalized with phosphatidylcholine could be a promising carrier for targeted delivery of anticancer drugs.
NASA Astrophysics Data System (ADS)
Xiu, Kemao
Bacterial infection and biofilm formation cause serious medical, industrial, and environmental problems. In biomedical applications, bacterial contamination of medical devices often leads to infectious diseases accompanied with pain, suffer, and even death. Polyurethane (PU) is widely in biomedical applications due to its good mechanical properties and biocompatibility. However, its vulnerability to bacterial biofilm formation seriously limits its wider uses. Prior studies have shown that N-halamines could be incorporated into PU to achieve antimicrobial and biofilm-controlling effects through grafting, blending, and/or coating. To broaden the selection of modification methods in the development antimicrobial PU, this study synthesized polyurethane/polymeric N-halamine semi-interpenetrating polymer networks (semi-IPN). Polymerizable monomeric N-halamines were swollen into PU with initiators and crosslink agents. Post polymerization of the monomers led to the formation of semi-IPN with linear PU and N-halamine polymer networks. The semi-IPNs showed excellent antimicrobial and biofilm controlling ability towards both gram-positive and gram-negative bacteria. The effects of hydrophilicity, surface grafted N-halamine and structural characteristics of N-halamine on the antimicrobial behavior of the resulting semi-IPNs were also investigated.
Polythiophene thin films by surface-initiated polymerization: Mechanistic and structural studies
Youm, Sang Gil; Hwang, Euiyong; Chavez, Carlos A.; ...
2016-06-15
The ability to control nanoscale morphology and molecular organization in organic semiconducting polymer thin films is an important prerequisite for enhancing the efficiency of organic thin-film devices including organic light-emitting and photovoltaic devices. The current “top-down” paradigm for making such devices is based on utilizing solution-based processing (e.g., spin-casting) of soluble semiconducting polymers. This approach typically provides only modest control over nanoscale molecular organization and polymer chain alignment. A promising alternative to using solutions of presynthesized semiconducting polymers pursues instead a “bottom-up” approach to prepare surface-grafted semiconducting polymer thin films by surface-initiated polymerization of small-molecule monomers. Herein, we describe themore » development of an efficient method to prepare polythiophene thin films utilizing surface-initiated Kumada catalyst transfer polymerization. In this study, we provided evidence that the surface-initiated polymerization occurs by the highly robust controlled (quasi-“living”) chain-growth mechanism. Further optimization of this method enabled reliable preparation of polythiophene thin films with thickness up to 100 nm. Extensive structural studies of the resulting thin films using X-ray and neutron scattering methods as well as ultraviolet photoemission spectroscopy revealed detailed information on molecular organization and the bulk morphology of the films, and enabled further optimization of the polymerization protocol. One of the remarkable findings was that surface-initiated polymerization delivers polymer thin films showing complex molecular organization, where polythiophene chains assemble into lateral crystalline domains of about 3.2 nm size, with individual polymer chains folded to form in-plane aligned and densely packed oligomeric segments (7-8 thiophene units per each segment) within each domain. Achieving such a complex mesoscale organization is virtually impossible with traditional methods relying on solution processing of presynthesized polymers. Another significant advantage of surface-confined polymer thin films is their remarkable stability toward organic solvents and other processing conditions. In addition to controlled bulk morphology, uniform molecular organization, and stability, a unique feature of the surface-initiated polymerization is that it can be used for the preparation of large-area uniformly nanopatterned polymer thin films. Lastly, this was demonstrated using a combination of particle lithography and surface-initiated polymerization. In general, surface-initiated polymerization is not limited to polythiophene but can be also expanded toward other classes of semiconducting polymers and copolymers.« less
NASA Astrophysics Data System (ADS)
Taimur, Shaista; Yasin, Tariq
2017-11-01
Novel polyacrylonitrile (PAN) grafted sepiolite nanocomposites were synthesized via emulsion polymerization. The influence of synthesis parameters on the degree of grafting was studied by varying the concentrations of monomer, initiator and surfactant. The nitrile groups of PAN were chemically modified into amidoxime. Both the grafting and amidoxime percentages were determined gravimetrically and maximum grafting of 373% was achieved at 5% acrylonitrile, 1% surfactant and 0.1% initiator concentrations. The presence of vibration at 2242 cm-1 in Fourier transform infrared (FT-IR) spectrum and x-ray diffraction (XRD) reflection at 2θ = 16.9° (010) confirmed the grafting of PAN chains onto modified sepiolite. XRD patterns also indicated a decrease in crystallinity of sepiolite and appearance of new amorphous region in grafted nanocomposites. The morphological changes of sepiolite during silanization and grafting of PAN is also confirmed by field emission scanning electron microscope (FESEM). Transmission electron microscope (TEM) images clearly showed the shortening of fibers after silanization of sepiolite and the same were involved in heterogeneous nucleation in micelles. These developed amidoxime grafted sepiolite nanocomposites can be used as adsorbent for the metal recovery.
Mohamed, Magdy F; Essawy, Hisham A; Ammar, Nabila S; Ibrahim, Hanan S
2017-01-01
Acrylic acid (AA) was graft copolymerized from cellulose (Cell) in presence of potassium fulvate (KF) in order to enhance the chemical activity of the resulting chelating polymer and the handling as well. Fourier transform infrared (FTIR) proved that KF was efficiently inserted and became a permanent part of the network structure of the sorbent in parallel during the grafting copolymerization. Scanning electron microscopy (SEM) revealed intact homogeneous structure with uniform surface. This indicates improvement of the handling, however, it was not the case for the graft copolymer of acrylic acid onto cellulose in absence of KF, which is known to be brittle and lacks mechanical integrity. Effective insertion of this co-interpenetrating agent provided more functional groups, such as OH and COOH, which improved the chelating power of the produced sorbent as found for the removal of Cu 2+ ions from its aqueous solutions (the removal efficiency reached ∼98.9%). Different models were used to express the experimental data. The results corroborated conformity of the pseudo-second order kinetic model and Langmuir isotherm model to the sorption process, which translates into dominance of the chemisorption. Regeneration of the chelating polymers under harsh conditions did not affect the efficiency of copper ions uptake up to three successive cycles. A thermodynamic investigation ensured exothermic nature of the adsorption process that became less favourable at higher temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
He, Chunli; Wang, Miao; Cai, Xianmei; Huang, Xiaobo; Li, Li; Zhu, Haomiao; Shen, Jian; Yuan, Jiang
2011-11-01
To improve hydrophilicity and blood compatibility properties of polyurethane (PU) film, we chemically induced graft copolymerization of 2-hydroxyethyl methacrylate (HEMA) onto the surface of polyurethane film using benzoyl peroxide as an initiator. The effects of grafting temperature, grafting time, monomer and initiator concentrations on the grafting yields were studied. The maximum grafting yield value was obtained 0.0275 g/cm2 for HEMA. Characterization of the films was carried out by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), water contact angle measurements. ATR-FTIR data showed that HEMA was successfully grafted onto the PU films surface. Water contact angle measurement demonstrated the grafted films possessed a relatively hydrophilic surface. The blood compatibility of the grafted films was preliminarily evaluated by a platelet-rich plasma adhesion test and hemolysis test. The results of platelet adhesion experiment showed that polyurethane grafted polymerization with monomer of 2-hydroxyethyl methacrylate had good blood compatibility featured by the low platelet adhesion. Hemolysis rate of the PU-g-PHEMA films was dramatically decreased than the ungrafted PU films. This kind of new biomaterials grafted with HEMA monomers might have a potential usage for biomedical applications.
NASA Astrophysics Data System (ADS)
Lin, Quankui; Huang, Xiaojie; Tang, Junmei; Han, Yuemei; Chen, Hao
2013-12-01
A targeted drug delivery system based on graphene oxide (GO) was produced via one-pot synthesis method, taking advantages of the self-polymerization of the dopamine (DA). The polymerization of dopamine resulted in polydopamine capped GO nanocomposite. Meanwhile, the anti-tumor drug doxorubicin (DOX) can be loaded in the nanocomposite and the tumor cell targeting molecule folic acid (FA) can also been immobilized on the nanocomposite surface simultaneously. The size of the obtained FA-decorated GO-based drug delivery system (DA/GO(DOX)-FA) is about 600 nm. It renders a sustained drug release manner. The cell culture results reveal that the FA-decorated GO-based drug delivery system (DA/GO(DOX)-FA) via one-pot method shows property of targeted killing of cancer cells in vitro. This one-pot method just needs the pH adjusting to induce the self-polymerization of DA, but excludes the fussy chemical grafting process and the organic solvents, which make it an environmentally friendly method to synthesize FA-decorated GO-based drug delivery system.
The graft polymers from different species of lignin and acrylic acid: synthesis and mechanism study.
Ye, De zhan; Jiang, Li; Ma, Chao; Zhang, Ming-hua; Zhang, Xi
2014-02-01
The influence of lignin species on the grafting mechanism of lignosulfonate (from eucalyptus and pine, recorded as HLS and SLS, respectively) with acrylic acid (AA) was investigated. The graft polymers were confirmed by the absorption of carbonyl groups in the FTIR spectra. The decreasing phenolic group's content (Ph-OH) is not only due to its participation as grafting site but also to the negative effect of initiator. In the initial period (0-60 min), HLS and SLS both accelerate the polymerization of AA. Additionally, Ph-OH group's content is proportional to product yield (Y%), monomer conversion (C%) and grafting efficiency (GE%), strongly indicating that it acts as active center. Nevertheless, compared with HLS, Y% and C% in SLS grafting system are lower though it has higher Ph-OH group's content, which is due to the quinonoid structure formed by the self-conjugated of phenoxy radical in Guaiacyl unit. Finally, the lignosulfonate grafting mechanism was proposed. Copyright © 2013 Elsevier B.V. All rights reserved.
Carson, Laura; Kelly-Brown, Cordella; Stewart, Melisa; Oki, Aderemi; Regisford, Gloria; Stone, Julia; Traisawatwong, Pasakorn; Durand-Rougely, Clarissa; Luo, Zhiping
2011-01-01
Acid functionalized single walled carbon nanotubes (CNTs) were grafted to chitosan by first reacting the oxidized CNTs with thionyl chloride to form acyl-chlorinated CNTs. This product was subsequently dispersed in chitosan and covalently grafted to form CNT-chitosan. CNT-chitosan was further grafted onto 3-trimethoxysilylpropyl methacrylate by free radical polymerization conditions, to yield CNT-g-chitosan-g-3-trimethoxysilylpropyl methacrylate (TMSPM), hereafter referred to as CNT-chitosan-3-TMSPM. These composites were characterized by Fourier Transform Infrared Resonance Spectroscopy (FTIR), carbon-13 nuclear magnetic resonance (13C NMR), Thermogravimetric Analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The composite showed improved thermal stability and could be of great potential use in bone tissue engineering. PMID:21765959
NASA Astrophysics Data System (ADS)
Zhao, Yuancong; Tu, Qiufen; Wang, Jin; Huang, Qiongjian; Huang, Nan
2010-12-01
Crystalline TiO 2 films were prepared by unbalanced magnetron sputtering and the structure was confirmed by XRD. An organic layer of 11-hydroxyundecylphosphonic acid (HUPA) was prepared on the TiO 2 films by self-assembling, and the HUPA on TiO 2 films was confirmed by FTIR analysis. Simultaneously, hydroxyl groups were introduced in the phosphonic acid molecules to provide a functionality for further chemical modification. 2-Methacryloyloxyethyl phosphorylcholine (MPC), a biomimetic monomer, was chemically grafted on the HUPA surfaces at room temperature by surface-initiated atom-transfer radical polymerization. The surface characters of TiO 2 films modified by poly-MPC were confirmed by FTIR, XPS and SEM analysis. Platelet adhesion experiment revealed that poly-MPC modified surface was effective to inhibit platelet adhesion in vitro.
Gu, Shiqing; Wang, Lan; Mao, Xinyou; Yang, Liping; Wang, Chuanyi
2018-01-01
Amine groups play significant roles in polymeric composites for heavy metals removal. However, generating a composite with a large number of functional and stable amine groups based on clay is still a challenge. In this work, a new amine-functionalized adsorbent based on acid-activated vermiculite (a-Verm) was prepared by organic modification of silane coupling agent as bridge, followed by in situ polymerization of acrylamide (AM) and further grafting of triethylene tetramine (TETA). The obtained polymeric composite g-PAM/OVerm was characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), Fourier transform infrared (FTIR), thermal analysis (TG/DTG), X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) analyses, confirming that amine groups were successfully grafted onto the surface of Verm. The efficacy g-PAM/OVerm for removing Pb(II) was tested. The adsorption equilibrium data on g-PAM/OVerm was in good accordance with the Langmuir adsorption isotherms, and the adsorption maximal value of Pb(II) was 219.4 mg·g−1. The adsorption kinetic data fit the pseudo-second-order kinetic model well. Additionally, g-PAM/OVerm has better selectivity for Pb(II) ion in comparison with Zn(II), Cd(II) and Cu(II) ions. The present work shows that g-PAM/OVerm holds great potential for removing Pb(II) from wastewater, and provides a new and efficient method for the removal of heavy metal ions from industrial wastewater. PMID:29597288
Benková, Zuzana; Cordeiro, M Natália D S
2015-09-22
Tuning of surface properties plays an important role in applications ranging from material engineering to biomedicine/chemistry. The interactions of chains grafted to a solid support and exposed to a matrix of chemically identical chains represent an intriguing issue. In this work, the behavior of poly(ethylene oxide) (PEO) chains grafted irreversibly onto an amorphous silica and immersed in the matrix of free PEO chains of different polymerization degree is studied using molecular dynamics simulations. The density distributions of grafted and free PEO chains, the height of the grafted layer, overlap parameters, and orientation order parameters depend not only on the grafting density but also on the length of free chains which confirm the entropic nature of the interactions between the grafted and free chains. In order to achieve a complete expulsion of the free chains from the grafted layer, a grafting density as high as 3.5 nm(-2) is necessary. Free PEO chains of 9 monomers leave the grafted layer at lower grafting densities than the longer PEO chains of 18 monomers in contrast with the theoretical predictions. The height of the grafted layer evolves with the grafting density in the presence of free chains in qualitative agreement with the theoretical phase diagram.
Bondar, Yuliia; Kuzenko, Svetlana; Han, Do-Hung; Cho, Hyun-Kug
2014-01-01
A nanocomposite adsorbent based on potassium nickel hexacyanoferrate-loaded polypropylene fabric was synthesized for selective removal of Cs ions from contaminated waters by a two-stage synthesis: radiation-induced graft polymerization of acrylic acid monomer onto the nonwoven polypropylene fabric surface with subsequent in situ formation of potassium nickel hexacyanoferrate (KNiHCF) nanoparticles within the grafted chains. Data of scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy confirmed the formation of KNiHCF homogeneous phase on the fabric surface, which consisted of crystalline cubic-shaped nanoparticles (70 to 100 nm). The efficiency of the synthesized adsorbent for removal of cesium ions was evaluated under various experimental conditions. It has demonstrated a rapid adsorption process, high adsorption capacity over a wide pH range, and selectivity in Cs ion removal from model solutions with high concentration of sodium ions.
2014-01-01
A nanocomposite adsorbent based on potassium nickel hexacyanoferrate-loaded polypropylene fabric was synthesized for selective removal of Cs ions from contaminated waters by a two-stage synthesis: radiation-induced graft polymerization of acrylic acid monomer onto the nonwoven polypropylene fabric surface with subsequent in situ formation of potassium nickel hexacyanoferrate (KNiHCF) nanoparticles within the grafted chains. Data of scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy confirmed the formation of KNiHCF homogeneous phase on the fabric surface, which consisted of crystalline cubic-shaped nanoparticles (70 to 100 nm). The efficiency of the synthesized adsorbent for removal of cesium ions was evaluated under various experimental conditions. It has demonstrated a rapid adsorption process, high adsorption capacity over a wide pH range, and selectivity in Cs ion removal from model solutions with high concentration of sodium ions. PMID:24725367
NASA Astrophysics Data System (ADS)
Wu, Yi-Bo; Li, Kang; Xiang, Dong; Zhang, Min; Yang, Dan; Zhang, Jin-Han; Mao, Jing; Wang, Hao; Guo, Wen-Li
2018-07-01
Polyisobutylene-based thermoplastic elastomer (TPE) is a new soft biomaterial. Hydroxyl functional dendritic polyisobutylene-based TPEs (arb-SIBS-OH), which satisfy the design requirements for small-diameter vascular substitutes, were synthesized by controlled carbocationic polymerization. Creep property, which is the destructive weakness of polyisobutylene-based TPEs, was significantly improved with the formation of a "double network" promoted by branched structure and microphase separation. Compatibility of arb-SIBS-OH with rabbit blood was markedly enhanced by modifying heparin grafted from these hydroxyl functional groups. Application of "click chemistry" to immobilize heparin on arb-SIBS-OH surface was apparently effective in enhancing the bioactivity of heparin. Immobilized heparin, which directly bonded by ester bonds, was more likely to form multi-point binding on arb-SIBS-OH surface. This process hindered the accessibility of the heparin active sequence to antithrombin.
Bhuiyan, D; Jablonsky, M J; Kolesov, I; Middleton, J; Wick, T M; Tannenbaum, R
2015-03-01
In this study, we developed a novel synthesis method to create a complex collagen-based biopolymer that promises to possess the necessary material properties for a bone graft substitute. The synthesis was carried out in several steps. In the first step, a ring-opening polymerization reaction initiated by hydroxyapatite nanoparticles was used to polymerize d,l-lactide and glycolide monomers to form poly(lactide-co-glycolide) co-polymer. In the second step, the polymerization product was coupled with succinic anhydride, and subsequently was reacted with N-hydroxysuccinimide in the presence of dicyclohexylcarbodiimide as the cross-linking agent, in order to activate the co-polymer for collagen attachment. In the third and final step, the activated co-polymer was attached to calf skin collagen type I, in hydrochloric acid/phosphate buffer solution and the precipitated co-polymer with attached collagen was isolated. The synthesis was monitored by proton nuclear magnetic resonance, infrared and Raman spectroscopies, and the products after each step were characterized by thermal and mechanical analysis. Calculations of the relative amounts of the various components, coupled with initial dynamic mechanical analysis testing of the resulting biopolymer, afforded a preliminary assessment of the structure of the complex biomaterial formed by this novel polymerization process. Copyright © 2015. Published by Elsevier Ltd.
Low Loss Nanostructured Polymers for Chip-scale Waveguide Amplifiers.
Chen, George F R; Zhao, Xinyu; Sun, Yang; He, Chaobin; Tan, Mei Chee; Tan, Dawn T H
2017-06-13
On-chip waveguide amplifiers offer higher gain in small device sizes and better integration with photonic devices than the commonly available fiber amplifiers. However, on-chip amplifiers have yet to make its way into the mainstream due to the limited availability of materials with ideal light guiding and amplification properties. A low-loss nanostructured on-chip channel polymeric waveguide amplifier was designed, characterized, fabricated and its gain experimentally measured at telecommunication wavelength. The active polymeric waveguide core comprises of NaYF 4 :Yb,Er,Ce core-shell nanocrystals dispersed within a SU8 polymer, where the nanoparticle interfacial characteristics were tailored using hydrolyzed polyhedral oligomeric silsesquioxane-graft-poly(methyl methacrylate) to improve particle dispersion. Both the enhanced IR emission intensity from our nanocrystals using a tri-dopant scheme and the reduced scattering losses from our excellent particle dispersion at a high solid loading of 6.0 vol% contributed to the outstanding optical performance of our polymeric waveguide. We achieved one of the highest reported gain of 6.6 dB/cm using a relatively low coupled pump power of 80 mW. These polymeric waveguide amplifiers offer greater promise for integrated optical circuits due to their processability and integration advantages which will play a key role in the emerging areas of flexible communication and optoelectronic devices.
2012-01-01
A facile approach to functionalize carbon nanofibers [CNFs] with nanostructured polyaniline was developed via in situ mechanochemical polymerization of polyaniline in the presence of chemically treated CNFs. The nanostructured polyaniline grafting on the CNF was mainly in a form of branched nanofibers as well as rough nanolayers. The good dispersibility and processability of the hybrid nanocomposite could be attributed to its overall nanostructure which enhanced its accessibility to the electrolyte. The mechanochemical oxidation polymerization was believed to be related to the strong Lewis acid characteristic of FeCl3 and the Lewis base characteristic of aniline. The growth mechanism of the hierarchical structured nanofibers was also discussed. After functionalization with the nanostructured polyaniline, the hybrid polyaniline/CNF composite showed an enhanced specific capacitance, which might be related to its hierarchical nanostructure and the interaction between the aromatic polyaniline molecules and the CNFs. PMID:22315992
Extrudable polymer-polymer composites based on ultra-high molecular weight polyethylene
NASA Astrophysics Data System (ADS)
Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Buslovich, D. G.; Dontsov, Yu. V.
2017-12-01
Mechanical and tribotechnical characteristics of polymer-polymeric composites of UHMWPE are studied with the aim of developing extrudable, wear-resistant, self-lubricant polymer mixtures for Additive Manufacturing (AM). The motivation of the study is their further application as feedstocks for 3D printing. Blends of UHMWPE with graft- and block copolymers of low-density polyethylene (HDPE-g-VTMS, HDPE-g-SMA, HDPE-b-EVA), polypropylene (PP), block copolymers of polypropylene and polyamide with linear low density polyethylene (PP-b-LLDPE, PA-b-LLDPE), as well as cross-linked polyethylene (PEX-b), are examined. The choice of compatible polymer components for an ultra- high molecular weight matrix for increasing processability (extrudability) is motivated by the search for commercially available and efficient additives aimed at developing wear-resistant extrudable polymer composites for additive manufacturing. The extrudability, mechanical properties and wear resistance of UHMWPE-based polymer-polymeric composites under sliding friction with different velocities and loads are studied.
DNA-imprinted polymer nanoparticles with monodispersity and prescribed DNA-strand patterns
NASA Astrophysics Data System (ADS)
Trinh, Tuan; Liao, Chenyi; Toader, Violeta; Barłóg, Maciej; Bazzi, Hassan S.; Li, Jianing; Sleiman, Hanadi F.
2018-02-01
As colloidal self-assembly increasingly approaches the complexity of natural systems, an ongoing challenge is to generate non-centrosymmetric structures. For example, patchy, Janus or living crystallization particles have significantly advanced the area of polymer assembly. It has remained difficult, however, to devise polymer particles that associate in a directional manner, with controlled valency and recognition motifs. Here, we present a method to transfer DNA patterns from a DNA cage to a polymeric nanoparticle encapsulated inside the cage in three dimensions. The resulting DNA-imprinted particles (DIPs), which are 'moulded' on the inside of the DNA cage, consist of a monodisperse crosslinked polymer core with a predetermined pattern of different DNA strands covalently 'printed' on their exterior, and further assemble with programmability and directionality. The number, orientation and sequence of DNA strands grafted onto the polymeric core can be controlled during the process, and the strands are addressable independently of each other.
Application of Bottlebrush Block Copolymers as Photonic Crystals.
Liberman-Martin, Allegra L; Chu, Crystal K; Grubbs, Robert H
2017-07-01
Brush block copolymers are a class of comb polymers that feature polymeric side chains densely grafted to a linear backbone. These polymers display interesting properties due to their dense functionality, low entanglement, and ability to rapidly self-assemble to highly ordered nanostructures. The ability to prepare brush polymers with precise structures has been enabled by advancements in controlled polymerization techniques. This Feature Article highlights the development of brush block copolymers as photonic crystals that can reflect visible to near-infrared wavelengths of light. Fabrication of these materials relies on polymer self-assembly processes to achieve nanoscale ordering, which allows for the rapid preparation of photonic crystals from common organic chemical feedstocks. The characteristic physical properties of brush block copolymers are discussed, along with methods for their preparation. Strategies to induce self-assembly at ambient temperatures and the use of blending techniques to tune photonic properties are emphasized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanocomposites and bone regeneration
NASA Astrophysics Data System (ADS)
James, Roshan; Deng, Meng; Laurencin, Cato T.; Kumbar, Sangamesh G.
2011-12-01
This manuscript focuses on bone repair/regeneration using tissue engineering strategies, and highlights nanobiotechnology developments leading to novel nanocomposite systems. About 6.5 million fractures occur annually in USA, and about 550,000 of these individual cases required the application of a bone graft. Autogenous and allogenous bone have been most widely used for bone graft based therapies; however, there are significant problems such as donor shortage and risk of infection. Alternatives using synthetic and natural biomaterials have been developed, and some are commercially available for clinical applications requiring bone grafts. However, it remains a great challenge to design an ideal synthetic graft that very closely mimics the bone tissue structurally, and can modulate the desired function in osteoblast and progenitor cell populations. Nanobiomaterials, specifically nanocomposites composed of hydroxyapatite (HA) and/or collagen are extremely promising graft substitutes. The biocomposites can be fabricated to mimic the material composition of native bone tissue, and additionally, when using nano-HA (reduced grain size), one mimics the structural arrangement of native bone. A good understanding of bone biology and structure is critical to development of bone mimicking graft substitutes. HA and collagen exhibit excellent osteoconductive properties which can further modulate the regenerative/healing process following fracture injury. Combining with other polymeric biomaterials will reinforce the mechanical properties thus making the novel nano-HA based composites comparable to human bone. We report on recent studies using nanocomposites that have been fabricated as particles and nanofibers for regeneration of segmental bone defects. The research in nanocomposites, highlight a pivotal role in the future development of an ideal orthopaedic implant device, however further significant advancements are necessary to achieve clinical use.
Dai, Xiaojun; He, Yuan; Wei, Yinmao; Gong, Bolin
2011-11-01
A one-step procedure based on surface-initiated atom transfer radical polymerization (SI-ATRP) to hydrophilize monodisperse poly(chloromethylstyrene-co-divinylbenzene) beads has been presented in this work, using 2-hydroxyl-3-[4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl]propyl 2-methylacrylate (HTMA) as a monomer. The chain length of the grafted poly(HTMA) was controlled via varying the ratio of HTMA to initiator on the surface of the beads. When using the grafted beads as a stationary phase in hydrophilic interaction chromatography (HILIC), good resolution for nucleobases/nucleosides was obtained with acetonitrile aqueous solution as an eluent; while for phenolic acids and glycosides, they could be eluted and separated in the presence of TFA. The retention time of the solutes increased with the amount of the grafted HTMA. The retention mechanisms of solutes were investigated by the effects of mobile phase composition and buffer pH on the retention of solutes. The results illustrated that the retention behaviors of the tested solutes were dominated by hydrogen bonding interaction and electrostatic interaction. From the chemical structure of the ligands, the modified beads could not only be used as a stationary phase in HILIC, but also act as a useful building block to develop new stationary phases for other chromatographic modes such as affinity media. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Navaneetha Pandiyaraj, K.; Ram Kumar, M. C.; Arun Kumar, A.; Padmanabhan, P. V. A.; Deshmukh, R. R.; Bah, M.; Ismat Shah, S.; Su, Pi-Guey; Halleluyah, M.; Halim, A. S.
2016-05-01
Enhancement of anti-thrombogenic properties of polypropylene (PP) to avert the adsorption of plasma proteins (fibrinogen and albumin), adhesion and activation of the platelets are very important for vast biomedical applications. The cold atmospheric pressure plasma (CAPP) assisted polymerization has potential to create the specific functional groups such as Osbnd Cdbnd O, Cdbnd O, Csbnd N and Ssbnd S. on the surface of polymeric films using selective precursor in vapour phase to enhance anti-thrombogenic properties. Such functionalized polymeric surfaces would be suitable for various biomedical applications especially to improve the blood compatibility. The eventual aspiration of the present investigation is to develop the biofunctional coating onto the surface of PP films using acrylic acid (AAc) and polyethylene glycol (PEG) as a precursor in a vapour phase by incorporating specific functional groups for immobilization of biomolecules such as heparin (HEP), chitosan (CHI) and insulin (INS) on the surface of plasma modified PP films. The surface properties such as hydrophilicity, chemical composition, surface topography of the surface modified PP films were analyzed by contact angle (CA), Fourier transform infrared spectroscopy (FTIR), X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM). Furthermore the anti-thrombogenic properties of the surface modified PP films were studied by in vitro tests which include platelet adhesion and protein adsorption analysis. It was found that the anti-thrombogenic properties of the PP films are effectively controlled by the CAPP grafting of AAc and PEG followed by immobilization of biomolecules of heparin, chitosan and insulin. The grafting and immobilization was confirmed by FTIR and XPS through the recognition of specific functional groups such as COOH, Csbnd O, Ssbnd S and Csbnd N. on the surface of PP film. Furthermore, the surface morphology and hydrophilic nature of the PP films also tailored significantly by the successful grafting and immobilization which is confirmed by AFM and CA analysis. Owing to the physico-chemical changes on the surface of PP films induced by CAPP assisted polymerization, the anti-thrombogenic properties of PP films were enhanced as confirmed by in vitro analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youm, Sang Gil; Hwang, Euiyong; Chavez, Carlos A.
The ability to control nanoscale morphology and molecular organization in organic semiconducting polymer thin films is an important prerequisite for enhancing the efficiency of organic thin-film devices including organic light-emitting and photovoltaic devices. The current “top-down” paradigm for making such devices is based on utilizing solution-based processing (e.g., spin-casting) of soluble semiconducting polymers. This approach typically provides only modest control over nanoscale molecular organization and polymer chain alignment. A promising alternative to using solutions of presynthesized semiconducting polymers pursues instead a “bottom-up” approach to prepare surface-grafted semiconducting polymer thin films by surface-initiated polymerization of small-molecule monomers. Herein, we describe themore » development of an efficient method to prepare polythiophene thin films utilizing surface-initiated Kumada catalyst transfer polymerization. In this study, we provided evidence that the surface-initiated polymerization occurs by the highly robust controlled (quasi-“living”) chain-growth mechanism. Further optimization of this method enabled reliable preparation of polythiophene thin films with thickness up to 100 nm. Extensive structural studies of the resulting thin films using X-ray and neutron scattering methods as well as ultraviolet photoemission spectroscopy revealed detailed information on molecular organization and the bulk morphology of the films, and enabled further optimization of the polymerization protocol. One of the remarkable findings was that surface-initiated polymerization delivers polymer thin films showing complex molecular organization, where polythiophene chains assemble into lateral crystalline domains of about 3.2 nm size, with individual polymer chains folded to form in-plane aligned and densely packed oligomeric segments (7-8 thiophene units per each segment) within each domain. Achieving such a complex mesoscale organization is virtually impossible with traditional methods relying on solution processing of presynthesized polymers. Another significant advantage of surface-confined polymer thin films is their remarkable stability toward organic solvents and other processing conditions. In addition to controlled bulk morphology, uniform molecular organization, and stability, a unique feature of the surface-initiated polymerization is that it can be used for the preparation of large-area uniformly nanopatterned polymer thin films. Lastly, this was demonstrated using a combination of particle lithography and surface-initiated polymerization. In general, surface-initiated polymerization is not limited to polythiophene but can be also expanded toward other classes of semiconducting polymers and copolymers.« less
Gels from soft hairy nanoparticles in polymeric matrices
NASA Astrophysics Data System (ADS)
Vlassopoulos, Dimitris
2013-03-01
Hairy particles represent a huge class of soft colloids with tunable interactions and properties. Advances in synthetic chemistry have enabled obtaining well-characterized such systems for specific needs. In this talk we present two model hairy soft particles with diameters of the order of tens of nanometers, star polymers and polymerically grafted spherical particles. In particular, we discuss design strategies for dispersing them in polymeric matrices and eventually creating and breaking gels. Control parameters are the matrix molar mass, the grafting density (or functionality) and the size of the grafts (or arms). The linear viscoelastic properties and slow time evolution of the gels are examined in view of the existing knowledge from colloidal gels consisting of micron-sized particles, and compared. In the case of stars we start from a concentrated glassy suspension in molecular solvent and add homopolymer at increasing concentration, and as a result of the induced osmotic pressure the stars shrink and a depletion gel is formed. For the grafted colloidal particles, they are added at low concentration to a polymer matrix, and it has been shown that under certain conditions the anisotropy of interactions gives rise to network formation. We then focus on the nonlinear rheological response and in particular the effect of shear flow in inducing a solid to liquid transition. Our studies show that the yielding process is gradual and shares many common features with that of flocculated colloidal suspensions, irrespectively of the shape of the building block of the gel. Whereas shear can melt such a gel, it cannot break it into its constituent blocks and hence fully disperse the hairy nanoparticles. On the other hand, the hairy particles are intrinsically hybrid. We show how this important feature is reflected on the heating of the gels. In that case, the mismatch of thermal expansion coefficients of core and shell appears to play a role on the particle response as it imposes and internal strain on the particle, which in turn changes the shell conformation and under some conditions can lead to thermal melting of the gel. These alternative avenues for manipulating the gel-to-liquid transition have potential implications in directing the properties of hairy nanoparticles and their assemblies in viscoelastic matrices. Parts of this work reflect collaboration with D. Truzzolillo (FORTH), J. F. Moll and S. K.Kumar (Columbia). R. H. Colby (Penn State), M. Gauthier (Waterloo) and B. C. Benicewicz (Univ. South Carolina).
Kuang, Jinghao; Messersmith, Phillip B.
2012-01-01
We report a universal method for the surface-initated polymerization (SIP) of a antifouling polymer brush on various classes of surfaces, including noble metals, metal oxides and inert polymers. Inspired by the versatility of mussel adhesive proteins, we synthesized a novel bifunctional tripeptide bromide (BrYKY) which combines an atom transfer radical polymerization (ATRP) initiating alkyl bromide with l-3,4-dihydroxyphenylalanine (DOPA) and lysine. Simple dip-coating of substrates with variable wetting properties and compositions, including Teflon®, in a BrYKY solution at pH 8.5 led to formation of a thin film of cross-linked BrYKY. Subsequently, we showed that the BrYKY layer initiated the ATRP of a zwitterionic monomer, sulfobetaine methacrylate (SBMA) on all substrates, resulting in high density antifouling pSBMA brushes. Both BrYKY deposition and pSBMA grafting were unambiguously confirmed by ellipsometry, X-ray photoelectron spectroscopy and goniometry. All substrates that were coated with BrYKY/pSBMA dramatically reduced bacterial adhesion for 24 h and also resisted mammalian cell adhesion for at least 4 months, demonstrating the long-term stability of the BrYKY anchoring and antifouling properties of pSBMA. The use of BrYKY as a primer and polymerization initiator has the potential to be widely employed in surface grafted polymer brush modifications for biomedical and other applications. PMID:22506651
Li, Qian; Lin, Han-Han; Wang, Xiao-Lin
2014-01-01
Based on a two-step polymerization method, two sulfobetaine-based zwitterionic monomers, including 3-(methacryloylamino) propyl-dimethyl-(3-sulfopropyl) ammonium hydroxide (MPDSAH) and 2-(methacryloyloxyethyl) ethyl-dimethyl-(3-sulfopropyl) ammonium (MEDSA), were successfully grafted from poly(vinylidene fluoride) (PVDF) hollow fiber membrane surfaces in the presence of N,N′-methylene bisacrylamide (MBAA) as a cross-linking agent. The mechanical properties of the PVDF membrane were improved by the zwitterionic surface layers. The surface hydrophilicity of PVDF membranes was significantly enhanced and the polyMPDSAH-g-PVDF membrane showed a higher hydrophilicity due to the higher grafting amount. Compared to the polyMEDSA-g-PVDF membrane, the polyMPDSAH-g-PVDF membrane showed excellent significantly better anti-protein-fouling performance with a flux recovery ratio (RFR) higher than 90% during the cyclic filtration of a bovine serum albumin (BSA) solution. The polyMPDSAH-g-PVDF membrane showed an obvious electrolyte-responsive behavior and its protein-fouling-resistance performance was improved further during the filtration of the protein solution with 100 mmol/L of NaCl. After cleaned with a membrane cleaning solution for 16 days, the grafted MPDSAH layer on the PVDF membrane could be maintain without any chang; however, the polyMEDSA-g-PVDF membrane lost the grafted MEDSA layer after this treatment. Therefore, the amide group of sulfobetaine, which contributed significantly to the higher hydrophilicity and stability, was shown to be imperative in modifying the PVDF membrane for a stable anti-protein-fouling performance via the two-step polymerization method. PMID:24957171
Unprecedented covalently attached ATRP initiator onto OH-functionalized mica surfaces.
Lego, Béatrice; Skene, W G; Giasson, Suzanne
2008-01-15
Mica substrates were activated by a plasma method leading to OH-functionalized surfaces to which an atom transfer radical polymerization (ATRP) radical initiator was covalently bound using standard siloxane protocols. The unprecedented covalently immobilized initiator underwent radical polymerization with tert-butyl acrylate, yielding for the first time end-grafted polymer brushes that are covalently linked to mica. The initiator grafting on the mica substrate was confirmed by time-of-flight secondary ion mass spectrometry (TOF-SIMS), while the change in the water contact angle of the OH-activated mica surface was used to follow the change in surface coverage of the initiator on the surface. The polymer brush and initiator film thicknesses relative to the virgin mica were confirmed by atomic force microscopy (AFM). This was done by comparing the atomic step-height difference between a protected area of freshly cleaved mica and a zone exposed to plasma activation, initiator immobilization, and then ATRP.
Gao, Zhan; Henthorn, David B.; Kim, Chang-Soo
2009-01-01
In this work, we detail a method whereby a polymeric hydrogel layer is grafted to the negative tone photoresist SU-8 in order to improve its wettability. A photoinitiator is first immobilized on freshly prepared SU-8 samples, acting as the starting point for various surface modifications strategies. Grafting of a 2-hydroxyethylmethacrylate-based hydrogel from the SU-8 surface resulted in the reduction of the static contact angle of a water droplet from 79 ± 1° to 36 ± 1°, while addition of a poly(ethylene glycol)-rich hydrogel layer resulted in further improvement (8 ± 1°). Wettability is greatly enhanced after 30 minutes of polymerization, with a continued but more gradual decrease in contact angle up to approximately 50 minutes. Hydrogel formation is triggered by exposure to UV irradiation, allowing for the formation of photopatterned structures using existing photolithographic techniques. PMID:19756177
NASA Astrophysics Data System (ADS)
Sun, Yanqing; Zhou, Yuming; Wang, Zhiqiang; Ye, Xiaoyun
2009-02-01
The purpose of this study was to control the fabrication of nanocomposites at the nanoscale interface by collagen templated synthesis of Zn-Al layered double hydroxides (LDHs) assisted by γ-methacryloxypropyl trimethoxy silane (KH570) with further treatment of graft polymerization. The results show that collagen directs the growth of LDHs into curved nanorods by length of 300 nm in perfect consistency with collagen chain in both the size and flexility under the essential hydrophobic environment on the solid surface provided by KH570. The nanorods are aggregated into thin curved platelets due to strong interaction between collagen molecules themselves and strong interaction between collagen and LDH sheets. By further treatment of graft polymerization, the adjacent curved platelets encircle into numerous hollows via chemical linkage, achieving polyporous nanocomposites. Nanohybrid materials with this structure are especially interesting for applications as biosensors or supported catalysis.
Controlling the cell adhesion property of silk films by graft polymerization.
Dhyani, Vartika; Singh, Neetu
2014-04-09
We report here a graft polymerization method to improve the cell adhesion property of Bombyx mori silk fibroin films. B. mori silk has evolved as a promising material for tissue engineering because of its biocompatibility and biodegradability. However, silk's hydrophobic character makes cell adhesion and proliferation difficult. Also, the lack of sufficient reactive amino acid residues makes biofunctionalization via chemical modification challenging. Our study describes a simple method that provides increased chemical handles for tuning of the surface chemistry of regenerated silk films (SFs), thus allowing manipulation of their bioactivity. By grafting pAAc and pHEMA via plasma etching, we have increased carboxylic acid and hydroxyl groups on silk, respectively. These modifications allowed us to tune the hydrophilicity of SFs and provide functional groups for bioconjugation. Our strategy also allowed us to develop silk-based surface coatings, where spatial control over cell adhesion can be achieved. This control over cell adhesion in a particular region of the SFs is difficult to obtain via existing methods of modifying the silk fibroin instead of the SF surface. Thus, our strategy will be a valuable addition to the toolkit of biofunctionalization for enhancing SFs' tissue engineering applications.
Karaj-Abad, Saber Ghasemi; Abbasian, Mojtaba; Jaymand, Mehdi
2016-11-05
For the first time, nitroxide-mediated polymerization (NMP) was used for synthesis of graft and block copolymers using cellulose (Cell) as a backbone, and polystyrene (PSt) and poly(methyl metacrylate) (PMMA) as the branches. For this purpose, Cell was acetylated by 2-bromoisobutyryl bromide (BrBiB), and then the bromine group was converted to 4-oxy-2,2,6,6-tetramethylpiperidin-1-oxyl group by a substitution nucleophilic reaction to afford a macroinitiator (Cell-TEMPOL). The macroinitiator obtained was subsequently used in controlled graft and block copolymerizations of St and MMA monomers to yield Cell-g-PSt and Cell-g-(PMMA-b-PSt). The chemical structures of all samples as representatives were characterized by FTIR and (1)H NMR spectroscopies. In addition, Cell-g-(PMMA-b-PSt)/organophilic montmorillonite nanocomposite was prepared through a solution intercalation method. TEM was used to evaluate the morphological behavior of the polymer-clay system. It was demonstrated that the addition of small percent of organophilic montmorillonite (O-MMT; 3wt.%) was enough to improve the thermal stability of the nanocomposite. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wenwen; Wang, Weiyu; Li, Hui
In this study, high molecular weight “comb-shaped” graft copolymers, poly(isoprene-g-styrene), with polyisoprene as the backbone and polystyrene as side chains, were synthesized via free radical emulsion polymerization by copolymerization of isoprene with a polystyrene macromonomer synthesized using anionic polymerization. A small amount of toluene was used in order to successfully disperse the macromonomer. Both a redox and thermal initiation system were used in the emulsion polymerization, and the latex particle size and distribution were investigated by dynamic light scattering. The structural characteristics of the macromonomer and comb graft copolymers were investigated through use of size exclusion chromatography, spectroscopy, microscopy, thermalmore » analysis, and rheology. While the macromonomer was successfully copolymerized to obtain the desired multigraft copolymers, small amounts of unreacted macromonomer remained in the products, reflecting its reduced reactivity due to steric effects. Nevertheless, the multigraft copolymers obtained were very high in molecular weight (5–12 × 10 5 g/mol) and up to 10 branches per chain, on average, could be incorporated. A material incorporating 29 wt% polystyrene exhibits a disordered microphase separated morphology and elastomeric properties. As a result, these materials show promise as new, highly tunable, and potentially low cost thermoplastic elastomers.« less
Ohno, Kohji; Akashi, Tatsuki; Tsujii, Yoshinobu; Yamamoto, Masaya; Tabata, Yasuhiko
2012-03-12
The physiological properties of polymer brush-afforded silica particles prepared by surface-initiated living radical polymerization were investigated in terms of the circulation lifetime in the blood and distribution in tissues. Hydrophilic polymers consisting mainly of poly(poly(ethylene glycol) methyl ether methacrylate) were grafted onto silica particles by surface-initiated atom transfer radical polymerization that was mediated by a copper complex to produce hairy hybrid particles. A series of hybrid particles was synthesized by varying the diameter of the silica core and the chain length of the polymer brush to examine the relationship between their physicochemical and physiological properties. The hybrid particles were injected intravenously into mice to investigate systematically their blood clearance and body distribution. It was revealed that the structural features of the hybrid particles significantly affected their in vivo pharmacokinetics. Some hybrid particles exhibited an excellently prolonged circulation lifetime in the blood with a half life of ∼20 h. When such hybrid particles were injected intravenously into a tumor-bearing mouse, they preferentially accumulated in tumor tissue. The tumor-targeted delivery was optically visualized using hybrid particles grafted with fluorescence-labeled polymer brushes.
Reddy, Kakarla Raghava; Lee, Kwang-Pill; Kim, Ju Young; Lee, Youngil
2008-11-01
This study describes the synthesis of monodispersed core-shell composites of silica-modified magnetic nanoparticles and conducting polyaniline by self-assembly and graft polymerization. Magnetic ferrite nanoparticles (Fe3O4) were prepared by coprecipitation of Fe+2 and Fe+3 ions in alkaline solution, and then silananized. The silanation of magnetic particles (Fe3O4@SiO2) was carried out using 3-bromopropyltrichlorosilane (BPTS) as the coupling agent. FT-IR spectra indicated the presence of Fe--O--Si chemical bonds in Fe3O4@SiO2. Core-shell type nanocomposites (Fe3O4@SiO2/PANI) were prepared by grafting polyaniline (PANI) on the surface of silanized magnetic particles through surface initiated in-situ chemical oxidative graft polymerization. The nanocomposites were characterized by high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), Fourier transform infrared (FTIR) spectra, UV-visible spectroscopy, photoluminescence (PL) spectra, electrical conductivity and magnetic characteristics. HRTEM images of the nanocomposites revealed that the silica-modified magnetic particles made up the core while PANI made up the shell. The XPS spectrum revealed the presence of silica in the composites, and the XRD results showed that the composites were more crystalline than pure PANI. PL spectra show that composites exhibit photoluminescent property. Conductivity of the composites (6.2 to 9.4 x 10(-2) S/cm) was higher than that of pristine PANI (3.7 x 10(-3) S/cm). The nanocomposites exhibited superparamagnetism. Formation mechanism of the core-shell structured nanocomposites and the effect of modified magnetic nanoparticles on the electro-magnetic properties of the Fe3O4@SiO2/PANI nanocomposites are also investigated. This method provides a new strategy for the generation of multi-functional nanocomposites that composed of other conducting polymers and metal nanoparticles.
Obiols-Rabasa, M; Ramos, J; Forcada, J; Esquena, J; Solans, C; Levecke, B; Booten, K; Tadros, Tharwat F
2010-06-01
The seeded semicontinuous emulsion copolymerization of methyl methacrylate (MMA) and butyl acrylate (BuA) stabilized with a graft polymeric surfactant based on inulin, INUTEC SP1, as well as its mixture with sodium lauryl sulfate (SLS) is described. The mixture of SLS and Brij58 (alcohol ethoxylated) and the mixture of SLS and Pluronic P85 (block copolymer PEO-PPO-PEO) are also used as surfactant systems. The addition of methacrylic acid (MAA) or acrylic acid (AA) as comonomers is also studied. Previous results proved this inulin-derivative surfactant, INUTEC SP1, to be very effective on synthesizing latexes using a very low surfactant concentration. The kinetic features of the emulsion polymerization (instantaneous conversion and total conversion) were gravimetrically determined along the reactions. Latex dispersions were characterized by photon correlation spectroscopy (PCS) and transmission electron microscopy (TEM) to obtain the average particle size, the particle size distributions (PSDs) as well as the polydispersity index (PdI). The stability was determined by turbidimetry measurements and expressed in terms of critical coagulation concentration. The results showed that the use of the graft polymeric surfactant allowed obtaining highly stable nanoparticles, at low surfactant concentrations and high solid contents (up to 37 wt %). This is an improvement with respect to previous works, in which a mixture of the graft polymeric surfactant with another surfactant was required to obtain stable nanoparticles with low polydispersity, at high solid content. In the present work, low polydispersity was achieved using INUTEC as the only emulsifier, which was related to the absence of secondary nucleations. When a mixture of INUTEC SP1 and SLS is used, a wider PSD is obtained due to secondary nucleations. Replacing INUTEC SP1 by other nonionic surfactants such as Brij58 or Pluronic P85 leads to an increase of average particle size and wider PSD.
Akbarzadeh, Abolfazl; Samiei, Mohammad; Joo, Sang Woo; Anzaby, Maryam; Hanifehpour, Younes; Nasrabadi, Hamid Tayefi; Davaran, Soodabeh
2012-12-18
The aim of present study was to develop the novel methods for chemical and physical modification of superparamagnetic iron oxide nanoparticles (SPIONs) with polymers via covalent bonding entrapment. These modified SPIONs were used for encapsulation of anticancer drug doxorubicin. At first approach silane-grafted magnetic nanoparticles was prepared and used as a template for polymerization of the N-isopropylacrylamide (NIPAAm) and methacrylic acid (MAA) via radical polymerization. This temperature/pH-sensitive copolymer was used for preparation of DOX-loaded magnetic nanocomposites. At second approach Vinyltriethoxysilane-grafted magnetic nanoparticles were used as a template to polymerize PNIPAAm-MAA in 1, 4 dioxan and methylene-bis-acrylamide (BIS) was used as a cross-linking agent. Chemical composition and magnetic properties of Dox-loaded magnetic hydrogel nanocomposites were analyzed by FT-IR, XRD, and VSM. The results demonstrate the feasibility of drug encapsulation of the magnetic nanoparticles with NIPAAm-MAA copolymer via covalent bonding. The key factors for the successful prepardtion of magnetic nanocomposites were the structure of copolymer (linear or cross-linked), concentration of copolymer and concentration of drug. The influence of pH and temperature on the release profile of doxorubicin was examined. The in vitro cytotoxicity test (MTT assay) of both magnetic DOx-loaded nanoparticles was examined. The in vitro tests showed that these systems are no toxicity and are biocompatible. IC50 of DOx-loaded Fe3O4 nanoparticles on A549 lung cancer cell line showed that systems could be useful in treatment of lung cancer.
Brown, Suree; Yue, Yanfeng; Kuo, Li-Jung; ...
2016-03-11
The need to secure future supplies of energy attracts researchers in several countries to a vast resource of nuclear energy fuel: uranium in seawater (estimated at 4.5 billion tons in seawater). In this study, we developed effective adsorbent fibers for the recovery of uranium from seawater via atom-transfer radical polymerization (ATRP) from a poly-(vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. ATRP was employed in the surface graft polymerization of acrylonitrile (AN) and tert-butyl acrylate (tBA), precursors for uranium-interacting functional groups, from PVC-co-CPVC fiber. The [tBA]/[AN] was systematically varied to identify the optimal ratio between hydrophilic groups (from tBA) and uranyl-binding ligandsmore » (from AN). The best performing adsorbent fiber, the one with the optimal [tBA]/[AN] ratio and a high degree of grafting (1390%), demonstrated uranium adsorption capacities that are significantly greater than those of the Japan Atomic Energy Agency (JAEA) reference fiber in natural seawater tests (2.42 3.24 g/kg in 42 days of seawater exposure and 5.22 g/kg in 49 days of seawater exposure, versus 1.66 g/kg in 42 days of seawater exposure and 1.71 g/kg in 49 days of seawater exposure for JAEA). Lastly, adsorption of other metal ions from seawater and their corresponding kinetics were also studied. The grafting of alternative monomers for the recovery of uranium from seawater is now under development by this versatile technique of ATRP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Suree; Yue, Yanfeng; Kuo, Li-Jung
The need to secure future supplies of energy attracts researchers in several countries to a vast resource of nuclear energy fuel: uranium in seawater (estimated at 4.5 billion tons in seawater). In this study, we developed effective adsorbent fibers for the recovery of uranium from seawater via atom-transfer radical polymerization (ATRP) from a poly-(vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. ATRP was employed in the surface graft polymerization of acrylonitrile (AN) and tert-butyl acrylate (tBA), precursors for uranium-interacting functional groups, from PVC-co-CPVC fiber. The [tBA]/[AN] was systematically varied to identify the optimal ratio between hydrophilic groups (from tBA) and uranyl-binding ligandsmore » (from AN). The best performing adsorbent fiber, the one with the optimal [tBA]/[AN] ratio and a high degree of grafting (1390%), demonstrated uranium adsorption capacities that are significantly greater than those of the Japan Atomic Energy Agency (JAEA) reference fiber in natural seawater tests (2.42 3.24 g/kg in 42 days of seawater exposure and 5.22 g/kg in 49 days of seawater exposure, versus 1.66 g/kg in 42 days of seawater exposure and 1.71 g/kg in 49 days of seawater exposure for JAEA). Lastly, adsorption of other metal ions from seawater and their corresponding kinetics were also studied. The grafting of alternative monomers for the recovery of uranium from seawater is now under development by this versatile technique of ATRP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Suree; Yue, Yanfeng; Kuo, Li-Jung
The need to secure future supplies of energy attracts researchers in several countries to a vast resource of nuclear energy fuel: uranium in seawater (estimated at 4.5 billion tons in seawater). In this study, we developed effective adsorbent fibers for the recovery of uranium from seawater via atom-transfer radical polymerization (ATRP) from a poly- (vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. ATRP was employed in the surface graft polymerization of acrylonitrile (AN) and tert-butyl acrylate (tBA), precursors for uranium-interacting functional groups, from PVC-co-CPVC fiber. The [tBA]/[AN] was systematically varied to identify the optimal ratio between hydrophilic groups (from tBA) and uranyl-bindingmore » ligands (from AN). The best performing adsorbent fiber, the one with the optimal [tBA]/[AN] ratio and a high degree of grafting (1390%), demonstrated uranium adsorption capacities that are significantly greater than those of the Japan Atomic Energy Agency (JAEA) reference fiber in natural seawater tests (2.42-3.24 g/kg in 42 days of seawater exposure and 5.22 g/kg in 49 days of seawater exposure, versus 1.66 g/kg in 42 days of seawater exposure and 1.71 g/kg in 49 days of seawater exposure for JAEA). Adsorption of other metal ions from seawater and their corresponding kinetics were also studied. The grafting of alternative monomers for the recovery of uranium from seawater is now under development by this versatile technique of ATRP.« less
Electron Beam Materials Irradiators
NASA Astrophysics Data System (ADS)
Cleland, Marshall R.
2012-06-01
Radiation processing is a well established method for enhancing the properties of materials and commercial products by treating them with ionizing energy in the form of high-energy electrons, X-rays, and gamma rays. Beneficial effects include polymerizing, cross-linking, grafting and degrading plastics, sterilizing single-use medical devices, disinfecting and disinfesting fresh foods, purifying drinking water, treating wastewater and other toxic waste materials that harm the environment, and many other applications that are still being evaluated. Industrial electron accelerators of several types have been developed and are being used for these applications. More than 1800 electron accelerators are presently installed in facilities worldwide for these purposes.
Arita, Toshihiko
2010-10-01
Commercially available unmodified ceramic nanoparticles (NPs) in dry powder state were surface-modified and dispersed in almost single-crystal size. The surface-initiated living radical polymerization after just UV-ozone soft etching enables one to graft polymers onto the surface of ceramic NPs and disperse them in solvents. Furthermore, a number of NPs were dispersed with single-crystal sizes. The technique developed here could be applied to almost all ceramic NPs including metal nitrides.
de Cassan, Dominik; Sydow, Steffen; Schmidt, Nadeschda; Behrens, Peter; Roger, Yvonne; Hoffmann, Andrea; Hoheisel, Anna Lena; Glasmacher, Birgit; Hänsch, Robert; Menzel, Henning
2018-03-01
Electrospun poly(ε-caprolactone) (PCL) fiber mats are modified using a chitosan grafted with PCL (CS-g-PCL), to improve the biological performance and to enable further modifications. The graft copolymer is immobilized by the crystallization of the PCL grafts on the PCL fiber surface as binding mechanism. In this way, the surface of the fibers is covered with chitosan bearing cationic amino groups, which allow adsorption of oppositely charged nanoparticulate drug-delivery systems. The modification of the fiber mats and the attachment of the drug delivery systems are easy and scalable dip processes. The process is also versatile; it is possible to attach different polymeric and inorganic nanoparticulate drug-release systems of cationic or anionic nature. The modifications are verified using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). As proof of principle, the release of ciprofloxacin from silica nanoparticles attached to the modified fiber mats is shown; however, the method is also suited for other biologically active substances including growth factors. The initial cellular attachment and proliferation as well as vitality of the cells is improved by the modification with CS-g-PCL and is further influenced by the type of the drug delivery system attached. Hence, this method can be used to transfer PCL fiber mats into bioactive implants for in-situ tissue engineering applications. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Hanzhou; Lv, Ming; Deng, Bo; Li, Jingye; Yu, Ming; Huang, Qing; Fan, Chunhai
2014-08-01
To improve the laundering durability of the silver functionalized antibacterial cotton fabrics, a radiation-induced coincident reduction and graft polymerization is reported herein where a pomegranate-shaped silver nanoparticle aggregations up to 500 nm can be formed due to the coordination forces between amino group and silver and the wrapping procedure originated from the coincident growth of the silver nanoparticles and polymer graft chains. This pomegranate-shaped silver NPAs functionalized cotton fabric exhibits outstanding antibacterial activities and also excellent laundering durability, where it can inactivate higher than 90% of both E. coli and S. aureus even after 50 accelerated laundering cycles, which is equivalent to 250 commercial or domestic laundering cycles.
Characterization of Surface Modification of Polyethersulfone Membrane
USDA-ARS?s Scientific Manuscript database
Surface modification of polyethersulfone (PES) membrane surface using UV/ozone-treated grafting and interfacial polymerization on membrane surface was investigated in order to improve the resistance of membrane surface to protein adsorption. These methods of surface modification were compared in te...
Advanced Bio-Based Nanocomposites and Manufacturing Processes
NASA Astrophysics Data System (ADS)
Spinella, Stephen Matthew
The aim of the PhD thesis concerns with the modification of cellulose nanocrystals (CNCs) via esterification or a radical grafting "from" approach to achieve polymeric nanocomposites of exceptional properties (Chapters 1 to 4). In addition to CNCs modification, other green routes have been introduced in this thesis in order to environmentally friendly polyester-based materials, i.e. Chapters five and six. The second chapter focuses on expanding on a one-pot cellulose acid hydrolysis/Fischer esterification to produce highly compatible CNCs without any organic solvent. It consists of modifying CNCs with acetic- and lactic- acid and exploring how such surface chemistry has an effect of dispersion in the case of polylactide (PLA)-based nanocomposites. The degree of substitution for AA-CNCs and LA-CNCs, determined by FTIR, are 0.12 and 0.13, respectively. PLA-based materials represent the best bioplastics relating to its high stiffness and biodegradability, but suffer from its poor thermal performances, namely its Heat Deflection Temperature (HDT). To improve the HDT of PLA, nanocomposites have been therefore prepared with modified cellulose nanocrystals (CNCs) by melt blending. After blending at 5 wt-% loading of CNCs, LA-CNCs gives superior reinforcement below and above the glass temperature of PLA. An increase in PLA's heat deflection temperature by 10°C and 20°C is achieved by melt-blending PLA with 5 and 20 wt-% LA-CNCs, respectively. Chapter three concerns with expanding this process to a series of hydrophilic and hydrophobic acids yielding functional CNCs for electronic and biomedical applications. Hydrophilic acids include citric-, malonic- and malic acid. Modification with the abovementioned organic acids allows for the introduction of free acids onto the surface of CNCs. Modification with citric-, malonic- and malic- acid is verified by Fourier Transform Infrared Spectroscopy and 13C solid state magic-angle spinning (MAS) NMR experiments. The degree of substation of modified CNCs is determined by quantitative direct carbon MAS NMR for malonate CNCs, malate CNCs and Citrate CNCs are found to be 0.16, 0.22 and 0.18, respectively. Re-hydrolysis experiments are performed and the yield of citrate CNCs was increased to 55% with little effect on CNC crystallinity or morphology. Citrate CNCs are then used for a myriad of applications such as polymer reinforcement (polyvinyl alcohol (PVOH) and bio-temptation of inorganic nanoparticles. Introduction of just 1% citrate CNCs results in a 40°C increase in PVOH's thermal stability (T50%). Appendant citrate groups are used for the direct reduction of silver nanoparticles without any external reducing agents. Finally citrate CNCs are used to reinforce collagen hydrogels. Chapter four builds on "grafting from" reactions of poly(methyl methacrylate) (PMMA) onto the surface of CNCs to further increase the HDT of PLAs above 100°C. Taking advantage of the PMMA-PLLA miscibility, the presence of PMMA grafts on the CNC surface clearly improves CNC dispersion in PLLA, and reduces CNC aggregation thus enhancing the PLAs HDT. Herein "grafting from" reactions of poly(methyl methacrylate) (PMMA) on the surface of CNCs was is performed by free-radical grafting in water using two different redox initiators: Fe2+/H2O2 (Fenton's reagent) and ceric ammonium nitrate (CAN). The amount of grafted PMMA could be easily tuned according to the initiator and CAN clearly represents the most efficient initiator. From rheological data, high grafting levels favor the percolation of CNC with the development of a long-range 3D network. PLA's (HDT) higher was increased to over 130°C. Chapter five reports blending PLA with another renewable poly(o-hydroxytetradecanoic acid) (PC14).The goal of this chapter is to enhance the poor brittleness of PLA by blending with a rubbery polymer such as PC14. Like most polymer blends, PLA and PC14 are however found to be immiscible by simple blending. To achieve this goal, a fully bio-sourced PLA based polymer blend is conceived by incorporating small quantities of poly(o-hydroxytetradecanoic acid) (PC14). PC14 is produced by polycondensation, thus we explore ring opening polymerization of poly(w-pentadecalactone) using enzymatic reactive extrusion. The final chapter of this thesis concerns the feasibility of conducting an enzymatic ring-opening polymerization on the basis of lipase enzymes by reactive extrusion (REX) at high shear and temperature conditions. The ability of lipases to catalyze ring-opening and condensation polymerizations at relatively low temperatures (e.g. 70--90°C) is advantageous to reduce energy input and to preserve thermally sensitive chemical moieties. However, when high molecular weight polymer synthesis is desired, corresponding diffusional constraints must be overcome by either running reactions at higher temperatures (e.g. 150--220°C) or by adding solvent. Reactive extrusion (REX) has been used to overcome the aforementioned problems of bulk polymerizations that slows chain growth. In the chapter using immobilized Candida antarctica Lipase B (CALB) as catalyst at temperatures ranging from 90 to 130°C is investigated. (Abstract shortened by UMI.).
Novel Nanocomposites of Poly(lauryl methacrylate)-Grafted Al2O3 Nanoparticles in LDPE.
Cobo Sánchez, Carmen; Wåhlander, Martin; Taylor, Nathaniel; Fogelström, Linda; Malmström, Eva
2015-11-25
Aluminum oxide nanoparticles (NPs) were surface-modified by poly(lauryl methacrylate) (PLMA) using surface-initiated atom-transfer radical polymerization (SI-ATRP) of lauryl methacrylate. Nanocomposites were obtained by mixing the grafted NPs in a low-density polyethylene (LDPE) matrix in different ratios. First, the NPs were silanized with different aminosilanes, (3-aminopropyl)triethoxysilane, and 3-aminopropyl(diethoxy)methylsilane (APDMS). Subsequently, α-BiB, an initiator for SI-ATRP, was attached to the amino groups, showing higher immobilization ratios for APDMS and confirming that fewer self-condensation reactions between silanes took place. In a third step SI-ATRP of LMA at different times was performed to render PLMA-grafted NPs (NP-PLMAs), showing good control of the polymerization. Reactions were conducted for 20 to 60 min, obtaining a range of molecular weights between 23 000 and 83 000 g/mol, as confirmed by size-exclusion chromoatography of the cleaved grafts. Nanocomposites of NP-PLMAs at low loadings in LDPE were prepared by extrusion. At low loadings, 0.5 wt % of inorganic content, the second yield point, storage, and loss moduli increased significantly, suggesting an improved interphase as an effect of the PLMA grafts. These observations were also confirmed by an increase in transparency of the nanocomposite films. At higher loadings, 1 wt % of inorganics, the increasing amount of PLMA gave rise to the formation of small aggregates, which may explain the loss of mechanical properties. Finally, dielectric measurements were performed, showing a decrease in tan δ values for LDPE-NP-PLMAs, as compared to the nanocomposites containing unmodified NP, thus indicating an improved interphase between the NPs and LDPE.
How to adjust desired drug release patterns from ethylcellulose-coated dosage forms.
Siepmann, F; Hoffmann, A; Leclercq, B; Carlin, B; Siepmann, J
2007-06-04
The aim of this study was to provide an easy and efficient tool to adjust desired drug release kinetics from (aqueous) ethylcellulose-coated solid dosage forms and to better understand the underlying mass transport mechanisms. Pure ethylcellulose films are poorly permeable for many substances and can result in very low release rates for certain drugs from coated dosage forms, if the film coatings are completely formed and remain intact upon exposure to the release media. To increase the permeability of the polymeric membranes, different amounts of a water-soluble poly(vinyl alcohol)-poly(ethylene glycol) graft copolymer (PVA-PEG graft copolymer) were added to an aqueous ethylcellulose dispersion (Aquacoat ECD). Importantly, the presence of only a low percentage of this hydrophilic copolymer significantly increased the resulting water uptake rate and extent, dry weight loss and drug permeability of the films. In contrast to hydroxypropyl methylcellulose (HPMC), the PVA-PEG graft copolymer does not cause flocculation of the colloidal coating dispersion (leading to potentially variable release rates). Interestingly, the transport of water as well as of the model drug theophylline through the polymeric networks was primarily controlled by pure diffusion. The penetration kinetics could be quantitatively described by Fick's law of diffusion, irrespective of the type of release medium and PVA-PEG graft copolymer content. Most important from a practical point of view, a broad spectrum of pH-independent drug release rates can easily be obtained from drug-loaded pellets by simply varying the PVA-PEG graft copolymer content. An appropriate curing step after coating is required, but interestingly the investigated curing conditions (differing in time and relative humidity) resulted in very similar drug release patterns, indicating that stable film structures are likely to be achieved.
Dong, Baiyan; Jiang, Hongquan; Manolache, Sorin; Wong, Amy C Lee; Denes, Ferencz S
2007-06-19
A simple cold plasma technique was developed to functionalize the surfaces of polyamide (PA) and polyester (PET) for the grafting of polyethylene glycol (PEG) with the aim of reducing biofilm formation. The surfaces of PA and PET were treated with silicon tetrachloride (SiCl4) plasma, and PEG was grafted onto plasma-functionalized substrates (PA-PEG, PET-PEG). Different molecular weights of PEG and grafting times were tested to obtain optimal surface coverage by PEG as monitored by electron spectroscopy for chemical analysis (ESCA). The presence of a predominant C-O peak on the PEG-modified substrates indicated that the grafting was successful. Data from hydroxyl group derivatization and water contact angle measurement also indicated the presence of PEG after grafting. The PEG-grafted PA and PET under optimal conditions had similar chemical composition and hydrophilicity; however, different morphology changes were observed after grafting. Both PA-PEG and PET-PEG surfaces developed under optimal plasma conditions showed about 96% reduction in biofilm formation by Listeria monocytogenes compared with that of the corresponding unmodified substrates. This plasma functionalization method provided an efficient way to graft PEG onto PA and PET surfaces. Because of the high reactivity of Si-Cl species, this method could potentially be applied to other polymeric materials.
NASA Astrophysics Data System (ADS)
Syaubari; Safwani, S.; Riza, M.
2018-04-01
One of natural polymers that can be used as raw material in the manufacture of biodegradable plastic is tapioca and chitosan. The addition of other compounds such as glycerol as plasticizer is to improve the characteristics of the plastic that already produced. N- Isopropylacrylamid (NIPAm) is an organic compound that can be synthesized into a polymer or polymer grafting which also biodegradable too. This research aims tostudy the synthesis of biodegradable plastics from tapioca with the addition of chitosan, NIPAm, poly(NIPAm) and analyze the characteristics of biodegradable plastics that already produced. This research was done in three stages, there are (1) polymerization NIPAm, (2) the grafting of chitosan-poly NIPAm and (3) the synthesis of biodegradable plastics from starch mixture with variation of addition chitosan, NIPAm, poly(NIPAm), chitosan-graft-poly(NIPAm) and also variations of glycerol as plasticizer. The results of this research is a thin sheet of plastic which is will get analyzed for the characteristics of functional groups, mechanical, morphological and its biodegradability. FTIR spectra showed the grafting process with the new group formation of CO single-bond at 850 cm-1. Plastic with the addition of NIPAm and 1 ml glycerol has the highest tensile strength value about 31.1 MPa. Plastic with poly(NIPAm) and 4 ml glycerol produces the highest elongation value about 153.72%. Plastic with Chitosan-graft-poly(NIPAm) with 1 ml glycerol has the longest biodegradation because of the small mass-loss for six weeks which is about 6.6%.
Effect of flexibility of grafted polymer on the morphology and property of nanosilica/PVC composites
NASA Astrophysics Data System (ADS)
Zhu, Aiping; Cai, Aiyun; Zhou, Weidong; Shi, Zhehua
2008-04-01
In this study, poly(methyl methacrylate)-grafted-nanosilica (PMMA-g-silica) and a copolymer of styrene (St), n-butyl acrylate (BA) and acrylic acid (AA)-grafted-nanosilica (PSBA-g-silica) hybrid nanoparticles were prepared by using a heterophase polymerization technique in an aqueous system. The grafted polymers made up approximately 50 wt.% of the resulted hybrid nanoparticles which showed a spherical and well-dispersed morphology. The silica hybrid nanoparticles were subsequently used as fillers in a poly(vinyl chloride) (PVC) matrix to fabricate PVC nanocomposite. Morphology study of PVC nanocomposites revealed that both PMMA- and PSBA-grafted-silica had an adhesive interface between the silica and PVC. The tensile strength and elongation to break were found to be improved significantly in comparison with that of untreated nanosilica/PVC composites. Finally our results clearly demonstrated that the properties (e.g. chain flexibility, composition) of the grafted polymer in the hybrid nanoparticles could significantly affect the dispersion behavior of hybrid nanoparticles in PVC matrix, dynamic mechanical thermal properties and mechanical properties of the resulted PVC composites.
NASA Astrophysics Data System (ADS)
Bo, Yang; Cui, Jiayang; Cai, Yangben; Xu, Shiai
2016-02-01
In this study, the grafting polymerization of methyl methacrylate (MMA) monomer and maleic anhydride/diallyl phthalate (MAH/DAP) co-monomer onto the surface of carbon black (CB) were carried out at room temperature and normal pressure by γ-ray irradiation. The surface chemistry of grafted CBs were characterized by infrared spectroscopy (IR), thermo-gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The results show that there are some remanent polymers on the surface of modified CBs after extract for 48 h, indicating that poly(methyl methacrylate) (PMMA) and poly(MAH-co-DAP) have been successfully grafted onto the surface of CB without using initiator due to the high energy of γ-ray irradiation. Dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) reveal that the grafted CBs have smaller average aggregate size and better dispersibility than that of CB in absolute ethanol. In addition, it was found that the amount of oxygen groups and the irradiation doses/dose rates have little effect on the grafting degree of CB.
Zhou, Tao; Xia, Fafa; Deng, Yue; Zhao, Youcai
2018-05-01
Waste textiles (WTs) are the inevitable outcome of human activity and should be separated and recycled in view of sustainable development. In this work, WT was modified through grafting with acrylic acid (AA) via radical polymerization process using ceric ammonium nitrate (CAN) as an initiator and microwave and/or UV irradiation as energy supply. The acrylic acid-grafted waste textiles (WT-g-AA) thus obtained was then used as an adsorbent to remove Pb(II) from Pb(II)-containing wastewater. The effects of pH, initial concentrations of Pb(II) and adsorbent dose were investigated, and around 95% Pb(II) can be removed from the aqueous solution containing 10mg/L at pH6.0-8.0. The experimental adsorption isotherm data was fitted to the Langmuir model with maximum adsorption capacity of 35.7mg Pb/g WT-g-AA. The Pb-absorbed WT-g-AA was stripped using dilute nitric acid solution and the adsorption capacity of Pb-free material decreased from 95.4% (cycle 1) to 91.1% (cycle 3). It was considered that the WT-g-AA adsorption for Pb(II) may be realized through the ion-exchange mechanism between COOH and Pb(II). The promising results manifested that WT-g-AA powder was an efficient, eco-friendly and reusable adsorbent for the removal of Pb(II) from wastewater. Copyright © 2017. Published by Elsevier B.V.
Maatar, Wafa; Boufi, Sami
2015-08-01
A poly(methacrylic acid-co-maleic acid) grafted nanofibrillated cellulose (NFC-MAA-MA) aerogel was prepared via radical polymerization in an aqueous solution using Fenton's reagent. The ensuing aerogel, in the form of a rigid porous material, was characterized by FTIR and NMR and used as an adsorbent for the removal of heavy metals from aqueous solutions. It showed an efficient adsorption, exceeding 95% toward Pb(2+), Cd(2+), Zn(2+) and Ni(2+) when their concentration was lower than 10 ppm and ranged from 90% to 60% for a metal concentration higher than 10 ppm. Over 98% of the adsorbed metal ion was recovered using EDTA as a desorbing solution, and the subsequent washing allowed the aerogel to be reused repeatedly without noticeable loss of adsorption capacity. It was concluded that the (NFC-MAA-MA) aerogel may be used as a high capacity and reusable sorbent material in heavy-metal removing processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
PEG-stabilized core-shell surface-imprinted nanoparticles.
Moczko, Ewa; Guerreiro, Antonio; Piletska, Elena; Piletsky, Sergey
2013-08-06
Here we present a simple technique to produce target-specific molecularly imprinted polymeric nanoparticles (MIP NPs) and their surface modification in order to prevent the aggregation process that is ever-present in most nanomaterial suspensions/dispersions. Specifically, we studied the influence of surface modification of MIP NPs with polymerizable poly(ethylene glycol) on their degree of stability in water, in phosphate buffer, and in the presence of serum proteins. Grafting a polymer shell on the surface of nanoparticles decreases the surface energy, enhances the polarity, and as a result improves the dispersibility, storage, and colloidal stability as compared to those of core (unmodified) particles. Because of the unique solid-phase approach used for synthesis, the binding sites of MIP NPs are protected during grafting, and the recognition properties of nanoparticles are not affected. These results are significant for developing nanomaterials with selective molecular recognition, increased biocompatibility, and stability in solution. Materials synthesized this way have the potential to be used in a variety of technological fields, including in vivo applications such as drug delivery and imaging.
Miao, Chuanwei; Hamad, Wadood Y
2016-11-20
CNC-PLLA nanomaterials were synthesized via in-situ ring-opening polymerization of l-lactide in the presence of CNC, resulting in hydrophobic, homogeneous mixture of PLLA-grafted-CNC and free PLLA homopolymer. The free PLLA serves two useful functions: as barrier to further prevent PLLA-g-CNC from forming aggregates, and in creating improved interfacial properties when these nanomaterials are blended with other polymers, hence enhancing their performance. CNC-PLLA nanomaterials can be used for medical or engineering applications as-they-are or by compounding with suitable biopolymers using versatile techniques, such as solution casting, co-extrusion or injection molding, to form hybrid nanocomposites of tunable mechanical properties. When compounded with commercial-grade PLA, the resulting CNC-PLA nanocomposites appear transparent and have tailored (dynamic and static) mechanical and barrier properties, approaching those of poly(ethylene terephthalate), PET. The effect of reaction conditions on the properties of CNC-PLLA nanomaterials have been carefully studied and detailed throughout the paper. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biocompatible Polymeric Nanoparticles as Promising Candidates for Drug Delivery.
Łukasiewicz, Sylwia; Szczepanowicz, Krzysztof; Błasiak, Ewa; Dziedzicka-Wasylewska, Marta
2015-06-16
The use of polymeric nanoparticles (NPs) in pharmacology provides many benefits because this approach can increase the efficacy and selectivity of active compounds. However, development of new nanocarriers requires better understanding of the interactions between NPs and the immune system, allowing for the optimization of NP properties for effective drug delivery. Therefore, in the present study, we focused on the investigation of the interactions between biocompatible polymeric NPs and a murine macrophage cell line (RAW 264.7) and a human monocytic leukemia cell line (THP-1). NPs based on a liquid core with polyelectrolyte shells were prepared by sequential adsorption of polyelectrolytes (LbL) using AOT (docusate sodium salt) as the emulsifier and the biocompatible polyelectrolytes polyanion PGA (poly-l-glutamic acid sodium salt) and polycation PLL (poly l-lysine). The average size of the obtained NPs was 80 nm. Pegylated external layers were prepared using PGA-g-PEG (PGA grafted by PEG poly(ethylene glycol)). The influence of the physicochemical properties of the NPs (charge, size, surface modification) on viability, phagocytosis potential, and endocytosis was studied. Internalization of NPs was determined by flow cytometry and confocal microscopy. Moreover, we evaluated whether addition of PEG chains downregulates particle uptake by phagocytic cells. The presented results confirm that the obtained PEG-grafted NPs are promising candidates for drug delivery.
Supramolecular "Step Polymerization" of Preassembled Micelles: A Study of "Polymerization" Kinetics.
Yang, Chaoying; Ma, Xiaodong; Lin, Jiaping; Wang, Liquan; Lu, Yingqing; Zhang, Liangshun; Cai, Chunhua; Gao, Liang
2018-03-01
In nature, sophisticated functional materials are created through hierarchical self-assembly of nanoscale motifs, which has inspired the fabrication of man-made materials with complex architectures for a variety of applications. Herein, a kinetic study on the self-assembly of spindle-like micelles preassembled from polypeptide graft copolymers is reported. The addition of dimethylformamide and, subsequently, a selective solvent (water) can generate a "reactive point" at both ends of the spindles as a result of the existence of structural defects, which induces the "polymerization" of the spindles into nanowires. Experimental results combined with dissipative particle dynamics simulations show that the polymerization of the micellar subunits follows a step-growth polymerization mechanism with a second-order reaction characteristic. The assembly rate of the micelles is dependent on the subunit concentration and on the activity of the reactive points. The present work reveals a law governing the self-assembly kinetics of micelles with structural defects and opens the door for the construction of hierarchical structures with a controllable size through supramolecular step polymerization. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chen, Tian; Liu, Bo
2018-02-01
The proposed grafting polymerization of γ-methacryloxypropyltrimethoxy silane was performed to functionalize graphene, aiming to fabricate functionalized graphene/silicone with excellent thermal conductivities. The surface morphology and element content of poly(γ-methacryloxypropyltrimethoxy silane) grafted reduced graphene oxide (g-RGO) was characterized by Atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS). The usage of g-RGO was benefit for improving the thermal conductivity of silicone (SI). The g-RGO/SI (2 wt% filler) had thermal conductivity of 1.31 W·m-1·K-1 and thermal diffusivity of 1.08 mm2·s-1 (increased by 620% compared to that of SI), which held potential for electronic packaging materials and micro-electro-mechanical systems apparatus.
Mahouche-Chergui, Samia; Gam-Derouich, Sarra; Mangeney, Claire; Chehimi, Mohamed M
2011-07-01
This critical review summarizes existing knowledge on the use of diazonium salts as a new generation of surface modifiers and coupling agents for binding synthetic polymers, biomacromolecules, and nanoparticles to surfaces. Polymer grafts can be directly grown at surfaces through the so-called grafting from approaches based on several polymerization methods but can also be pre-formed in solution and then grafted to surfaces through grafting onto strategies including "click" reactions. Several routes are also described for binding biomacromolecules through aryl layers in view of developing biosensors and protein arrays, while the use of aryl diazonium coupling agents is extended to the attachment of nanoparticles. Patents and industrial applications of the surface chemistry of diazonium compounds are covered. This review stresses the paramount role of aryl diazonium coupling agents in adhesion, surface and materials sciences (114 references).
Effect of Tunable Surface Potential on the Structure of Spin-Cast Polymeric Blend Films
NASA Astrophysics Data System (ADS)
Hawker, C.; Huang, E.; Russell, T. P.
1998-03-01
The demixing of binary polymeric mixtures has been studied with various surface potentials. This was performed by spin casting polystyrene/poly(methyl methacrylate) mixtures on to silicon substrates that had been modified with an end-grafted random copolymer brush layer. The composition of the random copolymer brush, containing the same monomeric components as the homopolymers can be varied in a precise manner over the entire concentration range. Atomic force and optical microscopy were used to study the morphology formed during spin casting and after annealing. Further insight into the structure was gained by rinsing these films with preferential solvents to remove one of the constituents and by performing the microscopy measurements. Finally, x-ray photoelectron spectroscopy, XPS, was used to elucidate the composition of the film near the air/polymer interface. Our data show that the resulting thin film structure depends strongly on the composition of the end grafted random copolymer film. Furthermore, the effect of thickness, solvent used in casting, and annealing conditions will be addressed.
Obstals, Fabian; Vorobii, Mariia; Riedel, Tomáš; de Los Santos Pereira, Andres; Bruns, Michael; Singh, Smriti; Rodriguez-Emmenegger, Cesar
2018-03-01
Nonthrombogenic modifications of membranes for extracorporeal membrane oxygenators (ECMOs) are of key interest. The absence of hemocompatibility of these membranes and the need of anticoagulation of patients result in severe and potentially life-threatening complications during ECMO treatment. To address the lack of hemocompatibility of the membrane, surface modifications are developed, which act as barriers to protein adsorption on the membrane and, in this way, prevent activation of the coagulation cascade. The modifications are based on nonionic and zwitterionic polymer brushes grafted directly from poly(4-methyl-1-pentene) (TPX) membranes via single electron transfer-living radical polymerization. Notably, this work introduces the first example of well-controlled surface-initiated radical polymerization of zwitterionic brushes. The antifouling layers markedly increase the recalcification time (a proxy of initiation of coagulation) compared to bare TPX membranes. Furthermore, platelet and leukocyte adhesion is drastically decreased, rendering the ECMO membranes hemocompatible. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Xiaomeng; Luan, Shifang; Shi, Hengchong; Yang, Huawei; Song, Lingjie; Jin, Jing; Yin, Jinghua; Stagnaro, Paola
2013-02-01
Hyaluronic acid (HA) is an important component of extracellular matrix (ECM) in many tissues, providing a hemocompatible and supportive environment for cell growth. In this study, glycidyl methacrylate-hyaluronic acid (GMHA) was first synthesized and verified by proton nuclear magnetic resonance ((1)H NMR) spectroscopy. GMHA was then grafted to the surface of biomedical elastomer poly (styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) via an UV-initiated polymerization, monitored by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The further improvement of biocompatibility of the GMHA-modified SEBS films was assessed by platelet adhesion experiments and in vitro response of murine osteoblastic cell line MC-3T3-E1 with the virgin SEBS surface as the reference. It showed that the surface modification with HA strongly resisted platelet adhesion whereas improved cell-substrate interactions. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Namvari, Mina; Biswas, Chandra S.; Galluzzi, Massimiliano; Wang, Qiao; Du, Bing; Stadler, Florian J.
2017-03-01
Nanohybrids of graphene with water soluble polymer were synthesized using ‘grafting from’ method. GO, prepared by modified Hummers’ method, was first reacted with sodium azide. Alkyne-terminated RAFT-CTA was synthesized by reaction of propargyl alcohol and S-1-dodecyl-S’-(α,α‘-dimethyl-α”-acetic acid) trithiocarbonate. RAFT-CTA was grafted onto the GO sheets by facile click-reaction and subsequently, N-isopropylacrylamide (NIPAM) and N-ethyleacrylamide (NEAM) were polymerized on graphene sheets via RAFT polymerization method. The respective copolymers with different ratios were also prepared. The nanohybrids were characterized by FTIR, XRD, TGA, Raman, SEM, and AFM. Both SEM and AFM clearly showed rod-like structures for rGO-PNEAM. XRD showed a small peak at 2θ = 19.21°, corresponding to d-spacing ≈ 4.6 Å. In addition, the nanohybrids showed a very broad temperature range for the LCST in water between ca. 30 and 70 °C.
Design of UV-absorbing PVDF membrane via surface-initiated AGET ATRP
NASA Astrophysics Data System (ADS)
Dong, Li; Liu, Xiangdong; Xiong, Zhengrong; Sheng, Dekun; Zhou, Yan; Lin, Changhong; Yang, Yuming
2018-03-01
Herein, PVDF membranes with excellent UV-absorbing property were first synthesized through grafting the polymerizable low-molecular-weight organic UV-absorber 2-hydroxy-4-(3-methacryloxy-2-hydroxylpropoxy) benzophenone (BPMA) onto α-bromoester-functionalized PVDF membranes via the surface-initiated activator generated by electron transfer atom transfer radical polymerization (SI-AGET ATRP). The surface initiators were immobilized by the reaction between 2-bromoisobutyryl bromide (BIBB) and the hydroxylated PVDF membranes. PVDF-g-PBPMA membranes with different grafting densities were obtained by tuning the polymerization time and the modified membranes were characterized by 1H-NMR, FT-IR, XPS, SEM, UV-vis Spectrophotometer, TGA and DSC. The experimental results indicated that PBPMA chains were successfully introduced onto PVDF membranes. Most importantly, the PVDF-g-PBPMA membranes exhibited outstanding UV-shielding property. UV-vis transmittance spectra showed that most UV light below 360 nm could be absorbed by PVDF-g-PBPMA membranes and the whole UV light region (200-400 nm) can be blocked with the reaction time increased.
Zorn, Gilad; Baio, Joe E.; Weidner, Tobias; Migonney, Veronique; Castner, David G.
2011-01-01
Biointegration of titanium implants in the body is controlled by their surface properties. Improving surface properties by coating with a bioactive polymer is a promising approach to improve the biological performance of titanium implants. To optimize the grafting processes, it is important to fully understand the composition and structure of the modified surfaces. The main focus of this study is to provide a detailed, multi-technique characterization of a bioactive poly(sodium styrene sulfonate) (pNaSS) thin film grafted from titanium surfaces via a two-step procedure. Thin titanium films (~50 nm thick with an average surface roughness of 0.9±0.2nm) prepared by evaporation onto silicon wafers were used as smooth model substrates. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed that the titanium film was covered with a TiO2 layer that was at least 10nm thick and contained hydroxyl groups present at the outermost surface. These hydroxyl groups were first modified with a 3-methacryloxypropyltrimethoxysilane (MPS) cross linker. XPS and ToF-SIMS showed that a monolayer of the MPS molecules were successfully attached onto the titanium surfaces. The pNaSS film was grafted from the MPS modified titanium through atom transfer radical polymerization. Again, XPS and ToF-SIMS were used to verify that the pNaSS molecules were successfully grafted onto the modified surfaces. Atomic force microscopy analysis showed that the film was smooth and uniformly covered the surface. Fourier transform infrared spectroscopy indicated an ordered array of grafted NaSS molecules were present on the titanium surfaces. Sum frequency generation vibration spectroscopy and near edge X-ray absorption fine structure spectroscopy illustrated that the NaSS molecules were grafted onto the titanium surface with a substantial degree of orientational order in the styrene rings. PMID:21892821
Grafting of GMA and some comonomers onto chitosan for controlled release of diclofenac sodium.
Sharma, Rajeev Kr; Lalita; Singh, Anirudh P; Chauhan, Ghanshyam S
2014-03-01
In order to develop pH sensitive hydrogels for controlled drug release we have graft copolymerized glycidyl methacrylate (GMA) with comonomers acrylic acid, acrylamide and acrylonitrile, onto chitosan (Ch) by using potassium persulphate (KPS) as free radical initiator in aqueous solution. The optimum percent grafting for GMA was recorded for 1g chitosan at [KPS]=25.00 × 10(-3)mol/L, [GMA]=0.756 × 10(-3)mol/L, reaction temperature=60 °C and reaction time=1h in 20 mL H2O. Binary monomers were grafted for five different concentrations at optimum grafting conditions evaluated for GMA alone onto chitosan. The graft copolymers were characterized by FTIR, XRD, TGA and SEM. The swelling properties of chitosan and graft copolymers were investigated at different pH to define their end uses in sustained release of an anti-inflammatory drug, diclofenac sodium. Percent drug release w.r.t. drug loaded in polymeric sample was studied as function of time in buffer solutions of pH 2.0 and 7.4. In vitro release data was analyzed using Fick's Law. Chitosan grafted with binary monomers, GMA-co-AAm and GMA-co-AN showed very good results for sustained release of drug at 7.4 pH. Copyright © 2014 Elsevier B.V. All rights reserved.
In vitro degradation and cell attachment studies of a new electrospun polymeric tubular graft.
Patel, Harsh N; Thai, Kevin N; Chowdhury, Sami; Singh, Raj; Vohra, Yogesh K; Thomas, Vinoy
Electrospinning technique was utilized to engineer a small-diameter (id = 4 mm) tubular graft. The tubular graft was made from biocompatible and biodegradable polymers polycaprolactone (PCL) and poliglecaprone with 3:1 (PCL:PGC) ratio. Enzymatic degradation effect on the mechanical properties and fiber morphology in the presence of lipase enzyme were observed. Significant changes in tensile strength (1.86-1.49 MPa) and strain (245-205 %) were noticed after 1 month in vitro degradation. The fiber breakage was clearly evident through scanning electron microscopy (SEM) after 4 weeks in vitro degradation. Then, the graft was coated with a collagenous protein matrix to impart bioactivity. Human umbilical vein endothelial cells (HUVECs) and aortic artery smooth muscle cells (AoSMCs) attachment on the coated graft were observed in static condition. Further, HUVECs were seeded on the lumen surface of the grafts and exposed to laminar shear stress for 12 h to understand the cell attachment. The coated graft was aged in PBS solution (pH 7.3) at 37 °C for 1 month to understand the coating stability. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) suggested the erosion of the protein matrix from the coated graft under in vitro condition.
Higashihara, Tomoya; Sugiyama, Kenji; Yoo, Hee-Soo; Hayashi, Mayumi; Hirao, Akira
2010-06-16
This paper reviews the precise synthesis of many-armed and multi-compositional star-branched polymers, exact graft (co)polymers, and structurally well-defined dendrimer-like star-branched polymers, which are synthetically difficult, by a commonly-featured iterative methodology combining living anionic polymerization with branched reactions to design branched polymers. The methodology basically involves only two synthetic steps; (a) preparation of a polymeric building block corresponding to each branched polymer and (b) connection of the resulting building unit to another unit. The synthetic steps were repeated in a stepwise fashion several times to successively synthesize a series of well-defined target branched polymers. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Son, Gyung Mo; Kim, Hyun Yul; Ryu, Je Ho; Chu, Chong Woo; Kang, Dae Hwan; Park, Su Bum; Jeong, Young-IL
2014-01-01
Graft copolymer composed hyaluronic acid (HA) and poly(d,l-lactide-co-glycolide) (PLGA) (HAgLG) was synthesized for antitumor targeting via CD44 receptor of tumor cells. The carboxylic end of PLGA was conjugated with hexamethylenediamine (HMDA) to have amine end group in the end of chain (PLGA-amine). PLGA-amine was coupled with carboxylic acid of HA. Self-assembled polymeric micelles of HAgLG have spherical morphologies and their sizes were around 50–200 nm. Doxorubicin (DOX)-incorporated polymeric micelles were prepared by dialysis procedure. DOX was released over 4 days and its release rate was accelerated by the tumoric enzyme hyaluronidase. To assess targetability of polymeric micelles, CD44-positive HepG2 cells were employed treated with fluorescein isothiocyanate (FITC)-labeled polymeric micelles. HepG2 cells strongly expressed green fluorescence at the cell membrane and cytosol. However, internalization of polymeric micelles were significantly decreased when free HA was pretreated to block the CD44 receptor. Furthermore, the CD44-specific anticancer activity of HAgLG polymeric micelles was confirmed using CD44-negative CT26 cells and CD44-positive HepG2 cells. These results indicated that polymeric micelles of HaLG polymeric micelles have targetability against CD44 receptor of tumor cells. We suggest HAgLG polymeric micelles as a promising candidate for specific drug targeting. PMID:25216338
Thiry, Damien; Pouyanne, Matthias; Cossement, Damien; Hemberg, Axel; Snyders, Rony
2018-06-18
Nowadays, the development of synthetic methods regarding the fabrication of -SH containing organic coatings continues to attract a considerable attention. Among the potential techniques, the plasma polymerization appears as one of the most promising method but the difficulty to control the chemical composition of the layers is highly limiting. In this context, in this work, we report on an original method combining dry and wet chemistry approaches in view of selectively incorporating -SH functions in organic coatings. Our strategy is based on the (i) synthesis of a bromine-containing plasma polymer film, followed by (ii) a selective grafting of dithiol-based molecule on C-Br bond. Investigating the plasma polymerization process has revealed that, in our experimental window, the load of energy in the discharge has little influence on the chemical composition as well as on the cross-linking degree of the layers. This behavior is explained by considering the concomitant influence of the gas-phase reactions and the supply of energy to the growing film through ion bombardment. With regard to the functionalization strategy, based on comparative X-ray photoelectron spectroscopy measurements, it has been unambiguously demonstrated that a selective reaction between propanedithiol and the C-Br bond acting as the reactive center takes place resulting in the removing of the bromine atom and the incorporation of -SH groups in the PPF. Depending on the grafting reaction duration, the relative proportion of carbon bearing the -SH group is found to evolve from 4 to 6%. On the other hand, the dissolution of unbounded bromine-based species in the liquid medium during the grafting procedure is also evidenced. The whole set of our results clearly demonstrates the attractiveness of our strategy paving the way for new development in the fabrication of -SH-rich-containing organic thin films.
Colloidal Dispersions in Polymeric Media: Interparticle Forces, Microstructure and Rheology
NASA Astrophysics Data System (ADS)
Ndong, Rose Seynabou
To enhance properties of the ultimate materials, melt processed polymers are commonly filled with colloidal particles, such as inorganic oxides. Dispersing such particles in a melt is generally difficult due to the strong van der Waals attractions. These attractive forces can be modulated through surface modifications such as polymer adsorption and grafting. Indeed, the relative viscosity of 430 nm Al2O3particles stabilized by end-tethered poly(dimethylsiloxane) (PDMS) in PDMS melts decreases with increasing graft density and molecular weight as expected, but also with increasing molecular weight of the melt, contrary to well established theories. The relative steady shear viscosity exhibits neither a low shear limit nor a yield stress, but follows a power law characterized by relative high shear viscosity (eta infinity/mu) and a structural relaxation time (tau). The measured structural time can be correlated reasonably well with a characteristic relaxation time, tauo, estimated by equating the viscous resistance with the maximum attractive force. We further explored the significance of this power law with TiO2 nanoparticles in PDMS melts with a reduction in size and an increase in Hamaker constant. Bare, octadecyl-coated, and 9k-PDMS grafted TiO2 particles dispersed in neat and binary PDMS melts revealed behavior similar to that of the large alumina particles, as the increased strength of van der Waals forces offset the reduction in size. To complete the study ZrO2 nanoparticles were dispersed in solution of associative polymers and characterized by small amplitude oscillatory shear. The data exhibits two relaxation modes: Maxwellian behavior at high frequency imparted by the associating polymers and a power law spectrum at low frequency from the particles. The timescales and volume fraction dependence reflect the attractions between particles with adsorbed polymer layers dispersed in a percolated network of associative polymers. Together these studies demonstrate the range and origin of the rheology possible with particles dispersed in polymeric media.
Rechargeable biofilm-controlling tubing materials for use in dental unit water lines.
Luo, Jie; Porteous, Nuala; Sun, Yuyu
2011-08-01
A simple and practical surface grafting approach was developed to introduce rechargeable N-halamine-based antimicrobial functionality onto the inner surfaces of continuous small-bore polyurethane (PU) dental unit waterline (DUWL) tubing. In this approach, tetrahydrofuran (THF) solution of a free-radical initiator, dicumyl peroxide (DCP), flowed through the PU tubing (inner diameter of 1/16 in., or 1.6 mm) to diffuse DCP into the tubing's inner walls, which was used as initiator in the subsequent grafting polymerization of methacrylamide (MAA) onto the tubing. Upon chlorine bleach treatment, the amide groups of the grafted MAA side chains were transformed into acyclic N-halamines. The reactions were confirmed with attenuated total reflectance infrared (ATR) spectra and iodometric titration. The mechanical properties of the tubing were not significantly affected by the grafting reactions. The biofilm-controlling function of the new N-halamine-based PU tubing was evaluated with Pseudomonas aeruginosa (P. aeruginosa), one of the most isolated water bacteria from DUWLs, in a continuous bacterial flow model. Bacteria culturing and SEM studies showed that the inner surfaces of the new N-halamine-based PU tubing completely prevented bacterial biofilm formation for at least three to four weeks. After that, bacteria began to colonize the tubing surface. However, the lost function was fully regenerated by exposing the tubing inner surfaces to diluted chlorine bleach. The recharging process could be repeated periodically to further extend the biofilm-controlling duration for long-term applications.
Rechargeable Biofilm-Controlling Tubing Materials for Use in Dental Unit Water Lines
Luo, Jie; Porteous, Nuala; Sun, Yuyu
2011-01-01
A simple and practical surface grafting approach was developed to introduce rechargeable N-halamine-based antimicrobial functionality onto the inner surfaces of continuous small-bore polyurethane (PU) dental unit waterline (DUWL) tubing. In this approach, tetrahydrofuran (THF) solution of a free-radical initiator, dicumyl peroxide (DCP), flowed through the PU tubing (inner diameter of 1/16 inch, or 1.6 mm) to diffuse DCP into the tube’s inner walls, which was used as initiator in the subsequent grafting polymerization of methacrylamide (MAA) onto the tubing. Upon chlorine bleach treatment, the amide groups of the grafted MAA side chains were transformed into acyclic N-halamines. The reactions were confirmed with attenuated total reflectance infrared (ATR) spectra and iodometric titration. The mechanical properties of the tubing were not significantly affected by the grafting reactions. The biofilm-controlling function of the new N-halamine-based PU tubing was evaluated with Pseudomonas aeruginosa (P. aeruginosa), one of the most isolated water bacteria from DUWLs, in a continuous bacterial flow model. Bacteria culturing and SEM studies showed that the inner surfaces of the new N-halamine-based PU tubing completely prevented bacterial biofilm formation for at least three to four weeks. After that, bacteria began to colonize the tubing surface. However, the lost function was fully regenerated by exposing the tubing inner surfaces to diluted chlorine bleach. The recharging process could be repeated periodically to further extend the biofilm-controlling duration for long-term applications. PMID:21721534
USDA-ARS?s Scientific Manuscript database
Antimicrobial polymeric films that are both mechanically robust and function renewable would have broad technological implications for areas ranging from medical safety and bioengineering to foods industry; however, creating such materials has proven extremely challenging. Here, a novel strategy is ...
One step synthesis of polyacrylamide functionalized graphene and its application in Pb(II) removal
NASA Astrophysics Data System (ADS)
Xu, Zhiwei; Zhang, Yaoyao; Qian, Xiaoming; Shi, Jie; Chen, Lei; Li, Baodong; Niu, Jiarong; Liu, Liangsen
2014-10-01
Polyacrylamide grafted graphene (PAM-g-graphene) from graphite oxide (GO) was successfully prepared by γ-ray irradiation with acrylamide monomers in aqueous at room temperature in this paper. Our strategy involves the PAM chains graft on the surface and between the layers of GO by in situ radical polymerization which led to the exfoliation of GO into individual sheets. Results show that the degree of grafting of PAM-g-graphene samples is 24.2%, and the thickness is measured to be 2.59 nm. Moreover, the as-prepared PAM-g-graphene with some amino from PAM and little oxygen functional groups exhibit superior adsorption of Pb(II) ions. The adsorption processes reach equilibrium in just 30 min and the adsorption isotherms are described well by Langmuir and Freundlich classical isotherms models. The determined adsorption capacity of PAM-g-graphene is 819.67 mg g-1 (pH 6) for Pb(II), which is 20 times and 8 times capacities of that for graphene nanosheets and carbon nanotubes according to reports, respectively. This chemically modified graphene synthesized by this fast one-step approach, featuring a good versatility and adaptability, excellent adsorption capacity and rapid extraction, may provide a new idea for the global problem of heavy metal pollutants' removal in water.
Fabrication of superhydrophobic cotton fabrics using crosslinking polymerization method
NASA Astrophysics Data System (ADS)
Jiang, Bin; Chen, Zhenxing; Sun, Yongli; Yang, Huawei; Zhang, Hongjie; Dou, Haozhen; Zhang, Luhong
2018-05-01
With the aim of removing and recycling oil and organic solvent from water, a facile and low-cost crosslinking polymerization method was first applied on surface modification of cotton fabrics for water/oil separation. Micro-nano hierarchical rough structure was constructed by triethylenetetramine (TETA) and trimesoyl chloride (TMC) that formed a polymeric layer on the surface of the fabric and anchored Al2O3 nanoparticles firmly between the fabric surface and the polymer layer. Superhydrophobic property was further obtained through self-assembly grafting of hydrophobic groups on the rough surface. The as-prepared cotton fabric exhibited superoleophilicity in atmosphere and superhydrophobicity both in atmosphere and under oil with the water contact angle of 153° and 152° respectively. Water/oil separation test showed that the as-prepared cotton fabric can handle with various oil-water mixtures with a high separation efficiency over 99%. More importantly, the separation efficiency remained above 98% over 20 cycles of reusing without losing its superhydrophobicity which demonstrated excellent reusability in oil/water separation process. Moreover, the as-prepared cotton fabric possessed good contamination resistance ability and self-cleaning property. Simulation washing process test showed the superhydrophobic cotton fabric maintained high value of water contact angle above 150° after 100 times washing, indicating great stability and durability. In summary, this work provides a brand-new way to surface modification of cotton fabric and makes it a promising candidate material for oil/water separation.
NASA Astrophysics Data System (ADS)
Pan, Bo
Photochemical methods were introduced to develop important extrusion processes, through which polymers can either be functionalized or modified by altering molecular weight characteristics. Therefore, poly(methyl methacrylate) (PMMA) incorporated with a small amount of light-reactive functional groups was synthesized. These functional groups can be activated by UV irradiation in a post extrusion process to produce high molecular weight polymer and/or crosslinked polymer. Environmental stress cracking resistance of these polymers was examined and correlated to damping using dynamic mechanic analysis. To improve industrial reactive extrusion process of preparing maleic anhydride grafted polypropylene (MAR-g-PP), photografting was proposed and studied. Using benzophenone (BP) as the initiator, grafting efficiency was significantly improved compared to peroxide initiated grafting. Moreover, nearly constant conversion of maleic anhydride was observed in photografting. The high efficiency of benzophenone initiated photografting was attributed to the formation of the excited triplet state maleic anhydride. A rate constant of 6.0*109 M-1*sec-1 for the quenching of triplet state BP with MAH was obtained using laser photolysis spectroscopy. In a comparison, the hydrogen abstraction process from polypropylene by the triplet state BP molecules has a rate constant of 4.1*105 M-1*sec-1. In solution grafting with the use of benzene as the solvent, a facile triplet state energy transfer process may also occur leading to the formation of the excited triplet state MAH. Spectroscopic methods involving light were also used for the study of the guest-host interactions in polymer systems. The use of ionomers as the matrix for the oriented guest/host systems, cationic dye systems in particular, was shown to enhance polarization efficiency as well as dye uptake as comparing to conventional polymers, such as poly(vinyl alcohol). It was found that the dye molecules in carboxylated EVOH (EVOH-COONa) have higher degree of orientation than in EVOH, while polymer chain orientation is quite similar in these two polymers. The difference in the dye orientation was attributed to the ion-ion interactions between dye molecules and carboxylate groups of the modified polymer.
Surface interaction forces of cellulose nanocrystals grafted with thermoresponsive polymer brushes.
Zoppe, Justin O; Osterberg, Monika; Venditti, Richard A; Laine, Janne; Rojas, Orlando J
2011-07-11
The colloidal stability and thermoresponsive behavior of poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals (CNCs) of varying graft densities and molecular weights was investigated. Indication of the grafted polymer brushes was obtained after AFM imaging of CNCs adsorbed on silica. Also, aggregation of the nanoparticles carrying grafts of high degree of polymerization was observed. The responsiveness of grafted CNCs in aqueous dispersions and as an ultrathin film was evaluated by using light scattering, viscosimetry, and colloidal probe microscopy (CPM). Light transmittance measurements showed temperature-dependent aggregation originating from the different graft densities and molecular weights. The lower critical solution temperature (LCST) of grafted poly(NiPAAm) brushes was found to decrease with the ionic strength, as is the case for free poly(NiPAAm) in aqueous solution. Thermal responsive behavior of grafted CNCs in aqueous dispersions was observed by a sharp increase in dispersion viscosity as the temperature approached the LCST. CPM in liquid media for asymmetric systems consisting of ultrathin films of CNCs and a colloidal silica probe showed the distinctive effects of the grafted polymer brushes on interaction and adhesive forces. The origin of such forces was found to be mainly electrostatic and steric in the case of bare and grafted CNCs, respectively. A decrease in the onset of attractive and adhesion forces of grafted CNCs films were observed with the ionic strength of the aqueous solution. The decreased mobility of polymer brushes upon partial collapse and decreased availability of hydrogen bonding sites with higher electrolyte concentration were hypothesized as the main reasons for the less prominent polymer bridging between interacting surfaces.
USDA-ARS?s Scientific Manuscript database
Protein membrane separation is prone to fouling on the membrane surface resulting from protein adsorption onto the surface. Surface modification of synthetic membranes is one way to reduce fouling. We investigated surface modification of polyethersulfone (PES) as a way of improving hydrophilicity ...
DNA immobilization and detection on cellulose paper using a surface grown cationic polymer via ATRP.
Aied, Ahmed; Zheng, Yu; Pandit, Abhay; Wang, Wenxin
2012-02-01
Cationic polymers with various structures have been widely investigated in the areas of medical diagnostics and molecular biology because of their unique binding properties and capability to interact with biological molecules in complex biological environments. In this work, we report the grafting of a linear cationic polymer from an atom transfer radical polymerization (ATRP) initiator bound to cellulose paper surface. We show successful binding of ATRP initiator onto cellulose paper and grafting of polymer chains from the immobilized initiator with ATRP. The cellulose paper grafted polymer was used in combination with PicoGreen (PG) to demonstrate detection of nucleic acids in the nanogram range in homogeneous solution and in a biological sample (serum). The results showed specific identification of hybridized DNA after addition of PG in both solutions.
A Review on Grafting of Biofibers for Biocomposites
Wei, Liqing; McDonald, Armando G.
2016-01-01
A recent increase in the use of biofibers as low-cost and renewable reinforcement for the polymer biocomposites has been seen globally. Biofibers are classified into: lignocellulosic fibers (i.e., cellulose, wood and natural fibers), nanocellulose (i.e., cellulose nanocrystals and cellulose nanofibrils), and bacterial cellulose, while polymer matrix materials can be petroleum based or bio-based. Green biocomposites can be produced using both biobased fibers and polymers. Incompatibility between the hydrophilic biofibers and hydrophobic polymer matrix can cause performance failure of resulting biocomposites. Diverse efforts have focused on the modification of biofibers in order to improve the performances of biocomposites. “Grafting” copolymerization strategy can render the advantages of biofiber and impart polymer properties onto it and the performance of biocomposites can be tuned through changing grafting parameters. This review presents a short overview of various “grafting” methods which can be directly or potentially employed to enhance the interaction between biofibers and a polymer matrix for biocomposites. Major grafting techniques, including ring opening polymerization, grafting via coupling agent and free radical induced grafting, have been discussed. Improved properties such as mechanical, thermal, and water resistance have provided grafted biocomposites with new opportunities for applications in specific industries. PMID:28773429
Surface-functionalized mesoporous carbon materials
Dai, Sheng; Gorka, Joanna; Mayes, Richard T.
2016-02-02
A functionalized mesoporous carbon composition comprising a mesoporous carbon scaffold having mesopores in which polyvinyl polymer grafts are covalently attached, wherein said mesopores have a size of at least 2 nm and up to 50 nm. Also described is a method for producing the functionalized mesoporous composition, wherein a reaction medium comprising a precursor mesoporous carbon, vinyl monomer, initiator, and solvent is subjected to sonication of sufficient power to result in grafting and polymerization of the vinyl monomer into mesopores of the precursor mesoporous carbon. Also described are methods for using the functionalized mesoporous carbon, particularly in extracting metal ions from metal-containing solutions.
Polyphosphazene toughened high performance thermosets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Shanab, O.L.; Duygulu, M.; Soucek, M.D.
1995-12-31
Two modified polyphosphazenes were synthesized and characterized via FT-IR, {sup 1}H and {sup 31}P NMR, and DSC. Semi-Interpenetrating networks based on phenyl imide substituted polyphosphazene and polyimide thermoset resin designated LaRC{trademark} RP46 were prepared. Grafted copolymers were formed by grafting the backbone of maleimide substituted polyphosphazene into LaRC{trademark} RP46 thermoset resin. Thin films with a 0 to 40 Wt% range of polyphosphazene to polyimide ratio were prepared. A structure-property relationships of these inorganic/organic polymeric matrices were studied and evaluated in terms of fracture toughness, thermo-oxidative stability, thermal, and tensile properties.
Synthesis and study of sericin-g-PLA
NASA Astrophysics Data System (ADS)
Saetae, S.; Magaraphan, R.
2015-05-01
In this paper we present an experiment for bulk synthesis of the sericin-g-PLA by using Sn(Oct)2 as catalyst and study the effect of Thai silk cocoon species (Dok Bua, Luang Pirote, Nang Noi and Nang Lai) on properties of the sericin-g-PLA. We investigated the chemical structure of the grafted copolymers by using FTIR and GPC. Moreover, the grafting percentage was determined by soxhlet extaction. The IR spectra of extracted sample showed peaks at 1188 and 1215 cm-1 that assigned to the symmetric C-O-C stretching modes of the ester group. The methyl rocking stretching and C-CH3 vibration of polylactide appeared at 1130 and 1045 cm-1, respectively. The peak positioned 3440 cm-1 belonged to the hydroxyl group and the amino group of sericin which became less after polymerized with lactide. These evidences suggested that the lactide was reacted with sericin. Also, the molecular weight of the grafted copolymers were in range from 5.2 to 6.1 kg/mole. And Nang Lai-g-PLA showed the highest grafting percentage of the grafted copolymers.
NASA Astrophysics Data System (ADS)
Hui, Chen; Qingyu, Cai; Jing, Wu; Xiaohong, Xia; Hongbo, Liu; Zhanjun, Luo
2018-05-01
Nylon 6 (PA6) grafted onto carbon fiber (CF) after chemical oxidation treatment was in an attempt to reinforce the mechanical properties of carbon fiber composites. Scanning electronic microscopy (SEM), Fourier transform infrared analysis (FT-IR), X-ray photoelectron spectroscope (XPS) and thermogravimetric analysis (TG) were selected to characterize carbon fibers with different surface treated. Experimental results showed that PA6 was grafted uniformly on the fiber surface through the anionic polymerization. A large number of functional groups were introduced to the fiber surface and the surface roughness was increased. After grafting PA6 on the oxidized carbon fibers, it played an important role on improving the interfacial adhesion between the fibers and the matrix by improving PA12 wettability, increasing chemical bonding and mechanical interlocking. Compared with the desized CF composites, the tensile strength of PA6-CF/PA12 composites was increased by 30.8% from 53.9 MPa to 70.2 MPa. All results indicated that grafting PA6 onto carbon fiber surface was an effective method to enhance the mechanical strength of carbon fiber/nylon 12 composites.
Review of methyl methacrylate (MMA)/tributylborane (TBB)-initiated resin adhesive to dentin.
Taira, Yohsuke; Imai, Yohji
2014-01-01
This review, focusing mainly on research related to methyl methacrylate/tributylborane (MMA/TBB) resin, presents the early history of dentin bonding and MMA/TBB adhesive resin, followed by characteristics of resin bonding to dentin. Bond strengths of MMA/TBB adhesive resin to different adherends were discussed and compared with other bonding systems. Factors affecting bond strength (such as conditioners, primers, and medicaments used for dental treatment), bonding mechanism, and polymerization characteristics of MMA/TBB resin were also discussed. This review further reveals the unique adhesion features between MMA/TBB resin and dentin: in addition to monomer diffusion into the demineralized dentin surface, graft polymerization of MMA onto dentin collagen and interfacial initiation of polymerization at the resin-dentin interface provide the key bonding mechanisms.
Molecular Imprinting Techniques Used for the Preparation of Biosensors
Ertürk, Gizem; Mattiasson, Bo
2017-01-01
Molecular imprinting is the technology of creating artificial recognition sites in polymeric matrices which are complementary to the template in their size, shape and spatial arrangement of the functional groups. Molecularly imprinted polymers (MIPs) and their incorporation with various transducer platforms are among the most promising approaches for detection of several analytes. There are a variety of molecular imprinting techniques used for the preparation of biomimetic sensors including bulk imprinting, surface imprinting (soft lithography, template immobilization, grafting, emulsion polymerization) and epitope imprinting. This chapter presents an overview of all of these techniques with examples from particular publications. PMID:28165419
Synthesis of novel grafted hyaluronic acid with antitumor activity.
Abu Elella, Mahmoud H; Mohamed, Riham R; Sabaa, Magdy W
2018-06-01
In our study, we aimed to synthesize novel grafted hyaluronic acid with cationic biodegradable polymer, poly (N-vinyl imidazole) (PVI), through free radical polymerization using potassium persulfate as initiator. The effect of various grafting factors including initiator and monomer concentrations, reaction time and temperature was studied on the percentage of grafting parameters such as; graft yield (% GY), grafting efficiency (% GE) and amount of homopolymer formation (% H). Maximum grafted HA was% GY = 235% and%GE = 83% obtained on optimum conditions at [I n ] = 17.5 mmol L -1 , [M] = 1.25 mol L -1 , Temp. = 50 °C, time = 1.5 h and [HA] = 0.025 mol L -1 . The structure of grafted HA (HA-g-PVI) was elucidated via various analysis tools such as; elemental analyses, FTIR, 1 H NMR, XRD, TGA and Field emission scanning electron microscopy (FE-SEM). Hepatic and breast cancers are two common cancer types threatening people worldwide, so, the antitumor activity of two grafted HA samples (% GY = 155% and 235%) was studied against hepatic cancer (HepG-2) and breast cancer cell lines (MCF-7) compared to unmodified HA and PVI. The results showed that antitumor activity of grafted samples was more than unmodified HA and increased with increasing the grafting percentage of PVI onto HA chains, also, the antitumor activity of tested samples against HepG-2 cell lines was higher than MCF-7 cell lines. Copyright © 2018 Elsevier Ltd. All rights reserved.
Polymerized PolyHEMA photonic crystals: pH and ethanol sensor materials.
Xu, Xiangling; Goponenko, Alexander V; Asher, Sanford A
2008-03-12
The surface of monodisperse silica particles synthesized using the Stober process were coated with a thin layer of polystyrene. Surface charge groups were attached by a grafting polymerization of styrene sulfonate. The resulting highly charged monodisperse silica particles self-assemble into crystalline colloidal arrays (CCA) in deionized water. We polymerized hydroxyethyl methacrylate (HEMA) around the CCA to form a HEMA-polymerized crystalline colloidal array (PCCA). Hydrofluoric acid was utilized to etch out the silica particles to produce a three-dimensional periodic array of voids in the HEMA PCCA. The diffraction from the embedded CCA sensitively monitors the concentration of ethanol in water because the HEMA PCCA shows a large volume dependence on ethanol due to a decreased Flory-Huggins mixing parameter. Between pure water and 40% ethanol the diffraction shifts across the entire visible spectral region. We accurately modeled the dependence of the diffraction wavelength on ethanol concentration using Flory theory. We also fabricated a PCCA (which responds to pH changes in both low and high ionic strength solutions) by utilizing a second polymerization to incorporate carboxyl groups into the HEMA PCCA. We were also able to model the pH dependence of diffraction of the HEMA PCCA by using Flory theory. An unusual feature of the pH response is a hysteresis in response to titration to higher and lower pH. This hysteresis results from the formation of a Donnan potential at high pH which shifts the ionic equilibrium. The kinetics of equilibration is very slow due to the ultralow diffusion constant of protons in the carboxylated PCCA as predicted earlier by the Tanaka group.
NASA Astrophysics Data System (ADS)
Barsbay, Murat; Kavaklı, Pınar Akkaş; Güven, Olgun
2010-03-01
A novel polymeric ligand exchanger (PLE) was prepared for the removal of phosphate ions from water. 2,2'-dipyridylamine (DPA), a bidentate ligand forming compound with high coordination capacity with a variety of metal ions was bound to glycidyl methacrylate (GMA) grafted polypropylene/polyethylene (PP/PE) nonwoven fabric synthesized by radiation-induced grafting technique. DPA attachment on epoxy ring of GMA units was tested in different solvents, i.e. methanol, ethanol, dioxane and dimethylsulfoxide (DMSO). The highest amount of modification was achieved in dioxane. In order to prepare the corresponding PLE for the removal of phosphate, DPA-immobilized fabric was loaded with Cu(II) ions. Phosphate adsorption experiments were performed in batch mode at different pH (5-9) and phosphate concentrations. The fabric was found to be effective for the removal of phosphate ions. At every stage of preparation and use, the nonwoven fabric was characterized by thermal (i.e. DSC and TGA) and spectroscopic (FTIR) methods. Competitive adsorption experiments were also carried out using two solutions with different concentration levels at pH 7 to see the effect of competing ions. Phosphate adsorption was found to be effective and selective from solutions having trace amounts of competitive anions. It is expected that the novel PLE synthesized can be used for the removal of phosphate ions in low concentrations over a large range of pH.
Li, Hui-Juan; Li, Peng-Yun; Li, Li-Ying; Haleem, Abdul; He, Wei-Dong
2018-04-16
Narrowly distributed poly(l-lysine- b - N -isopropylacrylamide) (PLL- b -PNIPAM) was prepared through ring-opening polymerization of ε-benzyloxycarbonyl-l-lysine N -carboxy-α-amino anhydride and atom transfer radical polymerization of NIPAM, followed with the removal of ε-benzyloxycarbonyl group. Then gold nanoparticles (AuNPs) grafted with PLL- b -PNIPAM (PNIPAM-PLL-AuNPs) were obtained by the reduction of chloroauric acid with sodium citrate in the presence of PLL- b -PNIPAM. PNIPAM-PLL-AuNPs and its precursors were thoroughly characterized by proton magnetic resonance spectroscope, Fourier transform infrared spectroscope, UV-vis spectroscope, transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, and circular dichroism. The obtained PNIPAM-PLL-AuNPs exhibited high colloid stability even at strong alkaline (pH = 12) and acidic (pH = 2) conditions. The thermal and pH dual-responsive behaviors of the grafting PLL- b -PNIPAM chains was observed to be affected by AuNPs, while not for the secondary structure of PLL chains. Correspondingly, the surface plasmon resonance (SPR) of AuNPs was found to be sensitive to both pH value and temperature. A blue shift in the SPR happened both with increasing pH value and increasing temperature. The stimuli-response was reversible in heating-cooling cycles. The gold nanoparticles with both pH and temperature response may have potential applications in biomedical areas and biosensors.
Luo, Juntao; Pardin, Christophe; Zhu, X X; Lubell, William D
2007-01-01
Spherical crosslinked poly(vinyl alcohol) (PVA) beads with good mechanical stability were prepared by reverse-suspension polymerization, using dimethyl sulfoxide (DMSO) as a cosolvent in an aqueous phase. Poly(ethylene glycol)s with varying chain lengths were grafted onto the PVA beads by anionic polymerization of ethylene oxide. The thermal behavior, morphology, and swelling were evaluated for each of the new polymer matrices. High loading and good swelling in water and organic solvents were characteristic of the PEG-grafted PVA beads. The polymer beads also exhibited good mechanical and chemical stability and were unaffected by treatment with 6 N HCl and with 6 N NaOH. The hydroxyl groups of the PVA-PEG beads were converted into aldehyde, carboxylic acid, and isocyanate functions to provide scavenger resins and were extended by way of a benzyl alcohol in a Wang linker. The transglutaminase substrates dipeptides (Z-Gln-Gly) and heptapeptides (Pro-Asn-Pro-Gln-Leu-Pro-Phe) were synthesized on PVA-PEG_5, PVA-PEG_20, and the Wang linker-derivatized PVA-PEG resins. The cleavage of the peptides from the resins using MeOH/NH3 mixture at different temperatures (0 degrees C and room temp) and 50% TFA/DCM provided, respectively, peptide methyl esters, amides, and acids in good yields and purity as assessed by LC-MS analysis.
NASA Astrophysics Data System (ADS)
Yang, Weijie; Jiao, Feipeng; Zhou, Lei; Chen, Xiaoqing; Jiang, Xinyu
2013-11-01
A new and facile method was presented to graft molecularly imprinted polymers (MIPs) on carbon nanotubes (CNTs) for 2,4-dichlorophenoxyacetic acid (2,4-D) analysis. In brief, CNTs were firstly coated with a layer of vinyl group modified silica, followed by a common precipitation polymerization with 2,4-D as the template, ethylene glycol dimethacrylate (EGDMA) as the crosslinker and 2,2-azobisisobutyronitrile (AIBN) as the initiator. The imprinted effects obtained by using different monomers were investigated, and the results showed that acrylamide (AM) and styrene as mixed monomers was the best choice. This functionalized material was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetry (TG), which demonstrated a successful polymerization reaction on CNTs with MIPs grafting ratio of about 80%. The results of static adsorption experiments indicated the imprinted material possessed fast kinetics and good selectivity for 2,4-D molecules. A corresponding analytical method was developed and demonstrated to be applicable for the determination of 2,4-D in environmental water. The recoveries were in the range from 74.6% to 81.2% with relative standard deviation below 7.0%. To be emphasized, the method for MIPs coating proposed herein also provides a significant reference for other radical polymerization reactions based on CNTs.
Pauly, Anja C; Schöller, Katrin; Baumann, Lukas; Rossi, René M; Dustmann, Kathrin; Ziener, Ulrich; de Courten, Damien; Wolf, Martin; Boesel, Luciano F; Scherer, Lukas J
2015-01-01
The grafting of poly(hydroxyethylmethacrylate) on polymeric porous membranes via atom transfer radical polymerization (ATRP) and subsequent modification with a photo-responsive spiropyran derivative is described. This method leads to photo-responsive membranes with desirable properties such as light-controlled permeability changes, exceptional photo-stability and repeatability of the photo-responsive switching. Conventional track etched polyester membranes were first treated with plasma polymer coating introducing anchoring groups, which allowed the attachment of ATRP-initiator molecules on the membrane surface. Surface initiated ARGET–ATRP of hydroxyethylmethacrylate (where ARGET stands for activator regenerated by electron transfer) leads to a membrane covered with a polymer layer, whereas the controlled polymerization procedure allows good control over the thickness of the polymer layer in respect to the polymerization conditions. Therefore, the final permeability of the membranes could be tailored by choice of pore diameter of the initial membranes, applied monomer concentration or polymerization time. Moreover a remarkable switch in permeability (more than 1000%) upon irradiation with UV-light could be achieved. These properties enable possible applications in the field of transdermal drug delivery, filtration, or sensing. PMID:27877791
NASA Astrophysics Data System (ADS)
Pauly, Anja C.; Schöller, Katrin; Baumann, Lukas; Rossi, René M.; Dustmann, Kathrin; Ziener, Ulrich; de Courten, Damien; Wolf, Martin; Boesel, Luciano F.; Scherer, Lukas J.
2015-06-01
The grafting of poly(hydroxyethylmethacrylate) on polymeric porous membranes via atom transfer radical polymerization (ATRP) and subsequent modification with a photo-responsive spiropyran derivative is described. This method leads to photo-responsive membranes with desirable properties such as light-controlled permeability changes, exceptional photo-stability and repeatability of the photo-responsive switching. Conventional track etched polyester membranes were first treated with plasma polymer coating introducing anchoring groups, which allowed the attachment of ATRP-initiator molecules on the membrane surface. Surface initiated ARGET-ATRP of hydroxyethylmethacrylate (where ARGET stands for activator regenerated by electron transfer) leads to a membrane covered with a polymer layer, whereas the controlled polymerization procedure allows good control over the thickness of the polymer layer in respect to the polymerization conditions. Therefore, the final permeability of the membranes could be tailored by choice of pore diameter of the initial membranes, applied monomer concentration or polymerization time. Moreover a remarkable switch in permeability (more than 1000%) upon irradiation with UV-light could be achieved. These properties enable possible applications in the field of transdermal drug delivery, filtration, or sensing.
Chen, Sheng-Han; Chang, Yung; Lee, Kueir-Rarn; Wei, Ta-Chin; Higuchi, Akon; Ho, Feng-Ming; Tsou, Chia-Chun; Ho, Hsin-Tsung; Lai, Juin-Yih
2012-12-21
In this work, the hemocompatibility of zwitterionic polypropylene (PP) fibrous membranes with varying grafting coverage of poly(sulfobetaine methacrylate) (PSBMA) via plasma-induced surface polymerization was studied. Charge neutrality of PSBMA-grafted layers on PP membrane surfaces was controlled by the low-pressure and atmospheric plasma treatment in this study. The effects of grafting composition, surface hydrophilicity, and hydration capability on blood compatibility of the membranes were determined. Protein adsorption onto the different PSBMA-grafted PP membranes from human fibrinogen solutions was measured by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. Blood platelet adhesion and plasma clotting time measurements from a recalcified platelet-rich plasma solution were used to determine if platelet activation depends on the charge bias of the grafted PSBMA layer. The charge bias of PSBMA layer deviated from the electrical balance of positively and negatively charged moieties can be well-controlled via atmospheric plasma-induced interfacial zwitterionization and was further tested with human whole blood. The optimized PSBMA surface graft layer in overall charge neutrality has a high hydration capability and keeps its original blood-inert property of antifouling, anticoagulant, and antithrmbogenic activities when it comes into contact with human blood. This work suggests that the hemocompatible nature of grafted PSBMA polymers by controlling grafting quality via atmospheric plasma treatment gives a great potential in the surface zwitterionization of hydrophobic membranes for use in human whole blood.
McKee, Jason R; Huokuna, Johannes; Martikainen, Lahja; Karesoja, Mikko; Nykänen, Antti; Kontturi, Eero; Tenhu, Heikki; Ruokolainen, Janne; Ikkala, Olli
2014-05-12
Even though nanocomposites have provided a plethora of routes to increase stiffness and strength, achieving increased toughness with suppressed catastrophic crack growth has remained more challenging. Inspired by the concepts of mechanically excellent natural nanomaterials, one-component nanocomposites were fabricated involving reinforcing colloidal nanorod cores with polymeric grafts containing supramolecular binding units. The concept is based on mechanically strong native cellulose nanocrystals (CNC) grafted with glassy polymethacrylate polymers, with side chains that contain 2-ureido-4[1H]-pyrimidone (UPy) pendant groups. The interdigitation of the grafts and the ensuing UPy hydrogen bonds bind the nanocomposite network together. Under stress, UPy groups act as sacrificial bonds: simultaneously providing adhesion between the CNCs while allowing them to first orient and then gradually slide past each other, thus dissipating fracture energy. We propose that this architecture involving supramolecular binding units within side chains of polymer grafts attached to colloidal reinforcements opens generic approaches for tough nanocomposites. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bernstein, Roy; Belfer, Sofia; Freger, Viatcheslav
2011-07-15
Concentration polarization-enhanced radical graft polymerization, a facile surface modification technique, was examined as an approach to reduce bacterial deposition onto RO membranes and thus contribute to mitigation of biofouling. For this purpose an RO membrane ESPA-1 was surface-grafted with a zwitterionic and negatively and positively charged monomers. The low monomer concentrations and low degrees of grafting employed in modifications moderately reduced flux (by 20-40%) and did not affect salt rejection, yet produced substantial changes in surface chemistry, charge and hydrophilicity. The propensity to bacterial attachment of original and modified membranes was assessed using bacterial deposition tests carried out in a parallel plate flow setup using a fluorescent strain of Pseudomonas fluorescens. Compared to unmodified ESPA-1 the deposition (mass transfer) coefficient was significantly increased for modification with the positively charged monomer. On the other hand, a substantial reduction in bacterial deposition rates was observed for membranes modified with zwitterionic monomer and, still more, with very hydrophilic negatively charged monomers. This trend is well explained by the effects of surface charge (as measured by ζ-potential) and hydrophilicity (contact angle). It also well correlated with force distance measurements by AFM using surrogate spherical probes with a negative surface charge mimicking the bacterial surface. The positively charged surface showed a strong hysteresis with a large adhesion force, which was weaker for unmodified ESPA-1 and still weaker for zwitterionic surface, while negatively charged surface showed a long-range repulsion and negligible hysteresis. These results demonstrate the potential of using the proposed surface- modification approach for varying surface characteristics, charge and hydrophilicity, and thus minimizing bacterial deposition and potentially reducing propensity biofouling.
Lin, Yi-Li; Tsai, Chia-Cheng; Zheng, Nai-Yun
2018-09-01
In this study, an insitu radical graft polarization technique using monomers of 3-sulfopropyl methacrylate potassium salt (SPM) and 2-hydroxyethyl methacrylate (HEMA) was applied to a commercial nanofiltration membrane (NF90) to improve its removal of six commonly detected pharmaceutical and personal care products (PPCPs) and mitigate organic and biological fouling by humic acid (HA) and sodium alginate (SA). Compared with the virgin membrane, the modified NF90 membrane exhibited considerably improved fouling resistance and an increased reversible fouling percentage, especially for SA+HA composite fouling Moreover, the PPCP removal of the modified NF90 membrane was higher than that of the virgin membrane after SA and SA+HA fouling, respectively. Triclosan and carbamazepine, which are poorly rejected, could be effectively removed by modified membrane after SA or SA+HA fouling. Both monomers modified the membrane surface by increasing the hydrophilicity and decreasing the contact angle. The degree of grafting was quantified using attenuated total reflection Fourier-transform infrared spectroscopy. The mitigation in the fouling was evident from the low quantity of deposit formed on the modified membrane, as observed using scanning electron microscopy. A considerable amount of highly hydrophobic triclosan was adsorbed on the SA-fouled virgin membrane and penetrated through it. By contrast, the adsorption of triclosan was substantially lower in the SPM-modified membrane. After membrane modification, the fouling mechanism changed from solely intermediate blocking to both intermediate blocking and complete blocking after membrane modification. Thus, the in situ radical graft polymerization method effectively reduces organic and biological fouling and provides high PPCP removal, which is beneficial for fouling control and produces permeate of satisfactory quality for application in the field of membrane technology. Copyright © 2018 Elsevier B.V. All rights reserved.
Yang, Fang; Xiao, Dan; Han, Huaxin; Chen, Yuhuan; Li, Gang
2018-07-15
A novel amphiphilic polymeric drug carrier was synthesized through grafting polymerization of water-soluble 1,4-β-D-glucan from cotton cellulose tailored and polypropylene oxide (PPO), and then use thereof to synthesize graft copolymer 1,4-β-D-glucan-PPO-docetaxel (DTX). The products were characterized by FTIR, 1 H NMR, and 13 C NMR. The physicochemical characteristics of 1,4-β-D-glucan-PPO and 1,4-β-D-glucan-PPO-DTX such as molecular weight distribution (MWD), micro-morphology, size, critical micelle concentration (CMC), aggregation number of micelle (N), in vitro stability and drug pharmacokinetic study in vivo were investigated. The results reveal that the degree of polymerization (DP) of the water-soluble 1,4-β-D-glucan from cotton cellulose tailored is equal to 7; the 1,4-β-D-glucan-PPO surfactant possesses good surface activity while the adduct number of propylene oxide reaches appropriately to 20; the DTX is completely dispersed in water medium with 1,4-β-D-glucan-PPO-DTX micelle and the drug conjugated percent is up to 40.3%; In vitro study confirms that 1,4-β-D-glucan-PPO-DTX has the capacity for sustained drug release; In plasma, 1,4-β-D-glucan-PPO-DTX exhibits a significantly enhanced C max , AUC (0-t) and T 1/2 compared with DTX. These results demonstrate that 1,4-β-D-glucan-PPO has the potential to be used as a novel biocompatible biomaterial for drug delivery. Copyright © 2018 Elsevier B.V. All rights reserved.
Wan, Dong; Yuan, Shaojun; Neoh, K G; Kang, E T
2010-06-01
An environmentally benign approach to surface modification was developed to impart copper surface with enhanced resistance to corrosion, bacterial adhesion and biocorrosion. Oxidative graft polymerization of 2,2'-bithiophene from the copper surface with self-assembled 2,2'-bithiophene monolayer, and subsequent reduction of silver ions to silver nanoparticles (Ag NPs) on the surface, give rise to a homogeneous bithiophene polymer (PBT) film with densely coupled Ag NPs on the copper surface (Cu-g-PBT-Ag NP surface). The immobilized Ag NPs were found to significantly inhibit bacterial adhesion and enhance the antibacterial properties of the PBT modified copper surface. The corrosion inhibition performance of the functionalized copper substrates was evaluated by Tafel polarization curves and electrochemical impedance spectroscopy. Arising from the chemical affinity of thiols for the noble and coinage metals, the copper surface functionalized with both PBT brushes and Ag NPs also exhibits long-term stability, and is thus potentially useful for combating the combined problems of corrosion and biocorrosion in harsh marine and aquatic environments.
NASA Astrophysics Data System (ADS)
Zhu, Xing; He, Bin; Zhao, Changwen; Ma, Yuhong; Yang, Wantai
2018-04-01
Developing facile and mild strategy to construct multi-enzymes immobilization system has attracted considerable attentions in recent years. Here a simple immobilization strategy called visible light induced graft polymerization that can simultaneously and separately encapsulate two kinds of enzymes on one polymer film was proposed. Two incompatible enzymes, trypsin and transglutaminase (TGase) were selected as model dual-enzymes system and simultaneously immobilized on two sides of low-density polyethylene (LDPE) film. After immobilization, it was found that more than 90% of the enzymes can be embedded into dual-enzymes loaded film without leakage. And the activities of both separately immobilized enzymes were higher than the activities of mixed co-immobilized enzymes or the sequential immobilized ones. This dual-enzymes loaded film (DEL film) showed excellent recyclability and can retain >87% activities of both enzymes after 4 cycles of utilization. As an example, this DEL film was used to conjugate a prodrug of cytarabine with a target peptide. The successful preparation of expected product demonstrated that the separately immobilized two enzymes can worked well together to catalyze a two-step reaction.
[Aortic reconstruction with graft materials resistant to bacterial infections].
Hassen-Khodja, Réda; Sadaghianloo, Nirvana; Jean-Baptiste, Élixène
2013-01-01
Synthetic graft infection is a rare but extremely serious complication of aortic reconstruction procedures, with morbidity-mortality rates as high as 60 %. Some of the proteins (albumin, gelatin, collagen) used to coat polyester graft materials can establish ionic bonds with antibiotics or can capture antiseptics such as triclosan or ionic silver in their matrices. These active substances are then released from the graft, at varying rates, during the coating degradation that takes place during the weeks following polyester graft implantation in living tissues. Rifampin-bonded prostheses have proved effective against S. aureus and S. epidermidis in several canine models of synthetic aortic graft infection. Rifampin-bonded grafts have also been used successfully in patients with synthetic aortic graft infection by low-virulence bacteria. However, their effectiveness may be limited by the diverse and changing ecology of synthetic aortic graft infections, with an increasing prevalence of multidrug-resistant bacteria and polymicrobial infections. These include species that are naturally, or are likely to become, resistant to rifampin. We evaluated silver-ion-bonded prostheses in this setting but observed a disappointingly high mid-term rate of recurrent infections. Over the past few years we have been involved in the development of polyester vascular prostheses functionalized with a hydroxypropyl-β-cyclodextrin polymeric matrix that can capture and elute several therapeutic agents. The results are promising, as these prostheses enable the sustained release of various antibiotics in amounts several times their minimum inhibitory concentrations. This provides a unique opportunity to functionalize materials for aortic graft reconstruction, based on epidemiological data or individual bacteriological findings.
In situ synthesis of TiO2/polyethylene terephthalate hybrid nanocomposites at low temperature
NASA Astrophysics Data System (ADS)
Peng, Xinyan; Ding, Enyong; Xue, Feng
2012-06-01
TiO2 nanoflowers were in situ grown on polyethylene terephthalate (PET) non-woven fabric by hydrolysis of TiCl4 in aqueous solution in the presence of nanocrystal cellulose grafted PET fabric (NCC-g-PET) at a low temperature of 70 °C. Nanocrystal cellulose (NCC) pre-grafted on PET fabric acted as hydrophilic substrate and morphology inducing agent to promote the nucleation and crystal growth of TiO2. Detailed information on the synthetic process was presented. The resulting samples were characterized using FE-SEM, EDS, ATR-IR, Raman microscopy, XRD and TG analysis. The photocatalytic activity of the samples was evaluated by the degradation of orange methyl under solar light. Characteristic results indicate that rutile TiO2 nanoflowers have grown abundantly on PET non-woven fabric, and the established hydrogen bonding strengthens the interfacial interaction between the inorganic particles and the polymeric substrates. The methyl orange decoloration test under natural solar light demonstrates that this TiO2/PET hybrid nanocomposites exhibit excellent self-cleaning performance which is expected to have a good potential for commercialization.
Starch-g-Poly-(N, N-dimethyl acrylamide-co-acrylic acid): an efficient Cr (VI) ion binder.
Kolya, Haradhan; Roy, Anirban; Tripathy, Tridib
2015-01-01
Synthesis of Starch-g-(Poly N, N-dimethylacrylamide-co-acrylic acid) was carried out by solution polymerization technique using potassium perdisulfate (K(2)S(2)O(8)) as the initiator. The graft copolymer was characterized by measuring molecular weight, using size exclusion chromatography (SEC), FTIR spectroscopy and X-ray diffraction (XRD) studies. The synthetic graft copolymer was used for removal of hexavalent chromium ion [Cr (VI)] from its aqueous solution. Various operating variables affecting the metal sorption such as, the amount of adsorbent, solution pH, contact time, temperature and the Cr (VI) solution concentration were extensively investigated. FTIR and UV-VIS spectroscopy, cyclic voltammetry (CV) were employed to study the metal complexation. The adsorption data could be well described by the pseudo-second-order and Langmuir isotherm model which indicate a chemisorption process. Calculation of the various thermodynamic parameters for the adsorption was also done. The negative value of free energy change (ΔG°) indicates the spontaneous nature of the adsorption. Copyright © 2014 Elsevier B.V. All rights reserved.
PEG-Stabilized Core–Shell Surface-Imprinted Nanoparticles
Moczko, Ewa; Guerreiro, Antonio; Piletska, Elena; Piletsky, Sergey
2016-01-01
Here we present a simple technique to produce target-specific molecularly imprinted polymeric nanoparticles (MIP NPs) and their surface modification in order to prevent the aggregation process that is ever-present in most nanomaterial suspensions/dispersions. Specifically, we studied the influence of surface modification of MIP NPs with polymerizable poly(ethylene glycol) on their degree of stability in water, in phosphate buffer, and in the presence of serum proteins. Grafting a polymer shell on the surface of nanoparticles decreases the surface energy, enhances the polarity, and as a result improves the dispersibility, storage, and colloidal stability as compared to those of core (unmodified) particles. Because of the unique solid-phase approach used for synthesis, the binding sites of MIP NPs are protected during grafting, and the recognition properties of nanoparticles are not affected. These results are significant for developing nanomaterials with selective molecular recognition, increased biocompatibility, and stability in solution. Materials synthesized this way have the potential to be used in a variety of technological fields, including in vivo applications such as drug delivery and imaging. PMID:23855734
Polymeric Coatings for Combating Biocorrosion
NASA Astrophysics Data System (ADS)
Guo, Jing; Yuan, Shaojun; Jiang, Wei; Lv, Li; Liang, Bin; Pehkonen, Simo O.
2018-03-01
Biocorrosion has been considered as big trouble in many industries and marine environments due to causing great economic loss. The main disadvantages of present approaches to prevent corrosion include being limited by environmental factors, being expensive, inapplicable to field, and sometimes inefficient. Studies show that polymer coatings with anti-corrosion and anti-microbial properties have been widely accepted as a novel and effective approach to preventbiocorrosion. The main purpose of this review is to summarize up the progressive status of polymer coatings used for combating microbially-induced corrosion. Polymers used to synthesize protective coatings are generally divided into three categories: i) traditional polymers incorporated with biocides, ii) antibacterial polymers containing quaternary ammonium compounds, and iii) conductive polymers. The strategies to synthesize polymer coatings resort mainly to grafting anti-bacterial polymers from the metal substrate surface using novel surface-functionalization approaches, such as free radical polymerization, chemically oxidative polymerization and surface-initiated atom transfer radical polymerization, as opposed to the traditional approaches of dip coating or spin coating.
Polymeric scaffolds as stem cell carriers in bone repair.
Rossi, Filippo; Santoro, Marco; Perale, Giuseppe
2015-10-01
Although bone has a high potential to regenerate itself after damage and injury, the efficacious repair of large bone defects resulting from resection, trauma or non-union fractures still requires the implantation of bone grafts. Materials science, in conjunction with biotechnology, can satisfy these needs by developing artificial bones, synthetic substitutes and organ implants. In particular, recent advances in polymer science have provided several innovations, underlying the increasing importance of macromolecules in this field. To address the increasing need for improved bone substitutes, tissue engineering seeks to create synthetic, three-dimensional scaffolds made from polymeric materials, incorporating stem cells and growth factors, to induce new bone tissue formation. Polymeric materials have shown a great affinity for cell transplantation and differentiation and, moreover, their structure can be tuned in order to maintain an adequate mechanical resistance and contemporarily be fully bioresorbable. This review emphasizes recent progress in polymer science that allows relaible polymeric scaffolds to be synthesized for stem cell growth in bone regeneration. Copyright © 2013 John Wiley & Sons, Ltd.
Impact of pore size on the sorption of uranyl under seawater conditions
Mayes, Richard T.; Gorka, Joanna; Dai, Sheng
2016-04-05
The extraction of uranium from seawater has received significant interest recently, because of the possibility of a near-limitless supply of uranium to fuel the nuclear power industry. While sorbent development has focused primarily on polymeric sorbents, nanomaterials represent a new area that has the potential to surpass the current polymeric sorbents, because of the high surface areas that are possible. Mesoporous carbon materials are a stable, high-surface-area material capable of extracting various chemical species from a variety of environments. Herein, we report the use of a dual templating process to understand the effect of pore size on the adsorption ofmore » uranyl ions from a uranyl brine consisting of seawater-relevant sodium, chloride, and bicarbonate ions. It was found that pore size played a more significant role in the effective use of the grafted polymer, leading to higher uranium capacities than the surface area. Furthermore, the pore size must be tailored to meet the demands of the extraction medium and analyte metal to achieve efficacy as an adsorbent.« less
Hosono, Nobuhiko; Gochomori, Mika; Matsuda, Ryotaro; Sato, Hiroshi; Kitagawa, Susumu
2016-05-25
We herein report the divergent and convergent synthesis of coordination star polymers (CSP) by using metal-organic polyhedrons (MOPs) as a multifunctional core. For the divergent route, copper-based great rhombicuboctahedral MOPs decorated with dithiobenzoate or trithioester chain transfer groups at the periphery were designed. Subsequent reversible addition-fragmentation chain transfer (RAFT) polymerization of monomers mediated by the MOPs gave star polymers, in which 24 polymeric arms were grafted from the MOP core. On the other hand, the convergent route provided identical CSP architectures by simple mixing of a macroligand and copper ions. Isophthalic acid-terminated polymers (so-called macroligands) immediately formed the corresponding CSPs through a coordination reaction with copper(II) ions. This convergent route enabled us to obtain miktoarm CSPs with tunable chain compositions through ligand mixing alone. This powerful method allows instant access to a wide variety of multicomponent star polymers that conventionally have required highly skilled and multistep syntheses. MOP-core CSPs are a new class of star polymer that can offer a design strategy for highly processable porous soft materials by using coordination nanocages as a building component.
Rice husk grafted PMAA by ATRP in aqueous phase and its adsorption for Ce3+
NASA Astrophysics Data System (ADS)
Lin, Chao; Luo, Wenjun; Chen, Jindong; Zhou, Qi
2017-12-01
A monolithic biomass adsorbent, rice husk grafted poly (methyl acrylic acid) (RH-g-PMAA), was successfully synthesized via surface-initiated atom transfer radical polymerization (ATRP) through heterogeneous reactions in aqueous phase. Its adsorption capacity for Ce3+ reaches 122.51 mg g-1, which is about 12 times higher than that of raw rice husk. The experimental result on desorption and reusability shows that the adsorption capacity is still higher than 100 mg g-1 after six cycles and the desorption rate is almost 100% in every cycle. RH-g-PMAA can be separated from water easily because of its integrity.
Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating
NASA Astrophysics Data System (ADS)
Liu, Wenyong; Luo, Yuting; Sun, Linyu; Wu, Ruomei; Jiang, Haiyun; Liu, Yuejun
2013-01-01
We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162° and the sliding angle of 2° was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed by optical microscope (OM) and scanning electron microscope (SEM). Combined with the material of PP with the low surface free energy, the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.
Luo, Nan; Xu, Rongle; Yang, Min; Yuan, Xing; Zhong, Hui; Fan, Yaobo
2015-12-01
A novel inorganic-organic composite membrane, namely poly(vinylidene fluoride) PVDF-glass fiber (PGF) composite membrane, was prepared and reinforced by interfacial ultraviolet (UV)-grafting copolymerization to improve the interfacial bonding strength between the membrane layer and the glass fiber. The interfacial polymerization between inorganic-organic interfaces is a chemical cross-linking reaction that depends on the functionalized glass fiber with silane coupling (KH570) as the initiator and the polymer solution with acrylamide monomer (AM) as the grafting block. The Fourier transform infrared spectrometer-attenuated total reflectance (FTIR-ATR) spectra and the energy dispersive X-ray (EDX) pictures of the interface between the glass fiber and polymer matrix confirmed that the AM was grafted to the surface of the glass fiber fabric and that the grafting polymer was successfully embedded in the membrane matrix. The formation mechanisms, permeation, and anti-fouling performance of the PGF composite membrane were measured with different amounts of AM in the doping solutions. The results showed that the grafting composite membrane improved the interfacial bonding strength and permeability, and the peeling strength was improved by 32.6% for PGF composite membranes with an AM concentration at 2wt.%. Copyright © 2015. Published by Elsevier B.V.
Polymer-Particle Nanocomposites: Size and Dispersion Effects
NASA Astrophysics Data System (ADS)
Moll, Joseph
Polymer-particle nanocomposites are used in industrial processes to enhance a broad range of material properties (e.g. mechanical, optical, electrical and gas permeability properties). This dissertation will focus on explanation and quantification of mechanical property improvements upon the addition of nanoparticles to polymeric materials. Nanoparticles, as enhancers of mechanical properties, are ubiquitous in synthetic and natural materials (e.g. automobile tires, packaging, bone), however, to date, there is no thorough understanding of the mechanism of their action. In this dissertation, silica (SiO2) nanoparticles, both bare and grafted with polystyrene (PS), are studied in polymeric matrices. Several variables of interest are considered, including particle dispersion state, particle size, length and density of grafted polymer chains, and volume fraction of SiO2. Polymer grafted nanoparticles behave akin to block copolymers, and this is critically leveraged to systematically vary nanoparticle dispersion and examine its role on the mechanical reinforcement in polymer based nanocomposites in the melt state. Rheology unequivocally shows that reinforcement is maximized by the formation of a transient, but long-lived, percolating polymer-particle network with the particles serving as the network junctions. The effects of dispersion and weight fraction of filler on nanocomposite mechanical properties are also studied in a bare particle system. Due to the interest in directional properties for many different materials, different means of inducing directional ordering of particle structures are also studied. Using a combination of electron microscopy and x-ray scattering, it is shown that shearing anisotropic NP assemblies (sheets or strings) causes them to orient, one in front of the other, into macroscopic two-dimensional structures along the flow direction. In contrast, no such flow-induced ordering occurs for well dispersed NPs or spherical NP aggregates! This work also addresses the interfacial, rigid polymer layer, or 'bound layer' which has long been of interest in polymer nanocomposites and polymer thin films. The divergent properties of the 'bound layer' as compared to the bulk material can have very important effects on properties, including mechanical properties. This is especially true in polymer nanocomposites, where at high weight fractions, 'bound layer' polymer can easily make up 20% or more of total material! Here we quantify this layer of bound polymer as a function of particle size, polymer molecular weight and other variables, primarily using thermogravimetric analysis but also dynamic light scattering and differential scanning calorimetry. We find that as nanoparticles become smaller, the 'bound layer' systematically decreases in thickness. This result is quite relevant to explanations of many polymer nanocomposite properties that depend on size, including mechanical and barrier properties. Many additional important and new results are reported herein. These include the importance of dispersion state in the resulting mechanical properties of polymer-particle nanocomposites, where a systematic study showed an optimal dispersion state of a connected particle network. An additional and unexpected finding in this system was the critical dependence of composite properties on grafted chain length of particles. As the grafted chain length is increased, the strain which leads to yielding in a steady shear experiment is increased in a linear relationship. At very high rates, this yielding process completely switches mechanisms, from yielding of the particle network to yielding of the entangled polymer network! A surprising correlation between the amount of bound polymer in solution and in the bulk was also found and is interpreted herein. Self-assembly was further explored in a range of different systems and it was found that grafted particles and there mimics have vast potential in the creation of a wide array of particle superstructures. In concert, these experiments provide a comprehensive picture of mechanical reinforcement in polymer-particle nanocomposites. Not only is the dispersion state of the particles crucial, but the presence of grafted chains is also so for proper reinforcement. Here many routes to ideal dispersion are detailed and the important role of grafted chains is also resolved.
NASA Astrophysics Data System (ADS)
Saleh, Alaaeldine Sh.; Ibrahim, Ahmed G.; Elsharma, Emad M.; Metwally, Essam; Siyam, Tharwat
2018-03-01
The graft copolymerization has been proven as a superior polymerization technique because it combines the functional advantages of the grafted and base polymers. In this work, the radiation-induced grafting of acrylamide (AAm) and maleic acid (MA) onto chitosan (CTS) was developed and optimized by determining the grafting percentage and efficiency as a function of grafting conditions such as AAm, MA, and CTS concentrations, and absorbed dose. Fourier transform infrared spectroscopic analysis (FTIR) confirmed the graft copolymerization. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) further characterized the grafted copolymers and showed their high thermal stability. Using batch sorption experiments and 60Co as a radiotracer, poly(CTS-AAm) and poly(CTS-MA) were evaluated for Co(II) removal from aqueous solutions. The Co(II) removal increases with increasing time, pH, polymer, and Co(II) concentrations. Experimentally, P(CTS-AAm) and P(CTS-MA) show high sorption capacities of Co(II), i.e. 150 mg g-1 and 421 mg g-1, respectively, which makes them potential sorbents of Co(II) for water and wastewater treatment. Finally, the Co(II) sorption was examined using sorption isotherm and kinetic models. The sorption was best fitted to Langmuir model which suggests the sorption is of chemisorption type. On the other hand, the sorption kinetics was best represented by Elovich model which also indicates the chemical nature of Co(II) sorption on P(CTS-AAm) and P(CTS-MA).
Zou, Yuquan; Lai, Benjamin F L; Kizhakkedathu, Jayachandran N; Brooks, Donald E
2010-12-08
Poly(N,N-dimethylacrylamide) (PDMA) brushes are successfully grown from unplasticized poly(vinyl chloride) (uPVC) by well-controlled surface-initiated atom transfer radical polymerization (SI-ATRP). Molecular weights of the grafted PDMA brushes vary from ≈ 35,000 to 2,170000 Da, while the graft density ranges from 0.08 to 1.13 chains · nm(-2). The polydispersity of the grafted PDMA brushes is controlled within 1.20 to 1.80. Platelet activation (expression of CD62) and adhesion studies reveal that the graft densities of the PDMA brushes play an important role in controlling interfacial properties. PDMA brushes with graft densities between 0.35 and 0.50 chains · nm(-2) induce a significantly reduced platelet activation compared to unmodified uPVC. Moreover, the surface adhesion of platelets on uPVC is significantly reduced by the densely grafted PDMA brushes. PDMA brushes that have high molecular weights lead to a relatively lower platelet activation compared to low-molecular-weight brushes. However, the graft density of the brush is more important than molecular weight in controlling platelet interactions with PVC. PDMA brushes do not produce any significant platelet consumption in platelet rich plasma. Up to a seven-fold decrease in the number of platelets adhered on high graft density brushes is observed compared to the bare PVC surface. Unlike the bare PVC, platelets do not form pseudopodes or change morphology on PDMA brush-coated surfaces. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Purification of alpha-glucosidae and invertase from bakers' yeast on modified polymeric supports.
Lothe, R R; Purohit, S S; Shaikh, S S; Malshe, V C; Pandit, A B
1999-01-01
In the present work Amberlite XAD-16 and Indion NPA-1, Polystyrene Divinylbenzene macroreticular spherical resins, have been evaluated quantitatively as supports for the adsorption and isolation of the yeast proteins and the enzymes, invertase and alpha-glucosidase. Modification of these supports has been carried out by surface grafting using acrylate polymers to reduce the hydrophobicity and nonspecific adsorption of proteins. Good grafting efficiency, in excess of 90%, has been obtained using ultrasonic irradiation for the surface activation of polystyrene resins. XAD-16 has higher adsorption capacities for the total yeast proteins as well as for both the enzymes, alpha-glucosidase and invertase, than NPA-1 in its respective native and grafted form. Adsorption capacities of XAD-16 and NPA-1 in their respective native and grafted forms for alpha-glucosidase are higher than the capacities for invertase. Nonspecific adsorption of total proteins has been reduced considerably after the grafting of acrylate polymers on hydrophobic supports. At the same time selectivity for the adsorption of both the enzymes has been enhanced on grafted supports. The overall solid-liquid adsorption mass transfer coefficient values (Kla) estimated for adsorption of invertase on XAD are lower than those for alpha-glucosidase. Native and grafted resins could be regenerated and reused for adsorption of alpha-glucosidase for two regeneration cycles studied. Storage stability of invertase and alpha-glucosidase is the same on native and grafted form of XAD-16 and is more than the enzymes in the free form.
Membrane surface engineering for protein separations: experiments and simulations.
Liu, Zizhao; Du, Hongbo; Wickramasinghe, S Ranil; Qian, Xianghong
2014-09-09
A bisphosphonate derived ligand was successfully synthesized and grafted from the surface of regenerated cellulose membrane using atom transfer radical polymerization (ATRP) for protein separations. This ligand has a remarkable affinity for arginine (Arg) residues on protein surface. Hydrophilic residues N-(2-hydroxypropyl) methacrylamide (HPMA) was copolymerized to enhance the flexibility of the copolymer ligand and further improve specific protein adsorption. The polymerization of bisphosphonate derivatives was successful for the first time using ATRP. Static and dynamic binding capacities were determined for binding and elution of Arg rich lysozyme. The interaction mechanism between the copolymer ligand and lysozyme was elucidated using classical molecular dynamics (MD) simulations.
Advanced Materials by Atom Transfer Radical Polymerization.
Matyjaszewski, Krzysztof
2018-06-01
Atom transfer radical polymerization (ATRP) has been successfully employed for the preparation of various advanced materials with controlled architecture. New catalysts with strongly enhanced activity permit more environmentally benign ATRP procedures using ppm levels of catalyst. Precise control over polymer composition, topology, and incorporation of site specific functionality enables synthesis of well-defined gradient, block, comb copolymers, polymers with (hyper)branched structures including stars, densely grafted molecular brushes or networks, as well as inorganic-organic hybrid materials and bioconjugates. Examples of specific applications of functional materials include thermoplastic elastomers, nanostructured carbons, surfactants, dispersants, functionalized surfaces, and biorelated materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhu, Xing; He, Bin; Zhao, Changwen; Fan, Rong; Zhang, Lihua; Wang, Guan; Ma, Yuhong; Yang, Wantai
2016-01-01
The main limitation preventing the use of enzymatic cellulosic ethanol in industrial production is its higher cost which is mainly due to the elevated price of β-glucosidase (BG). Herein, we report on a simple strategy for the in-situ encapsulation of BG for repeated cellulosic ethanol production. In this strategy, BG was net-immobilized into a poly(ethylene glycol) (PEG) net-cloth layer on a PP nonwoven fabric by way of the visible light-induced surface controlled/living graft cross-linking polymerization. The visible light and mild reaction conditions could ensure the activity retention of BG during immobilization, while the non-swelling uniform net-mesh formed by living cross-linking polymerization could prevent the leakage of BG effectively (at the immobilization rate of more than 98.6% and the leakage rate of only 0.4%). When the BG-loaded fabric was used in combination with free cellulase (CEL), the results of the catalytic reaction demonstrated that these BG-loaded fabrics could not only give a 40% increase in cellulose conversions but also be reused for more than fifteen batches without losing the activity. These BG-loaded fabrics with characteristics including easy separation, excellent operation stability, a low cost of the polymeric matrix and a simple fabrication process are particularly interesting for a future bio-fuel production strategy. PMID:27009788
NASA Astrophysics Data System (ADS)
Zhu, Xing; He, Bin; Zhao, Changwen; Fan, Rong; Zhang, Lihua; Wang, Guan; Ma, Yuhong; Yang, Wantai
2016-03-01
The main limitation preventing the use of enzymatic cellulosic ethanol in industrial production is its higher cost which is mainly due to the elevated price of β-glucosidase (BG). Herein, we report on a simple strategy for the in-situ encapsulation of BG for repeated cellulosic ethanol production. In this strategy, BG was net-immobilized into a poly(ethylene glycol) (PEG) net-cloth layer on a PP nonwoven fabric by way of the visible light-induced surface controlled/living graft cross-linking polymerization. The visible light and mild reaction conditions could ensure the activity retention of BG during immobilization, while the non-swelling uniform net-mesh formed by living cross-linking polymerization could prevent the leakage of BG effectively (at the immobilization rate of more than 98.6% and the leakage rate of only 0.4%). When the BG-loaded fabric was used in combination with free cellulase (CEL), the results of the catalytic reaction demonstrated that these BG-loaded fabrics could not only give a 40% increase in cellulose conversions but also be reused for more than fifteen batches without losing the activity. These BG-loaded fabrics with characteristics including easy separation, excellent operation stability, a low cost of the polymeric matrix and a simple fabrication process are particularly interesting for a future bio-fuel production strategy.
Directed Self-Organization of Polymer-Grafted Nanoparticles in Polymer Thin Films
NASA Astrophysics Data System (ADS)
Zhang, Ren
The controlled organization of nanoparticle (NP) constituents into superstructures of well-defined shape, composition and connectivity represents a continuing challenge in the development of novel hybrid materials for many technological applications. Surface modification of NPs with grafted polymer ligands has emerged as a versatile means to control the interaction and organization of particle constituents in polymer-matrix composite materials. In this study, by incorporating polymer-grafted nanoparticles (PGNPs) into polymeric thin films, we aim to understand and control the spatial organization of PGNPs through the interactions between polymer brush layer and matrix chains. As model systems, we investigate thermodynamic behaviors of polystyrene-tethered gold nanoparticles (denoted as AuPS) dispersed in polymer thin film matrices with identical and different chemical compositions (PS and PMMA, respectively), and evaluate the influence of external perturbation fields on directed organization of nanofillers. With the presence of unfavorable enthalpic interactions between grafted and free polymer chains (i.e. AuPS/ PMMA blend thin films), phase-separated structures are generated upon thermal annealing, characterized with morphologies ranging from discrete droplets to spinodal structures, which is consistent with composition-dependent classic binary polymer blends phase separation. The phase separation kinetics of AuPS/ PMMA blends exhibit distinct features compared to the parent PS/ PMMA homopolymer blends. We further illustrate phase-separated AuPS-rich domains can be directed into unidirectionally aligned anisotropic structures through soft-shear dynamic zone annealing (DZA-SS) process with tunable domain aspect ratios. To exert exquisite control over the shape, size and location of phase-separated PGNP domains, topographically patterned elastomer confinement is introduced to PGNP/ polymer blend thin films during thermal annealing. When the phase-separated lengthscale coincides with confined pattern dimension, long-range ordered submicron-sized AuPS domains are generated in PMMA matrices with dense and well-dispersed nanoparticle distribution. Furthermore, preferential segregation of AuPS nanoparticles at patterned mesa regions can be induced in PS matrices where enthalpic interactions are absent. This selective segregation is achieved due to the local perturbation of grafted chains when confined in a restricted space. The efficiency of this particle segregation process within patterned mesa-trench films can be tuned by changing the relative entropic confinement effects on grafted and matrix chains. This physical pattern directed PGNP organization strategy is applicable to versatile pattern geometries and nanoparticle compositions.
Preparation of plasmonic vesicles from amphiphilic gold nanocrystals grafted with polymer brushes
Song, Jibin; Huang, Peng; Chen, Xiaoyuan
2016-01-01
Gold nanovesicles contain multiple nanocrystals within a polymeric coating. The strong plasmonic coupling between adjacent nanoparticles in their vesicular shell makes ultrasensitive biosensing and bioimaging possible. In our laboratory, multifunctional plasmonic vesicles are assembled from amphiphilic gold nanocrystals (such as gold nanoparticles and gold nanorods) coated with mixed hydrophilic and hydrophobic polymer brushes or amphiphilic diblock co-polymer brushes. To fulfill the different requirements of biomedical applications, different polymers that are either pH=responsive, photoactive or biodegradable can be used to form the hydrophobic brush, while the hydrophilicity is maintained by polyethylene glycol (PEG). This protocol covers the preparation, surface functionalization and self-assembly of amphiphilic gold nanocrystals grafted covalently with polymer brushes. The protocol can be completed within 2 d. The preparation of amphiphilic gold nanocrystals, coated with amphiphilic diblock polymer brushes using a ‘grafting to’ method or mixed hydrophilic and hydrophobic polymer brushes using tandem ‘grafting to’ and ‘grafting from’ methods, is described. We also provide detailed procedures for the preparation and characterization of pH-responsive plasmonic gold nanovesicles from amphiphilic gold nanocrystals using a film-rehydration method that can be completed within ~3 d. PMID:27763624
UV-Induced [2+2] Grafting-To Reactions for Polymer Modification of Cellulose.
Conradi, Matthias; Ramakers, Gijs; Junkers, Thomas
2016-01-01
Benzaldehyde-functional cellulose paper sheets have been synthesized via tosylation of cellulose (Whatman No 5) followed by addition of p-hydroxy benzaldehyde. Via UV-induced Paterno-Büchi [2+2] cycloaddition reactions, these aldehyde functional surfaces are grafted with triallylcyanurate, trimethylolpropane allyl ether, and vinyl chloroacetate. In the following, allyl-functional polymers (poly(butyl acrylate), pBA, Mn = 6990 g mol(-1) , Đ = 1.12 and poly(N-isopropyl acrylamide), pNIPAAm, Mn = 9500 g mol(-1) , Đ = 1.16) synthesized via reversible addition fragmentation chain transfer polymerization are conjugated to the celloluse surface in a UV-induced grafting-to approach. With pBA, hydrophobic cellulose sheets are obtained (water contact angle 116°), while grafting of pNIPAAm allows for generation of "smart" surfaces, which are hydrophilic at room temperature, but that become hydrophobic when heated above the characteristic lower critical solution temperature (93° contact angle). The Paterno-Büchi reaction has been shown to be a versatile synthetic tool that also performs well in grafting-to approaches whereby its overall performance seems to be close to that of radical thiol-ene reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mesoporous TiO2 Bragg Stack Templated by Graft Copolymer for Dye-sensitized Solar Cells
Park, Jung Tae; Chi, Won Seok; Kim, Sang Jin; Lee, Daeyeon; Kim, Jong Hak
2014-01-01
Organized mesoporous TiO2 Bragg stacks (om-TiO2 BS) consisting of alternating high and low refractive index organized mesoporous TiO2 (om-TiO2) films were prepared to enhance dye loading, light harvesting, electron transport, and electrolyte pore-infiltration in dye-sensitized solar cells (DSSCs). The om-TiO2 films were synthesized via a sol-gel reaction using amphiphilic graft copolymers consisting of poly(vinyl chloride) backbones and poly(oxyethylene methacrylate) side chains, i.e., PVC-g-POEM as templates. To generate high and low index films, the refractive index of om-TiO2 film was tuned by controlling the grafting ratio of PVC-g-POEM via atomic transfer radical polymerization (ATRP). A polymerized ionic liquid (PIL)-based DSSC fabricated with a 1.2-μm-thick om-TiO2 BS-based photoanode exhibited an efficiency of 4.3%, which is much higher than that of conventional DSSCs with a nanocrystalline TiO2 layer (nc-TiO2 layer) (1.7%). A PIL-based DSSC with a heterostructured photoanode consisting of 400-nm-thick organized mesoporous TiO2 interfacial (om-TiO2 IF) layer, 7-μm-thick nc-TiO2, and 1.2-μm-thick om-TiO2 BS as the bottom, middle and top layers, respectively, exhibited an excellent efficiency of 7.5%, which is much higher than that of nanocrystaline TiO2 photoanode (3.5%). PMID:24980936
NASA Astrophysics Data System (ADS)
Zinalibdin, Mohamad Raizul; Jaafar, Jafariah; Majid, Zaiton Abdul; Sanagi, Mohd Marsin
2017-11-01
In this study, a new composite core-shell of o-cresol molecularly imprinted polymer grafted silica gel (MIP@SiO2) was prepared via sol-gel polymerization. It was synthesized using o-cresol as the template molecule, 3-propyl(metacrylate)trimethoxysilane (3-PMTMOS) as the functional monomer, tetraethoxysilane (TEOS) as the cross-linker and ethanol as the porogenic solvent in the surface of silica gel. The non-imprinted polymer-grafted silica gel (NIP@SiO2) was prepared with the same technique but without template molecule. This analyte was selected as a template due to the fact that it is one of toluene metabolites. The characterization of MIP@SiO2 and NIP@SiO2 were observed by N2 adsorption analysis and Field emission scanning electron microscopy-energy dispersive x-ray (FESEM-EDX). The MIP@SiO2 and NIP@SiO2 were employed as an adsorbent for the extraction of o-cresol, a metabolite in urine sample for the monitoring of occupational toluene exposure in workers. Based on the results of the adsorption study, the MIP prepared using 0.5 mmol 3-(propylmethacrylate)trimethoxysilane), 10 mL of ethanol, 4 mmol TEOS,0.05 mmol o-cresol, 0.1g silica gel and 1mL of 0.01 mol/L acetic acid was found the adsorption capacity (0.9920 mg g-1) and imprint factor (5.21).
Prokop, A; Kozlov, E; Nun Non, S; Dikov, M M; Sephel, G C; Whitsitt, J S; Davidson, J M
2001-01-01
We seek to improve existing methodologies for allogenic grafting of pancreatic islets. The lack of success of encapsulated transplanted islets inside the peritoneal cavity is presently attributed to poor vascularization of the implant. A thick, fibrotic capsule often surrounds the graft, limiting survival. We have tested the hypothesis that neovascularization of the graft material can be induced by the addition of proper angiogenic factors embedded within a polymeric coat. Biocompatible and nonresorbable meshes coated with hydrophilic polymers were implanted in rats and harvested after 1-, 6-, and 12-week intervals. The implant response was assessed by histological observations on the degree of vascularity, fibrosis, and inflammation. Macrostructural geometry of meshes was conducive to tissue ingrowth into the interstitial space between the mesh filaments. Hydrogel coating with incorporated acidic or basic FGF in an electrostatic complex with polyelectrolytes and/or with heparin provided a sustained slow release of the angiogenic growth factor. Anti-factor VIII and anti-collagen type IV antibodies and a GSL I-B4 lectin were used to measure the extent of vascularization. Vigorous and persistent vascularization radiated several hundred microns from the implant. The level of vascularization should provide a sufficient diffusion of nutrients and oxygen to implanted islets. Based on our observations, stable vascularization may require a sustained angiogenic signal to allow for the development of a permanent implant structure.
Oil-soluble hairy nanoparticles as lubricant additives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Bin
Oil-soluble polymer brush-grafted nanoparticles (hairy NPs) were synthesized by surface-initiated atom transfer radical polymerization of lauryl methacrylate from initiator-functionalized silica nanoparticles and used as an additive for polyalphaolefin (PAO) for friction and wear reduction. Addition of 1 wt% hairy nanoparticles into PAO led to significant friction and wear reduction compared with PAO base oil.
Scalable and cleavable polysaccharide nanocarriers for the delivery of chemotherapy drugs.
Wang, Hao; Dai, Tingting; Li, Shengli; Zhou, Shuyan; Yuan, Xiaojing; You, Jiayi; Wang, Chenglong; Mukwaya, Vincent; Zhou, Guangdong; Liu, Guojun; Wei, Xiaohui; Dou, Hongjing
2018-05-01
While polysaccharide-based nanocarriers have been recognized for their crucial roles in tumor theranostics, the industrial-scale production of nanotherapeutics still remains a significant challenge. Most current approaches adopt a postpolymerization self-assembly strategy that follows a separate synthetic step and thus suffers from subgram scale yields and a limited range of application. In this study, we demonstrate the kilogram-scale formation of polysaccharide-polyacrylate nanocarriers at concentrations of up to 5 wt% through a one-pot approach - starting from various acrylate monomers and polysaccharides - that combines aspects of hydrophobicity-induced self-assembly with the free radical graft copolymerization of acrylate monomers from polysaccharide backbones into a single process that is thus denoted as a graft copolymerization induced self-assembly. We also demonstrate that this novel approach is applicable to a broad range of polysaccharides and acrylates. Notably, by choosing a crosslinker that bears a disulfide group and two vinyl capping groups to structurally lock the nanocarriers, the products are rendered cleavable in the reducing environments encountered at tumor sites and thus provide ideal candidates for the construction of anticancer nanotherapeutic systems. In vitro and in vivo studies demonstrated that the use of this nanocarrier for the delivery of doxorubicin hydrochloride (DOX) significantly decreased the side effects of DOX and improved the bio-safety of the chemotherapy accordingly. While polysaccharide-based nanocarriers have been recognized for their crucial roles in tumor theranostics, the industrial-scale production of these nanotherapeutics still remains a significant challenge. Most current approaches adopt a post-polymerization self-assembly strategy which that follows a separate synthetic step, and thus suffers from sub-gram scale yields and a limited range of application. In this study, the hydrophobic effect was combined with free radical polymerization to facilitate the graft copolymerization-induced self-assembly (GISA) of acrylate monomers with various hydrophobicities to construct cleavable polysaccharide-polyacrylate nanocarriers at a high efficiency with excellent potential for industrial-scale production. We envision that these nanocarriers will contribute to the development of tumor nanotheranostics that combine the biological functionalities of polysaccharides with the unmatched application-specific flexibility of nanocarriers. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Self-grafting carbon nanotubes on polymers for stretchable electronics
NASA Astrophysics Data System (ADS)
Morales, Piero; Moyanova, Slavianka; Pavone, Luigi; Fazi, Laura; Mirabile Gattia, Daniele; Rapone, Bruno; Gaglione, Anderson; Senesi, Roberto
2018-06-01
Elementary bidimensional circuitry made of single-wall carbon-nanotube-based conductors, self-grafted on different polymer films, is accomplished in an attempt to develop a simple technology for flexible and stretchable electronic devices. Unlike in other studies of polymer-carbon nanotube composites, no chemical functionalization of single-wall carbon nanotubes is necessary for stable grafting onto several polymeric surfaces, suggesting viable and cheap fabrication technologies for stretchable microdevices. Electrical characterization of both unstretched and strongly stretched conductors is provided, while an insight on the mechanisms of strong adhesion to the polymer is obtained by scanning electron microscopy of the surface composite. As a first example of technological application, the electrical functionality of a carbon-nanotube-based 6-sensor (electrode) grid was demonstrated by recording of subdural electrocorticograms in freely moving rats over approximately three months. The results are very promising and may serve as a basis for future work targeting clinical applications.
Wang, Ke; Fan, Xingliang; Zhang, Xiaoyong; Zhang, Xiqi; Chen, Yi; Wei, Yen
2016-08-01
Poly(2-methacryloyloxyethyl phosphorylcholine) conjugated red fluorescent chitosan nanoparticles (GCC-pMPC) were facilely fabricated by "grafting from" method via surface initiated atom transfer radical polymerization (ATRP). Firstly, glutaraldehyde crosslinked red fluorescent chitosan nanoparticles (GCC NPs) with many amino groups and hydroxyl groups on their surface were prepared, which were then reacted with 2-bromoisobutyryl bromide to form GCC-Br; subsequently, poly(MPC) (pMPC) brushes were grafted onto GCC NPs surface using GCC-Br as initiator via ATRP. Compared with PEGylated nanoparticles, zwitterionic polymers modified nanoparticles demonstrated better performance in their cellular uptake. Moreover, the obtained GCC-pMPC demonstrated excellent water-dispersibility, biocompatibility, and photostability, which made them highly potential for long-term tracing applications. Importantly, the successful live cell imaging of GCC-pMPC would remarkably advance the research of their further bioapplications. Copyright © 2016 Elsevier B.V. All rights reserved.
Ji, Weihang; Koepsel, Richard R; Murata, Hironobu; Zadan, Sawyer; Campbell, Alan S; Russell, Alan J
2017-08-14
Antibacterial polymers are potentially powerful biocides that can destroy bacteria on contact. Debate in the literature has surrounded the mechanism of action of polymeric biocides and the propensity for bacteria to develop resistance to them. There has been particular interest in whether surfaces with covalently coupled polymeric biocides have the same mechanism of action and resistance profile as similar soluble polymeric biocides. We designed and synthesized a series of poly(quaternary ammonium) polymers, with tailorable molecular structures and architectures, to engineer their antibacterial specificity and their ability to delay the development of bacterial resistance. These linear poly(quaternary ammonium) homopolymers and block copolymers, generated using atom transfer radical polymerization, had structure-dependent antibacterial specificity toward Gram positive and negative bacterial species. When single block copolymers contained two polymer segments of differing antibacterial specificity, the polymer combined the specificities of its two components. Nanoparticulate human serum albumin-poly(quaternary ammonium) conjugates of these same polymers, synthesized via "grafting from" atom transfer radical polymerization, were strongly biocidal and also exhibited a marked decrease in the rate of bacterial resistance development relative to linear polymers. These protein-biocide conjugates mimicked the behavior of surface-presented polycationic biocides rather than their nonproteinaceous counterparts.
Efficient arsenic(V) removal from water by ligand exchange fibrous adsorbent.
Awual, Md Rabiul; Shenashen, M A; Yaita, Tsuyoshi; Shiwaku, Hideaki; Jyo, Akinori
2012-11-01
This study is an efficient arsenic(V) removal from contaminated waters used as drinking water in adsorption process by zirconium(IV) loaded ligand exchange fibrous adsorbent. The bifunctional fibers contained both phosphonate and sulfonate groups. The bifunctional fiber was synthesised by graft polymerization of chloromethylstyrene onto polyethylene coated polypropylene fiber by means of electron irradiation graft polymerization technique and then desired phosphonate and sulfonate groups were introduced by Arbusov reaction followed by phosphorylation and sulfonation. Arsenic(V) adsorption was clarified in column methods with continuous flow operation in order to assess the arsenic(V) removal capacity in various conditions. The adsorption efficiency was evaluated in several parameters such as competing ions (chloride and sulfate), feed solution acidity, feed flow rate, feed concentration and kinetic performances at high feed flow rate of trace concentration arsenic(V). Arsenic(V) adsorption was not greatly changed when feed solutions pH at 3.0-7.0 and high breakthrough capacity was observed in strong acidic area below pH 2.2. Increasing the flow rate brings a decrease both breakthrough capacity and total adsorption. Trace level of arsenic(V) (0.015 mM) in presence of competing ions was also removed at high flow rate (750 h(-1)) with high removal efficiency. Therefore, the adsorbent is highly selective to arsenic(V) even in the presence of high concentration competing ions. The adsorbent is reversible and reusable in many cycles without any deterioration in its original performances. Therefore, Zr(IV) loaded ligand exchange adsorbent is to be an effective means to treat arsenic(V) contaminated water efficiently and able to safeguard the human health. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tran, Thu Hong; Okabe, Hirotaka; Hidaka, Yoshiki; Hara, Kazuhiro
2017-02-10
Sodium Carboxymethyl Cellulose (CMCNa)/Sodium Styrene Sulfonate (SSS) hydrogels with grafted and crosslinked polymeric networks were prepared by γ-radiation at atmosphere condition. The obtained hydrogels were characterized by gel fraction, swelling ratio, TGA and FTIR spectroscopy. The results showed the ratio of CMC and SSS 1:0 gave the highest gel fraction, compared with other ratios. The swelling capacity increased by increasing SSS content due to the presence of SO 3 Na, OH groups in gel structure. The FTIR spectrum of CMC/SSS gel showed the new absorption peaks at 1034 and 1012cm -1 corresponds to SO 3 Na group. The metal ion adsorption capacity of CMC/SSS gel was investigated. The grafted gel effectively removed metal ions, especially Cr and Pb. The effects of hydrogel composition, contact time, and initial concentration on the adsorption capacity of the grafted hydrogels were studied. The adsorption kinetics and equilibrium isotherms were investigated using pseudo-second-order model and Langmuir model. Copyright © 2016. Published by Elsevier Ltd.
Qu, Jian-Bo; Chen, Yan-Li; Huan, Guan-Sheng; Zhou, Wei-Qing; Liu, Jian-Guo; Zhu, Hu; Zhang, Xiao-Yun
2015-01-01
A high-speed thermoresponsive medium was developed by grafting poly(N-isopropylacrylamide-co-butyl methacrylate) (P(NIPAM-co-BMA)) brushes onto gigaporous polystyrene (PS) microspheres via surface-initiated atom transfer radical polymerization (ATRP) technique, which has strong mechanical strength, good chemical stability and high mass transfer rate for biomacromolecules. The gigaporous structure, surface chemical composition, static protein adsorption, and thermoresponsive chromatographic properties of prepared medium (PS-P(NIPAM-co-BMA)) were characterized in detail. Results showed that the PS microspheres were successfully grafted with P(NIPAM-co-BMA) brushes and that the gigaporous structure was robustly maintained. After grafting, the nonspecific adsorption of proteins on PS microspheres was greatly reduced. A column packed with PS-P(NIPAM-co-BMA) exhibited low backpressure and significant thermo-responsibility. By simply changing the column temperature, it was able to separate three model proteins at the mobile phase velocity up to 2167 cm h(-1). In conclusion, the thermoresponsive polymer brushes grafted gigaporous PS microspheres prepared by ATRP are very promising in 'green' high-speed preparative protein chromatography. Copyright © 2014 Elsevier B.V. All rights reserved.
Shahid, Muhammad; Bukhari, Shazia Anwer; Gul, Yousra; Munir, Hira; Anjum, Fozia; Zuber, Mohammad; Jamil, Tahir; Zia, Khalid Mahmood
2013-11-01
This article is aimed to discuss the modification of guar gum through microwave irradiation by varying the time of irradiation. The characterization of the modified products was carried out using FTIR spectroscopic analysis. The FT-IR spectrum of the pure guar gum (GG) sample showed a broad peak at 3298 cm(-1) while the modified GG sample displayed a peak at 1541 cm(-1) which was absent in the crude sample. The X-ray diffraction (XRD) analysis confirmed the increase in crystallinity due to grafting of the sample with polyacrylamide (GG-g-PAM). Scanning electron microscope (SEM) images revealed that granular form of guar gum was changed into fibrillar structure after grafting. Thermo-gravimetric analysis of the modified samples was also carried out and discussed. The role of guar gum as a matrix for controlled release of drug triamcinolone was evaluated. The GG-acrylamide grafted samples presented a correlation between drug release and time of microwave exposure. The results revealed that such modified product has potential applications in colonic drug delivery system. Copyright © 2013 Elsevier B.V. All rights reserved.
Chang, Yu; Chang, Yung; Higuchi, Akon; Shih, Yu-Ju; Li, Pei-Tsz; Chen, Wen-Yih; Tsai, Eing-Mei; Hsiue, Ging-Ho
2012-03-06
In this work, bioadhesive behavior of plasma proteins and blood cells from umbilical cord blood (UCB) onto zwitterionic poly(sulfobetaine methacrylate) (polySBMA) polymer brushes was studied. The surface coverage of polySBMA brushes on a hydrophobic polystyrene (PS) well plate with surface grafting weights ranging from 0.02 mg/cm(2) to 0.69 mg/cm(2) can be effectively controlled using the ozone pretreatment and thermal-induced radical graft-polymerization. The chemical composition, grafting structure, surface hydrophilicity, and hydration capability of prepared polySBMA brushes were determined to illustrate the correlations between grafting properties and blood compatibility of zwitterionic-grafted surfaces in contact with human UCB. The protein adsorption of fibrinogen in single-protein solutions and at complex medium of 100% UCB plasma onto different polySBMA brushes with different grafting coverage was measured by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. The grafting density of the zwitterionic brushes greatly affects the PS surface, thus controlling the adsorption of fibrinogen, the adhesion of platelets, and the preservation of hematopoietic stem and progenitor cells (HSPCs) in UCB. The results showed that PS surfaces grafted with polySBMA brushes possess controllable hydration properties through the binding of water molecules, regulating the bioadhesive and bioinert characteristics of plasma proteins and blood platelets in UCB. Interestingly, it was found that the polySBMA brushes with an optimized grafting weight of approximately 0.1 mg/cm(2) at physiologic temperatures show significant hydrated chain flexibility and balanced hydrophilicity to provide the best preservation capacity for HSPCs stored in 100% UCB solution for 2 weeks. This work suggests that, through controlling grafting structures, the hemocompatible nature of grafted zwitterionic polymer brushes makes them well suited to the molecular design of regulated bioadhesive interfaces for use in the preservation of HSPCs from human UCB.
Chitosan-g-lactide copolymers for fabrication of 3D scaffolds for tissue engineering
NASA Astrophysics Data System (ADS)
Demina, T. S.; Zaytseva-Zotova, D. S.; Timashev, P. S.; Bagratashvili, V. N.; Bardakova, K. N.; Sevrin, Ch; Svidchenko, E. A.; Surin, N. M.; Markvicheva, E. A.; Grandfils, Ch; Akopova, T. A.
2015-07-01
Chitosan-g-oligo (L, D-lactide) copolymers were synthesized and assessed to fabricate a number of 3D scaffolds using a variety of technologies such as oil/water emulsion evaporation technique, freeze-drying and two-photon photopolymerization. Solid-state copolymerization method allowed us to graft up to 160 wt-% of oligolactide onto chitosan backbone via chitosan amino group acetylation with substitution degree reaching up to 0.41. Grafting of hydrophobic oligolactide side chains with polymerization degree up to 10 results in chitosan amphiphilic properties. The synthesized chitosan-g-lactide copolymers were used to design 3D scaffolds for tissue engineering such as spherical microparticles and macroporous hydrogels.
NASA Astrophysics Data System (ADS)
Paul, Abhijit
Scope and Method of Study: Current study focused on understanding of "wetting" and "dewetting" phenomena between surfaces of single-walled carbon nanotubes (SWCNT) which are lightly grafted with polymer chains by reversible-deactivation radical polymerization, when they are mixed with matrix chains of the same architecture as grafts. Effects of grafts to matrix chain lengths on SWCNT dispersion in matrix polymers were studied by measuring electrical conductivity, glass transition temperature, and storage and loss moduli of nanocomposites. Another area of work was to design semi-fluorinated copolymers with core-shell morphology by emulsion polymerization, study their catalytic activities for hydrolyses of Paraoxon, a toxic insecticide, in the forms of both colloidal dispersions and films, and to characterize the surfaces of the films by atomic force microscopy and by dynamic contact angle measurements. Findings and Conclusions: The glass transition temperature ( Tg) of polystyrene (PS) filled with SWCNT grafted with PS of different lengths increased from 99 to 109 °C at 6 wt% of SWCNT followed by a plateau. The heat capacity (DeltaCp ) at Tg continued to decrease only for the smallest chain length grafted PS nanocomposites. SWCNT/PS nanocomposites had low electrical conductivity and showed no percolation threshold due to the thick polymer coatings. A key finding was that the SWCNT surface can accommodate only a fixed numbers of styrene units. Similar results on change in Tg were obtained for SWCNT/PMMA nanocomposites when molecular weight of matrix (Mmatrix) ≥ molecular weight of grafts (Mgraft). No change in DeltaCp was observed for SWCNT/PMMA nanocomposites. "Wetting" to "dewetting" occurred Mmatrix/ Mgraft ≈ 1. For Mmatrix > Mgraft, electrical conductivity of nanocomposites reached the value of 10-9 S cm-1 at 1.0 wt% nanotube loading and had percolation threshold of electrical conductivity at ˜0.25 wt% SWCNT. Raman and UV-vis-NIR data confirmed that grafting methods have little effect on inherent electronic properties of SWCNT. A key observation was that the behavior of polymer-SWCNT composites is analogous to polymer thin films containing two different lengths of chemically same polymers. On the other hand, semifluorinated copolymers had hydrophobic and lipophilic properties similar to homopolymers of poly(perfluoroalkyl methacrylates), but were not active in detoxification of Paraoxon. Therefore, semi-fluorinated latexes can either act as phase transfer catalysts for hydrolysis of organophosporous compounds or repel the compound, but cannot do both.
Microfluidic devices and methods including porous polymer monoliths
Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V
2014-04-22
Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.
Microfluidic devices and methods including porous polymer monoliths
Hatch, Anson V.; Sommer, Gregory j.; Singh, Anup K.; Wang, Ying-Chih; Abhyankar, Vinay
2015-12-01
Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.
Qian, Yong-Qiang; Han, Na; Bo, Yi-Wen; Tan, Lin-Li; Zhang, Long-Fei; Zhang, Xing-Xiang
2018-08-01
A novel solid-solid phase change materials, namely, cellulose acrylate-g-poly (n-alkyl acrylate) (CA-g-PAn) (n = 14, 16 and 18) were successfully synthesized by free radical polymerization in N, N-dimethylacetamide (DMAc). The successful grafting was confirmed by fourier transform infrared spectra (FT-IR) and nuclear magnetic resonance (NMR). The properties of the CA-g-PAn copolymers were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA). The phase change temperatures and the melting enthalpies of CA-g-PAn copolymers are in the range of 10.1-53.2 °C and 15-95 J/g, respectively. It can be adjusted by the contents of poly (n-alkyl acrylate) and the length of alkyl side-chain. The thermal resistant temperatures of CA-g-PA14, 16 and 18 copolymers are 308 °C, 292 °C and 273 °C, respectively. It show that all of grafting materials exhibit good thermal stability and shape stability. Therefore, it is expected to be applied in the cellulose-based thermos-regulating field. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yuan, S J; Xu, F J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T
2009-06-01
To enhance the biocorrosion resistance of stainless steel (SS) and to impart its surface with bactericidal function for inhibiting bacterial adhesion and biofilm formation, well-defined functional polymer brushes were grafted via surface-initiated atom transfer radical polymerization (ATRP) from SS substrates. The trichlorosilane coupling agent, containing the alkyl halide ATRP initiator, was first immobilized on the hydroxylated SS (SS-OH) substrates for surface-initiated ATRP of (2-dimethylamino)ethyl methacrylate (DMAEMA). The tertiary amino groups of covalently immobilized DMAEMA polymer or P(DMAEMA), brushes on the SS substrates were quaternized with benzyl halide to produce the biocidal functionality. Alternatively, covalent coupling of viologen moieties to the tertiary amino groups of P(DMAEMA) brushes on the SS surface resulted in an increase in surface concentration of quaternary ammonium groups, accompanied by substantially enhanced antibacterial and anticorrosion capabilities against Desulfovibrio desulfuricans in anaerobic seawater, as revealed by antibacterial assay and electrochemical studies. With the inherent advantages of high corrosion resistance of SS, and the good antibacterial and anticorrosion capabilities of the viologen-quaternized P(DMAEMA) brushes, the functionalized SS is potentially useful in harsh seawater environments and for desalination plants. Copyright 2009 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Hai, Thien An Phung; Sugimoto, Ryuichi
2018-06-01
A simple method for the preparation of multicolor polyvinyl alcohol (PVA) by chemical oxidative polymerization is introduced. The PVA surface was successfully modified with conjugated polymers composed of 3-hexylthiophene (3HT) and fluorene (F). The incorporation of the 3HT/F copolymer onto the PVA surface was confirmed by Fourier-transform infrared (FT-IR), ultraviolet-visible (UV-vis), and fluorescence spectroscopies, X-ray diffraction (XRD), as well as thermogravimetric analysis (TGA), contact angle, and field-emission scanning electron microscopy (FE-SEM) coupled with energy dispersive X-ray (EDX) analysis. Different 3HT/F ratios on the PVA surface result in optical properties that include multicolor-emission and absorption behavior. The color of the resultant (3HT/F)-g-PVA shifted from red to blue, and the quantum yield increased with increasing F content. The surface hydrophobicity of the modified PVA increased significantly through grafting with the conjugated polymers, with the water contact angle increasing by 30° compared to pristine PVA. The PVA XRD peaks were less intense following surface modification. Thermogravimetric analyses reveal that the thermal stability of the PVA decreases as a result of grafting with the 3HT/F copolymers.
Barron, Leon; O'Toole, Martina; Diamond, Dermot; Nesterenko, Pavel N; Paull, Brett
2008-12-05
The selectivity, retention and separation of transition metals on a short (2 mm x 50 mm) column packed with a poly-iminodiacetic acid functionalised polymer 10 microm resin (Dionex ProPac IMAC-10) are presented. This stationary phase, typically used for the separation of proteins, is composed of long chain poly-iminodiacetic acid groups grafted to a hydrophilic layer surrounding a 10 microm polymeric bead. Through the use of a combination of a multi-step pH and picolinic acid gradient, the separation of magnesium, iron, cobalt, cadmium, zinc, lead and copper was possible, followed by post-column reaction with 4-(2-pyridylazo) resorcinol (PAR) and absorbance detection at 510 nm using a novel and inexpensive optical detector, comprised of two light emitting diodes with one acting as a light source and the other as a detector. Column efficiency for selective transition metals was in excess of N=10,000, with the baseline separation of seven metal cations in <3 min possible under optimised conditions. Detection limits of between 5 and 81 microg/L were possible based upon a 50 microL injection volume.
Compliant electrospun silk fibroin tubes for small vessel bypass grafting.
Marelli, Benedetto; Alessandrino, Antonio; Farè, Silvia; Freddi, Giuliano; Mantovani, Diego; Tanzi, Maria Cristina
2010-10-01
Processing silk fibroin (SF) by electrospinning offers a very attractive opportunity for producing three-dimensional nanofibrillar matrices in tubular form, which may be useful for a biomimetic approach to small calibre vessel regeneration. Bypass grafting of small calibre vessels, with a diameter less than 6mm, is performed mainly using autografts, like the saphenous vein or internal mammary artery. At present no polymeric grafts made of SF are commercially available, mainly due to inadequate properties (low compliance and lack of endothelium cells). The aim of this work was to electrospin SF into tubular structures (Ø=6mm) for small calibre vessel grafting, characterize the morphological, chemico-physical and mechanical properties of the electrospun SF structures and to validate their potential to interact with cells. The morphological properties of electrospun SF nanofibres were investigated by scanning electron microscopy. Chemico-physical analyses revealed an increase in the crystallinity of the structure of SF nanofibres on methanol treatment. Mechanical tests, i.e. compliance and burst pressure measurements, of the electrospun SF tubes showed that the inner pressure to radial deformation ratio was linear for elongation up to 15% and pressure up to 400 mm Hg. The mean compliance value between 80 and 120 mm Hg was higher than the values reported for both Goretex(R) and Dacron(R) grafts and for bovine heterografts, but still slightly lower than those of saphenous and umbilical vein, which nowadays represent the gold standard for the replacement of small calibre arteries. The electrospun tubes resisted up to 575+/-17 mmHg, which is more than four times the upper physiological pressure of 120 mmHg and more than twice the pathological upper pressures (range 180-220 mmHg). The in vitro tests showed a good cytocompatibility of the electrospun SF tubes. Therefore, the electrospun SF tubes developed within this work represent a suitable candidate for small calibre blood vessel replacement. 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Polymerization Behavior and Polymer Properties of Eosin-Mediated Surface Modification Reactions.
Avens, Heather J; Randle, Thomas James; Bowman, Christopher N
2008-10-17
Surface modification by surface-mediated polymerization necessitates control of the grafted polymer film thicknesses to achieve the desired property changes. Here, a microarray format is used to assess a range of reaction conditions and formulations rapidly in regards to the film thicknesses achieved and the polymerization behavior. Monomer formulations initiated by eosin conjugates with varying concentrations of poly(ethylene glycol) diacrylate (PEGDA), N-methyldiethanolamine (MDEA), and 1-vinyl-2-pyrrolidone (VP) were evaluated. Acrylamide with MDEA or ascorbic acid as a coinitiator was also investigated. The best formulation was found to be 40 wt% acrylamide with MDEA which yielded four to eight fold thicker films (maximum polymer thickness increased from 180 nm to 1420 nm) and generated visible films from 5-fold lower eosin surface densities (2.8 vs. 14 eosins/µm(2)) compared to a corresponding PEGDA formulation. Using a microarray format to assess multiple initiator surface densities enabled facile identification of a monomer formulation that yields the desired polymer properties and polymerization behavior across the requisite range of initiator surface densities.
Polymerization Behavior and Polymer Properties of Eosin-Mediated Surface Modification Reactions
Avens, Heather J.; Randle, Thomas James; Bowman, Christopher N.
2008-01-01
Surface modification by surface-mediated polymerization necessitates control of the grafted polymer film thicknesses to achieve the desired property changes. Here, a microarray format is used to assess a range of reaction conditions and formulations rapidly in regards to the film thicknesses achieved and the polymerization behavior. Monomer formulations initiated by eosin conjugates with varying concentrations of poly(ethylene glycol) diacrylate (PEGDA), N-methyldiethanolamine (MDEA), and 1-vinyl-2-pyrrolidone (VP) were evaluated. Acrylamide with MDEA or ascorbic acid as a coinitiator was also investigated. The best formulation was found to be 40 wt% acrylamide with MDEA which yielded four to eight fold thicker films (maximum polymer thickness increased from 180 nm to 1420 nm) and generated visible films from 5-fold lower eosin surface densities (2.8 vs. 14 eosins/µm2) compared to a corresponding PEGDA formulation. Using a microarray format to assess multiple initiator surface densities enabled facile identification of a monomer formulation that yields the desired polymer properties and polymerization behavior across the requisite range of initiator surface densities. PMID:19838291
Wound Tissue Can Utilize a Polymeric Template to Synthesize a Functional Extension of Skin
NASA Astrophysics Data System (ADS)
Yannas, I. V.; Burke, J. F.; Orgill, D. P.; Skrabut, E. M.
1982-01-01
Prompt and long-term closure of full-thickness skin wounds in guinea pigs and humans is achieved by applying a bilayer polymeric membrane. The membrane comprises a top layer of a silicone elastomer and a bottom layer of a porous cross-linked network of collagen and glycosaminoglycan. The bottom layer can be seeded with a small number of autologous basal cells before grafting. No immunosuppression is used and infection, exudation, and rejection are absent. Host tissue utilizes the sterile membrane as a culture medium to synthesize neoepidermal and neodermal tissue. A functional extension of skin over the entire wound area is formed in about 4 weeks.
Li, Xiaobing; Zhou, Man; Turson, Mamat; Lin, Shen; Jiang, Ping; Dong, Xiangchao
2013-05-21
A novel imprinted monolithic material with the ability of protein exclusion was developed for the selective extraction of clenbuterol (CLE) from biological samples by direct injection in the HPLC analysis. The material has an imprinted inner structure and hydrophilic outer layer. The reversible addition-fragmentation chain transfer (RAFT) polymerization was employed in the material preparation by a two-step procedure. In the first step, clenbuterol imprinted monolithic polymer was synthesized by combining the molecular imprinting and the RAFT polymerization techniques. The resulting monolithic polymer has a RAFT chain transfer agent (trithioester groups) in its structure, which was used to graft poly(glycerol mono-methacrylate) [pGMMA] in the second step by post-RAFT polymerization. The hydrophilic pGMMA layers grafted on the surface of the imprinted monolith created barriers for protein diffusion. More than 90% of bovine serum albumin can be excluded from the pGMMA coated monolithic column. Meanwhile the clenbuterol was retained selectively with a large retention factor. The result indicated that the column, denoted as RA-MIM, has both the merits of a molecularly imprinted polymer and restricted access material. By using RA-MIM as the solid-phase extraction pre-column, an on-line column-switching HPLC method for the determination of clenbuterol in human serum has been established and validated. The recoveries of clenbuterol from the serum were 87.3-96.9% in the spiked level 2-1000 ng mL(-1). Both good linearity (R = 0.999) and acceptable reproducibility (RSD < 7.0%) were obtained. The limit of detection and the limit of quantitation were 0.7 ng mL(-1) and 2.0 ng mL(-1) respectively, which is sensitive in terms of UV detection. The results have demonstrated that the RAFT polymerization can be used to synthesize bi-functional monolithic columns by using its living reaction property. The resulting RA-MIM in this research can be used for efficient clenbuterol determination by HPLC from biological samples.
NASA Astrophysics Data System (ADS)
Idris, Sarada; A. Bakar, Ahmad Ashrif; Thevy Ratnam, Chantara; Kamaruddin, Nur Hasiba; Shaari, Sahbudin
2017-04-01
This paper describes the immobilization of glucose oxidase, GOx onto polymer matrix comprising of poly(pyrrole), PPy and poly(vinyl alcohol), PVA using gamma irradiation technique. Py/PVA-GOx film was prepared by spreading PVA:GOx, 1:1 solution onto dried pyrrole film and exposed to gamma irradiation from cobalt 60 source at doses ranging from 0 to 60 kGy. The films were subjected to structural and morphological analyses by using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Field emission scanning electron microscope (FESEM) and Atomic-force microscopy (AFM) techniques. Similar studies were also made on pristine pyrrole film which served as control. The SEM and FTIR spectra of Py/PVA-GOx film revealed that pyrrole has been successfully polymerized through irradiation-induced reactions. The results on the morphological properties of the samples characterize using FESEM, SEM and AFM further confirmed the occurrence of radiation-induced modification of Py/PVA-GOx film. The FTIR spectra showed the existence of intermolecular interaction between polymer matrix and GOx indicating that GOx had been successfully immobilized onto Ppy/PVA matrix by radiation-induced reactions. Results revealed that radiation induced reactions such as polymerization of pyrrole, crosslinking of PVA, grafting between the adjacent PVA and pyrrole molecules as well as immobilization of GOx onto Ppy/PVA matrix occurred simultaneously upon gamma irradiation. The optimum dose for GOx immobilization in the polymer matrix found to be 40 kGy. Therefore it is clear that this irradiation technique offered a simple single process to produce Py/PVA-GOx film without additional crosslinking and polymerization agents.
Processing strategies for smart electroconductive carbon nanotube-based bioceramic bone grafts
NASA Astrophysics Data System (ADS)
Mata, D.; Oliveira, F. J.; Ferreira, N. M.; Araújo, R. F.; Fernandes, A. J. S.; Lopes, M. A.; Gomes, P. S.; Fernandes, M. H.; Silva, R. F.
2014-04-01
Electroconductive bone grafts have been designed to control bone regeneration. Contrary to polymeric matrices, the translation of the carbon nanotube (CNT) electroconductivity into oxide ceramics is challenging due to the CNT oxidation during sintering. Sintering strategies involving reactive-bed pressureless sintering (RB + P) and hot-pressing (HP) were optimized towards prevention of CNT oxidation in glass/hydroxyapatite (HA) matrices. Both showed CNT retentions up to 80%, even at 1300 °C, yielding an increase of the electroconductivity in ten orders of magnitude relative to the matrix. The RB + P CNT compacts showed higher electroconductivity by ˜170% than the HP ones due to the lower damage to CNTs of the former route. Even so, highly reproducible conductivities with statistical variation below 5% and dense compacts up to 96% were only obtained by HP. The hot-pressed CNT compacts possessed no acute toxicity in a human osteoblastic cell line. A normal cellular adhesion and a marked orientation of the cell growth were observed over the CNT composites, with a proliferation/differentiation relationship favouring osteoblastic functional activity. These sintering strategies offer new insights into the sintering of electroconductive CNT containing bioactive ceramics with unlimited geometries for electrotherapy of the bone tissue.
Direct fabrication of hybrid nanofibres composed of SiO2-PMMA nanospheres via electrospinning.
Zhang, Ran; Shang, Tinghua; Yang, Guang; Jia, Xiaolong; Cai, Qing; Yang, Xiaoping
2016-08-01
The direct fabrication of hybrid nanofibres composed of poly(methyl methacrylate)-grafted SiO2 (SiO2-PMMA) nanospheres via electrospinning was investigated in detail. SiO2-PMMA nanospheres were successfully prepared, with the SiO2 nanospheres synthesized via the Stober method, followed by in situ surface-initiated atom transfer radical polymerization of methyl methacrylate (MMA). Electrospinning was carried out with N,N-dimethylformamide (DMF) as the solvent to disperse SiO2-PMMA nanospheres. The size of the SiO2 core, the molecular weight of the PMMA shell and the concentration of the SiO2-PMMA/DMF solution all had substantial effects on the morphology and structure of electrospun nanofibres composed of SiO2-PMMA nanospheres. When these determining factors were well-tailored, it was found that one-dimensional necklace-like nanofibres were obtained, with SiO2-PMMA nanospheres aligned one by one along the fibre. The successful fabrication of nanofibres by directly electrospinning the SiO2-PMMA/DMF solution verified that polymer-grafted particles possess polymer-like characteristics, which endowed them with the ability to be processed into desirable shapes and structures. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramli, Syuhada; Ahmad, S. H.; Ratnam, C. T.
2013-11-27
The aim of this article is to show the effects of the electron beam irradiation dose and presence of a compatibiliser on the thermal properties and crystallinity of EVA/WTD blends. The purpose of applying electron beam radiation with doses range 50 to 200 kGy and adding a compatibiliser was to enhance the compatibility of the studied blends and at the same time to investigate the possibility of using this technique in the process of recycling polymeric materials. As the compatibilisers, the polyethylene grafted maleic anhydride (PEgMAH) was utilized, they were added at the amounts of 1-5 phr respectively. The enhancementmore » of thermal properties was accompanied by the following effects, discussed in this article: i) an irradiated EVA/WTD blend at 200kGy was found to improve the thermal properties of EVA, ii) the addition of PEgMAH in EVA/WTD blends and the subsequent irradiation allowed prevention of degradation mechanism. iii) the ΔH{sub f} and crystallinity percentage decrease at higher PEgMAH content.« less
Ghorai, Soumitra; Sarkar, Asish; Raoufi, Mohammad; Panda, Asit Baran; Schönherr, Holger; Pal, Sagar
2014-04-09
The synthesis and characterization of a novel nanocomposite is reported that was developed as an efficient adsorbent for the removal of toxic methylene blue (MB) and methyl violet (MV) from aqueous solution. The nanocomposite comprises hydrolyzed polyacrylamide grafted onto xanthan gum as well as incorporated nanosilica. The synthesis exploits the saponification of the grafted polyacrylamide and the in situ formation of nanoscale SiO2 by a sol-gel reaction, in which the biopolymer matrix promotes the silica polymerization and therefore acts as a novel template for nanosilica formation. The detailed investigation of the kinetics and the adsorption isotherms of MB and MV from aqueous solution showed that the dyes adsorb rapidly, in accordance with a pseudo-second-order kinetics and a Langmuir adsorption isotherm. The entropy driven process was furthermore found to strongly depend on the point of zero charge (pzc) of the adsorbent. The remarkably high adsorption capacity of dyes on the nanocomposites (efficiency of MB removal, 99.4%; maximum specific removal Qmax, 497.5 mg g(-1); and efficiency of MV removal, 99.1%; Qmax, 378.8 mg g(-1)) is rationalized on the basis of H-bonding interactions as well as dipole-dipole and electrostatic interactions between anionic adsorbent and cationic dye molecules. Because of the excellent regeneration capacity the nanocomposites are considered interesting materials for the uptake of, for instance, toxic dyes from wastewater.
Extraction of palm tree cellulose and its functionalization via graft copolymerization.
Al-Hoqbani, Abdulmajeed A; Abdel-Halim, E S; Al-Deyab, Salem S
2014-09-01
The work in this paper was planned with the aim of extracting the cellulosic component of palm tree waste and functionalizing this cellulose through graft copolymerization with acrylic acid. The cellulose extraction included hot alkali treatment with aqueous sodium hydroxide to remove the non-cellulosic binding materials. The alkali treatment was followed by an oxidative bleaching using peracid/hydrogen peroxide mixture with the aim of removing the rest of non-cellulosic materials to improve the fiber hydrophilicity and accessibility towards further grafting reaction. Optimum conditions for cellulose extraction are boiling in 5% (W/V) NaOH in a material to liquor ratio of 1:20 for 1 h then bleaching with 60 ml/l bleaching mixture at initial pH value of 6.5 for 30 min. The pH of the bleaching medium is turned to the alkaline range 11 and bleaching continues for extra 30 min. Graft copolymerization reaction was initiated by potassium bromate/thiourea dioxide redox system. Optimum conditions for grafting are 30 mmol of potassium bromate, 30 mmol of thiourea dioxide and 150 g of acrylic acid (each per 100 g of cellulose). The polymerization reaction was carried out for 120 min at 50°C using a material to liquor ratio of 1:20. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Huirong; Ma, Wenzhong; Xia, Yanping; Gu, Yi; Cao, Zheng; Liu, Chunlin; Yang, Haicun; Tao, Shengxi; Geng, Haoran; Tao, Guoliang; Matsuyama, Hideto
2017-10-01
An amphiphilic polypropylene-g-poly[vinylpyrrolidone-co-poly(ethylene glycol) methacrylate] (PP-g-(NVP-co-PEGMA)) modifier was prepared by melt grafting polymerization using N-vinyl pyrrolidone (NVP) as the grafting monomer and poly(ethylene glycol) (PEGMA) as the comonomer. Fourier transform infrared (FTIR) spectroscopy and elemental analysis showed that the hydrophilic branched chains (NVP-g-PEGMA) were successfully grafted to polypropylene (PP) macromolecular chains. The largest NVP grafting degree for PP-g-(NVP-co-PEGMA) (up to 20.4%) was obtained when the mass ratio of PP/NVP/PEGMA was 100/30/15. Hydrophilic PP microporous membranes were prepared by stretching cast films of PP/PP-g-(NVP-co-PEGMA) blends. The membrane thermostability (including the modifier) was better than that of the pure PP membrane with a similar surface pore structure. The porosity of the modified membranes was only slightly lower than that of the pure PP membranes. Contact angle measurements were used to examine the hydrophilicity of the membranes. The water contact angle of the membranes decreased when PP-g-(NVP-co-PEGMA) was added, and the minimum contact angle was 64.5°. Therefore, this work provides a good application for stretched hydrophilic PP membrane fabrication.
Baransi-Karkaby, Katie; Bass, Maria; Levchenko, Stanislav; Eitan, Shahar; Freger, Viatcheslav
2017-02-21
The top polyamide layer of composite reverse osmosis (RO) membranes has a fascinatingly complex structure, yet nanoscale nonuniformities inherently present in polyamide layer may reduce selectivity, e.g., for boron rejection. This study examines improving selectivity by in situ "caulking" such nonuniformities using concentration polarization-enhanced graft-polymerization with a surfactant added to the reactive solution. The surfactant appears to enhance both polarization (via monomer solubilization in surfactant micelles) and adherence of graft-polymer to the membrane surface, which facilitates grafting and reduces monomer consumption. The effect of surfactant was particularly notable for a hydrophobic monomer glycidyl methacrylate combined with a nonionic surfactant Triton X-100. With Triton added at an optimal level, close to critical micellization concentration (CMC), monomer gets solubilized and highly concentrated within micelles, which results in a significantly increased degree of grafting and uniformity of the coating compared to a procedure with no surfactant added. Notably, no improvement was obtained for an anionic surfactant SDS or the cationic surfactant DTAB, in which cases the high CMC of surfactant precludes high monomer concentration within micelles. The modification procedure was also up-scalable to membranes elements and resulted in elements with permeability comparable to commercial brackish water RO elements with superior boric acid rejection.
Huang, Liqiang; Yuan, Shaojun; Lv, Li; Tan, Guangqun; Liang, Bin; Pehkonen, S O
2013-09-01
Cross-linked chitosan (CCS) microspheres tethered with pH-sensitive poly(methacrylic acid) (PMAA) brushes were developed for the efficient removal of Cd(II) ions from aqueous solutions. Functional PMAA brushes containing dense and active carboxyl groups (COOH) were grafted onto the CCS microsphere surface via surface-initiated atom transfer radical polymerization (ATRP). Batch adsorption results showed that solution pH values had a major impact on cadmium adsorption by the PMAA-grafted CCS microspheres with the optimal removal observed above pH 5. The CCS-g-PMAA microsphere was found to achieve the adsorption equilibrium of Cd(II) within 1 h, much faster than about 7 h on the CCS microsphere. At pH 5 and with an initial concentration 0.089-2.49 mmol dm(-3), the maximum adsorption capacity of Cd(II), derived from the Langmuir fitting on the PMAA-grafted microspheres was around 1.3 mmol g(-1). Desorption and adsorption cycle experimental results revealed that the PMAA-grafted CCS microspheres loaded with Cd(II) can be effectively regenerated in a dilute HNO3 solution, and the adsorption capacity remained almost unchanged upon five cycle reuse. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Isawi, Heba; El-Sayed, Magdi H.; Feng, Xianshe; Shawky, Hosam; Abdel Mottaleb, Mohamed S.
2016-11-01
A new approach for modification of polyamid thin film composite membrane PA(TFC) using synthesized ZnO nanoparticles (ZnO NPs) was shown to enhance the membrane performances for reverse osmosis water desalination. First, active layer of synthesis PA(TFC) membrane was activated with an aqueous solution of free radical graft polymerization of hydrophilic methacrylic acid (MAA) monomer onto the surface of the PA(TFC) membrane resulting PMAA-g-PA(TFC). Second, the PA(TFC) membrane has been developed by incorporation of ZnO NPs into the MAA grafting solution resulting the ZnO NPs modified PMAA-g-PA(TFC) membrane. The surface properties of the synthesized nanoparticles and prepared membranes were investigated using the FTIR, XRD and SEM. Morphology studies demonstrated that ZnO NPs have been successfully incorporated into the active grafting layer over PA(TFC) composite membranes. The zinc leaching from the ZnO NPs modified PMAA-g-PA(TFC) was minimal, as shown by batch tests that indicated stabilization of the ZnO NPs on the membrane surfaces. Compared with the a pure PA(TFC) and PMAA-g-PA(TFC) membranes, the ZnO NPs modified PMAA-g-PA(TFC) was more hydrophilic, with an improved water contact angle (∼50 ± 3°) over the PMAA-g-PA(TFC) (63 ± 2.5°). The ZnO NPs modified PMAA-g-PA(TFC) membrane showed salt rejection of 97% (of the total groundwater salinity), 99% of dissolved bivalent ions (Ca2+, SO42-and Mg2+), and 98% of mono valent ions constituents (Cl- and Na+). In addition, antifouling performance of the membranes was determined using E. coli as a potential foulant. This demonstrates that the ZnO NPs modified PMAA-g-PA(TFC) membrane can significantly improve the membrane performances and was favorable to enhance the selectivity, permeability, water flux, mechanical properties and the bio-antifouling properties of the membranes for water desalination.
Dutta, Sujan; Parida, Sheetal; Maiti, Chiranjit; Banerjee, Rakesh; Mandal, Mahitosh; Dhara, Dibakar
2016-04-01
Efficient and controlled delivery of therapeutics to tumor cells is one of the important issues in cancer therapy. In the present work, a series of pH- and temperature-responsive polymer grafted iron oxide nanoparticles were prepared by simple coupling of aminated iron oxide nanoparticle with poly(N-isopropylacrylamide-ran-poly(ethylene glycol) methyl ether acrylate)-block-poly(acrylic acid) (P(NIPA-r-PEGMEA)-b-PAA). For this, three water soluble block polymers were prepared via reversible addition fragmentation transfer (RAFT) polymerization technique. At first, three different block copolymers were prepared by polymerizing mixture of NIPA and PEGMEA (with varying mole ratio) in presence of poly(tert-butyl acrylate) (PtBA) macro chain transfer agent. Subsequently, P(NIPA-r-PEGMEA)-b-PAA copolymers were synthesized by hydrolyzing tert-butyl acrylate groups of the P(NIPA-r-PEGMEA)-b-PtBA copolymers. The resulting polymers were then grafted to iron oxide nanoparticles, and these functionalized nanoparticles were thoroughly characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), zeta potential measurements, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), vibrating sample magnetometer (VSM) and Fourier transform infrared spectroscopy (FTIR). Doxorubicin (DOX), an anti-cancer drug, was loaded into the polymer coated nanoparticles and its release behavior was subsequently studied at different pH and temperatures. The drug release pattern revealed a sustained release of DOX preferentially at the desired lysosomal pH of cancer cells (pH 5.0) and slightly above the physiological temperature depending upon the composition of the copolymers. The potential anticancer activity of the polymer grafted DOX loaded nanoparticles were established by MTT assay and apoptosis study of cervical cancer ME 180cells in presence of the nanoparticles. Thus, these particles can be utilized for controlled delivery of anticancer drugs at the desired lysosomal pH and/or by slightly heating the cells using magnetic hyperthermia. Copyright © 2016 Elsevier Inc. All rights reserved.
Yuan, S J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T
2009-03-01
To improve the biocorrosion resistance of stainless steel (SS) and to confer the bactericidal function on its surface for inhibiting bacterial adhesion and biofilm formation, well-defined inorganic-organic hybrid coatings, consisting of the inner compact titanium oxide multilayers and outer dense poly(vinyl-N-hexylpyridinium) brushes, were successfully developed. Nanostructured titanium oxide multilayer coatings were first built up on the SS substrates via the layer-by-layer sol-gel deposition process. The trichlorosilane coupling agent, containing the alkyl halide atom-transfer-radical polymerization (ATRP) initiator, was subsequently immobilized on the titanium oxide coatings for surface-initiated ATRP of 4-vinylpyridine (4VP). The pyridium nitrogen moieties of the covalently immobilized 4VP polymer, or P(4VP), brushes were quaternized with hexyl bromide to produce a high concentration of quaternary ammonium salt on the SS surfaces. The excellent antibacterial efficiency of the grafted polycations, poly(vinyl-N-pyridinium bromide), was revealed by viable cell counts and atomic force microscopy images of the surface. The effectiveness of the hybrid coatings in corrosion protection was verified by the Tafel plot and electrochemical impedance spectroscopy measurements.
Using Polymeric Materials to Control Stem Cell Behavior for Tissue Regeneration
Zhang, Nianli; Kohn, David H.
2017-01-01
Patients with organ failure often suffer from increased morbidity and decreased quality of life. Current strategies of treating organ failure have limitations, including shortage of donor organs, low efficiency of grafts, and immunological problems. Tissue engineering emerged about two decades ago as a strategy to restore organ function with a living, functional engineered substitute. However, the ability to engineer a functional organ substitute is limited by a limited understanding of the interactions between materials and cells that are required to yield functional tissue equivalents. Polymeric materials are one of the most promising classes of materials for use in tissue engineering due to their biodegradability, flexibility in processing and property design, and the potential to use polymer properties to control cell function. Stem cells offer potential in tissue engineering because of their unique capacity to self renew and differentiate into neurogenic, osteogenic, chondrogenic, myogenic lineages under appropriate stimuli from extracellular components. This review examines recent advances in stem cell-polymer interactions for tissue regeneration, specifically highlighting control of polymer properties to direct adhesion, proliferation, and differentiation of stem cells, and how biomaterials can be designed to provide some of the stimuli to cells that the natural extracellular matrix does. PMID:22457178
PHEA-PLA biocompatible nanoparticles by technique of solvent evaporation from multiple emulsions.
Cavallaro, Gennara; Craparo, Emanuela Fabiola; Sardo, Carla; Lamberti, Gaetano; Barba, Anna Angela; Dalmoro, Annalisa
2015-11-30
Nanocarriers of amphiphilic polymeric materials represent versatile delivery systems for poorly water soluble drugs. In this work the technique of solvent evaporation from multiple emulsions was applied to produce nanovectors based on new amphiphilic copolymer, the α,β-poly(N-2-hydroxyethyl)-DL-aspartamide-polylactic acid (PHEA-PLA), purposely synthesized to be used in the controlled release of active molecules poorly soluble in water. To this aim an amphiphilic derivative of PHEA, a hydrophilic polymer, was synthesized by derivatization of the polymeric backbone with hydrophobic grafts of polylactic acid (PLA). The achieved copolymer was thus used to produce nanoparticles loaded with α tocopherol (vitamin E) adopted as lipophilic model molecule. Applying a protocol based on solvent evaporation from multiple emulsions assisted by ultrasonic energy and optimizing the emulsification process (solvent selection/separation stages), PHEA-PLA nanostructured particles with total α tocopherol entrapment efficiency (100%), were obtained. The drug release is expected to take place in lower times with respect to PLA due to the presence of the hydrophilic PHEA, therefore the produced nanoparticles can be used for semi-long term release drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme
2016-01-01
The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment.
Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme
2016-01-01
The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment. PMID:27610149
Zhou, Qi; Luo, Tiantian; Yang, Heng; Liang, Cheng; Jing, Luru; Luo, Wenjun
2018-03-01
Acid extracting aluminum from fly ash would produce pestilent secondary fly ash slurry with strong acidity, high content of Cl - and residual Al 3+ that is difficult to be further used. In order to achieve the zero emission, a potential integrated treatment process for reutilization was proposed in this paper. By intelligent use of residual Al 3+ in sludge as catalyst, hydrophobic modification of solid particle was taken with fatty acid via a heterogeneous esterification at normal temperature. Due to the solvophobic force, moisture content of its filter cake was 36.46%, which reduced 11.14% compared with the unmodified one, hydrophobicity scale can achieve 100% with modifier accounting for only 0.8% of solid content and the Cl - concentrations decreased from 20 to 0.102 g/L in wash liquor, thus greatly saving water for washing and energy for drying. Subsequently, based on the appearance of hydrocarbon chains on particle surface, a high-efficiency ultraviolet-induced grafting polymerization was implemented to fabricate density polyacrylic acid decorated fly ash particles from the surface "CH" sites, the resultant composite was proved to efficiently separate valuable rare-earth Gd 3+ from wastewater with outstanding adsorption and regeneration performance, hence bringing high added-value utilization for these hazardous waste. Copyright © 2017 Elsevier Inc. All rights reserved.
Shen, Yong; Desseaux, Solenne; Aden, Bethany; ...
2015-04-20
We report that surface-grafting thermoresponsive polymers allows the preparation of thin polymer brush coatings with surface properties that can be manipulated by variation of temperature. In most instances, thermoresponsive polymer brushes are produced using polymers that dehydrate and collapse above a certain temperature. This report presents the preparation and properties of polymer brushes that show thermoresponsive surface properties, yet are shape-persistent in that they do not undergo main chain collapse. The polymer brushes presented here are obtained via vapor deposition surface-initiated ring-opening polymerization (SI-ROP) of γ-di- or tri(ethylene glycol)-modified glutamic acid N-carboxyanhydrides. Vapor deposition SI-ROP of γ-di- or tri(ethylene glycol)-modifiedmore » L- or D-glutamic acid N-carboxyanhydrides affords helical surface-tethered polymer chains that do not show any changes in secondary structure between 10 and 70 °C. QCM-D experiments, however, revealed significant dehydration of poly(γ-(2-(2-methoxyethoxy)ethyl)-l-glutamate) (poly(L-EG 2-Glu)) brushes upon heating from 10 to 40 °C. At the same time, AFM and ellipsometry studies did not reveal significant variations in film thickness over this temperature range, which is consistent with the shape-persistent nature of these polypeptide brushes and indicates that the thermoresponsiveness of the films is primarily due to hydration and dehydration of the oligo(ethylene glycol) side chains. The results we present here illustrate the potential of surface-initiated NCA ring-opening polymerization to generate densely grafted assemblies of polymer chains that possess well-defined secondary structures and tunable surface properties. These polypeptide brushes complement their conformationally unordered counterparts that can be generated via surface-initiated polymerization of vinyl-type monomers and represent another step forward to biomimetic surfaces and interfaces.« less
Chenette, Heather C.S.; Robinson, Julie R.; Hobley, Eboni; Husson, Scott M.
2012-01-01
This paper describes the surface modification of macroporous membranes using ATRP (atom transfer radical polymerization) to create cation-exchange adsorbers with high protein binding capacity at high product throughput. The work is motivated by the need for a more economical and rapid capture step in downstream processing of protein therapeutics. Membranes with three reported nominal pore sizes (0.2, 0.45, 1.0 μm) were modified with poly(3-sulfopropyl methacrylate, potassium salt) tentacles, to create a high density of protein binding sites. A special formulation was used in which the monomer was protected by a crown ether to enable surface-initiated ATRP of this cationic polyelectrolyte. Success with modification was supported by chemical analysis using Fourier-transform infrared spectroscopy and indirectly by measurement of pure water flux as a function of polymerization time. Uniformity of modification within the membranes was visualized with confocal laser scanning microscopy. Static and dynamic binding capacities were measured using lysozyme protein to allow comparisons with reported performance data for commercial cation-exchange materials. Dynamic binding capacities were measured for flow rates ranging from 13 to 109 column volumes (CV)/min. Results show that this unique ATRP formulation can be used to fabricate cation-exchange membrane adsorbers with dynamic binding capacities as high as 70 mg/mL at a throughput of 100 CV/min and unprecedented productivity of 300 mg/mL/min. PMID:23175597
Biofluidic Transport and Molecular Recognition in Polymer Microdevices
2005-04-29
flexible membrane separating the particles and reservoir. B. Using photopolymerizable wires, an electrolysis pump was fabricated on a microdevice. It...Antigen detection was accomplished by grafting the approximate antibody or sensing compound via acrylation and polymerization to the surface. Figure 14...were detected with assay times of approximately 10 minutes. Figure 15 shows detection data for a compound (glucagon) that is impossible to detect by
NASA Astrophysics Data System (ADS)
Urbaniak, Daniel J.
2004-11-01
In the research reported here, the surface modification of medical grade poly(dimethyl siloxane), polyetherurethane, and stainless steel through gamma-radiation grafting of hydrophilic polymers was investigated. Emphasis was placed on developing improved and simplified surface modification methods that produce more stable and more bioacceptible hydrophilic graft surfaces. As a result of this research, new surface modification techniques were developed that yield significantly improved surface stability unachievable using previous surface modification techniques. The surface modification of poly(dimethyl siloxane) with hydrophilic polymers was carried out using gamma radiation initiated graft polymerization. The addition of alkali metal hydroxides afforded a unique way to enhance the grafting of N-vinyl-2 pyrrolidone, dimethylacryamide, 2-methacryloyloxyethyl phosphoryl choline, N,N-dimethyl-N-(methacryloyloxyethyl)-N-(3-sulfopropyl)-ammonium-betaine, N,N-dimethyl-N-(methacrylamidopropyl)-N-(3-sulfopropyl)-ammonium-betaine, and copolymers thereof to silicones. Ethanolamine was found to further enhance the grafting of some hydrophilic polymers to silicone. The resulting hydrophilic surface grafts were resistant to hydrophobic surface rearrangement. This process overcomes previous problems inherent in silicone surface modification. The technique was also found to moderately enhance the grafting of hydrophilic monomers to polyetherurethane and to 316-L stainless steel. The surface modification of 316-L stainless steel was further enhanced by treating the substrates with a chromium III methacrylate bonding agent prior to irradiation. The coatings were evaluated for their potential use as depots for delivering therapeutic agents. The release of ofloxacin from surface-modified poly(dimethyl siloxane) and dexamethasone from surface-modified 316-L stainless steel was evaluated by in-vitro experiments. Therapeutic levels of drugs were released from surface-modified specimens via a burst effect. Improved surface characterization methods were another aspect of this research. New nanomechanical testing techniques were developed and used to evaluate the viscoelastic surface mechanical properties of low modulus surface-modified specimens. Dynamic nanoindentation characterization techniques were designed to measure the storage modulus and loss modulus of compliant viscoelastic substrate surfaces. The results of these experiments were compared with modulus data obtained by conventional dynamic mechanical spectroscopy. Nanoscratch testing methods were also developed that qualitatively compared the abrasion resistance of surface-modified substrates. (Abstract shortened by UMI.)
Process development for waveguide chemical sensors with integrated polymeric sensitive layers
NASA Astrophysics Data System (ADS)
Amberkar, Raghu; Gao, Zhan; Park, Jongwon; Henthorn, David B.; Kim, Chang-Soo
2008-02-01
Due to the proper optical property and flexibility in the process development, an epoxy-based, high-aspect ratio photoresist SU-8 is now attracting attention in optical sensing applications. Manipulation of the surface properties of SU-8 waveguides is critical to attach functional films such as chemically-sensitive layers. We describe a new integration process to immobilize fluorescence molecules on SU-8 waveguide surface for application to intensity-based optical chemical sensors. We use two polymers for this application. Spin-on, hydrophobic, photopatternable silicone is a convenient material to contain fluorophore molecules and to pattern a photolithographically defined thin layer on the surface of SU-8. We use fumed silica powders as an additive to uniformly disperse the fluorophores in the silicone precursor. In general, additional processes are not critically required to promote the adhesion between the SU-8 and silicone. The other material is polyethylene glycol diacrylate (PEGDA). Recently we demonstrated a novel photografting method to modify the surface of SU-8 using a surface bound initiator to control its wettability. The activated surface is then coated with a monomer precursor solution. Polymerization follows when the sample is exposed to UV irradiation, resulting in a grafted PEGDA layer incorporating fluorophores within the hydrogel matrix. Since this method is based the UV-based photografting reaction, it is possible to grow off photolithographically defined hydrogel patterns on the waveguide structures. The resulting films will be viable integrated components in optical bioanalytical sensors. This is a promising technique for integrated chemical sensors both for planar type waveguide and vertical type waveguide chemical sensors.
A facile method to modify bentonite nanoclay with silane
NASA Astrophysics Data System (ADS)
Abeywardena, Sujani B. Y.; Perera, Srimala; Nalin de Silva, K. M.; Tissera, Nadeeka P.
2017-07-01
Immobilization of smectite clay onto a desirable surface has received much attention, since its nanospace can be utilized for many applications in material science. Here, we present an efficient method to functionalize surface of bentonite nanoclay (BNC) through the grafting of 3-aminotriethoxysilane (APTES). Infrared spectroscopy and elemental analysis confirmed the presence of organic chains and amine groups in modified nanoclay. XRD analysis confirmed grafting of APTES on the surface of bentonite nanoclay without intercalation. The accomplishment of the surface modification was quantitatively proved by TGA analysis. Modified BNC can covalently couple with different material surfaces, allowing its nanospace to be utilized for intercalation of cations, bio-molecules, and polymeric materials, to be used in advanced military aerospace, pharmaceuticals, and many other commercial applications.
Kim, Kyo-Il; Lee, Jae-Chan; Robards, Kevin; Choi, Seong-Ho
2010-06-01
Tyrosinase-immobilized biosensor was fabricated based on PAAc-g-MWNT and PMAn-g-MWNT, respectively. The poly(acrylic acid)-grafted multi-wall carbon nanotubes, PAAc-g-MWNT, and poly(maleic anhydride)-grafted multi-wall carbon nanotube, PMAn-g-MWNT, were prepared by radiation-induced graft polymerization of acrylic acid (AAc) and maleic anhydride (MAn) on the surface of MWNT. The biosensor was prepared on ITO glass electrode by coating of chitosan solution with tyrosinase-immobilized PAAc-g-MWNT and PMAn-g-MWNT, respectively. The sensing ranges of the tyrosinase-immobilized biosensor based on PAAc-g-MWNT and PMAn were in the range of 0.2-0.9 mM concentration and in the range of 0.1-0.5 mM for phenol in phosphate buffer solution, respectively. Optimal pH and temperature conditions for sensing various phenolic compounds with tyrosinase-immobilized biosensor were determined. Total phenolic content for three commercial red wines on tyrosinase-immobilized biosensor were also determined.
NASA Astrophysics Data System (ADS)
Wang, Xue; Wang, Tingmei; Yang, Chao; Li, Haidong; Liu, Peng
2013-12-01
Well-defined flake-like polypyrrole grafted graphene nanosheets composites (PPy-g-GNS) were fabricated by the in-situ chemical oxidative grafting polymerization of pyrrole in the presence of the 4-aminophenyl modified graphene nanosheets (AP-GNS), which were prepared via the coupling reaction of the graphene nanosheets (GNS) with diazonium salt. The flake-like PPy-g-GNS composite showed the high conductivity at room temperature. A maximum discharge capacitance of 191.2 F/g at the scan rate of 10 mV/s could be achieved in the three-electrode cell electrochemical testing in 1.0 mol/L NaNO3 electrolyte solution. It is higher than those of the AP-GNS, pure PPy, and the GNS/PPy composite prepared with the unmodified graphene nanosheets (GNS). The flake-like PPy-g-GNS composites also exhibited the excellent electrochemical stability even after 1000 cycles. It revealed the synergistic effect between the conducting polymer and the carbon-based support.
Frictional properties of the end-grafted polymer layer in presence of salt solution
NASA Astrophysics Data System (ADS)
Raftari, Maryam; Zhang, Zhenyu; Leggett, Graham J.; Geoghegan, Mark
2012-02-01
We have studied the frictional behaviour of grafted poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) films using friction force microscopy (FFM). The films were prepared on native oxide-terminated silicon substrates using the technique of atom transfer radical polymerization (ATRP). These brushes had constant grafting density (1.18 nm2), and of a thickness of ˜66 nm, as measured by ellipsometry. We show that single asperity contact mechanics (Johnson-Kendall-Roberts (JKR) and Derjaguin-M"uller-Toporov (DMT) models) as well as a linear (Amontons) relation between applied load and frictional load all apply to these systems depending on the concentration of salt and the nature of the FFM probe. Measurements were made using gold-coating and polymer functionalized silicon nitride triangular probes. Polymer functionalized probe included growth the PDMAEMA with same method on tips. The frictional behaviour are investigated between PDMAEMA and gold coated and PDMAEMA tips immersed in different concentrations of KCl, KBr and KI.
Model For Bending Actuators That Use Electrostrictive Graft Elastomers
NASA Technical Reports Server (NTRS)
Costen, Robert C.; Su, Ji; Harrison, Joycelyn S.
2001-01-01
Recently, it was reported that an electrostrictive graft elastomer exhibits large electric field-induced strain (4%). Combined with its high mechanical modulus, the elastomer can offer very promising electromechanical properties, in terms of output mechanical energy density, for an electroactive polymeric material. Therefore, it has been considered as one of the candidates that can be used in high performance, low mass actuation devices in many aerospace applications. Various bilayer- based bending actuators have been designed and fabricated. An analytic model based on beam theory in the strength of materials has been derived for the transverse deflection, or curvature, and the longitudinal strain of the bi-layer beam. The curvature and strain are functions of the applied voltage and the thickness, width, and Young s modulus of the active and passive layers. The model can be used to optimize the performance of electrostrictive graft elastomer-based actuators to meet the requirements of various applications. In this presentation, optimization and sensitivity studies are applied to the bending performance of such actuators.
NASA Astrophysics Data System (ADS)
Liu, Lin; Fu, Guorui; Feng, Heini; Guan, Jiaqing; Li, Fengping; Lü, Xingqiang; Wong, Wai-Kwok; Jones, Richard A.
2017-07-01
Within series of Ln3-grafted polymers Poly({[Ln3(L)4(NO3)6]·(NO3)·(H3O)2}-co-NBE) (Ln = La, 1; Ln = Eu, 2; Ln = Tb, 3; Ln = Nd, 4; Ln = Yb, 5; Ln = Er, 6 or Ln = Gd, 7) obtained from ring-opening metathesis polymerization (ROMP) of norbornene (NBE) with each of allyl-functionalized complex monomers {[Ln3(L)4(NO3)6]·(NO3)·(H3O)2} (HL = 4-allyl-2-(1H-benzo[d]imidazol-2-yl)-6-methoxyphenol), PNBE-assisted effective energy transfer renders Poly(3-co-NBE) Tb3+-centered highly luminous color-purity green-light with an attractive quantum yield of 87% and efficient near-infrared (NIR) luminescence (ΦNdL = 0.61%; ΦYbL = 1.47% and ΦErL = 0.03%) for Nd3+-, Yb3+- or Er3+-grafted polymers.
Novel Fouling-Reducing Coatings for Ultrafiltration, Nanofiltration, and Reverse Osmosis Membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benny Freeman
2008-08-31
Polymeric membranes could potentially be the most flexible and viable long-term strategy for treatment of produced water from oil and gas production. However, widespread use of membranes, including reverse osmosis (RO) membranes, for produced water purification is hindered due to fouling caused by the impurities present in the water. Fouling of RO membranes is likely caused by surface properties including roughness, hydrophilicity, and charge, so surface modification is the most widely considered approach to improve the fouling properties of current RO membranes. This project focuses on two main approaches to surface modification: coating and grafting. Hydrophilic coating and grafting materialsmore » based on poly(ethylene glycol) (PEG) are applied to commercial RO membranes manufactured by Dow FilmTec and GE. Crossflow filtration experiments are used to determine the fouling resistance of modified membranes, and compare their performance to that of unmodified commercial RO membranes. Grafting and coating are shown to be two alternative methods of producing modified membranes with improved fouling resistance.« less
Tsiourvas, D.; Arkas, M.; Diplas, S.; Mastrogianni, E.
2010-01-01
This work is investigating the chemical grafting on Ti surface of a polymer/calcium phosphate coating of improved adhesion for enhanced bioactivity. For this purpose, a whole new methodology was developed based on covalently attaching a hyperbranched poly(ethylene imine) layer on Ti surface able to promote calcium phosphate formation in a next deposition stage. This was achieved through an intermediate surface silanization step. The research included optimization both of the reaction conditions for covalently grafting the intermediate organosilicon and the subsequent hyperbranched poly(ethylene imine) layers, as well as of the conditions for the mechanical and chemical pretreatment of Ti surface before coating. The reaction steps were monitored employing FTIR and XPS analyses, whereas the surface morphology and structure of the successive coating layers were studied by SEM combined with EDS. The analysis confirmed the successful grafting of the hybrid layer which demonstrated very good ability for hydroxyapatite growth in simulated body fluid. PMID:21069559
Tsiourvas, D; Tsetsekou, A; Arkas, M; Diplas, S; Mastrogianni, E
2011-01-01
This work is investigating the chemical grafting on Ti surface of a polymer/calcium phosphate coating of improved adhesion for enhanced bioactivity. For this purpose, a whole new methodology was developed based on covalently attaching a hyperbranched poly(ethylene imine) layer on Ti surface able to promote calcium phosphate formation in a next deposition stage. This was achieved through an intermediate surface silanization step. The research included optimization both of the reaction conditions for covalently grafting the intermediate organosilicon and the subsequent hyperbranched poly(ethylene imine) layers, as well as of the conditions for the mechanical and chemical pretreatment of Ti surface before coating. The reaction steps were monitored employing FTIR and XPS analyses, whereas the surface morphology and structure of the successive coating layers were studied by SEM combined with EDS. The analysis confirmed the successful grafting of the hybrid layer which demonstrated very good ability for hydroxyapatite growth in simulated body fluid.
Makhado, Edwin; Pandey, Sadanand; Nomngongo, Philiswa N; Ramontja, James
2017-11-15
In the present project, graft polymerization was employed to synthesis a novel adsorbent using acrylic acid (AA) and xanthan gum (XG) for cationic methylene dye (MB + ) removal from aqueous solution. The XG was rapidly grafted with acrylic acid (CH 2 =CHCOOH) under microwave heating. Fourier-transform infrared spectroscopy (FTIR), Proton Nuclear magnetic resonance spectroscopy ( 1 H NMR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Thermal gravimetric analysis (TGA) techniques were used to verify the adsorbent formed under optimized reaction conditions. Optimum reaction conditions [AA (0.4M), APS (0.05M), XG (2gL -1 ), MW power (100%), MW time (80s)] offer maximum %G and %GE of 484 and 78.3, respectively. The removal ratio of adsorbent to MB + reached to 92.8% at 100mgL -1 . Equilibrium and kinetic adsorptions of dyes were better explained by the Langmuir isotherm and pseudo second-order kinetic model respectively. The results demonstrate xanthan gum grafted polyacrylic acid (mw XG-g-PAA) absorbent had the universality for removal of dyes through the chemical adsorption mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Irimia, Anamaria; Ioanid, Ghiocel Emil; Zaharescu, Traian; Coroabă, Adina; Doroftei, Florica; Safrany, Agnes; Vasile, Cornelia
2017-01-01
The efficiency of the activation of the cellulose/chitin mix substrate by cold plasma or γ-radiation exposure in order to modify it with bioactive compounds was studied. The eugenol or vegetable oils such as grape seed oil and rosehip seed oil have been grafted onto activated substrate. The examination of modified cellulose/chitin mix substrate by ATR-FTIR spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy confirms that the structural and morphological changes took place in both cases. The grafting degrees of the surface layer estimated from XPS data varied from 31.1% to 58.7% for air cold plasma activation and from 9.7% to 22.8% for γ-irradiation treatment. They depend both on bioactive compound used and procedure of substrate activation. Higher grafting degree are obtain by using vegetable oils than in the case of modification with eugenol and the air cold plasma activation seems to be much efficient than γ-irradiation. By grafting the polymeric substrate with bioactive compounds, antimicrobial and antioxidant properties have been conferred. Such materials can be considered promising for food packaging applications and medical textiles and also the applied procedures are environmental friendly ones.
Stimuli Responsive Morphological Changes of Pnipa Polymer Brushes Synthesized on Silicon Substrate
NASA Astrophysics Data System (ADS)
Huda, Muhammad Nurul; Kabir, A. N. M. Hamidul
2013-08-01
High-density polymer brushes were grown from the silicon surface by atom transfer radical polymerization of Poly(N-isopropylacrylamide) (PNIPA) at different polymerization conditions. PNIPA brushes were prepared using Copper (I) Chloride/tris(2-(dimetylamino)ethyl)amine (Me6TREN) as a catalytic system in DMSO at 20°C. Free polymer formed during the brush formation was characterized by gel permeation chromatography. The grafting densities up to 0.52 chains/nm2 were obtained. The layer thickness of polymer brush increases with the increase of conversion of the monomer conversion as well as polymerization time. Atomic force microscopy and air bubble contact angle under pH solution were employed to study the surface morphology, reversible conformational changes of and stimulus-response behavior. PNIPA brushes exhibited a different nanomorphology after treatment with different pH solution. It also revealed a unique reversible wetting behavior with pH. The reversible properties of the PNIPA brushes can be used to regulate the adsorption of the sulfonated PS nanoparticles.
Wang, Huai-Song; Song, Min; Hang, Tai-Jun
2016-02-10
The high-value applications of functional polymers in analytical science generally require well-defined interfaces, including precisely synthesized molecular architectures and compositions. Controlled/living radical polymerization (CRP) has been developed as a versatile and powerful tool for the preparation of polymers with narrow molecular weight distributions and predetermined molecular weights. Among the CRP system, atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) are well-used to develop new materials for analytical science, such as surface-modified core-shell particles, monoliths, MIP micro- or nanospheres, fluorescent nanoparticles, and multifunctional materials. In this review, we summarize the emerging functional interfaces constructed by RAFT and ATRP for applications in analytical science. Various polymers with precisely controlled architectures including homopolymers, block copolymers, molecular imprinted copolymers, and grafted copolymers were synthesized by CRP methods for molecular separation, retention, or sensing. We expect that the CRP methods will become the most popular technique for preparing functional polymers that can be broadly applied in analytical chemistry.
Malik, Nadia Shamshad; Ahmad, Mahmood; Minhas, Muhammad Usman
2017-01-01
To explore the potential role of polymers in the development of drug-delivery systems, this study investigated the use of β-cyclodextrin (β-CD), carboxymethyl cellulose (CMC), acrylic acid (AA) and N’ N’-methylenebis-acrylamide (MBA) in the synthesis of hydrogels for controlled drug delivery of acyclovir (ACV). Different proportions of β-CD, CMC, AA and MBA were blended with each other to fabricate hydrogels via free radical polymerization technique. Fourier transform infrared spectroscopy (FTIR) revealed successful grafting of components into the polymeric network. Thermal and morphological characterization confirmed the formation of thermodynamically stable hydrogels having porous structure. The pH-responsive behaviour of hydrogels has been documented by swelling dynamics and drug release behaviour in simulated gastrointestinal fluids. Drug release kinetics revealed controlled release behaviour of the antiviral drug acyclovir in developed polymeric network. Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels can be used as promising candidates for the design and development of controlled drug-delivery systems. PMID:28245257
Cell membrane-inspired polymeric micelles as carriers for drug delivery.
Liu, Gongyan; Luo, Quanqing; Gao, Haiqi; Chen, Yuan; Wei, Xing; Dai, Hong; Zhang, Zongcai; Ji, Jian
2015-03-01
In cancer therapy, surface engineering of drug delivery systems plays an essential role in their colloidal stability, biocompatibility and prolonged blood circulation. Inspired by the cell membrane consisting of phospholipids and glycolipids, a zwitterionic phosphorylcholine functionalized chitosan oligosaccharide (PC-CSO) was first synthesized to mimic the hydrophilic head groups of those amphipathic lipids. Then hydrophobic stearic acid (SA) similar to lipid fatty acids was grafted onto PC-CSO to form amphiphilic PC-CSO-SA copolymers. Cell membrane-mimetic micelles with a zwitterionic surface and a hydrophobic SA core were prepared by the self-assembly of PC-CSO-SA copolymers, showing excellent stability under extreme conditions including protein containing media, high salt content or a wide pH range. Doxorubicin (DOX) was successfully entrapped into polymeric micelles through the hydrophobic interaction between DOX and SA segments. After fast internalization by cancer cells, sustained drug release from micelles to the cytoplasm and nucleus was achieved. This result suggests that these biomimetic polymeric micelles may be promising drug delivery systems in cancer therapy.
Nair, Nitish; Wentzel, Nathaniel; Jayaraman, Arthi
2011-05-21
In efforts to produce polymeric materials with tailored physical properties, significant interest has grown around the ability to control the spatial organization of nanoparticles in polymer nanocomposites. One way to achieve controlled particle arrangement is by grafting the nanoparticle surface with polymers that are compatible with the matrix, thus manipulating the interfacial interactions between the nanoparticles and the polymer matrix. Previous work has shown that the molecular weight of the grafted polymer, both at high grafting density and low grafting density, plays a key role in dictating the effective inter-particle interactions in a polymer matrix. At high grafting density nanoparticles disperse (aggregate) if the graft molecular weight is higher (lower) than the matrix molecular weight. At low grafting density the longer grafts can better shield the nanoparticle surface from direct particle-particle contacts than the shorter grafts and lead to the dispersion of the grafted particles in the matrix. Despite the importance of graft molecular weight, and evidence of non-trivial effects of polydispersity of chains grafted on flat surfaces, most theoretical work on polymer grafted nanoparticles has only focused on monodisperse grafted chains. In this paper, we focus on how bidispersity in grafted chain lengths affects the grafted chain conformations and inter-particle interactions in an implicit solvent and in a dense homopolymer polymer matrix. We first present the effects of bidispersity on grafted chain conformations in a single polymer grafted particle using purely Monte Carlo (MC) simulations. This is followed by calculations of the potential of mean force (PMF) between two grafted particles in a polymer matrix using a self-consistent Polymer Reference Interaction Site Model theory-Monte Carlo simulation approach. Monte Carlo simulations of a single polymer grafted particle in an implicit solvent show that in the bidisperse polymer grafted particles with an equal number of short and long grafts at low to medium grafting density, the short grafts are in a more coiled up conformation (lower radius of gyration) than their monodisperse counterparts to provide a larger free volume to the longer grafts so they can gain conformational entropy. The longer grafts do not show much difference in conformation from their monodisperse counterparts at low grafting density, but at medium grafting density the longer grafts exhibit less stretched conformations (lower radius of gyration) as compared to their monodisperse counterparts. In the presence of an explicit homopolymer matrix, the longer grafts are more compressed by the matrix homopolymer chains than the short grafts. We observe that the potential of mean force between bidisperse grafted particles has features of the PMF of monodisperse grafted particles with short grafts and monodisperse grafted particles with long grafts. The value of the PMF at contact is governed by the short grafts and values at large inter-particle distances are governed by the longer grafts. Further comparison of the PMF for bidisperse and monodisperse polymer grafted particles in a homopolymer matrix at varying parameters shows that the effects of matrix chain length, matrix packing fraction, grafting density, and particle curvature on the PMF between bidisperse polymer grafted particles are similar to those seen between monodisperse polymer grafted particles. © 2011 American Institute of Physics.
Wang, Hongxing; Liu, Dong; Du, Pengcheng; Wei, Wenli; Wang, Qi; Liu, Peng
2017-11-15
The free-standing polyaniline (PANI)-based composite film electrodes were prepared with polyvinyl chloride (PVC) and the aniline modified PVC (PVC-An) films as flexible substrates for supercapacitors, via facile in-situ chemical oxidative polymerization of aniline, with conventional chemical oxidative polymerization or rapid-mixing chemical oxidative polymerization technique. Owing to the grafting of PANI from the PVC-An film as substrate and the suppression of the secondary growth of the primary PANI particles in the rapid-mixing chemical oxidative polymerization, the PVC-g-PANI-2 composite film with loose surface possessed better comprehensive performance, accompanying the high specific capacitance (645.3F/g at a current density of 1A/g), good rate capacitance (retaining 63.2% of original value at a current density of 10A/g and 52.0% at a scan rate of 100mV/s), good cycle stability (retaining 83.1% after 1000 cycles) and the improved internal resistance. Besides its excellent flexibility, it could retain 61.2% of its original specific capacitance under the stress of 8.66MPa for 1h, demonstrating a good tensile-resistance. Copyright © 2017 Elsevier Inc. All rights reserved.
Song, Cunfeng; Wang, Meijie; Liu, Xin; Wang, He; Chen, Xiaoling; Dai, Lizong
2017-09-01
Surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization has been utilized to fabricate high-capacity strong anion-exchange (AEX) membrane for the separation of protein. By means of RAFT polymerization, quaternized poly(3-(methacrylamidomethyl)-pyridine) brushes formed 3-dimensional nanolayers on the surface of porous anodic aluminum oxide (AAO)-silica composite membrane. The surface properties of the membranes were analyzed by SEM, water contact angle, ATR-FTIR, XPS and TGA. To investigate the adsorption performance, the new AEX membranes were applied to recover a model protein, ovalbumin (OVA). High adsorption capacities of 95.8mg/g membranes (static) and 65.3mg/g membranes (dynamic) were obtained at ambient temperature. In the further studies, up to 90% of the adsorbed OVA was efficiently eluted by using phosphate buffer-1M NaCl as elution medium. The successful separation of OVA with high purity from a mixture protein solution was also achieved by using the AEX membranes. The present study demonstrated that under mild reaction condition, RAFT polymerization can be used to fabricate ion-exchange membrane which has many remarkable features, such as high capacity and selectivity, easy elution and so on. Copyright © 2017. Published by Elsevier B.V.
Chen, Xinyue; Li, Hui; Yin, Panchao; ...
2015-02-27
In this study, polyoxometalates (POMs) covalently functionalized with methyl methacrylate groups were applied as surfactants in the emulsion polymerization reaction of styrene. Due to the copolymerization of the methyl methacrylate groups and the styrene monomers, the polyoxometalate clusters are covalently grafted onto the surface of polystyrene latex nanoparticles. Finally, such latex particles are fully covered with catalytic POM clusters and might serve as quasi-homogeneous catalysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Chengcheng; Bao, Chunhui; Binder, Andrew
We employed poly(4-styrenesulfonic acid) brush-grafted silica particles, synthesized by surface-initiated atom transfer radical polymerization, as a reusable acid catalyst for dehydration of fructose to 5-hydroxymethylfurfural (HMF) in water. Furthermore, the particles exhibited a high activity with the HMF yield of up to 31%, in contrast to 26% from the corresponding free homopolymer catalyst.
Ammonium sensing in aqueous solutions with plastic optical fiber modified by molecular imprinting
NASA Astrophysics Data System (ADS)
Sequeira, F.; Duarte, D.; Rudnitskaya, A.; Gomes, M. T. S. R.; Nogueira, R.; Bilro, L.
2016-05-01
We report the development of a low cost plastic optical fibre (POF) sensor for ammonium detection using molecularly imprinted polymers (MIP's). The cladding of a 1 mm diameter PMMA fiber is removed, in which is grafted a molecular imprinted polymer (MIP), by radical polymerization with thermal initiation, that act as a selective sensing layer. For the polymerization, 2,2'-Azobis(2-methylpropionamidine)dihydrochloride (AAPH) is used as initiator, methacrylic acid (MAA) as a monomer, ethylene glycol dimethacrylate (EDMA) as a cross-linker, ammonium chloride (NH4Cl) as a template and 30% of ethanol in water as a solvent. The sensing method consists of an intensity based scheme. The response to different concentrations of ammonium solutions in water has been evaluated at room temperature. Solutions with (0 - 0.6) M concentration, with the corresponding refractive indexes varying between 1.3325 - 1.3387, at 25°C were used. The response of the fiber with the original cladding, and after cladding removal has been monitored and compared to the response given by the developed sensor. The response is very fast, less than 1 minute and reversible, which allows the continuum use of the sensor. Further developments are focused in optimization of MIP grafting procedure and sensor performance, in order to increase sensitivity.
Stimuli-Responsive Polymeric Nanoparticles.
Liu, Xiaolin; Yang, Ying; Urban, Marek W
2017-07-01
There is increasing evidence that stimuli-responsive nanomaterials have become significantly critical components of modern materials design and technological developments. Recent advances in synthesis and fabrication of stimuli-responsive polymeric nanoparticles with built-in stimuli-responsive components (Part A) and surface modifications of functional nanoparticles that facilitate responsiveness (Part B) are outlined here. The synthesis and construction of stimuli-responsive spherical, core-shell, concentric, hollow, Janus, gibbous/inverse gibbous, and cocklebur morphologies are discussed in Part A, with the focus on shape, color, or size changes resulting from external stimuli. Although inorganic/metallic nanoparticles exhibit many useful properties, including thermal or electrical conductivity, catalytic activity, or magnetic properties, their assemblies and formation of higher order constructs are often enhanced by surface modifications. Section B focuses on selected surface reactions that lead to responsiveness achieved by decorating nanoparticles with stimuli-responsive polymers. Although grafting-to and grafting-from dominate these synthetic efforts, there are opportunities for developing novel synthetic approaches facilitating controllable recognition, signaling, or sequential responses. Many nanotechnologies utilize a combination of organic and inorganic phases to produce ceramic or metallic nanoparticles. One can envision the development of new properties by combining inorganic (metals, metal oxides) and organic (polymer) phases into one nanoparticle designated as "ceramers" (inorganics) and "metamers" (metallic). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jiang, Wei; Pan, Yue; Yang, Jiebing; Liu, Yong; Yang, Yan; Tang, Jun; Li, Quanshun
2018-07-01
Atom transfer radical polymerization (ATRP) has been considered to be an efficient strategy for constructing functional macromolecules owing to its simple operation and versatile monomers, and thus it is of great significance to develop ideal catalysts with higher activity and perfect reusability. We constructed a peroxidase mimic through the grafting of heme onto metal-organic frameworks UiO-66-NH 2 (ZrMOF), namely Heme-ZrMOF. After the systematic characterization of structure, the composite Heme-ZrMOF was demonstrated to possess high peroxidase activity using 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) and 3,3',5,5'-tetramethylbenzidine as substrates. The enzyme mimic was then used as catalysts in the ATRP reactions of different monomers, in which favorable monomer conversion (44.6-98.0%) and product molecular weight (8600-25,600 g/mol) could be obtained. Compared to free heme, Heme-ZrMOF could efficiently achieve the easy separation of heme from the catalytic system and facilitate the ATRP reaction in an aqueous environment to avoid the utilization of organic solvents. In conclusion, the enzyme mimic Heme-ZrMOF could be potentially used as an effective catalyst for preparing well-defined polymers with biomedical applications. Copyright © 2018 Elsevier Inc. All rights reserved.
Jin, Young Ju; Kang, Sunah; Park, Pona; Choi, Dongkil; Kim, Dae Woo; Jung, Dongwook; Koh, Jaemoon; Jeon, Joohee; Lee, Myoungjin; Ham, Jiyeon; Seo, Ji-Hun; Jin, Hong-Ryul; Lee, Yan
2017-06-07
Expanded polytetrafluoroethylene (ePTFE), also known as Gore-Tex, is widely used as an implantable biomaterial in biomedical applications because of its favorable mechanical properties and biochemical inertness. However, infection and inflammation are two major complications with ePTFE implantations, because pathogenic bacteria can inhabit the microsized pores, without clearance by host immune cells, and the limited biocompatibility can induce foreign body reactions. To minimize these complications, we covalently grafted a biomembrane-mimic polymer, poly(2-methacryloyloxylethyl phosphorylcholine) (PMPC), by partial defluorination followed by UV-induced polymerization with cross-linkers on the ePTFE surface. PMPC grafting greatly reduced serum protein adsorption as well as fibroblast adhesion on the ePTFE surface. Moreover, the PMPC-grafted ePTFE surface exhibited a dramatic inhibition of the adhesion and growth of Staphylococcus aureus, a typical pathogenic bacterium in ePTFE implants, in the porous network. On the basis of an analysis of immune cells and inflammation-related factors, i.e., transforming growth factor-β (TGF-β) and myeloperoxidase (MPO), we confirmed that inflammation was efficiently alleviated in tissues around PMPC-grafted ePTFE plates implanted in the backs of rats. Covalent PMPC may be an effective strategy for promoting anti-inflammatory and antibacterial functions in ePTFE implants and to reduce side effects in biomedical applications of ePTFE.
Bossi, A; Whitcombe, M J; Uludag, Y; Fowler, S; Chianella, I; Subrahmanyam, S; Sanchez, I; Piletsky, S A
2010-05-15
A "grafting from" approach has been used for controlled deposition of cross-linked polymers by living radical polymerisation. Borosilicate glass was modified with N,N-diethylaminodithiocarbamoylpropyl(trimethoxy)silane, in order to confine the iniferter reactive groups solely at its surface, then placed in solution with monomers and cross-linker. The polymerisation was initiated by UV irradiation. Formation of the cross-linked polymers was studied in terms of time course of the reaction, type of monomers incorporated and influence of oxygen. Grafted surfaces were characterised by AFM, FT-IR, ellipsometry and contact angle measurements. The ability to control the grafted layer improved dramatically when the chain terminator agent, N,N-N',N'-tetraethyl thiuram disulphide (TED) was added. Upon irradiation TED increases the concentration of passive capping radicals and decreases the possibility of recombination of active macro-radicals, thus prolonging their lifetime. In the absence of TED the thickness of produced coatings was below 10 nm. TED added at different concentrations assisted in the formation of grafted layers of 10-130 nm thickness. Iniferter chemistry in the presence of TED can be used for growing nanometre-scale polymer layers on solid supports. It constitutes a robust general platform for controlled grafting and offer a general solution to address the needs of surface derivatisation in sensors technology. 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shin, Joongmin; Liu, Xiaojing; Chikthimmah, Naveen; Lee, Youn Suk
2016-11-01
The purpose of this study was to develop an active non-migratory antifungal Low Density Polyethylene (LDPE) polymer for use in food packaged applications. The functional acrylic acid monomer was grafted on the LDPE film surface by photo-initiated graft polymerization using Ultra Violet light irradiation (from 0 to 5 min). Natamycin, an antifungal agent, was applied to the treated film to bind with the pendent functional groups and were evaluated its performance against mold and yeast. The grafted amounts were determined by gravimetric measurement and dye absorbance. Attenuated Total Reflectance/Fourier Transfer Infrared Spectroscopy, scanning electron microscopy, mechanical strength test was used to characterize film properties. The antifungal efficacy of the film was evaluated with Saccharomyces cerevisiae and Penicillium chrysogenum on growth media and fresh cut cantaloupe. The amounts of the grafted group were increased with the longer ultraviolet exposure time. The amount of the grafted natamycin on the treated film was up to 49.87 μg/cm2, and the film inhibited mycelium formation of P. chrysogenum spores by over 60%. Due to the thickness of the film (less than 12.25 μm), long time UV exposure decrease the film's mechanical strength. The application of such non-migratory active packaging film represents a promising approach to maintaining food quality with reduced additive.
NASA Astrophysics Data System (ADS)
Ferebee, Rachel L.
The broader technical objective of this work is to contribute to the development of enzyme-functionalized nanoporous membranes that can function as autonomous and target selective dynamic separators. The scientific objective of the research performed within this thesis is to elucidate the parameters that control the mixing of proteins in organic host materials and in block copolymers templates in particular. A "biomimetic" membrane system that uses enzymes to selectively neutralize targets and trigger a change in permeability of nanopores lined with a pH-responsive polymer has been fabricated and characterized. Mechanical and functional stability, as well as scalability, have been demonstrated for this system. Additional research has focused on the role of polymeric ligands on the solubility characteristics of the model protein, Bovine Serum Albumin (BSA). For this purpose BSA was conjugated with poly(ethylene glycol) (PEG) ligands of varied degree of polymerization and grafting density. Combined static and dynamic light scattering was used (in conjunction with MALDI-TOF) to determine the second virial coefficient in PBS solutions. At a given mass fraction PEG or average number of grafts, the solubility of BSA-PEG conjugates is found to increase with the degree of polymerization of conjugated PEG. This result informs the synthesis of protein-conjugate systems that are optimized for the fabrication of block copolymer blend materials with maximum protein loading. Blends of BSA-PEG conjugates and block copolymer (BCP) matrices were fabricated to evaluate the dispersion morphology and solubility limits in a model system. Electron microscopy was used to evaluate the changes in lamellar spacing with increased filling fraction of BSA-PEG conjugates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yong; Desseaux, Solenne; Aden, Bethany
We report that surface-grafting thermoresponsive polymers allows the preparation of thin polymer brush coatings with surface properties that can be manipulated by variation of temperature. In most instances, thermoresponsive polymer brushes are produced using polymers that dehydrate and collapse above a certain temperature. This report presents the preparation and properties of polymer brushes that show thermoresponsive surface properties, yet are shape-persistent in that they do not undergo main chain collapse. The polymer brushes presented here are obtained via vapor deposition surface-initiated ring-opening polymerization (SI-ROP) of γ-di- or tri(ethylene glycol)-modified glutamic acid N-carboxyanhydrides. Vapor deposition SI-ROP of γ-di- or tri(ethylene glycol)-modifiedmore » L- or D-glutamic acid N-carboxyanhydrides affords helical surface-tethered polymer chains that do not show any changes in secondary structure between 10 and 70 °C. QCM-D experiments, however, revealed significant dehydration of poly(γ-(2-(2-methoxyethoxy)ethyl)-l-glutamate) (poly(L-EG 2-Glu)) brushes upon heating from 10 to 40 °C. At the same time, AFM and ellipsometry studies did not reveal significant variations in film thickness over this temperature range, which is consistent with the shape-persistent nature of these polypeptide brushes and indicates that the thermoresponsiveness of the films is primarily due to hydration and dehydration of the oligo(ethylene glycol) side chains. The results we present here illustrate the potential of surface-initiated NCA ring-opening polymerization to generate densely grafted assemblies of polymer chains that possess well-defined secondary structures and tunable surface properties. These polypeptide brushes complement their conformationally unordered counterparts that can be generated via surface-initiated polymerization of vinyl-type monomers and represent another step forward to biomimetic surfaces and interfaces.« less
Grafting PNIPAAm from β-barrel shaped transmembrane nanopores.
Charan, Himanshu; Kinzel, Julia; Glebe, Ulrich; Anand, Deepak; Garakani, Tayebeh Mirzaei; Zhu, Leilei; Bocola, Marco; Schwaneberg, Ulrich; Böker, Alexander
2016-11-01
The research on protein-polymer conjugates by grafting from the surface of proteins has gained significant interest in the last decade. While there are many studies with globular proteins, membrane proteins have remained untouched to the best of our knowledge. In this study, we established the conjugate formation with a class of transmembrane proteins and grow polymer chains from the ferric hydroxamate uptake protein component A (FhuA; a β-barrel transmembrane protein of Escherichia coli). As the lysine residues of naturally occurring FhuA are distributed over the whole protein, FhuA was reengineered to have up to 11 lysines, distributed symmetrically in a rim on the membrane exposed side (outside) of the protein channel and exclusively above the hydrophobic region. Reengineering of FhuA ensures a polymer growth only on the outside of the β-barrel and prevents blockage of the channel as a result of the polymerization. A water-soluble initiator for controlled radical polymerization (CRP) was consecutively linked to the lysine residues of FhuA and N-isopropylacrylamide (NIPAAm) polymerized under copper-mediated CRP conditions. The conjugate formation was analyzed by using MALDI-ToF mass spectrometry, SDS-PAGE, circular dichroism spectroscopy, analytical ultracentrifugation, dynamic light scattering, transmission electron microscopy and size exclusion chromatography. Such conjugates combine the specific functions of the transmembrane proteins, like maintaining membrane potential gradients or translocation of substrates with the unique properties of synthetic polymers such as temperature and pH stimuli handles. FhuA-PNIPAAm conjugates will serve as functional nanosized building blocks for applications in targeted drug delivery, self-assembly systems, functional membranes and transmembrane protein gated nanoreactors. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Subramanian, Srinivas
This research work is an extension of some of the earlier work done on the development of solid phase grafting technique to graft various monomers onto polymers as well as postulation of the usefulness of the graft copolymers thus synthesized. Polystyrene grafted with acrylic acid, previously developed in bench scale, was synthesized in pilot-plant scale batches. Process parameter studies on the grafting of acrylic acid onto polypropylene and developmental studies on the grafting of maleic anhydride onto polystyrene were also done. Polymers grafted with polar molecules such as maleic anhydride and acrylic acid have been used to compatibilize immiscible blends of polar and non-polar polymers. On the same note, the applicability of the solid phase graft copolymers as blend compatibilizers were investigated and their performance was compared to commercially available compatibilizers. Solid phase graft copolymerization process is a technique to synthesize graft copolymers. Some of its salient features are use of minimal solvent to conduct the reaction and easy equipment modification. It is a low pressure and low temperature process. This technique provides a viable alternative to the environmentally hazardous, and time consuming conventional process currently in use. Hence, development of this technique could be beneficial not only to the plastics industry, but also to mankind. Also, this technique provides a low-cost and extremely easy method to develop graft copolymers such as acrylic acid functionalized polymers that are rapidly gaining popularity as blend compatibilizers and polymer reinforcing agents. A study that proves the potential of these solid phase graft copolymers as good blend compatibilizers for industrially important immiscible polymers will develop interest in the industries about this grafting process. The free radical solid phase graft copolymerization process was carried in a modified Brabender-type mixer fitted with specially designed blades to promote efficient mixing of the polymer, initiator, monomer, and solvent. The grafting was qualitatively confirmed by means of a FTIR and quantitatively using titration. The polymer blends were synthesized in a single screw extruder. Rheological, morphological, thermal, mechanical, and molecular weight studies were done on these blends. The graft copolymers produced in larger batches had the same amount of graft content as those produced in smaller batches. This small success is a positive step towards the goal of commercializing this process. Grafting of acrylic acid onto polypropylene gave graft levels of 4 weight percent. However, the attempt to graft maleic anhydride onto polystyrene was not successful. The solid phase graft copolymers were successfully able to compatibilize the polymer blend systems studied (PS/PMMA, PS/nylon 6,6, PS/nylon 6, and PP/nylon 6). The properties of the blends compatibilized using the solid phase graft copolymers were comparable to and in some instances, better than those of the blends compatibilized with commercially available graft copolymers. The successful scale-up of the process, development of new graft copolymers and ability of copolymers to compatibilize blends augurs well for the solid phase grafting process.
Diaz-Gomez, Luis; Concheiro, Angel; Alvarez-Lorenzo, Carmen; García-González, Carlos A
2016-05-20
Synthetic polymeric scaffolds to be used as surrogates of autologous bone grafts should not only have suitable physicochemical and mechanical properties, but also contain bioactive agents such as growth factors (GFs) to facilitate the tissue growth. For this purpose, cost-effective and autologous GFs sources are preferred to avoid some post-surgery complications after implantation, like immunogenicity or disease transmission, and the scaffolds should be processed using methods able to preserve GFs activity. In this work, poly(ɛ-caprolactone) (PCL) scaffolds incorporating GFs were processed using a green foaming process based on supercritical fluid technology. Preparation rich in growth factors (PRGF), a natural and highly available cocktail of GFs obtained from platelet rich plasma (PRP), was used as GF source. PCL:starch:PRGF (85:10:5 weight ratio) porous solid scaffolds were obtained by a supercritical CO2-assisted foaming process at 100 bar and 37 °C with no need of post-processing steps. Bioactivity of GFs after processing and scaffold cytocompatibility were confirmed using mesenchymal stem cells. The performance of starch as GF control release component was shown to be dependent on starch pre-gelification conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cho, Yong Ki; Park, Daewon; Kim, Hoonbae; Lee, Hyerim; Park, Heonyong; Kim, Hong Ja; Jung, Donggeun
2014-03-01
Bioactive surface modification can be used in a variety of medical polymeric materials in the fields of biochips and biosensors, artificial membranes, and vascular grafts. In this study, the surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts, which are made of biocompatible material for the human body in the medical field. Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment on the PFTE surface using micro plasma discharge. Micro plasma was generated by a medium-frequency alternating current high-voltage generator. The preliminary modification of PTFE was conducted by a plasma of hydrogen and argon gases. The hydrocarbon thin film was deposited on modified PTFE with a mixture of acetylene and argon gases. The reactive plasma treatment using oxygen plasma was done to give biocompatible functionality to the inner wall surface. The hydrophobic surface of bare PTFE is made hydrophilic by the reactive plasma treatment due to the formation of carbonyl groups on the surface. The reactive treatment could lead to improved attachment of smooth muscle cells (SMCs) on the modified PTFE tubing. Fourier transform infrared absorption spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and water contact angle measurement were used for the analysis of the surface modification. The SMC-attached PTFE tube developed will be applicable to in vitro human vasculature-mimetic model systems, and to medical vascular grafts.
New synthesis of maleic anhydride modified polyolefins and their applications
NASA Astrophysics Data System (ADS)
Lu, Bing
Maleic anhydride (MA) modified polyolefins are the most useful commercial functional polyolefins. The current technology of producing MA modified polyolefins, mainly free radical modification, usually results in low MA graft contents, extensive side reactions, and poor control of graft structures. In this thesis, we show a new synthetic route for preparing MA modified polyolefins with excellent control of polymer structures and MA concentrations. The synthesis is based on the "reactive" polyolefin copolymers, i.e. polyolefins containing p-methylstyrene or alkylborane groups. The p-methylstyrene copolymers lead to selectively grafting reactions on the p-methyl groups, greatly reducing the side reactions on the polyolefin backbone. The MA graft content was proportional to the concentration of p-methylstyrene. In the borane approach, under controlled selective oxidation, the alkylborane containing PP polymers formed the "stable" polymeric radical in situ which initiated the graft-from reaction. By varying the monomer concentrations of MA and styrene, reaction time and temperature, a broad range of MA modified PP polymers were prepared from a single MA terminated or grafted PP to a very long SMA segment blocked or grafted PP, and there is no detectable side reaction on the PP backbone. MA modified polyolefins were investigated in the applications of glass fiber reinforced PP, elastomer toughened Nylon, and polyolefin/Nylon blends. The MA modified polyolefin compatibilizers showed the significant improved mechanical properties and morphology of the blends. The effectiveness of compatibilization depends on the MA concentration, molecular weight of the polyolefin segments, the structure of the compatibilizers, and the composition of the blend. By amidation or imidation reaction of MA modified PP with amine terminated PP, long chain branched PP polymers were also prepared. The results of IR, GPC, intrinsic viscosity and DSC studies clearly indicate the formation of long chain branched PP.
Catechol-grafted poly(ethylene glycol) for PEGylation on versatile substrates.
Lee, Hyukjin; Lee, Kang Dae; Pyo, Kyung Bo; Park, Sung Young; Lee, Haeshin
2010-03-16
We report on catechol-grafted poly(ethylene) glycol (PEG-g-catechol) for the preparation of nonfouling surfaces on versatile substrates including adhesion-resistant PTFE. PEG-g-catechol was prepared by the step-growth polymerization of PEO to which dopamine, a mussel-derived adhesive molecule, was conjugated. The immersion of substrates into an aqueous solution of PEG-g-catechol resulted in robust PEGylation on versatile surfaces of noble metals, oxides, and synthetic polymers. Surface PEGylation was unambiguously confirmed by various surface analytical tools such as ellipsometry, goniometry, infrared spectroscopy, and X-ray photoelectron spectroscopy. Contrary to existing PEG derivatives that are difficult-to-modify synthetic polymer surfaces, PEG-g-catechol can be considered to be a new class of PEGs for the facile surface PEGylation of various types of surfaces.
NASA Astrophysics Data System (ADS)
Söylemez, Meshude Akbulut; Barsbay, Murat; Güven, Olgun
2018-01-01
Radiation-induced RAFT polymerization technique was applied to synthesize well-defined molecularly imprinted polymers (MIPs) of erythromycin (ERY). Methacrylic acid (MAA) was grafted onto porous polyethylene (PE)/polypropylene (PP) nonwoven fabrics, under γ-irradiation by employing 2-pheny-2-propyl benzodithioate as the RAFT agent and ethylene glycol dimethacrylate (EGDMA) as the crosslinker. MAA/erythromycin ratios of 2/1, 4/1, 6/1 were tested to optimize the synthesis of MIPs. The highest binding capacity was encountered at a MAA/ERY ratio of 4/1. Non-imprinted polymers (NIPs) were also synthesized in the absence of ERY. The MIPs synthesized by RAFT method presented a better binding capacity compared to those prepared by conventional method where no RAFT agent was employed.
Polymers as directing agents for motions of chemical and biological species
NASA Astrophysics Data System (ADS)
Tanyeri, Nihan Yonet
This thesis involves descriptions of solid surface modifications with various polymeric materials which were used as a guiding agent for motion of chemical and biological species. Quasi-two dimensional poly(oligoethylene glycol) acrylate polymer brush based molecular conduits have been designed with the goal of regulating and controlling the diffusive transport of molecular, e.g. organic dyes, and ionic species, e.g. AuCl4-, and Cu2+ ions, along predefined 2-D pathways. The transport of these chemical species has been examined by both fluorescence and dark field microscopy. The polymer brushes were formed through microcontact printing of an initiator, followed by surface-initiated Atom Transfer Radical Polymerization (SI-ATRP). SI-ATRP enables both 2-D patterning with a resolution of about 1 micrometer, and control over the resultant polymer brush thickness (which was varied from 10-100 nm). A hydrophilic poly(oligoethylene glycol) acrylate brushe was selected because of its potential to dissolve a wide range of hydrophilic species. The transport of fluorescent species can be directly followed. A non-lithographic fabrication method was developed for mufluidic devices used in the diffusion studies. Singular channel mufluidic device was utilized to study the directed organic dye diffusion. The AuCl4-, and Cu 2+ ion transport was studied by designing molecular devices with two mufluidic channels. We have demonstrated that the various species of interest diffuse much more rapidly along the predefined pathway than along the bare (polymer brush free) regions of the substrate, demonstrating that diffusive conduits for molecular transport can indeed be formed. The protein resistance of poly(N-isopropylacrylamide) (PNIPAM) brushes grafted from silicon wafers was investigated as a function of the chain molecular weight, grafting density, and temperature. Above the lower critical solution temperature (LCST) of 32°C, the collapse of the water swollen chains, determined by ellipsometry, depends on the grafting density and molecular weight. Ellipsometry, radio assay, and fluorescence imaging demonstrated that, below the LCST, the brushes repel protein as effectively as oligoethylene oxide terminated monolayers. Above 32°C, very low levels of protein adsorb on densely grafted brushes, and the amounts of adsorbed protein increase with decreasing brush grafting densities. Brushes that do not exhibit a collapse transition also bind protein, even though the chains remain extended above the LCST. These findings suggest possible mechanisms underlying protein interactions with end-grafted PNIPAM brushes. 3D porous materials on solid surfaces were built to mimic the corneal basement membrane so that we can monitor direction of the corneal epithelia cells behaviors as the surface topography changes. We have used colloidal crystal templating approach to build the 3D porous structures. Polystyrene (PS) colloids were crystallized in a flow cell. The crystals were filled with acrylamide precursor (including photoinitiator, crosslinker) in the oxygen free aqueous solution. After polymerization of acrylamide under UV exposure, PS colloids were dissolved in chloroform. Thus, 3D porous polyacrylamide hydrogels have been fabricated. The various pore sizes at the 3D porous surface have been obtained by using PS colloids with the colloid diameters ranging from 450 nm to 4 mum. Human corneal epithelial cell growth, morphology change and adhesion studies have been conducted on the porous polyacrylamide scaffolds. The effect of pore size on human corneal epithelial cell function has been investigated.
Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing
Anderson, Brian L.
2017-01-24
A system for fluid partitioning for chemical amplification or other chemical processing or separations of a sample, comprising a first dispenser of a first polymeric sheet, wherein the first polymeric sheet contains chambers; a second dispenser of a second polymeric sheet wherein the first dispenser and the second dispenser are positioned so that the first polymeric sheet and the second polymeric sheet become parallel; a dispenser of the fluid positioned to dispense the fluid between the first polymeric sheet and the second polymeric sheet; and a seal unit that seals the first polymeric sheet and the second polymeric sheet together thereby sealing the sample between the first polymeric sheet and the second polymeric sheet and partitioning the fluid for chemical amplification or other chemical processing or separations.
Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing
Anderson, Brian L.
2015-05-26
A system for fluid partitioning for chemical amplification or other chemical processing or separations of a sample, comprising a first dispenser of a first polymeric sheet, wherein the first polymeric sheet contains chambers; a second dispenser of a second polymeric sheet wherein the first dispenser and the second dispenser are positioned so that the first polymeric sheet and the second polymeric sheet become parallel; a dispenser of the fluid positioned to dispense the fluid between the first polymeric sheet and the second polymeric sheet; and a seal unit that seals the first polymeric sheet and the second polymeric sheet together thereby sealing the sample between the first polymeric sheet and the second polymeric sheet and partitioning the fluid for chemical amplification or other chemical processing or separations.
Sequential self-assembly of DNA functionalized droplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yin; McMullen, Angus; Pontani, Lea-Laetitia
Complex structures and devices, both natural and manmade, are often constructed sequentially. From crystallization to embryogenesis, a nucleus or seed is formed and built upon. Sequential assembly allows for initiation, signaling, and logical programming, which are necessary for making enclosed, hierarchical structures. Though biology relies on such schemes, they have not been available in materials science. We demonstrate programmed sequential self-assembly of DNA functionalized emulsions. The droplets are initially inert because the grafted DNA strands are pre-hybridized in pairs. Active strands on initiator droplets then displace one of the paired strands and thus release its complement, which in turn activatesmore » the next droplet in the sequence, akin to living polymerization. This strategy provides time and logic control during the self-assembly process, and offers a new perspective on the synthesis of materials.« less
Polymeric membranes: surface modification for minimizing (bio)colloidal fouling.
Kochkodan, Victor; Johnson, Daniel J; Hilal, Nidal
2014-04-01
This paper presents an overview on recent developments in surface modification of polymer membranes for reduction of their fouling with biocolloids and organic colloids in pressure driven membrane processes. First, colloidal interactions such as London-van der Waals, electrical, hydration, hydrophobic, steric forces and membrane surface properties such as hydrophilicity, charge and surface roughness, which affect membrane fouling, have been discussed and the main goals of the membrane surface modification for fouling reduction have been outlined. Thereafter the recent studies on reduction of (bio)colloidal of polymer membranes using ultraviolet/redox initiated surface grafting, physical coating/adsorption of a protective layer on the membrane surface, chemical reactions or surface modification of polymer membranes with nanoparticles as well as using of advanced atomic force microscopy to characterize (bio)colloidal fouling have been critically summarized. Copyright © 2013 Elsevier B.V. All rights reserved.
Sequential self-assembly of DNA functionalized droplets
Zhang, Yin; McMullen, Angus; Pontani, Lea-Laetitia; ...
2017-06-16
Complex structures and devices, both natural and manmade, are often constructed sequentially. From crystallization to embryogenesis, a nucleus or seed is formed and built upon. Sequential assembly allows for initiation, signaling, and logical programming, which are necessary for making enclosed, hierarchical structures. Though biology relies on such schemes, they have not been available in materials science. We demonstrate programmed sequential self-assembly of DNA functionalized emulsions. The droplets are initially inert because the grafted DNA strands are pre-hybridized in pairs. Active strands on initiator droplets then displace one of the paired strands and thus release its complement, which in turn activatesmore » the next droplet in the sequence, akin to living polymerization. This strategy provides time and logic control during the self-assembly process, and offers a new perspective on the synthesis of materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sar, B.
1992-12-31
Polymer colloids stabilized by polymeric surfactants are of great interest both commercially and academically. It has been found that these materials enhance latex stabilization in a number of applications. The polymeric surfactants are amphipathic block and graft copolymers containing both hydrophilic and hydrophobic moieties. The current study involved the synthesis of a series of amphipathic triblock copolymers, polyisobutylene-block-polyoxyethylene-block-polyisobutylene (PIB-b-POE-b-PIB), for use in the emulsion polymerization of styrene (STY), methyl methacrylate (MMA), and vinyl acetate (VAc). The stabilizing effectiveness of these triblock copolymers was studied as a function of their blocklength. When the molecular weight of the POE center block wasmore » changed from M{sub n} = 2,000 to 20,000 g/mole, stable lattices were obtained in emulsion polymerization with MMA, STY, and VAc as the monomers. In all cases, the polymerization rates remained constant, while the number of particles/volume decreased with increasing POE chain length. When the molecular weight of the PIB end blocks was changed from M{sub n} = 400 to 2,600 g/mole keeping the molecular weight of the POE center block constant at M{sub n} = 20,000 g/mole, the poly(methyl methacrylate) and poly(vinyl acetate) lattices exhibited similar behavior, i.e., the number of particles and particle sizes remained the same, but the rate of polymerization reached a maximum at 87 wt% POE content. In the case of poly(styrene) both the rate of polymerization and the number of particles remained constant. The emulsion polymerization of other monomers such as butadiene, acrylonitrile, methyl acrylate, ethyl acrylate, and butyl acrylate was carried out by using one triblock copolymer, i.e., PIB(400)-b-POE (8,000)-b-PIB-(400). Stable lattices were also formed in all cases.« less
NASA Astrophysics Data System (ADS)
Wang, Feng; Zhu, Yongfeng; Wang, Wenbo; Zong, Li; Lu, Taotao; Wang, Aiqin
2017-06-01
A series of superporous carboxymethylcellulose-graft-poly(acrylamide) (CMC-g-PAM) polymer monoliths presenting interconnected pore structure and excellent adsorption properties were prepared by one-step free-radical grafting polymerization reaction of CMC and acrylamide (AM) in the oil-in-water (O/W) Pickering-medium internal phase emulsions (Pickering-MIPEs) composed of non-toxic edible oil as a dispersion phase and natural Pal nanorods as stabilizers. The effects of Pal dosage, AM dosage, and co-surfactant Tween-20 (T-20) on the pore structures of the monoliths were studied. It was revealed that the well-defined pores were formed when the dosages of Pal and T-20 are 9-14% and 3%, respectively. The porous monolith can rapidly adsorb 1585 mg/g of methyl violet (MV) and 1625 mg/g of methylene blue (MB). After the monolith was regenerated by adsorption-desorption process for 5 times, the adsorption capacities still reached 92.1% (for MV) and 93.5% (for MB) of the initial maximum adsorption capacities. The adsorption process was fitted with Langmuir adsorption isotherm model and pseudo-second-order adsorption kinetic model very well, which indicate that mono-layer chemical adsorption mainly contribute to the high-capacity adsorption for dyes. The superporous polymer monolith prepared from eco-friendly Pickering-MIPEs shows good adsorption capacity and fast adsorption rate, which is potential adsorbent for the decontimination of dye-containing wastewater.
NASA Astrophysics Data System (ADS)
Wang, Xiangyu; Liu, Peng; Ma, Jun; Liu, Huiling
2017-02-01
For the first time, hydrophilized and functionalized polyacrylonitrile (PAN) membrane was synthesized via two-stage process, addition of polyvinyl alcohol and in situ polymerization of acrylic acid (AA), and nano zero-valent iron (NZVI) was incorporated within modified membrane. The as-prepared PAA/PAN-NZVI (PPN) composites possessed superior reactivity for metronidazole (MNZ) with transformation ratio 2.03 and reaction rate 4.77 times higher than that by bare NZVI. Meanwhile, the enhanced stability and recyclability of PPN composites were maintained over repeated cycles. The major advantages of synthetic method lie in the remarkably increased loading and decreased agglomeration of NZVI. Moreover, with hydrophilized and functionalized synthesis processes of membrane, the potential risk of released iron ions was not a concern due to strong chelation of grafted carboxyl groups. Analyses of morphological characteristics (FE-SEM), chemical structure (FTIR), element valence and groups (XPS) of samples confirmed the successful graft of carboxylic acid groups and formation of a uniform iron nanoparticles coating onto PAN matrix. The reaction kinetics of MNZ with PPN composites were well-described by a two-parameter pseudo-first-order decay model with activation energy of 29.5 kJ/mol. The co-solutes except humic acid had a negligible effect on MNZ transformation. Determination of intermediates revealed that nitro reduction, N-denitration and hydroxyethyl cleavage were the main pathways for transformation of MNZ. The findings suggest that the novel composites possess huge potential for antibiotics wastewater treatment.
Wang, Feng; Zhu, Yongfeng; Wang, Wenbo; Zong, Li; Lu, Taotao; Wang, Aiqin
2017-01-01
A series of superporous carboxymethylcellulose-graft-poly(acrylamide)/palygorskite (CMC-g-PAM/Pal) polymer monoliths presenting interconnected pore structure and excellent adsorption properties were prepared by one-step free-radical grafting polymerization reaction of CMC and acrylamide (AM) in the oil-in-water (O/W) Pickering-medium internal phase emulsions (Pickering-MIPEs) composed of non-toxic edible oil as a dispersion phase and natural Pal nanorods as stabilizers. The effects of Pal dosage, AM dosage, and co-surfactant Tween-20 (T-20) on the pore structures of the monoliths were studied. It was revealed that the well-defined pores were formed when the dosages of Pal and T-20 are 9–14 and 3%, respectively. The porous monolith can rapidly adsorb 1,585 mg/g of methyl violet (MV) and 1,625 mg/g of methylene blue (MB). After the monolith was regenerated by adsorption-desorption process for five times, the adsorption capacities still reached 92.1% (for MV) and 93.5% (for MB) of the initial maximum adsorption capacities. The adsorption process was fitted with Langmuir adsorption isotherm model and pseudo-second-order adsorption kinetic model very well, which indicate that mono-layer chemical adsorption mainly contribute to the high-capacity adsorption for dyes. The superporous polymer monolith prepared from eco-friendly Pickering-MIPEs shows good adsorption capacity and fast adsorption rate, which is potential adsorbent for the decontamination of dye-containing wastewater. PMID:28642862
Wang, Feng; Zhu, Yongfeng; Wang, Wenbo; Zong, Li; Lu, Taotao; Wang, Aiqin
2017-01-01
A series of superporous carboxymethylcellulose- graft -poly(acrylamide)/palygorskite (CMC- g -PAM/Pal) polymer monoliths presenting interconnected pore structure and excellent adsorption properties were prepared by one-step free-radical grafting polymerization reaction of CMC and acrylamide (AM) in the oil-in-water (O/W) Pickering-medium internal phase emulsions (Pickering-MIPEs) composed of non-toxic edible oil as a dispersion phase and natural Pal nanorods as stabilizers. The effects of Pal dosage, AM dosage, and co-surfactant Tween-20 (T-20) on the pore structures of the monoliths were studied. It was revealed that the well-defined pores were formed when the dosages of Pal and T-20 are 9-14 and 3%, respectively. The porous monolith can rapidly adsorb 1,585 mg/g of methyl violet (MV) and 1,625 mg/g of methylene blue (MB). After the monolith was regenerated by adsorption-desorption process for five times, the adsorption capacities still reached 92.1% (for MV) and 93.5% (for MB) of the initial maximum adsorption capacities. The adsorption process was fitted with Langmuir adsorption isotherm model and pseudo-second-order adsorption kinetic model very well, which indicate that mono-layer chemical adsorption mainly contribute to the high-capacity adsorption for dyes. The superporous polymer monolith prepared from eco-friendly Pickering-MIPEs shows good adsorption capacity and fast adsorption rate, which is potential adsorbent for the decontamination of dye-containing wastewater.
Wang, Wei; Huang, Xiao-Jun; Cao, Jian-Da; Lan, Ping; Wu, Wen
2014-01-01
A novel method for the immobilization of sodium alginate sulfates (SAS) on polysulfone (PSu) ultrafiltration membranes to achieve selective adsorption of low-density lipoprotein (LDL) was developed, which involved the photoinduced graft polymerization of acrylamide on the membrane and the Hofmann rearrangement reaction of grafted acrylamide followed by chemical binding of SAS with glutaraldehyde. The surface modification processes were confirmed by attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy characterization. Zeta potential and water contact angle measurements were performed to investigate the surface charge and wettability of the membranes. An enzyme-linked immunosorbent assay was used to measure the binding of LDL on plain and modified PSu membranes. It was found that the PSu membrane immobilized with sodium alginate sulfates (PSu-SAS) greatly enhanced the selective adsorption of LDL from protein solutions and the absorbed LDL could be easily eluted with sodium chloride solution, indicating a specific and reversible binding of LDL to SAS, mainly driven by electrostatic forces. Furthermore, the PSu-SAS membrane showed good blood compatibility as examined by platelet adhesion. The results suggest that the PSu-SAS membranes are promising for application in simultaneous hemodialysis and LDL apheresis therapy. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qiuming; Wilfong, Walter C.; Kail, Brian W.
Recycling rare earth elements (REEs) becomes increasingly important due to their supply vulnerability and increasing demands in industry, agriculture, and national security. Hybrid hydrogel sorbents were outstanding due to their high stability and selectivity. Organic-inorganic hybrid hydrogels were synthesized by thermo-polymerization of acrylamide onto PEI polymer chain with N,N’-methylene bisacrylamide as a crosslinker. The grafted network was evidenced by DRIFTS and XPS. The porous structure was observed by SEM. Crosslink degree, PEI grafting degree, and SiO 2 concentration were studied to optimize the REEs adsorption. The pH value of the medium greatly affected REE adsorption capacity, where the nearly neutralmore » conditions gave the strongest bonding of REEs to active sites. Moreover, kinetic studies showed that the rate-determining step of the adsorption process was chemical sorption, and that REE diffusion within micropores was the control step for, specifically, intraparticle diffusion. The adsorbents showed excellent selectivity and recyclability for REEs through 5 adsorption-desorption cycles in contact with synthetic acid mine drainage solution. A high separation toward REEs over fouling metals was achieved by using a citrate-based buffer eluent solution. This hybrid hydrogel shows promise for the recycling of REEs from aqueous solutions.« less
Wang, Qiuming; Wilfong, Walter C.; Kail, Brian W.; ...
2017-09-14
Recycling rare earth elements (REEs) becomes increasingly important due to their supply vulnerability and increasing demands in industry, agriculture, and national security. Hybrid hydrogel sorbents were outstanding due to their high stability and selectivity. Organic-inorganic hybrid hydrogels were synthesized by thermo-polymerization of acrylamide onto PEI polymer chain with N,N’-methylene bisacrylamide as a crosslinker. The grafted network was evidenced by DRIFTS and XPS. The porous structure was observed by SEM. Crosslink degree, PEI grafting degree, and SiO 2 concentration were studied to optimize the REEs adsorption. The pH value of the medium greatly affected REE adsorption capacity, where the nearly neutralmore » conditions gave the strongest bonding of REEs to active sites. Moreover, kinetic studies showed that the rate-determining step of the adsorption process was chemical sorption, and that REE diffusion within micropores was the control step for, specifically, intraparticle diffusion. The adsorbents showed excellent selectivity and recyclability for REEs through 5 adsorption-desorption cycles in contact with synthetic acid mine drainage solution. A high separation toward REEs over fouling metals was achieved by using a citrate-based buffer eluent solution. This hybrid hydrogel shows promise for the recycling of REEs from aqueous solutions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, Li-Jung; Gill, Gary A.; Tsouris, Costas
The apparent enthalpy and entropy of the complexation of uranium (VI) and vanadium (V) with amidoxime ligands grafted onto polyethylene fiber was determined using time series measurements of adsorption capacities in natural seawater at three different temperatures. The complexation of uranium was highly endothermic, while the complexation of vanadium showed minimal temperature sensitivity. Amidoxime-based polymeric adsorbents exhibit significantly increased uranium adsorption capacities and selectivity in warmer waters.
Huang, Zhenhua; Wu, Zhengfang; Yang, Peng; Yang, Wantai
2014-09-01
It is generally accepted that Ce(4+) is unable to directly oxidize unreactive alkyl C-H bonds without the assistance of adjacent polar groups. Herein, we demonstrate in our newly developed confined photochemical reaction system that this recognized issue may be challenged. As we found, when a thin layer of a CeCl(3)/HCl aqueous solution was applied to a polymeric substrate and the substrate subjected to UV irradiation, Ce(3+) was first photooxidized to form Ce(4+) in the presence of H(+), and the in situ formed Ce(4+) then performs an oxidation reaction on the C-H bonds of the polymer surface to form surface-carbon radicals for radical graft polymerization reactions and functional-group transformations, while reducing to Ce(3+) and releasing H(+) in the process. This photoinduced cerium recycling redox (PCRR) reaction behaved as a biomimetic system in an artificial recycling reaction, leading to a sustainable chemical modification strategy for directly transforming alkyl C-H bonds on polymer surfaces into small-molecule groups and polymer brushes. This method is expected to provide a green and economical tool for industrial applications of polymer-surface modification. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ashton, John H.; Mertz, James A. M.; Harper, John L.; Slepian, Marvin J.; Mills, Joseph L.; McGrath, Dominic V.; Vande Geest, Jonathan P.
2010-01-01
Polymeric endoaortic paving (PEAP) is a process by which a polymer is endovascularly delivered and thermoformed to coat or “pave” the lumen of the aorta. This method may offer an improvement to conventional endoaortic therapy in allowing conformal graft application with reduced risk of endoleak and customization to complex patient geometries. Polycaprolactone (PCL)/polyurethane (PU) blends of various blend ratios were assessed as a potential material for PEAP by characterizing their mechanical, thermoforming, and degradation properties. Biaxial tension testing revealed that the blends' stiffness is similar to that of aortic tissue, is higher for blends with more PCL content, and may be affected by thermoforming and degradation. Tubes of blends were able to maintain a higher diameter increase after thermoforming at higher PCL content and higher heating temperatures; 50/50 blend tubes heated to 55°C were able to maintain 90% of the diameter increase applied. Delamination forces of the blends ranged from 41 to 235 N/m2. In a Pseudomonas lipase solution, the 50/50 blend had a 94% lower degradation rate than pure PCL, and the 10/90 blend exhibited no degradation. These results indicate that PEAP, consisting of a PCL/PU blend, may be useful in developing the next generation of endoaortic therapy. PMID:20832506
Kerr-Phillips, Thomas E; Aydemir, Nihan; Chan, Eddie Wai Chi; Barker, David; Malmström, Jenny; Plesse, Cedric; Travas-Sejdic, Jadranka
2018-02-15
A highly selective, label-free sensor for the non-Hodgkin lymphoma gene, with an aM detection limit, utilizing electrochemical impedance spectroscopy (EIS) is presented. The sensor consists of a conducting electrospun fibre mat, surface-grafted with poly(acrylic acid) (PAA) brushes and a conducting polymer sensing element with covalently attached oligonucleotide probes. The sensor was fabricated from electrospun NBR rubber, embedded with poly(3,4-ethylenedioxythiophene) (PEDOT), followed by grafting poly(acrylic acid) brushes and then electrochemically polymerizing a conducting polymer monomer with ssDNA probe sequence pre-attached. The resulting non-Hodgkin lymphoma gene sensor showed a detection limit of 1aM (1 × 10 -18 mol/L), more than 400 folds lower compared to a thin-film analogue. The sensor presented extraordinary selectivity, with only 1%, 2.7% and 4.6% of the signal recorded for the fully non-complimentary, T-A and G-C base mismatch oligonucleotide sequences, respectively. We suggest that such greatly enhanced selectivity is due to the presence of negatively charged carboxylic acid moieties from PAA grafts that electrostatically repel the non-complementary and mismatch DNA sequences, overcoming the non-specific binding. Copyright © 2017 Elsevier B.V. All rights reserved.
Zheng, Xue-Fang; Lian, Qi; Yang, Hua; Wang, Xiuping
2016-01-01
The molecular surface imprinted graft copolymer of chitosan with methyl methacrylate (MIP-CS-g-PMMA) were prepared by free radical polymerization with 5-fluorouracil (5-FU) as the template molecule using initiator of ammonium persulfate as adsorption system. MIPs were characterized by FTIR, X-ray diffraction, thermo-gravimetric analysis, 1H NMR and SEM. The mechanism of graft copolymerization and factors affected graft reaction were studied in details, and the optimum reaction conditions (to the highest %G and %E as the standard) were obtained at [MMA] 1.2 mol/L, [Chitosan] 16.67 mol/L, [initiator] 0.0062 mol/L, temperature 60 °C and reaction time 7 h. MIPs exhibited high recognition selectivity and excellent combining affinity to template molecular. The in vitro release of the 5-FU was highly pH-dependent and time delayed. The release behavior showed that the drugs did not release in simulated gastric fluid (pH = 1.0), and the drug release was small in the simulated small intestinal fluid (pH = 6.8), and drug abrupt release will be produced in the simulated colon fluid (pH = 7.4), indicating excellent colon-specific drug delivery behavior. PMID:26892676
Tasiopoulos, Christos Panagiotis; Widhe, Mona; Hedhammar, My
2018-05-02
In vitro endothelialization of synthetic grafts or engineered vascular constructs is considered a promising alternative to overcome shortcomings in the availability of autologous vessels and in-graft complications with synthetics. A number of cell-seeding techniques have been implemented to render vascular grafts accessible for cells to attach, proliferate, and spread over the surface area. Nonetheless, seeding efficiency and the time needed for cells to adhere varies dramatically. Herein, we investigated a novel cell-seeding approach (denoted co-seeding) that enables cells to bind to a motif from fibronectin included in a recombinant spider silk protein. Entrapment of cells occurs at the same time as the silk assembles into a nanofibrillar coating on various substrates. Cell adhesion analysis showed that the technique can markedly improve cell-seeding efficiency to nonfunctionalized polystyrene surfaces, as well as establish cell attachment and growth of human dermal microvascular endothelial cells on bare polyethylene terephthalate and polytetrafluoroethylene (PTFE) substrates. Scanning electron microscopy images revealed a uniform endothelial cell layer and cell-substratum compliance with the functionalized silk protein to PTFE surfaces. The co-seeding technique holds a great promise as a method to reliably and quickly cellularize engineered vascular constructs as well as to in vitro endothelialize commercially available cardiovascular grafts.
Qu, Jian-Bo; Xu, Yu-Liang; Liu, Jun-Yi; Zeng, Jing-Bin; Chen, Yan-Li; Zhou, Wei-Qing; Liu, Jian-Guo
2016-04-08
Dual thermo- and pH-responsive chromatography has been proposed using poly(N-isopropylacrylamide-co-butyl methacrylate-co-N,N-dimethylaminopropyl acrylamide) (P(NIPAM-co-BMA-co-DMAPAAM)) brushes grafted gigaporous polystyrene microspheres (GPM) as matrix. Atom transfer radical polymerization (ATRP) initiator was first coupled onto GPM through Friedel-Crafts acylation with 2-bromoisobutyryl bromide. The dual-responsive polymer brushes were then grafted onto GPM via surface-initiated ATRP. The surface composition, gigaporous structure, protein adsorption and dual-responsive chromatographic properties of the matrix (GPM-P(NIPAM-co-BMA-co-DMAPAAM) were characterized in detail. Results showed that GPM were successfully grafted with thermoresponsive cationic polymer brushes and that the gigaporous structure was well maintained. A column packed with GPM-P(NIPAM-co-BMA-co-DMAPAAM presented low backpressure, good permeability and appreciable thermo-responsibility. By changing pH of the mobile phase and temperature of the column in turn, the column can separate three model proteins at the mobile phase velocity up to 2528cmh(-1). A separation mechanism of this matrix was also proposed. All results indicate that the dual thermo- and pH-responsive chromatography matrix has great potentials in 'green' high-speed protein chromatography. Copyright © 2016 Elsevier B.V. All rights reserved.
Paneysar, Joginder Singh; Barton, Stephen; Chandra, Sudeshna; Ambre, Premlata; Coutinho, Evans
2017-03-01
Water contamination and its purification are a global problem. The current approach to purify water is reduction of impurities to acceptable levels. One of the ways to achieve this is by use of water-soluble polymers that extract organic and metallic contaminants, from water. This paper presents a blend of composite polymers that eliminates both the contaminants simultaneously by the principle of adsorption at lower critical solution temperature. These composite polymers have been synthesized by grafting poly(N,N-diethylacrylamide), poly(N-isopropylacrylamide) and poly(N-vinylcaprolactam) on-to the natural polymer chitosan or its derivatives, giving smart graft polymeric assemblies (GPAs). One of the graft polymers, GPA-2, exhibits excellent adsorption properties able to remove metal ions like cadmium, cobalt, copper, lead, iron and also organic impurities like chlorophenol and phthalic anhydride. Studies reveal that 6 mg/ml GPA-2 is able to effect a 100% removal of organic impurities - chlorophenol (50 ppm) and phthalic anhydride (70 ppm) - from water, while complete removal of the heavy metal ions (Cu +2 , Co +2 and Cd +2 ) together at 30 ppm concentration has been achieved with 7.5 mg/ml GPA-2. The reduction in level of impurities along with recyclability and reproducibility in the elimination spectrum makes these assemblies promising materials in water treatment.
Xie, Zhongxi; Deng, Xiaoran; Liu, Bei; Huang, Shanshan; Ma, Pingan; Hou, Zhiyao; Cheng, Ziyong; Lin, Jun; Luan, Shifang
2017-09-13
Photoinduced reversible addition-fragmentation chain transfer (RAFT) polymerization generally adopts high-energy ultraviolet (UV) or blue light. In combination with photoredox catalyst, the excitation light wavelength was extended to the visible and even near-infrared (NIR) region for photoinduced electron transfer RAFT polymerization. In this report, we introduce for the first time a surface NIR-light-initiated RAFT polymerization on upconversion nanoparticles (UCNPs) without adding any photocatalyst and construct a functional inorganic core/polymer shell nanohybrid for application in cancer theranostics. The multilayer core-shell UCNPs (NaYF 4 :Yb/Tm@NaYbF 4 :Gd@NaNdF 4 :Yb@NaYF 4 ), with surface anchorings of chain transfer agents, can serve as efficient NIR-to-UV light transducers for initiating the RAFT polymerization. A hierarchical double block copolymer brush, consisting of poly(acrylic acid) (PAA) and poly(oligo(ethylene oxide)methacrylate-co-2-(2-methoxy-ethoxy)ethyl methacrylate) (PEG for short), was grafted from the surface in sequence. The targeting arginine-glycine-aspartic (RGD) peptide was modified at the end of the copolymer through the trithiolcarbonate end group. After loading of doxorubicin, the UCNPs@PAA-b-PEG-RGD exhibited an enhanced U87MG cancer cell uptake efficiency and cytotoxicity. Besides, the unique upconversion luminescence of the nanohybrids was used for the autofluoresence-free cell imaging and labeling. Therefore, our strategy verified that UCNPs could efficiently activate RAFT polymerization by NIR photoirradiation and construct the complex nanohybrids, exhibiting prospective biomedical applications due to the low phototoxicity and deep penetration of NIR light.
Mo, Zhenghai; Feng, Gang; Su, Wenchuan; Liu, Zhuangzhuang; Peng, Fangren
2018-02-05
Pecan ( Carya illinoinensis ), as a popular nut tree, has been widely planted in China in recent years. Grafting is an important technique for its cultivation. For a successful grafting, graft union development generally involves the formation of callus and vascular bundles at the graft union. To explore the molecular mechanism of graft union development, we applied high throughput RNA sequencing to investigate the transcriptomic profiles of graft union at four timepoints (0 days, 8 days, 15 days, and 30 days) during the pecan grafting process. After de novo assembly, 83,693 unigenes were obtained, and 40,069 of them were annotated. A total of 12,180 differentially expressed genes were identified between by grafting. Genes involved in hormone signaling, cell proliferation, xylem differentiation, cell elongation, secondary cell wall deposition, programmed cell death, and reactive oxygen species (ROS) scavenging showed significant differential expression during the graft union developmental process. In addition, we found that the content of auxin, cytokinin, and gibberellin were accumulated at the graft unions during the grafting process. These results will aid in our understanding of successful grafting in the future.
Mo, Zhenghai; Feng, Gang; Su, Wenchuan; Liu, Zhuangzhuang; Peng, Fangren
2018-01-01
Pecan (Carya illinoinensis), as a popular nut tree, has been widely planted in China in recent years. Grafting is an important technique for its cultivation. For a successful grafting, graft union development generally involves the formation of callus and vascular bundles at the graft union. To explore the molecular mechanism of graft union development, we applied high throughput RNA sequencing to investigate the transcriptomic profiles of graft union at four timepoints (0 days, 8 days, 15 days, and 30 days) during the pecan grafting process. After de novo assembly, 83,693 unigenes were obtained, and 40,069 of them were annotated. A total of 12,180 differentially expressed genes were identified between by grafting. Genes involved in hormone signaling, cell proliferation, xylem differentiation, cell elongation, secondary cell wall deposition, programmed cell death, and reactive oxygen species (ROS) scavenging showed significant differential expression during the graft union developmental process. In addition, we found that the content of auxin, cytokinin, and gibberellin were accumulated at the graft unions during the grafting process. These results will aid in our understanding of successful grafting in the future. PMID:29401757
Kurowska, Aleksandra; Zassowski, Pawel; Kostyuchenko, Anastasia S; Zheleznova, Tatyana Yu; Andryukhova, Kseniya V; Fisyuk, Alexander S; Pron, Adam; Domagala, Wojciech
2017-11-15
A structure-property study across a series of donor-acceptor-donor structures composed of mono- and bi-(1,3,4-oxadiazole) units symmetrically substituted with alkyl functionalized bi-, ter- and quaterthiophene segments is presented. Synthetically tailoring the ratio of electron-withdrawing 1,3,4-oxadiazole to electron-releasing thiophene units and their alkyl grafting pattern permitted us to scrutinize the impact of these structural factors on the redox, absorptive and emissive properties of these push-pull molecules. Contrasting trends of redox potentials were observed, with the oxidation potential closely following the donor-to-acceptor ratio, whereas the reduction potential being tuned independently by either the number of acceptor units or the conjugation length of the donor-acceptor system. Increasing the thiophene unit contribution delivered a shift from blue to green luminescence, while the structural rigidity afforded by intramolecular non-covalent interactions between 1,3,4-oxadiazole and the thiophene moieties has been identified as the prime factor determining the emission efficiency of these molecules. All six structures investigated electro-polymerize easily, yielding electroactive and electrochromic polymers. The polymer doping process is largely influenced by the length of the oligothiophene repeating unit and the alkyl chain grafting density. Polymers with relatively short oligothiophene segments are able to support polarons and polaron-pairs, whereas those with segments longer than six thiophene units could also stabilize diamagnetic charge carries - bipolarons. Increasing the alkyl chain grafting density improved the reversibility and broadened the working potential window of the p-doping process. Stable radical anions have also been investigated, bringing detailed information about the conjugation pattern of these electron-surplus species. This study delivers interesting clues towards the conscious structural design of bespoke frontier energy level oligothiophene functional materials and their polymers by incorporating a structurally matching 1,3,4-oxadiazole unit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Roger A. E.; Wang, Kewei; Qu, Jun
Developments of high performance lubricants are driven by increasingly growing industrial demands and environmental concerns. We demonstrate oil-soluble polymer brush-grafted inorganic nanoparticles (hairy NPs) as highly effective lubricant additives for friction and wear reduction. A series of oil-miscible poly(lauryl methacrylate) brush-grafted silica and titania NPs were synthesized by surface-initiated atom transfer radical polymerization. Moreover, these hairy NPs showed exceptional stability in poly(alphaolefin) (PAO) base oil; no change in transparency was observed after being kept at -20, 22, and 100°C for ≥55 days. High-contact stress ball-on-flat reciprocating sliding tribological tests at 100°C showed that addition of 1 wt% of hairy NPsmore » into PAO led to significant reductions in coefficient of friction (up to ≈40%) and wear volume (up to ≈90%). The excellent lubricating properties of hairy NPs were further elucidated by the characterization of the tribofilm formed on the flat. These hairy NPs represent a new type of lubricating oil additives with high efficiency in friction and wear reduction.« less
NASA Astrophysics Data System (ADS)
Bao, Lixia; Yang, Simei; Luo, Xin; Lei, Jingxin; Cao, Qiue; Wang, Jiliang
2015-12-01
The hydroxylated PVC (PVC-OH) was successfully synthesized by a suspension polymerization of vinyl chloride (VC), butyl acrylate (BA) and hydroxyethyl acrylate (HEA). Novel hydrophobic CaCO3 was then prepared by a urethane formation reaction between methylene diphenyl diisocyanate (MDI) and the sbnd OH groups both in the PVC-OH chains and on the surface of pristine CaCO3 particles. The effect of the PVC-OH content on the grafting ratio of treated CaCO3 particles was extensively investigated. Combining the result of Fourier transform infrared (FTIR) with that of water contact angle, it can be concluded that the hydrophobicity of CaCO3 had been efficiently improved by the PVC-OH segments grafted on the surface of CaCO3 particles. X-ray diffraction (XRD), thermal gravity analysis (TGA), scanning electron microscope (SEM) and transmission electron microscope (TEM) were also used to study crystalline behaviors, thermal stability and surface morphology of the modified CaCO3 particles, respectively. The change of specific surface area implying surface modification was investigated as well.
Liu, Rui; Dai, Lin; Hu, Li-Qiu; Zhou, Wen-Qin; Si, Chuan-Ling
2017-11-01
The need for green renewable alternatives such as lignin to traditional fillers has driven recent interest in polylactic acid blend materials. Herein, lignin-graft-polylactic acid copolymers (LG-g-PDLA, LG-g-PDLLA, and LG-g-PLLA) have been synthesized via ring-opening polymerization of d-, dl-, and l-lactic acid. Then poly(l-lactic acid)/lignin-graft-polylactic acid (PLLA/LG-g-PDLA, /LG-g-PDLLA, and /LG-g-PLLA) complex films have been prepared. The results showed that, compared with LG-g-PDLA and LG-g-PLLA, a small amount of LG-g-PDLA addition could improve the crystallization rate, reduce the glass transition temperature and cold crystallization temperature of PLLA due to the stereocomplex crystallites. The thermal stability, tensile strength and strain of the stereocomplex films were also enhanced. Moreover, the PLLA/LG-g-PDLA films have good ultraviolet resistance and excellent biocompatibility. This study provides a green approach to design advanced polylactic acid-based blends with renewable natural resources. Copyright © 2017 Elsevier B.V. All rights reserved.
Nanoscale evaluation of lubricity on well-defined polymer brush surfaces using QCM-D and AFM.
Kitano, Kazuhiko; Inoue, Yuuki; Matsuno, Ryosuke; Takai, Madoka; Ishihara, Kazuhiko
2009-11-01
For preparing a "highly lubricated biointerface", which has both excellent lubricity and biocompatibility, we investigated the factors responsible for resistance to friction during polymer grafting. We prepared poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), poly(2-hydroxyethyl methacrylate) (PHEMA), and poly(methyl methacrylate) (PMMA) brush layers with high graft density and well-controlled thickness using atom transfer radical polymerization (ATRP). We measured the water absorptivity in the polymer brush layers and the viscoelasticity of the polymer-hydrated layers using a quartz crystal microbalance with dissipation monitoring (QCM-D) measurements. The PMPC brush layer had the highest water absorptivity, while the PMPC-hydrated layer had the highest fluidity. The friction properties of the polymer brush layers were determined in air, water, and toluene by atomic force microscopy (AFM). The friction on each polymer brush decreased only when a good solvent was chosen for each polymer. In conclusion, the brush layer possessing high water absorptivity and fluidity in water contributes to reduce friction. PMPC grafting is an effective and promising method for obtaining highly lubricated biointerfaces.
Wright, Roger A. E.; Wang, Kewei; Qu, Jun; ...
2016-06-06
Developments of high performance lubricants are driven by increasingly growing industrial demands and environmental concerns. We demonstrate oil-soluble polymer brush-grafted inorganic nanoparticles (hairy NPs) as highly effective lubricant additives for friction and wear reduction. A series of oil-miscible poly(lauryl methacrylate) brush-grafted silica and titania NPs were synthesized by surface-initiated atom transfer radical polymerization. Moreover, these hairy NPs showed exceptional stability in poly(alphaolefin) (PAO) base oil; no change in transparency was observed after being kept at -20, 22, and 100°C for ≥55 days. High-contact stress ball-on-flat reciprocating sliding tribological tests at 100°C showed that addition of 1 wt% of hairy NPsmore » into PAO led to significant reductions in coefficient of friction (up to ≈40%) and wear volume (up to ≈90%). The excellent lubricating properties of hairy NPs were further elucidated by the characterization of the tribofilm formed on the flat. These hairy NPs represent a new type of lubricating oil additives with high efficiency in friction and wear reduction.« less
Xiao, Min; González, Edurne; Monterroza, Alexis Martell; Frey, Margaret
2017-10-15
A thermo-responsive polymer with hydrophilic to hydrophobic transition behavior, poly(vinyl caprolactam-co-hydroxyethyl acrylamide) P(VCL-co-HEAA), was prepared by copolymerization of vinyl caprolactam and N-hydroxyethyl acrylamide via free radical solution polymerization. The resulting copolymer was characterized by Fourier transform infrared spectroscopy (FTIR), 1 H nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The lower critical solution temperature (LCST) of P(VCL-co-HEAA) was determined at 34.5°C. This thermo-responsive polymer was then grafted onto cotton fabrics using 1,2,3,4-butanetetracarboxylic acid (BTCA) as crosslinker and sodium hypophosphite (SHP) as catalyst. FTIR and energy dispersive X-ray spectroscopy (EDS) studies confirmed the successful grafting reaction. The modified cotton fabric exhibited thermo-responsive behavior as evidenced by water vapor permeability measurement confirming decreased permeability at elevated temperature. This is the first demonstration that a PVCL based copolymer is grafted to cotton fabrics. This study provides a new thermo-responsive polymer for fabrication of smart cotton fabrics with thermally switchable hydrophilicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nanoporous thermosetting polymers.
Raman, Vijay I; Palmese, Giuseppe R
2005-02-15
Potential applications of nanoporous thermosetting polymers include polyelectrolytes in fuel cells, separation membranes, adsorption media, and sensors. Design of nanoporous polymers for such applications entails controlling permeability by tailoring pore size, structure, and interface chemistry. Nanoporous thermosetting polymers are often synthesized via free radical mechanisms using solvents that phase separate during polymerization. In this work, a novel technique for the synthesis of nanoporous thermosets is presented that is based on the reactive encapsulation of an inert solvent using step-growth cross-linking polymerization without micro/macroscopic phase separation. The criteria for selecting such a monomer-polymer-solvent system are discussed based on FTIR analysis, observed micro/macroscopic phase separation, and thermodynamics of swelling. Investigation of resulting network pore structures by scanning electron microscopy (SEM) and small-angle X-ray scattering following extraction and supercritical drying using carbon dioxide showed that nanoporous polymeric materials with pore sizes ranging from 1 to 50 nm can be synthesized by varying the solvent content. The differences in the porous morphology of these materials compared to more common free radically polymerized analogues that exhibit phase separation were evident from SEM imaging. Furthermore, it was demonstrated that the chemical activity of the nanoporous materials obtained by our method could be tailored by grafting appropriate functional groups at the pore interface.
Siddiqa, Akhtar Jahan; Chaudhury, Koel; Adhikari, Basudam
2014-04-01
The present work focuses on the design of a drug delivery system for systemic, controlled release of the poorly soluble breast cancer drug, letrozole. The drug delivery system was prepared in two steps: a low density polyethylene (LDPE) substrate surface was grafted with maleic anhydride (MA) via solution grafting technique. Next, the grafted substrate was used to anchor a hydrophilic polymeric drug release system consisting of poly (vinyl alcohol) (PVA). The PVA anchored MA grafted LDPE (PVA/MA-g-LDPE) drug release system was used for the controlled release of letrozole. This system was characterized using ATR-FTIR spectrophotometry, surface profilometry, and scanning electron microscopy. Biocompatibility studies were also carried out. In vitro release studies of letrozole from the system were performed in distilled water and phosphate buffer saline (PBS) at 37°C. Release of ∼90% letrozole from hydrophilic PVA matrix was observed within a period of 35 days. A high correlation coefficient (R(2)=0.99) was seen between the release of letrozole in distilled water and PBS. Cytotoxicity studies using MTT colorimetric assay suggested that all samples were biocompatible. It is concluded that the letrozole delivery system appears to overcome the limitations associated with letrozole by providing enhanced drug dissolution rate, controlled release and improved bioavailability of the incorporated drug and, therefore, seems to have extended therapeutic effects. Copyright © 2014 Elsevier B.V. All rights reserved.
Lu, Yongshang; Larock, Richard C
2007-10-01
A series of new waterborne polyurethane (PU)/acrylic hybrid latexes have been successfully synthesized by the emulsion polymerization of acrylic monomers (butyl acrylate and methyl methacrylate) in the presence of a soybean oil-based waterborne PU dispersion using potassium persulfate as an initiator. The waterborne PU dispersion has been synthesized by a polyaddition reaction of toluene 2,4-diisocyanate and a soybean oil-based polyol (SOL). The resulting hybrid latexes, containing 15-60 wt % SOL as a renewable resource, are very stable and exhibit uniform particle sizes of 125 +/- 20 nm as determined by transmittance electronic microscopy. The structure, thermal, and mechanical properties of the resulting hybrid latex films have been investigated by Fourier transform infrared spectroscopy, solid state 13C NMR spectroscopy, dynamic mechanical analysis, extraction, and mechanical testing. Grafting copolymerization of the acrylic monomers onto the PU network occurs during the emulsion polymerization, leading to a significant increase in the thermal and mechanical properties of the resulting hybrid latexes. This work provides a new way of utilizing renewable resources to prepare environmentally friendly hybrid latexes with high performance for coating applications.
A novel solid state photocatalyst for living radical polymerization under UV irradiation
NASA Astrophysics Data System (ADS)
Fu, Qiang; McKenzie, Thomas G.; Ren, Jing M.; Tan, Shereen; Nam, Eunhyung; Qiao, Greg G.
2016-02-01
This study presents the development of a novel solid state photocatalyst for the photoinduced controlled radical polymerization of methacrylates under mild UV irradiation (λmax ≈ 365 nm) in the absence of conventional photoinitiators, metal-catalysts or dye sensitizers. The photocatalyst design was based on our previous finding that organic amines can act in a synergistic photochemical reaction with thiocarbonylthio compounds to afford well controlled polymethacrylates under UV irradiation. Therefore, in the current contribution an amine-rich polymer was covalently grafted onto a solid substrate, thus creating a heterogeneous catalyst that would allow for facile removal, recovery and recyclability when employed for such photopolymerization reactions. Importantly, the polymethacrylates synthesized using the solid state photocatalyst (ssPC) show similarly excellent chemical and structural integrity as those catalysed by free amines. Moreover, the ssPC could be readily recovered and re-used, with multiple cycles of polymerization showing minimal effect on the integrity of the catalyst. Finally, the ssPC was employed in various photo-“click” reactions, permitting high yielding conjugations under photochemical control.
Application of Plasma Technology in the Life Sciences
NASA Astrophysics Data System (ADS)
Short, Robert
2002-10-01
This paper explores the versatility of plasma polymerization in the fabrication of surfaces for use in the Life Sciences and Tissue Engineering, highlighting three successful applications of plasma polymerized surfaces. 1. Plasma polymerized acrylic acid surfaces have been used as substrates for the culture and delivery of keratinocytes (skin cells) to chronic wounds. In proof of concept studies weekly delivery of keratinocytes have promoted healing in previously non-healing wounds. These include diabetic foot ulcers and wounds where skin grafts would normally be considered, but were contra-indicated. 2. Surface chemical patterning on the micrometer scale- length, by use of pre-fabricated masks, has been used to control the spatial binding of proteins and cells. This technology makes possible a significant reduction in size of biological assays, reducing the amount of material (e.g. antibody) or cells required. 3. Surface chemical potential gradients, from a few tens of micrometers to a few centrimeters, have been fabricated by "plasma writing", a technique currently being developed in Sheffield. These gradients are being developed to separate mixtures of biomolecules or cells.
Zeng, Guangjian; Liu, Meiying; Jiang, Ruming; Heng, Chunning; Huang, Qiang; Mao, Liucheng; Hui, Junfeng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen
2017-08-01
We reported a simple and efficient method to prepare the hydrophilic luminescent HAp polymer nanocomposites through the combination of ligand exchange and metal free light initiated surface-initiated atom transfer radical polymerization (SI-ATRP) using 10-phenylphenothiazine (PTH) as organic catalyst and 2-methacryloyloxyethyl phosphorylcholine (MPC) and itaconic acid (IA) as monomers. The biological imaging and drug delivery performance of HAp-poly(MPC-IA) nanorods were examined to evaluate their potential for biomedical applications. Results suggested that hydrophilic HAp-poly(MPC-IA) nanorods can be successfully prepared. More importantly, the HAp-poly(MPC-IA) exhibited excellent water dispersibility, desirable biocompatibility and good performance for biological imaging and controlled drug delivery applications. As compared with other controlled living polymerization reactions, the metal free light initiated SI-ATRP displayed many advantages such as easy for handle, mild reaction conditions, toxicity and fluorescence quenching from metal catalysts. Therefore, we believe that this strategy should be a useful and effective strategy for preparation of HAp nanomaterials for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
2010-01-01
environmental stability.3 Thus, PANi has been extensively studied as potential materials for anticorrosion coatings,4 batteries,5 sensors,6 and antistatic...better dispersibility and compatibility. Although various methods for the functionalization of CNTs have been reported in literature, most cases...was a FEI Tecnai G2 F30 S-Twin. The surface area was measured by nitrogen adsorption–desorption isotherms using the Brunauer-Emmett-Teller (BET) method
Microsphere coated substrate containing reactive aldehyde groups
NASA Technical Reports Server (NTRS)
Yen, Richard C. K. (Inventor); Rembaum, Alan (Inventor)
1984-01-01
A synthetic organic resin is coated with a continuous layer of contiguous, tangential, individual microspheres having a uniform diameter preferably between 100 Angstroms and 2000 Angstroms. The microspheres are an addition polymerized polymer of an unsaturated aldehyde containing 4 to 20 carbon atoms and are covalently bonded to the substrate by means of high energy radiation grafting. The microspheres contain reactive aldehyde groups and can form conjugates with proteins such as enzymes or other aldehyde reactive materials.
Temperature-responsive chromatography for the separation of biomolecules.
Kanazawa, Hideko; Okano, Teruo
2011-12-09
Temperature-responsive chromatography for the separation of biomolecules utilizing poly(N-isopropylacrylamide) (PNIPAAm) and its copolymer-modified stationary phase is performed with an aqueous mobile phase without using organic solvent. The surface properties and function of the stationary phase are controlled by external temperature changes without changing the mobile-phase composition. This analytical system is based on nonspecific adsorption by the reversible transition of a hydrophilic-hydrophobic PNIPAAm-grafted surface. The driving force for retention is hydrophobic interaction between the solute molecules and the hydrophobized polymer chains on the stationary phase surface. The separation of the biomolecules, such as nucleotides and proteins was achieved by a dual temperature- and pH-responsive chromatography system. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase, thus the separation system would have potential applications in the separation of biomolecules. Additionally, chromatographic matrices prepared by a surface-initiated atom transfer radical polymerization (ATRP) exhibit a strong interaction with analytes, because the polymerization procedure forms a densely packed polymer, called a polymer brush, on the surfaces. The copolymer brush grafted surfaces prepared by ATRP was an effective tool for separating basic biomolecules by modulating the electrostatic and hydrophobic interactions. Applications of thermally responsive columns for the separations of biomolecules are reviewed here. Copyright © 2011 Elsevier B.V. All rights reserved.
Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings.
Buzzacchera, Irene; Vorobii, Mariia; Kostina, Nina Yu; de Los Santos Pereira, Andres; Riedel, Tomáš; Bruns, Michael; Ogieglo, Wojciech; Möller, Martin; Wilson, Christopher J; Rodriguez-Emmenegger, Cesar
2017-06-12
Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach. Chitosan coatings were functionalized with polymer brushes of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate using photoinduced single electron transfer living radical polymerization and the surfaces were thoroughly characterized by XPS, AFM, water contact angle goniometry, and in situ ellipsometry. The antifouling properties of these new bioinspired hydrogel-brush coatings were investigated by surface plasmon resonance. The influence of the modifications to the chitosan on hemocompatibility was assessed by contacting the surfaces with platelets and leukocytes. The coatings were hydrophilic and reached a thickness of up to 180 nm within 30 min of polymerization. The functionalization of the surface with polymer brushes significantly reduced the protein fouling and eliminated platelet activation and leukocyte adhesion. This methodology offers a facile route to functionalizing implantable sensor systems with antifouling coatings that improve hemocompatibility and pave the way for enhanced device integration in tissue.
Grafting of functionalized polymer on porous silicon surface using Grignard reagent
NASA Astrophysics Data System (ADS)
Tighilt, F.-Z.; Belhousse, S.; Sam, S.; Hamdani, K.; Lasmi, K.; Chazalviel, J. N.; Gabouze, N.
2017-11-01
Recently, considerable attention has been paid to the manipulation and the control of the physicochemical properties of porous silicon surfaces because of their crucial importance to the modern microelectronics industry. Hybrid structures consisting of deposited polymer on porous silicon surfaces are important to applications in microelectronics, photovoltaics and sensors (Ensafi et al., 2016; Kashyout et al., 2015; Osorio et al.; 2015; Hejjo et al., 2002) [1-4]. In many cases, the polymer can provide excellent mechanical and chemical protection of the substrate, changes the electrochemical interface characteristics of the substrate, and provides new ways to the functionalization of porous silicon surfaces for molecular recognition and sensing. In this work, porous silicon surface was modified by anodic treatment in ethynylmagnesium bromide electrolyte leading to the formation of a polymeric layer bearing some bromine substituents. Subsequently, the formed polymer is functionalized with amine molecules containing functional groups (carboxylic acid or pyridine) by a substitution reaction between bromine sites and amine groups (Hofmann reaction). The chemical composition of the modified porous silicon surfaces was investigated and the grafting of polymeric chains and functional groups on the porous silicon surface was confirmed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) which displayed the principal characteristic peaks attributed to the different functional groups. Furthermore, the surface of the material was examined by scanning electron microscopy (SEM).
Kalaoğlu, Özlem I; Ünlü, Cüneyt H; Galioğlu Atıcı, Oya
2016-08-20
This study aims at evaluation of cellulose recovered from agricultural waste (corn cob) in terms of synthesis of graft copolymers, polymer/clay nanocomposites, and nanofibers. The copolymers and nanocomposites were synthesized in aqueous solution using Ce(4+) initiator. Conditions (concentrations of the components, reaction temperature, and period) were determined first for copolymer synthesis to obtain the highest conversion ratio. Then found parameters were used to synthesize nanocomposites adding clay mineral to reaction medium. Although there was a decrease in conversion in nanocomposites syntheses, thermal and rheologic measurements indicated enhancements compared to pristine copolymer. Obtained polymeric materials have been successfully electrospun into nanofibers and characterized. Average diameter of the nanofibers was about 650nm and was strongly influenced by NaMMT amount in the nanocomposite sample. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ali, Hager R.; El-Maghrabi, Heba H.; Zahran, Fouad; Moustafa, Yasser Mohamed
2017-12-01
Highly selective adsorbent for dibenzothiophene (DBT) was successfully designed and prepared. Molecularly imprinted polymer (MIP) and magnetic hydroxyapatite (MHAP) were used as building blocks for the novel nanocomposite adsorbent. MIP/MHAP was synthesized by grafting polymerization and surface molecular imprinting using DBT as a template molecule. The microstructure and morphology of the designed nanoadsorbent were examined via FTIR, SEM and VSM. Specific surface area and pore size distribution were determined by Quantachrome Nova 3200S automated gas sorption apparatus. Additionally, static adsorption experiments, isotherms and selective recognition adsorption studies were carried out. Reversed-phase high performance liquid chromatography (RP-HPLC) was used to determine DBT. The experimental data exhibits excellent adsorption capacity for DBT reaches 247 mg/g within 60 min. Competitive adsorption results proved that MIP/MHAP have a greater affinity towards DBT molecules than benzothiophene analogues. Pseudo-second-order model and the Langmuir isotherm were used to describe the adsorption process.
Hachache, Naima; Bal, Youcef; Debarnot, Dominique; Poncin-Epaillard, Fabienne
2014-02-01
Polypropylene fiber meshes were plasma-treated in order to attach new chemical functions corresponding to acidic or basic groups without altering the roughness of such thin material. An almost complete wettability of these plasma-treated materials is obtained. Because of the plasma-grafting of acid or amino moieties, such surface treatment allows increasing the adsorption rate of quaternary ammonium molecule like Aliquat 336. This increase was explained by specific interactions of ammonium head of the Aliquat 336 and hydrophilic group of plasma-treated PP, followed by the adsorption of a further layer of Aliquat 336 through hydrophobic interactions of its hydrocarbon chain. These interactions between the carrier and the polymeric surface were characterized leading to physisorption mechanism. Such new material could be applied to the extraction process since no evidence of aging was given. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhang, Hong-Yu; Zhu, Yu-Jiao; Hu, Xiang-Yu; Sun, Yan-Fang; Sun, Yu-Long; Han, Jian-Min; Yan, Yu; Zhou, Ming
2014-01-01
Surface grafting of polyelectrolyte brush, such as 3-sulfopropyl methacrylate potassium salt (SPMK), on hip implant materials has been reported to reduce the wear of the orthopaedic bearing surface. However, the biotribocorrosion behaviour of the SPMK brush has not been taken into consideration in previous research. In the present study, SPMK was grafted on Co28Cr6Mo alloy through photo-induced polymerization, and the biotribocorrosion behaviour was investigated by a series of frictional-electrochemical tests using a universal materials tester combined with an electrochemical measurement (three-electrode) system. Co28Cr6Mo disk and polyethylene (PE) pin were used as the contact pair, and the lubricants were 0.9% saline solution (NaCl) and 0.9% saline solution coupled with 25% bovine serum albumin (BSA). The results showed that SPMK was successfully grafted on Co28Cr6Mo alloy, which was confirmed by the comparison of Raman spectroscopy and static contact angle of the samples before and after surface modification. The greatly reduced electrochemical parameters such as corrosion current and pitting potential indicated that the corrosion rate of Co28Cr6Mo alloy was significantly reduced following SPMK grafting. Additionally, the frictional-electrochemical coupled measurement performed under reciprocating sliding demonstrated that the lowest corrosion current was obtained for the SPMK-grafted Co28Cr6Mo disk, with 0.9% NaCl coupled with 25% BSA as the electrolyte. It is indicated from the present study that SPMK polyelectrolyte brush can greatly improve the anti-biotribocorrosion properties of Co28Cr6Mo alloy, and thus has potential application on surface modification of hip implant materials.
Zhao, Lan; Zhang, Jingfei; Huang, Yongdong; Li, Qiang; Zhang, Rongyue; Zhu, Kai; Suo, Jia; Su, Zhiguo; Zhang, Zhigang; Ma, Guanghui
2016-03-01
Novel high-capacity Ni(2+) immobilized metal ion affinity chromatographic media were prepared through the dextran-grafting process. Dextran was grafted to an allyl-activated agarose-based matrix followed by functionalization for the immobilized metal ion affinity chromatographic media. With elaborate regulation of the allylation degree, dextran was completely or partly grafted to agarose microspheres, namely, completely dextran-grafted agarose microspheres and partly dextran-grafted ones, respectively. Confocal laser scanning microscope results demonstrated that a good adjustment of dextran-grafting degree was achieved, and dextran was distributed uniformly in whole completely dextran-grafted microspheres, while just distributed around the outside of the partly dextran-grafted ones. Flow hydrodynamic properties were improved greatly after the dextran-grafting process, and the flow velocity increased by about 30% compared with that of a commercial chromatographic medium (Ni Sepharose FF). A significant improvement of protein binding performance was also achieved by the dextran-grafting process, and partly dextran-grafted Ni(2+) chelating medium had a maximum binding capacity for His-tagged lactate dehydrogenase about 2.5 times higher than that of Ni Sepharose FF. The results indicated that this novel chromatographic medium is promising for applications in high-efficiency and large-scale protein purification. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modification of lignin for the production of new compounded materials.
Hüttermann, A; Mai, C; Kharazipour, A
2001-05-01
The cell walls of woody plants are compounded materials made by in situ polymerization of a polyphenolic matrix (lignin) into a web of fibers (cellulose), a process that is catalysed by polyphenoloxidases (laccases) or peroxidases. The first attempt to transform the basic strategy of this natural process for use in human craftsmanship was the ancient lacquer method. The sap of the lacquer tree (Rhus verniciflua) contains large amounts of a phenol (urushiol), a polysaccharide and the enzyme laccase. This oil-in-water emulsion solidifies in the presence of oxygen. The Chinese began using this phenomenon for the production of highly creative artwork more than 6,000 years ago. It was the first example of an isolated enzyme being used as a catalyst to create an artificial plastic compound. In order to apply this process to the production of products on an industrial scale, an inexpensive phenol must be used, which is transferred by an enzyme to active radicals that react with different components to form a compounded material. At present, the following approaches have been studied: (1) In situ polymerization of lignin for the production of particle boards. Adhesive cure is based on the oxidative polymerization of lignin using phenoloxidases (laccase) as radical donors. This lignin-based bio-adhesive can be applied under conventional pressing conditions. The resulting particle boards meet German performance standards. By this process, 80% of the petrochemical binders in the wood-composite industry can be replaced by materials from renewable resources. (2) Enzymatic copolymerization of lignin and alkenes. In the presence of organic hydroperoxides, laccase catalyses the reaction between lignin and olefins. Detailed studies on the reaction between lignin and acrylate monomers showed that chemo-enzymatic copolymerization offers the possibility to produce defined lignin-acrylate copolymers. The system allows control of the molecular weights of the products in a way that has not been possible with chemical catalysts. This is a novel attempt to enzymatically induce grafting of polymeric side chains onto the lignin backbone, and it enables the utilization of lignin as part of new engineering materials. (3) Enzymatic activation of the middle-lamella lignin of wood fibers for the production of wood composites. The incubation of wood fibers with a phenol oxidizing enzyme results in oxidative activation of the lignin crust on the fiber surface. When such fibers are pressed together, boards are obtained which meet the German standards for medium-density fiber boards (MDF). The fibers are bound together in a way that comes close to that by which wood fibers are bound together in naturally grown wood. This process will, for the first time, yield wood composites that are produced solely from naturally grown products without any addition of resins.
Engineering tunable bio-inspired polymeric coatings for amphiphobic fibrous materials
NASA Astrophysics Data System (ADS)
Oyola-Reynoso, Stephanie
Chemical grafting has been widely used to modify the surface properties of materials, especially surface energy for controlled wetting, because of the resilience of such coatings/modifications. Reagents with multiple reactive sites have been used with the expectation that a monolayer will form. The step-growth polymerization mechanism, however, suggests the possibility of gel formation for hydrolysable moieties in the presence of physisorbed water. In the following chapters, we demonstrate that using alkyltrichlorosilanes (trivalent [3 reactive sites]) in the surface modification of a cellulosic material (paper) does not yield a monolayer but rather gives surface-bound polymeric particles. We infer that the presence of physisorbed (surface-bound) water allows for polymerization (or oligomerization) of the silane, prior to its attachment on the surface. Surface energy mismatch between the hydrophobic tails of the growing polymer and any unreacted bound water leads to the assembly of the polymerizing material into spherical particles to minimize surface tension. By varying paper grammage (16.2-201.4 g/m2), we varied the accessible surface area and thus the amount of surface-adsorbed water, allowing us to control the ratio of the silane to the bound water. Using this approach, polymeric particles were formed on the surface of cellulose fibers ranging from 70 nm to a film. The hydrophobicity of the surface, as determined by water contact angles, correlates with particle sizes (p < 0.001, Student t-test), and, hence, the hydrophobicity can be tuned (contact angle between 94° and 149°). Using a model structure of a house, we demonstrated that as a result of this modification, cardboard houses can be rendered self-cleaning or tolerant to surface running water. Each of the chapters below supports the mechanism via a series of applications, material characterization, and/or, smart engineering.
2016-05-24
racteristics. 7•13•14 These modifications have included the use of alternative polyacids, 7•15•16 water- activated dehydrated polyacid powders, 7•15•17...cermets, 18 metal additions, 19’ 21 smaller glass particle size, 22 antibacterial agent s, n.24 different glass compositions, 15•25 and most recently...methacrylate (HEMA) or is uniquely grafted on the polyalkenoate acid chain. These monomers polymerize either by external photo activation or by an
The role of plant hormones during grafting.
Nanda, Amrit K; Melnyk, Charles W
2018-01-01
For millennia, people have cut and joined different plant tissues together through a process known as grafting. By creating a chimeric organism, desirable properties from two plants combine to enhance disease resistance, abiotic stress tolerance, vigour or facilitate the asexual propagation of plants. In addition, grafting has been extremely informative in science for studying and identifying the long-distance movement of molecules. Despite its increasing use in horticulture and science, how plants undertake the process of grafting remains elusive. Here, we discuss specifically the role of eight major plant hormones during the wound healing and vascular formation process, two phenomena involved in grafting. We furthermore present the roles of these hormones during graft formation and highlight knowledge gaps and future areas of interest for the field of grafting biology.
NASA Technical Reports Server (NTRS)
Stevenson, William A. (Inventor)
1989-01-01
A process for infrared spectroscopic monitoring of insitu compositional changes in a polymeric material comprises the steps of providing an elongated infrared radiation transmitting fiber that has a transmission portion and a sensor portion, embedding the sensor portion in the polymeric material to be monitored, subjecting the polymeric material to a processing sequence, applying a beam of infrared radiation to the fiber for transmission through the transmitting portion to the sensor portion for modification as a function of properties of the polymeric material, monitoring the modified infrared radiation spectra as the polymeric material is being subjected to the processing sequence to obtain kinetic data on changes in the polymeric material during the processing sequence, and adjusting the processing sequence as a function of the kinetic data provided by the modified infrared radiation spectra information.
NASA Technical Reports Server (NTRS)
Stevenson, William A. (Inventor)
1992-01-01
A process for infrared spectroscopic monitoring of insitu compositional changes in a polymeric material comprises the steps of providing an elongated infrared radiation transmitting fiber that has a transmission portion and a sensor portion, embedding the sensor portion in the polymeric material to be monitored, subjecting the polymeric material to a processing sequence, applying a beam of infrared radiation to the fiber for transmission through the transmitting portion to the sensor portion for modification as a function of properties of the polymeric material, monitoring the modified infrared radiation spectra as the polymeric material is being subjected to the processing sequence to obtain kinetic data on changes in the polymeric material during the processing sequence, and adjusting the processing sequence as a function of the kinetic data provided by the modified infrared radiation spectra information.
Design, Synthesis, and Self-Assembly of Polymers with Tailored Graft Distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Alice B.; Lin, Tzu-Pin; Thompson, Niklas B.
Grafting density and graft distribution impact the chain dimensions and physical properties of polymers. However, achieving precise control over these structural parameters presents long-standing synthetic challenges. In this report, we introduce a versatile strategy to synthesize polymers with tailored architectures via grafting-through ring-opening metathesis polymerization (ROMP). One-pot copolymerization of an ω-norbornenyl macromonomer and a discrete norbornenyl co-monomer (diluent) provides opportunities to control the backbone sequence and therefore the side chain distribution. Toward sequence control, the homopolymerization kinetics of 23 diluents were studied, representing diverse variations in the stereochemistry, anchor groups, and substituents. These modifications tuned the homopolymerization rate constants overmore » two orders of magnitude (0.36 M -1 s -1 < k homo < 82 M -1 s -1). Rate trends were identified and elucidated by complementary mechanistic and density functional theory (DFT) studies. Building on this foundation, complex architectures were achieved through copolymerizations of selected diluents with a poly (D,L-lactide) (PLA), polydimethylsiloxane (PDMS), or polystyrene (PS) macromonomer. The cross-propagation rate constants were obtained by non-linear least squares fitting of the instantaneous co-monomer concentrations according to the Mayo-Lewis terminal model. Indepth kinetic analyses indicate a wide range of accessible macromonomer/diluent reactivity ratios (0.08 < r 1/r 2 < 20), corresponding to blocky, gradient, or random backbone sequences. We further demonstrated the versatility of this copolymerization approach by synthesizing AB graft diblock polymers with tapered, uniform, and inverse-tapered molecular “shapes.” Small-angle X-ray scattering analysis of the self-assembled structures illustrates effects of the graft distribution on the domain spacing and backbone conformation. Collectively, the insights provided herein into the ROMP mechanism, monomer design, and homo- and copolymerization rate trends offer a general strategy for the design and synthesis of graft polymers with arbitrary architectures. Controlled copolymerization therefore expands the parameter space for molecular and materials design.« less
Design, Synthesis, and Self-Assembly of Polymers with Tailored Graft Distributions.
Chang, Alice B; Lin, Tzu-Pin; Thompson, Niklas B; Luo, Shao-Xiong; Liberman-Martin, Allegra L; Chen, Hsiang-Yun; Lee, Byeongdu; Grubbs, Robert H
2017-12-06
Grafting density and graft distribution impact the chain dimensions and physical properties of polymers. However, achieving precise control over these structural parameters presents long-standing synthetic challenges. In this report, we introduce a versatile strategy to synthesize polymers with tailored architectures via grafting-through ring-opening metathesis polymerization (ROMP). One-pot copolymerization of an ω-norbornenyl macromonomer and a discrete norbornenyl comonomer (diluent) provides opportunities to control the backbone sequence and therefore the side chain distribution. Toward sequence control, the homopolymerization kinetics of 23 diluents were studied, representing diverse variations in the stereochemistry, anchor groups, and substituents. These modifications tuned the homopolymerization rate constants over 2 orders of magnitude (0.36 M -1 s -1 < k homo < 82 M -1 s -1 ). Rate trends were identified and elucidated by complementary mechanistic and density functional theory (DFT) studies. Building on this foundation, complex architectures were achieved through copolymerizations of selected diluents with a poly(d,l-lactide) (PLA), polydimethylsiloxane (PDMS), or polystyrene (PS) macromonomer. The cross-propagation rate constants were obtained by nonlinear least-squares fitting of the instantaneous comonomer concentrations according to the Mayo-Lewis terminal model. In-depth kinetic analyses indicate a wide range of accessible macromonomer/diluent reactivity ratios (0.08 < r 1 /r 2 < 20), corresponding to blocky, gradient, or random backbone sequences. We further demonstrated the versatility of this copolymerization approach by synthesizing AB graft diblock polymers with tapered, uniform, and inverse-tapered molecular "shapes." Small-angle X-ray scattering analysis of the self-assembled structures illustrates effects of the graft distribution on the domain spacing and backbone conformation. Collectively, the insights provided herein into the ROMP mechanism, monomer design, and homo- and copolymerization rate trends offer a general strategy for the design and synthesis of graft polymers with arbitrary architectures. Controlled copolymerization therefore expands the parameter space for molecular and materials design.
El-Sheikh, Manal A
2016-11-05
The photosensitized grafting of vinyl monomers onto a range of polymeric substrates has been the subject of particular interest in the recent past. Carboxymethyl starch (CMS)-poly acrylamide (PAAm) graft copolymer (CMS-g-PAAm) with high graft yield was successfully prepared by grafting of acrylamide onto CMS using UV irradiation in the presence of the water soluble 4-(trimethyl ammoniummethyl) benzophenone chloride photoinitiator. CMS-g-PAAm with nitrogen content of 8.3% and grafting efficiency up to 98.9% was obtained using 100% AAm, a material: liquor ratio of 1:14 and 1% photinitiator at 30°C for 1h of UV irradiation. The synthesis of CMS-g-PAAm was confirmed by FTIR and Nitrogen content (%). Surface morphology of CMS and surface morphological changes of CMS after grafting with AAm were studied using SEM. Thermal properties of both CMS and CMS-g-PAAm were studied using TGA and DSC. To impart easy care finishing to cotton fabrics, aqueous formulations of: CMS-g-PAAm, dimethylol dihydroxy ethylene urea (DMDHEU), CMS-g-PAAm-DMDHEU mixture or methylolated CMS-g-PAAm were used. Cotton fabrics were padded in these formulations, squeezed to a wet pick up 100%, dried at 100°C for 5min, cured at 150°C for 5min, washed at 50°C for 10min and air-dried. CRA (crease recovery angle) of untreated fabrics and fabrics finished with a mixture of 2% CMS-g-PAAm and 10% DMDHEU or methylolated CMS-g-PAAm (10% formaldehyde) were: 136°, 190°, 288° respectively. Increasing the number of washing cycles up to five cycles results in an insignificant decrease in the CRA and a significant decrease in RF (releasable formaldehyde) of finished fabric samples. The morphologies of the finished and unfinished cotton fabrics were performed by SEM. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuzuki, M.; Hagiwara, I.; Shiraishi, N.
1980-12-01
Graft copolymerization of styrene onto cellulose was studied in a homogeneous system (SO/sub 2/(liquid)- diethylamine (DEA)-dimethyl sulfoxide (DMSO) medium)) by ..gamma..-ray mutual irradiation technique. At the same time, homopolymerization of styrene was also examined separately in DMSO, SO/sub 2/-DMSO, DEA-DMSO, and SO/sub 2/-DEA-DMSO media by the same technique. Polymerization of styrene hardly occurs on concentrations above 10 mole SO/sub 2/-DEA complex per mole glucose unit. Maximum percent grafting was obtained in concentrations of 4 mole, after which it decreased rapidly. Total conversion and percent grafting increased with the irradiation time. The value (=0.55) of the slope of the total conversionmore » rate plotted against the dose was only a little higher than the 1/2 which was expected from normal kinetics. No retardation in homopolymerization of styrene in DMSO, SO/sub 2/-DMSO, and DEA-DMSO was evident, while the retardation of homopolymerization in the SO/sub 2/-DEA-DMSO medium was measurable. Sulfur atoms were detected in the polymers obtained in both of SO/sub 2/-DMSO and SO/sub 2/-DEA-DMSO solutions. All of the molecular weights of polymers obtained in the present experiment were very low (3.9 x 10/sup 3/-1.75 x 10/sup 4/).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yue; Zhao, Yuming; Li, Yuguang C.
The lithium (Li) metal anode suffers severe interfacial instability from its high reactivity toward liquid electrolytes, especially carbonate-based electrolytes, resulting in poor electrochemical performance of batteries that use 4 V high-capacity cathodes. In this paper, we report a new skin-grafting strategy that stabilizes the Li metal–liquid electrolyte interface by coating the Li metal surface with poly((N-2,2-dimethyl-1,3-dioxolane-4-methyl)-5-norbornene-exo-2,3-dicarboximide), a chemically and electrochemically active polymer layer. This layer, composed of cyclic ether groups with a stiff polycyclic main chain, serves as a grafted polymer skin on the Li metal anode not only to incorporate ether-based polymeric components into the solid-electrolyte interphase (SEI) butmore » also to accommodate Li deposition/dissolution under the skin in a dendrite/moss-free manner. Consequently, a Li-metal battery employing a Li metal anode with the grafted skin paired with LiNi 0.5Co 0.2Mn 0.3O 2 cathode has a 90.0% capacity retention after 400 charge/discharge cycles and a capacity of 1.2 mAh/cm 2 in a carbonate-based electrolyte. Finally, this proof-of-concept study provides a new direction for regulating the interfacial chemistry of Li metal anodes and for enabling high-performance Li-metal batteries.« less
Gao, Yue; Zhao, Yuming; Li, Yuguang C.; ...
2017-10-06
The lithium (Li) metal anode suffers severe interfacial instability from its high reactivity toward liquid electrolytes, especially carbonate-based electrolytes, resulting in poor electrochemical performance of batteries that use 4 V high-capacity cathodes. In this paper, we report a new skin-grafting strategy that stabilizes the Li metal–liquid electrolyte interface by coating the Li metal surface with poly((N-2,2-dimethyl-1,3-dioxolane-4-methyl)-5-norbornene-exo-2,3-dicarboximide), a chemically and electrochemically active polymer layer. This layer, composed of cyclic ether groups with a stiff polycyclic main chain, serves as a grafted polymer skin on the Li metal anode not only to incorporate ether-based polymeric components into the solid-electrolyte interphase (SEI) butmore » also to accommodate Li deposition/dissolution under the skin in a dendrite/moss-free manner. Consequently, a Li-metal battery employing a Li metal anode with the grafted skin paired with LiNi 0.5Co 0.2Mn 0.3O 2 cathode has a 90.0% capacity retention after 400 charge/discharge cycles and a capacity of 1.2 mAh/cm 2 in a carbonate-based electrolyte. Finally, this proof-of-concept study provides a new direction for regulating the interfacial chemistry of Li metal anodes and for enabling high-performance Li-metal batteries.« less
Chou, Ying-Chao; Lee, Demei; Chang, Tzu-Min; Hsu, Yung-Heng; Yu, Yi-Hsun; Liu, Shih-Jung; Ueng, Steve Wen-Neng
2016-04-20
This study aimed to develop a new biodegradable polymeric cage to convert corticocancellous bone chips into a structured strut graft for treating segmental bone defects. A total of 24 adult New Zealand white rabbits underwent a left femoral segmental bone defect creation. Twelve rabbits in group A underwent three-dimensional (3D) printed cage insertion, corticocancellous chips implantation, and Kirschner-wire (K-wire) fixation, while the other 12 rabbits in group B received bone chips implantation and K-wire fixation only. All rabbits received a one-week activity assessment and the initial image study at postoperative 1 week. The final image study was repeated at postoperative 12 or 24 weeks before the rabbit scarification procedure on schedule. After the animals were sacrificed, both femurs of all the rabbits were prepared for leg length ratios and 3-point bending tests. The rabbits in group A showed an increase of activities during the first week postoperatively and decreased anterior cortical disruptions in the postoperative image assessments. Additionally, higher leg length ratios and 3-point bending strengths demonstrated improved final bony ingrowths within the bone defects for rabbits in group A. In conclusion, through this bone graft converting technique, orthopedic surgeons can treat segmental bone defects by using bone chips but with imitate characters of structured cortical bone graft.
Chou, Ying-Chao; Lee, Demei; Chang, Tzu-Min; Hsu, Yung-Heng; Yu, Yi-Hsun; Liu, Shih-Jung; Ueng, Steve Wen-Neng
2016-01-01
This study aimed to develop a new biodegradable polymeric cage to convert corticocancellous bone chips into a structured strut graft for treating segmental bone defects. A total of 24 adult New Zealand white rabbits underwent a left femoral segmental bone defect creation. Twelve rabbits in group A underwent three-dimensional (3D) printed cage insertion, corticocancellous chips implantation, and Kirschner-wire (K-wire) fixation, while the other 12 rabbits in group B received bone chips implantation and K-wire fixation only. All rabbits received a one-week activity assessment and the initial image study at postoperative 1 week. The final image study was repeated at postoperative 12 or 24 weeks before the rabbit scarification procedure on schedule. After the animals were sacrificed, both femurs of all the rabbits were prepared for leg length ratios and 3-point bending tests. The rabbits in group A showed an increase of activities during the first week postoperatively and decreased anterior cortical disruptions in the postoperative image assessments. Additionally, higher leg length ratios and 3-point bending strengths demonstrated improved final bony ingrowths within the bone defects for rabbits in group A. In conclusion, through this bone graft converting technique, orthopedic surgeons can treat segmental bone defects by using bone chips but with imitate characters of structured cortical bone graft. PMID:27104525
Shang, Jing; Hong, Kunlun; Wang, Tao; ...
2016-10-02
Here, polyethylene oxide (PEO) has been widely used in biomedical fields. The antibiofouling property of the PEO-modified surface has been extensively investigated but is far from being fully understood. A series of PEOs with narrowly distributed molecular weight (M w), synthesized with the technique of high vacuum anionic polymerization, have been successfully grafted onto the surface of silicon wafers. The power-law relationship between the thickness of the monolayer versus the M w of the grafted PEO shows a scaling of 0.3, indicating compact condensing of the chains. The static contact angles show higher hydrophobicity for the layer of PEO withmore » higher M w, which can be attributed to the closely packed conformation of the chains with high density. The frequency shift of the contact resonance indicates that the Young’s modulus decreases and the loss factor increases with the increase in the M w of PEO and the thickness of the PEO layers. Dielectric spectroscopy of bare or PEO-grafted wafers in the aqueous solutions reveals an interfacial polarization, which results from compositional and structural changes in the interface layer and depends on temperatures and salt concentrations. At a given grafting density, the PEO chains are swollen in pure water, demonstrating hydrophilic behavior, whereas they collapse in salt solutions, showing hydrophobic characteristics.« less
Yoo, Youngman; Martinez, Carlos; Youngblood, Jeffrey P
2017-09-20
The main objective of this study is to develop microencapsulation technology for thermal energy storage incorporating a phase change material (PCM) in a composite wall shell, which can be used to create a stable environment and allow the PCM to undergo phase change without any outside influence. Surface modification of cellulose nanocrystals (CNCs) was conducted by grafting poly(lactic acid) oligomers and oleic acid to improve the dispersion of nanoparticles in a polymeric shell. A microencapsulated phase change material (methyl laurate) with poly(urea-urethane) (PU) composite shells containing the hydrophobized cellulose nanocrystals (hCNCs) was fabricated using an in situ emulsion interfacial polymerization process. The encapsulation process of the PCMs with subsequent interfacial hCNC-PU to form composite microcapsules as well as their morphology, composition, thermal properties, and release rates was examined in this study. Oil soluble Sudan II dye solution in methyl laurate was used as a model hydrophobic fill, representing other latent fills with low partition coefficients, and their encapsulation efficiency as well as dye release rates were measured spectroscopically in a water medium. The influence of polyol content in the PU polymer matrix of microcapsules was investigated. An increase in polyol contents leads to an increase in the mean size of microcapsules but a decrease in the gel content (degree of cross-linking density) and permeability of their shell structure. The encapsulated PCMs for thermal energy storage demonstrated here exhibited promising performance for possible use in building or paving materials in terms of released heat, desired phase transformation temperature, chemical and physical stability, and concrete durability during placement.
Abbasian, Mojtaba; Jaymand, Mehdi; Niroomand, Pouneh; Farnoudian-Habibi, Amir; Karaj-Abad, Saber Ghasemi
2017-02-01
A series of chitosan-grafted polyaniline derivatives {chitosan-g-polyaniline (CS-g-PANI), chitosan-g-poly(N-methylaniline) (CS-g-PNMANI), and chitosan-g-poly(N-ethylaniline) (CS-g-PNEANI)} were synthesized by in situ chemical oxidation polymerization method. The synthesized copolymers were analyzed by means of Fourier transform infrared (FTIR), and ultraviolet-visible (UV-vis) spectroscopies, thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FE-SEM). These copolymers were applied as adsorbent for removal of acid red 4 (AR4) and direct red 23 (DR23) from aqueous solutions. The adsorption processes were optimized in terms of pH, adsorbent amount, and dyes concentrations. The maximum adsorption capacities (Q m ) for the synthesized copolymers were calculated, and among them the CS-g-PNEANI sample showed highest Q m for both AR4 (98mgg -1 ) and DR23 (112mgg -1 ) dyes. The adsorption kinetics of AR4 and DR23 dyes follow the pseudo-second order kinetic model. The regeneration and reusability tests revealed that the synthesized adsorbents had the relatively good reusability after five repetitions of the adsorption-desorption cycles. As the results, it is expected that the CS-g-PANIs find application for removal of reactive dyes (especially anionic dyes) from industrial effluents mainly due to their low production costs and high adsorption effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.
Morphological studies on block copolymer modified PA 6 blends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poindl, M., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de
Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymermore » was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.« less
Synthesis, properties and applications of bio-based materials
NASA Astrophysics Data System (ADS)
Srinivasan, Madhusudhan
Bio-based feedstock have become very significant as they offer a value proposition in terms of carbon balance and also in terms of endowing biodegradability where needed. Thus a lot of attention is being given to the modification such feedstock for different applications. Soybean oil is one such feedstock. The oil is a triglyceride ester composed of different fatty acids, which are common to other plant oils. Thus soybean oil serves as a platform for plant oils, as modifications of this oil, can in theory be extended to cover other plant oils. Methyl oleate was used as a model fatty acid ester, to synthesize hydroxyesters with ethylene glycol via a two stage oxidative cleavage of the double bonds. Ozone was chosen as the oxidant due to its many advantages. The first stage involved oxidation of the double bond to aldehydes, ozonides and acetals, which were subsequently converted to hydroxyesters (hydroxy values of 220 - 270) in near quantitative yield by treatment with Oxone. This method could be extended to soybean oil to make "polyols" which could find applications in resin syntheses. Silylation was employed as another platform to functionalize soybean oil and fatty acid methyl esters with a reactive silane (vinyltrimethoxy silane). This simple modification produced materials that are cured by atmospheric moisture and are useful as coatings. The silylation was controlled by varying the grafting time, cure temperature and the concentration of the silane. Products with gel content as high as 90% could be achieved. The coating exhibited good adhesion to metal, glass, concrete and paper. Steel panels coated with these coatings exhibited good stability against corrosion in high humidity conditions and moderate stability against a salt spray. The silylation was also successfully utilized to improve the tensile strength of the blend of biodegradable polyester, poly (butylene adipate-co-terephthalate) with talc. A reactive extrusion process was employed to graft vinyl silanes on the polyester in short reaction times of 5 minutes. This improved the compatibility with the talc filler. This biodegradable polyester product was characterized by high tensile strength and moderate elongation. The modification method is simple is applicable to a variety of aliphatic biodegradable polyesters. Finally a rapid polymerization of 1, 4-dioxan-2-one in very short times was accomplished with titanium alkoxides as initiators. At low [monomer]/ [initiator] ratios (100:1), nearly all the alkoxide groups initiated polymerization. High conversions up to 90% were achieved even at high ratios (2400:1). The activation energy for polymerization for titanium tetraisopropoxide is the lowest reported (33.5 kJ/mol) for this monomer system.
Characterization of poly(allylamine) as a polymeric ligand for ion-exchange protein chromatography.
Li, Ming; Li, Yanying; Yu, Linling; Sun, Yan
2017-02-24
This work reports poly(allylamine) (PAA), as a polymeric ion-exchange ligand for protein chromatography. Sepharose FF was modified with PAA, and six anion exchangers with ionic capacities (ICs) from 165 to 618mmol/L were prepared. Inverse size exclusion chromatography, adsorption equilibrium, uptake kinetics and column elution were performed. It was found that both the adsorption capacity and effective diffusivity maintained low values in the IC range of 165-373mmol/L, but they started to increase beyond 373mmol/L, and increased by 80% and 23 times, respectively, when the IC reached 618mmol/L. Interestingly, a drastic decrease of pore size was observed around the IC of 373mmol/L. The results suggest that the PAA chains played an important role in protein adsorption by altering the inner pore structure of the gels. It is considered that, PAA chains turn from inextensible states with multipoint-grafting on the pore surface at low coupling densities (IC<373mmol/L) to closer, extended and flexible grafting states with less coupling points at higher coupling densities (IC>373mmol/L). These characters of the grafted chains at higher IC values benefit in protein adsorption by three-dimensional binding and encouraged the happening of "chain delivery" of bound proteins on the chains. Besides, the ion exchangers showed favorable adsorption and uptake properties in a wide ionic strength range, 0-500mmol/L NaCl, indicating much better salt tolerance feature than the so-far reported ion exchangers. Moreover, a mild condition of pH 5.0 offered effective recovery of bound proteins in elution chromatography. The results indicate that the PAA-based anion exchanger of a high IC value is promising for high-capacity protein chromatography dealing with feedstock of a wide range of ionic strengths. Copyright © 2016 Elsevier B.V. All rights reserved.
Solution Exchange Lithography: A Versatile Tool for Sequential Surface Engineering
NASA Astrophysics Data System (ADS)
Pester, Christian; Mattson, Kaila; Bothman, David; Klinger, Daniel; Lee, Kenneth; Discekici, Emre; Narupai, Benjaporn; Hawker, Craig
The covalent attachment of polymers has emerged as a viable strategy for the preparation of multi-functional surfaces. Patterned, surface-grafted polymer brushes provide spatial control over wetting, mechanical, biological or electronic properties, and allow fabrication of `intelligent' substrates which selectively adapt to their environment. However, the route towards patterned polymer brush surfaces often remains challenging, creating a demand for more efficient and less complicated fabrication strategies. We describe the design and application of a novel experimental setup to combine light-mediated and flow chemistry for the fabrication of hierarchical surface-grafted polymer brushes. Using light-mediated, surface initiated controlled radical polymerization and post-functionalization via well-established, and highly efficient chemistries, polymer brush films of previously unimaginable complexity are now shown to be accessible. This methodology allows full flexibility to exchange both lithographic photomasks and chemical environments in-situ, readily affording multidimensional thin film architectures, all from uniformly functionalized substrates.
Weber, Theresa; Bechthold, Maren; Winkler, Tobias; Dauselt, John; Terfort, Andreas
2013-11-01
Direct grafting of hyperbranched polyglycerol (PG) layers onto the oxide surfaces of steel, aluminum, and silicon has been achieved through surface-initiated polymerization of 2-hydroxymethyloxirane (glycidol). Optimization of the deposition conditions led to a protocol that employed N-methyl-2-pyrrolidone (NMP) as the solvent and temperatures of 100 and 140 °C, depending on the substrate material. In all cases, a linear growth of the PG layers could be attained, which allows for control of film thickness by altering the reaction time. At layer thicknesses >5 nm, the PG layers completely suppressed the adhesion of albumin, fibrinogen, and globulin. These layers were also at least 90% bio-repulsive for two bacteria strains, E. coli and Acinetobacter baylyi, with further improvement being observed when the PG film thickness was increased to 17 nm (up to 99.9% bio-repulsivity on silicon). Copyright © 2013 Elsevier B.V. All rights reserved.
Liu, Jianxi; Ma, Shuanhong; Wei, Qiangbing; Jia, Lei; Yu, Bo; Wang, Daoai; Zhou, Feng
2013-12-07
Smart systems on the nanometer scale for continuous flow-through reaction present fascinating advantages in heterogeneous catalysis, in which a parallel array of straight nanochannels offers a platform with high surface area for assembling and stabilizing metallic nanoparticles working as catalysts. Herein we demonstrate a method for finely modifying the nanoporous anodic aluminum oxide (AAO), and further integration of nanoreactors. By using atomic transfer radical polymerization (ATRP), polymer brushes were successfully grafted on the inner wall of the nanochannels of the AAO membrane, followed by exchanging counter ions with a precursor for nanoparticles (NPs), and used as the template for deposition of well-defined Au NPs. The membrane was used as a functional nanochannel for novel flow-through catalysis. High catalytic performance and instantaneous separation of products from the reaction system was achieved in reduction of 4-nitrophenol.
NASA Astrophysics Data System (ADS)
Liu, Jianxi; Ma, Shuanhong; Wei, Qiangbing; Jia, Lei; Yu, Bo; Wang, Daoai; Zhou, Feng
2013-11-01
Smart systems on the nanometer scale for continuous flow-through reaction present fascinating advantages in heterogeneous catalysis, in which a parallel array of straight nanochannels offers a platform with high surface area for assembling and stabilizing metallic nanoparticles working as catalysts. Herein we demonstrate a method for finely modifying the nanoporous anodic aluminum oxide (AAO), and further integration of nanoreactors. By using atomic transfer radical polymerization (ATRP), polymer brushes were successfully grafted on the inner wall of the nanochannels of the AAO membrane, followed by exchanging counter ions with a precursor for nanoparticles (NPs), and used as the template for deposition of well-defined Au NPs. The membrane was used as a functional nanochannel for novel flow-through catalysis. High catalytic performance and instantaneous separation of products from the reaction system was achieved in reduction of 4-nitrophenol.
Du, Yanqiu; Li, Chunming; Jin, Jing; Li, Chao; Jiang, Wei
2018-01-01
Amino acid-based P(acryloyl-6-aminocaproic acid) (PAACA) brushes were fabricated on polyisobutylene (PIB) surface combined with plasma pre-treatment and UV-induced grafting polymerization to construct an antifouling and functional material. The hydrophilicity and hemocompatibility of PIB were largely improved by surface modification of AACA, which were confirmed by water contact angle and platelet adhesion, respectively. PAACA brushes were precisely located onto the surface of PIB to create a patterned PIB-g-PAACA structure, and then the carboxyl groups on PAACA was activated to immobilize functional protein-Concanavalin A (Con A). The obtained Con A-coupled microdomains could further capture erythrocytes. This method developed a platform on commercial PIB surface via amino acid-based polymer brushes which had a promising application in drug delivery and disease diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Yugang; Luo, Weiang; Ye, Guodong
2015-02-01
A new polypeptide-based copolymer brush composed of poly (γ-propargyl-L-glutamate)-block-poly (propylene oxide)-block-poly (γ-propargyl-L-glutamate) backbone (PPLG-b-PPO-b-PPLG) and oligo (ethylene glycol) (PEG) side-chain was synthesized by combination of N-carboxyanhydride ring-opening polymerization and click chemistry. Nearly 100% grafting efficiency was achieved by copper-catalyzed azide-alkyne Huisgen 1,3-dipolar cycloaddition (CuAAc) reaction. The α-helical conformation adopted by the grafted polypeptide blocks in water was relatively stable and showed a reversible change in a heating-cooling circle from 5 to 70 °C. It displayed weak stability against elevated temperature but still reversible changes in the presence of 0.47 M NaCl. The brushes were amphiphilic and could self-assemble into thermo-sensitive micelles in water. Big micelles could break into small micelles upon heating due to the improved solubility.
Yuan, Mingwei; Xiong, Chengdong; Jiang, Lin; Li, Hongli
2018-01-01
Graphene oxide (GO) was employed for the preparation of GO-zinc oxide (ZnO). The hydroxyl group on the surface was exploited to trigger the l-lactide ring-opening polymerization. A composite material with poly(l-lactide) (PLLA) chains grafted to the GO-ZnO surface, GO-ZnO-PLLA, was prepared. The results demonstrated that the employed method allowed one-step, rapid grafting of PLLA to the GO-ZnO surface. The chemical structure of the GO surface was altered by improved dispersion of GO-ZnO in organic solvents, thus enhancing the GO-ZnO dispersion in the PLLA matrix and the interface bonding with PLLA. Subsequently, composite films, GO-ZnO-PLLA and GO-ZnO-PLLA/PLLA, were prepared. The changes in interface properties and mechanical properties were studied. Furthermore, the antibacterial performance of nano-ZnO was investigated. PMID:29473891
Xie, Qing-tiao; Huang, Xuan-ping; Jiang, Xian-fang; Yang, Yuan-yuan; Li, Hua; Lin, Xi
2013-08-01
To evaluate the clinical effect of joint reconstruction by using autogenous coronoid process graft to treat temporomandibular joint(TMJ) ankylosis. Nine cases of TMJ ankylosis from September 2008 to September 2010 were surgically treated by joint reconstruction with autogenous coronoid process graft, using autogenous articular disc or prosthodontic membrane as interpositional material. Mouth opening, occlusion and cone beam CT(CBCT) were used for evaluation before and after surgery. Satisfactory mouth opening was achieved in all patients and no one got occlusal changes or reankylosis during follow-up. CBCT showed that coronoid process graft reached bone union with the ramus and turned to be round. It is effective to cure TMJ ankylosis through joint reconstruction with autogenous coronoid process graft.