Science.gov

Sample records for grain eesti abistab

  1. Grain Spectroscopy

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1992-01-01

    Our fundamental knowledge of interstellar grain composition has grown substantially during the past two decades thanks to significant advances in two areas: astronomical infrared spectroscopy and laboratory astrophysics. The opening of the mid-infrared, the spectral range from 4000-400 cm(sup -1) (2.5-25 microns), to spectroscopic study has been critical to this progress because spectroscopy in this region reveals more about a materials molecular composition and structure than any other physical property. Infrared spectra which are diagnostic of interstellar grain composition fall into two categories: absorption spectra of the dense and diffuse interstellar media, and emission spectra from UV-Vis rich dusty regions. The former will be presented in some detail, with the latter only very briefly mentioned. This paper summarized what we have learned from these spectra and presents 'doorway' references into the literature. Detailed reviews of many aspects of interstellar dust are given.

  2. Presolar Grains

    NASA Astrophysics Data System (ADS)

    Zinner, E. K.

    2003-12-01

    Traditionally, astronomers have studied the stars by using, with rare exception, electromagnetic radiation received by telescopes on and above the Earth. Since the mid-1980s, an additional observational window has been opened in the form of microscopic presolar grains found in primitive meteorites. These grains had apparently formed in stellar outflows of late-type stars and in the ejecta of stellar explosions and had survived the formation of the solar system. They can be located in and extracted from their parent meteorites and studied in detail in the laboratory. Their stellar origin is recognized by their isotopic compositions, which are completely different from those of the solar system and, for some elements, cover extremely wide ranges, leaving little doubt that the grains are ancient stardust.By the 1950s it had been conclusively established that the elements from carbon on up are produced by nuclear reactions in stars and the classic papers by Burbidge et al. (1957) and Cameron (1957) provided a theoretical framework for stellar nucleosynthesis. According to these authors, nuclear processes produce elements with very different isotopic compositions, depending on the specific stellar source. The newly produced elements are injected into the interstellar medium (ISM) by stellar winds or as supernova (SN) ejecta, enriching the galaxy in "metals" (all elements heavier than helium) and after a long galactic history the solar system is believed to have formed from a mix of this material. In fact, the original work by Burbidge et al. and Cameron was stimulated by the observation of regularities in the abundance of the nuclides in the solar system as obtained by the study of meteorites (Suess and Urey, 1956). Although providing only a grand average of many stellar sources, the solar system abundances of the elements and isotopes ( Anders and Grevesse, 1989; Grevesse et al., 1996; see Chapter 1.03; Lodders, 2003) remained an important test for nucleosynthesis

  3. Grain Spectroscopy

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1992-01-01

    Our fundamental knowledge of interstellar grain composition has grown substantially during the past two decades thanks to significant advances in two areas: astronomical infrared spectroscopy and laboratory astrophysics. The opening of the mid-infrared, the spectral range from 4000-400 cm(sup -1) (2.5-25 microns), to spectroscopic study has been critical to this progress because spectroscopy in this region reveals more about a materials molecular composition and structure than any other physical property. Infrared spectra which are diagnostic of interstellar grain composition fall into two categories: absorption spectra of the dense and diffuse interstellar media, and emission spectra from UV-Vis rich dusty regions. The former will be presented in some detail, with the latter only very briefly mentioned. This paper summarized what we have learned from these spectra and presents 'doorway' references into the literature. Detailed reviews of many aspects of interstellar dust are given.

  4. Interstellar grains within interstellar grains

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.; Amari, Sachiko; Zinner, Ernst K.; Lewis, Roy S.

    1991-01-01

    Five interstellar graphite spherules extracted from the Murchison carbonaceous meteorite are studied. The isotopic and elemental compositions of individual particles are investigated with the help of an ion microprobe, and this analysis is augmented with structural studies of ultrathin sections of the grain interiors by transmission electron microscopy. As a result, the following procedure for the formation of the interstellar graphite spherule bearing TiC crystals is inferred: (1) high-temperature nucleation and rapid growth of the graphitic carbon spherule in the atmosphere of a carbon-rich star, (2) nucleation and growth of TiC crystals during continued growth of the graphitic spherule and the accretion of TiC onto the spherule, (3) quenching of the graphite growth process by depletion of C or by isolation of the spherule before other grain types could condense.

  5. Interstellar grains within interstellar grains

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.; Amari, Sachiko; Zinner, Ernst K.; Lewis, Roy S.

    1991-01-01

    Five interstellar graphite spherules extracted from the Murchison carbonaceous meteorite are studied. The isotopic and elemental compositions of individual particles are investigated with the help of an ion microprobe, and this analysis is augmented with structural studies of ultrathin sections of the grain interiors by transmission electron microscopy. As a result, the following procedure for the formation of the interstellar graphite spherule bearing TiC crystals is inferred: (1) high-temperature nucleation and rapid growth of the graphitic carbon spherule in the atmosphere of a carbon-rich star, (2) nucleation and growth of TiC crystals during continued growth of the graphitic spherule and the accretion of TiC onto the spherule, (3) quenching of the graphite growth process by depletion of C or by isolation of the spherule before other grain types could condense.

  6. Grain Handling and Storage.

    ERIC Educational Resources Information Center

    Harris, Troy G.; Minor, John

    This text for a secondary- or postecondary-level course in grain handling and storage contains ten chapters. Chapter titles are (1) Introduction to Grain Handling and Storage, (2) Elevator Safety, (3) Grain Grading and Seed Identification, (4) Moisture Control, (5) Insect and Rodent Control, (6) Grain Inventory Control, (7) Elevator Maintenance,…

  7. Grain Grading and Handling.

    ERIC Educational Resources Information Center

    Rendleman, Matt; Legacy, James

    This publication provides an introduction to grain grading and handling for adult students in vocational and technical education programs. Organized in five chapters, the booklet provides a brief overview of the jobs performed at a grain elevator and of the techniques used to grade grain. The first chapter introduces the grain industry and…

  8. Marketing Farm Grain Crops.

    ERIC Educational Resources Information Center

    Ridenour, Harlan E.

    This vocational agriculture curriculum on grain marketing contains three parts: teacher guide, student manual, and student workbook. All three are coordinated and cross-referenced. The course is designed to give students of grain marketing a thorough background in the subject and provide practical help in developing grain marketing strategies for…

  9. Grain Refinement of Magnesium

    NASA Astrophysics Data System (ADS)

    Lee, Y. C.; Dahle, A. K.; StJohn, D. H.

    Grain formation during solidification of magnesium and Mg-Al alloys has been studied with a focus on grain refinement mechanisms, solute and particle effects. The variation in grain size with increased aluminium content in hypoeutectic Mg-Al alloys showed a continuous decrease in grain size up to 5 wt% Al, and a stabilisation at higher Al contents (above 5 wt%). Strontium additions to both low- and high-aluminium content magnesium alloys showed that Sr had a significant grain refining effect in low-aluminium containing alloys. However, strontium had a negligible effect on grain size in the Mg-9Al alloy. Additions of Zr, Si, or Ca to pure magnesium produced significant grain refinement, probably because these elements have high growth restriction effects during solidification. An attempt was made to identify the grain refinement effect of particles added directly to the melt that are considered to be powerful nucleants in Al based alloys (TiC) and in Mg based alloys (AlN, Al4C3). Most of these particles produced grain refinement, probably because of enhanced nucleation due to the small lattice disregistry between their crystal structures and that of magnesium. However, it is not clear whether the grain refining mechanism of the effective particles was catalysis of primary crystal nucleation or simply restriction of crystal growth during solidification.

  10. Origins of GEMS Grains

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Walker, R. M.

    2012-01-01

    Interplanetary dust particles (IDPs) collected in the Earth s stratosphere contain high abundances of submicrometer amorphous silicates known as GEMS grains. From their birth as condensates in the outflows of oxygen-rich evolved stars, processing in interstellar space, and incorporation into disks around new stars, amorphous silicates predominate in most astrophysical environments. Amorphous silicates were a major building block of our Solar System and are prominent in infrared spectra of comets. Anhydrous interplanetary dust particles (IDPs) thought to derive from comets contain abundant amorphous silicates known as GEMS (glass with embedded metal and sulfides) grains. GEMS grains have been proposed to be isotopically and chemically homogenized interstellar amorphous silicate dust. We evaluated this hypothesis through coordinated chemical and isotopic analyses of GEMS grains in a suite of IDPs to constrain their origins. GEMS grains show order of magnitude variations in Mg, Fe, Ca, and S abundances. GEMS grains do not match the average element abundances inferred for ISM dust containing on average, too little Mg, Fe, and Ca, and too much S. GEMS grains have complementary compositions to the crystalline components in IDPs suggesting that they formed from the same reservoir. We did not observe any unequivocal microstructural or chemical evidence that GEMS grains experienced prolonged exposure to radiation. We identified four GEMS grains having O isotopic compositions that point to origins in red giant branch or asymptotic giant branch stars and supernovae. Based on their O isotopic compositions, we estimate that 1-6% of GEMS grains are surviving circumstellar grains. The remaining 94-99% of GEMS grains have O isotopic compositions that are indistinguishable from terrestrial materials and carbonaceous chondrites. These isotopically solar GEMS grains either formed in the Solar System or were completely homogenized in the interstellar medium (ISM). However, the

  11. Detection of insects in grain

    USDA-ARS?s Scientific Manuscript database

    Detecting insects hidden inside kernels of grain is important to grain buyers because internal infestations can result in insect fragments in products made from the grain, or, if the grain is stored before use, the insect population can increase and damage the grain further. In a study in the Unite...

  12. Convection in grain refining

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.; Szekely, J.

    1982-01-01

    The relationship between fluid flow phenomena, nucleation, and grain refinement in solidifying metals both in the presence and in the absence of a gravitational field was investigated. The reduction of grain size in hard-to-process melts; the effects of undercooling on structure in solidification processes, including rapid solidification processing; and control of this undercooling to improve structures of solidified melts are considered. Grain refining and supercooling thermal modeling of the solidification process, and heat and fluid flow phenomena in the levitated metal droplets are described.

  13. Circumstellar grain formation

    NASA Technical Reports Server (NTRS)

    Draine, B. T.

    1986-01-01

    Dust formation around cool giant and supergiant stars is examined in terms of grain formulation. Optical properties of small clusters, molecular physics of cluster nucleation and growth, circumstellar mass flows, and their application to alpha Ori are discussed.

  14. Presolar Grains in Indarch

    NASA Astrophysics Data System (ADS)

    Gao, X.; Nittler, L. R.; Swan, P. D.; Walker, R. M.

    1995-09-01

    We report results for the EH(4) Indarch. Earlier work [1] found 20 micrometers clumps of sub-micron SiC whose presolar nature was inferred from step-wise combustion, noble gas [2], and ion probe isotopic measurements. Our results indicate that the clumps were an artifact of sample preparation. Our sample was first cleaned using 6N HCl, and water and isopropanol rinses, then powdered and reacted with HCl-HF/HCl, KOH, and H3BO3-HCl/HCl giving a C-rich residue 1.14 wt.% of the original. X-ray mapping showed SiC grains and 5x as many Si3N4 grains, but no fine-grained clumps. Large (6 micrometers to 20 micrometers) C-rich spheroids were also present. The sample was further treated with KOH/HNO3 and NH3H2O; attempts to do density-separates were unsuccessful. An aliquot was treated with perchloric acid and separated into <1 micrometers and >1 micrometer fractions. SEM-EDS measurements of 73 (<1 micrometer) grains showed 44 SiC, 19 Si3N4, 4 C only, and 6 C with minor Si (both the C and Si in these particles are isotopically normal). A similar distribution of species was found for 37 (>1 micrometer) grains with the addition of 2 spinel and one Al2O3 grains. The whole rock concentration of SiC was 5.8 ppm, higher than previous determinations [1,3,9]. Confirming earlier suggestions [1,2], we find that SiC in Indarch is much finer-grained than in Murchison; about 2/3 of the mass is in grains <=0.3 micrometers compared to only about 4% for Murchison. This may represent size-sorting in the nebula or selective destruction of fine-grained material. Ion probe measurements of 22 (1-3 micrometers) grains gave isotopic results in the range previously measured for Murchison SiCs [4]. Several normal Si3N4 grains (>1 micron) were measured; probably exsolution products similar to those in Qingzhen [7]. Ion mapping was used to search for presolar oxide grains using previously developed techniques [5]. Seven candidate grains out of ~1000 were found. Multiple imaging confirmed an ^(16)O/^(18

  15. Whole Grains and Fiber

    MedlinePlus

    ... 2016 Any food made from wheat, rice, oats, corn, or another cereal is a grain product. Bread, ... Examples include whole wheat, oats/oatmeal, rye, barley, corn, popcorn, brown rice, wild rice, buckwheat, triticale, bulgur ( ...

  16. Film grain synthesis and its application to re-graining

    NASA Astrophysics Data System (ADS)

    Schallauer, Peter; Mörzinger, Roland

    2006-01-01

    Digital film restoration and special effects compositing require more and more automatic procedures for movie regraining. Missing or inhomogeneous grain decreases perceived quality. For the purpose of grain synthesis an existing texture synthesis algorithm has been evaluated and optimized. We show that this algorithm can produce synthetic grain which is perceptually similar to a given grain template, which has high spatial and temporal variation and which can be applied to multi-spectral images. Furthermore a re-grain application framework is proposed, which synthesises based on an input grain template artificial grain and composites this together with the original image content. Due to its modular approach this framework supports manual as well as automatic re-graining applications. Two example applications are presented, one for re-graining an entire movie and one for fully automatic re-graining of image regions produced by restoration algorithms. Low computational cost of the proposed algorithms allows application in industrial grade software.

  17. Fingering phenomena during grain-grain displacement

    NASA Astrophysics Data System (ADS)

    Mello, Nathália M. P.; Paiva, Humberto A.; Combe, G.; Atman, A. P. F.

    2017-04-01

    Spontaneous formation of fingered patterns during the displacement of dense granular assemblies was experimentally reported few years ago, in a radial Hele-Shaw cell. Here, by means of discrete element simulations, we have recovered the experimental findings and extended the original study to explore the control parameters space. In particular, using assemblies of grains with different geometries (monodisperse, bidisperse, or polydisperse), we measured the macroscopic stress tensor in the samples in order to confirm some conjectures proposed in analogy with Saffman-Taylor viscous fingering phenomena for immiscible fluids. Considering an axial setup which allows to control the discharge of grains and to follow the trajectory and the pressure gradient along the displacing interface, we have applied the Darcy law for laminar flow in fluids in order to measure an "effective viscosity" for each assembly combination, in an attempt to mimic variation of the viscosity ratio between the injected/displaced fluids in the Saffman-Taylor experiment. The results corroborate the analogy with the viscous fluids displacement, with the bidisperse assembly corresponding to the less viscous geometry. But, differently to fluid case, granular fingers only develop for a specific combination of displaced/injected geometries, and we have demonstrated that it is always related with the formation of a force chain network along the finger direction.

  18. Grain fever syndrome induced by inhalation of airborne grain dust.

    PubMed

    doPico, G A; Flaherty, D; Bhansali, P; Chavaje, N

    1982-05-01

    To study the clinical and physiologic manifestations of the grain fever syndrome and the potentially pathogenic role of complement activation, 12 subjects (six grain workers and six healthy non-grain workers) underwent inhalation provocations with airborne grain dust. The clinical response was characterized by facial warmth, headache, malaise, myalgias, feverish sensation, chilliness, throat and tracheal burning sensation, chest tightness, dyspnea, cough, and expectoration. Fever developed in four grain workers and two controls. Leukocytosis, ranging between 11,700 and 24,300 leukocytes/mm3 with left shift, developed in five grain workers and five controls. There was no evidence of complement activation by the classical or alternate pathway. None of the subjects had serum precipitins to grain dust. The pulmonary response was characterized by a decrease in FEV1, FVC, MMF, Vmax50, and Vmax75, with significant rise in pulmonary resistance and consistent change in dynamic compliance but without changes in static compliance or diffusing capacity. Hence, grain dust inhalation induced diffuse airways obstruction without detectable parenchymal reaction. The airways response to high concentrations of grain dust inhalation were unrelated to the presence of immediate skin hypersensitivity. Although we cannot exclude the etiopathogenetic role of an immunologic reaction to grain dust, our data do not support the hypothesis that the grain fever syndrome is a precipitin-mediated allergic pneumonitis. More likely, the manifestations of grain fever probably reflect the host reaction to grain dust bacterial endotoxins and/or nonallergic mediator release by grain or grain dust constituents.

  19. Grain quality inspection system

    NASA Technical Reports Server (NTRS)

    Flood, C. A., Jr.; Singletow, D. P.; James, S. N.

    1979-01-01

    A review of grain quality indicators and measurement methods was conducted in order to assess the feasibility of using remote sensing technology to develop a continuous monitoring system for use during grain transfer operations. Most detection methods were found to be too slow or too expensive to be incorporated into the normal inspection procedure of a grain elevator on a continuous basis. Two indicators, moisture content and broken corn and foreign material, show potential for automation and are of an economic value. A microprocessor based system which utilizes commercially available electronic moisture meter was developed and tested. A method for automating BCFM measurement is described. A complete system description is presented along with performance test results.

  20. Composite circumstellar dust grains

    NASA Astrophysics Data System (ADS)

    Gupta, Ranjan; Vaidya, Dipak B.; Dutta, Rajeshwari

    2016-10-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5-25 μm. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18 μm. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-type and asymptotic giant branch stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes, shape, composition and dust temperature.

  1. Grain optical properties

    NASA Technical Reports Server (NTRS)

    Hanner, Martha

    1988-01-01

    The optical properties of small grains provide the link between the infrared observations presented in Chapter 1 and the dust composition described in Chapter 3. In this session, the optical properties were discussed from the viewpoint of modeling the emission from the dust coma and the scattering in order to draw inference about the dust size distribution and composition. The optical properties are applied to the analysis of the infrared data in several ways, and these different uses should be kept in mind when judging the validity of the methods for applying optical constants to real grains.

  2. Grain Boundary Complexions

    DTIC Science & Technology

    2014-05-01

    adsorption at Cu grain boundaries with Auger electron spectroscopy (AES) [161] and diffusivity of Cu and Bi in Bi- doped Cu [162] as a P.R. Cantwell et al ...a nanolayer complexion at a grain boundary in Ni- doped W; reprinted from Ref. [32] with permission. 24 P.R. Cantwell et al . / Acta Materialia 62 (2014...et al . [48] (Fig. 10 and Fig. 19) and in Au- doped Si by Ma et al . [34] (Fig. 13). Dillon and Harmer could not readily distinguish between different

  3. Charging of interplanetary grains

    NASA Technical Reports Server (NTRS)

    Baragiola, R. A.; Johnson, R. E.; Newcomb, John L.

    1995-01-01

    The objective of this program is to quantify, by laboratory experiments, the charging of ices and other insulators subject to irradiation with electrons, ions and ultraviolet photons and to model special conditions based on the data. The system and conditions to be studied are those relevant for charging of dust in magnetospheric plasmas. The measurements are supplemented by computer simulations of charging or grains under a variety of conditions. Our work for this period involved experiments on water ice, improved models of charging of ice grains for Saturn's E-ring, and the construction of apparatus for electron impact studies and measurements of electron energy distributions.

  4. Fine Grain Aluminum Superplasticity

    DTIC Science & Technology

    1980-02-01

    various temperature-time combinations, were water quenched and then examined metallographically. Since the dimensions of the grains in the long...M0 63166 Dr. E. J. Ripling Materials Research Laboratory, Inc. No. 1 Science Road Glenwood, IL 60425 Mr. G. Spangler Reynolds Metal Company 4th and Canal Streets Richmond, VA 23219

  5. Edible grain legumes

    USDA-ARS?s Scientific Manuscript database

    Edible grain legumes including dry bean, dry pea, chickpeas, and lentils, have served as important sources of protein for human diets for thousands of years. In the US, these crops are predominately produced for export markets. The objective of this study was to examine yield gains in these crops ov...

  6. Interstellar Grain Mantles

    NASA Technical Reports Server (NTRS)

    Witteborn, F.; Goebel, J.; Bregman, J.; Allamandola, Louis J.; Dhendecourt, L. B.; Tielens, Alexander G. G. M.

    1984-01-01

    Techniques for determining the composition of small dust grains in interstellar matter are discussed. The best way to study the composition of interstellar grain mantles is by infrared spectroscopy. The absorption features in a complete infrared spectrum from 2 to 15 microns can be used as fingerprints to identify the absorbing molecule. Ground-based observations around 3 microns confirmed the presence of H2O ice in interstellar grain mantles, through the detection of the 3.08 micron OH stretching vibration. The detection of other molecules, in particular the carbon bearing molecules, is however hampered by atmospheric absorption in the 5-8 micron region and the presence of the strong ice and silicate bands, which dominate the 3 and 10 micron region respectively. Kuiper Airborne Observatory observations of the 5-8 micron region of the spectrum are therefore extremely important to determine the composition of interstellar grain mantles. The 5 to 8 micron spectra of molecular cloud sources was obtained using a 24 detector grating spectrometer. An important characteristic of this spectrometer is that the whole spectrum is obtained simultaneously. It is therefore relatively easy to correct for atmospheric transmission.

  7. Interstellar Grain Surface Chemistry

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M.; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    Chemistry on grain surfaces plays an Important role in the formation of interstellar Ices, It can also influence the composition of the gas phase through outgassing near luminous, newly formed stars. This paper reviews the chemical processes taking place on Interstellar grain surfaces with the emphasis on those transforming CO into other hydrocarbons. At low, molecular cloud temperatures (approximately equal to 10K), physisorption processes dominate interstellar grain surface chemistry and GO is largely hydrogenated through reactions with atomic H and oxidized through reactions with atomic O. The former will lead to the formation of H2CO and CH3OH ices, while the latter results in CO2 ice. The observational evidence for these ices in molecular clouds will be discussed. Very close to protostars, the gas and grain temperatures are much higher (approximately equal to 500K) and chemisorption processes, including catalytic surface reactions, becomes important. This will be illustrated based upon our studies of the Fischer-Tropsch Synthesis of CH4 from CO on metallic surfaces. Likely, this process has played an important role in the early solar nebula. Observational consequences will be pointed out.

  8. Why do interstellar grains exist?

    NASA Technical Reports Server (NTRS)

    Seab, C. G.; Hollenbach, D. J.; Mckee, C. F.; Tielens, Alexander G. G. M.

    1986-01-01

    There exists a discrepancy between calculated destruction rates of grains in the interstellar medium and postulated sources of new grains. This problem was examined by modelling the global life cycle of grains in the galaxy. The model includes: grain destruction due to supernovae shock waves; grain injection from cool stars, planetary nebulae, star formation, novae, and supernovae; grain growth by accretion in dark clouds; and a mixing scheme between phases of the interstellar medium. Grain growth in molecular clouds is considered as a mechanism or increasing the formation rate. To decrease the shock destruction rate, several new physical processes, such as partial vaporization effects in grain-grain collisions, breakdown of the small Larmor radius approximation for betatron acceleration, and relaxation of the steady-state shock assumption are included.

  9. Dust grain charging in a wake of other grains

    SciTech Connect

    Miloch, W. J.; Block, D.

    2012-12-15

    The charging of dust grain in the wake of another grains in sonic and supersonic collisionless plasma flows is studied by numerical simulations. We consider two grains aligned with the flow, as well as dust chains and multiple grain arrangements. It is found that the dust charge depends significantly on the flow speed, distance between the grains, and the grain arrangement. For two and three grains aligned, the charges on downstream grains depend linearly on the flow velocity and intergrain distance. The simulations are carried out with DiP3D, a three dimensional particle-in-cell code with both electrons and ions represented as numerical particles [W. J. Miloch et al., Phys. Plasmas 17, 103703 (2010)].

  10. Grains charges in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Bel, N.; Lafon, J. P.; Viala, Y. P.

    1989-01-01

    The charge of cosmic grains could play an important role in many astrophysical phenomena. It probably has an influence on the coagulation of grains and more generally on grain-grain collisions, and on interaction between charged particles and grains which could lead to the formation of large grains or large molecules. The electrostatic charge of grains depends mainly on the nature of constitutive material of the grain and on the physical properties of its environment: it results from a delicate balance between the plasma particle collection and the photoelectron emission, both of them depending on each other. The charge of the grain is obtained in two steps: (1) using the numerical model the characteristics of the environment of the grain are computed; (2) the charge of a grain which is embedded in this environment is determined. The profile of the equilibrium charge of some typical grains through different types of interstellar clouds is obtained as a function of the depth of the cloud. It is shown that the grain charge can reach high values not only in hot diffuse clouds, but also in clouds with higher densities. The results are very sensitive to the mean UV interstellar radiation field. Three parameters appear to be essential but with different levels of sensitivity of the charge: the gas density, the temperature, and the total thickness of the cloud.

  11. Disorientation of Suprathermally Rotating Grains and the Grain Alignment Problem

    NASA Astrophysics Data System (ADS)

    Lazarian, A.; Draine, B. T.

    1997-09-01

    We discuss the dynamics of dust grains subjected to torques arising from H2 formation. In particular, we discuss grain dynamics when a grain spins down and goes through a ``crossover'' event. As first pointed out by Spitzer & McGlynn, the grain angular momentum before and after a crossover event are correlated, and the degree of this correlation critically affects the alignment of dust grains by paramagnetic dissipation. We calculate the correlation including the important effects of thermal fluctuations within the grain material. These fluctuations limit the degree to which the grain angular momentum J is coupled with the grain principal axis a1 of maximal inertia. We show that this imperfect coupling of a1 with J plays a critical role during crossovers and can substantially increase the efficiency of paramagnetic alignment for grains larger than 0.1 μm. As a result, we show that for reasonable choices of parameters, the observed alignment of a >~ 0.1 μm grains could be achieved by paramagnetic dissipation in suprathermally rotating grains, if radiative torques caused by starlight were not present. We also show that the efficiency of mechanical alignment in the limit of long alignment times is not altered by the thermal fluctuations in the grain material. This paper is dedicated to the memory of Lyman Spitzer, Jr.

  12. FINE GRAIN NUCLEAR EMULSION

    DOEpatents

    Oliver, A.J.

    1962-04-24

    A method of preparing nuclear track emulsions having mean grain sizes less than 0.1 microns is described. The method comprises adding silver nitrate to potassium bromide at a rate at which there is always a constant, critical excess of silver ions. For minimum size grains, the silver ion concentration is maintained at the critical level of about pAg 2.0 to 5.0 during prectpitation, pAg being defined as the negative logarithm of the silver ion concentration. It is preferred to eliminate the excess silver at the conclusion of the precipitation steps. The emulsion is processed by methods in all other respects generally similar to the methods of the prior art. (AEC)

  13. History of Presolar Grains

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.

    2005-01-01

    Papers on the History of Presolar Grains. This has been a very productive period in which much of the laboratory work conducted in the previous year and during this funding cycle were brought to completion. In the last year we have published or submitted for peer review 4 research papers, 4 review papers, and 11 abstracts in research areas supported under this grant. Brief synopses of the results of the research papers are presented, followed by short summaries of the topics discussed in the review papers. Several areas of research are of course being actively pursued, and the appended list of abstracts gives citations to this ongoing work. In a paper submitted to the Astrophysical Journal, the results of an investigation into the physical conditions in the mass outflows of asymptotic giant branch (AGB) carbon stars that are required for the formation of micron-sized presolar graphite grains, with and without previously formed internal crystals of titanium carbide (TIC) are reported.

  14. Isotropic Monte Carlo Grain Growth

    SciTech Connect

    Mason, J.

    2013-04-25

    IMCGG performs Monte Carlo simulations of normal grain growth in metals on a hexagonal grid in two dimensions with periodic boundary conditions. This may be performed with either an isotropic or a misorientation - and incliantion-dependent grain boundary energy.

  15. Predictive coarse-graining

    NASA Astrophysics Data System (ADS)

    Schöberl, Markus; Zabaras, Nicholas; Koutsourelakis, Phaedon-Stelios

    2017-03-01

    We propose a data-driven, coarse-graining formulation in the context of equilibrium statistical mechanics. In contrast to existing techniques which are based on a fine-to-coarse map, we adopt the opposite strategy by prescribing a probabilistic coarse-to-fine map. This corresponds to a directed probabilistic model where the coarse variables play the role of latent generators of the fine scale (all-atom) data. From an information-theoretic perspective, the framework proposed provides an improvement upon the relative entropy method [1] and is capable of quantifying the uncertainty due to the information loss that unavoidably takes place during the coarse-graining process. Furthermore, it can be readily extended to a fully Bayesian model where various sources of uncertainties are reflected in the posterior of the model parameters. The latter can be used to produce not only point estimates of fine-scale reconstructions or macroscopic observables, but more importantly, predictive posterior distributions on these quantities. Predictive posterior distributions reflect the confidence of the model as a function of the amount of data and the level of coarse-graining. The issues of model complexity and model selection are seamlessly addressed by employing a hierarchical prior that favors the discovery of sparse solutions, revealing the most prominent features in the coarse-grained model. A flexible and parallelizable Monte Carlo - Expectation-Maximization (MC-EM) scheme is proposed for carrying out inference and learning tasks. A comparative assessment of the proposed methodology is presented for a lattice spin system and the SPC/E water model.

  16. Whole grains, refined grains and fortified refined grains: What's the difference?

    PubMed

    Slavin, J L

    2000-09-01

    Dietary guidance universally supports the importance of grains in the diet. The United States Department of Agriculture pyramid suggests that Americans consume from six to 11 servings of grains per day, with three of these servings being whole grain products. Whole grain contains the bran, germ and endosperm, while refined grain includes only endosperm. Both refined and whole grains can be fortified with nutrients to improve the nutrient profile of the product. Most grains consumed in developed countries are subjected to some type of processing to optimize flavor and provide shelf-stable products. Grains provide important sources of dietary fibre, plant protein, phytochemicals and needed vitamins and minerals. Additionally, in the United States grains have been chosen as the best vehicle to fortify our diets with vitamins and minerals that are typically in short supply. These nutrients include iron, thiamin, niacin, riboflavin and, more recently, folic acid and calcium. Grains contain antioxidants, including vitamins, trace minerals and non-nutrients such as phenolic acids, lignans and phytic acid, which are thought to protect against cardiovascular disease and cancer. Additionally, grains are our most dependable source of phytoestrogens, plant compounds known to protect against cancers such as breast and prostate. Grains are rich sources of oligosaccharides and resistant starch, carbohydrates that function like dietary fibre and enhance the intestinal environment and help improve immune function. Epidemiological studies find that whole grains are more protective than refined grains in the prevention of chronic disease, although instruments to define intake of refined, whole and fortified grains are limited. Nutritional guidance should support whole grain products over refined, with fortification of nutrients improving the nutrient profile of both refined and whole grain products.

  17. Storing Peanuts in Grain Bags

    USDA-ARS?s Scientific Manuscript database

    A study was executed to determine the potential of storing farmers stock peanuts and shelled peanuts for crushing in hermetically sealed grain bags. The objectives of the study were to evaluate equipment for loading and unloading the grain bags, the capacity of the grain bags, and the changes in qu...

  18. Grain-grain interaction in stationary dusty plasma

    SciTech Connect

    Lampe, Martin; Joyce, Glenn

    2015-02-15

    We present a particle-in-cell simulation study of the steady-state interaction between two stationary dust grains in uniform stationary plasma. Both the electrostatic force and the shadowing force on the grains are calculated explicitly. The electrostatic force is always repulsive. For two grains of the same size, the electrostatic force is very nearly equal to the shielded electric field due to a single isolated grain, acting on the charge of the other grain. For two grains of unequal size, the electrostatic force on the smaller grain is smaller than the isolated-grain field, and the force on the larger grain is larger than the isolated-grain field. In all cases, the attractive shadowing force exceeds the repulsive electrostatic force when the grain separation d is greater than an equilibrium separation d{sub 0}. d{sub 0} is found to be between 6λ{sub D} and 9λ{sub D} in all cases. The binding energy is estimated to be between 19 eV and 900 eV for various cases.

  19. Special Grain Boundaries in Ultrafine-Grained Tungsten

    NASA Astrophysics Data System (ADS)

    Dudka, O. V.; Ksenofontov, V. A.; Sadanov, E. V.; Starchenko, I. V.; Mazilova, T. I.; Mikhailovskij, I. M.

    2016-07-01

    Field ion microscopy and computer simulation were used for the study of an atomic structure high-angle grain boundary in hard-drawn ultrafine-grained tungsten wire. These boundaries with special misorientations are beyond the scope of the coincident site lattice model. It was demonstrated that the special non-coincident grain boundaries are the plane-matching boundaries, and rigid-body displacements of adjacent nanograins are normal to the <110> misorientation axis. The vectors of rigid-body translations of grains are described by broad asymmetric statistical distribution. Mathematical modeling showed that special incommensurate boundaries with one grain oriented along the {211} plane have comparatively high cohesive energies. The grain-boundary dislocations ½<110> were revealed and studied at the line of local mismatch of {110} atomic planes of adjacent grains.

  20. Grain dryer temperature field analysis

    NASA Astrophysics Data System (ADS)

    Li, Shizhuang; Cao, Shukun; Meng, Wenjing; Ma, Lingran

    2017-09-01

    Taking into account the drying process in the hot air temperature on the grain temperature has a great impact, and grain temperature and determines the quality of food after baking, so in order to ensure that the grain drying temperature in the safe range, the use of ANSYS FLUENT module of grain The temperature field was simulated in the drying process. The horizontal spacing of the angle box was 200mm and the vertical spacing was 240mm. At this time, the grain temperature distribution was more uniform and the drying was more adequate.

  1. Whole grains and human health.

    PubMed

    Slavin, Joanne

    2004-06-01

    Epidemiological studies find that whole-grain intake is protective against cancer, CVD, diabetes, and obesity. Despite recommendations to consume three servings of whole grains daily, usual intake in Western countries is only about one serving/d. Whole grains are rich in nutrients and phytochemicals with known health benefits. Whole grains have high concentrations of dietary fibre, resistant starch, and oligosaccharides. Whole grains are rich in antioxidants including trace minerals and phenolic compounds and these compounds have been linked to disease prevention. Other protective compounds in whole grains include phytate, phyto-oestrogens such as lignan, plant stanols and sterols, and vitamins and minerals. Published whole-grain feeding studies report improvements in biomarkers with whole-grain consumption, such as weight loss, blood-lipid improvement, and antioxidant protection. Although it is difficult to separate the protective properties of whole grains from dietary fibre and other components, the disease protection seen from whole grains in prospective epidemiological studies far exceeds the protection from isolated nutrients and phytochemicals in whole grains.

  2. Swash mark and grain flow

    USGS Publications Warehouse

    Sallenger,, Asbury H.

    1981-01-01

    Swash marks composed entirely of coarse sand are commonly found on coarse-sand beaches. These swash marks are 10 to 30 centimeters in width and a few millimeters to one centimeter in height. Previous observations, mostly on finer-sand beaches, indicate swash marks are seldom over a few millimeters in height and are commonly composed of material readily floated by surface tension (e.g., mica flakes and shell fragments). Swash marks composed of coarse sand have both fining seaward and fining with depth trends in grain size. Apparently, the leading margin of a wave upwash drives a highly concentrated flow of grains in which both grain size and grain velocity decrease with depth. Therefore, large grains are transported at greater velocities than are smaller grains. Thus, at the maximum advance of an upwash, a swash mark is deposited which has the observed fining seaward and fining with depth trends in grain size.

  3. Evolution of Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Allamandola, Lou J.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    During the past two decades observations combined with laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the raw materials from which planets, comets and stars form. Most interstellar material is concentrated in large molecular clouds where simple molecules are formed by dust-grain and gas-phase reactions. Gaseous species striking the cold (10K) dust stick, forming an icy grain mantle. This accretion, coupled with UV photolysis, produces a complex chemical mixture containing volatile, non-volatile, and isotopically fractionated species. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, H2, and perhaps some NH3 and H2CO, as well as more complex species. The evidence for these compounds, as well as carbon-rich materials, will be reviewed and the possible connections with comets and meteorites will be presented in the first part of the talk . The second part of the presentation will focus on interstellar/precometary ice photochemical evolution and the species likely to be found in comets. The chemical composition and photochemical evolution of realistic interstellar/pre-cometary ice analogs will be discussed. Ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and more complex molecules. When ices representative of interstellar grains and comets are exposed to UV radiation at low temperature a series of moderately complex organic molecules are formed in the ice including: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), and R-C=N (nitriles). Several of these are already known to be in the interstellar medium, and their presence indicates the importance of grain processing. After warming to room temperature an organic residue remains. This is composed primarily of hexamethylenetetramine (HMT, C6H12N4), with lesser amounts of polyoxymethylene-related species (POMs), amides, and ketones. This is in sharp contrast to the organic residues produced by

  4. Evolution of Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Allamandola, Lou J.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    During the past two decades observations combined with laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the raw materials from which planets, comets and stars form. Most interstellar material is concentrated in large molecular clouds where simple molecules are formed by dust-grain and gas-phase reactions. Gaseous species striking the cold (10K) dust stick, forming an icy grain mantle. This accretion, coupled with UV photolysis, produces a complex chemical mixture containing volatile, non-volatile, and isotopically fractionated species. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, H2, and perhaps some NH3 and H2CO, as well as more complex species. The evidence for these compounds, as well as carbon-rich materials, will be reviewed and the possible connections with comets and meteorites will be presented in the first part of the talk . The second part of the presentation will focus on interstellar/precometary ice photochemical evolution and the species likely to be found in comets. The chemical composition and photochemical evolution of realistic interstellar/pre-cometary ice analogs will be discussed. Ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and more complex molecules. When ices representative of interstellar grains and comets are exposed to UV radiation at low temperature a series of moderately complex organic molecules are formed in the ice including: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), and R-C=N (nitriles). Several of these are already known to be in the interstellar medium, and their presence indicates the importance of grain processing. After warming to room temperature an organic residue remains. This is composed primarily of hexamethylenetetramine (HMT, C6H12N4), with lesser amounts of polyoxymethylene-related species (POMs), amides, and ketones. This is in sharp contrast to the organic residues produced by

  5. Dietary intake of whole grains.

    PubMed

    Cleveland, L E; Moshfegh, A J; Albertson, A M; Goldman, J D

    2000-06-01

    The objective of this study was to provide national estimates of whole-grain intake in the United States, identify major dietary sources of whole grains and compare food and nutrient intakes of whole-grain consumers and nonconsumers. Data were collected from 9,323 individuals age 20 years and older in USDA's 1994-96 Continuing Survey of Food Intakes by Individuals through in-person interviews on two non-consecutive days using a multiple-pass 24-hour recall method. Foods reported by respondents were quantified in servings as defined by the Food Guide Pyramid using a new database developed by the USDA. Whole-grain and nonwhole-grain servings were determined based on the proportion, by weight, of the grain ingredients in each food that were whole grain and nonwhole grain. Sampling weights were applied to provide national probability estimates adjusted for differential rates of selection and nonresponse. Then, t tests were used to assess statistically significant differences in intakes of nutrients and food groups by whole-grain consumers and nonconsumers. According to the 1994-96 survey, U.S. adults consumed an average of 6.7 servings of grain products per day; 1.0 serving was whole grain. Thirty-six percent averaged less than one whole-grain serving per day based on two days of intake data, and only eight percent met the recommendation to eat at least three servings per day. Yeast breads and breakfast cereals each provided almost one-third of the whole-grain servings, grain-based snacks provided about one-fifth, and less than one-tenth came from quick breads, pasta, rice, cakes, cookies, pies, pastries and miscellaneous grains. Whole-grain consumers had significantly better nutrient profiles than nonconsumers, including higher intakes of vitamins and minerals as percentages of 1989 Recommended Dietary Allowances and as nutrients per 1,000 kilocalories, and lower intakes of total fat, saturated fat and added sugars as percentages of food energy. Consumers were

  6. Lunar and Planetary Science XXXV: Presolar Grains

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics discussed include: Presolar Silicate Grains; Presolar Silicates from Primitivr Chondrites; Oxygen and Magnesium Isotopic Ratios of Presolar Spinel Grains; Study of Two New Presolar Grains from Bishunpur Ordinary Chondrite; Extinct Technetium in Presolar Grains; etc.

  7. Germinated grains: a superior whole grain functional food?

    PubMed

    Nelson, Kristina; Stojanovska, Lily; Vasiljevic, Todor; Mathai, Michael

    2013-06-01

    Grains are global dietary staples that when consumed in whole grain form, offer considerable health benefits compared with milled grain foods, including reduced body weight gain and reduced cardiovascular and diabetes risks. Dietary patterns, functional foods, and other lifestyle factors play a fundamental role in the development and management of epidemic lifestyle diseases that share risks of developing adverse metabolic outcomes, including hyperglycaemia, hypertension, dyslipidaemia, oxidative stress, and inflammation. Whole grains provide energy, nutrients, fibres, and bioactive compounds that may synergistically contribute to their protective effects. Despite their benefits, the intake of grains appears to be lower than recommended in many countries. Of emerging interest is the application of germination processes, which may significantly enhance the nutritional and bioactive content of grains, as well as improve palatability. Enhancing grain foods in a natural way using germination techniques may therefore offer a practical, natural, dietary intervention to increase the health benefits and acceptability of whole grains, with potentially widespread effects across populations in attenuating adverse lifestyle disease outcomes. Continuing to build on the growing body of in-vitro studies requires substantiation with extended in-vivo trials so that we may further develop our understanding of the potential of germinated grains as a functional food.

  8. Grain dust: problems and utilization

    SciTech Connect

    Schnake, L.D.

    1981-04-01

    Grain dust is a difficult, dangerous, and expensive material to handle. A country elevator handling 750,000 bushels of grain annually would spend an estimated $500,000 for equipment to meet Clean Air Act standards. The additional cost of controlling dust may be offset by using the substance as fuel, feed, or fertilizer. Grain dust as a feed ingredient would likely be the optimum use. Additional research areas are identified.

  9. Grain Flow at High Stresses

    NASA Astrophysics Data System (ADS)

    McSaveney, M. J.

    2015-12-01

    The transport mechanism of rapid long-runout rock avalanches was a hotly debated topic when I came on the scene in 1967. So how come it is still debated today? My explanation is that it is the expected outcome of peer review, poor comprehension, and technological advances outpacing intellectual advances. Why think about the problem when we can model it! So let us think about the problem. Shreve thought that rock avalanches fell upon and trapped a layer of air. What physics was he thinking about? It is how feathers and tissue papers fall. When my rock avalanches fly, they fly like unlubricated bricks using the physics of projectiles and ballistics. But the main transport mechanism is not flight. The dominant impression from watching a rock avalanche in motion is of fluid flow, as Heim described it in 1882. A rock avalanche is a very large grain flow. Bagnold studied dispersive grain flows, but why should one assume that rock avalanches are dispersive grain flows as many do. The more common grain flow type is a dense grain flow and rock avalanches are dense grain flows in which the weight can and does generate very high stresses at grain contacts. Brittle rock deforms elastically up to its compressive strength, whereupon it breaks, releasing elastic strain as transient elastic strain (seismic energy to a seismologist, acoustic energy to a physicist). Melosh and others have shown that acoustic energy can fluidize a grain mass. There is no exotic physics behind grain flow at high stress. When grains break, the released elastic strain has to go somewhere, and it goes somewhere principally by transmission though grain contacts. Depending on the state of stress at the grain contact, the contact will pass the stress or will slip at conventional values of Coulomb friction. Enough thinking! A physical model of the entire process is too big for any laboratory. So whose numerical model will do it?

  10. Dehumidification Grain Dryer

    SciTech Connect

    Lula, J.W.; Bohnert, G.W.

    1998-05-13

    A new technique developed during this project dries grain with mildly heated, dehumidified air in a closed-loop process. This proposed technique uses about one-tenth the energy and dries grain at a lower temperature, producing less damage to the kernels.Approximately 250 million automotive and truck tires are discarded each year in the U.S. The very properties that ensure a safe ride and long service life make the disposal of these scrap tires difficult. In spite of this, scrap tire recycling/reuse has rapidly grown from 10% in 1985 to over 90% today. The majority of scrap tires that are recycled/reused are burned for fuel in power plants and cement kilns. Since tires have somewhat higher heating value than coal, this would at first seem to be an acceptable option. But burning scrap tires recovers only 25% of the energy originally used to manufacture the rubber. An alternative is to use the scrap tires in the form of crumb rubber, by which 98% of the original energy is recovered. This project sought to explore potential formulations of crumb rubber with various thermoplastic binders, with one goal being developing a material for a low-cost, high-performance roofing composition. What was the state-of-the-art of the product/process prior to initiation of the project? Why was the project needed (e.g., performance, quality, cost, time to market)? Describe the strengths and interests of each party and how they are complementary with respect to the project. What KCP expertise was needed and how did it complement the partner's capabilities?

  11. Grain dust and the lungs.

    PubMed Central

    Chan-Yeung, M.; Ashley, M. J.; Grzybowski, S.

    1978-01-01

    Grain dust is composed of a large number of materials, including various types of grain and their disintegration products, silica, fungi, insects and mites. The clinical syndromes described in relation to exposure to grain dust are chronic bronchitis, grain dust asthma, extrinsic allergic alveolitis, grain fever and silo-filler's lung. Rhinitis and conjunctivitis are also common in grain workers. While the concentration and the quality of dust influence the frequency and the type of clinical syndrome in grain workers, host factors are also important. Of the latter, smoking is the most important factor influencing the frequency of chronic bronchitis. The role of atopy and of bronchial hyperreactivity in grain dust asthma has yet to be assessed. Several well designed studies are currently being carried out in North America not only to delineate the frequency of the respiratory abnormalities, the pathogenetic mechanisms and the host factors, but also to establish a meaningful threshold limit concentration for grain dust. Images p1272-a PMID:348288

  12. The physics of grain-grain collisions and gas-grain sputtering in interstellar shocks

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.; Mckee, C. F.; Seab, C. G.; Hollenbach, D. J.

    1994-01-01

    Grain-grain collisions and ion sputtering destroy dust grains in interstellar shocks. An analytical theory is developed for the propagation of shock waves in solids driven by grain-grain collisions, which compares very favorably with detailed numerical calculations. This theory is used to determine the fraction of grain vaporized by a grain-grain collision. Our results predict much less vaporization of colliding grains in interstellar shocks than previous estimates. This theory can also be used to determine the fraction of a colliding grain that melts, shatter, or undergoes a phase transformation to a higher density phase. In particular, the latter two processes can be much more important in interstellar shocks than vaporization. The sputtering of grains by impacting gas ions is reanalyzed based upon extensive laboratory studies and a theoretically derived 'universal'sputtering relation. The analytical results are compared to available experimental studies of sputtering of graphite/amorphous carbon, SiO2, SiC, Fe, and H2O. Sputtering yields for astrophysically relevant materials as a function of impact energy and ion mass are derived. These yields are also averaged over thermal impact spectrum and simple polynomial fits to the resulting yields as a function of temperature are presented. The derived sputtering yields are similar to those adopted in previous studies, except for graphite near threshold where the new yields are much larger due to a lower adopted binding energy. The ion bombardment will amorphitize the surface layers of interstellar grains. It will also convert graphite into hydrogenated amorphous carbon (HAC) to a depth of 10-20 A. It is suggested that these HAC surfaces are the carriers of the 3.4 micrometer absorption feature in the interstellar medium.

  13. The physics of grain-grain collisions and gas-grain sputtering in interstellar shocks

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.; Mckee, C. F.; Seab, C. G.; Hollenbach, D. J.

    1994-01-01

    Grain-grain collisions and ion sputtering destroy dust grains in interstellar shocks. An analytical theory is developed for the propagation of shock waves in solids driven by grain-grain collisions, which compares very favorably with detailed numerical calculations. This theory is used to determine the fraction of grain vaporized by a grain-grain collision. Our results predict much less vaporization of colliding grains in interstellar shocks than previous estimates. This theory can also be used to determine the fraction of a colliding grain that melts, shatter, or undergoes a phase transformation to a higher density phase. In particular, the latter two processes can be much more important in interstellar shocks than vaporization. The sputtering of grains by impacting gas ions is reanalyzed based upon extensive laboratory studies and a theoretically derived 'universal'sputtering relation. The analytical results are compared to available experimental studies of sputtering of graphite/amorphous carbon, SiO2, SiC, Fe, and H2O. Sputtering yields for astrophysically relevant materials as a function of impact energy and ion mass are derived. These yields are also averaged over thermal impact spectrum and simple polynomial fits to the resulting yields as a function of temperature are presented. The derived sputtering yields are similar to those adopted in previous studies, except for graphite near threshold where the new yields are much larger due to a lower adopted binding energy. The ion bombardment will amorphitize the surface layers of interstellar grains. It will also convert graphite into hydrogenated amorphous carbon (HAC) to a depth of 10-20 A. It is suggested that these HAC surfaces are the carriers of the 3.4 micrometer absorption feature in the interstellar medium.

  14. Alignment of suprathermally rotating grains

    NASA Astrophysics Data System (ADS)

    Lazarian, A.

    1995-12-01

    It is shown that mechanical alignment can be efficient for suprathermally rotating grains, provided that they drift with supersonic velocities. Such a drift should be widely spread due to both Alfvenic waves and ambipolar diffusion. Moreover, if suprathermal rotation is caused by grain interaction with a radiative flux, it is shown that mechanical alignment may be present even in the absence of supersonic drift. This means that the range of applicability of mechanical alignment is wider than generally accepted and that it can rival the paramagnetic one. We also study the latter mechanism and re-examine the interplay between poisoning of active sites and desorption of molecules blocking the access to the active sites of H_2 formation, in order to explain the observed poor alignment of small grains and good alignment of large grains. To obtain a more comprehensive picture of alignment, we briefly discuss the alignment by radiation fluxes and by grain magnetic moments.

  15. Autonomous grain combine control system

    DOEpatents

    Hoskinson, Reed L.; Kenney, Kevin L.; Lucas, James R.; Prickel, Marvin A.

    2013-06-25

    A system for controlling a grain combine having a rotor/cylinder, a sieve, a fan, a concave, a feeder, a header, an engine, and a control system. The feeder of the grain combine is engaged and the header is lowered. A separator loss target, engine load target, and a sieve loss target are selected. Grain is harvested with the lowered header passing the grain through the engaged feeder. Separator loss, sieve loss, engine load and ground speed of the grain combine are continuously monitored during the harvesting. If the monitored separator loss exceeds the selected separator loss target, the speed of the rotor/cylinder, the concave setting, the engine load target, or a combination thereof is adjusted. If the monitored sieve loss exceeds the selected sieve loss target, the speed of the fan, the size of the sieve openings, or the engine load target is adjusted.

  16. Grain charging in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Ilgner, M.

    2012-02-01

    Context. Recent work identified a growth barrier for dust coagulation that originates in the electric repulsion between colliding particles. Depending on its charge state, dust material may have the potential to control key processes towards planet formation such as magnetohydrodynamic (MHD) turbulence and grain growth, which are coupled in a two-way process. Aims: We quantify the grain charging at different stages of disc evolution and differentiate between two very extreme cases: compact spherical grains and aggregates with fractal dimension Df = 2. Methods: Applying a simple chemical network that accounts for collisional charging of grains, we provide a semi-analytical solution. This allowed us to calculate the equilibrium population of grain charges and the ionisation fraction efficiently. The grain charging was evaluated for different dynamical environments ranging from static to non-stationary disc configurations. Results: The results show that the adsorption/desorption of neutral gas-phase heavy metals, such as magnesium, effects the charging state of grains. The greater the difference between the thermal velocities of the metal and the dominant molecular ion, the greater the change in the mean grain charge. Agglomerates have more negative excess charge on average than compact spherical particles of the same mass. The rise in the mean grain charge is proportional to N1/6 in the ion-dust limit. We find that grain charging in a non-stationary disc environment is expected to lead to similar results. Conclusions: The results indicate that the dust growth and settling in regions where the dust growth is limited by the so-called "electro-static barrier" do not prevent the dust material from remaining the dominant charge carrier.

  17. Whole grain gluten-free flat breads

    USDA-ARS?s Scientific Manuscript database

    USDA food guide recommends that at least ½ of all the grains eaten should be whole grains. FDA allows label health claims for food containing 11 g and 51% whole grains. This is the only report demonstrating innovative whole grain products. Whole grain gluten-free flat breads were prepared with cor...

  18. Prevalence of IgE antibodies to grain and grain dust in grain elevator workers

    SciTech Connect

    Lewis, D.M.; Romeo, P.A.; Olenchock, S.A.

    1986-04-01

    IgE-mediated allergic reactions have been postulated to contribute to respiratory reactions seen in workers exposed to grain dusts. In an attempt better to define the prevalence of IgE antibodies in workers exposed to grain dusts, we performed the radioallergosorbent test (RAST) on worker sera using both commercial allergens prepared from grain and worksite allergens prepared from grain dust samples collected at the worksite. We found that the two types of reagents identified different populations with respect to the specificity of IgE antibodies present. The RAST assay performed using worksite allergens correlated well with skin test procedures. These results may allow us to gain better understanding of allergy associated with grain dust exposure, and document the utility of the RAST assay in assessment of occupational allergies.

  19. Optical properties of cometary grains

    NASA Technical Reports Server (NTRS)

    Mukai, Tadashi

    1988-01-01

    An analysis of visible/near IF polarimetry of Comet Halley leads to a variation of the complex refractive index m = n - i x k of grain material with wavelength, i.e., a slight decrease of n from 1.39 at lambda = 0.37 micrometer to 1.37 at lambda = 2.2 micrometers, in constrast to an increase of k from 0.024 at lambda = 0.37 micrometer to 0.042 at lambda 2.2 micrometers. The mass distribution of grains reported by Mazets et al. from in situ measurements of Vega 2 was applied in the analysis. Combining these optical constants with those of astronomical silicate proposed by Draine, cometary silicate is presented as a candidate for cometary grains. The complex refractive index of the proposed cometary silicate is shown. Based on Mie theory, an emission coefficiency of each of the grains in computed as well as its temperature, as functions of grain radius and sun comet (grain) distance. It is found that the tentative thermal spectrum from these cometary silicates, where the mass distribution of grains reported by Mazets from Vega 2 was applied, fits very well to the IR spectrum of Comet Halley. This means that cometary silicate can explain not only the phase angle and wavelength dependences of visible/near IF polarization, but also the thermal emission.

  20. Fluctuation effects in grain growth

    NASA Astrophysics Data System (ADS)

    Kim, Seong Gyoon; Park, Yong Bum

    2016-08-01

    In this study, we attempted to clarify the roles of fluctuation effects in grain growth. To capture the persistent nature in both space and time of fluctuations due to variations in the local surroundings of individual grains, we developed a local mean-field model. The fluctuation strength in this model is arbitrarily controlled by employing an artificial number, n , of nearest neighbor grains. Large-scale numerical computations of the model for various n values and initial GSDs were carried out to follow transient behaviors and determine the steady states. This study reveals that, in the classical mean-field model with no fluctuation effects, the steady state is not unique but is strongly dependent upon the initial GSD. However, a small fluctuation drives the mean-field model to reach the Hillert solution, independent of the fluctuation strength and initial GSD, as long as the fluctuation strength is sufficiently small. On the other hand, when the fluctuation is sufficiently strong, the fluctuation pushes the steady state of the mean-field model out of the Hillert solution, and its strength determines a unique steady state independent of the initial GSD. The strong fluctuation makes the GSD more symmetric than the Hillert distribution. Computations designed to mimic actual 2 and 3D grain growth were carried out by taking the number of nearest neighbors of each grain as a function of the scaled grain size. The resultant GSDs in two and three dimensions were compared with the direct simulations of ideal grain growth.

  1. Quantitative characterisation of sedimentary grains

    NASA Astrophysics Data System (ADS)

    Tunwal, Mohit; Mulchrone, Kieran F.; Meere, Patrick A.

    2016-04-01

    Analysis of sedimentary texture helps in determining the formation, transportation and deposition processes of sedimentary rocks. Grain size analysis is traditionally quantitative, whereas grain shape analysis is largely qualitative. A semi-automated approach to quantitatively analyse shape and size of sand sized sedimentary grains is presented. Grain boundaries are manually traced from thin section microphotographs in the case of lithified samples and are automatically identified in the case of loose sediments. Shape and size paramters can then be estimated using a software package written on the Mathematica platform. While automated methodology already exists for loose sediment analysis, the available techniques for the case of lithified samples are limited to cases of high definition thin section microphotographs showing clear contrast between framework grains and matrix. Along with the size of grain, shape parameters such as roundness, angularity, circularity, irregularity and fractal dimension are measured. A new grain shape parameter developed using Fourier descriptors has also been developed. To test this new approach theoretical examples were analysed and produce high quality results supporting the accuracy of the algorithm. Furthermore sandstone samples from known aeolian and fluvial environments from the Dingle Basin, County Kerry, Ireland were collected and analysed. Modern loose sediments from glacial till from County Cork, Ireland and aeolian sediments from Rajasthan, India have also been collected and analysed. A graphical summary of the data is presented and allows for quantitative distinction between samples extracted from different sedimentary environments.

  2. Interstellar Grains: 50 Years On

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, N. Chandra

    2011-12-01

    Our understanding of the nature of interstellar grains has evolved considerably over the past half century with the present author and Fred Hoyle being intimately involved at several key stages of progress. The currently fashionable graphite-silicate-organic grain model has all its essential aspects unequivocally traceable to original peer-reviewedpublicationsbytheauthorand/orFredHoyle. Theprevailingreluctancetoaccepttheseclear-cut priorities may be linked to our further work that argued for interstellar grains and organics to have a biological provenance - a position perceived as heretical. The biological model, however, continues to provide a powerful unifying hypothesis for a vast amount of otherwise disconnected and disparate astronomical data.

  3. Theory of grain alignment in molecular clouds

    NASA Technical Reports Server (NTRS)

    Roberge, Wayne G.

    1993-01-01

    Research accomplishments are presented and include the following: (1) mathematical theory of grain alignment; (2) super-paramagnetic alignment of molecular cloud grains; and (3) theory of grain alignment by ambipolar diffusion.

  4. Balancing green and grain trade

    NASA Astrophysics Data System (ADS)

    Chen, Yiping; Wang, Kaibo; Lin, Yishan; Shi, Weiyu; Song, Yi; He, Xinhua

    2015-10-01

    Since 1999, China's Grain for Green project has greatly increased the vegetation cover on the Loess Plateau. Now that erosion levels have returned to historic values, vegetation should be maintained but not expanded further as planned.

  5. Stability of grain boundary texture during isothermal grain growth in UO2 considering anisotropic grain boundary properties

    NASA Astrophysics Data System (ADS)

    Hallberg, Håkan; Zhu, Yaochan

    2015-10-01

    In the present study, mesoscale simulations of grain growth in UO2 are performed using a 2D level set representation of the polycrystal grain boundary network, employed in a finite element setting. Anisotropic grain boundary properties are considered by evaluating how grain boundary energy and mobility varies with local grain boundary character. This is achieved by considering different formulations of the anisotropy of grain boundary properties, for example in terms of coincidence site lattice (CSL) correspondence. Such modeling approaches allow tracing of the stability of a number of characteristic low-Σ boundaries in the material during grain growth. The present simulations indicate that anisotropic grain boundary properties have negligible influence on the grain growth rate. However, considering the evolution of grain boundary character distribution and the grain size distribution, it is found that neglecting anisotropic boundary properties will strongly bias predictions obtained from numerical simulations.

  6. Spring Small Grains Area Estimation

    NASA Technical Reports Server (NTRS)

    Palmer, W. F.; Mohler, R. J.

    1986-01-01

    SSG3 automatically estimates acreage of spring small grains from Landsat data. Report describes development and testing of a computerized technique for using Landsat multispectral scanner (MSS) data to estimate acreage of spring small grains (wheat, barley, and oats). Application of technique to analysis of four years of data from United States and Canada yielded estimates of accuracy comparable to those obtained through procedures that rely on trained analysis.

  7. Dust grains in planetary magnetospheres

    NASA Astrophysics Data System (ADS)

    Jontof-Hutter, D.; Hamilton, D. P.

    2011-10-01

    Micrometeoroid impacts on small moons or ring particles generate dusty debris of all sizes. Grains launched from parent bodies on Kepler orbits become electrically charged due to interactions with the plasma environment and solar photons. The tenuous dusty rings are essentially collisionless systems and hence sub-micron grains, released and charged in the rotating magnetic field of their host planet, follow trajectories under the combined forces of electromagnetism and gravity. Depending on their launch distance and charge-to-mass ratio, some grains can be unstable to either radial perturbations (positively-charged grains only), or vertical perturbations (both positive and negative charges). These instabilities act on short timescales and cause grains to collide with the planet or escape in less than an orbit. [5] compiled numerical data and analytical solutions to the boundaries between stable and unstable trajectories, for the idealized case of a planet with an aligned dipolar magnetic field. The effect of a vertically offset or moderately tilted dipolar magnetic field configuration increases the class of grains that are vertically unstable, but has little effect on the short-term radial instability. We present numerical stability maps for each of the giant planets.

  8. The History of Presolar Grains

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.

    2004-01-01

    Below we summarize the results of our investigations into the history of presolar grains that were conducted in the last year. During this time we have expended much of our effort in the development of experimental techniques and sample preparation methods that are needed to laboratory in December, 2000. Specific information on this instrument is contained in the Full Proposal of PI Ernst Zinner and will not be repeated here. Our general strategy in the past year has been in large measure to explore novel sample handling methods for the very small (sub-micron), but more representative, presolar grains that can now be characterized isotopically in the NanoSIMS. We have developed experimental techniques that will permit NanoSIMS analyses of the very same ultramicrotome sections studied in the TEM, and we have developed grain dispersion, handling and mounting techniques that permit NanoSIMS isotopic analysis as well as field emission SEM, high energy TEM, and atomic force microscopy of pristine presolar grains. Although much of this has been slow and very difficult work that has no immediate payoff in terms of publishable results, we considered it absolutely necessary groundwork for future discoveries, especially in the realm of individual presolar grains that have been inaccessible to past studies due to size constraints. As discussed below, we have been largely successful in these endeavors, and expect to reap the benefits of this work in the next year. We also report on our continued morphologic studies of pristine presolar grains, on our investigations of presolar graphite grains from supernovae as well as on rarer types of presotar SIC, on the search for presolar silicates, and on our efforts to obtain direct size-distribution information on presolar SiC through X-ray mapping techniques.

  9. Sculpting sandcastles grain by grain: self-assembled sand towers.

    PubMed

    Pacheco-Vázquez, F; Moreau, F; Vandewalle, N; Dorbolo, S

    2012-11-01

    We study the spontaneous formation of granular towers produced when dry sand is poured on a wet sand bed. When the liquid content of the bed exceeds a threshold value W*, the impacting grains have a nonzero probability to stick on the wet grains due to instantaneous liquid bridges created during the impact. The trapped grains become wet by the capillary ascension of water and the process continues, giving rise to stable narrow towers. The growth velocity is determined by the surface liquid content which decreases exponentially as the tower height augments. This self-assembly mechanism (only observed in the funicular and capillary regimes) could theoretically last while the capillary rise of water is possible; however, the structure collapses before reaching this limit. The collapse occurs when the weight of the tower surpasses the cohesive stress at its base. The cohesive stress increases as the liquid content of the bed is reduced. Consequently, the highest towers are found just above W*.

  10. The rotation of magnetic grains

    NASA Astrophysics Data System (ADS)

    Borradaile, Graham J.

    1993-05-01

    It has been questioned whether magnetic remanence rotates as a rigid marker or as a passive marker (with no material properties) during tectonic strain. The remanence of a rock is actually the sum of the moments of individual grains, so we must first understand their rotation. Simple shear provides a simple strain history which may be used to distinguish between the two extreme possibilities. A passive marker cannot rotate through the shear plane but a rigid marker can: this is a useful criterion to distinguish between the two extreme models. However, for reasonable strains ( γ < 4 orRs < 18), it is only possible to distinguish between rigid marker and passive marker behaviour for grains of low aspect ratio ( R < 5), preferably making a low initial angle with the shear direction. For these conditions, rigid grains would rotate through the shear plane. Because natural hematite usually has high aspect ratios ( R > 10) the passive model is successful in explaining the rotation of these grains, even though their behaviour is mechanistically closer to that of a rigid marker. This explains the success of field studies in which the remanence of redbeds has been de-strained using the hypothesis of passive behaviour, notwithstanding the reality that the natural iron oxide grains do not rotate in that manner.

  11. Experiments on Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  12. Experiments on Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  13. Sticking properties of ice grains

    NASA Astrophysics Data System (ADS)

    Jongmanns, M.; Kumm, M.; Wurm, G.; Wolf, D. E.; Teiser, J.

    2017-06-01

    We study the size dependence of pull-off forces of water ice in laboratory experiments and numerical simulations. To determine the pull-off force in our laboratory experiments, we use a liquid nitrogen cooled centrifuge. Depending on its rotation frequency, spherical ice grains detach due to the centrifugal force which is related to the adhesive properties. Numerical simulations are conducted by means of molecular dynamics simulations of hexagonal ice using a standard coarse-grained water potential. The pull-off force of a single contact between two spherical ice grains is measured due to strain controlled simulations. Both, the experimental study and the simulations reveal a dependence between the pull-off force and the (reduced) particle radii, which differ significantly from the linear dependence of common contact theories.

  14. Fractal dust grains in plasma

    SciTech Connect

    Huang, F.; Peng, R. D.; Liu, Y. H.; Chen, Z. Y.; Ye, M. F.; Wang, L.

    2012-09-15

    Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.

  15. Interstellar Grains: 50 Years on

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, N. C.

    Our understanding of the nature of interstellar grains has evolved considerably over the past half century with the present author and Fred Hoyle being intimately involved at several key stages of progress. The currently fashionable graphite-silicate-organic grain model has all its essential aspects unequivocally traceable to original peer-reviewed publications by the author and/or Fred Hoyle. The prevailing reluctance to accept these clear-cut priorities may be linked to our further work that argued for interstellar grains and organics to have a biological provenance -- a position perceived as heretical. The biological model, however, continues to provide a powerful unifying hypothesis for a vast amount of otherwise disconnected and disparate astronomical data.

  16. Elongated grains in a hopper

    NASA Astrophysics Data System (ADS)

    Börzsönyi, Tamás; Somfai, Ellák; Szabó, Balázs; Wegner, Sandra; Ashour, Ahmed; Stannarius, Ralf

    2017-06-01

    Flow and clogging of granular materials in a 3-dimensional hopper is investigated experimentally. We use X-ray tomography and optical methods to study this phenomenon for spherical and elongated particles. The X-ray tomograms provide information on the bulk of the hopper filling, and allow to determine the particle positions and orientations inside the silo, as well as spatial variations of the local packing density. We find that particles show a preferred orientation and thereby an enhanced order in the flowing zone of the silo. Similarly to simple shear flows, the average orientation of the particles is not parallel to the streamlines but encloses a certain angle with them. The clogged state is characterized by a dome, i. e. the geometry of the layer of grains blocking the outflow. The number of grains forming this blocking layer is larger for elongated grains compared to the case of spheres of the same volume.

  17. RSRM Propellant Grain Geometry Modification

    NASA Technical Reports Server (NTRS)

    Schorr, Andrew A.; Endicott, Joni B.; McCool, Alex (Technical Monitor)

    2000-01-01

    This document is composed of viewgraphs about the RSRM propellant grain geometry modification project, which hopes to improve personnel and system safety by modifying propellant grain geometry to improve structural factors of safety. Using techniques such as Finite Element Analysis to determine blend radii required to reduce localized stresses, and ballistic predictions to ensure that the ballistics, ignition transient and Block Model have not been adversely affected, the project hopes to build and test FSM-10 with a new design, and determine flight effectivity pending successful test evaluation.

  18. Bakery product from distiller's grain

    SciTech Connect

    Reddy, J.A.; Stoker, R.

    1993-07-06

    A method is described for preparing a bran from a solid fermentation wet distiller's grain (WDG) or distiller's dried grain with solubles (DDGS), which consisting essentially of: adding sodium bicarbonate at about 0.05-5 weight percent, amino acid at about 0.05-5 weight percent and potato starch at about 10-50 weight percent in the form of additives to WDG or DDGS; blending the WDG/DDGS-additive mix; and drying the blended mix to form a bran suitable for use in products for human consumption.

  19. GRAIN REFINEMENT OF URANIUM BILLETS

    DOEpatents

    Lewis, L.

    1964-02-25

    A method of refining the grain structure of massive uranium billets without resort to forging is described. The method consists in the steps of beta- quenching the billets, annealing the quenched billets in the upper alpha temperature range, and extrusion upset of the billets to an extent sufficient to increase the cross sectional area by at least 5 per cent. (AEC)

  20. Grain Growth in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Perez Munoz, Laura Maria

    The majority of young, low-mass stars are surrounded by optically thick accretion disks. These circumstellar disks provide large reservoirs of gas and dust that will eventually be transformed into planetary systems. Theory and observations suggest that the earliest stage toward planet formation in a protoplanetary disk is the growth of particles, from sub-micron-sized grains to centimeter- sized pebbles. Theory indicates that small interstellar grains are well coupled into the gas and are incorporated to the disk during the proto-stellar collapse. These dust particles settle toward the disk mid-plane and simultaneously grow through collisional coagulation in a very short timescale. Observationally, grain growth can be inferred by measuring the spectral energy distribution at long wavelengths, which traces the continuum dust emission spectrum and hence the dust opacity. Several observational studies have indicated that the dust component in protoplanetary disks has evolved as compared to interstellar medium dust particles, suggesting at least 4 orders of magnitude in particle-size growth. However, the limited angular resolution and poor sensitivity of previous observations has not allowed for further exploration of this astrophysical process. As part of my thesis, I embarked in an observational program to search for evidence of radial variations in the dust properties across a protoplanetary disk, which may be indicative of grain growth. By making use of high angular resolution observations obtained with CARMA, VLA, and SMA, I searched for radial variations in the dust opacity inside protoplanetary disks. These observations span more than an order of magnitude in wavelength (from sub-millimeter to centimeter wavelengths) and attain spatial resolutions down to 20 AU. I characterized the radial distribution of the circumstellar material and constrained radial variations of the dust opacity spectral index, which may originate from particle growth in these circumstellar

  1. What Controls Ooid Grain Size?

    NASA Astrophysics Data System (ADS)

    Trower, L.; Lamb, M. P.; Fischer, W. W.

    2015-12-01

    Ooids are subspherical chemical sand grains composed of concentric layers of CaCO₃ surrounding a central nucleus. These grains represent a common mode of carbonate sedimentation, making them potentially powerful proxies for paleoenvironmental conditions, provided a mechanistic understanding of the physical, chemical, and perhaps biological conditions necessary for their formation. At a basic level, growth of an ooid reflects that precipitation has outpaced abrasion over the ooid's lifetime. We can describe change in ooid size over time (net growth rate) mechanistically as the sum of a growth rate (the rate of carbonate precipitation on the ooid surface) and an abrasion rate (the rate of removal of material through grain-grain and grain-bed collisions). Previous studies have addressed the growth rate, investigating the extent to which microbial activity affects and/or controls carbonate precipitation on ooid surfaces, and the net growth rate, using stepwise acid digestion and radiocarbon dating to determine the ages of cortical layers. We focused on the abrasion rate and designed an experimental study to measure abrasion rates of ooids as a function of grain size and sediment transport stage. Preliminary experiments with medium-sand-sized ooids at a Rouse number of ~1.2 yielded an abrasion rate of 0.04 g/hr (or ~40 ng/ooid/hr), which is four orders of magnitude greater than the fastest net growth rates reported in the recent high resolution ooid cortex radiocarbon dating study by Beaupre et al. (2015). This result requires that either: 1) ooids are essentially not moving and therefore not being abraded or 2) precipitation rates are also much more rapid than the net growth rates estimated by incremental radiocarbon dating. The former constraint is inconsistent with field observations that most marine ooids occur in high energy shoal environments, both in modern examples and in the rock record. Precipitation rates must therefore also be relatively rapid compared

  2. Concepts on Low Temperature Mechanical Grain Growth

    SciTech Connect

    Sharon, John Anthony; Boyce, Brad Lee

    2013-11-01

    In metals, as grain size is reduced below 100nm, conventional dislocation plasticity is suppressed resulting in improvements in strength, hardness, and wears resistance. Existing and emerging components use fine grained metals for these beneficial attributes. However, these benefits can be lost in service if the grains undergo growth during the component’s lifespan. While grain growth is traditionally viewed as a purely thermal process that requires elevated temperature exposure, recent evidence shows that some metals, especially those with nanocrystalline grain structure, can undergo grain growth even at room temperature or below due to mechanical loading. This report has been assembled to survey the key concepts regarding how mechanical loads can drive grain coarsening at room temperature and below. Topics outlined include the atomic level mechanisms that facilitate grain growth, grain boundary mobility, and the impact of boundary structure, loading scheme, and temperature.

  3. Impact fracture experiments simulating interstellar grain-grain collisions

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Chang, Sherwood; Dickinson, J. Thomas

    1990-01-01

    Oxide and silicate grains condensing during the early phases of the formation of the solar system or in the outflow of stars are exposed to high partial pressures of the low-z elements H, C, N and O and their simple gaseous compounds. Though refractory minerals are nominally anhydrous and non-carbonate, if they crystallize in the presence of H2O, N2 and CO or CO2 gases, they dissolve traces of the gaseous components. The question arises: How does the presence of dissolved gases or gas components manifest itself when grain-grain collisions occur. What are the gases emitted when grains are shattered during a collision event. Researchers report on fracture experiments in ultrahigh vacuum (UHV, approximately less than 10 to the -8th power mbar) designed to measure (by means of a quadrupole mass spectrometer, QMS, with microns to ms time resolution) the emission of gases and vapors during and after impact (up to 1.5 sec). Two terrestrial materials were chosen which represent structural and compositional extremes: olivine (San Carlos, AZ), a densely packed Mg-Fe(2+) silicate from the upper mantle, available as 6 to 12 mm single crystals, and obsidian (Oregon), a structurally open, alkaline-SiO2-rich volcanic glass. In the olivine crystals OH- groups have been identified spectroscopically, as well as H2 molecules. Obsidian is a water-rich glass containing OH- besides H2O molecules. Olivine from the mantle often contains CO2, either as CO2-rich fluid in fluid inclusions or structurally dissolved or both. By analogy to synthetic glasses CO2 in the obsidian may be present in form of CO2 molecules in voids of molecular dimensions, or as carbonate anions, CO3(2-). No organic molecules have been detected spectroscopically in either material. Results indicate that refractory oxide/silicates which contain dissolved traces of the H2O and CO/CO2 components but no spectroscopically detectable traces of organics may release complex H-C-O (possibly H-C-N-O) molecules upon fracture

  4. Impact fracture experiments simulating interstellar grain-grain collisions

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Chang, Sherwood; Dickinson, J. Thomas

    1990-01-01

    Oxide and silicate grains condensing during the early phases of the formation of the solar system or in the outflow of stars are exposed to high partial pressures of the low-z elements H, C, N and O and their simple gaseous compounds. Though refractory minerals are nominally anhydrous and non-carbonate, if they crystallize in the presence of H2O, N2 and CO or CO2 gases, they dissolve traces of the gaseous components. The question arises: How does the presence of dissolved gases or gas components manifest itself when grain-grain collisions occur. What are the gases emitted when grains are shattered during a collision event. Researchers report on fracture experiments in ultrahigh vacuum (UHV, approximately less than 10 to the -8th power mbar) designed to measure (by means of a quadrupole mass spectrometer, QMS, with microns to ms time resolution) the emission of gases and vapors during and after impact (up to 1.5 sec). Two terrestrial materials were chosen which represent structural and compositional extremes: olivine (San Carlos, AZ), a densely packed Mg-Fe(2+) silicate from the upper mantle, available as 6 to 12 mm single crystals, and obsidian (Oregon), a structurally open, alkaline-SiO2-rich volcanic glass. In the olivine crystals OH- groups have been identified spectroscopically, as well as H2 molecules. Obsidian is a water-rich glass containing OH- besides H2O molecules. Olivine from the mantle often contains CO2, either as CO2-rich fluid in fluid inclusions or structurally dissolved or both. By analogy to synthetic glasses CO2 in the obsidian may be present in form of CO2 molecules in voids of molecular dimensions, or as carbonate anions, CO3(2-). No organic molecules have been detected spectroscopically in either material. Results indicate that refractory oxide/silicates which contain dissolved traces of the H2O and CO/CO2 components but no spectroscopically detectable traces of organics may release complex H-C-O (possibly H-C-N-O) molecules upon fracture

  5. Grain Refinement of Deoxidized Copper

    NASA Astrophysics Data System (ADS)

    Balart, María José; Patel, Jayesh B.; Gao, Feng; Fan, Zhongyun

    2016-10-01

    This study reports the current status of grain refinement of copper accompanied in particular by a critical appraisal of grain refinement of phosphorus-deoxidized, high residual P (DHP) copper microalloyed with 150 ppm Ag. Some deviations exist in terms of the growth restriction factor ( Q) framework, on the basis of empirical evidence reported in the literature for grain size measurements of copper with individual additions of 0.05, 0.1, and 0.5 wt pct of Mo, In, Sn, Bi, Sb, Pb, and Se, cast under a protective atmosphere of pure Ar and water quenching. The columnar-to-equiaxed transition (CET) has been observed in copper, with an individual addition of 0.4B and with combined additions of 0.4Zr-0.04P and 0.4Zr-0.04P-0.015Ag and, in a previous study, with combined additions of 0.1Ag-0.069P (in wt pct). CETs in these B- and Zr-treated casts have been ascribed to changes in the morphology and chemistry of particles, concurrently in association with free solute type and availability. No further grain-refining action was observed due to microalloying additions of B, Mg, Ca, Zr, Ti, Mn, In, Fe, and Zn (~0.1 wt pct) with respect to DHP-Cu microalloyed with Ag, and therefore are no longer relevant for the casting conditions studied. The critical microalloying element for grain size control in deoxidized copper and in particular DHP-Cu is Ag.

  6. AGB stars and presolar grains

    SciTech Connect

    Busso, M.; Trippella, O.; Maiorca, E.; Palmerini, S.

    2014-05-09

    Among presolar materials recovered in meteorites, abundant SiC and Al{sub 2}O{sub 3} grains of AGB origins were found. They showed records of C, N, O, {sup 26}Al and s-element isotopic ratios that proved invaluable in constraining the nucleosynthesis models for AGB stars [1, 2]. In particular, when these ratios are measured in SiC grains, they clearly reveal their prevalent origin in cool AGB circumstellar envelopes and provide information on both the local physics and the conditions at the nucleosynthesis site (the H- and He-burning layers deep inside the structure). Among the properties ascertained for the main part of the SiC data (the so-called mainstream ones), we mention a large range of {sup 14}N/{sup 15}N ratios, extending below the solar value [3], and {sup 12}C/{sup 13}C ratios ≳ 30. Other classes of grains, instead, display low carbon isotopic ratios (≳ 10) and a huge dispersion for N isotopes, with cases of large {sup 15}N excess. In the same grains, isotopes currently feeded by slow neutron captures reveal the characteristic pattern expected from this process at an efficiency slightly lower than necessary to explain the solar main s-process component. Complementary constraints can be found in oxide grains, especially Al{sub 2}O{sub 3} crystals. Here, the oxygen isotopes and the content in {sup 26}Al are of a special importance for clarifying the partial mixing processes that are known to affect evolved low-mass stars. Successes in modeling the data, as well as problems in explaining some of the mentioned isotopic ratios through current nucleosynthesis models are briefly outlined.

  7. Carpel size, grain filling, and morphology determine individual grain weight in wheat.

    PubMed

    Xie, Quan; Mayes, Sean; Sparkes, Debbie L

    2015-11-01

    Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat (Triticum aestivum L.)×spelt (Triticum spelta L.). Carpel size, grain dry matter and water accumulation, and grain dimensions interacted strongly with each other. Furthermore, larger carpels, a faster grain filling rate, earlier and longer grain filling, more grain water, faster grain water absorption and loss rates, and larger grain dimensions were associated with higher grain weight. Frequent quantitative trait locus (QTL) coincidences between these traits were observed, particularly those on chromosomes 2A, 3B, 4A, 5A, 5DL, and 7B, each of which harboured 16-49 QTLs associated with >12 traits. Analysis of the allelic effects of coincident QTLs confirmed their physiological relationships, indicating that the complex but orderly grain filling processes result mainly from pleiotropy or the tight linkages of functionally related genes. After grain filling, distal grains within spikelets were smaller than basal grains, primarily due to later grain filling and a slower initial grain filling rate, followed by synchronous maturation among different grains. Distal grain weight was improved by increased assimilate availability from anthesis. These findings provide deeper insight into grain weight determination in wheat, and the high level of QTL coincidences allows simultaneous improvement of multiple grain filling traits in breeding.

  8. In situ synchrotron investigation of grain growth behavior of nano-grained UO2

    DOE PAGES

    Miao, Yinbin; Yao, Tiankai; Lian, Jie; ...

    2017-01-09

    Here, we report on the study of grain growth kinetics in nano-grained UO2 samples. Dense nano-grained UO2 samples with well-controlled stoichiometry and grain size were fabricated using the spark plasma sintering technique. To determine the grain growth kinetics at elevated temperatures, a synchrotron wide-angle X-ray scattering (WAXS) study was performed in situ to measure the real-time grain size evolution based on the modified Williamson-Hall analysis. The unique grain growth kinetics of nanocrystalline UO2 at 730 °C and 820 °C were observed and explained by the difference in mobility of various grain boundaries.

  9. Phenomenology of Abnormal Grain Growth in Systems with Nonuniform Grain Boundary Mobility

    NASA Astrophysics Data System (ADS)

    DeCost, Brian L.; Holm, Elizabeth A.

    2016-07-01

    We have investigated the potential for nonuniform grain boundary mobility to act as a persistence mechanism for abnormal grain growth (AGG) using Monte Carlo Potts model simulations. The model system consists of a single initially large candidate grain embedded in a matrix of equiaxed grains, corresponding to the abnormal growth regime before impingement occurs. We assign a mobility advantage to grain boundaries between the candidate grain and a randomly selected subset of the matrix grains. We observe AGG in systems with physically reasonable fractions of fast boundaries; the probability of abnormal growth increases as the density of fast boundaries increases. This abnormal growth occurs by a series of fast, localized growth events that counteract the tendency of abnormally large grains to grow more slowly than the surrounding matrix grains. Resulting abnormal grains are morphologically similar to experimentally observed abnormal grains.

  10. Phenomenology of Abnormal Grain Growth in Systems with Nonuniform Grain Boundary Mobility

    NASA Astrophysics Data System (ADS)

    DeCost, Brian L.; Holm, Elizabeth A.

    2017-06-01

    We have investigated the potential for nonuniform grain boundary mobility to act as a persistence mechanism for abnormal grain growth (AGG) using Monte Carlo Potts model simulations. The model system consists of a single initially large candidate grain embedded in a matrix of equiaxed grains, corresponding to the abnormal growth regime before impingement occurs. We assign a mobility advantage to grain boundaries between the candidate grain and a randomly selected subset of the matrix grains. We observe AGG in systems with physically reasonable fractions of fast boundaries; the probability of abnormal growth increases as the density of fast boundaries increases. This abnormal growth occurs by a series of fast, localized growth events that counteract the tendency of abnormally large grains to grow more slowly than the surrounding matrix grains. Resulting abnormal grains are morphologically similar to experimentally observed abnormal grains.

  11. Positron trapping at grain boundaries

    SciTech Connect

    Dupasquier, A. ); Romero, R.; Somoza, A. )

    1993-10-01

    The standard positron trapping model has often been applied, as a simple approximation, to the interpretation of positron lifetime spectra in situations of diffusion-controlled trapping. This paper shows that this approximation is not sufficiently accurate, and presents a model based on the correct solution of the diffusion equation, in the version appropriate for studying positron trapping at grain boundaries. The model is used for the analysis of new experimental data on positron lifetime spectra in a fine-grained Al-Ca-Zn alloy. Previous results on similar systems are also discussed and reinterpreted. The analysis yields effective diffusion coefficients not far from the values known for the base metals of the alloys.

  12. Grain Growth in Cerium Metal

    NASA Astrophysics Data System (ADS)

    Cooley, Jason; Katz, Martha; Mielke, Charles; Montalvo, Joel

    We report on grain growth in forged and rolled cerium plate for temperatures from 350 to 700 degrees C and times from 30 to 120 minutes. The cerium was made by arc-melting into a 25 mm deep by 80 mm diameter copper mold. The resulting disk was forged at room temperature to a 25% reduction of thickness four times with a 350 degree C strain relief heat treatment for 60 minutes between forging steps. The resulting 8 mm thick plate was clock rolled at room temperature to a 25% reduction of thickness three times with a 350 C strain relief heat treatment between steps resulting in a plate approximately 3 mm thick. 5 x 10 mm coupons were cut from the plate for the grain growth study.

  13. Grain boundary loops in graphene

    NASA Astrophysics Data System (ADS)

    Cockayne, Eric; Rutter, Gregory M.; Guisinger, Nathan P.; Crain, Jason N.; First, Phillip N.; Stroscio, Joseph A.

    2011-05-01

    Topological defects can affect the physical properties of graphene in unexpected ways. Harnessing their influence may lead to enhanced control of both material strength and electrical properties. Here we present a class of topological defects in graphene composed of a rotating sequence of dislocations that close on themselves, forming grain boundary loops that either conserve the number of atoms in the hexagonal lattice or accommodate vacancy or interstitial reconstruction, while leaving no unsatisfied bonds. One grain boundary loop is observed as a “flower” pattern in scanning tunneling microscopy studies of epitaxial graphene grown on SiC(0001). We show that the flower defect has the lowest energy per dislocation core of any known topological defect in graphene, providing a natural explanation for its growth via the coalescence of mobile dislocations.

  14. Grain orientation in lunar soil

    NASA Technical Reports Server (NTRS)

    Mahmood, A.; Mitchell, J. K.; Carrier, W. D., III

    1974-01-01

    Orientation of lunar soil particles in a vertical plane, as seen in the radiographs of core tubes was characterized by preparing orientation diagrams for the different stratigraphic units. Radiographs of double-core drive tubes 64001/64002, 60009/60010, and 60013/60014 were used. The orientation results reinforced the stratigraphic differences. Another source of fabric data was the laboratory-deposited sample 14163,148. The artificial deposition results showed that the grain arrangements were dependent upon the method of deposition. These results from lunar soil and other data from a crushed basalt simulant can be a basis for the inference that lunar soil grain orientation and properties are useful in interpreting lunar surface history.

  15. Grain orientation in lunar soil

    NASA Technical Reports Server (NTRS)

    Mahmood, A.; Mitchell, J. K.; Carrier, W. D., III

    1974-01-01

    Orientation of lunar soil particles in a vertical plane, as seen in the radiographs of core tubes was characterized by preparing orientation diagrams for the different stratigraphic units. Radiographs of double-core drive tubes 64001/64002, 60009/60010, and 60013/60014 were used. The orientation results reinforced the stratigraphic differences. Another source of fabric data was the laboratory-deposited sample 14163,148. The artificial deposition results showed that the grain arrangements were dependent upon the method of deposition. These results from lunar soil and other data from a crushed basalt simulant can be a basis for the inference that lunar soil grain orientation and properties are useful in interpreting lunar surface history.

  16. Solid Propellant Grain Structural Integrity Analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The structural properties of solid propellant rocket grains were studied to determine the propellant resistance to stresses. Grain geometry, thermal properties, mechanical properties, and failure modes are discussed along with design criteria and recommended practices.

  17. Mechanical Behavior of Grain Boundary Engineered Copper

    SciTech Connect

    Carter, S B; Hodge, A M

    2006-08-08

    A grain boundary engineered copper sample previously characterized by Electron Backscatter Diffraction (EBSD) has been selected for nanoindentation tests. Given the fact that grain boundaries have thicknesses in the order of 1 micron or less, it is essential to use nanomechanics to test the properties of individual grain boundaries. The Hysitron nanoindenter was selected over the MTS nanoindenter due to its superior optical capabilities that aid the selection and identification of the areas to be tested. An area of 2mm by 2mm with an average grain size of 50 microns has been selected for the study. Given the EBSD mapping, grains and grain boundaries with similar orientations are tested and the hardness and modulus are compared. These results will give a relationship between the mechanical properties and the engineered grain boundaries. This will provide for the first time a correlation between grain boundary orientation and the mechanical behavior of the sample at the nanoscale.

  18. Isotopic anomalies in extraterrestrial grains.

    PubMed

    Ireland, T R

    1996-03-01

    Isotopic compositions are referred to as anomalous if the isotopic ratios measured cannot be related to the terrestrial (solar) composition of a given element. While small effects close to the resolution of mass spectrometric techniques can have ambiguous origins, the discovery of large isotopic anomalies in inclusions and grains from primitive meteorites suggests that material from distinct sites of stellar nucleosynthesis has been preserved. Refractory inclusions, which are predominantly composed of the refractory oxides of Al, Ca, Ti, and Mg, in chondritic meteorites commonly have excesses in the heaviest isotopes of Ca, Ti, and Cr which are inferred to have been produced in a supernova. Refractory inclusions also contain excess 26Mg from short lived 26Al decay. However, despite the isotopic anomalies indicating the preservation of distinct nucleosynthetic sites, refractory inclusions have been processed in the solar system and are not interstellar grains. Carbon (graphite and diamond) and silicon carbide grains from the same meteorites also have large isotopic anomalies but these phases are not stable in the oxidized solar nebula which suggests that they are presolar and formed in the circumstellar atmospheres of carbon-rich stars. Diamond has a characteristic signature enriched in the lightest and heaviest isotopes of Xe, and graphite shows a wide range in C isotopic compositions. SiC commonly has C and N isotopic signatures which are characteristic of H-burning in the C-N-O cycle in low-mass stars. Heavier elements such as Si, Ti, Xe, Ba, and Nd, carry an isotopic signature of the s-process. A minor population of SiC (known as Grains X, ca. 1%) are distinct in having decay products of short lived isotopes 26Al (now 26Mg), 44Ti (now 44Ca), and 49V (now 49Ti), as well as 28Si excesses which are characteristic of supernova nucleosynthesis. The preservation of these isotopic anomalies allows the examination of detailed nucleosynthetic pathways in stars.

  19. Lunar soils grain size catalog

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    1993-01-01

    This catalog compiles every available grain size distribution for Apollo surface soils, trench samples, cores, and Luna 24 soils. Original laboratory data are tabled, and cumulative weight distribution curves and histograms are plotted. Standard statistical parameters are calculated using the method of moments. Photos and location comments describe the sample environment and geological setting. This catalog can help researchers describe the geotechnical conditions and site variability of the lunar surface essential to the design of a lunar base.

  20. Grain boundary wetness of partially molten dunite

    NASA Astrophysics Data System (ADS)

    Mu, S.; Faul, U.

    2013-12-01

    The grain scale melt distribution plays a key role for physical properties of partially molten regions in Earth's upper mantle, but our current understanding of the distribution of basaltic melt at the grain scale is still incomplete. A recent experimental study shows that wetted two-grain boundaries are a common feature of partially molten dunite at small melt fractions (Garapic et al., G3, 2013). In early ideal models which assume isotropic surface energy, the grain scale melt distribution is uniquely determined by knowing the melt fraction and the dihedral angle between two crystalline grains and the melt (von Bargen and Waff, JGR, 1986). Olivine is anisotropic in surface energy, hence the grain scale melt distribution at given melt fraction cannot be characterized by the dihedral angle alone. The grain boundary wetness, which is defined as the ratio of solid-liquid boundary area over the total interfacial area (Takei, JGR, 1998), is a more objective measure of the grain scale melt distribution. The aim of this study is to quantify the relationship between grain size, melt fraction, temperature and grain boundary wetness of partially molten dunite under dry conditions. We annealed olivine-basalt aggregates with melt fractions from 0.03% to 6% at a range of temperatures and 1 GPa in a piston cylinder for 1 to 336 hours, with resulting mean grain sizes of 10 to 60 μm. The samples were sectioned, polished and imaged at high resolution by using a field emission SEM. Each image had a size of 2048 x 1536 pixels with a resolution of 0.014 to 0.029 μm/pixel, depending on magnification. For each sample, depending on grain sizes, we made mosaics of 3 x 3 or 6 x 6 overlapping images. Measurements of melt fraction, grain boundary wetness and grain size were carried out on these high resolution mosaics by using ImageJ software. Analyses of mosaics show that grain boundary wetness increases with increasing melt fraction at constant grain size to values well above those

  1. Whole grains: benefits and challenges.

    PubMed

    Jones, Julie Miller; Engleson, Jodi

    2010-01-01

    Inclusion of whole grains (WG) in the diet is recommended in dietary guidance around the world because of their associations with increased health and reduced risk of chronic disease. WGs are linked to reduced risk of obesity or weight gain; reduced risk of cardiovascular disease (CVD), including coronary heart disease (CHD), hypertension, and stroke; improved gut health and decreased risk of cancers of the upper gut; perhaps reduced risk of colorectal cancer; and lower mortality rate. The 2005 United States Dietary Guidelines Advisory Committee has recommended that consumers make "half their grains whole." Yet, whole grains are puzzling both consumers and scientists. Scientists are trying to determine whether their health benefits are due to the synergy of WG components, individual WG components, or the fact that WG eaters make many of the recommended diet and lifestyle choices. Consumers need to understand the WG benefits and how to identify WG foods to have incentive to purchase and use such foods. Industry needs to develop great-tasting, clearly-labeled products. With both these factors working together, it will be possible to change WG consumption habits among consumers.

  2. Grain Boundary Energies in Copper.

    NASA Astrophysics Data System (ADS)

    Omar, Ramli

    Available from UMI in association with The British Library. Requires signed TDF. The dependence of grain boundary energy on boundary orientation was studied in copper annealed at 1000 ^circC. Grain boundary orientations and the disorientations across the boundaries were measured. A rotation matrix notation is used to interpret selected area electron channelling patterns observed in a scanning electron microscope. The Herring and Shewmon torque terms were investigated using wire specimens having a "bamboo" structure. The Herring torque terms were determined using the Hess relation. The (110) section of the Sigma 11 gamma-plot (i.e. the variation of grain boundary energy with boundary orientation) was evaluated. In this plot, minima in energies were found at the (311) and (332) mirror planes. Sigma 3 and Sigma9 boundaries were investigated in sheet specimens. The (110) and (111) sections of the Sigma3 gamma -plot were evaluated. In addition to the sharp cusps occurring at the Sigma3 {111} planes, the further shallower cusps occur at the incoherent Sigma 3 boundaries with the interfacial planes approximately parallel to {322} in one crystal and {11.44} in the other crystal. Flat and curved Sigma9 boundaries were investigated. The break up of Sigma9 boundaries into two Sigma3 boundaries and the relation between the Sigma3 and Sigma 9 gamma-plots was also examined. The (110) section of the Sigma9 gamma-plot was constructed.

  3. Small grains and IRAS colors

    NASA Technical Reports Server (NTRS)

    Boulanger, F.; Beichman, C.; Helou, G.; Desert, F. X.; Perault, M.

    1988-01-01

    The paper studies how infrared colors of dust emission from the interstellar medium vary with the energy density of the radiation field on the basis of IRAS observation of the California Nebula. The data suggest that color variations result from a combinatin of equilibrium emission from large grains, and nonequilibrium emission from small grains, with destruction of the small grains emitting at 12 microns at high energy density; it is estimated that 80 percent of these small particles are destroyed for an energy density in ultraviolet photons larger than 50 times that of the average interstellar radiation field in the solar neighborhood. In a color-color diagram, I(v)(60 microns)/I(v)(100 microns) versus I(v)(12 microns)/I(v)(25 microns), the California Nebula measurements at various distances to the ionizing star Zeta Per follow a sequence similar to that of galaxies. This result shows that the position of a galaxy along this sequence is a measure of the intensity of the radiation field in the regions responsible for the infrared emission.

  4. Thermal properties of heterogeneous grains

    NASA Technical Reports Server (NTRS)

    Lien, David J.

    1988-01-01

    Cometary dust is not spherical nor homogeneous, yet these are the assumptions used to model its thermal, optical, and dynamical properties. To better understand the effects of heterogeneity on the thermal and optical properties of dust grains, the effective dielectric constant for an admixture of magnetite and a silicate were calculated using two different effective medium theories: the Maxwell-Garnett theory and the Bruggeman theory. In concept, the MG theory describes the effective dielectric constant of a matrix material into which is embedded a large number of very small inclusions of a second material. The Bruggeman theory describes the dielectric constant of a well mixed aggregate of two or more types of materials. Both theories assume that the individual particles are much smaller than the wavelength of the incident radiation. The refractivity for a heterogeneous grain using the MG theory is very similar to the refractivity of the matrix material, even for large volume fractions of the inclusion. The equilibrium grain temperature for spherical particles sized from .001 to 100 microns in radius at 1 astronomical unit from the sun was calculated. Further explanation is given.

  5. Electrons and grain boundary energies in metals

    SciTech Connect

    Ferrante, J.; Smith, J.R.; Balluffi, R.W.; Brokman, A.

    1985-03-01

    It was found that differences between electron density profiles in grain boundaries and those in the crystal yield relatively large electronic contributions to grain boundary energies. These electronic effects can be combined self-consistently with pair-wise interactions in a practical method for computing grain boundary structures and energies.

  6. Ancient whole grain gluten-free flatbreads

    USDA-ARS?s Scientific Manuscript database

    The USDA food guide recommends that at least ½ of all the grains eaten should be whole grains. The FDA allows food Health Claim labels for food containing 51% whole gains and 11 g of dietary fiber. This is the only report demonstrating innovative ancient whole grain gluten-free (no yeast or chemical...

  7. Solidification Based Grain Refinement in Steels

    DTIC Science & Technology

    2010-07-20

    thermodynamics . 2) Experimental verify the effectiveness of possible nucleating compounds. 3) Extend grain refinement theory and solidification...knowledge through experimental data. 4) Determine structure property relationships for the examined grain refiners. 5) Formulate processing techniques for...using grain refiners in the steel casting industry. During Fiscal Year 2010, this project worked on determining structure property -relationships

  8. Radiographic techniques for investigating cereal grains

    SciTech Connect

    Winkler, M.A.

    1981-10-01

    Radiographic examination of cereal grain can determine nondestructively the presence of internal structural damage and other defects, which can be correlated to associated problems such as disease and infestation. Radiographs of several representative grains demonstrate the capabilities of the radiographic technique to detect structural deviations in the grains.

  9. Grain boundary resistance to fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Chen, QI; Liu, H. W.

    1993-01-01

    Results of an experimental study tracing the grain boundary effect on the fatigue crack growth rate are reported. Direct experimental evidence for the grain boundary blockage mechanism is presented. The orientation difference between two neighboring grains directly contributed to the extent of crack growth retardation.

  10. Structure and chemistry of the sorghum grain

    USDA-ARS?s Scientific Manuscript database

    Sorghum is grown around the world and often under harsh and variable environmental conditions. Combined with the high degree of genetic diversity present in sorghum, this can result in substantial variability in grain composition and grain quality. While similar to other cereal grains such as maize ...

  11. Whole grain gluten-free flat breads

    USDA-ARS?s Scientific Manuscript database

    The USDA food guide recommends that at least ½ of all the grains eaten should be whole grains. The FDA allows food health claim labels for food containing 51% whole gains and 11 g of dietary fiber. This is the only report demonstrating innovative whole grain gluten free (without yeast or chemicals) ...

  12. Electrical conduction of intrinsic grain and grain boundary in Mn-Co-Ni-O thin film thermistors: Grain size influence

    NASA Astrophysics Data System (ADS)

    He, L.; Ling, Z. Y.

    2011-11-01

    Mn1.85Co0.3Ni0.85O4 (MCN) thin films with pure spinel phase and different grain size were prepared on Al2O3 substrates by chemical deposition method. Temperature dependent ac impedance spectroscopy was employed to analyze the grain size influence on the electrical conduction of intrinsic grain and grain boundary (GB) in MCN thin films. The conduction mechanisms of grain and GB both followed the small-polaron hopping model. It was found that the hopping types of GB (nearest-neighbor-hopping (NNH)) and grain (a transition from variable-range-hopping (VRH) to NNH) were not affected by the grain size, while the resistance, characteristic temperature, and activation energy of grain and GB were affected by the grain size in varying degrees. Additionally, the mechanisms concerning the dependence of electrical conduction of grain and GB on the grain size of MCN thin films were discussed in detail. These studies will also provide a comprehensive understanding of the conduction behaviors of a system with mixed NNH and VRH.

  13. Weighing in on whole grains: A review of evidence linking whole grains to body weight

    USDA-ARS?s Scientific Manuscript database

    U.S. dietary guidelines support the consumption of whole grains in lieu of refined grains. On January 31, 2011, the 2010 Dietary Guidelines for Americans (DGA) were released and the recommendations with respect to grains were for individuals to “Consume at least half of all grains as whole grains” a...

  14. Evolution of grain boundary structure in submicrometer-grained Al-Mg alloy

    SciTech Connect

    Horita, Zenji; Nemoto, Minoru; Smith, D.J.; Furukawa, Minoru; Valiev, R.Z.; Langdon, T.G.

    1996-11-01

    This paper presents high-resolution electron microscopy studies of grain boundary structures in a submicrometer-grained Al-3%Mg solid solution alloy produced by an intense plastic straining technique. The studies include the effect of static annealing on the grain boundary structure. Many grain boundaries are in a high-energy nonequilibrium state in the as-strained sample. The nonequilibrium character is retained on some grain boundaries in samples annealed at temperatures below the onset of significant grain growth. The effect of electron irradiation on the grain boundary structure also is examined.

  15. Experimental Study of Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Spann, James F; Venturini, Catherine C.; Comfort, Richard H.; Mian, Abbas M.

    1999-01-01

    The results of an experimental study of the charging mechanisms of micron size dust grains are presented. Individual dust grains are electrodynamically suspended and exposed to an electron beam of known energy and flux, and to far ultraviolet radiation of known wavelength and intensity. Changes in the charge-to-mass ratio of the grain are directly measured as a function of incident beam (electron and/or photon), grain size and composition. Comparisons of our results to theoretical models that predict the grain response are presented.

  16. Experimental Study of Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Spann, James F; Venturini, Catherine C.; Comfort, Richard H.; Mian, Abbas M.

    1999-01-01

    The results of an experimental study of the charging mechanisms of micron size dust grains are presented. Individual dust grains are electrodynamically suspended and exposed to an electron beam of known energy and flux, and to far ultraviolet radiation of known wavelength and intensity. Changes in the charge-to-mass ratio of the grain are directly measured as a function of incident beam (electron and/or photon), grain size and composition. Comparisons of our results to theoretical models that predict the grain response are presented.

  17. Grain size control of rhenium strip

    NASA Technical Reports Server (NTRS)

    Schuster, Gary B.

    1991-01-01

    Ensuring the desired grain size in the pure Re strip employed by the SP-100 space nuclear reactor design entails the establishment of an initial grain size in the as-received strip and the avoidance of excessive grain growth during subsequent fabrication. Pure Re tapered tensile specimens have been fabricated and tested in order to quantify the effects of grain-boundary migration. Grain size could be rendered fine and uniform by means of a rolling procedure that uses rather large reductions between short intermediate anneals. The critical strain regime varies inversely with annealing temperature.

  18. 3D modeling of metallic grain growth

    SciTech Connect

    George, D.; Carlson, N.; Gammel, J.T.; Kuprat, A.

    1999-06-01

    This paper will describe simulating metallic grain growth using the Gradient Weighted Moving Finite Elements code, GRAIN3D. The authors also describe the set of mesh topology change operations developed to respond to changes in the physical topology such as the collapse of grains and to maintain uniform calculational mesh quality. Validation of the method is demonstrated by comparison to analytic calculations. The authors present results of multigrain simulations where grain boundaries evolve by mean curvature motion and include results which incorporate grain boundary orientation dependence.

  19. Grain size control of rhenium strip

    NASA Technical Reports Server (NTRS)

    Schuster, Gary B.

    1991-01-01

    Ensuring the desired grain size in the pure Re strip employed by the SP-100 space nuclear reactor design entails the establishment of an initial grain size in the as-received strip and the avoidance of excessive grain growth during subsequent fabrication. Pure Re tapered tensile specimens have been fabricated and tested in order to quantify the effects of grain-boundary migration. Grain size could be rendered fine and uniform by means of a rolling procedure that uses rather large reductions between short intermediate anneals. The critical strain regime varies inversely with annealing temperature.

  20. Mechanism for diffusion induced grain boundary migration

    SciTech Connect

    Balluffi, R.W.; Cahn, J.W.

    1980-08-01

    Grain boundaries are found to migrate under certain conditions when solute atoms are diffused along them. This phenomenon, termed diffusion induced grain boundary migration (DIGM), has now been found in six systems. The observed phenomenon and empirical data are used to discard certain concepts for the driving force and the mechanism. A mechanism is proposed in which differences in the diffusion coefficients of the diffusing species along the grain boundary cause a self-sustaining climb of grain boundary dislocations and motion of their associated grain boundary steps.

  1. Spin-related magnetism of interstellar grains

    NASA Technical Reports Server (NTRS)

    Srnka, L. J.; De, B. R.

    1978-01-01

    The magnetic dipole moments and internal magnetic fields due to the spin of electrically charged elongated nonmagnetic interstellar grains in kinetic equilibrium with their surroundings are computed for the grain-size range from 0.01 to 1.0 micron. It is shown that the induced magnetic moments and internal magnetic fields of charged spinning nonmagnetic grains of arbitrary composition and prolate spheroidal shape can be appreciable, possibly even exceeding 0.01 emu/cu cm for 0.01-micron grains. The results indicate that virtually all grains smaller than 0.1 micron in mean diameter, and all elongated grains smaller than about 1 micron in length, are immersed in local magnetic fields due to spin that are much larger than the ambient galactic field. Some implications of this effect are discussed in relation to the polarization of starlight by aligned dust grains and the primordial remanent magnetization found in primitive carbonaceous chondrites.

  2. Barnett relaxation in non-symmetric grains

    NASA Astrophysics Data System (ADS)

    Kolasi, Erald; Weingartner, Joseph C.

    2017-10-01

    Barnett relaxation, first described by Purcell in 1979, appears to play a major role in the alignment of grains with the interstellar magnetic field. In 1999, Lazarian and Draine proposed that Barnett relaxation and its relative, nuclear relaxation, can induce grains to flip. If this thermal flipping is rapid then the dynamical effect of torques that are fixed relative to the grain body can be greatly reduced. To date, detailed studies of Barnett relaxation have been confined to grains exhibiting dynamic symmetry. In 2009, Weingartner argued that internal relaxation cannot induce flips in any grains, whether they exhibit dynamic symmetry or not. In this work, we develop approximate expressions for the dissipation rate and diffusion coefficient for Barnett relaxation. We revisit the issue of internally induced thermal flipping, finding that it cannot occur for grains with dynamic symmetry, but does occur for grains lacking dynamic symmetry.

  3. Spin-related magnetism of interstellar grains

    NASA Technical Reports Server (NTRS)

    Srnka, L. J.; De, B. R.

    1978-01-01

    The magnetic dipole moments and internal magnetic fields due to the spin of electrically charged elongated nonmagnetic interstellar grains in kinetic equilibrium with their surroundings are computed for the grain-size range from 0.01 to 1.0 micron. It is shown that the induced magnetic moments and internal magnetic fields of charged spinning nonmagnetic grains of arbitrary composition and prolate spheroidal shape can be appreciable, possibly even exceeding 0.01 emu/cu cm for 0.01-micron grains. The results indicate that virtually all grains smaller than 0.1 micron in mean diameter, and all elongated grains smaller than about 1 micron in length, are immersed in local magnetic fields due to spin that are much larger than the ambient galactic field. Some implications of this effect are discussed in relation to the polarization of starlight by aligned dust grains and the primordial remanent magnetization found in primitive carbonaceous chondrites.

  4. Whole grains and health: from theory to practice--highlights of The Grains for Health Foundation's Whole Grains Summit 2012.

    PubMed

    McKeown, Nicola M; Jacques, Paul F; Seal, Chris J; de Vries, Jan; Jonnalagadda, Satya S; Clemens, Roger; Webb, Densie; Murphy, Lee Anne; van Klinken, Jan-Willem; Topping, David; Murray, Robyn; Degeneffe, Dennis; Marquart, Leonard F

    2013-05-01

    The Grains for Health Foundation's Whole Grains Summit, held May 19-22, 2012 in Minneapolis, was the first meeting of its kind to convene >300 scientists, educators, food technologists, grain breeders, food manufacturers, marketers, health professionals, and regulators from around the world. Its goals were to identify potential avenues for collaborative efforts and formulate new approaches to whole-grains research and health communications that support global public health and business. This paper summarizes some of the challenges and opportunities that researchers and nutrition educators face in expanding the knowledge base on whole grains and health and in translating and disseminating that knowledge to consumers. The consensus of the summit was that effective, long-term, public-private partnerships are needed to reach across the globe and galvanize the whole-grains community to collaborate effectively in translating whole-grains science into strategies that increase the availability and affordability of more healthful, grain-based food products. A prerequisite of that is the need to build trust among diverse multidisciplinary professionals involved in the growing, producing, marketing, and regulating of whole-grain products and between the grain and public health communities.

  5. Roles of grain boundaries in improving fracture toughness of ultrafine-grained metals

    NASA Astrophysics Data System (ADS)

    Shimokawa, T.; Tanaka, M.; Kinoshita, K.; Higashida, K.

    2011-06-01

    In order to improve the fracture toughness in ultrafine-grained metals, we investigate the interactions among crack tips, dislocations, and grain boundaries in aluminum bicrystal models containing a crack and <112> tilt grain boundaries using molecular dynamics simulations. The results of previous computer simulations showed that grain refinement makes materials brittle if grain boundaries behave as obstacles to dislocation movement. However, it is actually well known that grain refinement increases fracture toughness of materials. Thus, the role of grain boundaries as dislocation sources should be essential to elucidate fracture phenomena in ultrafine-grained metals. A proposed mechanism to express the improved fracture toughness in ultrafine-grained metals is the disclination shielding effect on the crack tip mechanical field. Disclination shielding can be activated when two conditions are present. First, a transition of dislocation sources from crack tips to grain boundaries must occur. Second, the transformation of grain-boundary structure into a neighboring energetically stable boundary must occur as dislocations are emitted from the grain boundary. The disclination shielding effect becomes more pronounced as antishielding dislocations are continuously emitted from the grain boundary without dislocation emissions from crack tips, and then ultrafine-grained metals can sustain large plastic deformation without fracture with the drastic increase of the mobile dislocation density. Consequently, it can be expected that the disclination shielding effect can improve the fracture toughness in ultrafine-grained metals.

  6. Choose a variety of grains daily, especially whole grains: a challenge for consumers.

    PubMed

    Kantor, L S; Variyam, J N; Allshouse, J E; Putnam, J J; Lin, B H

    2001-02-01

    The 2000 edition of Nutrition and Your Health: Dietary Guidelines for Americans is the first to include a specific guideline for grain foods, separate from fruits and vegetables, and recognize the unique health benefits of whole grains. This paper describes and evaluates major tools for assessing intakes of total grains and whole grains, reviews current data on who consumes grain foods and where, and describes individual- and market-level factors that may influence grain consumption. Aggregate food supply data show that U.S. consumers have increased their intake of grain foods from record low levels in the 1970s, but consumption of whole-grain foods remains low. Data on individual intakes show that consumption of total grains was above the recommended 6 serving minimum in 1994-1996, but consumption of whole grains was only one third of the 3 daily servings many nutritionists recommend. Increased intake of whole-grain foods may be limited by a lack of consumer awareness of the health benefits of whole grains, difficulty in identifying whole-grain foods in the marketplace, higher prices for some whole-grain foods, consumer perceptions of inferior taste and palatability, and lack of familiarity with preparation methods. In July 1999, the U.S. Food and Drug Administration authorized a health claim that should both make it easier for consumers to identify and select whole-grain foods and have a positive effect on the availability of these foods in the marketplace.

  7. Grain Growth in Collapsing Clouds

    NASA Astrophysics Data System (ADS)

    Rossi, S. C. F.; Benevides-Soares, P.; Barbuy, B.

    1990-11-01

    RESUMEN. Se ha considerado un proceso de coagulaci6n de granos en nubes colapsantes de diferentes metalicidades. Se aplicaron los calculos al intervalo de densidades n = lO to , forrespondiendo a la fase isotermica de contracci6n de nubes. A lo largo de esta fase en el colap- so, la temperatura es por lo tanto constante, en donde se alcanza T Q lOKpara nubes de metalicidad solar y T 100 K para nubes de baja metalicidad. El tamano final del grano es mayor para las mayores metali- cidades. ABSTRACT. A process of grain coagulation in collapsing clouds of different metallicities is considered. The calculations are applied to the density range n = 1O to , corresponding to the isothermal phase of cloud contraction. Along this phase in the collapse, the temperature is thus a constant, where T % 10 K for solar-metallicity clouds, and T % 100 K for low metallicity clouds is reached. The final grain size is larger for the higher metallicities. Keq : INTERSTELLAR-CLOUDS - INTERSTELLAR-CRAINS

  8. Grain alignment in starless cores

    SciTech Connect

    Jones, T. J.; Bagley, M.; Krejny, M.; Andersson, B.-G.; Bastien, P.

    2015-01-01

    We present near-IR polarimetry data of background stars shining through a selection of starless cores taken in the K band, probing visual extinctions up to A{sub V}∼48. We find that P{sub K}/τ{sub K} continues to decline with increasing A{sub V} with a power law slope of roughly −0.5. Examination of published submillimeter (submm) polarimetry of starless cores suggests that by A{sub V}≳20 the slope for P versus τ becomes ∼−1, indicating no grain alignment at greater optical depths. Combining these two data sets, we find good evidence that, in the absence of a central illuminating source, the dust grains in dense molecular cloud cores with no internal radiation source cease to become aligned with the local magnetic field at optical depths greater than A{sub V}∼20. A simple model relating the alignment efficiency to the optical depth into the cloud reproduces the observations well.

  9. Chemical and microbiological characterisation of kefir grains.

    PubMed

    Garrote, G L; Abraham, A G; De Antoni, G L

    2001-11-01

    Chemical and microbiological composition of four Argentinean kefir grains from different sources as well as characteristics of the corresponding fermented milk were studied. Kefir grains CIDCA AGK1, AGK2 and AGK4 did not show significant differences in their chemical and microbiological composition. In contrast, protein and yeast content of AGK3 was higher than in the other grains. Although grain microflora comprised lactobacilli, lactococcus, acetic acid bacteria and yeast, we found an important difference regarding species. Lactococcus lactis subsp. lactis, Lactobacillus kefir, Lactobacillus plantarum, Acetobacter and Saccharomyces were present in all types of kefir grain. While Leuconostoc mesenteroides was only isolated from grains CIDCA AGK1 and Lactococcus lactis subsp. lactis biovar diacetylactis, Lactobacillus parakefir and Kluyveromyces marxianus were only isolated from CIDCA AGK2 grains. All grains produced acid products with pH between 3.5 and 4.0. The apparent viscosity of AGK1 fermented milk was greater than the product obtained with AGK4. All fermented milks had inhibitory power towards Escherichia coli but AGK1 and AGK2 supernatants were able to halt the bacterial growth for at least 25 h. Grain weight increment in AGK1, AGK2 and AGK3 during growth in milk did not show significant differences. Despite their fermenting activity, AGK4 grains did not increase their weight.

  10. HYBRID MESOSCALE MODELING OF DYNAMIC GRAIN FRAGMENTATION

    SciTech Connect

    R. SWIFT; C. HAGELBERG; M. HILTL

    2001-04-01

    Fines created by grain fragmentation from shaped-charge, jet perforation treatment often plug-up pores in the vicinity of the perforation tunnel. We analyze and model grain damage on samples recovered from impact tests of dry and water saturated sandstone at stress levels and duration similar to that of perforation loading. Analyses of Scanning Electron Microscope (SEM) images and laser particle size measurements on portions of the recovered samples characterize grain damage and changes in grain size distribution. Hybrid modeling that combines the Discrete Element Method (DEM) with Smooth Particle Hydrodynamics (SPH), and includes mesoscale representation of grain/pore structure, shows how grain damage evolves for dry and wet conditions. Modeling defines behavior in accord with recovered sample analyses as follows: (1) Increase in grain damage is obtained with an increase in stress level and pulse duration. (2) The grains in dry samples are extremely and irregularly fragmented with extensive reduced porosity. (3) Less grain damage and higher porosity is obtained in saturated samples. The influence of pore fluid mitigates the interaction between grains, thus reducing fragmentation damage. (4) Computed particle size distributions are similar in character to measurements.

  11. Directed network topologies of smart grain sensors

    NASA Astrophysics Data System (ADS)

    Walker, David M.; Tordesillas, Antoinette; Nakamura, Tomomichi; Tanizawa, Toshihiro

    2013-03-01

    We employ a recent technique for building complex networks from time series data to construct a directed network embodying time structure to collate the predictive properties of individual granular sensors in a series of biaxial compression tests. For each grain, we reconstruct a static predictive model. This combines a subset selection algorithm and an information theory fitting criterion that selects which other grains in the assembly are best placed to predict a given grain's local stress throughout loading history. The local stress of a grain at each time step is summarized by the magnitude of its particle load vector. A directed network is constructed by representing each grain as a node, and assigning an in-link to a grain from another grain if the latter is selected within the best predictive model of the first grain. The grains with atypically large out-degree are thus the most responsible for predicting the stress history of the other grains: These turn out to be only a few grains which reside inside shear bands. Moreover, these “smart grains” prove to be strongly linked to the mechanism of force chain buckling and intermittent rattler events. That only a small number of grain sensors situated in the shear band are required to accurately capture the rheological response of all other grains in the assembly underlines the crucial importance of nonlocal interactions, espoused by extended continuum theories which posit nonlocal evolution laws. Findings here cast the spotlight on two specific mechanisms as being key to the formulation of robust evolution laws in deforming granular materials under compression and shear: the long held mechanism for energy dissipation of force chain buckling and the sudden switch in roles that a rattler plays as it enters in and out of force chains.

  12. Survival of carbon grains in shocks

    NASA Technical Reports Server (NTRS)

    Seab, C. Gregory

    1990-01-01

    Supernova shocks play a significant part in the life of an interstellar grain. In a typical 10 to the 9th power year lifetime, a grain will be hit by an average of 10 shocks of 100 km s(sup -1) or greater velocity, and even more shocks of lower velocity. Evaluation of the results of this frequent shock processing is complicated by a number of uncertainties, but seems to give about 10 percent destruction of silicate grains and about half that for graphite grains. Because of the frequency of shocking, the mineralogy and sizes of the grain population is predominately determined by shock processing effects, and not by the initial grain nucleation and growth environment. One consequence of the significant role played by interstellar shocks is that a certain fraction (up to 5 percent) of the carbon should be transformed into the diamond phase. Diamond transformation is observed in the laboratory at threshold shock pressures easily obtainable in grain-grain collisions in supernova shocks. Yields for transforming graphite, amorphous carbon, glassy carbon, and other nearly pure carbon solids into diamond are quite high. Impurities up to at least the 10 percent level (for oxygen) are tolerated in the process. The typical size diamond expected from shock transformation agrees well with the observed sizes in the Lewis et al. findings in meteoritic material. Isotropic anomalies already contained in the grain are likely to be retained through the conversion process, while others may be implanted by the shock if the grain is close to the supernova. The meteoritic diamonds are likely to be the results of transformation of carbon grains in grain-grain collisions in supernova shock waves.

  13. 7 CFR 810.801 - Definition of mixed grain.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Mixed Grain Terms Defined § 810.801 Definition of mixed grain. Any mixture of grains for which standards have been established under the United States Grain Standards...

  14. 7 CFR 810.801 - Definition of mixed grain.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Mixed Grain Terms Defined § 810.801 Definition of mixed grain. Any mixture of grains for which standards have been established under the United States Grain Standards...

  15. 7 CFR 810.801 - Definition of mixed grain.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Mixed Grain Terms Defined § 810.801 Definition of mixed grain. Any mixture of grains for which standards have been established under the United States Grain Standards...

  16. 7 CFR 810.801 - Definition of mixed grain.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Mixed Grain Terms Defined § 810.801 Definition of mixed grain. Any mixture of grains for which standards have been established under the United States Grain Standards...

  17. Interstellar Silicate Dust: Modeling and Grain Alignment

    NASA Astrophysics Data System (ADS)

    Das, Indrajit

    We examine some aspects of the alignment of silicate dust grains with respect to the interstellar magnetic field. First, we consider possible observational constraints on the magnetic properties of the grains. Second, we investigate the role of collisions with gas atoms and the production of H2 molecules on the grain surface in the alignment process when the grain is drifting in the gaseous medium. Paramagnetism associated with Fe content in the dust is thought to play a critical role in alignment. Min et al (2007) claimed that the Fe content of the silicate dust can be constrained by the shape of the 10 μm extinction feature. They found low Fe abundances, potentially posing problems for grain alignment theories. We revisit this analysis modeling the grains with irregularly shaped Gaussian Random Sphere (GRS). We give a comprehensive review of all the relevant constraints researchers apply and discuss their effects on the inferred mineralogy. Also, we extend this analysis to examine whether constraints can be placed on the presence of Fe-rich inclusions which could yield "super-paramagnetism". This possibility has long been speculated, but so far observational constraints are lacking. Every time a gas atom collides with a grain, the grain's angular momentum is slightly modified. Likewise when an H2 molecule forms on the surface and is ejected. Here also we model the grain with GRS shape and considered various scenarios about how the colliding gas particles depart the grain. We develop theoretical and computational tools to estimate the torques associated with these aforementioned events for a range of grain drift speeds---from low subsonic to high supersonic speeds. Code results were verified with spherical grain for which analytical results were available. Finally, the above torque results were used to study the grain rotational dynamics. Solving dynamical equations we examine how these torques influence the grain alignment process. Our analysis suggests that

  18. Grain-filling problem in 'super' rice.

    PubMed

    Yang, Jianchang; Zhang, Jianhua

    2010-01-01

    Modern rice (Oryza sativa L.) cultivars, especially the newly bred 'super' rice, have numerous spikelets on a panicle with a large yield capacity. However, these cultivars often fail to achieve their high yield potential due to poor grain-filling of later-flowering inferior spikelets (in contrast to the earlier-flowering superior spikelets). Conventional thinking to explain the poor grain-filling is the consequence of carbon limitation. Recent studies, however, have shown that carbohydrate supply should not be the major problem because they have adequate sucrose at their initial grain-filling stage. The low activities of key enzymes in carbon metabolism may contribute to the poor grain-filling. Proper field practices, such as moderate soil drying during mid- and late grain-filling stages, could solve some problems in poor grain-filling. Further studies are needed by molecular approaches to investigate the signal transport, the hormonal action, the gene expressions, and the biochemical processes in inferior spikelets.

  19. Stochastic modeling of grain-fabric formation

    NASA Astrophysics Data System (ADS)

    Naruse, H.

    2011-12-01

    In this study, we developed a stochastic model of the grain-fabric formation, and performed flume experiments and field observations to examine the model predictions. It has been suggested that the grain fabric (preferred orientation of grain long axes) of sand/sandstone provides significant sedimentological information such as paleocurrent direction, sediment-transport processes, and depositional environments . Grains orient along preferred directions because of interactions between fluids and sediment particles , and it has been known that there are two types of preferred grain orientations-a(p)a(i) and a(t)b(i). a(t)b(i)- and a(p)a(i)-type fabrics are preferred grain orientations that are perpendicular and parallel to the flow direction, respectively. River gravels tend to exhibit the a(t)b(i) fabric, whereas turbidite sandstones often exhibit the a(p)a(i) fabric; nonetheless, there exist many exceptions, and the grain-fabric tendency often fluctuates even in a single bed. The cause of the two types of grain fabric currently unknown, and the flow parameters that influence the fabric type have not yet been determined . Toward this end, we developed a stochastic model of grain-fabric formation that consider probabilistic density functions (PDFs) of the orientations of both influx and outflux grains to an active layer of surface sediments. Flume experiments using rice grains provided the PDFs of both influx and outflux grain orientation that can be well approximated by the von Mises distribution. On average, the orientations of influx and outflux grains were both perpendicular to the flow direction. This is because the projection area of a grain to the flow direction is maximized when the grain orients perpendicular to the flow. The proposed model predicts that larger grains or weaker flow (low Shields dimensionless stress) produces the a(t)b(i) fabric whereas an intense flow (high Shields dimensionless stress) produces the a(p)a(i) fabric. It also predicts that

  20. Detecting grain rotation at the nanoscale

    PubMed Central

    Chen, Bin; Lutker, Katie; Lei, Jialin; Yan, Jinyuan; Yang, Shizhong; Mao, Ho-kwang

    2014-01-01

    It is well-believed that below a certain particle size, grain boundary-mediated plastic deformation (e.g., grain rotation, grain boundary sliding and diffusion) substitutes for conventional dislocation nucleation and motion as the dominant deformation mechanism. However, in situ probing of grain boundary processes of ultrafine nanocrystals during plastic deformation has not been feasible, precluding the direct exploration of the nanomechanics. Here we present the in situ texturing observation of bulk-sized platinum in a nickel pressure medium of various particle sizes from 500 nm down to 3 nm. Surprisingly, the texture strength of the same-sized platinum drops rapidly with decreasing grain size of the nickel medium, indicating that more active grain rotation occurs in the smaller nickel nanocrystals. Insight into these processes provides a better understanding of the plastic deformation of nanomaterials in a few-nanometer length scale. PMID:24550455

  1. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice..., but any device or method which gives equivalent results may be used. 4 These limits do not apply to...

  2. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice..., but any device or method which gives equivalent results may be used. 4 These limits do not apply to...

  3. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice...

  4. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice...

  5. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice...

  6. Ultrafine-grained titanium for medical implants

    DOEpatents

    Zhu, Yuntian T.; Lowe, Terry C.; Valiev, Ruslan Z.; Stolyarov, Vladimir V.; Latysh, Vladimir V.; Raab, Georgy J.

    2002-01-01

    We disclose ultrafine-grained titanium. A coarse-grained titanium billet is subjected to multiple extrusions through a preheated equal channel angular extrusion (ECAE) die, with billet rotation between subsequent extrusions. The resulting billet is cold processed by cold rolling and/or cold extrusion, with optional annealing. The resulting ultrafine-grained titanium has greatly improved mechanical properties and is used to make medical implants.

  7. Contour fractal analysis of grains

    NASA Astrophysics Data System (ADS)

    Guida, Giulia; Casini, Francesca; Viggiani, Giulia MB

    2017-06-01

    Fractal analysis has been shown to be useful in image processing to characterise the shape and the grey-scale complexity in different applications spanning from electronic to medical engineering (e.g. [1]). Fractal analysis consists of several methods to assign a dimension and other fractal characteristics to a dataset describing geometric objects. Limited studies have been conducted on the application of fractal analysis to the classification of the shape characteristics of soil grains. The main objective of the work described in this paper is to obtain, from the results of systematic fractal analysis of artificial simple shapes, the characterization of the particle morphology at different scales. The long term objective of the research is to link the microscopic features of granular media with the mechanical behaviour observed in the laboratory and in situ.

  8. World grain takes a spill.

    PubMed

    Brown, L R

    1992-01-01

    World grain production decreased 5% in 1991, which combined with the 90 million in population increase resulted in a 6.4% decline/person. This is the largest drop ever recorded. Currently world production is off 9% from the all time high in 1984 of 757 pounds/person. There are many signs that this trend will continue. Soil erosion continues to decrease the amount of available farm land, irrigation water logs fields, deforestation and desertification, air pollution, acid rain and increased ultra violet light form depleting ozone are all adding to the problem. Currently in the US 28 million acres idle as part of commodity supply management and 34 million acres are designated threatened and are in Conservation Reserve. However, even with this area put into production, the total area worldwide is still smaller than it was in 1984.

  9. Grain orientation studies in superconductors

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, Sudhakar; Schulze, Walter A.

    1990-01-01

    Grain oriented fabrication of ceramics utilizes the presence of some form of anisotropy in the particles of the starting material to obtain textured microstructures. The molten salt, or flux method, a popular technique for growing crystals and particles with anisotropic morphology, is utilized in this study. The formation of Ba2YCu3O(7-x) in the presence of molten salts of Na, K, Li belonging to chloride and sulfate systems does not appear feasible in the temperature range up to 900 C. Researchers also present the results of studies in using BaY2CuO5 as seed crystals in the formation of Ba2YCu3O(7-x) wherein BaY2CuO5 has been observed to have better stability in water and against most of the salts as compared to Ba2YCu3O(7-x). Additional results of molten salt processing of bismuth systems are also presented.

  10. Signature spectrale des grains interstellaires.

    NASA Astrophysics Data System (ADS)

    Léger, A.

    Notre connaissance de la nature des grains interstellaires reposait sur un nombre très restreint de signatures spectrales dans la courbe d'extinction du milieu interstellaire. Une information considérable est contenue dans les 40 bandes interstellaires diffuses dans le visible, mais reste inexploitée. L'interprétation récente des cinq bandes IR en émission, en terme de molécules d'hydrocarbures aromatiques polycycliques, est développée. Elle permet l'utilisation d'une information spectroscopique comparable, à elle seule, à ce sur quoi était basée jusqu'alors notre connaissance de la matière interstellaire condensée. Différentes implications de cette mise en évidence sont proposées.

  11. Why whole grains are protective: biological mechanisms.

    PubMed

    Slavin, Joanne

    2003-02-01

    Epidemiological studies find that whole-grain intake is protective against cancer, cardiovascular disease, diabetes and obesity. Potential mechanisms for this protection are diverse since whole grains are rich in nutrients and phytochemicals. First, whole grains are concentrated sources of dietary fibre, resistant starch and oligosaccharides, carbohydrates that escape digestion in the small intestine and are fermented in the gut, producing short-chain fatty acids (SCFA). SCFA lower colonic pH, serve as an energy source for the colonocytes and may alter blood lipids. These improvements in the gut environment may provide immune protection beyond the gut. Second, whole grains are rich in antioxidants, including trace minerals and phenolic compounds, and these compounds have been linked to disease prevention. Additionally, whole grains mediate insulin and glucose responses. Although lower glycaemic load and glycaemic index have been linked to diabetes and obesity, risk of cancers such as colon and breast cancer have also been linked to high intake of readily-available carbohydrate. Finally, whole grains contain many other compounds that may protect against chronic disease. These compounds include phytate, phyto-oestrogens such as lignan, plant stanols and sterols, and vitamins and minerals. As a consequence of the traditional models of conducting nutrition studies on isolated nutrients, few studies exist on the biological effects of increased whole-grain intake. The few whole-grain feeding studies that are available show improvements in biomarkers with whole-grain consumption, such as weight loss, blood lipid improvement and antioxidant protection.

  12. The Effects of Grain Size and Texture on Dynamic Abnormal Grain Growth in Mo

    NASA Astrophysics Data System (ADS)

    Noell, Philip J.; Taleff, Eric M.

    2016-10-01

    This is the first report of abnormal grain morphologies specific to a Mo sheet material produced from a commercial-purity arc-melted ingot. Abnormal grains initiated and grew during plastic deformation of this material at temperatures of 1793 K and 1813 K (1520 °C and 1540 °C). This abnormal grain growth during high-temperature plastic deformation is termed dynamic abnormal grain growth, DAGG. DAGG in this material readily consumes nearly all grains near the sheet center while leaving many grains near the sheet surface unconsumed. Crystallographic texture, grain size, and other microstructural features are characterized. After recrystallization, a significant through-thickness variation in crystallographic texture exists in this material but does not appear to directly influence DAGG propagation. Instead, dynamic normal grain growth, which may be influenced by texture, preferentially occurs near the sheet surface prior to DAGG. The large grains thus produced near the sheet surface inhibit the subsequent growth of the abnormal grains produced by DAGG, which preferentially consume the finer grains near the sheet center. This produces abnormal grains that span the sheet center but leave unconsumed polycrystalline microstructure near the sheet surface. Abnormal grains are preferentially oriented with the < 110rangle approximately along the tensile axis. These results provide additional new evidence that boundary curvature is the primary driving force for DAGG in Mo.

  13. A New Grain Harvesting System for Single Pass Grain Harvest, Biomass Collection, Crop Residue Sizing and Grain Segregation

    USDA-ARS?s Scientific Manuscript database

    A cereal grain harvesting system is introduced that combines existing technologies in a unique way to improve cereal grain harvest performance, profitability and efficiently collect biomass. The harvesting system is comprised of three machines – one to gather the crop and prepare the residue for no...

  14. A New Grain Harvesting System for Single-Pass Grain Harvest, Biomass Collection, Crop Residue Sizing, and Grain Segregation

    USDA-ARS?s Scientific Manuscript database

    A cereal grain harvesting system is introduced that combines existing technologies in a unique way to improve cereal grain harvest performance, profitability and efficiently collect biomass. The harvesting system is comprised of three machines – one to gather the crop and prepare the residue for no...

  15. Supercube grains leading to a strong cube texture and a broad grain size distribution after recrystallization

    NASA Astrophysics Data System (ADS)

    Lin, F. X.; Zhang, Y. B.; Pantleon, W.; Jensen, D. Juul

    2015-08-01

    This work revisits the classical subject of recrystallization of cold-rolled copper. Two characterization techniques are combined: three-dimensional X-ray diffraction using synchrotron X-rays, which is used to measure the growth kinetics of individual grains in situ, and electron backscatter diffraction, which is used for statistical analysis of the microstructural evolution. As the most striking result, the strong cube texture after recrystallization is found to be related to a few super large cube grains, which were named supercube grains. These few supercube grains become large due to higher growth rates. However, most other cube grains do not grow preferentially. Because of the few supercube grains, the grain size distribution after recrystallization is broad. Reasons for the higher growth rates of supercube grains are discussed, and are related to the local deformed microstructure.

  16. The Role of Grain Boundary Energy on Grain Boundary Complexion Transitions

    SciTech Connect

    Bojarski, Stephanie A.; Rohrer, Gregory S.

    2014-09-01

    Grain boundary complexions are distinct equilibrium structures and compositions of a grain boundary and complexion transformations are transition from a metastable to an equilibrium complexion at a specific thermodynamic and geometric conditions. Previous work indicates that, in the case of doped alumina, a complexion transition that increased the mobility of transformed boundaries and resulted in abnormal grain growth also caused a decrease in the mean relative grain boundary energy as well as an increase in the anisotropy of the grain boundary character distribution (GBCD). The current work will investigate the hypothesis that the rates of complexion transitions that result in abnormal grain growth (AGG) depend on grain boundary character and energy. Furthermore, the current work expands upon this understanding and tests the hypothesis that it is possible to control when and where a complexion transition occurs by controlling the local grain boundary energy distribution.

  17. Choosing Whole-Grain Foods: 10 Tips for Purchasing and Storing Whole-Grain Foods

    MedlinePlus

    ... many whole-grain products, such as buckwheat, certified gluten-free oats or oatmeal, popcorn, brown rice, wild rice, and quinoa that fit gluten-free diet needs. Check for freshness Buy whole-grain ...

  18. Effect of Grain Size and Grain Orientation on the Raman Spectra of Minerals

    NASA Technical Reports Server (NTRS)

    Sharma, S. K.; Chio, C. H.; Deb, P.; Lucey, P. G.; Domergue-Schmidt, N.; Horton, K. A.

    2000-01-01

    We have examined effects of grain size and grain orientation on the Raman spectra of quartz and olivine to evaluate the effect of these parameters on in situ and remote analysis of planetary surface rocks.

  19. Grain Unloading of Arsenic Species in Rice

    SciTech Connect

    Carey, Anne-Marie; Scheckel, Kirk G.; Lombi, Enzo; Newville, Matt; Choi, Yongseong; Norton, Gareth J.; Charnock, John M.; Feldmann, Joerg; Price, Adam H.; Meharg, Andrew A.

    2010-01-11

    Rice (Oryza sativa) is the staple food for over half the world's population yet may represent a significant dietary source of inorganic arsenic (As), a nonthreshold, class 1 human carcinogen. Rice grain As is dominated by the inorganic species, and the organic species dimethylarsinic acid (DMA). To investigate how As species are unloaded into grain rice, panicles were excised during grain filling and hydroponically pulsed with arsenite, arsenate, glutathione-complexed As, or DMA. Total As concentrations in flag leaf, grain, and husk, were quantified by inductively coupled plasma mass spectroscopy and As speciation in the fresh grain was determined by x-ray absorption near-edge spectroscopy. The roles of phloem and xylem transport were investigated by applying a {+-} stem-girdling treatment to a second set of panicles, limiting phloem transport to the grain in panicles pulsed with arsenite or DMA. The results demonstrate that DMA is translocated to the rice grain with over an order magnitude greater efficiency than inorganic species and is more mobile than arsenite in both the phloem and the xylem. Phloem transport accounted for 90% of arsenite, and 55% of DMA, transport to the grain. Synchrotron x-ray fluorescence mapping and fluorescence microtomography revealed marked differences in the pattern of As unloading into the grain between DMA and arsenite-challenged grain. Arsenite was retained in the ovular vascular trace and DMA dispersed throughout the external grain parts and into the endosperm. This study also demonstrates that DMA speciation is altered in planta, potentially through complexation with thiols.

  20. Dynamics of Dust Grains Near the Sun

    NASA Astrophysics Data System (ADS)

    Shestakova, L. I.; Tambovtseva, L. V.

    The orbital motion of interplanetary dust grains in sublimation zone near the Sun is revised in detail for grains of obsidian, basalt, astronomical silicate and graphite. Effects of gravity, radiation pressure for a spherical source with limb darkening, and solar wind pressure on dust grains were taken into account. The influence of sputtering, thermal velocity and tangential velocity component of the solar wind particles on lifetime of the grains moving on prograde and retrograde orbits is investigated. It is obtained that = radiation pressure/gravity is constant everywhere including the region close to the Sun. It is shown that the temperature of submicron dust grains does not exceed 1500 K for silicate grains and 2000 K for graphite ones anywhere in solar corona. Both the dust rings observed near 9r and the dust free zone near 6.5r can be explained by basalt-like grains. These dust rings and those observed earlier near 4r, formed by obsidian-like grains, were not found during the solar eclipse in 1991. This is possible if the bulk of the grains belong to population II (Le Sergeant D'Hendecourt and Lamy, 1980) (in this case small particles with radii s < 0.5 m do not form a region of high concentration) of if dust have a cometary origin. Dust grains with optical properties similar to astronomical silicate sublimating far from the Sun, go onto elliptic orbits and reach the Earth. These grains can be candidates for -meteoroids) ("apex" particles) with the mass 10-12 g which were observed in the inner Solar System during Helios ½ missions.

  1. Plagioclase-Rich Itokawa Grains: Space Weathering, Exposure Ages, and Comparison to Lunar Soil Grains

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Berge, E.

    2017-01-01

    Regolith grains returned by the Hayabusa mission to asteroid 25143 Itokawa provide the only samples currently available to study the interaction of chondritic asteroidal material with the space weathering environment. Several studies have documented the surface alterations observed on the regolith grains, but most of these studies involved olivine because of its abundance. Here we focus on the rarer Itokawa plagioclase grains, in order to allow comparisons between Itokawa and lunar soil plagioclase grains for which an extensive data set exists.

  2. O(minus 2) grain boundary diffusion and grain growth in pure dense MgO

    NASA Technical Reports Server (NTRS)

    Kapadia, C. M.; Leipold, M. H.

    1973-01-01

    Grain growth behavior in fully dense compacts of MgO of very high purity was studied, and the results compared with other similar behaving materials. The activation energy for the intrinsic self-diffusion of Mg(2minus) is discussed along with the grain boundary diffusion of O(2minus). Grain boundary diffusion of O(2minus) is proposed as the controlling mechanism for grain growth.

  3. Irradiation-induced grain growth and defect evolution in nanocrystalline zirconia with doped grain boundaries.

    PubMed

    Dey, Sanchita; Mardinly, John; Wang, Yongqiang; Valdez, James A; Holesinger, Terry G; Uberuaga, Blas P; Ditto, Jeff J; Drazin, John W; Castro, Ricardo H R

    2016-06-22

    Grain boundaries are effective sinks for radiation-induced defects, ultimately impacting the radiation tolerance of nanocrystalline materials (dense materials with nanosized grains) against net defect accumulation. However, irradiation-induced grain growth leads to grain boundary area decrease, shortening potential benefits of nanostructures. A possible approach to mitigate this is the introduction of dopants to target a decrease in grain boundary mobility or a reduction in grain boundary energy to eliminate driving forces for grain growth (using similar strategies as to control thermal growth). Here we tested this concept in nanocrystalline zirconia doped with lanthanum. Although the dopant is observed to segregate to the grain boundaries, causing grain boundary energy decrease and promoting dragging forces for thermally activated boundary movement, irradiation induced grain growth could not be avoided under heavy ion irradiation, suggesting a different growth mechanism as compared to thermal growth. Furthermore, it is apparent that reducing the grain boundary energy reduced the effectiveness of the grain boundary as sinks, and the number of defects in the doped material is higher than in undoped (La-free) YSZ.

  4. Phloem Transport Of Arsenic Species From Flag Leaf To Grain During Grain Filling

    EPA Science Inventory

    Strategies to reduce arsenic (As) in rice grain, below concentrations that represent a serious human health concern, require that the mechanisms of As accumulation within grain be established. Therefore, retranslocation of As species from flag leaves into filling rice grain was ...

  5. (110) grain growth and magnetic properties of thin grain-oriented 3% silicon steel sheets

    SciTech Connect

    Nakano, Masaki; Fukunaga, Hirotoshi; Ishiyama, Kazushi; Arai, Ken Ichi

    1999-09-01

    (110) grain growth and magnetic properties in thin grain-oriented silicon sheets with ultimately low loss were investigated. A final-annealing at 1150 C for 20 min enables us to obtain the thin sheets covered with only (110) grains and consequently the magnetic induction at 800 A/m, B{sub 8} reached 1.9 T.

  6. Phloem Transport Of Arsenic Species From Flag Leaf To Grain During Grain Filling

    EPA Science Inventory

    Strategies to reduce arsenic (As) in rice grain, below concentrations that represent a serious human health concern, require that the mechanisms of As accumulation within grain be established. Therefore, retranslocation of As species from flag leaves into filling rice grain was ...

  7. Irradiation-induced grain growth and defect evolution in nanocrystalline zirconia with doped grain boundaries

    SciTech Connect

    Dey, Sanchita; Mardinly, John; Wang, Yongqiang; Valdez, James Anthony; Holesinger, Terry George; Uberuaga, Blas P.; Ditto, Jeff J.; Drazin, John W.; Castro, Ricardo H. R.

    2016-05-27

    Grain boundaries are effective sinks for radiation-induced defects, ultimately impacting the radiation tolerance of nanocrystalline materials (dense materials with nanosized grains) against net defect accumulation. However, irradiation-induced grain growth leads to grain boundary area decrease, shortening potential benefits of nanostructures. A possible approach to mitigate this is the introduction of dopants to target a decrease in grain boundary mobility or a reduction in grain boundary energy to eliminate driving forces for grain growth (using similar strategies as to control thermal growth). Here, in this study, we tested this concept in nanocrystalline zirconia doped with lanthanum. Although the dopant is observed to segregate to the grain boundaries, causing grain boundary energy decrease and promoting dragging forces for thermally activated boundary movement, irradiation induced grain growth could not be avoided under heavy ion irradiation, suggesting a different growth mechanism as compared to thermal growth. Furthermore, it is apparent that reducing the grain boundary energy reduced the effectiveness of the grain boundary as sinks, and the number of defects in the doped material is higher than in undoped (La-free) YSZ.

  8. Irradiation-induced grain growth and defect evolution in nanocrystalline zirconia with doped grain boundaries

    SciTech Connect

    Dey, Sanchita; Mardinly, John; Wang, Yongqiang; Valdez, James Anthony; Holesinger, Terry George; Uberuaga, Blas P.; Ditto, Jeff J.; Drazin, John W.; Castro, Ricardo H. R.

    2016-05-27

    Grain boundaries are effective sinks for radiation-induced defects, ultimately impacting the radiation tolerance of nanocrystalline materials (dense materials with nanosized grains) against net defect accumulation. However, irradiation-induced grain growth leads to grain boundary area decrease, shortening potential benefits of nanostructures. A possible approach to mitigate this is the introduction of dopants to target a decrease in grain boundary mobility or a reduction in grain boundary energy to eliminate driving forces for grain growth (using similar strategies as to control thermal growth). Here, in this study, we tested this concept in nanocrystalline zirconia doped with lanthanum. Although the dopant is observed to segregate to the grain boundaries, causing grain boundary energy decrease and promoting dragging forces for thermally activated boundary movement, irradiation induced grain growth could not be avoided under heavy ion irradiation, suggesting a different growth mechanism as compared to thermal growth. Furthermore, it is apparent that reducing the grain boundary energy reduced the effectiveness of the grain boundary as sinks, and the number of defects in the doped material is higher than in undoped (La-free) YSZ.

  9. Irradiation-induced grain growth and defect evolution in nanocrystalline zirconia with doped grain boundaries

    DOE PAGES

    Dey, Sanchita; Mardinly, John; Wang, Yongqiang; ...

    2016-05-27

    Grain boundaries are effective sinks for radiation-induced defects, ultimately impacting the radiation tolerance of nanocrystalline materials (dense materials with nanosized grains) against net defect accumulation. However, irradiation-induced grain growth leads to grain boundary area decrease, shortening potential benefits of nanostructures. A possible approach to mitigate this is the introduction of dopants to target a decrease in grain boundary mobility or a reduction in grain boundary energy to eliminate driving forces for grain growth (using similar strategies as to control thermal growth). Here, in this study, we tested this concept in nanocrystalline zirconia doped with lanthanum. Although the dopant is observedmore » to segregate to the grain boundaries, causing grain boundary energy decrease and promoting dragging forces for thermally activated boundary movement, irradiation induced grain growth could not be avoided under heavy ion irradiation, suggesting a different growth mechanism as compared to thermal growth. Furthermore, it is apparent that reducing the grain boundary energy reduced the effectiveness of the grain boundary as sinks, and the number of defects in the doped material is higher than in undoped (La-free) YSZ.« less

  10. Understanding Solidification Based Grain Refinement in Steels

    DTIC Science & Technology

    2014-12-18

    grain size than the baseline material. The measured liner intercept grain size for the baseline was 125 ^m, while the refiner alloy addidon samples had...a mold consisting of six 1 in. diameter, by 3 in. tall cylinders . After pouring, the test castings were sectioned into smaller sizes for creating

  11. Chemical composition of distillers grains, a review

    USDA-ARS?s Scientific Manuscript database

    In recent years, increasing demand for ethanol as a fuel additive and decreasing dependency on fossil fuels have resulted in a dramatic increase in the amount of grains used for ethanol production. Dry-grind is the major process, resulting in distillers dried grains with solubles (DDGS) as a major ...

  12. Potential bleaching techniques for corn distillers grains

    USDA-ARS?s Scientific Manuscript database

    The ethanol industry is booming, and extensive research is now being pursued to develop alternative uses for distillers dried grains (DDG) and distillers dried grains with solubles (DDGS), coproducts of the ethanol production process. Currently, DDG and DDGS are used exclusively as livestock feed. P...

  13. Reducing grain storage losses in developing countries

    USDA-ARS?s Scientific Manuscript database

    We investigated the use of insecticide-treated material and modified atmosphere storage for reducing insect damage in stored maize. Results showed that insecticide treated netting and insecticide treated seed bags protected grain from insect damage for up to nine months if the grain was free from i...

  14. Insect Population Dynamics in Commercial Grain Elevators

    USDA-ARS?s Scientific Manuscript database

    Data were collected in 1998-2002 from wheat stored in commercial grain elevators in south-central Kansas. Storage bins at these elevators had concrete walls and were typically 6-9 m in diameter and 30-35 m tall. A vacuum-probe sampler was used to collect ten 3-kg grain samples in the top 12 m of the...

  15. Grain transport mechanics in shallow flow

    USDA-ARS?s Scientific Manuscript database

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flows. The two-phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a dispe...

  16. Grain transport mechanics in shallow overland flow

    USDA-ARS?s Scientific Manuscript database

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flow. The two phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a disper...

  17. Small grains of truth. [solar system evolution

    NASA Technical Reports Server (NTRS)

    Nuth, Joe

    1991-01-01

    The evidence concerning the formation of the solar nebula from preexisting clouds found in the chemical composition of solar system grains is discussed. Evidence for sequential star formation in the grains is examined. It is argued that there is no model for the origin of the solar system which can account for the increasing complexity of the evidence.

  18. Small grains of truth. [solar system evolution

    NASA Technical Reports Server (NTRS)

    Nuth, Joe

    1991-01-01

    The evidence concerning the formation of the solar nebula from preexisting clouds found in the chemical composition of solar system grains is discussed. Evidence for sequential star formation in the grains is examined. It is argued that there is no model for the origin of the solar system which can account for the increasing complexity of the evidence.

  19. Spectral coarse grained controllability of complex networks

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Xu, Shuang

    2017-07-01

    With the accumulation of interaction data from various systems, a fundamental question in network science is how to reduce the sizes while keeping certain properties of complex networks. Combined the spectral coarse graining theory and the structural controllability of complex networks, we explore the structural controllability of undirected complex networks during coarse graining processes. We evidence that the spectral coarse grained controllability (SCGC) properties for the Erdös-Rényi (ER) random networks, the scale-free (SF) random networks and the small-world (SW) random networks are distinct from each other. The SW networks are very robust, while the SF networks are sensitive during the coarse graining processes. As an emergent properties for the dense ER networks, during the coarse graining processes, there exists a threshold value of the coarse grained sizes, which separates the controllability of the reduced networks into robust and sensitive to coarse graining. Investigations on some real-world complex networks indicate that the SCGC properties are varied among different categories and different kinds of networks, some highly organized social or biological networks are more difficult to be controlled, while many man-made power networks and infrastructure networks can keep the controllability properties during the coarse graining processes. Furthermore, we speculate that the SCGC properties of complex networks may depend on their degree distributions. The associated investigations have potential implications in the control of large-scale complex networks, as well as in the understanding of the organization of complex networks.

  20. Analysis of grain quality at receival

    USDA-ARS?s Scientific Manuscript database

    With an emphasis on wheat and to a lesser extent, barley, we describe the series of post harvest transfer stages of grain between the first point of sale and the export terminal. At each transfer point, a document accompanies a grain consignment that pertains to its quality (class, purity, sanitatio...

  1. AN ATMOSPHERIC STRUCTURE EQUATION FOR GRAIN GROWTH

    SciTech Connect

    Ormel, C.W.

    2014-07-01

    We present a method to include the evolution of the grain size and grain opacity κ{sub gr} in the equations describing the structure of protoplanetary atmospheres. The key assumption of this method is that a single grain size dominates the grain size distribution at any height r. In addition to following grain growth, the method accounts for mass deposition by planetesimals and grain porosity. We illustrate this method by computation of a simplified atmosphere structure model. In agreement with previous works, grain coagulation is seen to be very efficient. The opacity drops to values much below the often-used ''interstellar medium opacities'' (∼1 cm{sup 2} g{sup –1}) and the atmosphere structure profiles for temperature and density resemble that of the grain-free case. Deposition of planetesimals in the radiative part of the atmosphere hardly influences this outcome as the added surface is quickly coagulated away. We observe a modest dependence on the internal structure (porosity), but show that filling factors cannot become too large because of compression by gas drag.

  2. Electronic properties of silicon grain boundaries

    SciTech Connect

    Pike, G.E.; Seager, C.H.

    1980-01-01

    Polycrystalline silicon is a clean and relatively simple prototype of electronic ceramics. The theory of the electrostatic barriers which form at silicon grain boundaries will be discussed. The use of experimental conductance and capacitance measurements to obtain the barrier height and energy density of grain boundary states will be illustrated.

  3. Asymmetric grain distribution in phthalocyanine thin films

    SciTech Connect

    Gentry, K. Paul; Gredig, Thomas; Schuller, Ivan K.

    2009-11-01

    Many electronic and optical properties of organic thin films depend on the precise morphology of grains. Iron phthalocyanine thin films are grown on sapphire substrates at different temperatures to study the effect of grain growth kinematics and to experimentally quantify the grain size distribution in organic thin films. The grain size is measured with an atomic force microscope and the data is processed and analyzed with well-known image segmentation algorithms. For relevant statistics, over 3000 grains are evaluated for each sample. The data show pronounced asymmetric grain growth with increasing deposition temperature from almost spherical grains at room temperature to elongated needlelike shapes at 260 deg. C. The average size along the major axis increases from 35 to 200 nm and along the minor axis from 25 to 90 nm. The distribution is almost symmetric at low-deposition temperatures, but becomes lognormal at higher temperatures. Strikingly, the major axis and minor axis of the elliptically shaped grains have different distributions at all temperatures due to the planar asymmetry of the molecule.

  4. The structure and evolution of interstellar grains

    NASA Astrophysics Data System (ADS)

    Greenberg, J. M.

    1984-06-01

    A mixture of water, methane, ammonia, and additional simple molecules are introduced into an experimental chamber, and the evolution of interstellar grains and the gaseous clouds in which they are found is consequently proposed. A grain begins in a diffuse cloud and already has a mantle of yellow stuff. The cloud becomes denser, and the grains accrete a layer of ices. Ultraviolet irradiation generates radicals in the grains' icy mantle, and subsequent collisions among the grains heat the mantle enough for radicals to recombine. The mantle may explode and repopulate the gaseous phase of the cloud. In the densest areas of the cloud, gravitational collapse of gas and dust effects star formation; the icy grain mantle is evaporated and the yellow stuff remains. Grains not included in the star formation return to the diffuse cloud environment. Consideration is also given to the extinction of starlight by interstellar grains, the spectrum of the Becklin-Neugebauer object, the infrared spectrum of the yellow stuff, and the spectrum of an infrared source designated W33.

  5. Porous dust grains in circumstellar disks

    NASA Astrophysics Data System (ADS)

    Kirchschlager, Florian; Wolf, Sebastian

    2013-07-01

    We investigate the impact of porous dust grains on the structure and observable appearance of circumstellar disks (Kirchschlager & Wolf 2013). Our study is motivated by observations and laboratory studies which indicate that dust grains in various astrophysical environments are porous. In addition, the modeling of the spatial structure and grain size distribution of debris disks reveals that under the assumption of spherical compact grains the resulting minimum grain size is often significantly larger than the blowout size, which might be a hint for porosity. Using the discrete dipole approximation, we compute the optical properties of spherical, porous grains (Draine & Flatau 1994, 2010). Subsequently, we calculate the blowout sizes for various debris disk systems and grain porosities. We find that the blowout size increases with particle porosity and stellar temperature. In addition, the lower dust equilibrium temperature of porous particles results in a shift of the maximum of the thermal reemission of debris disks towards longer wavelengths. For our studies of the impact of dust grain porosity in protoplanetary disks we use the radiative transfer software MC3D, which is based on the Monte-Carlo method and solves the radiative transfer problem self-consistently (Wolf et al. 1999, Wolf 2003). We find that the spectral energy distribution of protoplanetary disks shows significant differences between the cases of porous and compact grains. In particular, the flux in the optical wavelength range is increased for porous grains. Furthermore, the silicate peak at ~9.8 microns exhibits a strong dependence on the degree of grain porosity. We also investigate the temperature distribution in the disk. In the midplane no influence of porosity is detectable, but in the vertical direction minor changes of a few Kelvin are found. To complete our study we outline the differences between the two grain types in maps of the linear polarization. We detect a polarization reversal in

  6. Grain boundary phase equilibrium in metallic systems

    SciTech Connect

    Deymier, P.A.

    1991-04-01

    Progresses in the structural and chemical characterization of grain boundaries in metals are reported. We have developed a solid state method for fabrication of a variety of important grain boundaries. This method is based on a sequence of heavy deformation of single crystals followed by controlled recrystallization. The structure of complex grain boundaries such as the quasiperiodic 45{degree}(100) twist in pure aluminum or the periodic {Sigma}5(310) in aluminum-5%Mg alloy has been elucidated. We have found the structural unit (SU) model to be very powerful for the description of quasiperiodic interfaces. The applicability of the SU model to heterophase interfaces is verified for Si-Al interfaces. Further advances have been achieved in the understanding of the driving forces for grain boundary segregation including elastic and electronic effects. Chemical effects on grain boundary core structure are observed in the case of Al-Mg alloys and Sr doped Si.

  7. Recent Progress in Presolar Grain Studies

    PubMed Central

    Amari, Sachiko

    2014-01-01

    Presolar grains are stardust that condensed in stellar outflows or stellar ejecta, and was incorporated in meteorites. They remain mostly intact throughout the journey from stars to the earth, keeping information of their birthplaces. Studies of presolar grains, which started in 1987, have produced a wealth of information about nucleosynthesis in stars, mixing in stellar ejecta, and temporal variations of isotopic and elemental abundances in the Galaxy. Recent instrumental advancements in secondary ion mass spectrometry (SIMS) brought about the identification of presolar silicate grains. Isotopic and mineralogical investigations of sub-μm grains have been performed using a combination of SIMS, transmission electron microscopy (TEM) and focused ion beam (FIB) techniques. Two instruments have been developed to study even smaller grains (∼50 nm) and measure isotopes and elements of lower abundances than those in previous studies. PMID:26819886

  8. Recent Progress in Presolar Grain Studies.

    PubMed

    Amari, Sachiko

    2014-01-01

    Presolar grains are stardust that condensed in stellar outflows or stellar ejecta, and was incorporated in meteorites. They remain mostly intact throughout the journey from stars to the earth, keeping information of their birthplaces. Studies of presolar grains, which started in 1987, have produced a wealth of information about nucleosynthesis in stars, mixing in stellar ejecta, and temporal variations of isotopic and elemental abundances in the Galaxy. Recent instrumental advancements in secondary ion mass spectrometry (SIMS) brought about the identification of presolar silicate grains. Isotopic and mineralogical investigations of sub-μm grains have been performed using a combination of SIMS, transmission electron microscopy (TEM) and focused ion beam (FIB) techniques. Two instruments have been developed to study even smaller grains (∼50 nm) and measure isotopes and elements of lower abundances than those in previous studies.

  9. Electrically inactive poly-silicon grain boundaries

    SciTech Connect

    Chen, S.P.; Kress, J.D.; Voter, A.F.; Albers, R.C.

    1996-05-01

    Structures, energies, and electronic properties of symmetric [001] tilt grain boundaries in Si have been studied using Stillinger-Weber and Tersoff classical potentials, and semi-empirical (tight-binding) electronic structure methods. The calculated lowest energy (310) grain boundary structure and electronic properties are consistent with previous TEM measurement and calculations. For the controversial (710) grain boundaries, the tight-binding calculations do not show any electronic energy levels in the band gap. This indicates that with every atom fully fourfold coordinated, the (710) grain boundary should be electrically inactive. Some high-energy metastable grain boundaries were found to be electrically active by the presence of the levels introduced in the band gap. Also, the vacancy concentration at the (310) GB was found to be enhanced by many orders of magnitude relative to bulk. The dangling bond states of the vacancies should be electrically active.

  10. Stabilizing Nanocrystalline Grains in Ceramic-Oxides

    SciTech Connect

    Aidhy, Dilpuneet S; Zhang, Yanwen; Weber, William J

    2013-01-01

    Nanocrystalline ceramic-oxides are prone to grain growth rendering their highly attractive properties practically unusable. Using atomistic simulations ofon ceria as a model material system, we elucidate a framework to design dopant-pinned grain boundaries that prevent this grain growth. While in metallic systems it has been shown that a large mismatch between host and dopant atomic size prevents grain growth, in ceramic-oxides we find that this concept is not applicable. Instead, we find that dopant-oxygen vacancy interaction, i.e., dopant migration energy in the presence of oxygen vacancy, and dopant-oxygen vacancy binding energy are the controlling factors in grain growth. Our prediction agrees with and explains previous experimental observations.

  11. Grains and grain boundaries in single-layer graphene atomic patchwork quilts.

    PubMed

    Huang, Pinshane Y; Ruiz-Vargas, Carlos S; van der Zande, Arend M; Whitney, William S; Levendorf, Mark P; Kevek, Joshua W; Garg, Shivank; Alden, Jonathan S; Hustedt, Caleb J; Zhu, Ye; Park, Jiwoong; McEuen, Paul L; Muller, David A

    2011-01-20

    The properties of polycrystalline materials are often dominated by the size of their grains and by the atomic structure of their grain boundaries. These effects should be especially pronounced in two-dimensional materials, where even a line defect can divide and disrupt a crystal. These issues take on practical significance in graphene, which is a hexagonal, two-dimensional crystal of carbon atoms. Single-atom-thick graphene sheets can now be produced by chemical vapour deposition on scales of up to metres, making their polycrystallinity almost unavoidable. Theoretically, graphene grain boundaries are predicted to have distinct electronic, magnetic, chemical and mechanical properties that strongly depend on their atomic arrangement. Yet because of the five-order-of-magnitude size difference between grains and the atoms at grain boundaries, few experiments have fully explored the graphene grain structure. Here we use a combination of old and new transmission electron microscopy techniques to bridge these length scales. Using atomic-resolution imaging, we determine the location and identity of every atom at a grain boundary and find that different grains stitch together predominantly through pentagon-heptagon pairs. Rather than individually imaging the several billion atoms in each grain, we use diffraction-filtered imaging to rapidly map the location, orientation and shape of several hundred grains and boundaries, where only a handful have been previously reported. The resulting images reveal an unexpectedly small and intricate patchwork of grains connected by tilt boundaries. By correlating grain imaging with scanning probe and transport measurements, we show that these grain boundaries severely weaken the mechanical strength of graphene membranes but do not as drastically alter their electrical properties. These techniques open a new window for studies on the structure, properties and control of grains and grain boundaries in graphene and other two

  12. Pollen grains for oral vaccination.

    PubMed

    Atwe, Shashwati U; Ma, Yunzhe; Gill, Harvinder Singh

    2014-11-28

    Oral vaccination can offer a painless and convenient method of vaccination. Furthermore, in addition to systemic immunity it has potential to stimulate mucosal immunity through antigen-processing by the gut-associated lymphoid tissues. In this study we propose the concept that pollen grains can be engineered for use as a simple modular system for oral vaccination. We demonstrate feasibility of this concept by using spores of Lycopodium clavatum (clubmoss) (LSs). We show that LSs can be chemically cleaned to remove native proteins to create intact clean hollow LS shells. Empty pollen shells were successfully filled with molecules of different sizes demonstrating their potential to be broadly applicable as a vaccination system. Using ovalbumin (OVA) as a model antigen, LSs formulated with OVA were orally fed to mice. LSs stimulated significantly higher anti-OVA serum IgG and fecal IgA antibodies compared to those induced by use of cholera toxin as a positive-control adjuvant. The antibody response was not affected by pre-neutralization of the stomach acid, and persisted for up to 7 months. Confocal microscopy revealed that LSs can translocate into mouse intestinal wall. Overall, this study lays the foundation of using LSs as a novel approach for oral vaccination.

  13. Aging embrittlement and grain boundary

    NASA Astrophysics Data System (ADS)

    Thauvin, G.; Lorang, G.; Leymonie, C.

    1992-08-01

    “Clean” 3.5NiCrMoV steels with limited contents in trace elements (P, Sn, As, Sb) are commonly provided for manufacturing big rotor shafts. The possible increase in temperature in future steam turbines has promoted the development of “superclean” steels characterized by an extra drastic decrease of manganese and silicon contents. Their higher cost in comparison to “clean” steels leads to concern above which temperature they must be considered as mandatory for resisting aging embrittlement in operation. 3.5NiCrMoV “clean” steel samples (Mn = 0.30 pct; Si = 0.10 pct) were aged at 300 °C, 350 °C, and 400 °C for 10,000 hours up to 30,000 hours. No embrittlement results from aging at 300 °C and 350 °C, but holding at 400 °C is highly detrimental. Auger spectroscopy confirms that, when aging at 400 °C, phosphorus is the main embrittling trace element. It is suggested that grain boundary embrittlement is associated with the building of a layer that contains, on the one hand, Ni and P and, on the other hand, Mo and Cr.

  14. ISOCHRONS IN PRESOLAR GRAPHITE GRAINS FROM ORGUEIL

    SciTech Connect

    Zinner, Ernst; Jadhav, Manavi

    2013-05-10

    Primitive meteorites contain tiny dust grains that condensed in stellar outflows and explosions. These stardust grains can be extracted from their host meteorites and studied in detail in the laboratory. We investigated depth profiles of the Al-Mg, Ca-K, and Ti-Ca isotopic systems obtained during NanoSIMS isotopic analysis of presolar graphite grains from the CI carbonaceous meteorite Orgueil. Large {sup 26}Al/{sup 27}Al, {sup 41}Ca/{sup 40}Ca, and {sup 44}Ti/{sup 48}Ti ratios, inferred from {sup 26}Mg, {sup 41}K, and {sup 44}Ca excesses from the decay of the short-lived radioisotopes {sup 26}Al, {sup 41}Ca, and {sup 44}Ti, indicate a supernova (SN) origin. From the depth distribution of the radiogenic isotopes and the stable isotopes of their parent elements we constructed isochron-type correlation plots. The plots indicate quantitative retention of radiogenic {sup 26}Mg, {sup 41}K, and {sup 44}Ca in most grains. Deviations from straight lines in the Al-Mg and Ca-K plots can be explained by contamination with {sup 27}Al and isotopically normal Ca, respectively. For the Ti-Ca system in some grains, the lack of parent-daughter correlation indicates either redistribution of radiogenic {sup 44}Ca or heterogeneity in the initial {sup 44}Ti/{sup 48}Ti ratio. We also obtained Si isotopic depth profiles in three graphite grains with large {sup 29}Si and {sup 30}Si excesses, for which a SN origin has been proposed. In two grains no Si-rich subgrains are observed; in the third grain with an apparent Si-rich subgrain the anomalous Si isotopic ratios in the subgrain are the same as in the rest of the graphite host. Our studies show that by measuring depth profiles, information on presolar grains can be obtained that cannot be obtained by whole-grain analysis.

  15. Phloem transport of arsenic species from flag leaf to grain during grain filling

    PubMed Central

    Carey, Anne-Marie; Norton, Gareth J.; Deacon, Claire; Scheckel, Kirk G.; Lombi, Enzo; Punshon, Tracy; Guerinot, Mary Lou; Lanzirotti, Antonio; Newville, Matt; Choi, Yongseong; Price, Adam H.; Meharg, Andrew A.

    2013-01-01

    Summary Strategies to reduce arsenic in rice grain, below levels that represent a serious human health concern, require that the mechanisms of arsenic accumulation within grain be established. Therefore, re-translocation of arsenic species from flag leaves into filling rice grain was investigated.Arsenic species were delivered through cut flag leaves during grain fill. Spatial unloading within grains was investigated using synchrotron X-ray fluorescence (SXRF) microtomography. Additionally, the effect of germanic acid (a silicic acid analogue) on grain arsenic accumulation in arsenite treated panicles was examined.Dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were extremely efficiently re-translocated from flag leaves to rice grain; arsenate was poorly re-translocated, and was rapidly reduced to arsenite within flag leaves; arsenite displayed no re-translocation. Within grains, DMA rapidly dispersed while MMA and inorganic arsenic remained close to the entry point. Germanic acid addition did not affect grain arsenic in arsenite treated panicles. 3D SXRF microtomography gave further information on arsenite localization in the ovular vascular trace (OVT) of rice grains.These results demonstrate that inorganic arsenic is poorly re-mobilized, while organic species are readily re-mobilized, from leaves to grain. Stem translocation of inorganic arsenic may not rely solely on silicic acid transporters. PMID:21658183

  16. Phloem Transport of Arsenic Species from Flag Leaf to Grain During Grain Filling

    SciTech Connect

    A Carey; G Norton; C Deacon; K Scheckel; E Lombi; T Punshon; M Guerinot; A Lanzirotti; M Newville; et al.

    2011-12-31

    Strategies to reduce arsenic (As) in rice grain, below concentrations that represent a serious human health concern, require that the mechanisms of As accumulation within grain be established. Therefore, retranslocation of As species from flag leaves into filling rice grain was investigated. Arsenic species were delivered through cut flag leaves during grain fill. Spatial unloading within grains was investigated using synchrotron X-ray fluorescence (SXRF) microtomography. Additionally, the effect of germanic acid (a silicic acid analog) on grain As accumulation in arsenite-treated panicles was examined. Dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were extremely efficiently retranslocated from flag leaves to rice grain; arsenate was poorly retranslocated, and was rapidly reduced to arsenite within flag leaves; arsenite displayed no retranslocation. Within grains, DMA rapidly dispersed while MMA and inorganic As remained close to the entry point. Germanic acid addition did not affect grain As in arsenite-treated panicles. Three-dimensional SXRF microtomography gave further information on arsenite localization in the ovular vascular trace (OVT) of rice grains. These results demonstrate that inorganic As is poorly remobilized, while organic species are readily remobilized, from leaves to grain. Stem translocation of inorganic As may not rely solely on silicic acid transporters.

  17. Phloem transport of arsenic species from flag leaf to grain during grain filling

    SciTech Connect

    Carey, Anne-Marie; Norton, Gareth J.; Deacon, Claire; Scheckel, Kirk G.; Lombi, Enzo; Punshon, Tracy; Guerinot, Mary Lou; Lanzirotti, Antonio; Newville, Matt; Choi, Yongseong; Price, Adam H.; Meharg, Andrew A.

    2011-09-20

    Strategies to reduce arsenic (As) in rice grain, below concentrations that represent a serious human health concern, require that the mechanisms of As accumulation within grain be established. Therefore, retranslocation of As species from flag leaves into filling rice grain was investigated. Arsenic species were delivered through cut flag leaves during grain fill. Spatial unloading within grains was investigated using synchrotron X-ray fluorescence (SXRF) microtomography. Additionally, the effect of germanic acid (a silicic acid analog) on grain As accumulation in arsenite-treated panicles was examined. Dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were extremely efficiently retranslocated from flag leaves to rice grain; arsenate was poorly retranslocated, and was rapidly reduced to arsenite within flag leaves; arsenite displayed no retranslocation. Within grains, DMA rapidly dispersed while MMA and inorganic As remained close to the entry point. Germanic acid addition did not affect grain As in arsenite-treated panicles. Three-dimensional SXRF microtomography gave further information on arsenite localization in the ovular vascular trace (OVT) of rice grains. These results demonstrate that inorganic As is poorly remobilized, while organic species are readily remobilized, from leaves to grain. Stem translocation of inorganic As may not rely solely on silicic acid transporters.

  18. 7 CFR 800.99 - Checkweighing sacked grain.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... grain is at rest in the carrier or during unloading, in accordance with procedures prescribed in the... being sacked, or while the grain is at rest in a warehouse or holding facility, in accordance with... grain as the grain is being loaded in the carrier, or while the grain is at rest in the carrier, or...

  19. Relationship between grain boundary complexion and grain growth kinetics in alumina

    NASA Astrophysics Data System (ADS)

    Dillon, Shen J.

    2007-12-01

    This work investigated the effect of different grain boundary phases (complexions) on the grain growth kinetics of doped and undoped aluminas. This was achieved by relating quantitative grain growth kinetics to high-resolution electron microscopy of the grain boundaries. It was found that there are 6 different regimes into which the grain growth kinetics may be categorized. These regimes corresponded to the existence of six different grain boundary complexions. Grain boundaries in alumina were observed to show sub-monolayer adsorption, 'clean' intrinsic behavior, bilayer adsorption, multilayer adsorption, equilibrium thickness intergranular films, and wetting intergranular films. These different grain boundary types are listed in order of increasing grain boundary mobility. In general there is an increase in grain boundary mobility with an increase in the disorder within the core of the grain boundary. This broad range of grain boundaries produces a multiplicity of different microstructural effects that until now have been difficult to understand experimentally or theoretically. For example, abnormal grain growth in alumina simply results from the coexistence of two or more different complexions within the same microstructure. Therefore, there may be multiple distinct types of normal and abnormal grain growth behavior. Transitions from one type of boundary to another are chemically and thermally activated, and depend on the crystallography of the adjacent grains. It is found that the number of transitions that occur increases linearly with increasing grain size, and exponentially with temperature. In this regard, different dopants produce very different effects, which appear to be the major role of most dopants in affecting the grain boundary transport kinetics. Low energy planes and grain boundaries are the least likely to undergo such transitions. This experimental data compliments some theoretical derivations within the literature and has provided new insight

  20. GrainScan: a low cost, fast method for grain size and colour measurements

    PubMed Central

    2014-01-01

    Background Measuring grain characteristics is an integral component of cereal breeding and research into genetic control of seed development. Measures such as thousand grain weight are fast, but do not give an indication of variation within a sample. Other methods exist for detailed analysis of grain size, but are generally costly and very low throughput. Grain colour analysis is generally difficult to perform with accuracy, and existing methods are expensive and involved. Results We have developed a software method to measure grain size and colour from images captured with consumer level flatbed scanners, in a robust, standardised way. The accuracy and precision of the method have been demonstrated through screening wheat and Brachypodium distachyon populations for variation in size and colour. Conclusion By using GrainScan, cheap and fast measurement of grain colour and size will enable plant research programs to gain deeper understanding of material, where limited or no information is currently available. PMID:25050131

  1. Photoluminescence Imaging of Large-Grain CdTe for Grain Boundary Characterization

    SciTech Connect

    Johnston, Steve; Allende Motz, Alyssa; Reese, Matthew O.; Burst, James M.; Metzger, Wyatt K.

    2015-06-14

    In this work, we use photoluminescence (PL) imaging to characterize CdTe grain boundary recombination. We use a silicon megapixel camera and green (532 nm) laser diodes for excitation. A microscope objective lens system is used for high spatial resolution and a field of view down to 190 um x 190 um. PL images of large-grain (5 to 50 um) CdTe samples show grain boundary and grain interior features that vary with processing conditions. PL images of samples in the as-deposited state show distinct dark grain boundaries that suggest high excess carrier recombination. A CdCl2 treatment leads to PL images with very little distinction at the grain boundaries, which illustrates the grain boundary passivation properties. Other process conditions are also shown, along with comparisons of PL images to high spatial resolution time-resolved PL carrier lifetime maps.

  2. Complete grain boundaries from incomplete EBSD maps: the influence of segmentation on grain size determinations

    NASA Astrophysics Data System (ADS)

    Heilbronner, Renée; Kilian, Ruediger

    2017-04-01

    Grain size analyses are carried out for a number of reasons, for example, the dynamically recrystallized grain size of quartz is used to assess the flow stresses during deformation. Typically a thin section or polished surface is used. If the expected grain size is large enough (10 µm or larger), the images can be obtained on a light microscope, if the grain size is smaller, the SEM is used. The grain boundaries are traced (the process is called segmentation and can be done manually or via image processing) and the size of the cross sectional areas (segments) is determined. From the resulting size distributions, 'the grain size' or 'average grain size', usually a mean diameter or similar, is derived. When carrying out such grain size analyses, a number of aspects are critical for the reproducibility of the result: the resolution of the imaging equipment (light microscope or SEM), the type of images that are used for segmentation (cross polarized, partial or full orientation images, CIP versus EBSD), the segmentation procedure (algorithm) itself, the quality of the segmentation and the mathematical definition and calculation of 'the average grain size'. The quality of the segmentation depends very strongly on the criteria that are used for identifying grain boundaries (for example, angles of misorientation versus shape considerations), on pre- and post-processing (filtering) and on the quality of the recorded images (most notably on the indexing ratio). In this contribution, we consider experimentally deformed Black Hills quartzite with dynamically re-crystallized grain sizes in the range of 2 - 15 µm. We compare two basic methods of segmentations of EBSD maps (orientation based versus shape based) and explore how the choice of methods influences the result of the grain size analysis. We also compare different measures for grain size (mean versus mode versus RMS, and 2D versus 3D) in order to determine which of the definitions of 'average grain size yields the

  3. Effects of film growth kinetics on grain coarsening and grain shape

    NASA Astrophysics Data System (ADS)

    Reis, F. D. A. Aarão

    2017-04-01

    We study models of grain nucleation and coarsening during the deposition of a thin film using numerical simulations and scaling approaches. The incorporation of new particles in the film is determined by lattice growth models in three different universality classes, with no effect of the grain structure. The first model of grain coarsening is similar to that proposed by Saito and Omura [Phys. Rev. E 84, 021601 (2011), 10.1103/PhysRevE.84.021601], in which nucleation occurs only at the substrate, and the grain boundary evolution at the film surface is determined by a probabilistic competition of neighboring grains. The surface grain density has a power-law decay, with an exponent related to the dynamical exponent of the underlying growth kinetics, and the average radius of gyration scales with the film thickness with the same exponent. This model is extended by allowing nucleation of new grains during the deposition, with constant but small rates. The surface grain density crosses over from the initial power law decay to a saturation; at the crossover, the time, grain mass, and surface grain density are estimated as a function of the nucleation rate. The distributions of grain mass, height, and radius of gyration show remarkable power law decays, similar to other systems with coarsening and particle injection, with exponents also related to the dynamical exponent. The scaling of the radius of gyration with the height h relative to the base of the grain show clearly different exponents in growth dominated by surface tension and growth dominated by surface diffusion; thus it may be interesting for investigating the effects of kinetic roughening on grain morphology. In growth dominated by surface diffusion, the increase of grain size with temperature is observed.

  4. Grain dissection as a grain size reducing mechanism during ice microdynamics

    NASA Astrophysics Data System (ADS)

    Steinbach, Florian; Kuiper, Ernst N.; Eichler, Jan; Bons, Paul D.; Drury, Martin R.; Griera, Albert; Pennock, Gill M.; Weikusat, Ilka

    2017-04-01

    Ice sheets are valuable paleo-climate archives, but can lose their integrity by ice flow. An understanding of the microdynamic mechanisms controlling the flow of ice is essential when assessing climatic and environmental developments related to ice sheets and glaciers. For instance, the development of a consistent mechanistic grain size law would support larger scale ice flow models. Recent research made significant progress in numerically modelling deformation and recrystallisation mechanisms in the polycrystalline ice and ice-air aggregate (Llorens et al., 2016a,b; Steinbach et al., 2016). The numerical setup assumed grain size reduction is achieved by the progressive transformation of subgrain boundaries into new high angle grain boundaries splitting an existing grain. This mechanism is usually termed polygonisation. Analogue experiments suggested, that strain induced grain boundary migration can cause bulges to migrate through the whole of a grain separating one region of the grain from another (Jessell, 1986; Urai, 1987). This mechanism of grain dissection could provide an alternative grain size reducing mechanism, but has not yet been observed during ice microdynamics. In this contribution, we present results using an updated numerical approach allowing for grain dissection. The approach is based on coupling the full field theory crystal visco-plasticity code (VPFFT) of Lebensohn (2001) to the multi-process modelling platform Elle (Bons et al., 2008). VPFFT predicts the mechanical fields resulting from short strain increments, dynamic recrystallisation process are implemented in Elle. The novel approach includes improvements to allow for grain dissection, which was topologically impossible during earlier simulations. The simulations are supported by microstructural observations from NEEM (North Greenland Eemian Ice Drilling) ice core. Mappings of c-axis orientations using the automatic fabric analyser and full crystallographic orientations using electron

  5. Static Recrystallized Grain Size of Coarse-Grained Austenite in an API-X70 Pipeline Steel

    NASA Astrophysics Data System (ADS)

    Sha, Qingyun; Li, Guiyan; Li, Dahang

    2013-12-01

    The effects of initial grain size and strain on the static recrystallized grain size of coarse-grained austenite in an API-X70 steel microalloyed with Nb, V, and Ti were investigated using a Gleeble-3800 thermomechanical simulator. The results indicate that the static recrystallized grain size of coarse-grained austenite decreases with decreasing initial grain size and increasing applied strain. The addition of microalloying elements can lead to a smaller initial grain size for hot deformation due to the grain growth inhibition during reheating, resulting in decreasing of static recrystallized grain size. Based on the experimental data, an equation for the static recrystallized grain size was derived using the least square method. The grain sizes calculated using this equation fit well with the measured ones compared with the equations for fine-grained austenite and for coarse-grained austenite of Nb-V microalloyed steel.

  6. Roundness of grains in cellular microstructures

    NASA Astrophysics Data System (ADS)

    Lutz, F. H.; Mason, J. K.; Lazar, E. A.; MacPherson, R. D.

    2017-08-01

    Many physical systems are composed of polyhedral cells of varying sizes and shapes. These structures are simple in the sense that no more than three faces meet at an edge and no more than four edges meet at a vertex. This means that individual cells can usually be considered as simple, three-dimensional polyhedra. This paper is concerned with determining the distribution of combinatorial types of such polyhedral cells. We introduce the terms fundamental and vertex-truncated types and apply these concepts to the grain growth microstructure as a testing ground. For these microstructures, we demonstrate that most grains are of particular fundamental types, whereas the frequency of vertex-truncated types decreases exponentially with the number of truncations. This can be explained by the evolutionary process through which grain growth structures are formed and in which energetically unfavorable surfaces are quickly eliminated. Furthermore, we observe that these grain types are "round" in a combinatorial sense: there are no "short" separating cycles that partition the polyhedra into two parts of similar sizes. A particular microstructure derived from the Poisson-Voronoi initial condition is identified as containing an unusually large proportion of round grains. This microstructure has an average of 14.036 faces per grain and is conjectured to be more resistant to topological change than the steady-state grain growth microstructure.

  7. Austenite grain coarsening in microalloyed steels

    NASA Astrophysics Data System (ADS)

    Cuddy, L. J.; Raley, J. C.

    1983-10-01

    A uniform, fine-grain structure is essential in steels, particularly for strip and plate, that are to meet demands for high strength and toughness. To produce such microstructures, every step of the high-temperature processing of the steel must be carefully controlled, beginning with grain coarsening that occurs during reheating for slab rolling. Extremely coarse or nonuniform grain structures in the reheated slab are difficult to refine by subsequent hot working. Accordingly, the grain-coarsening behavior of laboratory heats of C-Mn-Si base steels and of such steels with additions of Al, V, Ti, or Nb was examined to understand the principles governing the behavior of this class of steels. The grain-coarsening temperature (the temperature at which abnormal or discontinuous growth occurs) varies with the type and concentration of the microalloy addition; an approximate relation is presented. Generally the grain-coarsening temperature increases with, but is lower than, the temperature required for complete dissolution of the microalloy carbide or nitride present. Thus, steels containing the very insoluble TiN coarsen at much higher temperatures than steels containing the more soluble VCN. These results agree qualitatively with predictions of models of grain-boundary pinning by precipitate particles.

  8. Interstellar chemical differentiation across grain sizes

    NASA Astrophysics Data System (ADS)

    Ge, J. X.; He, J. H.; Li, Aigen

    2016-07-01

    In this work, we investigate the effects of ion accretion and size-dependent dust temperatures on the abundances of both gas-phase and grain-surface species. While past work has assumed a constant areal density for icy species, we show that this assumption is invalid and the chemical differentiation over grain sizes is significant. We use a gas-grain chemical code to demonstrate this numerically for two typical interstellar conditions: a dark cloud (DC) and a cold neutral medium (CNM). It is shown that, although the grain-size distribution variation (but with the total grain surface area unchanged) has little effect on the gas-phase abundances, it can alter the abundances of some surface species by up to ∼2-4 orders of magnitude. The areal densities of ice species are larger on smaller grains in the DC model as a consequence of ion accretion. However, the surface areal density evolution tracks are more complex in the CNM model due to the combined effects of ion accretion and dust temperature variation. The surface areal density differences between the smallest ( ∼ 0.01 μm) and the biggest ( ∼ 0.2 μm) grains can reach ∼1 and ∼5 orders of magnitude in the DC and CNM models, respectively.

  9. Estimating snow grain size using AVIRIS data

    NASA Technical Reports Server (NTRS)

    Nolin, Anne W.; Dozier, Jeff

    1993-01-01

    Estimates of snow grain size for the near-surface snow layer were calculated for the Tioga Pass region and Mammoth Mountain in the Sierra Nevada, California, using an inversion technique and data collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The Tioga Pass and Mammoth Mountain single-band AVIRIS radiance images were atmospherically corrected to obtain surface reflectance. A discrete-ordinate model was used to calculate directional reflectance as a function of snowpack grain size for a wide range of snow grain radii. The resulting radius vs. reflectance curves were each fit using a nonlinear least squares technique which provided a means of transforming surface reflectance in each AVIRIS image to optically equivalent grain size on a per-pixel basis. The model results and grain size estimates derived from the AVIRIS data show that, for solar incidence angles between 0 and 30, the technique provides good estimates of grain size. This work provides the first quantitative estimates for grain size using data acquired from an airborne remote sensing instrument and is an important step in improving our ability to retrieve snow physical properties independent of field measurements.

  10. Quasiclassical coarse graining and thermodynamic entropy

    SciTech Connect

    Gell-Mann, Murray; Hartle, James B.

    2007-08-15

    Our everyday descriptions of the universe are highly coarse grained, following only a tiny fraction of the variables necessary for a perfectly fine-grained description. Coarse graining in classical physics is made natural by our limited powers of observation and computation. But in the modern quantum mechanics of closed systems, some measure of coarse graining is inescapable because there are no nontrivial, probabilistic, fine-grained descriptions. This essay explores the consequences of that fact. Quantum theory allows for various coarse-grained descriptions, some of which are mutually incompatible. For most purposes, however, we are interested in the small subset of 'quasiclassical descriptions' defined by ranges of values of averages over small volumes of densities of conserved quantities such as energy and momentum and approximately conserved quantities such as baryon number. The near-conservation of these quasiclassical quantities results in approximate decoherence, predictability, and local equilibrium, leading to closed sets of equations of motion. In any description, information is sacrificed through the coarse graining that yields decoherence and gives rise to probabilities for histories. In quasiclassical descriptions, further information is sacrificed in exhibiting the emergent regularities summarized by classical equations of motion. An appropriate entropy measures the loss of information. For a 'quasiclassical realm' this is connected with the usual thermodynamic entropy as obtained from statistical mechanics. It was low for the initial state of our universe and has been increasing since.

  11. Differential Heating of Magnetically Aligned Dust Grains

    NASA Astrophysics Data System (ADS)

    Vaillancourt, John E.; Andersson, B.

    2013-01-01

    We use far-infrared photometric maps from IRAS and Herschel to search for the differential heating of asymmetric dust grains aligned with respect to an interstellar magnetic field and heated by a localized radiation source. The grains are known to be asymmetric and have a net alignment of their axes from observations of background starlight polarization. Modern theories on grain alignment suggest that photons from stars embedded in the foreground cloud are a key ingredient of the physical mechanism responsible for alignment (i.e., radiative torques). This theory predicts a relation between the grain alignment efficiency and the angle between the magnetic field and the direction to the aligning radiation source. This effect has been tentatively observed in a source with a very simple geometry (Andersson et al. 2011): the aligning photons are primarily from a single localized source (i.e., a single star) and the local magnetic field direction is known to be fairly uniform. Such a region also has consequences for the distribution of grain heating. For example, asymmetric grains whose largest cross-sections are normal to the incident stellar radiation will reach warmer equilibrium temperatures compared to grains whose largest cross-section is parallel to that direction. This should be observed as an azimuthal dependence of the dust color temperature. We present evidence of such a dependence using IRAS data at 60 and 100 micron. We expect this effect to be stronger using longer wavelength (i.e., 160 micron) data better coupled to the "big-grain" dust population, grains which are also more efficiently aligned with the local magnetic field. Here we also present the results of our on-going work to search for this signal using Herschel maps towards three candidate stars.

  12. The Search for Interstellar Sulfide Grains

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Messenger, Scott

    2010-01-01

    The lifecycle of sulfur in the galaxy is poorly understood. Fe-sulfide grains are abundant in early solar system materials (e.g. meteorites and comets) and S is highly depleted from the gas phase in cold, dense molecular cloud environments. In stark contrast, sulfur is essentially undepleted from the gas phase in the diffuse interstellar medium, indicating that little sulfur is incorporated into solid grains in this environment. It is widely believed that sulfur is not a component of interstellar dust grains. This is a rather puzzling observation unless Fe-sulfides are not produced in significant quantities in stellar outflows, or their lifetime in the ISM is very short due to rapid destruction. Fe sulfide grains are ubiquitous in cometary samples where they are the dominant host of sulfur. The Fe-sulfides (primarily pyrrhotite; Fe(1-x)S) are common, both as discrete 0.5-10 micron-sized grains and as fine (5-10 nm) nanophase inclusions within amorphous silicate grains. Cometary dust particles contain high abundances of well-preserved presolar silicates and organic matter and we have suggested that they should contain presolar sulfides as well. This hypothesis is supported by the observation of abundant Fe-sulfides grains in dust around pre- and post-main sequence stars inferred from astronomical spectra showing a broad 23 micron IR feature due to FeS. Fe-sulfide grains also occur as inclusions in bona fide circumstellar amorphous silicate grains and as inclusions within deuterium-rich organic matter in cometary dust samples. Our irradiation experiments show that FeS is far more resistant to radiation damage than silicates. Consequently, we expect that Fe sulfide stardust should be as abundant as silicate stardust in solar system materials.

  13. Strontium and Barium Isotopes in Type X Presolar Silicon Carbide Grains Analyzed with CHILI — Two Types of Supernova Grains

    NASA Astrophysics Data System (ADS)

    Stephan, T.; Trappitsch, R.; Davis, A. M.; Gyngard, F.; Hoppe, P.; Pellin, M. J.

    2016-08-01

    Using the Chicago Instrument for Laser Ionization, we have measured Sr and Ba isotopes in 10 presolar SiC grains, including 3 X grains. One grain is X1, the other two are X2 grains. Both X grain types show distinct properties in Sr and Ba isotopes.

  14. CASS Ferrite and Grain Structure Relationship

    SciTech Connect

    Ruud, Clayton O.; Ramuhalli, Pradeep; Meyer, Ryan M.; Diaz, Aaron A.; Anderson, Michael T.

    2016-07-13

    This document summarizes the results of research conducted at Pacific Northwest National Laboratory (PNNL) to determine whether, based on experimental measurements, a correlation existed between grain structure in cast austenitic stainless steel (CASS) piping and ferrite content of the casting alloy. The motivation for this research lies in the fact that ultrasonic testing (UT) is strongly influenced by CASS grain structure; knowledge of this grain structure may help improve the ability to interpret UT responses, thereby improving the overall reliability of UT inspections of CASS components.

  15. Design of Grain Dryers’ Control System

    NASA Astrophysics Data System (ADS)

    Li, Shizhuang; Cao, Shukun; Meng, Wenjing

    2017-06-01

    TMS320F28335 which is a TI high-performance TMS320C28x series 32-bit floating point DSP processor is used as the core of the controller, and the hardware is designed, which includes temperature collection, temperature and humidity collection, moisture detection and motor control. The development environment of the system CCS, and then for the characteristics of grain dryer control system, the control system software modular design, the use of fuzzy control method to achieve food grain motor control, and MATLAB simulation analysis, Fuzzy control is used to control the feasibility of the grain moisture.

  16. Grain refinement control in TIG arc welding

    NASA Technical Reports Server (NTRS)

    Iceland, W. F.; Whiffen, E. L. (Inventor)

    1975-01-01

    A method for controlling grain size and weld puddle agitation in a tungsten electrode inert gas welding system to produce fine, even grain size and distribution is disclosed. In the method the frequency of dc welding voltage pulses supplied to the welding electrode is varied over a preselected frequency range and the arc gas voltage is monitored. At some frequency in the preselected range the arc gas voltage will pass through a maximum. By maintaining the operating frequency of the system at this value, maximum weld puddle agitation and fine grain structure are produced.

  17. Dynamic grain growth during superplastic deformation

    SciTech Connect

    Rabinovich, M.Kh.; Trifonov, V.G.

    1996-05-01

    Superplastic deformation (SPD) causes the accelerated anisotropic grain growth. This process results in the formation of structure which is quasistable during superplastic deformation and unstable after deformation. The degree of instability is determined by the size of grains, their shape coefficient which depends on the nature of an alloy and is equal to 1.1--1.5 after SPD, and by the unbalance of triple junctions at boundaries. Alloying of metals can affect the thermodynamic force and mechanism of dynamic anisotropic grain growth and correspondingly influence the parameters of superplasticity in alloys.

  18. Cavity growth on a sliding grain boundary

    SciTech Connect

    I-Wei Chen

    1983-11-01

    Cavity growth on a sliding grain boundary to which a normal stress is applied is found to be faster than that on a stationary grain boundary. The morphology of the cavity contains an asymmetric crack-like tip which prompts surface diffusion locally when the sliding is dominant, and the growth rate becomes proportional to the third power of the normal stress independent of the sliding rate. Since the sliding rates of all grain boundaries are statistically comparable, only the normal stress dependence remains important. The conditions which favor the present mechanism are examined and shown to be in good agreement with the experimental evidence in creep cavitation.

  19. Interstellar grains: Effect of inclusions on extinction

    NASA Astrophysics Data System (ADS)

    Katyal, N.; Gupta, R.; Vaidya, D. B.

    2011-10-01

    A composite dust grain model which simultaneously explains the observed interstellar extinction, polarization, IR emission and the abundance constraints, is required. We present a composite grain model, which is made up of a host silicate oblate spheroid and graphite inclusions. The interstellar extinction curve is evaluated in the spectral region 3.4-0.1 μm using the extinction efficiencies of composite spheroidal grains for three axial ratios. Extinction curves are computed using the discrete dipole approximation (DDA). The model curves are subsequently compared with the average observed interstellar extinction curve and with an extinction curve derived from the IUE catalogue data.

  20. Parsing abnormal grain growth in specialty aluminas

    NASA Astrophysics Data System (ADS)

    Lawrence, Abigail Kremer

    Grain growth in alumina is strongly affected by the impurities present in the material. Certain impurity elements are known to have characteristic effects on abnormal grain growth in alumina. Specialty alumina powders contain multiple impurity species including MgO, CaO, SiO2, and Na 2O. In this work, sintered samples made from alumina powders containing various amounts of the impurities in question were characterized by their grain size and aspect ratio distributions. Multiple quantitative methods were used to characterize and classify samples with varying microstructures. The grain size distributions were used to partition the grain size population into subpopulations depending on the observed deviation from normal behavior. Using both grain size and aspect ratio a new visual representation for a microstructure was introduced called a morphology frequency map that gives a fingerprint for the material. The number of subpopulations within a sample and the shape of the distribution on the morphology map provided the basis for a classification scheme for different types of microstructures. Also using the two parameters a series of five metrics were calculated that describe the character of the abnormal grains in the sample, these were called abnormal character values. The abnormal character values describe the fraction of grains that are considered abnormal, the average magnitude of abnormality (including both grain size and aspect ratio), the average size, and variance in size. The final metric is the correlation between grain size and aspect ratio for the entire population of grains. The abnormal character values give a sense of how different from "normal" the sample is, given the assumption that a normal sample has a lognormal distribution of grain size and a Gaussian distribution of aspect ratios. In the second part of the work the quantified measures of abnormality were correlated with processing parameters such as composition and heat treatment conditions. A

  1. Can Whole-Grain Foods Lower Blood Pressure?

    MedlinePlus

    ... more whole-grain foods help lower my blood pressure? Answers from Sheldon G. Sheps, M.D. It might. ... help reduce your chance of developing high blood pressure (hypertension). Whole grains are grains that include the ...

  2. Optimization of strength and ductility in nanotwinned ultrafine grained Ag: twin density and grain orientations

    DOE PAGES

    Ott, R. T.; Geng, J.; Besser, M. F.; ...

    2015-06-27

    Nanotwinned ultrafine grained Ag thick films with different twin densities and orientations have been synthesized by magnetron sputtering with a wide-range of deposition rates. The twin boundary (TB) spacings and orientations as well as the grain size for the different deposition conditions have been characterized by both synchrotron X-ray scattering and transmission electron microscopy (TEM). Structural characterization combined with uniaxial tensile tests of the free-standing films reveals a large increase in the yield strength for films deposited at high deposition rates without any accompanying change in the TB spacing – a behavior that is in contrast with what has beenmore » reported in the literature. We find that films deposited at lower deposition rates exhibit more randomly oriented grains with a lower overall twin density (averaged over all the grains) than the more heavily twinned grains with strong <111> fiber texture in the films deposited at higher deposition rates. The TB spacing in the twinned grains, however, does not show any significant dependence on the deposition rate. The dependence of the strength and ductility on the twin density and orientations can be described by two different soft deformation modes: 1) untwinned grains and 2) nanowinned grains that are not oriented with <111> along the growth direction. The untwinned grains provide relatively low resistance to slip, and thus decreased strength, while the nanotwinned grains that are not oriented with <111> along the growth direction are softer than nanotwinned grains that are oriented with <111> along the growth direction. We reveal that an ultrafine-grained (150-200 nm) structure consisting of a mixture of nanotwinned (~ 8-12 nm spacing) and untwined grains yields the best combination of high strength and uniform tensile ductility.« less

  3. Optimization of strength and ductility in nanotwinned ultrafine grained Ag: twin density and grain orientations

    SciTech Connect

    Ott, R. T.; Geng, J.; Besser, M. F.; Kramer, M. J.; Wang, Y. M.; Park, E. S.; LeSar, R.; King, A. H.

    2015-06-27

    Nanotwinned ultrafine grained Ag thick films with different twin densities and orientations have been synthesized by magnetron sputtering with a wide-range of deposition rates. The twin boundary (TB) spacings and orientations as well as the grain size for the different deposition conditions have been characterized by both synchrotron X-ray scattering and transmission electron microscopy (TEM). Structural characterization combined with uniaxial tensile tests of the free-standing films reveals a large increase in the yield strength for films deposited at high deposition rates without any accompanying change in the TB spacing – a behavior that is in contrast with what has been reported in the literature. We find that films deposited at lower deposition rates exhibit more randomly oriented grains with a lower overall twin density (averaged over all the grains) than the more heavily twinned grains with strong <111> fiber texture in the films deposited at higher deposition rates. The TB spacing in the twinned grains, however, does not show any significant dependence on the deposition rate. The dependence of the strength and ductility on the twin density and orientations can be described by two different soft deformation modes: 1) untwinned grains and 2) nanowinned grains that are not oriented with <111> along the growth direction. The untwinned grains provide relatively low resistance to slip, and thus decreased strength, while the nanotwinned grains that are not oriented with <111> along the growth direction are softer than nanotwinned grains that are oriented with <111> along the growth direction. We reveal that an ultrafine-grained (150-200 nm) structure consisting of a mixture of nanotwinned (~ 8-12 nm spacing) and untwined grains yields the best combination of high strength and uniform tensile ductility.

  4. Is schizophrenia rare if grain is rare?

    PubMed

    Dohan, F C; Harper, E H; Clark, M H; Rodrigue, R B; Zigas, V

    1984-03-01

    If, as hypothesized, neuroactive peptides from grain glutens are the major agents evoking schizophrenia in those with the genotype(s), it should be rare if grain is rare. To test this, we analyzed the results of our clinical examinations (e.g., kuru) and observations of anthropologists on peoples consuming little or no grain. Only two overtly insane chronic schizophrenics were found among over 65,000 examined or closely observed adults in remote regions of Papua New Guinea (PNG, 1950-1967) and Malaita , Solomon Islands (1980-1981), and on Yap , Micronesia (1947-1948). In preneuroleptic Europe over 130 would have been expected. When these peoples became partially westernized and consumed wheat, barley beer, and rice, the prevalence reached European levels. Our findings agree with previous epidemiologic and experimental results indicating that grain glutens are harmful to schizophrenics.

  5. PROGRESS ON LARGE GRAIN AND SINGLE GRAIN NIOBIUM: INGOTS AND SHEET AND REVIEW OF PROGRESS ON LARGE GRAIN AND SINGLE GRAIN NIOBIUM CAVITIES

    SciTech Connect

    Peter Kneisel

    2008-02-12

    Large grain and single crystal niobium has been proposed several years ago as an alternative material to poly-crystalline niobium for superconducting cavities, exhibiting potential advantages such as ¿stream-lined¿ procedures, reduced costs and better reproducibility in performance. Several major laboratories have investigated the use of large grain and single crystal material in the past years and the niobium producing industry has responded in providing ingot material with enlarged grain sizes. Besides a large number of single cell and multi-cell cavities from large grain niobium, several single crystal cavities have been fabricated and tested with good performances. This contribution will review the progress since the SRF workshop in 2005 in material processing and handling and in cavity performances.

  6. Fine-grained zirconium-base material

    DOEpatents

    Van Houten, G.R.

    1974-01-01

    A method is described for making zirconium with inhibited grain growth characteristics, by the process of vacuum melting the zirconium, adding 0.3 to 0.5% carbon, stirring, homogenizing, and cooling. (Official Gazette)

  7. Volume dependence of computed grain boundary energy

    SciTech Connect

    Bristowe, P.D.; Brokman, A.

    1980-08-01

    Over the past five years there have been numerous studies of grain boundary structure using the method of computer molecular statics which assume pairwise central potentials for the interatomic interaction. Emphasis is usually placed on relative grain boundary energies but these may be inaccurate due to various, but related, approximations and constraints implicity imposed on the calculation-namely central forces, finite model size, fixed border conditions and volume dependent contributions to the energy of the system. It is the purpose of this work to clarify how these particular properties of the model can affect the computed grain boundary energy and demonstrate instances in which the quoted energy has strictly been inaccurate. The implication of these results, especially on how they affect the method of relaxation and the resulting grain boundary structure is discussed.

  8. Making Pure Fine-Grained Inorganic Powder

    NASA Technical Reports Server (NTRS)

    Wood, C.

    1985-01-01

    Sustained arc plasma chemical reactor fabricates very-fine-grained inorganic solids having low thermal conductivity. Powder fabrication method, based on plasma tube technique produces pure solids without contamination commonly produced by grinding.

  9. Characterization of grain boundaries in silicon

    NASA Technical Reports Server (NTRS)

    Cheng, L. J.; Shyu, C. M.; Stika, K. M.; Daud, T.; Crotty, G. T.

    1983-01-01

    Zero-bias conductance and capacitance measurements at various temperatures were used to study trapped charges and potential barrier height at the boundaries. Deep-level transient spectroscopy (DLTS) was applied to measure the density of states at the boundary. A study of photoconductivity of grain boundaries in p-type silicon demonstrated the applicability of the technique in the measurement of minority carrier recombination velocity at the grain boundary. Enhanced diffusion of phosphorus at grain boundaries in three cast polycrystalline photovoltaic materials was studied. Enhancements for the three were the same, indicating that the properties of boundaries are similar, although grown by different techniques. Grain boundaries capable of enhancing the diffusion were found always to have strong recombination activities; the phenomena could be related to dangling bonds at the boundaries. Evidence that incoherent second-order twins of (111)/(115) type are diffusion-active is presented.

  10. Barium Isotopes in Single Presolar Grains

    NASA Technical Reports Server (NTRS)

    Pellin, M. J.; Davis, A. M.; Savina, M. R.; Kashiv, Y.; Clayton, R. N.; Lewis, R. S.; Amari, S.

    2001-01-01

    Barium isotopic compositions of single presolar grains were measured by laser ablation laser resonant ionization mass spectrometry and the implications of the data for stellar processes are discussed. Additional information is contained in the original extended abstract.

  11. Grain boundary engineering of highly deformable ceramics

    SciTech Connect

    Mecartney, M.L.

    2000-07-01

    Highly deformable ceramics can be created with the addition of intergranular silicate phases. These amorphous intergranular phases can assist in superplastic deformation by relieving stress concentrations and minimizing grain growth if the appropriate intergranular compositions are selected. Examples from 3Y-TZP and 8Y-CSZ ceramics are discussed. The grain boundary chemistry is analyzed by high resolution analytical TEM is found to have a strong influence on the cohesion of the grains both at high temperature and at room temperature. Intergranular phases with a high ionic character and containing large ions with a relatively weak bond strength appear to cause premature failure. In contrast, intergranular phases with a high degree of covalent character and similar or smaller ions than the ceramic and a high ionic bond strength are the best for grain boundary adhesion and prevention of both cavitation at high temperatures and intergranular fracture at room temperature.

  12. Barium Isotopes in Single Presolar Grains

    NASA Technical Reports Server (NTRS)

    Pellin, M. J.; Davis, A. M.; Savina, M. R.; Kashiv, Y.; Clayton, R. N.; Lewis, R. S.; Amari, S.

    2001-01-01

    Barium isotopic compositions of single presolar grains were measured by laser ablation laser resonant ionization mass spectrometry and the implications of the data for stellar processes are discussed. Additional information is contained in the original extended abstract.

  13. Grain boundary induced perturbations in electrical ceramics

    SciTech Connect

    Baptista, J.L.; Mantas, P.Q.; Frade, J.R.

    1996-12-31

    The electrical properties of grain boundary controlled ceramics are dependent on the microstructures. However, it is also known that the varistor properties of ZnO ceramics develop during cooling in a region where there is no observable change in microstructure. The properties of ZnO varistors are influenced by changes in defect chemistry occurring during cooling. Excessive defects must migrate to the grain boundaries during cooling, to be annihilated there. However, mass transport tends to vanish with decreasing temperatures, and it is tempting to think that defect equilibrium only prevails near grain boundaries. Non-equilibrium conditions developed by adjusting the combined effects of cooling schedule and grain size were used to predict the temperature range of barrier formation and the values of barrier height. It is conceivable that this information can be taken advantage of, in order to improve the electrical properties of ceramic materials, and to attain new properties.

  14. Grain edge detection of diamond grinding wheel

    NASA Astrophysics Data System (ADS)

    Zhou, Lijun; Cui, Changcai; Huang, Chunqi; Huang, Hui; Ye, Ruifang

    2013-01-01

    The topograpgy characterization of grinding wheel grain is indispensable for precision grinding, it depends on accurate edge detecting and recognition of abrasive grains from wheel bond to a large extent. Due to different reflective characteristics arising among different materials, difference between maximum and minimum intensity (Δ ) of diamond is larger than that of bond. This paper uses a new method for grain edge detection of resin-bonded diamond grinding wheel that combines the improved Canny operator in Method of Maximum Classes Square Error (called as OTSU) with ΔI obtained by the white light interferometry (WLI). The experimental results show that the method based on improved Canny operator can effectively detect the edge of diamond grain.

  15. Optomechanics: Listening to quantum grains of sound

    NASA Astrophysics Data System (ADS)

    Favero, Ivan

    2015-04-01

    An optomechanical device has allowed quanta, or 'grains', of mechanical vibration to be counted by optical means. The system may open up new possibilities in acoustics and thermal engineering. See Letter p.522

  16. Connectivity in Random Grain Boundary Networks

    SciTech Connect

    Kumar, M; Schuh, C A; King, W E

    2002-10-22

    Mechanical properties of FCC metals and alloys can be improved by exercising control over the population of grain boundary types in the microstructure. The existing studies also suggest that such properties tend to have percolative mechanisms that depend on the topology of the grain boundary network. With the emergence of SEM-based automated electron backscatter diffraction (EBSD), statistically significant datasets of interface crystallography can be analyzed in a routine manner, giving new insight into the topology and percolative properties of grain boundary networks. In this work, we review advanced analysis techniques for EBSD datasets to quantify microstructures in terms of grain boundary character and triple junction distributions, as well as detailed percolation-theory based cluster analysis.

  17. Thermomagnetic Stability in Pseudo Single Domain Grains

    NASA Astrophysics Data System (ADS)

    Nagy, Lesleis; Williams, Wyn; Muxworthy, Adrian; Fabian, Karl; Conbhuí, Pádraig Ó.

    2016-04-01

    The reliability of paleomagnetic remanences are well understood for fine grains of magnetite that are single-domain (SD, uniformly magnetized). In particular Néel's theory [1] outlined the thermal energies required to block and unblock magnetic remanences. This lead to determination of thermal stability for magnetization in fine grains as outlined in Pullaiah et. al. [2] and a comprehensive understanding of SD paleomagnetic recordings. It has been known for some time that single domain magnetite is possible only in the grain size range 30 - 80nm, which may only account for a small fraction of the grain size distribution in any rock sample. Indeed rocks are often dominated by grains in the pseudo single domain (PSD) size range, at approximately 80 - 1000nm. Toward the top end of this range multi-domain features begin to dominate. In order to determine thermomagnetic stability in PSD grains we need to identify the energy barriers between all possible pairs of local energy minima (LEM) domain states as a function of both temperature and grain size. We have attempted to do this using the nudged elastic band (NEB) method [3] which searches for minimum energy paths between any given pair of LEM states. Using this technique we have determined, for the first time, complete thermomagnetic stability curves for PSD magnetite. The work presented is at a preliminary stage. However it can be shown that PSD grains of magnetite with simple geometries (e.g. cubes or cuboctahedra) have very few low energy transition paths and the stability is likely to be similar to that observed for SD grains (as expected form experimental observations). The results will provide a basis for a much more rigorous understanding of the fidelity of paleomagnetic signals in assemblages of PSD grains and their ability to retain ancient recordings of the geomagnetic field. References: [1] Néel, Louis. "Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres

  18. Ultrathin amorphous coatings on lunar dust grains.

    PubMed

    Bibring, J P; Duraud, J P; Durrieu, L; Jouret, C; Maurette, M; Meunier, R

    1972-02-18

    UItrathin amorphous coatings have been observed by high-voltage electron microscopy on micrometer-sized dust grains from the Apollo 11, Apollo 12, Apollo 14, and Luna 16 missions. Calibration experiments show that these coatings result from an "ancient" implantation of solar wind ions in the grains. This phenomenon has interdisciplinary applications concerning the past activity of the sun, the lunar albedo, the ancient lunar atmosphere and magnetic field, the carbon content of lunar soils, and lunar dynamic processes.

  19. 3-D analysis of grain selection process

    NASA Astrophysics Data System (ADS)

    Arao, Tomoka; Esaka, Hisao; Shinozuka, Kei

    2012-07-01

    It is known that the grain selection plays an important role in the manufacturing process for turbine blades. There are some analytical or numerical models to treat the grain selection. However, the detailed mechanism of grain selection in 3-D is still uncertain. Therefore, an experimental research work using Al-Cu alloy has been carried out in order to understand the grain selection in 3-D.A mold made by Al2O3 was heated to 600 °C ( = liquids temperature of the alloy) and was set on a water-colded copper chill plate. Molten Al-20 wt%Cu alloy was cast into the mold and unidirectional solidified ingot was prepared. The size of ingot was approximately phi25×65H mm. To obtain the thermal history, 4 thermocouples were placed in the mold. It is confirmed that the alloy solidified unidirectionally from bottom to top. Solidified structure on a longitudinal cross section was observed and unidirectional solidification up to 40 mm was ensured. EBSD analysis has been performed on horizontal cross section at an interval of ca.200 μm. These observations were carried out 7-5 mm from the bottom surface. Crystallographic orientation of primary Al phase and size of solidified grains were characterized. A large solidified grain, the crystallographic orientation of which is approximately <101> along heat flow direction, is observed near the lowest cross section. The area of <101> grain decreased as solidification proceeded. On the other hand, it is found that the area of <001> grain increased.

  20. Image analysis applications for grain science

    NASA Astrophysics Data System (ADS)

    Zayas, Inna Y.; Steele, James L.

    1991-02-01

    Morphometrical features of single grain kernels or particles were used to discriminate two visibly similar wheat varieties foreign material in wheat hardsoft and spring-winter wheat classes and whole from broken corn kernels. Milled fractions of hard and soft wheat were evaluated using textural image analysis. Color image analysis of sound and mold damaged corn kernels yielded high recognition rates. The studies collectively demonstrate the potential for automated classification and assessment of grain quality using image analysis.

  1. Single and large grain activities at Fermilab

    SciTech Connect

    Antoine, Claire; /Fermilab

    2006-01-01

    This paper describes the ongoing activities at Fermilab for large grains and monocrystalline niobium. In addition to acquisition of local fabrication expertise, we plan to develop an R&D program dedicated to evidence the possible influence of crystal orientation on physical and chemical properties of niobium, such as mechanical properties, magnetic properties or surface contamination. Some considerations are also given about the morphology at grain boundaries and its role on the behavior of superconducting cavities.

  2. A multibody strategy for deformable grains

    NASA Astrophysics Data System (ADS)

    Mollon, Guilhem

    2017-06-01

    This article presents a numerical framework dedicated to the simulation of granular materials with highly deformable grains. This framework is based on a multibody meshfree strategy, which makes it possible to account for the constitutive model of the material composing each grain and for possibly complex contact laws (e.g. adhesion, friction, etc.). The main principles of the approach are first presented, and two illustrative cases are then detailed in order to emphasize its potential in several domains of the granular science.

  3. The formation of small grains in shocks in the ISM

    NASA Technical Reports Server (NTRS)

    Jones, Anthony P.; Tielens, Alexander G. G. M.

    1994-01-01

    Carbonaceous and silicate grains swept up, and betatron accelerated, by supernova-generated shock waves in the interstellar medium are exposed to grain destructive processing. The degree of grain destruction is determined by the differential gas-grain and grain-grain velocities, which lead to sputtering of the grain surface and grain core disruption (deformation, vaporization and shattering), respectively. The threshold pressure for grain shattering in grain-grain collisions (100 k bar) is considerably lower than that for vaporization (approximately 5 M bar). Therefore, collisions between grains shatter large grains into smaller fragments (i.e., small grains and PAH's). Using a new algorithms for the destructive processes, it was possible to model the formation fo small grain fragments in grain-grain collisions in the warm phase of the interstellar medium. It was found that in one cycle through the warm medium (approximately 3 x 10(sup 6) years) of order 1-2% of the total grain mass is shattered into particles with radii of less than 50 A.

  4. Grain growth and experimental deformation of fine-grained ice aggregates

    NASA Astrophysics Data System (ADS)

    Diebold, Sabrina; de Bresser, Hans; Spiers, Chris; Durham, William B.; Stern, Laura

    2010-05-01

    Ice is one of the most abundant materials in our solar system. It is the principal constituent of most of the moons of the outer solar system. Thus, the flow behavior of ice is of great interest when studying geodynamic processes on icy moons. Grain growth is an elementary process that is assumed to be important in the ice sheet layering of planetary moons, where temperatures 100-273 K exist. We concentrate on the questions to what extent grain growth may influence the evolution of strength of deforming ice and if the grain growth process is independent or dependent of deformation. The answers to these questions will help us to quantitatively test the hypothesis that the progressive evolution of the grain (crystal) size distribution of deforming and recrystallizing ice directly affects its rheological behaviour in terms of composite grain-size-sensitive (GSS) and grain-size-insensitive (GSI) creep, and that this might, after time, result in a steady state balance between mechanisms of GSS and GSI creep. We performed static grain growth experiments at different temperatures and a pressure (P) of 1 atm, and deformation experiments at P = 30-100 MPa starting in the GSS-creep field. The starting material ice Ih has a grain size < 2 μm and was generated by a special pressure-release technique described by Stern et al. (1997) resulting in dense ice aggregates. The ice grains of the polycrystalline starting samples were randomly oriented and the material has a porosity of < 0.5%. For the grain growth tests a Hart Scientific temperature bath was filled with d-Limonene as cooling medium. The ice specimens were put into sealed alumina cylinders. For the grain growth tests, temperatures (T) between 213 K and 268 K were chosen. The durations of these tests varied between one day and two weeks. For the deformation experiments, temperatures of > 170 K and strain rates between 10-8 s-1 and 10-4 s-1 were chosen. Grain sizes, grain size distributions and grain topologies were

  5. Effect of partial recrystallization on the grain size and grain boundary structure of austenitic steel

    SciTech Connect

    Szabo, Peter J.

    2012-04-15

    Cyclic thermomechanical treatment combined with caliber rolling was applied in order to obtain very fine grain structure with high fraction of special grain boundaries in austenitic stainless steel. Partial recrystallization was observed. Recrystallized fraction was assessed from misorientation data measured by electron back scattering diffraction. Due to the partial recrystallization, elastic energy was stored in the deformed parts, and helped grain boundary movement. As a consequence, very fine grained material with high fraction of special boundaries was formed. - Highlights: Black-Right-Pointing-Pointer I combined the advantage of severe plastic deformation and thermomechanical treatment. Black-Right-Pointing-Pointer A very fine grained steel with high fraction of special boundaries was formed. Black-Right-Pointing-Pointer Stored elastic energy hepled the movement of grain boundaries. Black-Right-Pointing-Pointer The amount of recrystallized part was determined by EBSD.

  6. The Influence of Grain Boundary Type upon Damage Evolution at Grain Boundary Interfaces

    SciTech Connect

    Perez-Bergquist, Alejandro G; Brandl, Christian; Escobedo, Juan P; Trujillo, Carl P; Cerreta, Ellen K; Gray III, George T; Germann, Timothy C

    2012-07-09

    In a prior work, it was found that grain boundary structure strongly influences damage evolution at grain boundaries in copper samples subjected to either shock compression or incipient spall. Here, several grain boundaries with different grain boundary structures, including a {Sigma}3 (10-1) boundary, are interrogated via conventional transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) to investigate the effects of atomic-scale structural differences on grain boundary strength and mobility. Boundaries are studied both before and after shock compression at a peak shock stress of 10 GPa. Results of the TEM and HRTEM work are used in conjunction with MD modeling to propose a model for shock-induced damage evolution at grain boundary interfaces that is dependent upon coincidence.

  7. The opacity of grains in protoplanetary atmospheres

    NASA Astrophysics Data System (ADS)

    Movshovitz, N.; Podolak, M.

    2008-03-01

    We have computed the size distribution of silicate grains in the outer radiative region of the envelope of a protoplanet evolving according to the scenario of Pollack et al. [Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., Greenzweig, Y., 1996. Icarus 124, 62-85]. Our computation includes grain growth due to Brownian motion and overtake of smaller grains by larger ones. We also include the input of new grains due to the breakup of planetesimals in the atmosphere. We follow the procedure of Podolak [Podolak, M., 2003. Icarus 165, 428-437], but have speeded it up significantly. This allows us to test the sensitivity of the code to various parameters. We have also made a more careful estimate of the resulting grain opacity. We find that the grain opacity is of the order of 10 cmg throughout most of the outer radiative zone as Hubickyj et al. [Hubickyj, O., Bodenheimer, P., Lissauer, J.J., 2005. Icarus 179, 415-431] assumed for their low opacity case, but near the outer edge of the envelope, the opacity can increase to ˜1 cmg. We discuss the effect of this on the evolution of the models.

  8. Coarse-graining methods for computational biology.

    PubMed

    Saunders, Marissa G; Voth, Gregory A

    2013-01-01

    Connecting the molecular world to biology requires understanding how molecular-scale dynamics propagate upward in scale to define the function of biological structures. To address this challenge, multiscale approaches, including coarse-graining methods, become necessary. We discuss here the theoretical underpinnings and history of coarse-graining and summarize the state of the field, organizing key methodologies based on an emerging paradigm for multiscale theory and modeling of biomolecular systems. This framework involves an integrated, iterative approach to couple information from different scales. The primary steps, which coincide with key areas of method development, include developing first-pass coarse-grained models guided by experimental results, performing numerous large-scale coarse-grained simulations, identifying important interactions that drive emergent behaviors, and finally reconnecting to the molecular scale by performing all-atom molecular dynamics simulations guided by the coarse-grained results. The coarse-grained modeling can then be extended and refined, with the entire loop repeated iteratively if necessary.

  9. Grain size dependence of wear in ceramics

    SciTech Connect

    Wu, C.CM.; Rice, R.W.; Johnson, D.; Platt, B.A.

    1985-08-01

    Pin-on-disk (POD) microwear tests of Al2O3, MgO, MgAl2O4, and ZrO2 crystalline structures were conducted as a function of grain size and the results compared with data from single crystals of the same materials. Extrapolation to infinite grain size in the Hall-Petch type relationship for the structures resulted in lower intercepts than the single-crystal values. In addition, the macrowear grain-size dependence appears to decrease with increased wear. It is suggested that thermal expansion anisotropy (of Al2O3) significantly affects the grain size dependence of POD wear, giving a negative intercept, while elastic anisotropy is a factor in the grain-size dependence of the cubic (MgO, MgAl2O4, and ZrO2 materials. The reduced grain-size dependence is attributed to overlapping wear tracks, reducing the effects of enhanced wear damage. 9 references.

  10. BHQ revisited (1) - Looking at grain size

    NASA Astrophysics Data System (ADS)

    Heilbronner, Renée; Kilian, Rüdiger; Tullis, Jan

    2016-04-01

    Black Hills Quartzite (BHQ) has been used extensively in experimental rock deformation for numerous studies. Coaxial and general shear experiments have been carried out, for example, to define the dislocation creep regimes of quartz (Hirth & Tullis, 1992), to determine the effect of annealing (Heilbronner & Tullis, 2002) or to study the development of texture and microstructure with strain (Heilbronner & Tullis, 2006). BHQ was also used to determine the widely used quartz piezometer by Stipp & Tullis (2003). Among the microstructure analyses that were performed in those original papers, grain size was usually determined using CIP misorientation images. However, the CIP method (= computer-integrated polarization microscopy, details in Heilbronner and Barrett, 2014) is only capable of detecting the c-axis orientation of optically uniaxial materials and hence is only capable of detecting grain boundaries between grains that differ in c-axis orientation. One of the puzzling results we found (Heilbronner & Tullis, 2006) was that the recrystallized grain size seemed to depend on the crystallographic preferred orientation of the domain. In other words the grain size did not only depend on the flow stress but also on the orientation of the c-axis w/r to the shear direction. At the time, no EBSD analysis (electron back scatter diffraction) was carried out and hence the full crystallographic orientation was not known. In principle it is therefore possible that we missed some grain boundaries (between grains with parallel c-axes) and miscalculated our grain sizes. In the context of recent shear experiments on quartz gouge at the brittle-viscous transition (see Richter et al., this conference), where EBSD is used to measure the recrystallized grain size, we wanted to re-measure the CIP grain sizes of our 2006 samples (deformed in regime 1, 2 and 3 of dislocation) in exactly the same way. In two companion posters we use EBSD orientation imaging to repeat, refine and expand the

  11. A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice.

    PubMed

    Hu, Jiang; Wang, Yuexing; Fang, Yunxia; Zeng, Longjun; Xu, Jie; Yu, Haiping; Shi, Zhenyuan; Pan, Jiangjie; Zhang, Dong; Kang, Shujing; Zhu, Li; Dong, Guojun; Guo, Longbiao; Zeng, Dali; Zhang, Guangheng; Xie, Lihong; Xiong, Guosheng; Li, Jiayang; Qian, Qian

    2015-10-05

    Grain size determines grain weight and affects grain quality. Several major quantitative trait loci (QTLs) regulating grain size have been cloned; however, our understanding of the underlying mechanism that regulates the size of rice grains remains fragmentary. Here, we report the cloning and characterization of a dominant QTL, grain size on chromosome 2 (GS2), which encodes Growth-Regulating Factor 4 (OsGRF4), a transcriptional regulator. GS2 localizes to the nucleus and may act as a transcription activator. A rare mutation of GS2 affecting the binding site of a microRNA, OsmiR396c, causes elevated expression of GS2/OsGRF4. The increase in GS2 expression leads to larger cells and increased numbers of cells, which thus enhances grain weight and yield. The introduction of this rare allele of GS2/OsGRF4 into rice cultivars could significantly enhance grain weight and increase grain yield, with possible applications in breeding high-yield rice varieties.

  12. Orientation influence on grain size-effects in ultrafine-grained magnesium

    DOE PAGES

    Fan, Haidong; Aubry, Sylvie; Arsenlis, A.; ...

    2014-11-08

    The mechanical behavior of ultrafine-grained magnesium was studied by discrete dislocation dynamics (DDD) simulations. Our results show basal slip yields a strong size effect, while prismatic and pyramidal slips produce a weak one. We developed a new size-strength model that considers dislocation transmission across grain boundaries. Good agreement between this model, current DDD simulations and previous experiments is observed. These results reveal that the grain size effect depends on 3 factors: Peierls stress, dislocation source strength and grain boundary strength.

  13. An analysis of grain boundary sliding and grain boundary cavitation in discontinuously reinforced composites

    SciTech Connect

    Biner, S.B.

    1996-05-01

    In this study, the creep cavitation and rupture characteristics of polycrystalline matrix material and discontinuously reinforced composites are investigated including grain boundary sliding behavior, reinforcement aspect ratio and interfacial behavior between the reinforcement and surrounding matrix grains. Free sliding of the grain boundaries, a continuous nucleation of the grain boundary cavities, their diffusional growth and coalescence to form grain boundary facet cracks are fully accounted for in the analyses. The results indicate that, with sliding grain boundaries, the stress enhancement factor for the composites is much higher than the one observed for the matrix material and its value increases with increasing reinforcement aspect ratio, reduction in the matrix grain size and sliding interfacial behavior between the reinforcement and the matrix. For the composites, the influence of grain boundary sliding on the creep life is reduced by the stress concentration effect that is seen at the end of the reinforcements. In contrast with the behavior of polycrystalline matrix material in composites after the formation of the first facet crack, resulting from the coalescence of the cavities, a significant time is required for the formation of the other grain boundary facet cracks across the ligament to cause final rupture. The results also show that experimentally observed higher creep exponents or stress dependent creep exponent values in discontinuously reinforced composites can occur as a result of creep damage evolution behavior.

  14. Mechanism of secondary recrystallization of Goss grains in grain-oriented electrical steel

    PubMed Central

    Hayakawa, Yasuyuki

    2017-01-01

    Abstract Since its invention by Goss in 1934, grain-oriented (GO) electrical steel has been widely used as a core material in transformers. GO exhibits a grain size of over several millimeters attained by secondary recrystallization during high-temperature final batch annealing. In addition to the unusually large grain size, the crystal direction in the rolling direction is aligned with <001>, which is the easy magnetization axis of α-iron. Secondary recrystallization is the phenomenon in which a certain very small number of {110}<001> (Goss) grains grow selectively (about one in 106 primary grains) at the expense of many other primary recrystallized grains. The question of why the Goss orientation is exclusively selected during secondary recrystallization has long been a main research subject in this field. The general criterion for secondary recrystallization is a small and uniform primary grain size, which is achieved through the inhibition of normal grain growth by fine precipitates called inhibitors. This paper describes several conceivable mechanisms of secondary recrystallization of Goss grains mainly based on the selective growth model. PMID:28804524

  15. Reversal in the Size Dependence of Grain Rotation

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoling; Tamura, Nobumichi; Mi, Zhongying; Lei, Jialin; Yan, Jinyuan; Zhang, Lingkong; Deng, Wen; Ke, Feng; Yue, Binbin; Chen, Bin

    2017-03-01

    The conventional belief, based on the Read-Shockley model for the grain rotation mechanism, has been that smaller grains rotate more under stress due to the motion of grain boundary dislocations. However, in our high-pressure synchrotron Laue x-ray microdiffraction experiments, 70 nm nickel particles are found to rotate more than any other grain size. We infer that the reversal in the size dependence of the grain rotation arises from the crossover between the grain boundary dislocation-mediated and grain interior dislocation-mediated deformation mechanisms. The dislocation activities in the grain interiors are evidenced by the deformation texture of nickel nanocrystals. This new finding reshapes our view on the mechanism of grain rotation and helps us to better understand the plastic deformation of nanomaterials, particularly of the competing effects of grain boundary and grain interior dislocations.

  16. Reversal in the Size Dependence of Grain Rotation

    DOE PAGES

    Zhou, Xiaoling; Tamura, Nobumichi; Mi, Zhongying; ...

    2017-03-01

    The conventional belief, based on the Read-Shockley model for the grain rotation mechanism, has been that smaller grains rotate more under stress due to the motion of grain boundary dislocations. However, in our high-pressure synchrotron Laue x-ray microdiffraction experiments, 70 nm nickel particles are found to rotate more than any other grain size. We infer that the reversal in the size dependence of the grain rotation arises from the crossover between the grain boundary dislocation-mediated and grain interior dislocation-mediated deformation mechanisms. The dislocation activities in the grain interiors are evidenced by the deformation texture of nickel nanocrystals. This new findingmore » reshapes our view on the mechanism of grain rotation and helps us to better understand the plastic deformation of nanomaterials, particularly of the competing effects of grain boundary and grain interior dislocations.« less

  17. The HEALTHGRAIN definition of 'whole grain'.

    PubMed

    van der Kamp, Jan Willem; Poutanen, Kaisa; Seal, Chris J; Richardson, David P

    2014-01-01

    Most cereal products, like white bread, pasta, and biscuits, are based on flour after removal of bran and germ, the two parts of grain kernels containing most of the dietary fibre and other bioactive components. In the past decade, consumers have been rediscovering whole grain-based products and the number of wholegrain products has increased rapidly. In most countries in Europe and worldwide, however, no legally endorsed definition of wholegrain flour and products exists. Current definitions are often incomplete, lacking descriptions of the included grains and the permitted flour manufacturing processes. The consortium of the HEALTHGRAIN EU project (FP6-514008, 2005-2010) identified the need for developing a definition of whole grain with the following scope: 1) more comprehensive than current definitions in most EU countries; 2) one definition for Europe - when possible equal to definitions outside Europe; 3) reflecting current industrial practices for production of flours and consumer products; 4) useful in the context of nutritional guidelines and for labelling purposes. The definition was developed in a range of discussion meetings and consultations and was launched in 2010 at the end of the HEALTHGRAIN project. The grains included are specified: a wide range of cereal grains from the Poaceae family, and the pseudo-cereals amaranth, buckwheat, quinoa, and wild rice. The definition also describes manufacturing processes allowed for producing wholegrain flours. This paper compares the HEALTHGRAIN definition with previous definitions, provides more comprehensive explanations than in the definition itself regarding the inclusion of specific grains, and sets out the permitted flour manufacturing processes.

  18. Organic Wheat Farming Improves Grain Zinc Concentration.

    PubMed

    Helfenstein, Julian; Müller, Isabel; Grüter, Roman; Bhullar, Gurbir; Mandloi, Lokendra; Papritz, Andreas; Siegrist, Michael; Schulin, Rainer; Frossard, Emmanuel

    2016-01-01

    Zinc (Zn) nutrition is of key relevance in India, as a large fraction of the population suffers from Zn malnutrition and many soils contain little plant available Zn. In this study we compared organic and conventional wheat cropping systems with respect to DTPA (diethylene triamine pentaacetic acid)-extractable Zn as a proxy for plant available Zn, yield, and grain Zn concentration. We analyzed soil and wheat grain samples from 30 organic and 30 conventional farms in Madhya Pradesh (central India), and conducted farmer interviews to elucidate sociological and management variables. Total and DTPA-extractable soil Zn concentrations and grain yield (3400 kg ha-1) did not differ between the two farming systems, but with 32 and 28 mg kg-1 respectively, grain Zn concentrations were higher on organic than conventional farms (t = -2.2, p = 0.03). Furthermore, multiple linear regression analyses revealed that (a) total soil zinc and sulfur concentrations were the best predictors of DTPA-extractable soil Zn, (b) Olsen phosphate taken as a proxy for available soil phosphorus, exchangeable soil potassium, harvest date, training of farmers in nutrient management, and soil silt content were the best predictors of yield, and (c) yield, Olsen phosphate, grain nitrogen, farmyard manure availability, and the type of cropping system were the best predictors of grain Zn concentration. Results suggested that organic wheat contained more Zn despite same yield level due to higher nutrient efficiency. Higher nutrient efficiency was also seen in organic wheat for P, N and S. The study thus suggests that appropriate farm management can lead to competitive yield and improved Zn concentration in wheat grains on organic farms.

  19. Soil grain analyses at Meridiani Planum, Mars

    USGS Publications Warehouse

    Weitz, C.M.; Anderson, R.C.; Bell, J.F.; Farrand, W. H.; Herkenhoff, K. E.; Johnson, J. R.; Jolliff, B.L.; Morris, R.V.; Squyres, S. W.; Sullivan, R.J.

    2006-01-01

    Grain-size analyses of the soils at Meridiani Planum have been used to identify rock souces for the grains and provide information about depositional processes under past and current conditions. Basaltic sand, dust, millimeter-size hematite-rich spherules interpreted as concretions, spherule fragments, coated partially buried spherules, basalt fragments, sedimentary outcrop fragments, and centimeter-size cobbles are concentrated on the upper surfaces of the soils as a lag deposit, while finer basaltic sands and dust dominate the underlying soils. There is a bimodal distribution of soil grain sizes with one population representing grains <125 ??m and the other falling between 1-4.5 mm. Soils within craters like Eagle and Endurance show a much greater diversity of grain morphologies compared to the plains. The spherules found in the plains soils are approximately 1-2 mm smaller in size than those seen embedded in the outcrop rocks of Eagle and Endurance craters. The average major axis for all unfractured spherules measured in the soils and outcrop rocks is 2.87 ?? 1.18 mm, with a trend toward decreasing spherule sizes in both the soils and outcrop rocks as the rover drove southward. Wind ripples seen across the plains of Meridiani are dominated by similar size (1.3-1.7 mm) hematite-rich grains, and they match in size the larger grains on plains ripples at Gusev Crater. Larger clasts and centimeter-size cobbles that are scattered on the soils have several spectral and compositional types, reflecting multiple origins. The cobbles tend to concentrate within ripple troughs along the plains and in association with outcrop exposures. Copyright 2006 by the American Geophysical Union.

  20. Nano-grains form carbonate "fault mirrors"

    NASA Astrophysics Data System (ADS)

    Siman-Tov, Shalev; Aharonov, Einat; Sagy, Amir; Emmanuel, Simon

    2013-04-01

    Many faults are characterized by naturally polished glossy surfaces, termed fault mirrors (FMs), which form during slip. Recent experiments also find that FMs form during rapid (but not slow) sliding between rock surfaces, and that FM formation coincides with pronounced friction reduction. The structure of FMs and the mechanism of their formation are thus important for understanding the mechanics of frictional sliding in general, and during earthquakes in particular. Here we characterize the small-scale structure of natural carbonate FMs from 3 different faults along a tectonically active region of the Dead Sea Transform. Atomic force microscopy measurements indicate that the FMs possess extremely smooth surface topography, accounting for their mirror-like appearance. Electron microscope characterization tools revealed a thin (< 1 µm) layer, composed of tightly packed nano-scaled grains, coating a rougher layer composed of micron-size calcite crystals. The crystals contain closely-spaced, plastically-formed, mechanical twins, which define new sub-grain boundaries. The narrow sub-grains are observed to break into sub-micron pieces near the sheared surface. This observation suggests a new brittle-ductile mechanism for nano-grain formation. Our observations further suggest that FMs require two main ingredients: (i) Nano grains and (ii) a hard and very smooth surface, probably formed by nano-grain sintering, a plastic process requiring high temperatures that arise only during rapid enough sliding. Both nano-grains and nano-scale-smooth surfaces were previously suggested to induce frictional weakening. We discuss possible physical processes that may control the observed connection between FM formation and frictional weakening.

  1. Grain Processing in T Tauri Disks

    NASA Astrophysics Data System (ADS)

    Forrest, W. J.; Sargent, B.; D'Alessio, P.; Calvet, N.; Furlan, E.; Hartmann, L.; Uchida, K. I.; Sloan, G. C.; Chen, C. H.; Kemper, F.; Watson, D. M.; Green, J. D.; Kim, K. H.; Keller, L. D.; Herter, T. L.; Brandl, B. R.; Houck, J. R.; Najita, J.

    The Spitzer Guaranteed Time Observations team IRS Disks acquired Infrared Spectrograph spectra of 13 Class II Young Stellar Objects in Taurus-Auriga and in the TW Hydra Association. All of the sources have broad 10 micron silicate emission features. Each 10 micron feature has a unique shape, indicating variation in composition and crystallinity of the silicate grains in the circumstellar disks of these YSOs. One of the sources, CoKu Tau /4, which apparently has very little disk material out to ~10 AU, has a very smooth and narrow 10 micron emission feature, indicating the silicate grains composing its disk are amorphous and simple. The spectra of the other sources have more structured 10 micron features, indicating the presence of larger grains and/or crystalline silicates, which are believed to arise from processing of amorphous silicates. This processing apparently has not occurred for CoKu Tau /4, where the observable dust is cool (~126 K). The dust emissivity is derived from the observed spectra and compared to grain models. For CoKu Tau /4, nonspherical amorphous olivine and pyroxene grains are indicated. These grains are believed to be unprocessed material; as such, they represent a primordial mixture from which to base the silicate emission modeling for other sources. For the sources with more complexity, crystalline pyroxenes, forsterite, quartz, and larger grains are necessary to fit the spectra. * The IRS is a collaborative venture between Cornell University and Ball Aerospace Corporation funded by NASA through the Jet Propulsion Laboratory and the Ames Research Center.

  2. Organic Wheat Farming Improves Grain Zinc Concentration

    PubMed Central

    Helfenstein, Julian; Müller, Isabel; Grüter, Roman; Bhullar, Gurbir; Mandloi, Lokendra; Papritz, Andreas; Siegrist, Michael; Schulin, Rainer; Frossard, Emmanuel

    2016-01-01

    Zinc (Zn) nutrition is of key relevance in India, as a large fraction of the population suffers from Zn malnutrition and many soils contain little plant available Zn. In this study we compared organic and conventional wheat cropping systems with respect to DTPA (diethylene triamine pentaacetic acid)-extractable Zn as a proxy for plant available Zn, yield, and grain Zn concentration. We analyzed soil and wheat grain samples from 30 organic and 30 conventional farms in Madhya Pradesh (central India), and conducted farmer interviews to elucidate sociological and management variables. Total and DTPA-extractable soil Zn concentrations and grain yield (3400 kg ha-1) did not differ between the two farming systems, but with 32 and 28 mg kg-1 respectively, grain Zn concentrations were higher on organic than conventional farms (t = -2.2, p = 0.03). Furthermore, multiple linear regression analyses revealed that (a) total soil zinc and sulfur concentrations were the best predictors of DTPA-extractable soil Zn, (b) Olsen phosphate taken as a proxy for available soil phosphorus, exchangeable soil potassium, harvest date, training of farmers in nutrient management, and soil silt content were the best predictors of yield, and (c) yield, Olsen phosphate, grain nitrogen, farmyard manure availability, and the type of cropping system were the best predictors of grain Zn concentration. Results suggested that organic wheat contained more Zn despite same yield level due to higher nutrient efficiency. Higher nutrient efficiency was also seen in organic wheat for P, N and S. The study thus suggests that appropriate farm management can lead to competitive yield and improved Zn concentration in wheat grains on organic farms. PMID:27537548

  3. Increased Night Temperature Negatively Affects Grain Yield, Biomass and Grain Number in Chilean Quinoa

    PubMed Central

    Lesjak, Jurka; Calderini, Daniel F.

    2017-01-01

    Quinoa high nutritive value increases interest worldwide, especially as a crop that could potentially feature in different cropping systems, however, climate change, particularly rising temperatures, challenges this and other crop species. Currently, only limited knowledge exists regarding the grain yield and other key traits response to higher temperatures of this crop, especially to increased night temperatures. In this context, the main objective of this study was to evaluate the effect of increased night temperature on quinoa yield, grain number, individual grain weight and processes involved in crop growth under the environmental conditions (control treatment) and night thermal increase at two phases: flowering (T1) and grain filling (T2) in southern Chile. A commercial genotype, Regalona, and a quinoa accession (Cod. BO5, N°191, grain bank from Semillas Baer, hereby referred to as Accession) were used, due to their adaptability to Southern Chilean conditions and contrasting grain yield potential, grain weight and size of plants. Temperature was increased ≈4°C above the ambient from 8 pm until 9 am the next morning. Control treatments reached a high grain yield (600 and 397 g m-2, i.e., Regalona and Accession). Temperature increase reduced grain yield by 31% under T1 treatment and 12% when under T2 in Regalona and 23 and 26% in Accession, respectively. Aboveground biomass was negatively affected by the thermal treatments and a positive linear association was found between grain yield and aboveground biomass across treatments. By contrast, the harvest index was unaffected either by genotype, or by thermal treatments. Grain number was significantly affected between treatments and this key trait was linearly associated with grain yield. On the other hand, grain weight showed a narrow range of variation across treatments. Additionally, leaf area index was not affected, but significant differences were found in SPAD values at the end of T1 treatment, compared

  4. Increased Night Temperature Negatively Affects Grain Yield, Biomass and Grain Number in Chilean Quinoa.

    PubMed

    Lesjak, Jurka; Calderini, Daniel F

    2017-01-01

    Quinoa high nutritive value increases interest worldwide, especially as a crop that could potentially feature in different cropping systems, however, climate change, particularly rising temperatures, challenges this and other crop species. Currently, only limited knowledge exists regarding the grain yield and other key traits response to higher temperatures of this crop, especially to increased night temperatures. In this context, the main objective of this study was to evaluate the effect of increased night temperature on quinoa yield, grain number, individual grain weight and processes involved in crop growth under the environmental conditions (control treatment) and night thermal increase at two phases: flowering (T1) and grain filling (T2) in southern Chile. A commercial genotype, Regalona, and a quinoa accession (Cod. BO5, N°191, grain bank from Semillas Baer, hereby referred to as Accession) were used, due to their adaptability to Southern Chilean conditions and contrasting grain yield potential, grain weight and size of plants. Temperature was increased ≈4°C above the ambient from 8 pm until 9 am the next morning. Control treatments reached a high grain yield (600 and 397 g m(-2), i.e., Regalona and Accession). Temperature increase reduced grain yield by 31% under T1 treatment and 12% when under T2 in Regalona and 23 and 26% in Accession, respectively. Aboveground biomass was negatively affected by the thermal treatments and a positive linear association was found between grain yield and aboveground biomass across treatments. By contrast, the harvest index was unaffected either by genotype, or by thermal treatments. Grain number was significantly affected between treatments and this key trait was linearly associated with grain yield. On the other hand, grain weight showed a narrow range of variation across treatments. Additionally, leaf area index was not affected, but significant differences were found in SPAD values at the end of T1 treatment, compared

  5. Dust Grain Alignment in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Vaillancourt, J.; Andersson, B. G.; Lazarian, A.

    The first observations of interstellar polarization at visible wavelengths over 60 years ago were quickly attributed to the net alignment of irregular dust grains with local magnetic fields. This mechanism provides a method to measure the topology and strength of the magnetic field and to probe the physical characteristics of the dust (e.g., material, size, and shape). However, to do so with confidence, the physics and variability of the alignment mechanism(s) must be quantitatively understood. The description of the physical alignment mechanism has a long history with key contributions spanning decades; the last 15 years have seen major advances in both the theoretical and observational understanding of the problem. For example, it is now clear that the canonical process of paramagnetic relaxation, in which grain rotational components perpendicular to the magnetic field are damped out, is inadequate to align grains on the necessary timescales (compared to damping via collisions) for typical interstellar medium conditions. However, the modern theory of radiative alignment has been more successful; in this theory grains are aligned with respect to the magnetic field via photon-grain interactions that impart the necessary torques to the rotation axes of grains. Here we highlight key observational tests of these alignment mechanisms, especially those involving spectropolarimetry of both dust extinction at near-optical wavelengths and dust emission at far-infrared through millimeter wavelengths. Observations in both these regimes can place limits on such grain aspects as their size and temperature. To date, most observations of the polarized emission have been in the densest regions of the interstellar medium where interpretation in terms of grain alignment models is complicated by regions containing embedded stars and a wide range of temperatures. Additionally, direct comparison of the optical extinction polarization (AV . 10 magnitudes) with dust emission

  6. Porphyrins in the interstellar medium (in grains)

    NASA Technical Reports Server (NTRS)

    Johnson, Fred M.

    1994-01-01

    Spectral sensitivity of the chromophores to their immediate chemical environment establishes some of the chemical constituents of the grains in which they reside. These are: (1) Paraffins, such as, octane, nonane, decane, and others...(needed for Shpolskii matrices and producing quasilines); and (2) Pyridine. The presence of pyridine is required not only to produce the spectral DIB matching, but also to produce the 36 cm(sup -1) crystal field splitting of the S(sub 1) electronic state. The presence of pyridine in the grains can be confirmed spectroscopically. Pyridine produces a transmission window at 2175 A, matching exactly the well known UV hump. On grain reflection, some of the incoming UV radiation is absorbed into the grain's outer layers. Spikes in the lab and in the astronomical data are due to vibronic transitions in pyridine. The lab spectroscopy reported here clearly establishes the presence of MgTBP, H2TPB, and pyridine in the interstellar grains. The high fluorescence efficiency of MgTBP (being optically pumped in the visible) apparently accounts for all the observed UIR emissions.

  7. Large-grain pipelining on hypercube multiprocessors

    SciTech Connect

    King, Chung-Ta; Ni, Lionel M.

    1988-01-01

    A new paradigm, called large-grain pipelining, for developing efficient parallel algorithms on distributed-memory multiprocessors, e.g., hypercube machines, is introduced. Large-grain pipelining attempts to maximize the degree of overlapping and minimize the effect of communication overhead in a multiprocessor system through macro-pipelining between the nodes. Algorithms developed through large-grain pipelining to perform matrix multiplication are presented. To model the pipelined computations, an analytic model is introduced, which takes into account both underlying architecture and algorithm behavior. Through the analytical model, important design parameters, such as data partition sizes, can be determined. Experiments were conducted on a 64-node NCUBE multiprocessor. The measured results match closely with the analyzed results, which establishes the analytic model as an integral part of algorithm design. Comparison with an algorithm which does not use large-grain pipelining also shows that large-grain pipelining is an efficient scheme for achieving a greater parallelism. 14 refs., 12 figs.

  8. Porphyrins in the interstellar medium (in grains)

    NASA Astrophysics Data System (ADS)

    Johnson, Fred M.

    1994-05-01

    Spectral sensitivity of the chromophores to their immediate chemical environment establishes some of the chemical constituents of the grains in which they reside. These are: (1) Paraffins, such as, octane, nonane, decane, and others...(needed for Shpolskii matrices and producing quasi-lines); and (2) Pyridine. The presence of pyridine is required not only to produce the spectral DIB matching, but also to produce the 36 cm-1 crystal field splitting of the S1 electronic state. The presence of pyridine in the grains can be confirmed spectroscopically. Pyridine produces a transmission window at 2175 A, matching exactly the well known UV hump. On grain reflection, some of the incoming UV radiation is absorbed into the grain's outer layers. Spikes in the lab and in the astronomical data are due to vibronic transitions in pyridine. The lab spectroscopy reported here clearly establishes the presence of MgTBP, H2TPB, and pyridine in the interstellar grains. The high fluorescence efficiency of MgTBP (being optically pumped in the visible) apparently accounts for all the observed UIR emissions.

  9. The Theory of Ultra Coarse-graining

    NASA Astrophysics Data System (ADS)

    Voth, Gregory

    2013-03-01

    Coarse-grained (CG) models provide a computationally efficient means to study biomolecular and other soft matter processes involving large numbers of atoms correlated over distance scales of many covalent bond lengths and long time scales. Variational methods based on information from simulations of finer-grained (e.g., all-atom) models, for example the multiscale coarse-graining (MS-CG) and relative entropy minimization methods, provide attractive tools for the systematic development of CG models. However, these methods have important drawbacks when used in the ``ultra coarse-grained'' (UCG) regime, e.g., at a resolution level coarser or much coarser than one amino acid residue per effective CG particle in proteins. This is due to the possible existece of multiple metastable states ``within'' the CG sites for a given UCG model configuration. In this talk I will describe systematic variational UCG methods specifically designed to CG entire protein domains and subdomains into single effective CG particles. This is accomplished by augmenting existing effective particle CG schemes to allow for discrete state transitions and configuration-dependent resolution. Additionally, certain conclusions of this work connect back to single-state force matching and open up new avenues for method development in that area. These results provide a formal statistical mechanical basis for UCG methods related to force matching and relative entropy CG methods and suggest practical algorithms for constructing optimal approximate UCG models from fine-grained simulation data.

  10. Advantageous grain boundaries in iron pnictide superconductors

    PubMed Central

    Katase, Takayoshi; Ishimaru, Yoshihiro; Tsukamoto, Akira; Hiramatsu, Hidenori; Kamiya, Toshio; Tanabe, Keiichi; Hosono, Hideo

    2011-01-01

    High critical temperature superconductors have zero power consumption and could be used to produce ideal electric power lines. The principal obstacle in fabricating superconducting wires and tapes is grain boundaries—the misalignment of crystalline orientations at grain boundaries, which is unavoidable for polycrystals, largely deteriorates critical current density. Here we report that high critical temperature iron pnictide superconductors have advantages over cuprates with respect to these grain boundary issues. The transport properties through well-defined bicrystal grain boundary junctions with various misorientation angles (θGB) were systematically investigated for cobalt-doped BaFe2As2 (BaFe2As2:Co) epitaxial films fabricated on bicrystal substrates. The critical current density through bicrystal grain boundary (JcBGB) remained high (>1 MA cm−2) and nearly constant up to a critical angle θc of ∼9°, which is substantially larger than the θc of ∼5° for YBa2Cu3O7–δ. Even at θGB>θc, the decay of JcBGB was much slower than that of YBa2Cu3O7–δ. PMID:21811238

  11. Interstellar grain chemistry and organic molecules

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sandford, S. A.

    1990-01-01

    The detection of prominant infrared absorption bands at 3250, 2170, 2138, 1670 and 1470 cm(-1) (3.08, 4.61, 4.677, 5.99 and 6.80 micron m) associated with molecular clouds show that mixed molecular (icy) grain mantles are an important component of the interstellar dust in the dense interstellar medium. These ices, which contain many organic molecules, may also be the production site of the more complex organic grain mantles detected in the diffuse interstellar medium. Theoretical calculations employing gas phase as well as grain surface reactions predict that the ices should be dominated only by the simple molecules H2O, H2CO, N2, CO, O2, NH3, CH4, possibly CH3OH, and their deuterated counterparts. However, spectroscopic observations in the 2500 to 1250 cm(-1)(4 to 8 micron m) range show substantial variation from source reactions alone. By comparing these astronomical spectra with the spectra of laboratory-produced analogs of interstellar ices, one can determine the composition and abundance of the materials frozen on the grains in dense clouds. Experiments are described in which the chemical evolution of an interstellar ice analog is determined during irradiation and subsequent warm-up. Particular attention is paid to the types of moderately complex organic materials produced during these experiments which are likely to be present in interstellar grains and cometary ices.

  12. Volatile organic compounds of whole grain soft winter wheat

    USDA-ARS?s Scientific Manuscript database

    The aroma from volatile organic compounds (VOCs) is an indicator of grain soundness and also an important quality attribute of grain foods. To identify the inherent VOCs of wheat grain unaffected by fungal infestation and other extrinsic factors, grains of nine soft wheat varieties were collected at...

  13. Isotopic Composition of Presolar Silicon Carbide Grains Analyzed with CHILI

    NASA Astrophysics Data System (ADS)

    Stephan, T.; Trappitsch, R.; Davis, A. M.; Pellin, M. J.; Rost, D.; Savina, M. R.; Jadhav, M.; Kelly, C. H.

    2015-07-01

    Twenty-two presolar SiC grains were analyzed for Sr, Zr, and Ba isotopes with the Chicago Instrument for Laser Ionization. Most grains showed isotope patterns consistent with formation in AGB star like observed previously. One grain is a supernova grain.

  14. Whole grain gluten-free egg-free pasta

    USDA-ARS?s Scientific Manuscript database

    The USDA food guide recommends that at least ½ of all the grains eaten should be whole grains. The FDA allows food Health Claim labels for food containing 51% whole grains and 11 g of dietary fiber. This is the only report demonstrating innovative whole grain gluten free, egg free (no chemicals adde...

  15. Primitive Grain Clumps and Organic Compounds in Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Hoyle, F.; Wickramasinghe, N. C.

    Refractory interstellar grains acquire tarry polymeric coatings in dense protostellar molecular clouds. Collisions between polymer-coated grains lead to the formation of micron sized grain clumps that are subsequently expelled into the diffuse interstellar medium. Such grains could contain the building blocks of life such as amino acids in their interiors protected from dissociative ultraviolet radiation.

  16. 7 CFR 800.30 - Foreign commerce grain business.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Foreign commerce grain business. 800.30 Section 800.30... § 800.30 Foreign commerce grain business. “Foreign commerce grain business” is defined as the business of buying grain for sale in foreign commerce or the business of handling, weighing, or transporting...

  17. 7 CFR 800.30 - Foreign commerce grain business.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Foreign commerce grain business. 800.30 Section 800.30... § 800.30 Foreign commerce grain business. “Foreign commerce grain business” is defined as the business of buying grain for sale in foreign commerce or the business of handling, weighing, or transporting...

  18. 7 CFR 800.30 - Foreign commerce grain business.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Foreign commerce grain business. 800.30 Section 800.30... § 800.30 Foreign commerce grain business. “Foreign commerce grain business” is defined as the business of buying grain for sale in foreign commerce or the business of handling, weighing, or...

  19. Grain Boundary Sliding in Ultra-fine Grained 5083 Aluminium Alloy

    NASA Astrophysics Data System (ADS)

    Sung, Ming-Je

    Quantitative measurement and analysis of grain boundary sliding in Ultra-fine grained 5083 Aluminium by AFM was conducted at 623K. The grain size of as received cryomilled Ultra-fine Grained Aluminium was characterized by AFM and TEM, and the average was founded to be about 300nm. Ion beam polishing / etching technology was used to reveal grain boundaries for AFM characterization. The vertical offset of grain boundary sliding was measured by comparing pre-defoemation and post-deformation AFM images. By analyzing these measurements, the contribution of grain boundary sliding to the total strain was estimated as 22% - 52% at a strain rate of 10 -4 /sec -5x10-2/sec. It was demonstrated that the relatively low value of the contribution of grain boundary sliding to the total strain is most likely the result of testing under experimental condition that favor the dominance of region I ( low stress) of the sigmoidal behavior characterizing high strain rate superplasticity, which was previously reported.

  20. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice.

    PubMed

    Liu, Linchuan; Tong, Hongning; Xiao, Yunhua; Che, Ronghui; Xu, Fan; Hu, Bin; Liang, Chengzhen; Chu, Jinfang; Li, Jiayang; Chu, Chengcai

    2015-09-01

    Grain size is one of the key factors determining grain yield. However, it remains largely unknown how grain size is regulated by developmental signals. Here, we report the identification and characterization of a dominant mutant big grain1 (Bg1-D) that shows an extra-large grain phenotype from our rice T-DNA insertion population. Overexpression of BG1 leads to significantly increased grain size, and the severe lines exhibit obviously perturbed gravitropism. In addition, the mutant has increased sensitivities to both auxin and N-1-naphthylphthalamic acid, an auxin transport inhibitor, whereas knockdown of BG1 results in decreased sensitivities and smaller grains. Moreover, BG1 is specifically induced by auxin treatment, preferentially expresses in the vascular tissue of culms and young panicles, and encodes a novel membrane-localized protein, strongly suggesting its role in regulating auxin transport. Consistent with this finding, the mutant has increased auxin basipetal transport and altered auxin distribution, whereas the knockdown plants have decreased auxin transport. Manipulation of BG1 in both rice and Arabidopsis can enhance plant biomass, seed weight, and yield. Taking these data together, we identify a novel positive regulator of auxin response and transport in a crop plant and demonstrate its role in regulating grain size, thus illuminating a new strategy to improve plant productivity.

  1. Reaction of sorghum hybrids to anthracnose, grain mold and grain weathering in Burleson County, Texas, 2007

    USDA-ARS?s Scientific Manuscript database

    Thirty commercial hybrids were evaluated for resistance against anthracnose, caused by Colletotrichum sublineolum and grain mold or grain weathering caused by a number of fungal species at the Texas A&M University Agricultural Experiment Station in College Station (Burleson County). Six hybrids wer...

  2. Grain Boundary (GB) Studies in Nano- and Micro- Crystalline Materials

    NASA Astrophysics Data System (ADS)

    Tanju, Sohanazaman

    2011-12-01

    Polycrystalline materials are composed of grains and grain boundaries. The total volume of occupied grain boundaries in polycrystalline material depends on the grain size. When grain size decreases the volume fraction of grain boundaries increases. For example, when grain size is 10 nm grain boundary volume fraction is ˜ 25%. In polycrystalline materials, different properties (mechanical, electrical, optical, magnetic) are affected by the size of their grains and by the atomic structure of their grain boundaries. Nanocrystalline materials have unique properties compared to coarse grain counterpart because of the presence of more grain boundaries. Increased understanding of the role of grain boundaries play in nanocrystalline materials promotes the tunning of materials properties. In order to study the grain boundaries in different materials, fully dense bulk materials are processed using Current Activated Pressure Assisted Densification (CAPAD) technique. CAPAD is a unique technique for materials processing. It offers faster processing of nanoscale materials compared to traditional sintering technique. Joule heating and pressure are used to densify the materials in CAPAD system. X-ray analysis, Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) are used to characterize the materials. There are three different parts in this dissertation: (1) Affect of grain size on grain boundary curvature on different materials; for example, nano and micro crystalline aluminum (metallic bond), silicon (covalent bond) and iron oxide (ionic bond); (2) Grain boundary geometry analysis of nanocrystalline materials and (3) Grain size dependent electrical and optical property investigation. In the first part of the dissertation, the effect of grain size on the grain boundary curvature is investigated. Several different types of materials were chosen, such as, micro and nano crystalline aluminum (Al), silicon (Si) and iron oxide (Fe2O3). It is found that the

  3. The separation of grain and grain boundary impedance in thin yttria stabilized zirconia (YSZ) layers

    PubMed Central

    Gerstl, M.; Navickas, E.; Friedbacher, G.; Kubel, F.; Ahrens, M.; Fleig, J.

    2011-01-01

    An improved electrode geometry is proposed to study thin ion conducting films by impedance spectroscopy. It is shown that long, thin, and closely spaced electrodes arranged interdigitally allow a separation of grain and grain boundary effects also in very thin films. This separation is shown to be successful for yttria stabilized zirconia (YSZ) layers thinner than 20 nm. In a series of experiments it is demonstrated that the extracted parameters correspond to the YSZ grain boundary and grain bulk resistances or to grain boundary and substrate capacitances. Results also show that our YSZ films produced by pulsed-laser deposition (PLD) on sapphire substrates exhibit a bulk conductivity which is very close to that of macroscopic YSZ samples. PMID:27570327

  4. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility

    PubMed Central

    Wu, Xiaolei; Yang, Muxin; Yuan, Fuping; Wu, Guilin; Wei, Yujie; Huang, Xiaoxu; Zhu, Yuntian

    2015-01-01

    Grain refinement can make conventional metals several times stronger, but this comes at dramatic loss of ductility. Here we report a heterogeneous lamella structure in Ti produced by asymmetric rolling and partial recrystallization that can produce an unprecedented property combination: as strong as ultrafine-grained metal and at the same time as ductile as conventional coarse-grained metal. It also has higher strain hardening than coarse-grained Ti, which was hitherto believed impossible. The heterogeneous lamella structure is characterized with soft micrograined lamellae embedded in hard ultrafine-grained lamella matrix. The unusual high strength is obtained with the assistance of high back stress developed from heterogeneous yielding, whereas the high ductility is attributed to back-stress hardening and dislocation hardening. The process discovered here is amenable to large-scale industrial production at low cost, and might be applicable to other metal systems. PMID:26554017

  5. The relationship between translucency of rice grain and gelatinization of starch in the grain during cooking.

    PubMed

    He, G; Suzuki, H

    1987-08-01

    The soaked and nonsoaked rice grains were cooked by the excess water method and the steamer method, and subjected to Ranghino's test, X-ray diffraction, and microscopic observation. The starch granules in the nonsoaked rice were gelatinized at the same time as the grains became translucent during cooking. However, when the grains of medium amylose varieties and waxy rice were presoaked, the starch granules were not fully gelatinized in the translucent grains cooked for Ranghino's cooking time. The gelatinization of starch granules proceeded faster in the soaked rice and by the excess water method than that in the nonsoaked rice and by the steamer method. The cooking time and gelatinization time correlated negatively with the water content after soaking, and positively with the amylose content in the rice grains. The japonica rices were gelatinized fully in less than 20 min when the amount of water added for cooking was adequate.

  6. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility.

    PubMed

    Wu, Xiaolei; Yang, Muxin; Yuan, Fuping; Wu, Guilin; Wei, Yujie; Huang, Xiaoxu; Zhu, Yuntian

    2015-11-24

    Grain refinement can make conventional metals several times stronger, but this comes at dramatic loss of ductility. Here we report a heterogeneous lamella structure in Ti produced by asymmetric rolling and partial recrystallization that can produce an unprecedented property combination: as strong as ultrafine-grained metal and at the same time as ductile as conventional coarse-grained metal. It also has higher strain hardening than coarse-grained Ti, which was hitherto believed impossible. The heterogeneous lamella structure is characterized with soft micrograined lamellae embedded in hard ultrafine-grained lamella matrix. The unusual high strength is obtained with the assistance of high back stress developed from heterogeneous yielding, whereas the high ductility is attributed to back-stress hardening and dislocation hardening. The process discovered here is amenable to large-scale industrial production at low cost, and might be applicable to other metal systems.

  7. Grain Boundary Character Distributions In Isostructural Materials

    NASA Astrophysics Data System (ADS)

    Ratanaphan, Sutatch

    Anisotropic grain boundary character distributions (GBCDs), which influence macroscopic materials properties, are thought to be controlled by the grain boundary energy anisotropy. Structurally, grain boundary could be viewed as two free surfaces joined together. Grain boundary energy could be simply defined by the total excess energy for creating two free surfaces minus the energy gained when new bonds are formed between these surfaces. This implies that different crystal structure should have different GBEDs and GBCDs. It was recently discovered that grain boundary energy distributions (GBED) in isostructural materials, a class of materials that share the same crystal structure, are directly related to one another. This suggests that GBCDs in isostructural materials might also be related in a similar way. To test this hypothesis, electron backscatter diffraction (EBSD) was used to map grain orientations in Ag, Au, Cu, Fe, and Mo. The GBCDs were determined from the stereological interpretation of EBSD maps containing on the order of 100,000 grains. It was found that the GBCDs of face-centered cubic (FCC) metals are statistically correlated, while the GBCDs of body-centered cubic (BCC) Fe and Mo are not correlated to the GBCD of FCC metals. The degree of the correlations among the FCC metals is weaker if there are significant differences in grain shape or texture. For example, Ag has the weakest correlation to the other FCC materials and also has quantitatively different grain shapes and texture. The relationship between the populations and energies of grain boundaries was also studied. By comparing the GBCDs of Al, Au, Cu, and Ni to the energies of 388 grain boundaries previously calculated by the Embedded Atom Method (EAM), we observed a moderately inverse correlation between the relative areas of grain boundaries and their energies. Interestingly, there are strong inverse correlations between the energies and populations of the most common grain boundaries (Sigma

  8. Organics Synthesized Using Iron-Grain Silicates

    NASA Technical Reports Server (NTRS)

    Johnson, N. M.; Cody, G. D.; Nuth, J. A., III

    2003-01-01

    We use Fischer-Tropsch type (FTT) synthesis to produce hydrocarbons by hydrogenating carbon monoxide via catalytic reactions. The products of these reactions have been studied using 'natural' catalysts and calculations of the efficiency of FTT synthesis in the Solar Nebula suggest that these types of reactions could make significant contributions to the composition of material near three AU. We coat Fe-silicate grains with organic material using FTT synthesis to simulate the chemistry in the early Solar Nebula. In our experimental setup, we roughly model a nebular environment where grains are successively transported from hot to cold regions of the nebula. In other words, the starting gases and FTT products are continuously circulated through the grains at high temperature with intervals of cooling. Organics generated in this manner could represent the carbonaceous material incorporated in comets and meteorites. We analyze the resulting organics and present the results.

  9. Reverse Taylor Tests on Ultrafine Grained Copper

    SciTech Connect

    Mishra, A.; Meyers, M. A.; Martin, M.; Thadhani, N. N.; Gregori, F.; Asaro, R. J.

    2006-07-28

    Reverse Taylor impact tests have been carried out on ultrafine grained copper processed by Equal Channel Angular Pressing (ECAP). Tests were conducted on an as-received OFHC Cu rod and specimens that had undergone sequential ECAP passes (2 and 8). The average grain size ranged from 30 {mu}m for the initial sample to less than 0.5 {mu}m for the 8-pass samples. The dynamic deformation states of the samples, captured by high speed digital photography were compared with computer simulations run in AUTODYN-2D using the Johnson-Cook constitutive equation with constants obtained from stress-strain data and by fitting to an experimentally measured free surface velocity trace. The constitutive response of copper of varying grain sizes was obtained through quasistatic and dynamic mechanical tests and incorporation into constitutive models.

  10. Dust Spectroscopy and the Nature of Grains

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.

    2006-01-01

    Ground-based, air-borne and space-based, infrared spectra of a wide variety of objects have revealed prominent absorption and emission features due to large molecules and small dust grains. Analysis of this data reveals a highly diverse interstellar and circumstellar grain inventory, including both amorphous materials and highly crystalline compounds (silicates and carbon). This diversity points towards a wide range of physical and chemical birthsites as well as a complex processing of these grains in the interstellar medium. In this talk, I will review the dust inventory contrasting and comparing both the interstellar and circumstellar reservoirs. The focus will be on the processes that play a role in the lifecycle of dust in the interstellar medium.

  11. Early Solar Nebula Grains - Interplanetary Dust Particles

    NASA Astrophysics Data System (ADS)

    Bradley, J. P.

    This chapter examines the compositions, mineralogy, sources, and geochemical significance of interplanetary dust particles (IDPs). Despite their micrometer-scale dimensions and nanogram masses, it is now possible, primarily as a result of advances in small particle handling techniques and analytical instrumentation, to examine IDPs at close to atomic-scale resolution. The most widely used instruments for IDP studies are presently the analytical electron microscope, synchrotron facilities, and the ion microprobe. These laboratory analytical techniques are providing fundamental insights about IDP origins, mechanisms of formation, and grain processing phenomena that were important in the early solar system and presolar environments. At the same time, laboratory data from IDPs are being compared with astronomical data from dust in comets, circumstellar disks, and the interstellar medium. The direct comparison of grains in the laboratory with grains in astronomical environments is known as "astromineralogy."

  12. Ion implantation effects in 'cosmic' dust grains

    NASA Technical Reports Server (NTRS)

    Bibring, J. P.; Langevin, Y.; Maurette, M.; Meunier, R.; Jouffrey, B.; Jouret, C.

    1974-01-01

    Cosmic dust grains, whatever their origin may be, have probably suffered a complex sequence of events including exposure to high doses of low-energy nuclear particles and cycles of turbulent motions. High-voltage electron microscope observations of micron-sized grains either naturally exposed to space environmental parameters on the lunar surface or artificially subjected to space simulated conditions strongly suggest that such events could drastically modify the mineralogical composition of the grains and considerably ease their aggregation during collisions at low speeds. Furthermore, combined mass spectrometer and ionic analyzer studies show that small carbon compounds can be both synthesized during the implantation of a mixture of low-energy D, C, N ions in various solids and released in space by ion sputtering.

  13. Grain boundary segregation of Ni in W

    SciTech Connect

    Nieh, T.G.

    1984-11-01

    The compatibility between Ni and W is an important consideration in a number of structural applications involving tungsten alloys. Here, results of an experimental study using Auger electron spectroscopy are presented which provide direct evidence of grain boundary segregation of Ni in W. It is also demonstrated that the segregation of nickel results in a severe embrittlement of tungsten filaments. Also, the activation energy for grain boundary diffusion of Ni in W has been calculated to be 358 kJ/mol, almost identical to the activation energy for recrystallization of dilute W-Ni alloys. This suggests that grain boundary diffusion of Ni may govern the recrystallization processes in dilute W-Ni alloys. 11 references.

  14. Coarse-grained short-range correlations

    NASA Astrophysics Data System (ADS)

    Simo, I. Ruiz; Pérez, R. Navarro; Amaro, J. E.; Ruiz Arriola, E.

    2017-05-01

    We develop a scheme to take into account the effects of short-range nucleon-nucleon correlations in the nucleon-pair wave function by solving the Bethe-Goldstone equation for a coarse-grained delta shell potential in S -wave configuration. The S -wave delta shell potential has been adjusted to reproduce the 1S0 phase shifts of the AV18 potential for this partial wave up to 2 GeV in the laboratory kinetic energy. We show that a coarse-grained potential can describe the high momentum tail of the back-to-back correlated pairs and the G matrix in momentum space. We discuss the easiness and robustness of the calculation in coordinate space and the future improvements and utilities of this model. This work suggests the possibility of using perturbation theory for describing the short-range correlations and, related to this, to substitute the G matrix by an appropriate coarse-grained potential.

  15. Stability of Charged Grains in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Jontof-Hutter, D.; Hamilton, D. P.

    2012-12-01

    Hypervelocity impacts of interplanetary micrometeoroids with orbiting ring particles generate dusty debris of all sizes. These ejecta particles become electrically charged by interactions with orbiting plasma and solar photons. Accordingly, they experience both gravity and Lorentz forces, whose combined effects cause interesting and complex dynamics. For simplicity, we initially model the magnetic field of Saturn as a centered and aligned dipole and investigate the stability of motion for grains launched from circularly-orbiting parent bodies. In this approximation, the magnetic equator and the ring-plane coincide. We begin with numerical models, determining the stability of dust grain trajectories in both the radial and vertical directions as a function of launch distance from the planet, and over all charge-to-mass ratios from ions to rocks. We find that positively-charged sub-micron dust grains over a limited range in size are radially unstable, colliding with the planet if launched from within synchronous orbit and escaping entirely if launched from outside this distance. Escaping grains have been observed as high-velocity dust streams at Saturn and at Jupiter. In addition, positively and negatively-charged smaller grains are vertically unstable and spiral up magnetic field lines to sustain non-linear vertical oscillations or to collide with the planet at high latitude. We then undertake local and global stability analyses and derive stability criteria that match our numerical data extremely well. Our work builds upon studies led by Burns, Hamilton, Horanyi, Howard, Mendis, Mitchell, Northrop, Schaffer, and others. We confirm that for charged dust grains launched at the Kepler speed, planetary gravity cannot be ignored, even in the limit of electromagnetically-dominated grains. Some stability boundaries can be obtained analytically while others require more complicated semianalytic methods. Our solutions are general and can be applied wherever an aligned

  16. A Toolbox for Geometric Grain Boundary Characterization

    NASA Astrophysics Data System (ADS)

    Glowinski, Krzysztof; Morawiec, Adam

    Properties of polycrystalline materials are affected by grain boundary networks. The most basic aspect of boundary analysis is boundary geometry. This paper describes a package of computer programs for geometric boundary characterization based on macroscopic boundary parameters. The program allows for determination whether a boundary can be classified as near-tilt, -twist, -symmetric et cetera. Since calculations on experimental, i.e., error affected data are assumed, the program also provides distances to the nearest geometrically characteristic boundaries. The software has a number of other functions helpful in grain boundary analysis. One of them is the determination of planes of all characteristic boundaries for a given misorientation. The resulting diagrams of geometrically characteristic boundaries can be linked to experimentally determined grain boundary distributions. In computations, all symmetrically equivalent representations of boundaries are taken into account. Cubic and hexagonal holohedral crystal symmetries are allowed.

  17. Abnormal Grain Growth Suppression in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J. (Inventor); Claytor, Harold Dale (Inventor); Alexa, Joel A. (Inventor)

    2015-01-01

    The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment ("IAT") after the welding step on the article. The IAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.

  18. An Optical Study of Ice Grain Boundaries

    NASA Astrophysics Data System (ADS)

    Thomson, Erik S.

    The equilibrium phase geometry and evolution of polycrystals underlies the nature of materials. In particular, grain boundaries dominate the total interfacial area within polycrystalline materials. Our experimental studies are motivated by the importance of the structure, evolution, and thermodynamic behavior of grain boundaries near bulk melting temperatures. Ice is singled out as a material of interest due to its geophysical importance and its advantageous optical properties. An experimental apparatus and light reflection technique is designed to measure grain boundary melting in ice bicrystals, in thermodynamic equilibrium The technique allows continuous monitoring of reflected light intensity from the grain boundary as the temperature and solutal composition are systematically varied. For each sample the individual crystal orientations are also measured. The type and concentration of impurity in the liquid is controlled and the temperature is continuously recorded and controlled over a range near the melting point. An optical model of the interface is developed in order to convert experimental reflection data into a physical measurement of the liquidity of the grain boundary. Solutions are found for reflection and transmission amplitude coefficients for waves propagating from an arbitrarily oriented uniaxial anisotropic material into an isotropic material. This general model is used to determine solutions for three layer, ice/water/ice, systems with crystals of arbitrary orientation, and is broadly applicable to layered materials. Experimental results show thicker grain boundary liquid layers than expected from classical colligative effects. A physically realistic model of intermolecular interactions succeeds in bounding the measurements. These measurements may have important implications for understanding a wide range of effects in polycrystalline materials. Likewise, the experimental techniques and optical theory may be applied to other systems of broad

  19. Stability of Charged Grains in Planetary Rings

    NASA Astrophysics Data System (ADS)

    Jontof-Hutter, Daniel; Hamilton, D. P.

    2011-04-01

    Hypervelocity impacts of interplanetary micrometeoroids with orbiting ring particles generate dusty debris of all sizes. These ejecta particles become electrically charged by interactions with orbiting plasma and solar photons. Accordingly, they experience both gravity and Lorentz forces, whose combined effects cause interesting and complex dynamics. For simplicity, we model the magnetic fields of Jupiter and Saturn by centered and aligned dipoles and investigate the stability of motion for grains launched from circularly-orbiting parent bodies. We begin by determining the stability in both the radial and vertical directions as a function of charge-to-mass ratio and distance from the planet numerically. We find that positively-charged dust grains in the micron-size range are radially unstable, colliding with the planet if launched from within synchronous orbit and escaping entirely if launched outside this distance. Escaping grains have been observed as high-velocity dust streams from Jupiter and Saturn. In addition, positively and negatively-charged smaller grains are vertically unstable and spiral up magnetic field lines to sustain large latitudinal oscillations or be lost to the planet's atmosphere. We then undertake local and global stability analyses and derive stability criteria that match our numerical data extremely well. Our analysis builds upon work led by Burns, Hamilton, Horanyi, Howard, Mitchell, Northrop, Schaffer, and others. Some stability boundaries can be obtained analytically while others require more complicated semianalytic methods. Four of our five stability boundaries do not appear in the literature and the fifth matches the findings of Hamilton and Burns (1993). Finally, we expand our numerical runs to include the effects of tilted and offset magnetic field components. We find that regions of vertical instability expand significantly for the more complicated fields, and a large new region of radial instability appears outside synchronous

  20. Optimal energy management in grain drying.

    PubMed

    Gunasekaran, S

    1986-01-01

    Grain drying is very specific to the geographic location, kind of drying system, and the type of grain. Under a given set of conditions, the optimal system can be selected based on careful evaluation. However, a good choice of drying systems, procedures, and management practices can be made from the information already available. The review of several grain-drying procedures has provided some insight in making a quick evaluation of the process and arriving at the most suitable system for a particular application. Despite extensive research efforts, the present knowledge of grain drying is yet insufficient to optimally design each drying process with respect to capacity, quality, and energy requirement. There is a need for incorporating grain and air parameters more accurately. It is also important to develop comprehensive drying simulation models to encompass agronomic practices, such as planting and harvesting. Recent efforts indicate a strong influence of planting and harvesting strategies on optimal drying and storage system selection. Results of the varietal trials at Ohio State University indicate that it is now possible to select midseason varieties, which dry down rapidly, without sacrificing yield. Also, low moisture at harvest is important to the energy management process because it affects total drying time and energy required. It is also important from a quality standpoint because kernel damage increases rapidly at harvesting moisture levels above 25%. The trend in grain-dryer design has shifted from focusing on drying capacity and operation reliability to energy consumption. The development in design of energy efficient continuous-flow dryers has been significant. Multistage concurrentflow dryers are excellent examples. Various aspects of dryer staging for efficient operation and control are yet to be determined. Recirculation of the exhaust air is a proven method of improving energy efficiency. Likewise, in batch-in-bin systems, stirring and

  1. The mechanism of grain growth in ceramics

    NASA Technical Reports Server (NTRS)

    Kapadia, C. M.; Leipold, M. H.

    1972-01-01

    The theory of grain boundary migration as a thermally activated process is reviewed, the basic mechanisms in ceramics being the same as in metals. However, porosity and non-stochiometry in ceramic materials give an added dimension to the theory and make quantitative treatment of real systems rather complex. Grain growth is a result of several simultaneous (and sometimes interacting) processes; these are most easily discussed separately, but the overall rate depends on their interaction. Sufficient insight into the nature of rate controlling diffusion mechanisms is necessary before a qualitative understanding of boundary mobility can be developed.

  2. Enhanced diffusion of phosphorus at grain boundaries

    NASA Technical Reports Server (NTRS)

    Cheng, L. J.; Shyu, C. M.; Stika, K. M.; Daud, T.; Crotty, G. T.

    1982-01-01

    Enhanced diffusion of phosphorus at grain boundaries in cast polycrystalline photovoltaic materials (Wacker, HEM, and Semix) was studied. It was found that the enhancements for the three materials were the same, indicating that the properties of boundaries are similar, even though they were grown by different techniques. In addition, it was observed that grain boundaries capable of enhancing the diffusion always have strong recombination activities. Both phenomena could be related to dangling bonds existing at the boundaries. The present study gives the first evidence that incoherent second order twins of 111/115-plane type are diffusion-active.

  3. Enhanced diffusion of phosphorus at grain boundaries

    NASA Technical Reports Server (NTRS)

    Cheng, L. J.; Shyu, C. M.; Stika, K. M.; Daud, T.; Crotty, G. T.

    1982-01-01

    Enhanced diffusion of phosphorus at grain boundaries in cast polycrystalline photovoltaic materials (Wacker, HEM, and Semix) was studied. It was found that the enhancements for the three materials were the same, indicating that the properties of boundaries are similar, even though they were grown by different techniques. In addition, it was observed that grain boundaries capable of enhancing the diffusion always have strong recombination activities. Both phenomena could be related to dangling bonds existing at the boundaries. The present study gives the first evidence that incoherent second order twins of 111/115-plane type are diffusion-active.

  4. Wetting Effects at a Grain Boundary

    NASA Astrophysics Data System (ADS)

    Abraham, D. B.; Mustonen, Ville; Wood, A. J.

    2004-08-01

    We consider a tier of weakened bonds along the center line of a two-dimensional Ising ferromagnet strip as a model of a grain boundary. When an interface traverses such a strip at an angle, whether or not there is a continuous pinning-depinning transition at subcritical temperature depends on this angle and the degree of bond weakening. We also study the relaxation of such a system to its equilibrium state using continuous time Monte Carlo simulation with Kawasaki dynamics; this reveals a matter transport mechanism confined to the grain boundary.

  5. Wetting effects at a grain boundary.

    PubMed

    Abraham, D B; Mustonen, Ville; Wood, A J

    2004-08-13

    We consider a tier of weakened bonds along the center line of a two-dimensional Ising ferromagnet strip as a model of a grain boundary. When an interface traverses such a strip at an angle, whether or not there is a continuous pinning-depinning transition at subcritical temperature depends on this angle and the degree of bond weakening. We also study the relaxation of such a system to its equilibrium state using continuous time Monte Carlo simulation with Kawasaki dynamics; this reveals a matter transport mechanism confined to the grain boundary.

  6. Whole grain intake: The Baltimore Longitudinal Study of Aging.

    PubMed

    Maras, Janice E; Newby, P K; Bakun, Peter J; Ferrucci, Luigi; Tucker, Katherine L

    2009-02-01

    Our objective was to identify major dietary sources of whole grains and to describe the construction of a database of whole grain content of foods. Dietary information was collected with 7-d food records from men and women in the Baltimore Longitudinal Study of Aging, mean age 62.1 +/- 16.0 years, who participated in the dietary assessment portion of the study (n = 1516), and estimates of whole grain intake were obtained from a newly developed database. The Pyramid Servings database and 1994-1996 Continuing Survey of Food Intakes by Individuals (CSFII) recipe ingredients database were then used to calculate both servings and gram weights of whole grain intakes. Mean intakes of whole grains, refined grains, and total grains, as well as frequency of intake for major whole grain food groups and whole grain content for each group, were calculated. Top contributors of whole grains were ready-to-eat breakfast cereals (made with whole grain as well as bran), hot breakfast cereals (made with whole grain), multi-grain bread, and whole wheat bread. While more research is needed to better understand the benefits of whole grains, the development of research tools, including databases to accurately assess whole grain intake, is a critical step in completing such research.

  7. Whole grain intake: The Baltimore Longitudinal Study of Aging

    PubMed Central

    Maras, Janice E.; Newby, P.K.; Bakun, Peter J.; Ferrucci, Luigi; Tucker, Katherine L.

    2009-01-01

    Our objective was to identify major dietary sources of whole grains and to describe the construction of a database of whole grain content of foods. Dietary information was collected with 7-d food records from men and women in the Baltimore Longitudinal Study of Aging, mean age 62.1 ± 16.0 years, who participated in the dietary assessment portion of the study (n = 1516), and estimates of whole grain intake were obtained from a newly developed database. The Pyramid Servings database and 1994–1996 Continuing Survey of Food Intakes by Individuals (CSFII) recipe ingredients database were then used to calculate both servings and gram weights of whole grain intakes. Mean intakes of whole grains, refined grains, and total grains, as well as frequency of intake for major whole grain food groups and whole grain content for each group, were calculated. Top contributors of whole grains were ready-to-eat breakfast cereals (made with whole grain as well as bran), hot breakfast cereals (made with whole grain), multi-grain bread, and whole wheat bread. While more research is needed to better understand the benefits of whole grains, the development of research tools, including databases to accurately assess whole grain intake, is a critical step in completing such research. PMID:20126297

  8. The effect of grain size, microcracking and grain boundary grooving on osteoblast attachment in hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Smith, Ian Orland

    This research examined the effect of particle size, microcracking and grain-boundary grooving in hydroxyapatite (HA) ceramics on osteoblast (OB) attachment, with the overall goal of understanding the role of physical characteristics in optimized scaffolds for bone tissue engineering. Bimodally porous HA scaffolds were fabricated by foaming and sintering either micron-scale or nano-scale HA powder, yielding two sets with average grain diameters of 8.6 +/- 1.9 mum and 588 +/- 55 nm, respectively. OBs were seeded onto these scaffolds and counted at 0.5, 1, 2 and 4 hours for attachment and 1, 3 and 5 days for proliferation using a hemacytometer. Results showed that OB attachment and proliferation was not significantly affected by the change in grain size and may depend more on the bimodal porosity of the implant. However, as our attempt to reduce the error in the hemacytometer counts was not fully successful, a more accurate method of counting the OBs, such as a quantifiable dye, must be used to verify this trend. While microcracks occur as a result of thermal processing of HA, these TEA-induced cracks are not easily controlled. For our studies we used Vickers-induced microcracks to quantify the effect of microcracking on OB attachment in HA. OB attachment was not significantly affected at one hour, but increased at four hours to 61% higher than on non-microcracked control specimens. This increase indicates that microcracking does have an effect on OB attachment and should be studied further, to assess its effect on OB proliferation and differentiation. It is not surprising that microcracks have a positive effect on OB attachment, as this mimics the natural process of bone remodeling. However, they are not likely to occur in nano-grained HA as a result of processing, as its small grain size falls below the known values of critical grain size for microcracking (GCR) in HA. Grain boundary grooving in dense HA is also investigated in this dissertation. OBs were seeded

  9. Simulation of grain size effects in nanocrystalline shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajeev; Quek, Siu Sin; Wu, David T.

    2015-06-01

    Recently, it has been demonstrated that martensitic transformation in nanocrystalline shape memory alloys can be suppressed for small grain sizes. Motivated by these results, we study the grain size dependence of martensitic transformations and stress-strain response of nanocrystalline shape memory alloys within the framework of the Ginzburg-Landau (GL) theory. A GL model for a square to rectangle transformation in polycrystals is extended to account for grain boundary effects. We propose that an inhibition of the transformation in grain boundary regions can occur, if the grain boundary energy of the martensite is higher than that of the austenite phase. We show that this inhibition of transformation in grain boundary regions has a strong influence on domain patterns inside grains. Although the transformation is inhibited only at the grain boundaries, it leads to a suppression of the transformation even inside the grains as grain size is decreased. In fact, below a critical grain size, the transformation can be completely suppressed. We explain these results in terms of the extra strain gradient cost associated with grain boundaries, when the transformation is inhibited at grain boundaries. On the other hand, no significant size effects are observed when transformation is not inhibited at grain boundaries. We also study the grain size dependence of the stress strain curve. It is found that when the transformation is inhibited at grain boundaries, a significant reduction in the hysteresis associated with stress-strain curves during the loading-unloading cycles is observed. The hysteresis for this situation reduces even further as the grain size is reduced, which is consistent with recent experiments. The simulations also demonstrate that the mechanical behavior is influenced by inter-granular interactions and the local microstructural neighbourhood of a grain has a stronger influence than the orientation of the grain itself.

  10. The Strength-Grain Size Relationship in Ultrafine-Grained Metals

    NASA Astrophysics Data System (ADS)

    Balasubramanian, N.; Langdon, Terence G.

    2016-12-01

    Metals processed by severe plastic deformation (SPD) techniques, such as equal-channel angular pressing (ECAP) and high-pressure torsion (HPT), generally have submicrometer grain sizes. Consequently, they exhibit high strength as expected on the basis of the Hall-Petch (H-P) relationship. Examples of this behavior are discussed using experimental data for Ti, Al, and Ni. These materials typically have grain sizes greater than 50 nm where softening is not expected. An increase in strength is usually accompanied by a decrease in ductility. However, both high strength and high ductility may be achieved simultaneously by imposing high strain to obtain ultrafine-grain sizes and high fractions of high-angle grain boundaries. This facilitates grain boundary sliding, and an example is presented for a cast Al-7 pct Si alloy processed by HPT. In some materials, SPD may result in a weakening even with a very fine grain size, and this is due to microstructural changes during processing. Examples are presented for an Al-7034 alloy processed by ECAP and a Zn-22 pct Al alloy processed by HPT. In some SPD-processed materials, it is possible that grain boundary segregation and other features are present leading to higher strengths than predicted by the H-P relationship.

  11. Organic grain coatings in primitive interplanetary dust particles: Implications for grain sticking in the Solar Nebula

    NASA Astrophysics Data System (ADS)

    Flynn, George J.; Wirick, Sue; Keller, Lindsay P.

    2013-10-01

    The chondritic porous interplanetary dust particles (CP IDPs), fragments of asteroids and comets collected by NASA high-altitude research aircraft from the Earth's stratosphere, are recognized as the least altered samples of the original dust of the Solar Nebula available for laboratory examination. We performed high-resolution, ~25 nm/pixel, x-ray imaging and spectroscopy on ultramicrotome sections of CP IDPs, which are aggregates of >104 grains, and identified and characterized ~100 nm thick coatings of organic matter on the surfaces of the individual grains. We estimated the minimum tensile strength of this organic glue to be ~150 to 325 N/m2, comparable to the strength of the weakest cometary meteors, based on the observation that the individual grains of ~5 μm diameter aggregate CP IDPs are not ejected from the particle by electrostatic repulsion due to charging of these IDPs to 10 to 15 volts at 1 A.U. in space. Since organic coatings can increase the sticking coefficient over that of bare mineral grains, these organic grain coatings are likely to have been a significant aid in grain sticking in the Solar Nebula, allowing the first dust particles to aggregate over a much wider range of collision speeds than for bare mineral grains.

  12. A Unified Model of Grain Alignment: Radiative Alignment of Interstellar Grains with Magnetic Inclusions

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem; Lazarian, A.

    2016-11-01

    The radiative torque (RAT) alignment of interstellar grains with ordinary paramagnetic susceptibilities has been supported by earlier studies. The alignment of such grains depends on the so-called RAT parameter q max, which is determined by the grain shape. In this paper, we elaborate on our model of RAT alignment for grains with enhanced magnetic susceptibility due to iron inclusions, such that RAT alignment is magnetically enhanced, which we term the MRAT mechanism. Such grains can be aligned with high angular momentum at the so-called high-J attractor points, achieving a high degree of alignment. Using our analytical model of RATs, we derive the critical value of the magnetic relaxation parameter δ m to produce high-J attractor points as functions of q max and the anisotropic radiation angle relative to the magnetic field ψ. We find that if about 10% of the total iron abundance present in silicate grains is forming iron clusters, this is sufficient to produce high-J attractor points for all reasonable values of q max. To calculate the degree of grain alignment, we carry out numerical simulations of MRAT alignment by including stochastic excitations from gas collisions and magnetic fluctuations. We show that large grains can achieve perfect alignment when the high-J attractor point is present, regardless of the values of q max. Our obtained results pave the way for the physical modeling of polarized thermal dust emission as well as magnetic dipole emission. We also find that millimeter-sized grains in accretion disks may be aligned with the magnetic field if they are incorporated with iron nanoparticles.

  13. Comparison of communities of stored product mites in grain mass and grain residues in the Czech Republic.

    PubMed

    Hubert, Jan; Munzbergová, Zuzana; Kucerová, Zuzana; Stejskal, Václav

    2006-01-01

    In storage facilities one can find grain either in stored grain mass or in grain residues in the store corners or machinery. Although it is claimed that grain residues are serious pest reservoirs since they harbor numbers of stored product arthropods and are connected via continuous emigration with grain mass, the documentation for this is not convincing. Therefore in 78 selected grain stores, we simultaneously sampled the grain mass and residues in order to compare concurrent mite communities in these two different habitats. We found 30 species in about 614,000 individuals in residues and 23 species in about 20 000 individuals in grain mass. Canonical correspondence analysis (CCA) of transformed abundance data showed differences in the communities of mites in grain mass and residues: (i) species associated to grain residues (e.g. Tyrophagus longior, Tydeus interruptus, Acarus farris and Cheyletus eruditus) and (ii) species associated to both grain mass and grain residues (e.g. Tarsonemus granarius, Acarus siro, Tyrophagus putrescentiae, Lepidoglyphus destructor and Cheyletus malaccensis). Although the residue samples had more mites and higher species diversity than the stored grain mass, no correlation in mite abundance and species numbers between samples from grain residues and grain mass was found, thereby indicating low connectivity of these two habitats.

  14. Mineral Analysis of Whole Grain Total Cereal

    ERIC Educational Resources Information Center

    Hooker, Paul

    2005-01-01

    The quantitative analysis of elemental iron in Whole Grain Total Cereal using visible spectroscopy is suitable for a general chemistry course for science or nonscience majors. The more extensive mineral analysis, specifically for the elements iron, calcium and zinc, is suitable for an instrumental or quantitative analysis chemistry course.

  15. Solidification Based Grain Refinement in Steels

    DTIC Science & Technology

    2009-07-24

    Steelmaking. Vol. 33,pp. 292-300, 2005. 13. Alvarez, P.: Lesch. C: Bleck, W.; Petitgand. H.: Schottler. J.; Sevillano, J. Gil ., "Grain refinement...34 Metallurgical Transactions, vol. 1, pp 1987-1995 (1970). 7. Villars , P., Pauling File, 1995, http://crystdb.nims.go.jp/, (2 March, 2009). 8

  16. Observational Evidence for Radiative Interstellar Grain Alignment

    NASA Astrophysics Data System (ADS)

    Andersson, B.; Potter, S. B.; Andersson, B.; Potter, S.

    2011-11-01

    The alignment mechanisms of interstellar dust grains is a long standing astrophysical problem. Interstellar polarization was first discovered in 1949 and soon thereafter attributed to dichroic extinction caused by asymmetric dust grains aligned with the magnetic field. For a long time the alignment mechanism was thought to involve paramagnetic relaxation in rapidly spinning dust grains. Modern theory indicates that the classical alignment mechanisms are likely not efficient, but rather favor alignment through direct radiative torques. We have used multi-band polarimetry towards stars probing six nearby clouds to show that the wavelength of maximum polarization is linearly correlated with the visual extinction (Andersson & Potter 2007; AP07; where further details can be found). We find a universal relation with a common positive slope between the clouds and a DC offset correlated with the average of the total-to-selective extinction < RV > . These results provide strong observational support for radiatively driven grain alignment. Recent observations of an additional set of ≍60 sightlines in the Taurus cloud confirm and strengthen these results.

  17. Mineral Analysis of Whole Grain Total Cereal

    ERIC Educational Resources Information Center

    Hooker, Paul

    2005-01-01

    The quantitative analysis of elemental iron in Whole Grain Total Cereal using visible spectroscopy is suitable for a general chemistry course for science or nonscience majors. The more extensive mineral analysis, specifically for the elements iron, calcium and zinc, is suitable for an instrumental or quantitative analysis chemistry course.

  18. The Grain Group. The Food Guide Pyramid.

    ERIC Educational Resources Information Center

    Frost, Helen

    This booklet for young children is part of a series that supports national science standards related to physical health and nutrition, describing and illustrating the importance of using the Food Guide Pyramid and eating sufficient servings of grains. Colorful photographs support early readers in understanding the text. The repetition of words and…

  19. Whole Grains: Processing, fiber, color, and phytonutrients

    USDA-ARS?s Scientific Manuscript database

    Increased consumption of whole grains, especially wheat, can reduce cancer and cardiovascular disease due to dietary fiber and phenolic antioxidants. Yet, remarkably little is known about the fate of fiber (arabinoxylans) and phenolics during wheat food processing. Our long-term goal is to facilitat...

  20. Grain Unloading Of Arsenic Species In Rice

    EPA Science Inventory

    Rice (Oryza sativa) is the staple food for over half the world's population yet may represent a significant dietary source of inorganic arsenic (As), a nonthreshold, class 1 human carcinogen. Rice grain As is dominated by the inorganic species, and the organic species dim...

  1. New market opportunities for rice grains

    USDA-ARS?s Scientific Manuscript database

    Breeding efforts for rice have been focusing on increasing yield and improving quality (milling yield and grain quality), while maintaining cooked rice sensory properties to meet consumer preferences. These breeding targets will no doubt continue as the main foci for the rice industry. However, the ...

  2. Dynamic Abnormal Grain Growth in Refractory Metals

    NASA Astrophysics Data System (ADS)

    Noell, Philip J.; Taleff, Eric M.

    2015-11-01

    High-temperature plastic deformation of the body-centered cubic (BCC) refractory metals Mo and Ta can initiate and propagate abnormal grains at significantly lower temperatures and faster rates than is possible by static annealing alone. This discovery reveals a new and potentially important aspect of abnormal grain growth (AGG) phenomena. The process of AGG during plastic deformation at elevated temperatures, termed dynamic abnormal grain growth (DAGG), was observed at homologous temperatures between 0.52 and 0.72 in both Mo and Ta sheet materials; these temperatures are much lower than those for previous observations of AGG in these materials during static annealing. DAGG was used to repeatedly grow single crystals several centimeters in length. Investigations to date have produced a basic understanding of the conditions that lead to DAGG and how DAGG is affected by microstructure in BCC refractory metals. The current state of understanding for DAGG is reviewed in this paper. Attention is given to the roles of temperature, plastic strain, boundary mobility and preexisting microstructure. DAGG is considered for its potential useful applications in solid-state crystal growth and its possibly detrimental role in creating undesired abnormal grains during thermomechanical processing.

  3. The initiation of grain movement by wind

    NASA Technical Reports Server (NTRS)

    Nickling, W. G.

    1986-01-01

    When air blows across the surface of dry, loose sand, a critical shear velocity must be achieved to inititate motion. Since most natural sediments consist of a range of grain sizes, fluid threshold for any sediment cannot really be defined by a finite value but should be viewed as a threshold range which is a function of the mean size, sorting, and packing of the sediment. In order to investigate the initiation of particle movement by wind, a series of wind tunnel tests were carried out on a range of screened sands and commercially available glass beads of differing sizes, sorting, and shape characteristics. In addition, individual samples of the glass beads were mixed to produce rather poorly sorted bimodal distributions. Test results suggest that when velocity is slowly increased over the sediment surface the smaller or more exposed grains are first entrained by the fluid drag of the air either in surface creep or in saltation. As velocity continues to rise, the larger more protected grains may also be moved by fluid drag. The data also indicate that predicted values based on the modified Bagnold equation fall within the range of threshold values defined by the transition section of the grain movement/shear velocity plots. Moreover, the predicted values are very similar to the threshold values derived for the point maximum inflection on the curves.

  4. The Grain Group. The Food Guide Pyramid.

    ERIC Educational Resources Information Center

    Frost, Helen

    This booklet for young children is part of a series that supports national science standards related to physical health and nutrition, describing and illustrating the importance of using the Food Guide Pyramid and eating sufficient servings of grains. Colorful photographs support early readers in understanding the text. The repetition of words and…

  5. Grain legume genetic resources for allele mining

    USDA-ARS?s Scientific Manuscript database

    Sequencing capacities for higher throughput at significantly lower costs have enabled larger scale genotyping of plant genetic resources. One challenge to sequencing the USDA grain legume collections of pea, chickpea and lentil core accessions is the amount of heterogeneity in the landrace accessio...

  6. Grain Unloading Of Arsenic Species In Rice

    EPA Science Inventory

    Rice (Oryza sativa) is the staple food for over half the world's population yet may represent a significant dietary source of inorganic arsenic (As), a nonthreshold, class 1 human carcinogen. Rice grain As is dominated by the inorganic species, and the organic species dim...

  7. Large grain cavities from pure niobium ingot

    DOEpatents

    Myneni, Ganapati Rao [Yorktown, VA; Kneisel, Peter [Williamsburg, VA; Cameiro, Tadeu [McMurray, PA

    2012-03-06

    Niobium cavities are fabricated by the drawing and ironing of as cast niobium ingot slices rather than from cold rolled niobium sheet. This method results in the production of niobium cavities having a minimum of grain boundaries at a significantly reduced cost as compared to the production of such structures from cold rolled sheet.

  8. Structure and Composition of the Grain

    USDA-ARS?s Scientific Manuscript database

    As a crop with a wide range of genetic diversity, sorghum grain composition and structure can vary widely. Such variability can be of great benefit in supplying a diversity of uses but can also be a negative when viewed from the standpoint of uniformity. Despite sharing similarities to other cereals...

  9. Grain Refining and Microstructural Modification during Solidification.

    DTIC Science & Technology

    1984-10-01

    and 100 ml of distilled water (called etchant A) for 5 to 15 seconds. The others were etched with aqua regia (called etchant B) for 10 to 25 seconds... reverse lide It noceoav. aid IduntIty by block um-bet) Grain refining, microstructure, solidification, phase diagrams, electromagnetic stirring, Cu-Fe

  10. Texture measurements in fine grained polyphase aggregates

    NASA Astrophysics Data System (ADS)

    Kilian, R.; Heilbronner, R.; Stünitz, H.

    2009-04-01

    When analyzing natural and experimental microstructures, we routinely use the two methods for orientation imaging and texture measurements: (a) the computer-integrated polarization microscopy (CIP, Panozzo Heilbronner & Pauli, 1993) and (b) the electron back scatter diffractometry (EBSD, e.g. Kunze et al., 1994). The CIP method yields orientation maps and pole figures of c-axes (of uni-axial materials), while the EBSD method yields complete textural data for all crystallographic orientations. In order to compare the orientation images the Euler maps (obtained from EBSD) are recalculated and presented with the more intuitive colour look-up tables (CLUTs) of the CIP method. In this contribution we compare and contrast the results achieved by these two methods using two different samples taken from a metagranodiorite (Kilian et al., 2009): (1) a coarse grained mylonitic rock with polycrystalline quartz aggregates and (2) a very fine grained ultramylonitic rock with single quartz grains dispersed in a polymineralic matrix. For the coarse grained sample (1) both methods yield the same (strong) c-axis pole figure: the geometry of the c-axis polefigure as well as the texture intensity (maximum of polefigure) are identical. The texture of sample (2) - where small quartz grains are dispersed in the polymineralic matrix - is very weak to random. The CIP and EBSD c-axis pole figures are different and - as noted previously - these differences arise from a machine specific bias of the EBSD (Schmocker 2002). In addition to texture analysis, both methods are capable of image segmentation (identification and separation of individual grains in the orientation image) as well as shape and grain size analysis. However due to the entirely different approach taken, the results may differ significantly. For example, when deriving the grain size distribution for sample (2) EBSD (combined with with the OIM® analysis software) yields a positively skewed histogram (with the mode occurring

  11. Fine-Grained Auditory Discrimination: Factor Structures.

    ERIC Educational Resources Information Center

    Elliott, Lois L.; Hammer, Michael A.

    1993-01-01

    This study, with 161 children with and without language learning problems, tested the hypothesis that as children's language development matures, factor-analytic structural changes occur that are associated with measurements of fine-grained auditory discrimination, receptive vocabulary, receptive language, speech production, and 3 performance…

  12. Charging of grains in sprite-plasma

    NASA Astrophysics Data System (ADS)

    Serozhkin, Y.; Oryeshko, E.

    The presence of a charged dust component at a mesosphere substantially determines properties of this atmospheric layer and has manifold manifestations One of possible sources of free electrons for a charge of grains can be served the electrical discharges in a mesosphere sprites 1 As sprites take huge volume about 10000 cubic kilometer and happen approximately 1 time per one second their role in the charging of grains in a mesosphere necessarily should be taken into account In supported work is estimated the value of a charge which grains obtained in sprite-plasma The parameters of sprite-plasma velocity concentration of an electronic component duration of existence make possible a charge of submicron grains up to value at which in case of sufficient concentration of particles the sprite-plasmas can to be possessed of the dusty plasma properties 2 begin enumerate item V P Pasko U S Inan T F Bell Y N Taranenko Sprites produced by quasi-electrostatic heating ldots J Geophys Res Vol 102 No A3 pages 4529-4561 March 1 1997 item Yu Serozhkin Dusty sprite-plasma and conditions for its formation AIP Conference Proceedings New vistas in dusty plasmas Fourth International Conferences on the Physics of Dusty Plasmas Orleans France 13-17 June 2005 Vol 799 pages 383-386 end enumerate

  13. Fruit, vegetable, and grain processing wastes

    SciTech Connect

    Andrews, R.M.; Soderquist, M.R.

    1980-06-01

    This is a literature review of fruit, vegetable and grain processing wastes. The factors affecting water usage and methods of conservation were examined. Various processes were investigated which included the pulp recovery from caustic peeled tomato skin, the dewatering of citrus, washing leafy vegetables with recycled process water and the potato processing industry.

  14. Review of end grain nail withdrawal research

    Treesearch

    Douglas R. Rammer; Samuel L. Zelinka

    2004-01-01

    This study reviewed the literature on static and impact withdrawal of nails driven into the end grain of wood members. From this, an empirical relationship was created relating the specific gravity of the wood, the diameter of the nail, and the depth of penetration of the nail to the static withdrawal capacity of nails driven into the wood and withdrawn immediately....

  15. Assessment of MARMOT Grain Growth Model

    SciTech Connect

    Fromm, B.; Zhang, Y.; Schwen, D.; Brown, D.; Pokharel, R.

    2015-12-01

    This report assesses the MARMOT grain growth model by comparing modeling predictions with experimental results from thermal annealing. The purpose here is threefold: (1) to demonstrate the validation approach of using thermal annealing experiments with non-destructive characterization, (2) to test the reconstruction capability and computation efficiency in MOOSE, and (3) to validate the grain growth model and the associated parameters that are implemented in MARMOT for UO2. To assure a rigorous comparison, the 2D and 3D initial experimental microstructures of UO2 samples were characterized using non-destructive Synchrotron x-ray. The same samples were then annealed at 2273K for grain growth, and their initial microstructures were used as initial conditions for simulated annealing at the same temperature using MARMOT. After annealing, the final experimental microstructures were characterized again to compare with the results from simulations. So far, comparison between modeling and experiments has been done for 2D microstructures, and 3D comparison is underway. The preliminary results demonstrated the usefulness of the non-destructive characterization method for MARMOT grain growth model validation. A detailed analysis of the 3D microstructures is in progress to fully validate the current model in MARMOT.

  16. Inter-grain coupling and grain charge in dusty plasma Coulomb crystals

    SciTech Connect

    Smith, M.A.; Goodrich, J.; Mohideen, U. Rahman, H.U.; Mendis, D.A.

    1998-10-01

    We have studied the lattice structure and grain charge of dusty plasma Coulomb crystals formed in rectangular conductive grooves as a function of plasma temperature and density. The crystal appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. A simple phenomenological model wherein the inter-grain spacing results from an attractive electric field induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal. {copyright} {ital 1998 American Institute of Physics.}

  17. Inter-grain coupling and grain charge in dusty plasma Coulomb crystals

    SciTech Connect

    Smith, M. A.; Goodrich, J.; Mohideen, U.; Rahman, H. U.; Rosenberg, M.; Mendis, D. A.

    1998-10-21

    We have studied the lattice structure and grain charge of dusty plasma Coulomb crystals formed in rectangular conductive grooves as a function of plasma temperature and density. The crystal appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. A simple phenomenological model wherein the inter-grain spacing results from an attractive electric field induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal.

  18. The Influence of Abrasion on Martian Dust Grains: Evidence from a Study of Antigorite Grains

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Drief, Ahmed; Dyar, M. Darby

    2003-01-01

    Grinding was shown to greatly affect the structure and a number of properties of antigorite grains in a study by Drief and Nieto. Grinding is likely to influence the structure of most clay mineral grains and has been shown recently to influence the structure of kaolinite. The antigorite structure includes curved waves of layered silicate as shown by D dony et al.. Our study was performed in order to characterize in detail changes in the mineral grains resulting from grinding and to assess the influence of physical processes on clay minerals on the surface of Mars. This project includes a combination of SEM, reflectance spectroscopy and Moessbauer spectroscopy.

  19. On the interaction of solutes with grain boundaries

    SciTech Connect

    Dingreville, Remi Philippe Michel; Berbenni, Stephane

    2015-11-01

    Solute segregation to grain boundaries is considered by modeling solute atoms as misfitting inclusions within a disclination structural unit model describing the grain boundary structure and its intrinsic stress field. The solute distribution around grain boundaries is described through Fermi–Dirac statistics of site occupancy. The susceptibility of hydrogen segregation to symmetric tilt grain boundaries is discussed in terms of the misorientation angle, the defect type characteristics at the grain boundary, temperature, and the prescribed bulk hydrogen fraction of occupied sites. Through this formalism, it is found that hydrogen trapping on grain boundaries clearly correlates with the grain boundary structure (i.e. type of structural unit composing the grain boundary), and the associated grain boundary misorientation. Specifically, for symmetric tilt grain boundaries about the [001] axis, grain boundaries composed of both B and C structural units show a lower segregation susceptibility than other grain boundaries. A direct correlation between the segregation susceptibility and the intrinsic net defect density is provided through the Frank–Bilby formalism. Moreover, the present formulation could prove to be a simple and useful model to identify classes of grain boundaries relevant to grain boundary engineering.

  20. On the interaction of solutes with grain boundaries

    DOE PAGES

    Dingreville, Remi Philippe Michel; Berbenni, Stephane

    2015-11-01

    Solute segregation to grain boundaries is considered by modeling solute atoms as misfitting inclusions within a disclination structural unit model describing the grain boundary structure and its intrinsic stress field. The solute distribution around grain boundaries is described through Fermi–Dirac statistics of site occupancy. The susceptibility of hydrogen segregation to symmetric tilt grain boundaries is discussed in terms of the misorientation angle, the defect type characteristics at the grain boundary, temperature, and the prescribed bulk hydrogen fraction of occupied sites. Through this formalism, it is found that hydrogen trapping on grain boundaries clearly correlates with the grain boundary structure (i.e.more » type of structural unit composing the grain boundary), and the associated grain boundary misorientation. Specifically, for symmetric tilt grain boundaries about the [001] axis, grain boundaries composed of both B and C structural units show a lower segregation susceptibility than other grain boundaries. A direct correlation between the segregation susceptibility and the intrinsic net defect density is provided through the Frank–Bilby formalism. Moreover, the present formulation could prove to be a simple and useful model to identify classes of grain boundaries relevant to grain boundary engineering.« less

  1. Chemical composition of distillers grains, a review.

    PubMed

    Liu, KeShun

    2011-03-09

    In recent years, increasing demand for ethanol as a fuel additive and decreasing dependency on fossil fuels have resulted in a dramatic increase in the amount of grains used for ethanol production. Dry-grind is the major process, resulting in distillers dried grains with solubles (DDGS) as a major coproduct. Like fuel ethanol, DDGS has quickly become a global commodity. However, high compositional variation has been the main problem hindering its use as a feed ingredient. This review provides updated information on the chemical composition of distillers grains in terms of nutrient levels, changes during dry-grind processing, and causes for large variation. The occurrence in grain feedstock and the fate of mycotoxins during processing are also covered. During processing, starch is converted to glucose and then to ethanol and carbon dioxide. Most other components are relatively unchanged but concentrated in DDGS about 3-fold over the original feedstock. Mycotoxins, if present in the original feedstock, are also concentrated. Higher fold of increases in S, Na, and Ca are mostly due to exogenous addition during processing, whereas unusual changes in inorganic phosphorus (P) and phytate P indicate phytate hydrolysis by yeast phytase. Fermentation causes major changes, but other processing steps are also responsible. The causes for varying DDGS composition are multiple, including differences in feedstock species and composition, process methods and parameters, the amount of condensed solubles added to distiller wet grains, the effect of fermentation yeast, and analytical methodology. Most of them can be attributed to the complexity of the dry-grind process itself. It is hoped that information provided in this review will improve the understanding of the dry-grind process and aid in the development of strategies to control the compositional variation in DDGS.

  2. Geometry and crystallographic configuration of grain boundaries

    NASA Astrophysics Data System (ADS)

    Eichler, Jan; Weikusat, Ilka; Kipfstuhl, Sepp; Binder, Tobias

    2015-04-01

    Ice cores provide a unique opportunity to study fundamental mechanisms which control the internal flow of ice sheets. Different kinds of deformation processes acting on the micro-scale are responsible for the viscoplastic behavior on large scale. Careful interpretation of microstructural features such as grain size, shape, lattice orientation and the occurrence of subgrain boundaries can help us to follow these processes and to improve our understanding of ice rheology. Polarized light microscopy experienced a quick development in the last decade. A new generation of automatic fabric analyzers enables to measure c-axis orientations in µm-resolution. This high amount and quality of fabric data motivates to apply digital-image-processing routines (DIP) for the recognition and quantification of microstructural patterns. Here we present a study on grain boundaries based on the acquisition of more than 700 fabric images recorded along the NEEM ice core (Greenland). Geometrical characteristics of grain boundaries are studied as well as their cross-sectional orientations in relation to the c-axis orientations of the corresponding adjacent grains. We could follow the evolution from the initial N-type and P-type low-angle boundaries (Weikusat et al., 2011) to high angle boundaries during rotation recrystallization. In agreement with some previous studies we confirm that the established three-stage-recrystallization model may be an oversimplification. According to our results, rotation recrystallization as well as grain boundary migration are actually present in all depths with varying intensities at NEEM. I. Weikusat, A. Miyamoto, S. H. Faria, S. Kipfstuhl, N. Azuma, and T. Hondoh: Subgrain boundaries in Antarctic ice quantified by X-ray Laue diffraction. J. Glaciol., 57(201):85-94, 2011. doi: 10013/epic.36402.

  3. Whole grains and health: perspective for Asian Indians.

    PubMed

    Misra, A; Rastogi, Kavita; Joshi, Shashank R

    2009-02-01

    Grains are a part of human diet for about 10,000 years. Grains are the most important food source of Indian population, due to this carbohydrate consumption constitute approx. 60-70% of total food intake. Variety of grains are available in India, and different grains form staple diets of people in different part of the country. Whole grains are now recognized as an important source of fiber and other nutrients like trace minerals a vitamins. Grains have shown to have a role in prevention and reducing the risk of type 2 diabetes, coronary heart disease, cancer and obesity.

  4. Accommodation of Plastic Deformation by Ultrasound-Induced Grain Rotation

    NASA Astrophysics Data System (ADS)

    Dutta, R. K.; Petrov, R. H.; Hermans, M. J. M.; Richardson, I. M.

    2015-08-01

    Electron backscatter diffraction was used to investigate the softening effect in low-carbon steel [Fe-0.051C-0.002Si-0.224Mn-0.045Al (wt pct)] during tensile deformation with in situ ultrasonic treatment. A bimodal grain size distribution is observed with relatively small equiaxed grains with an average diameter of 10 μm at the grain boundaries of large elongated grains. The formation of these relatively small equiaxed grains is interpreted in terms of dynamic recrystallization by lattice and sub-grain rotation.

  5. Effect of preferred grain orientation and grain elongation on ultrasonic wave propagation in stainless steel

    NASA Astrophysics Data System (ADS)

    Ahmed, S.; Thompson, R. B.

    The unified theory of Stanke and Kino (1984) is extended to determine the propagation constants in a textured polycrystalline material where the crystallites have cubic symmetry. The particular texture under consideration assumes that one of the cube axes of each crystallite is aligned in a preferred direction with the other two being randomly oriented, leading to a transversely isotropic medium. The grains are also assumed to be elongated in the direction of preferred orientation. It is shown that there is a significant variation of attenuation of both L and SH waves with grain aspect ratio. While the effect of grain elongation on phase velocity is confined to an LF region for L waves, there is a greater dependence of SH-wave phase velocity on grain aspect ratio over an LF range.

  6. Grain boundary distribution and texture in ultrafine-grained copper produced by severe plastic deformation

    SciTech Connect

    Mishin, O.V. |; Gertsman, V.Y. |; Valiev, R.Z.; Gottstein, G.

    1996-10-01

    Ultrafine-grained (UFG), i.e., nano- and submicrocrystalline materials have attracted great attention in recent years. This interest is caused by the unusual mechanical and physical properties of these materials. The extremely high volume fraction of grain boundaries (GBs) and triple junctions in UFG materials contribute to their unusual properties. However, other important parameters describing polycrystalline aggregate, namely, grain boundary misorientation and character distributions have not yet been studied in UFG materials, though they are conceived to influence mechanical and physical properties as well. Some studies indicated that mainly high-angle GBs were formed during severe plastic deformation; however, no direct proof of this suggestion has been obtained so far. The current paper deals with a statistical study of GB distributions and texture in UFG-materials. Pure copper was chosen for this study, since many results on microstructure and properties of the ultrafine-grained state produced in this material are available.

  7. Self-adaptive grain recognition of diamond grinding wheel and its grains assessment

    NASA Astrophysics Data System (ADS)

    Cui, Changcai; Zhou, Lijun; Yu, Qing; Huang, Hui; Ye, Ruifang

    2013-10-01

    An improved Canny operator based on the method of Maximum Classes Square Error is adopted to get a self-adaptive threshold for grain recognition. First, a grinding wheel surface was measured by using a vertical scanning white light interferometric (WLI) system and reconstructed with an improved centroid algorithm; then the grains were extracted using the proposed method based on the fact that the peak intensity difference (ΔI) between maximum and minimum intensities on interferometric curve from diamond is larger than that from bond due to different reflective characteristics of different materials; third the grain protrusion parameters are investigated for grinding performance analysis. The experiments proved that the proposed grain recognition method is effective and assessment parameters are useful for understanding grinding performance.

  8. (Investigations of ultrasonic wave interactions with grain boundaries and grain imperfections)

    SciTech Connect

    Not Available

    1990-01-01

    The main objective of our research is to obtain a better understanding of ultrasonic wave interaction with interfaces in polycrystalline materials. This report discusses two recently developed experimental techniques: scanning acoustic microscope and optical point sensors. As for general wave propagation problems in anisotropic media, four major topics are discussed in separate sections. First, single boundaries between large bicrystals are considered. The reflection and transmission coefficients of such interfaces are calculated for imperfect boundary conditions by using the finite interface stiffness approach. Ultrasonic transmission through multiple-grain structures are investigated by computer simulation based on the statistical evaluation of repeated acoustical wave interactions with individual grain boundaries. The number of grains interacting with the propagating acoustical wave is considered to be high enough to approximate the wave-material interaction as scattering on elastic inhomogeneities. The grain scattering induced attenuation of Rayleigh waves is investigated in polycrystalline materials. 41 refs., 43 figs.

  9. Grain boundary motion and grain rotation in aluminum bicrystals: recent experiments and simulations

    NASA Astrophysics Data System (ADS)

    Molodov, D. A.; Barrales-Mora, L. A.; Brandenburg, J.-E.

    2015-08-01

    The results of experimental and computational efforts over recent years to study the motion of geometrically different grain boundaries and grain rotation under various driving forces are briefly reviewed. Novel in-situ measuring techniques based on orientation contrast imaging and applied simulation techniques are described. The experimental results obtained on specially grown aluminum bicrystals are presented and discussed. Particularly, the faceting and migration behavior of low angle grain boundaries under the curvature force is addressed. In contrast to the pure tilt boundaries, which remained flat/faceted and immobile during annealing at elevated temperatures, mixed tilt-twist boundaries readily assumed a curved shape and steadily moved under the capillary force. Computational analysis revealed that this behavior is due to the inclinational anisotropy of grain boundary energy, which in turn depends on boundary geometry. The shape evolution and shrinkage kinetics of cylindrical grains with different tilt and mixed boundaries were studied by molecular dynamics simulations. The mobility of low angle <100> boundaries with misorientation angles higher than 10°, obtained by both the experiments and simulations, was found not to differ from that of the high angle boundaries, but decreases essentially with further decrease of misorientation. The shape evolution of the embedded grains in simulations was found to relate directly to results of the energy computations. Further simulation results revealed that the shrinkage of grains with pure tilt boundaries is accompanied by grain rotation. In contrast, grains with the tilt-twist boundaries composed of dislocations with the mixed edge-screw character do not rotate during their shrinkage. Stress driven boundary migration in aluminium bicrystals was observed to be coupled to a tangential translation of the grains. The activation enthalpy of high angle boundary migration was found to vary non-monotonically with

  10. Exposure to grain dust and microbial components in the Norwegian grain and compound feed industry.

    PubMed

    Halstensen, Anne Straumfors; Heldal, Kari Kulvik; Wouters, Inge M; Skogstad, Marit; Ellingsen, Dag G; Eduard, Wijnand

    2013-11-01

    The aim of this study was to extensively characterize grain workers' personal exposure during work in Norwegian grain elevators and compound feed mills, to identify differences in exposures between the workplaces and seasons, and to study the correlations between different microbial components. Samples of airborne dust (n = 166) were collected by full-shift personal sampling during work in 20 grain elevators and compound feed mills during one autumn season and two winter seasons. The personal exposure to grain dust, endotoxins, β-1→3-glucans, bacteria, and fungal spores was quantified. Correlations between dust and microbial components and differences between workplaces and seasons were investigated. Determinants of endotoxin and β-1→3-glucan exposure were evaluated by linear mixed-effect regression modeling. The workers were exposed to an overall geometric mean of 1.0mg m(-3) inhalable grain dust [geometric standard deviation (GSD) = 3.7], 628 endotoxin units m(-3) (GSD = 5.9), 7.4 µg m(-3) of β-1→3-glucan (GSD = 5.6), 21 × 10(4) bacteria m(-3) (GSD = 7.9) and 3.6 × 10(4) fungal spores m(-3) (GSD = 3.4). The grain dust exposure levels were similar across workplaces and seasons, but the microbial content of the grain dust varied substantially between workplaces. Exposure levels of all microbial components were significantly higher in grain elevators compared with all other workplaces. The grain dust exposure was significantly correlated (Pearson's r) with endotoxin (rp = 0.65), β-1→3-glucan (rp = 0.72), bacteria (rp = 0.44) and fungal spore (rp = 0.48) exposure, whereas the explained variances were strongly dependent on the workplace. Bacteria, grain dust, and workplace were important determinants for endotoxin exposure, whereas fungal spores, grain dust, and workplace were important determinants for β-1→3-glucan exposure. Although the workers were exposed to a relatively low mean dust level, the microbial exposure was high. Furthermore, the

  11. Hydraulic Conductivity Prediction of Fine-Grained Soils based on Grain Size Index

    NASA Astrophysics Data System (ADS)

    Zengin, Enes; Abiddin Erguler, Zeynal; Karakus, Huseyin

    2017-04-01

    Hydraulic conductivity is key parameter to define the ability of soils to transitions of water between soil particles in geotechnical projects. To measure the hydraulic conductivity values of soils, the constant or falling-head test should be performed by considering grain size distribution of soil samples. For these tests, undisturbed soils samples are required. The undisturbed sampling efforts during field investigations are time-consuming and exhausting processes especially in cold climate and unsuitable terrain conditions. In addition to these challenges, falling-head test takes rather long time in laboratory conditions due to being done on fine-grained soils samples having low hydraulic conductivity characteristics. To overcome with these unfavorable conditions, many researchers suggested various empirical equations containing physical properties of soils such as grain size distribution based parameters and Atterberg limits which can be easily determined from simple laboratory tests. Many of these equations are not applicable to estimate hydraulic conductivity of fine-grained soils because of the limitations related accurately representing physical properties of soil samples. In this study, a new empirical approach, grain size index (IGS) value which is a single parameter for defining the grain size distribution curve of a soil was utilized to find the relationship between grain size of fine-grained soils and their hydraulic conductivity values. To determine such relationship, grain size distribution analyses, Atterberg limit tests and eventually falling head tests were performed on 15 disturbed and undisturbed soil samples collected from different locations. According to direct measurements of falling head tests, the hydraulic conductivity values of collected fine-grained soil varies between 5.97x10-6 m/s and 1.12 x 10-10 m/s. The IGS values of collected soils changes between 0.38 and 0.81. Considering the results of laboratory tests, it was found that there

  12. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition.

    PubMed

    Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans

    2016-04-01

    Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development.

  13. Grain boundary flux penetration and resistivity in large grain niobium sheet

    NASA Astrophysics Data System (ADS)

    Lee, P. J.; Polyanskii, A. A.; Gurevich, A.; Squitieri, A. A.; Larbalestier, D. C.; Bauer, P. C.; Boffo, C.; Edwards, H. T.

    2006-07-01

    Kneisel, Ciovati, Myneni and co-workers at TJNAF have recently fabricated two superconducting cavities from the center of a large grain Nb billet manufactured by CBMM. Both cavities had excellent properties with one attaining an accelerating gradient of 45 MV/m (2 K) after a 48 h and 120 °C bake [P. Bauer et al., An investigation of the properties of BCP niobium for superconducting RF cavities, in: K.-J. Kim, C., Eyberger (Eds.), Proceedings of the Pushing the Limits of RF Superconductivity workshop, Argonne National Laboratory Report ANL-05/10, March 2005, pp. 84-93]. An investigation is underway to use magneto-optical (MO) imaging to observe the flux penetration behavior of a sheet sliced from this billet. The large grain size (some larger than 50 mm) allowed us to isolate multiple bi-crystals and tri-crystals. In the first stage of the present study we have taken the as-received sheet (RRR ∼280), which has been etched to reveal the grain structure. By magneto-optical examination we observed preferential flux penetration at some grain boundaries of a bi-crystal where the grain boundary was almost perpendicular to the sample surface and there was <1 μm surface step across the boundary. At other grain boundaries, with large steps or where the grain boundaries were not normal to the surface, we observed no preferential flux penetration. Preliminary transport measurements on a bi-crystal showed greater normal state resistance and lower superconducting critical current at the grain boundary.

  14. GrainGenes 2.0. An Improved Resource for the Small-Grains Community1

    PubMed Central

    Carollo, Victoria; Matthews, David E.; Lazo, Gerard R.; Blake, Thomas K.; Hummel, David D.; Lui, Nancy; Hane, David L.; Anderson, Olin D.

    2005-01-01

    GrainGenes (http://wheat.pw.usda.gov) is an international database for genetic and genomic information about Triticeae species (wheat [Triticum aestivum], barley [Hordeum vulgare], rye [Secale cereale], and their wild relatives) and oat (Avena sativa) and its wild relatives. A major strength of the GrainGenes project is the interaction of the curators with database users in the research community, placing GrainGenes as both a data repository and information hub. The primary intensively curated data classes are genetic and physical maps, probes used for mapping, classical genes, quantitative trait loci, and contact information for Triticeae and oat scientists. Curation of these classes involves important contributions from the GrainGenes community, both as primary data sources and reviewers of published data. Other partially automated data classes include literature references, sequences, and links to other databases. Beyond the GrainGenes database per se, the Web site incorporates other more specific databases, informational topics, and downloadable files. For example, unique BLAST datasets of sequences applicable to Triticeae research include mapped wheat expressed sequence tags, expressed sequence tag-derived simple sequence repeats, and repetitive sequences. In 2004, the GrainGenes project migrated from the AceDB database and separate Web site to an integrated relational database and Internet resource, a major step forward in database delivery. The process of this migration and its impacts on database curation and maintenance are described, and a perspective on how a genomic database can expedite research and crop improvement is provided. PMID:16219925

  15. Contribution of morphoagronomic traits to grain yield and earliness in grain sorghum.

    PubMed

    da Silva, K J; Teodoro, P E; de Menezes, C B; Júlio, M P M; de Souza, V F; da Silva, M J; Pimentel, L D; Borém, A

    2017-05-04

    Given the importance of selecting lines to obtain hybrids, we aimed to verify the relationship between morphological traits that can be used as the criteria for the selection of sorghum lines with high grain yield and earliness. A total of 18 traits were evaluated in 160 sorghum elite lines, in an incomplete block design with two replicates. A correlation network was used to graphically express the estimates of phenotypic and genotypic correlations between the traits. Two path analyses were processed, the first considering grain yield and the second considering flowering as the principle dependent variable. In general, most of the variation in the grain yield and flowering of sorghum lines was explained by the traits evaluated. Selecting sorghum lines with greater width of the third leaf blade from flag leaf, panicle weight, and panicle harvest index might lead to increased grain yield, and selecting sorghum genotypes with higher plant height might lead to reduced earliness and increased grain yield. Thus, the results suggest the establishment of selection indices aiming at simultaneously increasing the grain yield and earliness in sorghum genotypes.

  16. Investigating bedload transport at the grain scale

    NASA Astrophysics Data System (ADS)

    Lajeunesse, E.; Houssais, M.; Malverti, L.; Charru, F.

    2011-12-01

    Bedload transport, which results from the motion of particles rolling, sliding or saltating along the bed of a stream, is of fundamental importance for river morphodynamics as (1) it may represent an important fraction of the total sediment flux transported in a river; (2) it is involved in many aspects of morphologic changes in rivers including bank erosion and bedforms development. However, despite the large number of works addressing the problem, most of the bedload transport laws proposed in the literature consist of semi-empirical equations derived from a fit of data acquired in flume experiments, with little consideration of the physics at the grain scale. Accordingly, our objective is to describe bedload transport at the grain scale. This is achieved by developing an experimental apparatus allowing the investigation of the motion of bedload particles under steady and spatially uniform turbulent flow above a flat sediment bed of quartz grains. We report the results of two series of experiments. The first one involves a bed of sediment of uniform grain size. Using a high-speed video imaging system, we record the trajectories of the moving particles and measure their velocity, the length and duration of their flights, as well as the surface density of the moving particles. The experimental results support the erosion-deposition model of Charru [2006] and allow the calibration of the involved coefficients. In particular, noting τ *, the Shields number, and τ c*, the threshold Shields number, we find that (1) the surface density of moving particles increases linearly with τ * - τ c*; (2) the average particle velocity increases linearly with τ *1/2 - τ c*1/2, with a finite nonzero value at threshold; (3) the flight duration scales with a characteristic settling time with no significant dependence on either τ * or the settling Reynolds number; (4) the flight length increases linearly with τ *1/2 - τ *1/2 c. The experiments are then repeated with a sediment

  17. Detecting rare, abnormally large grains by x-ray diffraction

    SciTech Connect

    Boyce, Brad L.; Furnish, Timothy Allen; Padilla, H. A.; Van Campen, Douglas; Mehta, Apurva

    2015-07-16

    Bimodal grain structures are common in many alloys, arising from a number of different causes including incomplete recrystallization and abnormal grain growth. These bimodal grain structures have important technological implications, such as the well-known Goss texture which is now a cornerstone for electrical steels. Yet our ability to detect bimodal grain distributions is largely confined to brute force cross-sectional metallography. The present study presents a new method for rapid detection of unusually large grains embedded in a sea of much finer grains. Traditional X-ray diffraction-based grain size measurement techniques such as Scherrer, Williamson–Hall, or Warren–Averbach rely on peak breadth and shape to extract information regarding the average crystallite size. However, these line broadening techniques are not well suited to identify a very small fraction of abnormally large grains. The present method utilizes statistically anomalous intensity spikes in the Bragg peak to identify regions where abnormally large grains are contributing to diffraction. This needle-in-a-haystack technique is demonstrated on a nanocrystalline Ni–Fe alloy which has undergone fatigue-induced abnormal grain growth. In this demonstration, the technique readily identifies a few large grains that occupy <0.00001 % of the interrogation volume. Finally, while the technique is demonstrated in the current study on nanocrystalline metal, it would likely apply to any bimodal polycrystal including ultrafine grained and fine microcrystalline materials with sufficiently distinct bimodal grain statistics.

  18. Detecting rare, abnormally large grains by x-ray diffraction

    DOE PAGES

    Boyce, Brad L.; Furnish, Timothy Allen; Padilla, H. A.; ...

    2015-07-16

    Bimodal grain structures are common in many alloys, arising from a number of different causes including incomplete recrystallization and abnormal grain growth. These bimodal grain structures have important technological implications, such as the well-known Goss texture which is now a cornerstone for electrical steels. Yet our ability to detect bimodal grain distributions is largely confined to brute force cross-sectional metallography. The present study presents a new method for rapid detection of unusually large grains embedded in a sea of much finer grains. Traditional X-ray diffraction-based grain size measurement techniques such as Scherrer, Williamson–Hall, or Warren–Averbach rely on peak breadth andmore » shape to extract information regarding the average crystallite size. However, these line broadening techniques are not well suited to identify a very small fraction of abnormally large grains. The present method utilizes statistically anomalous intensity spikes in the Bragg peak to identify regions where abnormally large grains are contributing to diffraction. This needle-in-a-haystack technique is demonstrated on a nanocrystalline Ni–Fe alloy which has undergone fatigue-induced abnormal grain growth. In this demonstration, the technique readily identifies a few large grains that occupy <0.00001 % of the interrogation volume. Finally, while the technique is demonstrated in the current study on nanocrystalline metal, it would likely apply to any bimodal polycrystal including ultrafine grained and fine microcrystalline materials with sufficiently distinct bimodal grain statistics.« less

  19. Abnormal grain growth in AISI 304L stainless steel

    SciTech Connect

    Shirdel, M.; Mirzadeh, H.; Parsa, M.H.

    2014-11-15

    The microstructural evolution during abnormal grain growth (secondary recrystallization) in 304L stainless steel was studied in a wide range of annealing temperatures and times. At relatively low temperatures, the grain growth mode was identified as normal. However, at homologous temperatures between 0.65 (850 °C) and 0.7 (900 °C), the observed transition in grain growth mode from normal to abnormal, which was also evident from the bimodality in grain size distribution histograms, was detected to be caused by the dissolution/coarsening of carbides. The microstructural features such as dispersed carbides were characterized by optical metallography, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, and microhardness. Continued annealing to a long time led to the completion of secondary recrystallization and the subsequent reappearance of normal growth mode. Another instance of abnormal grain growth was observed at homologous temperatures higher than 0.8, which may be attributed to the grain boundary faceting/defaceting phenomenon. It was also found that when the size of abnormal grains reached a critical value, their size will not change too much and the grain growth behavior becomes practically stagnant. - Highlights: • Abnormal grain growth (secondary recrystallization) in AISI 304L stainless steel • Exaggerated grain growth due to dissolution/coarsening of carbides • The enrichment of carbide particles by titanium • Abnormal grain growth due to grain boundary faceting at very high temperatures • The stagnancy of abnormal grain growth by annealing beyond a critical time.

  20. Improving detection probabilities for pests in stored grain.

    PubMed

    Elmouttie, David; Kiermeier, Andreas; Hamilton, Grant

    2010-12-01

    The presence of insects in stored grain is a significant problem for grain farmers, bulk grain handlers and distributors worldwide. Inspection of bulk grain commodities is essential to detect pests and thereby to reduce the risk of their presence in exported goods. It has been well documented that insect pests cluster in response to factors such as microclimatic conditions within bulk grain. Statistical sampling methodologies for grain, however, have typically considered pests and pathogens to be homogeneously distributed throughout grain commodities. In this paper, a sampling methodology is demonstrated that accounts for the heterogeneous distribution of insects in bulk grain. It is shown that failure to account for the heterogeneous distribution of pests may lead to overestimates of the capacity for a sampling programme to detect insects in bulk grain. The results indicate the importance of the proportion of grain that is infested in addition to the density of pests within the infested grain. It is also demonstrated that the probability of detecting pests in bulk grain increases as the number of subsamples increases, even when the total volume or mass of grain sampled remains constant. This study underlines the importance of considering an appropriate biological model when developing sampling methodologies for insect pests. Accounting for a heterogeneous distribution of pests leads to a considerable improvement in the detection of pests over traditional sampling models. Copyright © 2010 Society of Chemical Industry.

  1. Sublimating grains model of cometary coma.

    NASA Astrophysics Data System (ADS)

    Faggi, S.; Tozzi, G. P.; Brucato, J. R.

    Billion years of space weathering produces a crust of organic matter (see e.g. Kanuchova et al. 2012) that will be released when a comet enter for the first time in the inner Solar System. New comets, coming form the Oort Colud at their first passage close to the Sun, are particularly important because they are not differentiated by the Solar radiation and they are supposed to have a large quantity of ice organic matter close to the surface. When a comet approach to the Sun, its activity is driven by the sublimation of these nucleus ices: if the heliocentric distances, R_H , is greater than 3 AU the sublimation of CO and CO_2 ices is the main source of comet activity, otherwise at shorter distances, the sublimation of water become the most important mechanism of activity. These gases, escaping from the nucleus, drag in the coma grains that can be refractory dust (silicates, carbon), water ice and/or organic ices. Oort comets at their first passage in the inner Solar System, should produce an halo of organic or water icy particles. Our group has been monitoring new, inbound, bright Oort comets (C/2011 F1, C/2012 S1, C/2012 K1, C/2013 V5, C/2012 F3, C/2013 US10, C/2013 X1) to search for these icy grains. The method consists in detecting the cloud of sublimating grains in the inner coma by using the Sigma Af function (Tozzi et al. 2007) directly from images. However this over-population of grains, beside the sublimation, can be also due to short time activity (outburst) or too big grains expanding at very slow velocity, as it has been found in comet 67P/C-G (Tozzi eta al, 2011, A&A, 531, 54). To disentangle between the phenomena it is necessary to monitor the comet both at short timescale, for the outbursts (by repeating the observations after few nights), and at long term (weeks-months). If the cloud does not expand with the decreasing of the heliocentric distance there is high probability that we are in presence of organic and/or water ice grains. We can disentangle

  2. Shear accommodation in dirty grain boundaries

    NASA Astrophysics Data System (ADS)

    Wang, C.; Upmanyu, M.

    2014-04-01

    The effect of solutes (dirt) on the mechanics of crystalline interfaces remains unexplored. Here, we perform atomic-scale simulations to study the effect of carbon segregation on the shear accommodation at select grain boundaries in the classical α-Fe/C system. For shear velocities larger than the solute diffusion rate, we observe a transition from coupled motion to sliding. Below a critical solute excess, the boundaries break away from the solute cloud and exhibit in a coupled motion. At smaller shear velocities, the extrinsic coupled motion is jerky, occurs at relatively small shear stresses, and is aided by fast convective solute diffusion along the boundary. Our studies underscore the combined effect of energetics and kinetics of solutes in modifying the bicrystallography, temperature and rate dependence of shear accommodation at grain boundaries.

  3. GROWTH OF GRAINS IN BROWN DWARF DISKS

    SciTech Connect

    Meru, Farzana; Galvagni, Marina; Olczak, Christoph

    2013-09-01

    We perform coagulation and fragmentation simulations using the new physically motivated model by Garaud et al. to determine growth locally in brown dwarf disks. We show that large grains can grow and that if brown dwarf disks are scaled-down versions of T Tauri disks (in terms of stellar mass, disk mass, and disk radius) growth at an equivalent location with respect to the disk truncation radius can occur to the same size in both disks. We show that similar growth occurs because the collisional timescales in the two disks are comparable. Our model may therefore potentially explain the recent observations of grain growth to millimeter sizes in brown dwarf disks, as seen in T Tauri disks.

  4. Review of water footprint components of grain

    NASA Astrophysics Data System (ADS)

    Ahmad, Wan Amiza Amneera Wan; Meriam Nik Sulaiman, Nik; Zalina Mahmood, Noor

    2017-06-01

    Burgeoning global population, economic development, agriculture and prevailing climate pattern are among aspects contributed to water scarcity. In low and middle income countries, agriculture takes the highest share among water user sector. Demand for grain is widespread all over the globe. Hence, this study review published papers regarding quantification of water footprint of grain. Review shows there are various methods in quantifying water footprint. In ascertaining water footprint, three (green, blue, grey) or two (green, blue) components of water footprint involved. However, there was a study introduced new term in evaluating water footprint, white water footprint. The vulnerability of varying methods is difficulty in conducting comparative among water footprint. Salient source in contributing high water footprint also varies. In some studies, green water footprint play major role. Conversely, few studies found out blue water footprint most contributing component in water footprint. This fluctuate pattern influenced by various aspects, namely, regional climatic characteristics, crop yield and crop types.

  5. Superfluidity of grain boundaries and supersolid behavior

    NASA Astrophysics Data System (ADS)

    Balibar, Sebastien

    2007-03-01

    We have found that, at the liquid-solid equilibrium pressure Pm, supersolid behavior is due to the superfluidity of grain boundaries in solid helium [1]. After describing this experiment and reviewing some of the related theoretical work [2], we discuss the possibility that , at larger pressure (P > Pm), grain boundaries could also explain the supersolid behavior which was observed with torsional oscillators [3-6]. [1] S. Sasaki, R. Ishiguro, F. Caupin, H.J. Maris, and S. Balibar, Science 313, 1098 (2006)[2] E. Burovski, E. Kozik, A. Kuklov, N. Prokof'ev, and B. Svistunov, Phys. Rev. Lett. 94, 165301 (2005)[3] E. Kim and M.H. Chan, Nature 427, 225 (2004)[4] E. Kim and M.H. Chan, Science 305, 1941 (2004)[5] A.S.C. Rittner and J.D. Reppy, Phys. Rev. Lett. 97, 165301 (2006)[6] K. Shirahama, Bull. Am. Phys. Soc. 51, 302 (2006)

  6. HARVEST STATES GRAIN COOPERATIVES, SUPERIOR WISCONSIN; CONSTRUCTED OVER VARIOUS DATES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HARVEST STATES GRAIN COOPERATIVES, SUPERIOR WISCONSIN; CONSTRUCTED OVER VARIOUS DATES BEGINNING IN 1942; LEFT SLIP (HUGHITT AVENUE) RIGHT SLIP (TOWER AVENUE) - Cenex-Harvest States Grain Cooperatives, Dock Street between Hughitt Avenue & Tower Avenue slips, Superior, Douglas County, WI

  7. Loading spout and wheel for 1913 power grain shovel inside ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Loading spout and wheel for 1913 power grain shovel inside covered hopper loading dock at railroad level looking west - Stewart Company Grain Elevator, 16 West Carson Street, Pittsburgh, Allegheny County, PA

  8. Advanced Biorefinery of Distriller's Grain and Corn Stover Blends

    SciTech Connect

    2006-04-01

    Fuel ethanol can be produced via the dry milling process, which converts corn grain to ethanol. The co-product, distiller’s grain (DG), is sold as a low-cost, high-protein feed source for livestock.

  9. Grain Refinement of Permanent Mold Cast Copper Base Alloys

    SciTech Connect

    M.Sadayappan; J.P.Thomson; M.Elboujdaini; G.Ping Gu; M. Sahoo

    2005-04-01

    Grain refinement is a well established process for many cast and wrought alloys. The mechanical properties of various alloys could be enhanced by reducing the grain size. Refinement is also known to improve casting characteristics such as fluidity and hot tearing. Grain refinement of copper-base alloys is not widely used, especially in sand casting process. However, in permanent mold casting of copper alloys it is now common to use grain refinement to counteract the problem of severe hot tearing which also improves the pressure tightness of plumbing components. The mechanism of grain refinement in copper-base alloys is not well understood. The issues to be studied include the effect of minor alloy additions on the microstructure, their interaction with the grain refiner, effect of cooling rate, and loss of grain refinement (fading). In this investigation, efforts were made to explore and understand grain refinement of copper alloys, especially in permanent mold casting conditions.

  10. The importance of promoting a whole grain foods message.

    PubMed

    Jones, Julie M; Reicks, Maria; Adams, Judi; Fulcher, Gary; Weaver, Glen; Kanter, Mitch; Marquart, Len

    2002-08-01

    Despite mention in the Dietary Guidelines for Healthy Americans and in Healthy People 2010, the lack of a coordinated campaign promoting whole grain foods and their health benefits may be contributing to low consumption. Fiber consumption in the U.S. likewise falls below recommended levels, in part, as a result of suboptimal intake of whole grain foods. Research findings suggest that whole grain is related to reduced disease risk, and that whole grain foods have relevant biological activity in humans. This necessitates a call to action to help Americans increase whole grain consumption as a strategy for health. The establishment of a whole grain coalition could promote increased consumption by developing consumer messages: partnering with health professionals: advocating whole grains to government agencies; seeking funding for scientific research and market research; and educating consumers, as well as health professionals, food manufacturers and millers, about the value and benefit of whole grains.

  11. 7 CFR 800.61 - Prohibited grain handling practices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... material or dockage has been added to the broken corn or broken kernels. (2) Insect and fungi control. Grain may be treated to control insects and fungi. Elevators, other grain handlers, and their agents are...

  12. 7 CFR 800.61 - Prohibited grain handling practices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... material or dockage has been added to the broken corn or broken kernels. (2) Insect and fungi control. Grain may be treated to control insects and fungi. Elevators, other grain handlers, and their agents are...

  13. 7 CFR 800.61 - Prohibited grain handling practices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... material or dockage has been added to the broken corn or broken kernels. (2) Insect and fungi control. Grain may be treated to control insects and fungi. Elevators, other grain handlers, and their agents are...

  14. 7 CFR 800.61 - Prohibited grain handling practices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... material or dockage has been added to the broken corn or broken kernels. (2) Insect and fungi control. Grain may be treated to control insects and fungi. Elevators, other grain handlers, and their agents are...

  15. Grain boundary and triple junction diffusion in nanocrystalline copper

    SciTech Connect

    Wegner, M. Leuthold, J.; Peterlechner, M.; Divinski, S. V.; Song, X.; Wilde, G.

    2014-09-07

    Grain boundary and triple junction diffusion in nanocrystalline Cu samples with grain sizes, 〈d〉, of ∼35 and ∼44 nm produced by spark plasma sintering were investigated by the radiotracer method using the {sup 63}Ni isotope. The measured diffusivities, D{sub eff}, are comparable with those determined previously for Ni grain boundary diffusion in well-annealed, high purity, coarse grained, polycrystalline copper, substantiating the absence of a grain size effect on the kinetic properties of grain boundaries in a nanocrystalline material at grain sizes d ≥ 35 nm. Simultaneously, the analysis predicts that if triple junction diffusion of Ni in Cu is enhanced with respect to the corresponding grain boundary diffusion rate, it is still less than 500⋅D{sub gb} within the temperature interval from 420 K to 470 K.

  16. The Energy of Olivine Grain Boundaries Deduced from Grain Boundary Frequency Analyses

    NASA Astrophysics Data System (ADS)

    Marquardt, K.; Rohrer, G. S.

    2015-12-01

    The properties of grain boundaries strongly differ from those of the crystal lattice, and there is growing evidence that the presence of grain boundaries influence detected geophysical signals such as electrical conductivity and seismic velocities especially in aggregates with a LPO that favours the alignment of specific grain boundaries. However, neither the anisotropic frequency or energy distribution of grain boundary networks are understood in olivine dominated aggregates, neither with nor without LPO. We used electron backscatter diffraction, EBSD to detect the orientations of over 1.4x104 grains corresponding to roughly 5000mm length of grain boundary separating them. Subsequently we used a stereological approach to determine the grain boundary character distribution, GBCD, defined as the relative areas of grain boundaries of different types, distinguished by their five degrees of freedom (Rohrer, 2007). The grain boundary planes showed a preference for low index planes, which is in agreement with recent findings on other materials (e.g. MgO, TiO2, SrTiO3, MgAl2O4). However, our inferred surface energies are controversial with respect to previously simulated surface energies (Watson et al., 1997; de Leeuw et al., 2000; Gurmani et al., 2011). We find that the principal crystallographic planes have the lowest energies and that at 60° misorientation specific grain boundaries with common [100] axis of misorientation are favored compared to 60° misorientations about random axis of rotation. This seems to support the results of (Faul and Fitz Gerald, 1999), even though our data imply that 90°/[001] (100)(010) should be even less favorable for the propagation of melt films. These differences and similarities will be discussed with respect to the different methods and their limitations. References: Faul U. H. and Fitz Gerald J. D. (1999) Phys. Chem. Miner. 26, 187-197. Gurmani S. F. et al. (2011). J. Geophys. Res. 116, B12209. De Leeuw N. H. et al. (2000) Phys

  17. A new model of composite interstellar grains

    NASA Astrophysics Data System (ADS)

    Voshchinnikov, N. V.; Il'in, V. B.; Henning, Th.; Dubkova, D. N.

    The approach to model composite interstellar dust grains using the exact solution to the light scattering problem for multi-layered spheras suggested by Voshchinnikov & Mathis (1999) is further developed. Heterogeneous scatterers are represented by particles with very large numof shells each including a homogeneous layer per material considered (here amorphous carbon, astronomical silicate and vacuum). It is demonstrated that the scattering characteristics (cross-sections, albedo, asymmetry factor, etc.) well converge with the increase of the number of shells (layers) and each of the characteristics has the same limit independent of the layer order in the shells. The limit obviously corresponds to composite particles consisting of several well mixed materials. However, our results indicate that layered particles with even a few shells (layers) have the characteristics close enough to these limits. The applicability of the effective medium theory (EMT) mostly utilized earlier to approximate inhomogeneous interstellar grains is examined on the base of the model. It is shown that the used EMT rules generally have the accuracy of several percents in the whole range of particle sizes provided the porosity does not exceed about 50%. For larger porosity, the rules give wrong results. Using the model we reanalyze basics of interpretation of various manifestations of cosmic dust --- interstellar extinction, scattered radiation, infrared radiation, radiation pressure, etc. It is found that an increase of porosity typically leads to the increase of cross-sections, albedo and the sweeping efficiency of small grains as well as to the decrease of dust temperature and the strength of infrared bands (the EMT fails to produce these effects). We also conclude that pure iron even in negligible amount (<˜1 % by the volume fractis unlikely to form a layer on or inside a grain because of peculiar absorption of radiation by such particles. As an example of the potential of the model, it

  18. Measuring Crack Length in Coarse Grain Ceramics

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Ghosn, Louis J.

    2010-01-01

    Due to a coarse grain structure, crack lengths in precracked spinel specimens could not be measured optically, so the crack lengths and fracture toughness were estimated by strain gage measurements. An expression was developed via finite element analysis to correlate the measured strain with crack length in four-point flexure. The fracture toughness estimated by the strain gaged samples and another standardized method were in agreement.

  19. Lewia hordeicola sp. nov. from barley grain.

    PubMed

    Kwaśna, Hanna; Ward, Elaine; Kosiak, Barbara

    2006-01-01

    Lewia hordeicola with Alternaria anamorph was isolated from barley grains in Norway. The fungus is homothallic. It produces fertile ascomata on synthetic nutrient agar (SNA) after long incubation at 4 C in the dark. On PCA its anamorph resembles members of the A. infectoria species group. On SNA L. hordeicola differs from the latter in the shape and size of ascospores, the conidial sporulation patterns, and the shape, size, septation and roughness of conidia. A key to currently known Lewia species is included.

  20. Grain-scale Dynamics in Explosives

    SciTech Connect

    Reaugh, J E

    2002-09-30

    High explosives can have reactions to external stimuli that range from mild pressure bursts to full detonation. The ability to predict these responses is important for understanding the performance as well as the safety and reliability of these important materials. At present, we have only relatively simple phenomenological computational models for the behavior of high explosives under these conditions. These models are limited by the assumption that the explosive can be treated as homogeneous. In reality the explosive is a highly heterogeneous composite of irregular crystallites and plastic binder. The heterogeneous nature of explosives is responsible for many of their unique mechanical and chemical properties. We use computational models to simulate the response of explosives to external mechanical stimuli at the grain-scale level. The ultimate goal of this work is to understand the detailed processes involved with the material response, so that we can develop realistic material models, which can be used in a hydrodynamics/multi-physics code to model real systems. The new material models will provide a more realistic description of the explosive system during the most critical period of ignition and initiation. The focus of this work is to use the results of grain-scale simulations to develop an advanced macroscopic reactive flow model that is consistent with our understanding of the grain-scale details, and that can incorporate such information quantitatively. The objective is to connect changes to observed properties of the explosive (grain size distribution, binder thickness distribution, void shape, size, and separation distribution, binder mechanical properties, etc.) with predictions of the resulting sensitivity and performance.

  1. Coarse-graining polymers as soft colloids

    NASA Astrophysics Data System (ADS)

    Louis, A. A.; Bolhuis, P. G.; Finken, R.; Krakoviack, V.; Meijer, E. J.; Hansen, J. P.

    2002-04-01

    We show how to coarse-grain polymers in a good solvent as single particles, interacting with density-independent or density-dependent interactions. These interactions can be between the centres of mass, the mid- or end-points of the polymers. We also show how to extend these methods to polymers in poor solvents and mixtures of polymers. Treating polymers as soft colloids can greatly speed up the simulation of complex many-polymer systems, including polymer-colloid mixtures.

  2. Coarse graining flow of spin foam intertwiners

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Schnetter, Erik; Seth, Cameron J.; Steinhaus, Sebastian

    2016-12-01

    Simplicity constraints play a crucial role in the construction of spin foam models, yet their effective behavior on larger scales is scarcely explored. In this article we introduce intertwiner and spin net models for the quantum group SU (2 )k×SU (2 )k, which implement the simplicity constraints analogous to four-dimensional Euclidean spin foam models, namely the Barrett-Crane (BC) and the Engle-Pereira-Rovelli-Livine/Freidel-Krasnov (EPRL/FK) model. These models are numerically coarse grained via tensor network renormalization, allowing us to trace the flow of simplicity constraints to larger scales. In order to perform these simulations we have substantially adapted tensor network algorithms, which we discuss in detail as they can be of use in other contexts. The BC and the EPRL/FK model behave very differently under coarse graining: While the unique BC intertwiner model is a fixed point and therefore constitutes a two-dimensional topological phase, BC spin net models flow away from the initial simplicity constraints and converge to several different topological phases. Most of these phases correspond to decoupling spin foam vertices; however we find also a new phase in which this is not the case, and in which a nontrivial version of the simplicity constraints holds. The coarse graining flow of the BC spin net models indicates furthermore that the transitions between these phases are not of second order. The EPRL/FK model by contrast reveals a far more intricate and complex dynamics. We observe an immediate flow away from the original simplicity constraints; however, with the truncation employed here, the models generically do not converge to a fixed point. The results show that the imposition of simplicity constraints can indeed lead to interesting and also very complex dynamics. Thus we need to further develop coarse graining tools to efficiently study the large scale behavior of spin foam models, in particular for the EPRL/FK model.

  3. Synthesis of fine-grained TATB

    DOEpatents

    Lee, Kien-Yin; Kennedy, James E.

    2003-04-15

    A method for producing fine-grained triamino-trinitrobenzene (TATB) powders having improved detonation-spreading performance and hence increased shock sensitivity when compared with that for ultrafine TATB is described. A single-step, sonochemical amination of trichloro-trinitrobenzene using ammonium hydroxide solution in a sealed vessel yields TATB having approximately 6 .mu.m median particle diameter and increased shock sensitivity.

  4. Whole grains and health: attitudes to whole grains against a prevailing background of increased marketing and promotion.

    PubMed

    McMackin, Elaine; Dean, Moira; Woodside, Jayne V; McKinley, Michelle C

    2013-04-01

    To explore current awareness and perceptions of whole grain foods and perceived barriers and facilitators of whole grain consumption. Focus groups were conducted to investigate consumer attitudes to whole grains. Discussions were transcribed verbatim and analysed thematically. Discussions were held throughout Northern Ireland with adults who were at least partly responsible for food shopping. Seven focus groups were held (n 43; thirty-three females, ten males). All participants were aware of the term 'whole grain' and had a basic level of awareness of their health benefits. Prominent barriers and facilitators of whole grain intake were related to perceptions of the sensory properties (most dominant factor) of whole grains; knowledge of how to locate, identify and use whole grains; and awareness of the health benefits, perceived cost and family influences. Parents of young children appeared to be altruistically motivated with many stating they wanted to ensure their children consumed whole grains in order to establish good eating habits. Participants were generally aware of the term 'whole grain'; however, even against a background of increased availability and promotion of whole grain foods, many key barriers to whole grain consumption were still evident. Alongside general education efforts, opportunities and challenges exist for the food industry to develop novel, but affordable, food products that are able to deliver whole grains in a wide variety of forms, including whole grains 'in disguise' for those who are most resistant to change.

  5. Coarse-grained protein molecular dynamics simulations.

    PubMed

    Derreumaux, Philippe; Mousseau, Normand

    2007-01-14

    A limiting factor in biological science is the time-scale gap between experimental and computational trajectories. At this point, all-atom explicit solvent molecular dynamics (MD) are clearly too expensive to explore long-range protein motions and extract accurate thermodynamics of proteins in isolated or multimeric forms. To reach the appropriate time scale, we must then resort to coarse graining. Here we couple the coarse-grained OPEP model, which has already been used with activated methods, to MD simulations. Two test cases are studied: the stability of three proteins around their experimental structures and the aggregation mechanisms of the Alzheimer's Abeta16-22 peptides. We find that coarse-grained isolated proteins are stable at room temperature within 50 ns time scale. Based on two 220 ns trajectories starting from disordered chains, we find that four Abeta16-22 peptides can form a three-stranded beta sheet. We also demonstrate that the reptation move of one chain over the others, first observed using the activation-relaxation technique, is a kinetically important mechanism during aggregation. These results show that MD-OPEP is a particularly appropriate tool to study qualitatively the dynamics of long biological processes and the thermodynamics of molecular assemblies.

  6. Coarse-grained protein molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Derreumaux, Philippe; Mousseau, Normand

    2007-01-01

    A limiting factor in biological science is the time-scale gap between experimental and computational trajectories. At this point, all-atom explicit solvent molecular dynamics (MD) are clearly too expensive to explore long-range protein motions and extract accurate thermodynamics of proteins in isolated or multimeric forms. To reach the appropriate time scale, we must then resort to coarse graining. Here we couple the coarse-grained OPEP model, which has already been used with activated methods, to MD simulations. Two test cases are studied: the stability of three proteins around their experimental structures and the aggregation mechanisms of the Alzheimer's Aβ16-22 peptides. We find that coarse-grained isolated proteins are stable at room temperature within 50ns time scale. Based on two 220ns trajectories starting from disordered chains, we find that four Aβ16-22 peptides can form a three-stranded β sheet. We also demonstrate that the reptation move of one chain over the others, first observed using the activation-relaxation technique, is a kinetically important mechanism during aggregation. These results show that MD-OPEP is a particularly appropriate tool to study qualitatively the dynamics of long biological processes and the thermodynamics of molecular assemblies.

  7. Multiple age components in individual molybdenite grains

    USGS Publications Warehouse

    Aleinikoff, John N.; Creaser, Robert A.; Lowers, Heather; Magee, Charles W.; Grauch, Richard I.

    2012-01-01

    Re–Os geochronology of fractions composed of unsized, coarse, and fine molybdenite from a pod of unusual monazite–xenotime gneiss within a granulite facies paragneiss, Hudson Highlands, NY, yielded dates of 950.5 ± 2.5, 953.8 ± 2.6, and 941.2 ± 2.6 Ma, respectively. These dates are not recorded by co-existing zircon, monazite, or xenotime. SEM–BSE imagery of thin sections and separated grains reveals that most molybdenite grains are composed of core and rim plates that are approximately perpendicular. Rim material invaded cores, forming irregular contacts, probably reflecting dissolution/reprecipitation. EPMA and LA-ICP-MS analyses show that cores and rims have different trace element concentrations (for example, cores are relatively enriched in W). On the basis of inclusions of zircon with metamorphic overgrowths, we conclude that molybdenite cores and rims formed after high-grade regional metamorphism. The discovery of cores and rims in individual molybdenite grains is analogous to multi-component U-Pb geochronometers such as zircon, monazite, and titanite; thus, molybdenite should be carefully examined before dating to ensure that the requirement of age homogeneity is fulfilled.

  8. Process for producing large grain cadmium telluride

    DOEpatents

    Hasoon, F.S.; Nelson, A.J.

    1996-01-16

    A process is described for producing a cadmium telluride polycrystalline film having grain sizes greater than about 20 {micro}m. The process comprises providing a substrate upon which cadmium telluride can be deposited and placing that substrate within a vacuum chamber containing a cadmium telluride effusion cell. A polycrystalline film is then deposited on the substrate through the steps of evacuating the vacuum chamber to a pressure of at least 10{sup {minus}6} torr.; heating the effusion cell to a temperature whereat the cell releases stoichiometric amounts of cadmium telluride usable as a molecular beam source for growth of grains on the substrate; heating the substrate to a temperature whereat a stoichiometric film of cadmium telluride can be deposited; and releasing cadmium telluride from the effusion cell for deposition as a film on the substrate. The substrate then is placed in a furnace having an inert gas atmosphere and heated for a sufficient period of time at an annealing temperature whereat cadmium telluride grains on the substrate grow to sizes greater than about 20 {micro}m.

  9. Probing nanocrystalline grain dynamics in nanodevices

    PubMed Central

    Yeh, Sheng-Shiuan; Chang, Wen-Yao; Lin, Juhn-Jong

    2017-01-01

    Dynamical structural defects exist naturally in a wide variety of solids. They fluctuate temporally and hence can deteriorate the performance of many electronic devices. Thus far, the entities of these dynamic objects have been identified to be individual atoms. On the other hand, it is a long-standing question whether a nanocrystalline grain constituted of a large number of atoms can switch, as a whole, reversibly like a dynamical atomic defect (that is, a two-level system). This is an emergent issue considering the current development of nanodevices with ultralow electrical noise, qubits with long quantum coherence time, and nanoelectromechanical system sensors with ultrahigh resolution. We demonstrate experimental observations of dynamic nanocrystalline grains that repeatedly switch between two or more metastable coordinate states. We study temporal resistance fluctuations in thin ruthenium dioxide (RuO2) metal nanowires and extract microscopic parameters, including relaxation time scales, mobile grain sizes, and the bonding strengths of nanograin boundaries. These material parameters are not obtainable by other experimental approaches. When combined with previous in situ high-resolution transmission electron microscopy, our electrical method can be used to infer rich information about the structural dynamics of a wide variety of nanodevices and new two-dimensional materials. PMID:28691094

  10. Process for producing large grain cadmium telluride

    DOEpatents

    Hasoon, Falah S.; Nelson, Art J.

    1996-01-01

    A process for producing a cadmium telluride polycrystalline film having grain sizes greater than about 20 .mu.m. The process comprises providing a substrate upon which cadmium telluride can be deposited and placing that substrate within a vacuum chamber containing a cadmium telluride effusion cell. A polycrystalline film is then deposited on the substrate through the steps of evacuating the vacuum chamber to a pressure of at least 10.sup.-6 torr.; heating the effusion cell to a temperature whereat the cell releases stoichiometric amounts of cadmium telluride usable as a molecular beam source for growth of grains on the substrate; heating the substrate to a temperature whereat a stoichiometric film of cadmium telluride can be deposited; and releasing cadmium telluride from the effusion cell for deposition as a film on the substrate. The substrate then is placed in a furnace having an inert gas atmosphere and heated for a sufficient period of time at an annealing temperature whereat cadmium telluride grains on the substrate grow to sizes greater than about 20 .mu.m.

  11. Grain Surface Models and Data for Astrochemistry

    NASA Astrophysics Data System (ADS)

    Cuppen, H. M.; Walsh, C.; Lamberts, T.; Semenov, D.; Garrod, R. T.; Penteado, E. M.; Ioppolo, S.

    2017-01-01

    The cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of {˜}25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions.

  12. Communication Optimizations for Fine-Grained UPCApplications

    SciTech Connect

    Chen, Wei-Yu; Iancu, Costin; Yelick, Katherine

    2005-07-08

    Global address space languages like UPC exhibit high performance and portability on a broad class of shared and distributed memory parallel architectures. The most scalable applications use bulk memory copies rather than individual reads and writes to the shared space, but finer-grained sharing can be useful for scenarios such as dynamic load balancing, event signaling, and distributed hash tables. In this paper we present three optimization techniques for global address space programs with fine-grained communication: redundancy elimination, use of split-phase communication, and communication coalescing. Parallel UPC programs are analyzed using static single assignment form and a data flow graph, which are extended to handle the various shared and private pointer types that are available in UPC. The optimizations also take advantage of UPC's relaxed memory consistency model, which reduces the need for cross thread analysis. We demonstrate the effectiveness of the analysis and optimizations using several benchmarks, which were chosen to reflect the kinds of fine-grained, communication-intensive phases that exist in some larger applications. The optimizations show speedups of up to 70 percent on three parallel systems, which represent three different types of cluster network technologies.

  13. Analytical study of spheroidal dust grains in plasma

    SciTech Connect

    Zahed, H.; Mahmoodi, J.; Sobhanian, S.

    2006-05-15

    Using the modified spheroidal equations, the potential of a spheroidal conducting grain, floated in a plasma, is calculated. The electric field and capacitance for both prolate and oblate spheroidal grains are investigated. The solutions, obtained up to the second-order approximation, show that the plasma screening causes the equipotential surfaces around the grain to be more elongated or flattened than the potential spheroids of the Laplace equation. This leads to the variation of the plasma concentration around the grain.

  14. Grain foods and health: a primer for clinicians.

    PubMed

    Jones, Julie Miller; Anderson, James W

    2008-12-01

    Preventing many chronic diseases in North America requires substantial changes in dietary habits. Achieving a better balance of grain-based foods through the inclusion of whole grains is one scientifically supported dietary recommendation. Epidemiological and other types of research continue to document health benefits for diverse populations who have adequate intakes of both folic acid-fortified grain foods and whole grains. Folic acid fortification of grains is associated with reduced incidence of neural tube and other birth defects and may be related to decreased risk of other chronic disease. Whole grain intake is associated with reduced risk of chronic disease. Specifically, there is a decreased risk of obesity, coronary heart disease, hypertension, stroke, metabolic syndrome, type 2 diabetes, and some cancers observed among the highest whole grain eaters compared with those eating little or no whole grains. Nationally promulgated dietary recommendations such as those in the US Dietary Guidelines or by health promotion organizations such as the American Heart Association have incorporated the science on whole grains, recommending that consumers increase their whole grain intake. The US Dietary Guidelines state that consumers select half of the recommended bread and cereal servings as whole grain. Thus, the recommendations recognize the importance of adequate folic acid intake from refined, fortified grains to reduce the risk of birth defects and other disorders and to reflect the existing science on whole grains. The association between whole grains and decreased chronic disease is not surprising because whole grains are a source of vitamins, minerals, fatty acids, anti oxidants, and other phytochemicals and dietary fiber. Each of these components can act singly or in tandem to contribute to specific health-maintaining and disease-preventing mechanisms. Health professionals should be aware of these benefits and advocate these dietary strategies to help prevent

  15. Does whole grain consumption alter gut microbiota and satiety?

    USDA-ARS?s Scientific Manuscript database

    This review summarizes recent studies examining whole grain consumption and its effect on gut microbiota and satiety in healthy humans. Both individual whole grain cereals and interventions with combined whole grain cereals were considered. Possible links between the fermentation of non-digestible c...

  16. Ancient whole grain gluten-free egg-free Pasta

    USDA-ARS?s Scientific Manuscript database

    The USDA food guide recommends that at least ½ of all the grains eaten should be whole grains. The FDA allows food Health Claim labels for food containing 51% whole gains and 11 g of dietary fiber per serving. This is the only report demonstrating innovative ancient whole grain, gluten-free, egg-fre...

  17. 7 CFR 800.16 - Certification requirements for export grain.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Certification requirements for export grain. 800.16 Section 800.16 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE GENERAL...

  18. 7 CFR 800.16 - Certification requirements for export grain.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Certification requirements for export grain. 800.16 Section 800.16 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE GENERAL...

  19. 7 CFR 800.16 - Certification requirements for export grain.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Certification requirements for export grain. 800.16 Section 800.16 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE GENERAL...

  20. 7 CFR 800.16 - Certification requirements for export grain.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Certification requirements for export grain. 800.16 Section 800.16 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE GENERAL...

  1. 7 CFR 800.16 - Certification requirements for export grain.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Certification requirements for export grain. 800.16 Section 800.16 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE GENERAL...

  2. Dynamic recrystallization behaviour at grain boundaries and triple junctions

    NASA Astrophysics Data System (ADS)

    Miura, H.

    2015-08-01

    Dynamic recrystallization (DRX) behaviour and nucleation mechanisms were investigated using copper and copper alloy bicrystals, tricrystals and polycrystals. New grains were preferentially formed along grain boundaries in the bicrystals. After grain-boundary migration and bulging, nuclei appeared behind the deeply bulged grain boundary regions. The critical strain for nucleation was about one-quarter to one-half of the peak strain. The characteristics of nucleation at a grain boundary depended sensitively on grain boundary character. In copper alloy bicrystals, nucleation was much delayed due to solute drag of migrating grain boundaries. The nucleation at triple junctions, in contrast, took place at a much lower strain. New grain formation at triple junction was stimulated by development of folds. All the new grains were twin-related (Σ3) to the matrix and were formed behind the migrating grain boundaries. Therefore, it was revealed that the DRX mechanism in copper and copper alloys was essentially controlled by annealing twin formation. Variant selection of the twinning plane depended sensitively on the direction of the grain-boundary migration and on the geometry, however, was not affected by activated slip plane or dislocation glide. The DRX nucleation mechanisms at grain boundaries and at triple junctions are discussed with respect to grainboundary migration and annealing twin formation.

  3. Cool Bottom Processing on the AGB and Presolar Grain Compositions

    NASA Technical Reports Server (NTRS)

    Nollett, Kenneth M.; Busso, M.; Wasserburg, G. J.

    2002-01-01

    We describe results from a model of cool bottom processing (CBP) in AGB (asymptotic giant branch) stars. We predict O, Al, C and N isotopic compositions of circumstellar grains. Measured compositions of mainstream SiC grains and many oxide grains are consistent with CBP. Additional information is contained in the original extended abstract.

  4. Crop water production functions for grain sorghum and winter wheat

    USDA-ARS?s Scientific Manuscript database

    Productivity of water-limited cropping systems can be reduced by untimely distribution of water as well as cold and heat stress. The objective was to develop relationships among weather parameters, water use, and grain productivity to produce functions forecasting grain yields of grain sorghum and w...

  5. Whole grain foods and health – a Scandinavian perspective

    PubMed Central

    Frølich, Wenche; Åman, Per; Tetens, Inge

    2013-01-01

    The food-based dietary guidelines in the Scandinavian countries that recommend an intake of minimum 75 g whole grain per 10 MJ (2,388 kcal) per day are mainly derived from prospective cohort studies where quantitative but little qualitative details are available on whole grain products. The objective of the current paper is to clarify possible differences in nutritional and health effects of the types of whole grain grown and consumed in the Scandinavian countries. A further objective is to substantiate how processing may influence the nutritional value and potential health effects of different whole grains and whole grain foods. The most commonly consumed whole grain cereals in the Scandinavian countries are wheat, rye, and oats with a considerable inter-country variation in the consumption patterns and with barley constituting only a minor role. The chemical composition of these different whole grains and thus the whole grain products consumed vary considerably with regard to the content of macro- and micronutrients and bioactive components. A considerable amount of scientific substantiation shows that processing methods of the whole grains are important for the physiological and health effects of the final whole grain products. Future research should consider the specific properties of each cereal and its processing methods to further identify the uniqueness and health potentials of whole grain products. This would enable the authorities to provide more specific food-based dietary guidelines in relation to whole grain to the benefit of both the food industry and the consumer. PMID:23411562

  6. Whole grain foods and health - a Scandinavian perspective.

    PubMed

    Frølich, Wenche; Aman, Per; Tetens, Inge

    2013-01-01

    The food-based dietary guidelines in the Scandinavian countries that recommend an intake of minimum 75 g whole grain per 10 MJ (2,388 kcal) per day are mainly derived from prospective cohort studies where quantitative but little qualitative details are available on whole grain products. The objective of the current paper is to clarify possible differences in nutritional and health effects of the types of whole grain grown and consumed in the Scandinavian countries. A further objective is to substantiate how processing may influence the nutritional value and potential health effects of different whole grains and whole grain foods. The most commonly consumed whole grain cereals in the Scandinavian countries are wheat, rye, and oats with a considerable inter-country variation in the consumption patterns and with barley constituting only a minor role. The chemical composition of these different whole grains and thus the whole grain products consumed vary considerably with regard to the content of macro- and micronutrients and bioactive components. A considerable amount of scientific substantiation shows that processing methods of the whole grains are important for the physiological and health effects of the final whole grain products. Future research should consider the specific properties of each cereal and its processing methods to further identify the uniqueness and health potentials of whole grain products. This would enable the authorities to provide more specific food-based dietary guidelines in relation to whole grain to the benefit of both the food industry and the consumer.

  7. Effects of whole grains on coronary heart disease risk.

    PubMed

    Harris, Kristina A; Kris-Etherton, Penny M

    2010-11-01

    Characterizing which types of carbohydrates, including whole grains, reduce the risk for coronary heart disease (CHD) is challenging. Whole grains are characterized as being high in resistant carbohydrates as compared with refined grains, meaning they typically are high in fiber, nutrients, and bound antioxidants. Whole grain intake consistently has been associated with improved cardiovascular disease outcomes, but also with healthy lifestyles, in large observational studies. Intervention studies that assess the effects of whole grains on biomarkers for CHD have mixed results. Due to the varying nutrient compositions of different whole grains, each could potentially affect CHD risk via different mechanisms. Whole grains high in viscous fiber (oats, barley) decrease serum low-density lipoprotein cholesterol and blood pressure and improve glucose and insulin responses. Grains high in insoluble fiber (wheat) moderately lower glucose and blood pressure but also have a prebiotic effect. Obesity is inversely related to whole grain intake, but intervention studies with whole grains have not produced weight loss. Visceral fat, however, may be affected favorably. Grain processing improves palatability and can have varying effects on nutrition (e.g., the process of milling and grinding flour increases glucose availability and decreases phytochemical content whereas thermal processing increases available antioxidants). Understanding how individual grains, in both natural and processed states, affect CHD risk can inform nutrition recommendations and policies and ultimately benefit public health.

  8. 7 CFR 810.801 - Definition of mixed grain.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...; and that such mixture consists of 50 percent or more of whole kernels of grain and/or whole or broken... 7 Agriculture 7 2010-01-01 2010-01-01 false Definition of mixed grain. 810.801 Section 810.801 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND...

  9. The condensation of grains in the ejecta of supernovae

    NASA Astrophysics Data System (ADS)

    Pearce, G.

    1986-03-01

    The condensation of grains around supernovae is considered. The mechanism by which grains could condense from supernovae ejecta to form a circumstellar dust shell is investigated. It is discovered that the depletion factor of grain forming material from the surrounding gas is important.

  10. On the origins of GEMS grains: A reply

    NASA Astrophysics Data System (ADS)

    Keller, Lindsay P.; Messenger, Scott

    2013-04-01

    The Comment by Bradley challenges our chemical and isotopic measurements of GEMS grains, arguing that pervasive infiltration of silicone oil and sample heating undermine our comparisons with equally uncertain interstellar grain compositions. However, we have already shown that such effects are negligible and cannot account for the extraordinary chemical variability of GEMS grains. Our data are also in excellent agreement with previous GEMS grain chemical analyses, and with GEMS grains in micrometeorites and within IDPs recently collected without the use of silicone oil. The order of magnitude variations in element abundances displayed by GEMS grains rule out a common origin by the extensive chemical and isotopic homogenization of circumstellar grains, as proposed by Bradley. The vast majority of GEMS grains also do not have radial compositional gradients, crystalline "relict" cores, or rims of condensed materials indicative of radiation exposure. The average element abundances of GEMS grains differ significantly and systematically from solar abundances and from those inferred for interstellar silicates based on element depletion patterns. A few GEMS grains have highly anomalous O isotopic compositions consistent with a condensation origin in evolved O-rich stellar envelopes and supernovae. Yet, on average, GEMS grains have O isotopic compositions very near to terrestrial and meteoritic values. These and other observations discussed in our paper place a strict upper limit on the number of GEMS grains that have preserved presolar origins.

  11. Automatic monitoring of insect pests in stored grain

    USDA-ARS?s Scientific Manuscript database

    Manual sampling of insects in stored grain is a laborious and time consuming process. Automation of grain sampling should help to increase the adoption of stored-grain integrated pest management. To make accurate insect management decisions, managers need to know both the insect species and numbers ...

  12. 75 FR 53736 - Notice of National Grain Car Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ...-No. 4)] Notice of National Grain Car Council Meeting AGENCY: Surface Transportation Board, DOT. ACTION: Notice of National Grain Car Council meeting. SUMMARY: Notice is hereby given of a meeting of the National Grain Car Council (NGCC), pursuant to section 10(a)(2) of the Federal Advisory Committee Act,...

  13. 78 FR 52606 - Notice of National Grain Car Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... Surface Transportation Board Notice of National Grain Car Council Meeting AGENCY: Surface Transportation Board, DOT. ACTION: Notice of National Grain Car Council meeting. SUMMARY: Notice is hereby given of a meeting of the National Grain Car Council (NGCC), pursuant to the Federal Advisory Committee Act, 5...

  14. OXYGEN ISOTOPIC COMPOSITIONS OF SOLAR CORUNDUM GRAINS

    SciTech Connect

    Makide, Kentaro; Nagashima, Kazuhide; Huss, Gary R.; Krot, Alexander N.

    2009-11-20

    Oxygen is one of the major rock-forming elements in the solar system and the third most abundant element of the Sun. Oxygen isotopic composition of the Sun, however, is not known due to a poor resolution of astronomical spectroscopic measurements. Several DELTA{sup 17}O values have been proposed for the composition of the Sun based on (1) the oxygen isotopic measurements of the solar wind implanted into metallic particles in lunar soil (< -20 per mille by Hashizume and Chaussidon and approx +26 per mille by Ireland et al.), (2) the solar wind returned by the Genesis spacecraft (-27 per mille +- 6 per mille by McKeegan et al.), and (3) the mineralogically pristine calcium-aluminum-rich inclusions (CAIs) (-23.3 per mille +- 1.9 per mille by Makide et al. and -35 per mille by Gounelle et al.). CAIs are the oldest solar system solids, and are believed to have formed by evaporation, condensation, and melting processes in hot nebular region(s) when the Sun was infalling (Class 0) or evolved (Class 1) protostar. Corundum (Al{sub 2}O{sub 3}) is thermodynamically the first condensate from a cooling gas of solar composition. Corundum-bearing CAIs, however, are exceptionally rare, suggesting either continuous reaction of the corundum condensates with a cooling nebular gas and their replacement by hibonite (CaAl{sub 12}O{sub 19}) or their destruction by melting together with less refractory condensates during formation of igneous CAIs. In contrast to the corundum-bearing CAIs, isolated micrometer-sized corundum grains are common in the acid-resistant residues from unmetamorphosed chondrites. These grains could have avoided multistage reprocessing during CAI formation and, therefore, can potentially provide constraints on the initial oxygen isotopic composition of the solar nebula, and, hence, of the Sun. Here we report oxygen isotopic compositions of approx60 micrometer-sized corundum grains in the acid-resistant residues from unequilibrated ordinary chondrites (Semarkona (LL3

  15. Comparison of microstructure of superplastically deformed synthetic materials and ultramylonite: Coalescence of secondary mineral grains via grain boundary sliding

    NASA Astrophysics Data System (ADS)

    Hiraga, T.; Miyazaki, T.; Tasaka, M.; Yoshida, H.

    2011-12-01

    Using very fine-grained aggregates of forsterite containing ~10vol% secondary mineral phase such as periclase and enstatite, we have been able to demonstrate their superplascity, that is, achievement of more than a few 100 % tensile strain (Hiraga et al. 2010). Superplastic deformation is commonly considered to proceed via grain boundary sliding (GBS) which results in grain switching in the samples. Hiraga et al. (2010) succeeded in detecting the operation of GBS from observing the coalescence of grains of secondary phase in superplastically deformed samples. The secondary phase pins the motion of grain boundaries of the primary phase; however, the reduction of the number of the grains of secondary phase due to their coalescence allows grain growth of the primary phase. We analyzed the relationships between grain size of the primary and secondary phases, between strain and grain size, and between strain and the number of coalesced grains in the superplastically deformed samples. The results supports participation of all the grains of the primary phase in grain switching process indicating that the grain boundary sliding accommodates almost entire strain during the deformation. Mechanical properties of these materials such as their stress and grain size exponents of 1-2 do not conflict this conclusion. We applied the relationships obtained from analyzing superplastic materials to the microstructure of the natural samples, which has been considered to have deformed via grain boundary sliding, that is, ultramylonite. The microstructure of greenschist-grade ultramylonite reported by Fliervoet et al. (1997) was analyzed. Distributions of the mineral phases (i.e., quartz, plagioclase, K-feldspar and biotite) show distinct coalescence of the same mineral phases in the direction almost perpendicular to the foliation of the rock. The number of coalesced grains indicates that the strain that rock experienced is > 2. [reference] Hiraga et al. (2010) Nature 468, 1091

  16. Ultrafast analysis of individual grain behavior during grain growth by parallel computing

    NASA Astrophysics Data System (ADS)

    Kühbach, M.; Barrales-Mora, L. A.; Mießen, C.; Gottstein, G.

    2015-08-01

    The possibility to characterize in an automatized way the spatial-temporal evolution of individual grains and their properties is essential to the understanding of annealing phenomena. The development of advanced experimental techniques, computational models and tools helps the acquisition of real time and real space-resolved datasets. Whereas the reconstruction of 3D grain representatives from serial-sectioning or tomography datasets becomes more common and microstructure simulations on parallel computers become ever larger and longer lasting, few efforts have materialized in the development of tools that allow the continuous tracking of properties at the grain scale. In fact, such analyses are often left neglected in practice due to the large size of the datasets that exceed the available physical memory of a computer or the shared-memory cluster. We identified the key tasks that have to be solved in order to define suitable and lean data structures and computational methods to evaluate spatio-temporal grain property datasets by working with parallel computer architectures. This is exemplified with data from grain growth simulations.

  17. Whole grains--impact of consuming whole grains on physiological effects of dietary fiber and starch.

    PubMed

    Stephen, A M

    1994-01-01

    Much of the present research on the physiological effects of dietary fiber and starch has been done on sources isolated from the parent material, and it is not clear whether they have the same effects if fed in the intact or whole grain. For dietary fiber, physiological effect depends on extent of fermentation in the large intestine, and this is influenced by chemical composition, solubility, physical form, and presence of lignin or other compounds. All of these factors are altered by isolation of a fiber source from the whole grain, and hence effects of eating fiber vary. Similarly, physical form and presence in the whole grain will affect digestibility of starch in the small intestine, which in turn influences the glycemic response and colonic effects determined by the extent of malabsorption and entry into the colon. Starch that enters the colon is fermented and produces short-chain fatty acids, particularly butyrate, which is necessary to maintain a healthy mucosa. Hence, their presence within the whole grain may have important implications for health for both dietary fiber and starch. Evidence indicates that such effects are beneficial and that whole-grain consumption should be encouraged.

  18. Measurement and modeling of radiation-induced grain boundary grain boundary segregation in stainless steels

    SciTech Connect

    Bruemmer, S.M.; Charlot, L.A.; Simonen, E.P.

    1995-08-01

    Grain boundary radiation-induced segregation (RIS) in Fe-Ni-Cr stainless alloys has been measured and modelled as a function of irradiation temperature and dose. Heavy-ion irradiation was used to produce damage levels from 1 to 20 displacements per atom (dpa) at temperatures from 175 to 550{degrees}C. Measured Fe, Ni, and Cr segregation increased sharply with irradiation dose (from 0 to 5 dpa) and temperature (from 175 to about 350{degrees}C). However, grain boundary concentrations did not change significantly as dose or temperatures were further increased. Impurity segregation (Si and P) was also measured, but only Si enrichment appeared to be radiation-induced. Grain boundary Si levels peaked at an intermediate temperature of {approximately}325{degrees}C reaching levels of {approximately}8 at. %. Equilibrium segregation of P was measured in the high-P alloys, but interfacial concentration did not increase with irradiation exposure. Examination of reported RIS in neutron-irradiated stainless steels revealed similar effects of irradiation dose on grain boundary compositional changes for both major alloying and impurity element`s. The Inverse Kirkendall model accurately predicted major alloying element RIS in ion- and neutron-irradiated alloys over the wide range of temperature and dose conditions. In addition, preliminary calculations indicate that the Johnson-Lam model can reasonably estimate grain boundary Si enrichment if back diffusion is enhanced.

  19. Supplying materials needed for grain growth characterizations of nano-grained UO2

    SciTech Connect

    Mo, Kun; Miao, Yinbin; Yun, Di; Jamison, Laura M.; Lian, Jie; Yao, Tiankei

    2015-09-30

    This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructure based materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize our preliminary synchrotron radiation experiments at APS to determine the grain size of nanograin UO2. The methodology and experimental setup developed in this experiment can directly apply to the proposed in-situ grain growth measurements. The investigation of the grain growth kinetics was conducted based on isothermal annealing and grain growth characterization as functions of duration and temperature. The kinetic parameters such as activation energy for grain growth for UO2 with different stoichiometry are obtained and compared with molecular dynamics (MD) simulations.

  20. The Grain Structure of Castings: Some Aspects of Modelling

    NASA Technical Reports Server (NTRS)

    Hellawell, A.

    1995-01-01

    The efficacy of the modelling of the solidification of castings is typically tested against observed cooling curves and the final grain structures and sizes. Without thermo solutal convection, equiaxed grain formation is promoted by introduction of heterogeneous substrates into the melt, as grain refiners. With efficient thermo solutal convection, dendrite fragments from the mushy zone can act as an intrinsic source of equiaxed grains and resort to grain refining additions is unnecessary. The mechanisms of dendrite fragmentation and transport of these fragments are briefly considered.

  1. The optical absorption of solid grains in astrophysical environments

    NASA Technical Reports Server (NTRS)

    Stein, W. A.; Ney, E. P.

    1974-01-01

    The optical absorptivity of grains of solid material in infrared sources is investigated by the comparison of calculated and observed temperatures and distances of the grains from the source of illumination. It is found that for the few sources for which appropriate measurements have been made, the calculated distances of blackbody particles agree well with the measured values - a result which could lead to misleading conclusions about grain properties. The ratio of optical absorptivity to infrared emissivity is calculated for several sources taking into account expected effects of real grain materials. The measured angular size of dust shells surrounding stars can lead to information about the optical properties of grains under astrophysical conditions.

  2. Grain damage, phase mixing and plate-boundary formation

    NASA Astrophysics Data System (ADS)

    Bercovici, David; Skemer, Philip

    2017-07-01

    The generation of plate tectonics on Earth relies on complex mechanisms for shear localization, as well as for the retention and reactivation of weak zones in the cold ductile lithosphere. Pervasive mylonitization, wherein zones of high deformation coincide with extensive mineral grain size reduction, is an important clue to this process. In that regard, the grain-damage model of lithospheric weakening provides a physical framework for both mylonitization and plate generation, and accounts for the competition between grain size reduction by deformation and damage, and healing by grain growth. Zener pinning at the evolving interface between mineral components, such as olivine and pyroxene, plays a key role in helping drive grains to small mylonitic sizes during deformation, and then retards their growth once deformation ceases. The combined effects of damage and pinning, however, rely on the efficiency of inter-grain mixing between phases (e.g., olivine and pyroxene) and grain dispersal, which likely depends on grain size itself. Here we present a new model for inter-grain mixing and damage and the onset of rapid mixing. The model considers the competition between the formation of new grains behind a receding interphase triple junction (e.g., olivine growing into a boundary between two pyroxene grains) and their severance or spalling during progressive deformation and damage. The newly formed grains of one phase are then transported along the opposing phase's grain-boundaries and the two phases become dispersed at the grain-scale in a growing mixed layer. The small intermixed grains also affect the grain evolution of the surrounding host grains by Zener pinning, and hence influence the rheology and growth of the mixed layer. As the grains in the mixed layer shrink, subsequently spalled new grains are also smaller, causing a feedback that leads to more rapid mixing and shear localization in the mixed layer. The early stages of mixing can be compared to laboratory

  3. Effect of grain boundary structure on grain boundary diffusivities in the Au/Ag system

    SciTech Connect

    Ma, Qing, Balluffi, R.W.

    1990-12-01

    Grain boundary chemical diffusivities for a series of symmetric (001) tilt boundaries in the Au/Ag system were measured by the surface accumulation method using newly developed thin-film multi-crystal specimens, in which the grain boundaries feeding the accumulation surface were all of the same type. Possible effects due to segregation at the grain boundaries and surfaces were avoided. CSL boundaries of low-{Sigma} (i.e., 5, 13, 17, 25) and also more general boundaries with tilt angles between the low-{Sigma} orientations were selected. The diffusivities were found to vary monotonically with tilt angle (i.e., no cusps at low-{Sigma}'s were found) in a manner consistent with the Structural Unit model. 8 refs., 7 figs.

  4. Grain orientations and grain boundaries in tungsten nonotendril fuzz grown under divertor-like conditions

    DOE PAGES

    Parish, Chad M.; Wang, Kun; Doerner, Russel P.; ...

    2016-09-19

    We grew nanotendril “fuzz” on tungsten via plasma exposure and performed transmission Kikuchi diffraction (tKD) in scanning electron microscopy of isolated nanotendrils. 900 °C, 1023 He/m2sec, 4 × 1026 He/m2 exposure of tungsten produced a deep and fully developed nanotendril mat. tKD of isolated nanotendrils indicated that there was no preferred crystallographic direction oriented along the long axes of the tendrils, and the grain boundary character showed slightly preferential orientations. In conclusion, tendril growth is sufficiently non-equilibrium to prevent any preference of growth direction to manifest measurably, and that new high-angle boundaries (with new grains and grain-growth axes) nucleate randomlymore » along the tendrils during growth.« less

  5. Grain orientations and grain boundaries in tungsten nonotendril fuzz grown under divertor-like conditions

    SciTech Connect

    Parish, Chad M.; Wang, Kun; Doerner, Russel P.; Baldwin, Matthew J.

    2016-09-19

    We grew nanotendril “fuzz” on tungsten via plasma exposure and performed transmission Kikuchi diffraction (tKD) in scanning electron microscopy of isolated nanotendrils. 900 °C, 1023 He/m2sec, 4 × 1026 He/m2 exposure of tungsten produced a deep and fully developed nanotendril mat. tKD of isolated nanotendrils indicated that there was no preferred crystallographic direction oriented along the long axes of the tendrils, and the grain boundary character showed slightly preferential orientations. In conclusion, tendril growth is sufficiently non-equilibrium to prevent any preference of growth direction to manifest measurably, and that new high-angle boundaries (with new grains and grain-growth axes) nucleate randomly along the tendrils during growth.

  6. Grain orientations and grain boundaries in tungsten nonotendril fuzz grown under divertor-like conditions

    SciTech Connect

    Parish, Chad M.; Wang, Kun; Doerner, Russel P.; Baldwin, Matthew J.

    2016-09-19

    We grew nanotendril “fuzz” on tungsten via plasma exposure and performed transmission Kikuchi diffraction (tKD) in scanning electron microscopy of isolated nanotendrils. 900 °C, 1023 He/m2sec, 4 × 1026 He/m2 exposure of tungsten produced a deep and fully developed nanotendril mat. tKD of isolated nanotendrils indicated that there was no preferred crystallographic direction oriented along the long axes of the tendrils, and the grain boundary character showed slightly preferential orientations. In conclusion, tendril growth is sufficiently non-equilibrium to prevent any preference of growth direction to manifest measurably, and that new high-angle boundaries (with new grains and grain-growth axes) nucleate randomly along the tendrils during growth.

  7. Kinetic Modeling of Sunflower Grain Filling and Fatty Acid Biosynthesis.

    PubMed

    Durruty, Ignacio; Aguirrezábal, Luis A N; Echarte, María M

    2016-01-01

    Grain growth and oil biosynthesis are complex processes that involve various enzymes placed in different sub-cellular compartments of the grain. In order to understand the mechanisms controlling grain weight and composition, we need mathematical models capable of simulating the dynamic behavior of the main components of the grain during the grain filling stage. In this paper, we present a non-structured mechanistic kinetic model developed for sunflower grains. The model was first calibrated for sunflower hybrid ACA855. The calibrated model was able to predict the theoretical amount of carbohydrate equivalents allocated to the grain, grain growth and the dynamics of the oil and non-oil fraction, while considering maintenance requirements and leaf senescence. Incorporating into the model the serial-parallel nature of fatty acid biosynthesis permitted a good representation of the kinetics of palmitic, stearic, oleic, and linoleic acids production. A sensitivity analysis showed that the relative influence of input parameters changed along grain development. Grain growth was mostly affected by the specific growth parameter (μ') while fatty acid composition strongly depended on their own maximum specific rate parameters. The model was successfully applied to two additional hybrids (MG2 and DK3820). The proposed model can be the first building block toward the development of a more sophisticated model, capable of predicting the effects of environmental conditions on grain weight and composition, in a comprehensive and quantitative way.

  8. A new approach to grain boundary engineering for nanocrystalline materials

    PubMed Central

    Tsurekawa, Sadahiro; Watanabe, Tadao

    2016-01-01

    A new approach to grain boundary engineering (GBE) for high performance nanocrystalline materials, especially those produced by electrodeposition and sputtering, is discussed on the basis of some important findings from recently available results on GBE for nanocrystalline materials. In order to optimize their utility, the beneficial effects of grain boundary microstructures have been seriously considered according to the almost established approach to GBE. This approach has been increasingly recognized for the development of high performance nanocrystalline materials with an extremely high density of grain boundaries and triple junctions. The effectiveness of precisely controlled grain boundary microstructures (quantitatively characterized by the grain boundary character distribution (GBCD) and grain boundary connectivity associated with triple junctions) has been revealed for recent achievements in the enhancement of grain boundary strengthening, hardness, and the control of segregation-induced intergranular brittleness and intergranular fatigue fracture in electrodeposited nickel and nickel alloys with initial submicrometer-grained structure. A new approach to GBE based on fractal analysis of grain boundary connectivity is proposed to produce high performance nanocrystalline or submicrometer-grained materials with desirable mechanical properties such as enhanced fracture resistance. Finally, the potential power of GBE is demonstrated for high performance functional materials like gold thin films through precise control of electrical resistance based on the fractal analysis of the grain boundary microstructure. PMID:28144533

  9. Kinetic Modeling of Sunflower Grain Filling and Fatty Acid Biosynthesis

    PubMed Central

    Durruty, Ignacio; Aguirrezábal, Luis A. N.; Echarte, María M.

    2016-01-01

    Grain growth and oil biosynthesis are complex processes that involve various enzymes placed in different sub-cellular compartments of the grain. In order to understand the mechanisms controlling grain weight and composition, we need mathematical models capable of simulating the dynamic behavior of the main components of the grain during the grain filling stage. In this paper, we present a non-structured mechanistic kinetic model developed for sunflower grains. The model was first calibrated for sunflower hybrid ACA855. The calibrated model was able to predict the theoretical amount of carbohydrate equivalents allocated to the grain, grain growth and the dynamics of the oil and non-oil fraction, while considering maintenance requirements and leaf senescence. Incorporating into the model the serial-parallel nature of fatty acid biosynthesis permitted a good representation of the kinetics of palmitic, stearic, oleic, and linoleic acids production. A sensitivity analysis showed that the relative influence of input parameters changed along grain development. Grain growth was mostly affected by the specific growth parameter (μ′) while fatty acid composition strongly depended on their own maximum specific rate parameters. The model was successfully applied to two additional hybrids (MG2 and DK3820). The proposed model can be the first building block toward the development of a more sophisticated model, capable of predicting the effects of environmental conditions on grain weight and composition, in a comprehensive and quantitative way. PMID:27242809

  10. Jamming of Cylindrical Grains in Featureless Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; Barr, Nicholas; Weible, Seth; Friedl, Nicholas

    2013-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains falling through a featureless vertical channel. With a grain height less than the grain diameter, these grains resemble aspirin tablets, poker chips, or coins. Unidisperse grains are allowed to fall under the influence of gravity through a uniform channel of square cross-section where the channel width is greater than the grain size and constant along the length of the channel. Channel widths are chosen so that no combination of grain heights and diameters is equal to the channel width. Collections of grains sometimes form jams, stable structures in which the grains are supported by the channel walls and not by grains or walls beneath them. The probability of a jam occurring and the jam's strength are influenced by the grain dimensions and channel width. We will present experimental measurements of the jamming probability and jam strength and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College

  11. Grain size evolution and convection regimes of the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Rozel, A.; Golabek, G. J.; Boutonnet, E.

    2011-12-01

    A new model of grain size evolution has recently been proposed in Rozel et al. 2010. This new approach stipulates that the grain size dynamics is governed by two additive and simultaneous processes: grain growth and dynamic recrystallization. We use the usual normal grain growth laws for the growth part. For dynamic recrystallization, reducing the mean grain size increases the total area of grain boundaries. Grain boundaries carry some surface tension, so some energy is required to decrease the mean grain size. We consider that this energy is available during mechanical work. It is usually considered to produce some heat via viscous dissipation. A partitioning parameter f is then required to know what amount of energy is dissipated and what part is converted in surface tension. This study gives a new calibration of the partitioning parameter on major Earth materials involved in the dynamic of the terrestrial planets. Our calibration is in adequation with the published piezometric relations available in the literature (equilibrium grain size versus shear stress). We test this new model of grain size evolution in a set of numerical computations of the dynamics of the Earth using stagYY. We show that the grain size evolution has a major effect on the convection regimes of terrestrial planets.

  12. Analytic and Simulation Studies of Dust Grain Interaction and Structuring

    NASA Astrophysics Data System (ADS)

    Lampe, Martin; Joyce, Glenn; Ganguli, Gurudas

    For dust grains in stationary plasma, a quantitative assessment is made of the effect of centrifugal potential barriers on ion trajectories near a grain. It is shown that in most situations of interest the barriers are weak and only marginally affect the validity of the orbital-motion-limited (OML) theory. The OML theory is then used to show that the electrostatic interaction between grains is always repulsive. The ion-shadowing force is calculated, and it is shown that this force can lead to a weak net attraction between grains at long range, under certain conditions with large grains, dense plasma, and/or low gas pressure. For grains in streaming plasma at or near the sheath, it is shown that nonlinear effects are weak and the grains can be represented as dressed particles interacting via the dynamically shielded Coulomb interaction, which includes wakefields, Landau damping, and collisional damping. The Dynamically Shielded Dust (DSD) simulation code, which is based on this model, is described and a simulation is shown for strongly coupled grains in flowing plasma. The simulation shows ordering of the grains into rigid strings aligned with the ion flow, and looser glass-like organization of the strings in the transverse plane. The presence of strings with odd and even numbers of grains results in stratification of the grains into planes with an alternating structure.

  13. Grain control in directional solidification of photovoltaic silicon

    NASA Astrophysics Data System (ADS)

    Lan, C. W.; Lan, W. C.; Lee, T. F.; Yu, A.; Yang, Y. M.; Hsu, W. C.; Hsu, B.; Yang, A.

    2012-12-01

    Directional solidification (DS) has become the major process for growing multi-crystalline silicon (mc-Si) for solar cells in the photovoltaic industry. The control of grains, as well as the grain boundaries, is particularly important to the crystal quality, and thus the solar cell efficiency. In this paper, we review the progress in the grain control of DS mc-Si from lab-scale to industrial-scale experiments. The control of the growth front was found effective in improving the grain size, but the grain size was found decreased with growth due to the sub-grain formation. With a better control of nucleation and grain competition by increasing the undercooling through enhanced uniform or spot cooling, grains with more Σ3 or twin boundaries were obtained. As the grain size increased with height, the growth of dislocations was found much slower than that without grain growth. The conversion efficiency of the solar cells fabricated from the wafers with grain control was significantly improved. Moreover, the seeded growth was also discussed.

  14. A new approach to grain boundary engineering for nanocrystalline materials.

    PubMed

    Kobayashi, Shigeaki; Tsurekawa, Sadahiro; Watanabe, Tadao

    2016-01-01

    A new approach to grain boundary engineering (GBE) for high performance nanocrystalline materials, especially those produced by electrodeposition and sputtering, is discussed on the basis of some important findings from recently available results on GBE for nanocrystalline materials. In order to optimize their utility, the beneficial effects of grain boundary microstructures have been seriously considered according to the almost established approach to GBE. This approach has been increasingly recognized for the development of high performance nanocrystalline materials with an extremely high density of grain boundaries and triple junctions. The effectiveness of precisely controlled grain boundary microstructures (quantitatively characterized by the grain boundary character distribution (GBCD) and grain boundary connectivity associated with triple junctions) has been revealed for recent achievements in the enhancement of grain boundary strengthening, hardness, and the control of segregation-induced intergranular brittleness and intergranular fatigue fracture in electrodeposited nickel and nickel alloys with initial submicrometer-grained structure. A new approach to GBE based on fractal analysis of grain boundary connectivity is proposed to produce high performance nanocrystalline or submicrometer-grained materials with desirable mechanical properties such as enhanced fracture resistance. Finally, the potential power of GBE is demonstrated for high performance functional materials like gold thin films through precise control of electrical resistance based on the fractal analysis of the grain boundary microstructure.

  15. Grain-Scale Supercharging and Breakdown on Airless Regoliths

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. I.; Farrell, W. M.; Hartzell, C.M.; Wang, X.; Horanyi, M.; Hurley, D. M.; Hibbitts, K.

    2016-01-01

    Interactions of the solar wind and emitted photoelectrons with airless bodies have been studied extensively. However, the details of how charged particles interact with the regolith at the scale of a single grain have remained largely uncharacterized. Recent efforts have focused upon determining total surface charge under photoemission and solar wind bombardment and the associated electric field and potential. In this work, theory and simulations are used to show that grain-grain charge differences can exceed classical sheath predictions by several orders of magnitude, sometimes reaching dielectric breakdown levels. Temperature-dependent electrical conductivity works against supercharging by allowing current to leak through individual grains; the balance between internal conduction and surface charging controls the maximum possible grain-to-grain electric field. Understanding the finer details of regolith grain charging, conductive equilibrium, and dielectric breakdown will improve future numerical studies of space weathering and dust levitation on airless bodies.

  16. Comments on 'Extinct radioactivities: Trapped residuals of presolar grains'

    NASA Technical Reports Server (NTRS)

    Trivedi, B. M. P.

    1977-01-01

    It has recently been suggested that extinct I-129 and Pu-244 were trapped in primitive-solar-nebula ('presolar') grains and decayed into radiogenic Xe-129 and fission Xe before the grains were incorporated into meteorite bodies. This idea is reconsidered in light of the thermal and metamorphic history of meteorites. The criteria that parent and daughter species should never separate and that minerals or grains containing the anomalous xenon should not be subjected to temperatures exceeding 500 C are applied to iron meteorites, achondrites, and chondrites to determine whether presolar grains could be the carriers of rare-gas anomalies to meteorites. The results strongly indicate that the xenon anomaly could not have originated in presolar grains. Other difficulties with the presolar-grain model are discussed, including insufficiently small grain sizes, large variations in Xe-129/I-127 ratios in various meteorites, and apparently unrealistic meteorite formation times and locations.

  17. Numerical Investigation of Grain Coarsening and Coalescence Model

    NASA Astrophysics Data System (ADS)

    Muradova, Aliki D.; Hristopulos, Dionisios T.

    2015-01-01

    A kinetic nonlinear model of mass transfer, grain coarsening and coalescence with potential applications in sintering processes is studied. The model involves nonlinear differential equations that determine the transport of mass between grains. The rate of mass transfer is controlled by the activation energy (an Arrhenius factor) leading to a nonlinear model of mass transfer and grain coarsening. The resulting dynamical system of coupled nonlinear differential equations with random initial conditions (i.e., initial grain mass configuration) is solved by means of the Runge-Kutta method. An analysis of the fixed points of the two-grain system is carried out, and the solution of the multi-grain system is studied. We incorporate coalescence of smaller grains with larger neighbors using a cellular automaton step in the evolution of the system.

  18. Relict grains in chondrules: Evidence for chondrule recycling

    NASA Technical Reports Server (NTRS)

    Jones, R. H.

    1994-01-01

    The presence of relict grains in chondrules, which offers some insight into the degree to which chondrule material was recycled in the chondrule-forming region, is discussed in this report. Relics are grains that clearly did not crystallize in situ in the host chondrule. They represent coarse-grained precursor material that did not melt during chondrule formation, and provide the only tangible record of chondrule precursor grains. Relics are commonly identified by a large difference in size, textural differences, and/or significant compositional differences compared with normal grains in the host chondrule. Two important types of relics are: (1) 'dusty,' metal-bearing grains of olivine and pyroxene; and (2) forsterite (Mg-rich olivine) grains present in FeO-rich chondrules.

  19. Grain-scale supercharging and breakdown on airless regoliths

    NASA Astrophysics Data System (ADS)

    Zimmerman, M. I.; Farrell, W. M.; Hartzell, C. M.; Wang, X.; Horanyi, M.; Hurley, D. M.; Hibbitts, K.

    2016-10-01

    Interactions of the solar wind and emitted photoelectrons with airless bodies have been studied extensively. However, the details of how charged particles interact with the regolith at the scale of a single grain have remained largely uncharacterized. Recent efforts have focused upon determining total surface charge under photoemission and solar wind bombardment and the associated electric field and potential. In this work, theory and simulations are used to show that grain-grain charge differences can exceed classical sheath predictions by several orders of magnitude, sometimes reaching dielectric breakdown levels. Temperature-dependent electrical conductivity works against supercharging by allowing current to leak through individual grains; the balance between internal conduction and surface charging controls the maximum possible grain-to-grain electric field. Understanding the finer details of regolith grain charging, conductive equilibrium, and dielectric breakdown will improve future numerical studies of space weathering and dust levitation on airless bodies.

  20. Atomistic simulations of dislocation pileup: Grain boundaries interaction

    DOE PAGES

    Wang, Jian

    2015-05-27

    Here, using molecular dynamics (MD) simulations, we studied the dislocation pileup–grain boundary (GB) interactions. Two Σ11 asymmetrical tilt grain boundaries in Al are studied to explore the influence of orientation relationship and interface structure on dislocation activities at grain boundaries. To mimic the reality of a dislocation pileup in a coarse-grained polycrystalline, we optimized the dislocation population in MD simulations and developed a predict-correct method to create a dislocation pileup in MD simulations. MD simulations explored several kinetic processes of dislocations–GB reactions: grain boundary sliding, grain boundary migration, slip transmission, dislocation reflection, reconstruction of grain boundary, and the correlation ofmore » these kinetic processes with the available slip systems across the GB and atomic structures of the GB.« less

  1. Atomistic simulations of dislocation pileup: Grain boundaries interaction

    SciTech Connect

    Wang, Jian

    2015-05-27

    Here, using molecular dynamics (MD) simulations, we studied the dislocation pileup–grain boundary (GB) interactions. Two Σ11 asymmetrical tilt grain boundaries in Al are studied to explore the influence of orientation relationship and interface structure on dislocation activities at grain boundaries. To mimic the reality of a dislocation pileup in a coarse-grained polycrystalline, we optimized the dislocation population in MD simulations and developed a predict-correct method to create a dislocation pileup in MD simulations. MD simulations explored several kinetic processes of dislocations–GB reactions: grain boundary sliding, grain boundary migration, slip transmission, dislocation reflection, reconstruction of grain boundary, and the correlation of these kinetic processes with the available slip systems across the GB and atomic structures of the GB.

  2. Simulation of anisotropic grain growth by Ostwald ripening

    SciTech Connect

    Tikare, V.; Cawley, J.D.

    1996-08-01

    In this paper, a two-dimensional Potts model that can simulate anisotropic grain growth by Ostwald ripening in liquid-phase-sintered ceramics will be presented. The model defines a Wulff shape for the grains and allows each individual grain to grow in its local environment which is controlled by the solid/liquid interfacial energy, the spatial distribution of neighboring grains, area fraction of grains, wetting by and distribution of the liquid matrix, and the concentration gradients in the liquid. The results of this simulation technique will be presented with emphasis on the kinetics and grain shape evolution and will be compared to those of isotropic grain growth. Finally, the limitations of the Potts model in such microstructural evolution processes will be discussed.

  3. Grain-Scale Supercharging and Breakdown on Airless Regoliths

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. I.; Farrell, W. M.; Hartzell, C.M.; Wang, X.; Horanyi, M.; Hurley, D. M.; Hibbitts, K.

    2016-01-01

    Interactions of the solar wind and emitted photoelectrons with airless bodies have been studied extensively. However, the details of how charged particles interact with the regolith at the scale of a single grain have remained largely uncharacterized. Recent efforts have focused upon determining total surface charge under photoemission and solar wind bombardment and the associated electric field and potential. In this work, theory and simulations are used to show that grain-grain charge differences can exceed classical sheath predictions by several orders of magnitude, sometimes reaching dielectric breakdown levels. Temperature-dependent electrical conductivity works against supercharging by allowing current to leak through individual grains; the balance between internal conduction and surface charging controls the maximum possible grain-to-grain electric field. Understanding the finer details of regolith grain charging, conductive equilibrium, and dielectric breakdown will improve future numerical studies of space weathering and dust levitation on airless bodies.

  4. Polyamines and ethylene interact in rice grains in response to soil drying during grain filling.

    PubMed

    Chen, Tingting; Xu, Yunji; Wang, Jingchao; Wang, Zhiqin; Yang, Jianchang; Zhang, Jianhua

    2013-05-01

    This study tested the hypothesis that the interaction between polyamines and ethylene may mediate the effects of soil drying on grain filling of rice (Oryza sativa L.). Two rice cultivars were pot grown. Three treatments, well-watered, moderate soil drying (MD), and severe soil drying (SD), were imposed from 8 d post-anthesis until maturity. The endosperm cell division rate, grain-filling rate, and grain weight of earlier flowering superior spikelets showed no significant differences among the three treatments. However, those of the later flowering inferior spikelets were significantly increased under MD and significantly reduced under SD when compared with those which were well watered. The two cultivars showed the same tendencies. MD increased the contents of free spermidine (Spd) and free spermine (Spm), the activities of S-adenosyl-L-methionine decarboxylase and Spd synthase, and expression levels of polyamine synthesis genes, and decreased the ethylene evolution rate, the contents of 1-aminocylopropane-1-carboxylic acid (ACC) and hydrogen peroxide, the activities of ACC synthase, ACC oxidase, and polyamine oxidase, and the expression levels of ethylene synthesis genes in inferior spikelets. SD exhibited the opposite effects. Application of Spd, Spm, or an inhibitor of ethylene synthesis to rice panicles significantly reduced ethylene and ACC levels, but significantly increased Spd and Spm contents, grain-filling rate, and grain weight of inferior spikelets. The results were reversed when ACC or an inhibitor of Spd and Spm synthesis was applied. The results suggest that a potential metabolic interaction between polyamines and ethylene biosynthesis responds to soil drying and mediates the grain filling of inferior spikelets in rice.

  5. Dust Grain Charge in the Lunar Environment

    NASA Astrophysics Data System (ADS)

    Vaverka, Jakub; Richterova, Ivana; Vysinka, Marek; Pavlu, Jiri; Safrankova, Jana; Nemecek, Zdenek

    2014-05-01

    Interaction of a lunar surface with solar wind and magnetosphere plasmas leads to it charging by several processes as photoemission, a collection of primary particles and secondary electron emission. Nevertheless, charging of the lunar surface is complicated by a presence of crustal magnetic anomalies with can generate a "mini-magnetosphere" capable for more or less complete shielding the surface. On the other hand, shielding of solar light and plasma particles by rocks and craters can also locally influence the surface potential as well as a presence of a plasma wake strongly changes this potential at the night side of the Moon. A typical surface potential varies from slightly positive (dayside) to negative values of the order of several hundred of volts (night side). At the night side, negative potentials can reach -4 kV during solar energetic particle (SEP) events. Recent measurements of the surface potential by Lunar Prospector and Artemis spacecraft have shown surprisingly high negative dayside surface potentials (-500 V) during the magnetotail crossings as well as the positive surface potential higher than 100 V. One possible explanation is its non-monotonic profile above a surface where the potential minimum is formed by the space charge. Dust grains presented in this complicated environment are also charged by similar processes as the lunar surface. A strong dependence of the secondary electron yield on the grain size can significantly influence dust charging mainly in the Earth's plasma sheet where an equilibrium grain potential can by different than the surface potential and can reach even the opposite sign. This process can lead to levitation of dust above a surface observed by the Surveyor spacecraft.

  6. Grain Refinement in Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Mukherjee, K.; Hazra, S. S.; Militzer, M.

    2009-09-01

    Deformation-induced ferrite transformation (DIFT) was applied in laboratory tests to produce fine-grained dual-phase (DP) steels. Four different chemistries were investigated, starting from a conventional DP 600 chemistry of 0.06 wt pct C-1.9 wt pct Mn-0.16 wt pct Mo and subsequently varying Nb and Mo additions. For all investigated steels, ultrafine ferrite (UFF) with a grain size of 1 to 2 μm can be obtained when a sufficient amount of deformation ( e.g., a true strain of 0.6 or above in axisymmetric compression) is applied to an austenite microstructure with a grain size in the range of 10 to 20 μm at 25 °C to 50 °C above the austenite-to-ferrite transformation start temperature ( Ar 3) characteristic for the given cooling condition. Rapid post-deformation cooling at rates of approximately 100 °C/s yields the desired UFF-martensite microstructure. Electron backscattered diffraction (EBSD) mapping reveals a high percentage (approximately 40 pct) of low-angle boundaries in these microstructures, except for the steel that is just microalloyed with Nb. The steel with the plain-carbon-base chemistry was subjected to hot torsion simulations of a hot strip rolling processing schedules that incorporate a DIFT pass after a conventional seven-stand finish mill schedule. Executing the DIFT pass at 650 °C to 675 °C produced an UFF microstructure, illustrating the potential for the design of novel thermomechanical processing paths to produce hot-rolled ultrafine DP steels.

  7. Sodium Salts in Ice Grains from Enceladus

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Kempf, S.; Schmidt, J.; Brillantov, N.; Abel, B.; Beinsen, A.; Buck, U.; Srama, R.

    2009-04-01

    One key requirement for the formation of life precursors on Enceladus, is liquid water below its icy surface. Although measurements and model calculations for Enceladus plume source suggest temperatures close to the melting point, direct evidence for liquid water has not been produced so far. We present compositional measurements by Cassini's dust detector of ice particles emitted from Saturn's cryo-volcanic moon Enceladus into the E ring. Since sodium is considered as crucial indicator for an Enceladus ocean, our detection of sodium salts within the grains provide the first evidence for mineral enriched liquid water below the moon's icy surface. In nearly all particles detected in situ by the Cosmic Dust Analyser (CDA) aboard the Cassini spacecraft, we found sodium (Na) in varying concentrations. Most spectra also show potassium (K) in lower abundance. In mass spectra that are particularly sodium rich, sodium salts (like NaCl and NaHCO3) are identified as Na bearing components. This is only possible if the plume source is liquid water that is or has been in contact with the rocky material of Enceladus' core. The abundance of minerals as well as the inferred basic pH value of those grains exhibit a compelling similarity with the predicted composition of an Enceladus ocean. The Na-rich ice particles likely are frozen ocean droplets expelled through the plumes into the E ring. From the compositional analysis, models for grain production and ejection can be derived which give new insights in plume dynamics and subsurface processes. They also allow the refinement of models for a water-rock-interaction at the bottom of the liquid layer.

  8. Towards the limit of ferroelectric nanosized grains

    NASA Astrophysics Data System (ADS)

    Roelofs, A.; Schneller, T.; Szot, K.; Waser, R.

    2003-02-01

    Ferroelectric random access memories are non-volatile, low voltage, high read/write speed devices which have been introduced into the market in recent years and which show the clear potential of future gigabit scale universal non-volatile memories. The ultimate limit of this concept will depend on the ferroelectric limit (synonymous superparaelectric limit), i.e. the size limit below which the ferroelectricity is quenched. While there are clear indications that 2D ferroelectric oxide films may sustain their ferroelectric polarization below 4 nm in thickness (Tybell T, Ahn C H and Triscone J M 1999 Appl. Phys. Lett. 75 856), the limit will be quite different for isolated 3D nanostructures (nanograins, nanoclusters). To investigate scaling effects of ferroelectric nanograins on Si wafers, we studied PbTiO3 (PTO) and Pb(ZrxTi1-x)O3 grown by a self-assembly chemical solution deposition method. Preparing highly diluted precursor solutions we achieved single separated ferroelectric grains with grain sizes ranging from 200 nm down to less than 20 nm. For grains smaller than 20 nm, no piezoresponse was observed and we suppose this could be due to the transition from the ferroelectric to the paraelectric phase which has no spontaneous polarization. Recent calculations (Zhong W L, Wang Y G, Zhang P L and Qu B D 1994 Phys. Rev. B 50 698) and experiments (Jiang B, Peng J L, Zhong W L and Bursill L A 2000 J. Appl. Phys. 87 3462) showed that the ferroelectricity of fine ferroelectric particles decrease with decreasing particle size. From these experiments the extrapolated critical size of PTO particles was found to be around 4.2-20 nm.

  9. Grain Growth and Silicates in Dense Clouds

    NASA Technical Reports Server (NTRS)

    Pendeleton, Yvonne J.; Chiar, J. E.; Ennico, K.; Boogert, A.; Greene, T.; Knez, C.; Lada, C.; Roellig, T.; Tielens, A.; Werner, M.; Whittet, D.

    2006-01-01

    Interstellar silicates are likely to be a part of all grains responsible for visual extinction (Av) in the diffuse interstellar medium (ISM) and dense clouds. A correlation between Av and the depth of the 9.7 micron silicate feature (measured as optical depth, tau(9.7)) is expected if the dust species are well 'mixed. In the di&se ISM, such a correlation is observed for lines of sight in the solar neighborhood. A previous study of the silicate absorption feature in the Taurus dark cloud showed a tendency for the correlation to break down at high Av (Whittet et al. 1988, MNRAS, 233,321), but the scatter was large. We have acquired Spitzer Infrared Spectrograph data of several lines of sight in the IC 5 146, Barnard 68, Chameleon I and Serpens dense clouds. Our data set spans an Av range between 2 and 35 magnitudes. All lines of sight show the 9.7 micron silicate feature. The Serpens data appear to follow the diffuse ISM correlation line whereas the data for the other clouds show a non-linear correlation between the depth of the silicate feature relative to Av, much like the trend observed in the Taurus data. In fact, it appears that for visual extinctions greater than about 10 mag, tau(9.7) begins to level off. This decrease in the growth of the depth of the 9.7 micron feature with increasing Av could indicate the effects of grain growth in dense clouds. In this poster, we explore the possibility that grain growth causes an increase in opacity (Av) without causing a corresponding increase in tau(9.7).

  10. Microstructural changes in Beta-silicon nitride grains upon crystallizing the grain-boundary glass

    NASA Technical Reports Server (NTRS)

    Lee, William E.; Hilmas, Gregory E.; Lange, F. F. (Editor)

    1991-01-01

    Crystallizing the grain boundary glass of a liquid phase sintered Si3N4 ceramic for 2 h or less at 1500 C led to formation of gamma Y2Si2O7. After 5 h at 1500 C, the gamma Y2Si2O7 had transformed to beta Y2Si2O7 with a concurrent dramatic increase in dislocation density within beta Si3N4 grains. Reasons for the increased dislocation density is discussed. Annealing for 20 h at 1500 C reduced dislocation densities to the levels found in as-sintered materials.

  11. Microstructural changes in beta-silicon nitride grains upon crystallizing the grain-boundary glass

    NASA Technical Reports Server (NTRS)

    Lee, William E.; Hilmas, Gregory E.

    1989-01-01

    Crystallizing the grain-boundary glass of a liquid-phase-sintered Si3N4 ceramic for 2 h or less at 1500 C led to formation of delta-Y2Si2O7. After 5 h at 1500 C, the delta-Y2Si2O7 had transformed to beta-Y2Si2O7 with a concurrent dramatic increase in dislocation density within beta-Si3N4 grains. Reasons for the increased dislocation density are discussed. Annealing for 20 h at 1500 C reduced dislocation densities to the levels found in as-sintered material.

  12. Static Grain Growth in Contact Metamorphic Calcite: A Cathodoluminescence Study.

    NASA Astrophysics Data System (ADS)

    Vogt, B.; Heilbronner, R.; Herwegh, M.; Ramseyer, K.

    2009-04-01

    In the Adamello contact aureole, monomineralic mesozoic limestones were investigated in terms of grain size evolution and compared to results on numerical modeling performed by Elle. The sampled area shows no deformation and therefore represents an appropriate natural laboratory for the study of static grain growth (Herwegh & Berger, 2003). For this purpose, samples were collected at different distances to the contact to the pluton, covering a temperature range between 270 to 630°C. In these marbles, the grain sizes increase with temperature from 5 µm to about 1 cm as one approaches the contact (Herwegh & Berger, 2003). In some samples, photomicrographs show domains of variable cathodoluminescence (CL) intensities, which are interpreted to represent growth zonations. Microstructures show grains that contain cores and in some samples even several growth stages. The cores are usually not centered and the zones not concentric. They may be in touch with grain boundaries. These zonation patterns are consistent within a given aggregate but differ among the samples even if they come from the same location. Relative CL intensities depend on the Mn/Fe ratio. We assume that changes in trace amounts of Mn/Fe must have occurred during the grain size evolution, preserving local geochemical trends and their variations with time. Changes in Mn/Fe ratios can either be explained by (a) locally derived fluids (e.g. hydration reactions of sheet silicate rich marbles in the vicinity) or (b) by the infiltration of the calcite aggregates by externally derived (magmatic?) fluids. At the present stage, we prefer a regional change in fluid composition (b) because the growth zonations only occur at distances of 750-1250 m from the pluton contact (350-450°C). Closer to the contact, neither zonations nor cores were found. At larger distances, CL intensities differ from grain to grain, revealing diagenetic CL patterns that were incompletely recrystallized by grain growth. The role of

  13. Reduced variable technique for predicting grain behavior

    NASA Technical Reports Server (NTRS)

    Lewis, G. W.; Fedors, R. F.; Landel, R. F.

    1977-01-01

    The use of reduced variables to account for the time-temperature dependence of the relaxation modulus is a standard and universally adopted technique in the stress analysis of solid propellant grains. Recent work has suggested that the reduced variable technique can also be used to account for the dependence of the relaxation modulus on the crosslink density of an elastomer system. By combining variables, it is now possible to determine the relaxation modulus as a function of both mechanical and chemical parameters over a long period of time. The problems involved, the pitfalls to be avoided, and suggested techniques to be used in acquiring data are discussed.

  14. Electronic and molecular structure of carbon grains

    NASA Technical Reports Server (NTRS)

    Almloef, Jan; Luethi, Hans-Peter

    1990-01-01

    Clusters of carbon atoms have been studied with large-scale ab initio calculations. Planar, single-sheet graphite fragments with 6 to 54 atoms were investigated, as well as the spherical C(sub 60) Buckminsterfullerene molecule. Polycyclic aromatic hydrocarbons (PAHs) have also been considered. Thermodynamic differences between diamond- and graphite-like grains have been studied in particular. Saturation of the peripheral bonds with hydrogen is found to provide a smooth and uniform convergence of the properties with increasing cluster size. For the graphite-like clusters the convergence to bulk values is much slower than for the three-dimensional complexes.

  15. Early season spring small grains proportion estimation

    NASA Technical Reports Server (NTRS)

    Phinney, D. E.; Trichel, M. C.

    1984-01-01

    An accurate, automated method for estimating early season spring small grains from Landsat MSS data is discussed. The method is summarized and the results of its application to 100 sample segment-years of data from the US Northern Great Plains in 1976, 1977, 1978, and 1979 are summarized. The results show that this estimator provides accurate estimates earlier in the growing season than previous methods. Ground truth is required only in the estimator development, and data storage, transmission, preprocessing, and processing requirements are minimal.

  16. [Methods for grain size analysis of nanomedicines].

    PubMed

    Geng, Zhi-Wang; He, Lan; Zhang, Qi-Ming; Yang, Yong-Jian

    2012-07-01

    As nanomedicines are developing fast in both academic and market areas, building up suitable methods for nanomedicine analysis with proper techniques is an important subject, requiring further research. The techniques, which could be employed for grain size analysis of nanomedicines, were reviewed. Several key techniques were discussed with their principles, scope of applications, advantages and defects. Their applications to nanomedine analysis were discussed according to the properties of different nanomedicines, with the purpose of providing some suggestions for the control and administration of nanomedicines.

  17. Early season spring small grains proportion estimation

    NASA Technical Reports Server (NTRS)

    Phinney, D. E.; Trichel, M. C.

    1984-01-01

    An accurate, automated method for estimating early season spring small grains from Landsat MSS data is discussed. The method is summarized and the results of its application to 100 sample segment-years of data from the US Northern Great Plains in 1976, 1977, 1978, and 1979 are summarized. The results show that this estimator provides accurate estimates earlier in the growing season than previous methods. Ground truth is required only in the estimator development, and data storage, transmission, preprocessing, and processing requirements are minimal.

  18. Black grain mycetoma caused by Leptosphaeria tompkinsii.

    PubMed

    Machmachi, H; Godineau, N; Develoux, M; Bretagne, S; Bazeli, A; Amsellem, D; Desnos-Ollivier, M; Poirat, J B

    2011-02-01

    Leptosphaeria tompkinsii is a dematiaceous fungus which is rarely reported as an agent of black-grain mycetoma. We present a case involving a mycetoma of the hand of a former farmer from Mali, West Africa, who has been a resident in France for 27 years. The patient was successfully treated with surgery and the use of oral itraconazole for 6 months. Species identification was based on sexual reproductive structures observed on potato-carrot agar media and the use of internal transcribed spacer sequencing.

  19. GRAIN BOUNDARY STRENGTHENING PROPERTIES OF TUNGSTEN ALLOYS

    SciTech Connect

    Setyawan, Wahyu; Kurtz, Richard J.

    2012-10-10

    Density functional theory was employed to investigate grain boundary (GB) properties of W alloys. A range of substitutional solutes across the Periodic Table was investigated to understand the behavior of different electronic orbitals in changing the GB cleavage energy in the Σ27a[110]{525} GB. A number of transition metals were predicted to enhance the GB cohesion. This includes Ru, Re, Os, Ir, V, Cr, Mn, Fe, Co, Ti, Hf, Ta and Nb. While lanthanides, s and p elements were tended to cause GB embrittlement.

  20. Influence of anisotropic grain boundary properties on the evolution of grain boundary character distribution during grain growth—a 2D level set study

    NASA Astrophysics Data System (ADS)

    Hallberg, Håkan

    2014-12-01

    The present study elaborates on a 2D level set model of polycrystal microstructures that was recently established by adding the influence of anisotropic grain boundary energy and mobility on microstructure evolution. The new model is used to trace the evolution of grain boundary character distribution during grain growth. The employed level set formulation conveniently allows the grain boundary characteristics to be quantified in terms of coincidence site lattice (CSL) type per unit of grain boundary length, providing a measure of the distribution of such boundaries. In the model, both the mobility and energy of the grain boundaries are allowed to vary with misorientation. In addition, the influence of initial polycrystal texture is studied by comparing results obtained from a polycrystal with random initial texture against results from a polycrystal that initially has a cube texture. It is shown that the proposed level set formulation can readily incorporate anisotropic grain boundary properties and the simulation results further show that anisotropic grain boundary properties only have a minor influence on the evolution of CSL boundary distribution during grain growth. As anisotropic boundary properties are considered, the most prominent changes in the CSL distributions are an increase of general low-angle Σ1 boundaries as well as a more stable presence of Σ3 boundaries. The observations also hold for the case of an initially cube-textured polycrystal. The presence of this kind of texture has little influence over the evolution of the CSL distribution. Taking into consideration the anisotropy of grain boundary properties, grain growth alone does not seem to be sufficient to promote any significantly increased overall presence of CSL boundaries.

  1. Grain destruction in shocks in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Jones, A. P.; Tielens, A. G. G. M.; Hollenbach, D. J.; Mckee, C. F.

    1994-01-01

    Destruction of interstellar dust occurs predominantly in supernova shock waves in the warm neutral/ionized medium (density approximately = 0.25/cu cm, temperature approximately = 10(exp 4) K). Recent theoretical developments and laboratory data for sputtering processes and grain-grain collisional vaporization allows us to better evaluate the grain destruction rate in interstellar shocks in the warm medium. We find that, independent of composition, grain denstruction in supernova blast waves is dominated by nonthermal sputtering for shock velocities greater than 50 km/s and less than or equal to 150 km/s and thermal sputtering at higher shock velocities. We use a detailed scheme for the vaporization of grains colliding at high velocities (v(sub s) greater than or equal to 20 km/s) and show that the grain-grain collision destruction process is only dominant for shock velocities of less than or equal to 50-80 km/s and is less important than previously assumed. Nevertheless, the grain-grain destruction rates are of order 30%-90% of the sputtering rates at v(sub s) greater than 100 km/s and less than 200 km/s and are important in vaporizing the cores of grains. Detailed results for grain destruction as a function of grain size and composition are presented. We also present results for silicon carbide, iron, ice, and porous test particles. For carbonaceous grains we find that the fractional destruction is less than or equal to 0.29, and for silicate it is less than or equal to 0.45, for v(sub s) less than or equal to 200 km/s. We have calculated grain lifetimes, using the three-phase model of the interstellar medium, and find lifetimes of 4 x 10(exp 8) yr for carbonaceous grains and 2.2 x 10(exp 8) yr for silicate grains. Given that the typical stardust injection timescale of 2.5 x 10(exp 9) yr, we conclude that efficient mechanisms for grain growth in the interstellar medium must exist in order that a significant fraction of the refractory elements be incorporated in

  2. Grain destruction in shocks in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Jones, A. P.; Tielens, A. G. G. M.; Hollenbach, D. J.; Mckee, C. F.

    1994-01-01

    Destruction of interstellar dust occurs predominantly in supernova shock waves in the warm neutral/ionized medium (density approximately = 0.25/cu cm, temperature approximately = 10(exp 4) K). Recent theoretical developments and laboratory data for sputtering processes and grain-grain collisional vaporization allows us to better evaluate the grain destruction rate in interstellar shocks in the warm medium. We find that, independent of composition, grain denstruction in supernova blast waves is dominated by nonthermal sputtering for shock velocities greater than 50 km/s and less than or equal to 150 km/s and thermal sputtering at higher shock velocities. We use a detailed scheme for the vaporization of grains colliding at high velocities (v(sub s) greater than or equal to 20 km/s) and show that the grain-grain collision destruction process is only dominant for shock velocities of less than or equal to 50-80 km/s and is less important than previously assumed. Nevertheless, the grain-grain destruction rates are of order 30%-90% of the sputtering rates at v(sub s) greater than 100 km/s and less than 200 km/s and are important in vaporizing the cores of grains. Detailed results for grain destruction as a function of grain size and composition are presented. We also present results for silicon carbide, iron, ice, and porous test particles. For carbonaceous grains we find that the fractional destruction is less than or equal to 0.29, and for silicate it is less than or equal to 0.45, for v(sub s) less than or equal to 200 km/s. We have calculated grain lifetimes, using the three-phase model of the interstellar medium, and find lifetimes of 4 x 10(exp 8) yr for carbonaceous grains and 2.2 x 10(exp 8) yr for silicate grains. Given that the typical stardust injection timescale of 2.5 x 10(exp 9) yr, we conclude that efficient mechanisms for grain growth in the interstellar medium must exist in order that a significant fraction of the refractory elements be incorporated in

  3. Mechanical Spectroscopy of Grain Boundaries: Insights into Grain and Phase Boundary Sliding (Invited)

    NASA Astrophysics Data System (ADS)

    Sundberg, M.

    2010-12-01

    Grain boundary sliding has been identified as an important contributor to plastic deformation of polycrystalline rocks. Grain boundary sliding commonly acts in kinetic series with some other, usually rate-limiting, step such as grain boundary diffusion or dislocation propagation. Consequently, the mechanical properties of grain and phase boundaries are not typically measurable during steady-state creep tests. In contrast, measurements of the intrinsic shear attenuation (QG-1 ) of a polycrystalline rock as a function of frequency and temperature hold the potential to provide direct measurements of the grain boundary viscosity. Reciprocating torsion tests can be complemented by small-strain transient creep tests that monitor the short-time transient mechanical response of a polycrystalline solid to an instantaneous increase in stress. To develop and test a viscoelastic model that can describe both time- and frequency-domain mechanical behavior and thus allow extrapolation of experimental results to natural conditions, we have conducted an experimental study of low-frequency (10-2.25grained (d~5μm) aggregates of olivine and orthopyroxene ranging in composition from 6-75 vol % opx. The attenuation spectra reveal “high-temperature background” behavior at low to moderate frequencies. At higher frequencies (f>10-0.5 Hz) the attenuation spectra reveal the onset of an apparent Debye peak in the attenuation spectra, likely due to elastically-accommodated grain boundary sliding. A modified Andrade viscoelastic model that incorporates both the high-temperature background and the Debye

  4. [Effects of early growth stage shading on rice flag leaf physiological characters and grain growth at grain-filling stage].

    PubMed

    Liu, Qi-hua; Zhou, Xue-biao; Yang, Lian-qun; Li, Tian; Zhang, Jian-jun

    2009-09-01

    In a pot experiment, rice plants were shaded during the period from transplanting to booting, aimed to study the effects of early growth stage shading on the rice growth at grain-filling stage. Comparing with the control, early growth stage shading decreased the tiller number by 26.72%, but increased the flag leaf area and soluble sugar content by 33.86% and 30.23%, respectively. The filled-grain number per panicle, 1000-grain mass, ultimate brown rice mass, and maximum and average grain-filling rates decreased by 8.65%, 4.81%, 9.74%, 20.22%, and 19.13%, and the effective panicle number and grain yield declined by 25.26% and 39.56%, respectively. The peak time of grain-filling rate (Tm) advanced 1.66 days, while the grain-filling time (T99) prolonged 6.80 days. For shading-tolerance variety, its flag leaf Chl a, Chl b, and Chl (a + b) contents at early and mid grain-filling stages, and the protein N and soluble sugar contents and Chl a/b in its flag leaves at grain-filling stage all increased under early growth stage shading, and the ultimate brown rice mass and 1000-grain mass maintained at the similar levels as the control. Consequently, its grain yield reduction rate was lower than that of shading-sensitive variety.

  5. [5-n-alkylresorcinols of whole grain cereals and whole grain cereal products as biomarkers of healthy food].

    PubMed

    Kulawinek, Mariola; Kozubek, Arkadiusz

    2007-01-01

    Epidemiological studies suggest that consumption of whole grain cereals and whole grain cereal products have many benefical health effects, including reducing risk of diabetes, obesity, coronary heart diseases, stroke and even some cancers. Precise knowledge protective compounds present in cereal grains can be achieved only when specific biomarkers (biological marker, indicator), that could provide estimation of grain cereals absorption and intake, are established and determined. 5-n-alkylresorcinols (main fraction of phenolic compounds in cereals), because of their specific occurrence only in bran fraction, obtained in refining of milling fractions process, could be a very good candidate to play the role of biomarker of whole grain intake. They are absorbed by animals and humans, present in human plasma and as metabolites in urine. Because composition of saturated homologues of 5-n-alkylresorcinols is different in rye and wheat grains, they could be used as an indicator of the intake of the specific type of cereals and whole grain cereal products.

  6. Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat

    PubMed Central

    Rebetzke, G. J.; Bonnett, D. G.; Reynolds, M. P.

    2016-01-01

    Genotypic variation in ear morphology is linked to differences in photosynthetic potential to influence grain yield in winter cereals. Awns contribute to photosynthesis, particularly under water-limited conditions when canopy assimilation is restricted. We assessed performance of up to 45 backcross-derived, awned–awnletted NILs representing four diverse genetic backgrounds in 25 irrigated or rainfed, and droughted environments in Australia and Mexico. Mean environment grain yields were wide-ranging (1.38–7.93 t ha−1) with vegetative and maturity biomass, plant height, anthesis date, spike number, and harvest index all similar (P >0.05) for awned and awnletted NILs. Overall, grain yields of awned–awnletted sister-NILs were equivalent, irrespective of yield potential and genetic background. Awnletted wheats produced significantly more grains per unit area (+4%) and per spike (+5%) reflecting more fertile spikelets and grains in tertiary florets. Increases in grain number were compensated for by significant reductions in grain size (–5%) and increased frequency (+0.8%) of small, shrivelled grains (‘screenings’) to reduce seed-lot quality of awnletted NILs. Post-anthesis canopies of awnletted NILs were marginally warmer over all environments (+0.27 °C) but were not different and were sometimes cooler than awned NILs at cooler air temperatures. Awns develop early and represented up to 40% of total spikelet biomass prior to ear emergence. We hypothesize that the allocation of assimilate to large and rapidly developing awns decreases spikelet number and floret fertility to reduce grain number, particularly in distal florets. Individual grain size is increased to reduce screenings and to increase test weight and milling quality, particularly in droughted environments. Despite the average reduction in grain size, awnless lines could be identified that combined higher grain yield with larger grain size, increased grain protein concentration, and reduced

  7. Origins of Shear Jamming for Frictional Grains

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Zheng, Hu; Ren, Jie; Dijksman, Joshua; Bares, Jonathan; Behringer, Robert

    2016-11-01

    Granular systems have been shown to be able to behave like solids, under shear, even when their densities are below the critical packing fraction for frictionless isotropic jamming. To understand such a phenomena, called shear jamming, the question we address here is: how does shear bring a system from a unjammed state to a jammed state, where the coordination number, Z, is no less than 3, the isotropic jamming point for frictional grains? Since Z can be used to distinguish jammed states from unjammed ones, it is vital to understand how shear increases Z. We here propose a set of three particles in contact, denoted as a trimer, as the basic unit to characterize the deformation of the system. Trimers, stabilized by inter-grain friction, fail under a certain amount of shear and bend to make extra contacts to regain stability. By defining a projection operator of the opening angle of the trimer to the compression direction in the shear, O, we see a systematically linear decrease of this quantity with respect to shear strain, demonstrating the bending of trimers as expected. In addition, the average change of O from one shear step to the next shows a good collapse when plotted against Z, indicating a universal behavior in the process of shear jamming. We acknowledge support from NSF DMR1206351, NASA NNX15AD38G, the William M. Keck Foundation and a RT-MRSEC Fellowship.

  8. Fine-grained auditory discrimination: factor structures.

    PubMed

    Elliott, L L; Hammer, M A

    1993-04-01

    This research tested the hypothesis that as children's language development matures, factor-analytic structural changes occur that are associated with measurements of fine-grained auditory discrimination, receptive vocabulary, receptive language, speech production, and three performance subtests of the WISC-R. Among 6- to 7-year-old children, the percent of total variance attributed to the factor defined by fine-grained auditory discrimination measures was approximately 43% for children who were intellectually impaired (Experiment 2), 27% for youngsters who had language-learning problems, and 16% for regularly progressing children (Experiment 1). The WISC-R subtest scores, generally, did not load on the auditory discrimination factor. The difference in variance explained by the auditory discrimination factor was interpreted as representing greater relative importance of auditory discrimination among children with less-well-developed language competencies than among children with more mature language skills. This interpretation was strengthened by the finding of no distinct auditory discrimination factor for 8- to 11-year-old children who were either regularly progressing or language-disabled even though the language/speech factor at this age closely resembled that found among younger children. Results were consonant with Ackerman's (1987) model, suggesting that task-specific variance associated with tasks that remain resource-dependent may diminish after practice and experience.

  9. Grain Exchange Probabilities Within a Gravel Bed

    NASA Astrophysics Data System (ADS)

    Haschenburger, J.

    2008-12-01

    Sediment transfers in gravel-bed rivers involve the vertical exchange of sediments during floods. These exchanges regulate the virtual velocity of sediment and bed material texture. This study describes general tendencies in the vertical exchange of gravels within the substrate that result from multiple floods. Empirical observations come from Carnation Creek, a small gravel-bed river with large woody debris located on the west coast of Vancouver Island, British Columbia. Frequent floods and the relatively limited armor layer facilitate streambed activity and relatively high bedload transport rates, typically under partial sediment transport conditions. Over 2000 magnetically tagged stones, ranging in size from 16 to 180 mm, were deployed on the bed surface between 1991 and 1992. These tracers have been recovered 10 times over 12 flood seasons to quantify their vertical position in the streambed. For analysis, the bed is divided into layers based on armor layer thickness. Once tracers are well mixed within the streambed, grains in the surface layer are most likely to be mixed into the subsurface, while subsurface grains are most likely to persist within the subsurface. Fractional exchange probabilities approach size independence when the most active depth of the substrate is considered. Overall these results highlight vertical mixing as an important process in the dispersion of gravels.

  10. Collection and hauling of cereal grain chaff

    SciTech Connect

    Reding, B.; Leduc, P.; Stumborg, M.

    1993-12-31

    Cereal grain chaff has been identified by Energy Mines and Resources, Canada, and Agriculture Canada, as a suitable feedstock for ethanol production. Canada produces 13,300,000 t (14,600,000 ton) of cereal grain chaff annually; mainly in the prairie region. Work conducted at the Prairie Agricultural Machinery Institute (PAMI), Humboldt, Saskatchewan, has determined that the collection of chaff for centralized processing is a problem due to low bulk density in its natural state. This problem can be overcome by densification using either compression or size reduction. Either method will be economical in a chaff shed radius of 140 km (87 mi) when chaff is densified to 160 kg/m{sup 3} (10 lb/ft{sup 3}). The size reduction method of densification may be economical to hauling distances exceeding 166 km (103 mi), particularly if size reduction is a required part of ethanol processing. Further work is under way to develop the required equipment modifications to allow existing farm equipment to be used for this purpose.

  11. Carbon footprint of grain production in China.

    PubMed

    Zhang, Dan; Shen, Jianbo; Zhang, Fusuo; Li, Yu'e; Zhang, Weifeng

    2017-06-29

    Due to the increasing environmental impact of food production, carbon footprint as an indicator can guide farmland management. This study established a method and estimated the carbon footprint of grain production in China based on life cycle analysis (LCA). The results showed that grain production has a high carbon footprint in 2013, i.e., 4052 kg ce/ha or 0.48 kg ce/kg for maize, 5455 kg ce/ha or 0.75 kg ce/kg for wheat and 11881 kg ce/ha or 1.60 kg ce/kg for rice. These footprints are higher than that of other countries, such as the United States, Canada and India. The most important factors governing carbon emissions were the application of nitrogen fertiliser (8-49%), straw burning (0-70%), energy consumption by machinery (6-40%), energy consumption for irrigation (0-44%) and CH4 emissions from rice paddies (15-73%). The most important carbon sequestration factors included returning of crop straw (41-90%), chemical nitrogen fertiliser application (10-59%) and no-till farming practices (0-10%). Different factors dominated in different crop systems in different regions. To identity site-specific key factors and take countermeasures could significantly lower carbon footprint, e.g., ban straw burning in northeast and south China, stopping continuous flooding irrigation in wheat and rice production system.

  12. Deuterium enrichment of the interstellar grain mantle

    NASA Astrophysics Data System (ADS)

    Das, Ankan; Sahu, Dipen; Majumdar, Liton; Chakrabarti, Sandip K.

    2016-01-01

    We carry out Monte Carlo simulation to study deuterium enrichments of interstellar grain mantles under various physical conditions. Based on the physical properties, various types of clouds are considered. We find that in diffuse cloud regions, very strong radiation fields persists and hardly a few layers of surface species are formed. In translucent cloud regions with a moderate radiation field, significant number of layers would be produced and surface coverage is mainly dominated by photo-dissociation products such as, C, CH3, CH2D, OH and OD. In the intermediate dense cloud regions (having number density of total hydrogen nuclei in all forms ˜2 × 104 cm-3), water and methanol along with their deuterated derivatives are efficiently formed. For much higher density regions (˜106 cm-3), water and methanol productions are suppressed but surface coverages of CO, CO2, O2 and O3 are dramatically increased. We find a very high degree of fractionation of water and methanol. Observational results support a high fractionation of methanol but surprisingly water fractionation is found to be low. This is in contradiction with our model results indicating alternative routes for de-fractionation of water. Effects of various types of energy barriers are also studied. Moreover, we allow grain mantles to interact with various charged particles (such as H+, Fe+, S+ and C+) to study the stopping power and projected range of these charged particles on various target ices.

  13. Transmission Electron Microscopy of Itokawa Regolith Grains

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Berger, E. L.

    2013-01-01

    Introduction: In a remarkable engineering achievement, the JAXA space agency successfully recovered the Hayabusa space-craft in June 2010, following a non-optimal encounter and sur-face sampling mission to asteroid 25143 Itokawa. These are the first direct samples ever obtained and returned from the surface of an asteroid. The Hayabusa samples thus present a special op-portunity to directly investigate the evolution of asteroidal sur-faces, from the development of the regolith to the study of the effects of space weathering. Here we report on our preliminary TEM measurements on two Itokawa samples. Methods: We were allocated particles RA-QD02-0125 and RA-QD02-0211. Both particles were embedded in low viscosity epoxy and thin sections were prepared using ultramicrotomy. High resolution images and electron diffraction data were ob-tained using a JEOL 2500SE 200 kV field-emission scanning-transmission electron microscope. Quantitative maps and anal-yses were obtained using a Thermo thin-window energy-dispersive x-ray (EDX) spectrometer. Results: Both particles are olivine-rich (Fo70) with µm-sized inclusions of FeS and have microstructurally complex rims. Par-ticle RA-QD02-0125 is rounded and has numerous sub-µm grains attached to its surface including FeS, albite, olivine, and rare melt droplets. Solar flare tracks have not been observed, but the particle is surrounded by a continuous 50 nm thick, stuctur-ally disordered rim that is compositionally similar to the core of the grain. One of the surface adhering grains is pyrrhotite show-ing a S-depleted rim (8-10 nm thick) with nanophase Fe metal grains (<5 nm) decorating the outermost surface. The pyrrhotite displays a complex superstructure in its core that is absent in the S-depleted rim. Particle RA-QD02-0211 contains solar flare particle tracks (2x109 cm-2) and shows a structurally disordered rim 100 nm thick. The track density corresponds to a surface exposure of 103-104 years based on the track production rate

  14. Cometary Refractory Grains: Interstellar and Nebular Sources

    NASA Astrophysics Data System (ADS)

    Wooden, D. H.

    2008-07-01

    Comets are heterogeneous mixtures of interstellar and nebular materials. The degree of mixing of interstellar sources and nebular sources at different nuclear size scales holds the promise of revealing how cometary particles, cometesimals, and cometary nuclei accreted. We can ascribe cometary materials to interstellar and nebular sources and see how comets probe planet-forming process in our protoplanetary disk. Comets and cometary IDPs contain carbonaceous matter that appears to be either similar to poorly-graphitized (amorphous) carbon, a likely ISM source, or highly labile complex organics, with possible ISM or outer disk heritage. The oxygen fugacity of the solar nebula depends on the dynamical interplay between the inward migration of carbon-rich grains and of icy (water-rich) grains. Inside the water dissociation line, OH- reacts with carbon to form CO or CO2, consuming available oxygen and contributing to the canonical low oxygen fugacity. Alternatively, the influx of water vapor and/or oxygen rich dust grains from outer (cooler) disk regions can raise the oxygen fugacity. Low oxygen fugacity of the canonical solar nebula favors the condensation of Mg-rich crystalline silicates and Fe-metal, or the annealing of Fe-Mg amorphous silicates into Mg-rich crystals and Fe-metal via Fe-reduction. High oxygen fugacity nebular conditions favors the condensation of Fe-bearing to Fe-rich crystalline silicates. In the ISM, Fe-Mg amorphous silicates are prevalent, in stark contrast to Mg-rich crystalline silicates that are rare. Hence, cometary Mg-rich crystalline silicates formed in the hot, inner regions of the canonical solar nebula and they are the touchstone for models of the outward radial transport of nebular grains to the comet-forming zone. Stardust samples are dominated by Mg-rich crystalline silicates but also contain abundant Fe-bearing and Fe-rich crystalline silicates that are too large (≫0.1 μm) to be annealed Fe-Mg amorphous silicates. By comparison

  15. Grain Selection During Casting Ni-Base, Single-Crystal Superalloys with Spiral Grain Selector

    NASA Astrophysics Data System (ADS)

    Gao, S. F.; Liu, L.; Wang, N.; Zhao, X. B.; Zhang, J.; Fu, H. Z.

    2012-10-01

    The behavior of grain selection in a spiral grain selector during investment casting of a Ni-base, single-crystal (SX) superalloy, DD3, has been investigated by electron backscattered diffraction (EBSD) techniques and optical microscopy. The results indicated that the main function of starter block is to optimize the crystal orientation. During the process of grain selection in spiral passage, the grain near the inner wall of spiral passage was usually selected as the final single crystal. It was found that the dendrites near the inner wall could develop new tertiary dendritic arms that paralleled the primary dendrites from the secondary dendritic arms to overgrow the dendrites far away from the inner wall. The crystal orientation that was examined by X-ray diffraction revealed that (1) the crystal orientation did not change obviously with increasing spiral thickness or angle and (2) the crystal orientation could be optimized by increasing the withdrawal rate and ceramic mold temperature. The influence of pouring temperature on crystal orientation was also discussed.

  16. Relating optical and microwave grain metrics of snow: the relevance of grain shape

    NASA Astrophysics Data System (ADS)

    Krol, Quirine; Löwe, Henning

    2016-11-01

    Grain shape is commonly understood as a morphological characteristic of snow that is independent of the optical diameter (or specific surface area) influencing its physical properties. In this study we use tomography images to investigate two objectively defined metrics of grain shape that naturally extend the characterization of snow in terms of the optical diameter. One is the curvature length λ2, related to the third-order term in the expansion of the two-point correlation function, and the other is the second moment μ2 of the chord length distributions. We show that the exponential correlation length, widely used for microwave modeling, can be related to the optical diameter and λ2. Likewise, we show that the absorption enhancement parameter B and the asymmetry factor gG, required for optical modeling, can be related to the optical diameter and μ2. We establish various statistical relations between all size metrics obtained from the two-point correlation function and the chord length distribution. Overall our results suggest that the characterization of grain shape via λ2 or μ2 is virtually equivalent since both capture similar aspects of size dispersity. Our results provide a common ground for the different grain metrics required for optical and microwave modeling of snow.

  17. AC conductivity scaling behavior in grain and grain boundary response regime of fast lithium ionic conductors

    NASA Astrophysics Data System (ADS)

    Mariappan, C. R.

    2014-05-01

    AC conductivity spectra of Li-analogues NASICON-type Li1.5Al0.5Ge1.5P3O12 (LAGP), Li-Al-Ti-P-O (LATP) glass-ceramics and garnet-type Li7La2Ta2O13 (LLTO) ceramic are analyzed by universal power law and Summerfield scaling approaches. The activation energies and pre-exponential factors of total and grain conductivities are following the Meyer-Neldel (M-N) rule for NASICON-type materials. However, the garnet-type LLTO material deviates from the M-N rule line of NASICON-type materials. The frequency- and temperature-dependent conductivity spectra of LAGP and LLTO are superimposed by Summerfield scaling. The scaled conductivity curves of LATP are not superimposed at the grain boundary response region. The superimposed conductivity curves are observed at cross-over frequencies of grain boundary response region for LATP by incorporating the exp ( {{{ - (EAt - EAg )} {{{ - (EAt - EAg )} {kT}}} ) factor along with Summerfield scaling factors on the frequency axis, where EAt and EAg are the activation energies of total and grain conductivities, respectively.

  18. The effects of nedocromil sodium on the response to grain dust in West Australian grain workers.

    PubMed Central

    Blainey, A D; Musk, A W; Ryan, G; Phillips, M J; Buccilli, C; Troon, S; Kidd, G

    1990-01-01

    Seasonal grain workers in Western Australia who develop respiratory symptoms after exposure to grain dust develop concomitant changes in lung function and bronchial responsiveness to methacholine. The mechanisms underlying these changes are not known. A detailed study was undertaken of seasonal grain workers in Western Australia to evaluate the effect of nedocromil sodium (Fisons, United Kingdom) on these changes to see if they could be prevented by this drug. Forty seven subjects participated. Symptoms and forced expiratory volume in one second (FEV1) were recorded before the study and before, during, and after each working shift, and bronchial responsiveness to methacholine was measured at the beginning and end of the study. Twenty three subjects received nedocromil and 22 received a placebo in a double blind design; there was no difference in baseline characteristics between the two groups. At the end of the study, no differences were found between the nedocromil and placebo groups in the prevalence of symptoms or development of new symptoms during the study. The drug had no effect on changes in methacholine PD20 or FEV1. As in previous studies, new symptoms developing during the season were more common in atopic subjects and were associated with a fall in methacholine PD20. It is concluded that nedocromil has no effect on the development of new symptoms in grain workers. The mechanisms underlying these symptoms require further study. PMID:2171630

  19. Utilization of wet distillers grains in high-energy beef cattle diets based on processed grain

    USDA-ARS?s Scientific Manuscript database

    Distiller's grains (DG) are used extensively by beef cattle feeding operations in the United States, including the Southern Great Plains. Our regional research consortium has been conducting research focused on utilization of wet DG in feedlot diets based on steam-flaked corn (SFC). Effects of DG on...

  20. Polysaccharide production by kefir grains during whey fermentation.

    PubMed

    Rimada, P S; Abraham, A G

    2001-11-01

    Fermentation of deproteinised whey with kefir grains CIDCA AGK1 was studied focusing on polysaccharide production from lactose. Kefir grains were able to acidify whey at different rates depending on the grain/whey ratio. During fermentation, kefir grains increased their weight and a water-soluble polysaccharide was released to the media. Exopolysaccharide concentration increased with fermentation time, reaching values of 57.2 and 103.4 mg/l after 5 days of fermentation in cultures with 10 and 100 g kefir grains/l, respectively. The polysaccharide fraction quantified after fermentation corresponded to the soluble fraction, because part of the polysaccharide became a component of the grain. Weight of kefir grains varied depending on the time of fermentation. Polysaccharide production was affected by temperature. Although the highest concentration of polysaccharide in the media was observed at 43 degrees C at both grain/whey ratios, the weight of the grains decreased in these conditions. In conclusion, kefir grains were able to acidify deproteinised whey, reducing lactose concentration, increasing their weight and producing a soluble polysaccharide.

  1. Grain Accumulation of Selenium Species in Rice (Oryza sativa L.)

    SciTech Connect

    Carey, Anne-Marie; Scheckel, Kirk G.; Lombi, Enzo; Newville, Matt; Choi, Yongseong; Norton, Gareth J.; Price, Adam H.; Meharg, Andrew A.

    2012-09-05

    Efficient Se biofortification programs require a thorough understanding of the accumulation and distribution of Se species within the rice grain. Therefore, the translocation of Se species to the filling grain and their spatial unloading were investigated. Se species were supplied via cut flag leaves of intact plants and excised panicle stems subjected to a {+-} stem-girdling treatment during grain fill. Total Se concentrations in the flag leaves and grain were quantified by inductively coupled plasma mass spectrometry. Spatial accumulation was investigated using synchrotron X-ray fluorescence microtomography. Selenomethionine (SeMet) and selenomethylcysteine (SeMeSeCys) were transported to the grain more efficiently than selenite and selenate. SeMet and SeMeSeCys were translocated exclusively via the phloem, while inorganic Se was transported via both the phloem and xylem. For SeMet- and SeMeSeCys-fed grain, Se dispersed throughout the external grain layers and into the endosperm and, for SeMeSeCys, into the embryo. Selenite was retained at the point of grain entry. These results demonstrate that the organic Se species SeMet and SeMeSeCys are rapidly loaded into the phloem and transported to the grain far more efficiently than inorganic species. Organic Se species are distributed more readily, and extensively, throughout the grain than selenite.

  2. Reducing arsenic accumulation in rice grain through iron oxide amendment.

    PubMed

    Farrow, Eric M; Wang, Jianmin; Burken, Joel G; Shi, Honglan; Yan, Wengui; Yang, John; Hua, Bin; Deng, Baolin

    2015-08-01

    Effects of soil-arsenic (As), phosphorus and iron oxide on As accumulation in rice grain were investigated. Cultivars that have significantly different sensitivity to As, straighthead-resistant Zhe 733 and straighthead-susceptible Cocodrie, were used to represent different cultivar varieties. The grain accumulation of other elements of concern, selenium (Se), molybdenum (Mo), and cadmium (Cd) was also monitored. Results demonstrated that high soil-As not only resulted in high grain-As, but could also result in high grain-Se, and Zhe 733 had significantly less grain-As than Cocodrie did. However, soil-As did not impact grain-Mo and Cd. Among all elements monitored, iron oxide amendment significantly reduced grain-As for both cultivars, while the phosphate application only reduced grain-Se for Zhe 733. Results also indicated that cultivar type significantly impacted grain accumulation of all monitored trace elements. Therefore, applying iron oxide to As-contaminated land, in addition to choosing appropriate rice cultivar, can effectively reduce the grain accumulation of As.

  3. Presolar spinel grains from the Murray and Murchison carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Zinner, Ernst; Amari, Sachiko; Guinness, Robert; Nguyen, Ann; Stadermann, Frank J.; Walker, Robert M.; Lewis, Roy S.

    2003-12-01

    With a new type of ion microprobe, the NanoSIMS, we determined the oxygen isotopic compositions of small (<1μm) oxide grains in chemical separates from two CM2 carbonaceous meteorites, Murray and Murchison. Among 628 grains from Murray separate CF (mean diameter 0.15 μm) we discovered 15 presolar spinel and 3 presolar corundum grains, among 753 grains from Murray separate CG (mean diameter 0.45 μm) 9 presolar spinel grains, and among 473 grains from Murchison separate KIE (mean diameter 0.5 μm) 2 presolar spinel and 4 presolar corundum grains. The abundance of presolar spinel is highest (2.4%) in the smallest size fraction. The total abundance in the whole meteorite is at least 1 ppm, which makes spinel the third-most abundant presolar grain species after nanodiamonds (if indeed a significant fraction of them are presolar) and silicon carbide. The O-isotopic distribution of the spinel grains is very similar to that of presolar corundum, the only statistically significant difference being that there is a larger fraction of corundum grains with large 17O excesses ( 17O/ 16O > 1.5 × 10 -3), which indicates parent stars with masses between 1.8 and 4.5 M ⊙.

  4. Percolation of open grain boundaries and change in electrical conductivity

    NASA Astrophysics Data System (ADS)

    Watanabe, T.

    2016-12-01

    Numerical experiments were conducted on the percolation of open grain boundaries to study the percolation threshold and evolution of connectivity. Open grain boundaries are a major component of pores in crustal materials. Electrical conductivity and permeability are highly sensitive to the connectivity of open brain boundaries. The length and size of the largest cluster was surveyed in a 3D array of cubic grains for various fractions of open grain boundary. For sufficiently large size of array, the percolation threshold was found to be 0.25. If more than 25% of grain boundaries are open, an interconnected network of open grain boundaries is formed. If the aggregate is saturated with brine, the electrical conduction can occur through open grain boundaries. The connectivity of open grain boundaries steeply increases to 1 around the threshold. The electrical conductivity is also expected to increase steeply. The crack density parameter for the percolation threshold is estimated to be 0.1. The large change in electrical conductivity for a small change in crack density parameter is thus expected around crack density parameter of 0.1. Simultaneous measurements on elastic wave velocity and electrical conductivity in a brine saturated granitic rock (Watanabe and Higuchi, 2015) showed a steep change in electrical conductivity around the crack density parameter of 0.1. XCT images show that open grain boundaries are the dominant pores in the sample. The steep change in conductivity must thus be related to the percolation of open grain boundaries.

  5. Evolution of Austenite Recrystallization and Grain Growth Using Laser Ultrasonics

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Moreau, A.; Militzer, M.; Poole, W. J.

    2008-04-01

    Laser ultrasonics is a noncontacting technique with which the attenuation of ultrasonic signals can be measured and related to the grain size of the investigated material. In the present article, a laser-ultrasonic grain-size measurement technique previously developed for various C-Mn and microalloyed steels has been extended to examine austenite recrystallization and subsequent grain growth following hot deformation. The ultrasonic measurements were conducted on a low-carbon (0.05 wt pct) steel that contains Mn, Mo, and Nb as the three main alloying/microalloying elements. The grain-size data measured by ultrasonic experiments were analyzed to quantify the effect of deformation conditions on the evolution of recrystallized grain size and subsequent grain growth. A significant effect of deformation temperature, applied strain, and initial grain size on the grain-size evolution was observed, while strain rate had a negligible effect. Phenomenological modeling approaches were employed to describe the recrystallized grain-size and grain-growth behavior of the present steel.

  6. Quantifying grain boundary damage tolerance with atomistic simulations

    NASA Astrophysics Data System (ADS)

    Foley, Daniel; Tucker, Garritt J.

    2016-10-01

    Grain boundaries play a pivotal role in defect evolution and accommodation within materials. Irradiated metals have been observed to form defect denuded zones in the vicinity of grain boundaries. This is especially apparent in nanocrystalline metals, which have an increased grain boundary concentration, as compared to their polycrystalline counterparts. Importantly, the effect of individual grain boundaries on microstructural damage tolerance is related to the character or structural state of the grain boundary. In this work, the damage accommodation behavior of a variety of copper grain boundaries is studied using atomistic simulations. Damage accumulation behavior is found to reach a saturation point where both the free volume and energy of a grain boundary fluctuate within an elliptical manifold, which varies in size for different boundary characters. Analysis of the grain boundaries shows that extrinsic damage accommodation occurs due to localized atomic shuffling accompanied by free volume rearrangement within the boundary. Continuous damage accumulation leads to altered atomic structural states that oscillate around a mean non-equilibrium state, that is energetically metastable. Our results suggest that variation of grain boundary behavior, both from equilibrium and under saturation, is directly related to grain boundary equilibrium energy and some boundaries have a greater propensity to continually accommodate damage, as compared to others.

  7. Airtight storage of moist wheat grain improves bioethanol yields

    PubMed Central

    Passoth, Volkmar; Eriksson, Anna; Sandgren, Mats; Ståhlberg, Jerry; Piens, Kathleen; Schnürer, Johan

    2009-01-01

    Background Drying is currently the most frequently used conservation method for cereal grain, which in temperate climates consumes a major part of process energy. Airtight storage of moist feed grain using the biocontrol yeast Pichia anomala as biopreservation agent can substantially reduce the process energy for grain storage. In this study we tested the potential of moist stored grain for bioethanol production. Results The ethanol yield from moist wheat was enhanced by 14% compared with the control obtained from traditionally (dry) stored grain. This enhancement was observed independently of whether or not P. anomala was added to the storage system, indicating that P. anomala does not impair ethanol fermentation. Starch and sugar analyses showed that during pre-treatment the starch of moist grain was better degraded by amylase treatment than that of the dry grain. Additional pre-treatment with cellulose and hemicellulose-degrading enzymes did not further increase the total ethanol yield. Sugar analysis after this pre-treatment showed an increased release of sugars not fermentable by Saccharomyces cerevisiae. Conclusion The ethanol yield from wheat grain is increased by airtight storage of moist grain, which in addition can save substantial amounts of energy used for drying the grain. This provides a new opportunity to increase the sustainability of bioethanol production. PMID:19695089

  8. Consumption of whole grains in French children, adolescents and adults.

    PubMed

    Bellisle, France; Hébel, Pascale; Colin, Justine; Reyé, Béatrice; Hopkins, Sinead

    2014-11-28

    The consumption of whole grain foods is associated with many nutritional, health and weight control benefits. The present study assessed whole grain intake in France on the basis of a 7 d dietary survey in a representative sample of children, adolescents and adults (Comportements et Consommations Alimentaires en France 2010 survey). Special care was taken to identify and assess the intake of all whole grains. All foods consumed were considered, with no lower limit on whole grain content. For the majority of foods, details regarding the whole grain contents were obtained from brand information and quantitative nutrient declarations on food labels. Over half of the respondents reported never consuming any whole grain. In participants who did, consumption levels were very low (about 9·1 g/d in children and 14·4 g/d in adults). The main food sources of whole grains were breakfast cereals in children and adolescents and bread in adults. Consumers of whole grains had higher daily intakes of fibre and several vitamins and minerals than non-consumers. In adults but not in children, the OR for overweight/obesity decreased significantly as the level of whole grain consumption increased. Although a majority of French consumers comply with the national recommendation to consume a starchy food with each meal, they do so with minimal consumption of whole grain foods.

  9. Marketing whole grain breads in Canada via food labels.

    PubMed

    Sumanac, Dunja; Mendelson, Rena; Tarasuk, Valerie

    2013-03-01

    A recommendation for increased whole grain consumption was released in Canada in 2007 to promote adequate intakes of fibre and magnesium. Since then, a proliferation of 'whole grain' claims on food packaging has been observed, but whole grain labelling is voluntary and unregulated in Canada. Through a detailed survey of bread sold in three supermarkets, this study examined how the presence of front-of-package reference to whole grain relates to (i) the presence and nature of whole grain ingredients, (ii) nutrient content, and (iii) price of the product. Twenty-one percent of breads bore a reference to whole grain on the front-of-package and the front-of-package reference to whole grain was a better predictor of fibre content than any information that could be gleaned from the ingredient list. On average, breads with a whole grain reference were higher in fibre and magnesium and lower in sodium. Mean price did not differ by presence of a whole grain reference, but breads with whole grain labelling were less likely to be low in price. Voluntary nutrition labelling may be targeting a discrete market of health-conscious consumers who are willing to pay premium prices for more healthful options.

  10. Quartz grain assessment for reconstructing the coastal palaeoenvironment

    NASA Astrophysics Data System (ADS)

    Vieira Machado, Giseli Modolo; Albino, Jacqueline; Leal, Arthur Pereira; Bastos, Alex Cardoso

    2016-10-01

    This study proposes a combination of sedimentological techniques as a tool to understand depositional palaeoenvironments. Grain size, mineralogy, compositional data, stratigraphic framework, degree of rounding, optical appearance and microtextures of quartz grains were analyzed; sub-surface sediments were collected from 4 boreholes spaced across coastal settings, from the beach towards the continent, from locations on the south-central coast of the state of Espírito Santo, southeast Brazil. Five palaeoenvironments were identified: fluvial (characterized by gravelly sand facies, composed predominantly of sub-angular and sub-rounded dirty quartz grains with microtexures caused by sudden impact and grain surfaces modified by chemical action, as well as other non-quartz terrigenous minerals); continental deposit with marine influence, such as an estuary (characterized by muddy sand facies, composed of immature grains with natural glow and non-abraded grains with a "fresh" clean surface, little to no chemical change, a few bioclastic fragments, carbonate nodules and grains embedded with carbonate); modern estuary (characterized by sandy mud facies, composed of mixed mature and immature quartz grains, chemically frosted, bioclastic fragments, carbonate nodules, and high organic matter content); bay (characterized by sandy mud and mud facies, composed predominantly of mature grains, highly chemically frosted, with microtextures clearly associated with post-depositional alteration, many bioclastic fragments, and organic matter); and beach (characterized by gravelly sand facies, composed predominantly of sub-rounded dirty grains, followed by shiny grains, with smooth edges, signs of former impact, little chemical dissolution on the quartz grain, and bioclastic fragments). The association between the degree of rounding, optical aspect and microtextures of quartz grains was essential to estimate the extent and strength of seawater intrusion in filling of the sedimentation

  11. Identifying whole grain foods: a comparison of different approaches for selecting more healthful whole grain products.

    PubMed

    Mozaffarian, Rebecca S; Lee, Rebekka M; Kennedy, Mary A; Ludwig, David S; Mozaffarian, Dariush; Gortmaker, Steven L

    2013-12-01

    Eating whole grains (WG) is recommended for health, but multiple conflicting definitions exist for identifying whole grain (WG) products, limiting the ability of consumers and organizations to select such products. We investigated how five recommended WG criteria relate to healthfulness and price of grain products. We categorized grain products by different WG criteria including: the industry-sponsored Whole Grain stamp (WG-Stamp); WG as the first ingredient (WG-first); WG as the first ingredient without added sugars (WG-first-no-added-sugars); the word ‘whole’ before any grain in the ingredients (‘whole’-anywhere); and a content of total carbohydrate to fibre of ≤10:1 (10:1-ratio). We investigated associations of each criterion with health-related characteristics including fibre, sugars, sodium, energy, trans-fats and price. Two major grocery store chains. Five hundred and forty-five grain products. Each WG criterion identified products with higher fibre than products considered non-WG; the 10:1-ratio exhibited the largest differences (+3·15 g/serving, P < 0·0001). Products achieving the 10:1-ratio also contained lower sugar (−1·28 g/serving, P = 0·01), sodium (−15·4 mg/serving, P = 0·04) and likelihood of trans-fats (OR = 0·14, P < 0·0001), without energy differences. WG-first-no-added-sugars performed similarly, but identified many fewer products as WG and also not a lower likelihood of containing trans-fats. The WG-Stamp, WG-first and ‘whole’-anywhere criteria identified products with a lower likelihood of trans-fats, but also significantly more sugars and energy (P < 0·05 each). Products meeting the WG-Stamp or 10:1-ratio criterion were more expensive than products that did not (+$US 0·04/serving, P = 0·009 and +$US 0·05/serving, P = 0·003, respectively). Among proposed WG criteria, the 10:1-ratio identified the most healthful WG products. Other criteria performed less well, including the industry-supported WG-Stamp which

  12. Chemically anomalous, pre-accretionally irradiated grains in interplanetary dust -- interstellar grains?. [Abstract only

    NASA Technical Reports Server (NTRS)

    Bradley, J. P.

    1994-01-01

    Ultrafine-grained matrix is a unique and fundamental building block of chondritic porous (CP) interplanetary dust particles. Most IDPs so far determined to be of cometary origin belong to the CP class. The matrix in CP IDPs is not homogeneous but rather a loose mixture of discrete single crystals (e.g., olivine, pyroxene, Fe sulfides) and polyphase grains. The petrographic diversity observed among the polyphase grains suggest that they were formed under variable physiochemical conditions. One particular class of polyphase grains are a dominant component in cometary IDPs. Although their occurrence is well documented, the terminology used to describe them is confused. They have been called many names. Here they are simply called GEMS (Glass with Embedded Metal and Sulfides). The bulk compositions of GEMS are within a factor of 3 chondritic (solar) for all major elements except C. Quantitative thin-film X-ray (EDS) analyses have shown that GEMS are systematically depleted in Mg and Si, enriched in S, Fe, and Ni, and stoichiometrically enriched in O. Electron energy-loss spectroscopy (EELS) suggests that the excess O is present as hydroxyl (-OH) groups. These same chemical 'anomalies' were observed in solar-wind-irradiated amorphous rims on the surfaces of IDPs, suggesting that the compositions of GEMS reflect prior exposure to ionizing radiation. In order to test this hypothesis, a sample of Allende (CV3) matrix was exposed to proton flux. Radiation-damaged amorphous rims on olivine and pyroxene crystals in the Allende sample were found to be depleted in Mg and Ca, enriched in S, Fe, and Ni, and stoichiometrically enriched in O. Thus, the compositions of GEMS are indeed consistent with exposure to ionizing radiation. This study suggests that chemical as well as isotopic anomalies may be used to identify presolar interstellar grains in primitive meteoritic materials.

  13. PRAM C:a new programming environment for fine-grain and coarse-grain parallelism.

    SciTech Connect

    Brown, Jonathan Leighton; Wen, Zhaofang.

    2004-11-01

    In the search for ''good'' parallel programming environments for Sandia's current and future parallel architectures, they revisit a long-standing open question. Can the PRAM parallel algorithms designed by theoretical computer scientists over the last two decades be implemented efficiently? This open question has co-existed with ongoing efforts in the HPC community to develop practical parallel programming models that can simultaneously provide ease of use, expressiveness, performance, and scalability. Unfortunately, no single model has met all these competing requirements. Here they propose a parallel programming environment, PRAM C, to bridge the gap between theory and practice. This is an attempt to provide an affirmative answer to the PRAM question, and to satisfy these competing practical requirements. This environment consists of a new thin runtime layer and an ANSI C extension. The C extension has two control constructs and one additional data type concept, ''shared''. This C extension should enable easy translation from PRAM algorithms to real parallel programs, much like the translation from sequential algorithms to C programs. The thin runtime layer bundles fine-grained communication requests into coarse-grained communication to be served by message-passing. Although the PRAM represents SIMD-style fine-grained parallelism, a stand-alone PRAM C environment can support both fine-grained and coarse-grained parallel programming in either a MIMD or SPMD style, interoperate with existing MPI libraries, and use existing hardware. The PRAM C model can also be integrated easily with existing models. Unlike related efforts proposing innovative hardware with the goal to realize the PRAM, ours can be a pure software solution with the purpose to provide a practical programming environment for existing parallel machines; it also has the potential to perform well on future parallel architectures.

  14. Chemically anomalous, pre-accretionally irradiated grains in interplanetary dust -- interstellar grains?

    NASA Astrophysics Data System (ADS)

    Bradley, J. P.

    1994-07-01

    Ultrafine-grained matrix is a unique and fundamental building block of chondritic porous (CP) interplanetary dust particles. Most IDPs so far determined to be of cometary origin belong to the CP class. The matrix in CP IDPs is not homogeneous but rather a loose mixture of discrete single crystals (e.g., olivine, pyroxene, Fe sulfides) and polyphase grains. The petrographic diversity observed among the polyphase grains suggest that they were formed under variable physiochemical conditions. One particular class of polyphase grains are a dominant component in cometary IDPs. Although their occurrence is well documented, the terminology used to describe them is confused. They have been called many names. Here they are simply called GEMS (Glass with Embedded Metal and Sulfides). The bulk compositions of GEMS are within a factor of 3 chondritic (solar) for all major elements except C. Quantitative thin-film X-ray (EDS) analyses have shown that GEMS are systematically depleted in Mg and Si, enriched in S, Fe, and Ni, and stoichiometrically enriched in O. Electron energy-loss spectroscopy (EELS) suggests that the excess O is present as hydroxyl (-OH) groups. These same chemical 'anomalies' were observed in solar-wind-irradiated amorphous rims on the surfaces of IDPs, suggesting that the compositions of GEMS reflect prior exposure to ionizing radiation. In order to test this hypothesis, a sample of Allende (CV3) matrix was exposed to proton flux. Radiation-damaged amorphous rims on olivine and pyroxene crystals in the Allende sample were found to be depleted in Mg and Ca, enriched in S, Fe, and Ni, and stoichiometrically enriched in O. Thus, the compositions of GEMS are indeed consistent with exposure to ionizing radiation. This study suggests that chemical as well as isotopic anomalies may be used to identify presolar interstellar grains in primitive meteoritic materials.

  15. Grain formation around carbon stars. 1: Stationary outflow models

    NASA Technical Reports Server (NTRS)

    Egan, Michael P.; Leung, Chun Ming

    1995-01-01

    Asymptotic giant branch (AGB) stars are known to be sites of dust formation and undergo significant mass loss. The outflow is believed to be driven by radiation pressure on grains and momentum coupling between the grains and gas. While the physics of shell dynamics and grain formation are closely coupled, most previous models of circumstellar shells have treated the problem separately. Studies of shell dynamics typically assume the existence of grains needed to drive the outflow, while most grain formation models assume a constant veolcity wind in which grains form. Furthermore, models of grain formation have relied primarily on classical nucleation theory instead of using a more realistic approach based on chemical kinetics. To model grain formation in carbon-rich AGB stars, we have coupled the kinetic equations governing small cluster growth to moment equations which determine the growth of large particles. Phenomenological models assuming stationary outflow are presented to demonstrate the differences between the classical nucleation approach and the kinetic equation method. It is found that classical nucleation theory predicts nucleation at a lower supersaturation ratio than is predicted by the kinetic equations, resulting in significant differences in grain properties. Coagulation of clusters larger than monomers is unimportant for grain formation in high mass-loss models but becomes more important to grain growth in low mass-loss situations. The properties of the dust grains are altered considerably if differential drift velocities are ignored in modeling grain formation. The effect of stellar temperature, stellar luminosity, and different outflow velocities are investigated. The models indicate that changing the stellar temperature while keeping the stellar luminosity constant has little effect on the physical parameters of the dust shell formed. Increasing the stellar luminosity while keeping the stellar temperature constant results in large differences in

  16. Grain formation around carbon stars. 1: Stationary outflow models

    NASA Technical Reports Server (NTRS)

    Egan, Michael P.; Leung, Chun Ming

    1995-01-01

    Asymptotic giant branch (AGB) stars are known to be sites of dust formation and undergo significant mass loss. The outflow is believed to be driven by radiation pressure on grains and momentum coupling between the grains and gas. While the physics of shell dynamics and grain formation are closely coupled, most previous models of circumstellar shells have treated the problem separately. Studies of shell dynamics typically assume the existence of grains needed to drive the outflow, while most grain formation models assume a constant veolcity wind in which grains form. Furthermore, models of grain formation have relied primarily on classical nucleation theory instead of using a more realistic approach based on chemical kinetics. To model grain formation in carbon-rich AGB stars, we have coupled the kinetic equations governing small cluster growth to moment equations which determine the growth of large particles. Phenomenological models assuming stationary outflow are presented to demonstrate the differences between the classical nucleation approach and the kinetic equation method. It is found that classical nucleation theory predicts nucleation at a lower supersaturation ratio than is predicted by the kinetic equations, resulting in significant differences in grain properties. Coagulation of clusters larger than monomers is unimportant for grain formation in high mass-loss models but becomes more important to grain growth in low mass-loss situations. The properties of the dust grains are altered considerably if differential drift velocities are ignored in modeling grain formation. The effect of stellar temperature, stellar luminosity, and different outflow velocities are investigated. The models indicate that changing the stellar temperature while keeping the stellar luminosity constant has little effect on the physical parameters of the dust shell formed. Increasing the stellar luminosity while keeping the stellar temperature constant results in large differences in

  17. Multi-phase-field study of the effects of anisotropic grain-boundary properties on polycrystalline grain growth

    NASA Astrophysics Data System (ADS)

    Miyoshi, Eisuke; Takaki, Tomohiro

    2017-09-01

    Numerical studies of the effects of anisotropic (misorientation-dependent) grain-boundary energy and mobility on polycrystalline grain growth have been carried out for decades. However, conclusive knowledge has yet to be obtained even for the simplest two-dimensional case, which is mainly due to limitations in the computational accuracy of the grain-growth models and computer resources that have been employed to date. Our study attempts to address these problems by utilizing a higher-order multi-phase-field (MPF) model, which was developed to accurately simulate grain growth with anisotropic grain-boundary properties. In addition, we also employ general-purpose computing on graphics processing units to accelerate MPF grain-growth simulations. Through a series of simulations of anisotropic grain growth, we succeeded in confirming that both the anisotropies in grain-boundary energy and mobility affect the morphology formed during grain growth. On the other hand, we found the grain growth kinetics in anisotropic systems to follow parabolic law similar to isotropic growth, but only after an initial transient period.

  18. UO2 Grain Growth: Developing Phase Field Models for Pore Dragging, Solute Dragging and Anisotropic Grain Boundary Energies

    SciTech Connect

    Ahmed, K.; Tonks, M.; Zhang, Y.; Biner, B.

    2016-09-28

    A detailed phase field model for the effect of pore drag on grain growth kinetics was implemented in MARMOT. The model takes into consideration both the curvature-driven grain boundary motion and pore migration by surface diffusion. As such, the model accounts for the interaction between pore and grain boundary kinetics, which tends to retard the grain growth process. Our 2D and 3D simulations demonstrate that the model capture all possible pore-grain boundary interactions proposed in theoretical models. For high enough surface mobility, the pores move along with the migrating boundary as a quasi-rigid-body, albeit hindering its migration rate compared to the pore-free case. For less mobile pores, the migrating boundary can separate from the pores. For the pore-controlled grain growth kinetics, the model predicts a strong dependence of the growth rate on the number of pores, pore size, and surface diffusivity in agreement with theroretical models. An evolution equation for the grain size that includes these parameters was derived and showed to agree well with numerical solution. It shows a smooth transition from boundary-controlled kinetics to pore-controlled kinetics as the surface diffusivity decreases or the number of pores or their size increases. This equation can be utilized in BISON to give accurate estimate for the grain size evolution. This will be accomplished in the near future. The effect of solute drag and anisotropy of grain boundary on grain growth will be investigated in future studies.

  19. The influence of grain size and grain size distribution on methods for estimating paleostresses from twinning in carbonates

    NASA Astrophysics Data System (ADS)

    Newman, Julie

    1994-12-01

    This study examines the relative differential stresses around a minor thrust fault within the Mountain City window, Tennessee, U.S.A. The fault zone developed within dolomite rocks and deformation took place by twinning, fracturing, pressure solution and the development of fine-grained deformation zones. Grain-size reduction is observed from undeformed wall rock to the center of the fault zone, and occurred by dynamic recrystallization. Methods to determine paleostresses in naturally deformed rocks from twinning assume a single, coaxial, strain-inducing event. The recrystallization within the center of the fault zone removed the effects of earlier deformation, so that the twinning more closely reflects a single, coaxial deformation event late in the fault history. Two methods were used to estimate the relative differential stresses across the fault zone and the results show opposite trends towards the center of the fault zone. The different results may be partially explained by the influence of grain size, as only one of these methods considers the influence of grain size. In addition, the grainsize data from this fault zone demonstrate that the tendency for a grain-size class to be twinned depends on the grain size distribution. The grain size distribution may result in grain-to-grain stress concentrations that induce twinning. Thus, grain size distribution should also be considered to achieve more accurate estimates of paleostresses.

  20. The bio refinery; producing feed and fuel from grain.

    PubMed

    Scholey, D V; Burton, E J; Williams, P E V

    2016-04-15

    It is both possible and practicable to produce feed and fuel from grain. Using the value of grain to produce renewable energy for transport, while using the remaining protein content of the grain as a valuable protein source for livestock and for fish, can be seen as a complimentary and optimal use of all the grain constituents. Consideration must be given to maximise the value of the yeast components, as substantial yeast is generated during the fermentation of the grain starch to produce ethanol. Yeast is a nutritionally rich feed ingredient, with potential for use both as feed protein and as a feed supplement with possible immunity and gut health enhancing properties. Bioprocessing, with the consequent economies of scale, is a process whereby the value of grain can be optimised in a way that is traditional, natural and sustainable for primarily producing protein and oil for feed with a co-product ethanol as a renewable fuel.