Science.gov

Sample records for grain growth mechanisms

  1. Concepts on Low Temperature Mechanical Grain Growth

    SciTech Connect

    Sharon, John Anthony; Boyce, Brad Lee

    2013-11-01

    In metals, as grain size is reduced below 100nm, conventional dislocation plasticity is suppressed resulting in improvements in strength, hardness, and wears resistance. Existing and emerging components use fine grained metals for these beneficial attributes. However, these benefits can be lost in service if the grains undergo growth during the component’s lifespan. While grain growth is traditionally viewed as a purely thermal process that requires elevated temperature exposure, recent evidence shows that some metals, especially those with nanocrystalline grain structure, can undergo grain growth even at room temperature or below due to mechanical loading. This report has been assembled to survey the key concepts regarding how mechanical loads can drive grain coarsening at room temperature and below. Topics outlined include the atomic level mechanisms that facilitate grain growth, grain boundary mobility, and the impact of boundary structure, loading scheme, and temperature.

  2. The mechanism of grain growth in ceramics

    NASA Technical Reports Server (NTRS)

    Kapadia, C. M.; Leipold, M. H.

    1972-01-01

    The theory of grain boundary migration as a thermally activated process is reviewed, the basic mechanisms in ceramics being the same as in metals. However, porosity and non-stochiometry in ceramic materials give an added dimension to the theory and make quantitative treatment of real systems rather complex. Grain growth is a result of several simultaneous (and sometimes interacting) processes; these are most easily discussed separately, but the overall rate depends on their interaction. Sufficient insight into the nature of rate controlling diffusion mechanisms is necessary before a qualitative understanding of boundary mobility can be developed.

  3. Mechanism of grain growth during severe plastic deformation of a nanocrystalline Ni-Fe alloy

    SciTech Connect

    Li, Hongqi; Wang, Y B; Ho, J C; Liao, X Z; Zhu, Y T; Ringer, S P

    2009-01-01

    Deformation induced grain growth has been widely reported in nanocrystalline materials. However, the grain growth mechanism remains an open question. This study applies high-pressure torsion to severely deform bulk nanocrystalline Ni-20 wt % Fe disks and uses transmission electron microscopy to characterize the grain growth process. Our results provide solid evidence suggesting that high pressure torsion induced grain growth is achieved primarily via grain rotation for grains much smaller than 100 nm. Dislocations are mainly seen at small-angle subgrain boundaries during the grain growth process but are seen everywhere in grains after the grains have grown large.

  4. The growth mechanism of grain boundary carbide in Alloy 690

    SciTech Connect

    Li, Hui; Xia, Shuang; Zhou, Bangxin; Peng, Jianchao

    2013-07-15

    The growth mechanism of grain boundary M{sub 23}C{sub 6} carbides in nickel base Alloy 690 after aging at 715 °C was investigated by high resolution transmission electron microscopy. The grain boundary carbides have coherent orientation relationship with only one side of the matrix. The incoherent phase interface between M{sub 23}C{sub 6} and matrix was curved, and did not lie on any specific crystal plane. The M{sub 23}C{sub 6} carbide transforms from the matrix phase directly at the incoherent interface. The flat coherent phase interface generally lies on low index crystal planes, such as (011) and (111) planes. The M{sub 23}C{sub 6} carbide transforms from a transition phase found at curved coherent phase interface. The transition phase has a complex hexagonal crystal structure, and has coherent orientation relationship with matrix and M{sub 23}C{sub 6}: (111){sub matrix}//(0001){sub transition}//(111){sub carbide}, <112{sup ¯}>{sub matrix}//<21{sup ¯}10>{sub transition}//<112{sup ¯}>{sub carbide}. The crystal lattice constants of transition phase are c{sub transition}=√(3)×a{sub matrix} and a{sub transition}=√(6)/2×a{sub matrix}. Based on the experimental results, the growth mechanism of M{sub 23}C{sub 6} and the formation mechanism of transition phase are discussed. - Highlights: • A transition phase was observed at the coherent interfaces of M{sub 23}C{sub 6} and matrix. • The transition phase has hexagonal structure, and is coherent with matrix and M{sub 23}C{sub 6}. • The M{sub 23}C{sub 6} transforms from the matrix directly at the incoherent phase interface.

  5. Sintering boron carbide ceramics without grain growth by plastic deformation as the dominant densification mechanism.

    PubMed

    Ji, Wei; Rehman, Sahibzada Shakir; Wang, Weimin; Wang, Hao; Wang, Yucheng; Zhang, Jinyong; Zhang, Fan; Fu, Zhengyi

    2015-01-01

    A new ceramic sintering approach employing plastic deformation as the dominant mechanism is proposed, at low temperature close to the onset point of grain growth and under high pressure. Based on this route, fully dense boron carbide without grain growth can be prepared at 1,675-1,700 °C and under pressure of (≥) 80 MPa in 5 minutes. The dense boron carbide shows excellent mechanical properties, including Vickers hardness of 37.8 GPa, flexural strength of 445.3 MPa and fracture toughness of 4.7 MPa•m(0.5). Such a process should also facilitate the cost-effective preparation of other advanced ceramics for practical applications. PMID:26503706

  6. Sintering boron carbide ceramics without grain growth by plastic deformation as the dominant densification mechanism

    NASA Astrophysics Data System (ADS)

    Ji, Wei; Rehman, Sahibzada Shakir; Wang, Weimin; Wang, Hao; Wang, Yucheng; Zhang, Jinyong; Zhang, Fan; Fu, Zhengyi

    2015-10-01

    A new ceramic sintering approach employing plastic deformation as the dominant mechanism is proposed, at low temperature close to the onset point of grain growth and under high pressure. Based on this route, fully dense boron carbide without grain growth can be prepared at 1,675-1,700 °C and under pressure of (≥) 80 MPa in 5 minutes. The dense boron carbide shows excellent mechanical properties, including Vickers hardness of 37.8 GPa, flexural strength of 445.3 MPa and fracture toughness of 4.7 MPa•m0.5. Such a process should also facilitate the cost-effective preparation of other advanced ceramics for practical applications.

  7. Sintering boron carbide ceramics without grain growth by plastic deformation as the dominant densification mechanism.

    PubMed

    Ji, Wei; Rehman, Sahibzada Shakir; Wang, Weimin; Wang, Hao; Wang, Yucheng; Zhang, Jinyong; Zhang, Fan; Fu, Zhengyi

    2015-10-27

    A new ceramic sintering approach employing plastic deformation as the dominant mechanism is proposed, at low temperature close to the onset point of grain growth and under high pressure. Based on this route, fully dense boron carbide without grain growth can be prepared at 1,675-1,700 °C and under pressure of (≥) 80 MPa in 5 minutes. The dense boron carbide shows excellent mechanical properties, including Vickers hardness of 37.8 GPa, flexural strength of 445.3 MPa and fracture toughness of 4.7 MPa•m(0.5). Such a process should also facilitate the cost-effective preparation of other advanced ceramics for practical applications.

  8. Sintering boron carbide ceramics without grain growth by plastic deformation as the dominant densification mechanism

    PubMed Central

    Ji, Wei; Rehman, Sahibzada Shakir; Wang, Weimin; Wang, Hao; Wang, Yucheng; Zhang, Jinyong; Zhang, Fan; Fu, Zhengyi

    2015-01-01

    A new ceramic sintering approach employing plastic deformation as the dominant mechanism is proposed, at low temperature close to the onset point of grain growth and under high pressure. Based on this route, fully dense boron carbide without grain growth can be prepared at 1,675–1,700 °C and under pressure of (≥) 80 MPa in 5 minutes. The dense boron carbide shows excellent mechanical properties, including Vickers hardness of 37.8 GPa, flexural strength of 445.3 MPa and fracture toughness of 4.7 MPa•m0.5. Such a process should also facilitate the cost-effective preparation of other advanced ceramics for practical applications. PMID:26503706

  9. Investigation of mechanical properties based on grain growth and microstructure evolution of alumina ceramics during two step sintering process

    NASA Astrophysics Data System (ADS)

    Khan, U. A.; Hussain, A.; Shah, M.; Shuaib, M.; Qayyum, F.

    2016-08-01

    Alumina ceramics having small grain size and high density yield good mechanical properties, which are required in most mechanical applications. Two Step Sintering (TSS) is used to develop dense alumina ceramics. In this research work the effect of sintering temperatures on microstructure and density of the alumina specimens developed by using TSS has been investigated. It has been observed that TSS is more efficient in controlling grain growth and increasing the density as compared to One Step Sintering (OSS) of alumina. Scanning electron micrographs of sintered alumina specimens have been compared. It has been observed that TSS proves to be a better technique for increasing density and controlling grain growth of alumina ceramics than OSS. More relative density, hardness, fracture toughness and small grain size was achieved by using TSS over OSS technique.

  10. EBSD coupled to SEM in situ annealing for assessing recrystallization and grain growth mechanisms in pure tantalum.

    PubMed

    Kerisit, C; Logé, R E; Jacomet, S; Llorca, V; Bozzolo, N

    2013-06-01

    An in situ annealing stage has been developed in-house and integrated in the chamber of a Scanning Electron Microscope equipped with an Electron BackScattered Diffraction system. Based on the Joule effect, this device can reach the temperature of 1200°C at heating rates up to 100°C/s, avoiding microstructural evolutions during heating. A high-purity tantalum deformed sample has been annealed at variable temperature in the range 750°C-1030°C, and classical mechanisms of microstructural evolutions such as recrystallization and grain coarsening phenomena have been observed. Quantitative measurements of grain growth rates provide an estimate of the mean grain boundary mobility, which is consistent with the value estimated from physical parameters reported for that material. In situ annealing therefore appears to be suited for complementing bulk measurements at relatively high temperatures, in the context of recrystallization and grain growth in such a single-phase material. PMID:23521093

  11. Mechanisms of deformation-induced grain growth of a two-dimensional nanocrystal at different deformation temperatures

    NASA Astrophysics Data System (ADS)

    Korznikova, E. A.; Dmitriev, S. V.

    2014-06-01

    This work discloses the evolution of a two-dimensional nanocrystalline aggregate in the process of shear deformation under the conditions of hydrostatic compression of the material in the deformation-temperature range T = 0.5-0.7 T m. It has been shown that grain growth by the mechanism of mutual rotation with subsequent coalescence is characteristic of deformation temperatures T = 0.6 T m and below, whereas at T = 0.65 and 0.7 T m one of grains with predominant orientation grows at the expense of other grains. In all instances, the growth of the degree of shear deformation leads to the disappearance of all grain boundaries in the calculated cell under consideration.

  12. EBSD coupled to SEM in situ annealing for assessing recrystallization and grain growth mechanisms in pure tantalum.

    PubMed

    Kerisit, C; Logé, R E; Jacomet, S; Llorca, V; Bozzolo, N

    2013-06-01

    An in situ annealing stage has been developed in-house and integrated in the chamber of a Scanning Electron Microscope equipped with an Electron BackScattered Diffraction system. Based on the Joule effect, this device can reach the temperature of 1200°C at heating rates up to 100°C/s, avoiding microstructural evolutions during heating. A high-purity tantalum deformed sample has been annealed at variable temperature in the range 750°C-1030°C, and classical mechanisms of microstructural evolutions such as recrystallization and grain coarsening phenomena have been observed. Quantitative measurements of grain growth rates provide an estimate of the mean grain boundary mobility, which is consistent with the value estimated from physical parameters reported for that material. In situ annealing therefore appears to be suited for complementing bulk measurements at relatively high temperatures, in the context of recrystallization and grain growth in such a single-phase material.

  13. Isotropic Monte Carlo Grain Growth

    2013-04-25

    IMCGG performs Monte Carlo simulations of normal grain growth in metals on a hexagonal grid in two dimensions with periodic boundary conditions. This may be performed with either an isotropic or a misorientation - and incliantion-dependent grain boundary energy.

  14. Grain growth systematics for forsterite + enstatite aggregates

    NASA Astrophysics Data System (ADS)

    Hiraga, T.; Tachibana, C.; Ohashi, N.; Sano, S.

    2009-12-01

    Grain growth kinetics of forsterite (Fo) and enstatite (En) in fine grain aggregates of Fo + En are examined as a function of volume fraction of En (fEn = 0.00 to 0.42). Growth rates fit the equation, d^n-d0^n =k*(t-t0) (d: mean grain diameter; d0: initial grain diameter; n: grain growth exponent; k: growth constant; t: time), where n ~5 for both Fo and En grains, and a negative correlation between kFo and fEn can be expressed as kFo = 0.06*EXP(30*fEn*(fEn-1.1)). In addition, the ratio of dFo/dEn is almost constant during grain growth and its value becomes smaller with increasing fEn, such that, dFo/dEn =0.74/fEn^0.59. Based on our results and published diffusion kinetics for olivine, the rate-controlling process for grain growth is grain boundary diffusion of Si through grain boundaries of forsterite. Extrapolation of our results to the pressure and temperature conditions of the earth’s mantle allows us to determine the relative contribution of the various mineral phases to grain size sensitive creep mechanisms and the stability of localized shear zones.

  15. Phenomenology of Abnormal Grain Growth in Systems with Nonuniform Grain Boundary Mobility

    NASA Astrophysics Data System (ADS)

    DeCost, Brian L.; Holm, Elizabeth A.

    2016-07-01

    We have investigated the potential for nonuniform grain boundary mobility to act as a persistence mechanism for abnormal grain growth (AGG) using Monte Carlo Potts model simulations. The model system consists of a single initially large candidate grain embedded in a matrix of equiaxed grains, corresponding to the abnormal growth regime before impingement occurs. We assign a mobility advantage to grain boundaries between the candidate grain and a randomly selected subset of the matrix grains. We observe AGG in systems with physically reasonable fractions of fast boundaries; the probability of abnormal growth increases as the density of fast boundaries increases. This abnormal growth occurs by a series of fast, localized growth events that counteract the tendency of abnormally large grains to grow more slowly than the surrounding matrix grains. Resulting abnormal grains are morphologically similar to experimentally observed abnormal grains.

  16. Fluctuation effects in grain growth

    NASA Astrophysics Data System (ADS)

    Kim, Seong Gyoon; Park, Yong Bum

    2016-08-01

    In this study, we attempted to clarify the roles of fluctuation effects in grain growth. To capture the persistent nature in both space and time of fluctuations due to variations in the local surroundings of individual grains, we developed a local mean-field model. The fluctuation strength in this model is arbitrarily controlled by employing an artificial number, n , of nearest neighbor grains. Large-scale numerical computations of the model for various n values and initial GSDs were carried out to follow transient behaviors and determine the steady states. This study reveals that, in the classical mean-field model with no fluctuation effects, the steady state is not unique but is strongly dependent upon the initial GSD. However, a small fluctuation drives the mean-field model to reach the Hillert solution, independent of the fluctuation strength and initial GSD, as long as the fluctuation strength is sufficiently small. On the other hand, when the fluctuation is sufficiently strong, the fluctuation pushes the steady state of the mean-field model out of the Hillert solution, and its strength determines a unique steady state independent of the initial GSD. The strong fluctuation makes the GSD more symmetric than the Hillert distribution. Computations designed to mimic actual 2 and 3D grain growth were carried out by taking the number of nearest neighbors of each grain as a function of the scaled grain size. The resultant GSDs in two and three dimensions were compared with the direct simulations of ideal grain growth.

  17. Dynamic Abnormal Grain Growth in Molybdenum

    NASA Astrophysics Data System (ADS)

    Worthington, Daniel L.; Pedrazas, Nicholas A.; Noell, Philip J.; Taleff, Eric M.

    2013-11-01

    A new abnormal grain growth phenomenon that occurs only during continuous plastic straining, termed dynamic abnormal grain growth (DAGG), was observed in molybdenum (Mo) at elevated temperature. DAGG was produced in two commercial-purity molybdenum sheets and in a commercial-purity molybdenum wire. Single crystals, centimeters in length, were created in these materials through the DAGG process. DAGG was observed only at temperatures of 1713 K (1440 °C) and above and occurred across the range of strain rates investigated, ~10-5 to 10-4 s-1. DAGG initiates only after a critical plastic strain, which decreases with increasing temperature but is insensitive to strain rate. Following initiation of an abnormal grain, the rate of boundary migration during DAGG is on the order of 10 mm/min. This rapid growth provides a convenient means of producing large single crystals in the solid state. When significant normal grain growth occurs prior to DAGG, island grains result. DAGG was observed in sheet materials with two very different primary recrystallization textures. DAGG grains in Mo favor boundary growth along the tensile axis in a <110> direction, preferentially producing single crystals with orientations from an approximately <110> fiber family of orientations. A mechanism of boundary unpinning is proposed to explain the dependence of boundary migration on plastic straining during DAGG.

  18. Grain boundary curvature and grain growth kinetics with particle pinning

    NASA Astrophysics Data System (ADS)

    Shahandeh, Sina; Militzer, Matthias

    2013-08-01

    Second-phase particles are used extensively in design of polycrystalline materials to control the grain size. According to Zener's theory, a distribution of particles creates a pinning pressure on a moving grain boundary. As a result, a limiting grain size is observed, but the effect of pinning on the detail of grain growth kinetics is less known. The influence of the particles on the microstructure occurs in multiple length scales, established by particle radius and the grain size. In this article, we use a meso-scale phase-field model that simulates grain growth in the presence of a uniform pinning pressure. The curvature of the grain boundary network is measured to determine the driving pressure of grain growth in 2D and 3D systems. It was observed that the grain growth continues, even under conditions where the average driving pressure is smaller than the pinning pressure. The limiting grain size is reached when the maximum of driving pressure distribution in the structure is equal to the pinning pressure. This results in a limiting grain size, larger than the one predicted by conventional models, and further analysis shows consistency with experimental observations. A physical model is proposed for the kinetics of grain growth using parameters based on the curvature analysis of the grain boundaries. This model can describe the simulated grain growth kinetics.

  19. O(minus 2) grain boundary diffusion and grain growth in pure dense MgO

    NASA Technical Reports Server (NTRS)

    Kapadia, C. M.; Leipold, M. H.

    1973-01-01

    Grain growth behavior in fully dense compacts of MgO of very high purity was studied, and the results compared with other similar behaving materials. The activation energy for the intrinsic self-diffusion of Mg(2minus) is discussed along with the grain boundary diffusion of O(2minus). Grain boundary diffusion of O(2minus) is proposed as the controlling mechanism for grain growth.

  20. Grain Growth in Cerium Metal

    NASA Astrophysics Data System (ADS)

    Cooley, Jason; Katz, Martha; Mielke, Charles; Montalvo, Joel

    We report on grain growth in forged and rolled cerium plate for temperatures from 350 to 700 degrees C and times from 30 to 120 minutes. The cerium was made by arc-melting into a 25 mm deep by 80 mm diameter copper mold. The resulting disk was forged at room temperature to a 25% reduction of thickness four times with a 350 degree C strain relief heat treatment for 60 minutes between forging steps. The resulting 8 mm thick plate was clock rolled at room temperature to a 25% reduction of thickness three times with a 350 C strain relief heat treatment between steps resulting in a plate approximately 3 mm thick. 5 x 10 mm coupons were cut from the plate for the grain growth study.

  1. Irradiation-induced grain growth and defect evolution in nanocrystalline zirconia with doped grain boundaries.

    PubMed

    Dey, Sanchita; Mardinly, John; Wang, Yongqiang; Valdez, James A; Holesinger, Terry G; Uberuaga, Blas P; Ditto, Jeff J; Drazin, John W; Castro, Ricardo H R

    2016-06-22

    Grain boundaries are effective sinks for radiation-induced defects, ultimately impacting the radiation tolerance of nanocrystalline materials (dense materials with nanosized grains) against net defect accumulation. However, irradiation-induced grain growth leads to grain boundary area decrease, shortening potential benefits of nanostructures. A possible approach to mitigate this is the introduction of dopants to target a decrease in grain boundary mobility or a reduction in grain boundary energy to eliminate driving forces for grain growth (using similar strategies as to control thermal growth). Here we tested this concept in nanocrystalline zirconia doped with lanthanum. Although the dopant is observed to segregate to the grain boundaries, causing grain boundary energy decrease and promoting dragging forces for thermally activated boundary movement, irradiation induced grain growth could not be avoided under heavy ion irradiation, suggesting a different growth mechanism as compared to thermal growth. Furthermore, it is apparent that reducing the grain boundary energy reduced the effectiveness of the grain boundary as sinks, and the number of defects in the doped material is higher than in undoped (La-free) YSZ. PMID:27282392

  2. Grain growth and structural relaxation of nanocrystalline Bi₂Te₃

    SciTech Connect

    Humphry-Baker, Samuel A.; Schuh, Christopher A.

    2014-10-21

    Recovery and grain growth behavior is investigated systematically for the nanocrystalline thermoelectric compound bismuth telluride, synthesized by mechanical alloying. During annealing treatments at elevated temperatures, structural evolution is tracked using x-ray diffraction, electron microscopy and calorimetry. Below a homologous temperature of about 0.6T{sub m}, grain growth occurs slowly with an activation energy of 89 kJ/mol. However above this temperature grain growth becomes more rampant with an activation energy of 242 kJ/mol. The transition is attributed to a shift from a relaxation or recovery process that includes some reordering of the grain boundary structure, to a more conventional diffusionally-limited grain growth process. By extrapolating the measured grain growth and microstrain evolution kinetics, a thermal budget map is constructed, permitting recommendations for improving the thermoelectric properties of nanocrystalline materials processed via a powder route.

  3. Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature

    SciTech Connect

    Jin, M.; Minor, A.M.; Stach, E.A.; Morris, J.W. . E-mail: jwmorris@berkeley.edu

    2004-10-18

    In situ nanoindentation within a transmission electron microscope is used to investigate the deformation mechanisms in ultrafine-grained Al films. Deformation-induced grain growth resulting from grain boundary migration, grain rotation and grain coalescence is commonly observed as the indentation proceeds. In situ studies of nanograined films suggest that the same mechanisms are operative, though the difficulty of imaging nanosized grains makes the evidence less clear. The results suggest that grain growth and coalescence are important modes of response in the deformation of ultrafine- and nanograined materials.

  4. Activation Energy for Grain Growth in Aluminum Coatings

    SciTech Connect

    Jankowski, A F; Ferreira, J L; Hayes, J P

    2004-10-14

    To produce a specific grain size in metallic coatings requires precise control of the time at temperature during the deposition process. Aluminum coatings are deposited using electron-beam evaporation onto heated substrate surfaces. The grain size of the coating is determined upon examination of the microstructure in plan view and cross-section. Ideal grain growth is observed over the entire experimental range of temperature examined from 413 to 843 K. A transition in the activation energy for grain growth from 0.7 to 3.8 eV {center_dot} atom{sup -1} is observed as the temperature increases from <526 K to >588 K. The transition is indicative of the dominant mechanism for grain growth shifting with increasing temperature from grain boundary to lattice diffusion.

  5. Global Goss grain growth and grain boundary characteristics in magnetostrictive Galfenol sheets

    NASA Astrophysics Data System (ADS)

    Na, S. M.; Flatau, A. B.

    2013-12-01

    Single Goss grains were globally grown in magnetostrictive Galfenol thin sheets via an abnormal grain growth (AGG) process. The sample behaves like single crystal Galfenol, exhibiting large magnetostriction along the <100> axes. Small variations in surface energy conditions, which were governed by different flow rates of 0.5% H2S gas in argon during annealing, had a significant impact of the development of AGG. AGG with a fully developed Goss (011) grain over 95% of the sample surface is very reproducible and feasible for a broad range of annealing conditions. In addition, the <100> orientation of the single-crystal-like Galfenol sheet aligns exactly with the rolling direction, and produces magnetostriction values of ˜300 ppm. AGG often produces isolated grains inside Goss grains due to anisotropic properties of grain boundaries. To better understand island formation mechanisms, grain orientation and grain boundary characteristics of island grains in Goss-oriented Galfenol thin sheets were also investigated. We examined samples annealed either under an argon atmosphere or under a sulfur atmosphere, and characterized the observed island grain boundaries in terms of grain misorientation angles. Trends in measured and simulated data on misorientation angles indicate that the presence of (001) island grain boundaries with angles higher than 45° can be explained by the high energy grain boundary (HEGB) model, whereas (111) boundaries with intermediate angles (20°-45°) cannot. The role of low energy coincident site lattice (CSL) boundaries on AGG in both annealing cases was found to be negligible.

  6. Strength of Rocks Affected by Deformation Enhanced Grain Growth

    NASA Astrophysics Data System (ADS)

    Kellermann Slotemaker, A.; de Bresser, H.; Spiers, C.

    2005-12-01

    One way of looking into the possibility of long-term strength changes in the lithosphere is to study transient effects resulting from modifications of the microstructure of rocks. It is generally accepted that mechanical weakening may occur due to progressive grain size refinement resulting from dynamic recrystallization. A decrease in grain size may induce a switch from creep controlled by grain size insensitive dislocation mechanisms to creep governed by grain size sensitive (GSS) mechanisms involving diffusion and grain boundary sliding processes. This switch forms a well-known scenario to explain localization in the lithosphere. However, fine-grained rocks in localized deformation zones are prone to grain coarsening due to surface energy driven grain boundary migration (SED-GBM). This might harden the rock, affecting its role in localizing strain in the long term. The question has arisen if grain growth by SED-GBM in a rock deforming in the GSS creep field can be significantly affected by strain. The broad aim of this study is to shed more light onto this. We have experimentally investigated the microstructural and strength evolution of fine-grained (~0.6 μm) synthetic forsterite and Fe-bearing olivine aggregates that coarsen in grain size while deforming by GSS creep at elevated pressure (600 MPa) and temperature (850-1000 °C). The materials were prepared by `sol-gel' method and contained 0.3-0.5 wt% water and 5-10 vol% enstatite. We performed i) static heat treatment tests of various time durations involving hot isostatic pressing (HIP), and ii) heat treatment tests starting with HIP and continuing with deformation up to 45% axial strain at strain rates in the range 4x10-7 - 1x10-4 s-1. Microstructures were characterized by analyzing full grain size distributions and textures using SEM/EBSD. In addition to the experiments, we studied microstructural evolution in simple two-dimensional numerical models, combining deformation and SED-GBM by means of the

  7. Modelling grain growth in the framework of Rational Extended Thermodynamics

    NASA Astrophysics Data System (ADS)

    Kertsch, Lukas; Helm, Dirk

    2016-05-01

    Grain growth is a significant phenomenon for the thermomechanical processing of metals. Since the mobility of the grain boundaries is thermally activated and energy stored in the grain boundaries is released during their motion, a mutual interaction with the process conditions occurs. To model such phenomena, a thermodynamic framework for the representation of thermomechanical coupling phenomena in metals including a microstructure description is required. For this purpose, Rational Extended Thermodynamics appears to be a useful tool. We apply an entropy principle to derive a thermodynamically consistent model for grain coarsening due to the growth and shrinkage of individual grains. Despite the rather different approaches applied, we obtain a grain growth model which is similar to existing ones and can be regarded as a thermodynamic extension of that by Hillert (1965) to more general systems. To demonstrate the applicability of the model, we compare our simulation results to grain growth experiments in pure copper by different authors, which we are able to reproduce very accurately. Finally, we study the implications of the energy release due to grain growth on the energy balance. The present unified approach combining a microstructure description and continuum mechanics is ready to be further used to develop more elaborate material models for complex thermo-chemo-mechanical coupling phenomena.

  8. Grain growth and experimental deformation of fine-grained ice aggregates

    NASA Astrophysics Data System (ADS)

    Diebold, Sabrina; de Bresser, Hans; Spiers, Chris; Durham, William B.; Stern, Laura

    2010-05-01

    Ice is one of the most abundant materials in our solar system. It is the principal constituent of most of the moons of the outer solar system. Thus, the flow behavior of ice is of great interest when studying geodynamic processes on icy moons. Grain growth is an elementary process that is assumed to be important in the ice sheet layering of planetary moons, where temperatures 100-273 K exist. We concentrate on the questions to what extent grain growth may influence the evolution of strength of deforming ice and if the grain growth process is independent or dependent of deformation. The answers to these questions will help us to quantitatively test the hypothesis that the progressive evolution of the grain (crystal) size distribution of deforming and recrystallizing ice directly affects its rheological behaviour in terms of composite grain-size-sensitive (GSS) and grain-size-insensitive (GSI) creep, and that this might, after time, result in a steady state balance between mechanisms of GSS and GSI creep. We performed static grain growth experiments at different temperatures and a pressure (P) of 1 atm, and deformation experiments at P = 30-100 MPa starting in the GSS-creep field. The starting material ice Ih has a grain size < 2 μm and was generated by a special pressure-release technique described by Stern et al. (1997) resulting in dense ice aggregates. The ice grains of the polycrystalline starting samples were randomly oriented and the material has a porosity of < 0.5%. For the grain growth tests a Hart Scientific temperature bath was filled with d-Limonene as cooling medium. The ice specimens were put into sealed alumina cylinders. For the grain growth tests, temperatures (T) between 213 K and 268 K were chosen. The durations of these tests varied between one day and two weeks. For the deformation experiments, temperatures of > 170 K and strain rates between 10-8 s-1 and 10-4 s-1 were chosen. Grain sizes, grain size distributions and grain topologies were

  9. Potts-model grain growth simulations: Parallel algorithms and applications

    SciTech Connect

    Wright, S.A.; Plimpton, S.J.; Swiler, T.P.

    1997-08-01

    Microstructural morphology and grain boundary properties often control the service properties of engineered materials. This report uses the Potts-model to simulate the development of microstructures in realistic materials. Three areas of microstructural morphology simulations were studied. They include the development of massively parallel algorithms for Potts-model grain grow simulations, modeling of mass transport via diffusion in these simulated microstructures, and the development of a gradient-dependent Hamiltonian to simulate columnar grain growth. Potts grain growth models for massively parallel supercomputers were developed for the conventional Potts-model in both two and three dimensions. Simulations using these parallel codes showed self similar grain growth and no finite size effects for previously unapproachable large scale problems. In addition, new enhancements to the conventional Metropolis algorithm used in the Potts-model were developed to accelerate the calculations. These techniques enable both the sequential and parallel algorithms to run faster and use essentially an infinite number of grain orientation values to avoid non-physical grain coalescence events. Mass transport phenomena in polycrystalline materials were studied in two dimensions using numerical diffusion techniques on microstructures generated using the Potts-model. The results of the mass transport modeling showed excellent quantitative agreement with one dimensional diffusion problems, however the results also suggest that transient multi-dimension diffusion effects cannot be parameterized as the product of the grain boundary diffusion coefficient and the grain boundary width. Instead, both properties are required. Gradient-dependent grain growth mechanisms were included in the Potts-model by adding an extra term to the Hamiltonian. Under normal grain growth, the primary driving term is the curvature of the grain boundary, which is included in the standard Potts-model Hamiltonian.

  10. Mechanical Behavior of Grain Boundary Engineered Copper

    SciTech Connect

    Carter, S B; Hodge, A M

    2006-08-08

    A grain boundary engineered copper sample previously characterized by Electron Backscatter Diffraction (EBSD) has been selected for nanoindentation tests. Given the fact that grain boundaries have thicknesses in the order of 1 micron or less, it is essential to use nanomechanics to test the properties of individual grain boundaries. The Hysitron nanoindenter was selected over the MTS nanoindenter due to its superior optical capabilities that aid the selection and identification of the areas to be tested. An area of 2mm by 2mm with an average grain size of 50 microns has been selected for the study. Given the EBSD mapping, grains and grain boundaries with similar orientations are tested and the hardness and modulus are compared. These results will give a relationship between the mechanical properties and the engineered grain boundaries. This will provide for the first time a correlation between grain boundary orientation and the mechanical behavior of the sample at the nanoscale.

  11. Mechanism for diffusion induced grain boundary migration

    SciTech Connect

    Balluffi, R.W.; Cahn, J.W.

    1980-08-01

    Grain boundaries are found to migrate under certain conditions when solute atoms are diffused along them. This phenomenon, termed diffusion induced grain boundary migration (DIGM), has now been found in six systems. The observed phenomenon and empirical data are used to discard certain concepts for the driving force and the mechanism. A mechanism is proposed in which differences in the diffusion coefficients of the diffusing species along the grain boundary cause a self-sustaining climb of grain boundary dislocations and motion of their associated grain boundary steps.

  12. Grain Growth in Collapsing Clouds

    NASA Astrophysics Data System (ADS)

    Rossi, S. C. F.; Benevides-Soares, P.; Barbuy, B.

    1990-11-01

    RESUMEN. Se ha considerado un proceso de coagulaci6n de granos en nubes colapsantes de diferentes metalicidades. Se aplicaron los calculos al intervalo de densidades n = lO to , forrespondiendo a la fase isotermica de contracci6n de nubes. A lo largo de esta fase en el colap- so, la temperatura es por lo tanto constante, en donde se alcanza T Q lOKpara nubes de metalicidad solar y T 100 K para nubes de baja metalicidad. El tamano final del grano es mayor para las mayores metali- cidades. ABSTRACT. A process of grain coagulation in collapsing clouds of different metallicities is considered. The calculations are applied to the density range n = 1O to , corresponding to the isothermal phase of cloud contraction. Along this phase in the collapse, the temperature is thus a constant, where T % 10 K for solar-metallicity clouds, and T % 100 K for low metallicity clouds is reached. The final grain size is larger for the higher metallicities. Keq : INTERSTELLAR-CLOUDS - INTERSTELLAR-CRAINS

  13. Role of boron oxide in growth of boron nitride grains

    SciTech Connect

    Hubacek, Milan; Ueki, Masanori

    1996-12-31

    Grain growth in sintered hexagonal boron nitride ceramics hot-pressed from microcrystalline and crystalline powders was studied. Boron oxide released during sintering, especially from the microcrystalline powder, had a crucial effect on the size and orientation of boron nitride grains and on the mechanical properties of the ceramics. The extraction of boron oxide from the boron nitride grains with elemental boron and subsequent conversion to a refractory suboxide resulted in a substantial rise in the refractoriness, preventing the undesirable growth of boron nitride grains, and reducing their response to the uniaxial effect of the external pressure. The migration mechanism of boron oxide ill hot-pressed boron nitride was also confirmed by measurements of the oxygen distribution ill the ceramics.

  14. AN ATMOSPHERIC STRUCTURE EQUATION FOR GRAIN GROWTH

    SciTech Connect

    Ormel, C.W.

    2014-07-01

    We present a method to include the evolution of the grain size and grain opacity κ{sub gr} in the equations describing the structure of protoplanetary atmospheres. The key assumption of this method is that a single grain size dominates the grain size distribution at any height r. In addition to following grain growth, the method accounts for mass deposition by planetesimals and grain porosity. We illustrate this method by computation of a simplified atmosphere structure model. In agreement with previous works, grain coagulation is seen to be very efficient. The opacity drops to values much below the often-used ''interstellar medium opacities'' (∼1 cm{sup 2} g{sup –1}) and the atmosphere structure profiles for temperature and density resemble that of the grain-free case. Deposition of planetesimals in the radiative part of the atmosphere hardly influences this outcome as the added surface is quickly coagulated away. We observe a modest dependence on the internal structure (porosity), but show that filling factors cannot become too large because of compression by gas drag.

  15. Abnormal Grain Growth Suppression in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J. (Inventor); Claytor, Harold Dale (Inventor); Alexa, Joel A. (Inventor)

    2015-01-01

    The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment ("IAT") after the welding step on the article. The IAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.

  16. Abnormal grain growth in Ni-5at.%W

    NASA Astrophysics Data System (ADS)

    Witte, M.; Belde, M.; Barrales Mora, L.; de Boer, N.; Gilges, S.; Klöwer, J.; Gottstein, G.

    2012-12-01

    The growth of abnormally large grains in textured Ni-5at.%W substrates for high-temperature superconductors deteriorates the sharp texture of these materials and thus has to be avoided. Therefore the growth of abnormal grains is investigated and how it is influenced by the grain orientation and the annealing atmosphere. Texture measurements and grain growth simulations show that the grain orientation only matters so far that a high-angle grain boundary exists between an abnormally growing grain and the Cube-orientated matrix grains. The annealing atmosphere has a large influence on abnormal grain growth which is attributed to the differences in oxygen partial pressure.

  17. Parsing abnormal grain growth in specialty aluminas

    NASA Astrophysics Data System (ADS)

    Lawrence, Abigail Kremer

    Grain growth in alumina is strongly affected by the impurities present in the material. Certain impurity elements are known to have characteristic effects on abnormal grain growth in alumina. Specialty alumina powders contain multiple impurity species including MgO, CaO, SiO2, and Na 2O. In this work, sintered samples made from alumina powders containing various amounts of the impurities in question were characterized by their grain size and aspect ratio distributions. Multiple quantitative methods were used to characterize and classify samples with varying microstructures. The grain size distributions were used to partition the grain size population into subpopulations depending on the observed deviation from normal behavior. Using both grain size and aspect ratio a new visual representation for a microstructure was introduced called a morphology frequency map that gives a fingerprint for the material. The number of subpopulations within a sample and the shape of the distribution on the morphology map provided the basis for a classification scheme for different types of microstructures. Also using the two parameters a series of five metrics were calculated that describe the character of the abnormal grains in the sample, these were called abnormal character values. The abnormal character values describe the fraction of grains that are considered abnormal, the average magnitude of abnormality (including both grain size and aspect ratio), the average size, and variance in size. The final metric is the correlation between grain size and aspect ratio for the entire population of grains. The abnormal character values give a sense of how different from "normal" the sample is, given the assumption that a normal sample has a lognormal distribution of grain size and a Gaussian distribution of aspect ratios. In the second part of the work the quantified measures of abnormality were correlated with processing parameters such as composition and heat treatment conditions. A

  18. GROWTH OF GRAINS IN BROWN DWARF DISKS

    SciTech Connect

    Meru, Farzana; Galvagni, Marina; Olczak, Christoph

    2013-09-01

    We perform coagulation and fragmentation simulations using the new physically motivated model by Garaud et al. to determine growth locally in brown dwarf disks. We show that large grains can grow and that if brown dwarf disks are scaled-down versions of T Tauri disks (in terms of stellar mass, disk mass, and disk radius) growth at an equivalent location with respect to the disk truncation radius can occur to the same size in both disks. We show that similar growth occurs because the collisional timescales in the two disks are comparable. Our model may therefore potentially explain the recent observations of grain growth to millimeter sizes in brown dwarf disks, as seen in T Tauri disks.

  19. Assessment of MARMOT Grain Growth Model

    SciTech Connect

    Fromm, B.; Zhang, Y.; Schwen, D.; Brown, D.; Pokharel, R.

    2015-12-01

    This report assesses the MARMOT grain growth model by comparing modeling predictions with experimental results from thermal annealing. The purpose here is threefold: (1) to demonstrate the validation approach of using thermal annealing experiments with non-destructive characterization, (2) to test the reconstruction capability and computation efficiency in MOOSE, and (3) to validate the grain growth model and the associated parameters that are implemented in MARMOT for UO2. To assure a rigorous comparison, the 2D and 3D initial experimental microstructures of UO2 samples were characterized using non-destructive Synchrotron x-ray. The same samples were then annealed at 2273K for grain growth, and their initial microstructures were used as initial conditions for simulated annealing at the same temperature using MARMOT. After annealing, the final experimental microstructures were characterized again to compare with the results from simulations. So far, comparison between modeling and experiments has been done for 2D microstructures, and 3D comparison is underway. The preliminary results demonstrated the usefulness of the non-destructive characterization method for MARMOT grain growth model validation. A detailed analysis of the 3D microstructures is in progress to fully validate the current model in MARMOT.

  20. Dynamic Abnormal Grain Growth in Refractory Metals

    NASA Astrophysics Data System (ADS)

    Noell, Philip J.; Taleff, Eric M.

    2015-11-01

    High-temperature plastic deformation of the body-centered cubic (BCC) refractory metals Mo and Ta can initiate and propagate abnormal grains at significantly lower temperatures and faster rates than is possible by static annealing alone. This discovery reveals a new and potentially important aspect of abnormal grain growth (AGG) phenomena. The process of AGG during plastic deformation at elevated temperatures, termed dynamic abnormal grain growth (DAGG), was observed at homologous temperatures between 0.52 and 0.72 in both Mo and Ta sheet materials; these temperatures are much lower than those for previous observations of AGG in these materials during static annealing. DAGG was used to repeatedly grow single crystals several centimeters in length. Investigations to date have produced a basic understanding of the conditions that lead to DAGG and how DAGG is affected by microstructure in BCC refractory metals. The current state of understanding for DAGG is reviewed in this paper. Attention is given to the roles of temperature, plastic strain, boundary mobility and preexisting microstructure. DAGG is considered for its potential useful applications in solid-state crystal growth and its possibly detrimental role in creating undesired abnormal grains during thermomechanical processing.

  1. A bonding process between grains in mechanically disaggregated snow

    NASA Astrophysics Data System (ADS)

    Adams, Edward E.; Jepsen, Steven M.; Close, Bryan

    Collections of disaggregated snow particles were examined in a temperature-controlled microscope stage. In addition to necks that appeared to sinter in a manner congruent with the two-particle model, there also appeared unanticipated dendritic growth, which developed on some grains and grew into the pore space. These branches developed preferentially only on part of, and in different directions on, individual grains. Some of these grew enough to join with adjacent grains that were in close proximity but not initially in contact, while the surface of the adjacent grains did not show measurable growth or loss. Growth orientation is hypothesized to be due to crystal habit dependence on temperature. Columnar growth was observed at -5°C and plate-like at -15°C. The random growth orientation is in contrast to observed source and sink development aligned with a temperature gradient imposed using a gradient stage. In this case, a source-to-sink directionality across the pore was apparent in which faceted crystals grew at the expense of neighboring source grains. The process of mechanically disaggregating snow produces numerous broken shards and sharp-edged fracture surfaces. We hypothesize that it is the sublimation of these high-surface-energy regions that provides the excess vapor to facilitate the diffusion-limited dendritic growth observed in this 'equitemperature', mechanically processed snow.

  2. Stability of grain boundary texture during isothermal grain growth in UO2 considering anisotropic grain boundary properties

    NASA Astrophysics Data System (ADS)

    Hallberg, Håkan; Zhu, Yaochan

    2015-10-01

    In the present study, mesoscale simulations of grain growth in UO2 are performed using a 2D level set representation of the polycrystal grain boundary network, employed in a finite element setting. Anisotropic grain boundary properties are considered by evaluating how grain boundary energy and mobility varies with local grain boundary character. This is achieved by considering different formulations of the anisotropy of grain boundary properties, for example in terms of coincidence site lattice (CSL) correspondence. Such modeling approaches allow tracing of the stability of a number of characteristic low-Σ boundaries in the material during grain growth. The present simulations indicate that anisotropic grain boundary properties have negligible influence on the grain growth rate. However, considering the evolution of grain boundary character distribution and the grain size distribution, it is found that neglecting anisotropic boundary properties will strongly bias predictions obtained from numerical simulations.

  3. Abnormal grain growth in AISI 304L stainless steel

    SciTech Connect

    Shirdel, M.; Mirzadeh, H.; Parsa, M.H.

    2014-11-15

    The microstructural evolution during abnormal grain growth (secondary recrystallization) in 304L stainless steel was studied in a wide range of annealing temperatures and times. At relatively low temperatures, the grain growth mode was identified as normal. However, at homologous temperatures between 0.65 (850 °C) and 0.7 (900 °C), the observed transition in grain growth mode from normal to abnormal, which was also evident from the bimodality in grain size distribution histograms, was detected to be caused by the dissolution/coarsening of carbides. The microstructural features such as dispersed carbides were characterized by optical metallography, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, and microhardness. Continued annealing to a long time led to the completion of secondary recrystallization and the subsequent reappearance of normal growth mode. Another instance of abnormal grain growth was observed at homologous temperatures higher than 0.8, which may be attributed to the grain boundary faceting/defaceting phenomenon. It was also found that when the size of abnormal grains reached a critical value, their size will not change too much and the grain growth behavior becomes practically stagnant. - Highlights: • Abnormal grain growth (secondary recrystallization) in AISI 304L stainless steel • Exaggerated grain growth due to dissolution/coarsening of carbides • The enrichment of carbide particles by titanium • Abnormal grain growth due to grain boundary faceting at very high temperatures • The stagnancy of abnormal grain growth by annealing beyond a critical time.

  4. Simultaneous Grain Growth and Grain Refinement in Bulk Ultrafine-Grained Copper under Tensile Deformation at Room Temperature

    NASA Astrophysics Data System (ADS)

    Yu, Hailiang; Lu, Cheng; Tieu, Anh Kiet; Li, Huijun; Godbole, Ajit; Kong, Charlie; Zhao, Xing

    2016-08-01

    Grain growth and grain refinement behavior during deformation determine the strength and ductility of ultrafine-grained materials. We used asymmetric cryorolling to fabricate ultrafine-grained copper sheets with an average grain width of 230 nm and having a laminate structure. The sheets show a high-true failure strain of 1.5. Observation of the microstructure at the fracture surface reveals that ultrafine laminate-structured grains were simultaneously transformed into both equiaxed nanograins and coarse grains under tensile deformation at room temperature.

  5. Effect of anisotropic interfacial energy on grain boundary distributions during grain growth

    SciTech Connect

    Gruber, J. A.; George, D. C.; Kuprat, A. P.; Rohrer, Gregory S.; Rollett, A. D.

    2004-01-01

    Through simulations with the moving finite element program GRAIN3D, we have studied the effect of anisotropic grain boundary energy on the distribution of boundary types in a polycrystal during normal grain growth. An energy function similar to that hypothesized for magnesia was used, and the simulated grain boundary distributions were found to agree well with measured distributions. The simulated results suggest that initially random microstructures develop nearly steady state grain boundary distributions that have local maxima and minima corresponding to local minima and maxima, respectively, of the energy function. It is well known that the properties and area fractions of various grain boundary types in polycrystals have a dramatic effect on macroscopic materials properties. The goal of the present study is to examine the quantitative relation between grain boundary energies and the distribution of grain boundary types that result from grain growth. In keeping with the prior work, we parameterize the five-dimensional space of grain boundary types using three parameters to describe the lattice misorientation and two parameters to describe the orientation of the grain boundary plane. Of particular interest is the observation that at fixed misorientations, there is significant texture in the distribution of the grain boundary planes and planes with low surface energies appear more frequently. Here we use simulation to test the idea that the observed distributions arise because of the grain boundary energy anisotropy. In comparison to the experiments, the simulations are advantageous because they make it possible to monitor the time evolution of the distribution and to independently determine the influence of different grain boundary properties on the development of the distribution. A moving finite element program, GRAIN3D, has been developed with the capability to incorporate anisotropic grain boundary energy and mobility functions into grain growth simulations

  6. Recrystallization and grain growth in NiAl

    NASA Technical Reports Server (NTRS)

    Haff, G. R.; Schulson, E. M.

    1982-01-01

    Aluminide intermetallics, because of their strength, microstructural stability, and oxidation resistance at elevated temperatures, represent potential structural materials for use in advanced energy conversion systems. This inherent potential of the intermetallics can currently not be realized in connection with the general brittleness of the materials under ambient conditions. It is pointed out, however, that brittleness is not an inherent characteristic. Single crystals are ductile and polycrystals may be, too, if their grains are fine enough. The present investigation is concerned with an approach for reducing material brittleness, taking into account thermal-mechanically induced grain refinement in NiAl, a B2 aluminide which melts at 1638 C and which retains complete order to its melting point. Attention is given to the kinetics of recrystallization and grain growth of warm-worked, nickel-rich material.

  7. Grain growth in thin Al films during deposition from partially ionized vapor

    NASA Astrophysics Data System (ADS)

    Gusev, I. V.; Mokhniuk, A. A.

    2016-07-01

    Grain growth in thin Al films during deposition from partially ionized vapor flux with simultaneous self-ion bombardment was studied in this work. The films were deposited at constant ion energy of 940 eV and total specific power of 0.4 W/cm2 while the deposition time t of 6 s to 246 s and the resulting substrate temperature (Ts/Tm of 0.35-0.96) were varied. Thin continuous Al films exhibited normal grain growth through the entire experimental range of deposition time without limitation of grain growth by the film thickness effect. Three kinetic stages of the grain growth were observed within 100 s of deposition time: the first one exhibits very slow grain growth, accelerated grain growth occurs in the second stage and then it rapidly changes to a retardation and stagnation mode in the third stage. Large average grain sizes Dg up to 11.3 μm at film thickness of 1.4 μm and integral grain growth rates up to 0.16 μm/s were observed in this study. The experimental results were evaluated against various mechanisms of inhibition of grain growth. An estimate of the effective activation energy of the grain growth yields a value of 0.27 eV which is lower than that of the bulk Al and much higher than the activation energy of surface self-diffusion on (1 1 1)Al monocrystal. The power law Dg = (k t)0.5 gives good match with experimental results in the initial deposition phase preceding the grain growth retardation, while another model that is based on the grain size dependent pinning force adequately explains the entire grain size dependence on time. It is deemed both ion enhanced film/surface interaction and impurities on one side and thermal grooves on another side contribute to the rapid retardation of the grain grooves commencing the second growth stage.

  8. The Effects of Grain Size and Texture on Dynamic Abnormal Grain Growth in Mo

    NASA Astrophysics Data System (ADS)

    Noell, Philip J.; Taleff, Eric M.

    2016-10-01

    This is the first report of abnormal grain morphologies specific to a Mo sheet material produced from a commercial-purity arc-melted ingot. Abnormal grains initiated and grew during plastic deformation of this material at temperatures of 1793 K and 1813 K (1520 °C and 1540 °C). This abnormal grain growth during high-temperature plastic deformation is termed dynamic abnormal grain growth, DAGG. DAGG in this material readily consumes nearly all grains near the sheet center while leaving many grains near the sheet surface unconsumed. Crystallographic texture, grain size, and other microstructural features are characterized. After recrystallization, a significant through-thickness variation in crystallographic texture exists in this material but does not appear to directly influence DAGG propagation. Instead, dynamic normal grain growth, which may be influenced by texture, preferentially occurs near the sheet surface prior to DAGG. The large grains thus produced near the sheet surface inhibit the subsequent growth of the abnormal grains produced by DAGG, which preferentially consume the finer grains near the sheet center. This produces abnormal grains that span the sheet center but leave unconsumed polycrystalline microstructure near the sheet surface. Abnormal grains are preferentially oriented with the < 110rangle approximately along the tensile axis. These results provide additional new evidence that boundary curvature is the primary driving force for DAGG in Mo.

  9. The Effects of Grain Size and Texture on Dynamic Abnormal Grain Growth in Mo

    NASA Astrophysics Data System (ADS)

    Noell, Philip J.; Taleff, Eric M.

    2016-07-01

    This is the first report of abnormal grain morphologies specific to a Mo sheet material produced from a commercial-purity arc-melted ingot. Abnormal grains initiated and grew during plastic deformation of this material at temperatures of 1793 K and 1813 K (1520 °C and 1540 °C). This abnormal grain growth during high-temperature plastic deformation is termed dynamic abnormal grain growth, DAGG. DAGG in this material readily consumes nearly all grains near the sheet center while leaving many grains near the sheet surface unconsumed. Crystallographic texture, grain size, and other microstructural features are characterized. After recrystallization, a significant through-thickness variation in crystallographic texture exists in this material but does not appear to directly influence DAGG propagation. Instead, dynamic normal grain growth, which may be influenced by texture, preferentially occurs near the sheet surface prior to DAGG. The large grains thus produced near the sheet surface inhibit the subsequent growth of the abnormal grains produced by DAGG, which preferentially consume the finer grains near the sheet center. This produces abnormal grains that span the sheet center but leave unconsumed polycrystalline microstructure near the sheet surface. Abnormal grains are preferentially oriented with the < 110rangle approximately along the tensile axis. These results provide additional new evidence that boundary curvature is the primary driving force for DAGG in Mo.

  10. In situ studies of grain growth in thin metal films

    SciTech Connect

    Nichols, C.S.; Mansuri, C.M. . Dept. of Materials Science and Engineering); Townsend, S.J. . Dept. of Physics); Smith, D.A. . T.J. Watson Research Center)

    1993-06-01

    Grain growth in thin films of aluminum has been studied using in situ transmission electron microscopy and a heating stage. Videotapes taken during grain growth were analyzed with the intent of searching for the predominant local rearrangement processes responsible for growth. Evolution of a soap froth can be decomposed into only two elementary local topology rearranging events. The authors have found numerous exceptions to prevailing theories that compare grain growth in thin films to the evolution of such froths. These observations suggest that a more complete picture of grain growth is necessary and that such a theory must include more complex local rearrangement processes.

  11. Microstructural Evolutions During Annealing of Plastically Deformed AISI 304 Austenitic Stainless Steel: Martensite Reversion, Grain Refinement, Recrystallization, and Grain Growth

    NASA Astrophysics Data System (ADS)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2016-08-01

    Microstructural evolutions during annealing of a plastically deformed AISI 304 stainless steel were investigated. Three distinct stages were identified for the reversion of strain-induced martensite to austenite, which were followed by the recrystallization of the retained austenite phase and overall grain growth. It was shown that the primary recrystallization of the retained austenite postpones the formation of an equiaxed microstructure, which coincides with the coarsening of the very fine reversed grains. The latter can effectively impair the usefulness of this thermomechanical treatment for grain refinement at both high and low annealing temperatures. The final grain growth stage, however, was found to be significant at high annealing temperatures, which makes it difficult to control the reversion annealing process for enhancement of mechanical properties. Conclusively, this work unravels the important microstructural evolution stages during reversion annealing and can shed light on the requirements and limitations of this efficient grain refining approach.

  12. Abnormal Grain Growth in M-252 and S-816 Alloys

    NASA Technical Reports Server (NTRS)

    Decker, R F; Rush, A I; Dano, A G; Freeman, J W

    1957-01-01

    An experimental investigation was carried out on air- and vacuum-melted M-252 and S-816 alloys to find conditions of heating and hot-working which resulted in abnormal grain growth. The experiments were mainly limited to normal conditions of heating for hot-working and heat treatment and normal temperatures of solution treatment were used to allow grain growth after susceptibility to abnormal grain growth was developed by various experimental conditions. Results indicated that small reductions of essentially strain-free metal were the basic cause of such grain growth.

  13. Grain growth kinetics in liquid-phase-sintered zinc oxide-barium oxide ceramics

    NASA Technical Reports Server (NTRS)

    Yang, Sung-Chul; German, Randall M.

    1991-01-01

    Grain growth of ZnO in the presence of a liquid phase of the ZnO-BaO system has been studied for temperatures from 1300 to 1400 C. The specimens were treated in boiling water and the grains were separated by dissolving the matrix phase in an ultrasonic bath. As a consequence 3D grain size measurements were possible. Microstructural examination shows some grain coalescence with a wide range of neck size ratios and corresponding dihedral angles, however, most grains are isolated. Lognormal grain size distributions show similar shapes, indicating that the growth mechanism is invariant over this time and temperature. All regressions between G exp n and time for n = 2 and 3 proved statistically significant. The rate constants calculated with the growth exponent set to n = 3 are on the same order of magnitude as in metallic systems. The apparent activation energy for growth is estimated between 355 and 458 kJ/mol.

  14. The effect of triple-junction drag on grain growth

    SciTech Connect

    Gottstein, G.; King, A.H.; Shvindlerman, L.S.

    2000-01-24

    Current theories of grain growth presume that grain boundary migration is the rate-limiting step, and either explicitly or implicitly assume that triple junctions can always move with sufficient speed to accommodate the changing positions of the grain boundaries. Following from some recent observations of triple-junction drag effects in tricrystals of zinc and in molecular dynamics models, an analytical theory is developed to explore the effects of triple-junction drag upon grain growth, for a two-dimensional solid. The theory is developed in the framework of the Von Neumann-Mullins formulation, and demonstrates that drag effects operating exclusively at the triple junctions result in a retardation of grain growth. The stability of six-sided grains in the isotropic, drag-free case of the Von Neumann-Mullins analysis is successively extended to grains of 6 {+-} N sides, where N increases with the strength of the triple-junction drag.

  15. High-Temperature Superconductivity in the Yttrium Barium-Copper System: Thin Film Growth, Grain Boundary Effects and Interlayer Coupling Mechanisms

    NASA Astrophysics Data System (ADS)

    Chen, Ling

    The present work addresses key scientific and technical issues pertaining to the establishment of an improved understanding of the physical mechanisms of superconductivity and the development of a technologically useful process for the growth of YBCO films. The first section describes the successful development of a technologically useful CVD process for the growth of high quality YBCO ultrathin and multilayered structures on metallic and insulating substrates for energy-related, microwave, and microelectronic applications. In particular, the process was employed to deposit epitaxial YBCO films on single-crystal dielectric substrates, such as LaAlO _3 and SrTiO_3 at growth rates >700 A/min. Films above 500 A on SrTiO_3 exhibited a T _{rm c} of 92 K, a J _{rm c} of 2times10 ^6 A/cm^2 (77K, B = 0), no weak-link behavior in magnetic field up to 1 Tesla, and a surface resistance R_{rm s} of 309 muOmega (10 GHz, 77 K), which is comparable to the best PVD YBCO films. Corresponding investigations of the mechanisms of early film nucleation and growth led to the identification of appropriate growth modes and the successful production of high quality superconducting ultrathin YBCO layers down to 60 A. In particular, it is shown that the nature of YBCO growth is greatly influenced by substrate morphology, chemical condition and lattice mismatch, with the early stages of growth on LaAlO_3 and MgO following, respectively, the Frank-van der Merwe and Volmer Weber modes. Additionally, the improved quality of YBCO films on silver substrates was partially explained by the key role of the substrate processing temperature in not only affecting YBCO nucleation and growth but also in the recrystallization of silver substrates, which in turn greatly influenced film growth. In addition, experimental observations concerning the existence of a T_{rm c} ~ 30 K in a unit-cell thick YBCO layer and the effects on T_{rm c} of composition and dimensions of multilayered superconductor structures

  16. Computer simulation of grain growth kinetics with solute drag

    SciTech Connect

    Fan, D.; Chen, S.P.; Chen, L.

    1999-03-01

    The effects of solute drag on the grain growth kinetics were studied in two-dimensional (2D) computer simulations by using a diffuse-interface field model. It is shown that, in the low velocity/low driving force regime, the velocity of a grain boundary motion departs from a linear relation with driving force (curvature) with solute drag. The nonlinear relation of migration velocity and driving force comes from the dependence of grain boundary energy and width on the curvature. The growth exponent {ital m} of power growth law for a polycrystalline system is affected by the segregation of solutes to grain boundaries. With the solute drag, the growth exponent {ital m} can take any value between 2 and 3, depending on the ratio of lattice diffusion to grain boundary mobility. The grain size and topological distributions are unaffected by solute drag, which are the same as those in a pure system. {copyright} {ital 1999 Materials Research Society.}

  17. Computer Simulation of Grain Growth Kinetics with Solute Drag

    SciTech Connect

    Chen, L.; Chen, S.P.; Fan, D.

    1998-12-23

    The effects of solute dragon grain growth kinetics were studied in two dimensional (2-D) computer simulations by using a diffuse-interface field model. It is shown that, in the low velocity / low driving force regime, the velocity of a grain boundary motion departs from a linear relation with driving force (curvature) with solute drag. The nonlinear relation of migration velocity and driving force comes from the dependence of grain boundary energy and width on the curvature. The growth exponent m of power growth law for a polycrystalline system is affected by the segregation of solutes to grain boundaries. With the solute drag, the growth exponent m can take any value between 2 and 3 depending on the ratio of lattice diffusion to grain boundary mobility. The grain size and topological distributions are unaffected by solute drag, which are the same as those in a pure system.

  18. Kinetic constants of abnormal grain growth in nanocrystalline nickel

    NASA Astrophysics Data System (ADS)

    Aleshin, A. N.

    2016-02-01

    The grain growth in nanocrystalline nickel with a purity of 99.5 at % during non-isothermal annealing was experimentally investigated using differential scanning calorimetry and transmission electron microscopy. Nanocrystalline nickel was prepared by electrodeposition and had an average grain size of approximately 20 nm. It was shown that, at a temperature corresponding to the calorimetric signal peak, abnormal grain growth occurs with the formation of a bimodal grain microstructure. Calorimeters signals were processed within the Johnson-Mehl-Avrami formalism. This made it possible to determine the exponent of the corresponding equation, the frequency factor, and the activation energy of the grain growth, which was found to be equal to the activation energy of the vacancy migration. The reasons for the abnormal grain growth in nanocrystalline nickel were discussed.

  19. Computer simulation of grain growth with mobile particles

    SciTech Connect

    Hassold, G.N.; Srolovitz, D.J.

    1995-05-15

    The authors have studied the influence of mobile particles on grain growth kinetics. Three time regimes are evident in the observed coarsening. Initially, most grains grow unhindered by particles, with a growth exponent close to 1/2. As with static impurities, once the mean grain size approaches the average inter-particle separation the microstructure becomes effectively pinned. With mobile impurities, however, the loaded grain boundaries eventually resume their motion. The depinning time is observed to be independent of particle concentration. The observed kinetic behavior, growth exponents, and depinning time are in agreement with a simple theoretical model with different mobilities for boundaries with and without attached particles.

  20. The scaling state in two-dimensional grain growth

    SciTech Connect

    Mulheran, P.A. . Dept. of Physics)

    1994-11-01

    A new model of normal grain growth in two-dimensional systems is derived from considerations of Potts model simulations. This Randomly Connected Bubble model is based on Hillert's theory and combines the essential topological features of the grain boundary network with the action of capillarity. It successfully predicts what the scaling state of the network should be and explains why the system evolves into this state. The implications for grain growth in real materials are also discussed.

  1. Phase field modeling of grain growth in porous polycrystalline solids

    NASA Astrophysics Data System (ADS)

    Ahmed, Karim E.

    The concurrent evolution of grain size and porosity in porous polycrystalline solids is a technically important problem. All the physical properties of such materials depend strongly on pore fraction and pore and grain sizes and distributions. Theoretical models for the pore-grain boundary interactions during grain growth usually employ restrictive, unrealistic assumptions on the pore and grain shapes and motions to render the problem tractable. However, these assumptions limit the models to be only of qualitative nature and hence cannot be used for predictions. This has motivated us to develop a novel phase field model to investigate the process of grain growth in porous polycrystalline solids. Based on a dynamical system of coupled Cahn-Hilliard and All en-Cahn equations, the model couples the curvature-driven grain boundary motion and the migration of pores via surface diffusion. As such, the model accounts for all possible interactions between the pore and grain boundary, which highly influence the grain growth kinetics. Through a formal asymptotic analysis, the current work demonstrates that the phase field model recovers the corresponding sharp-interface dynamics of the co-evolution of grain boundaries and pores; this analysis also fixes the model kinetic parameters in terms of real materials properties. The model was used to investigate the effect of porosity on the kinetics of grain growth in UO2 and CeO2 in 2D and 3D. It is shown that the model captures the phenomenon of pore breakaway often observed in experiments. Pores on three- and four- grain junctions were found to transform to edge pores (pores on two-grain junction) before complete separation. The simulations demonstrated that inhomogeneous distribution of pores and pore breakaway lead to abnormal grain growth. The simulations also showed that grain growth kinetics in these materials changes from boundary-controlled to pore-controlled as the amount of porosity increases. The kinetic growth

  2. Plasticity mechanisms in ultrafine grained freestanding aluminum thin films revealed by in-situ transmission electron microscopy nanomechanical testing

    SciTech Connect

    Idrissi, Hosni; Kobler, Aaron; Amin-Ahmadi, Behnam; Schryvers, Dominique; Coulombier, Michael; Pardoen, Thomas; Galceran, Montserrat; Godet, Stéphane; Kübel, Christian

    2014-03-10

    In-situ bright field transmission electron microscopy (TEM) nanomechanical tensile testing and in-situ automated crystallographic orientation mapping in TEM were combined to unravel the elementary mechanisms controlling the plasticity of ultrafine grained Aluminum freestanding thin films. The characterizations demonstrate that deformation proceeds with a transition from grain rotation to intragranular dislocation glide and starvation plasticity mechanism at about 1% deformation. The grain rotation is not affected by the character of the grain boundaries. No grain growth or twinning is detected.

  3. Austenite Grain Growth and the Surface Quality of Continuously Cast Steel

    NASA Astrophysics Data System (ADS)

    Dippenaar, Rian; Bernhard, Christian; Schider, Siegfried; Wieser, Gerhard

    2014-04-01

    Austenite grain growth does not only play an important role in determining the mechanical properties of steel, but certain surface defects encountered in the continuous casting industry have also been attributed to the formation of large austenite grains. Earlier research has seen innovative experimentation, the development of metallographic techniques to determine austenite grain size and the building of mathematical models to simulate the conditions pertaining to austenite grain growth during the continuous casting of steel. Oscillation marks and depressions in the meniscus region of the continuously casting mold lead to retarded cooling of the strand surface, which in turn results in the formation of coarse austenite grains, but little is known about the mechanism and rate of formation of these large austenite grains. Relevant earlier research will be briefly reviewed to put into context our recent in situ observations of the delta-ferrite to austenite phase transition. We have confirmed earlier evidence that very large delta-ferrite grains are formed very quickly in the single-phase region and that these large delta-ferrite grains are transformed to large austenite grains at low cooling rates. At the higher cooling rates relevant to the early stages of the solidification of steel in a continuously cast mold, delta-ferrite transforms to austenite by an apparently massive type of transformation mechanism. Large austenite grains then form very quickly from this massive type of microstructure and on further cooling, austenite transforms to thin ferrite allotriomorphs on austenite grain boundaries, followed by Widmanstätten plate growth, with almost no regard to the cooling rate. This observation is important because it is now well established that the presence of a thin ferrite film on austenite grain boundaries is the main cause of reduction in hot ductility. Moreover, this reduction in ductility is exacerbated by the presence of large austenite grains.

  4. A Phase-Field Model for Grain Growth

    SciTech Connect

    Chen, L.Q.; Fan, D.N.; Tikare, V.

    1998-12-23

    A phase-field model for grain growth is briefly described. In this model, a poly-crystalline microstructure is represented by multiple structural order parameter fields whose temporal and spatial evolutions follow the time-dependent Ginzburg-Landau (TDGL) equations. Results from phase-field simulations of two-dimensional (2D) grain growth will be summarized and preliminary results on three-dimensional (3D) grain growth will be presented. The physical interpretation of the structural order parameter fields and the efficient and accurate semi-implicit Fourier spectral method for solving the TDGL equations will be briefly discussed.

  5. Manufacturing process to reduce large grain growth in zirconium alloys

    DOEpatents

    Rosecrans, P.M.

    1984-08-01

    It is an object of the present invention to provide a procedure for desensitizing zirconium-based alloys to large grain growth (LGG) during thermal treatment above the recrystallization temperature of the alloy. It is a further object of the present invention to provide a method for treating zirconium-based alloys which have been cold-worked in the range of 2 to 8% strain to reduce large grain growth. It is another object of the present invention to provide a method for fabricating a zirconium alloy clad nuclear fuel element wherein the zirconium clad is resistant to large grain growth.

  6. Lattice Boltzmann models for the grain growth in polycrystalline systems

    NASA Astrophysics Data System (ADS)

    Zheng, Yonggang; Chen, Cen; Ye, Hongfei; Zhang, Hongwu

    2016-08-01

    In the present work, lattice Boltzmann models are proposed for the computer simulation of normal grain growth in two-dimensional systems with/without immobile dispersed second-phase particles and involving the temperature gradient effect. These models are demonstrated theoretically to be equivalent to the phase field models based on the multiscale expansion. Simulation results of several representative examples show that the proposed models can effectively and accurately simulate the grain growth in various single- and two-phase systems. It is found that the grain growth in single-phase polycrystalline materials follows the power-law kinetics and the immobile second-phase particles can inhibit the grain growth in two-phase systems. It is further demonstrated that the grain growth can be tuned by the second-phase particles and the introduction of temperature gradient is also an effective way for the fabrication of polycrystalline materials with grained gradient microstructures. The proposed models are useful for the numerical design of the microstructure of materials and provide effective tools to guide the experiments. Moreover, these models can be easily extended to simulate two- and three-dimensional grain growth with considering the mobile second-phase particles, transient heat transfer, melt convection, etc.

  7. Unraveling irradiation induced grain growth with in situ transmission electron microscopy and coordinated modeling

    SciTech Connect

    Bufford, D. C.; Abdeljawad, F. F.; Foiles, S. M.; Hattar, K.

    2015-11-09

    Nanostructuring has been proposed as a method to enhance radiation tolerance, but many metallic systems are rejected due to significant concerns regarding long term grain boundary and interface stability. This work utilized recent advancements in transmission electron microscopy (TEM) to quantitatively characterize the grain size, texture, and individual grain boundary character in a nanocrystalline gold model system before and after in situ TEM ion irradiation with 10 MeV Si. The initial experimental measurements were fed into a mesoscale phase field model, which incorporates the role of irradiation-induced thermal events on boundary properties, to directly compare the observed and simulated grain growth with varied parameters. The observed microstructure evolution deviated subtly from previously reported normal grain growth in which some boundaries remained essentially static. In broader terms, the combined experimental and modeling techniques presented herein provide future avenues to enhance quantification and prediction of the thermal, mechanical, or radiation stability of grain boundaries in nanostructured crystalline systems.

  8. Grain growth and grain boundary segregation in binary alloys: A Monte-Carlo simulation

    SciTech Connect

    Liu, J.M. |; Wu, Z.C.

    1997-08-15

    The authors have presented a Monte-Carlo simulation of grain growth and solute segregation on the grain boundaries (GBs) in binary alloys. A thermodynamic approach of the simulation algorithm has been given. The preliminary simulation of a simplified binary system indicates that pronounced solute segregation on the GBs is achieved, characterized by linearly increasing solute concentration on the GBs and significant spatial correlation of the solute distribution. The authors observe the normal grain growth in the present system by demonstrating the scaling behavior of its size distribution although the kinetics is seriously slowed down, exhibiting an exponent much lower than the 1/2 law.

  9. Grain growth kinetics and its effect on instrumented indentation response to nanocrystalline Ni

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arnomitra; Sharma, Garima; Chakravartty, J. K.

    2013-02-01

    Thermal instability in nanocrystalline (nc) Ni with a grain size of ˜60 nm was studied in detail. The kinetics of thermal grain growth behavior was studied by DSC and resistivity experiments. Thermal instability was characterized by determining the activation energy required for grain growth in the temperature range of 100-400 °C. The activation energy was found to be ˜ 100 kJ/mol below Curie temperature and ˜ 298 kJ/mol above Curie temperature. The effect of grain size on hardness and activation volume was investigated using nanoindentation technique. The interaction of dislocations-grain boundaries mediated mechanism was found to be the rate controlling plastic deformation mechanism.

  10. Grain transport mechanics in shallow flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flows. The two-phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a dispe...

  11. Grain transport mechanics in shallow overland flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flow. The two phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a disper...

  12. Dynamic Grain Growth in Forsterite Aggregates Experimentally Deformed to High Strain

    NASA Astrophysics Data System (ADS)

    Kellermann Slotemaker, A.; de Bresser, H.; Spiers, C.; Drury, M.

    2004-12-01

    The dynamics of the outer Earth are largely controlled by olivine rheology. From previous work it has become clear that if olivine rocks are deformed to high strain, substantial weakening may occur before steady state mechanical behaviour is approached. This weakening appears directly related to progressive modification of the grain size distribution through competing effects of dynamic recrystallization and syn-deformational grain growth. However, most of our understanding of these processes in olivine comes from tests on coarse-grained materials that were reduced in grain size during straining by grain size insensitive (dislocation) creep mechanisms. The aim of the present study was to investigate microstructure evolution of fine-grained olivine rocks that coarsen in grain size while deforming by grain size sensitive (GSS) creep. We used fine-grained (~1 μ m) olivine aggregates (i.e., forsterite/Mg2SiO4), containing ~0.5 wt% water and 10 vol% enstatite (MgSiO3). Two types of experiments were carried out: 1) Hot isostatic pressing (HIP) followed by axial compression to varying strains up to a maximum of ~45%, at 600 MPa confining pressure and a temperature of 950°C, 2) HIP treatment without axial deformation. Microstructures were characterized by analyzing full grain size distributions and texture using SEM/EBSD. Our stress-strain curves showed continuous hardening. When samples were temporally unloaded for short time intervals, no difference in flow stress was observed before and after the interruption in straining. Strain rate sensitivity analysis showed a low value of ~1.5 for the stress exponent n. Measured grain sizes show an increase with strain up to a value twice that of the starting value. HIP-only samples showed only minor increase in grain size. A random LPO combined with the low n ~1.5 suggests dominant GSS creep controlled by grain boundary sliding. These results indicate that dynamic grain growth occurs in forsterite aggregates deforming by GSS

  13. Supplying materials needed for grain growth characterizations of nano-grained UO2

    SciTech Connect

    Mo, Kun; Miao, Yinbin; Yun, Di; Jamison, Laura M.; Lian, Jie; Yao, Tiankei

    2015-09-30

    This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructure based materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize our preliminary synchrotron radiation experiments at APS to determine the grain size of nanograin UO2. The methodology and experimental setup developed in this experiment can directly apply to the proposed in-situ grain growth measurements. The investigation of the grain growth kinetics was conducted based on isothermal annealing and grain growth characterization as functions of duration and temperature. The kinetic parameters such as activation energy for grain growth for UO2 with different stoichiometry are obtained and compared with molecular dynamics (MD) simulations.

  14. Microwave sintering of nanophase ceramics without concomitant grain growth

    DOEpatents

    Eastman, Jeffrey A.; Sickafus, Kurt E.; Katz, Joel D.

    1993-01-01

    A method of sintering nanocrystalline material is disclosed wherein the nanocrystalline material is microwaved to heat the material to a temperature less than about 70% of the melting point of the nanocrystalline material expressed in degrees K. This method produces sintered nanocrystalline material having a density greater than about 95% of theoretical and an average grain size not more than about 3 times the average grain size of the nanocrystalline material before sintering. Rutile TiO.sub.2 as well as various other ceramics have been prepared. Grain growth of as little as 1.67 times has resulted with densities of about 90% of theoretical.

  15. Mechanics of Cell Growth

    PubMed Central

    Ateshian, Gerard A.; Morrison, Barclay; Holmes, Jeffrey W.; Hung, Clark T.

    2012-01-01

    Cell growth describes an essential feature of biological tissues. This growth process may be modeled by using a set of relatively simple governing equations based on the axioms of mass and momentum balance, and using a continuum framework that describes cells and tissues as mixtures of a solid matrix, a solvent and multiple solutes. In this model the mechanics of cell growth is driven by osmotic effects, regulated by the cells’ active uptake of solutes and passive uptake of solvent. By accounting for the anisotropy of the cells’ cytoskeletal structures or extracellular matrix, as well as external constraints, a wide variety of growing shapes may be produced as illustrated in various examples. PMID:22904576

  16. Monte Carlo Potts Investigation of the Role of Sparse Recrystallization in Dynamic Abnormal Grain Growth

    NASA Astrophysics Data System (ADS)

    Williamson, Alan Scott

    Dynamic Abnormal Grain Growth (DAGG) is a type of abnormal grain growth discovered in Molybdenum that occurs during dynamic straining at medium homologous temperatures. Specifics about DAGG initiation and propagation are dependent on the processing conditions experienced by the material. The mechanism responsible for DAGG has yet to be identified. Proposed is a theory is for explaining DAGG, through the nucleation and growth of a sparse number of recrystallized grains DAGG is achieved. These recrystallized grains could grow abnormally using their strain energy driving force advantage. This theory is investigated numerically by modeling dynamic recrystallization using the Monte Carlo Potts method. Dynamic recrystallization is modeled using a combination of dynamic straining, nucleation of recrystallized grains and grain growth. Dynamic recrystallization is studied to answer whether sparse recrystallization is possible, if sparse recrystallization can cause abnormal grain growth and under what conditions sparse recrystallization is accomplished. Viable sparse recrystallization can be achieved and will cause DAGG-like behavior through the nucleation and rapid growth of a single recrystallized grain. The conditions to achieve sparse recrystallization are examined using the relationship recrystallization has with strain energy and microstructure parameters. Results show that a critical strain energy is needed to allow viable nucleation of recrystallized grains. The value of the critical strain energy is the equivalent of 6 grain boundary segments of non-dimensional (n.d.) energy. The inclusion of external solid-vapor surfaces can reduce the critical strain energy to 5 n.d. Strain energy also directly influences the rate of nucleation. By minimizing strain energy, while keeping it is above the critical value, nucleation can be suppressed enough to allow sparse recrystallization. The microstructure will also influence recrystallization. The grain size of the

  17. Simulation of Grain Growth in a Near-Eutectic Solder Alloy

    SciTech Connect

    TIKARE,VEENA; VIANCO,PAUL T.

    1999-12-16

    Microstructural evolution due to aging of solder alloys determines their long-term reliability as electrical, mechanical and thermal interconnects in electronics packages. The ability to accurately determine the reliability of existing electronic components as well as to predict the performance of proposed designs depends upon the development of reliable material models. A kinetic Monte Carlo simulation was used to simulate microstructural evolution in solder-class materials. The grain growth model simulated many of the microstructural features observed experimentally in 63Sn-37Pb, a popular near-eutectic solder alloy. The model was validated by comparing simulation results to new experimental data on coarsening of Sn-Pb solder. The computational and experimental grain growth exponent for two-phase solder was found to be much lower than that for normal, single phase grain growth. The grain size distributions of solders obtained from simulations were narrower than that of normal grain growth. It was found that the phase composition of solder is important in determining grain growth behavior.

  18. The influence of grain size on the mechanical properties ofsteel

    SciTech Connect

    Morris Jr., J.W.

    2001-05-01

    Many of the important mechanical properties of steel, including yield strength and hardness, the ductile-brittle transition temperature and susceptibility to environmental embrittlement can be improved by refining the grain size. The improvement can often be quantified in a constitutive relation that is an appropriate variant on the familiar Hall-Petch relation: the quantitative improvement in properties varies with d{sup -1/2}, where d is the grain size. Nonetheless, there is considerable uncertainty regarding the detailed mechanism of the grain size effect, and appropriate definition of ''grain size''. Each particular mechanism of strengthening and fracture suggests its own appropriate definition of the ''effective grain size'', and how it may be best controlled.

  19. Giant secondary grain growth in Cu films on sapphire

    SciTech Connect

    Miller, David L.; Keller, Mark W.; Shaw, Justin M.; Rice, Katherine P.; Keller, Robert R.; Diederichsen, Kyle M.

    2013-08-15

    Single crystal metal films on insulating substrates are attractive for microelectronics and other applications, but they are difficult to achieve on macroscopic length scales. The conventional approach to obtaining such films is epitaxial growth at high temperature using slow deposition in ultrahigh vacuum conditions. Here we describe a different approach that is both simpler to implement and produces superior results: sputter deposition at modest temperatures followed by annealing to induce secondary grain growth. We show that polycrystalline as-deposited Cu on α-Al{sub 2}O{sub 3}(0001) can be transformed into Cu(111) with centimeter-sized grains. Employing optical microscopy, x-ray diffraction, and electron backscatter diffraction to characterize the films before and after annealing, we find a particular as-deposited grain structure that promotes the growth of giant grains upon annealing. To demonstrate one potential application of such films, we grow graphene by chemical vapor deposition on wafers of annealed Cu and obtain epitaxial graphene grains of 0.2 mm diameter.

  20. Morphology and grain structure evolution during epitaxial growth of Ag films on native-oxide-covered Si surface

    SciTech Connect

    Hur, Tae-Bong; Kim, Hong Koo; Perello, David; Yun, Minhee; Kulovits, Andreas; Wiezorek, Joerg

    2008-05-15

    Epitaxial nanocrystalline Ag films were grown on initially native-oxide-covered Si(001) substrates using radio-frequency magnetron sputtering. Mechanisms of grain growth and morphology evolution were investigated. An epitaxially oriented Ag layer ({approx}5 nm thick) formed on the oxide-desorbed Si surface during the initial growth phase. After a period of growth instability, characterized as kinetic roughening, grain growth stagnation, and increase of step-edge density, a layer of nanocrystalline Ag grains with a uniform size distribution appeared on the quasi-two-dimensional layer. This hierarchical process of film formation is attributed to the dynamic interplay between incoming energetic Ag particles and native oxide. The cyclic interaction (desorption and migration) of the oxide with the growing Ag film is found to play a crucial role in the characteristic evolution of grain growth and morphology change involving an interval of grain growth stagnation.

  1. Processing, mechanical behavior and biocompatibility of ultrafine grained zirconium fabricated by accumulative roll bonding

    NASA Astrophysics Data System (ADS)

    Jiang, Ling

    The aim of this study is to produce large quantities of bulk zirconium with an ultrafine grained microstructure and with enhanced properties. Accumulative roll bonding (ARB), a severe plastic deformation technique based on rolling, is chosen due to its availability in industrial environment. The texture, microstructure and mechanical behavior of bulk ultrafine grained (ufg) Zr fabricated by accumulative roll bonding is investigated by electron backscatter diffraction, transmission electron microscopy and mechanical testing. A reasonably homogeneous and equiaxed ufg structure, with a large fraction of high angle boundaries (HABs, ˜70%), can be obtained in Zr after only two ARB cycles. The average grain size, counting only HABs (theta>15°), is 400 nm. (Sub)grain size is equal to 320 nm. The yield stress and ultimate tensile stress (UTS) values are nearly double those from conventionally processed Zr with only a slight loss of ductility. Optimum processing conditions include large thickness reductions per pass (˜75%), which enhance grain refinement, and a rolling temperature (T ˜ 0.3Tm) at which a sufficient number of slip modes are activated, with an absence of significant grain growth. Grain refinement takes place by geometrical thinning and grain subdivision by the formation of geometrically necessary boundaries. The formation of equiaxed grains by geometric dynamic recrystallization is facilitated by enhanced diffusion due to adabatic heating. Optical microscopy examination and shear testing suggest accepted bonding quality compared to that achieved in materials processed by diffusion bonding and that obtained in other ARB studies. Biocompatibility of ultrafine grained Zr processed by large strain rolling is studied by evaluating the behavior of human osteoblast cells. It is suggested that ultrafine grained Zr has a similar good biocompatibility as Ti6Al4V alloy and conventional Zr with a large grain size have. The improved mechanical properties together with

  2. Effect of Mg on the Grain Growth and Dislocation Creep of Calcite

    NASA Astrophysics Data System (ADS)

    Xu, L.

    2004-12-01

    We tested the effect of variations in the amount of the solute impurity (Mg) on grain growth and strength of calcite aggregate. Synthetic marbles were produced by hot isostatic pressing mixtures of powders of calcite and dolomite at 850° C and 300 MPa confining pressure for different intervals (2 to 30 hrs). The HIP treatment resulted in homogeneous aggregates of calcite with Mg content from 0.5 to 17 mol%. Stress stepping tests and constant strain rate tests were used to examine the effect of Mg content on the dislocation creep of calcite. The grain growth rate under static conditions was decreased with Mg content from 7 to 17 mol%, indicating perhaps that grain boundary mobility is suppressed by the solute drag effect. In the diffusion creep at stresses below 40 Mpa, the strength of calcite decreases with increasing Mg content owing to the difference in grain size at 800° C and 300 MPa confining pressure. The contribution of dislocation creep increases with increasing stress, and the transition between diffusion and dislocation creep occurs at higher stresses for the samples with higher magnesium content and smaller grain size. The creep data were fit assuming a composite flow law consisting of a linear combination of diffusion and dislocation creep and a single-valued grain size. The best agreement was obtained by using a dislocation creep law with exponential dependence of strain rate on stress (e.g. Peierls law). More evidence from microstructure is needed to identify the dominant deformation mechanism conclusively. Most of the samples were compressed up to strains of 0.25; small recrystallized grains are formed resulting in a bimodal grain size distribution in some of the deformed samples. Preliminary data shows that the recrystallized grain sizes are smaller for Mg-calcite compared with that of pure calcite. This study will help to understand the effect of impurities on grain-growth kinetics and strain weakening in localized shear zones.

  3. Grain texture evolution during the columnar growth of dendritic alloys

    NASA Astrophysics Data System (ADS)

    Gandin, Ch. A.; Rappaz, M.; West, D.; Adams, B. L.

    1995-06-01

    The grain selection that operates in the columnar zone of a directionally solidified (DS) INCONEL X750 superalloy has been investigated using standard metallography and an automatic indexing technique of electron backscattered diffraction patterns (EBSPs). From the crystallographic orientations measured at 90,000 points in a longitudinal section, the grain structure was reconstructed. The grain density as measured by the inverse of the mean linear intercept was found to be a decreasing function of the distance from the chill. The evolution of the <100> pole figures along the columnar zone of the casting and the distribution of the angle θ characterizing the <100> direction of the grains that is closest to the temperature gradient were then deduced from the EBSPs measurement. It was found that, near the surface of the chill, the θ distribution was close to the theoretical curve calculated for randomly oriented grains. As the distance from the chill increased, the measured θ distribution became narrower and was displaced toward smaller θ values. At 2 mm from the chill, the most probable orientation of the grains was found to be about 0.21 rad (12 deg). The information obtained with the EBSPs was then compared with the results of a three-dimensional stochastic model (3D SM) describing the formation of grain structure during solidification. This model accounts for the random location and orientation of the nuclei, for the growth kinetics and preferential <100> growth directions of the dendrites. Although this model assumes a uniform temperature within the specimen, the simulation results were found to be in good agreement with the EBSPs measurement.

  4. Crystal grain growth during room temperature high pressure Martensitic alpha to omega transformation in zirconium

    SciTech Connect

    Velisavljevic, Nenad; Chesnut, Gary N; Stevens, Lewis L; Dattelbaum, Dana M

    2008-01-01

    Systematic increase in transition pressure with increase in interstitial impurities is observed for the martensitic {alpha} {yields} {omega} structural phase transition in Zr. Significant room temperature crystal grain growth is also observed for the two highest purity samples at this transition, while in the case of the lowest purity sample interstitial impurities obstruct grain growth even as the sample is heated to 1279 K. Our results show the importance of impurities in controlling structural phase stability and other mechanical properties associated with the {alpha} {yields} {omega} structural phase transition.

  5. Evidence for dust grain growth in young circumstellar disks.

    PubMed

    Throop, H B; Bally, J; Esposito, L W; McCaughrean, M J

    2001-06-01

    Hundreds of circumstellar disks in the Orion nebula are being rapidly destroyed by the intense ultraviolet radiation produced by nearby bright stars. These young, million-year-old disks may not survive long enough to form planetary systems. Nevertheless, the first stage of planet formation-the growth of dust grains into larger particles-may have begun in these systems. Observational evidence for these large particles in Orion's disks is presented. A model of grain evolution in externally irradiated protoplanetary disks is developed and predicts rapid particle size evolution and sharp outer disk boundaries. We discuss implications for the formation rates of planetary systems.

  6. Ultrafast analysis of individual grain behavior during grain growth by parallel computing

    NASA Astrophysics Data System (ADS)

    Kühbach, M.; Barrales-Mora, L. A.; Mießen, C.; Gottstein, G.

    2015-08-01

    The possibility to characterize in an automatized way the spatial-temporal evolution of individual grains and their properties is essential to the understanding of annealing phenomena. The development of advanced experimental techniques, computational models and tools helps the acquisition of real time and real space-resolved datasets. Whereas the reconstruction of 3D grain representatives from serial-sectioning or tomography datasets becomes more common and microstructure simulations on parallel computers become ever larger and longer lasting, few efforts have materialized in the development of tools that allow the continuous tracking of properties at the grain scale. In fact, such analyses are often left neglected in practice due to the large size of the datasets that exceed the available physical memory of a computer or the shared-memory cluster. We identified the key tasks that have to be solved in order to define suitable and lean data structures and computational methods to evaluate spatio-temporal grain property datasets by working with parallel computer architectures. This is exemplified with data from grain growth simulations.

  7. Investigating feedback mechanisms between stress and grain-size: preliminary findings from finite-element modelling

    NASA Astrophysics Data System (ADS)

    Cross, A. J.; Prior, D. J.; Ellis, S. M.

    2012-12-01

    It is widely accepted that changes in stress and grain size can induce a switch between grain-size insensitive (GSI) and sensitive (GSS) creep mechanisms. Under steady-state conditions, grains evolve to an equilibrium size in the boundary region between GSS and GSI, described by the paleopiezometer for a given material. Under these conditions, significant rheological weakening is not expected, as grain size reduction processes are balanced by grain growth processes. However, it has been shown that the stress field surrounding faults varies through the seismic cycle, with both rapid loading and unloading of stress possible in the co- and post-seismic stages. We propose that these changes in stress in the region of the brittle-ductile transition zone may be sufficient to force a deviation from the GSI-GSS boundary and thereby cause a change in grain size and creep mechanism prior to system re-equilibration. Here we present preliminary findings from numerical modelling of stress and grain size changes in response to loading of mechanical inhomogeneities. Our results are attained using a grain-size evolution (GSE) subroutine incorporated into the SULEC finite-element code developed by Susan Ellis and Susanne Buiter, which utilises an iterative approach of solving for spatial and temporal changes in differential stress, grain size and active creep mechanism. Preliminary models demonstrate that stress changes in response to the opening of a fracture in a flowing medium can be significant enough to cause a switch from GSI to GSS creep. These results are significant in the context of understanding spatial variations and feedback between stress, grain size and deformation mechanisms through the seismic cycle.

  8. The grain size distribution and the detection of abnormal grain growth of austenite in an eutectoid steel containing niobium

    SciTech Connect

    Bruno, J.C. . Dept. de Engenharia Mecanica e de Materiais); Rios, P.R. . Dept. de Ciencia dos Materiais e Metalurgia)

    1995-02-15

    The abnormal grain growth of austenite was studied in a commercial steel of composition (wt%): 0.70 C, 1.36 Mn, 0.72 Si, 0.015 P, 0.027 S and 0.03 Nb. Specimens were thermocycled at various conditions and then grain size distribution determined. The grain size distribution shape did not change during normal grain growth but this distribution widened and flattened during the abnormal grain growth. The initial smaller mean size of carbonitrides and/or the highest homogeneity of niobium carbonitride size distribution of the samples submitted to thermal cycles, in comparison with the normalized samples, increased the abnormal grain growth temperature from 1,373 K to 1,473 K.

  9. Grained composite materials prepared by combustion synthesis under mechanical pressure

    DOEpatents

    Dunmead, Stephen D.; Holt, Joseph B.; Kingman, Donald D.; Munir, Zuhair A.

    1990-01-01

    Dense, finely grained composite materials comprising one or more ceramic phase or phase and one or more metallic and/or intermetallic phase or phases are produced by combustion synthesis. Spherical ceramic grains are homogeneously dispersed within the matrix. Methods are provided, which include the step of applying mechanical pressure during or immediately after ignition, by which the microstructures in the resulting composites can be controllably selected.

  10. Grain Boundary Engineering the Mechanical Properties of Allvac 718Plus(Trademark) Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Garg, Anita; Lin, Peter; Provenzano, virgil; Heard, Robert; Miller, Herbert M.

    2010-01-01

    Grain Boundary Engineering can enhance the population of structurally-ordered "low S" Coincidence Site Lattice (CSL) grain boundaries in the microstructure. In some alloys, these "special" grain boundaries have been reported to improve overall resistance to corrosion, oxidation, and creep resistance. Such improvements could be quite beneficial for superalloys, especially in conditions which encourage damage and cracking at grain boundaries. Therefore, the effects of GBE processing on high-temperature mechanical properties of the cast and wrought superalloy Allvac 718Plus (Allvac ATI) were screened. Bar sections were subjected to varied GBE processing, and then consistently heat treated, machined, and tested at 650 C. Creep, tensile stress relaxation, and dwell fatigue crack growth tests were performed. The influences of GBE processing on microstructure, mechanical properties, and associated failure modes are discussed.

  11. A Multi-Wavelength Study of Grain Growth in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Ubach, Catarina

    2014-01-01

    Protoplanetary disk around young stellar objects contain the building blocks of planets. Observations at millimeter wavelengths are used to directly probe the cooler outer regions and mid-plane of the disk where the bulk of the dust resides. Observations at 1 and 3 mm can provide signatures of growth to mm-sized grains. Signatures of grains up to cm sizes can only be obtained by increasing the observing wavelength to 7 and 15 mm. If thermal dust emission dominates at 7 mm and beyond, the spectral slope should remain constant into the cm bands. However, as the observing wavelength is increased from 3 to 7 and 15 mm, other forms of emission besides thermal dust emission can also be present. The contributions from other processes cause an excess in flux above the expected thermal dust emission, and thus disentangling the emission mechanisms is required before conclusions can be made about the maximum grain size. We present results of our Australia Telescope Compact Array 3 and 7 mm continuum survey of 20 T Tauri stars, which aims to identify protoplanetary disks with signs of grain growth and temporal monitoring results of a sub-set of sources at 7, 15 mm and 3+6 cm to investigate grain growth up to cm sizes and disentangle the emission mechanisms present in these sources. We found 11 sources have dominant thermal dust emission up to 7 mm, with 7 of these having a 1-3 mm dust opacity index < 1, suggesting grain growth up to at least mm sizes. Sources observed at 15 mm and beyond show the presence of excess emission from multiple emission mechanisms. Long timescale monitoring at 7 mm indicates that cm-sized pebbles are present in at least 4 sources, while short timescale monitoring at 15 mm suggests the excess emission is from thermal free-free emission. These results provide evidence that grain growth up to cm-sized pebbles and the presence of excess emission at 7 mm and beyond are common in these systems, and to disentangle the thermal dust emission from other

  12. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples

    NASA Astrophysics Data System (ADS)

    Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.

    2014-11-01

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.

  13. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples

    PubMed Central

    Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.

    2014-01-01

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten. PMID:25366885

  14. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples.

    PubMed

    Suslova, A; El-Atwani, O; Sagapuram, D; Harilal, S S; Hassanein, A

    2014-11-04

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.

  15. Coarse-grained mechanics of viral shells

    NASA Astrophysics Data System (ADS)

    Klug, William S.; Gibbons, Melissa M.

    2008-03-01

    We present an approach for creating three-dimensional finite element models of viral capsids from atomic-level structural data (X-ray or cryo-EM). The models capture heterogeneous geometric features and are used in conjunction with three-dimensional nonlinear continuum elasticity to simulate nanoindentation experiments as performed using atomic force microscopy. The method is extremely flexible; able to capture varying levels of detail in the three-dimensional structure. Nanoindentation simulations are presented for several viruses: Hepatitis B, CCMV, HK97, and φ29. In addition to purely continuum elastic models a multiscale technique is developed that combines finite-element kinematics with MD energetics such that large-scale deformations are facilitated by a reduction in degrees of freedom. Simulations of these capsid deformation experiments provide a testing ground for the techniques, as well as insight into the strength-determining mechanisms of capsid deformation. These methods can be extended as a framework for modeling other proteins and macromolecular structures in cell biology.

  16. Mechanical Spectroscopy of Grain Boundaries: Insights into Grain and Phase Boundary Sliding (Invited)

    NASA Astrophysics Data System (ADS)

    Sundberg, M.

    2010-12-01

    Grain boundary sliding has been identified as an important contributor to plastic deformation of polycrystalline rocks. Grain boundary sliding commonly acts in kinetic series with some other, usually rate-limiting, step such as grain boundary diffusion or dislocation propagation. Consequently, the mechanical properties of grain and phase boundaries are not typically measurable during steady-state creep tests. In contrast, measurements of the intrinsic shear attenuation (QG-1 ) of a polycrystalline rock as a function of frequency and temperature hold the potential to provide direct measurements of the grain boundary viscosity. Reciprocating torsion tests can be complemented by small-strain transient creep tests that monitor the short-time transient mechanical response of a polycrystalline solid to an instantaneous increase in stress. To develop and test a viscoelastic model that can describe both time- and frequency-domain mechanical behavior and thus allow extrapolation of experimental results to natural conditions, we have conducted an experimental study of low-frequency (10-2.25grained (d~5μm) aggregates of olivine and orthopyroxene ranging in composition from 6-75 vol % opx. The attenuation spectra reveal “high-temperature background” behavior at low to moderate frequencies. At higher frequencies (f>10-0.5 Hz) the attenuation spectra reveal the onset of an apparent Debye peak in the attenuation spectra, likely due to elastically-accommodated grain boundary sliding. A modified Andrade viscoelastic model that incorporates both the high-temperature background and the Debye

  17. Anomalous grain growth in the surface region of a nanocrystalline CeO2 film under low-temperature heavy ion irradiation

    SciTech Connect

    Edmondson, Philip D.; Zhang, Yanwen; Moll, Sandra J.; Varga, Tamas; Namavar, Fereydoon; Weber, William J.

    2012-06-15

    Grain growth and phase stability of nanocrystalline ceria are investigated under ion irradiation at different temperatures. Irradiations at temperatures of 300 and 400 K result in uniform grain growth throughout the film. Anomalous grain growth is observed in thin films of nanocrystalline ceria under 3 MeV Au+ irradiation at 160 K. At this low temperature, significant grain growth is observed within 100 nm from the surface, no obvious growth is detected in the rest of the films. While the grain growth is attributed to a defect-stimulated mechanism at room temperature and above, a defect diffusion-limited mechanism is significant at low temperature with the primary defect responsible being the oxygen vacancy. The nanocrystalline grains remain in the cubic phase regardless of defect kinetics.

  18. Control of grain growth using intergranular silicate phases in cubic yttria stabilized zirconia

    SciTech Connect

    Sharif, A.A.; Imamura, P.H.; Mecartney, M.L.; Mitchell, T.E.

    1998-07-01

    Grain growth kinetics for 8 mol% yttria stabilized cubic zirconia (8Y-CSZ) were investigated. Optimal process parameters required to achieve a small grain size and full density for cubic 8Y-CSZ included a rapid heating rate (100 C/min) and hot isostatic pressing. Grain growth rates could also be controlled by the deliberate addition of 1 wt% of intergranular phases of borosilicate, barium silicate, and lithium aluminum silicate glasses. Lithium aluminum silicate, the intergranular phase with the highest solubility for yttria and zirconia, enhanced grain growth compared to control samples without grain boundary phases. The borosilicate intergranular phase, with the lowest solubility for yttria and zirconia, was the most effective in suppressing grain growth. Activation energies for grain growth were in the range of 400 kJ/mol, and the grain growth exponent ranged from 2 for lithium aluminum silicate containing samples, to 3 for pure samples, to 4 for barium silicate and borosilicate containing samples.

  19. Grain growth and inclusion formation in partially molten carbonate rocks

    NASA Astrophysics Data System (ADS)

    Renner, Jörg; Evans, Brian; Hirth, Greg

    To learn more about the kinetics and mechanisms of coarsening and melt inclusion formation, we investigated the effects of melt content, viscosity, and topology on the microstructural evolution of partially molten and melt-free calcite aggregates. Synthetic marbles with eutectic melts were produced by annealing mixtures of calcite and either calcium hydroxide or lithium carbonate for up to 80 h at a confining pressure of 300 MPa and temperatures of 973-1,023 K. The melts produced in the two systems are expected to differ significantly in viscosity. Generally, coarsening rates decrease with increasing melt fraction, probably because the diffusion length across melt pockets increases. Analysis of grain shapes in the samples with about 40% melt indicated that coarsening was accommodated by agglomeration in the samples of the calcium/lithium carbonate system. In the calcium carbonate/hydroxide system, classical Ostwald ripening occurred. For melt contents about 10% and below, melt-filled pores are either dropped from or dragged along with migrating grain boundaries, depending on the pore size and the grain boundary curvature. These data can be used to constrain the conditions where fluid or melt inclusions form under natural conditions. Combining our results and previous studies illustrates a systematic relation between the grain boundary mobility in calcite aggregates and the diffusion kinetics associated with second phases residing on the grain boundaries. In particular, boundaries with no porosity are most mobile, those boundaries dragging melt-filled pores are slower, those with gas-filled pores are slower yet, and those containing solid phases are slowest or may even be motionless.

  20. Grain growth and inclusion formation in partially molten carbonate rocks

    NASA Astrophysics Data System (ADS)

    Renner, Jörg; Evans, Brian; Hirth, Greg

    2001-11-01

    To learn more about the kinetics and mechanisms of coarsening and melt inclusion formation, we investigated the effects of melt content, viscosity, and topology on the microstructural evolution of partially molten and melt-free calcite aggregates. Synthetic marbles with eutectic melts were produced by annealing mixtures of calcite and either calcium hydroxide or lithium carbonate for up to 80 h at a confining pressure of 300 MPa and temperatures of 973-1,023 K. The melts produced in the two systems are expected to differ significantly in viscosity. Generally, coarsening rates decrease with increasing melt fraction, probably because the diffusion length across melt pockets increases. Analysis of grain shapes in the samples with about 40% melt indicated that coarsening was accommodated by agglomeration in the samples of the calcium/lithium carbonate system. In the calcium carbonate/hydroxide system, classical Ostwald ripening occurred. For melt contents about 10% and below, melt-filled pores are either dropped from or dragged along with migrating grain boundaries, depending on the pore size and the grain boundary curvature. These data can be used to constrain the conditions where fluid or melt inclusions form under natural conditions. Combining our results and previous studies illustrates a systematic relation between the grain boundary mobility in calcite aggregates and the diffusion kinetics associated with second phases residing on the grain boundaries. In particular, boundaries with no porosity are most mobile, those boundaries dragging melt-filled pores are slower, those with gas-filled pores are slower yet, and those containing solid phases are slowest or may even be motionless.

  1. Significance of grain sliding mechanisms for ductile deformation of rocks

    NASA Astrophysics Data System (ADS)

    Dimanov, A.; Bourcier, M.; Gaye, A.; Héripré, E.; Bornert, M.; Raphanel, J.; Ludwig, W.

    2013-12-01

    Ductile shear zones at depth present polyphase and heterogeneous rocks and multi-scale strain localization patterns. Most strain concentrates in ultramylonitic layers, which exhibit microstructural signatures of several concomitant deformation mechanisms. The latter are either active in volume (dislocation creep), or in the vicinity and along interfaces (grain sliding and solution mass transfer). Because their chronology of appearance and interactions are unclear, inference of the overall rheology seems illusory. We have therefore characterized over a decade the rheology of synthetic lower crustal materials with different compositions and fluid contents, and for various microstructures. Non-Newtonian flow clearly related to dominant dislocation creep. Conversely, Newtonian behavior involved grain sliding mechanisms, but crystal plasticity could be identified as well. In order to clarify the respective roles of these mechanisms we underwent a multi-scale investigation of the ductile deformation of rock analog synthetic halite with controlled microstructures. The mechanical tests were combined with in-situ optical microscopy, scanning electron microscopy and X ray computed tomography, allowing for digital image correlation (DIC) techniques and retrieval of full strain field. Crystal plasticity dominated, as evidenced by physical slip lines and DIC computed slip bands. Crystal orientation mapping allowed to identify strongly active easy glide {110} <110> systems. But, all other slip systems were observed as well, and especially near interfaces, where their activity is necessary to accommodate for the plastic strain incompatibilities between neighboring grains. We also evidenced grain boundary sliding (GBS), which clearly occurred as a secondary, but necessary, accommodation mechanism. The DIC technique allowed the quantification of the relative contribution of each mechanism. The amount of GBS clearly increased with decreasing grain size. Finite element (FE) modeling

  2. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers.

    PubMed

    Najmaei, Sina; Liu, Zheng; Zhou, Wu; Zou, Xiaolong; Shi, Gang; Lei, Sidong; Yakobson, Boris I; Idrobo, Juan-Carlos; Ajayan, Pulickel M; Lou, Jun

    2013-08-01

    Single-layered molybdenum disulphide with a direct bandgap is a promising two-dimensional material that goes beyond graphene for the next generation of nanoelectronics. Here, we report the controlled vapour phase synthesis of molybdenum disulphide atomic layers and elucidate a fundamental mechanism for the nucleation, growth, and grain boundary formation in its crystalline monolayers. Furthermore, a nucleation-controlled strategy is established to systematically promote the formation of large-area, single- and few-layered films. Using high-resolution electron microscopy imaging, the atomic structure and morphology of the grains and their boundaries in the polycrystalline molybdenum disulphide atomic layers are examined, and the primary mechanisms for grain boundary formation are evaluated. Grain boundaries consisting of 5- and 7- member rings are directly observed with atomic resolution, and their energy landscape is investigated via first-principles calculations. The uniformity in thickness, large grain sizes, and excellent electrical performance signify the high quality and scalable synthesis of the molybdenum disulphide atomic layers.

  3. Mechanical properties and radiation tolerance of ultrafine grained and nanocrystalline metals

    NASA Astrophysics Data System (ADS)

    Sun, Cheng

    Austenitic stainless steels are commonly used in nuclear reactors and have been considered as potential structural materials in fusion reactors due to their excellent corrosion resistance, good creep and fatigue resistance at elevated temperatures, but their relatively low yield strength and poor radiation tolerance hinder their applications in high dose radiation environments. High angle grain boundaries have long been postulated as sinks for radiation-induced defects, such as bubbles, voids, and dislocation loops. Here we provide experimental evidence that high angle grain boundaries can effectively remove radiation-induced defects. The equal channel angular pressing (ECAP) technique was used to produce ultrafine grained Fe-Cr-Ni alloy. Mechanical properties of the alloy were studied at elevated temperature by tensile tests and in situ neutron scattering measurements. Enhanced dynamic recovery process at elevated temperature due to dislocation climb lowers the strain hardening rate and ductility of ultrafine grained Fe-Cr-Ni alloy. Thermal stability of the ultrafine grained Fe-Cr-Ni alloy was examined by ex situ annealing and in situ heating within a transmission electron microscope. Abnormal grain growth at 827 K (600°C) is attributed to deformation-induced martensite, located at the triple junctions of grains. Helium ion irradiation studies on Fe-Cr-Ni alloy show that the density of He bubbles, dislocation loops, as well as irradiation hardening are reduced by grain refinement. In addition, we provide direct evidence, via in situ Kr ion irradiation within a transmission electron microscope, that high angle grain boundaries in nanocrystalline Ni can effectively absorb irradiation-induced dislocation loops and segments. The density and size of dislocation loops in irradiated nanocrystalline Ni were merely half of those in irradiated coarse grained Ni. The results imply that irradiation tolerance in bulk metals can be effectively enhanced by microstructure

  4. NANOCRYSTALLINE GROWTH AND GRAIN-SIZE EFFECTS IN AU-CU ELECTRODEPOSITS

    SciTech Connect

    Jankowski, A F; Saw, C K; Harper, J F; Vallier, R F; Ferreira, J L; Hayes, J P

    2005-02-25

    The processing-structure-property relationship is investigated for electrodeposited foils of the gold-copper alloy system. A model is presented that relates the deposition process parameters to the nanocrystalline grain size. An activation energy of 1.52 eV {center_dot} atom{sup -1} for growth is determined for a long pulse (>10 msec) mode, and is 0.16 eV {center_dot} atom{sup -1} for short pulses (<5 msec). The affect of nanocrystalline grain size on the mechanical properties is assessed using indentation measurements. A Hall-Petch type variation of the Vickers microhardness with nanocrystalline grain size (>6 nm) is observed for Au-Cu samples with 1-12 wt.% Cu as tested in cross-section. The hardness increases three-fold from a rule-of-mixtures value <1 GPa to a maximum of 2.9 GPa.

  5. Grain Growth and Settling: An Implication for Disk Instability and Giant Planet Formation

    NASA Astrophysics Data System (ADS)

    Sengupta, Debanjan; Dodson-Robinson, Sarah

    2016-10-01

    Formation of super-massive planets at a distance ranging from around 5 to 20 AU cannot be adequately explained by core accretion, even in the most optimistic scenario. The only promising alternative is the fragmentation mechanism in which giant planets are formed directly from the contraction of a clump of gas produced by gravitational instability. Here, we investigate whether simultaneous grain growth and settling can trigger gravitational instability at these distances. We study the physics of grain growth and how grains of different sizes are subject to sedimentation using a sophisticated collision and settling model starting with an MRN dust size distribution consistent with that of ISM. We capture the full physics of disk turbulence, dust diffusion and vertical settling, followed by a wavelength dependent opacity calculation including constant porosity. The thermal profile of the disk is re-calculated frequently with a detailed radiative transfer code RadMC. More importantly, our aim is to check whether grain growth and dust settling can effectively change the opacity for the gas and affect the stability of the disk by changing the ToomreQ parameter. We take a prototype disk which is hot on the surface and has a quiescent midplane, which, because of being less turbulent allows the grains to grow more efficiently. In this context, we examine the gravitational stability of a layered accretion disk experiencing dust-settling and review the possibilities of super-massive planet formation at the range of distances concerned. We also present a steady state grain abundance and the opacity profile at different time of disk evolution. We compare that with the standard viscous accretion disk.

  6. An examination of abnormal grain growth in low strain nickel-200

    DOE PAGES

    Underwood, O.; Madison, J.; Martens, R. M.; Thompson, G. B.; Welsh, S.; Evans, J.

    2016-06-21

    Here, this study offers experimental observation of the effect of low strain conditions (ε < 10%) on abnormal grain growth (AGG) in Nickel-200. At such conditions, stored mechanical energy is low within the microstructure enabling one to observe the impact of increasing mechanical deformation on the early onset of AGG compared to a control, or nondeformed, equivalent sample. The onset of AGG was observed to occur at specific pairings of compressive strain and annealing temperature and an empirical relation describing the influence of thermal exposure and strain content was developed. The evolution of low-Σ coincident site lattice (CSL) boundaries andmore » overall grain size distributions are quantified using electron backscatter diffraction preceding, at onset and during ensuing AGG, whereby possible mechanisms for AGG in the low strain regime are offered and discussed.« less

  7. Influence of mineral fraction on the rheological properties of forsterite + enstatite during grain-size-sensitive creep: 1. Grain size and grain growth laws

    NASA Astrophysics Data System (ADS)

    Tasaka, Miki; Hiraga, Takehiko

    2013-08-01

    conducted grain growth and creep experiments on forsterite (Fo) plus enstatite (En) aggregates at 1 atmosphere pressure and temperatures of 1260 - 1360°C, with variable volumetric fractions of the two minerals, forsterite and enstatite (Fo1.00 to Fo0.03 En0.97). The grain size ratios of forsterite and enstatite in annealed (reference) and deformed samples follow the Zener relationship of dI/dII = β/fIIz, where d is the grain size, and the subscripts I and II indicate the primary and secondary phases, respectively. When fEn < 0.5, I is forsterite, II is enstatite, then β = 0.67, and z = 0.52; for samples where fEn > 0.5, I is enstatite, II is forsterite, then β = 0.73, and z = 0.53. Grain growth in reference samples conforms to the relationship ds4 - d04 = kt, where ds is the grain size under static conditions, d0 is the initial grain size, k is the grain growth coefficient, and t is time. The observed growth coefficient for the primary phase (kI) becomes smaller with increasing fII, which is consistent with the theoretical prediction. Overall, our results are consistent with previously proposed grain growth models for static conditions that use mineral physical parameters such as diffusivity (DiGB) and interfacial energy (γ). We discuss grain size variations in the mantle, with compositions ranging from dunite to pyroxenite, and we go on to present a method that predicts the grain sizes of different mantle lithologies, provided that the diffusivity and interfacial energy of the constituent minerals are known.

  8. The coupled kinetics of grain growth and fission product behavior in nuclear fuel under degraded-core accident conditions

    NASA Astrophysics Data System (ADS)

    Rest, J.

    1985-04-01

    The theoretical FASTGRASS-VFP model has been used in the interpretation of fission gas, iodine, and cesium release from (1) irradiated high-burnup LWR fuel in a flowing steam atmosphere during high-temperature, in-cell heating tests (performed at Oak Ridge National Laboratory) and (2) trace-irradiated LWR fuel during severe-fuel-damage (SFD) tests (performed in the PBF reactor in Idaho). A theory of grain boundary sweeping of gas bubbles has been included within the FASTGRASS-VFP formalism. This theory considers the interaction between the moving grain boundary and two distinct size classes of bubbles, those on grain faces and on grain edges, and provides a means of determining whether gas bubbles are caught up and moved along by a moving grain boundary or whether the grain boundary is only temporarily retarded by the bubbles and then breaks away. In addition, as FASTGRASS-VFP provides for a mechanistic calculation of ultra- and intergranular fission product behavior, the coupled calculation between fission gas behavior and grain growth is kinetically comprehensive. Results of the analyses demonstrate that intragranular fission product behavior during both types of tests can be interpreted in terms of a grain-growth/grain-boundary-sweeping mechanism that enhances the flow of fission products from within the grains to the grain boundaries. The effect of fuel oxidation by steam on fission product and grain growth behavior is also considered. The FASTGRASS-VFP predictions, measured release rates from the above tests, and previously published release rates are compared and differences between fission product behavior in trace-irradiated and in high-burnup fuel are highlighted.

  9. Anomalous grain growth in the surface region of a nanocrystalline CeO2 film under low-temperature heavy ion irradiation

    SciTech Connect

    Edmondson, Dr. Philip; Zhang, Yanwen; Moll, Sandra; Varga, Tamas; Namavar, Fereydoon; Weber, William J

    2012-01-01

    Grain growth and phase stability of nanocrystalline ceria are investigated under ion irradiation at different temperatures. Irradiations at temperatures of 300 and 400 K result in uniform grain growth throughout the film. Anomalous grain growth is observed in thin films of nanocrystalline ceria under 3 MeV Au+ irradiation at 160 K. At this low temperature, significant grain growth is observed within 100 nm from the surface, no obvious growth is detected in the rest of the films. While the grain growth is attributed to a defect-stimulated mechanism at room temperature and above, a defect diffusion-limited mechanism is significant at low temperature with the primary defect responsible being the oxygen vacancy.

  10. Direct observation of grain growth from molten silicon formed by micro-thermal-plasma-jet irradiation

    PubMed Central

    Hayashi, Shohei; Fujita, Yuji; Kamikura, Takahiro; Sakaike, Kohei; Akazawa, Muneki; Ikeda, Mitsuhisa; Hanafusa, Hiroaki; Higashi, Seiichiro

    2012-01-01

    Phase transformation of amorphous-silicon during millisecond annealing using micro-thermal-plasma-jet irradiation was directly observed using a high-speed camera with microsecond time resolution. An oval-shaped molten-silicon region adjacent to the solid phase crystallization region was clearly observed, followed by lateral large grain growth perpendicular to a liquid-solid interface. Furthermore, leading wave crystallization (LWC), which showed intermittent explosive crystallization, was discovered in front of the moving molten region. The growth mechanism of LWC has been investigated on the basis of numerical simulation implementing explosive movement of a thin liquid layer driven by released latent heat diffusion in a lateral direction. PMID:23185095

  11. Direct observation of grain growth from molten silicon formed by micro-thermal-plasma-jet irradiation

    SciTech Connect

    Hayashi, Shohei; Fujita, Yuji; Kamikura, Takahiro; Sakaike, Kohei; Akazawa, Muneki; Ikeda, Mitsuhisa; Hanafusa, Hiroaki; Higashi, Seiichiro

    2012-10-22

    Phase transformation of amorphous-silicon during millisecond annealing using micro-thermal-plasma-jet irradiation was directly observed using a high-speed camera with microsecond time resolution. An oval-shaped molten-silicon region adjacent to the solid phase crystallization region was clearly observed, followed by lateral large grain growth perpendicular to a liquid-solid interface. Furthermore, leading wave crystallization (LWC), which showed intermittent explosive crystallization, was discovered in front of the moving molten region. The growth mechanism of LWC has been investigated on the basis of numerical simulation implementing explosive movement of a thin liquid layer driven by released latent heat diffusion in a lateral direction.

  12. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2

    PubMed Central

    Gleason, A. E.; Bolme, C. A.; Lee, H. J.; Nagler, B.; Galtier, E.; Milathianaki, D.; Hawreliak, J.; Kraus, R. G.; Eggert, J. H.; Fratanduono, D. E.; Collins, G. W.; Sandberg, R.; Yang, W.; Mao, W. L.

    2015-01-01

    Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump–probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueation of stishovite appears to be kinetically limited to 1.4±0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. These are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD. PMID:26337754

  13. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2

    DOE PAGES

    Gleason, A. E.; Bolme, C. A.; Lee, H. J.; Nagler, B.; Galtier, E.; Milathianaki, D.; Hawreliak, J.; Kraus, R. G.; Eggert, J. H.; Fratanduono, D. E.; et al

    2015-09-04

    Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump–probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueationmore » of stishovite appears to be kinetically limited to 1.4±0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. As a result, these are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD.« less

  14. Temperature dependent grain growth of forsterite-nickel mixtures: Implications for grain growth in two-phase systems and applications to the H-chondrite parent body

    NASA Astrophysics Data System (ADS)

    Guignard, J.; Toplis, M. J.; Bystricky, M.; Monnereau, M.

    2016-06-01

    Grain growth experiments in the system forsterite (Fo) + nickel (Ni) have been performed on two analogue mixtures of ordinary chondrites, with volume % of Fo:Ni (95:5) and (80:20). These two mixtures have been studied at temperatures of 1390 °C and 1340 °C, at an oxygen fugacity (fO2) three orders of magnitude below the Ni-NiO buffer, for durations between 2 h and 10 days. Microstructures and grain size distributions show that grain growth is normal and that for durations >10 h the Zener relation is verified (i.e., the ratio of Fo and Ni grain size is independent of time). Comparison with results previously obtained at 1440 °C shows a similar grain growth exponent (n ∼ 5) for both phases, consistent with growth of forsterite by grain boundary migration, limited by the growth-rate of nickel. The details of size distribution frequencies and the value of grain-growth exponent indicate that the nickel grains, which pin forsterite grain boundaries, grow by diffusion along one-dimensional paths (i.e., along forsterite triple junctions). The derived activation energies for nickel and forsterite are 235 ± 33 kJ /mol and 400 ± 48 kJ /mol respectively. Within the framework of the Zener relation, this unexpected difference of activation energy is shown to be related to temperature-dependent variations in the ratio of Ni and Fo grain-size that are consistent with observed variations in Fo-Ni-Fo dihedral angle. These data thus indicate that the presence of all phases should be taken into account when considering the activation energy of growth rate of individual phases. As an application, the experimentally derived growth law for metal has been used in conjunction with temperature-time paths taken from models of the thermal history of the H-chondrite parent body to estimate the grain size evolution of metal in H-chondrites. A remarkably self-consistent picture emerges from experimentally derived grain-growth laws, textural data of metal grains in well characterised H

  15. Shear-Coupled Grain Growth and Texture Development in a Nanocrystalline Ni-Fe Alloy during Cold Rolling

    NASA Astrophysics Data System (ADS)

    Li, Li; Ungár, Tamás; Toth, Laszlo S.; Skrotzki, Werner; Wang, Yan Dong; Ren, Yang; Choo, Hahn; Fogarassy, Zsolt; Zhou, X. T.; Liaw, Peter K.

    2016-09-01

    The evolution of texture, grain size, grain shape, dislocation, and twin density has been determined by synchrotron X-ray diffraction and line profile analysis in a nanocrystalline Ni-Fe alloy after cold rolling along different directions related to the initial fiber and the long axis of grains. The texture evolution has been simulated by the Taylor-type relaxed-constraints viscoplastic polycrystal model. The simulations were based on the activity of partial dislocations in correlation with the experimental results of dislocation density determination. The concept of stress-induced shear coupling is supported and strengthened by both the texture simulations and the experimentally determined evolution of the microstructure parameters. Grain growth and texture evolution are shown to proceed by the shear coupling mechanism supported by dislocation activity as long as the grain size is not smaller than about 20 nm.

  16. Demonstrating the Temperature Gradient Impact on Grain Growth in UO2 Using the Phase Field Method

    SciTech Connect

    Michael R Tonks; Yongfeng Zhang; Xianming Bai; Paul C Millett

    2014-01-01

    Grain boundaries (GBs) are driven to migrate up a temperature gradient. In this work, we use a phase field (PF) model to investigate the impact of temperature gradients on normal grain growth. GB motion in 2D UO2 polycrystals is predicted under increasing temperature gradients. We find that the temperature gradient does not significantly impact the average grain growth behavior, because the curvature driving force is dominant. However, it does cause significant local migration of the individual grains. In addition, the change in the GB mobility due to the temperature gradient results in larger grains in the hot portion of the polycrystal.

  17. Fast grain growth of olivine in liquid Fe-S and the formation of pallasites with rounded olivine grains

    NASA Astrophysics Data System (ADS)

    Solferino, Giulio F. D.; Golabek, Gregor J.; Nimmo, Francis; Schmidt, Max W.

    2015-08-01

    Despite their relatively simple mineralogical composition (olivine + Fe-Ni metal + FeS ± pyroxene), the origin of pallasite meteorites remains debated. It has been suggested that catastrophic mixing of olivine fragments with Fe-(Ni)-S followed by various degrees of annealing could explain pallasites bearing solely or prevalently fragmented or rounded olivines. In order to verify this hypothesis, and to quantify the grain growth rate of olivine in a liquid metal matrix, we performed a series of annealing experiments on natural olivine plus synthetic Fe-S mixtures. The best explanation for the observed olivine grain size distributions (GSD) of the experiments are dominant Ostwald ripening for small grains followed by random grain boundary migration for larger grains. Our results indicate that olivine grain growth in molten Fe-S is significantly faster than in solid, sulphur-free metal. We used the experimentally determined grain growth law to model the coarsening of olivine surrounded by Fe-S melt in a 100-600 km radius planetesimal. In this model, an impact is responsible for the mixing of olivine and Fe-(Ni)-S. Numerical models suggest that annealing at depths of up to 50 km allow for (i) average grain sizes consistent with the observed rounded olivine in pallasites, (ii) a remnant magnetisation of Fe-Ni olivine inclusions as measured in natural pallasites and (iii) for the metallographic cooling rates derived from Fe-Ni in pallasites. This conclusion is valid even if the impact occurs several millions of years after the differentiation of the target body was completed.

  18. Strain induced grain boundary migration effects on grain growth of an austenitic stainless steel during static and metadynamic recrystallization

    SciTech Connect

    Paggi, A.; Angella, G.; Donnini, R.

    2015-09-15

    Static and metadynamic recrystallization of an AISI 304L austenitic stainless steel was investigated at 1100 °C and 10{sup −} {sup 2} s{sup −} {sup 1} strain rate. The kinetics of recrystallization was determined through double hit compression tests. Two strain levels were selected for the first compression hit: ε{sub f} = 0.15 for static recrystallization (SRX) and 0.25 for metadynamic recrystallization (MDRX). Both the as-deformed and the recrystallized microstructures were investigated through optical microscopy and electron back-scattered diffraction (EBSD) technique. During deformation, strain induced grain boundary migration appeared to be significant, producing a square-like grain boundary structure aligned along the directions of the maximum shear stresses in compression. EBSD analysis revealed to be as a fundamental technique that the dislocation density was distributed heterogeneously in the deformed grains. Grain growth driven by surface energy reduction was also investigated, finding that it was too slow to explain the experimental data. Based on microstructural results, it was concluded that saturation of the nucleation sites occurred in the first stages of recrystallization, while grain growth driven by strain induced grain boundary migration (SIGBM) dominated the subsequent stages. - Highlights: • Recrystallization behavior of a stainless steel was investigated at 1100 °C. • EBSD revealed that the dislocation density distribution was heterogeneous during deformation. • Saturation of nucleation sites occurred in the first stages of recrystallization. • Strain induced grain boundary migration (SIGBM) effects were significant. • Grain growth driven by SIGBM dominated the subsequent stages.

  19. In situ observations of austenite grain growth in Fe-C-Mn-Si super bainitic steel

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Xu, Guang; Zhang, Yu-long; Hu, Hai-jiang; Zhou, Lin-xin; Xue, Zheng-liang

    2013-11-01

    In situ observations of austenite grain growth in Fe-C-Mn-Si super bainitic steel were conducted on a high-temperature laser scanning confocal microscope during continuous heating and subsequent isothermal holding at 850, 1000, and 1100°C for 30 min. A grain growth model was proposed based on experimental results. It is indicated that the austenite grain size increases with austenitizing temperature and holding time. When the austenitizing temperature is above 1100°C, the austenite grains grow rapidly, and abnormal austenite grains occur. In addition, the effect of heating rate on austenite grain growth was investigated, and the relation between austenite grains and bainite morphology after bainitic transformations was also discussed.

  20. Grain boundary chemistry effects on environment-induced crack growth of iron-based alloys

    SciTech Connect

    Jones, R.H.

    1992-11-01

    Relation between grain boundary chemistry and environment-induced crack growth of Fe-based alloys is reviewed. The importance of the cleanliness of steels is clearly demonstrated by direct relations between grain boundary chemistry and crack growth behavior for both H and anodic dissolution-induced crack growth. Relationships between strain to failure, work of fracture, K{sub ISCC}, crack velocity and fracture mode and grain boundary chemistry are presented. Only results in which the grain boundary chemistry has been measured directly by Auger electron spectroscopy (AES) on intergranular surfaces exposed by in situ fracture have been considered in this review.

  1. Grain boundary chemistry effects on environment-induced crack growth of iron-based alloys

    SciTech Connect

    Jones, R.H.

    1992-11-01

    Relation between grain boundary chemistry and environment-induced crack growth of Fe-based alloys is reviewed. The importance of the cleanliness of steels is clearly demonstrated by direct relations between grain boundary chemistry and crack growth behavior for both H and anodic dissolution-induced crack growth. Relationships between strain to failure, work of fracture, K[sub ISCC], crack velocity and fracture mode and grain boundary chemistry are presented. Only results in which the grain boundary chemistry has been measured directly by Auger electron spectroscopy (AES) on intergranular surfaces exposed by in situ fracture have been considered in this review.

  2. Mechanical spectroscopy of nanocrystalline aluminum films: effects of frequency and grain size on internal friction.

    PubMed

    Sosale, Guruprasad; Almecija, Dorothée; Das, Kaushik; Vengallatore, Srikar

    2012-04-20

    Energy dissipation by internal friction is a property of fundamental interest for probing the effects of scale on mechanical behavior in nanocrystalline metallic films and for guiding the use of these materials in the design of high-Q micro/nanomechanical resonators. This paper describes an experimental study to measure the effects of frequency, annealing and grain size on internal friction at room temperature in sputter-deposited nanocrystalline aluminum films with thicknesses ranging from 60 to 120 nm. Internal friction was measured using a single-crystal silicon microcantilever platform that calibrates dissipation against the fundamental limits of thermoelastic damping. Internal friction was a weak function of frequency, reducing only by a factor of two over three decades of frequency (70 Hz to 44 kHz). Annealing led to significant grain growth and the average grain size of 100 nm thick films increased from 90 to 390 nm after annealing for 1 h at 450 (∘)C. This increase in grain size was accompanied by a decrease in internal friction from 0.05 to 0.02. Taken together, these results suggest that grain-boundary sliding, characterized by a spectrum of relaxation times, contributes to internal friction in these films. PMID:22436133

  3. Ion-induced grain growth and texturing in refractory thin films-A low temperature process

    SciTech Connect

    Seita, M.; Reiser, A.; Spolenak, R.

    2012-12-17

    Selective grain growth can be promoted in thin films independently of the materials intrinsic properties, such as the melting temperature, by ion-irradiation. This enables the previously impossible evolution of large grain-sized microstructures with controlled crystallographic textures even in refractory metals, such as {alpha}-tantalum. Experimental results from materials with different crystal structure are compared on the basis of a theoretical model, which reveals the differences in ion-induced grain-growth dynamics.

  4. Diauxic growth and microstructure of grain interfaces in thermal bonding Yb:LuAG/LuAG ceramic

    NASA Astrophysics Data System (ADS)

    Zhou, Chunlin; Jiang, Benxue; Fan, Jintai; Mao, Xiaojian; Zhang, Long; Fang, Yongzheng

    2015-07-01

    Transparent composite Lutetium aluminum garnet (LuAG) ceramics were successfully synthesized by thermal diffusion bonding method. Three isothermal holding temperature of 1450°C, 1600°C, 1780°C for 10h under vacuum were used to study the changes of bonding interface morphology, Optical microscope, SEM and laser interferometer (GPI-XP,zygo) study show that diauxic growth of grain interface appears when the thermal bonding holding temperature increased. The sintering mechanism of diauxic growth of grain interface during the thermal diffusion bonding was also discussed using diffusion theory. The diauxic growth of grain interface provides us the possibility to get high quality composite laser ceramics as we designed.

  5. Grain Growth Behavior, Tensile Impact Ductility, and Weldability of Cerium-Doped Iridium Alloys

    SciTech Connect

    McKamey, C.G.

    2002-05-28

    An iridium alloy doped with small amounts of cerium and thorium is being developed as a potential replacement for the iridium-based DOP-26 alloy (doped with thorium only) that is currently used by the National Aeronautics and Space Administration (NASA) for cladding and post-impact containment of the radioactive fuel in radioisotope thermoelectric generator (RTG) heat sources which provide electric power for interplanetary spacecraft. This report summarizes results of studies conducted to date under the Iridium Alloy Characterization and Development subtask of the Radioisotope Power System Materials Production and Technology Program to characterize the properties of the iridium-based alloy (designated as DOP-40) containing both cerium and thorium. Included within this report are data on grain growth of sheet material in vacuum and low-pressure oxygen environments, grain growth in vacuum of the clad vent set cup material, weldability, and the effect of grain size and test temperature on tensile properties. Where applicable, data for the DOP-26 alloy are included for comparison. Both grain size and grain-boundary cohesion affect the ductility of iridium alloys. In this study it was found that cerium and thorium, when added together, refine grain size more effectively than when thorium is added by itself (especially at high temperatures). In addition, the effect of cerium additions on grain-boundary cohesion is similar to that of thorium. Mechanical testing at both low ({approx} 10{sup -3}s{sup -1}) and high ({approx} 10{sup -3}s{sup -1}) strain rates showed that the Ce/Th-doped alloys have tensile ductilities that are as good or better than the DOP-26 alloy. The general conclusion from these studies is that cerium can be used to replace some of the radioactive thorium currently used in DOP-26 while maintaining or improving its metallurgical properties. The current DOP-26 alloy meets all requirements for cladding the radioactive fuel in the RTG heat source, but the

  6. Fall Growth Potential of Cereal Grain Forages in Northern Arkansas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Arkansas, producers utilizing cereal grains as fall forage for weaned calves usually do not harvest a grain crop the following summer. This contrasts sharply from practices observed commonly in neighboring Oklahoma, and allows for much wider latitude with respect to management strategies, especia...

  7. Fall Growth Potential of Cereal-Grain Forages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Arkansas, producers utilizing cereal grains as fall forage for weaned calves usually do not produce a grain crop the following summer. Our objectives were to evaluate eight diverse varieties of wheat (Triticum aestivum L.), oat (Avena sativa L.), rye (Secale cereale L.), and triticale (X Triticos...

  8. Prevention of toxigenic fungal growth in stored grains by carbon dioxide detection.

    PubMed

    Zhai, Huan-Chen; Zhang, Shuai-Bing; Huang, Shu-Xia; Cai, Jing-Ping

    2015-01-01

    The growth of toxigenic fungi can adversely affect grain quality and even produce mycotoxins of food safety concern, which should be sensitively monitored and controlled during grain storage. To establish the relationship between the growth of toxigenic fungi and their carbon dioxide (CO2) production, the pattern of CO2 concentration changes was studied during the fungal growth in grain. The results showed the CO2 concentrations increased exponentially (r ≥ 0.96) during the growth of toxigenic fungi Aspergillus flavus, Penicillium sp. and Aspergillus ochraceus, which was different from the linear increase of CO2 concentration produced by the non-toxigenic xerophilic fungi Aspergillus glaucus and Aspergillus restrictus. The acceleration of CO2 concentration was found much earlier than the growth of toxigenic fungi, which would be useful for the prevention of grain spoilage. In addition, the CO2 concentration changes were also determined in storage containers loaded with grain of different moisture content and significant correlation (p < 0.05) was found between changes of CO2 concentration and fungal growth as well as mycotoxin production. The nonlinear increase of CO2 concentration in stored grains could be considered as an indication of the rapid growth of toxigenic fungi and greater risk of microbial spoilage of grains. The results can provide a valid foundation for the prevention of toxigenic fungi and mycotoxin production in stored grains through monitoring the CO2 concentration changes.

  9. The use of combined cathodoluminescence and EBSD analysis: a case study investigating grain boundary migration mechanisms in quartz.

    PubMed

    Piazolo, S; Prior, D J; Holness, M D

    2005-02-01

    Grain boundary migration is an important mechanism of microstructural modification both in rocks and in metals. Combining detailed cathodoluminescence (CL) and electron backscatter diffraction (EBSD) analysis offers the opportunity to relate directly changes in crystallographic orientation to migrating boundaries. We observe the following features in naturally heated quartz grains from the thermal aureole of the Ballachulish Igneous Complex (Scotland, U.K.): (a) propagation of substructures and twin boundaries in swept areas both parallel and at an angle to the growth direction, (b) development of slightly different crystallographic orientations and new twin boundaries at both the growth interfaces and within the swept area and (c) a gradual change in crystallographic orientation in the direction of growth. All these features are compatible with a growth mechanism in which single atoms are attached and detached both at random and at preferential sites, i.e. crystallographically controlled sites or kinks in boundary ledges. Additionally, strain fields caused by defects and/or trace element incorporation may facilitate nucleation sites for new crystallographic orientations at distinct growth interfaces but also at continuously migrating boundaries. This study illustrates the usefulness of combined CL and EBSD in microprocess analysis. Further work in this direction may provide detailed insight into both the mechanism of static grain growth and the energies and mobilities of boundaries in terms of misorientation and grain boundary plane orientation.

  10. The use of combined cathodoluminescence and EBSD analysis: a case study investigating grain boundary migration mechanisms in quartz.

    PubMed

    Piazolo, S; Prior, D J; Holness, M D

    2005-02-01

    Grain boundary migration is an important mechanism of microstructural modification both in rocks and in metals. Combining detailed cathodoluminescence (CL) and electron backscatter diffraction (EBSD) analysis offers the opportunity to relate directly changes in crystallographic orientation to migrating boundaries. We observe the following features in naturally heated quartz grains from the thermal aureole of the Ballachulish Igneous Complex (Scotland, U.K.): (a) propagation of substructures and twin boundaries in swept areas both parallel and at an angle to the growth direction, (b) development of slightly different crystallographic orientations and new twin boundaries at both the growth interfaces and within the swept area and (c) a gradual change in crystallographic orientation in the direction of growth. All these features are compatible with a growth mechanism in which single atoms are attached and detached both at random and at preferential sites, i.e. crystallographically controlled sites or kinks in boundary ledges. Additionally, strain fields caused by defects and/or trace element incorporation may facilitate nucleation sites for new crystallographic orientations at distinct growth interfaces but also at continuously migrating boundaries. This study illustrates the usefulness of combined CL and EBSD in microprocess analysis. Further work in this direction may provide detailed insight into both the mechanism of static grain growth and the energies and mobilities of boundaries in terms of misorientation and grain boundary plane orientation. PMID:15683412

  11. Molecular dynamics simulations of solid state recrystallization I: Observation of grain growth in annealed iron nanoparticles

    SciTech Connect

    Huang Jinfan; Bartell, Lawrence S.

    2012-01-15

    Molecular dynamics simulations of solid state recrystallization and grain growth in iron nanoparticles containing 1436 atoms were carried out. During the period of relaxation of supercooled liquid drops and during thermal annealing of the solids they froze to, changes in disorder were followed by monitoring changes in energy and the migration of grain boundaries. All 27 polycrystalline nanoparticles, which were generated with different grain boundaries, were observed to recystallize into single crystals during annealing. Larger grains consumed the smaller ones. In particular, two sets of solid particles, designated as A and B, each with two grains, were treated to generate 18 members of each set with different thermal histories. This provided small ensembles (of 18 members each) from which rates at which the larger grain engulfed the smaller one, could be determined. The rate was higher, the smaller the degree of misorientation between the grains, a result contrary to the general rule based on published experiments, but the reason was clear. Crystal A, which happened to have a somewhat lower angle of misorientation, also had a higher population of defects, as confirmed by its higher energy. Accordingly, its driving force to recrystallize was greater. Although the mechanism of recrystallization is commonly called nucleation, our results, which probe the system on an atomic scale, were not able to identify nuclei unequivocally. By contrast, our technique can and does reveal nuclei in the freezing of liquids and in transformations from one solid phase to another. An alternative rationale for a nucleation-like process in our results is proposed. - Graphical Abstract: Time dependence of energy per atom in the quenching of liquid nanoparticles A-C of iron. Nanoparticle C freezes directly into a single crystal but A and B freeze to solids with two grains. A and B eventually recrystallize into single crystals. Highlights: Black-Right-Pointing-Pointer Solid state material

  12. Exploring Grain Alignment Mechanisms in Giant Molecular Clouds using GPIPS

    NASA Astrophysics Data System (ADS)

    Jameson, Katherine; Clemens, D.; Pinnick, A.; Pavel, M.; Moreau, J.; Taylor, B.

    2009-01-01

    The linear polarization of starlight along a line of sight arises from the alignment of anisotropic dust grains with the local magnetic field direction. The exact process which aligns the dust grains with the local magnetic field is still unknown. However, an understanding of the alignment mechanism is necessary to be able to interpret polarization maps as tracers of the galactic magnetic field. Recent arguments suggest that radiative aligned torques (RATs) dominate alignment in giant molecular clouds (GMCs), including the infrared dark cloud cores (IRDCs) within them. To test RAT theory, a nearby GMC at l = 53, b = 0 was chosen to be observed this past June as part of the Galactic Plane Infrared Polarization Survey (GPIPS). The cloud covers a 1 x 2 degree region of the galactic plane ( 200 GPIPS field-of-views), and displays regions of varying extinction, morphology, and radiation environments as seen using the GLIMPSE, MIPS, and GRS 13CO data. With an average sampling of 100 stars per GPIPS field-of-view (10’ x 10'), we expect 20,000 stars will show detectable polarizations -a factor of 600 greater than in previous polarimetric studies. A plot of degree of NIR polarization P(%) vs. I/Imax, found using GRS 13CO data, is ideal for comparison to the models of Cho & Lazarian (2005). Approximate Av values are found using the 2MASS color excesses, EH-K. This aids in the generation of a plot of P(%)/Av vs. Av in dark clouds, to compare to the results of Arce et al. (1998) to test the notion that grains are aligned only for a few skin-depths. This work is partially supported by NSF grant AST-0607500.

  13. Modeling of Austenite Grain Growth During Austenitization in a Low Alloy Steel

    NASA Astrophysics Data System (ADS)

    Dong, Dingqian; Chen, Fei; Cui, Zhenshan

    2016-01-01

    The main purpose of this work is to develop a pragmatic model to predict austenite grain growth in a nuclear reactor pressure vessel steel. Austenite grain growth kinetics has been investigated under different heating conditions, involving heating temperature, holding time, as well as heating rate. Based on the experimental results, the mathematical model was established by regression analysis. The model predictions present a good agreement with the experimental data. Meanwhile, grain boundary precipitates and pinning effects on grain growth were studied by transmission electron microscopy. It is found that with the increasing of the temperature, the second-phase particles tend to be dissolved and the pinning effects become smaller, which results in a rapid growth of certain large grains with favorable orientation. The results from this study provide the basis for the establishment of large-sized ingot heating specification for SA508-III steel.

  14. Effects of Alloying on Nanoscale Grain Growth in Substitutional Binary Alloy System: Thermodynamics and Kinetics

    NASA Astrophysics Data System (ADS)

    Peng, Haoran; Chen, Yuzeng; Liu, Feng

    2015-11-01

    Applying the regular solution model, the Gibbs free energy of mixing for substitutional binary alloy system was constructed. Then, thermodynamic and kinetic parameters, e.g., driving force and solute drag force, controlling nanoscale grain growth of substitutional binary alloy systems were derived and compared to their generally accepted definitions and interpretations. It is suggested that for an actual grain growth process, the classical driving force P = γ/D ( γ the grain boundary (GB) energy, D the grain size) should be replaced by a new expression, i.e., P^' = γ /D - Δ P . Δ P represents the energy required to adjust nonequilibrium solute distribution to equilibrium solute distribution, which is equivalent to the generally accepted solute drag force impeding GB migration. By incorporating the derived new driving force for grain growth into the classical grain growth model, the reported grain growth behaviors of nanocrystalline Fe-4at. pct Zr and Pd-19at. pct Zr alloys were analyzed. On this basis, the effect of thermodynamic and kinetic parameters ( i.e., P, Δ P and the GB mobility ( M GB)) on nanoscale grain growth, were investigated. Upon grain growth, the decrease of P is caused by the reduction of γ as a result of solute segregation in GBs; the decrease of Δ P is, however, due to the decrease of grain growth velocity; whereas the decrease of M GB is attributed to the enhanced difference of solute molar fractions between the bulk and the GBs as well as the increased activation energy for GB diffusion.

  15. Texture enhancement during grain growth of magnesium alloy AZ31B

    SciTech Connect

    Bhattacharyya, Jishnu J.; Agnew, S. R.; Muralidharan, G.

    2015-01-03

    In this paper, the microstructure and texture evolution during annealing of rolled Mg alloy AZ31B, at temperatures ranging from 260 to 450°C, is characterized, and a grain growth exponent of n=5, indicating inhibition of grain growth, is observed. Broadening of the normalized grain size distributions, which indicates abnormal grain growth, was observed at all temperatures investigated. It is shown, using a Zener-type analysis for pinning of grain boundaries by particles, that impurity-based particles are responsible for grain growth inhibition and abnormal grain growth. The strong basal texture which develops during rolling of the Mg alloy, resulting in an initial peak intensity in the (0002) pole figure of nine multiples of a random distribution (MRD), increases to ~15 MRD during annealing at 400 and 450°C. Furthermore, a specific texture component {0001}(1120) is observed in the orientation distribution, which increases from 10 to 23 MRD at 400°C. It is hypothesized that the anisotropic grain boundary properties (i.e. low angle boundaries have low energy and mobility) are responsible for the texture strengthening. Additionally, electron backscattered diffraction reveals the recrystallized microstructure to contain a significant number of boundaries with ~30° misorientation about the <0001> direction, and this boundary type persists throughout most annealing treatments explored.

  16. Texture enhancement during grain growth of magnesium alloy AZ31B

    DOE PAGES

    Bhattacharyya, Jishnu J.; Agnew, S. R.; Muralidharan, G.

    2015-01-03

    In this paper, the microstructure and texture evolution during annealing of rolled Mg alloy AZ31B, at temperatures ranging from 260 to 450°C, is characterized, and a grain growth exponent of n=5, indicating inhibition of grain growth, is observed. Broadening of the normalized grain size distributions, which indicates abnormal grain growth, was observed at all temperatures investigated. It is shown, using a Zener-type analysis for pinning of grain boundaries by particles, that impurity-based particles are responsible for grain growth inhibition and abnormal grain growth. The strong basal texture which develops during rolling of the Mg alloy, resulting in an initial peakmore » intensity in the (0002) pole figure of nine multiples of a random distribution (MRD), increases to ~15 MRD during annealing at 400 and 450°C. Furthermore, a specific texture component {0001}(1120) is observed in the orientation distribution, which increases from 10 to 23 MRD at 400°C. It is hypothesized that the anisotropic grain boundary properties (i.e. low angle boundaries have low energy and mobility) are responsible for the texture strengthening. Additionally, electron backscattered diffraction reveals the recrystallized microstructure to contain a significant number of boundaries with ~30° misorientation about the <0001> direction, and this boundary type persists throughout most annealing treatments explored.« less

  17. Effect of thermal treatment on the bio-corrosion and mechanical properties of ultrafine-grained ZK60 magnesium alloy.

    PubMed

    Choi, H Y; Kim, W J

    2015-11-01

    The combination of solid solution heat treatments and severe plastic deformation by high-ratio differential speed rolling (HRDSR) resulted in the formation of an ultrafine-grained microstructure with high thermal stability in a Mg-5Zn-0.5Zr (ZK60) alloy. When the precipitate particle distribution was uniform in the matrix, the internal stresses and dislocation density could be effectively removed without significant grain growth during the annealing treatment (after HRDSR), leading to enhancement of corrosion resistance. When the particle distribution was non-uniform, rapid grain growth occurred in local areas where the particle density was low during annealing, leading to development of a bimodal grain size distribution. The bimodal grain size distribution accelerated corrosion by forming a galvanic corrosion couple between the fine-grained and coarse-grained regions. The HRDSR-processed ZK60 alloy with high thermal stability exhibited high corrosion resistance, high strength and high ductility, and excellent superplasticity, which allow the fabrication of biodegradable magnesium devices with complicated designs that have a high mechanical integrity throughout the service life in the human body. PMID:26275491

  18. Effect of thermal treatment on the bio-corrosion and mechanical properties of ultrafine-grained ZK60 magnesium alloy.

    PubMed

    Choi, H Y; Kim, W J

    2015-11-01

    The combination of solid solution heat treatments and severe plastic deformation by high-ratio differential speed rolling (HRDSR) resulted in the formation of an ultrafine-grained microstructure with high thermal stability in a Mg-5Zn-0.5Zr (ZK60) alloy. When the precipitate particle distribution was uniform in the matrix, the internal stresses and dislocation density could be effectively removed without significant grain growth during the annealing treatment (after HRDSR), leading to enhancement of corrosion resistance. When the particle distribution was non-uniform, rapid grain growth occurred in local areas where the particle density was low during annealing, leading to development of a bimodal grain size distribution. The bimodal grain size distribution accelerated corrosion by forming a galvanic corrosion couple between the fine-grained and coarse-grained regions. The HRDSR-processed ZK60 alloy with high thermal stability exhibited high corrosion resistance, high strength and high ductility, and excellent superplasticity, which allow the fabrication of biodegradable magnesium devices with complicated designs that have a high mechanical integrity throughout the service life in the human body.

  19. Mechanical Properties of a Superalloy Disk with a Dual Grain Structure

    NASA Technical Reports Server (NTRS)

    Gayda, John; Gabb, Timothy; Kantzos, Peter

    2003-01-01

    Mechanical properties from an advanced, nickel-base superalloy disk, with a dual grain structure consisting of a fine grain bore and coarse grain rim, were evaluated. The dual grain structure was produced using NASA's low cost Dual Microstructure Heat Treatment (DMHT) process. The results showed the DMHT disk to have a high strength, fatigue resistant bore comparable to a subsolvus (fine grain) heat treated disk, and a creep resistant rim comparable to a supersolvus (coarse grain) heat treated disk. Additional work on subsolvus solutioning before or after the DMHT conversion appears to be a viable avenue for further improvement in disk properties.

  20. Influence of modes of metal transfer on grain structure and direction of grain growth in low nickel austenitic stainless steel weld metals

    SciTech Connect

    Mukherjee, Manidipto; Saha, Saptarshi; Pal, Tapan Kumar; Kanjilal, Prasanta

    2015-04-15

    The present study elaborately discussed the effect of different modes of metal transfer (i.e., short circuit mode, spray mode and pulse mode) on grain structure and direction of grain growth in low nickel austenitic stainless steel weld metals. Electron backscattered diffraction (EBSD) analysis was used to study the grain growth direction and grain structure in weld metals. The changes in grain structure and grain growth direction were found to be essentially varied with the weld pool shape and acting forces induced by modes of metal transfer at a constant welding speed. Short circuit mode of metal transfer owing to higher Marangoni force (M{sub a}) and low electromagnetic force (R{sub m}) promotes the lower weld pool volume (Γ) and higher weld pool maximum radius (r{sub m}). Short circuit mode also shows curved and tapered columnar grain structures and the grain growth preferentially occurred in <001> direction. In contrast, spray mode of metal transfer increases the Γ and reduces the r{sub m} values due to very high R{sub m} and typically reveals straight and broad columnar grain structures with preferential growth direction in <111>. In the pulse mode of metal transfer relatively high M{sub a} and R{sub m} simultaneously increase the weld pool width and the primary penetration which might encourage relatively complex grain growth directions in the weld pool and cause a shift of major intensity from <001> to <111> direction. It can also be concluded that the fusion zone grain structure and direction of grain growth are solely dependent on modes of metal transfer and remain constant for a particular mode of metal transfer irrespective of filler wire used. - Highlights: • Welded joints of LNiASS were prepared by varying modes of metal transfer. • Weld pool shape, grain structure and grain growth direction were studied. • Short circuit mode shows curved and tapered grain growth in <001> direction. • Spray mode shows straight and broad columnar grain growth

  1. Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect

    SciTech Connect

    Shirdel, M.; Mirzadeh, H.; Parsa, M.H.

    2015-05-15

    A comprehensive study was carried out on the strain-induced martensitic transformation, its reversion to austenite, the resultant grain refinement, and the enhancement of strength and strain-hardening ability through the transformation-induced plasticity (TRIP) effect in a commercial austenitic 304L stainless steel with emphasis on the mechanisms and the microstructural evolution. A straightforward magnetic measurement device, which is based on the measurement of the saturation magnetization, for evaluating the amount of strain-induced martensite after cold rolling and reversion annealing in metastable austenitic stainless steels was used, which its results were in good consistency with those of the X-ray diffraction (XRD) method. A new parameter called the effective reduction in thickness was introduced, which corresponds to the reasonable upper bound on the obtainable martensite fraction based on the saturation in the martensitic transformation. By means of thermodynamics calculations, the reversion mechanisms were estimated and subsequently validated by experimental results. The signs of thermal martensitic transformation at cooling stage after reversion at 850 °C were found, which was attributed to the rise in the martensite start temperature due to the carbide precipitation. After the reversion treatment, the average grain sizes were around 500 nm and the nanometric grains of the size of ~ 65 nm were also detected. The intense grain refinement led to the enhanced mechanical properties and observation of the change in the work-hardening capacity and TRIP effect behavior. A practical map as a guidance for grain refining and characterizing the stability against grain growth was proposed, which shows the limitation of the reversion mechanism for refinement of grain size. - Graphical abstract: Display Omitted - Highlights: • Nano/ultrafine grained austenitic stainless steel through martensite treatment • A parameter descriptive of a reasonable upper bound on

  2. X-Ray Laue Microdiffraction Study of 3D Grain Growth in Polycrystals

    NASA Astrophysics Data System (ADS)

    Budai, J. D.; Yang, W.; Tischler, J. Z.; Larson, B. C.; Liu, W.; Ice, G. E.

    2004-11-01

    We describe a new technique for studying 3D grain growth in polycrystalline materials using white x-ray microdiffraction with micron spatial resolution. This scanning technique uses focussed, polychromatic x-rays at the Advanced Photon Source to measure the local crystal structure and lattice orientation. The capabilities of this method are demonstrated by 3D grain growth studies of aluminium during thermal annealing. 3D grain orientation maps were obtained from hot-rolled (200ºC) polycrystalline aluminum ( 1Fe,Si). The sample was then annealed to induce grain growth, cooled, and re-mapped to measure the thermal migration of all grain boundaries within the same volume region. Initial observations reveal significant grain growth above 360ºC, involving movement of both low- and high-angle boundaries. Systematic measurements obtained after annealing at successively higher temperatures provide a detailed description of the microstructural evolution in a bulk material. These measurements provide the 3D experimental link needed for testing theories and large-scale computer models of 3D grain growth in advanced materials. Support by DOE Division of Materials Sciences under contract with ORNL managed by UT-Battelle, LLC; UNI-CAT is supported by ORNL, UIUC-MRL, NIST, and UOP LLC; APS supported by DOE.

  3. Manufacturing process to reduce large grain growth in zirconium alloys

    DOEpatents

    Rosecrans, Peter M.

    1987-01-01

    A method of treating cold-worked zirconium alloys to reduce large grain gth during thermal treatment at temperatures above the recrystallization temperature of the alloy comprising heating the cold-worked alloy between about 1300.degree.-1350.degree. F. for 1 to 3 hours prior to treatment above its recrystallization temperature.

  4. Alignment of interstellar grains by mechanical torques: suprathermally rotating Gaussian random spheres

    NASA Astrophysics Data System (ADS)

    Das, Indrajit; Weingartner, Joseph C.

    2016-04-01

    Collisions of gas particles with a drifting grain give rise to a mechanical torque on the grain. Recent work by Lazarian & Hoang showed that mechanical torques might play a significant role in aligning helical grains along the interstellar magnetic field direction, even in the case of subsonic drift. We compute the mechanical torques on 13 different irregular grains and examine their resulting rotational dynamics, assuming steady rotation about the principal axis of greatest moment of inertia. We find that the alignment efficiency in the subsonic drift regime depends sensitively on the grain shape, with more efficient alignment for shapes with a substantial mechanical torque even in the case of no drift. The alignment is typically more efficient for supersonic drift. A more rigorous analysis of the dynamics is required to definitively appraise the role of mechanical torques in grain alignment.

  5. Topological events in two-dimensional grain growth: Experiments and simulations

    SciTech Connect

    Fradkov, V.E.; Glicksman, M.E.; Palmer, M.; Rajan, K. . Materials Engineering Dept.)

    1994-08-01

    Grain growth in polycrystals is a process that occurs as a result of the vanishing of small grains. The mean topological class of vanishing two-dimensional (2-D) grains was found experimentally to be about 4.5. This result suggests that most vanishing grains are either 4- or 5-sided. A recent theory of 2-D grain growth is explicitly based on this fact, treating the switching as random events. The process of shrinking of 4- and 5-sided two-dimensional grains was observed experimentally on polycrystalline films of transparent, pure succinonitrile (SCN). Grain shrinking was studied theoretically and simulated by computer (both dynamic and Monte Carlo). It was found that most shrinking grains are topologically stable and remain within their topological class until they are much smaller than their neighbors. They discuss differences which were found with respect to the behavior of 2-D polycrystals, a 2-D ideal soap froth, and a 2-D section of a 3-D grain structure.

  6. Grain growth behavior of Pb-Cu-Te cable sheathing alloys

    SciTech Connect

    Sahay, S.S.; Guruswamy, S.; Goodwin, F.

    1995-04-01

    Lead alloys are extensively used as sheathing material for power and telecommunication cables. Excellent extrusion properties, high ductility, extremely low recrystallization temperature, good fatigue and creep resistance, make these alloys ideal for cable sheathing application. Though the thickness of the lead sheath is only a few hundred {mu}m, it is a critical component of the cable. The lead layer in the cable is often the limiting factor both during the cable production and during its service phase. Up to several hundred miles of long single piece cables may be required for underground and underwater cables. Cracking in the lead sheath during the cable sheathing extrusion limits the production of such long cables while cracking of the lead sheath due to repeated vibration, creep and recrystallization limits the service life of these cables. The purpose of the present research is to increase the duration of cable extrusion time without compromising sheath integrity by minimizing deleterious precipitate formation and growth. Concentrations of Cu and Te in the commercial alloy are too small to contribute to precipitation strengthening. Therefore their positive influence on mechanical strength should mainly result from the influence of Cu and Te in solution on interdiffusivity and grain boundary mobility. The formation of large precipitates observed in Pb-Cu-Te alloys can be minimized and extrusion times increased without negatively affecting mechanical properties if the solute content is reduced to near solid solubility levels. In order to examine the effect of lowering solute content on microstructural stability and mechanical properties, compressive stress-strain behavior of a Pb-50 wt ppm Cu-100 wt ppm Te alloy with solute contents close to the solubility limits and a Pb-400 wt ppm Cu-400 wt ppm Te alloy was examined at room temperature. The grain growth kinetics in these alloys were studied in a temperature range of 100 to 225 C.

  7. Suppression of Grain Growth by Additive in Nanostructured P-type Bismuth Antimony Tellurides

    SciTech Connect

    Zhang, Qian; Zhang, Qinyong; Chen, S.; Liu, W S; Lukas, K; Yan, X; Wang, H; Wang, D.; Opeil, C; Chen, Gang; Ren, Z. F.

    2011-01-01

    Grain growth is a major issue in the preparation of nanostructured bismuth-antimony-tellurides during hot pressing the nanopowders into dense bulk samples. To prevent grain agglomeration during ball milling and growth during hot pressing, organic agent (Oleic Acid, OA) as additive was added into the materials at the beginning of the ball milling process. With different concentrations of OA (0.5, 1.0, 1.5, 2.0, and 2.5 wt%), grains with different sizes are obtained. Structural analysis clearly shows that it is the particle size of the nanopowders that determines the final grain size in the densely compacted bulk samples. A combination of small grains ~200–500 nm and nanopores leads to effective phonon scattering, which results in the decrease of lattice thermal conductivity, and ZT of ~1.3 at 373 K for the sample with 2.0 wt% OA.

  8. Effect of grain boundary on the mechanical behaviors of irradiated metals: a review

    NASA Astrophysics Data System (ADS)

    Xiao, XiaZi; Chu, HaiJian; Duan, HuiLing

    2016-06-01

    The design of high irradiation-resistant materials is very important for the development of next-generation nuclear reactors. Grain boundaries acting as effective defect sinks are thought to be able to moderate the deterioration of mechanical behaviors of irradiated materials, and have drawn increasing attention in recent years. The study of the effect of grain boundaries on the mechanical behaviors of irradiated materials is a multi-scale problem. At the atomic level, grain boundaries can effectively affect the production and formation of irradiation-induced point defects in grain interiors, which leads to the change of density, size distribution and evolution of defect clusters at grain level. The change of microstructure would influence the macroscopic mechanical properties of the irradiated polycrystal. Here we give a brief review about the effect of grain boundaries on the mechanical behaviors of irradiated metals from three scales: microscopic scale, mesoscopic scale and macroscopic scale.

  9. Suppression of grain growth in nanocrystalline Bi{sub 2}Te{sub 3} through oxide particle dispersions

    SciTech Connect

    Humphry-Baker, Samuel A.; Schuh, Christopher A.

    2014-11-07

    The strategy of suppressing grain growth by dispersing nanoscale particles that pin the grain boundaries is demonstrated in a nanocrystalline thermoelectric compound. Yttria nanoparticles that were incorporated by mechanical alloying enabled nanocrystalline (i.e., d < 100 nm) Bi{sub 2}Te{sub 3} to be retained up to a homologous temperature of 0.94 T{sub m} for durations over which the grain size of the unreinforced compound grew to several microns. The nanostructure appeared to saturate at a grain size that depended on volume fraction (f) according to an f {sup −1/3} relationship, in accordance with theoretical models in the limit of high volume fractions of particles. Interestingly, at low temperatures, the particles stimulate enhanced grain growth over the unreinforced compound, due to particle-stimulated nucleation of recrystallization. To help prevent this effect, in-situ composites formed by internal oxidation of yttrium are compared with those made ex-situ by incorporation of yttria nanoparticles, with the result that the in-situ dispersion eliminates recrystallization at low temperatures and therefore improves nanostructure stabilization. These developments offer a pathway to thermally stabilized bulk nanocrystalline thermoelectrics processed via a powder route.

  10. Grain Refinement in Al-Mg-Si Alloy TIG Welds Using Transverse Mechanical Arc Oscillation

    NASA Astrophysics Data System (ADS)

    Biradar, N. S.; Raman, R.

    2012-11-01

    Reduction in grain size in weld fusion zones (FZs) presents the advantages of increased resistance to solidification cracking and improvement in mechanical properties. Transverse mechanical arc oscillation was employed to obtain grain refinement in the weldment during tungsten inert gas welding of Al-Mg-Si alloy. Electron backscattered diffraction analysis was carried out on AA6061-AA4043 filler metal tungsten inert gas welds. Grain size, texture evolution, misorientation distribution, and aspect ratio of weld metal, PMZ, and BM have been observed at fixed arc oscillation amplitude and at three different frequencies levels. Arc oscillation showed grain size reduction and texture formation. Fine-grained arc oscillated welds exhibited better yield and ultimate tensile strengths and significant improvement in percent elongation. The obtained results were attributed to reduction in equivalent circular diameter of grains and increase in number of subgrain network structure of low angle grain boundaries.

  11. Grain growth of Ni-based superalloy IN718 coating fabricated by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yaocheng; Yang, Li; Dai, Jun; Huang, Zedong; Meng, Tao

    2016-06-01

    The pulsed laser deposited Ni-based superalloy coating was fabricated with successive 12 layers using single tracks. The microstructure of the deposited coating was observed by scanning electron microscopy (SEM). The grain growth and the grain boundary misorientation were investigated by electron backscatter diffraction (EBSD), the precipitation phase was determined by transmission electron microscope (TEM). The results showed that the dendrites were the most common microstructure in the coating, and the dendritic growth orientation was paralleled to the direction of the laser deposition. The dendrite got coarser and its space was increased with increasing laser deposited layers. Most grains grew along the preferential grain orientation <001> and formed anisotropy with grain boundaries misorientation angle about 2° in the pulsed laser deposited coating. The grain size along the texture orientation was 3-10 times larger than that in the transverse orientation. The cross section microhardness of the coating ranged between 240-280 HV, and decreased along the depositional direction due to the reasons of the variation of eutectic morphology, grain size distribution, grain misorientation and a small amounts of strengthening phase precipitation.

  12. The role of gallium sulfide in SrS:Ce grain growth

    SciTech Connect

    Evans, N.D.; Naman, A.; Jones, K.S.; Holloway, P.H.; Rice, P.M.

    1997-04-01

    Whereas efficient red (ZnS:Mn) and green (ZnS:Tb) phosphors are available for full-color flat-panel display technology, efficient blue phosphors are still under development. SrS:Ce is being investigated as a suitable material. As part of a larger study, annealed SrS:Ce films produced from sputter targets incorporating Ga{sub 2}S{sub 3} were found to be five times brighter than films produced from targets containing no Ga{sub 2}S{sub 3}. Consequently, the significance of added gallium sulfide to the morphology of SrS:Ce films during annealing is being investigated. Following deposition, plan view specimens of films were prepared for transmission electron microscopy by mechanical grinding, dimpling, and Ar{sup +} milling. Films were examined in a Philips CM12, and a JEOL 200CX. Additionally, EDS line scans were obtained in the scanning-transmission mode of a Philips CM200FEG, integrated with an EMiSPEC Vision acquisition system. The EDS line scans were defined as a series of 40 points along a line, spaced approximately 3.6 nm apart. The dwell time for EDS acquisition at each point was 10 sec. It was found that the addition of Ga{sub 2}S{sub 3} increases the brightness of SrS:Ce films by enhancing grain growth during annealing. Also being investigated is the possibility that Ga{sub 2}S{sub 3}, either as a sub-sulfide or as a source of Ga, is involved in a liquid-phase sintering mechanism, which would account for the increased grain growth observed after annealing.

  13. Mechanisms of time-dependent crack growth at elevated temperature

    SciTech Connect

    Saxena, A.; Stock, S.R.

    1990-04-15

    Objective of this 3-y study was to conduct creep and creep-fatigue crack growth experiments and to characterize the crack tip damage mechanisms in a model material (Cu-1wt%Sb), which is known to cavitate at grain boundaries under creep deformation. Results were: In presence of large scale cavitation damage and crack branching, time rate of creep crack growth da/dt does not correlate with C[sub t] or C[sup *]. When cavitation damage is constrained, da/dt is characterized by C[sub t]. Area fraction of grain boundary cavitated is the single damage parameter for the extent of cavitation damage ahead of crack tips. C[sub t] is used for the creep-fatigue crack growth behavior. In materials prone to rapid cavity nucleation, creep cracks grow faster initially and then reach a steady state whose growth rate is determined by C[sub t]. Percent creep life exhausted correlates with average cavity diameter and fraction of grain boundary area occupied by cavities. Synchrotron x-ray tomographic microscopy was used to image individual cavities in Cu-1wt% Sb. A methodology was developed for predicting the remaining life of elevated temperature power plant components; (C[sub t])[sub avg] was used to correlate creep-fatigue crack growth in Cr-Mo and Cr-Mo-V steel and weldments.

  14. Grain Growth Orientation and Anisotropy in Cu6Sn5 Intermetallic: Nanoindentation and Electron Backscatter Diffraction Analysis

    NASA Astrophysics Data System (ADS)

    Choudhury, Soud Farhan; Ladani, Leila

    2014-04-01

    As the size of joints in micro/nano-electronics diminishes, the role of intermetallic (IMC) layers becomes more significant. It was shown that solder joint strength is controlled largely by IMC strength at higher strain rates. Additionally, there is a possibility that very small joints are completely composed of IMCs. Further miniaturization of joints may result in statistical grain size effects. Therefore, it is essential to characterize IMC materials and understand their anisotropic mechanical properties. One of the most common types of IMCs in microelectronic joints is Cu6Sn5, which is formed in a variety of bonding materials with different compositions of Sn, Cu, and Ag. This work studies through nanoindentation elastic-plastic properties of a single grain of Cu6Sn5 IMC in a Sn-3.5Ag/Cu system with reflow soldering. Elastic properties such as elastic modulus and hardness were determined from the nanoindentation load-depth curve. The reverse analysis model described by Dao et al. was used to extract plastic properties such as yield strength and strain hardening exponent from nanoindentation data. Care was taken to achieve indentation of single grains with sufficient accuracy and repeatability. Electron backscatter diffraction (EBSD) mapping was used to determine orientation of Cu6Sn5 grains and to relate the orientation with the load-depth curve results of nanoindentation and the corresponding elastic and plastic properties. The EBSD results indicated that the Cu6Sn5 crystal structure is hexagonal. Columnar growth of the Cu6Sn5 grains was observed as the grains mostly grew along the c-axis of the crystal. Indentation of different grains parallel to the basal plane showed no significant difference in mechanical properties.

  15. Phase field modelling of stressed grain growth: Analytical study and the effect of microstructural length scale

    SciTech Connect

    Jamshidian, M.; Rabczuk, T.

    2014-03-15

    We establish the correlation between the diffuse interface and sharp interface descriptions for stressed grain boundary migration by presenting analytical solutions for stressed migration of a circular grain boundary in a bicrystalline phase field domain. The validity and accuracy of the phase field model is investigated by comparing the phase field simulation results against analytical solutions. The phase field model can reproduce precise boundary kinetics and stress evolution provided that a thermodynamically consistent theory and proper expressions for model parameters in terms of physical material properties are employed. Quantitative phase field simulations are then employed to investigate the effect of microstructural length scale on microstructure and texture evolution by stressed grain growth in an elastically deformed polycrystalline aggregate. The simulation results reveal a transitional behaviour from normal to abnormal grain growth by increasing the microstructural length scale.

  16. Influence of transport mechanisms on nucleation and grain structure formation in DC cast aluminium alloy ingots

    NASA Astrophysics Data System (ADS)

    Bedel, M.; Založnik, M.; Kumar, A.; Combeau, H.; Jarry, P.; Waz, E.

    2012-01-01

    The grain structure formation in direct chill (DC) casting is directly linked to nucleation, which is generally promoted by inoculation. Inoculation prevents defects, but also modifies the physical properties by changing the microstructure. We studied the coupling of the nucleation on inoculant particles and the grain growth in the presence of melt flow induced by thermosolutal convection and of the transport of free-floating equiaxed grains. We used a volume-averaged two-phase multiscale model with a fully coupled description of phenomena on the grain scale (nucleation on grain refiner particles and grain growth) and on the product scale (macroscopic transport). The transport of inoculant particles is also modeled, which accounts for the inhomogeneous distribution of inoculant particles in the melt. The model was applied to an industrial sized (350mm thick) DC cast aluminium alloy ingot. A discretised nuclei size distribution was defined and the impact of different macroscopic phenomena on the grain structure formation was studied: the zone and intensity of nucleation and the resulting grain size distribution. It is shown that nucleation in the presence of macroscopic transport cannot be explained only in terms of cooling rate, but variations of composition, nuclei density and grain density, all affected by transport, must be accounted for.

  17. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2

    SciTech Connect

    Gleason, A. E.; Bolme, C. A.; Lee, H. J.; Nagler, B.; Galtier, E.; Milathianaki, D.; Hawreliak, J.; Kraus, R. G.; Eggert, J. H.; Fratanduono, D. E.; Collins, G. W.; Sandberg, R.; Yang, W.; Mao, W. L.

    2015-09-04

    Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump–probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueation of stishovite appears to be kinetically limited to 1.4±0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. As a result, these are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD.

  18. Influence of Nitrogen Content on Thermal Stability and Grain Growth Kinetics of Cryomilled Al Nanocomposites

    NASA Astrophysics Data System (ADS)

    Hashemi-Sadraei, L.; Mousavi, S. E.; Vogt, R.; Li, Y.; Zhang, Z.; Lavernia, E. J.; Schoenung, J. M.

    2012-02-01

    Nanocomposite powders of Al 5083/B4C were produced via cryogenic milling (cryomilling) of boron carbide (B4C) particles in Al 5083 matrix. The effect of milling time (up to 24 hours), and consequential nitrogen content, on grain growth in the nanocrystalline Al 5083 matrix was investigated. Thermal stability was studied at temperatures as high as ~0.96 T m and annealing times of up to 24 hours. Average grain sizes increased with time and temperature and tended to stabilize after longer annealing times, regardless of nitrogen content. Higher thermal stability was observed in samples with higher nitrogen content, with the average grain size remaining in the range of 30 nm, even after exposure to the most extreme annealing conditions. This behavior was attributed to the retarding effect that nitrides have on grain growth, as a result of pinning grain boundaries. Kinetic studies based on the Burke equation showed two thermally activated grain growth regimes—a low-temperature regime with an activation energy of 15 kJ/mol and a high-temperature regime with an activation energy of 58 kJ/mol.

  19. Atomistic tensile deformation mechanisms of Fe with gradient nano-grained structure

    SciTech Connect

    Li, Wenbin E-mail: xlwu@imech.ac.cn; Yuan, Fuping Wu, Xiaolei E-mail: xlwu@imech.ac.cn

    2015-08-15

    Large-scale molecular dynamics (MD) simulations have been performed to investigate the tensile properties and the related atomistic deformation mechanisms of the gradient nano-grained (GNG) structure of bcc Fe (gradient grains with d from 25 nm to 105 nm), and comparisons were made with the uniform nano-grained (NG) structure of bcc Fe (grains with d = 25 nm). The grain size gradient in the nano-scale converts the applied uniaxial stress to multi-axial stresses and promotes the dislocation behaviors in the GNG structure, which results in extra hardening and flow strength. Thus, the GNG structure shows slightly higher flow stress at the early plastic deformation stage when compared to the uniform NG structure (even with smaller grain size). In the GNG structure, the dominant deformation mechanisms are closely related to the grain sizes. For grains with d = 25 nm, the deformation mechanisms are dominated by GB migration, grain rotation and grain coalescence although a few dislocations are observed. For grains with d = 54 nm, dislocation nucleation, propagation and formation of dislocation wall near GBs are observed. Moreover, formation of dislocation wall and dislocation pile-up near GBs are observed for grains with d = 105 nm, which is the first observation by MD simulations to our best knowledge. The strain compatibility among different layers with various grain sizes in the GNG structure should promote the dislocation behaviors and the flow stress of the whole structure, and the present results should provide insights to design the microstructures for developing strong-and-ductile metals.

  20. Effects of grain size on the quasi-static mechanical properties of ultrafine-grained and nanocrystalline tantalum

    NASA Astrophysics Data System (ADS)

    Ligda, Jonathan Paul

    The increase in strength due to the Hall-Petch effect, reduced strain hardening capacity, a reduced ductility, and changes in deformation mechanisms are all effects of reducing grain size (d) into the ultrafine-grained (UFG, 100 < d < 1000 nm) and nanocrystalline (NC, d<100 nm) state. However, most of the studies on the mechanical behavior of UFG/NC metals have been on face-centered cubic (FCC) metals. Of the few reports on UFG/NC body-centered cubic (BCC) metals, the interest is related to their increase in strength and reduced strain rate sensitivity. This combination increases their propensity to deform via adiabatic shear bands (ASBs) at high strain rates, which is a desired response for materials being considered as a possible replacement for depleted uranium in kinetic energy penetrators. However, an ideal replacement material must also plastically deform in tension under quasi-static rates to survive initial launch conditions. This raises the question: if the material forms ASBs at dynamic rates, will it also form shear bands at quasi-static isothermal rates? As well as, is there a specific grain size for a material that will plastically deform in tension at quasi-static rates but form adiabatic shear bands at dynamic rates? Using high pressure torsion, a polycrystalline bulk tantalum disk was refined into the UFG/NC regime. Using microscale mechanical testing techniques, such as nanoindentation, microcompression, and microtension, it is possible to isolate locations with a homogeneous grain size within the disk. Pillars are compressed using a nanoindenter with a flat punch tip, while "dog-bone" specimens were pulled in tension using a custom built in-situ tension stage within a scanning electron microscope (SEM). The observed mechanical behavior is related to the microstructure by using transmission electron microscopy (TEM) on the as-processed material and tested specimens. Synchrotron X-ray based texture analysis was also conducted on the disk to

  1. Grain growth and dust trapping in circumstellar disks

    NASA Astrophysics Data System (ADS)

    Pinilla, Paola

    2015-08-01

    Circumstellar disks around young stars are known to be the birthplace of planets. Planet formation starts with the coagulation of micron-sized particles to larger dust aggregates. This process, which covers more than forty orders of magnitude in mass, has different physical challenges. One of the oldest mysteries is how planetesimals are formed, in spite of fragmentation collisions and rapid inward drift. Radial drift theory is in disagreement with the observations of millimetre grains in the cold regions of protoplanetary disks. Nevertheless, a disk model that includes dust coagulation, fragmentation, and the presence of long-lived pressure bumps, which moderate the rapid inward migration of particles, leads to a better agreement between observations and theory. Disks with a dust depleted inner cavity, known as transition disks, are excellent candidates to investigate the dust evolution under the existence of a pressure bump. Millimetre observations of transition disks reveal crescent- and ring-shaped emissions that lend credence to the notion than planetesimals may form in localised hotspots or pressure traps. Recent ALMA observations have showed astonishing dust structures in transition disks, which together with data of CO and its isotopologues, have been giving major support for particle trapping induced by embedded planets, which can solve the old paradigm of radial drift.

  2. Time-evolution of grain size distributions in random nucleation and growth crystallization processes

    NASA Astrophysics Data System (ADS)

    Teran, Anthony V.; Bill, Andreas; Bergmann, Ralf B.

    2010-02-01

    We study the time dependence of the grain size distribution N(r,t) during crystallization of a d -dimensional solid. A partial differential equation, including a source term for nuclei and a growth law for grains, is solved analytically for any dimension d . We discuss solutions obtained for processes described by the Kolmogorov-Avrami-Mehl-Johnson model for random nucleation and growth (RNG). Nucleation and growth are set on the same footing, which leads to a time-dependent decay of both effective rates. We analyze in detail how model parameters, the dimensionality of the crystallization process, and time influence the shape of the distribution. The calculations show that the dynamics of the effective nucleation and effective growth rates play an essential role in determining the final form of the distribution obtained at full crystallization. We demonstrate that for one class of nucleation and growth rates, the distribution evolves in time into the logarithmic-normal (lognormal) form discussed earlier by Bergmann and Bill [J. Cryst. Growth 310, 3135 (2008)]. We also obtain an analytical expression for the finite maximal grain size at all times. The theory allows for the description of a variety of RNG crystallization processes in thin films and bulk materials. Expressions useful for experimental data analysis are presented for the grain size distribution and the moments in terms of fundamental and measurable parameters of the model.

  3. Multiscale Modeling of Damage Processes in Aluminum Alloys: Grain-Scale Mechanisms

    NASA Technical Reports Server (NTRS)

    Hochhalter, J. D.; Veilleux, M. G.; Bozek, J. E.; Glaessgen, E. H.; Ingraffea, A. R.

    2008-01-01

    This paper has two goals related to the development of a physically-grounded methodology for modeling the initial stages of fatigue crack growth in an aluminum alloy. The aluminum alloy, AA 7075-T651, is susceptible to fatigue cracking that nucleates from cracked second phase iron-bearing particles. Thus, the first goal of the paper is to validate an existing framework for the prediction of the conditions under which the particles crack. The observed statistics of particle cracking (defined as incubation for this alloy) must be accurately predicted to simulate the stochastic nature of microstructurally small fatigue crack (MSFC) formation. Also, only by simulating incubation of damage in a statistically accurate manner can subsequent stages of crack growth be accurately predicted. To maintain fidelity and computational efficiency, a filtering procedure was developed to eliminate particles that were unlikely to crack. The particle filter considers the distributions of particle sizes and shapes, grain texture, and the configuration of the surrounding grains. This filter helps substantially reduce the number of particles that need to be included in the microstructural models and forms the basis of the future work on the subsequent stages of MSFC, crack nucleation and microstructurally small crack propagation. A physics-based approach to simulating fracture should ultimately begin at nanometer length scale, in which atomistic simulation is used to predict the fundamental damage mechanisms of MSFC. These mechanisms include dislocation formation and interaction, interstitial void formation, and atomic diffusion. However, atomistic simulations quickly become computationally intractable as the system size increases, especially when directly linking to the already large microstructural models. Therefore, the second goal of this paper is to propose a method that will incorporate atomistic simulation and small-scale experimental characterization into the existing multiscale

  4. Grain Growth Kinetics of BaTiO3 Nanocrystals During Calcining Process

    NASA Astrophysics Data System (ADS)

    Song, Xiao-lan; He, Xi; Yang, Hai-ping; Qu, Yi-xin; Qiu, Guan-zhou

    2008-06-01

    BaTiO3 nanocrystals were synthesized by sol-gel method using barium acetate (Ba(CH3COO)2) and tetra-butyl titanate (Ti(OC4H9)4) as raw materials. Xerogel precursors and products were characterized by means of thermogravimetric/differential scanning calorimetry (TG/DSC), X-ray diffraction (XRD) and transmission electron microscope (TEM). The influence of the calcination temperature and duration on the lattice constant, the lattice distortion, and the grain size of BaTiO3 nanocrystals was discussed based on the XRD results. The grain growth kinetics of BaTiO3 nanocrystals during the calcination process were simulated with a conventional grain growth model which only takes into account diffusion, and an isothermal model proposed by Qu and Song, which takes into account both diffusion and surface reactions. Using these models, the pre-exponential factor and the activation energy of the rate constant were estimated. The simulation results indicate that the isothermal model is superior to the conventional one in describing the grain growth process, implying that both diffusion and surface reactions play important roles in the grain growth process.

  5. Synchrotron characterization of nanograined UO2 grain growth

    SciTech Connect

    Mo, Kun; Miao, Yinbin; Yun, Di; Jamison, Laura M.; Lian, Jie; Yao, Tiankei

    2015-09-30

    This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructure based materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize our preliminary synchrotron radiation experiments at APS to determine the grain size of nanograin UO2. The methodology and experimental setup developed in this experiment can directly apply to the proposed in-situ grain growth measurements. The investigation of the grain growth kinetics was conducted based on isothermal annealing and grain growth characterization as functions of duration and temperature. The kinetic parameters such as activation energy for grain growth for UO2 with different stoichiometry are obtained and compared with molecular dynamics (MD) simulations.

  6. Migration mechanism of a GaN bicrystalline grain boundary as a model system

    NASA Astrophysics Data System (ADS)

    Lee, Sung Bo; Yoo, Seung Jo; Kim, Young-Min; Kim, Jin-Gyu; Han, Heung Nam

    2016-05-01

    Using in situ high-resolution transmission electron microscopy, we have explored migration mechanism of a grain boundary in a GaN bicrystal as a model system. During annealing at 500 °C, the grain-boundary region underwent a decrease in thickness, which occurred by decomposition or sublimation of GaN during annealing at 500 °C coupled with electron-beam sputtering. The decrease in thickness corresponds to an increase in the driving force for migration, because the migration of the grain boundary was driven by the surface energy difference. As the driving force increased with annealing time, the grain-boundary morphology turned from atomically smooth to rough, which is characterized by kinetic roughening. The observations indicate that a grain boundary exhibits a nonlinear relationship between driving force for migration and migration velocity, in discord with the general presumption that a grain boundary follows a linear relationship.

  7. Migration mechanism of a GaN bicrystalline grain boundary as a model system

    PubMed Central

    Lee, Sung Bo; Yoo, Seung Jo; Kim, Young-Min; Kim, Jin-Gyu; Han, Heung Nam

    2016-01-01

    Using in situ high-resolution transmission electron microscopy, we have explored migration mechanism of a grain boundary in a GaN bicrystal as a model system. During annealing at 500 °C, the grain-boundary region underwent a decrease in thickness, which occurred by decomposition or sublimation of GaN during annealing at 500 °C coupled with electron-beam sputtering. The decrease in thickness corresponds to an increase in the driving force for migration, because the migration of the grain boundary was driven by the surface energy difference. As the driving force increased with annealing time, the grain-boundary morphology turned from atomically smooth to rough, which is characterized by kinetic roughening. The observations indicate that a grain boundary exhibits a nonlinear relationship between driving force for migration and migration velocity, in discord with the general presumption that a grain boundary follows a linear relationship. PMID:27210538

  8. Migration mechanism of a GaN bicrystalline grain boundary as a model system.

    PubMed

    Lee, Sung Bo; Yoo, Seung Jo; Kim, Young-Min; Kim, Jin-Gyu; Han, Heung Nam

    2016-01-01

    Using in situ high-resolution transmission electron microscopy, we have explored migration mechanism of a grain boundary in a GaN bicrystal as a model system. During annealing at 500 °C, the grain-boundary region underwent a decrease in thickness, which occurred by decomposition or sublimation of GaN during annealing at 500 °C coupled with electron-beam sputtering. The decrease in thickness corresponds to an increase in the driving force for migration, because the migration of the grain boundary was driven by the surface energy difference. As the driving force increased with annealing time, the grain-boundary morphology turned from atomically smooth to rough, which is characterized by kinetic roughening. The observations indicate that a grain boundary exhibits a nonlinear relationship between driving force for migration and migration velocity, in discord with the general presumption that a grain boundary follows a linear relationship. PMID:27210538

  9. Nucleation and Growth of Crystalline Grains in RF-Sputtered TiO 2 Films

    DOE PAGES

    Johnson, J. C.; Ahrenkiel, S. P.; Dutta, P.; Bommisetty, V. R.

    2009-01-01

    Amore » morphous TiO 2 thin films were radio frequency sputtered onto siliconmonoxide and carbon support films on molybdenum transmission electron microscope (TEM) grids and observed during in situ annealing in a TEM heating stage at 250 ∘ C. The evolution of crystallization is consistent with a classical model of homogeneous nucleation and isotropic grain growth. The two-dimensional grain morphology of the TEM foil allowed straightforward recognition of amorphous and crystallized regions of the films, for measurement of crystalline volume fraction and grain number density. By assuming that the kinetic parameters remain constant beyond the onset of crystallization, the final average grain size was computed, using an analytical extrapolation to the fully crystallized state. Electron diffraction reveals a predominance of the anatase crystallographic phase.« less

  10. Near-Threshold Fatigue Crack Growth Behavior of Fine-Grain Nickel-Based Alloys

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Piascik, Robert S.

    2003-01-01

    Constant-Kmax fatigue crack growth tests were performed on two finegrain nickel-base alloys Inconel 718 (DA) and Ren 95 to determine if these alloys exhibit near-threshold time-dependent crack growth behavior observed for fine-grain aluminum alloys in room-temperature laboratory air. Test results showed that increases in K(sub max) values resulted in increased crack growth rates, but no evidence of time-dependent crack growth was observed for either nickel-base alloy at room temperature.

  11. Effect of Heating Rate on Densification and Grain Growth During Spark Plasma Sintering of 93W-5.6Ni-1.4Fe Heavy Alloys

    NASA Astrophysics Data System (ADS)

    Hu, Ke; Li, Xiaoqiang; Qu, Shengguan; Li, Yuanyuan

    2013-09-01

    Blended 93W-5.6Ni-1.4Fe powders were sintered via the spark plasma sintering (SPS) technique using heating rates from 10 K min-1 to 380 K min-1 (10 °C min-1 to 380 °C min-1). The kinetics of densification and grain growth were analyzed to identify heating rate effects during the SPS of 93W-5.6Ni-1.4Fe powders. The activation energies for densification were calculated and compared with the experimental values for diffusion and other mass transport phenomena. The results show that for the slowly heated specimens [heating rate <100 K min-1 (100 °C min-1)], densification occurs mainly through dissolution-precipitation of W through the matrix phase and W grain boundary diffusion. The concurrent grain growth is dominated by surface diffusion at a low sintering temperature and by solution-reprecipitation and Ni-enhanced W grain boundary diffusion at a higher temperature. For the specimens sintered with heating rates higher than 100 K min-1 (100 °C min-1), the apparent activation energy value for the mechanism controlling densification is a strong function of the relative density, and fast densification controlled by multiple diffusion mechanisms and intensive viscous flow dominates over the grain growth. High SPS heating rate is favorable to obtain high density and fine-grained tungsten heavy alloys.

  12. Search for Mechanically-Induced Grain Morphology Changes in Oxygen Free Electrolytic (OFE) Copper

    SciTech Connect

    Sanders, Jennifer; /SLAC

    2006-08-18

    The deformation of the microscopic, pure metal grains (0.1 to > 1 millimeter) in the copper cells of accelerator structures decreases the power handling capabilities of the structures. The extent of deformation caused by mechanical fabrication damage is the focus of this study. Scanning electron microscope (SEM) imaging of a bonded test stack of six accelerating cells at magnifications of 30, 100, 1000 were taken before simulated mechanical damage was done. After a 2{sup o}-3{sup o} twist was manually applied to the test stack, the cells were cut apart and SEM imaged separately at the same set magnifications (30, 100, and 1000), to examine any effects of the mechanical stress. Images of the cells after the twist were compared to the images of the stack end (cell 60) before the twist. Despite immense radial damage to the end cell from the process of twisting, SEM imaging showed no change in grain morphology from images taken before the damage: copper grains retained shape and the voids at the grain boundaries stay put. Likewise, the inner cells of the test stack showed similar grain consistency to that of the end cell before the twist was applied. Hence, there is no mechanical deformation observed on grains in the aperture disk, either for radial stress or for rotational stress. Furthermore, the high malleability of copper apparently absorbed stress and strain very well without deforming the grain structure in the surface.

  13. Mechanical properties and structural evolution during deformation of fine grain magnesium and aluminum alloys

    NASA Astrophysics Data System (ADS)

    Yang, Qi

    Grain refinement improves the formability and the strength of wrought Mg and Al alloys. Ultrafine grain Mg is produced by a new process for severe plastic deformation, called Alternate Biaxial Reverse Corrugation (ABRC). Fine grain structure in Al is produced by creating a new composition capable of precipitating dispersed intermetallics in the alloy. Slip and twinning subdivide an initial bimodal grain structure of Mg alloy during processing. Dynamic recovery and recrystallization lead to the formation of nearly uniform ultrafine microstructure of average grain size 1.4mum, containing many submicron grains. In Mg, twinning causes grain refinement in the early stages, but it is inhibited when grain size becomes finer. A strong basal texture is created after several corrugation and flattening steps, but eventually weakened as grain size becomes finer. Grain rotation and possible dynamic recrystallization are believed to cause a drop in the intensity of basal texture. At room temperature, grain refinement causes a considerable increase in strain rate sensitivity of flow stress (m) leading to the enhancement of post-uniform elongation. Yield strength increases, and becomes more isotropic due to the inhibition of twinning in fine grain Mg alloy, compared to coarse grain alloy. Normal anisotropy ratio (R value) for fine grain Mg at room temperature is higher than that for coarse grain alloy. At warm temperatures, formability is significantly increased due to an increase in strain rate sensitivity of flow stress and diffuse quasistable flow in fine grain Mg, as compared with coarse grain alloy. At 200°C and strain rates below 2x10-4s-1, the fine grain alloy demonstrates a high rate of strain hardening up to a true strain of 0.6 in addition to its high strain rate sensitivity (m ˜ 0.4-0.5), leading to a high elongation of 300-400%. There is competition between dynamic grain growth and grain refinement during straining at warm temperature. Mg exhibits isotropic

  14. Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD

    SciTech Connect

    Wiora, M; Bruehne, K; Floeter, A; Gluche, P; Willey, T M; Kucheyev, S O; Van Buuren, A W; Hamza, A V; Biener, J; Fecht, H

    2008-08-01

    Nanocrystalline diamond (NCD) films with a thickness of {approx}6 {micro}m and with average grain sizes ranging from 60 to 9 nm were deposited on silicon wafers using a hot-filament chemical vapor deposition (HFCVD) process. These samples were then characterized with the goal to identify correlations between grain size, chemical composition and mechanical properties. The characterization reveals that our films are phase pure and exhibit a relatively smooth surface morphology. The levels of sp{sup 2}-bonded carbon and hydrogen impurities are low, and showed a systematic variation with the grain size. The hydrogen content increases with decreasing grain size, whereas the sp{sup 2} carbon content decreases with decreasing grain size. The material is weaker than single crystalline diamond, and both stiffness and hardness decrease with decreasing grain size. These trends suggest gradual changes of the nature of the grain boundaries, from graphitic in the case of the 60 nm grain size material to hydrogen terminated sp{sup 3} carbon for the 9 nm grain size material. The films exhibit low levels of internal stress and freestanding structures with a length of several centimeters could be fabricated without noticeable bending.

  15. Strain Rate Effect on the Mechanical Behaviour of Sandstones with Different Grain Sizes

    NASA Astrophysics Data System (ADS)

    Wasantha, P. L. P.; Ranjith, P. G.; Zhao, J.; Shao, S. S.; Permata, G.

    2015-09-01

    Sandstone specimens with different grain sizes were tested under uniaxial compression at a range of strain rates to investigate the coupled influence of strain rate and grain size on the mechanical behaviour of sandstone. Average grain sizes of sandstones were 105.4 µm (fine grained, FG), 228 µm (medium grained, MG) and 321 µm (coarse grained, CG), and the considered strain rates were 10-6, 10-5, 10-4 and 10-3 S-1. We used an optical deformation and strain measuring system for all the tests to determine the deformation characteristics of specimens during loading. The peak strength was observed to increase non-linearly with an increasing gradient against logarithmic strain rate for FG sandstone, while the trend was a linear increase for MG sandstone and unsystematic for CG sandstone. The relationships of elastic modulus versus logarithmic strain rate for the three types of sandstones showed similar trends as for the peak strength. This observation suggests that the FG sandstones are more responsive to strain rate compared to coarser-grained sandstones and this was attributed to the differences in micro-crack development patterns of sandstones with different grain sizes. A surprising behaviour was observed for CG sandstone, which displayed an increase of strength at the slowest strain rate, reversing the general decreasing trend of strength with decreasing strain rate. Stress redistribution associated with grain fracturing was proposed as a possible mechanism to explain this counter-intuitive behaviour. Finally, the results of this paper suggest that the size of constituent grains is a critical parameter that needs to be incorporated in considerations of the mechanical behaviour of sandstones under different strain rates.

  16. Centre seeded infiltration and growth process for fabrication of large grain bulk YBCO/Ag superconducting composites

    NASA Astrophysics Data System (ADS)

    Parthasarathy, R.; Seshubai, V.

    2012-06-01

    We report the fabrication of a large grain bulk YBCO/Ag superconductor using a novel technique which we call Centre Seeded Infiltration and Growth Process (CSIGP). Using this technique, it has been made possible to get bulk YBCO/Ag composite sample with uniform grain growth textured along the c-axis. The resulting large grain sample has been found to have high critical current densities up to large magnetic fields. We correlate the improved superconducting and magnetic properties to the modified grain growth conditions employed in this fabrication technique.

  17. Geometric and topological properties of the canonical grain-growth microstructure

    NASA Astrophysics Data System (ADS)

    Mason, Jeremy K.; Lazar, Emanuel A.; MacPherson, Robert D.; Srolovitz, David J.

    2015-12-01

    Many physical systems can be modeled as large sets of domains "glued" together along boundaries—biological cells meet along cell membranes, soap bubbles meet along thin films, countries meet along geopolitical boundaries, and metallic crystals meet along grain interfaces. Each class of microstructures results from a complex interplay of initial conditions and particular evolutionary dynamics. The statistical steady-state microstructure resulting from isotropic grain growth of a polycrystalline material is canonical in that it is the simplest example of a cellular microstructure resulting from a gradient flow of an energy that is directly proportional to the total length or area of all cell boundaries. As many properties of polycrystalline materials depend on their underlying microstructure, a more complete understanding of the grain growth steady state can provide insight into the physics of a broad range of everyday materials. In this paper we report geometric and topological features of these canonical two- and three-dimensional steady-state microstructures obtained through extensive simulations of isotropic grain growth.

  18. Geometric and topological properties of the canonical grain-growth microstructure.

    PubMed

    Mason, Jeremy K; Lazar, Emanuel A; MacPherson, Robert D; Srolovitz, David J

    2015-12-01

    Many physical systems can be modeled as large sets of domains "glued" together along boundaries-biological cells meet along cell membranes, soap bubbles meet along thin films, countries meet along geopolitical boundaries, and metallic crystals meet along grain interfaces. Each class of microstructures results from a complex interplay of initial conditions and particular evolutionary dynamics. The statistical steady-state microstructure resulting from isotropic grain growth of a polycrystalline material is canonical in that it is the simplest example of a cellular microstructure resulting from a gradient flow of an energy that is directly proportional to the total length or area of all cell boundaries. As many properties of polycrystalline materials depend on their underlying microstructure, a more complete understanding of the grain growth steady state can provide insight into the physics of a broad range of everyday materials. In this paper we report geometric and topological features of these canonical two- and three-dimensional steady-state microstructures obtained through extensive simulations of isotropic grain growth. PMID:26764854

  19. Irradiation-induced grain growth in nanocrystalline reduced activation ferrite/martensite steel

    SciTech Connect

    Liu, W. B.; Chen, L. Q.; Zhang, C. Yang, Z. G.; Ji, Y. Z.; Zang, H.; Shen, T. L.

    2014-09-22

    In this work, we investigate the microstructure evolution of surface-nanocrystallized reduced activation ferrite/martensite steels upon high-dose helium ion irradiation (24.3 dpa). We report a significant irradiation-induced grain growth in the irradiated buried layer at a depth of 300–500 nm, rather than at the peak damage region (at a depth of ∼840 nm). This phenomenon can be explained by the thermal spike model: minimization of the grain boundary (GB) curvature resulting from atomic diffusion in the cascade center near GBs.

  20. Emittance concept and growth mechanisms

    SciTech Connect

    Wangler, T.P.

    1996-05-01

    The authors present an introduction to the subjects of emittance and space-charge effects in charged-particle beams. This is followed by a discussion of three important topics that are at the frontier of this field. The first is a simple model, describing space-charge-induced emittance growth, which yields scaling formulas and some physical explanations for some of the surprising results. The second is a discussion of beam halo, an introduction to the particle-core model, and a brief summary of its results. The third topic is an introduction to the hypothesis of equipartitioning for collisionless particle beams.

  1. Mechanisms of growth cone repulsion

    PubMed Central

    Krull, Catherine E

    2010-01-01

    Research conducted in the last century suggested that chemoattractants guide cells or their processes to appropriate locations during development. Today, we know that many of the molecules involved in cellular guidance can act as chemorepellents that prevent migration into inappropriate territories. Here, we review some of the early seminal experiments and our current understanding of the underlying molecular mechanisms. PMID:20711492

  2. Goddard rattler-jamming mechanism for quantifying pressure dependence of elastic moduli of grain packs

    SciTech Connect

    Pride, Steven R.; Berryman, James G.

    2009-01-05

    An analysis is presented to show how it is possible for unconsolidated granular packings to obey overall non-Hertzian pressure dependence due to the imperfect and random spatial arrangements of the grains in these packs. With imperfect arrangement, some gaps that remain between grains can be closed by strains applied to the grain packing. As these gaps are closed, former rattler grains become jammed and new stress-bearing contacts are created that increase the elastic stiffness of the packing. By allowing for such a mechanism, detailed analytical expressions are obtained for increases in bulk modulus of a random packing of grains with increasing stress and strain. Only isotropic stress and strain are considered in this analysis. The model is shown to give a favorable fit to laboratory data on variations in bulk modulus due to variations in applied pressure for bead packs.

  3. Nanocrystalline-grained tungsten prepared by surface mechanical attrition treatment: Microstructure and mechanical properties

    NASA Astrophysics Data System (ADS)

    Guo, Hong-Yan; Xia, Min; Wu, Zheng-Tao; Chan, Lap-Chung; Dai, Yong; Wang, Kun; Yan, Qing-Zhi; He, Man-Chao; Ge, Chang-Chun; Lu, Jian

    2016-11-01

    A nanostructured surface layer was fabricated on commercial pure tungsten using the method of surface mechanical attrition treatment (SMAT). The microstructure evolution of the surface layer was characterized by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and its formation mechanism was discussed as well. Both refinement and elongation of the brittle W grains were confirmed. The elongated SMATed W was heavily strained, the maximum value of the strain at the grain boundaries reaches as high as 3-5%. Dislocation density in the SMATed W nanograins was found to be 5 × 1012 cm-2. The formation of the nanograins in the top surface layer of the W was ascribed to the extremely high strain and strain rate, as well as the multidirectional repetitive loading. Bending strength of commercial W could be improved from 825 MPa to 1850 MPa by SMAT process. Microhardness results indicated the strain range in SMATed W can reach up to 220 μm beneath the top surface. The notched Charpy testing results demonstrated that SMATed W possess higher ductility than that of commercial W. The top surface of the W plates with and without SMATe processing possesses residual compressive stress of about -881 MPa and -234 MPa in y direction, and -872 MPa and -879 MPa in x direction respectively. The improvement of toughness (DBTT shift) of SMATed W may be the synergistic effect of residual compressive stress, dislocation density improvement and microstructure refinement induced by SMAT processing. SMAT processing could be a complementary method to further decrease the DBTT value of tungsten based materials.

  4. Maize development and grain quality are differentially affected by mycorrhizal fungi and a growth-promoting pseudomonad in the field.

    PubMed

    Berta, Graziella; Copetta, Andrea; Gamalero, Elisa; Bona, Elisa; Cesaro, Patrizia; Scarafoni, Alessio; D'Agostino, Giovanni

    2014-04-01

    Arbuscular mycorrhizal (AM) fungi and plant growth-promoting bacteria (PGPB) can increase the growth and yield of major crops, and improve the quality of fruits and leaves. However, little is known about their impact on seed composition. Plants were inoculated with AM fungi and/or the bacterial strain Pseudomonas fluorescens Pf4 and harvested after 7 months of growth in open-field conditions. Plant growth parameters were measured (biomass, length and circumference of spikes, number of grains per cob, grain yield, and grain size) and protein, lipid, and starch content in grains were determined. Plant growth and yield were increased by inoculation with the microorganisms. Moreover, spikes and grains of inoculated plants were bigger than those produced by uninoculated plants. Regarding grain composition, the bacterial strain increased grain starch content, especially the digestible components, whereas AM fungi-enhanced protein, especially zein, content. Plant inoculation with the fluorescent pseudomonad and mycorrhizal fungi resulted in additive effects on grain composition. Overall, results showed that the bacterial strain and the AM fungi promoted maize growth cultivated in field conditions and differentially affected the grain nutritional content. Consequently, targeted plant inoculation with beneficial microorganisms can lead to commodities fulfilling consumer and industrial requirements.

  5. Maize development and grain quality are differentially affected by mycorrhizal fungi and a growth-promoting pseudomonad in the field.

    PubMed

    Berta, Graziella; Copetta, Andrea; Gamalero, Elisa; Bona, Elisa; Cesaro, Patrizia; Scarafoni, Alessio; D'Agostino, Giovanni

    2014-04-01

    Arbuscular mycorrhizal (AM) fungi and plant growth-promoting bacteria (PGPB) can increase the growth and yield of major crops, and improve the quality of fruits and leaves. However, little is known about their impact on seed composition. Plants were inoculated with AM fungi and/or the bacterial strain Pseudomonas fluorescens Pf4 and harvested after 7 months of growth in open-field conditions. Plant growth parameters were measured (biomass, length and circumference of spikes, number of grains per cob, grain yield, and grain size) and protein, lipid, and starch content in grains were determined. Plant growth and yield were increased by inoculation with the microorganisms. Moreover, spikes and grains of inoculated plants were bigger than those produced by uninoculated plants. Regarding grain composition, the bacterial strain increased grain starch content, especially the digestible components, whereas AM fungi-enhanced protein, especially zein, content. Plant inoculation with the fluorescent pseudomonad and mycorrhizal fungi resulted in additive effects on grain composition. Overall, results showed that the bacterial strain and the AM fungi promoted maize growth cultivated in field conditions and differentially affected the grain nutritional content. Consequently, targeted plant inoculation with beneficial microorganisms can lead to commodities fulfilling consumer and industrial requirements. PMID:23995918

  6. Multivariate Analyses of Selected Mechanical Properties of Dry Bean Grain

    NASA Astrophysics Data System (ADS)

    Kibar, Hakan

    2015-04-01

    The direct shear test are widely used to measure the bulk material properties for economical design of bulk handling equipment and to estimate wall pressure inside storage structures, namely their bulk density, the angle of internal friction, shear strength, Poisson ratio, and lateral pressure ratios are required. Tests were conducted at thirty six different shear speeds (between 0.30-1.00 mm min-1) and three different normal stresses were applied (60, 120 and 180 kPa). The angle of internal friction, Poisson ratio, and lateral pressure ratios demonstrated fluctuations depending on the shear speeds. The results of the principal component analysis indicated that the first three principal components accounted for 97.40% of the total variability among the thirty six different shear speeds for all the traits investigated. The first principal component was the most important. In the result of principal component analysis, the shear speeds were divided into seven clusters. The pressures were decreased and increased with the change of the angle of internal friction and the lateral pressure ratio. The data obtained from the study will be useful in the structural design of dry bean bins to calculate loads on bins from the stored material and grain handling equipment.

  7. Focused ion beam induced microstructural alterations: texture development, grain growth, and intermetallic formation.

    PubMed

    Michael, Joseph R

    2011-06-01

    Copper, gold, and tungsten thin films have been exposed to 30 kV Ga+ ion irradiation, and the resulting microstructural modifications are studied as a function of ion dose. The observed microstructural changes include texture development with respect to the easy channeling direction in the target, and in the case of Cu, an additional intermetallic phase is produced. Texture development in these target materials is a function of the starting materials grain size, and these changes are not observed in large grained materials. The accepted models of differential damage driven grain growth are not supported by the results of this study. The implications of this study to the use of focused ion beam tools for sample preparation are discussed. PMID:21466753

  8. Focused ion beam induced microstructural alterations: texture development, grain growth, and intermetallic formation.

    PubMed

    Michael, Joseph R

    2011-06-01

    Copper, gold, and tungsten thin films have been exposed to 30 kV Ga+ ion irradiation, and the resulting microstructural modifications are studied as a function of ion dose. The observed microstructural changes include texture development with respect to the easy channeling direction in the target, and in the case of Cu, an additional intermetallic phase is produced. Texture development in these target materials is a function of the starting materials grain size, and these changes are not observed in large grained materials. The accepted models of differential damage driven grain growth are not supported by the results of this study. The implications of this study to the use of focused ion beam tools for sample preparation are discussed.

  9. Kinetics of Austenite Grain Growth During Heating and Its Influence on Hot Deformation of LZ50 Steel

    NASA Astrophysics Data System (ADS)

    Du, Shiwen; Li, Yongtang; Zheng, Yi

    2016-07-01

    Grain growth behaviors of LZ50 have been systematically investigated for various temperatures and holding times. Quantitative evaluations of the grain growth kinetics over a wide range of temperature (950-1200 °C) and holding time (10-180 min) have been performed. With the holding time kept constant, the average austenite grain size has an exponential relationship with the heating temperature, while with the heating temperature kept constant, the relationship between the austenite average grain size and holding time is a parabolic curve approximately. The holding time dependence of average austenite grain size obeys the Beck's equation. As the heating temperature increases, the time exponent for grain growth n increases from 0.21 to 0.39. On the basis of previous models and experimental results, taking the initial grain size into account, the mathematical model for austenite grain growth of LZ50 during isothermal heating and non-isothermal heating is proposed. The effects of initial austenite grain size on hot deformation behavior of LZ50 are analyzed through true stress-strain curves under different deformation conditions. Initial grain size has a slight effect on peak stress.

  10. An action-based fine-grained access control mechanism for structured documents and its application.

    PubMed

    Su, Mang; Li, Fenghua; Tang, Zhi; Yu, Yinyan; Zhou, Bo

    2014-01-01

    This paper presents an action-based fine-grained access control mechanism for structured documents. Firstly, we define a describing model for structured documents and analyze the application scenarios. The describing model could support the permission management on chapters, pages, sections, words, and pictures of structured documents. Secondly, based on the action-based access control (ABAC) model, we propose a fine-grained control protocol for structured documents by introducing temporal state and environmental state. The protocol covering different stages from document creation, to permission specification and usage control are given by using the Z-notation. Finally, we give the implementation of our mechanism and make the comparisons between the existing methods and our mechanism. The result shows that our mechanism could provide the better solution of fine-grained access control for structured documents in complicated networks. Moreover, it is more flexible and practical.

  11. An Action-Based Fine-Grained Access Control Mechanism for Structured Documents and Its Application

    PubMed Central

    Su, Mang; Li, Fenghua; Tang, Zhi; Yu, Yinyan; Zhou, Bo

    2014-01-01

    This paper presents an action-based fine-grained access control mechanism for structured documents. Firstly, we define a describing model for structured documents and analyze the application scenarios. The describing model could support the permission management on chapters, pages, sections, words, and pictures of structured documents. Secondly, based on the action-based access control (ABAC) model, we propose a fine-grained control protocol for structured documents by introducing temporal state and environmental state. The protocol covering different stages from document creation, to permission specification and usage control are given by using the Z-notation. Finally, we give the implementation of our mechanism and make the comparisons between the existing methods and our mechanism. The result shows that our mechanism could provide the better solution of fine-grained access control for structured documents in complicated networks. Moreover, it is more flexible and practical. PMID:25136651

  12. Whole grains beyond fibre: what can metabolomics tell us about mechanisms?

    PubMed

    Ross, Alastair B

    2015-08-01

    Dietary fibre alone does not fully explain the frequent association between greater intake of whole grains and reduced risk of disease in observational studies, and other phytochemicals or food structure may also play an important role. For all the observational evidence for the benefits of a whole-grain-rich diet, we have only limited knowledge of the mechanisms behind this reduction in disease risk, aside from the action of specific cereal fibres on reduction of blood cholesterol and the post-prandial glucose peak. Nutritional metabolomics, the global measurement and interpretation of metabolic profiles, assesses the interaction of food with the endogenous gene-protein cascade and the gut microbiome. This approach allows the generation of new hypotheses which account for systemic effects, rather than just focusing on one or two mechanisms or metabolic pathways. To date, animal and human trials using metabolomics to investigate mechanistic changes to metabolism on eating whole grains and cereal fractions have led to new hypotheses around mechanistic effects of whole grains. These include the role of cereals as a major source of dietary glycine betaine, a possible effect on phospholipid synthesis or metabolism, the role of branched-chain amino acids and improvements in insulin sensitivity, and the possibility that whole grains may have an effect on protein metabolism. These hypotheses help explain some of the observed effects of whole grains, although mechanistic studies using stable isotopes and fully quantitative measures are required to confirm these potential mechanisms.

  13. Grain refinement of cast zinc through magnesium inoculation: Characterisation and mechanism

    SciTech Connect

    Liu, Zhilin; Qiu, Dong; Wang, Feng; Taylor, John A.; Zhang, Mingxing

    2015-08-15

    It was previously found that peritectic-forming solutes are more favourable for the grain refinement of cast Al alloys than eutectic-forming solutes. In this work, we report that the eutectic-forming solute, Mg, can also significantly grain refine cast Zn. Differential thermal analysis (DTA) of a Zn–Mg alloy, in which efficient grain refinement occurred, evidenced an unexpected peak that appeared before the nucleation of η-Zn grains on the DTA spectrum. Based on extensive examination using X-ray diffraction, high resolution SEM and EDS, it was found that: (a) some faceted Zn–Mg intermetallic particles were reproducibly observed; (b) the particles were located at or near grain centres; (c) the atomic ratio of Mg to Zn in the intermetallic compound was determined to be around 1/2. Using tilting selected area diffraction (SAD) and convergent beam Kikuchi line diffraction pattern (CBKLDP) techniques, these faceted particles were identified as MgZn{sub 2} and an orientation relationship between such grain-centred MgZn{sub 2} particles and the η-Zn matrix was determined. Hence, the unexpected peak on the DTA spectrum is believed to correspond to the formation of MgZn{sub 2} particles, which act as effective heterogeneous nucleation sites in the alloy. Together with the effect of Mg solute on restricting grain growth, such heterogeneous nucleation is cooperatively responsible for the grain size reduction in Zn–Mg alloys. - Highlights: • A new eutectic-based grain refiner for the cast Zn was found. • The formation process of an intermetallic compound (MgZn{sub 2}) was characterised. • MgZn{sub 2} can act as potent heterogeneous nucleation sites above the liquidus. • A new OR between MgZn{sub 2} and η-Zn was determined using the CBKLDP technique.

  14. Growth of large-grain silicon layers by atmospheric iodine vapor transport

    SciTech Connect

    Wang, T.H.; Ciszek, T.F.

    2000-05-01

    A novel growth method for high speed deposition of large-grain polycrystalline silicon layers on foreign substrates is described. The deposited silicon layers with a thickness of 10--40 {micro}m on high temperature glass substrate exhibit good uniformity and large grain sizes up to 20 {micro}m. A typical deposition rate is 3 {micro}m/min for a source/substrate temperature of 1,100/950 C. The growth method is based on iodine vapor transport of silicon at atmospheric pressure with a vertical thermal gradient. A gravity trapping effect allows use of an open-tube system without much loss of the volatile gas species or reduced iodine partial pressure, as is the case in a normal open system involving a carrier gas. The material appears to be an excellent candidate for thin-layer crystalline silicon solar cells.

  15. Optimization of flow assisted entrapment of pollen grains in a microfluidic platform for tip growth analysis.

    PubMed

    Sanati Nezhad, Amir; Ghanbari, Mahmood; Agudelo, Carlos G; Naghavi, Mahsa; Packirisamy, Muthukumaran; Bhat, Rama B; Geitmann, Anja

    2014-02-01

    A biocompatible polydimethylsiloxane (PDMS) biomicrofluidic platform is designed, fabricated and tested to study protuberance growth of single plant cells in a micro-vitro environment. The design consists of an inlet to introduce the cell suspension into the chip, three outlets to conduct the medium or cells out of the chip, a main distribution chamber and eight microchannels connected to the main chamber to guide the growth of tip growing plant cells. The test cells used here were pollen grains which produce cylindrical protrusions called pollen tubes. The goal was to adjust the design of the microfluidic network with the aim to enhance the uniformly distributed positioning of pollen grains at the entrances of the microchannels and to provide identical fluid flow conditions for growing pollen tubes along each microchannel. Computational fluid analysis and experimental testing were carried out to estimate the trapping efficiencies of the different designs. PMID:24013680

  16. Composition and grain size effects on the structural and mechanical properties of CuZr nanoglasses

    SciTech Connect

    Adibi, Sara; Branicio, Paulo S. Zhang, Yong-Wei; Joshi, Shailendra P.

    2014-07-28

    Nanoglasses (NGs), metallic glasses (MGs) with a nanoscale grain structure, have the potential to considerably increase the ductility of traditional MGs while retaining their outstanding mechanical properties. We investigated the effects of composition on the structural and mechanical properties of CuZr NG films with grain sizes between 3 to 15 nm using molecular dynamics simulations. Results indicate a transition from localized shear banding to homogeneous superplastic flow with decreasing grain size, although the critical average grain size depends on composition: 5 nm for Cu{sub 36}Zr{sub 64} and 3 nm for Cu{sub 64}Zr{sub 36}. The flow stress of the superplastic NG at different compositions follows the trend of the yield stress of the parent MG, i.e., Cu{sub 36}Zr{sub 64} yield/flow stress: 2.54 GPa/1.29 GPa and Cu{sub 64}Zr{sub 36} yield/flow stress: 3.57 GPa /1.58 GPa. Structural analysis indicates that the differences in mechanical behavior as a function of composition are rooted at the distinct statistics of prominent atomic Voronoi polyhedra. The mechanical behavior of NGs is also affected by the grain boundary thickness and the fraction of atoms at interfaces for a given average grain size. The results suggest that the composition dependence of the mechanical behavior of NGs follows that of their parent MGs, e.g., a stronger MG will generate a stronger NG, while the intrinsic tendency for homogeneous deformation occurring at small grain size is not affected by composition.

  17. Mechanics of instability-related delimination growth

    NASA Technical Reports Server (NTRS)

    Whitcomb, John D.

    1988-01-01

    Local buckling of a delaminated group of plies can lead to higher interlaminar stresses and delamination growth. The mechanics of instability-related delamination growth (IRDG) had been described previously for the through-width delamination. This paper describes the mechanics of IRDG for the embedded delamination subjected to either uniaxial or axisymmetric loads. The mechanics of IRDG are used to explain the dramatic differences in strain-energy release rates observed for the through-width, the axisymmetrically loaded embedded delamination, and the uniaxially loaded embedded delamination.

  18. Mechanics of instability-related delamination growth

    NASA Technical Reports Server (NTRS)

    Whitcomb, John D.

    1990-01-01

    Local buckling of a delaminated group of plies can lead to higher interlaminar stresses and delamination growth. The mechanics of instability-related delamination growth (IRDG) had been described previously for the through-width delamination. This paper describes the mechanics of IRDG for the embedded delamination subjected to either uniaxial or axisymmetric loads. The mechanics of IRDG are used to explain the dramatic differences in strain-energy release rates observed for the through-width, the axisymmetrically loaded embedded delamination, and the uniaxially loaded embedded delamination.

  19. Monitoring fungal growth on brown rice grains using rapid and non-destructive hyperspectral imaging.

    PubMed

    Siripatrawan, U; Makino, Y

    2015-04-16

    This research aimed to develop a rapid, non-destructive, and accurate method based on hyperspectral imaging (HSI) for monitoring spoilage fungal growth on stored brown rice. Brown rice was inoculated with a non-pathogenic strain of Aspergillus oryzae and stored at 30 °C and 85% RH. Growth of A. oryzae on rice was monitored using viable colony counts, expressed as colony forming units per gram (CFU/g). The fungal development was observed using scanning electron microscopy. The HSI system was used to acquire reflectance images of the samples covering the visible and near-infrared (NIR) wavelength range of 400-1000 nm. Unsupervised self-organizing map (SOM) was used to visualize data classification of different levels of fungal infection. Partial least squares (PLS) regression was used to predict fungal growth on rice grains from the HSI reflectance spectra. The HSI spectral signals decreased with increasing colony counts, while conserving similar spectral pattern during the fungal growth. When integrated with SOM, the proposed HSI method could be used to classify rice samples with different levels of fungal infection without sample manipulation. Moreover, HSI was able to rapidly identify infected rice although the samples showed no symptoms of fungal infection. Based on PLS regression, the coefficient of determination was 0.97 and root mean square error of prediction was 0.39 log (CFU/g), demonstrating that the HSI technique was effective for prediction of fungal infection in rice grains. The ability of HSI to detect fungal infection at early stage would help to prevent contaminated rice grains from entering the food chain. This research provides scientific information on the rapid, non-destructive, and effective fungal detection system for rice grains. PMID:25662486

  20. CVD growth of large-grain graphene on Cu(111) thin films

    NASA Astrophysics Data System (ADS)

    Miller, David L.; Diederichsen, Kyle M.; Keller, Mark W.

    2013-03-01

    Chemical vapor deposition of graphene on polycrystalline Cu foils has produced high quality films with carrier mobility approaching that of exfoliated graphene. Growth on single-crystal films of Cu has received less attention, despite its potential advantages for graphene quality and its importance for eventual applications. This is likely due to the difficulty of obtaining large (>= 1 mm) grains in Cu thin films, as well as dewetting and roughening of Cu films at temperatures near the Cu melting point (1084 C). We found that 450 nm of Cu(111), epitaxially grown by sputtering onto Al2O3(0001), formed > 1 mm grains when annealed at 1065 C for 40 minutes in 40 Torr of Ar and 2.5 mTorr of H2. After this annealing, adding 3 mTorr of CH4 for 8 minutes produced a monolayer graphene film covering > 99 % of the Cu surface. Stopping growth after 4 minutes produced dendritic graphene islands with 6-fold symmetry and diameter of 20 μm to 100 μm . After growth, the Cu film remained smooth except for thermal grooving at grain boundaries and a few holes of diameter ~ 10 μm where Cu dewetted completely (~ 10 holes on each 5 mm x 6 mm chip).

  1. The influence of tilt grain boundaries on the mechanical properties of bicrystalline graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Xu, Na; Guo, Jian-Gang; Cui, Zhen

    2016-10-01

    The mechanical properties of bicrystalline graphene nanoribbons with various tilt grain boundaries (GBs) which typically consist of repeating pentagon-heptagon ring defects are investigated based on the method of molecular structural mechanics. The GB models are constructed via the theory of disclinations in crystals, and the elastic properties and ultimate strength of bicrystalline graphene nanoribbons are calculated under uniaxial tensile loads in perpendicular and parallel directions to grain boundaries. The dependence of mechanical properties is analyzed on the chirality and misorientation angles of graphene nanoribbons, and the experimental phenomena that Young's modulus and ultimate strength of bicrystalline graphene nanoribbons can either increase or decrease with the grain boundary angles are further verified and discussed. In addition, the influence of GB on the size effects of graphene Young's modulus is also analyzed.

  2. Growth and development: hereditary and mechanical modulations.

    PubMed

    Mao, Jeremy J; Nah, Hyun-Duck

    2004-06-01

    Growth and development is the net result of environmental modulation of genetic inheritance. Mesenchymal cells differentiate into chondrogenic, osteogenic, and fibrogenic cells: the first 2 are chiefly responsible for endochondral ossification, and the last 2 for sutural growth. Cells are influenced by genes and environmental cues to migrate, proliferate, differentiate, and synthesize extracellular matrix in specific directions and magnitudes, ultimately resulting in macroscopic shapes such as the nose and the chin. Mechanical forces, the most studied environmental cues, readily modulate bone and cartilage growth. Recent experimental evidence demonstrates that cyclic forces evoke greater anabolic responses of not only craniofacial sutures, but also cranial base cartilage. Mechanical forces are transmitted as tissue-borne and cell-borne mechanical strain that in turn regulates gene expression, cell proliferation, differentiation, maturation, and matrix synthesis, the totality of which is growth and development. Thus, hereditary and mechanical modulations of growth and development share a common pathway via genes. Combined approaches using genetics, bioengineering, and quantitative biology are expected to bring new insight into growth and development, and might lead to innovative therapies for craniofacial skeletal dysplasia including malocclusion, dentofacial deformities, and craniofacial anomalies such as cleft palate and craniosynostosis, as well as disorders associated with the temporomandibular joint.

  3. Modeling of grain growth behavior of S34MnV steel at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Sun, Mingyue; Xu, Bin; Li, Dianzhong; Li, Yiyi

    2013-05-01

    S34MnV steel is widely used as a fundamental material in manufacturing crankshaft in diesel engine. However, due to amount of addition of Manganese element in the steel, coarse grain and mixed grain are commonly observed after long time heating during the forging passes in industrial practice, which may seriously reduce the impact toughness of the material. In current study, based on the observed microstructure of S34MnV steel at different temperatures and heating times, an empirical model has been established which reflects the relationship between the final grain size and the initial grain size, as well as heating temperature and holding time. This model has been validated by a scaled sample, and we further represented a successful industrial application of this model to simulate the grain size distribution and evolution during a large crankthrow heating and forging process, which evidences its practical and promising perspective of our model with an aim of widely promoting the mechanical properties heavy marine components.

  4. Ice Formation and Grain Growth in the Quiescent Medium of the Lupus Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Boogert, Abraham C.; Chiar, J. E.; Knez, C.; Oberg, K. I.; Mundy, L. G.; Pendleton, Y. J.; Tielens, X.; van Dishoeck, E.

    2014-01-01

    Infrared photometry and spectroscopy of background stars reddened by the Lupus molecular cloud complex are used to determine the properties of the grains and the composition of the ices before they are incorporated into circumstellar envelopes and disks. H2O ices form at extinctions of A_V=2.1+/-0.6. Such a low ice formation threshold is consistent with the absence of nearby hot stars. Overall, the Lupus clouds are in an early chemical phase. The abundance of H2O ice (2.3+/-0.1 10^-5 relative to N_H) is a factor of 3-4 lower compared to dense envelopes of YSOs. CO is not fully frozen out, and a low solid CH3OH abundance is consistent with that. Furthermore it is found that the grains in Lupus experienced growth by coagulation. The mid-infrared continuum extinction relative to A_K increases as a function of A_K. Most Lupus lines of sight are well fitted with extinction curves corresponding to R_ 3.5 and R_ 5.0. The τ_9.7/A_K ratio follows that of dense cores for lines of sight with A_K>1.0 mag. Below 1.0 mag, values scatter between the dense and diffuse medium ratios, indicating that local conditions matter in the process that sets the τ_9.7/A_K ratio. This process is likely related to grain growth, but not to ice mantle formation. Conversely, ice mantles form on grains before the process of grain coagulation has started.

  5. Deformation mechanisms, defects, heat treatment, and thermal conductivity in large grain niobium

    NASA Astrophysics Data System (ADS)

    Bieler, Thomas R.; Kang, Di; Baars, Derek C.; Chandrasekaran, Saravan; Mapar, Aboozar; Ciovati, Gianluigi; Wright, Neil T.; Pourboghrat, Farhang; Murphy, James E.; Compton, Chris C.; Myneni, Ganapati Rao

    2015-12-01

    The physical and mechanical metallurgy underlying fabrication of large grain cavities for superconducting radio frequency accelerators is summarized, based on research of 1) grain orientations in ingots, 2) a metallurgical assessment of processing a large grain single cell cavity and a tube, 3) assessment of slip behavior of single crystal tensile samples extracted from a high purity ingot slice before and after annealing at 800 °C / 2 h, 4) development of crystal plasticity models based upon the single crystal experiments, and 5) assessment of how thermal conductivity is affected by strain, heat treatment, and exposure to hydrogen. Because of the large grains, the plastic anisotropy of deformation is exaggerated, and heterogeneous strains and localized defects are present to a much greater degree than expected in polycrystalline material, making it highly desirable to computationally anticipate potential forming problems before manufacturing cavities.

  6. Deformation mechanisms, defects, heat treatment, and thermal conductivity in large grain niobium

    SciTech Connect

    Bieler, Thomas R. Kang, Di Baars, Derek C.; Chandrasekaran, Saravan; Mapar, Aboozar Wright, Neil T.; Ciovati, Gianluigi Myneni, Ganapati Rao; Pourboghrat, Farhang; Murphy, James E.; Compton, Chris C.

    2015-12-04

    The physical and mechanical metallurgy underlying fabrication of large grain cavities for superconducting radio frequency accelerators is summarized, based on research of 1) grain orientations in ingots, 2) a metallurgical assessment of processing a large grain single cell cavity and a tube, 3) assessment of slip behavior of single crystal tensile samples extracted from a high purity ingot slice before and after annealing at 800 °C / 2 h, 4) development of crystal plasticity models based upon the single crystal experiments, and 5) assessment of how thermal conductivity is affected by strain, heat treatment, and exposure to hydrogen. Because of the large grains, the plastic anisotropy of deformation is exaggerated, and heterogeneous strains and localized defects are present to a much greater degree than expected in polycrystalline material, making it highly desirable to computationally anticipate potential forming problems before manufacturing cavities.

  7. Deformation mechanisms and grain size evolution in the Bohemian granulites - a computational study

    NASA Astrophysics Data System (ADS)

    Maierova, Petra; Lexa, Ondrej; Jeřábek, Petr; Franěk, Jan; Schulmann, Karel

    2015-04-01

    A dominant deformation mechanism in crustal rocks (e.g., dislocation and diffusion creep, grain boundary sliding, solution-precipitation) depends on many parameters such as temperature, major minerals, differential stress, strain rate and grain size. An exemplary sequence of deformation mechanisms was identified in the largest felsic granulite massifs in the southern Moldanubian domain (Bohemian Massif, central European Variscides). These massifs were interpreted to result from collision-related forced diapiric ascent of lower crust and its subsequent lateral spreading at mid-crustal levels. Three types of microstructures were distinguished. The oldest relict microstructure (S1) with large grains (>1000 μm) of feldspar deformed probably by dislocation creep at peak HT eclogite facies conditions. Subsequently at HP granulite-facies conditions, chemically- and deformation- induced recrystallization of feldspar porphyroclasts led to development of a fine-grained microstructure (S2, ~50 μm grain size) indicating deformation via diffusion creep, probably assisted by melt-enhanced grain-boundary sliding. This microstructure was associated with flow in the lower crust and/or its diapiric ascent. The latest microstructure (S3, ~100 μm grain size) is related to the final lateral spreading of retrograde granulites, and shows deformation by dislocation creep at amphibolite-facies conditions. The S2-S3 switch and coarsening was interpreted to be related with a significant decrease in strain rate. From this microstructural sequence it appears that it is the grain size that is critically linked with specific mechanical behavior of these rocks. Thus in this study, we focused on the interplay between grain size and deformation with the aim to numerically simulate and reinterpret the observed microstructural sequence. We tested several different mathematical descriptions of the grain size evolution, each of which gave qualitatively different results. We selected the two most

  8. Au growth on semiconductor nanorods: photoinduced versus thermal growth mechanisms.

    PubMed

    Menagen, Gabi; Macdonald, Janet E; Shemesh, Yossi; Popov, Inna; Banin, Uri

    2009-12-01

    Gold growth on CdS nanorods and on seeded CdSe/CdS nanorods with and without illumination at different temperatures was studied. Two competing mechanisms were identified: thermal and light-induced growth. The thermal mechanism leads to growth of small gold particles at defects along the rod body and can be suppressed at lower temperatures. This control is attributed to a phase transition of the alkyl chains of the surface amine ligands to a static phase at lower temperatures, blocking the Au precursor's access to the nanorod surfaces. While a long-chain (C18) amine shows effective blocking at 293 K, a shorter chain (C12) amine shows the same result only at 273 K; however, in the case of a bulky trialkylamine, defect growth was observed even at 273 K. Light-induced growth leads to selective deposition of gold on one end of the rods. The tip was shown to grow on sulfur-rich facets of the nanorod, producing end-on and angled tip orientations. Growth under illumination with decreased temperature provides a highly selective synthesis of hybrid semiconductor nanorods with a single gold tip. Such anisotropic semiconductor-metal hybrids are of interest for self-assembly and photocatalysis and as building blocks in optoelectronic devices. PMID:19894717

  9. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum.

    PubMed

    Gao, Libo; Ren, Wencai; Xu, Huilong; Jin, Li; Wang, Zhenxing; Ma, Teng; Ma, Lai-Peng; Zhang, Zhiyong; Fu, Qiang; Peng, Lian-Mao; Bao, Xinhe; Cheng, Hui-Ming

    2012-02-28

    Large single-crystal graphene is highly desired and important for the applications of graphene in electronics, as grain boundaries between graphene grains markedly degrade its quality and properties. Here we report the growth of millimetre-sized hexagonal single-crystal graphene and graphene films joined from such grains on Pt by ambient-pressure chemical vapour deposition. We report a bubbling method to transfer these single graphene grains and graphene films to arbitrary substrate, which is nondestructive not only to graphene, but also to the Pt substrates. The Pt substrates can be repeatedly used for graphene growth. The graphene shows high crystal quality with the reported lowest wrinkle height of 0.8 nm and a carrier mobility of greater than 7,100 cm(2) V(-1) s(-1) under ambient conditions. The repeatable growth of graphene with large single-crystal grains on Pt and its nondestructive transfer may enable various applications.

  10. Modeling Nucleation and Grain Growth in the Solar Nebula: Initial Progress Report

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Paquette, J. A.; Ferguson, F. T.

    2010-01-01

    The primitive solar nebula was a violent and chaotic environment where high energy collisions, lightning, shocks and magnetic re-connection events rapidly vaporized some fraction of nebular dust, melted larger particles while leaving the largest grains virtually undisturbed. At the same time, some tiny grains containing very easily disturbed noble gas signatures (e.g., small, pre-solar graphite or SiC particles) never experienced this violence, yet can be found directly adjacent to much larger meteoritic components (chondrules or CAIs) that did. Additional components in the matrix of the most primitive carbonaceous chondrites and in some chondritic porous interplanetary dust particles include tiny nebular condensates, aggregates of condensates and partially annealed aggregates. Grains formed in violent transient events in the solar nebula did not come to equilibrium with their surroundings. To understand the formation and textures of these materials as well as their nebular abundances we must rely on Nucleation Theory and kinetic models of grain growth, coagulation and annealing. Such models have been very uncertain in the past: we will discuss the steps we are taking to increase their reliability.

  11. Enhanced Densification of Carbonyl Iron Powder Compacts by the Retardation of Exaggerated Grain Growth through the Use of High Heating Rates

    NASA Astrophysics Data System (ADS)

    Hwang, Kuen-Shyang; Lu, Yung-Chung; Shu, Guo-Jiun; Chen, Bor-Yuan

    2009-12-01

    An investigation of the effect of heating rates on the densification behavior of carbonyl iron powder compacts, particularly on the exaggerated grain growth during the α- γ phase transformation, was carried out in this study. Compacts heated at 1200 °C/min and then sintered for 90 minutes at 1200 °C attained 7.14 g/cm3, while those heated at 10 °C/min reached only 6.61 g/cm3. Dilatometer curves using heating rates of 2 °C/min, 5 °C/min, 10 °C/min, 30 °C/min, and 90 °C/min demonstrate that 90 °C/min yields the highest sintered density. The microstructure analysis shows that high heating rates inhibit exaggerated grain growth during the phase transformation by keeping the interparticle neck size small and pinning the grain boundaries. This explanation is supported by the calculation that shows that the energy barrier preventing the grain boundary from breaking away from the neck is reduced hyperbolically as the neck size and the amount of shrinkage increase. The high heating rate, however, shows little beneficial effect for materials that have no allotropic phase transformation or have less drastic grain growth during heating, such as nickel and copper. Thus, bypassing the low temperatures to suppress the surface diffusion mechanism, which does not contribute to densification, is ruled out as the main reason for the enhanced densification of carbonyl iron powders.

  12. Mitigating Abnormal Grain Growth for Friction Stir Welded Al-Li 2195 Spun Formed Domes

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Russell, Carolyn

    2012-01-01

    Formability and abnormal grain growth (AGG) are the two major issues that have been encountered for Al alloy spun formed dome development using friction stir welded blanks. Material properties that have significant influence on the formability include forming range and strain hardening exponent. In this study, tensile tests were performed for two 2195 friction stir weld parameter sets at 400 F to study the effects of post weld anneal on the forming range and strain hardening exponent. It was found that the formability can be enhanced by applying a newly developed post weld anneal to heat treat the friction stir welded panels. This new post weld anneal leads to a higher forming range and much improved strain hardening exponent. AGG in the weld nugget is known to cause a significant reduction of ductility and fracture toughness. This study also investigated how AGG may be influenced by the heating rate to the solution heat treatment temperature. After post-weld annealing, friction stir welds were strained to 15% and 39% by compression at 400 F before they were subjected to SHT at 950 F for 1 hour. Salt bath SHT is very effective in reducing the grain size as it helps arrest the onset of AGG and promote normal recrystallization and grain growth. However, heat treating a 18 ft dome using a salt bath is not practical. Efforts are continuing at Marshall Space Flight Center to identify the welding parameters and heat treating parameters that can help mitigate the AGG in the friction stir welds.

  13. A new mechanism for fluid migration in midcrustal shear zones based on viscous grain boundary sliding and creep cavitation

    NASA Astrophysics Data System (ADS)

    Fusseis, F.; Regenauer-Lieb, K.; Liu, J.

    2009-04-01

    showed that along the strain gradient, towards the shear zone center, the total porosity doubled from ~2.5% to >4% and that the relative frequency of the smallest detectable pores (1.3-3.9 microns) increases from <25% to more than 35%. At the same time it revealed a change in the character and distribution of pores: In low-strain segments of the shear zone margin large pores (> tens of microns) tend to cluster in plagioclase grains, a form of porosity that is associated with feldspar decay and a removal of chemical components. Towards the shear zone center, pores are smaller (micron-sized and below) and generally occur along grain boundaries. Most pores occur in ‘pore sheets' that characterize the multiphase ultramylonitic layers. These grain boundary pores often occur at triple junctions. Lobes extending into neighboring grains and pockmarked surfaces evidence dissolution; little crystallites in grain boundary pores indicate precipitation and mineral growth. Both observations indicate the presence of a fluid. Our observations show that the transition in the dominant viscous deformation mechanism coincides with a change in the amount, character and distribution of porosity. We interpret the porosity in the shear zone center to result from a combination of creep cavitation (Fusseis et al., in review) and dissolution. Based in this, we develop a model for fluid migration in the shear zone center: The relative motion of grains during viscous grain boundary sliding is responsible for the simultaneous opening and closure of fluid-filled grain boundary pores by creep cavitation. Assuming at least partially open grain boundaries in the stressed aggregates, grain boundary sliding thereby gives rise to minute grain-scale pressure differences between neighboring pores. These pressure differences initiate a granular fluid pump. The fluid pressure in the individual cavities is the sum of the mechanical pumping term and a ‘virtual' pressure caused by the solution reactions and

  14. Zirconium Carbide Produced by Spark Plasma Sintering and Hot Pressing: Densification Kinetics, Grain Growth, and Thermal Properties

    DOE PAGES

    Wei, Xialu; Back, Christina; Izhvanov, Oleg; Haines, Christopher; Olevsky, Eugene

    2016-07-14

    Spark plasma sintering (SPS) has been employed to consolidate a micron-sized zirconium carbide (ZrC) powder. ZrC pellets with a variety of relative densities are obtained under different processing parameters. The densification kinetics of ZrC powders subjected to conventional hot pressing and SPS are comparatively studied by applying similar heating and loading profiles. Due to the lack of electric current assistance, the conventional hot pressing appears to impose lower strain rate sensitivity and higher activation energy values than those which correspond to the SPS processing. A finite element simulation is used to analyze the temperature evolution within the volume of ZrCmore » specimens subjected to SPS. The control mechanism for grain growth during the final SPS stage is studied via a recently modified model, in which the grain growth rate dependence on porosity is incorporated. Finally, the constant pressure specific heat and thermal conductivity of the SPS-processed ZrC are determined to be higher than those reported for the hot-pressed ZrC and the benefits of applying SPS are indicated accordingly.« less

  15. Microstructure and Mechanical Properties of Ultrafine-Grained Austenitic Oxide Dispersion Strengthened Steel

    NASA Astrophysics Data System (ADS)

    Mao, Xiaodong; Kang, Suk Hoon; Kim, Tae Kyu; Kim, Seul Cham; Oh, Kyu Hwan; Jang, Jinsung

    2016-11-01

    316L stainless steel based austenitic oxide dispersion strengthened (AODS) steel was fabricated by mechanical alloying (MA) and hot isostatic pressing (HIP). The AODS sample exhibited an ultrafine-grained (UFG) structure with a bimodal grain size distribution (large grains of about 1200 nm and fine grains of about 260 nm). Two groups of oxide particles were observed; fine Y2Ti2O7 of about 7.7 nm and coarse Cr2O3 particles of about 200 nm in diameter. Tensile tests of the hot-rolled AODS steel samples showed yield strength of up to 890 MPa at room temperature, which is nearly four times higher than that of conventional 316L stainless steel. Micro-indentation and hardness tests indicated even higher yield strength of up to 1200 MPa, which shows a good agreement with the calculated value by combining of the grain refinement strengthening by the Hall-Petch relation and the dispersion strengthening by the Orowan mechanism. The lower strength from tensile tests should be attributed to the formation of micro-cracks at the interfaces between coarse Cr2O3 particles and the matrix. Coarse Cr2O3 particles were also frequently observed inside the fracture surface dimples of the creep ruptured sample at 923 K (650 °C) and 140 MPa. It is thus suggested that the yield strength and elongation could be further improved by controlling the coarse Cr2O3 particles.

  16. Microstructure and Mechanical Properties of Ultrafine-Grained Austenitic Oxide Dispersion Strengthened Steel

    NASA Astrophysics Data System (ADS)

    Mao, Xiaodong; Kang, Suk Hoon; Kim, Tae Kyu; Kim, Seul Cham; Oh, Kyu Hwan; Jang, Jinsung

    2016-06-01

    316L stainless steel based austenitic oxide dispersion strengthened (AODS) steel was fabricated by mechanical alloying (MA) and hot isostatic pressing (HIP). The AODS sample exhibited an ultrafine-grained (UFG) structure with a bimodal grain size distribution (large grains of about 1200 nm and fine grains of about 260 nm). Two groups of oxide particles were observed; fine Y2Ti2O7 of about 7.7 nm and coarse Cr2O3 particles of about 200 nm in diameter. Tensile tests of the hot-rolled AODS steel samples showed yield strength of up to 890 MPa at room temperature, which is nearly four times higher than that of conventional 316L stainless steel. Micro-indentation and hardness tests indicated even higher yield strength of up to 1200 MPa, which shows a good agreement with the calculated value by combining of the grain refinement strengthening by the Hall-Petch relation and the dispersion strengthening by the Orowan mechanism. The lower strength from tensile tests should be attributed to the formation of micro-cracks at the interfaces between coarse Cr2O3 particles and the matrix. Coarse Cr2O3 particles were also frequently observed inside the fracture surface dimples of the creep ruptured sample at 923 K (650 °C) and 140 MPa. It is thus suggested that the yield strength and elongation could be further improved by controlling the coarse Cr2O3 particles.

  17. Finite temperature effect on mechanical properties of graphene sheets with various grain boundaries

    NASA Astrophysics Data System (ADS)

    Yong, Ge; Hong-Xiang, Sun; Yi-Jun, Guan; Gan-He, Zeng

    2016-06-01

    The mechanical properties of graphene sheets with various grain boundaries are studied by molecular dynamics method at finite temperatures. The finite temperature reduces the ultimate strengths of the graphenes with different types of grain boundaries. More interestingly, at high temperatures, the ultimate strengths of the graphene with the zigzag-orientation grain boundaries at low tilt angles exhibit different behaviors from those at lower temperatures, which is determined by inner initial stress in grain boundaries. The results indicate that the finite temperature, especially the high one, has a significant effect on the ultimate strength of graphene with grain boundaries, which gives a more in-depth understanding of their mechanical properties and could be useful for potential graphene applications. Project supported by the Nation Natural Science Foundation of China (Grant Nos. 11347219 and 11404147), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140519), the Training Project of Young Backbone Teacher of Jiangsu University, the Advanced Talents of Jiangsu University, China (Grant No. 11JDG118), the Practice Innovation Training Program Projects for Industrial Center of Jiangsu University, China, and the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLOA201308).

  18. A Geometric Theory of Growth Mechanics

    NASA Astrophysics Data System (ADS)

    Yavari, Arash

    2010-12-01

    In this paper we formulate a geometric theory of the mechanics of growing solids. Bulk growth is modeled by a material manifold with an evolving metric. The time dependence of the metric represents the evolution of the stress-free (natural) configuration of the body in response to changes in mass density and “shape”. We show that the time dependency of the material metric will affect the energy balance and the entropy production inequality; both the energy balance and the entropy production inequality have to be modified. We then obtain the governing equations covariantly by postulating invariance of energy balance under time-dependent spatial diffeomorphisms. We use the principle of maximum entropy production in deriving an evolution equation for the material metric. In the case of isotropic growth, we find those growth distributions that do not result in residual stresses. We then look at Lagrangian field theory of growing elastic solids. We will use the Lagrange-d’Alembert principle with Rayleigh’s dissipation functions to derive the governing equations. We make an explicit connection between our geometric theory and the conventional multiplicative decomposition of the deformation gradient, F= F e F g, into growth and elastic parts. We linearize the nonlinear theory and derive a linearized theory of growth mechanics. Finally, we obtain the stress-free growth distributions in the linearized theory.

  19. First-principles study of rare-earth effects on grain growth and microstructure in {beta}-Si{sub 3}N{sub 4} ceramics

    SciTech Connect

    Painter, G.S.; Becher, P.F.; Shelton, W.A.; Satet, R.L.; Hoffmann, M.J.

    2004-10-01

    Rare earth (RE) and group III oxide additions are frequently used to optimize densification during the processing of ceramics. Silicon nitride ceramics frequently serve as model cases, and in these systems the effects of rare earths are important. Additions often determine the morphology of {beta}-Si{sub 3}N{sub 4} crystallites that grow in the multiphase ceramic, thereby affecting the microstructure and mechanical toughness of the ceramic. The influence of different rare earths has recently been experimentally characterized in terms of their effects on grain growth aspect ratios. In the study reported here, a new energy parameter is introduced that provides a first-principles based understanding of these effects. Grain growth aspect ratios measured for various RE additions in silicon nitride correlate well with corresponding differential binding energies (DBE) calculated within the partial wave self-consistent field atomic cluster model. The DBE provides a second-difference measure of relative site stabilities of RE vs Si atoms in regions of variable O/N content. The physical mechanism that underlies anisotropic grain growth is found to originate from the site competition between REs and Si for bonding at {beta}-Si{sub 3}N{sub 4} interfaces and within the O-rich glass. The different segregation strengths exhibited by rare earth elements in oxynitride glasses are simply a reflection of their different local chemistries in O, N environments. Elements that segregate to the prism planes of the embedded {beta}-Si{sub 3}N{sub 4} grains impede the attachment of Si-based silicon nitride growth units, and the extent of this limitation leads to the observed grain growth anisotropy.

  20. Variations in grain lipophilic phytochemicals, proteins and resistance to Fusarium spp. growth during grain storage as affected by biological plant protection with Aureobasidium pullulans (de Bary).

    PubMed

    Wachowska, Urszula; Tańska, Małgorzata; Konopka, Iwona

    2016-06-16

    Modern agriculture relies on an integrated approach, where chemical treatment is reduced to a minimum and replaced by biological control that involves the use of active microorganisms. The effect of the antagonistic yeast-like fungus Aureobasidium pullulans on proteins and bioactive compounds (alkylresorcinols, sterols, tocols and carotenoids) in winter wheat grain and on the colonization of wheat kernels by fungal microbiota, mainly Fusarium spp. pathogens, was investigated. Biological treatment contributed to a slight increase contents of tocols, alkylresorcinols and sterols in grain. At the same time, the variation of wheat grain proteins was low and not significant. Application of A. pullulans enhanced the natural yeast colonization after six months of grain storage and inhibited growth of F. culmorum pathogens penetrating wheat kernel. This study demonstrated that an integrated approach of wheat grain protection with the use of the yeast-like fungus A. pullulans reduced kernel colonization by Fusarium spp. pathogens and increased the content of nutritionally beneficial phytochemicals in wheat grain without a loss of gluten proteins responsible for baking value. PMID:27055191

  1. Computer simulation of topological evolution in 2-d grain growth using a continuum diffuse-interface field model

    SciTech Connect

    Fan, D.; Geng, C.; Chen, L.Q.

    1997-03-01

    The local kinetics and topological phenomena during normal grain growth were studied in two dimensions by computer simulations employing a continuum diffuse-interface field model. The relationships between topological class and individual grain growth kinetics were examined, and compared with results obtained previously from analytical theories, experimental results and Monte Carlo simulations. It was shown that both the grain-size and grain-shape (side) distributions are time-invariant and the linear relationship between the mean radii of individual grains and topological class n was reproduced. The moments of the shape distribution were determined, and the differences among the data from soap froth. Potts model and the present simulation were discussed. In the limit when the grain size goes to zero, the average number of grain edges per grain is shown to be between 4 and 5, implying the direct vanishing of 4- and 5-sided grains, which seems to be consistent with recent experimental observations on thin films. Based on the simulation results, the conditions for the applicability of the familiar Mullins-Von Neumann law and the Hillert`s equation were discussed.

  2. Gas-bubble growth mechanisms in the analysis of metal fuel swelling

    SciTech Connect

    Gruber, E.E.; Kramer, J.M.

    1986-06-01

    During steady-state irradiation, swelling rates associated with growth of fission-gas bubbles in metallic fast reactor fuels may be expected to remain small. As a consequence, bubble-growth mechanisms are not a major consideration in modeling the steady-state fuel behavior, and it is usually adequate to consider the gas pressure to be in equilibrium with the external pressure and surface tension restraint. On transient time scales, however, various bubble-growth mechanisms become important components of the swelling rate. These mechanisms include growth by diffusion, for bubbles within grains and on grain boundaries; dislocation nucleation at the bubble surface, or ''punchout''; and bubble growth by creep. Analyses of these mechanisms are presented and applied to provide information on the conditions and the relative time scales for which the various processes should dominate fuel swelling. The results are compared to a series of experiments in which the swelling of irradiated metal fuel was determined after annealing at various temperatures and pressures. The diffusive growth of bubbles on grain boundaries is concluded to be dominant in these experiments.

  3. Morphological study of near threshold fatigue crack growth in a coarse grain aluminum alloy

    NASA Technical Reports Server (NTRS)

    Maurer, Gerhard; Liu, H. W.

    1984-01-01

    Fatigue crack propagation in the near-threshold region has been studied in coarse grain Al 7029 alloy. Over eighty percent of the crack surfaces are planar areas parallel to either 100-oriented or 111-oriented planes. The 100-plane crack surfaces show 'pine tree' morphological features formed by slip on two sets of intersecting planes. The 111-plane crack surfaces were planar and shiny. They were formed primarily by slip on a single dominant 111-oriented slip plane with sparse and very light secondary slip markings. Crack growth rates were measured and correlated with Delta-K.

  4. FePt L1 0 ordering and grain growth using millisecond pulse laser processing

    NASA Astrophysics Data System (ADS)

    Inaba, Yuki; Torres, Karen L.; Kang, Shishou; Vanfleet, Richard; Izatt, Jerald R.; Harrell, J. W.; Thompson, Gregory B.; Klemmer, Tim; Kubota, Yukiko

    2010-12-01

    The structural and magnetic properties of ˜12 nm thick FePt thin films grown on Si substrates annealed using a 1064 nm wavelength laser with a 10 ms pulse have been examined. The A1 to L1 0 ordering phase transformation was confirmed by electron and X-ray diffraction. An order parameter near 50% and a maximum coercivity of 12 kOe were obtained with laser energy densities of 25-32 J/cm 2. Grain growth, quantified by dark field transmission electron microscopy, occurred during chemical ordering at the laser pulse widths studied.

  5. Periodic Viscous Shear Heating Instability in Fine-Grained Shear Zones: Possible Mechanism for Intermediate Depth Earthquakes and Slow Earthquakes?

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.; Hirth, G.

    2004-12-01

    creep and grain boundary sliding as a function of stress and strain, and undergoes diffusive growth during diffusion creep. For strain rates ca E-13 per second and initial temperatures ca 600 to 850 C, this model produces periodic viscous shear heating events with periods of 100's of years. Strain rates during these events approach 1 per second as temperatures reach 1400 C, so future models will incorporate inertial terms in the stress. Cooling between events returns the shear zone almost to its initial temperature, but ultimately shear zone temperature between events exceeds 850 C resulting in stable viscous creep. Back of the envelope calculations based on model results support the view that viscous deformation in both shear zone and host will be mainly via grain-size sensitive creep, and thus deformation will remain localized in shear zones. Similarly, we infer that inertial terms will remain small. Future models will test and quantify these inferences. The simple model described above provides an attractive explanation for intermediate-depth earthquakes, especially those in subduction zones that occur in a narrow thermal window (e.g., Hacker et al JGR 2003). We think that a "smoother"periodic instability might be produced via the same mechanism in weaker materials, which could provide a viscous mechanism for some slow earthquakes. By AGU, we will construct a second, simple model using quartz rheology to investigate this. Finally, coupling of viscous shear heating instabilities in the shallow mantle with brittle stick-slip deformation in the weaker, overlying crust may influence earthquake frequency.

  6. Dendritic growth and crystalline quality of nickel-base single grains

    NASA Astrophysics Data System (ADS)

    Siredey, Nathalie; Boufoussi, M'Bareck; Denis, Sabine; Lacaze, Jacques

    1993-05-01

    It is a usual observation that subgrains exist in nickel-base single grain components solidified by the lost wax process. The associated misorientations are generally small, but they can eventually lead to casting defects in the case of highly complex mold shapes. This work presents an attempt to relate the formation of subgrain boundaries with the development of the dendritic solidification microstructure. Experimental investigations have been undertaken on cast components made of AM1 nickel-base superalloy designed for high temperature turbine blades. Single grains were obtained by means of a grain selector at the bottom of each part. Metallographic observations have been made to characterize the dendritic array, together with gamma diffraction to measure the crystalline quality of the material and X-ray topography for mapping of misorientations on a dendritic scale. Small misorientations between dendrite stems have been found at the upper end of the selector which lead to the formation of subgrains. Moreover, during the growth process, the total mosaicity of the material increases, firstly as a consequence of an increase in the misorientations between subgrains, and secondly because of a decrease of the internal quality of each subgrain. It is proposed that misorientations are due to thermomechanical stresses which build up during λ' precipitation at temperatures slightly below the solidus temperature of the alloy.

  7. Formation of Graphene Grain Boundaries on Cu(100) Surface and a Route Towards Their Elimination in Chemical Vapor Deposition Growth

    PubMed Central

    Yuan, Qinghong; Song, Guangyao; Sun, Deyan; Ding, Feng

    2014-01-01

    Grain boundaries (GBs) in graphene prepared by chemical vapor deposition (CVD) greatly degrade the electrical and mechanical properties of graphene and thus hinder the applications of graphene in electronic devices. The seamless stitching of graphene flakes can avoid GBs, wherein the identical orientation of graphene domain is required. In this letter, the graphene orientation on one of the most used catalyst surface — Cu(100) surface, is explored by density functional theory (DFT) calculations. Our calculation demonstrates that a zigzag edged hexagonal graphene domain on a Cu(100) surface has two equivalent energetically preferred orientations, which are 30 degree away from each other. Therefore, the fusion of graphene domains on Cu(100) surface during CVD growth will inevitably lead to densely distributed GBs in the synthesized graphene. Aiming to solve this problem, a simple route, that applies external strain to break the symmetry of the Cu(100) surface, was proposed and proved efficient. PMID:25286970

  8. Formation of Graphene Grain Boundaries on Cu(100) Surface and a Route Towards Their Elimination in Chemical Vapor Deposition Growth

    NASA Astrophysics Data System (ADS)

    Yuan, Qinghong; Song, Guangyao; Sun, Deyan; Ding, Feng

    2014-10-01

    Grain boundaries (GBs) in graphene prepared by chemical vapor deposition (CVD) greatly degrade the electrical and mechanical properties of graphene and thus hinder the applications of graphene in electronic devices. The seamless stitching of graphene flakes can avoid GBs, wherein the identical orientation of graphene domain is required. In this letter, the graphene orientation on one of the most used catalyst surface -- Cu(100) surface, is explored by density functional theory (DFT) calculations. Our calculation demonstrates that a zigzag edged hexagonal graphene domain on a Cu(100) surface has two equivalent energetically preferred orientations, which are 30 degree away from each other. Therefore, the fusion of graphene domains on Cu(100) surface during CVD growth will inevitably lead to densely distributed GBs in the synthesized graphene. Aiming to solve this problem, a simple route, that applies external strain to break the symmetry of the Cu(100) surface, was proposed and proved efficient.

  9. Contact Mechanics of Naturally Occurring Grains: Experiments and Discrete Element Modeling

    NASA Astrophysics Data System (ADS)

    Cole, David M.; Hopkins, Mark A.

    2009-06-01

    Application of the discrete element method to engineering problems involving naturally occurring granular materials requires knowledge of the contact mechanics of the particles and a realistic treatment of particle shapes. This paper presents results from on-going work that addresses these two fundamental issues of granular media mechanics. Grain-scale laboratory experiments are being conducted to provide the needed contact relationships. A concurrent discrete element modeling effort is under way to implement the experimentally determined contact relationships and employ realistic particle shapes. The experiments determine the stiffness and frictional behavior of normal and sliding contacts of observed for spherical specimens of gneiss. Stiffness in the normal mode is seen to range from 0.1 to 15 MN m-1 depending on force level. Shear stiffness is on the order of the normal stiffness, but only for relatively low shear force levels (or shear deformations). Frictional energy losses are observed to varying degrees under virtually all experimental conditions. The discrete element modeling effort simulates the triaxial response of the spherical grains enclosed in a membrane and implements the experimentally determined contact relationships for normal and sliding contact behavior. Inclusion of the full frictional behavior prior to macroscopic sliding is under development. Some aspects of the simulations of the triaxial deformation of spherical grains of gneiss are presented and compared with the grain-scale experimental data. The simulations are seen to capture the key features of the experimental observations.

  10. Spectroscopic Infrared Extinction Mapping as a Probe of Grain Growth in IRDCs

    NASA Astrophysics Data System (ADS)

    Lim, Wanggi; Carey, Sean J.; Tan, Jonathan C.

    2015-11-01

    We present spectroscopic tests of MIR to FIR extinction laws in IRDC G028.36+00.07, a potential site of massive star and star cluster formation. Lim & Tan developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 μm and Herschel-PACS 70 μm images, and by comparing to MIR Spitzer-IRAC 3-8 μm extinction maps, found tentative evidence for grain growth in the highest mass surface density regions. Here we present results of spectroscopic infrared extinction mapping using Spitzer-IRS (14-38 μm) data of the same Infrared dark cloud (IRDC). These methods allow us to first measure the SED of the diffuse Galactic interstellar medium that is in the foreground of the IRDC. We then carry out our primary investigation of measuring the MIR to FIR opacity law and searching for potential variations as a function of mass surface density within the IRDC. We find relatively flat, featureless MIR-FIR opacity laws that lack the ˜12 and ˜35 μm features associated with the thick water ice mantle models of Ossenkopf & Henning. Their thin ice mantle models and the coagulating aggregate dust models of Ormel et al. are a generally better match to the observed opacity laws. We also find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions.

  11. SPECTROSCOPIC INFRARED EXTINCTION MAPPING AS A PROBE OF GRAIN GROWTH IN IRDCs

    SciTech Connect

    Lim, Wanggi; Carey, Sean J.; Tan, Jonathan C.

    2015-11-20

    We present spectroscopic tests of MIR to FIR extinction laws in IRDC G028.36+00.07, a potential site of massive star and star cluster formation. Lim and Tan developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 μm and Herschel-PACS 70 μm images, and by comparing to MIR Spitzer-IRAC 3–8 μm extinction maps, found tentative evidence for grain growth in the highest mass surface density regions. Here we present results of spectroscopic infrared extinction mapping using Spitzer-IRS (14–38 μm) data of the same Infrared dark cloud (IRDC). These methods allow us to first measure the SED of the diffuse Galactic interstellar medium that is in the foreground of the IRDC. We then carry out our primary investigation of measuring the MIR to FIR opacity law and searching for potential variations as a function of mass surface density within the IRDC. We find relatively flat, featureless MIR–FIR opacity laws that lack the ∼12 and ∼35 μm features associated with the thick water ice mantle models of Ossenkopf and Henning. Their thin ice mantle models and the coagulating aggregate dust models of Ormel et al. are a generally better match to the observed opacity laws. We also find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions.

  12. Evidence for grain growth in molecular clouds: A Bayesian examination of the extinction law in Perseus

    NASA Astrophysics Data System (ADS)

    Foster, Jonathan B.; Mandel, Kaisey S.; Pineda, Jaime E.; Covey, Kevin R.; Arce, Héctor G.; Goodman, Alyssa A.

    2013-01-01

    We investigate the shape of the extinction law in two 1° square fields of the Perseus molecular cloud complex. We combine deep red-optical (r, i and z band) observations obtained using Megacam on the MMT with UKIRT (United Kingdom Infrared Telescope) Infrared Deep Sky Survey near-infrared (J, H and K band) data to measure the colours of background stars. We develop a new hierarchical Bayesian statistical model, including measurement error, intrinsic colour variation, spectral type and dust reddening, to simultaneously infer parameters for individual stars and characteristics of the population. We implement an efficient Markov chain Monte Carlo algorithm utilizing generalized Gibbs sampling to compute coherent probabilistic inferences. We find a strong correlation between the extinction (AV) and the slope of the extinction law (parametrized by RV). Because the majority of the extinction towards our stars comes from the Perseus molecular cloud, we interpret this correlation as evidence of grain growth at moderate optical depths. The extinction law changes from the `diffuse' value of RV ˜ 3 to the `dense cloud' value of RV ˜ 5 as the column density rises from AV = 2 to 10 mag. This relationship is similar for the two regions in our study, despite their different physical conditions, suggesting that dust grain growth is a fairly universal process.

  13. Effects of high NH(+) 4 on K(+) uptake, culm mechanical strength and grain filling in wheat.

    PubMed

    Kong, Lingan; Sun, Mingze; Wang, Fahong; Liu, Jia; Feng, Bo; Si, Jisheng; Zhang, Bin; Li, Shengdong; Li, Huawei

    2014-01-01

    It is well established that a high external NH(+) 4 concentration depresses many processes in plant development, but the underlying mechanisms are still not well understood. To determine whether the negative effects of high levels of NH(+) 4 are related to competitive cation uptake, wheat was grown in a field with moderate (18 g N m(-2)) and high (30 g N m(-2)) supplies of NH(+) 4 in the presence or absence of additional K(+) (6 g K2O m(-2)) to examine culm mechanical strength, the main components of the vascular bundle, nitrogen (N) remobilization and the grain-filling rate. The results indicated that an excessive supply of NH(+) 4 significantly decreased culm mechanical strength, the cellulose and lignin contents of vascular bundles, the N remobilization efficiency (NRE) and the grain-filling rate compared with a moderate level of NH(+) 4. The additional provision of K(+) considerably alleviated these negative effects of high NH(+) 4, resulting in a 19.41-26.95% increase in culm mechanical strength during grain filling and a 34.59% increase in the NRE. An assay using the scanning ion-selective electrode technique (SIET) showed that the net rate of transmembrane K(+) influx decreased by 84.62%, and measurements using flame photometry demonstrated that the K(+) content decreased by 36.13% in wheat plants subjected to high NH(+) 4. This study indicates that the effects of high NH(+) 4 on culm mechanical strength, cellulose and lignin contents, the NRE and the grain-filling rate are probably associated with inhibition of K(+) uptake in wheat. PMID:25566278

  14. Effects of high NH+4 on K+ uptake, culm mechanical strength and grain filling in wheat

    PubMed Central

    Kong, Lingan; Sun, Mingze; Wang, Fahong; Liu, Jia; Feng, Bo; Si, Jisheng; Zhang, Bin; Li, Shengdong; Li, Huawei

    2014-01-01

    It is well established that a high external NH+4 concentration depresses many processes in plant development, but the underlying mechanisms are still not well understood. To determine whether the negative effects of high levels of NH+4 are related to competitive cation uptake, wheat was grown in a field with moderate (18 g N m−2) and high (30 g N m−2) supplies of NH+4 in the presence or absence of additional K+ (6 g K2O m−2) to examine culm mechanical strength, the main components of the vascular bundle, nitrogen (N) remobilization and the grain-filling rate. The results indicated that an excessive supply of NH+4 significantly decreased culm mechanical strength, the cellulose and lignin contents of vascular bundles, the N remobilization efficiency (NRE) and the grain-filling rate compared with a moderate level of NH+4. The additional provision of K+ considerably alleviated these negative effects of high NH+4, resulting in a 19.41–26.95% increase in culm mechanical strength during grain filling and a 34.59% increase in the NRE. An assay using the scanning ion-selective electrode technique (SIET) showed that the net rate of transmembrane K+ influx decreased by 84.62%, and measurements using flame photometry demonstrated that the K+ content decreased by 36.13% in wheat plants subjected to high NH+4. This study indicates that the effects of high NH+4 on culm mechanical strength, cellulose and lignin contents, the NRE and the grain-filling rate are probably associated with inhibition of K+ uptake in wheat. PMID:25566278

  15. Moisture dependent physical and mechanical properties of green laird lentil (Lens culinaris) grains.

    PubMed

    Isik, Esref

    2007-02-01

    This study was conducted to investigate some moisture dependent physical and mechanical properties of green laird lentil grains namely, grain dimensions, thousand grain mass, surface area, projected area, sphericity, bulk density, true density, porosity, terminal velocity, static coefficient of friction against different materials. The average diameter and thickness were 6.72 and 2.58 mm, at a moisture content of 11.36% d.b., respectively. In the above moisture range, the arithmetic and geometric mean diameters increased from 5.340 to 5.685 mm and from 4.879 to 5.260 mm, respectively, while the sphericity decreased from 0.727 to 0.744. In the moisture range from 11.36-25.08% d.b., studies on rewetted green laird lentil grains showed that the thousand grain mass increased from 72.00 to 73.90 g, the projected area from 36.98 to 55.60 mm2, the true density from 1170 to 1420 kg m(-3), the porosity from 29.91 to 55.63% and the terminal velocity from 5.90 to 7.10 m s(-1). The bulk density decreased from 820 to 630 kg m(-3) with an increase in the moisture content range of 11.36-25.08% d.b. The static coefficient of friction of green laird lentil grains increased against surfaces of six structural materials, namely, rubber (0.51-0.58), aluminum (0.48-0.57), stainless steel (0.38-0.44), galvanized iron (0.42-0.50), glass (0.35-0.40) and MDF (medium density fiberboard) (0.31-0.36) as the moisture content increased from 11.36-25.08% d.b.

  16. Non-planar grain boundary structures in fcc metals and their role in nano-scale deformation mechanisms

    NASA Astrophysics Data System (ADS)

    Smith, Laura; Farkas, Diana

    2014-01-01

    This work presents the results of a comparative molecular dynamics study showing that relaxed random grain boundary structures can be significantly non-planar at the nano-scale in fcc metals characterized by low stacking fault values. We studied the relaxed structures of random [1 1 0] tilt boundaries in a polycrystal using interatomic potentials describing Cu and Pd. Grain boundaries presenting non-planar features were observed predominantly for the Cu potential but not for the Pd potential, and we relate these differences to the stacking fault values. We also show that these non-planar structures can have a strong influence on dislocation emission from the grain boundaries as well as on grain boundary strain accommodation processes, such as grain boundary sliding. We studied the loading response in polycrystals of 40 nm grain size to a level of 9% strain and found that the non-planar grain boundaries favour dislocation emission as a deformation mechanism and hinder grain boundary sliding. This has strong implications for the mechanical behaviour of nano-crystalline materials, which is determined by the competition between dislocation activity and grain boundary accommodation of the strain. Thus, the two interatomic potentials for Cu and Pd considered in this work resulted in the same overall stress-strain curve, but significantly different fractions of the strain accommodated by the intergranular versus intragranular deformation mechanisms. Strain localization patterns are also influenced by the non-planarity of the grain boundary structures.

  17. Mechanical properties of ceria nanorods and nanochains; the effect of dislocations, grain-boundaries and oriented attachment

    NASA Astrophysics Data System (ADS)

    Sayle, Thi X. T.; Inkson, Beverley J.; Karakoti, Ajay; Kumar, Amit; Molinari, Marco; Möbus, Günter; Parker, Stephen C.; Seal, Sudipta; Sayle, Dean C.

    2011-04-01

    We predict that the presence of extended defects can reduce the mechanical strength of a ceria nanorod by 70%. Conversely, the pristine material can deform near its theoretical strength limit. Specifically, atomistic models of ceria nanorods have been generated with full microstructure, including: growth direction, morphology, surface roughening (steps, edges, corners), point defects, dislocations and grain-boundaries. The models were then used to calculate the mechanical strength as a function of microstructure. Our simulations reveal that the compressive yield strengths of ceria nanorods, ca. 10 nm in diameter and without extended defects, are 46 and 36 GPa for rods oriented along [211] and [110] respectively, which represents almost 10% of the bulk elastic modulus and are associated with yield strains of about 0.09. Tensile yield strengths were calculated to be about 50% lower with associated yield strains of about 0.06. For both nanorods, plastic deformation was found to proceed via slip in the {001} plane with direction 〈110〉 - a primary slip system for crystals with the fluorite structure. Dislocation evolution for the nanorod oriented along [110] was nucleated via a cerium vacancy present at the surface. A nanorod oriented along [321] and comprising twin-grain boundaries with {111} interfacial planes was calculated to have a yield strength of about 10 GPa (compression and tension) with the grain boundary providing the vehicle for plastic deformation, which slipped in the plane of the grain boundary, with an associated 〈110〉 slip direction. We also predict, using a combination of atomistic simulation and DFT, that rutile-structured ceria is feasible when the crystal is placed under tension. The mechanical properties of nanochains, comprising individual ceria nanoparticles with oriented attachment and generated using simulated self-assembly, were found to be similar to those of the nanorod with grain-boundary. Images of the atom positions

  18. Dynamical mechanism of antifreeze proteins to prevent ice growth.

    PubMed

    Kutschan, B; Morawetz, K; Thoms, S

    2014-08-01

    The fascinating ability of algae, insects, and fishes to survive at temperatures below normal freezing is realized by antifreeze proteins (AFPs). These are surface-active molecules and interact with the diffusive water-ice interface thus preventing complete solidification. We propose a dynamical mechanism on how these proteins inhibit the freezing of water. We apply a Ginzburg-Landau-type approach to describe the phase separation in the two-component system (ice, AFP). The free-energy density involves two fields: one for the ice phase with a low AFP concentration and one for liquid water with a high AFP concentration. The time evolution of the ice reveals microstructures resulting from phase separation in the presence of AFPs. We observed a faster clustering of pre-ice structure connected to a locking of grain size by the action of AFP, which is an essentially dynamical process. The adsorption of additional water molecules is inhibited and the further growth of ice grains stopped. The interfacial energy between ice and water is lowered allowing the AFPs to form smaller critical ice nuclei. Similar to a hysteresis in magnetic materials we observe a thermodynamic hysteresis leading to a nonlinear density dependence of the freezing point depression in agreement with the experiments. PMID:25215762

  19. Dynamical mechanism of antifreeze proteins to prevent ice growth.

    PubMed

    Kutschan, B; Morawetz, K; Thoms, S

    2014-08-01

    The fascinating ability of algae, insects, and fishes to survive at temperatures below normal freezing is realized by antifreeze proteins (AFPs). These are surface-active molecules and interact with the diffusive water-ice interface thus preventing complete solidification. We propose a dynamical mechanism on how these proteins inhibit the freezing of water. We apply a Ginzburg-Landau-type approach to describe the phase separation in the two-component system (ice, AFP). The free-energy density involves two fields: one for the ice phase with a low AFP concentration and one for liquid water with a high AFP concentration. The time evolution of the ice reveals microstructures resulting from phase separation in the presence of AFPs. We observed a faster clustering of pre-ice structure connected to a locking of grain size by the action of AFP, which is an essentially dynamical process. The adsorption of additional water molecules is inhibited and the further growth of ice grains stopped. The interfacial energy between ice and water is lowered allowing the AFPs to form smaller critical ice nuclei. Similar to a hysteresis in magnetic materials we observe a thermodynamic hysteresis leading to a nonlinear density dependence of the freezing point depression in agreement with the experiments.

  20. Dynamical mechanism of antifreeze proteins to prevent ice growth

    NASA Astrophysics Data System (ADS)

    Kutschan, B.; Morawetz, K.; Thoms, S.

    2014-08-01

    The fascinating ability of algae, insects, and fishes to survive at temperatures below normal freezing is realized by antifreeze proteins (AFPs). These are surface-active molecules and interact with the diffusive water-ice interface thus preventing complete solidification. We propose a dynamical mechanism on how these proteins inhibit the freezing of water. We apply a Ginzburg-Landau-type approach to describe the phase separation in the two-component system (ice, AFP). The free-energy density involves two fields: one for the ice phase with a low AFP concentration and one for liquid water with a high AFP concentration. The time evolution of the ice reveals microstructures resulting from phase separation in the presence of AFPs. We observed a faster clustering of pre-ice structure connected to a locking of grain size by the action of AFP, which is an essentially dynamical process. The adsorption of additional water molecules is inhibited and the further growth of ice grains stopped. The interfacial energy between ice and water is lowered allowing the AFPs to form smaller critical ice nuclei. Similar to a hysteresis in magnetic materials we observe a thermodynamic hysteresis leading to a nonlinear density dependence of the freezing point depression in agreement with the experiments.

  1. Microstructural and Mechanical-Property Manipulation through Rapid Dendrite Growth and Undercooling in an Fe-based Multinary Alloy

    PubMed Central

    Ruan, Ying; Mohajerani, Amirhossein; Dao, Ming

    2016-01-01

    Rapid dendrite growth in single- or dual-phase multicomponent alloys can be manipulated to improve the mechanical properties of such metallic materials. Rapid growth of (αFe) dendrites was realized in an undercooled Fe-5Ni-5Mo-5Ge-5Co (wt.%) multinary alloy using the glass fluxing method. The relationship between rapid dendrite growth and the micro-/nano-mechanical properties of the alloy was investigated by analyzing the grain refinement and microstructural evolution resulting from the rapid dendrite growth. It was found that (αFe) dendrites grow sluggishly within a low but wide undercooling range. Once the undercooling exceeds 250 K, the dendritic growth velocity increases steeply until reaching a plateau of 31.8 ms−1. The increase in the alloy Vickers microhardness with increasing dendritic growth velocity results from the hardening effects of increased grain/phase boundaries due to the grain refinement, the more homogeneous distribution of the second phase along the boundaries, and the more uniform distribution of solutes with increased contents inside the grain, as verified also by nanohardness maps. Once the dendritic growth velocity exceeds ~8 ms−1, the rate of Vickers microhardness increase slows down significantly with a further increase in dendritic growth velocity, owing to the microstructural transition of the (αFe) phase from a trunk-dendrite to an equiaxed-grain microstructure. PMID:27539749

  2. Microstructural and Mechanical-Property Manipulation through Rapid Dendrite Growth and Undercooling in an Fe-based Multinary Alloy

    NASA Astrophysics Data System (ADS)

    Ruan, Ying; Mohajerani, Amirhossein; Dao, Ming

    2016-08-01

    Rapid dendrite growth in single- or dual-phase multicomponent alloys can be manipulated to improve the mechanical properties of such metallic materials. Rapid growth of (αFe) dendrites was realized in an undercooled Fe-5Ni-5Mo-5Ge-5Co (wt.%) multinary alloy using the glass fluxing method. The relationship between rapid dendrite growth and the micro-/nano-mechanical properties of the alloy was investigated by analyzing the grain refinement and microstructural evolution resulting from the rapid dendrite growth. It was found that (αFe) dendrites grow sluggishly within a low but wide undercooling range. Once the undercooling exceeds 250 K, the dendritic growth velocity increases steeply until reaching a plateau of 31.8 ms‑1. The increase in the alloy Vickers microhardness with increasing dendritic growth velocity results from the hardening effects of increased grain/phase boundaries due to the grain refinement, the more homogeneous distribution of the second phase along the boundaries, and the more uniform distribution of solutes with increased contents inside the grain, as verified also by nanohardness maps. Once the dendritic growth velocity exceeds ~8 ms‑1, the rate of Vickers microhardness increase slows down significantly with a further increase in dendritic growth velocity, owing to the microstructural transition of the (αFe) phase from a trunk-dendrite to an equiaxed-grain microstructure.

  3. Microstructural and Mechanical-Property Manipulation through Rapid Dendrite Growth and Undercooling in an Fe-based Multinary Alloy.

    PubMed

    Ruan, Ying; Mohajerani, Amirhossein; Dao, Ming

    2016-01-01

    Rapid dendrite growth in single- or dual-phase multicomponent alloys can be manipulated to improve the mechanical properties of such metallic materials. Rapid growth of (αFe) dendrites was realized in an undercooled Fe-5Ni-5Mo-5Ge-5Co (wt.%) multinary alloy using the glass fluxing method. The relationship between rapid dendrite growth and the micro-/nano-mechanical properties of the alloy was investigated by analyzing the grain refinement and microstructural evolution resulting from the rapid dendrite growth. It was found that (αFe) dendrites grow sluggishly within a low but wide undercooling range. Once the undercooling exceeds 250 K, the dendritic growth velocity increases steeply until reaching a plateau of 31.8 ms(-1). The increase in the alloy Vickers microhardness with increasing dendritic growth velocity results from the hardening effects of increased grain/phase boundaries due to the grain refinement, the more homogeneous distribution of the second phase along the boundaries, and the more uniform distribution of solutes with increased contents inside the grain, as verified also by nanohardness maps. Once the dendritic growth velocity exceeds ~8 ms(-1), the rate of Vickers microhardness increase slows down significantly with a further increase in dendritic growth velocity, owing to the microstructural transition of the (αFe) phase from a trunk-dendrite to an equiaxed-grain microstructure. PMID:27539749

  4. Strain softening mechanism at meso scale during micro-compression in an ultrafine-grained pure copper

    SciTech Connect

    Xu, Jie; Li, Jianwei; Shan, Debin; Guo, Bin

    2015-09-15

    Strain softening behavior has been found at meso scale using micro-compression testing in an ultrafine-grained (UFG) pure copper by comparison with the typical strain hardening in conventional coarse-grained (CG) material. Microstructural observations show that grain size remains nearly the same including the fraction of high-angle grain boundaries during micro-compression in UFG pure copper. The Kernel average misorientation(KAM) distribution measured by electron backscatter diffraction (EBSD), as a statistical method, is applied to qualitatively evaluate dislocation density in the interior of the grains. It is suggested that the deformation mechanisms are dominated by grain boundary sliding and grain rotation accompanied by dislocation slip in UFG pure copper, which demonstrates that the strain softening behavior is primarily caused by dislocation annihilation during micro-compression.

  5. The photoelectric heating mechanism for very small graphitic grains and polycyclic aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Bakes, E. L. O.; Tielens, A. G. G. M.

    1994-01-01

    We have theoretically modeled the gas heating associated with the photoelectric ejection of electrons from a size distribution of interstellar carbon grains which extends into the molecular domain. We have considered a wide range of physical conditions for the interstellar gas (1 less than G(sub 0) less than 10(exp 5), with G(sub 0) being the intensity of the incident far-UV field in units of the Habing interstellar radiation field; 2.5 x 10( exp -3) less than n(sub e) less than 75/cu cm, with n(sub e) being the electron density; 10 less than T less than 10,000 K, with T being the gas temperature). The results show that about half of the heating is due to grains less than 1500 C atoms (less than 15 A). The other half originates in somewhat larger grains (1500-4.5 x 10(exp 5) C atoms; 15 less than 100 A). While grains larger than this do absorb about half of the available far-UV photons, they do not contribute appreciably to the gas heating. This strong dependence of gas heating on size results from the decrease in yield and from the increased grain charge (hence larger Coulomb losses) with increasing grain size. We have determined the net photoelectric heating rate and evaluated a simple analytical expression for the heating efficiency, dependent only on G(sub 0), T, and n(sub e). This expression is accurate to 3% over the whole parameter range and is valid up to gas temperatures of 10(exp 4) K, at which point the dominant gas-dust heat exchange mechanism becomes the recombination of electrons with grains rather than photoelectric ejection. The calculated heating efficiency for neutral grains is in good agreement with that derived from observations of the diffuse interstellar clouds. Our results also agree well with the Far Infrared Absolute Spectrometer (FIRAS) observations on the Cosmic Background Explorer Satellite. Finally, our photoelectric heating efficiency is compared to previous studies.

  6. A new seeding technique for the reliable fabrication of large, SmBCO single grains containing silver using top seeded melt growth

    NASA Astrophysics Data System (ADS)

    Shi, Y.-H.; Dennis, A. R.; Cardwell, D. A.

    2015-03-01

    Silver (Ag) is an established additive for improving the mechanical properties of single grain, (RE)Ba2Cu3O7-δ [(RE)BCO, RE = Sm, Gd and Y] bulk superconductors. The presence of Ag in the (RE)BCO bulk composition, however, typically reduces the melting temperature of the single crystal seed in the top seeded melt growth (TSMG) process, which complicates significantly the controlled nucleation and subsequent epitaxial growth of a single grain, which is essential for high field engineering applications. The reduced reliability of the seeding process in the presence of Ag is particularly acute for the SmBCO system, since the melting temperature of SmBCO is very close to that of the generic NdBCO(MgO) seed. SmBCO has a high superconducting transition temperature, Tc, and exhibits the most pronounced ‘peak’ effect at higher magnetic field of all materials in the family of (RE)BCO bulk superconductors and, therefore, has the greatest potential for use in practical applications (compared to GdBCO and YBCO, in particular). Development of an effective seeding process, therefore, is one of the major challenges of the TSMG process for the growth of large, high quantity single grain superconductors. In this paper, we report a novel technique that involves introducing a buffer layer between the seed crystal and the precursor pellet, primarily to inhibit the diffusion of Ag from the green body to the seed during melt processing in order to prevent the melting of the seed. The success rate of the seeding process using this technique is 100% for relatively small batches of samples. The superconducting properties, critical temperature, Tc, critical current density, Jc and trapped fields, of the single grains fabricated using the buffers are reported and the microstructures in the vicinity of the buffer of single grains fabricated by the modified technique are analysed to understand further the effects of buffers on the growth process of these technologically important

  7. Growth Mechanism of Nanowires: Ternary Chalcogenides

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Coriell, S. R.; Hopkins, R. H.; Su, Ching Hua; Arnold, B.; Choa, Fow-Sen; Cullum, Brian

    2016-01-01

    In the past two decades there has been a large rise in the investment and expectations for nanotechnology use. Almost every area of research has projected improvements in sensors, or even a promise for the emergence of some novel device technologies. For these applications major focuses of research are in the areas of nanoparticles and graphene. Although there are some near term applications with nanowires in photodetectors and other low light detectors, there are few papers on the growth mechanism and fabrication of nanowire-based devices. Semiconductor nanowires exhibit very favorable and promising optical properties, including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here an overview of the mechanism of nanowire growth from the melt, and some preliminary results for the thallium arsenic selenide material system. Thallium arsenic selenide (TAS) is a multifunctional material combining excellent acousto-optical, nonlinear and radiation detection properties. We observed that small units of (TAS) nanocubes arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. In some cases very long wires (less than mm) are formed. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places.

  8. Effect of Grain Refinement on the Mechanical Behaviour of an Al6061 Alloy at Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Moreno-Valle, E.; Perez-Prado, M. T.; Murashkin, M. Yu.; Valiev, R. Z.; Bobruk, E. V.; Sabirov, I.

    2011-05-01

    A solution treated coarse grained (CG) Al6061 was subjected to high pressure torsion (HPT) at room temperature resulting in the formation of a homogeneous ultra-fine grained (UFG) microstructure with an average grain size of 170 nm. Tensile tests were performed at room temperature (RT) and liquid nitrogen temperature (LNT). The as-HPT UFG Al6061 alloy shows an increased strength at both RT and LNT. The decrease of testing temperature results in increased flow stress and in enhanced elongation to failure in both CG and UFG samples. The ratio σyLNT/σyRT was found to be larger for the CG Al6061 than for the UFG Al6061. Both surface relief and fracture surface observations were performed. The effect of the grain size and of the testing temperature on the mechanical behaviour of the Al6061 alloy is analyzed in detail. It is suggested that the solute atoms play an important role in the plastic deformation of the UFG Al6061 alloy.

  9. Effect of Grain Refinement on the Mechanical Behaviour of an Al6061 Alloy at Cryogenic Temperatures

    SciTech Connect

    Moreno-Valle, E.; Sabirov, I.; Murashkin, M. Yu.; Valiev, R. Z.; Bobruk, E. V.; Perez-Prado, M. T.

    2011-05-04

    A solution treated coarse grained (CG) Al6061 was subjected to high pressure torsion (HPT) at room temperature resulting in the formation of a homogeneous ultra-fine grained (UFG) microstructure with an average grain size of 170 nm. Tensile tests were performed at room temperature (RT) and liquid nitrogen temperature (LNT). The as-HPT UFG Al6061 alloy shows an increased strength at both RT and LNT. The decrease of testing temperature results in increased flow stress and in enhanced elongation to failure in both CG and UFG samples. The ratio {sigma}{sub y}{sup LNT}/{sigma}{sub y}{sup RT} was found to be larger for the CG Al6061 than for the UFG Al6061. Both surface relief and fracture surface observations were performed. The effect of the grain size and of the testing temperature on the mechanical behaviour of the Al6061 alloy is analyzed in detail. It is suggested that the solute atoms play an important role in the plastic deformation of the UFG Al6061 alloy.

  10. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells

    SciTech Connect

    Bi, Cheng; Wang, Qi; Shao, Yuchuan; Yuan, Yongbo; Xiao, Zhengguo; Huang, Jinsong

    2015-07-20

    Large-aspect-ratio grains are needed in polycrystalline thin-film solar cells for reduced charge recombination at grain boundaries; however, the grain size in organolead trihalide perovskite (OTP) films is generally limited by the film thickness. Here we report the growth of OTP grains with high average aspect ratio of 2.3–7.9 on a wide range of non-wetting hole transport layers (HTLs), which increase nucleus spacing by suppressing heterogeneous nucleation and facilitate grain boundary migration in grain growth by imposing less drag force. The reduced grain boundary area and improved crystallinity dramatically reduce the charge recombination in OTP thin films to the level in OTP single crystals. Combining the high work function of several HTLs, a high stabilized device efficiency of 18.3% in low-temperature-processed planar-heterojunction OTP devices under 1 sun illumination is achieved. As a result, this simple method in enhancing OTP morphology paves the way for its application in other optoelectronic devices for enhanced performance.

  11. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells

    DOE PAGES

    Bi, Cheng; Wang, Qi; Shao, Yuchuan; Yuan, Yongbo; Xiao, Zhengguo; Huang, Jinsong

    2015-07-20

    Large-aspect-ratio grains are needed in polycrystalline thin-film solar cells for reduced charge recombination at grain boundaries; however, the grain size in organolead trihalide perovskite (OTP) films is generally limited by the film thickness. Here we report the growth of OTP grains with high average aspect ratio of 2.3–7.9 on a wide range of non-wetting hole transport layers (HTLs), which increase nucleus spacing by suppressing heterogeneous nucleation and facilitate grain boundary migration in grain growth by imposing less drag force. The reduced grain boundary area and improved crystallinity dramatically reduce the charge recombination in OTP thin films to the level inmore » OTP single crystals. Combining the high work function of several HTLs, a high stabilized device efficiency of 18.3% in low-temperature-processed planar-heterojunction OTP devices under 1 sun illumination is achieved. As a result, this simple method in enhancing OTP morphology paves the way for its application in other optoelectronic devices for enhanced performance.« less

  12. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells

    PubMed Central

    Bi, Cheng; Wang, Qi; Shao, Yuchuan; Yuan, Yongbo; Xiao, Zhengguo; Huang, Jinsong

    2015-01-01

    Large-aspect-ratio grains are needed in polycrystalline thin-film solar cells for reduced charge recombination at grain boundaries; however, the grain size in organolead trihalide perovskite (OTP) films is generally limited by the film thickness. Here we report the growth of OTP grains with high average aspect ratio of 2.3–7.9 on a wide range of non-wetting hole transport layers (HTLs), which increase nucleus spacing by suppressing heterogeneous nucleation and facilitate grain boundary migration in grain growth by imposing less drag force. The reduced grain boundary area and improved crystallinity dramatically reduce the charge recombination in OTP thin films to the level in OTP single crystals. Combining the high work function of several HTLs, a high stabilized device efficiency of 18.3% in low-temperature-processed planar-heterojunction OTP devices under 1 sun illumination is achieved. This simple method in enhancing OTP morphology paves the way for its application in other optoelectronic devices for enhanced performance. PMID:26190275

  13. Mechanisms of nuclear lamina growth in interphase.

    PubMed

    Zhironkina, Oxana A; Kurchashova, Svetlana Yu; Pozharskaia, Vasilisa A; Cherepanynets, Varvara D; Strelkova, Olga S; Hozak, Pavel; Kireev, Igor I

    2016-04-01

    The nuclear lamina represents a multifunctional platform involved in such diverse yet interconnected processes as spatial organization of the genome, maintenance of mechanical stability of the nucleus, regulation of transcription and replication. Most of lamina activities are exerted through tethering of lamina-associated chromatin domains (LADs) to the nuclear periphery. Yet, the lamina is a dynamic structure demonstrating considerable expansion during the cell cycle to accommodate increased number of LADs formed during DNA replication. We analyzed dynamics of nuclear growth during interphase and changes in lamina structure as a function of cell cycle progression. The nuclear lamina demonstrates steady growth from G1 till G2, while quantitative analysis of lamina meshwork by super-resolution microscopy revealed that microdomain organization of the lamina is maintained, with lamin A and lamin B microdomain periodicity and interdomain gap sizes unchanged. FRAP analysis, in contrast, demonstrated differences in lamin A and B1 exchange rates; the latter showing higher recovery rate in S-phase cells. In order to further analyze the mechanism of lamina growth in interphase, we generated a lamina-free nuclear envelope in living interphase cells by reversible hypotonic shock. The nuclear envelope in nuclear buds formed after such a treatment initially lacked lamins, and analysis of lamina formation revealed striking difference in lamin A and B1 assembly: lamin A reassembled within 30 min post-treatment, whereas lamin B1 did not incorporate into the newly formed lamina at all. We suggest that in somatic cells lamin B1 meshwork growth is coordinated with replication of LADs, and lamin A meshwork assembly seems to be chromatin-independent process.

  14. Grain Diversity Effects on Banker Plant Growth and Parasitism by Aphidius colemani

    PubMed Central

    McClure, Travis; Frank, Steven D.

    2015-01-01

    Green peach aphid (Myzus persicae Sulzer) (Hemiptera: Aphididae) is a serious greenhouse pest with a short generation time, parthenogenetic reproduction and a broad host range. Banker plant systems are becoming a more common form of biological control for this pest. This system consists of grain “banker plants” infested with R. padi, an alternative hosts for the parasitoid Aphidius colemani. Thus A. colemani can reproduce on the banker plant when M. persicae populations are low. This system can increase pest suppression; however, like other biological control tools, efficacy is inconsistent. One reason is because several different grain species have been used. Our studies determined if there were benefits to planting interspecific mixture banker plants, similar to when open agricultural systems use mixed cropping. Our study found that although banker plants grow larger when planted as mixtures this added plant growth does not increase in the number of aphids, or mummies an individual banker plant can sustain. Rye banker plants grew larger, and sustained more mummies than the other species we tested, but barley banker plants resulted in a similar number of aphids in a more condensed area. Ultimately, we did not see any differences in pest suppression between monoculture banker plants, mixture banker plants, or our augmentative release treatment. However, using banker plants resulted in more female parasitoids than the augmentative release, a benefit to using banker plant systems. PMID:26463416

  15. Grain Diversity Effects on Banker Plant Growth and Parasitism by Aphidius colemani.

    PubMed

    McClure, Travis; Frank, Steven D

    2015-01-01

    Green peach aphid (Myzus persicae Sulzer) (Hemiptera: Aphididae) is a serious greenhouse pest with a short generation time, parthenogenetic reproduction and a broad host range. Banker plant systems are becoming a more common form of biological control for this pest. This system consists of grain "banker plants" infested with R. padi, an alternative hosts for the parasitoid Aphidius colemani. Thus A. colemani can reproduce on the banker plant when M. persicae populations are low. This system can increase pest suppression; however, like other biological control tools, efficacy is inconsistent. One reason is because several different grain species have been used. Our studies determined if there were benefits to planting interspecific mixture banker plants, similar to when open agricultural systems use mixed cropping. Our study found that although banker plants grow larger when planted as mixtures this added plant growth does not increase in the number of aphids, or mummies an individual banker plant can sustain. Rye banker plants grew larger, and sustained more mummies than the other species we tested, but barley banker plants resulted in a similar number of aphids in a more condensed area. Ultimately, we did not see any differences in pest suppression between monoculture banker plants, mixture banker plants, or our augmentative release treatment. However, using banker plants resulted in more female parasitoids than the augmentative release, a benefit to using banker plant systems.

  16. Nanoscale Investigation of Grain Growth in RF-Sputtered Indium Tin Oxide Thin Films by Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Lamsal, B. S.; Dubey, M.; Swaminathan, V.; Huh, Y.; Galipeau, D.; Qiao, Q.; Fan, Q. H.

    2014-11-01

    This work studied the electronic characteristics of the grains and grain boundaries of indium tin oxide (ITO) thin films using electrostatic and Kelvin probe force microscopy. Two types of ITO films were compared, deposited using radiofrequency magnetron sputtering in pure argon or 99% argon + 1% oxygen, respectively. The average grain size and surface roughness increased with substrate temperature for the films deposited in pure argon. With the addition of 1% oxygen, the increase in the grain size was inhibited above 150°C, which was suggested to be due to passivation of the grains by the excess oxygen. Electrostatic force microscopy and Kelvin probe force microscopy (KPFM) images confirmed that the grain growth was defect mediated and occurred at defective interfaces at high temperatures. Films deposited at room temperature with 1% oxygen showed crystalline nature, while films deposited with pure argon at room temperature were amorphous as observed from KPFM images. The potential drop across the grain and grain boundary was determined by taking surface potential line profiles to evaluate the electronic properties.

  17. [Impacts of drought stress on the growth and development and grain yield of spring maize in Northeast China].

    PubMed

    Ji, Rui-Peng; Che, Yu-Sheng; Zhu, Yong-Ning; Liang, Tao; Feng, Rui; Yu, Wen-Ying; Zhang, Yu-Shu

    2012-11-01

    Taking spring maize variety Danyu-39 as test object, an experiment was conducted in a large-scale agricultural water controlling experimental field to study the impacts of drought stress at three key growth stages, i. e. , 3-leaf-jointing, jointing-silking, and silking-milk ripe, on the growth and development and grain yield of spring maize in Northeast China. Two treatments were installed, including moderate drought stress (MS) and re-watering to suitable water (CK). Compared with CK, the MS at 3-leaf-jointing stage postponed the whole growth period of Danyu-39 by 13 d, and the plant height and leaf area at jointing stage were decreased by 29.8% and 41.2%, respectively. After re-watering, the plant height and grain yield recovered obviously, and the differences in ear characteristics and final yield were insignificant. The MS at jointing-silking stage shortened the whole growth period by 7 d, the plant height and leaf area at silking stage were decreased by 18.6% and 14.1%, respectively, the ear length, grain number per ear, ear dry mass, and grain mass per ear decreased by 6.9%, 19.1%, 28.1%, and 29.4%, respectively, and the blank stem rate increased by 13.3%. When the maize suffered from moderate drought stress at silking-milk ripe stage, the whole growth period was shortened by 15 d, the plant height and leaf area at milk ripe stage were decreased by 2.3% and 37.3%, respectively, the ear length, grain number per ear, ear dry mass, and grain mass per ear decreased by 9.2%, 24.1%, 30.8%, and 27.9%, respectively, and the blank stem rate increased by 24.5%. After re-watering at the latter two stages, the recovery of plant height was little, and the grain yield decreased significantly.

  18. Dolomite microstructures between 390° and 700 °C: Indications for deformation mechanisms and grain size evolution

    NASA Astrophysics Data System (ADS)

    Berger, Alfons; Ebert, Andreas; Ramseyer, Karl; Gnos, Edwin; Decrouez, Danielle

    2016-08-01

    Dolomitic marble on the island of Naxos was deformed at variable temperatures ranging from 390 °C to >700 °C. Microstructural investigations indicate two end-member of deformation mechanisms: (1) Diffusion creep processes associated with small grain sizes and weak or no CPO (crystallographic preferred orientation), whereas (2) dislocation creep processes are related with larger grain sizes and strong CPO. The change between these mechanisms depends on grain size and temperature. Therefore, sample with dislocation and diffusion creep microstructures and CPO occur at intermediate temperatures in relative pure dolomite samples. The measured dolomite grain size ranges from 3 to 940 μm. Grain sizes at Tmax >450 °C show an Arrhenius type evolution reflecting the stabilized grain size in deformed and relative pure dolomite. The stabilized grain size is five times smaller than that of calcite at the same temperature and shows the same Arrhenius-type evolution. In addition, the effect of second phase particle influences the grain size evolution, comparable with calcite. Calcite/dolomite mixtures are also characterized by the same difference in grain size, but recrystallization mechanism including chemical recrystallization induced by deformation may contribute to apparent non-temperature equilibrated Mg-content in calcite.

  19. Theoretical effects of mechanical grain-size reduction on GEM domain states in pyrrhotite

    NASA Astrophysics Data System (ADS)

    Ye, Jun; Halgedahl, Susan L.

    2000-05-01

    Recent laboratory experiments by Halgedahl and Ye (1999) show that domain widths in pyrrhotite change very little, or not at all, as a grain is mechanically thinned along one or two directions. In their experiments, particles were initially demagnetized in an alternating field until a global energy minimum (GEM) domain state was attained. Surprisingly, the overall positions of surviving walls and many small-scale details in the shapes of curved walls were remarkably insensitive to thinning. Thus, domain states that survived thinning were interpreted to be local energy minimum (LEM) states. As a first step toward providing a theoretical reference frame for the thinning results, GEM domain widths in pyrrhotite have been calculated here as grains are thinned to one-fourth or less of their original size. Nine models assume one-dimensional (1D) thinning, which greatly changes both particle size and shape. Two other models address the effects of three-dimensional (3D) thinning, in which particles retain a cubic shape as their sizes are reduced. If a particle can maintain a GEM state while it is thinned, seven of the nine 1D models and both 3D models predict that domain widths will adjust by amounts that are readily detected experimentally. Thus, results of these calculations support the interpretation that LEM states in pyrrhotite can be stable over a broad range of grain sizes and shapes. The primary origin of this stability remains an unsolved problem, however. If this stability is intrinsic to the pure material, then future micromagnetic models for pyrrhotite are required to investigate LEM states and their stability as functions of grain size and grain shape. On the other hand, this stability could originate from the pinning of preexisting walls by defects [Halgedahl and Ye, 1999]. Whatever their origins, the energy barriers that inhibit LEM-LEM transitions could play a significant role in the acquisition of remanence and the temporal stability of the paleomagnetic

  20. Seeded growth of bulk AlN crystals and grain evolution in polycrystalline AlN boules

    NASA Astrophysics Data System (ADS)

    Noveski, V.; Schlesser, R.; Raghothamachar, B.; Dudley, M.; Mahajan, S.; Beaudoin, S.; Sitar, Z.

    2005-05-01

    Large AlN crystals were grown by powder sublimation in a nitrogen atmosphere at low supersaturation and growth rates of 0.1-0.3 mm/h. The starting deposition surface was a sintered TaC disc. An appropriate adjustment of the system pressure and source-seed temperature gradient during the early stages of growth allowed epitaxial re-growth on AlN seeds that had been exposed to air. Single-crystalline AlN grains of 1 cm in size were achieved through multiple sublimation growth runs conducted at P=500 Torr and growth temperatures of 2050-2150 °C. Elemental analysis of impurities in the grown AlN boules confirmed low oxygen contamination levels of ˜10 19/cm 3. No discontinuities were introduced in the structural defect distribution in the individual single-crystalline grains by the multiple re-growth steps. Absence of preferred growth directions of grains suggest the epitaxial re-growth process is suitable for seeded single-crystal growth in any orientation.

  1. Self-similar mesostructure evolution of the growing mollusc shell reminiscent of thermodynamically driven grain growth

    NASA Astrophysics Data System (ADS)

    Bayerlein, Bernd; Zaslansky, Paul; Dauphin, Yannicke; Rack, Alexander; Fratzl, Peter; Zlotnikov, Igor

    2014-12-01

    Significant progress has been made in understanding the interaction between mineral precursors and organic components leading to material formation and structuring in biomineralizing systems. The mesostructure of biological materials, such as the outer calcitic shell of molluscs, is characterized by many parameters and the question arises as to what extent they all are, or need to be, controlled biologically. Here, we analyse the three-dimensional structure of the calcite-based prismatic layer of Pinna nobilis, the giant Mediterranean fan mussel, using high-resolution synchrotron-based microtomography. We show that the evolution of the layer is statistically self-similar and, remarkably, its morphology and mesostructure can be fully predicted using classical materials science theories for normal grain growth. These findings are a fundamental step in understanding the constraints that dictate the shape of these biogenic minerals and shed light on how biological organisms make use of thermodynamics to generate complex morphologies.

  2. Self-similar mesostructure evolution of the growing mollusc shell reminiscent of thermodynamically driven grain growth.

    PubMed

    Bayerlein, Bernd; Zaslansky, Paul; Dauphin, Yannicke; Rack, Alexander; Fratzl, Peter; Zlotnikov, Igor

    2014-12-01

    Significant progress has been made in understanding the interaction between mineral precursors and organic components leading to material formation and structuring in biomineralizing systems. The mesostructure of biological materials, such as the outer calcitic shell of molluscs, is characterized by many parameters and the question arises as to what extent they all are, or need to be, controlled biologically. Here, we analyse the three-dimensional structure of the calcite-based prismatic layer of Pinna nobilis, the giant Mediterranean fan mussel, using high-resolution synchrotron-based microtomography. We show that the evolution of the layer is statistically self-similar and, remarkably, its morphology and mesostructure can be fully predicted using classical materials science theories for normal grain growth. These findings are a fundamental step in understanding the constraints that dictate the shape of these biogenic minerals and shed light on how biological organisms make use of thermodynamics to generate complex morphologies.

  3. Mechanical properties of granular materials: A variational approach to grain-scale simulations

    SciTech Connect

    Holtzman, R.; Silin, D.B.; Patzek, T.W.

    2009-01-15

    The mechanical properties of cohesionless granular materials are evaluated from grain-scale simulations. A three-dimensional pack of spherical grains is loaded by incremental displacements of its boundaries. The deformation is described as a sequence of equilibrium configurations. Each configuration is characterized by a minimum of the total potential energy. This minimum is computed using a modification of the conjugate gradient algorithm. Our simulations capture the nonlinear, path-dependent behavior of granular materials observed in experiments. Micromechanical analysis provides valuable insight into phenomena such as hysteresis, strain hardening and stress-induced anisotropy. Estimates of the effective bulk modulus, obtained with no adjustment of material parameters, are in agreement with published experimental data. The model is applied to evaluate the effects of hydrate dissociation in marine sediments. Weakening of the sediment is quantified as a reduction in the effective elastic moduli.

  4. Grain boundary character modification employing thermo-mechanical processing in type 304L stainless steel

    NASA Astrophysics Data System (ADS)

    Pradhan, S. K.; Mandal, S.

    2016-02-01

    Grain boundary engineering (GBE) approach has been employed to modify the boundaries character of a type 304L stainless steel through thermo-mechanical processing (TMP) route, which combined a low level of cold deformation (5, 10 and 15%) followed by annealing at 1173K and 1273K for 1hour. Employing Electron Back Scatter Diffraction based Orientation Imaging Microscopy, the fraction and distribution of low ∑ CSL boundaries (∑≤ 29) and its effect on random high-angle grain boundaries connectivity and triple junction distribution of as-received (AR) and GBE specimens were evaluated. It was possible to increase the fraction of low ∑ CSL boundaries up to 75% following GBE treatment (as compared to 50% in AR specimen). The GBE specimens also contained maximum number of percolation resistant triple junctions which could render better resistance against percolation related phenomena.

  5. Order parameter re-mapping algorithm for 3D phase field model of grain growth using FEM

    DOE PAGES

    Permann, Cody J.; Tonks, Michael R.; Fromm, Bradley; Gaston, Derek R.

    2016-01-14

    Phase field modeling (PFM) is a well-known technique for simulating microstructural evolution. To model grain growth using PFM, typically each grain is assigned a unique non-conserved order parameter and each order parameter field is evolved in time. Traditional approaches using a one-to-one mapping of grains to order parameters present a challenge when modeling large numbers of grains due to the computational expense of using many order parameters. This problem is exacerbated when using an implicit finite element method (FEM), as the global matrix size is proportional to the number of order parameters. While previous work has developed methods to reducemore » the number of required variables and thus computational complexity and run time, none of the existing approaches can be applied for an implicit FEM implementation of PFM. Here, we present a modular, dynamic, scalable reassignment algorithm suitable for use in such a system. Polycrystal modeling with grain growth and stress require careful tracking of each grain’s position and orientation which is lost when using a reduced order parameter set. In conclusion, the method presented in this paper maintains a unique ID for each grain even after reassignment, to allow the PFM to be tightly coupled to calculations of the stress throughout the polycrystal. Implementation details and comparative results of our approach are presented.« less

  6. Aging Precursor Solution in High Humidity Remarkably Promoted Grain Growth in Cu₂ZnSnS₄ Films.

    PubMed

    Guan, Zhongjie; Luo, Wenjun; Xu, Yao; Tao, Qiuchen; Wen, Xin; Zou, Zhigang

    2016-03-01

    Earth-abundant Cu2ZnSnS4 (CZTS) is a promising material for thin film solar cells or solar water splitting cells. Generally, large grain size and vertical penetration are highly desirable microstructures to high-efficiency solar conversion devices. Up to date, some kinds of vacuum methods have been used to prepare large grain-sized CZTS, which are expensive and limit their applications on a large scale. It is still a key challenge to prepare large-grained and vertical-penetration CZTS by a low-cost solution method. In this study, we obtained vertical-penetration CZTS thin film with 1.3 μm grain sizes by a faclie solution method. Different from previous studies, precursor solution was aged in high-humidity air before it was used to prepare CZTS films. The grain size prepared with aging precursor solution was one of the largest among the samples prepared by a solution method after sulfurizing. Moreover, the large-grained CZTS films were used as photocathodes for solar water splitting, which exhibited a much higher photocurrent than those of the samples without aging. To the best of our knowledge, this is the first demonstration to promote grain growth in CZTS by aging precursor solution in high-humidity air. This aging method can offer a reference to prepare other high-performance films. PMID:26863181

  7. A review on the factors affecting mite growth in stored grain commodities.

    PubMed

    Collins, D A

    2012-03-01

    A thorough review of the literature has identified the key factors and interactions that affect the growth of mite pests on stored grain commodities. Although many factors influence mite growth, the change and combinations of the physical conditions (temperature, relative humidity and/or moisture content) during the storage period are likely to have the greatest impact, with biological factors (e.g. predators and commodity) playing an important role. There is limited information on the effects of climate change, light, species interactions, local density dependant factors, spread of mycotoxins and action thresholds for mites. A greater understanding of these factors may identify alternative control techniques. The ability to predict mite population dynamics over a range of environmental conditions, both physical and biological, is essential in providing an early warning of mite infestations, advising when appropriate control measures are required and for evaluating control measures. This information may provide a useful aid in predicting and preventing mite population development as part of a risk based decision support system.

  8. Dynamic and impact contact mechanics of geologic materials: Grain-scale experiments and modeling

    SciTech Connect

    Cole, David M.; Hopkins, Mark A.; Ketcham, Stephen A.

    2013-06-18

    High fidelity treatments of the generation and propagation of seismic waves in naturally occurring granular materials is becoming more practical given recent advancements in our ability to model complex particle shapes and their mechanical interaction. Of particular interest are the grain-scale processes that are activated by impact events and the characteristics of force transmission through grain contacts. To address this issue, we have developed a physics based approach that involves laboratory experiments to quantify the dynamic contact and impact behavior of granular materials and incorporation of the observed behavior indiscrete element models. The dynamic experiments do not involve particle damage and emphasis is placed on measured values of contact stiffness and frictional loss. The normal stiffness observed in dynamic contact experiments at low frequencies (e.g., 10 Hz) are shown to be in good agreement with quasistatic experiments on quartz sand. The results of impact experiments - which involve moderate to extensive levels of particle damage - are presented for several types of naturally occurring granular materials (several quartz sands, magnesite and calcium carbonate ooids). Implementation of the experimental findings in discrete element models is discussed and the results of impact simulations involving up to 5 Multiplication-Sign 105 grains are presented.

  9. Mechanisms of devitrification of grain boundary glassy phases in Si3N4 materials

    NASA Technical Reports Server (NTRS)

    Hench, L. L.

    1982-01-01

    Changes in the grain boundary (g.b.) phases of Si3N4 are analyzed, the effects of composition and thermal history on devitrification of the g.b. phases are determined, devitrification of the g.b. phases of Si3N are related to mechanical behavior and oxidation sensitivity of the material. The phase relationships that occur within the grain boundaries of Si3N4 containing various densification aids are reviewed. Comparisons of the effects of MgO, Y2O3, CeO2, and Y2O3 + AL2O3 are made in terms of the phase equilibria of the Si3N4 + SiO2 + additive compositional system. Two new equilibrium phase diagrams for the Si3N4-SiO2 and Y2O3 and Si3N4-SiO2-Ce2O3 systems are preented. The effects of Y2O3 vs CeO2 densification aids on the fracture surfaces of Si3N4 are compared. Auger electron spectroscopy shows that both oxides are concentrated within the fracture surface. Scanning electron microscopy shows evidence that Si3N4 with CeO2 formed an intergranular structure of fine grained oxynitride reaction products, as predicted by phase quilibria, whereas the Y2O3 containing sample shows evidence of an intergranular glassy phase.

  10. Periodic Viscous Shear Heating Instability in Fine-Grained Shear Zones: Mechanism for Intermediate Depth Earthquakes

    NASA Astrophysics Data System (ADS)

    Coon, E.; Kelemen, P.; Hirth, G.; Spiegelman, M.

    2005-12-01

    Kelemen and Hirth (Fall 2004 AGU) presented a model for periodic, viscous shear heating instabilities along pre-existing, fine grained shear zones. This provides an attractive alternative to dehydration embrittlement for explaining intermediate-depth earthquakes, especially those in a narrow thermal window within the mantle section of subducting oceanic plates (Hacker et al JGR03). Ductile shear zones with widths of cm to m are common in shallow mantle massifs and peridotite along oceanic fracture zones. Pseudotachylites in a mantle shear zone show that shear heating temperatures exceeded the mantle solidus (Obata & Karato Tectonophys95). Olivine grain growth in shear zones is pinned by closely spaced pyroxenes; thus, once formed, these features do not `heal' on geological time scales in the absence of melt or fluid (Warren & Hirth EPSL05). Grain-size sensitive creep will be localized within these shear zones, in preference to host rocks with olivine grain size from 1 to 10 mm. Inspired by the work of Whitehead & Gans (GJRAS74), we proposed that such pre-existing shear zones might undergo repeated shear heating instabilities. This is not a new concept; what is new is that viscous deformation is limited to a narrow shear zone, because grain boundary sliding, sensitive to both stress and grain size, may accommodate creep even at high stress and high temperature. These new ideas yield a new result: simple models for a periodic shear heating instability. Last year, we presented a 1D numerical model using olivine flow laws, assuming that viscous deformation remains localized in shear zones, surrounded by host rocks undergoing elastic deformation. Stress evolves due to elastic strain and drives viscous deformation in a shear zone of specified width. Shear heating and thermal diffusion control T. A maximum of 1400 C (substantial melting of peridotite ) was imposed. Grain size evolves due to recrystallization and diffusion. For strain rates of E-13 to E-14 per sec and

  11. Exploration of the mechanisms of temperature-dependent grain boundary mobility: Search for the common origin of ultrafast grain boundary motion

    DOE PAGES

    O’Brien, C. J.; Foiles, S. M.

    2016-04-19

    The temperature dependence of grain boundary mobility is complex, varied, and rarely fits ideal Arrhenius behavior. This work presents a series of case studies of planar grain boundaries in a model FCC system that were previously demonstrated to exhibit a variety of temperature-dependent mobility behaviors. It is demonstrated that characterization of the mobility versus temperature plots is not sufficient to predict the atomic motion mechanism of the grain boundaries. Herein, the temperature-dependent motion and atomistic motion mechanisms of planar grain boundaries are driven by a synthetic, orientation-dependent, driving force. The systems studied include CSL boundaries with Σ values of 5,more » 7, and 15, including both symmetric and asymmetric boundaries. These boundaries represent a range of temperature-dependent trends including thermally activated, antithermal, and roughening behaviors. Examining the atomic-level motion mechanisms of the thermally activated boundaries reveals that each involves a complex shuffle, and at least one atom that changes the plane it resides on. The motion mechanism of the antithermal boundary is qualitatively different and involves an in-plane coordinated shuffle that rotates atoms about a fixed atom lying on a point in the coincident site lattice. Furthermore, this provides a mechanistic reason for the observed high mobility, even at low temperatures, which is due to the low activation energy needed for such motion. However, it will be demonstrated that this mechanism is not universal, or even common, to other boundaries exhibiting non-thermally activated motion. This work concludes that no single atomic motion mechanism is sufficient to explain the existence of non-thermally activated boundary motion.« less

  12. On the Effect of the Film Hydrogen Content and Deposition Type on the Grain Nucleation and Grain Growth During Crystallization of a-Si:H Films: Preprint

    SciTech Connect

    Mahan, A. H.; Ahrenkiel, S. P.; Roy, B.; Schropp, R.E.I.; Li, H.; Ginley, D. S.

    2006-05-01

    We report the effect of the initial film hydrogen content (CH) on the crystallization kinetics, crystallite nucleation rate and grain growth rate when HWCVD and PECVD a-Si:H films are crystallized by annealing at 600 C. For the HWCVD films, both the incubation time and crystallization time decrease, and the full width at half maximum (FWHM) of the XRD (111) peak decreases with decreasing film CH. However, other sources of XRD line broadening exist in such materials in addition to crystallite size, including the density of crystallite defects. To address these issues, TEM measurements have also been performed on a-Si:H films deposited directly onto TEM grids.

  13. Biophysical mechanism of differential growth during gravitropism

    NASA Technical Reports Server (NTRS)

    Cosgrove, D.

    1984-01-01

    A research project is described the goal of which is to determine the mechanism of gravitropic curvature in plant stems at the biophysical and the cellular level. The reorientation of plant organs under the influence of gravity is due to differential growth of the upper and lower sides of the organ. The rate of plant cell enlargement is governed by four biophysical parameters: (1) the extensibility of the cell wall; (2) the minimum stress in the cell wall required for wall expansion (the "yield threshold'); (3) the osmotic pressure difference between the cell contents and the water source; and (4) the hydraulic conductivity of the pathway for water uptake. Gravitropic response must involve differential alteration of one or more of these four parameters on the two sides of the growing organ. Each of these factors will be examined to assess the role it plays in gravitropism.

  14. Influence of heat-treatment conditions on the electrical conduction mechanism of grain-boundary in cobalt ferrites

    SciTech Connect

    Na, J.G.; Lee, T.D. ); Kim, M.C. . Dept. of Materials Science and Engineering); Park, S.J. )

    1993-11-01

    The electrical resistance and conduction mechanism of the grain-boundary in Co[sub x]Fe[sub 3[minus]x]O[sub 4] ( x = 0.94, 0.97, 1.00, 1.03 and 1.06) under various heat-treatment conditions have been characterized, using a complex impedance analysis technique. The electrical resistance of cobalt ferrites decreases with increasing quenching temperature, which is mainly attributed to the decrease of R[sub g[center dot]b] in Fe-excess cobalt ferrites and R, in Co-excess ones. It is verified that for the furnace-cooled Co[sub 0.94]Fe[sub 2.06]O[sub 4], the conduction mechanism of the grain and grain-boundary is n-type and p-type, respectively. For furnace-cooled Co[sub 1.06]Fe[sub 1.94]O[sub 4], the conduction mechanism of the grain and grain-boundary is p-type and n-type, respectively. These results indicate that the resistivity in the p-type part of cobalt ferrites decreases more rapidly than that in the n-type part with increasing quenching temperature. The conduction mechanism of the grain-boundary is discussed to relate to the preferential oxidation of cations and the disorder near and at the grain-boundary.

  15. Quantum Mechanics/Molecular Mechanics Method Combined with Hybrid All-Atom and Coarse-Grained Model: Theory and Application on Redox Potential Calculations.

    PubMed

    Shen, Lin; Yang, Weitao

    2016-04-12

    We developed a new multiresolution method that spans three levels of resolution with quantum mechanical, atomistic molecular mechanical, and coarse-grained models. The resolution-adapted all-atom and coarse-grained water model, in which an all-atom structural description of the entire system is maintained during the simulations, is combined with the ab initio quantum mechanics and molecular mechanics method. We apply this model to calculate the redox potentials of the aqueous ruthenium and iron complexes by using the fractional number of electrons approach and thermodynamic integration simulations. The redox potentials are recovered in excellent accordance with the experimental data. The speed-up of the hybrid all-atom and coarse-grained water model renders it computationally more attractive. The accuracy depends on the hybrid all-atom and coarse-grained water model used in the combined quantum mechanical and molecular mechanical method. We have used another multiresolution model, in which an atomic-level layer of water molecules around redox center is solvated in supramolecular coarse-grained waters for the redox potential calculations. Compared with the experimental data, this alternative multilayer model leads to less accurate results when used with the coarse-grained polarizable MARTINI water or big multipole water model for the coarse-grained layer.

  16. Growth Responses and Resistance to Streptococccus iniae of Nile Tilapia, Oreochromis niloticus Fed Diets Containing Distiller's Dried Grains with Solubles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to evaluate the effect of dietary levels of distiller’s dried grains with solubles (DDGS) on growth performance, body composition, hematology, immune response and resistance of Nile tilapia to Streptococcus iniae challenge. Five isocaloric diets containing DDGS at levels of ...

  17. The Herschel exploitation of local galaxy Andromeda (HELGA) - V. Strengthening the case for substantial interstellar grain growth

    NASA Astrophysics Data System (ADS)

    Mattsson, L.; Gomez, H. L.; Andersen, A. C.; Smith, M. W. L.; De Looze, I.; Baes, M.; Viaene, S.; Gentile, G.; Fritz, J.; Spinoglio, L.

    2014-10-01

    In this paper, we consider the implications of the distributions of dust and metals in the disc of M31. We derive mean radial dust distributions using a dust map created from Herschel images of M31 sampling the entire far-infrared peak. Modified blackbodies are fit to approximately 4000 pixels with a varying, as well as a fixed, dust emissivity index (β). An overall metal distribution is also derived using data collected from the literature. We use a simple analytical model of the evolution of the dust in a galaxy with dust contributed by stellar sources and interstellar grain growth, and fit this model to the radial dust-to-metals distribution across the galaxy. Our analysis shows that the dust-to-gas gradient in M31 is steeper than the metallicity gradient, suggesting interstellar dust growth is (or has been) important in M31. We argue that M31 helps build a case for cosmic dust in galaxies being the result of substantial interstellar grain growth, while the net dust production from stars may be limited. We note, however, that the efficiency of dust production in stars, e.g. in supernovae ejecta and/or stellar atmospheres, and grain destruction in the interstellar medium may be degenerate in our simple model. We can conclude that interstellar grain growth by accretion is likely at least as important as stellar dust production channels in building the cosmic dust component in M31.

  18. Microstructure degradation of cermet anodes for solid oxide fuel cells: Quantification of nickel grain growth in dry and in humid atmospheres

    NASA Astrophysics Data System (ADS)

    Holzer, L.; Iwanschitz, B.; Hocker, Th.; Münch, B.; Prestat, M.; Wiedenmann, D.; Vogt, U.; Holtappels, P.; Sfeir, J.; Mai, A.; Graule, Th.

    The effects of compositional and environmental parameters on the kinetics of microstructural degradation are investigated for porous Ni/CGO anodes in solid oxide fuel cells (SOFC). Improved methodologies of SEM-imaging, segmentation and object recognition are described which enable a precise quantification of nickel grain growth over time. Due to these methodological improvements the grain growth can be described precisely with a standard deviation of only 5-15 nm for each time step. In humid atmosphere (60 vol.% H 2O, 40% N 2/H 2) the growth rates of nickel are very high (up to 140%/100 h) during the initial period (<200 h). At longer exposure time (>1000 h) the growth rates decrease significantly to nearly 0%/100 h. In contrast, under dry conditions (97 vol.% N 2, 3 vol.% H 2) the growth rates during the initial period are much lower (ca. 1%/100 h) but they do not decrease over a period of 2000 h. In addition to the humidity factor there are other environmental and compositional parameters which have a strong influence on the kinetics of the microstructural degradation. The nickel coarsening is strongly depending on the gas flow rate. Also the initial microstructures and the anode compositions have a big effect on the degradation kinetics. Thereby small average grain sizes, wide distribution of particle size and high contents of nickel lead to higher coarsening and degradation rates. Whereas the nickel coarsening appears to be the dominant degradation mechanism during the initial period (<200 h) other degradation phenomena become more important during long exposure time (>1000 h) in humidified gas. Thereby the evaporation of volatile nickel species may lead to a local increase of the Ni/CGO ratio. Due to the surface wetting of CGO a continuous layer tends to form on the surface of the nickel grains which prevents further grain growth and evaporation of nickel. These phenomena lead to a microstructural reorganization between 1000 and 2300 h of exposure. This

  19. Grain-size reduction mechanisms and rheological consequences in high-temperature gabbro mylonites of Hidaka, Japan

    NASA Astrophysics Data System (ADS)

    Raimbourg, Hugues; Toyoshima, Tsuyoshi; Harima, Yuta; Kimura, Gaku

    2008-03-01

    The study of microstructures and crystallographic fabrics in a granulite-facies shear zone of the Hidaka Metamorphic Belt showed that the strong shearing localized within the mylonite resulted in the asymmetrical elongation of the inherited orthopyroxene porphyroclasts and the generation of fine-grained plagioclase and orthopyroxene layers as asymmetric tails of orthopyroxene porphyroclasts. The orthopyroxene porphyroclasts and the coarse plagioclase matrix surrounding them have a strong crystallographic preferred orientation acquired through deformation by dislocation creep. In contrast, the small orthopyroxene and plagioclase grains located in the tails have equant shapes and random fabric that are interpreted as the result of deformation by grain-boundary sliding. The small orthopyroxene grains are generated on the sheared rims of the orthopyroxene porphyroclasts by subgrain rotation, inheriting the orientation of the porphyroclasts before deforming by grain-boundary sliding (GBS) and losing this fabric. Additional mechanism of grain-size reduction is the disruption of orthopyroxene porphyroclasts by synthetic shear zones localized on clinopyroxene exsolutions. The switch in deformation mechanism from dislocation creep to GBS, associated with the grain-size reduction, yielded estimates of deviatoric stress one order smaller than lithostatic pressure. Besides, such rheological evolution attests of the mechanical softening during deformation, which contributed to the localization of the strain within the mylonite.

  20. Growth behavior of voids randomly distributed at grain boundary on thin metal film with bamboo microstructures under thermal residual stress field and electric field

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Liu, Mabao; Lu, Yi; Ren, Xiang

    2015-09-01

    Based on the rigid grain hypothesis, an analytic expression is developed to investigate the grain boundary void growth on a thin metal film with bamboo microstructures under thermal residual stress field and electric field. The effect of the microstructure of the thin metal film, thermal residual stress, applied electric field, and diffusivity ratio between the grain boundary and the interface on the growth behavior of the voids and the stress evolution is evaluated. The result shows that the thin metal film with fine grains near the anode end may inhibit void nucleation and growth, which is beneficial for the optimization design of the thin metal film with bamboo microstructures.

  1. A chain mechanism for flagellum growth

    NASA Astrophysics Data System (ADS)

    Evans, Lewis D. B.; Poulter, Simon; Terentjev, Eugene M.; Hughes, Colin; Fraser, Gillian M.

    2013-12-01

    Bacteria swim by means of long flagella extending from the cell surface. These are assembled from thousands of protein subunits translocated across the cell membrane by an export machinery at the base of each flagellum. Unfolded subunits then transit through a narrow channel at the core of the growing flagellum to the tip, where they crystallize into the nascent structure. As the flagellum lengthens outside the cell, the rate of flagellum growth does not change. The mystery is how subunit transit is maintained at a constant rate without a discernible energy source in the channel of the external flagellum. We present evidence for a simple physical mechanism for flagellum growth that harnesses the entropic force of the unfolded subunits themselves. We show that a subunit docked at the export machinery can be captured by a free subunit through head-to-tail linkage of juxtaposed amino (N)- and carboxy (C)-terminal helices. We propose that sequential rounds of linkage would generate a multisubunit chain that pulls successive subunits into and through the channel to the flagellum tip, and by isolating filaments growing on bacterial cells we reveal the predicted chain of head-to-tail linked subunits in the transit channel of flagella. Thermodynamic analysis confirms that links in the subunit chain can withstand the pulling force generated by rounds of subunit crystallization at the flagellum tip, and polymer theory predicts that as the N terminus of each unfolded subunit crystallizes, the entropic force at the subunit C terminus would increase, rapidly overcoming the threshold required to pull the next subunit from the export machinery. This pulling force would adjust automatically over the increasing length of the growing flagellum, maintaining a constant rate of subunit delivery to the tip.

  2. Modeling methane bubble growth in fine-grained muddy aquatic sediments: correlation with sediment properties

    NASA Astrophysics Data System (ADS)

    Katsman, Regina

    2015-04-01

    Gassy sediments contribute to destabilization of aquatic infrastructure, air pollution, and global warming. In the current study a precise shape and size of the buoyant mature methane bubble in fine-grained muddy aquatic sediment is defined by numerical and analytical modeling, their results are in a good agreement. A closed-form analytical solution defining the bubble parameters is developed. It is found that the buoyant mature bubble is elliptical in its front view and resembles an inverted tear drop in its cross-section. The size and shape of the mature bubble strongly correlate with sediment fracture toughness. Bubbles formed in the weaker sediments are smaller and characterized by a larger surface-to volume ratio that induces their faster growth and may lead to their faster dissolution below the sediment-water interface. This may prevent their release to the water column and to the atmosphere. Shapes of the bubbles in the weaker sediments deviate further from the spherical configuration, than those in the stronger sediments. Modeled bubble characteristics, important for the acoustic applications, are in a good agreement with field observations and lab experiments.

  3. Decarburization and grain growth kinetics during the annealing of electrical steels

    SciTech Connect

    Oldani, C.R.

    1996-12-01

    Electrical steels are generally described as thin steel sheets of variable thickness (from 0.27 to 0.76 mm), whose function is to efficiently transport the magnetic flux in electrical equipments. The electromagnetic properties expected from these materials are low magnetic losses and a high permeability. It can be said that a cyclically magnetized-demagnetized material is not free of energy losses because a portion of the power, the loss, is irreversibly transformed into heat. These steels are usually produced in a partially processed condition and they reach their maximum magnetic potential during the final steps of manufacture at the user`s plant. Efficient control of the operations by which the sheets are submitted is essential to obtain the optimum steel yield in the magnetic circuit they are made for. In these operations a decarburization annealing heat treatment produces important effects such as removing punching residual tensions, decarburization to very low carbon content, ferritic grain growth and a favorable magnetic crystallographic texture.

  4. Superconducting MgB2 flowers: growth mechanism and their superconducting properties

    NASA Astrophysics Data System (ADS)

    Seong, Won Kyung; Ranot, Mahipal; Lee, Ji Yeong; Yang, Cheol-Woong; Lee, Jae Hak; Oh, Young Hoon; Ahn, Jae-Pyoung; Kang, Won Nam

    2016-04-01

    We report for the first time the growth and the systematic study of the growth mechanism for flower-like MgB2 structures fabricated on the substrates for solid-state electronics by the hybrid physical-chemical vapor deposition (HPCVD) technique. The MgB2 flower has a width of 30 μm and a height of 10 μm. The superconductivity of MgB2 flowers was confirmed by a magnetization measurement, and the transition temperature is 39 K, which is comparable with high-quality bulk samples. The excellent current-carrying capability was demonstrated by MgB2 flowers. To understand the nucleation and growth mechanism of MgB2 flowers a very systematic study was performed by a high-resolution transmission electron microscope (HRTEM) and atom probe (AP) microscopy. The HRTEM revealed that the seed grain of a MgB2 flower has a [101¯0] direction, and the flower is composed of micro-columnar MgB2 grains having pyramidal tips and which are grown along the (0001) plane. A clear understanding of the growth mechanism for MgB2 flowers could lead to the growth of other low-dimensional MgB2 structures for superconducting electronic devices.

  5. Bridging Enzymatic Structure Function via Mechanics: A Coarse-Grain Approach.

    PubMed

    Sacquin-Mora, S

    2016-01-01

    Flexibility is a central aspect of protein function, and ligand binding in enzymes involves a wide range of structural changes, ranging from large-scale domain movements to small loop or side-chain rearrangements. In order to understand how the mechanical properties of enzymes, and the mechanical variations that are induced by ligand binding, relate to enzymatic activity, we carried out coarse-grain Brownian dynamics simulations on a set of enzymes whose structures in the unbound and ligand-bound forms are available in the Protein Data Bank. Our results show that enzymes are remarkably heterogeneous objects from a mechanical point of view and that the local rigidity of individual residues is tightly connected to their part in the protein's overall structure and function. The systematic comparison of the rigidity of enzymes in their unbound and bound forms highlights the fact that small conformational changes can induce large mechanical effects, leading to either more or less flexibility depending on the enzyme's architecture and the location of its ligand-biding site. These mechanical variations target a limited number of specific residues that occupy key locations for enzymatic activity, and our approach thus offers a mean to detect perturbation-sensitive sites in enzymes, where the addition or removal of a few interactions will lead to important changes in the proteins internal dynamics. PMID:27497169

  6. A nonlinear fracture mechanics approach to the growth of small cracks

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1983-01-01

    An analytical model of crack closure is used to study the crack growth and closure behavior of small cracks in plates and at notches. The calculated crack opening stresses for small and large cracks, together with elastic and elastic plastic fracture mechanics analyses, are used to correlate crack growth rate data. At equivalent elastic stress intensity factor levels, calculations predict that small cracks in plates and at notches should grow faster than large cracks because the applied stress needed to open a small crack is less than that needed to open a large crack. These predictions agree with observed trends in test data. The calculations from the model also imply that many of the stress intensity factor thresholds that are developed in tests with large cracks and with load reduction schemes do not apply to the growth of small cracks. The current calculations are based upon continuum mechanics principles and, thus, some crack size and grain structure exist where the underlying fracture mechanics assumptions become invalid because of material inhomogeneity (grains, inclusions, etc.). Admittedly, much more effort is needed to develop the mechanics of a noncontinuum. Nevertheless, these results indicate the importance of crack closure in predicting the growth of small cracks from large crack data.

  7. Influence of nitrogen-induced grain refinement on mechanical properties of nitrogen alloyed type 316LN stainless steel

    NASA Astrophysics Data System (ADS)

    Kim, Dae Whan

    2012-01-01

    Tensile, fatigue, and creep tests were conducted to investigate the effect of grain refinement by the addition of nitrogen on mechanical properties of nitrogen alloyed type 316LN stainless steel. Grain size was reduced from 100 μm to 47 μm as nitrogen concentration was increased from 0.04% (N04) to 0.10% (N10). When nitrogen concentration was increased, there was a 20% increase in yield stress and a 14% increase in UTS, respectively. Elongation was not significantly changed with increasing nitrogen concentration. As nitrogen concentration was increased, there was a 41% increase in fatigue life and an approximately sixfold increase in the time to rupture. As grain size was reduced from 100 μm to 47 μm, there was an 8% increase in yield stress and a 3% increase in UTS, respectively. Elongation was little changed with decreasing grain size. As grain size was reduced from 100 μm to 47 μm, there was a 9% increase in fatigue life and a 23% increase in the time to rupture. The grain refinement achieved by the addition of nitrogen improved the high temperature mechanical properties of nitrogen alloyed type 316LN stainless steel but was not the main mechanism for improvement of mechanical properties.

  8. The tolerance of grain amaranth (Amaranthus cruentus L.) to defoliation during vegetative growth is compromised during flowering.

    PubMed

    Vargas-Ortiz, Erandi; Délano-Frier, John Paul; Tiessen, Axel

    2015-06-01

    The biochemical processes underlying variations of tolerance are often accompanied by source-sink transitions affecting carbon (C) metabolism. We investigated the tolerance of Amaranthus cruentus L. to total mechanical defoliation through development and in different growing seasons. Defoliated A. cruentus recovered ∼80% of their above-ground biomass and ∼100% of grain yield compared to intact plants if defoliation occurred early during ontogeny, but could not compensate when defoliation occurred during flowering. Tolerance index was higher in the summer season (-0.3) than in the winter season (-0.7). Overall, defoliation tolerance was closely related to phosphoenolpyruvate carboxylase (PEPC) activity in leaves and the subsequent accumulation of starch (∼500 μmol/gDW) and sucrose (∼140 μmol/gDW) in stems and roots. Thus, A. cruentus accumulated sufficient C in roots and stem to allow branching and shoot re-growth after defoliation, but it only possessed sufficient C reserves to maintain <19% seed yield in the absence of new vegetative tissue. Seed size was larger during the warm season but it was not affected by foliar damage. Seed chemical composition was altered by defoliation at flowering. We conclude that A. cruentus defoliation tolerance depends on both, the re-allocation of starch from stem and roots, and the activation of dormant meristems before flowering to generate new photosynthetic capacity to sustain seed filling. PMID:25863889

  9. Unique Aeolian Transport Mechanisms on Mars: Respective Roles of Percussive and Repercussive Grain Populations in the Sediment Load

    NASA Astrophysics Data System (ADS)

    Marshall, John R.

    1999-09-01

    Experiments show that when sand-size grains impact a sediment surface with energy levels commensurate for Mars, small craters are formed by the ejection of several hundred grains from the bed. The experiments were conducted with a modified crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism. Individual grains of sand could be fired at loose sand targets to observe ballistic effects unhindered by aerodynamic mobilization of the bed. Impact trajectories simulated the saltation process on dune surfaces. Impact craters were not elongated despite glancing (15 deg.) bed impact; the craters were very close to being circular. High-speed photography showed them to grow in both diameter and depth after the impactor had ricochetted from the crater site. The delayed response of the bed was "explosive" in nature, and created a miniature ejecta curtain spreading upward and outward for many centimeters for impact of 100-300 micron-diameter grains into similar material. This behavior is explained by deposition of elastic energy in the bed by the "percussive" grain. Impact creates a subsurface stress regime or "quasi-Boussinesq" compression field. Elastic recovery of the bed occurs by dilatancy; shear stresses suddenly convert the grains to open packing and they consequently become forcefully ejected from the site. Random jostling of the grains causes radial homogenization of stress vectors and a resulting circular crater. A stress model based on repercussive bed dilatancy and interparticle adhesive forces (for smaller grains) predicts, to first order, the observed crater volumes for various impact conditions. On earth, only a few grains are mobilized by a percussive saltating grain; some grains are "knudged" along the ground, and some are partly expelled on short trajectories. These motions constitute reptation transport. On Mars, saltation and reptation become indistinct: secondary or "repercussive" trajectories have sufficient vertical impulse to create a

  10. Unique Aeolian Transport Mechanisms on Mars: Respective Roles of Percussive and Repercussive Grain Populations in the Sediment Load

    NASA Astrophysics Data System (ADS)

    Marshall, John R.

    1999-09-01

    Experiments show that when sand-size grains impact a sediment surface with energy levels commensurate for Mars, small craters are formed by the ejection of several hundred grains from the bed. The experiments were conducted with a modified crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism. Individual grains of sand could be fired at loose sand targets to observe ballistic effects unhindered by aerodynamic mobilization of the bed. Impact trajectories simulated the saltation process on dune surfaces. Impact craters were not elongated despite glancing (15 deg.) bed impact; the craters were very close to being circular. High-speed photography showed them to grow in both diameter and depth after the impactor had ricochetted from the crater site. The delayed response of the bed was "explosive" in nature, and created a miniature ejecta curtain spreading upward and outward for many centimeters for impact of 100-300 um-diameter grains into similar material. This behavior is explained by deposition of elastic energy in the bed by the "percussive" grain. Impact creates a subsurface stress regime or "quasi-Boussinesq" compression field. Elastic recovery of the bed occurs by dilatancy; shear stresses suddenly convert the grains to open packing and they consequently become forcefully ejected from the site. Random jostling of the grains causes radial homogenization of stress vectors and a resulting circular crater. A stress model based on repercussive bed dilatancy and interparticle adhesive forces (for smaller grains) predicts, to first order, the observed crater volumes for various impact conditions. On earth, only a few grains are mobilized by a percussive saltating grain; some grains are "knudged" along the ground, and some are partly expelled on short trajectories. These motions constitute reptation transport. On Mars, saltation and reptation become indistinct: secondary or "repercussive" trajectories have sufficient vertical impulse to create a

  11. Unique Aeolian Transport Mechanisms on Mars: Respective Roles of Percussive and Repercussive Grain Populations in the Sediment Load

    NASA Technical Reports Server (NTRS)

    Marshall, John R.

    1999-01-01

    Experiments show that when sand-size grains impact a sediment surface with energy levels commensurate for Mars, small craters are formed by the ejection of several hundred grains from the bed. The experiments were conducted with a modified crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism. Individual grains of sand could be fired at loose sand targets to observe ballistic effects unhindered by aerodynamic mobilization of the bed. Impact trajectories simulated the saltation process on dune surfaces. Impact craters were not elongated despite glancing (15 deg.) bed impact; the craters were very close to being circular. High-speed photography showed them to grow in both diameter and depth after the impactor had ricochetted from the crater site. The delayed response of the bed was "explosive" in nature, and created a miniature ejecta curtain spreading upward and outward for many centimeters for impact of 100-300 um-diameter grains into similar material. This behavior is explained by deposition of elastic energy in the bed by the "percussive" grain. Impact creates a subsurface stress regime or "quasi-Boussinesq" compression field. Elastic recovery of the bed occurs by dilatancy; shear stresses suddenly convert the grains to open packing and they consequently become forcefully ejected from the site. Random jostling of the grains causes radial homogenization of stress vectors and a resulting circular crater. A stress model based on repercussive bed dilatancy and interparticle adhesive forces (for smaller grains) predicts, to first order, the observed crater volumes for various impact conditions. On earth, only a few grains are mobilized by a percussive saltating grain; some grains are "knudged" along the ground, and some are partly expelled on short trajectories. These motions constitute reptation transport. On Mars, saltation and reptation become indistinct: secondary or "repercussive" trajectories have sufficient vertical impulse to create a

  12. Unique Aeolian Transport Mechanisms on Mars: Respective Roles of Percussive and Repercussive Grain Populations in the Sediment Load

    NASA Technical Reports Server (NTRS)

    Marshall, John R.

    1999-01-01

    Experiments show that when sand-size grains impact a sediment surface with energy levels commensurate for Mars, small craters are formed by the ejection of several hundred grains from the bed. The experiments were conducted with a modified crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism. Individual grains of sand could be fired at loose sand targets to observe ballistic effects unhindered by aerodynamic mobilization of the bed. Impact trajectories simulated the saltation process on dune surfaces. Impact craters were not elongated despite glancing (15 deg.) bed impact; the craters were very close to being circular. High-speed photography showed them to grow in both diameter and depth after the impactor had ricochetted from the crater site. The delayed response of the bed was "explosive" in nature, and created a miniature ejecta curtain spreading upward and outward for many centimeters for impact of 100-300 micron-diameter grains into similar material. This behavior is explained by deposition of elastic energy in the bed by the "percussive" grain. Impact creates a subsurface stress regime or "quasi-Boussinesq" compression field. Elastic recovery of the bed occurs by dilatancy; shear stresses suddenly convert the grains to open packing and they consequently become forcefully ejected from the site. Random jostling of the grains causes radial homogenization of stress vectors and a resulting circular crater. A stress model based on repercussive bed dilatancy and interparticle adhesive forces (for smaller grains) predicts, to first order, the observed crater volumes for various impact conditions. On earth, only a few grains are mobilized by a percussive saltating grain; some grains are "knudged" along the ground, and some are partly expelled on short trajectories. These motions constitute reptation transport. On Mars, saltation and reptation become indistinct: secondary or "repercussive" trajectories have sufficient vertical impulse to create a

  13. Mechanics, growth, and class II corrections.

    PubMed

    Hultgren, B W; Isaacson, R J; Erdman, A G; Worms, F W

    1978-10-01

    Growth of the orofacial region is quantitatively described by locating the center of mandibular rotation relative to the cranial base. The center of mandibular rotation is positioned by the ratio of vertical facial growth (AFH/PFH) and the direction of condylar growth. Appliance therapy is associated with changes in the means of both of these parameters. These changes reduce or stop favorable anterior mandibular rotation and redirect the mean condylar growth vector more posteriorly. When appliance therapy is stopped, these parameters return toward their resting values. The mean direction of the condylar growth vector became even more anteriorly directed after treatment than the pretreatment mean value. These data support the hypothesis that orthodontic appliances significantly alter the facial growth pattern and when they are stopped, the growth pattern tends to rebound to or beyond the pretreatment values.

  14. Two-dimensional phase-field study of competitive grain growth during directional solidification of polycrystalline binary alloy

    NASA Astrophysics Data System (ADS)

    Takaki, Tomohiro; Ohno, Munekazu; Shibuta, Yasushi; Sakane, Shinji; Shimokawabe, Takashi; Aoki, Takayuki

    2016-05-01

    Selections of growing crystals during directional solidification of a polycrystalline binary alloy were numerically investigated using two-dimensional phase-field simulations. To accelerate the simulations, parallel graphics processing unit (GPU) simulations were performed using the GPU-rich supercomputer TSUBAME2.5 at the Tokyo Institute of Technology. Twenty simulations with a combination of five sets of different seed orientation distributions and four different temperature gradients covering dendritic and cellular growth regions were performed. The unusual grain selection phenomenon, in which the unfavorably oriented grains preferentially grow instead of the favorably oriented grains, was observed frequently. The unusual selection was more remarkable in the cellular structure than in the dendritic structure.

  15. Effect of γ radiation processing on fungal growth and quality characteristcs of millet grains.

    PubMed

    Mahmoud, Nagat S; Awad, Sahar H; Madani, Rayan M A; Osman, Fahmi A; Elmamoun, Khalid; Hassan, Amro B

    2016-05-01

    The aim of this study was to evaluate the effect of gamma radiation processing of millet grains on fungal incidence, germination, free fatty acids content, protein solubility, digestible protein, and antinutritional factors (tannin and phytic acid). The grains were exposed to gamma radiation at doses 0.25, 0.5, 0.75, 1.0, and 2.0 kGy. Obtained results revealed that radiation of millet grains at a dose level higher than 0.5 kGy caused significant (P < 0.05) reduction on the percentage of fungal incidence and the free fatty acid of the seeds, while, no significant change in the germination capacity was observed of the grains after radiation. Additionally, the radiation process caused significant (P < 0.05) reduction on both tannins and phytic acid content and gradual increment on in vitro protein digestibility of the grains. On the other hand, the treatments significantly (P < 0.05) increased the protein solubility of the grains. Obtained results indicate that gamma irradiation might improve the quality characteristics of millet grains, and can be used as a postharvest method for disinfestations and decontamination of millet grains.

  16. Effect of γ radiation processing on fungal growth and quality characteristcs of millet grains.

    PubMed

    Mahmoud, Nagat S; Awad, Sahar H; Madani, Rayan M A; Osman, Fahmi A; Elmamoun, Khalid; Hassan, Amro B

    2016-05-01

    The aim of this study was to evaluate the effect of gamma radiation processing of millet grains on fungal incidence, germination, free fatty acids content, protein solubility, digestible protein, and antinutritional factors (tannin and phytic acid). The grains were exposed to gamma radiation at doses 0.25, 0.5, 0.75, 1.0, and 2.0 kGy. Obtained results revealed that radiation of millet grains at a dose level higher than 0.5 kGy caused significant (P < 0.05) reduction on the percentage of fungal incidence and the free fatty acid of the seeds, while, no significant change in the germination capacity was observed of the grains after radiation. Additionally, the radiation process caused significant (P < 0.05) reduction on both tannins and phytic acid content and gradual increment on in vitro protein digestibility of the grains. On the other hand, the treatments significantly (P < 0.05) increased the protein solubility of the grains. Obtained results indicate that gamma irradiation might improve the quality characteristics of millet grains, and can be used as a postharvest method for disinfestations and decontamination of millet grains. PMID:27247763

  17. Microstructure and Mechanical Properties of Ultrafine-Grained Copper Produced Using Intermittent Ultrasonic-Assisted Equal-Channel Angular Pressing

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Liu, Zhiyuan; Chen, Xiaoqiang; Xu, Bin; Wu, Zhaozhi; Ruan, Shuangchen

    2016-09-01

    We proposed intermittent ultrasonic-assisted equal-channel angular pressing (IU-ECAP) and used it to produce ultrafine-grained copper. The main aim of this work was to investigate the microstructure and mechanical properties of copper processed by IU-ECAP. We performed experiments with two groups of specimens: group 1 used conventional ECAP, and group 2 combined ECAP with intermittent ultrasonic vibration. The extrusion forces, microstructure, mechanical properties, and thermal stability of the two groups were compared. It was revealed that more homogeneous microstructure with smaller grains could be obtained by IU-ECAP compared with copper obtained using the traditional ECAP method. Mechanical testing showed that IU-ECAP significantly reduced the extrusion force and increased both the hardness and ultimate tensile stress owing to the higher dislocation density and smaller grains. IU-ECAP promotes conversion from low-angle grain boundaries to high-angle grain boundaries, and it increases the fractions of subgrains and dynamic recrystallized grains. Group 2 statically recrystallized at a higher temperature or longer duration than group 1, showing that group 2 had better thermal stability.

  18. Catch-up growth: cellular and molecular mechanisms.

    PubMed

    Finkielstain, G P; Lui, J C; Baron, J

    2013-01-01

    In mammals, after a period of growth inhibition, body growth often does not just return to a normal rate but actually exceeds the normal rate, resulting in catch-up growth. Recent evidence suggests that catch-up growth occurs because growth-inhibiting conditions delay progression of the physiological mechanisms that normally cause body growth to slow and cease with age. As a result, following the period of growth inhibition, tissues retain a greater proliferative capacity than normal, and therefore grow more rapidly than normal for age. There is evidence that this mechanism contributes both to catch-up growth in terms of body length, which involves proliferation in the growth plate, and to catch-up growth in terms of organ mass, which involves proliferation in multiple nonskeletal tissues.

  19. Effect of grain sizes on mechanical properties and biodegradation behavior of pure iron for cardiovascular stent application

    PubMed Central

    Obayi, Camillus Sunday; Tolouei, Ranna; Mostavan, Afghany; Paternoster, Carlo; Turgeon, Stephane; Okorie, Boniface Adeleh; Obikwelu, Daniel Oray; Mantovani, Diego

    2016-01-01

    Abstract Pure iron has been demonstrated as a potential candidate for biodegradable metal stents due to its appropriate biocompatibility, suitable mechanical properties and uniform biodegradation behavior. The competing parameters that control the safety and the performance of BMS include proper strength-ductility combination, biocompatibility along with matching rate of corrosion with healing rate of arteries. Being a micrometre-scale biomedical device, the mentioned variables have been found to be governed by the average grain size of the bulk material. Thermo-mechanical processing techniques of the cold rolling and annealing were used to grain-refine the pure iron. Pure Fe samples were unidirectionally cold rolled and then isochronally annealed at different temperatures with the intention of inducing different ranges of grain size. The effect of thermo-mechanical treatment on mechanical properties and corrosion rates of the samples were investigated, correspondingly. Mechanical properties of pure Fe samples improved significantly with decrease in grain size while the corrosion rate decreased marginally with decrease in the average grain sizes. These findings could lead to the optimization of the properties to attain an adequate biodegradation-strength-ductility balance. PMID:25482336

  20. Effect of grain sizes on mechanical properties and biodegradation behavior of pure iron for cardiovascular stent application.

    PubMed

    Obayi, Camillus Sunday; Tolouei, Ranna; Mostavan, Afghany; Paternoster, Carlo; Turgeon, Stephane; Okorie, Boniface Adeleh; Obikwelu, Daniel Oray; Mantovani, Diego

    2016-01-01

    Pure iron has been demonstrated as a potential candidate for biodegradable metal stents due to its appropriate biocompatibility, suitable mechanical properties and uniform biodegradation behavior. The competing parameters that control the safety and the performance of BMS include proper strength-ductility combination, biocompatibility along with matching rate of corrosion with healing rate of arteries. Being a micrometre-scale biomedical device, the mentioned variables have been found to be governed by the average grain size of the bulk material. Thermo-mechanical processing techniques of the cold rolling and annealing were used to grain-refine the pure iron. Pure Fe samples were unidirectionally cold rolled and then isochronally annealed at different temperatures with the intention of inducing different ranges of grain size. The effect of thermo-mechanical treatment on mechanical properties and corrosion rates of the samples were investigated, correspondingly. Mechanical properties of pure Fe samples improved significantly with decrease in grain size while the corrosion rate decreased marginally with decrease in the average grain sizes. These findings could lead to the optimization of the properties to attain an adequate biodegradation-strength-ductility balance.

  1. Electrical Transport and Grain Growth in Solution-Cast, Chloride-Terminated Cadmium Selenide Nanocrystal Thin Films

    PubMed Central

    2015-01-01

    We report the evolution of electrical transport and grain size during the sintering of thin films spin-cast from soluble phosphine and amine-bound, chloride-terminated cadmium selenide nanocrystals. Sintering of the nanocrystals occurs in three distinct stages as the annealing temperature is increased: (1) reversible desorption of the organic ligands (≤150 °C), (2) irreversible particle fusion (200–300 °C), and (3) ripening of the grains to >5 nm domains (>200 °C). Grain growth occurs at 200 °C in films with 8 atom % Cl–, while films with 3 atom % Cl– resist growth until 300 °C. Fused nanocrystalline thin films (grain size = 4.5–5.5 nm) on thermally grown silicon dioxide gate dielectrics produce field-effect transistors with electron mobilities as high as 25 cm2/(Vs) and on/off ratios of 105 with less than 0.5 V hysteresis in threshold voltage without the addition of indium. PMID:24960255

  2. Microstructure and Mechanical Properties of Oxide-Dispersion Strengthened Al6063 Alloy with Ultra-Fine Grain Structure

    NASA Astrophysics Data System (ADS)

    Asgharzadeh, H.; Simchi, A.; Kim, H. S.

    2011-03-01

    The microstructure and mechanical properties of the ultra-fine grained (UFG) Al6063 alloy reinforced with nanometric aluminum oxide nanoparticles (25 nm) were investigated and compared with the coarse-grained (CG) Al6063 alloy (~2 μm). The UFG materials were prepared by mechanical alloying (MA) under high-purity Ar and Ar-5 vol pct O2 atmospheres followed by hot powder extrusion (HPE). The CG alloy was produced by HPE of the gas-atomized Al6063 powder without applying MA. Electron backscatter diffraction under scanning electron microscopy together with transmission electron microscopy studies revealed that the microstructure of the milled powders after HPE consisted of ultra-fine grains (>100 nm) surrounded by nanostructured grains (<100 nm), revealing the formation of a bimodal grain structure. The grain size distribution was in the range of 20 to 850 nm with an average of 360 and 300 nm for Ar and Ar-5 pct O2 atmospheres, respectively. The amount of oxide particles formed by reactive mechanical alloying under the Ar/O2 atmosphere was ~0.8 vol pct, whereas the particles were almost uniformly distributed throughout the aluminum matrix. The UFG materials exhibited significant improvement in the hardness and yield strength with an absence of strain hardening behavior compared with CG material. The fracture surfaces showed a ductile fracture mode for both CG and UFG Al6063, in which the dimple size was related to the grain structure. A mixture of ductile-brittle fracture mode was observed for the UFG alloy containing 0.8 vol pct Al2O3 particles. The tensile behavior was described based on the formation of nonequilibrium grain boundaries with high internal stress and dislocation-based models.

  3. A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals.

    PubMed

    Sinitskiy, Anton V; Voth, Gregory A

    2015-09-01

    Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman's imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments.

  4. A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals

    SciTech Connect

    Sinitskiy, Anton V.; Voth, Gregory A.

    2015-09-07

    Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman’s imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments.

  5. A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals.

    PubMed

    Sinitskiy, Anton V; Voth, Gregory A

    2015-09-01

    Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman's imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments. PMID:26342356

  6. Systems biology and mechanics of growth.

    PubMed

    Eskandari, Mona; Kuhl, Ellen

    2015-01-01

    In contrast to inert systems, living biological systems have the advantage to adapt to their environment through growth and evolution. This transfiguration is evident during embryonic development, when the predisposed need to grow allows form to follow function. Alterations in the equilibrium state of biological systems breed disease and mutation in response to environmental triggers. The need to characterize the growth of biological systems to better understand these phenomena has motivated the continuum theory of growth and stimulated the development of computational tools in systems biology. Biological growth in development and disease is increasingly studied using the framework of morphoelasticity. Here, we demonstrate the potential for morphoelastic simulations through examples of volume, area, and length growth, inspired by tumor expansion, chronic bronchitis, brain development, intestine formation, plant shape, and myopia. We review the systems biology of living systems in light of biochemical and optical stimuli and classify different types of growth to facilitate the design of growth models for various biological systems within this generic framework. Exploring the systems biology of growth introduces a new venue to control and manipulate embryonic development, disease progression, and clinical intervention.

  7. The role of inter-grain friction in determining the mechanical and structural properties of superellipsoid packings

    NASA Astrophysics Data System (ADS)

    Delaney, Gary W.; Hilton, James E.; Cleary, Paul W.; Miller, Claire

    2013-06-01

    We explore the role of inter-grain friction in determining the properties of non-spherical particle packings. We employ the Discrete Element Method (DEM) to generate sets of packings of different superellipsoidal grains over a range of inter-grain friction coefficients. We consider a broad range of grain shapes from spheres to ellipsoids and cuboids, and explore the full range of inter-grain friction values, from purely frictionless up to the infinite friction limit. Friction is demonstrated to play a key role in determining the mechanical properties of the system, determining the density of the loosest packings that can be realised, and strongly affecting the degree of ordering of the grains within the packing. By utilizing a range of order parameters, we are able to quantify how features of the individual grain shapes affect the properties of the system in the packed state. We find that anisotropy and broken rotational symmetry in the individual particle shapes play key roles in determining the properties of the resulting granular packings.

  8. Effect of grain orientation on mechanical properties and thermomechanical response of Sn-based solder interconnects

    SciTech Connect

    Chen, Hongtao; Yan, Bingbing; Yang, Ming; Ma, Xin; Li, Mingyu

    2013-11-15

    The thermomechanical response of Sn-based solder interconnects with differently oriented grains was investigated by electron backscattered diffraction technique under thermal cycling and thermal shock testing in this study. The results showed that deformation and cracking of solder interconnects have a close relationship with the unique characteristics of grain orientation and boundaries in each solder interconnect, and deformation was frequently confined within the high-angle grain boundaries. The micro Vickers hardness testing results showed that the hardness varied significantly depending on the grain orientation and structure, and deformation twins can be induced around the indents by the indentation testing. - Highlights: • Thermomechanical response shows a close relationship with the grain structure. • Deformation was frequently confined within the high-angle grain boundaries. • Different grain orientations exhibit different hardness. • Deformation twins can be induced around the indents in SAC105 solder interconnects.

  9. In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals.

    PubMed

    Han, Xiaodong; Wang, Lihua; Yue, Yonghai; Zhang, Ze

    2015-04-01

    In this review, we briefly introduce our in situ atomic-scale mechanical experimental technique (ASMET) for transmission electron microscopy (TEM), which can observe the atomic-scale deformation dynamics of materials. This in situ mechanical testing technique allows the deformation of TEM samples through a simultaneous double-tilt function, making atomic-scale mechanical microscopy feasible. This methodology is generally applicable to thin films, nanowires (NWs), tubes and regular TEM samples to allow investigation of the dynamics of mechanically stressed samples at the atomic scale. We show several examples of this technique applied to Pt and Cu single/polycrystalline specimens. The in situ atomic-scale observation revealed that when the feature size of these materials approaches the nano-scale, they often exhibit "unusual" deformation behaviours compared to their bulk counterparts. For example, in Cu single-crystalline NWs, the elastic-plastic transition is size-dependent. An ultra-large elastic strain of 7.2%, which approaches the theoretical elasticity limit, can be achieved as the diameter of the NWs decreases to ∼6 nm. The crossover plasticity transition from full dislocations to partial dislocations and twins was also discovered as the diameter of the single-crystalline Cu NWs decreased. For Pt nanocrystals (NC), the long-standing uncertainties of atomic-scale plastic deformation mechanisms in NC materials (grain size G less than 15 nm) were clarified. For larger grains with G<∼10 nm, we frequently observed movements and interactions of cross-grain full dislocations. For G between 6 and 10 nm, stacking faults resulting from partial dislocations become more frequent. For G<∼6 nm, the plasticity mechanism transforms from a mode of cross-grain dislocation to a collective grain rotation mechanism. This grain rotation process is mediated by grain boundary (GB) dislocations with the assistance of GB diffusion and shuffling. These in situ atomic-scale images

  10. In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals.

    PubMed

    Han, Xiaodong; Wang, Lihua; Yue, Yonghai; Zhang, Ze

    2015-04-01

    In this review, we briefly introduce our in situ atomic-scale mechanical experimental technique (ASMET) for transmission electron microscopy (TEM), which can observe the atomic-scale deformation dynamics of materials. This in situ mechanical testing technique allows the deformation of TEM samples through a simultaneous double-tilt function, making atomic-scale mechanical microscopy feasible. This methodology is generally applicable to thin films, nanowires (NWs), tubes and regular TEM samples to allow investigation of the dynamics of mechanically stressed samples at the atomic scale. We show several examples of this technique applied to Pt and Cu single/polycrystalline specimens. The in situ atomic-scale observation revealed that when the feature size of these materials approaches the nano-scale, they often exhibit "unusual" deformation behaviours compared to their bulk counterparts. For example, in Cu single-crystalline NWs, the elastic-plastic transition is size-dependent. An ultra-large elastic strain of 7.2%, which approaches the theoretical elasticity limit, can be achieved as the diameter of the NWs decreases to ∼6 nm. The crossover plasticity transition from full dislocations to partial dislocations and twins was also discovered as the diameter of the single-crystalline Cu NWs decreased. For Pt nanocrystals (NC), the long-standing uncertainties of atomic-scale plastic deformation mechanisms in NC materials (grain size G less than 15 nm) were clarified. For larger grains with G<∼10 nm, we frequently observed movements and interactions of cross-grain full dislocations. For G between 6 and 10 nm, stacking faults resulting from partial dislocations become more frequent. For G<∼6 nm, the plasticity mechanism transforms from a mode of cross-grain dislocation to a collective grain rotation mechanism. This grain rotation process is mediated by grain boundary (GB) dislocations with the assistance of GB diffusion and shuffling. These in situ atomic-scale images

  11. Paleowattmeters: A scaling relation for dynamically recrystallized grain size

    NASA Astrophysics Data System (ADS)

    Austin, Nicholas J.; Evans, Brian

    2007-04-01

    During dislocation creep, mineral grains often evolve to a stable size, dictated by the deformation conditions. We suggest that grain-size evolution during deformation is determined by the rate of mechanical work. Provided that other elements of microstructure have achieved steady state and that the dissipation rate is roughly constant, then changes in internal energy will be proportional to changes in grain-boundary area. If normal grain-growth and dynamic grain-size reduction occur simultaneously, then the steady-state grain size is determined by the balance of those rates. A scaling model using these assumptions and published grain-growth and mechanical relations matches stress grain-size relations for quartz and olivine rocks with no fitting. For marbles, the model also explains scatter not rationalized by assuming that recrystallized grain size is a function of stress alone. When extrapolated to conditions typical for natural mylonites, the model is consistent with field constraints on stresses and strain rates.

  12. Effect of specimen size and grain orientation on the mechanical and physical properties of NBG-18 nuclear graphite

    NASA Astrophysics Data System (ADS)

    Vasudevamurthy, G.; Byun, T. S.; Pappano, P.; Snead, L. L.; Burchell, T. D.

    2015-07-01

    We present here a comparison of the measured baseline mechanical and physical properties of with grain (WG) and against grain (AG) non-ASTM size NBG-18 graphite. The objectives of the experiments were twofold: (1) assess the variation in properties with grain orientation; (2) establish a correlation between specimen tensile strength and size. The tensile strength of the smallest sized (4 mm diameter) specimens were about 5% higher than the standard specimens (12 mm diameter) but still within one standard deviation of the ASTM specimen size indicating no significant dependence of strength on specimen size. The thermal expansion coefficient and elastic constants did not show significant dependence on specimen size. Experimental data indicated that the variation of thermal expansion coefficient and elastic constants were still within 5% between the different grain orientations, confirming the isotropic nature of NBG-18 graphite in physical properties.

  13. Mechanism of core loss and the grain-boundary structure of niobium-doped manganese-zinc ferrite

    SciTech Connect

    Inaba, Hideaki; Abe, Teruyoshi, Kitano, Yoko

    1996-01-05

    The mechanism of iron loss was investigated for Mn-Zn ferrites with and without Nb{sub 2}O{sub 5} addition by observing the grain-boundary structure and measuring the various properties. Without Nb{sub 2}O{sub 5} addition Ca and Si atoms concentrate near the grain boundary and are incorporated in the spinel lattice. With Nb{sub 2}O{sub 5} addition Nb atoms concentrate in the grain boundary and keep Ca atoms from being incorporated in the spinel lattice. Hysteresis loss was reduced in spite of smaller magnetic permeability by the addition of Nb{sub 2}O{sub 5}. Eddy current loss and residual loss were reduced by the addition of Nb{sub 2}O{sub 5}, especially at high frequencies. The origin of the decrease in these losses was discussed on the basis of the data of the grain-boundary structure, permeability, electrical conductivity, and disaccomodation.

  14. Effect of specimen size and grain orientation on the mechanical and physical properties of NBG-18 nuclear graphite

    SciTech Connect

    Vasudevamurthy, Gokul; Byun, Thak Sang; Pappano, Pete; Snead, Lance L.; Burchell, Tim D.

    2015-03-13

    We present here a comparison of the measured baseline mechanical and physical properties of with grain (WG) and against grain (AG) non-ASTM size NBG-18 graphite. The objectives of the experiments were twofold: (1) assess the variation in properties with grain orientation; (2) establish a correlation between specimen tensile strength and size. The tensile strength of the smallest sized (4 mm diameter) specimens were about 5% higher than the standard specimens (12 mmdiameter) but still within one standard deviation of the ASTM specimen size indicating no significant dependence of strength on specimen size. The thermal expansion coefficient and elastic constants did not show significant dependence on specimen size. Experimental data indicated that the variation of thermal expansion coefficient and elastic constants were still within 5% between the different grain orientations, confirming the isotropic nature of NBG-18 graphite in physical properties.

  15. A continuum theory of grain size evolution and damage

    NASA Astrophysics Data System (ADS)

    Ricard, Y.; Bercovici, D.

    2009-01-01

    Lithospheric shear localization, as occurs in the formation of tectonic plate boundaries, is often associated with diminished grain size (e.g., mylonites). Grain size reduction is typically attributed to dynamic recrystallization; however, theoretical models of shear localization arising from this hypothesis are problematic because (1) they require the simultaneous action of two creep mechanisms (diffusion and dislocation creep) that occur in different deformation regimes (i.e., in grain size stress space) and (2) the grain growth ("healing") laws employed by these models are derived from normal grain growth or coarsening theory, which are valid in the absence of deformation, although the shear localization setting itself requires deformation. Here we present a new first principles grained-continuum theory, which accounts for both coarsening and damage-induced grain size reduction in a monomineralic assemblage undergoing irrecoverable deformation. Damage per se is the generic process for generation of microcracks, defects, dislocations (including recrystallization), subgrains, nuclei, and cataclastic breakdown of grains. The theory contains coupled macroscopic continuum mechanical and grain-scale statistical components. The continuum level of the theory considers standard mass, momentum, and energy conservation, as well as entropy production, on a statistically averaged grained continuum. The grain-scale element of the theory describes both the evolution of the grain size distribution and mechanisms for both continuous grain growth and discontinuous grain fracture and coalescence. The continuous and discontinuous processes of grain size variation are prescribed by nonequilibrium thermodynamics (in particular, the treatment of entropy production provides the phenomenological laws for grain growth and reduction); grain size evolution thus incorporates the free energy differences between grains, including both grain boundary surface energy (which controls coarsening

  16. Metabolic and enzymatic changes associated with carbon mobilization, utilization and replenishment triggered in grain amaranth (Amaranthus cruentus) in response to partial defoliation by mechanical injury or insect herbivory

    PubMed Central

    2012-01-01

    Background Amaranthus cruentus and A. hypochondriacus are crop plants grown for grain production in subtropical countries. Recently, the generation of large-scale transcriptomic data opened the possibility to study representative genes of primary metabolism to gain a better understanding of the biochemical mechanisms underlying tolerance to defoliation in these species. A multi-level approach was followed involving gene expression analysis, enzyme activity and metabolite measurements. Results Defoliation by insect herbivory (HD) or mechanical damage (MD) led to a rapid and transient reduction of non-structural carbohydrates (NSC) in all tissues examined. This correlated with a short-term induction of foliar sucrolytic activity, differential gene expression of a vacuolar invertase and its inhibitor, and induction of a sucrose transporter gene. Leaf starch in defoliated plants correlated negatively with amylolytic activity and expression of a β-amylase-1 gene and positively with a soluble starch synthase gene. Fatty-acid accumulation in roots coincided with a high expression of a phosphoenolpyruvate/phosphate transporter gene. In all tissues there was a long-term replenishment of most metabolite pools, which allowed damaged plants to maintain unaltered growth and grain yield. Promoter analysis of ADP-glucose pyrophosphorylase and vacuolar invertase genes indicated the presence of cis-regulatory elements that supported their responsiveness to defoliation. HD and MD had differential effects on transcripts, enzyme activities and metabolites. However, the correlation between transcript abundance and enzymatic activities was very limited. A better correlation was found between enzymes, metabolite levels and growth and reproductive parameters. Conclusions It is concluded that a rapid reduction of NSC reserves in leaves, stems and roots followed by their long-term recovery underlies tolerance to defoliation in grain amaranth. This requires the coordinate action of genes

  17. Supernova dust formation and the grain growth in the early universe: the critical metallicity for low-mass star formation

    NASA Astrophysics Data System (ADS)

    Chiaki, Gen; Marassi, Stefania; Nozawa, Takaya; Yoshida, Naoki; Schneider, Raffaella; Omukai, Kazuyuki; Limongi, Marco; Chieffi, Alessandro

    2015-01-01

    We investigate the condition for the formation of low-mass second-generation stars in the early Universe. It has been proposed that gas cooling by dust thermal emission can trigger fragmentation of a low-metallicity star-forming gas cloud. In order to determine the critical condition in which dust cooling induces the formation of low-mass stars, we follow the thermal evolution of a collapsing cloud by a one-zone semi-analytic collapse model. Earlier studies assume the dust amount in the local Universe, where all refractory elements are depleted on to grains, and/or assume the constant dust amount during gas collapse. In this paper, we employ the models of dust formation and destruction in early supernovae to derive the realistic dust compositions and size distributions for multiple species as the initial conditions of our collapse calculations. We also follow accretion of heavy elements in the gas phase on to dust grains, i.e. grain growth, during gas contraction. We find that grain growth well alters the fragmentation property of the clouds. The critical conditions can be written by the gas metallicity Zcr and the initial depletion efficiency fdep,0 of gas-phase metal on to grains, or dust-to-metal mass ratio, as (Zcr/10-5.5 Z⊙) = (fdep,0/0.18)-0.44 with small scatters in the range of Zcr = [0.06-3.2] × 10-5 Z⊙. We also show that the initial dust composition and size distribution are important to determine Zcr.

  18. Quantum chemical studies of growth mechanisms of ultrananocrystalline diamond.

    SciTech Connect

    Curtiss, L. A.; Zapol, P.; Sternberg, M.; Redfern, P. C.; Horner, D. A.; Gruen, D. M.; Materials Science Division; North Central Coll.

    2004-06-07

    Computational studies of growth mechanisms on diamond surfaces based on C{sub 2} precursor have been reviewed. The investigations have postulated reaction mechanisms with diamond growth occurring by insertion of C{sub 2} into the C-H bonds of the hydrogen-terminated diamond surface or into {pi}-bonded carbon dimers on dehydrogenated diamond surfaces. Reaction barriers for both growth and renucleation at (011) and (100) diamond surfaces had been calculated using quantum chemistry approaches. Preliminary results on growth mechanism involving CN precursors are also reported.

  19. Dynamical mechanism for coercivity tunability in the electrically controlled FePt perpendicular films with small grain size

    SciTech Connect

    Feng, Chun Li, Xujing; Jiang, Yong; Yu, Guanghua; Yang, Meiyin; Gong, Kui; Li, Baohe

    2014-01-14

    This article reports property manipulations and related dynamical evolution in electromigration controlled FePt perpendicular films. Through altering voltage and treatment time of the power supply applied on the films, electronic momentum was fleetly controlled to manipulate the kinetic energy of Fe and Pt atoms based on momentum exchanges. The electromigration control behavior was proven to cause steerable ordering degree and grain growth in the films without thermal treatment. Processed FePt films with small grain size, high magnetocrystalline anisotropy, and controllable coercivity can be easily obtained. The results provide a novel method for tuning magnetic properties of other L1{sub 0} structured films.

  20. Microstructure and Strengthening Mechanisms in an Ultrafine Grained Al-Mg-Sc Alloy Produced by Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Harrell, Tammy J.; Topping, Troy D.; Wen, Haiming; Hu, Tao; Schoenung, Julie M.; Lavernia, Enrique J.

    2014-09-01

    Additions of Sc to an Al-Mg matrix were investigated, paying particular attention to the influence of Al3Sc precipitates and other dispersoids, as well as grain size, on mechanical behavior. Prior studies have shown that Sc significantly increases the strength of coarse-grained Al-Mg alloys. Prompted by these findings, we hypothesized that it would be of fundamental and technological interest to study the behavior of Sc additions to an ultrafine-grained (UFG) microstructure (e.g., 100's nm). Accordingly, we investigated the microstructural evolution and mechanical behavior of a cryomilled ultrafine grained Al-5Mg-0.4Sc (wt pct) and compared the results to those of an equivalent fine-grained material (FG) produced by powder metallurgy. Experimental materials were consolidated by hot isostatic pressing (HIP'ing) followed by extrusion or dual mode dynamic forging. Under identical processing conditions, UFG materials generate large Al3Sc precipitates with an average diameter of 154 nm and spaced approximately 1 to 3 μm apart, while precipitates in the FG materials have a diameter of 24 nm and are spaced 50 to 200 nm apart. The strengthening mechanisms are calculated for all materials and it is determined that the greatest strengthening contributions for the UFG and FG materials are Mg-O/N dispersion strengthening and precipitate strengthening, respectively.

  1. Microstructure and Strengthening Mechanisms in an Ultrafine Grained Al-Mg-Sc Alloy Produced by Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Harrell, Tammy J.; Topping, Troy D.; Wen, Haiming; Hu, Tao; Schoenung, Julie M.; Lavernia, Enrique J.

    2014-12-01

    Additions of Sc to an Al-Mg matrix were investigated, paying particular attention to the influence of Al3Sc precipitates and other dispersoids, as well as grain size, on mechanical behavior. Prior studies have shown that Sc significantly increases the strength of coarse-grained Al-Mg alloys. Prompted by these findings, we hypothesized that it would be of fundamental and technological interest to study the behavior of Sc additions to an ultrafine-grained (UFG) microstructure ( e.g., 100's nm). Accordingly, we investigated the microstructural evolution and mechanical behavior of a cryomilled ultrafine grained Al-5Mg-0.4Sc (wt pct) and compared the results to those of an equivalent fine-grained material (FG) produced by powder metallurgy. Experimental materials were consolidated by hot isostatic pressing (HIP'ing) followed by extrusion or dual mode dynamic forging. Under identical processing conditions, UFG materials generate large Al3Sc precipitates with an average diameter of 154 nm and spaced approximately 1 to 3 μm apart, while precipitates in the FG materials have a diameter of 24 nm and are spaced 50 to 200 nm apart. The strengthening mechanisms are calculated for all materials and it is determined that the greatest strengthening contributions for the UFG and FG materials are Mg-O/N dispersion strengthening and precipitate strengthening, respectively.

  2. Microstructure and Strengthening Mechanisms in an Ultrafine Grained Al-Mg-Sc Alloy Produced by Powder Metallurgy

    SciTech Connect

    Tammy J. Harrell; Troy D. Topping; Haiming Wen; Tao Hu; JULIE M. SCHOENUNG; ENRIQUE J. LAVERNIA

    2014-12-01

    Additions of Sc to an Al-Mg matrix were investigated, paying particular attention to the influence of Al3Sc precipitates and other dispersoids, as well as grain size, on mechanical behavior. Prior studies have shown that Sc significantly increases the strength of coarse-grained Al-Mg alloys. Prompted by these findings, we hypothesized that it would be of fundamental and technological interest to study the behavior of Sc additions to an ultrafine-grained (UFG) microstructure (e.g., 100’s nm). Accordingly, we investigated the microstructural evolution and mechanical behavior of a cryomilled ultrafine grained Al-5Mg-0.4Sc (wt pct) and compared the results to those of an equivalent fine-grained material (FG) produced by powder metallurgy. Experimental materials were consolidated by hot isostatic pressing (HIP’ing) followed by extrusion or dual mode dynamic forging. Under identical processing conditions, UFG materials generate large Al3Sc precipitates with an average diameter of 154 nm and spaced approximately 1 to 3 µm apart, while precipitates in the FG materials have a diameter of 24 nm and are spaced 50 to 200 nm apart. The strengthening mechanisms are calculated for all materials and it is determined that the greatest strengthening contributions for the UFG and FG materials are Mg-O/N dispersion strengthening and precipitate strengthening, respectively.

  3. Study of Grain-Growth Kinetics in Delta-Ferrite and Austenite with Application to Thin-Slab Cast Direct-Rolling Microalloyed Steels

    NASA Astrophysics Data System (ADS)

    Zhou, Tihe; O'Malley, Ronald J.; Zurob, Hatem S.

    2010-08-01

    The high-temperature grain-growth kinetics in delta-ferrite and austenite is investigated. The delta-ferrite growth kinetics was observed directly on a model alloy that contained 2.5 wt pct aluminum in order to stabilize delta-ferrite down to room temperature. The gamma grain-growth kinetics was by etching the former austenite grain boundaries in a precipitate-free variant of APIX60 steel. At high temperatures and in the absence of precipitation, the growth kinetics in both delta-ferrite and austenite appeared to follow a simple parabolic growth law. The findings are applied to the problem of grain-size control during the process of thin-slab casting direct rolling (TSCDR).

  4. Substances of cometary grains estimated from evaporation and radiation pressure mechanisms

    SciTech Connect

    Saito, K.; Isobe, S.; Nishioka, K.

    1981-09-01

    Estimates of the shape and intensity distribution of large cometary tails on the basis of grain properties in the solar radiation field yields the following results: (1) the ratio of maximum radiation pressure force to the gravitational force acting on dust grains in cometary tails is less than 2.5, implying that such grains as graphite particles in the size range 0.02-0.2 microns do not exist in them and (2) tail substances supplied near the time of perihelion passage for comets Ikeya-Seki and Seki-Lines were composed of grains having radiation pressure ratio values lower than 1.0. It is concluded that the material was composed of silicate grain only, since iron grains had sublimated and no graphite particles existed.

  5. Growth performance of stocker calves backgrounded on sod-seeded winter annuals or hay and grain.

    PubMed

    Coffey, K P; Coblentz, W K; Montgomery, T G; Shockey, J D; Bryant, K J; Francis, P B; Rosenkrans, C F; Gunter, S A

    2002-04-01

    Economically viable options for retaining ownership of spring-born calves through a winter backgrounding program are somewhat limited in the southeastern United States. Although sod-seeded winter annual forages produce less forage than those same forages planted using conventional tillage practices, sod-seeded winter annual forages have the potential to provide a low-cost, rapid-gain, ecologically and economically viable option for retaining ownership of fall-weaned calves. A study was conducted during the winters of 1998, 1999, and 2000 using 180 crossbred calves (261 +/- 2.8 kg initial BW; n = 60 each year) to compare sod-seeded winter annual forages with conventional hay and supplement backgrounding programs in southeast Arkansas. Calves were provided bermudagrass hay (ad libitum) and a grain sorghum-based supplement (2.7 kg/d) on 1-ha dormant bermudagrass pastures or were grazed on 2-ha pastures of bermudagrass/dallisgrass overseeded with 1) annual ryegrass, 2) wheat plus annual ryegrass, or 3) rye plus annual ryegrass at a set stocking rate of 2.5 calves/ha. Calves grazed from mid-December until mid-April but were fed bermudagrass hay during times of low forage mass. Mean CP and IVDMD concentrations were 19.0 and 71.1%, respectively, across sampling dates and winter annual forages, but three-way interactions among forage treatments, year, and sampling date were detected (P < 0.01) for forage mass, concentrations of CP, and IVDMD. The IVDMD of rye plus ryegrass was greater (P < 0.05) than that of ryegrass in yr 2. A forage treatment x sampling date interaction was detected for forage CP in yr 1 (P < 0.05) and 2 (P = 0.05) but not in yr 3 (P = 0.40). Forage mass did not differ (P > or = 0.22) among winter annual treatments on any sampling date. During the first 2 yr, calves fed hay plus supplement gained less (P < 0.05) BW than calves that grazed winter annual forages; gains did not differ (P > or = 0.23) among winter annual treatments. During the 3rd yr

  6. [Influence of drought on leaf photosynthetic capacity and root growth of soybeans at grain filling stage].

    PubMed

    Guo, Shu-jin; Yang, Kai-min; Huo, Jin; Zhou, Yong-hang; Wang, Yan-ping; Li, Gui-quan

    2015-05-01

    A drought-resistant soybean cultivar Jinda 70 and a drought-sensitive soybean cultivar Jindou 26 were taken as test materials. At the grain filling stage, the cultivars were subject to three water treatments including sufficient water supply, light drought stress, and severe drought stress by using pot experiments for research on influence of drought on leaf photosynthetic capacity and root growth of soybeans. The results showed that as the degree of drought stress was aggravated, all of the indices including leaf area, chlorophyll content, net photosynthetic rates (Pn), stomatal conductance (g(s)), transpiration rate (Tr), intercellular CO2 concentration (Ci), plant mass, plant height, seed yield, and harvest index in the two cultivars declined. The root length and root mass increased under light drought stress, and decreased under severe drought stress. Root-shoot ratio ascended as the degree of drought stress was aggravated. Under severe drought stress, the increase of root-shoot ratio of the drought-resistant soybean cultivar Jinda 70 was up to 135.7%, which was higher than the that (116.7%) of the drought-sensitive soybean cultivar Jindou 26. Simultaneously, leaf area and chlorophyll content in Jinda 70 were respectively 69.3% and 85.5% of those in the control, which were better than those of Jindou 26. g(s) and Pn of Jinda 70 respectively declined 67.9% and 77.9%, but still lower than those of Jindou 26. Therefore, the decline range of harvest index of Jinda 70 was 43.8%, which was lower than the range of 78.8% of Jindou 26. The Biplot revealed that under different dry treatments, there were significant positive correlations among the six indexes including leaf area, chlorophyll content, Pn, g(s), Tr, and Ci of the two cultivars. There were also significant positive correlations among the six indices including plant mass, plant height, root length, root mass, seed yield, and harvest index. Root-shoot ratio only had significant positive correlation with root

  7. [Influence of drought on leaf photosynthetic capacity and root growth of soybeans at grain filling stage].

    PubMed

    Guo, Shu-jin; Yang, Kai-min; Huo, Jin; Zhou, Yong-hang; Wang, Yan-ping; Li, Gui-quan

    2015-05-01

    A drought-resistant soybean cultivar Jinda 70 and a drought-sensitive soybean cultivar Jindou 26 were taken as test materials. At the grain filling stage, the cultivars were subject to three water treatments including sufficient water supply, light drought stress, and severe drought stress by using pot experiments for research on influence of drought on leaf photosynthetic capacity and root growth of soybeans. The results showed that as the degree of drought stress was aggravated, all of the indices including leaf area, chlorophyll content, net photosynthetic rates (Pn), stomatal conductance (g(s)), transpiration rate (Tr), intercellular CO2 concentration (Ci), plant mass, plant height, seed yield, and harvest index in the two cultivars declined. The root length and root mass increased under light drought stress, and decreased under severe drought stress. Root-shoot ratio ascended as the degree of drought stress was aggravated. Under severe drought stress, the increase of root-shoot ratio of the drought-resistant soybean cultivar Jinda 70 was up to 135.7%, which was higher than the that (116.7%) of the drought-sensitive soybean cultivar Jindou 26. Simultaneously, leaf area and chlorophyll content in Jinda 70 were respectively 69.3% and 85.5% of those in the control, which were better than those of Jindou 26. g(s) and Pn of Jinda 70 respectively declined 67.9% and 77.9%, but still lower than those of Jindou 26. Therefore, the decline range of harvest index of Jinda 70 was 43.8%, which was lower than the range of 78.8% of Jindou 26. The Biplot revealed that under different dry treatments, there were significant positive correlations among the six indexes including leaf area, chlorophyll content, Pn, g(s), Tr, and Ci of the two cultivars. There were also significant positive correlations among the six indices including plant mass, plant height, root length, root mass, seed yield, and harvest index. Root-shoot ratio only had significant positive correlation with root

  8. Two-step crystal growth mechanism during crystallization of an undercooled Ni50Al50 alloy

    NASA Astrophysics Data System (ADS)

    An, Simin; Li, Jiahao; Li, Yang; Li, Shunning; Wang, Qi; Liu, Baixin

    2016-08-01

    Crystallization processes are always accompanied by the emergence of multiple intermediate states, of which the structures and transition dynamics are far from clarity, since it is difficult to experimentally observe the microscopic pathway. To insight the structural evolution and the crystallization dynamics, we perform large-scale molecular dynamics simulations to investigate the time-dependent crystallization behavior of the NiAl intermetallic upon rapid solidification. The simulation results reveal that the crystallization process occurs via a two-step growth mechanism, involving the formation of initial non-equilibrium long range order (NLRO) regions and of the subsequent equilibrium long range order (ELRO) regions. The formation of the NLRO regions makes the grains rather inhomogeneous, while the rearrangement of the NLRO regions into the ELRO regions makes the grains more ordered and compact. This two-step growth mechanism is actually controlled by the evolution of the coordination polyhedra, which are characterized predominantly by the transformation from five-fold symmetry to four-fold and six-fold symmetry. From liquids to NLRO and further to ELRO, the five-fold symmetry of these polyhedra gradually fades, and finally vanishes when B2 structure is distributed throughout the grain bulk. The energy decrease along the pathway further implies the reliability of the proposed crystallization processes.

  9. Two-step crystal growth mechanism during crystallization of an undercooled Ni50Al50 alloy

    PubMed Central

    An, Simin; Li, Jiahao; Li, Yang; Li, Shunning; Wang, Qi; Liu, Baixin

    2016-01-01

    Crystallization processes are always accompanied by the emergence of multiple intermediate states, of which the structures and transition dynamics are far from clarity, since it is difficult to experimentally observe the microscopic pathway. To insight the structural evolution and the crystallization dynamics, we perform large-scale molecular dynamics simulations to investigate the time-dependent crystallization behavior of the NiAl intermetallic upon rapid solidification. The simulation results reveal that the crystallization process occurs via a two-step growth mechanism, involving the formation of initial non-equilibrium long range order (NLRO) regions and of the subsequent equilibrium long range order (ELRO) regions. The formation of the NLRO regions makes the grains rather inhomogeneous, while the rearrangement of the NLRO regions into the ELRO regions makes the grains more ordered and compact. This two-step growth mechanism is actually controlled by the evolution of the coordination polyhedra, which are characterized predominantly by the transformation from five-fold symmetry to four-fold and six-fold symmetry. From liquids to NLRO and further to ELRO, the five-fold symmetry of these polyhedra gradually fades, and finally vanishes when B2 structure is distributed throughout the grain bulk. The energy decrease along the pathway further implies the reliability of the proposed crystallization processes. PMID:27486073

  10. Two-step crystal growth mechanism during crystallization of an undercooled Ni50Al50 alloy.

    PubMed

    An, Simin; Li, Jiahao; Li, Yang; Li, Shunning; Wang, Qi; Liu, Baixin

    2016-01-01

    Crystallization processes are always accompanied by the emergence of multiple intermediate states, of which the structures and transition dynamics are far from clarity, since it is difficult to experimentally observe the microscopic pathway. To insight the structural evolution and the crystallization dynamics, we perform large-scale molecular dynamics simulations to investigate the time-dependent crystallization behavior of the NiAl intermetallic upon rapid solidification. The simulation results reveal that the crystallization process occurs via a two-step growth mechanism, involving the formation of initial non-equilibrium long range order (NLRO) regions and of the subsequent equilibrium long range order (ELRO) regions. The formation of the NLRO regions makes the grains rather inhomogeneous, while the rearrangement of the NLRO regions into the ELRO regions makes the grains more ordered and compact. This two-step growth mechanism is actually controlled by the evolution of the coordination polyhedra, which are characterized predominantly by the transformation from five-fold symmetry to four-fold and six-fold symmetry. From liquids to NLRO and further to ELRO, the five-fold symmetry of these polyhedra gradually fades, and finally vanishes when B2 structure is distributed throughout the grain bulk. The energy decrease along the pathway further implies the reliability of the proposed crystallization processes. PMID:27486073

  11. Growth kinetics of MgSiO3 perovskite reaction rim between stishovite and periclase up to 50 GPa and its implication for grain boundary diffusivity in the lower mantle

    NASA Astrophysics Data System (ADS)

    Nishi, Masayuki; Nishihara, Yu; Irifune, Tetsuo

    2013-09-01

    The growth rate of MgSiO3 perovskite reaction rims between periclase and stishovite was investigated at 24-50 GPa and 1650-2150 K using a Kawai-type high-pressure apparatus. The textural observations of the recovered samples and rim growth kinetic data revealed that the reaction is controlled by coupled grain boundary diffusion of MgO and grain coarsening in the perovskite reaction layer. Assuming a high diffusivity of O compared with Mg, the grain boundary diffusivity of Mg in the perovskite was determined to be δDgbMg[m/s]=10-15.1exp{-[176,000+(P-24)×3.8×103]/RT}, which is ˜3-5 orders of magnitude faster than that of Si. We found that the bulk diffusivity of Mg in polycrystalline perovskite is affected by the grain boundary when we consider the possible grain sizes and temperatures in the lower mantle. Accordingly, grain boundary diffusion in perovskite may be an effective mechanism for chemical transportation of divalent cations in the lower mantle.

  12. Mechanical feedback as a possible regulator of tissue growth

    NASA Astrophysics Data System (ADS)

    Shraiman, Boris I.

    2005-03-01

    Regulation of cell growth and proliferation has a fundamental role in animal and plant development and in the progression of cancer. In the context of development, it is important to understand the mechanisms that coordinate growth and patterning of tissues. Imaginal discs, which are larval precursors of fly limbs and organs, have provided much of what we currently know about these processes. Here, we consider the mechanism that is responsible for the observed uniformity of growth in wing imaginal discs, which persists in the presence of gradients in growth inducing morphogens in spite of the stochastic nature of cell division. The phenomenon of "cell competition," which manifests in apoptosis of slower-growing cells in the vicinity of faster growing tissue, suggests that uniform growth is not a default state but a result of active regulation. How can a patch of tissue compare its growth rate with that of its surroundings? A possible way is furnished by mechanical interactions. To demonstrate this mechanism, we formulate a mathematical model of nonuniform growth in a layer of tissue and examine its mechanical implications. We show that a clone growing faster or slower than the surrounding tissue is subject to mechanical stress, and we propose that dependence of the rate of cell division on local stress could provide an "integral-feedback" mechanism stabilizing uniform growth. The proposed mechanism of growth control is not specific to imaginal disc growth and could be of general relevance. Several experimental tests of the proposed mechanism are suggested. Drosophila melanogaster | imaginal disc | mechanics | stress

  13. The effects of feeding sorghum dried distillers grains with solubles on finishing pig growth performance, carcass characteristics, and fat quality.

    PubMed

    Sotak, K M; Houser, T A; Goodband, R D; Tokach, M D; Dritz, S S; DeRouchey, J M; Goehring, B L; Skaar, G R; Nelssen, J L

    2015-06-01

    The objective of this study was to determine the effects of feeding sorghum dried distillers grains with solubles (DDGS) in grain sorghum– or corn-based diets on pig growth performance, carcass characteristics, and carcass fat quality. A total of 288 finishing pigs (BW 58.8 ± 4.43 kg; Line TR 4 × 1050, PIC, Hendersonville, TN) were used in a 73-d study. Pigs were allotted to 1 of 6 dietary treatments with 6 pens of 8 pigs per treatment. Treatments included grain sorghum–based diets with 0%, 15%, 30%, or 45% sorghum DDGS (29.0% CP, 7.2% ether extract); a grain sorghum–based diet with 30% corn DDGS (25.7% CP, 8.7% ether extract); and a corn-based diet with 30% corn DDGS. The diets were formulated to 0.95%, 0.83%, and 0.71% standardized ileal digestible Lys in phases 1, 2, and 3, respectively, and were not balanced for energy. On d 73, a subsample of 72 pigs (1 barrow and 1 gilt/pen) was harvested at Kansas State University’s Meats Laboratory. Carcass traits were calculated, as well as 10th-rib LM color, marbling and firmness, and fat color score. Fat samples from the 10th rib were collected and analyzed for fatty acid profile, which was used to calculate iodine value (IV). The remaining pigs were transported to a commercial packing plant (Triumph Foods, St. Joseph, MO) for carcass measurement and jowl IV determinations. Overall, increasing the dietary sorghum DDGS reduced (linear, P < 0.01) ADG and increased (linear, P < 0.01) back fat IV. Pigs fed increasing sorghum DDGS had decreased 10th-rib fat a* (less red) and b* (less yellow; P < 0.01 and 0.06, respectively). No differences were observed in growth performance or back fat IV among pigs fed corn- or grain sorghum–based diets with 30% corn DDGS. Pigs fed the grain sorghum–based diet with 30% corn DDGS had fat color that was more yellow (b*; P < 0.03) than that of pigs fed the grain sorghum–based diet with 30% sorghum DDGS. Pigs fed the grain sorghum–based diet with 30% sorghum DDGS also had

  14. Using pollen grains as novel hydrophilic solid-phase extraction sorbents for the simultaneous determination of 16 plant growth regulators.

    PubMed

    Lu, Qian; Wu, Jian-Hong; Yu, Qiong-Wei; Feng, Yu-Qi

    2014-11-01

    In this article, pollen grains were for the first time used as a hydrophilic solid-phase extraction (HILIC-SPE) sorbent for the determination of 16 plant growth regulators (PGRs) in fruits and vegetables. Fourier transform infrared spectroscopy (FT-IR), scanning electronic microscopy (SEM) and nitrogen sorption porosimetry (NSP) were used to investigate the chemical structure and the surface properties of the pollen grains. Pollen grains exhibited an excellent adsorption capacity for some polar compounds due to their particular functional groups. Several parameters influencing extraction performance were investigated. A green and simple HILIC-SPE-method using pollen grain cartridge for purification of fruit and vegetable extractions, followed by ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry (UHPLC-MS/MS) was established. Good linear relationships were obtained for 16 PGRs with correlation coefficients (R) above 0.9980. The limits of detection (LODs) of 16 PGRs in cucumber were in the range of 0.01-1.10 μg · kg(-1). Reproducibility of the method was evaluated by intra-day and inter-day precisions with relative standard deviations (RSDs), which were less than 14.4%. We successfully applied this methodology to analyze 16 PGRs in 8 different kinds of fruits and vegetables. The recoveries from samples spiked with 16 PGRs were from 80.5% to 119.2%, with relative standard deviations less than 15.0%.

  15. Using pollen grains as novel hydrophilic solid-phase extraction sorbents for the simultaneous determination of 16 plant growth regulators.

    PubMed

    Lu, Qian; Wu, Jian-Hong; Yu, Qiong-Wei; Feng, Yu-Qi

    2014-11-01

    In this article, pollen grains were for the first time used as a hydrophilic solid-phase extraction (HILIC-SPE) sorbent for the determination of 16 plant growth regulators (PGRs) in fruits and vegetables. Fourier transform infrared spectroscopy (FT-IR), scanning electronic microscopy (SEM) and nitrogen sorption porosimetry (NSP) were used to investigate the chemical structure and the surface properties of the pollen grains. Pollen grains exhibited an excellent adsorption capacity for some polar compounds due to their particular functional groups. Several parameters influencing extraction performance were investigated. A green and simple HILIC-SPE-method using pollen grain cartridge for purification of fruit and vegetable extractions, followed by ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry (UHPLC-MS/MS) was established. Good linear relationships were obtained for 16 PGRs with correlation coefficients (R) above 0.9980. The limits of detection (LODs) of 16 PGRs in cucumber were in the range of 0.01-1.10 μg · kg(-1). Reproducibility of the method was evaluated by intra-day and inter-day precisions with relative standard deviations (RSDs), which were less than 14.4%. We successfully applied this methodology to analyze 16 PGRs in 8 different kinds of fruits and vegetables. The recoveries from samples spiked with 16 PGRs were from 80.5% to 119.2%, with relative standard deviations less than 15.0%. PMID:25311486

  16. A Simple Mechanical Experiment on Exponential Growth

    ERIC Educational Resources Information Center

    McGrew, Ralph

    2015-01-01

    With a rod, cord, pulleys, and slotted masses, students can observe and graph exponential growth in the cord tension over a factor of increase as large as several hundred. This experiment is adaptable for use either in algebra-based or calculus-based physics courses, fitting naturally with the study of sliding friction. Significant parts of the…

  17. Effects of Genotype and Growth Temperature on the Contents of Tannin, Phytate and In Vitro Iron Availability of Sorghum Grains

    PubMed Central

    Wu, Gangcheng; Johnson, Stuart K.; Bornman, Janet F.; Bennett, Sarita J.; Singh, Vijaya; Simic, Azra; Fang, Zhongxiang

    2016-01-01

    Background It has been predicted that the global temperature will rise in the future, which means crops including sorghum will likely be grown under higher temperatures, and consequently may affect the nutritional properties. Methods The effects of two growth temperatures (OT, day/night 32/21°C; HT 38/21°C) on tannin, phytate, mineral, and in vitro iron availability of raw and cooked grains (as porridge) of six sorghum genotypes were investigated. Results Tannin content significantly decreased across all sorghum genotypes under high growth temperature (P ≤0.05), while the phytate and mineral contents maintained the same level, increased or decreased significantly, depending on the genotype. The in vitro iron availability in most sorghum genotypes was also significantly reduced under high temperature, except for Ai4, which showed a pronounced increase (P ≤0.05). The cooking process significantly reduced tannin content in all sorghum genotypes (P ≤0.05), while the phytate content and in vitro iron availability were not significantly affected. Conclusions This research provides some new information on sorghum grain nutritional properties when grown under predicted future higher temperatures, which could be important for humans where sorghum grains are consumed as staple food. PMID:26859483

  18. Optical-mechanical system for on-combine segregation of wheat by grain protein concentration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain segregation by grain protein concentration (GPC) may help growers maximize revenues in markets that offer protein premiums. Our objective was to develop an on-combine system for automatically segregating wheat (Triticum aestivum L.) by GPC during harvest. A multispectral optical sensor scans...

  19. Mechanical stress regulation of plant growth and development

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.; Myers, P. N.

    1995-01-01

    The authors introduce the chapter with a discussion of lessons from nature, agriculture, and landscapes; terms and definitions; and an historical perspective of mechanical stress regulation of plant growth and development. Topics include developmental responses to mechanical stress; mechanical stress-environment interactions; metabolic, productivity, and compositional changes; hormonal involvement; mechanoperception and early transduction mechanisms; applications in agriculture; and research implications. The discussion of hormonal involvement in mechanical stress physiology includes ethylene, auxin, gibberellins, and other phytohormones. The discussion of applications in agriculture examines windbreaks, nursery practices, height control and conditioning, and enhancement of growth and productivity. Implications for research are related to handling plant materials, space biology, and future research needs.

  20. Defining the membrane disruption mechanism of kalata B1 via coarse-grained molecular dynamics simulations

    PubMed Central

    Nawae, Wanapinun; Hannongbua, Supa; Ruengjitchatchawalya, Marasri

    2014-01-01

    Kalata B1 has been demonstrated to have bioactivity relating to membrane disruption. In this study, we conducted coarse-grained molecular dynamics simulations to gain further insight into kB1 bioactivity. The simulations were performed at various concentrations of kB1 to capture the overall progression of its activity. Two configurations of kB1 oligomers, termed tower-like and wall-like clusters, were detected. The conjugation between the wall-like oligomers resulted in the formation of a ring-like hollow in the kB1 cluster on the membrane surface. Our results indicated that the molecules of kB1 were trapped at the membrane-water interface. The interfacial membrane binding of kB1 induced a positive membrane curvature, and the lipids were eventually extracted from the membrane through the kB1 ring-like hollow into the space inside the kB1 cluster. These findings provide an alternative view of the mechanism of kB1 bioactivity that corresponds with the concept of an interfacial bioactivity model. PMID:24492660

  1. A Simple Mechanical Experiment on Exponential Growth

    NASA Astrophysics Data System (ADS)

    McGrew, Ralph

    2015-04-01

    With a rod, cord, pulleys, and slotted masses, students can observe and graph exponential growth in the cord tension over a factor of increase as large as several hundred. This experiment is adaptable for use either in algebra-based or calculus-based physics courses, fitting naturally with the study of sliding friction. Significant parts of the activity are accessible to students in physical science and environmental science courses.

  2. Mechanical regulation of plant growth and development

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.

    1984-01-01

    Soybean and eggplant grown and shaken in a greenhouse exhibited decreased internode length, internode diameter, leaf area, and fresh and dry weight of roots and shoots in much the same way as outdoor-exposed plants. Perhaps more important than decreased dimensions of plant parts resulting from periodic seismic treatment is the inhibition of photosynthetic productivity that accompanies this stress. Soybeam plants briefly shaken or rubbed twice daily experienced a decrease in relative as well as absolute growth rate compared to that of undisturbed controls. Growth dynamics analysis revealed that virtually all of the decline in relative growth rate (RGR) was due to a decline in net assimilation rate (NAR), but not in leaf area ratio (LAR). Lower NAR suggests that the stress-induced decrease in dry weight gain is due to a decline in photosynthetic efficiency. Possible effects on stomatal aperture was investigated by measuring rates of whole plant transpiration as a function of seismo-stress, and a transitory decrease followed by a gradual, partial recovery was detected.

  3. Polarity and the diversity of growth mechanisms in bacteria

    PubMed Central

    Brown, Pamela J.B.; Kysela, David T.; Brun, Yves V.

    2011-01-01

    Bacterial cell growth is a complex process consisting of two distinct phases: cell elongation and septum formation prior to cell division. Although bacteria have evolved several different mechanisms for cell growth, it is clear that tight spatial and temporal regulation of peptidoglycan synthesis is a common theme. In this review, we discuss bacterial cell growth with a particular emphasis on bacteria that utilize tip extension as a mechanism for cell elongation. We describe polar growth among diverse bacteria and consider the advantages and consequences of this mode of cell elongation. PMID:21736947

  4. Corn grain and stover yield prediction at R1 growth stage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn (Zea mays L.) grain and stover yield estimation early in the growing season is an appealing idea. An accurate estimation of the yield of the final product could benefit farmers, as well as corn related industries. The objective of this study was to develop prediction models that could estimate ...

  5. Mechanically induced alterations in cultured skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.; Hatfaludy, S.; Karlisch, P.; Shansky, J.

    1991-01-01

    Model systems are available for mechanically stimulating cultured skeletal muscle cells by passive tensile forces which simulate those found in vivo. When applied to embryonic muscle cells in vitro these forces induce tissue organogenesis, metabolic adaptations, and muscle cell growth. The mechanical stimulation of muscle cell growth correlates with stretch-induced increases in the efflux of prostaglandins PGE2 and PGF2(alpha) in a time and frequency dependent manner. These prostaglandins act as mechanical 'second messengers' regulating skeletal muscle protein turnover rates. Since they also effect bone remodelling in response to tissue loading and unloading, secreted prostaglandins may serve as paracrine growth factors, coordinating the growth rates of muscle and bone in response to external mechanical forces. Cell culture model systems will supplement other models in understanding mechanical transduction processes at the molecular level.

  6. Hybrid Quantum Mechanics/Molecular Mechanics/Coarse Grained Modeling: A Triple-Resolution Approach for Biomolecular Systems.

    PubMed

    Sokkar, Pandian; Boulanger, Eliot; Thiel, Walter; Sanchez-Garcia, Elsa

    2015-04-14

    We present a hybrid quantum mechanics/molecular mechanics/coarse-grained (QM/MM/CG) multiresolution approach for solvated biomolecular systems. The chemically important active-site region is treated at the QM level. The biomolecular environment is described by an atomistic MM force field, and the solvent is modeled with the CG Martini force field using standard or polarizable (pol-CG) water. Interactions within the QM, MM, and CG regions, and between the QM and MM regions, are treated in the usual manner, whereas the CG-MM and CG-QM interactions are evaluated using the virtual sites approach. The accuracy and efficiency of our implementation is tested for two enzymes, chorismate mutase (CM) and p-hydroxybenzoate hydroxylase (PHBH). In CM, the QM/MM/CG potential energy scans along the reaction coordinate yield reaction energies that are too large, both for the standard and polarizable Martini CG water models, which can be attributed to adverse effects of using large CG water beads. The inclusion of an atomistic MM water layer (10 Å for uncharged CG water and 5 Å for polarizable CG water) around the QM region improves the energy profiles compared to the reference QM/MM calculations. In analogous QM/MM/CG calculations on PHBH, the use of the pol-CG description for the outer water does not affect the stabilization of the highly charged FADHOOH-pOHB transition state compared to the fully atomistic QM/MM calculations. Detailed performance analysis in a glycine-water model system indicates that computation times for QM energy and gradient evaluations at the density functional level are typically reduced by 40-70% for QM/MM/CG relative to fully atomistic QM/MM calculations.

  7. CURVED WALLS: GRAIN GROWTH, SETTLING, AND COMPOSITION PATTERNS IN T TAURI DISK DUST SUBLIMATION FRONTS

    SciTech Connect

    McClure, M. K.; Calvet, N.; Hartmann, L.; Ingleby, L.; D'Alessio, P.; Espaillat, C.; Sargent, B.; Watson, D. M.; Hernández, J. E-mail: ncalvet@umich.edu E-mail: lingleby@umich.edu E-mail: cespaillat@cfa.harvard.edu E-mail: dmw@pas.rochester.edu

    2013-10-01

    The dust sublimation walls of disks around T Tauri stars represent a directly observable cross-section through the disk atmosphere and midplane. Their emission properties can probe the grain size distribution and composition of the innermost regions of the disk, where terrestrial planets form. Here we calculate the inner dust sublimation wall properties for four classical T Tauri stars with a narrow range of spectral types and inclination angles and a wide range of mass accretion rates to determine the extent to which the walls are radially curved. Best fits to the near- and mid-IR excesses are found for curved, two-layer walls in which the lower layer contains larger, hotter, amorphous pyroxene grains with Mg/(Mg+Fe) = 0.6 and the upper layer contains submicron, cooler, mixed amorphous olivine and forsterite grains. As the mass accretion rates decrease from 10{sup –8} to 10{sup –10} M{sub ☉} yr{sup –1}, the maximum grain size in the lower layer decreases from ∼3 to 0.5 μm. We attribute this to a decrease in fragmentation and turbulent support for micron-sized grains with decreasing viscous heating. The atmosphere of these disks is depleted of dust with dust-gas mass ratios 1 × 10{sup –4} of the interstellar medium (ISM) value, while the midplane is enhanced to eight times the ISM value. For all accretion rates, the wall contributes at least half of the flux in the optically thin 10 μm silicate feature. Finally, we find evidence for an iron gradient in the disk, suggestive of that found in our solar system.

  8. A Nanoindentation Study on Grain-Boundary Contributions to Strengthening and Aging Degradation Mechanisms in Advanced 12Cr Ferritic Steel

    SciTech Connect

    Jang, Jae-il; Shim, Sang Hoon; Komazaki, Shin-ichi; Honda, Tetsuya

    2007-01-01

    Nanoindentation experiments and microstructural analysis were performed on advanced 12% Cr ferritic steel having extremely fine and complex martensitic microstructures, to answer unsolved questions on the contributions of grain boundaries to strengthening and aging degradation mechanisms in both as-tempered and thermally aged steels. Interesting features of the experimental results led us to suggest that among several high angle boundaries, block boundary is most effective in enhancing the macroscopic strength in as-tempered virgin sample, and that a decrease in matrix strength rather than reduction in grain-boundary strengthening effect is primarily responsible for the macroscopic softening behavior observed during thermal exposure.

  9. Growth Mechanism of the (110) Face of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan; Li, Meirong; Pusey, Marc L.

    1997-01-01

    The measured macroscopic growth rates of the (110) face of tetragonal lysozyme show an unexpectedly complex dependence on the supersaturation. In earlier studies it has been shown that an aggregate growth unit could account for experimental growth-rate trends. In particular molecular packing and interactions in the growth of the crystal were favored by completion of the helices along the 4, axes. In this study the molecular orientations of the possible growth units and the molecular growth mechanism were identified. This indicated that growth was a two-step process: aggregate growth units corresponding to the 4, helix are first formed in the bulk solution by stronger intermolecular bonds and then attached to the crystal face by weaker bonds. A more comprehensive analysis of the measured (110) growth rates was also undertaken. They were compared with the predicted growth rates from several dislocation and two-dimensional nucleation growth models, employing tetramer and Octamer growth units in polydisperse solutions and monomer units in monodisperse solutions. The calculations consistently showed that the measured growth rates followed the expected model relations with octamer growth units, in agreement with the predictions from the molecular level analyses.

  10. Growth mechanisms, polytypism, and real structure of kaolinite microcrystals

    SciTech Connect

    Samotoin, N. D.

    2008-09-15

    The mechanisms of growth of kaolinite microcrystals (0.1-5.0 {mu}m in size) at deposits related to the cluvial weathering crust, as well as to the low-temperature and medium-temperature hydrothermal processes of transformations of minerals in different rocks in Russia, Kazakhstan, Ukraine, Czechia, Vietnam, India, Cuba, and Madagascar, are investigated using transmission electron microscopy and vacuum decoration with gold. It is established that kaolinite microcrystals grow according to two mechanisms: the mechanism of periodic formation of two-dimensional nuclei and the mechanism of spiral growth. The spiral growth of kaolinite microcrystals is dominant and occurs on steps of screw dislocations that differ in sign and magnitude of the Burgers vector along the c axis. The layered growth of kaolinite originates from a widespread source in the form of a step between polar (+ and -) dislocations, i.e., a growth analogue of the Frank-Read dislocation source. The density of growth screw dislocations varies over a wide range and can be as high as {approx}10{sup 9} cm{sup -2}. Layered stepped kaolinite growth pyramids for all mechanisms of growth on the (001) face of kaolinite exhibit the main features of the triclinic 1Tc and real structures of this mineral.

  11. Mechanism of superplastic flow in a fine-grained ceramic containing some liquid phase

    SciTech Connect

    Wang, J.G.; Raj, R.

    1984-06-01

    Several results pertaining to large deformations at fast strain rates in a fine-grained ceramic material are described. Results for strain-rate, grain size, and temperature dependence of the flow stress are presented. They show that ultrafine-grained ceramics are capable of high rates of deformation. The ceramic is almost infinitely ductile in compression, whereas in tension elongations as large as 135% in one material, and more than 400% in another, were obtained. A model material, B-spodumene glass-ceramic, was used for this study but the results are likely to hold for other materials with equivalent microstructures.

  12. Physical mechanisms of compressional EMIC wave growth

    NASA Astrophysics Data System (ADS)

    McCollough, J. P.; Elkington, S. R.; Usanova, M. E.; Mann, I. R.; Baker, D. N.; Kale, Z. C.

    2010-10-01

    On 29 June 2007, electromagnetic ion cyclotron (EMIC) waves were observed on the ground by the Canadian Array for Realtime Investigations of Magnetic Activity (CARISMA) network of magnetometers between L = 4 and L = 6 in response to a significant magnetospheric compression. Here a new MHD/particle method for studying EMIC wave growth in the magnetosphere is used to provide a detailed study of the compression event. We compare equatorial field line crossings of NASA's Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft and CARISMA observation sites to frequency-integrated wave growth rates from the MHD/particle method. Simulated temperatures were constant in time, suggesting an absence of energizing processes during this event. Many particles experienced so-called Shabansky orbits during this event, in which their drift motion was confined to high latitudes in the dayside magnetosphere. We propose a new nonenergizing process, driven by ions undergoing Shabansky orbits, for generating ion temperature anisotropies. In addition, the fundamental role of the plasmasphere in generating EMIC waves from the free energy of warm ion temperature anisotropies is discussed.

  13. [Autocrine growth mechanisms of cholesteatoma epithelium].

    PubMed

    Schilling, V; Holly, A; Bujía, J; Schulz, P

    1993-07-01

    Transforming growth factor alpha (TGF alpha) and interleukin 1 alpha (IL-1 alpha) are known to be produced by normal human keratinocytes stimulating their proliferation. The distribution and expression of TGF alpha and IL-1 alpha were examined in specimens of middle ear cholesteatoma by means of immunohistochemical methods using a monoclonal antibody against TGF alpha and a polyclonal one against IL-1 alpha. Normal retroauricular skin was stained for comparison. Staining for TGF alpha was consistently stronger in cholesteatoma epithelium than in normal epidermis, and encompassed all epithelial cell layers. Immune cells occurring in the stroma of cholesteatoma also reacted positively for TGF alpha. The intensity of staining for IL-1 alpha was markedly stronger in cholesteatoma tissue than in normal epidermis. All cellular layers of the squamous epithelium of cholesteatoma stained strongly and uniformly for IL-1 alpha, whereas the keratin layer was negative for IL-1 alpha. In the connective tissue beneath the cholesteatoma epithelium intensely positive cells were scattered between negative stromal cells. These data are consistent with autocrine stimulation of the squamous epithelium of cholesteatoma by TGF alpha and IL-1 alpha as well as with a paracrine stimulation by immune cells. Both factors contribute to the unrestrained growth of cholesteatoma in the middle ear cavity.

  14. Mechanisms regulating grain contamination with trichothecenes translocated from the stem base of wheat (Triticum aestivum) infected with Fusarium culmorum.

    PubMed

    Winter, Mark; Koopmann, Birger; Döll, Katharina; Karlovsky, Petr; Kropf, Ute; Schlüter, Klaus; von Tiedemann, Andreas

    2013-07-01

    Factors limiting trichothecene contamination of mature wheat grains after Fusarium infection are of major interest in crop production. In addition to ear infection, systemic translocation of deoxynivalenol (DON) may contribute to mycotoxin levels in grains after stem base infection with toxigenic Fusarium spp. However, the exact and potential mechanisms regulating DON translocation into wheat grains from the plant base are still unknown. We analyzed two wheat cultivars differing in susceptibility to Fusarium head blight (FHB), which were infected at the stem base with Fusarium culmorum in climate chamber experiments. Fungal DNA was found only in the infected stem base tissue, whereas DON and its derivative, DON-3-glucoside (D3G), were detected in upper plant parts. Although infected stem bases contained more than 10,000 μg kg⁻¹ dry weight (DW) of DON and mean levels of DON after translocation in the ear and husks reached 1,900 μg kg⁻¹ DW, no DON or D3G was detectable in mature grains. D3G quantification revealed that DON detoxification took mainly place in the stem basis, where ≤ 50% of DON was metabolized into D3G. Enhanced expression of a gene putatively encoding a uridine diphosphate-glycosyltransferase (GenBank accession number FG985273) was observed in the stem base after infection with F. culmorum. Resistance to F. culmorum stem base infection, DON glycosylation in the stem base, and mycotoxin translocation were unrelated to cultivar resistance to FHB. Histological studies demonstrated that the vascular transport of DON labeled with fluorescein as a tracer from the peduncle to the grain was interrupted by a barrier zone at the interface between grain and rachilla, formerly described as "xylem discontinuity". This is the first study to demonstrate the effective control of influx of systemically translocated fungal mycotoxins into grains at the rachilla-seed interface by the xylem discontinuity tissue in wheat ears.

  15. The influence of low-strain thermo-mechanical processing on grain boundary network characteristics in type 304 austenitic stainless steel.

    PubMed

    Engelberg, D L; Humphreys, F J; Marrow, T J

    2008-06-01

    Grain boundary engineering of austenitic stainless steel, through the introduction of plastic strain and thermal annealing, can be used to develop microstructures with improved resistance to inter-granular degradation. The influence of low-strain thermo-mechanical processing on grain boundary network development, with systematic variations of annealing treatments, has been investigated. Three stages of the microstructure development during grain boundary engineering in low-strain processing conditions are identified, and correlated with changes in grain boundary character and deviation distributions. Low-energy connected length segments at triple junctions, which have been proposed to be responsible for crack bridging during inter-granular stress corrosion cracking, can be influenced by the choice of the annealing treatment parameters. The development of individual grain boundary length segments of different character showed consistent trends with increasing grain size. Crack length predictions are consistent with the beneficial effect of designing microstructures with high fractions of twin grain boundaries and smaller grain size.

  16. Effects of the precipitation of stabilizers on the mechanism of grain fracturing in a zirconia metering nozzle

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Xue, Qun-hu; Ding, Dong-hai

    2016-09-01

    The mechanism of grain fracturing in a zirconia metering nozzle used in the continuous casting process was studied. The phase composition, microstructure, and chemical composition of the residual samples were studied using an X-ray fluorescence analyzer, scanning electron microscope, and electron probe. Results revealed that the composition, structure, and mineral phase of the original layer, transition layer, and affected layer of the metering nozzle differed because of stabilizer precipitation and steel slag permeation. The stabilizer MgO formed low-melting phases with steel slag and impure SiO2 on the boundaries (pores) of zirconia grains; consequently, grain fracturing occurred and accelerated damage to the metering nozzle was observed.

  17. Coarse-grained molecular dynamics simulation of the void growth process in the block structure of semicrystalline polymers

    NASA Astrophysics Data System (ADS)

    Higuchi, Yuji; Kubo, Momoji

    2016-06-01

    We study fracture processes of amorphous and semicrystalline polymers with a coarse-grained molecular dynamics simulation. In the amorphous state, the stress caused by strain mainly arises from the loss of the attractive interaction in the voids. However, in semicrystalline polymers, the elongation of bonding is the dominant factor and it causes much more stress than that in an amorphous state. This is because growth of the voids is prevented by the amorphous regions and it is difficult to relax the folded polymers.

  18. The kinetics of heterogeneous nucleation and growth: an approach based on a grain explicit model

    NASA Astrophysics Data System (ADS)

    Rouet-Leduc, B.; Maillet, J.-B.; Denoual, C.

    2014-04-01

    A model for phase transitions initiated on grain boundaries is proposed and tested against numerical simulations: this approach, based on a grain explicit model, allows us to consider the granular structure, resulting in accurate predictions for a wide span of nucleation processes. Comparisons are made with classical models of homogeneous (JMAK: Johnson and Mehl 1939 Trans. Am. Inst. Min. Eng. 135 416; Avrami 1939 J. Chem. Phys. 7 1103; Kolmogorov 1937 Bull. Acad. Sci. USSR, Mat. Ser. 1 335) as well as heterogeneous (Cahn 1996 Thermodynamics and Kinetics of Phase Transformations Im et al (Pittsburgh: Materials Research Society)) nucleation. A transition scale based on material properties is proposed, allowing us to discriminate between random and site-saturated regimes. Finally, we discuss the relationship between an Avrami-type exponent and the transition regime, establishing conditions for its extraction from experiments.

  19. Effects of rolling temperature and subsequent annealing on mechanical properties of ultrafine-grained Cu–Zn–Si alloy

    SciTech Connect

    Zhang, Xiangkai; Yang, Xuyue; Chen, Wei; Qin, Jia; Fouse, Jiaping

    2015-08-15

    The effects of rolling temperature and subsequent annealing on mechanical properties of Cu–Zn–Si alloy were investigated by using X-ray diffraction, transmission electron microscope, electron back scattered diffraction and tensile tests. The Cu–Zn–Si alloy has been processed at cryogenic temperature (approximately 77 K) and room temperature up to different rolling strains. It has been identified that the cryorolled Cu–Zn–Si alloy samples show a higher strength compared with those room temperature rolled samples. The improved strength of cryorolled samples is resulted from grain size effect and higher densities of dislocations and deformation twins. And subsequent annealing, as a post-heat treatment, enhanced the ductility. An obvious increase in uniform elongation appears when the volume fraction of static recrystallization grains exceeds 25%. The strength–ductility combination of the annealed cryorolled samples is superior to that of annealed room temperature rolled samples, owing to the finer grains, high fractions of high angle grain boundaries and twins. - Highlights: • An increase in hardness of Cu–Zn–Si alloy is noticed during annealing process. • Thermal stability is reduced in Cu–Zn–Si alloy by cryorolling. • An obvious enhancement in UE is noticed when fraction of SRX grains exceeds 25%. • A superior strength–ductility combination is achieved in the cryorolling samples.

  20. Phenomenological approach to mechanical damage growth analysis.

    PubMed

    Pugno, Nicola; Bosia, Federico; Gliozzi, Antonio S; Delsanto, Pier Paolo; Carpinteri, Alberto

    2008-10-01

    The problem of characterizing damage evolution in a generic material is addressed with the aim of tracing it back to existing growth models in other fields of research. Based on energetic considerations, a system evolution equation is derived for a generic damage indicator describing a material system subjected to an increasing external stress. The latter is found to fit into the framework of a recently developed phenomenological universality (PUN) approach and, more specifically, the so-called U2 class. Analytical results are confirmed by numerical simulations based on a fiber-bundle model and statistically assigned local strengths at the microscale. The fits with numerical data prove, with an excellent degree of reliability, that the typical evolution of the damage indicator belongs to the aforementioned PUN class. Applications of this result are briefly discussed and suggested. PMID:18999489

  1. [Impact of temperature increment before the over-wintering period on growth and development and grain yield of winter wheat].

    PubMed

    Li, Xiang-dong; Zhang, De-qi; Wang, Han-fang; Shao, Yun-hui; Fang, Bao-ting; Lyu, Feng-rong; Yue, Jun-qin; Ma, Fu-ju

    2015-03-01

    The effect of temperature increment before the over-wintering period on winter wheat development and grain yield was evaluated in an artificial climate chamber (TPG 1260, Australia) from 2010 to 2011. Winter wheat cultivar 'Zhengmai 7698' was used in this study. Three temperature increment treatments were involved in this study, i.e., temperature increment last 40, 50 and 60 days, respectively, before the over-wintering period. Control was not treated by temperature increment. The results showed that temperature increment before the over-wintering period had no significant effect on earlier phase spike differentiation. But an apparent effect on later phase spike differentiation was observed. High temperature effect on spike differentiation disappeared when the difference of effective accumulated temperature between the temperature increment treatment and the control was lower than 25 °C. However, the foliar age at the jointing stage was enhanced more than 0.8, heading and physiological ripening were advanced 1 day each, when the effective accumulated temperature before the over-wintering period increased 60 °C. Higher effective accumulated temperature before the over-wintering period accelerated winter wheat growth and development, which resulted in a short spike differentiation period. Winter wheat was easy to suffer freeze damage, which lead to floret abortion and spikelet death in spring under this situation. Meanwhile, higher effective accumulated temperature before the over-wintering period also reduced, photosynthetic capacity of flag leaf, shortened the grain filling period, and led to wheat grain yield reduction.

  2. Mechanics of severing for large microtubule complexes revealed by coarse-grained simulations

    NASA Astrophysics Data System (ADS)

    Theisen, Kelly E.; Desai, Neha J.; Volski, Allison M.; Dima, Ruxandra I.

    2013-09-01

    We investigate the mechanical behavior of microtubule (MT) protofilaments under the action of bending forces, ramped up linearly in time, to provide insight into the severing of MTs by microtubule associated proteins (MAPs). We used the self-organized polymer model which employs a coarse-grained description of the protein chain and ran Brownian dynamics simulations accelerated on graphics processing units that allow us to follow the dynamics of a MT system on experimental timescales. Our study focused on the role played in the MT depolymerization dynamics by the inter-tubulin contacts a protofilament experiences when embedded in the MT lattice, and the number of binding sites of MAPs on MTs. We found that proteins inducing breaking of MTs must have at least three attachment points on any tubulin dimer from an isolated protofilament. In contrast, two points of contact would suffice when dimers are located in an intact MT lattice, in accord with experimental findings on MT severing proteins. Our results show that confinement of a protofilament in the MT lattice leads to a drastic reduction in the energy required for the removal of tubulin dimers, due to the drastic reduction in entropy. We further showed that there are differences in the energetic requirements based on the location of the dimer to be removed by severing. Comparing the energy of tubulin dimers removal revealed by our simulations with the amount of energy resulting from one ATP hydrolysis, which is the source of energy for all MAPs, we provided strong evidence for the experimental finding that severing proteins do not bind uniformly along the MT wall.

  3. Friction in unconforming grain contacts as a mechanism for tensorial stress strain hysteresis

    NASA Astrophysics Data System (ADS)

    Aleshin, V.; Van Den Abeele, K.

    2007-04-01

    Materials composed of consolidated grains and/or containing internal contacts are widespread in everyday life (e.g. rocks, geomaterials, concretes, slates, ceramics, composites, etc.). For any simulation of the elastic behavior of this class of solids, be it in seismology, in NDT, or in the modeling of building constructions, the stress-strain constitutive equations are indispensable. Since the most common loading patterns in nature considerably deviate from simple uniaxial compression, the problem of tensorial stress-strain representation arises. In simple loading cases it may be sufficient to use a phenomenological constitutive model. However, in a more general case, phenomenological approaches encounter serious difficulties due to the high number of unknown parameters and the complexity of the model itself. Simplification of the phenomenology can help only partly, since it may require artificial assumptions. For instance, is it enough just to link the volumetric stress to the volumetric strain, or do we have to include shear components as well, and if yes, in what form? We therefore propose a physical tensorial stress-strain model, based on the consideration of plane cracks with friction. To do this, we combine known relations for normal displacements of crack faces given by contact mechanics, the classical Amonton's law of dry friction for lateral displacements, and the equations of elasticity theory for a collection of non-interacting cracks with given orientation. The major advantages of this model consist in the full tensorial representation, the realistic stress-strain curves for uniaxial stress compression and quantitative comparison with experimental data, and a profound account for hysteretic memory effects.

  4. Evidence of grain growth in the disk of the bipolar proto-planetary nebula M 1-92

    NASA Astrophysics Data System (ADS)

    Murakawa, K.; Ueta, T.; Meixner, M.

    2010-02-01

    bipolar PPNs, including M 1-92. This result suggests that disks play an important role in grain growth.

  5. Hair Growth Promotion Activity and Its Mechanism of Polygonum multiflorum

    PubMed Central

    Li, Yunfei; Han, Mingnuan; Lin, Pei; He, Yanran; Yu, Jie; Zhao, Ronghua

    2015-01-01

    Polygonum multiflorum Radix (PMR) has long history in hair growth promotion and hair coloring in clinical applications. However, several crucial problems in its clinic usage and mechanisms are still unsolved or lack scientific evidences. In this research, C57BL/6J mice were used to investigate hair growth promotion activity and possible mechanism of PMR and Polygonum multiflorum Radix Preparata (PMRP). Hair growth promotion activities were investigated by hair length, hair covered skin ratio, the number of follicles, and hair color. Regulation effects of several cytokines involved in the hair growth procedure were tested, such as fibroblast growth factor (FGF-7), Sonic Hedgehog (SHH), β-catenin, insulin-like growth factor-1 (IGF-1), and hepatocyte growth factor (HGF). Oral PMR groups had higher hair covered skin ratio (100 ± 0.00%) than oral PMRP groups (48%~88%). However, topical usage of PMRP had about 90% hair covered skin ratio. Both oral administration of PMR and topically given PMRP showed hair growth promotion activities. PMR was considered to be more suitable for oral administration, while PMRP showed greater effects in external use. The hair growth promotion effect of oral PMR was most probably mediated by the expression of FGF-7, while topical PMRP promoted hair growth by the stimulation of SHH expression. PMID:26294926

  6. Influence of intense plastic straining on grain refinement, precipitation, and mechanical properties of Al-Cu-Li-Based alloys

    NASA Astrophysics Data System (ADS)

    Salem, H. G.; Goforth, R. E.; Hartwig, K. T.

    2003-05-01

    Grain refinement is one of the major interests when an ultrahigh strength/ductility combination is demanded for ambient and cryogenic temperature applications, especially when superplastic forming (SPF) is involved for the manufacturing of different aerospace structures. Equal-channel angular extrusion (ECAE) is a relatively new metalworking process, which is capable of producing an ultrafine, submicron-grained (SMG) structure by means of intense plastic straining without a change in the shape or dimensions of the worked material. In the current research work, the influence of ECAE processing on the room-temperature mechanical properties of Al-Cu-Li-Mg-Ag-Zr alloys in the T4 and T6 temper conditions is investigated. An ultrafine SMG structure of 0.2 to 0.4 µm was produced for the ECAE-processed alloys from an initial grain size of >100 µm, which is compared with a conventionally processed superplastic Weldalite sheet material with an ˜1.5 µm grain size. The ECAE processing eliminates the precipitation-free zones (PFZs) in the T6 temper condition without the need for prior stretching. A significant improvement in the mechanical properties at room temperature is achieved by ECAE processing in comparison with conventional processing.

  7. Mechanical forces in plant growth and development

    NASA Technical Reports Server (NTRS)

    Fisher, D. D.; Cyr, R. J.

    2000-01-01

    Plant cells perceive forces that arise from the environment and from the biophysics of plant growth. These forces provide meaningful cues that can affect the development of the plant. Seedlings of Arabidopsis thaliana were used to examine the cytoplasmic tensile character of cells that have been implicated in the gravitropic response. Laser-trapping technology revealed that the starch-containing statoliths of the central columella cells in root caps are held loosely within the cytoplasm. In contrast, the peripheral cells have starch granules that are relatively resistant to movement. The role of the actin cytoskeleton in affecting the tensile character of these cells is discussed. To explore the role that biophysical forces might play in generating developmental cues, we have developed an experimental model system in which protoplasts, embedded in a synthetic agarose matrix, are subjected to stretching or compression. We have found that protoplasts subjected to these forces from five minutes to two hours will subsequently elongate either at right angles or parallel to the tensive or compressive force vector. Moreover, the cortical microtubules are found to be organized either at right angles or parallel to the tensive or compressive force vector. We discuss these results in terms of an interplay of information between the extracellular matrix and the underlying cytoskeleton.

  8. Maximising electro-mechanical response by minimising grain-scale strain heterogeneity in phase-change actuator ceramics

    NASA Astrophysics Data System (ADS)

    Oddershede, Jette; Hossain, Mohammad Jahangir; Daniels, John E.

    2016-08-01

    Phase-change actuator ceramics directly couple electrical and mechanical energies through an electric-field-induced phase transformation. These materials are promising for the replacement of the most common electro-mechanical ceramic, lead zirconate titanate, which has environmental concerns. Here, we show that by compositional modification, we reduce the grain-scale heterogeneity of the electro-mechanical response by 40%. In the materials investigated, this leads to an increase in the achievable electric-field-induced strain of the bulk ceramic of 45%. Compositions of (100-x)Bi0.5Na0.5TiO3-(x)BaTiO3, which initially possess a pseudo-cubic symmetry, can be tuned to undergo phase transformations to combined lower symmetry phases, thus decreasing the anisotropy of the transformation strain. Further, modelling of transformation strains of individual grains shows that minimum grain-scale strain heterogeneity can be achieved by precise control of the lattice distortions and orientation distributions of the induced phases. The current results can be used to guide the design of next generation high-strain electro-mechanical ceramic actuator materials.

  9. Cellular mechanisms underlying growth asymmetry during stem gravitropism

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1997-01-01

    Plant stems respond to gravitropic stimulation with a rapid, local and reversible change in cell growth rate (elongation), generally on both the upper and lower sides of the stem. The cellular and biochemical mechanisms for this differential growth are reviewed. Considerable evidence implicates an asymmetry in wall pH in the growth response. The strengths and weaknesses of the wall "loosening enzyme" concept are reviewed and the possibility of expansin involvement in the bending response of stems is considered. Also discussed is the possibility that wall stiffening processes, e.g. phenolic coupling driven by oxidative bursts or altered orientation of newly deposited cellulose, might mediate the growth responses during gravitropism.

  10. Polarizing efficiency as a guide of grain growth and interstellar magnetic field properties

    NASA Astrophysics Data System (ADS)

    Voshchinnikov, N. V.; Il'in, V. B.; Das, H. K.

    2016-11-01

    We interpret the relation between the polarizing efficiency Pmax/E(B - V) and the wavelength of the maximum polarization λmax observed for 17 objects (including 243 stars) separated into two groups: `dark clouds' and `open clusters'. The objects are assigned to one of the groups according to the distribution of the parameter λmax. We use the model of homogeneous silicate and carbonaceous spheroidal particles with the imperfect alignment and a time-evolving size distribution. The polarization is assumed to be mainly produced by large silicate particles with the sizes rV ≳ rV, cut. The models with the initial size distribution reproducing the average curve of the interstellar extinction fail to explain the values of λmax ≳ 0.65 μm observed for several dark clouds. We assume that the grain size distribution is modified due to accretion and coagulation, according to the model of Hirashita & Voshchinnikov. After including the evolutionary effects, λmax shifts to longer wavelengths on time-scales ˜20(nH/103 cm-3)-1 Myr where nH is the hydrogen density in molecular clouds where dust processing occurs. The ratio Pmax/E(B - V) goes down dramatically when the size of polarizing grains grows. The variations of the degree and direction of particle orientation influence this ratio only moderately. We have also found that the aspect ratio of prolate grains does not affect significantly the polarizing efficiency. For oblate particles, the shape effect is stronger but in most cases the polarization curves produced are too narrow in comparison with the observed ones.

  11. Application of essential oils in maize grain: impact on Aspergillus section Flavi growth parameters and aflatoxin accumulation.

    PubMed

    Bluma, Romina V; Etcheverry, Miriam G

    2008-04-01

    The antifungal activity of Pimpinella anisum L. (anise), Pëumus boldus Mol (boldus), Hedeoma multiflora Benth (mountain thyme), Syzygium aromaticum L. (clove), and Lippia turbinate var. integrifolia (griseb) (poleo) essential oils (EOs) against Aspergillus section Flavi was evaluated in sterile maize grain under different water activity (a(w)) condition (0.982, 0.955, and 0.90). The effect of EOs added to maize grains on growth rate, lag phase, and aflatoxin B(1) (AFB(1)) accumulation of Aspergillus section Flavi were evaluated at different water activity conditions. The five EOs analyzed have been shown to influence lag phase and growth rate. Their efficacy depended mainly on the essential oil concentrations and substrate water activity conditions. All EOs showed significant impact on AFB(1) accumulation. This effect was closely dependent on the water activity, concentration, and incubation periods. Important reduction of AFB(1) accumulation was observed in the majority of EO treatments at 11 days of incubation. Boldus, poleo, and mountain thyme EO completely inhibited AFB(1) at 2000 and 3000 microg g(-1). Inhibition of AFB(1) accumulation was also observed when aflatoxigenic isolates grew with different concentration of EOs during 35 days. PMID:18206775

  12. SIMULATION OF STRAIN INDUCED INTERFACE MIGRATION IN SYMMETRIC TILT GRAIN BOUNDARIES

    SciTech Connect

    Namilae, Sirish; Radhakrishnan, Balasubramaniam; Gorti, Sarma B

    2007-01-01

    Grain boundary migration of flat symmetric tilt grain boundaries is simulated using molecular dynamics. The driving force for migration is achieved by applying uniaxial strain on one of the grains in the bicrystal, enabling the growth of strain free grain at the expense of strained grain. Arrhenius dependence of grain boundary mobility on temperature and a linear relation between mobility and grain boundary velocity are observed. Simulations suggest that the mechanism of migration is dependent on vacancy diffusion combined with local reshuffling of atoms near the grain boundary.

  13. Growth temperature and genotype both play important roles in sorghum grain phenolic composition

    PubMed Central

    Wu, Gangcheng; Johnson, Stuart K.; Bornman, Janet F.; Bennett, Sarita J.; Clarke, Michael W.; Singh, Vijaya; Fang, Zhongxiang

    2016-01-01

    Polyphenols in sorghum grains are a source of dietary antioxidants. Polyphenols in six diverse sorghum genotypes grown under two day/night temperature regimes of optimal temperature (OT, 32/21 °C and high temperature (HT, 38/21 °C) were investigated. A total of 23 phenolic compounds were positively or tentatively identified by HPLC-DAD-ESIMS. Compared with other pigmented types, the phenolic profile of white sorghum PI563516 was simpler, since fewer polyphenols were detected. Brown sorghum IS 8525 had the highest levels of caffeic and ferulic acid, but apigenin and luteolin were not detected. Free luteolinidin and apigeninidin levels were lower under HT than OT across all genotypes (p ≤ 0.05), suggesting HT could have inhibited 3-deoxyanthocyanidins formation. These results provide new information on the effects of HT on specific polyphenols in various Australian sorghum genotypes, which might be used as a guide to grow high antioxidant sorghum grains under projected high temperature in the future. PMID:26907726

  14. Mechanism for the acceleration and ejection of dust grains from Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Horanyi, M.; Morfill, G.; Gruen, E.

    1993-01-01

    The Ulysses mission detected quasi-periodic streams of high-velocity submicron-sized dust particles during its encounter with Jupiter. It is shown here how the dust events could result from the acceleration and subsequent ejection of small grains by Jupiter's magnetosphere. Dust grains entering the plasma environment of the magnetosphere become charged, with the result that their motion is then determined by both electromagnetic and gravitational forces. This process is modeled, and it is found that only those particles in a certain size range gain sufficient energy to escape the Jovian system. Moreover, if Io is assumed to be the source of the dust grains, its location in geographic and geomagnetic coordinates determines the exit direction of the escaping particles, providing a possible explanation for the observed periodicities. The calculated mass and velocity range of the escaping dust gains are consistent with the Ulysses findings.

  15. Growth Control and Disease Mechanisms in Computational Embryogeny

    NASA Technical Reports Server (NTRS)

    Shapiro, Andrew A.; Yogev, Or; Antonsson, Erik K.

    2008-01-01

    This paper presents novel approach to applying growth control and diseases mechanisms in computational embryogeny. Our method, which mimics fundamental processes from biology, enables individuals to reach maturity in a controlled process through a stochastic environment. Three different mechanisms were implemented; disease mechanisms, gene suppression, and thermodynamic balancing. This approach was integrated as part of a structural evolutionary model. The model evolved continuum 3-D structures which support an external load. By using these mechanisms we were able to evolve individuals that reached a fixed size limit through the growth process. The growth process was an integral part of the complete development process. The size of the individuals was determined purely by the evolutionary process where different individuals matured to different sizes. Individuals which evolved with these characteristics have been found to be very robust for supporting a wide range of external loads.

  16. Bubble growth and mechanical properties of tissue in decompression.

    PubMed

    Vann, R D; Clark, H G

    1975-09-01

    A survey of decompression literature leads to the conclusion that when tissue is subjected to gaseous supersaturation, pre-existing gas micronuclei grow into the gas bubbles which are routinely observed in decompression studies. These micronuclei may originate from mechanically induced tribonucleation or cavitation within joints. A new tissue model for decompression sickness based upon failure theory in rubber is proposed. The model shows theoretically that pre-existing sea-level nuclei can be stabilized at depth by elastic forces in tissue. These same elastic forces restrain the growth of nuclei when supersaturation occurs. Mechanical stress will lower the gaseous supersaturation required for growth of nuclei. Gaseous supersaturation, mechanical stress, and the elastic properties of various tissues interact to produce unbounded bubble growth leading to tissue lesions when combined gaseous and mechanical supersaturation exceeds a threshold value. The recommendation is made that the high levels of supersaturation generally used for the decompression of men be reduced.

  17. Mechanical signal transduction in skeletal muscle growth and adaptation.

    PubMed

    Tidball, James G

    2005-05-01

    The adaptability of skeletal muscle to changes in the mechanical environment has been well characterized at the tissue and system levels, but the mechanisms through which mechanical signals are transduced to chemical signals that influence muscle growth and metabolism remain largely unidentified. However, several findings have suggested that mechanical signal transduction in muscle may occur through signaling pathways that are shared with insulin-like growth factor (IGF)-I. The involvement of IGF-I-mediated signaling for mechanical signal transduction in muscle was originally suggested by the observations that muscle releases IGF-I on mechanical stimulation, that IGF-I is a potent agent for promoting muscle growth and affecting phenotype, and that IGF-I can function as an autocrine hormone in muscle. Accumulating evidence shows that at least two signaling pathways downstream of IGF-I binding can influence muscle growth and adaptation. Signaling via the calcineurin/nuclear factor of activated T-cell pathway has been shown to have a powerful influence on promoting the slow/type I phenotype in muscle but can also increase muscle mass. Neural stimulation of muscle can activate this pathway, although whether neural activation of the pathway can occur independent of mechanical activation or independent of IGF-I-mediated signaling remains to be explored. Signaling via the Akt/mammalian target of rapamycin pathway can also increase muscle growth, and recent findings show that activation of this pathway can occur as a response to mechanical stimulation applied directly to muscle cells, independent of signals derived from other cells. In addition, mechanical activation of mammalian target of rapamycin, Akt, and other downstream signals is apparently independent of autocrine factors, which suggests that activation of the mechanical pathway occurs independent of muscle-mediated IGF-I release.

  18. Twin plane re-entrant mechanism for catalytic nanowire growth.

    PubMed

    Gamalski, Andrew D; Voorhees, Peter W; Ducati, Caterina; Sharma, Renu; Hofmann, Stephan

    2014-03-12

    A twin-plane based nanowire growth mechanism is established using Au catalyzed Ge nanowire growth as a model system. Video-rate lattice-resolved environmental transmission electron microscopy shows a convex, V-shaped liquid catalyst-nanowire growth interface for a ⟨112⟩ growth direction that is composed of two Ge {111} planes that meet at a twin boundary. Unlike bulk crystals, the nanowire geometry allows steady-state growth with a single twin boundary at the nanowire center. We suggest that the nucleation barrier at the twin-plane re-entrant groove is effectively reduced by the line energy, and hence the twin acts as a preferential nucleation site that dictates the lateral step flow cycle which constitutes nanowire growth.

  19. Effect of Zr addition on the mechanical characteristics and wear resistance of Al grain refined by Ti after extrusion

    NASA Astrophysics Data System (ADS)

    Zaid, Adnan I. O.; Al-Qawabah, S. M. A.

    2016-08-01

    Aluminum and its alloys are normally grain refined by Ti or Ti+B to transfer their columnar structure during solidification into equiaxed one which improves their mechanical behavior and surface quality. In this paper, the effect of addition of Zr on the metallurgical, and mechanical aspects, hardness, ductility and wear resistance of commercially pure aluminum grain refined by Ti after extrusion is investigated. Zr was added at a level of 0.1% which corresponds to the peretectic limit at the Al-Zr phase diagram. The experimental work was carried out on the specimens after direct extrusion. It was found that addition of Ti resulted in decrease of Al grain size, whereas addition of Zr alone or in the presence of Ti, resulted in reduction of Al grain size. This led to increase of Al hardness. The effect of the addition of Ti or Zr alone resulted almost in the same enhancement of Al mechanical characteristics. As for the strain hardening index,n, increase was obtained when Zr was added alone or in the presence of Ti. Hence pronounced improvement of its formability. Regarding the effect of Zr addition on the wear resistance of aluminum; it was found that at small loads and speeds addition of Ti or Zr or both together resulted in deterioration of its wear resistance whereas at higher loads and speeds resulted in pronounced improvement of its wear resistance. Finally, the available Archard model and the other available models which consider only the mass loss failed to describe the wear mechanism of Al and its micro-alloys because they do not consider the mushrooming effect at the worn end.

  20. Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes

    NASA Astrophysics Data System (ADS)

    Fei, Linfeng; Lei, Shuijin; Zhang, Wei-Bing; Lu, Wei; Lin, Ziyuan; Lam, Chi Hang; Chai, Yang; Wang, Yu

    2016-07-01

    A microscopic understanding of the growth mechanism of two-dimensional materials is of particular importance for controllable synthesis of functional nanostructures. Because of the lack of direct and insightful observations, how to control the orientation and the size of two-dimensional material grains is still under debate. Here we discern distinct formation stages for MoS2 flakes from the thermolysis of ammonium thiomolybdates using in situ transmission electron microscopy. In the initial stage (400 °C), vertically aligned MoS2 structures grow in a layer-by-layer mode. With the increasing temperature of up to 780 °C, the orientation of MoS2 structures becomes horizontal. When the growth temperature reaches 850 °C, the crystalline size of MoS2 increases by merging adjacent flakes. Our study shows direct observations of MoS2 growth as the temperature evolves, and sheds light on the controllable orientation and grain size of two-dimensional materials.

  1. Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes

    PubMed Central

    Fei, Linfeng; Lei, Shuijin; Zhang, Wei-Bing; Lu, Wei; Lin, Ziyuan; Lam, Chi Hang; Chai, Yang; Wang, Yu

    2016-01-01

    A microscopic understanding of the growth mechanism of two-dimensional materials is of particular importance for controllable synthesis of functional nanostructures. Because of the lack of direct and insightful observations, how to control the orientation and the size of two-dimensional material grains is still under debate. Here we discern distinct formation stages for MoS2 flakes from the thermolysis of ammonium thiomolybdates using in situ transmission electron microscopy. In the initial stage (400 °C), vertically aligned MoS2 structures grow in a layer-by-layer mode. With the increasing temperature of up to 780 °C, the orientation of MoS2 structures becomes horizontal. When the growth temperature reaches 850 °C, the crystalline size of MoS2 increases by merging adjacent flakes. Our study shows direct observations of MoS2 growth as the temperature evolves, and sheds light on the controllable orientation and grain size of two-dimensional materials. PMID:27412892

  2. Microstructure and mechanical behavior of neutron irradiated ultrafine grained ferritic steel

    SciTech Connect

    Ahmad Alsabbagh; Apu Sarkar; Brandon Miller; Jatuporn Burns; Leah Squires; Douglas Porter; James I. Cole; K. L. Murty

    2014-10-01

    Neutron irradiation effects on ultra-fine grain (UFG) low carbon steel prepared by equal channel angular pressing (ECAP) has been examined. Counterpart samples with conventional grain (CG) sizes have been irradiated alongside with the UFG ones for comparison. Samples were irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to 1.24 dpa. Atom probe tomography revealed manganese, silicon-enriched clusters in both ECAP and CG steel after neutron irradiation. X-ray quantitative analysis showed that dislocation density in CG increased after irradiation. However, no significant change was observed in UFG steel revealing better radiation tolerance.

  3. Interstellar grains within interstellar grains

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.; Amari, Sachiko; Zinner, Ernst K.; Lewis, Roy S.

    1991-01-01

    Five interstellar graphite spherules extracted from the Murchison carbonaceous meteorite are studied. The isotopic and elemental compositions of individual particles are investigated with the help of an ion microprobe, and this analysis is augmented with structural studies of ultrathin sections of the grain interiors by transmission electron microscopy. As a result, the following procedure for the formation of the interstellar graphite spherule bearing TiC crystals is inferred: (1) high-temperature nucleation and rapid growth of the graphitic carbon spherule in the atmosphere of a carbon-rich star, (2) nucleation and growth of TiC crystals during continued growth of the graphitic spherule and the accretion of TiC onto the spherule, (3) quenching of the graphite growth process by depletion of C or by isolation of the spherule before other grain types could condense.

  4. INFRARED SPECTROSCOPIC SURVEY OF THE QUIESCENT MEDIUM OF NEARBY CLOUDS. I. ICE FORMATION AND GRAIN GROWTH IN LUPUS

    SciTech Connect

    Boogert, A. C. A.; Chiar, J. E.; Knez, C.; Mundy, L. G.; Öberg, K. I.; Pendleton, Y. J.; Tielens, A. G. G. M.; Van Dishoeck, E. F.

    2013-11-01

    Infrared photometry and spectroscopy (1-25 μm) of background stars reddened by the Lupus molecular cloud complex are used to determine the properties of grains and the composition of ices before they are incorporated into circumstellar envelopes and disks. H{sub 2}O ices form at extinctions of A{sub K} = 0.25 ± 0.07 mag (A{sub V} = 2.1 ± 0.6). Such a low ice formation threshold is consistent with the absence of nearby hot stars. Overall, the Lupus clouds are in an early chemical phase. The abundance of H{sub 2}O ice (2.3 ± 0.1 × 10{sup –5} relative to N{sub H}) is typical for quiescent regions, but lower by a factor of three to four compared to dense envelopes of young stellar objects. The low solid CH{sub 3}OH abundance (<3%-8% relative to H{sub 2}O) indicates a low gas phase H/CO ratio, which is consistent with the observed incomplete CO freeze out. Furthermore it is found that the grains in Lupus experienced growth by coagulation. The mid-infrared (>5 μm) continuum extinction relative to A{sub K} increases as a function of A{sub K}. Most Lupus lines of sight are well fitted with empirically derived extinction curves corresponding to R{sub V} ∼ 3.5 (A{sub K} = 0.71) and R{sub V} ∼ 5.0 (A{sub K} = 1.47). For lines of sight with A{sub K} > 1.0 mag, the τ{sub 9.7}/A{sub K} ratio is a factor of two lower compared to the diffuse medium. Below 1.0 mag, values scatter between the dense and diffuse medium ratios. The absence of a gradual transition between diffuse and dense medium-type dust indicates that local conditions matter in the process that sets the τ{sub 9.7}/A{sub K} ratio. This process is likely related to grain growth by coagulation, as traced by the A{sub 7.4}/A{sub K} continuum extinction ratio, but not to ice mantle formation. Conversely, grains acquire ice mantles before the process of coagulation starts.

  5. Route and Regulation of Zinc, Cadmium, and Iron Transport in Rice Plants (Oryza sativa L.) during Vegetative Growth and Grain Filling: Metal Transporters, Metal Speciation, Grain Cd Reduction and Zn and Fe Biofortification.

    PubMed

    Yoneyama, Tadakatsu; Ishikawa, Satoru; Fujimaki, Shu

    2015-08-13

    Zinc (Zn) and iron (Fe) are essential but are sometimes deficient in humans, while cadmium (Cd) is toxic if it accumulates in the liver and kidneys at high levels. All three are contained in the grains of rice, a staple cereal. Zn and Fe concentrations in rice grains harvested under different levels of soil/hydroponic metals are known to change only within a small range, while Cd concentrations show greater changes. To clarify the mechanisms underlying such different metal contents, we synthesized information on the routes of metal transport and accumulation in rice plants by examining metal speciation, metal transporters, and the xylem-to-phloem transport system. At grain-filling, Zn and Cd ascending in xylem sap are transferred to the phloem by the xylem-to-phloem transport system operating at stem nodes. Grain Fe is largely derived from the leaves by remobilization. Zn and Fe concentrations in phloem-sap and grains are regulated within a small range, while Cd concentrations vary depending on xylem supply. Transgenic techniques to increase concentrations of the metal chelators (nicotianamine, 2'-deoxymugineic acid) are useful in increasing grain Zn and Fe concentrations. The elimination of OsNRAMP5 Cd-uptake transporter and the enhancement of root cell vacuolar Cd sequestration reduce uptake and root-to-shoot transport, respectively, resulting in a reduction of grain Cd accumulation.

  6. Route and Regulation of Zinc, Cadmium, and Iron Transport in Rice Plants (Oryza sativa L.) during Vegetative Growth and Grain Filling: Metal Transporters, Metal Speciation, Grain Cd Reduction and Zn and Fe Biofortification

    PubMed Central

    Yoneyama, Tadakatsu; Ishikawa, Satoru; Fujimaki, Shu

    2015-01-01

    Zinc (Zn) and iron (Fe) are essential but are sometimes deficient in humans, while cadmium (Cd) is toxic if it accumulates in the liver and kidneys at high levels. All three are contained in the grains of rice, a staple cereal. Zn and Fe concentrations in rice grains harvested under different levels of soil/hydroponic metals are known to change only within a small range, while Cd concentrations show greater changes. To clarify the mechanisms underlying such different metal contents, we synthesized information on the routes of metal transport and accumulation in rice plants by examining metal speciation, metal transporters, and the xylem-to-phloem transport system. At grain-filling, Zn and Cd ascending in xylem sap are transferred to the phloem by the xylem-to-phloem transport system operating at stem nodes. Grain Fe is largely derived from the leaves by remobilization. Zn and Fe concentrations in phloem-sap and grains are regulated within a small range, while Cd concentrations vary depending on xylem supply. Transgenic techniques to increase concentrations of the metal chelators (nicotianamine, 2′-deoxymugineic acid) are useful in increasing grain Zn and Fe concentrations. The elimination of OsNRAMP5 Cd-uptake transporter and the enhancement of root cell vacuolar Cd sequestration reduce uptake and root-to-shoot transport, respectively, resulting in a reduction of grain Cd accumulation. PMID:26287170

  7. Enhancement of trapped field in single grain Y–Ba–Cu–O bulk superconductors by a modified top-seeded melt-textured growth

    NASA Astrophysics Data System (ADS)

    Tang, Tian-wei; Wu, Dong-jie; Xu, Ke-Xi

    2016-08-01

    The modified top-seeded melt-textured growth technique for fabricating single grain Y–Ba–Cu–O (YBCO) bulk superconductors with high field-trapping ability by using modified precursor pellets was reported. The modified precursor pellets are composed of different precursor powders YBa2Cu3O{}7-δ (Y123) + x mol% Y2BaCuO5 (Y211) + 1 wt% CeO2 without any further chemical doping. The modified YBCO bulks up to 25 and 34 mm in diameter were successfully fabricated from the modified precursor pellets. Microstructural observation results showed that the modified YBCO bulk exhibited a homogeneous distribution of Y211 phase particles, which was qualitatively explained by the solute diffusion growth model in combination with the trapping/pushing theory. As a result, it is notable that the peak trapped field values of 0.91 T (maximum 0.96 T) and 1.2 T (maximum 1.28 T) at 77 K were achieved for 25 and 34 mm modified YBCO bulks, respectively. In a word, the results from present work are very helpful to understand the melt growth mechanism and to further improve the properties of YBCO bulk superconductors for practical applications.

  8. Enhancement of trapped field in single grain Y-Ba-Cu-O bulk superconductors by a modified top-seeded melt-textured growth

    NASA Astrophysics Data System (ADS)

    Tang, Tian-wei; Wu, Dong-jie; Xu, Ke-Xi

    2016-08-01

    The modified top-seeded melt-textured growth technique for fabricating single grain Y-Ba-Cu-O (YBCO) bulk superconductors with high field-trapping ability by using modified precursor pellets was reported. The modified precursor pellets are composed of different precursor powders YBa2Cu3O{}7-δ (Y123) + x mol% Y2BaCuO5 (Y211) + 1 wt% CeO2 without any further chemical doping. The modified YBCO bulks up to 25 and 34 mm in diameter were successfully fabricated from the modified precursor pellets. Microstructural observation results showed that the modified YBCO bulk exhibited a homogeneous distribution of Y211 phase particles, which was qualitatively explained by the solute diffusion growth model in combination with the trapping/pushing theory. As a result, it is notable that the peak trapped field values of 0.91 T (maximum 0.96 T) and 1.2 T (maximum 1.28 T) at 77 K were achieved for 25 and 34 mm modified YBCO bulks, respectively. In a word, the results from present work are very helpful to understand the melt growth mechanism and to further improve the properties of YBCO bulk superconductors for practical applications.

  9. The growth hormone receptor: mechanism of activation and clinical implications.

    PubMed

    Brooks, Andrew J; Waters, Michael J

    2010-09-01

    Growth hormone is widely used clinically to promote growth and anabolism and for other purposes. Its actions are mediated via the growth hormone receptor, both directly by tyrosine kinase activation and indirectly by induction of insulin-like growth factor 1 (IGF-1). Insensitivity to growth hormone (Laron syndrome) can result from mutations in the growth hormone receptor and can be treated with IGF-1. This treatment is, however, not fully effective owing to the loss of the direct actions of growth hormone and altered availability of exogenous IGF-1. Excessive activation of the growth hormone receptor by circulating growth hormone results in gigantism and acromegaly, whereas cell transformation and cancer can occur in response to autocrine activation of the receptor. Advances in understanding the mechanism of receptor activation have led to a model in which the growth hormone receptor exists as a constitutive dimer. Binding of the hormone realigns the subunits by rotation and closer apposition, resulting in juxtaposition of the catalytic domains of the associated tyrosine-protein kinase JAK2 below the cell membrane. This change results in activation of JAK2 by transphosphorylation, then phosphorylation of receptor tyrosines in the cytoplasmic domain, which enables binding of adaptor proteins, as well as direct phosphorylation of target proteins. This model is discussed in the light of salient information from closely related class 1 cytokine receptors, such as the erythropoietin, prolactin and thrombopoietin receptors. PMID:20664532

  10. Growth mechanism of carbon nanotubes: a nano Czochralski model

    PubMed Central

    2012-01-01

    Carbon nanotubes (CNTs) have been under intense investigations during the past two decades due to their unique physical and chemical properties; however, there is still no commonly accepted growth mechanism to describe the growth behavior of CNTs. Here, we propose a nano Czochralski (CZ) model which regards the catalytic growth of a CNT as a CZ process taking place on the nano scale. The main idea is that, during the CNT growth, each catalyst particle acts as a nano crucible to nucleate and maintain the CNT growth, and the extruding CNT rotates relative to the nano crucible, leading to a chirality-dependent growth rate. In this case, the structural quality gradually changes along the CNT due to the dynamic generation-reconstruction-diffusion of defects during the CNT growth. The nano CZ mechanism may also apply to the catalytic growth of many other one-dimensional (1D) nanostructures (including various nanotubes and nanowires), thus further efforts will be stimulated in the quality and property control, as well as application explorations of these 1D nanomaterials. PMID:22747835

  11. Mechanical and thermal properties of high density polyethylene – dried distillers grains with solubles composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dried Distillers Grain with Solubles (DDGS) is evaluated as a bio-based fiber reinforcement. Injection molded composites of high density polyethylene (HDPE), 25% by weight of DDGS, and either 5% of 0% by weight of maleated polyethylene (MAPE) were produced by twin screw compounding and injection mo...

  12. Mechanisms of time-dependent crack growth at elevated temperature. Final project report, July 1, 1986--August 31, 1989

    SciTech Connect

    Saxena, A.; Stock, S.R.

    1990-04-15

    Objective of this 3-y study was to conduct creep and creep-fatigue crack growth experiments and to characterize the crack tip damage mechanisms in a model material (Cu-1wt%Sb), which is known to cavitate at grain boundaries under creep deformation. Results were: In presence of large scale cavitation damage and crack branching, time rate of creep crack growth da/dt does not correlate with C{sub t} or C{sup *}. When cavitation damage is constrained, da/dt is characterized by C{sub t}. Area fraction of grain boundary cavitated is the single damage parameter for the extent of cavitation damage ahead of crack tips. C{sub t} is used for the creep-fatigue crack growth behavior. In materials prone to rapid cavity nucleation, creep cracks grow faster initially and then reach a steady state whose growth rate is determined by C{sub t}. Percent creep life exhausted correlates with average cavity diameter and fraction of grain boundary area occupied by cavities. Synchrotron x-ray tomographic microscopy was used to image individual cavities in Cu-1wt% Sb. A methodology was developed for predicting the remaining life of elevated temperature power plant components; (C{sub t}){sub avg} was used to correlate creep-fatigue crack growth in Cr-Mo and Cr-Mo-V steel and weldments.

  13. Secretory pattern and regulatory mechanism of growth hormone in cattle

    PubMed Central

    2016-01-01

    Abstract The ultradian rhythm of growth hormone (GH) secretion has been known in several animal species for years and has recently been observed in cattle. Although the physiological significance of the rhythm is not yet fully understood, it appears essential for normal growth. In this review, previous studies concerning the GH secretory pattern in cattle, including its ultradian rhythm, are introduced and the regulatory mechanism is discussed on the basis of recent findings. PMID:26260675

  14. New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre?

    PubMed

    Fardet, Anthony

    2010-06-01

    Epidemiological studies have clearly shown that whole-grain cereals can protect against obesity, diabetes, CVD and cancers. The specific effects of food structure (increased satiety, reduced transit time and glycaemic response), fibre (improved faecal bulking and satiety, viscosity and SCFA production, and/or reduced glycaemic response) and Mg (better glycaemic homeostasis through increased insulin secretion), together with the antioxidant and anti-carcinogenic properties of numerous bioactive compounds, especially those in the bran and germ (minerals, trace elements, vitamins, carotenoids, polyphenols and alkylresorcinols), are today well-recognised mechanisms in this protection. Recent findings, the exhaustive listing of bioactive compounds found in whole-grain wheat, their content in whole-grain, bran and germ fractions and their estimated bioavailability, have led to new hypotheses. The involvement of polyphenols in cell signalling and gene regulation, and of sulfur compounds, lignin and phytic acid should be considered in antioxidant protection. Whole-grain wheat is also a rich source of methyl donors and lipotropes (methionine, betaine, choline, inositol and folates) that may be involved in cardiovascular and/or hepatic protection, lipid metabolism and DNA methylation. Potential protective effects of bound phenolic acids within the colon, of the B-complex vitamins on the nervous system and mental health, of oligosaccharides as prebiotics, of compounds associated with skeleton health, and of other compounds such as alpha-linolenic acid, policosanol, melatonin, phytosterols and para-aminobenzoic acid also deserve to be studied in more depth. Finally, benefits of nutrigenomics to study complex physiological effects of the 'whole-grain package', and the most promising ways for improving the nutritional quality of cereal products are discussed. PMID:20565994

  15. Helical growth in plant organs: mechanisms and significance.

    PubMed

    Smyth, David R

    2016-09-15

    Many plants show some form of helical growth, such as the circular searching movements of growing stems and other organs (circumnutation), tendril coiling, leaf and bud reversal (resupination), petal arrangement (contortion) and leaf blade twisting. Recent genetic findings have revealed that such helical growth may be associated with helical arrays of cortical microtubules and of overlying cellulose microfibrils. An alternative mechanism of coiling that is based on differential contraction within a bilayer has also recently been identified and underlies at least some of these growth patterns. Here, I provide an overview of the genes and cellular processes that underlie helical patterning. I also discuss the diversity of helical growth patterns in plants, highlighting their potential adaptive significance and comparing them with helical growth patterns in animals. PMID:27624832

  16. Fluid mechanics in crystal growth - The 1982 Freeman scholar lecture

    NASA Technical Reports Server (NTRS)

    Ostrach, S.

    1983-01-01

    An attempt is made to unify the current state of knowledge in crystal growth techniques and fluid mechanics. After identifying important fluid dynamic problems for such representative crystal growth processes as closed tube vapor transport, open reactor vapor deposition, and the Czochralski and floating zone melt growth techniques, research results obtained to date are presented. It is noted that the major effort to date has been directed to the description of the nature and extent of bulk transport under realistic conditions, where bulk flow determines the heat and solute transport which strongly influence the temperature and concentration fields in the vicinity of the growth interface. Proper treatment of near field, or interface, problems cannot be given until the far field, or global flow, involved in a given crystal growth technique has been adequately described.

  17. Needle-like grains across growth lines in the coral skeleton of Porites lobata.

    PubMed

    Motai, Satoko; Nagai, Takaya; Sowa, Kohki; Watanabe, Tsuyoshi; Sakamoto, Naoya; Yurimoto, Hisayoshi; Kawano, Jun

    2012-12-01

    The skeletal texture and crystal morphology of the massive reef-building coral Porites lobata were observed from the nano- to micrometer scale using an analytical transmission electron microscope (ATEM). The skeletal texture consists of centers of calcification (COCs) and fiber area. Fiber areas contain bundles of needle-like aragonite crystals that are elongated along the crystallographic c-axis and are several hundred nanometers to one micrometer in width and several micrometers in length. The size distribution of aragonite crystals is relatively homogeneous in the fibers. Growth lines are observed sub-perpendicular to the direction of aragonite growth. These growth lines occur in 1-2 μm intervals and reflect a periodic contrast in the thickness of an ion-spattered sample and pass through the interior of some aragonite crystals. These observations suggest that the medium filled in the calcification space maintains a CaCO₃-supersaturated state during fiber growth and that a physical change occurs periodically during the aragonite crystals of the fiber area.

  18. Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Rong, Yaoguang; Tang, Zhongjia; Zhao, Yufeng; Zhong, Xin; Venkatesan, Swaminathan; Graham, Harrison; Patton, Matthew; Jing, Yan; Guloy, Arnold M.; Yao, Yan

    2015-06-01

    We report an effective solvent engineering process to enable controlled perovskite crystal growth and a wider window for processing uniform and dense methyl ammonium lead iodide (MAPbI3) perovskite films. Planar heterojunction solar cells fabricated with this method demonstrate hysteresis-free performance with a power conversion efficiency around 10%. The crystal structure of an organic-based Pb iodide intermediate phase is identified for the first time, which is critical in controlling the crystal growth and optimizing thin film morphology.We report an effective solvent engineering process to enable controlled perovskite crystal growth and a wider window for processing uniform and dense methyl ammonium lead iodide (MAPbI3) perovskite films. Planar heterojunction solar cells fabricated with this method demonstrate hysteresis-free performance with a power conversion efficiency around 10%. The crystal structure of an organic-based Pb iodide intermediate phase is identified for the first time, which is critical in controlling the crystal growth and optimizing thin film morphology. Electronic supplementary information (ESI) available: Detailed Experimental methods; photovoltaic performance of the devices; An X-ray crystallographic file (CIF). See DOI: 10.1039/c5nr02866c

  19. Needle-like grains across growth lines in the coral skeleton of Porites lobata.

    PubMed

    Motai, Satoko; Nagai, Takaya; Sowa, Kohki; Watanabe, Tsuyoshi; Sakamoto, Naoya; Yurimoto, Hisayoshi; Kawano, Jun

    2012-12-01

    The skeletal texture and crystal morphology of the massive reef-building coral Porites lobata were observed from the nano- to micrometer scale using an analytical transmission electron microscope (ATEM). The skeletal texture consists of centers of calcification (COCs) and fiber area. Fiber areas contain bundles of needle-like aragonite crystals that are elongated along the crystallographic c-axis and are several hundred nanometers to one micrometer in width and several micrometers in length. The size distribution of aragonite crystals is relatively homogeneous in the fibers. Growth lines are observed sub-perpendicular to the direction of aragonite growth. These growth lines occur in 1-2 μm intervals and reflect a periodic contrast in the thickness of an ion-spattered sample and pass through the interior of some aragonite crystals. These observations suggest that the medium filled in the calcification space maintains a CaCO₃-supersaturated state during fiber growth and that a physical change occurs periodically during the aragonite crystals of the fiber area. PMID:23041294

  20. Growth of ZnO nanostructures on Au-coated Si: Influence of growth temperature on growth mechanism and morphology

    NASA Astrophysics Data System (ADS)

    Kumar, R. T. Rajendra; McGlynn, E.; Biswas, M.; Saunders, R.; Trolliard, G.; Soulestin, B.; Duclere, J.-R.; Mosnier, J. P.; Henry, M. O.

    2008-10-01

    ZnO nanostructures were grown on Au-catalyzed Si silicon substrates using vapor phase transport at growth temperatures from 800 to 1150 °C. The sample location ensured a low Zn vapor supersaturation during growth. Nanostructures grown at 800 and 850 °C showed a faceted rodlike morphology with mainly one-dimensional (1D) growth along the nanorod axis. Samples grown at intermediate temperatures (900, 950, and 1050 °C) in all cases showed significant three dimensional (3D) growth at the base of 1D nanostructures. At higher growth temperatures (1100 and 1150 °C) 3D growth tended to dominate resulting in the formation of a porous, nanostructured morphology. In all cases growth was seen only on the Au-coated region. Our results show that the majority of the nanostructures grow via a vapor-solid mechanism at low growth temperatures with no evidence of Au nanoparticles at their tip, in sharp contrast to the morphology expected for the vapor-liquid-solid (VLS) process often reported as the growth mechanism on Au-catalyzed Si. We see VLS growth only at 900 and 950 °C. Transmission electron microscopy data indicate that the nanorods are single crystalline without gross structural defects. Luminescence data reveal strong ultraviolet emission in all samples and weak defect emission in the visible region. We discuss the growth mechanisms with reference to various models in the literature and suggest reasons for VLS growth only in a narrow temperature range. We also discuss the potential effects of the Zn oxidation reaction on the growth morphologies, aspects largely ignored in the general literature on this subject.

  1. Responses of Rapid Viscoanalyzer Profile and Other Rice Grain Qualities to Exogenously Applied Plant Growth Regulators under High Day and High Night Temperatures.

    PubMed

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Chauhan, Bhagirath Singh; Khan, Fahad; Ihsan, Muhammad Zahid; Ullah, Abid; Wu, Chao; Bajwa, Ali Ahsan; Alharby, Hesham; Amanullah; Nasim, Wajid; Shahzad, Babar; Tanveer, Mohsin; Huang, Jianliang

    2016-01-01

    High-temperature stress degrades the grain quality of rice; nevertheless, the exogenous application of plant growth regulators (PGRs) might alleviate the negative effects of high temperatures. In the present study, we investigated the responses of rice grain quality to exogenously applied PGRs under high day temperatures (HDT) and high night temperatures (HNT) under controlled conditions. Four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA) and triazoles (Tr) were exogenously applied to two rice cultivars (IR-64 and Huanghuazhan) prior to the high-temperature treatment. A Nothing applied Control (NAC) was included for comparison. The results demonstrated that high-temperature stress was detrimental for grain appearance and milling qualities and that both HDT and HNT reduced the grain length, grain width, grain area, head rice percentage and milled rice percentage but increased the chalkiness percentage and percent area of endosperm chalkiness in both cultivars compared with ambient temperature (AT). Significantly higher grain breakdown, set back, consistence viscosity and gelatinization temperature, and significantly lower peak, trough and final viscosities were observed under high-temperature stress compared with AT. Thus, HNT was more devastating for grain quality than HDT. The exogenous application of PGRs ameliorated the adverse effects of high temperature in both rice cultivars, and Vc+Ve+MejA+Br was the best combination for both cultivars under high temperature stress.

  2. Responses of Rapid Viscoanalyzer Profile and Other Rice Grain Qualities to Exogenously Applied Plant Growth Regulators under High Day and High Night Temperatures.

    PubMed

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Chauhan, Bhagirath Singh; Khan, Fahad; Ihsan, Muhammad Zahid; Ullah, Abid; Wu, Chao; Bajwa, Ali Ahsan; Alharby, Hesham; Amanullah; Nasim, Wajid; Shahzad, Babar; Tanveer, Mohsin; Huang, Jianliang

    2016-01-01

    High-temperature stress degrades the grain quality of rice; nevertheless, the exogenous application of plant growth regulators (PGRs) might alleviate the negative effects of high temperatures. In the present study, we investigated the responses of rice grain quality to exogenously applied PGRs under high day temperatures (HDT) and high night temperatures (HNT) under controlled conditions. Four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA) and triazoles (Tr) were exogenously applied to two rice cultivars (IR-64 and Huanghuazhan) prior to the high-temperature treatment. A Nothing applied Control (NAC) was included for comparison. The results demonstrated that high-temperature stress was detrimental for grain appearance and milling qualities and that both HDT and HNT reduced the grain length, grain width, grain area, head rice percentage and milled rice percentage but increased the chalkiness percentage and percent area of endosperm chalkiness in both cultivars compared with ambient temperature (AT). Significantly higher grain breakdown, set back, consistence viscosity and gelatinization temperature, and significantly lower peak, trough and final viscosities were observed under high-temperature stress compared with AT. Thus, HNT was more devastating for grain quality than HDT. The exogenous application of PGRs ameliorated the adverse effects of high temperature in both rice cultivars, and Vc+Ve+MejA+Br was the best combination for both cultivars under high temperature stress. PMID:27472200

  3. Responses of Rapid Viscoanalyzer Profile and Other Rice Grain Qualities to Exogenously Applied Plant Growth Regulators under High Day and High Night Temperatures

    PubMed Central

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Chauhan, Bhagirath Singh; Khan, Fahad; Ihsan, Muhammad Zahid; Ullah, Abid; Wu, Chao; Bajwa, Ali Ahsan; Alharby, Hesham; Amanullah; Nasim, Wajid; Shahzad, Babar; Tanveer, Mohsin; Huang, Jianliang

    2016-01-01

    High-temperature stress degrades the grain quality of rice; nevertheless, the exogenous application of plant growth regulators (PGRs) might alleviate the negative effects of high temperatures. In the present study, we investigated the responses of rice grain quality to exogenously applied PGRs under high day temperatures (HDT) and high night temperatures (HNT) under controlled conditions. Four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA) and triazoles (Tr) were exogenously applied to two rice cultivars (IR-64 and Huanghuazhan) prior to the high-temperature treatment. A Nothing applied Control (NAC) was included for comparison. The results demonstrated that high-temperature stress was detrimental for grain appearance and milling qualities and that both HDT and HNT reduced the grain length, grain width, grain area, head rice percentage and milled rice percentage but increased the chalkiness percentage and percent area of endosperm chalkiness in both cultivars compared with ambient temperature (AT). Significantly higher grain breakdown, set back, consistence viscosity and gelatinization temperature, and significantly lower peak, trough and final viscosities were observed under high-temperature stress compared with AT. Thus, HNT was more devastating for grain quality than HDT. The exogenous application of PGRs ameliorated the adverse effects of high temperature in both rice cultivars, and Vc+Ve+MejA+Br was the best combination for both cultivars under high temperature stress. PMID:27472200

  4. Mechanical properties of irradiated Gd2Zr2O7 pyrochlores as studied by nanoindentation technique - Effect of grains and grain boundaries

    NASA Astrophysics Data System (ADS)

    Kurpaska, L.; Jagielski, J.

    2016-07-01

    The influence of ion irradiation on nanomechanical properties of Gd2Zr2O7 pyrochlore have been studied. The polycrystalline samples were irradiated at room temperature with 320 keV Ar ions with fluences from 2 × 1014 to 1 × 1016 ions/cm2. Nanomechanical properties of grains and grains boundaries were measured by means of nanoindentation technique. The measurements were performed in the centers of the grains and at the grain boundaries and point to the conclusion that grain boundary region is usually characterized by higher hardness and Young's modulus than the center of the grain. The analysis performed suggests that the stress induced effect related to the transition to anion-deficient fluorite structure leads to the increase of recorded hardness values and may be considered as primary source of hardening. Studied phenomenon depends on the irradiation fluence and may serve as an indicator of the structure modification in the irradiated sample. Finally, nanomechanical properties of irradiated grain boundaries were interpreted in the frames of incorporation of foreign species near grain boundary.

  5. The production of fine grained magnesium alloys through thermomechanical processing for the optimization of microstructural and mechanical properties

    NASA Astrophysics Data System (ADS)

    Young, John Paul

    The low density and high strength to weight ratio of magnesium alloys makes them ideal candidates to replace many of the heavier steel and aluminum alloys currently used in the automotive and other industries. Although cast magnesium alloys components have a long history of use in the automotive industry, the integration of wrought magnesium alloys components has been hindered by a number of factors. Grain refinement through thermomechanical processing offers a possible solution to many of the inherent problems associated with magnesium alloys. This work explores the development of several thermomechanical processing techniques and investigates their impact on the microstructural and mechanical properties of magnesium alloys. In addition to traditional thermomechanical processing, this work includes the development of new severe plastic deformation techniques for the production of fine grain magnesium plate and pipe and develops a procedure by which the thermal microstructural stability of severely plastically deformed microstructures can be assessed.

  6. Intergranular magnetoresistance in Sr2FeMoO6 from a magnetic tunnel barrier mechanism across grain boundaries.

    PubMed

    Sarma, D D; Ray, Sugata; Tanaka, K; Kobayashi, M; Fujimori, A; Sanyal, P; Krishnamurthy, H R; Dasgupta, C

    2007-04-13

    We present magnetization (M) and magnetoresistance (MR) data for a series of Sr2FeMoO6 samples with independent control on antisite defect and grain-boundary densities, which reveal several unexpected features, including a novel switching-like behavior of MR with M. These, in conjunction with model calculations, establish that the MR in Sr2FeMoO6 is dominantly controlled by a new mechanism, derived from the magnetic polarization of grain-boundary regions acting like spin valves, leading to behavior qualitatively different from that usually encountered in tunneling MR. We show that a simple and useful experimental signature for the presence of this spin-valve-type MR (SVMR) is a wider hysteresis in MR compared to that in M. PMID:17501379

  7. Mechanism and Prevention of Spontaneous Tin Whisker Growth

    SciTech Connect

    Tu, King-Ning; Suh, Jong-ook; Wu, Albert Tzu-Chia; Tamura,Nobumichi; Tung, Chih-Hang

    2005-05-05

    Spontaneous Sn whisker growth on Cu leadframe finished withPb-free solder is a serious reliability problem in electrical andelectronic devices. Recently, Fortune magazine had an article to describethe urgency of the problem. The spontaneous growth is an irreversibleprocess, in which there are two atomic fluxes driven by two kinds ofdriving force. There are a flux of Cu atoms and a flux of Sn atoms. TheCu atoms diffuse from the leadframe into the solder finish driven bychemical potential gradient to form intermetallic compound of Cu6Sn5 inthe grain boundaries of the solder, and the growth of the compound atroom temperature generates a compressive stress in the solder. To relievethe stress, a flux of Snatoms driven by the stress gradient diffuses awayto grow a spontaneous Sn whisker which is stress-free. The typicalindustry solution is to inserta diffusion barrier of Ni between the Cuand solder to prevent the diffusion of Cu into the solder. It isinsufficient, because we have to uncouplethe irreversible processes andstop both the fluxes of Cu and Sn. A solution is presentedhere.

  8. Orientation dependence of void growth at triple junction of grain boundaries in nanoscale tricrystal nickel film subjected to uniaxial tensile loading

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiu; Jiang, Shuyong; Zhu, Xiaoming; Sun, Dong

    2016-11-01

    Molecular dynamics simulation was performed in order to investigate the dependence of void growth on crystallographic orientation at the triple junction of grain boundaries in nanoscale tricrystal nickel film subjected to uniaxial tensile loading. The nucleation, the emission and the transmission of Shockley partial dislocations play a predominant role in the growth of void at the triple junction of grain boundaries. The orientation factors of various slip systems are calculated according to Schmid law. The slip systems activated in a grain of tricrystal nickel film basically conform to Schmid law which is completely suitable for a single crystal. The activated slip systems play an important role in plastic deformation of nanoscale tricrystal nickel film subjected to uniaxial tensile loading. The slip directions exhibit great difference among the activated slip systems such that the void is caused to be subjected to various stress conditions, which further leads to the difference in void growth among the tricrystal nickel films with different orientation distributions. It can be concluded that the grain orientation distribution has a significant influence on void growth at the triple junction of grain boundaries.

  9. Quantification of Resistance of Grain Boundaries to Short-Fatigue Crack Growth in Three Dimensions in High-Strength Al Alloys

    NASA Astrophysics Data System (ADS)

    Wen, Wei; Zhai, Tongguang

    2012-08-01

    Based on the previous three-dimensional (3-D) crystallographic model for short-fatigue crack propagation through grain boundaries, the resistance of a grain boundary to the crack growth was quantified as a Weibull-type function of the twist component of crack plane deflection across the boundary. The effective driving force for the crack at a grain boundary was quantified as the applied driving force minus the resistance. This allowed the quantification of variation in growth rate at different grain boundaries along the crack front. The model could simulate satisfactorily that the crack front at the grain boundaries with high twist angle indeed was lagged behind those with low twist angle and that the crack growth rate on the surface varied significantly. The model was also used to predict short-fatigue crack growth statistically in different textures, showing potential application to texture design of alloys. Subsequent work still needs to be done to incorporate other factors, such as the tilt angle and Schmidt factor, into the model to render a more accurate simulation.

  10. Prediction of grain yield using optical remote sensing and a growth model: application on Merguellil catchment (Tunisia)

    NASA Astrophysics Data System (ADS)

    Chahbi, A.; Zribi, M.; Lili-Chabaane, Z.; Duchemin, B.; Shabou, M.; Mougenot, B.; Boulet, G.

    2012-04-01

    In semi-arid region and especially in irrigated areas, agriculture represents a major contribution to food security. These areas significantly contribute to the increase of global production. A challenging objective is thus to ensure food security. Therefore an operational forecasting system for the grain yields is required and could help decision-makers to make early decisions and plan annual imports. In this context, remote sensing is a very interesting tool for giving information on the development of vegetation. The main objective is to analyze and predict the average grain yield, based on different indices measured or modelled during the growing season. Thus, we used three lines of research: the first is based on analysing a relationship between normalized vegetation index (NDVI) which is determined from optical satellite imagery and the leaf area index (LAI) measured in situ. The second axis is based on the estimation of the relation between wheat yields and normalized vegetation index NDVI. The third axis is based on the application of a growth model SAFY « Simple Algorithm For Yield Estimate » developed to simulate LAI, dry aboveground phytomass (DAM) and the grain yield (GY). For the first axis, we used optical data at high resolution. A series of 7 SPOT / HRV during the 2010-2011 agricultural seasons was acquired in the Merguellil catchment (Tunisia). At the same time we realised experimental measurements made on 27 test plots of dry or irrigated cereals carried out in study area. These measurements are mainly: the water content of the vegetation, the vegetation height, wheat density and leaf area index LAI (estimated using a hemispherical camera). From satellite data, a profile of the normalized difference vegetation index (NDVI) was generated for each pixel. For both types of cereal, a relationship is established between NDVI and leaf area index LAI. This relationship is exponential and it allows connecting the satellite observations with a variable

  11. Growth Mechanism of Pumpkin-Shaped Vaterite Hierarchical Structures

    NASA Astrophysics Data System (ADS)

    Ma, Guobin; Xu, Yifei; Wang, Mu

    2015-03-01

    CaCO3-based biominerals possess sophisticated hierarchical structures and promising mechanical properties. Recent researches imply that vaterite may play an important role in formation of CaCO3-based biominerals. However, as a less common polymorph of CaCO3, the growth mechanism of vaterite remains not very clear. Here we report the growth of a pumpkin-shaped vaterite hierarchical structure with a six-fold symmetrical axis and lamellar microstructure. We demonstrate that the growth is controlled by supersaturation and the intrinsic crystallographic anisotropy of vaterite. For the scenario of high supersaturation, the nucleation rate is higher than the lateral extension rate, favoring the ``double-leaf'' spherulitic growth. Meanwhile, nucleation occurs preferentially in < 11 2 0 > as determined by the crystalline structure of vaterite, modulating the grown products with a hexagonal symmetry. The results are beneficial for an in-depth understanding of the biomineralization of CaCO3. The growth mechanism may also be applicable to interpret the formation of similar hierarchical structures of other materials. The authors gratefully acknowledge the financial support from National Science Foundation of China (Grant Nos. 51172104 and 50972057) and National Key Basic Research Program of China (Grant No. 2010CB630705).

  12. Thermal-mechanical fatigue crack growth in aircraft engine materials

    NASA Astrophysics Data System (ADS)

    Dai, Yi

    1993-08-01

    This thesis summarizes the major technical achievements obtained as a part of a collaborative research and development project between Ecole Polytechnique and Pratt & Whitney Canada. These achievements include: (1) a thermal-mechanical fatigue (TMF) testing rig which is capable of studying the fatigue behaviors of gas turbine materials under simultaneous changes of temperatures and strains or stress; (2) an advanced alternative current potential drop (ACPD) measurement system which is capable of performing on-line monitoring of fatigue crack initiation and growth in specimen testing under isothermal and TMF conditions; (3) fatigue crack initiation and short crack growth data for the titanium specimens designed with notch features associated with bolt holes of compressor discs; (4) thermal-mechanical fatigue crack growth data for two titanium alloys being used in PWC engine components, which explained the material fatigue behavior encountered in full-scale component testing; (5) a complete fractographic analysis for the tested specimens which enhanced the understanding of the fatigue crack growth mechanisms and helped to establish an analytical crack growth model; and (6) application of the ACPD fatigue crack monitoring technique to single tooth firtree specimen (STFT) LCF testing of PWA 1480 single crystal alloy. Finally, a comprehensive discussion concerning the results pertaining to this research project is presented.

  13. Emergent patterns of growth controlled by multicellular form and mechanics

    PubMed Central

    Nelson, Celeste M.; Jean, Ronald P.; Tan, John L.; Liu, Wendy F.; Sniadecki, Nathan J.; Spector, Alexander A.; Chen, Christopher S.

    2005-01-01

    Spatial patterns of cellular growth generate mechanical stresses that help to push, fold, expand, and deform tissues into their specific forms. Genetic factors are thought to specify patterns of growth and other behaviors to drive morphogenesis. Here, we show that tissue form itself can feed back to regulate patterns of proliferation. Using microfabrication to control the organization of sheets of cells, we demonstrated the emergence of stable patterns of proliferative foci. Regions of concentrated growth corresponded to regions of high tractional stress generated within the sheet, as predicted by a finite-element model of multicellular mechanics and measured directly by using a micromechanical force sensor array. Inhibiting actomyosin-based tension or cadherin-mediated connections between cells disrupted the spatial pattern of proliferation. These findings demonstrate the existence of patterns of mechanical forces that originate from the contraction of cells, emerge from their multicellular organization, and result in patterns of growth. Thus, tissue form is not only a consequence but also an active regulator of tissue growth. PMID:16049098

  14. Cytoplasmic mechanisms of axonal and dendritic growth in neurons.

    PubMed

    Heidemann, S R

    1996-01-01

    The structural mechanisms responsible for the gradual elaboration of the cytoplasmic elongation of neurons are reviewed. In addition to discussing recent work, important older work is included to inform newcomers to the field how the current perspective arose. The highly specialized axon and the less exaggerated dendrite both result from the advance of the motile growth cone. In the area of physiology, studies in the last decade have directly confirmed the classic model of the growth cone pulling forward and the axon elongating from this tension. Particularly in the case of the axon, cytoplasmic elongation is closely linked to the formation of an axial microtubule bundle from behind the advancing growth cone. Substantial progress has been made in understanding the expression of microtubule-associated proteins during neuronal differentiation to stiffen and stabilize axonal microtubules, providing specialized structural support. Studies of membrane organelle transport along the axonal microtubules produced an explosion of knowledge about ATPase molecules serving as motors driving material along microtubule rails. However, most aspects of the cytoplasmic mechanisms responsible for neurogenesis remain poorly understood. There is little agreement on mechanisms for the addition of new plasma membrane or the addition of new cytoskeletal filaments in the growing axon. Also poorly understood are the mechanisms that couple the promiscuous motility of the growth cone to the addition of cytoplasmic elements.

  15. A damage mechanics approach to high temperature fatigue crack growth

    SciTech Connect

    Qian, Z.; Takezono, S.; Tao, K.

    1995-12-31

    A nonlocal damage constitutive model is developed for elasto-visco-plastic materials and is used to analyze fatigue crack growth at high temperature. In this model, no kinematic hardening rule is needed to account for the subsequent yielding and strain hardening behavior of the materials. A calculation method for nonlocal damage is introduced. The fatigue crack growth tests and the cyclic strain controlled fatigue tests are carried out at 723 K (450 C) on pure titanium. By means of FEM, the stress distribution near the crack tip, and the relationships between the crack growth rate dl/dN and some mechanical parameters, such as the crack tip opening displacement (CTOD), and the range of viscoplastic strain {Delta}{var_epsilon}{sub y}{sup vp} at the crack tip, are investigated. The mesh size dependence of these mechanical parameters in finite element analysis is discussed. The numerical results are given and compared with the experimental ones.

  16. The mechanism of growth of quartz crystals into fused silica

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Hays, J. F.; Spaepen, F.; Turnbull, D.

    1980-01-01

    It is proposed that the growth of quartz crystals into fused silica is effected by a mechanism involving the breaking of an Si-O bond and its association with an OH group, followed by cooperative motion of the nonbridging oxygen and the hydroxyl group which results in the crystallization of a row of several molecules along a crystalline-amorphous interfacial ledge. This mechanism explains, at least qualitatively, all the results of the earlier experimental study of the dependence of quartz crystal growth upon applied pressure: large negative activation volume; single activation enthalpy below Si-O bond energy; growth velocity constant in time, proportional to the hydroxyl and chlorine content, decreasing with increasing degree of reduction, and enhanced by nonhydrostatic stresses; lower pre-exponential for the synthetic than for the natural silica.

  17. Deciphering the roles of specific wheat grain proteins in flour functionality, allergenic potential and the response of the grain to the growth environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among the wheat gluten proteins, the omega-5 gliadins show some of the most notable changes in response to post-anthesis fertilizer or high temperatures during grain development. These proteins are also associated with the serious food allergy wheat-dependent exercise-induced anaphylaxis (WDEIA). RN...

  18. Anomalous mechanical behavior and crack growth of oxide glasses

    NASA Astrophysics Data System (ADS)

    Seaman, Jared Hilliard

    This thesis is concerned with analytically describing anomalous mechanical behaviors of glass. A new slow crack growth model is presented that considers a semi-elliptical crack in a cylindrical glass rod subjected to 4-point bending that is both loaded statically and under a time-dependent load. This model is used to explain a suppression of the loading-rate dependency of ion-exchanged strengthened glass. The stress relaxation behavior of an ion-exchanged strengthened glass is then analyzed in view of a newly observed water-assisted surface stress relaxation mechanism. By making refinements to a time-dependent Maxwell material model for stress buildup and relaxation, the anomalous subsurface compressive stress peak in ion-exchanged strengthened glass is explained. The notion of water-assisted stress relaxation is extended to the crack tip, where high tensile stresses exist. A toughening effect has historically been observed for cracks aged at subcritical stress intensity factors, where crack tip stress relaxation is hypothesized. A simple fracture mechanics model is developed that estimates a shielding stress intensity factor that is then superimposed with the far-field stress intensity factor. The model is used to estimate anomalous "restart" times for aged cracks. The same model predicts a non-linear crack growth rate for cracks loaded near the static fatigue limit. Double cantilever beam slow crack growth experiments were performed and new slow crack growth data for soda-lime silicate glass was collected. Interpretation of this new experimental slow crack growth data suggests that the origin of the static fatigue limit in glass is due to water-assisted stress relaxation. This thesis combines a number of studies that offer a new unified understanding of historical anomalous mechanical behaviors of glass. These anomalies are interpreted as simply the consequence of slow crack growth and water-assisted surface stress relaxation.

  19. Grain refinement in a AlZnMgCuTi alloy by intensive melt shearing: A multi-step nucleation mechanism

    NASA Astrophysics Data System (ADS)

    Li, H. T.; Xia, M.; Jarry, Ph.; Scamans, G. M.; Fan, Z.

    2011-01-01

    Direct chill (DC) cast ingots of wrought Al alloys conventionally require the deliberate addition of a grain refiner to provide a uniform as-cast microstructure for the optimisation of both mechanical properties and processability. Grain refiner additions have been in widespread industrial use for more than half a century. Intensive melt shearing can provide grain refinement without the need for a specific grain refiner addition for both magnesium and aluminium based alloys. In this paper we present experimental evidence of the grain refinement in an experimental wrought aluminium alloy achieved by intensive melt shearing in the liquid state prior to solidification. The mechanisms for high shear induced grain refinement are correlated with the evolution of oxides in alloys. The oxides present in liquid aluminium alloys, normally as oxide films and clusters, can be effectively dispersed by intensive shearing and then provide effective sites for the heterogeneous nucleation of Al 3Ti phase. As a result, Al 3Ti particles with a narrower size distribution and hence improved efficiency as active nucleation sites of α-aluminium grains are responsible for the achieved significant grain refinement. This is termed a multi-step nucleation mechanism.

  20. Exploiting mechanical stimuli to rescue growth of the hypoplastic lung.

    PubMed

    Jesudason, Edwin C

    2007-09-01

    Impaired lung development afflicts a range of newborns cared for by paediatric surgeons. As a result the speciality has led in the development of surgical models that illustrate the biomechanical regulation of lung growth. Using transgenic mutants, biologists have similarly discovered much about the biochemical regulation of prenatal lung growth. Airway smooth muscle (ASM) and its prenatal contractility airway peristalsis (AP) represent a novel link between these areas: ASM progenitors produce an essential biochemical factor for lung morphogenesis, whilst calcium-driven biomechanical ASM activity appears to regulate the same. In this invited paper, I take the opportunity both to review our recent findings on lung growth and prenatal ASM, and also to discuss mechanisms by which ASM contractility can regulate growth. Finally, I will introduce some novel ideas for exploration: ASM contractility could help to schedule parturition (pulmonary parturition clock) and could even be a generic model for smooth muscle regulation of morphogenesis in similar organs.

  1. Dislocation-accommodated grain boundary sliding as the major deformation mechanism of olivine in the Earth’s upper mantle

    PubMed Central

    Ohuchi, Tomohiro; Kawazoe, Takaaki; Higo, Yuji; Funakoshi, Ken-ichi; Suzuki, Akio; Kikegawa, Takumi; Irifune, Tetsuo

    2015-01-01

    Understanding the deformation mechanisms of olivine is important for addressing the dynamic processes in Earth’s upper mantle. It has been thought that dislocation creep is the dominant mechanism because of extrapolated laboratory data on the plasticity of olivine at pressures below 0.5 GPa. However, we found that dislocation-accommodated grain boundary sliding (DisGBS), rather than dislocation creep, dominates the deformation of olivine under middle and deep upper mantle conditions. We used a deformation-DIA apparatus combined with synchrotron in situ x-ray observations to study the plasticity of olivine aggregates at pressures up to 6.7 GPa (that is, ~200-km depth) and at temperatures between 1273 and 1473 K, which is equivalent to the conditions in the middle region of the upper mantle. The creep strength of olivine deforming by DisGBS is apparently less sensitive to pressure because of the competing pressure-hardening effect of the activation volume and pressure-softening effect of water fugacity. The estimated viscosity of olivine controlled by DisGBS is independent of depth and ranges from 1019.6 to 1020.7 Pa·s throughout the asthenospheric upper mantle with a representative water content (50 to 1000 parts per million H/Si), which is consistent with geophysical viscosity profiles. Because DisGBS is a grain size–sensitive creep mechanism, the evolution of the grain size of olivine is an important process controlling the dynamics of the upper mantle. PMID:26601281

  2. Burkholderia ambifaria and B. caribensis Promote Growth and Increase Yield in Grain Amaranth (Amaranthus cruentus and A. hypochondriacus) by Improving Plant Nitrogen Uptake

    PubMed Central

    Parra-Cota, Fannie I.; Peña-Cabriales, Juan J.; de los Santos-Villalobos, Sergio; Martínez-Gallardo, Norma A.; Délano-Frier, John P.

    2014-01-01

    Grain amaranth is an emerging crop that produces seeds having high quality protein with balanced amino-acid content. However, production is restricted by agronomic limitations that result in yields that are lower than those normally produced by cereals. In this work, the use of five different rhizobacteria were explored as a strategy to promote growth and yields in Amaranthus hypochondriacus cv. Nutrisol and A. cruentus cv. Candil, two commercially important grain amaranth cultivars. The plants were grown in a rich substrate, high in organic matter, nitrogen (N), and phosphorus (P) and under greenhouse conditions. Burkholderia ambifaria Mex-5 and B. caribensis XV proved to be the most efficient strains and significantly promoted growth in both grain amaranth species tested. Increased grain yield and harvest index occurred in combination with chemical fertilization when tested in A. cruentus. Growth-promotion and improved yields correlated with increased N content in all tissues examined. Positive effects on growth also occurred in A. cruentus plants grown in a poor soil, even after N and P fertilization. No correlation between non-structural carbohydrate levels in roots of inoculated plants and growth promotion was observed. Conversely, gene expression assays performed at 3-, 5- and 7-weeks after seed inoculation in plants inoculated with B. caribensis XV identified a tissue-specific induction of several genes involved in photosynthesis, sugar- and N- metabolism and transport. It is concluded that strains of Burkholderia effectively promote growth and increase seed yields in grain amaranth. Growth promotion was particularly noticeable in plants grown in an infertile soil but also occurred in a well fertilized rich substrate. The positive effects observed may be attributed to a bio-fertilization effect that led to increased N levels in roots and shoots. The latter effect correlated with the differential induction of several genes involved in carbon and N metabolism

  3. Burkholderia ambifaria and B. caribensis promote growth and increase yield in grain amaranth (Amaranthus cruentus and A. hypochondriacus) by improving plant nitrogen uptake.

    PubMed

    Parra-Cota, Fannie I; Peña-Cabriales, Juan J; de Los Santos-Villalobos, Sergio; Martínez-Gallardo, Norma A; Délano-Frier, John P

    2014-01-01

    Grain amaranth is an emerging crop that produces seeds having high quality protein with balanced amino-acid content. However, production is restricted by agronomic limitations that result in yields that are lower than those normally produced by cereals. In this work, the use of five different rhizobacteria were explored as a strategy to promote growth and yields in Amaranthus hypochondriacus cv. Nutrisol and A. cruentus cv. Candil, two commercially important grain amaranth cultivars. The plants were grown in a rich substrate, high in organic matter, nitrogen (N), and phosphorus (P) and under greenhouse conditions. Burkholderia ambifaria Mex-5 and B. caribensis XV proved to be the most efficient strains and significantly promoted growth in both grain amaranth species tested. Increased grain yield and harvest index occurred in combination with chemical fertilization when tested in A. cruentus. Growth-promotion and improved yields correlated with increased N content in all tissues examined. Positive effects on growth also occurred in A. cruentus plants grown in a poor soil, even after N and P fertilization. No correlation between non-structural carbohydrate levels in roots of inoculated plants and growth promotion was observed. Conversely, gene expression assays performed at 3-, 5- and 7-weeks after seed inoculation in plants inoculated with B. caribensis XV identified a tissue-specific induction of several genes involved in photosynthesis, sugar- and N- metabolism and transport. It is concluded that strains of Burkholderia effectively promote growth and increase seed yields in grain amaranth. Growth promotion was particularly noticeable in plants grown in an infertile soil but also occurred in a well fertilized rich substrate. The positive effects observed may be attributed to a bio-fertilization effect that led to increased N levels in roots and shoots. The latter effect correlated with the differential induction of several genes involved in carbon and N metabolism

  4. Fractal dust grains in plasma

    SciTech Connect

    Huang, F.; Peng, R. D.; Liu, Y. H.; Chen, Z. Y.; Ye, M. F.; Wang, L.

    2012-09-15

    Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.

  5. Kinetic Modeling of Sunflower Grain Filling and Fatty Acid Biosynthesis.

    PubMed

    Durruty, Ignacio; Aguirrezábal, Luis A N; Echarte, María M

    2016-01-01

    Grain growth and oil biosynthesis are complex processes that involve various enzymes placed in different sub-cellular compartments of the grain. In order to understand the mechanisms controlling grain weight and composition, we need mathematical models capable of simulating the dynamic behavior of the main components of the grain during the grain filling stage. In this paper, we present a non-structured mechanistic kinetic model developed for sunflower grains. The model was first calibrated for sunflower hybrid ACA855. The calibrated model was able to predict the theoretical amount of carbohydrate equivalents allocated to the grain, grain growth and the dynamics of the oil and non-oil fraction, while considering maintenance requirements and leaf senescence. Incorporating into the model the serial-parallel nature of fatty acid biosynthesis permitted a good representation of the kinetics of palmitic, stearic, oleic, and linoleic acids production. A sensitivity analysis showed that the relative influence of input parameters changed along grain development. Grain growth was mostly affected by the specific growth parameter (μ') while fatty acid composition strongly depended on their own maximum specific rate parameters. The model was successfully applied to two additional hybrids (MG2 and DK3820). The proposed model can be the first building block toward the development of a more sophisticated model, capable of predicting the effects of environmental conditions on grain weight and composition, in a comprehensive and quantitative way.

  6. Kinetic Modeling of Sunflower Grain Filling and Fatty Acid Biosynthesis

    PubMed Central

    Durruty, Ignacio; Aguirrezábal, Luis A. N.; Echarte, María M.

    2016-01-01

    Grain growth and oil biosynthesis are complex processes that involve various enzymes placed in different sub-cellular compartments of the grain. In order to understand the mechanisms controlling grain weight and composition, we need mathematical models capable of simulating the dynamic behavior of the main components of the grain during the grain filling stage. In this paper, we present a non-structured mechanistic kinetic model developed for sunflower grains. The model was first calibrated for sunflower hybrid ACA855. The calibrated model was able to predict the theoretical amount of carbohydrate equivalents allocated to the grain, grain growth and the dynamics of the oil and non-oil fraction, while considering maintenance requirements and leaf senescence. Incorporating into the model the serial-parallel nature of fatty acid biosynthesis permitted a good representation of the kinetics of palmitic, stearic, oleic, and linoleic acids production. A sensitivity analysis showed that the relative influence of input parameters changed along grain development. Grain growth was mostly affected by the specific growth parameter (μ′) while fatty acid composition strongly depended on their own maximum specific rate parameters. The model was successfully applied to two additional hybrids (MG2 and DK3820). The proposed model can be the first building block toward the development of a more sophisticated model, capable of predicting the effects of environmental conditions on grain weight and composition, in a comprehensive and quantitative way. PMID:27242809

  7. Linking the viscous grain-shearing mechanism of wave propagation in marine sediments to fractional calculus

    NASA Astrophysics Data System (ADS)

    Pandey, Vikash; Holm, Sverre

    2016-04-01

    An analogy is drawn between the diffusion-wave equations derived from the fractional Kelvin-Voigt model and those obtained from Buckingham's grain-shearing (GS) model [J. Acoust. Soc. Am. 108, 2796-2815 (2000)] of wave propagation in saturated, unconsolidated granular materials. The material impulse response function from the GS model is found to be similar to the power-law memory kernel which is inherent in the framework of fractional calculus. The compressional wave equation and shear wave equation derived from the GS model turn out to be the Kelvin-Voigt fractional-derivative wave equation and the fractional diffusion-wave equation respectively. Also, a physical interpretation of the characteristic fractional-order present in the Kelvin-Voigt fractional derivative wave equation and time-fractional diffusion-wave equation is inferred from the GS model. The shear wave equation from the GS model predicts both diffusion and wave propagation in the fractional framework. The overall goal is intended to show that fractional calculus is not just a mathematical framework which can be used to curve-fit the complex behavior of materials, but rather it can be justified from real physical process of grain-shearing as well.

  8. Thermal and mechanical properties of thermosetting polymers using coarse-grained simulation

    NASA Astrophysics Data System (ADS)

    Jang, C.; Abrams, C. F.

    2016-07-01

    We developed coarse-grained (CG) molecular representations of mixtures of diglycidyl ether of bisphenol-A (DGEBA) and poly(oxypropylene) diamine (POP-DA) for use in CG molecular dynamics (MD) simulations. In the CG representation, DGEBA is comprised of three beads of two types and POP-DA also by three beads of two types. Atomistic MD of liquid systems was performed to derive intra- and inter-bead potentials via Boltzmann inversion. While the bonded potentials, composed of bond stretching and angle bending, were parameterized directly from the distribution functions of all atomistic molecular dynamics trajectories, the non-bonded potentials were derived from the iterative Boltzmann Inversion with a given set of coarse-grained interactions. CG systems correctly reproduced liquid and crosslinked densities. Under uniaxial tension, the Young's modulus of the CG systems was much lower than the experimental value, and we show this arises from the assumed form of the extrapolated regions of the CG potentials. By stiffening these regions, we increased the CG Young's modulus of the crosslinked systems without sacrificing the correct prediction of density. This suggests that transferrable CG potentials can be optimized for use in non-equilibrium MD for property estimation.

  9. Thermal-mechanical fatigue crack growth in aircraft engine materials

    NASA Astrophysics Data System (ADS)

    Dai, Yi

    1993-05-01

    A thermal mechanical fatigue (TMF) testing rig was built which is capable of studying the fatigue behaviors of gas turbine engine materials under simultaneous changes of temperatures and strains or stress. An advance alternating current potential drop (ACPD) measurement system was also developed which is capable of performing on-line monitoring of fatigue crack initiation and growth in specimen testing under isothermal and TMF conditions. Fatigue crack initiation and short crack growth data were obtained for titanium alloy specimens designed with notch features associated with bolt holes of compressor discs. TMF data were also obtained for two titanium alloys used in aircraft engine components. Those data explained the material fatigue behavior encountered in full-scale component testing. A complete fractographic analysis was performed on the tested specimens enhancing the understanding of the fatigue crack growth mechanisms and helping to formulate an analytical crack growth model. The ACPD fatigue crack monitoring technique was applied to the low cycle fatigue testing of Pratt & Whitney 1480 monocrystalline nickel alloy. A completely automated, computer controlled test procedure was developed which could obtain crack initiation and growth data with greater speed, precision, and reliability than previous methods.

  10. Structure and growth mechanism of ZnSe nanowires

    NASA Astrophysics Data System (ADS)

    Basu, Joysurya; Divakar, R.; Nowak, Julia; Hofmann, Stephan; Colli, Alan; Franciosi, A.; Carter, C. Barry

    2008-09-01

    ZnSe nanowires were grown onto Mo transmission electron microscopy (TEM) grids by MBE by suitably varying the growth parameters. In situ and high-resolution TEM studies were carried out to understand the structure, defects, and growth mechanism of this nanowire. The nanowire morphology is very sensitive to the growth parameters involved. Twin boundaries are the most commonly occurring defects in the nanowires grown under Zn-rich condition and catalytic gold particles of irregular shape are observed along the nanowire body. In the course of in situ heating the shape of the nanowire tip is observed to change at ˜178 °C. Definite growth of the nanowire starts at ˜235 °C. The diameter of the grown nanowire is almost equal to that of the catalyst gold particle present at the tip of the nanowire. In situ experimental observation and available phase-diagram information strongly suggests that nanowire growth should be possible with a solid catalyst particle though it does not rule out the possibility of the existence of a VLS mechanism.

  11. A generic mechanism for adaptive growth rate regulation.

    PubMed

    Furusawa, Chikara; Kaneko, Kunihiko

    2008-01-01

    How can a microorganism adapt to a variety of environmental conditions despite the existence of a limited number of signal transduction mechanisms? We show that for any growing cells whose gene expression fluctuate stochastically, the adaptive cellular state is inevitably selected by noise, even without a specific signal transduction network for it. In general, changes in protein concentration in a cell are given by its synthesis minus dilution and degradation, both of which are proportional to the rate of cell growth. In an adaptive state with a higher growth speed, both terms are large and balanced. Under the presence of noise in gene expression, the adaptive state is less affected by stochasticity since both the synthesis and dilution terms are large, while for a nonadaptive state both the terms are smaller so that cells are easily kicked out of the original state by noise. Hence, escape time from a cellular state and the cellular growth rate are negatively correlated. This leads to a selection of adaptive states with higher growth rates, and model simulations confirm this selection to take place in general. The results suggest a general form of adaptation that has never been brought to light--a process that requires no specific mechanisms for sensory adaptation. The present scheme may help explain a wide range of cellular adaptive responses including the metabolic flux optimization for maximal cell growth.

  12. Antagonistic activity of Ocimum sanctum L. essential oil on growth and zearalenone production by Fusarium graminearum in maize grains.

    PubMed

    Kalagatur, Naveen K; Mudili, Venkataramana; Siddaiah, Chandranayaka; Gupta, Vijai K; Natarajan, Gopalan; Sreepathi, Murali H; Vardhan, Batra H; Putcha, Venkata L R

    2015-01-01

    The present study was aimed to establish the antagonistic effects of Ocimum sanctum L. essential oil (OSEO) on growth and zearalenone (ZEA) production of Fusarium graminearum. GC-MS chemical profiling of OSEO revealed the existence of 43 compounds and the major compound was found to be eugenol (34.7%). DPPH free radical scavenging activity (IC50) of OSEO was determined to be 8.5 μg/mL. Minimum inhibitory concentration and minimum fungicidal concentration of OSEO on F. graminearum were recorded as 1250 and 1800 μg/mL, respectively. Scanning electron microscope observations showed significant micro morphological damage in OSEO exposed mycelia and spores compared to untreated control culture. Quantitative UHPLC studies revealed that OSEO negatively effected the production of ZEA; the concentration of toxin production was observed to be insignificant at 1500 μg/mL concentration of OSEO. On other hand ZEA concentration was quantified as 3.23 μg/mL in OSEO untreated control culture. Reverse transcriptase qPCR analysis of ZEA metabolic pathway genes (PKS4 and PKS13) revealed that increase in OSEO concentration (250-1500 μg/mL) significantly downregulated the expression of PKS4 and PKS13. These results were in agreement with the artificially contaminated maize grains as well. In conlusion, the antifungal and antimycotoxic effects of OSEO on F. graminearum in the present study reiterated that, the essential oil of O. sanctum could be a promising herbal fungicide in food processing industries as well as grain storage centers. PMID:26388846

  13. Constitutive expression of CaPLA1 conferred enhanced growth and grain yield in transgenic rice plants.

    PubMed

    Park, Ki Youl; Kim, Eun Yu; Seo, Young Sam; Kim, Woo Taek

    2016-03-01

    Phospholipids are not only important components of cell membranes, but participate in diverse processes in higher plants. In this study, we generated Capsicum annuum phospholipiase A1 (CaPLA1) overexpressing transgenic rice (Oryza sativa L.) plants under the control of the maize ubiquitin promoter. The T4 CaPLA1-overexpressing rice plants (Ubi:CaPLA1) had a higher root:shoot mass ratio than the wild-type plants in the vegetative stage. Leaf epidermal cells from transgenic plants had more cells than wild-type plants. Genes that code for cyclin and lipid metabolic enzymes were up-regulated in the transgenic lines. When grown under typical paddy field conditions, the transgenic plants produced more tillers, longer panicles and more branches per panicle than the wild-type plants, all of which resulted in greater grain yield. Microarray analysis suggests that gene expressions that are related with cell proliferation, lipid metabolism, and redox state were widely altered in CaPLA1-overexpressing transgenic rice plants. Ubi:CaPLA1 plants had a reduced membrane peroxidation state, as determined by malondialdehyde and conjugated diene levels and higher peroxidase activity than wild-type rice plants. Furthermore, three isoprenoid synthetic genes encoding terpenoid synthase, hydroxysteroid dehydrogenase and 3-hydroxy-3-methyl-glutaryl-CoA reductase were up-regulated in CaPLA1-overexpressing plants. We suggest that constitutive expression of CaPLA1 conferred increased grain yield with enhanced growth in transgenic rice plants by alteration of gene activities related with cell proliferation, lipid metabolism, membrane peroxidation state and isoprenoid biosynthesis.

  14. Antagonistic activity of Ocimum sanctum L. essential oil on growth and zearalenone production by Fusarium graminearum in maize grains

    PubMed Central

    Kalagatur, Naveen K.; Mudili, Venkataramana; Siddaiah, Chandranayaka; Gupta, Vijai K.; Natarajan, Gopalan; Sreepathi, Murali H.; Vardhan, Batra H.; Putcha, Venkata L. R.

    2015-01-01

    The present study was aimed to establish the antagonistic effects of Ocimum sanctum L. essential oil (OSEO) on growth and zearalenone (ZEA) production of Fusarium graminearum. GC–MS chemical profiling of OSEO revealed the existence of 43 compounds and the major compound was found to be eugenol (34.7%). DPPH free radical scavenging activity (IC50) of OSEO was determined to be 8.5 μg/mL. Minimum inhibitory concentration and minimum fungicidal concentration of OSEO on F. graminearum were recorded as 1250 and 1800 μg/mL, respectively. Scanning electron microscope observations showed significant micro morphological damage in OSEO exposed mycelia and spores compared to untreated control culture. Quantitative UHPLC studies revealed that OSEO negatively effected the production of ZEA; the concentration of toxin production was observed to be insignificant at 1500 μg/mL concentration of OSEO. On other hand ZEA concentration was quantified as 3.23 μg/mL in OSEO untreated control culture. Reverse transcriptase qPCR analysis of ZEA metabolic pathway genes (PKS4 and PKS13) revealed that increase in OSEO concentration (250–1500 μg/mL) significantly downregulated the expression of PKS4 and PKS13. These results were in agreement with the artificially contaminated maize grains as well. In conlusion, the antifungal and antimycotoxic effects of OSEO on F. graminearum in the present study reiterated that, the essential oil of O. sanctum could be a promising herbal fungicide in food processing industries as well as grain storage centers. PMID:26388846

  15. Constitutive expression of CaPLA1 conferred enhanced growth and grain yield in transgenic rice plants.

    PubMed

    Park, Ki Youl; Kim, Eun Yu; Seo, Young Sam; Kim, Woo Taek

    2016-03-01

    Phospholipids are not only important components of cell membranes, but participate in diverse processes in higher plants. In this study, we generated Capsicum annuum phospholipiase A1 (CaPLA1) overexpressing transgenic rice (Oryza sativa L.) plants under the control of the maize ubiquitin promoter. The T4 CaPLA1-overexpressing rice plants (Ubi:CaPLA1) had a higher root:shoot mass ratio than the wild-type plants in the vegetative stage. Leaf epidermal cells from transgenic plants had more cells than wild-type plants. Genes that code for cyclin and lipid metabolic enzymes were up-regulated in the transgenic lines. When grown under typical paddy field conditions, the transgenic plants produced more tillers, longer panicles and more branches per panicle than the wild-type plants, all of which resulted in greater grain yield. Microarray analysis suggests that gene expressions that are related with cell proliferation, lipid metabolism, and redox state were widely altered in CaPLA1-overexpressing transgenic rice plants. Ubi:CaPLA1 plants had a reduced membrane peroxidation state, as determined by malondialdehyde and conjugated diene levels and higher peroxidase activity than wild-type rice plants. Furthermore, three isoprenoid synthetic genes encoding terpenoid synthase, hydroxysteroid dehydrogenase and 3-hydroxy-3-methyl-glutaryl-CoA reductase were up-regulated in CaPLA1-overexpressing plants. We suggest that constitutive expression of CaPLA1 conferred increased grain yield with enhanced growth in transgenic rice plants by alteration of gene activities related with cell proliferation, lipid metabolism, membrane peroxidation state and isoprenoid biosynthesis. PMID:26803502

  16. Von Neumann's growth model: Statistical mechanics and biological applications

    NASA Astrophysics Data System (ADS)

    De Martino, A.; Marinari, E.; Romualdi, A.

    2012-09-01

    We review recent work on the statistical mechanics of Von Neumann's growth model and discuss its application to cellular metabolic networks. In this context, we present a detailed analysis of the physiological scenario underlying optimality à la Von Neumann in the metabolism of the bacterium E. coli, showing that optimal solutions are characterized by a considerable microscopic flexibility accompanied by a robust emergent picture for the key physiological functions. This suggests that the ideas behind optimal economic growth in Von Neumann's model can be helpful in uncovering functional organization principles of cell energetics.

  17. Enhanced Graphene Mechanical Properties through Ultrasmooth Copper Growth Substrates.

    PubMed

    Griep, Mark H; Sandoz-Rosado, Emil; Tumlin, Travis M; Wetzel, Eric

    2016-03-01

    The combination of extraordinary strength and stiffness in conjunction with exceptional electronic and thermal properties in lightweight two-dimensional materials has propelled graphene research toward a wide array of applications including flexible electronics and functional structural components. Tailoring graphene's properties toward a selected application requires precise control of the atomic layer growth process, transfer, and postprocessing procedures. To date, the mechanical properties of graphene are largely controlled through postprocess defect engineering techniques. In this work, we demonstrate the role of varied catalytic surface morphologies on the tailorability of subsequent graphene film quality and breaking strength, providing a mechanism to tailor the physical, electrical, and mechanical properties at the growth stage. A new surface planarization methodology that results in over a 99% reduction in Cu surface roughness allows for smoothness parameters beyond that reported to date in literature and clearly demonstrates the role of Cu smoothness toward a decrease in the formation of bilayer graphene defects, altered domain sizes, monolayer graphene sheet resistance values down to 120 Ω/□ and a 78% improvement in breaking strength. The combined electrical and mechanical enhancements achieved through this methodology allows for the direct growth of application quality flexible transparent conductive films with monolayer graphene. PMID:26882091

  18. Wettable and Unsinkable: The Hydrodynamics of Saccate Pollen Grains in Relation to the Pollination Mechanism in the Two New Zealand Species of Prumnopitys Phil. (Podocarpaceae)

    PubMed Central

    SALTER, JOSHUA; MURRAY, BRIAN G.; BRAGGINS, JOHN E.

    2002-01-01

    The pollination mechanism of most genera of the Podocarpaceae involves inverted ovules, a pollination drop and bisaccate pollen grains. Saccate grains have sometimes been referred to as ‘non‐wettable’ due to their buoyant properties, while non‐saccate pollen grains have been described as ‘wettable’. The hydrodynamic properties of saccate pollen grains of seven podocarp species in five genera, Dacrydium Sol. ex G. Forst., Dacrycarpus (Endl.) de Laub., Manoao Molloy, Podocarpus L‘Hér. ex Pers. and Prumnopitys Phil. have been tested in water, together with saccate and non‐saccate pollen of four other conifer genera, Cedrus Trew (Pinaceae), Cephalotaxus Siebold & Zucc. ex Endl. (Cephalotaxaceae), Cupressus L. (Cupressaceae) and Phyllocladus Rich. ex Mirb. (Phyllocladaceae), and spores of three fern species and one lycopod species. All four spore types studied were non‐wettable, whereas the bisaccate and trisaccate pollen types, like all other conifer pollen types, were wettable, enabling the grains to cross the surface tension barrier of water. Once past this barrier, grain behaviour was governed by presence or absence of sacci. Non‐saccate and vestigially saccate grains sank, whereas saccate grains behaved like air bubbles, floating up to the highest point. In addition, the grains were observed to float in water with sacci uppermost, consistent with the suggestion that distally placed sacci serve to orientate the germinal furrow of the pollen grain towards the nucellus of an inverted ovule. Observations of pollen grains in the pollen chambers of naturally pollinated Prumnopitys ovules confirmed this. The combination of buoyancy and wettability in saccate pollen has implications for the efficiency of the typical podocarp pollination mechanism. PMID:12099344

  19. Epitaxial growth mechanisms of graphene and effects of substrates

    NASA Astrophysics Data System (ADS)

    Özçelik, V. Ongun; Cahangirov, S.; Ciraci, S.

    2012-06-01

    The growth process of single layer graphene with and without substrate is investigated using ab initio, finite temperature molecular dynamic calculations within density functional theory. An understanding of the epitaxial graphene growth mechanisms in the atomic level is provided by exploring the transient stages which occur at the growing edges of graphene. These stages are formation and collapse of large carbon rings together with the formation and healing of Stone-Wales like pentagon-heptagon defects. The activation barriers for the healing of these growth induced defects on various substrates are calculated using the climbing image nudge elastic band method and compared with that of the Stone-Wales defect. It is found that the healing of pentagon-heptagon defects occurring near the edge in the course of growth is much easier than that of Stone-Wales defect. The role of the substrate in the epitaxial growth and in the healing of defects are also investigated in detail, along with the effects of using carbon dimers as the building blocks of graphene growth.

  20. Immunohistochemical analysis of growth mechanisms in juvenile nasopharyngeal angiofibroma.

    PubMed

    Schuon, Robert; Brieger, Jürgen; Heinrich, Ulf R; Roth, Yeduha; Szyfter, Witold; Mann, Wolf J

    2007-04-01

    Angiogenic factors are discussed to participate in growth and promotion of juvenile nasopharyngeal angiofibroma (JNA). However, only few data are available and mechanisms remain unclear. In the presented study we analysed the expression and subcellular distribution of several angiogenic growth factors and receptors potentially involved in JNA-growth and -vascularisation. In a retrospective, descriptive, multicenter-study, we analysed 13 formalin-fixed, paraffin-embedded or cryopreserved JNA-tumors (eleven primary tumors and two recurrent ones) after immunohistochemical staining. We used monoclonal antibodies specific for transforming growth factor beta 1 (TGF-beta(1)), basic fibroblast growth factor (bFGF), the VEGF-receptors 1 and -2 (FLT-1 and FLK-1), and the hypoxia inducible factor (Hif-1alpha). Data were compared to the vessel density. Quantitative analysis of staining intensities was performed by a computer assisted quantification technique. Endothelial and stromal compartments of the samples were analysed separately. Data were compared to vessel densities and patients data. The VEGF-Receptor-2 (FLK) was frequently unregulated in the stroma and endothelium of those samples with high vessel densities. Similarly, we observed high bFGF- and TGF-beta(1) levels in the stroma of strong vascularised samples. No correlations of expression levels to patients' data were found. The reported data support the concept of JNA-growth and -vascularisation driven by factors released from stromal fibroblasts. Therefore, inhibition of these factors might be beneficial for the therapy of inoperable JNA.

  1. Theory of growth and mechanical properties of nanotubes

    NASA Astrophysics Data System (ADS)

    Bernholc, J.; Brabec, C.; Buongiorno Nardelli, M.; Maiti, A.; Roland, C.; Yakobson, B. I.

    We have investigated the growth and mechanical properties of carbon nanotubes using a variety of complementary theoretical techniques. Ab initio molecular dynamics calculations show that the high electric field present at the tube tips in an arc-discharge apparatus is not the critical factor responsible for open-ended growth. We then show by explicit molecular dynamics simulations of nanotube growth that tubes wider than a critical diameter of 3 nm, that are initially open, can continue to grow straight and maintain an all-hexagonal structure. Narrower tubes readily nucleate curved, pentagonal structures that lead to tube closure with further addition of atoms. However, if a nanotube is forced to remain open by the presence of a metal cluster, defect-free growth can continue. For growth catalyzed by metal particles, nanometer-sized protrusions on the particle surface lead to the nucleation of very narrow tubes. Wide bumps lead to a strained graphene sheet and no nanotube growth. We have also simulated the growth and properties of double-walled nanotubes with the aim of investigating the role of lip-lip interactions on nanotube growth. Surprisingly, the lip-lip interaction by itself does not stabilize open-ended growth, but rather facilitates tube closure by mediating the transfer of atoms between inner and outer shells. Furthermore, a simulation of growth on a wide double-wall nanotube leads to considerable deviations from the ideal structure, in contrast to corresponding simulations for single-wall tubes that result in nearly perfect structures. As regards mechanical properties, carbon nanotubes, when subjected to large deformations, reversibly switch into different morphological patterns. Each shape change corresponds to an abrupt release of energy and a singularity in the stress-strain curve. The transformations, observed in molecular dynamics simulations, are explained well by a continuum shell model. With properly chosen parameters, the model provides a

  2. Growth Performance and Resistance to Edwardsiella ictaluri of Channel Catfish (Ictalurus punctatus)Fed Diets Containing Distiller's Dried Grains with Solubles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to examine the effect of dietary levels of distiller’s dried grains with solubles (DDGS) on growth, body composition, hematology, immune response and resistance of channel catfish, Ictalurus punctatus, to Edwardsiella ictaluri challenge. Five diets containing 0, 10, 20, 30 and ...

  3. Feeding fat from distillers dried grains with solubles to dairy heifers: I. Effects on growth performance and total tract digestibility of nutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine if increased dietary fat from dried distillers grains with solubles (DDGS) in diets of growing heifers affected dry matter intake (DMI), average daily gain (ADG), growth performance, and nutrient digestibility. Thirty-three Holstein heifers (133 ± 18 d ol...

  4. Growth Response and Resistance to Streptococcus iniae of Nile Tilapia Oreochromis niloticus Fed Diets Containing Distiller’s Dried Grains with Solubles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to evaluate the effect of dietary levels of distiller’s dried grains with solubles (DDGS) on growth performance, body composition, hematology, immune response and resistance of Nile tilapia to Streptococcus iniae challenge. Five isocaloric diets containing DDGS at levels of ...

  5. Coarse-grained molecular simulation of epidermal growth factor receptor protein tyrosine kinase multi-site self-phosphorylation.

    PubMed

    Koland, John G

    2014-01-01

    Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR), the intrinsic protein tyrosine kinase (PTK) activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites) in either of the two C-terminal (CT) domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in molecules such as EGFR

  6. Perspectives on biomechanical growth and remodeling mechanisms in glaucoma⋆

    PubMed Central

    Grytz, Rafael; Girkin, Christopher A.; Libertiaux, Vincent; Downs, J. Crawford

    2012-01-01

    Glaucoma is a blinding diseases in which damage to the axons results in loss of retinal ganglion cells. Experimental evidence indicates that chronic intraocular pressure elevation initiates axonal insult at the level of the lamina cribrosa. The lamina cribrosa is a porous collagen structure through which the axons pass on their path from the retina to the brain. Recent experimental studies revealed the extensive structural changes of the lamina cribrosa and its surrounding tissues during the development and progression of glaucoma. In this perspective paper we review the experimental evidence for growth and remodeling mechanisms in glaucoma including adaptation of tissue anisotropy, tissue thickening/thinning, tissue elongation/shortening and tissue migration. We discuss the existing predictive computational approaches that try to elucidate the potential biomechanical basis of theses growth and remodeling mechanisms and highlight open questions, challenges, and avenues for further development. PMID:23109748

  7. Hormonal growth-promotant effects on grain-fed cattle maintained under different environments

    NASA Astrophysics Data System (ADS)

    Gaughan, J. B.; Kreikemeier, W. M.; Mader, T. L.

    2005-07-01

    Six steers (3/4 Charolais×1/4 Brahman) (mean body weight 314±27 kg) and six spayed heifers (3/5 Shorthorn×2/5 Red Angus) (mean body weight 478±30 kg) were used to determine the effects of climatic conditions and hormone growth promotants (HGP) on respiration rate (RR; breaths/min), pulse rate (beats/min), rectal temperature (RT; °C), and heat production (HP; kJ). Cattle were exposed to the following climatic conditions prior to implantation with a HGP and then again 12 days after implantation: 2 days of thermoneutral conditions (TNL) [21.9±0.9°C ambient temperature (TA) and 61.7±22.1% relative humidity (RH)] then 2 days of hot conditions [HOT; 29.2±4°C (TA) and 78.3±13.2% (RH)], then TNL for 3 days and then 2 days of cold conditions [COLD; 17.6±0.9°C (TA) and 63.4±1.8% (RH); cattle were wet during this treatment]. The HGP implants used were: estrogenic implant (E), trenbolone acetate implant (TBA), or both (ET). Both prior to and following administration of HGP, RRs were lower (P<0.05) on cold days and greater (P<0.05) on hot days compared to TNL. On hot days, RTs, were 0.62°C higher after compared to before implanting. Across all conditions, RTs were >0.5°C greater (P<0.05) for E cattle than for TBA or ET cattle. On cold days, RTs of steers were >0.8°C higher than for the heifers, while under TNL and HOT, RTs of steers were 0.2 0.35°C higher than those of heifers. Prior to implantation, HP per hour and per unit of metabolic body weight was higher (P<0.05) for cattle exposed to hot conditions, when compared to HP on cold days. After implantation, HP was greater (P<0.05) on hot days than on cold days. Under TNL, ET cattle had the lowest HP and greatest feed intake. On hot days, E cattle had the lowest HP, and the highest RT; therefore, if the potential exists for cattle death from heat episodes, the use of either TBA or ET may be preferred. Under cold conditions HP was similar among implant groups.

  8. Coarse-grained molecular dynamics studies of the translocation mechanism of polyarginines across asymmetric membrane under tension

    PubMed Central

    He, XiaoCong; Lin, Min; Sha, BaoYong; Feng, ShangSheng; Shi, XingHua; Qu, ZhiGuo; Xu, Feng

    2015-01-01

    Understanding interactions between cell-penetrating peptides and biomembrane under tension can help improve drug delivery and elucidate mechanisms underlying fundamental cellular events. As far as the effect of membrane tension on translocation, it is generally thought that tension should disorder the membrane structure and weaken its strength, thereby facilitating penetration. However, our coarse-grained molecular dynamics simulation results showed that membrane tension can restrain polyarginine translocation across the asymmetric membrane and that this effect increases with increasing membrane tension. We also analyzed the structural properties and lipid topology of the tensed membrane to explain the phenomena. Simulation results provide important molecular information on the potential translocation mechanism of peptides across the asymmetric membrane under tension as well as new insights in drug and gene delivery. PMID:26235300

  9. Synthesis mechanism of an Al-Ti-C grain refiner master alloy prepared by a new method

    NASA Astrophysics Data System (ADS)

    Zhang, B. Q.; Lu, L.; Lai, M. O.; Fang, H. S.; Ma, H. T.; Li, J. G.

    2003-08-01

    The mechanisms of in-situ synthesis of an Al-Ti-C grain-refiner master alloy, prepared by adding a powder mixture of potassium titanium fluoride and carbon into an aluminum melt, have been systematically studied. It was found that vigorous reactions occurred at the initial stage of reaction and then slowed down. After about 20 minutes, the reactions, which led the formation of blocky titanium aluminides and submicron titanium carbides in the aluminum matrix, appeared to reach completion. Potassium titanium fluoride reacted with aluminum and carbon at 724 °C and 736 °C, respectively, resulting in the formation of titanium aluminides and titanium carbides in the aluminum matrix as well as in the formation of a low-melting-point slag of binary potassium aluminofluorides. The reaction between potassium titanium fluoride and carbon is believed to be the predominant mechanism in the synthesis of TiC by this method.

  10. Mechanism of K-phase growth under magnesium combustion

    SciTech Connect

    Florko, A.V.; Golovko, V.V.; Kondrat`ev, E.N.

    1995-09-01

    A model is proposed for magnesia crystal growth during the combustion of single magnesium particles and in the front of laminar diffusion two-phase flame. It is shown that the basic mechanism limiting the condensation rate is the formation of Schottky defects. The energy of their formation has been determined. The results of dispersion analysis of combustion products at air pressures of (0.1-1) {sm_bullet} 10{sup 5} Pa are in good agreement with the calculation data.

  11. Experimentally Derived Mechanical and Flow Properties of Fine-grained Soil Mixtures

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Peets, C. S.; Flemings, P. B.; Day-Stirrat, R. J.; Germaine, J. T.

    2009-12-01

    As silt content in mudrocks increases, compressibility linearly decreases and permeability exponentially increases. We prepared mixtures of natural Boston Blue Clay (BBC) and synthetic silt in the ratios of 100:0, 86:14, 68:32, and 50:50, respectively. To recreate natural conditions yet remove variability and soil disturbance, we resedimented all mixtures to a total stress of 100 kPa. We then loaded them to approximately 2.3 MPa in a CRS (constant-rate-of-strain) uniaxial consolidation device. The analyses show that the higher the silt content in the mixture, the stiffer the material is. Compression index as well as liquid and plastic limits linearly decrease with increasing silt content. Vertical permeability increases exponentially with porosity as well as with silt content. Fabric alignment determined through High Resolution X-ray Texture Goniometry (HRXTG) expressed as maximum pole density (m.r.d.) decreases with silt content at a given stress. However, this relationship is not linear instead there are two clusters: the mixtures with higher clay contents (100:0, 84:16) have m.r.d. around 3.9 and mixtures with higher silt contents (68:32, 50:50) have m.r.d. around 2.5. Specific surface area (SSA) measurements show a positive correlation to the total clay content. The amount of silt added to the clay reduces specific surface area, grain orientation, and fabric alignment; thus, it affects compression and fluid flow behavior on a micro- and macroscale. Our results are comparable with previous studies such as kaolinite / silt mixtures (Konrad & Samson [2000], Wagg & Konrad [1990]). We are studying this behavior to understand how fine-grained rocks consolidate. This problem is important to practical and fundamental programs. For example, these sediments can potentially act as either a tight gas reservoir or a seal for hydrocarbons or geologic storage of CO2. This study also provides a systematic approach for developing models of permeability and compressibility

  12. Atomistic mechanisms for bilayer growth of graphene on metal substrates

    SciTech Connect

    Chen, Wei; Cui, Ping; Zhu, Wenguang; Kaxiras, Efthimios; Gao, Yanfei; Zhang, Zhenyu

    2015-01-08

    Epitaxial growth on metal substrates has been shown to be the most powerful approach in producing large-scale high-quality monolayer graphene, yet it remains a major challenge to realize uniform bilayer graphene growth. Here we carry out a comparative study of the atomistic mechanisms for bilayer graphene growth on the (111) surfaces of Cu and Ni, using multiscale approaches combining first-principles calculations and rate-equation analysis. We first show that the relatively weak graphene-Cu interaction enhances the lateral diffusion and effective nucleation of C atoms underneath the graphene island, thereby making it more feasible to grow bilayer graphene on Cu. In contrast, the stronger graphene-Ni interaction suppresses the lateral mobility and dimerization of C atoms underneath the graphene, making it unlikely to achieve controlled growth of bilayer graphene on Ni. We then determine the critical graphene size beyond which nucleation of the second layer will take place. Intriguingly, the critical size exhibits an effective inverse "Ehrlich-Schwoebel barrier" effect, becoming smaller for faster C migration from the Cu surface to the graphene-Cu interface sites across the graphene edge. Lastly, these findings allow us to propose a novel alternating growth scheme to realize mass production of bilayer graphene.

  13. Atomistic mechanisms for bilayer growth of graphene on metal substrates

    DOE PAGES

    Chen, Wei; Cui, Ping; Zhu, Wenguang; Kaxiras, Efthimios; Gao, Yanfei; Zhang, Zhenyu

    2015-01-08

    Epitaxial growth on metal substrates has been shown to be the most powerful approach in producing large-scale high-quality monolayer graphene, yet it remains a major challenge to realize uniform bilayer graphene growth. Here we carry out a comparative study of the atomistic mechanisms for bilayer graphene growth on the (111) surfaces of Cu and Ni, using multiscale approaches combining first-principles calculations and rate-equation analysis. We first show that the relatively weak graphene-Cu interaction enhances the lateral diffusion and effective nucleation of C atoms underneath the graphene island, thereby making it more feasible to grow bilayer graphene on Cu. In contrast,more » the stronger graphene-Ni interaction suppresses the lateral mobility and dimerization of C atoms underneath the graphene, making it unlikely to achieve controlled growth of bilayer graphene on Ni. We then determine the critical graphene size beyond which nucleation of the second layer will take place. Intriguingly, the critical size exhibits an effective inverse "Ehrlich-Schwoebel barrier" effect, becoming smaller for faster C migration from the Cu surface to the graphene-Cu interface sites across the graphene edge. Lastly, these findings allow us to propose a novel alternating growth scheme to realize mass production of bilayer graphene.« less

  14. Analysis of the twin spacing and grain size effects on mechanical properties in hierarchically nanotwinned face-centered cubic metals based on a mechanism-based plasticity model

    NASA Astrophysics Data System (ADS)

    Zhu, Linli; Qu, Shaoxing; Guo, Xiang; Lu, Jian

    2015-03-01

    Hierarchical twin lamellae in polycrystalline face-centered cubic (fcc) metals possess a possibility to achieve higher strength with keeping an acceptable elongation. The present work is concerned with the analysis of twin spacing and grain size-dependent plastic performance in hierarchically nanotwinned fcc metals using a generalized strain-gradient plasticity model. The dislocation density-based physical model for constitutive description of nanotwinned fcc metals is expanded for the hierarchical structures of nanotwins. The strengthening mechanism and the failure behavior in these hierarchical nanostructures are studied to evaluate the strength and ductility. Moreover, the transition twin spacing between the strengthening and softening is obtained in different order of twin lamellae. A dislocation-based model on nucleating deformation twins is presented to predict the critical twin spacing in the lowest twin lamellae for generating the subordinate twin lamellae. Our simulation results demonstrate that the existence of the hierarchical nanotwins gives rise to a significant enhancement in the strength, and the resulting global flow stresses are sensitive to the twin spacings of the hierarchical twin lamellae and the grain size. Two softening stages are observed with variation of twin spacing, and the relevant transition twin spacing depends on the microstructural size in hierarchically nanotwinned metals. We further find that the predicted failure strain decreases with decreasing the twin spacing, which is quite different from the case of the individually nanotwinned fcc metals. The critical twin spacing for generating subordinate twins also depends on the twin spacing of superordinate twin lamellae and the grain size. These findings suggest that the high yield strength and good ductility can be achieved by optimizing the grain size and the twin spacings in the hierarchical twins.

  15. Whole-Plant Dynamic System of Nitrogen Use for Vegetative Growth and Grain Filling in Rice Plants (Oryza sativa L.) as Revealed through the Production of 350 Grains from a Germinated Seed Over 150 Days: A Review and Synthesis.

    PubMed

    Yoneyama, Tadakatsu; Tanno, Fumio; Tatsumi, Jiro; Mae, Tadahiko

    2016-01-01

    A single germinated rice (Oryza sativa L) seed can produce 350 grains with the sequential development of 15 leaves on the main stem and 7-10 leaves on four productive tillers (forming five panicles in total), using nitrogen (N) taken up from the environment over a 150-day growing season. Nitrogen travels from uptake sites to the grain through growing organ-directed cycling among sequentially developed organs. Over the past 40 years, the dynamic system for N allocation during vegetative growth and grain filling has been elucidated through studies on N and (15)N transport as well as enzymes and transporters involved. In this review, we synthesize the information obtained in these studies along the following main points: (1) During vegetative growth before grain-filling, about half of the total N in the growing organs, including young leaves, tillers, root tips and differentiating panicles is supplied via phloem from mature source organs such as leaves and roots, after turnover and remobilization of proteins, whereas the other half is newly taken up and supplied via xylem, with an efficient xylem-to-phloem transfer at stem nodes. Thus, the growth of new organs depends equally on both N sources. (2) A large fraction (as much as 80%) of the grain N is derived largely from mature organs such as leaves and stems by degradation, including the autophagy pathway of chloroplast proteins (e.g., Rubisco). (3) Mobilized proteinogenic amino acids (AA), including arginine, lysine, proline and valine, are derived mainly from protein degradation, with AA transporters playing a role in transferring these AAs across cell membranes of source and sink organs, and enabling their efficient reutilization in the latter. On the other hand, AAs such as glutamine, glutamic acid, γ-amino butyric acid, aspartic acid, and alanine are produced by assimilation of newly taken up N by roots and and transported via xylem and phloem. The formation of 350 filled grains over 50 days during the

  16. Whole-Plant Dynamic System of Nitrogen Use for Vegetative Growth and Grain Filling in Rice Plants (Oryza sativa L.) as Revealed through the Production of 350 Grains from a Germinated Seed Over 150 Days: A Review and Synthesis.

    PubMed

    Yoneyama, Tadakatsu; Tanno, Fumio; Tatsumi, Jiro; Mae, Tadahiko

    2016-01-01

    A single germinated rice (Oryza sativa L) seed can produce 350 grains with the sequential development of 15 leaves on the main stem and 7-10 leaves on four productive tillers (forming five panicles in total), using nitrogen (N) taken up from the environment over a 150-day growing season. Nitrogen travels from uptake sites to the grain through growing organ-directed cycling among sequentially developed organs. Over the past 40 years, the dynamic system for N allocation during vegetative growth and grain filling has been elucidated through studies on N and (15)N transport as well as enzymes and transporters involved. In this review, we synthesize the information obtained in these studies along the following main points: (1) During vegetative growth before grain-filling, about half of the total N in the growing organs, including young leaves, tillers, root tips and differentiating panicles is supplied via phloem from mature source organs such as leaves and roots, after turnover and remobilization of proteins, whereas the other half is newly taken up and supplied via xylem, with an efficient xylem-to-phloem transfer at stem nodes. Thus, the growth of new organs depends equally on both N sources. (2) A large fraction (as much as 80%) of the grain N is derived largely from mature organs such as leaves and stems by degradation, including the autophagy pathway of chloroplast proteins (e.g., Rubisco). (3) Mobilized proteinogenic amino acids (AA), including arginine, lysine, proline and valine, are derived mainly from protein degradation, with AA transporters playing a role in transferring these AAs across cell membranes of source and sink organs, and enabling their efficient reutilization in the latter. On the other hand, AAs such as glutamine, glutamic acid, γ-amino butyric acid, aspartic acid, and alanine are produced by assimilation of newly taken up N by roots and and transported via xylem and phloem. The formation of 350 filled grains over 50 days during the

  17. Whole-Plant Dynamic System of Nitrogen Use for Vegetative Growth and Grain Filling in Rice Plants (Oryza sativa L.) as Revealed through the Production of 350 Grains from a Germinated Seed Over 150 Days: A Review and Synthesis

    PubMed Central

    Yoneyama, Tadakatsu; Tanno, Fumio; Tatsumi, Jiro; Mae, Tadahiko

    2016-01-01

    A single germinated rice (Oryza sativa L) seed can produce 350 grains with the sequential development of 15 leaves on the main stem and 7–10 leaves on four productive tillers (forming five panicles in total), using nitrogen (N) taken up from the environment over a 150-day growing season. Nitrogen travels from uptake sites to the grain through growing organ-directed cycling among sequentially developed organs. Over the past 40 years, the dynamic system for N allocation during vegetative growth and grain filling has been elucidated through studies on N and 15N transport as well as enzymes and transporters involved. In this review, we synthesize the information obtained in these studies along the following main points: (1) During vegetative growth before grain-filling, about half of the total N in the growing organs, including young leaves, tillers, root tips and differentiating panicles is supplied via phloem from mature source organs such as leaves and roots, after turnover and remobilization of proteins, whereas the other half is newly taken up and supplied via xylem, with an efficient xylem-to-phloem transfer at stem nodes. Thus, the growth of new organs depends equally on both N sources. (2) A large fraction (as much as 80%) of the grain N is derived largely from mature organs such as leaves and stems by degradation, including the autophagy pathway of chloroplast proteins (e.g., Rubisco). (3) Mobilized proteinogenic amino acids (AA), including arginine, lysine, proline and valine, are derived mainly from protein degradation, with AA transporters playing a role in transferring these AAs across cell membranes of source and sink organs, and enabling their efficient reutilization in the latter. On the other hand, AAs such as glutamine, glutamic acid, γ-amino butyric acid, aspartic acid, and alanine are produced by assimilation of newly taken up N by roots and and transported via xylem and phloem. The formation of 350 filled grains over 50 days during the

  18. A novel, two-step top seeded infiltration and growth process for the fabrication of single grain, bulk (RE)BCO superconductors

    NASA Astrophysics Data System (ADS)

    Namburi, Devendra K.; Shi, Yunhua; Palmer, Kysen G.; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.

    2016-09-01

    A fundamental requirement of the fabrication of high performing, (RE)-Ba-Cu-O bulk superconductors is achieving a single grain microstructure that exhibits good flux pinning properties. The top seeded melt growth (TSMG) process is a well-established technique for the fabrication of single grain (RE)BCO bulk samples and is now applied routinely by a number of research groups around the world. The introduction of a buffer layer to the TSMG process has been demonstrated recently to improve significantly the general reliability of the process. However, a number of growth-related defects, such as porosity and the formation of micro-cracks, remain inherent to the TSMG process, and are proving difficult to eliminate by varying the melt process parameters. The seeded infiltration and growth (SIG) process has been shown to yield single grain samples that exhibit significantly improved microstructures compared to the TSMG technique. Unfortunately, however, SIG leads to other processing challenges, such as the reliability of fabrication, optimisation of RE2BaCuO5 (RE-211) inclusions (size and content) in the sample microstructure, practical oxygenation of as processed samples and, hence, optimisation of the superconducting properties of the bulk single grain. In the present paper, we report the development of a near-net shaping technique based on a novel two-step, buffer-aided top seeded infiltration and growth (BA-TSIG) process, which has been demonstrated to improve greatly the reliability of the single grain growth process and has been used to fabricate successfully bulk, single grain (RE)BCO superconductors with improved microstructures and superconducting properties. A trapped field of ˜0.84 T and a zero field current density of 60 kA cm-2 have been measured at 77 K in a bulk, YBCO single grain sample of diameter 25 mm processed by this two-step BA-TSIG technique. To the best of our knowledge, this value of trapped field is the highest value ever reported for a sample

  19. A novel, two-step top seeded infiltration and growth process for the fabrication of single grain, bulk (RE)BCO superconductors

    NASA Astrophysics Data System (ADS)

    Namburi, Devendra K.; Shi, Yunhua; Palmer, Kysen G.; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.

    2016-09-01

    A fundamental requirement of the fabrication of high performing, (RE)–Ba–Cu–O bulk superconductors is achieving a single grain microstructure that exhibits good flux pinning properties. The top seeded melt growth (TSMG) process is a well-established technique for the fabrication of single grain (RE)BCO bulk samples and is now applied routinely by a number of research groups around the world. The introduction of a buffer layer to the TSMG process has been demonstrated recently to improve significantly the general reliability of the process. However, a number of growth-related defects, such as porosity and the formation of micro-cracks, remain inherent to the TSMG process, and are proving difficult to eliminate by varying the melt process parameters. The seeded infiltration and growth (SIG) process has been shown to yield single grain samples that exhibit significantly improved microstructures compared to the TSMG technique. Unfortunately, however, SIG leads to other processing challenges, such as the reliability of fabrication, optimisation of RE2BaCuO5 (RE-211) inclusions (size and content) in the sample microstructure, practical oxygenation of as processed samples and, hence, optimisation of the superconducting properties of the bulk single grain. In the present paper, we report the development of a near-net shaping technique based on a novel two-step, buffer-aided top seeded infiltration and growth (BA-TSIG) process, which has been demonstrated to improve greatly the reliability of the single grain growth process and has been used to fabricate successfully bulk, single grain (RE)BCO superconductors with improved microstructures and superconducting properties. A trapped field of ∼0.84 T and a zero field current density of 60 kA cm‑2 have been measured at 77 K in a bulk, YBCO single grain sample of diameter 25 mm processed by this two-step BA-TSIG technique. To the best of our knowledge, this value of trapped field is the highest value ever reported for a

  20. Large Perovskite Grain Growth in Low-Temperature Solution-Processed Planar p-i-n Solar Cells by Sodium Addition.

    PubMed

    Bag, Santanu; Durstock, Michael F

    2016-03-01

    Thin-film p-i-n type planar heterojunction perovskite solar cells have the advantage of full low temperature solution processability and can, therefore, be adopted in roll-to-roll production and flexible devices. One of the main challenges with these devices, however, is the ability to finely control the film morphology during the deposition and crystallization of the perovskite layer. Processes suitable for optimization of the perovskite layer film morphology with large grains are highly desirable for reduced recombination of charge carriers. Here, we show how uniform thin films with micron size perovskite grains can be made through the use of a controlled amount of sodium ions in the precursor solution. Large micrometer-size CH3NH3PbI3 perovskite grains are formed during low-temperature thin-film growth by adding sodium ions to the PbI2 precursor solution in a two-step interdiffusion process. By adjusting additive concentration, film morphologies were optimized and the fabricated p-i-n planar perovskite-PCBM solar cells showed improved power conversion efficiences (an average of 3-4% absolute efficiency enhancement) compared to the nonsodium based devices. Overall, the additive enhanced grain growth process helped to reach a high 14.2% solar cell device efficiency with low hysteresis. This method of grain growth is quite general and provides a facile way to fabricate large-grained CH3NH3PbI3 on any arbitrary surface by an all solution-processed route.

  1. Large Perovskite Grain Growth in Low-Temperature Solution-Processed Planar p-i-n Solar Cells by Sodium Addition.

    PubMed

    Bag, Santanu; Durstock, Michael F

    2016-03-01

    Thin-film p-i-n type planar heterojunction perovskite solar cells have the advantage of full low temperature solution processability and can, therefore, be adopted in roll-to-roll production and flexible devices. One of the main challenges with these devices, however, is the ability to finely control the film morphology during the deposition and crystallization of the perovskite layer. Processes suitable for optimization of the perovskite layer film morphology with large grains are highly desirable for reduced recombination of charge carriers. Here, we show how uniform thin films with micron size perovskite grains can be made through the use of a controlled amount of sodium ions in the precursor solution. Large micrometer-size CH3NH3PbI3 perovskite grains are formed during low-temperature thin-film growth by adding sodium ions to the PbI2 precursor solution in a two-step interdiffusion process. By adjusting additive concentration, film morphologies were optimized and the fabricated p-i-n planar perovskite-PCBM solar cells showed improved power conversion efficiences (an average of 3-4% absolute efficiency enhancement) compared to the nonsodium based devices. Overall, the additive enhanced grain growth process helped to reach a high 14.2% solar cell device efficiency with low hysteresis. This method of grain growth is quite general and provides a facile way to fabricate large-grained CH3NH3PbI3 on any arbitrary surface by an all solution-processed route. PMID:26862869

  2. [Effects of nitrogen fertilization and root separation on the plant growth and grain yield of maize and its rhizosphere microorganisms].

    PubMed

    Zhang, Xiang-Qian; Huang, Guo-Qin; Bian, Xin-Min; Zhao, Qi-Guo

    2012-12-01

    A field experiment with root separation was conducted to study the effects of root interaction in maize-soybean intercropping system on the plant growth and grain yield of maize and its rhizosphere microorganisms under different nitrogen fertilization levels (0.1, 0.3, 0.5, and 0.7 g x kg(-1)). Root interaction and nitrogen fertilization had positive effects on the plant height, leaf length and width, and leaf chlorophyll content of maize. Less difference was observed in the root dry mass of maize at maturing stage between the treatments root separation and no root separation. However, as compared with root separation, no root separation under the nitrogen fertilization levels 0.1, 0.3, 0.5, and 0.7 g x kg(-1) increased the biomass per maize plant by 8.8%, 6.3%, 3.6%, and 0.7%, and the economic yield per maize plant by 17.7%, 10.0%, 8.2%, and 0.9%, respectively. No root separation increased the quantity of rhizosphere fungi and azotobacteria significantly, as compared with root separation. With increasing nitrogen fertilization level, the quantity of rhizosphere bacteria, fungi, and actinomycetes presented an increasing trend, while that of rhizosphere azotobacteria decreased after an initial increase. The root-shoot ratio of maize at maturing stage was significantly negatively correlated with the quantity of rhizosphere bacteria, fungi, and actinomycetes, but less correlated with the quantity of rhizosphere azotobacteria. It was suggested that the root interaction in maize-soybean intercropping system could improve the plant growth of maize and increase the maize yield and rhizosphere microbial quantity, but the effect would be decreased with increasing nitrogen fertilization level.

  3. Fabrication and Electrical Properties of Ba(Zr,Ti)O3 Textured Ceramics by Templated Grain Growth

    NASA Astrophysics Data System (ADS)

    Bai, Wangfeng; Shen, Bo; Fu, Fang; Zhai, Jiwei

    2012-01-01

    The (h00) textured Ba(Zr0.085Ti0.915)O3 (BZT) ceramics were fabricated by templated grain growth using anisotropically shaped BaTiO3 (BT) templates. A high orientation degree (Lotgering's factor) of 85% calculated from X-ray diffraction (XRD) patterns was obtained. The dielectric, ferroelectric, piezoelectric properties of the random and textured BZT ceramics have been studied. The Curie temperature of the textured BZT ceramics was 94 °C, which was higher than that of the random BZT ceramics. The textured BZT ceramics exhibited excellent piezoelectric performance with the piezoelectric coefficient d33 = 234 pC/N, strain levels of 0.22% at 40 kV/cm, normalized strain (Smax/Emax) level of 550 pm/V calculated from the unipolar strain-electric field (S-E) hysteresis loops and remnant polarization Pr = 11.46 µC/cm2 sintered at 1450 °C for 4 h with 85% of Lotgering's factor.

  4. Grain size evolution and convection regimes of the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Rozel, A.; Golabek, G. J.; Boutonnet, E.

    2011-12-01

    A new model of grain size evolution has recently been proposed in Rozel et al. 2010. This new approach stipulates that the grain size dynamics is governed by two additive and simultaneous processes: grain growth and dynamic recrystallization. We use the usual normal grain growth laws for the growth part. For dynamic recrystallization, reducing the mean grain size increases the total area of grain boundaries. Grain boundaries carry some surface tension, so some energy is required to decrease the mean grain size. We consider that this energy is available during mechanical work. It is usually considered to produce some heat via viscous dissipation. A partitioning parameter f is then required to know what amount of energy is dissipated and what part is converted in surface tension. This study gives a new calibration of the partitioning parameter on major Earth materials involved in the dynamic of the terrestrial planets. Our calibration is in adequation with the published piezometric relations available in the literature (equilibrium grain size versus shear stress). We test this new model of grain size evolution in a set of numerical computations of the dynamics of the Earth using stagYY. We show that the grain size evolution has a major effect on the convection regimes of terrestrial planets.

  5. Origin of recombination activity at small angle grain boundaries in multicrystalline silicon using multi-seed casting growth method

    NASA Astrophysics Data System (ADS)

    Kojima, Takuto; Tachibana, Tomihisa; Ohshita, Yoshio; Prakash, Ronit R.; Sekiguchi, Takashi; Yamaguchi, Masafumi

    2015-08-01

    The effect of misorientation on the recombination activity of tilt small angle grain boundaries was studied by temperature-dependent electron beam induced current (EBIC) analyses of artificially induced grain boundaries in multicrystal grown by casting from multiple seeds. For small misorientation, there is no significant difference in the recombination of grain boundaries at the middle of a grown ingot, whereas moderate contamination on grain boundaries caused changes in the EBIC contrast, especially at room temperature. The EBIC contrast of moderately contaminated grain boundaries at room temperature has a peak at a misorientation of ∼3°, and for misorientation θ > 6°, the recombinative nature diminishes with increasing misorientation. The results indicate differences in the gettering ability of small angle grain boundaries.

  6. Physical Mechanisms of Crystal Growth Modification by Biomolecules

    NASA Astrophysics Data System (ADS)

    De Yoreo, James J.

    2010-07-01

    During the process of biomineralization, living organisms use macromolecules to direct the nucleation and growth of a variety of inorganic materials. Because biomineral structures exhibit complex topologies, hierarchical design, and unique materials properties, an understanding of the underlying mechanisms of biomolecular controls over mineral growth presents an opportunity to develop new strategies towards synthesis of novel materials for applications across a wide range of technologies. Herein the results from a combination of in situ atomic force microscopy (AFM) and molecular modeling (MM) studies to investigate the effect of specific interactions between carboxylate-rich biomolecules and atomic steps on calcium carbonate and calcium oxalate crystal surfaces during the growth are reviewed. The results show how the stereochemical relationships between additive and atomic step leads to modifications of crystal shape. In some cases, the inhibitory effects of strong binders are well-explained by a model of growth inhibition based on the classic Cabrera-Vermilyea theory, but updated to take into account the particular nature of biomolecular adsorption dynamics. The consequences include a positive feedback between peptide adsorption and step inhibition that results in bistable growth with rapid switching from fast to near-zero growth rates for very small changes in supersaturation. The phenomenon of biomolecule-induced growth acceleration is also reviewed and shown to be common to both the oxalate and carbonate systems. The source of acceleration is related to the activation barrier for solute attachment to steps. Finally, experimental and theoretical results are presented that suggest most biomineral phases can not be described by conventional models in which kink formation due to thermal fluctuations at step edges is rapid enough to ensure the availability of kinks. Instead, growth is kink-limited. As a consequence, biomolecule-step interactions cannot be

  7. The analysis of fatigue crack growth mechanism and oxidation and fatigue life at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1988-01-01

    Two quantitative models based on experimentally observed fatigue damage processes have been made: (1) a model of low cycle fatigue life based on fatigue crack growth under general-yielding cyclic loading; and (2) a model of accelerated fatigue crack growth at elevated temperatures based on grain boundary oxidation. These two quantitative models agree very well with the experimental observations.

  8. Mechanism for longitudinal growth of rod-shaped bacteria

    NASA Astrophysics Data System (ADS)

    Taneja, Swadhin; Levitan, Ben; Rutenberg, Andrew

    2013-03-01

    The peptidoglycan (PG) cell wall along with MreB proteins are major determinants of shape in rod-shaped bacteria. However the mechanism guiding the growth of this elastic network of cross-linked PG (sacculus) that maintains the integrity and shape of the rod-shaped cell remains elusive. We propose that the known anisotropic elasticity and anisotropic loading, due to the shape and turgor pressure, of the sacculus is sufficient to direct small gaps in the sacculus to elongate around the cell, and that subsequent repair leads to longitudinal growth without radial growth. We computationally show in our anisotropically stressed anisotropic elasticity model small gaps can extend stably in the circumferential direction for the known elasticity of the sacculus. We suggest that MreB patches that normally propagate circumferentially, are associated with these gaps and are steered with this common mechanism. This basic picture is unchanged in Gram positive and Gram negative bacteria. We also show that small changes of elastic properties can in fact lead to bi-stable propagation of gaps, both longitudinal and circumferential, that can explain the bi-stability in patch movement observed in ΔmblΔmreb mutants.

  9. Plant Growth-Promoting Bacteria: Mechanisms and Applications

    PubMed Central

    Glick, Bernard R.

    2012-01-01

    The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB) will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise. PMID:24278762

  10. Sculpting sandcastles grain by grain: Self-assembled sand towers

    NASA Astrophysics Data System (ADS)

    Pacheco-Vázquez, F.; Moreau, F.; Vandewalle, N.; Dorbolo, S.

    2012-11-01

    We study the spontaneous formation of granular towers produced when dry sand is poured on a wet sand bed. When the liquid content of the bed exceeds a threshold value W, the impacting grains have a nonzero probability to stick on the wet grains due to instantaneous liquid bridges created during the impact. The trapped grains become wet by the capillary ascension of water and the process continues, giving rise to stable narrow towers. The growth velocity is determined by the surface liquid content which decreases exponentially as the tower height augments. This self-assembly mechanism (only observed in the funicular and capillary regimes) could theoretically last while the capillary rise of water is possible; however, the structure collapses before reaching this limit. The collapse occurs when the weight of the tower surpasses the cohesive stress at its base. The cohesive stress increases as the liquid content of the bed is reduced. Consequently, the highest towers are found just above W.

  11. In situ epitaxial growth of ordered FePt (001) films with ultra small and uniform grain size using a RuAl underlayer

    SciTech Connect

    Shen, W.K.; Judy, J. H.; Wang Jianping

    2005-05-15

    In situ epitaxial growth of ordered FePt thin films with small and uniform grain size using RuAl underlayer is reported. A transmission electron microscopy image of a 20-nm RuAl layer deposited on a glass substrate revealed small (D{approx}5.0 nm) and uniform ({delta}D/D{approx}15%) grains. The (001) texture was formed in RuAl films at a substrate temperature higher than 100 deg. C. The FePt L1{sub 0} (001) texture with mean grain size of 6.63 nm and narrow size distribution (17%) has been successfully induced using a RuAl underlayer at a substrate temperature of 400 deg. C. The influences of the RuAl composition ratio and Pt interlayer were studied.

  12. Ubiquitination-dependent mechanisms regulate synaptic growth and function.

    PubMed

    DiAntonio, A; Haghighi, A P; Portman, S L; Lee, J D; Amaranto, A M; Goodman, C S

    2001-07-26

    The covalent attachment of ubiquitin to cellular proteins is a powerful mechanism for controlling protein activity and localization. Ubiquitination is a reversible modification promoted by ubiquitin ligases and antagonized by deubiquitinating proteases. Ubiquitin-dependent mechanisms regulate many important processes including cell-cycle progression, apoptosis and transcriptional regulation. Here we show that ubiquitin-dependent mechanisms regulate synaptic development at the Drosophila neuromuscular junction (NMJ). Neuronal overexpression of the deubiquitinating protease fat facets leads to a profound disruption of synaptic growth control; there is a large increase in the number of synaptic boutons, an elaboration of the synaptic branching pattern, and a disruption of synaptic function. Antagonizing the ubiquitination pathway in neurons by expression of the yeast deubiquitinating protease UBP2 (ref. 5) also produces synaptic overgrowth and dysfunction. Genetic interactions between fat facets and highwire, a negative regulator of synaptic growth that has structural homology to a family of ubiquitin ligases, suggest that synaptic development may be controlled by the balance between positive and negative regulators of ubiquitination.

  13. Ubiquitination-dependent mechanisms regulate synaptic growth and function.

    PubMed

    DiAntonio, A; Haghighi, A P; Portman, S L; Lee, J D; Amaranto, A M; Goodman, C S

    2001-07-26

    The covalent attachment of ubiquitin to cellular proteins is a powerful mechanism for controlling protein activity and localization. Ubiquitination is a reversible modification promoted by ubiquitin ligases and antagonized by deubiquitinating proteases. Ubiquitin-dependent mechanisms regulate many important processes including cell-cycle progression, apoptosis and transcriptional regulation. Here we show that ubiquitin-dependent mechanisms regulate synaptic development at the Drosophila neuromuscular junction (NMJ). Neuronal overexpression of the deubiquitinating protease fat facets leads to a profound disruption of synaptic growth control; there is a large increase in the number of synaptic boutons, an elaboration of the synaptic branching pattern, and a disruption of synaptic function. Antagonizing the ubiquitination pathway in neurons by expression of the yeast deubiquitinating protease UBP2 (ref. 5) also produces synaptic overgrowth and dysfunction. Genetic interactions between fat facets and highwire, a negative regulator of synaptic growth that has structural homology to a family of ubiquitin ligases, suggest that synaptic development may be controlled by the balance between positive and negative regulators of ubiquitination. PMID:11473321

  14. RPE and Choroid Mechanisms Underlying Ocular Growth and Myopia.

    PubMed

    Zhang, Yan; Wildsoet, Christine F

    2015-01-01

    Myopia is the most common type of refractive errors and one of the world's leading causes of blindness. Visual manipulations in animal models have provided convincing evidence for the role of environmental factors in myopia development. These models along with in vitro studies have provided important insights into underlying mechanisms. The key locations of the retinal pigment epithelium (RPE) and choroid make them plausible conduits for relaying growth regulatory signals originating in the retina to the sclera, which ultimately determines eye size and shape. Identifying the key signal molecules and their targets may lead to the development of new myopia control treatments. This section summarizes findings implicating the RPE and choroid in myopia development. For RPE and/or choroid, changes in morphology, activity of ion channels/transporters, as well as in gene and protein expression, have been linked to altered eye growth. Both tissues thus represent potential targets for novel therapies for myopia.

  15. Electrochemical deposition of ZnO nanostructures. mechanism of growth.

    PubMed

    Rayón, E; Ferrer, C

    2010-02-01

    The growth kinetics of ZnO nanorods were studied by means of an electrochemical deposition process on ITO electrodes submerged in an aqueous solution of 5 mM ZCl+0.1 M KCl at 80 degrees C. The stages of the growth kinetics showed a mechanism of formation of nano-spheres which with time were transformed into hexagonal crystals of ZnO. Cathodic current densities of 0.1 to 1 mAcm2 formed hexagonal columns of 800 nm thickness while stronger currents formed a high-density layer of cylindrical nanorods 80 nm in diameter. An amorphous barrier layer was found between the surface of the electrode and the base of the nano-columns. The conditions assayed showed the possibility of adjusting the morphological characteristics of the layer in order to obtain different properties in different applications.

  16. RPE and Choroid Mechanisms Underlying Ocular Growth and Myopia

    PubMed Central

    Zhang, Yan; Wildsoet, Christine F.

    2016-01-01

    Myopia is the most common type of refractive errors and one of the world’s leading causes of blindness. Visual manipulations in animal models have provided convincing evidence for the role of environmental factors in myopia development. These models along with in vitro studies have provided important insights into underlying mechanisms. The key locations of the retinal pigment epithelium (RPE) and choroid make them plausible conduits for relaying growth regulatory signals originating in the retina to the sclera, which ultimately determines eye size and shape. Identifying the key signal molecules and their targets may lead to the development of new myopia control treatments. This section summarizes findings implicating the RPE and choroid in myopia development. For RPE and/or choroid, changes in morphology, activity of ion channels/transporters, as well as in gene and protein expression, have been linked to altered eye growth. Both tissues thus represent potential targets for novel therapies for myopia. PMID:26310157

  17. Thermal-mechanical fatigue crack growth in Inconel X-750

    NASA Technical Reports Server (NTRS)

    Marchand, N.; Pelloux, R. M.

    1984-01-01

    Thermal-mechanical fatigue crack growth (TMFCG) was studied in a gamma-gamma' nickel base superalloy Inconel X-750 under controlled load amplitude in the temperature range from 300 to 650 C. In-phase (T sub max at sigma sub max), out-of-phase (T sub min at sigma sub max), and isothermal tests at 650 C were performed on single-edge notch bars under fully reversed cyclic conditions. A dc electrical potential method was used to measure crack length. The electrical potential response obtained for each cycle of a given wave form and R value yields information on crack closure and crack extension per cycle. The macroscopic crack growth rates are reported as a function of delta k and the relative magnitude of the TMFCG are discussed in the light of the potential drop information and of the fractographic observations.

  18. Epigenetic marks in the Hyacinthus orientalis L. mature pollen grain and during in vitro pollen tube growth.

    PubMed

    Kozłowska, Marlena; Niedojadło, Katarzyna; Brzostek, Marta; Bednarska-Kozakiewicz, Elżbieta

    2016-09-01

    During the sexual reproduction of flowering plants, epigenetic control of gene expression and genome integrity by DNA methylation and histone modifications plays an important role in male gametogenesis. In this study, we compared the chromatin modification patterns of the generative, sperm cells and vegetative nuclei during Hyacinthus orientalis male gametophyte development. Changes in the spatial and temporal distribution of 5-methylcytosine, acetylated histone H4 and histone deacetylase indicated potential differences in the specific epigenetic state of all analysed cells, in both the mature cellular pollen grains and the in vitro growing pollen tubes. Interestingly, we observed unique localization of chromatin modifications in the area of the generative and the vegetative nuclei located near each other in the male germ unit, indicating the precise mechanisms of gene expression regulation in this region. We discuss the differences in the patterns of the epigenetic marks along with our previous reports of nuclear metabolism and changes in chromatin organization and activity in hyacinth male gametophyte cells. We also propose that this epigenetic status of the analysed nuclei is related to the different acquired fates and biological functions of these cells. PMID:27422435

  19. Action Mechanism of Chamaecyparis obtusa Oil on Hair Growth.

    PubMed

    Park, Young-Ok; Kim, Su-Eun; Kim, Young-Chul

    2013-12-31

    This study was carried out to examine the action mechanism of Chamaecyparis obtusa oil (CO) on hair growth in C57BL/6 mice. For alkaline phosphatase (ALP) and γ-glutamyl transpeptidase (γ-GT) activities in the skin tissue, at week 4, the 3% minoxidil (MXD) and 3% CO treatment groups showed an ALP activity that was significantly higher by 85% (p < 0.001) and 48% (p < 0.05) and an γ-GT activity that was significantly higher by 294% (p < 0.01) and 254% (p < 0.05) respectively, as compared to the saline (SA) treatment group. For insulin-like growth factor-1 (IGF-1) mRNA expression in the skin tissue, at week 4, the MXD and CO groups showed a significantly higher expression by 204% (p < 0.05) and 426% (p < 0.01) respectively, as compared to the SA group. At week 4, vascular endothelial growth factor (VEGF) expression in the MXD and CO groups showed a significantly higher expression by 74% and 96% (p < 0.05) respectively, however, epidermal growth factor (EGF) expression in the MXD and CO groups showed a significantly lower expression by 66% and 61% (p < 0.05) respectively, as compared to the SA group. Stem cell factor (SCF) expression in the MXD and CO groups was observed by immunohistochemistry as significant in a part of the bulge around the hair follicle and in a part of the basal layer of the epidermis. Taking all the results together, on the basis of effects on ALP and γ-GT activity, and the expression of IGF-1, VEGF and SCF, which are related to the promotion of hair growth, it can be concluded that CO induced a proliferation and division of hair follicle cells and maintained the anagen phase. Because EGF expression was decreased significantly, CO could delay the transition to the catagen phase. PMID:24578794

  20. Action Mechanism of Chamaecyparis obtusa Oil on Hair Growth

    PubMed Central

    Park, Young-Ok; Kim, Su-Eun; Kim, Young-Chul

    2013-01-01

    This study was carried out to examine the action mechanism of Chamaecyparis obtusa oil (CO) on hair growth in C57BL/6 mice. For alkaline phosphatase (ALP) and γ-glutamyl transpeptidase (γ-GT) activities in the skin tissue, at week 4, the 3% minoxidil (MXD) and 3% CO treatment groups showed an ALP activity that was significantly higher by 85% (p < 0.001) and 48% (p < 0.05) and an γ-GT activity that was significantly higher by 294% (p < 0.01) and 254% (p < 0.05) respectively, as compared to the saline (SA) treatment group. For insulin-like growth factor-1 (IGF-1) mRNA expression in the skin tissue, at week 4, the MXD and CO groups showed a significantly higher expression by 204% (p < 0.05) and 426% (p < 0.01) respectively, as compared to the SA group. At week 4, vascular endothelial growth factor (VEGF) expression in the MXD and CO groups showed a significantly higher expression by 74% and 96% (p < 0.05) respectively, however, epidermal growth factor (EGF) expression in the MXD and CO groups showed a significantly lower expression by 66% and 61% (p < 0.05) respectively, as compared to the SA group. Stem cell factor (SCF) expression in the MXD and CO groups was observed by immunohistochemistry as significant in a part of the bulge around the hair follicle and in a part of the basal layer of the epidermis. Taking all the results together, on the basis of effects on ALP and γ-GT activity, and the expression of IGF-1, VEGF and SCF, which are related to the promotion of hair growth, it can be concluded that CO induced a proliferation and division of hair follicle cells and maintained the anagen phase. Because EGF expression was decreased significantly, CO could delay the transition to the catagen phase. PMID:24578794

  1. Discriminating binding mechanisms of an intrinsically disordered protein via a multi-state coarse-grained model

    SciTech Connect

    Knott, Michael; Best, Robert B.

    2014-05-07

    Many proteins undergo a conformational transition upon binding to their cognate binding partner, with intrinsically disordered proteins (IDPs) providing an extreme example in which a folding transition occurs. However, it is often not clear whether this occurs via an “induced fit” or “conformational selection” mechanism, or via some intermediate scenario. In the first case, transient encounters with the binding partner favour transitions to the bound structure before the two proteins dissociate, while in the second the bound structure must be selected from a subset of unbound structures which are in the correct state for binding, because transient encounters of the incorrect conformation with the binding partner are most likely to result in dissociation. A particularly interesting situation involves those intrinsically disordered proteins which can bind to different binding partners in different conformations. We have devised a multi-state coarse-grained simulation model which is able to capture the binding of IDPs in alternate conformations, and by applying it to the binding of nuclear coactivator binding domain (NCBD) to either ACTR or IRF-3 we are able to determine the binding mechanism. By all measures, the binding of NCBD to either binding partner appears to occur via an induced fit mechanism. Nonetheless, we also show how a scenario closer to conformational selection could arise by choosing an alternative non-binding structure for NCBD.

  2. Damage potential of grasshoppers (Orthoptera: Acrididae) on early growth stages of small-grains and canola under subarctic conditions.

    PubMed

    Begna, Sultan H; Fielding, Dennis J

    2003-08-01

    We characterized the type and extent of grasshopper injury to above- and below-ground plant parts for four crops [barley (Hordeum vulgare L.), oats (Avena sativa L.), wheat (Triticum aestivum L.), and canola (Brassica campestris L.)] commonly grown, or with potential to grow, in central Alaska. Cages were placed on 48 pots containing plants in second to third leaf stages and stocked with 0, 2, 4, and 6 first-instar Melanoplus sanguinipes F. pot(-1). Plants were harvested 22 d after planting. Stem growth of barley and oats was not affected except at the highest grasshopper treatment. In canola, stem biomass was reduced at the medium and high grasshopper treatments, when most of the leaves had been consumed. The highest grasshopper treatment reduced leaf area in barley and oats by approximately 55%, and caused a significant reduction in dry weight of leaves, stems, and roots (41-72%). Wheat and canola plants were smaller than barley and oats across all treatments and, at the highest grasshopper density, above-ground portions of wheat and canola were completely destroyed. Length and surface area of roots of barley and oats were reduced by 20-28% again at the highest grasshopper density, whereas the reduction for wheat and canola ranged from 50 to 90%. There was little or no difference among all grasshopper densities for C-N ratio in leaf and stem tissues of all crops. The results suggest that wheat and canola are more susceptible than barley and oats and that densities > or = 2 pot(-1) (approximately > or = 50 m(-2)) of even very small grasshoppers could cause significant damage in small-grain and oilseed crop production.

  3. Efficacy of insect growth regulators as grain protectants against two stored-product pests in wheat and maize.

    PubMed

    Kavallieratos, Nickolas G; Athanassiou, Christos G; Vayias, Basileios J; Tomanović, Zeljko

    2012-05-01

    Insect growth regulators (IGRs) (two juvenile hormone analogues [fenoxycarb and pyriproxifen], four chitin synthesis inhibitors [diflubenzuron, flufenoxuron, lufenuron, and triflumuron], one ecdysteroid agonist [methoxyfenozide], and one combination of chitin synthesis inhibitors and juvenile hormone analogues [lufenuron plus fenoxycarb]) were tested in the laboratory against adults of Prostephanus truncatus in maize and against adults of Rhyzopertha dominica in wheat. The tested IGRs were applied in maize at three doses (1, 5, and 10 ppm) and assessed at three temperature levels (20, 25, and 30°C) in the case of P. truncatus, while in the case of R. dominica the above doses were assessed only at 25°C in wheat. In addition to progeny production, mortality of the treated adults after 14 days of exposure in the IGR-treated commodities was assessed. All IGRs were very effective (>88.5% suppression of progeny) against the tested species at doses of $ 5 ppm, while diflubenzuron at 25°C in the case of P. truncatus or lufenuron and pyriproxyfen in the case of R. dominica completely suppressed (100%) progeny production when they were applied at 1 ppm. At all tested doses, the highest values of R. dominica parental mortality were observed in wheat treated with lufenuron plus fenoxycarb. Temperature at the levels examined in the present study did not appear to affect the overall performance in a great extent of the tested IGRs in terms of adult mortality or suppression of progeny production against P. truncatus in treated maize. The tested IGRs may be considered viable grain protectants and therefore as potential components in stored-product integrated pest management.

  4. Efficacy of insect growth regulators as grain protectants against two stored-product pests in wheat and maize.

    PubMed

    Kavallieratos, Nickolas G; Athanassiou, Christos G; Vayias, Basileios J; Tomanović, Zeljko

    2012-05-01

    Insect growth regulators (IGRs) (two juvenile hormone analogues [fenoxycarb and pyriproxifen], four chitin synthesis inhibitors [diflubenzuron, flufenoxuron, lufenuron, and triflumuron], one ecdysteroid agonist [methoxyfenozide], and one combination of chitin synthesis inhibitors and juvenile hormone analogues [lufenuron plus fenoxycarb]) were tested in the laboratory against adults of Prostephanus truncatus in maize and against adults of Rhyzopertha dominica in wheat. The tested IGRs were applied in maize at three doses (1, 5, and 10 ppm) and assessed at three temperature levels (20, 25, and 30°C) in the case of P. truncatus, while in the case of R. dominica the above doses were assessed only at 25°C in wheat. In addition to progeny production, mortality of the treated adults after 14 days of exposure in the IGR-treated commodities was assessed. All IGRs were very effective (>88.5% suppression of progeny) against the tested species at doses of $ 5 ppm, while diflubenzuron at 25°C in the case of P. truncatus or lufenuron and pyriproxyfen in the case of R. dominica completely suppressed (100%) progeny production when they were applied at 1 ppm. At all tested doses, the highest values of R. dominica parental mortality were observed in wheat treated with lufenuron plus fenoxycarb. Temperature at the levels examined in the present study did not appear to affect the overall performance in a great extent of the tested IGRs in terms of adult mortality or suppression of progeny production against P. truncatus in treated maize. The tested IGRs may be considered viable grain protectants and therefore as potential components in stored-product integrated pest management. PMID:22564945

  5. A possible oriented attachment growth mechanism for silver nanowire formation

    SciTech Connect

    Murph, Simona E. Hunyadi; Murphy, Catherine J.; Leach, Austin; Gall, Kenneth

    2015-04-06

    Electron microscopy studies suggest that silver nanowires prepared by an approach reported earlier by us (Caswell, K. K., Bender, C. M., Murphy, C. J. Nano Lett.,2003, 3, 667–669) form through a coarsening process via an oriented attachment mechanism. Initially, silver nucleation centers were produced by chemical reduction of silver ions in boiling water, with sodium citrate and sodium hydroxide as additives in solution. These nucleation centers, with a twinned crystallographic orientation, ultimately merge into fully grown silver nanowires. This is a completely different mechanism from the seed-mediated growth approach, which has also been used to produce silver nanowires. Furthermore, companion molecular dynamics performed with the embedded atom method are in agreement with our experimental data.

  6. A possible oriented attachment growth mechanism for silver nanowire formation

    DOE PAGES

    Murph, Simona E. Hunyadi; Murphy, Catherine J.; Leach, Austin; Gall, Kenneth

    2015-04-06

    Electron microscopy studies suggest that silver nanowires prepared by an approach reported earlier by us (Caswell, K. K., Bender, C. M., Murphy, C. J. Nano Lett.,2003, 3, 667–669) form through a coarsening process via an oriented attachment