Science.gov

Sample records for gram-positive antibacterial activity

  1. Identification of novel aminopiperidine derivatives for antibacterial activity against Gram-positive bacteria.

    PubMed

    Lee, Hee-Yeol; An, Kyung-Mi; Jung, Juyoung; Koo, Je-Min; Kim, Jeong-Geun; Yoon, Jong-Min; Lee, Myong-Jae; Jang, HyeonSoo; Lee, Hong-Sub; Park, Soobong; Kang, Jae-Hoon

    2016-07-01

    We have previously reported amidopiperidine derivatives as a novel peptide deformylase (PDF) inhibitor and evaluated its antibacterial activity against Gram-positive bacteria, but poor pharmacokinetic profiles have resulted in low efficacy in in vivo mouse models. In order to overcome these weaknesses, we newly synthesized aminopiperidine derivatives with remarkable antimicrobial properties and oral bioavailability, and also identified their in vivo efficacy against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE) and penicillin-resistant Streptococcus pneumoniae (PRSP). PMID:27173797

  2. Antibacterial Activity of Stenotrophomonas maltophilia Endolysin P28 against both Gram-positive and Gram-negative Bacteria.

    PubMed

    Dong, Hongling; Zhu, Chaoyang; Chen, Jingyi; Ye, Xing; Huang, Yu-Ping

    2015-01-01

    Maltocin P28 is a phage-tail like bacteriocin produced by Stenotrophomonas maltophilia P28. The ORF8 of maltocin P28 gene cluster is predicted to encode an endolysin and we name it endolysin P28. Sequence analysis revealed that it contains the lysozyme_like superfamily conserved domain. Endolysin P28 has the four consensus motifs as that of Escherichia coli phage lambda gpR. In this study, endolysin P28 was expressed in E. coli BL21 (DE3) and purified with a C-terminal oligo-histidine tag. The antibacterial activity of endolysin P28 increased as the temperature rose from 25 to 45°C. Thermostability assays showed that endolysin P28 was stable up to 50°C, while its residual activity was reduced by 55% after treatment at 70°C for 30 min. Acidity and high salinity could enhance its antibacterial activity. Endolysin P28 exhibited a broad antibacterial activity against 14 out of 16 tested Gram-positive and Gram-negative bacteria besides S. maltophilia. Moreover, it could effectively lyse intact Gram-negative bacteria in the absence of ethylenediaminetetraacetic acid as an outer membrane permeabilizer. Therefore, the characteristics of endolysin P28 make it a potential therapeutic agent against multi-drug-resistant pathogens. PMID:26635765

  3. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Kwon, Deug-Nam; Kim, Jin-Hoi

    2014-07-01

    Silver nanoparticles (AgNPs) have been used as antibacterial, antifungal, antiviral, anti-inflammtory, and antiangiogenic due to its unique properties such as physical, chemical, and biological properties. The present study was aimed to investigate antibacterial and anti-biofilm activities of silver nanoparticles alone and in combination with conventional antibiotics against various human pathogenic bacteria. Here, we show that a simple, reliable, cost effective and green method for the synthesis of AgNPs by treating silver ions with leaf extract of Allophylus cobbe. The A. cobbe-mediated synthesis of AgNPs (AgNPs) was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the antibacterial and anti-biofilm activity of antibiotics or AgNPs, or combinations of AgNPs with an antibiotic was evaluated using a series of assays: such as in vitro killing assay, disc diffusion assay, biofilm inhibition, and reactive oxygen species generation in Pseudomonas aeruginosa, Shigella flexneri, Staphylococcus aureus, and Streptococcus pneumonia. The results suggest that, in combination with antibiotics, there were significant antimicrobial and anti-biofilm effects at lowest concentration of AgNPs using a novel plant extract of A. cobbe, otherwise sublethal concentrations of the antibiotics. The significant enhancing effects were observed for ampicillin and vancomycin against Gram-negative and Gram-positive bacteria, respectively. These data suggest that combining antibiotics and biogenic AgNPs can be used therapeutically for the treatment of infectious diseases caused by bacteria. This study presented evidence of antibacterial and anti-biofilm effects of A. cobbe-mediated synthesis of AgNPs and their enhanced capacity against various human pathogenic bacteria. These results

  4. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria

    PubMed Central

    2014-01-01

    Silver nanoparticles (AgNPs) have been used as antibacterial, antifungal, antiviral, anti-inflammtory, and antiangiogenic due to its unique properties such as physical, chemical, and biological properties. The present study was aimed to investigate antibacterial and anti-biofilm activities of silver nanoparticles alone and in combination with conventional antibiotics against various human pathogenic bacteria. Here, we show that a simple, reliable, cost effective and green method for the synthesis of AgNPs by treating silver ions with leaf extract of Allophylus cobbe. The A. cobbe-mediated synthesis of AgNPs (AgNPs) was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the antibacterial and anti-biofilm activity of antibiotics or AgNPs, or combinations of AgNPs with an antibiotic was evaluated using a series of assays: such as in vitro killing assay, disc diffusion assay, biofilm inhibition, and reactive oxygen species generation in Pseudomonas aeruginosa, Shigella flexneri, Staphylococcus aureus, and Streptococcus pneumonia. The results suggest that, in combination with antibiotics, there were significant antimicrobial and anti-biofilm effects at lowest concentration of AgNPs using a novel plant extract of A. cobbe, otherwise sublethal concentrations of the antibiotics. The significant enhancing effects were observed for ampicillin and vancomycin against Gram-negative and Gram-positive bacteria, respectively. These data suggest that combining antibiotics and biogenic AgNPs can be used therapeutically for the treatment of infectious diseases caused by bacteria. This study presented evidence of antibacterial and anti-biofilm effects of A. cobbe-mediated synthesis of AgNPs and their enhanced capacity against various human pathogenic bacteria. These results

  5. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria.

    PubMed

    Fischer, Carol L; Drake, David R; Dawson, Deborah V; Blanchette, Derek R; Brogden, Kim A; Wertz, Philip W

    2012-03-01

    There is growing evidence that the role of lipids in innate immunity is more important than previously realized. How lipids interact with bacteria to achieve a level of protection, however, is still poorly understood. To begin to address the mechanisms of antibacterial activity, we determined MICs and minimum bactericidal concentrations (MBCs) of lipids common to the skin and oral cavity--the sphingoid bases D-sphingosine, phytosphingosine, and dihydrosphingosine and the fatty acids sapienic acid and lauric acid--against four Gram-negative bacteria and seven Gram-positive bacteria. Exact Kruskal-Wallis tests of these values showed differences among lipid treatments (P < 0.0001) for each bacterial species except Serratia marcescens and Pseudomonas aeruginosa. D-sphingosine (MBC range, 0.3 to 19.6 μg/ml), dihydrosphingosine (MBC range, 0.6 to 39.1 μg/ml), and phytosphingosine (MBC range, 3.3 to 62.5 μg/ml) were active against all bacteria except S. marcescens and P. aeruginosa (MBC > 500 μg/ml). Sapienic acid (MBC range, 31.3 to 375.0 μg/ml) was active against Streptococcus sanguinis, Streptococcus mitis, and Fusobacterium nucleatum but not active against Escherichia coli, Staphylococcus aureus, S. marcescens, P. aeruginosa, Corynebacterium bovis, Corynebacterium striatum, and Corynebacterium jeikeium (MBC > 500 μg/ml). Lauric acid (MBC range, 6.8 to 375.0 μg/ml) was active against all bacteria except E. coli, S. marcescens, and P. aeruginosa (MBC > 500 μg/ml). Complete killing was achieved as early as 0.5 h for some lipids but took as long as 24 h for others. Hence, sphingoid bases and fatty acids have different antibacterial activities and may have potential for prophylactic or therapeutic intervention in infection.

  6. Antibacterial Activity of Sphingoid Bases and Fatty Acids against Gram-Positive and Gram-Negative Bacteria

    PubMed Central

    Fischer, Carol L.; Drake, David R.; Dawson, Deborah V.; Blanchette, Derek R.; Brogden, Kim A.

    2012-01-01

    There is growing evidence that the role of lipids in innate immunity is more important than previously realized. How lipids interact with bacteria to achieve a level of protection, however, is still poorly understood. To begin to address the mechanisms of antibacterial activity, we determined MICs and minimum bactericidal concentrations (MBCs) of lipids common to the skin and oral cavity—the sphingoid bases d-sphingosine, phytosphingosine, and dihydrosphingosine and the fatty acids sapienic acid and lauric acid—against four Gram-negative bacteria and seven Gram-positive bacteria. Exact Kruskal-Wallis tests of these values showed differences among lipid treatments (P < 0.0001) for each bacterial species except Serratia marcescens and Pseudomonas aeruginosa. d-Sphingosine (MBC range, 0.3 to 19.6 μg/ml), dihydrosphingosine (MBC range, 0.6 to 39.1 μg/ml), and phytosphingosine (MBC range, 3.3 to 62.5 μg/ml) were active against all bacteria except S. marcescens and P. aeruginosa (MBC > 500 μg/ml). Sapienic acid (MBC range, 31.3 to 375.0 μg/ml) was active against Streptococcus sanguinis, Streptococcus mitis, and Fusobacterium nucleatum but not active against Escherichia coli, Staphylococcus aureus, S. marcescens, P. aeruginosa, Corynebacterium bovis, Corynebacterium striatum, and Corynebacterium jeikeium (MBC > 500 μg/ml). Lauric acid (MBC range, 6.8 to 375.0 μg/ml) was active against all bacteria except E. coli, S. marcescens, and P. aeruginosa (MBC > 500 μg/ml). Complete killing was achieved as early as 0.5 h for some lipids but took as long as 24 h for others. Hence, sphingoid bases and fatty acids have different antibacterial activities and may have potential for prophylactic or therapeutic intervention in infection. PMID:22155833

  7. Design, synthesis, and antibacterial activities of neomycin-lipid conjugates: polycationic lipids with potent gram-positive activity.

    PubMed

    Bera, Smritilekha; Zhanel, George G; Schweizer, Frank

    2008-10-01

    Aminoglycoside antibiotics and cationic detergents constitute two classes of clinically important drugs and antiseptics. Their bacteriological and clinical efficacy, however, has decreased recently due to antibiotic resistance. We have synthesized aminoglycoside-lipid conjugates in which the aminoglycoside neomycin forms the cationic headgroup of a polycationic detergent. Our results show that neomycin-C16 and neomycin-C20 conjugates exhibit strong Gram-positive activity but reduced Gram-negative activity. The MIC of neomycin-C16 (C20) conjugates against methicillin-resistant Staphylococcus aureus (MRSA) is comparable to clinically used antiseptics.

  8. Antibacterial activity of silver-doped hydroxyapatite nanoparticles against gram-positive and gram-negative bacteria

    NASA Astrophysics Data System (ADS)

    Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Le Coustumer, Phillippe; Constantin, Liliana Violeta; Predoi, Daniela

    2012-06-01

    Ag-doped nanocrystalline hydroxyapatite nanoparticles (Ag:HAp-NPs) (Ca10- x Ag x (PO4)6(OH)2, x Ag = 0.05, 0.2, and 0.3) with antibacterial properties are of great interest in the development of new products. Coprecipitation method is a promising route for obtaining nanocrystalline Ag:HAp with antibacterial properties. X-ray diffraction identified HAp as an unique crystalline phase in each sample. The calculated lattice constants of a = b = 9.435 Å, c = 6.876 Å for x Ag = 0.05, a = b = 9.443 Å, c = 6.875 Å for x Ag = 0.2, and a = b = 9.445 Å, c = 6.877 Å for x Ag = 0.3 are in good agreement with the standard of a = b = 9.418 Å, c = 6.884 Å (space group P63/m). The Fourier transform infrared and Raman spectra of the sintered HAp show the absorption bands characteristic to hydroxyapatite. The Ag:HAp nanoparticles are evaluated for their antibacterial activity against Staphylococcus aureus, Klebsiella pneumoniae, Providencia stuartii, Citrobacter freundii and Serratia marcescens. The results showed that the antibacterial activity of these materials, regardless of the sample types, was greatest against S. aureus, K. pneumoniae, P. stuartii, and C. freundii. The results of qualitative antibacterial tests revealed that the tested Ag:HAp-NPs had an important inhibitory activity on P. stuartii and C. freundii. The absorbance values measured at 490 nm of the P. stuartii and C. freundii in the presence of Ag:HAp-NPs decreased compared with those of organic solvent used (DMSO) for all the samples ( x Ag = 0.05, 0.2, and 0.3). Antibacterial activity increased with the increase of x Ag in the samples. The Ag:HAp-NP concentration had little influence on the bacterial growth ( P. stuartii).

  9. Significance of postgrowth processing of ZnO nanostructures on antibacterial activity against gram-positive and gram-negative bacteria

    PubMed Central

    Mehmood, Shahid; Rehman, Malik A; Ismail, Hammad; Mirza, Bushra; Bhatti, Arshad S

    2015-01-01

    In this work, we highlighted the effect of surface modifications of one-dimensional (1D) ZnO nanostructures (NSs) grown by the vapor–solid mechanism on their antibacterial activity. Two sets of ZnO NSs were modified separately – one set was modified by annealing in an Ar environment, and the second set was modified in O2 plasma. Annealing in Ar below 800°C resulted in a compressed lattice, which was due to removal of Zn interstitials and increased O vacancies. Annealing above 1,000°C caused the formation of a new prominent phase, Zn2SiO4. Plasma oxidation of the ZnO NSs caused an expansion in the lattice due to the removal of O vacancies and incorporation of excess O. Photoluminescence (PL) spectroscopy was employed for the quantification of defects associated with Zn and O in the as-grown and processed ZnO NS. Two distinct bands were observed, one in the ultraviolet (UV) region, due to interband transitions, and other in the visible region, due to defects associated with Zn and O. PL confirmed the surface modification of ZnO NS, as substantial decrease in intensities of visible band was observed. Antibacterial activity of the modified ZnO NSs demonstrated that the surface modifications by Ar annealing limited the antibacterial characteristics of ZnO NS against Staphylococcus aureus. However, ZnO NSs annealed at 1,000°C or higher showed a remarkable antibacterial activity against Escherichia coli. O2 plasma–treated NS showed appreciable antibacterial activity against both E. coli and S. aureus. The minimum inhibition concentration was determined to be 0.5 mg/mL and 1 mg/mL for Ar-annealed and plasma-oxidized ZnO NS, respectively. It was thus proved that the O content at the surface of the ZnO NS was crucial to tune the antibacterial activity against both selected gram-negative (E. coli) and gram-positive (S. aureus) bacterial species. PMID:26213466

  10. Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms.

    PubMed

    Suganya, K S Uma; Govindaraju, K; Kumar, V Ganesh; Dhas, T Stalin; Karthick, V; Singaravelu, G; Elanchezhiyan, M

    2015-02-01

    Biofunctionalized gold nanoparticles (AuNPs) play an important role in design and development of nanomedicine. Synthesis of AuNPs from biogenic materials is environmentally benign and possesses high bacterial inhibition and bactericidal properties. In the present study, blue green alga Spirulina platensis protein mediated synthesis of AuNPs and its antibacterial activity against Gram positive bacteria is discussed. AuNPs were characterized using Ultraviolet-visible (UV-vis) spectroscopy, Fluorescence spectroscopy, Fourier Transform-Infrared (FTIR) spectroscopy, Raman spectroscopy, High Resolution-Transmission Electron Microscopy (HR-TEM) and Energy Dispersive X-ray analysis (EDAX). Stable, well defined AuNPs of smaller and uniform shape with an average size of ~ 5 nm were obtained. The antibacterial efficacy of protein functionalized AuNPs were tested against Gram positive organisms Bacillus subtilis and Staphylococcus aureus. PMID:25492207

  11. In-Vitro, Anti-Bacterial Activities of Aqueous Extracts of Acacia catechu (L.F.)Willd, Castanea sativa, Ephedra sinica stapf and shilajita mumiyo Against Gram Positive and Gram Negative Bacteria

    PubMed Central

    Dashtdar, Mehrab; Dashtdar, Mohammad Reza; Dashtdar, Babak; shirazi, Mohammad khabaz; Khan, Saeed Ahmad

    2013-01-01

    Objective: Evaluations of the in-vitro anti-bacterial activities of aqueous extracts of Acacia catechu (L.F.)Willd, Castanea sativa, Ephedra sinica stapf and Shilajita mumiyo against gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumonia) and gram-negative bacteria (Escherichia coli, klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa) are reasonable since these ethnomedicinal plants have been used in Persian folk medicine for treating skin diseases, venereal diseases, respiratory problems and nervous disorders for ages. Methods: The well diffusion method (KB testing) with a concentration of 250 μg/disc was used for evaluating the minimal inhibitory concentrations (MIC). Maximum synergistic effects of different combinations of components were also observed. Results: A particular combination of Acacia catechu (L.F.) Willd, Castanea sativa, Ephedra sinica stapf and shilajita mumiyo extracts possesses an outstanding anti-bacterial activity. It's inhibiting effect on microorganisms is significant when compared to the control group (P< 0.05). Staphylococcus aureus was the most sensitive microorganism. The highest antibacterial activity against gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumonia) or gram-negative bacteria (Escherichia coli, Klebsiella pneumonia, Proteus mirabilis and Pseudomonas aeruginosa) was exerted by formula number 2 (Table1). Conclusion: The results reveal the presence of antibacterial activities of Acacia catechu, Castanea sativa husk, Ephedra sp. and Mumiyo against gram-positive and gram-negative bacteria. Synergistic effects in a combined formula, especially in formula number 2 (ASLANⓇ) can lead to potential sources of new antiseptic agents for treatment of acute or chronic skin ulcers. These results considering the significant antibacterial effect of the present formulation, support ethno-pharmacological uses against diarrheal and venereal diseases and demonstrate use of these plants to treat

  12. In vitro antibacterial activity of AZD0914, a new spiropyrimidinetrione DNA gyrase/topoisomerase inhibitor with potent activity against Gram-positive, fastidious Gram-Negative, and atypical bacteria.

    PubMed

    Huband, Michael D; Bradford, Patricia A; Otterson, Linda G; Basarab, Gregory S; Kutschke, Amy C; Giacobbe, Robert A; Patey, Sara A; Alm, Richard A; Johnstone, Michele R; Potter, Marie E; Miller, Paul F; Mueller, John P

    2015-01-01

    AZD0914 is a new spiropyrimidinetrione bacterial DNA gyrase/topoisomerase inhibitor with potent in vitro antibacterial activity against key Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzae and Neisseria gonorrhoeae), atypical (Legionella pneumophila), and anaerobic (Clostridium difficile) bacterial species, including isolates with known resistance to fluoroquinolones. AZD0914 works via inhibition of DNA biosynthesis and accumulation of double-strand cleavages; this mechanism of inhibition differs from those of other marketed antibacterial compounds. AZD0914 stabilizes and arrests the cleaved covalent complex of gyrase with double-strand broken DNA under permissive conditions and thus blocks religation of the double-strand cleaved DNA to form fused circular DNA. Whereas this mechanism is similar to that seen with fluoroquinolones, it is mechanistically distinct. AZD0914 exhibited low frequencies of spontaneous resistance in S. aureus, and if mutants were obtained, the mutations mapped to gyrB. Additionally, no cross-resistance was observed for AZD0914 against recent bacterial clinical isolates demonstrating resistance to fluoroquinolones or other drug classes, including macrolides, β-lactams, glycopeptides, and oxazolidinones. AZD0914 was bactericidal in both minimum bactericidal concentration and in vitro time-kill studies. In in vitro checkerboard/synergy testing with 17 comparator antibacterials, only additivity/indifference was observed. The potent in vitro antibacterial activity (including activity against fluoroquinolone-resistant isolates), low frequency of resistance, lack of cross-resistance, and bactericidal activity of AZD0914 support its continued development. PMID:25385112

  13. Non-Aqueous Glycerol Monolaurate Gel Exhibits Antibacterial and Anti-Biofilm Activity against Gram-Positive and Gram-Negative Pathogens

    PubMed Central

    Mueller, Elizabeth A.; Schlievert, Patrick M.

    2015-01-01

    Background Skin and surgical infections due to Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii are causes of patient morbidity and increased healthcare costs. These organisms grow planktonically and as biofilms, and many strains exhibit antibiotic resistance. This study examines the antibacterial and anti-biofilm activity of glycerol monolaurate (GML), as solubilized in a non-aqueous vehicle (5% GML Gel), as a novel, broadly-active topical antimicrobial. The FDA has designated GML as generally recognized as safe for human use, and the compound is commonly used in the cosmetic and food industries. Methods In vitro, bacterial strains in broths and biofilms were exposed to GML Gel, and effects on bacterial colony-forming units (CFUs) were assessed. In vivo,subcutaneous incisions were made in New Zealand white rabbits; the incisions were closed with four sutures. Bacterial strains were painted onto the incision sites, and then GML Gel or placebo was liberally applied to cover the sites completely. Rabbits were allowed to awaken and were examined for CFUs as a function of exposure time. Results In vitro, GML Gel was bactericidal for all broth culture and biofilm organisms in <1 hour and <4 hour, respectively; no CFUs were detected after the entire 24 h test period. In vivo, GML Gel inhibited bacterial growth in the surgical incision sites, compared to no growth inhibition in controls. GML Gel significantly reduced inflammation, as viewed by lack of redness in and below the incision sites. Conclusions Our findings suggest that 5% GML Gel is useful as a potent topical antibacterial and anti-inflammatory agent for prevention of infections. PMID:25799455

  14. Antibacterial activity of Lactobacillus acidophilus strains isolated from honey marketed in Malaysia against selected multiple antibiotic resistant (MAR) Gram-positive bacteria.

    PubMed

    Aween, Mohamed Mustafa; Hassan, Zaiton; Muhialdin, Belal J; Eljamel, Yossra A; Al-Mabrok, Asma Saleh W; Lani, Mohd Nizam

    2012-07-01

    A total of 32 lactic acid bacteria (LAB) were isolated from 13 honey samples commercially marketed in Malaysia, 6 strains identified as Lactobacillus acidophilus by API CHL50. The isolates had antibacterial activities against multiple antibiotic resistant's Staphylococcus aureus (25 to 32 mm), Staphylococcus epidermis (14 to 22 mm) and Bacillus subtilis (12 to 19 mm) in the agar overlay method after 24 h incubation at 30 °C. The crude supernatant was heat stable at 90 °C and 121 °C for 1 h. Treatment with proteinase K and RNase II maintained the antimicrobial activity of all the supernatants except sample H006-A and H010-G. All the supernatants showed antimicrobial activities against target bacteria at pH 3 and pH 5 but not at pH 6 within 72 h incubation at 30 °C. S. aureus was not inhibited by sample H006-A isolated from Libyan honey and sample H008-D isolated from Malaysian honey at pH 5, compared to supernatants from other L. acidophilus isolates. The presence of different strains of L. acidophilus in honey obtained from different sources may contribute to the differences in the antimicrobial properties of honey. PMID:22757710

  15. Robenidine Analogues as Gram-Positive Antibacterial Agents.

    PubMed

    Abraham, Rebecca J; Stevens, Andrew J; Young, Kelly A; Russell, Cecilia; Qvist, Anastasia; Khazandi, Manouchehr; Wong, Hui San; Abraham, Sam; Ogunniyi, Abiodun D; Page, Stephen W; O'Handley, Ryan; McCluskey, Adam; Trott, Darren J

    2016-03-10

    Robenidine, 1 (2,2'-bis[(4-chlorophenyl)methylene]carbonimidic dihydrazide), was active against MRSA and VRE with MIC's of 8.1 and 4.7 μM, respectively. SAR revealed tolerance for 4-Cl isosteres with 4-F (8), 3-F (9), 3-CH3 (22), and 4-C(CH3)3 (27) (23.7-71 μM) and with 3-Cl (3), 4-CH3 (21), and 4-CH(CH3)2 (26) (8.1-13.0 μM). Imine carbon alkylation identified a methyl/ethyl binding pocket that also accommodated a CH2OH moiety (75; 2,2'-bis[1-(4-chlorophenyl)-2-hydroxyethylidene]carbonimidic dihydrazide). Analogues 1, 27 (2,2'-bis{[4-(1,1-dimethylethyl)phenyl]methylene}carbonimidic dihydrazide), and 69 (2,2'-bis[1-(4-chlorophenyl)ethylidene]carbonimidic dihydrazide hydrochloride) were active against 24 clinical MRSA and MSSA isolates. No dose-limiting cytotoxicity at ≥2× MIC or hemolysis at ≥8× MIC was observed. Polymyxin B addition engendered Escherichia coli and Pseudomonas aeruginosa Gram-negative activity MIC's of 4.2-21.6 μM. 1 and 75 displayed excellent microsomal stability, intrinsic clearance, and hepatic extraction ratios with T1/2 > 247 min, CLint < 7 μL/min/mg protein, and EH < 0.22 in both human and mouse liposomes for 1 and in human liposomes for 75. PMID:26765953

  16. Robenidine Analogues as Gram-Positive Antibacterial Agents.

    PubMed

    Abraham, Rebecca J; Stevens, Andrew J; Young, Kelly A; Russell, Cecilia; Qvist, Anastasia; Khazandi, Manouchehr; Wong, Hui San; Abraham, Sam; Ogunniyi, Abiodun D; Page, Stephen W; O'Handley, Ryan; McCluskey, Adam; Trott, Darren J

    2016-03-10

    Robenidine, 1 (2,2'-bis[(4-chlorophenyl)methylene]carbonimidic dihydrazide), was active against MRSA and VRE with MIC's of 8.1 and 4.7 μM, respectively. SAR revealed tolerance for 4-Cl isosteres with 4-F (8), 3-F (9), 3-CH3 (22), and 4-C(CH3)3 (27) (23.7-71 μM) and with 3-Cl (3), 4-CH3 (21), and 4-CH(CH3)2 (26) (8.1-13.0 μM). Imine carbon alkylation identified a methyl/ethyl binding pocket that also accommodated a CH2OH moiety (75; 2,2'-bis[1-(4-chlorophenyl)-2-hydroxyethylidene]carbonimidic dihydrazide). Analogues 1, 27 (2,2'-bis{[4-(1,1-dimethylethyl)phenyl]methylene}carbonimidic dihydrazide), and 69 (2,2'-bis[1-(4-chlorophenyl)ethylidene]carbonimidic dihydrazide hydrochloride) were active against 24 clinical MRSA and MSSA isolates. No dose-limiting cytotoxicity at ≥2× MIC or hemolysis at ≥8× MIC was observed. Polymyxin B addition engendered Escherichia coli and Pseudomonas aeruginosa Gram-negative activity MIC's of 4.2-21.6 μM. 1 and 75 displayed excellent microsomal stability, intrinsic clearance, and hepatic extraction ratios with T1/2 > 247 min, CLint < 7 μL/min/mg protein, and EH < 0.22 in both human and mouse liposomes for 1 and in human liposomes for 75.

  17. Three novel B-type mannose-specific lectins of Cynoglossus semilaevis possess varied antibacterial activities against Gram-negative and Gram-positive bacteria.

    PubMed

    Sun, Yuan-yuan; Liu, Li; Li, Jun; Sun, Li

    2016-02-01

    Lectins are a group of sugar-binding proteins that are important factors of the innate immune system. In this study, we examined, in a comparative manner, the expression and function of three Bulb-type (B-type) mannose-specific lectins (named CsBML1, CsBML2, and CsBML3) from tongue sole. All three lectins possess three repeats of the conserved mannose binding motif QXDXNXVXY. Expression of CsBML1, CsBML2, and CsBML3 was most abundant in liver and upregulated by bacterial infection. Recombinant (r) CsBML1, CsBML2, and CsBML3 bound to a wide arrange of bacteria in a dose-dependent manner and with different affinities. All three lectins displayed mannose-specific and calcium-dependent agglutinating capacities but differed in agglutinating profiles. rCsBML1 and rCsBML2, but not rCsBML3, killed target bacteria in vitro and inhibited bacterial dissemination in fish tissues in vivo. These results indicate for the first time that in teleost, different members of B-type mannose-specific lectins likely play different roles in antibacterial immunity. PMID:26455466

  18. Sulfonylpiperidines as novel, antibacterial inhibitors of Gram-positive thymidylate kinase (TMK).

    PubMed

    Martínez-Botella, Gabriel; Loch, James T; Green, Oluyinka M; Kawatkar, Sameer P; Olivier, Nelson B; Boriack-Sjodin, P Ann; Keating, Thomas A

    2013-01-01

    Thymidylate kinase (TMK) is an essential enzyme for DNA synthesis in bacteria, phosphorylating deoxythymidine monophosphate (dTMP) to deoxythymidine diphosphate (dTDP), and thus is a potential new antibacterial drug target. Previously, we have described the first potent and selective inhibitors of Gram-positive TMK, leading to in vivo validation of the target. Here, a structure-guided design approach based on the initial series led to the discovery of novel sulfonylpiperidine inhibitors of TMK. Formation of hydrogen bonds with Arg48 in Staphylococcus aureus TMK was key to obtaining excellent enzyme affinity, as verified by protein crystallography. Replacement of a methylene linker in the series by a sulfonamide was accomplished with retention of binding conformation. Further optimization of logD yielded phenol derivative 11, a potent inhibitor of TMK showing excellent MICs against a broad spectrum of Gram-positive bacteria and >10(5) selectivity versus the human TMK homologue. PMID:23206863

  19. Antibacterial properties of biosurfactants against selected Gram-positive and -negative bacteria.

    PubMed

    Díaz De Rienzo, Mayri A; Stevenson, Paul; Marchant, Roger; Banat, Ibrahim M

    2016-01-01

    The antibacterial properties and ability to disrupt biofilms of biosurfactants (rhamnolipids, sophorolipids) and sodium dodecyl sulphate (SDS) in the presence and absence of selected organic acids were investigated. Pseudomonas aeruginosa PAO1 was inhibited by sophorolipids and SDS at concentrations >5% v/v, and the growth of Escherichia coli NCTC 10418 was also inhibited by sophorolipids and SDS at concentrations >5% and 0.1% v/v, respectively. Bacillus subtilis NCTC 10400 was inhibited by rhamnolipids, sophorolipids and SDS at concentrations >0.5% v/v of all three; the same effect was observed with Staphylococcus aureus ATCC 9144. The ability to attach to surfaces and biofilm formation of P. aeruginosa PAO1, E. coli NCTC 10418 and B. subtilis NCTC 10400 was inhibited by sophorolipids (1% v/v) in the presence of caprylic acid (0.8% v/v). In the case of S. aureus ATCC 9144, the best results were obtained using caprylic acid on its own. It was concluded that sophorolipids are promising compounds for the inhibition/disruption of biofilms formed by Gram-positive and Gram-negative microorganisms and this activity can be enhanced by the presence of booster compounds such as caprylic acid. PMID:26598715

  20. Antibacterial properties of biosurfactants against selected Gram-positive and -negative bacteria.

    PubMed

    Díaz De Rienzo, Mayri A; Stevenson, Paul; Marchant, Roger; Banat, Ibrahim M

    2016-01-01

    The antibacterial properties and ability to disrupt biofilms of biosurfactants (rhamnolipids, sophorolipids) and sodium dodecyl sulphate (SDS) in the presence and absence of selected organic acids were investigated. Pseudomonas aeruginosa PAO1 was inhibited by sophorolipids and SDS at concentrations >5% v/v, and the growth of Escherichia coli NCTC 10418 was also inhibited by sophorolipids and SDS at concentrations >5% and 0.1% v/v, respectively. Bacillus subtilis NCTC 10400 was inhibited by rhamnolipids, sophorolipids and SDS at concentrations >0.5% v/v of all three; the same effect was observed with Staphylococcus aureus ATCC 9144. The ability to attach to surfaces and biofilm formation of P. aeruginosa PAO1, E. coli NCTC 10418 and B. subtilis NCTC 10400 was inhibited by sophorolipids (1% v/v) in the presence of caprylic acid (0.8% v/v). In the case of S. aureus ATCC 9144, the best results were obtained using caprylic acid on its own. It was concluded that sophorolipids are promising compounds for the inhibition/disruption of biofilms formed by Gram-positive and Gram-negative microorganisms and this activity can be enhanced by the presence of booster compounds such as caprylic acid.

  1. First Multitarget Chemo-Bioinformatic Model To Enable the Discovery of Antibacterial Peptides against Multiple Gram-Positive Pathogens.

    PubMed

    Speck-Planche, Alejandro; Kleandrova, Valeria V; Ruso, Juan M; Cordeiro, M N D S

    2016-03-28

    Antimicrobial peptides (AMPs) have emerged as promising therapeutic alternatives to fight against the diverse infections caused by different pathogenic microorganisms. In this context, theoretical approaches in bioinformatics have paved the way toward the creation of several in silico models capable of predicting antimicrobial activities of peptides. All current models have several significant handicaps, which prevent the efficient search for highly active AMPs. Here, we introduce the first multitarget (mt) chemo-bioinformatic model devoted to performing alignment-free prediction of antibacterial activity of peptides against multiple Gram-positive bacterial strains. The model was constructed from a data set containing 2488 cases of AMPs sequences assayed against at least 1 out of 50 Gram-positive bacterial strains. This mt-chemo-bioinformatic model displayed percentages of correct classification higher than 90.00% in both training and prediction (test) sets. For the first time, two computational approaches derived from basic concepts in genetics and molecular biology were applied, allowing the calculations of the relative contributions of any amino acid (in a defined position) to the antibacterial activity of an AMP and depending on the bacterial strain used in the biological assay. The present mt-chemo-bioinformatic model constitutes a powerful tool to enable the discovery of potent and versatile AMPs.

  2. Bioengineered Nisin A Derivatives with Enhanced Activity against Both Gram Positive and Gram Negative Pathogens

    PubMed Central

    Field, Des; Begley, Maire; O’Connor, Paula M.; Daly, Karen M.; Hugenholtz, Floor; Cotter, Paul D.; Hill, Colin; Ross, R. Paul

    2012-01-01

    Nisin is a bacteriocin widely utilized in more than 50 countries as a safe and natural antibacterial food preservative. It is the most extensively studied bacteriocin, having undergone decades of bioengineering with a view to improving function and physicochemical properties. The discovery of novel nisin variants with enhanced activity against clinical and foodborne pathogens has recently been described. We screened a randomized bank of nisin A producers and identified a variant with a serine to glycine change at position 29 (S29G), with enhanced efficacy against S. aureus SA113. Using a site-saturation mutagenesis approach we generated three more derivatives (S29A, S29D and S29E) with enhanced activity against a range of Gram positive drug resistant clinical, veterinary and food pathogens. In addition, a number of the nisin S29 derivatives displayed superior antimicrobial activity to nisin A when assessed against a range of Gram negative food-associated pathogens, including E. coli, Salmonella enterica serovar Typhimurium and Cronobacter sakazakii. This is the first report of derivatives of nisin, or indeed any lantibiotic, with enhanced antimicrobial activity against both Gram positive and Gram negative bacteria. PMID:23056510

  3. Lipoglycopeptide Antibacterial Agents in Gram-Positive Infections: A Comparative Review.

    PubMed

    Van Bambeke, Françoise

    2015-12-01

    Oritavancin, telavancin, and dalbavancin are recently marketed lipoglycopeptides that exhibit remarkable differences to conventional molecules. While dalbavancin inhibits the late stages of peptidoglycan synthesis by mainly impairing transglycosylase activity, oritavancin and telavancin anchor in the bacterial membrane by the lipophilic side chain linked to their disaccharidic moiety, disrupting membrane integrity and causing bacteriolysis. Oritavancin keeps activity against vancomycin-resistant enterocococci, being a stronger inhibitor of transpeptidase than of transglycosylase activity. These molecules have potent activity against Gram-positive organisms, most notably staphylococci (including methicillin-resistant Staphylococcus aureus and to some extent vancomycin-intermediate S. aureus), streptococci (including multidrug-resistant pneumococci), and Clostridia. All agents are indicated for the treatment of acute bacterial skin and skin structure infections, and telavancin, for hospital-acquired and ventilator-associated bacterial pneumonia. While telavancin is administered daily at 10 mg/kg, the remarkably long half-lives of oritavancin and dalbavancin allow for infrequent dosing (single dose of 1200 mg for oritavancin and 1000 mg at day 1 followed by 500 mg at day 8 for dalbavancin), which could be exploited in the future for outpatient therapy. Among possible safety issues evidenced during clinical development were an increased risk of developing osteomyelitis with oritavancin; taste disturbance, nephrotoxicity, and risk of corrected QT interval prolongation (especially in the presence of at-risk co-medications) with telavancin; and elevation of hepatic enzymes with dalbavancin. Interference with coagulation tests has been reported with oritavancin and telavancin. These drugs proved non-inferior to conventional treatments in clinical trials but their advantages may be better evidenced upon future evaluation in more severe infections.

  4. Bactericidal Activity and Mechanism of Photoirradiated Polyphenols against Gram-Positive and -Negative Bacteria.

    PubMed

    Nakamura, Keisuke; Ishiyama, Kirika; Sheng, Hong; Ikai, Hiroyo; Kanno, Taro; Niwano, Yoshimi

    2015-09-01

    The bactericidal effect of various types of photoirradiated polyphenols against Gram-positive and -negative bacteria was evaluated in relation to the mode of action. Gram-positive bacteria (Enterococcus faecalis, Staphylococcus aureus, and Streptococcus mutans) and Gram-negative bacteria (Aggregatibacter actinomycetemcomitans, Escherichia coli, and Pseudomonas aeruginosa) suspended in a 1 mg/mL polyphenol aqueous solution (caffeic acid, gallic acid, chlorogenic acid, epigallocatechin, epigallocatechin gallate, and proanthocyanidin) were exposed to LED light (wavelength, 400 nm; irradiance, 260 mW/cm(2)) for 5 or 10 min. Caffeic acid and chlorogenic acid exerted the highest bactericidal activity followed by gallic acid and proanthocyanidin against both Gram-positive and -negative bacteria. It was also demonstrated that the disinfection treatment induced oxidative damage of bacterial DNA, which suggests that polyphenols are incorporated into bacterial cells. The present study suggests that blue light irradiation of polyphenols could be a novel disinfection treatment.

  5. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria.

    PubMed

    Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Daniels, Dwayne; Yadav, Anand

    2013-01-01

    Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50  μ L leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties. PMID:24223039

  6. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria.

    PubMed

    Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Daniels, Dwayne; Yadav, Anand

    2013-01-01

    Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50  μ L leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties.

  7. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria

    PubMed Central

    Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Yadav, Anand

    2013-01-01

    Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50 μL leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties. PMID:24223039

  8. Armadillidin: a novel glycine-rich antibacterial peptide directed against gram-positive bacteria in the woodlouse Armadillidium vulgare (Terrestrial Isopod, Crustacean).

    PubMed

    Herbinière, Juline; Braquart-Varnier, Christine; Grève, Pierre; Strub, Jean-Marc; Frère, Jacques; Van Dorsselaer, Alain; Martin, Gilbert

    2005-01-01

    We report the isolation and the characterization of a novel antibacterial peptide from hemocytes of the woodlouse Armadillidium vulgare, naturally infected or uninfected by Wolbachia, an intracellular Gram-negative bacterium. This molecule displays antibacterial activity against Gram-positive bacteria despite its composition which classes it into the glycine-rich antibacterial peptide family, usually directed against fungi and Gram-negative bacteria. The complete sequence was determined by a combination of Edman degradation, mass spectrometry and cDNA cloning using a hemocyte library. The mature peptide (53 residues) has a 5259 Da molecular mass and is post-translationally modified by a C-terminal amidation. This peptide is characterized by a high level of glycine (47%) and a fivefold repeated motif GGGFH(R/S). As no evident sequence homology to other hitherto described antibacterial peptides has been found out, this antibacterial peptide was named armadillidin. Armadillidin is constitutively expressed in hemocytes and appears to be specific of A. vulgare. PMID:15752546

  9. Gram-positive antimicrobial activity of amino acid-based hydrogels.

    PubMed

    Irwansyah, I; Li, Yong-Qiang; Shi, Wenxiong; Qi, Dianpeng; Leow, Wan Ru; Tang, Mark B Y; Li, Shuzhou; Chen, Xiaodong

    2015-01-27

    Antimicrobial hydrogels are prepared based on the co-assembly of commercial Fmoc-phenylalanine and Fmoc-leucine, which act as the hydrogelator and antimicrobial building block, respectively. This co-assembled antimicrobial hydrogel is demonstrated to exhibit selective bactericidal activity for gram-positive bacteria while being biocompatible with normal mammalian cells, showing great potential as an antimicrobial coating for clinical anti-infective applications.

  10. Fluorometric cell-based assay for β-galactosidase activity in probiotic gram-positive bacterial cells - Lactobacillus helveticus.

    PubMed

    Watson, Amanda L; Chiu, Norman H L

    2016-09-01

    Although methods for measuring β-galactosidase activity in intact gram-negative bacterial cells have been reported, the methods may not be applicable to measuring β-galactosidase activity in gram-positive bacterial cells. This report focuses on the development of a fluorometric cell-based assay for measuring β-galactosidase activity in gram-positive cells.

  11. Antibacterial effect (in vitro) of Moringa oleifera and Annona muricata against Gram positive and Gram negative bacteria.

    PubMed

    Viera, Gustavo Hitzschky Fernandes; Mourão, Jozeanne Alves; Angelo, Angela Maria; Costa, Renata Albuquerque; Vieira, Regine Helena Silva dos Fernandes

    2010-01-01

    Antibacterial effects of aqueous and ethanolic extracts of seeds of moringa (Moringa oleifera) and pods of soursop (Annona muricata) in the concentration of 1:5 and 1:10 in volumes 50, 100, 150 and 200 microL were examined against Staphylococcus aureus, Vibrio cholerae, Escherichia coli (isolated from the organism and the aquatic environment) and Salmonella Enteritidis. Antibacterial activity (inhibition halo > 13 mm) against S. aureus, V. cholerae and E. coli isolated from the whiteleg shrimp, Litopenaeus vannmaei, was detected in aqueous and ethanolic extracts of moringa. E. coli isolated from tilapiafish, Oreochromis niloticus, was sensitive to the ethanolic extract of moringa. The aqueous extracts of soursop showed an antibacterial effect against S. aureus and V. cholerae, but the antibacterial activity by the ethanol extracts of this plant was not demonstrated.

  12. Effect of kojic acid-grafted-chitosan oligosaccharides as a novel antibacterial agent on cell membrane of gram-positive and gram-negative bacteria.

    PubMed

    Liu, Xiaoli; Xia, Wenshui; Jiang, Qixing; Xu, Yanshun; Yu, Peipei

    2015-09-01

    Our work here, for the first time, reported the antibacterial activity of kojic acid-grafted-chitosan oligosaccharides (COS/KA) against three gram-positive and three gram-negative bacteria. Integrity of cell membrane, outer membrane (OM) and inner membrane (IM) permeabilization assay, alkaline phosphatase (ALP) and glucose-6-phosphate dehydrogenase (G6PDH) assay, and SDS-PAGE assay techniques were used to investigate the interactions between COS/KA and bacterial membranes. The antibacterial activity of COS/KA was higher than those of unmodified COS. The electric conductivity of bacteria suspensions increased, followed by increasing of the units of average release for ALP and G6PDH. COS/KA can also rapidly increase the 1-N-phenylanphthylamine (NPN) uptake and the release of β-galactosidase via increasing the permeability of OM and IM in Escherichia coli. SDS-PAGE indicated the content of cellular soluble proteins decreased significantly in COS/KA-treated bacteria. Hence, COS/KA has potential in food industry and biomedical sciences.

  13. 18β-Glycyrrhetinic Acid Derivatives Possessing a Trihydroxylated A Ring Are Potent Gram-Positive Antibacterial Agents.

    PubMed

    Huang, Li-Rong; Hao, Xiao-Jiang; Li, Qi-Ji; Wang, Dao-Ping; Zhang, Jian-Xin; Luo, Heng; Yang, Xiao-Sheng

    2016-04-22

    The oleanane-type triterpene 18β-glycyrrhetinic acid (1) was modified chemically through the introduction of a trihydroxylated A ring and an ester moiety at C-20 to enhance its antibacterial activity. Compounds 22, 23, 25, 28, 29, 31, and 32 showed more potent inhibitory activity against Streptomyces scabies than the positive control, streptomycin. Additionally, the inhibitory activity of the most potent compound, 29, against Bacillus subtilis, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus was greater than that of the positive controls. The antibacterial mode of action of the active derivatives involved the regulation of the expression of genes associated with peptidoglycans, the respiratory metabolism, and the inherent virulence factors found in bacteria, as determined through a quantitative real-time reverse transcriptase PCR assay.

  14. Gramicidin A Mutants with Antibiotic Activity against Both Gram-Positive and Gram-Negative Bacteria.

    PubMed

    Zerfas, Breanna L; Joo, Yechaan; Gao, Jianmin

    2016-03-17

    Antimicrobial peptides (AMPs) have shown potential as alternatives to traditional antibiotics for fighting infections caused by antibiotic-resistant bacteria. One promising example of this is gramicidin A (gA). In its wild-type sequence, gA is active by permeating the plasma membrane of Gram-positive bacteria. However, gA is toxic to human red blood cells at similar concentrations to those required for it to exert its antimicrobial effects. Installing cationic side chains into gA has been shown to lower its hemolytic activity while maintaining the antimicrobial potency. In this study, we present the synthesis and the antibiotic activity of a new series of gA mutants that display cationic side chains. Specifically, by synthesizing alkylated lysine derivatives through reductive amination, we were able to create a broad selection of structures with varied activities towards Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). Importantly, some of the new mutants were observed to have an unprecedented activity towards important Gram-negative pathogens, including Escherichia coli, Klebsiella pneumoniae and Psuedomonas aeruginosa. PMID:26918268

  15. Gramicidin A Mutants with Antibiotic Activity against Both Gram-Positive and Gram-Negative Bacteria.

    PubMed

    Zerfas, Breanna L; Joo, Yechaan; Gao, Jianmin

    2016-03-17

    Antimicrobial peptides (AMPs) have shown potential as alternatives to traditional antibiotics for fighting infections caused by antibiotic-resistant bacteria. One promising example of this is gramicidin A (gA). In its wild-type sequence, gA is active by permeating the plasma membrane of Gram-positive bacteria. However, gA is toxic to human red blood cells at similar concentrations to those required for it to exert its antimicrobial effects. Installing cationic side chains into gA has been shown to lower its hemolytic activity while maintaining the antimicrobial potency. In this study, we present the synthesis and the antibiotic activity of a new series of gA mutants that display cationic side chains. Specifically, by synthesizing alkylated lysine derivatives through reductive amination, we were able to create a broad selection of structures with varied activities towards Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). Importantly, some of the new mutants were observed to have an unprecedented activity towards important Gram-negative pathogens, including Escherichia coli, Klebsiella pneumoniae and Psuedomonas aeruginosa.

  16. Tribolium castaneum defensins are primarily active against Gram-positive bacteria.

    PubMed

    Tonk, Miray; Knorr, Eileen; Cabezas-Cruz, Alejandro; Valdés, James J; Kollewe, Christian; Vilcinskas, Andreas

    2015-11-01

    The red flour beetle Tribolium castaneum is a destructive insect pest of stored food and feed products, and a model organism for development, evolutionary biology and immunity. The insect innate immune system includes antimicrobial peptides (AMPs) with a wide spectrum of targets including viruses, bacteria, fungi and parasites. Defensins are an evolutionarily-conserved class of AMPs and a potential new source of antimicrobial agents. In this context, we report the antimicrobial activity, phylogenetic and structural properties of three T. castaneum defensins (Def1, Def2 and Def3) and their relevance in the immunity of T. castaneum against bacterial pathogens. All three recombinant defensins showed bactericidal activity against Micrococcus luteus and Bacillus thuringiensis serovar tolworthi, but only Def1 and Def2 showed a bacteriostatic effect against Staphylococcus epidermidis. None of the defensins showed activity against the Gram-negative bacteria Escherichia coli and Pseudomonas entomophila or against the yeast Saccharomyces cerevisiae. All three defensins were transcriptionally upregulated following a bacterial challenge, suggesting a key role in the immunity of T. castaneum against bacterial pathogens. Phylogenetic analysis showed that defensins from T. castaneum, mealworms, Udo longhorn beetle and houseflies cluster within a well-defined clade of insect defensins. We conclude that T. castaneum defensins are primarily active against Gram-positive bacteria and that other AMPs may play a more prominent role against Gram-negative species. PMID:26522790

  17. Antioxidant activity via DPPH, gram-positive and gram-negative antimicrobial potential in edible mushrooms.

    PubMed

    Ahmad, Nisar; Mahmood, Fazal; Khalil, Shahid Akbar; Zamir, Roshan; Fazal, Hina; Abbasi, Bilal Haider

    2014-10-01

    Edible mushrooms (EMs) are nutritionally rich source of proteins and essential amino acids. In the present study, the antioxidant activity via 1,1-diphenyl-2-picrylhydrazyl (DPPH) and antimicrobial potential in EMs (Pleurotus ostreatus, Morchella esculenta, P. ostreatus (Black), P. ostreatus (Yellow) and Pleurotus sajor-caju) were investigated. The DPPH radical scavenging activity revealed that the significantly higher activity (66.47%) was observed in Morchella esculenta at a maximum concentration. Similarly, the dose-dependent concentrations (200, 400, 600, 800 and 1000 µg) were also used for other four EMs. Pleurotus ostreatus exhibited 36.13% activity, P. ostreatus (Black (B)) exhibited 30.64%, P. ostreatus (Yellow (Y)) exhibited 40.75% and Pleurotus sajor-caju exhibited 47.39% activity at higher concentrations. Furthermore, the antimicrobial potential were investigated for its toxicity against gram-negative bacterial strains (Escherichia coli, Pseudomonas aeroginosa, Salmonella typhi, Klebsiella pneumonia, Erwinia carotovora and Agrobacterium tumifaciens), gram-positive bacterial strains (Bacillus subtilis, Bacillus atrophaeus and Staphylococcus aureus) and a fungal strain (Candida albicans) in comparison with standard antibiotics. Antimicrobial screening revealed that the ethanol extract of P. ostreatus was active against all microorganism tested except E. coli. Maximum zone of inhibition (13 mm) was observed against fungus and A. tumifaciens. P. sajor-caju showed best activities (12.5 mm) against B. subtilis, B. atrophaeus and K. pneumonia. P. ostreatus (Y) showed best activities against P. aeroginosa (21.83 mm), B. atrophaeus (20 mm) and C. albicans (21 mm). P. ostreatus (B) exhibited best activities against C. albicans (16 mm) and slightly lower activities against all other microbes except S. typhi. M. esculenta possess maximum activities in terms of inhibition zone against all microorganisms tested except S. typhi.

  18. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides.

    PubMed

    Malanovic, Nermina; Lohner, Karl

    2016-05-01

    A number of cationic antimicrobial peptides, effectors of innate immunity, are supposed to act at the cytoplasmic membrane leading to permeabilization and eventually membrane disruption. Thereby, interaction of antimicrobial peptides with anionic membrane phospholipids is considered to be a key factor in killing of bacteria. Recently, evidence was provided that killing takes place only when bacterial cell membranes are completely saturated with peptides. This adds to an ongoing debate, which role cell wall components such as peptidoglycan, lipoteichoic acid and lipopolysaccharide may play in the killing event, i.e. if they rather entrap or facilitate antimicrobial peptides access to the cytoplasmic membrane. Therefore, in this review we focused on the impact of Gram-positive cell wall components for the mode of action and activity of antimicrobial peptides as well as in innate immunity. This led us to conclude that interaction of antimicrobial peptides with peptidoglycan may not contribute to a reduction of their antimicrobial activity, whereas interaction with anionic lipoteichoic acids may reduce the local concentration of antimicrobial peptides on the cytoplasmic membrane necessary for sufficient destabilization of the membranes and bacterial killing. Further affinity studies of antimicrobial peptides toward the different cell wall as well as membrane components will be needed to address this problem on a quantitative level. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.

  19. Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria.

    PubMed

    Torcato, Inês M; Huang, Yen-Hua; Franquelim, Henri G; Gaspar, Diana; Craik, David J; Castanho, Miguel A R B; Troeira Henriques, Sónia

    2013-03-01

    BP100 is a short cationic antimicrobial peptide with a mechanism of action dependent on peptide-lipid interactions and microbial surface charge neutralization. Although active against Gram-negative bacteria, BP100 is inactive against Gram-positive bacteria. In this study we report two newly designed BP100 analogues, RW-BP100 and R-BP100 that have the Tyr residue replaced with a Trp and/or the Lys residues replaced with an Arg. The new analogues in addition to being active against Gram-negative bacteria, possess activity against all tested Gram-positive bacteria. Mechanistic studies using atomic force microscopy, surface plasmon resonance and fluorescence methodologies reveal that the antibacterial efficiency follows the affinity for bacterial membrane. The studies suggest that the activity of BP100 and its analogues against Gram-negative bacteria is mainly driven by electrostatic interactions with the lipopolysaccharide layer and is followed by binding to and disruption of the inner membrane, whereas activity against Gram-positive bacteria, in addition to electrostatic attraction to the exposed lipoteichoic acids, requires an ability to more deeply insert in the membrane environment, which is favoured with Arg residues and is facilitated in the presence of a Trp residue. Knowledge on the mechanism of action of these antimicrobial peptides provides information that assists in the design of antimicrobials with higher efficacy and broader spectra of action, but also on the design of peptides with higher specificity if required. PMID:23246973

  20. In Vitro Activity of Ozenoxacin against Quinolone-Susceptible and Quinolone-Resistant Gram-Positive Bacteria

    PubMed Central

    López, Y.; Tato, M.; Espinal, P.; Garcia-Alonso, F.; Gargallo-Viola, D.; Cantón, R.

    2013-01-01

    In vitro activity of ozenoxacin, a novel nonfluorinated topical (L. D. Saravolatz and J. Leggett, Clin. Infect. Dis. 37:1210–1215, 2003) quinolone, was compared with the activities of other quinolones against well-characterized quinolone-susceptible and quinolone-resistant Gram-positive bacteria. Ozenoxacin was 3-fold to 321-fold more active than other quinolones. Ozenoxacin could represent a first-in-class nonfluorinated quinolone for the topical treatment of a broad range of dermatological infections. PMID:24080666

  1. Biosynthetic Pathway for Mannopeptimycins, Lipoglycopeptide Antibiotics Active against Drug-Resistant Gram-Positive Pathogens

    PubMed Central

    Magarvey, Nathan A.; Haltli, Brad; He, Min; Greenstein, Michael; Hucul, John A.

    2006-01-01

    The mannopeptimycins are a novel class of lipoglycopeptide antibiotics active against multidrug-resistant pathogens with potential as clinically useful antibacterials. This report is the first to describe the biosynthesis of this novel class of mannosylated lipoglycopeptides. Included here are the cloning, sequencing, annotation, and manipulation of the mannopeptimycin biosynthetic gene cluster from Streptomyces hygroscopicus NRRL 30439. Encoded by genes within the mannopeptimycin biosynthetic gene cluster are enzymes responsible for the generation of the hexapeptide core (nonribosomal peptide synthetases [NRPS]) and tailoring reactions (mannosylation, isovalerylation, hydroxylation, and methylation). The NRPS system is noncanonical in that it has six modules utilizing only five amino acid-specific adenylation domains and it lacks a prototypical NRPS macrocyclizing thioesterase domain. Analysis of the mannopeptimycin gene cluster and its engineering has elucidated the mannopeptimycin biosynthetic pathway and provides the framework to make new and improved mannopeptimycins biosynthetically. PMID:16723579

  2. Comparative in vitro activities of L-695,256, a novel carbapenem, against gram-positive bacteria.

    PubMed Central

    Malanoski, G; Collins, L; Eliopoulos, C T; Moellering, R C; Eliopoulos, G M

    1995-01-01

    The in vitro activity of a prototype 2-aryl carbapenem, L-695,256, against gram-positive bacteria was examined. All streptococci and oxacillin-susceptible and -resistant staphylococci were inhibited at concentrations of < or = 0.125, < or = 0.125, and 4 micrograms/ml, respectively. The activity of L-695,256 was superior to that of imipenem against other organisms intrinsically resistant to beta-lactams. PMID:7786011

  3. In vitro activity of paldimycin (U-70138F) against gram-positive bacteria isolated from patients with cancer.

    PubMed Central

    Rolston, K V; LeBlanc, B; Ho, D H; Bodey, G P

    1987-01-01

    The in vitro activity of paldimycin, a novel antimicrobial agent, was compared with that of vancomycin against 306 gram-positive isolates (representing 12 bacterial species) obtained from patients with cancer. Paldimycin had lower MICs for 90% of isolates than vancomycin did against most isolates tested. Its activity, however, was medium and pH dependent, being greatest in Nutrient broth at a pH of 6.8. PMID:3606069

  4. In vitro activities of a new lipopeptide, HMR 1043, against susceptible and resistant gram-positive isolates.

    PubMed

    Bemer, Pascale; Juvin, Marie-Emmanuelle; Bryskier, Andre; Drugeon, Henri

    2003-09-01

    The purpose of this study was to compare the activity of HMR 1043 with those of daptomycin and teicoplanin against gram-positive isolates. Susceptibility tests were performed for 52 strains, 26 parental strains, including staphylococcal, streptococcal, enterococcal, and listerial strains, and 26 HMR 1043-resistant mutants obtained from parental strains by using the Szybalski method. Agar dilution and disk diffusion susceptibility tests were performed by the procedures outlined by the NCCLS. HMR 1043 demonstrated good activity against susceptible and resistant gram-positive bacteria. The activity of HMR 1043 in vitro was less influenced by the presence of calcium ions than that of daptomycin. Susceptibility test breakpoints were not defined because of the poor correlation coefficients obtained with the different disks tested.

  5. In Vitro Activities of a New Lipopeptide, HMR 1043, against Susceptible and Resistant Gram-Positive Isolates

    PubMed Central

    Bemer, Pascale; Juvin, Marie-Emmanuelle; Bryskier, Andre; Drugeon, Henri

    2003-01-01

    The purpose of this study was to compare the activity of HMR 1043 with those of daptomycin and teicoplanin against gram-positive isolates. Susceptibility tests were performed for 52 strains, 26 parental strains, including staphylococcal, streptococcal, enterococcal, and listerial strains, and 26 HMR 1043-resistant mutants obtained from parental strains by using the Szybalski method. Agar dilution and disk diffusion susceptibility tests were performed by the procedures outlined by the NCCLS. HMR 1043 demonstrated good activity against susceptible and resistant gram-positive bacteria. The activity of HMR 1043 in vitro was less influenced by the presence of calcium ions than that of daptomycin. Susceptibility test breakpoints were not defined because of the poor correlation coefficients obtained with the different disks tested. PMID:12937020

  6. Design, synthesis and biological evaluation of 4-benzoyl-1-dichlorobenzoylthiosemicarbazides as potent Gram-positive antibacterial agents.

    PubMed

    Paneth, Agata; Plech, Tomasz; Kaproń, Barbara; Hagel, Dominika; Kosikowska, Urszula; Kuśmierz, Edyta; Dzitko, Katarzyna; Paneth, Piotr

    2016-01-01

    Twelve 4-benzoyl-1-dichlorobenzoylthiosemicarbazides have been tested as potential antibacterials. All the compounds had MICs between 0.49 and 15.63 µg/ml toward Micrococcus luteus, Bacillus cereus, Bacillus subtilis and Staphylococcus epidermidis indicating, in most cases, equipotent or even more effective action than cefuroxime. In order to clarify if the observed antibacterial effects are universal, further research were undertaken to test inhibitory potency of two most potent compounds 3 and 11 on clinical isolates of Staphylococcus aureus. Compound 11 inhibited the growth of methicillin-sensitive S. aureus (MSSA) at MICs of 1.95-7.81 µg/ml, methicillin-resistant S. aureus (MRSA) at MICs of 0.49-1.95 µg/ml and MDR-MRSA at MIC of 0.98 and 3.90 µg/ml, respectively. Finally, inhibitory efficacy of 3 and 11 on planktonic cells and biofilms formation in clinical isolates of S. aureus and Haemophilus parainfluenzae was tested. The majority of cells in biofilm populations of MSSA and MRSA were eradicated at low level of 3, with MBICs in the range of 7.82-15.63 µg/ml.

  7. Bacteriocins of gram-positive bacteria.

    PubMed Central

    Jack, R W; Tagg, J R; Ray, B

    1995-01-01

    posttranslational modification and depending on the pH, the molecules may either be released into the environment or remain bound to the cell wall. The antibacterial action against a sensitive cell of a gram-positive strain is produced principally by destabilization of membrane functions. Under certain conditions, gram-negative bacterial cells can also be sensitive to some of these molecules. By application of site-specific mutagenesis, bacteriocin variants which may differ in their antimicrobial spectrum and physicochemical characteristics can be produced. Research activity in this field has grown remarkably but sometimes with an undisciplined regard for conformity in the definition, naming, and categorization of these molecules and their genetic effectors. Some suggestions for improved standardization of nomenclature are offered. PMID:7603408

  8. Invasive gram-positive bacterial infection in cancer patients.

    PubMed

    Holland, Thomas; Fowler, Vance G; Shelburne, Samuel A

    2014-11-15

    Systematic studies have shown that gram-positive organisms are the leading cause of invasive bacterial disease in patients with cancer. A broad range of gram-positive bacteria cause serious infections in the cancer patient with the greatest burden of disease being due to staphylococci, streptococci, and enterococci. The evolution of cancer therapy and the changing epidemiology of major gram-positive pathogens mean that ongoing efforts are needed to understand and mitigate the impact of these bacteria in patients with malignancy. The development of novel antibacterials, optimization of treatment approaches, implementation of improved vaccines, and manipulation of the microbiome are all active areas of investigation in the goal of improving the survival of the cancer patient through amelioration of the disease burden of gram-positive bacteria.

  9. Assessing the interactions of a natural antibacterial clay with model Gram-positive and Gram-negative human pathogens

    NASA Astrophysics Data System (ADS)

    Londono, S. C.; Williams, L. B.

    2013-12-01

    The emergence of antibiotic resistant bacteria and increasing accumulations of antibiotics in reclaimed water, drive the quest for new natural antimicrobials. We are studying the antibacterial mechanism(s) of clays that have shown an ability to destroy bacteria or significantly inhibit their growth. One possible mode of action is from soluble transition metal species, particularly reduced Fe, capable of generating deleterious oxygen radical species. Yet another possibility is related to membrane damage as a consequence of physical or electrostatic interaction between clay and bacteria. Both mechanisms could combine to produce cell death. This study addresses a natural antibacterial clay from the NW Amazon basin, South America (AMZ clay). Clay mineralogy is composed of disordered kaolinite (28.9%), halloysite (17.8%) illite (12%) and smectite (16.7%). Mean particle size is 1.6μm and total and specific surface area 278.82 and 51.23 m2/g respectively. The pH of a suspension (200mg/ml) is 4.1 and its Eh is 361mV after 24h of equilibration. The ionic strength of the water in equilibrium with the clay after 24 h. is 6 x10-4M. These conditions, affect the element solubility, speciation, and interactions between clay and bacteria. Standard microbiological methods were used to assess the viability of two model bacteria (Escherichia coli and Bacillus subtilis) after incubation with clay at 37 degC for 24 hrs. A threefold reduction in bacterial viability was observed upon treatment with AMZ clay. We separated the cells from the clay using Nycodenz gradient media and observed the mounts under the TEM and SEM. Results showed several membrane anomalies and structural changes that were not observed in the control cells. Additionally, clay minerals appeared in some places attached to cell walls. Experiments showed that exchanging AMZ clay with KCl caused loss of antibacterial property. Among the exchangeable -and potentially toxic- ions we measured Al+3, Cu+2, Zn+2, Ba+2 and Co+2

  10. Thusin, a Novel Two-Component Lantibiotic with Potent Antimicrobial Activity against Several Gram-Positive Pathogens.

    PubMed

    Xin, Bingyue; Zheng, Jinshui; Liu, Hualin; Li, Junhua; Ruan, Lifang; Peng, Donghai; Sajid, Muhammad; Sun, Ming

    2016-01-01

    Due to the rapidly increasing prevalence of multidrug-resistant bacterial strains, the need for new antimicrobial drugs to treat infections has become urgent. Bacteriocins, which are antimicrobial peptides of bacterial origin, are considered potential alternatives to conventional antibiotics and have attracted widespread attention in recent years. Among these bacteriocins, lantibiotics, especially two-component lantibiotics, exhibit potent antimicrobial activity against some clinically relevant Gram-positive pathogens and have potential applications in the pharmaceutical industry. In this study, we characterized a novel two-component lantibiotic termed thusin that consists of Thsα, Thsβ, and Thsβ' (mutation of Thsβ, A14G) and that was isolated from a B. thuringiensis strain BGSC 4BT1. Thsα and Thsβ (or Thsβ') exhibit optimal antimicrobial activity at a 1:1 ratio and act sequentially to affect target cells, and they are all highly thermostable (100°C for 30 min) and pH tolerant (pH 2.0 to 9.0). Thusin shows remarkable efficacy against all tested Gram-positive bacteria and greater activities than two known lantibiotics thuricin 4A-4 and ticin A4, and one antibiotic vancomycin against various bacterial pathogens (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus (MRSA), Staphylococcus sciuri, Enterococcus faecalis, and Streptococcus pneumoniae). Moreover, thusin is also able to inhibit the outgrowth of B. cereus spores. The potent antimicrobial activity of thusin against some Gram-positive pathogens indicates that it has potential for the development of new drugs. PMID:27486447

  11. Thusin, a Novel Two-Component Lantibiotic with Potent Antimicrobial Activity against Several Gram-Positive Pathogens

    PubMed Central

    Xin, Bingyue; Zheng, Jinshui; Liu, Hualin; Li, Junhua; Ruan, Lifang; Peng, Donghai; Sajid, Muhammad; Sun, Ming

    2016-01-01

    Due to the rapidly increasing prevalence of multidrug-resistant bacterial strains, the need for new antimicrobial drugs to treat infections has become urgent. Bacteriocins, which are antimicrobial peptides of bacterial origin, are considered potential alternatives to conventional antibiotics and have attracted widespread attention in recent years. Among these bacteriocins, lantibiotics, especially two-component lantibiotics, exhibit potent antimicrobial activity against some clinically relevant Gram-positive pathogens and have potential applications in the pharmaceutical industry. In this study, we characterized a novel two-component lantibiotic termed thusin that consists of Thsα, Thsβ, and Thsβ' (mutation of Thsβ, A14G) and that was isolated from a B. thuringiensis strain BGSC 4BT1. Thsα and Thsβ (or Thsβ') exhibit optimal antimicrobial activity at a 1:1 ratio and act sequentially to affect target cells, and they are all highly thermostable (100°C for 30 min) and pH tolerant (pH 2.0 to 9.0). Thusin shows remarkable efficacy against all tested Gram-positive bacteria and greater activities than two known lantibiotics thuricin 4A-4 and ticin A4, and one antibiotic vancomycin against various bacterial pathogens (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus (MRSA), Staphylococcus sciuri, Enterococcus faecalis, and Streptococcus pneumoniae). Moreover, thusin is also able to inhibit the outgrowth of B. cereus spores. The potent antimicrobial activity of thusin against some Gram-positive pathogens indicates that it has potential for the development of new drugs. PMID:27486447

  12. Thusin, a Novel Two-Component Lantibiotic with Potent Antimicrobial Activity against Several Gram-Positive Pathogens.

    PubMed

    Xin, Bingyue; Zheng, Jinshui; Liu, Hualin; Li, Junhua; Ruan, Lifang; Peng, Donghai; Sajid, Muhammad; Sun, Ming

    2016-01-01

    Due to the rapidly increasing prevalence of multidrug-resistant bacterial strains, the need for new antimicrobial drugs to treat infections has become urgent. Bacteriocins, which are antimicrobial peptides of bacterial origin, are considered potential alternatives to conventional antibiotics and have attracted widespread attention in recent years. Among these bacteriocins, lantibiotics, especially two-component lantibiotics, exhibit potent antimicrobial activity against some clinically relevant Gram-positive pathogens and have potential applications in the pharmaceutical industry. In this study, we characterized a novel two-component lantibiotic termed thusin that consists of Thsα, Thsβ, and Thsβ' (mutation of Thsβ, A14G) and that was isolated from a B. thuringiensis strain BGSC 4BT1. Thsα and Thsβ (or Thsβ') exhibit optimal antimicrobial activity at a 1:1 ratio and act sequentially to affect target cells, and they are all highly thermostable (100°C for 30 min) and pH tolerant (pH 2.0 to 9.0). Thusin shows remarkable efficacy against all tested Gram-positive bacteria and greater activities than two known lantibiotics thuricin 4A-4 and ticin A4, and one antibiotic vancomycin against various bacterial pathogens (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus (MRSA), Staphylococcus sciuri, Enterococcus faecalis, and Streptococcus pneumoniae). Moreover, thusin is also able to inhibit the outgrowth of B. cereus spores. The potent antimicrobial activity of thusin against some Gram-positive pathogens indicates that it has potential for the development of new drugs.

  13. Active stable maintenance functions in low copy-number plasmids of Gram-positive bacteria I. Partition systems.

    PubMed

    Dmowski, Michał; Jagura-Burdzy, Grazyna

    2013-01-01

    Low copy number plasmids cannot rely on the random segregation during bacterial cell division. To be stably maintained in the population they evolved two types of mechanisms (i) partition systems (PAR) that actively separate replicated plasmid molecules to the daughter cells and (ii) toxin-andidote systems (TA) that act after cell division to kill plasmid-less cells. Our knowledge of partition systems has been based mainly on analysis of plasmids from Gram-negative bacteria. Now, numerous partition systems of plasmids from Gram-positive bacteria have also been characterized and make significant contribution to our understanding of these mechanisms.

  14. A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria.

    PubMed

    Quiles-Puchalt, Nuria; Tormo-Más, María Ángeles; Campoy, Susana; Toledo-Arana, Alejandro; Monedero, Vicente; Lasa, Iñigo; Novick, Richard P; Christie, Gail E; Penadés, José R

    2013-08-01

    The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria.

  15. A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria

    PubMed Central

    Quiles-Puchalt, Nuria; Tormo-Más, María Ángeles; Campoy, Susana; Toledo-Arana, Alejandro; Monedero, Vicente; Lasa, Íñigo; Novick, Richard P.; Christie, Gail E.; Penadés, José R.

    2013-01-01

    The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria. PMID:23771138

  16. A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria.

    PubMed

    Quiles-Puchalt, Nuria; Tormo-Más, María Ángeles; Campoy, Susana; Toledo-Arana, Alejandro; Monedero, Vicente; Lasa, Iñigo; Novick, Richard P; Christie, Gail E; Penadés, José R

    2013-08-01

    The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria. PMID:23771138

  17. Micropruina glycogenica gen. nov., sp. nov., a new Gram-positive glycogen-accumulating bacterium isolated from activated sludge.

    PubMed

    Shintani, T; Liu, W T; Hanada, S; Kamagata, Y; Miyaoka, S; Suzuki, T; Nakamura, K

    2000-01-01

    A new Gram-positive non-spore-forming bacterium, strain Lg2T, was isolated from an activated sludge reactor showing enhanced biological phosphorus removal activity. The new isolate was a slowly growing organism and was capable of accumulating large amounts of intracellular glycogen from substrate taken up. Both oxidase and catalase were produced. The new isolate contained meso-diaminopimelic acid (DAP) in the cell wall. Complex fatty acid patterns with iso-C14:0, anteiso-C15:0, C16:0, iso-C16:0 and four other minor saturated or unsaturated straight-chain fatty acids were detected. The isolate contained a high genomic G+C content (70.5 mol%). Phylogenetic analysis based on the 16S rRNA gene sequence placed the isolate in the high G+C Gram-positive group with Microlunatus phosphovorus and Friedmanniella antarctica as the closest relatives (sequence similarities are 93 and 92 %, respectively). These three organisms shared common features in morphology, but strain Lg2T could be differentiated from the other species by its peptidoglycan type (meso-DAP), fatty acid composition, carbon source utilization profile and G+C content. On the basis of these findings, it is proposed that a new genus and species, Micropruina glycogenica, should be created for the new isolate; the type strain is strain Lg2T (= JCM 10248T).

  18. Structure-Activity Analysis of Gram-positive Bacterium-producing Lasso Peptides with Anti-mycobacterial Activity

    NASA Astrophysics Data System (ADS)

    Inokoshi, Junji; Koyama, Nobuhiro; Miyake, Midori; Shimizu, Yuji; Tomoda, Hiroshi

    2016-07-01

    Lariatin A, an 18-residue lasso peptide encoded by the five-gene cluster larABCDE, displays potent and selective anti-mycobacterial activity. The structural feature is an N-terminal macrolactam ring, through which the C-terminal passed to form the rigid lariat-protoknot structure. In the present study, we established a convergent expression system by the strategy in which larA mutant gene-carrying plasmids were transformed into larA-deficient Rhodococcus jostii, and generated 36 lariatin variants of the precursor protein LarA to investigate the biosynthesis and the structure-activity relationships. The mutational analysis revealed that four amino acid residues (Gly1, Arg7, Glu8, and Trp9) in lariatin A are essential for the maturation and production in the biosynthetic machinery. Furthermore, the study on structure-activity relationships demonstrated that Tyr6, Gly11, and Asn14 are responsible for the anti-mycobacterial activity, and the residues at positions 15, 16 and 18 in lariatin A are critical for enhancing the activity. This study will not only provide a useful platform for genetically engineering Gram-positive bacterium-producing lasso peptides, but also an important foundation to rationally design more promising drug candidates for combatting tuberculosis.

  19. Structure-Activity Analysis of Gram-positive Bacterium-producing Lasso Peptides with Anti-mycobacterial Activity

    PubMed Central

    Inokoshi, Junji; Koyama, Nobuhiro; Miyake, Midori; Shimizu, Yuji; Tomoda, Hiroshi

    2016-01-01

    Lariatin A, an 18-residue lasso peptide encoded by the five-gene cluster larABCDE, displays potent and selective anti-mycobacterial activity. The structural feature is an N-terminal macrolactam ring, through which the C-terminal passed to form the rigid lariat-protoknot structure. In the present study, we established a convergent expression system by the strategy in which larA mutant gene-carrying plasmids were transformed into larA-deficient Rhodococcus jostii, and generated 36 lariatin variants of the precursor protein LarA to investigate the biosynthesis and the structure-activity relationships. The mutational analysis revealed that four amino acid residues (Gly1, Arg7, Glu8, and Trp9) in lariatin A are essential for the maturation and production in the biosynthetic machinery. Furthermore, the study on structure-activity relationships demonstrated that Tyr6, Gly11, and Asn14 are responsible for the anti-mycobacterial activity, and the residues at positions 15, 16 and 18 in lariatin A are critical for enhancing the activity. This study will not only provide a useful platform for genetically engineering Gram-positive bacterium-producing lasso peptides, but also an important foundation to rationally design more promising drug candidates for combatting tuberculosis. PMID:27457620

  20. Structure-Activity Analysis of Gram-positive Bacterium-producing Lasso Peptides with Anti-mycobacterial Activity.

    PubMed

    Inokoshi, Junji; Koyama, Nobuhiro; Miyake, Midori; Shimizu, Yuji; Tomoda, Hiroshi

    2016-01-01

    Lariatin A, an 18-residue lasso peptide encoded by the five-gene cluster larABCDE, displays potent and selective anti-mycobacterial activity. The structural feature is an N-terminal macrolactam ring, through which the C-terminal passed to form the rigid lariat-protoknot structure. In the present study, we established a convergent expression system by the strategy in which larA mutant gene-carrying plasmids were transformed into larA-deficient Rhodococcus jostii, and generated 36 lariatin variants of the precursor protein LarA to investigate the biosynthesis and the structure-activity relationships. The mutational analysis revealed that four amino acid residues (Gly1, Arg7, Glu8, and Trp9) in lariatin A are essential for the maturation and production in the biosynthetic machinery. Furthermore, the study on structure-activity relationships demonstrated that Tyr6, Gly11, and Asn14 are responsible for the anti-mycobacterial activity, and the residues at positions 15, 16 and 18 in lariatin A are critical for enhancing the activity. This study will not only provide a useful platform for genetically engineering Gram-positive bacterium-producing lasso peptides, but also an important foundation to rationally design more promising drug candidates for combatting tuberculosis. PMID:27457620

  1. Tryptophan-containing lipopeptide antibiotics derived from polymyxin B with activity against Gram positive and Gram negative bacteria.

    PubMed

    Grau-Campistany, Ariadna; Manresa, Ángeles; Pujol, Montserrat; Rabanal, Francesc; Cajal, Yolanda

    2016-02-01

    Resistance to all known antibiotics is a growing concern worldwide, and has renewed the interest in antimicrobial peptides, a structurally diverse class of amphipathic molecules that essentially act on the bacterial membrane. Propelled by the antimicrobial potential of this compound class, we have designed three new lipopeptides derived from polymyxin B, sp-34, sp-96 and sp-100, with potent antimicrobial activity against both Gram positive and Gram negative bacteria. The three peptides bind with high affinity to lipopolysaccharide as demonstrated by monolayer penetration and dansyl-displacement. The interaction with the cytoplasmic membrane has been elucidated by biophysical experiments with model membranes of POPG or POPE/POPG (6:4), mimicking the Gram positive and Gram negative bacterial membrane. Trp-based fluorescence experiments including steady-state, quenching, anisotropy and FRET, reveal selectivity for anionic phospholipids and deep insertion into the membrane. All three lipopeptides induce membrane fusion and leakage from anionic vesicles, a process that is favored by the presence of POPE. The molecules bind to zwitterionic POPC vesicles, a model of the eukaryotic membrane, but in a different way, with lower affinity, less penetration into the bilayer and no fusion or permeabilization of the membrane. Results in model membranes are consistent with flow cytometry experiments in Escherichia coli and Staphylococcus aureus using a membrane potential sensitive dye (bis-oxonol) and a nucleic acid dye (propidium iodide), suggesting that the mechanism of action is based on membrane binding and collapse of membrane integrity by depolarization and permeabilization.

  2. Production of a bacteriocin by a poultry derived Campylobacter jejuni isolate with antimicrobial activity against Clostridium perfringens and other Gram positive bacteria.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have purified a bacteriocin peptide (termed CUV-3), produced by a poultry cecal isolate of Campylobacter jejuni (strain CUV-3) with inhibitory activity against Gram positive bacteria including Clostridium perfringens (38 strains), Staphylococcus aureus, Staphylococcus epidermidis and Listeria mon...

  3. Highly active modulators of indole signaling alter pathogenic behaviors in Gram-negative and Gram-positive bacteria.

    PubMed

    Minvielle, Marine J; Eguren, Kristen; Melander, Christian

    2013-12-16

    Indole is a universal signal that regulates various bacterial behaviors, such as biofilm formation and antibiotic resistance. To generate mechanistic probes of indole signaling and control indole-mediated pathogenic phenotypes in both Gram-positive and Gram-negative bacteria, we have investigated the use of desformylflustrabromine (dFBr) derivatives to generate highly active indole mimetics. We have developed non-microbicidal dFBr derivatives that are 27-2000 times more active than indole in modulating biofilm formation, motility, acid resistance, and antibiotic resistance. The activity of these analogues parallels indole, because they are dependent on temperature, the enzyme tryptophanase TnaA, and the transcriptional regulator SdiA. This investigation demonstrates that molecules based on the dFBr scaffold can alter pathogenic behaviors by mimicking indole-signaling pathways.

  4. Arginine Patch Predicts the RNA Annealing Activity of Hfq from Gram-Negative and Gram-Positive Bacteria.

    PubMed

    Zheng, Amy; Panja, Subrata; Woodson, Sarah A

    2016-06-01

    The Sm-protein Hfq facilitates interactions between small non-coding RNA (sRNA) and target mRNAs. In enteric Gram-negative bacteria, Hfq is required for sRNA regulation, and hfq deletion results in stress intolerance and reduced virulence. By contrast, the role of Hfq in Gram-positive is less established and varies among species. The RNA binding and RNA annealing activity of Hfq from Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes, Bacillus subtilis, and Staphylococcus aureus were compared using minimal RNAs and fluorescence spectroscopy. The results show that RNA annealing activity increases with the number of arginines in a semi-conserved patch on the rim of the Hfq hexamer and correlates with the previously reported requirement for Hfq in sRNA regulation. Thus, the amino acid sequence of the arginine patch can predict the chaperone function of Hfq in sRNA regulation in different organisms. PMID:27049793

  5. Arginine Patch Predicts the RNA Annealing Activity of Hfq from Gram-Negative and Gram-Positive Bacteria.

    PubMed

    Zheng, Amy; Panja, Subrata; Woodson, Sarah A

    2016-06-01

    The Sm-protein Hfq facilitates interactions between small non-coding RNA (sRNA) and target mRNAs. In enteric Gram-negative bacteria, Hfq is required for sRNA regulation, and hfq deletion results in stress intolerance and reduced virulence. By contrast, the role of Hfq in Gram-positive is less established and varies among species. The RNA binding and RNA annealing activity of Hfq from Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes, Bacillus subtilis, and Staphylococcus aureus were compared using minimal RNAs and fluorescence spectroscopy. The results show that RNA annealing activity increases with the number of arginines in a semi-conserved patch on the rim of the Hfq hexamer and correlates with the previously reported requirement for Hfq in sRNA regulation. Thus, the amino acid sequence of the arginine patch can predict the chaperone function of Hfq in sRNA regulation in different organisms.

  6. Antimicrobial activity of Enterococcus Faecium Fair-E 198 against gram-positive pathogens

    PubMed Central

    do Nascimento, Maristela da Silva; Moreno, Izildinha; Kuaye, Arnaldo Yoshiteru

    2010-01-01

    ABSTRACT This study investigated the antimicrobial activity of Enterococcus faecium FAIR-E 198 against Bacillus cereus, Listeria monocytogenes and Staphylococcus aureus. Using the critical-dilution method, the bacteriocin produced by E. faecium FAIR-E 198 inhibited all L. monocytogenes strains evaluated (1,600 to 19,200 AU mL-1). However, none of the B. cereus and S. aureus strains investigated were inhibited. The maximum activity of this bacteriocin (800 AU mL-1) was observed in MRS broth, while the activity in milk was 100 AU mL-1. In the co-cultivation test in milk, B. cereus K1-B041 was reduced to below the detection limit (1.00 log CFU mL-1) after 48 h. E. faecium reduced the initial L. monocytogenes Scott A population by 1 log CFU mL-1 after 3 h at 35°C, However, the pathogen regained growth, reaching 3.68 log CFU mL-1 after 48 h. E. faecium did not influence the growth of S. aureus ATCC 27154 during the 48 h of co-cultivation, Therefore, it can be concluded that the effectiveness of the antimicrobial activity of E. faecium FAIR-E 198 is strictly related to the species and strain of the target microorganism and to the culture medium, PMID:24031466

  7. In vitro activity of tedizolid against gram-positive bacteria in patients with skin and skin structure infections and hospital-acquired pneumonia: a Korean multicenter study.

    PubMed

    Lee, Yangsoon; Hong, Sung Kuk; Choi, Sunghak; Im, Weonbin; Yong, Dongeun; Lee, Kyungwon

    2015-09-01

    We compared the activities of tedizolid to those of linezolid and other commonly used antimicrobial agents against gram-positive cocci recovered from patients with skin and skin structure infections (SSSIs) and hospital-acquired pneumonia (HAP) in Korean hospitals. Gram-positive isolates were collected from 356 patients with SSSIs and 144 patients with HAP at eight hospitals in Korea from 2011 to 2014. SSSIs included impetigo, cellulitis, erysipelas, furuncles, abscesses, and infected burns. Antimicrobial susceptibility was tested by using the CLSI agar dilution method. All of the gram-positive isolates were inhibited by ≤1 μg/mL tedizolid. The minimum inhibitory concentration [MIC]₉₀ of tedizolid was 0.5 μg/mL for methicillin-resistant Staphylococcus aureus, which was 4-fold lower than that of linezolid. Tedizolid may become a useful option for the treatment of SSSIs and HAP caused by gram-positive bacteria. PMID:26206690

  8. In vitro activity of tedizolid against gram-positive bacteria in patients with skin and skin structure infections and hospital-acquired pneumonia: a Korean multicenter study.

    PubMed

    Lee, Yangsoon; Hong, Sung Kuk; Choi, Sunghak; Im, Weonbin; Yong, Dongeun; Lee, Kyungwon

    2015-09-01

    We compared the activities of tedizolid to those of linezolid and other commonly used antimicrobial agents against gram-positive cocci recovered from patients with skin and skin structure infections (SSSIs) and hospital-acquired pneumonia (HAP) in Korean hospitals. Gram-positive isolates were collected from 356 patients with SSSIs and 144 patients with HAP at eight hospitals in Korea from 2011 to 2014. SSSIs included impetigo, cellulitis, erysipelas, furuncles, abscesses, and infected burns. Antimicrobial susceptibility was tested by using the CLSI agar dilution method. All of the gram-positive isolates were inhibited by ≤1 μg/mL tedizolid. The minimum inhibitory concentration [MIC]₉₀ of tedizolid was 0.5 μg/mL for methicillin-resistant Staphylococcus aureus, which was 4-fold lower than that of linezolid. Tedizolid may become a useful option for the treatment of SSSIs and HAP caused by gram-positive bacteria.

  9. Comparative Activities of Clinafloxacin against Gram-Positive and -Negative Bacteria

    PubMed Central

    Ednie, Lois M.; Jacobs, Michael R.; Appelbaum, Peter C.

    1998-01-01

    Activities of clinafloxacin, ciprofloxacin, levofloxacin, sparfloxacin, trovafloxacin, piperacillin, piperacillin-tazobactam, trimethoprim-sulfamethoxazole, ceftazidime, and imipenem against 354 ciprofloxacin-susceptible and -intermediate-resistant organisms were tested by agar dilution. Clinafloxacin yielded the lowest quinolone MICs (≤0.5 μg/ml against ciprofloxacin-susceptible organisms and ≤16.0 μg/ml against ciprofloxacin-intermediate-resistant organisms) compared to those of levofloxacin, trovafloxacin, and sparfloxacin. Ceftazidime, piperacillin alone or combined with tazobactam, trimethoprim-sulfamethoxazole, and imipenem usually yielded higher MICs against ciprofloxacin-resistant strains. PMID:9593165

  10. Composition and Activity of the Non-canonical Gram-positive SecY2 Complex*

    PubMed Central

    Bandara, Mikaila; Corey, Robin A.; Martin, Remy; Skehel, J. Mark; Blocker, Ariel J.; Jenkinson, Howard F.; Collinson, Ian

    2016-01-01

    The accessory Sec system in Streptococcus gordonii DL1 is a specialized export system that transports a large serine-rich repeat protein, Hsa, to the bacterial surface. The system is composed of core proteins SecA2 and SecY2 and accessory Sec proteins Asp1–Asp5. Similar to canonical SecYEG, SecY2 forms a channel for translocation of the Hsa adhesin across the cytoplasmic membrane. Accessory Sec proteins Asp4 and Asp5 have been suggested to work alongside SecY2 to form the translocon, similar to the associated SecY, SecE, and SecG of the canonical system (SecYEG). To test this theory, S. gordonii secY2, asp4, and asp5 were co-expressed in Escherichia coli. The resultant complex was subsequently purified, and its composition was confirmed by mass spectrometry to be SecY2-Asp4-Asp5. Like SecYEG, the non-canonical complex activates the ATPase activity of the SecA motor (SecA2). This study also shows that Asp4 and Asp5 are necessary for optimal adhesion of S. gordonii to glycoproteins gp340 and fibronectin, known Hsa binding partners, as well as for early stage biofilm formation. This work opens new avenues for understanding the structure and function of the accessory Sec system. PMID:27551046

  11. Discovery of Novel Cell Wall-Active Compounds Using PywaC, a Sensitive Reporter of Cell Wall Stress, in the Model Gram-Positive Bacterium Bacillus subtilis

    PubMed Central

    Czarny, T. L.; Perri, A. L.; French, S.

    2014-01-01

    The emergence of antibiotic resistance in recent years has radically reduced the clinical efficacy of many antibacterial treatments and now poses a significant threat to public health. One of the earliest studied well-validated targets for antimicrobial discovery is the bacterial cell wall. The essential nature of this pathway, its conservation among bacterial pathogens, and its absence in human biology have made cell wall synthesis an attractive pathway for new antibiotic drug discovery. Herein, we describe a highly sensitive screening methodology for identifying chemical agents that perturb cell wall synthesis, using the model of the Gram-positive bacterium Bacillus subtilis. We report on a cell-based pilot screen of 26,000 small molecules to look for cell wall-active chemicals in real time using an autonomous luminescence gene cluster driven by the promoter of ywaC, which encodes a guanosine tetra(penta)phosphate synthetase that is expressed under cell wall stress. The promoter-reporter system was generally much more sensitive than growth inhibition testing and responded almost exclusively to cell wall-active antibiotics. Follow-up testing of the compounds from the pilot screen with secondary assays to verify the mechanism of action led to the discovery of 9 novel cell wall-active compounds. PMID:24687489

  12. Design of a Nanostructured Active Surface against Gram-Positive and Gram-Negative Bacteria through Plasma Activation and in Situ Silver Reduction.

    PubMed

    Gilabert-Porres, Joan; Martí, Sara; Calatayud, Laura; Ramos, Victor; Rosell, Antoni; Borrós, Salvador

    2016-01-13

    Nowadays there is an increasing focus for avoiding bacterial colonization in a medical device after implantation. Bacterial infection associated with prosthesis implantation, or even along the lifetime of the implanted prosthesis, entails a serious problem, emphasized with immunocompromised patients. This work shows a new methodology to create highly hydrophobic micro-/nanostructured silver antibacterial surfaces against Gram-positive and Gram-negative bacteria, using low-pressure plasma. PDMS (polydimethylsiloxane) samples, typically used in tracheal prosthesis, are coated with PFM (pentafluorophenyl methacrylate) through PECVD (plasma enhance chemical vapor deposition) technique. PFM thin films offer highly reactive ester groups that allow them to react preferably with amine bearing molecules, such as amine sugar, to create controlled reductive surfaces capable of reducing silver salts to a nanostructured metallic silver. This micro-/nanostructured silver coating shows interesting antibacterial properties combined with an antifouling behavior causing a reduction of Gram-positive and Gram-negative bacteria viability. In addition, these types of silver-coated samples show no apparent cytotoxicity against COS-7 cells.

  13. Antibacterial activity of amphiphilic tobramycin.

    PubMed

    Dhondikubeer, Ramesh; Bera, Smritilekha; Zhanel, George G; Schweizer, Frank

    2012-10-01

    Amphiphilic aminoglycoside antimicrobials are an emerging class of new antibacterial agents with novel modes of action. Previous studies have shown that amphiphilic neomycin-B and kanamycin-A analogs restore potent antibacterial activity against Gram-positive neomycin-B- and kanamycin-A-resistant organisms. In this paper, we investigated the antibacterial properties of a series of amphiphilic tobramycin analogs. We prepared tobramycin-lipid conjugates, as well as tobramycin-peptide triazole conjugates, and studied their antibacterial activities against a panel of Gram-positive and Gram-negative bacterial strains, including isolates obtained from Canadian hospitals. Our results demonstrate that the antibacterial activity of amphiphilic tobramycin is greatly affected by the length and nature of the hydrophobic lipid tail, whereas the nature of the polycationic headgroup or the number of cationic charges appear to be less important. Replacement of the hydrophobic tail by a fluorinated lipid confers good activity against two Pseudomonas strains and reduces hemolytic activity. However, susceptibility studies in the presence of bovine serum albumin indicate that all amphiphilic tobramycin analogs are strongly protein-bound, leading to a typical four- to eight-fold increase in MIC.

  14. The PECACE domain: a new family of enzymes with potential peptidoglycan cleavage activity in Gram-positive bacteria

    PubMed Central

    Pagliero, Estelle; Dideberg, Otto; Vernet, Thierry; Di Guilmi, Anne Marie

    2005-01-01

    Background The metabolism of bacterial peptidoglycan is a dynamic process, synthases and cleavage enzymes are functionally coordinated. Lytic Transglycosylase enzymes (LT) are part of multienzyme complexes which regulate bacterial division and elongation. LTs are also involved in peptidoglycan turnover and in macromolecular transport systems. Despite their central importance, no LTs have been identified in the human pathogen Streptococcus pneumoniae. We report the identification of the first putative LT enzyme in S. pneumoniae and discuss its role in pneumococcal peptidoglycan metabolism. Results Homology searches of the pneumococcal genome allowed the identification of a new domain putatively involved in peptidoglycan cleavage (PECACE, PEptidoglycan CArbohydrate Cleavage Enzyme). This sequence has been found exclusively in Gram-positive bacteria and gene clusters containing pecace are conserved among Streptococcal species. The PECACE domain is, in some instances, found in association with other domains known to catalyze peptidoglycan hydrolysis. Conclusions A new domain, PECACE, putatively involved in peptidoglycan hydrolysis has been identified in S. pneumoniae. The probable enzymatic activity deduced from the detailed analysis of the amino acid sequence suggests that the PECACE domain may proceed through a LT-type or goose lyzosyme-type cleavage mechanism. The PECACE function may differ largely from the other hydrolases already identified in the pneumococcus: LytA, LytB, LytC, CBPD and PcsB. The multimodular architecture of proteins containing the PECACE domain is another example of the many activities harbored by peptidoglycan hydrolases, which is probably required for the regulation of peptidoglycan metabolism. The release of new bacterial genomes sequences will probably add new members to the five groups identified so far in this work, and new groups could also emerge. Conversely, the functional characterization of the unknown domains mentioned in this work

  15. A poultry-intestinal isolate of Campylobacter jejuni produces a bacteriocin (CUV-3) active against a range of Gram positive bacterial pathogens including Clostridium perfringens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A newly isolated bacteriocin, CUV-3, produced by a poultry cecal isolate of Campylobacter jejuni strain CUV-3 had inhibitory activity against several Gram positive bacteria including Clostridium perfringens (38 strains), Staphylococcus aureus, Staph.epidermidis and Listeria monocytogenes. The pept...

  16. Role for intracellular platelet-activating factor in the circulatory failure in a model of gram-positive shock.

    PubMed Central

    De Kimpe, S. J.; Thiemermann, C.; Vane, J. R.

    1995-01-01

    ) was inhibited by 74 +/- 4% by WEB2086 (3 x 10(-4) M), but not by BN52021, indicating that only WEB2086 acts on intracellular PAF receptors. 6. Thus, the intracellular release of PAF contributes to the circulatory and renal failure and induction of nitric oxide synthase elicited by LTA in anaesthetized rats. The difference between the two structurally different PAF antagonists in our septic shock models using either LTA or lipopolysaccharide (LPS), shows the importance of models for Gram-positive sepsis in the elucidation of the pathophysiology of septic shock and for the evaluation of potential drugs. PMID:8719795

  17. Novel antibiotics targeting respiratory ATP synthesis in Gram-positive pathogenic bacteria.

    PubMed

    Balemans, Wendy; Vranckx, Luc; Lounis, Nacer; Pop, Ovidiu; Guillemont, Jérôme; Vergauwen, Karen; Mol, Selena; Gilissen, Ron; Motte, Magali; Lançois, David; De Bolle, Miguel; Bonroy, Kristien; Lill, Holger; Andries, Koen; Bald, Dirk; Koul, Anil

    2012-08-01

    Emergence of drug-resistant bacteria represents a high, unmet medical need, and discovery of new antibacterials acting on new bacterial targets is strongly needed. ATP synthase has been validated as an antibacterial target in Mycobacterium tuberculosis, where its activity can be specifically blocked by the diarylquinoline TMC207. However, potency of TMC207 is restricted to mycobacteria with little or no effect on the growth of other Gram-positive or Gram-negative bacteria. Here, we identify diarylquinolines with activity against key Gram-positive pathogens, significantly extending the antibacterial spectrum of the diarylquinoline class of drugs. These compounds inhibited growth of Staphylococcus aureus in planktonic state as well as in metabolically resting bacteria grown in a biofilm culture. Furthermore, time-kill experiments showed that the selected hits are rapidly bactericidal. Drug-resistant mutations were mapped to the ATP synthase enzyme, and biochemical analysis as well as drug-target interaction studies reveal ATP synthase as a target for these compounds. Moreover, knockdown of the ATP synthase expression strongly suppressed growth of S. aureus, revealing a crucial role of this target in bacterial growth and metabolism. Our data represent a proof of principle for using the diarylquinoline class of antibacterials in key Gram-positive pathogens. Our results suggest that broadening the antibacterial spectrum for this chemical class is possible without drifting off from the target. Development of the diarylquinolines class may represent a promising strategy for combating Gram-positive pathogens. PMID:22615276

  18. In vitro activity of A-56268 (TE-031), a new macrolide, compared with that of erythromycin and clindamycin against selected gram-positive and gram-negative organisms.

    PubMed Central

    Benson, C A; Segreti, J; Beaudette, F E; Hines, D W; Goodman, L J; Kaplan, R L; Trenholme, G M

    1987-01-01

    The in vitro activity of A-56268 was determined and compared with that of erythromycin and clindamycin against a limited spectrum of 401 gram-positive and gram-negative organisms. A-56268 was quite active against erythromycin-susceptible Staphylococcus aureus, Neisseria gonorrhoeae, Listeria monocytogenes, Streptococcus pneumoniae, Streptococcus pyogenes, and group B streptococci and was moderately active against Campylobacter fetus subsp. fetus. A-56268 was consistently bactericidal only for S. pneumoniae. The activity of A-56268 was comparable to that of erythromycin against most organisms tested. PMID:2952063

  19. In Vitro Activity of AZD0914, a Novel Bacterial DNA Gyrase/Topoisomerase IV Inhibitor, against Clinically Relevant Gram-Positive and Fastidious Gram-Negative Pathogens

    PubMed Central

    Huband, Michael D.; Hackel, Meredith; de Jonge, Boudewijn L. M.; Sahm, Daniel F.; Bradford, Patricia A.

    2015-01-01

    AZD0914, a new spiropyrimidinetrione bacterial DNA gyrase inhibitor with a novel mode of inhibition, has activity against bacterial species commonly cultured from patient infection specimens, including fluoroquinolone-resistant isolates. This study assessed the in vitro activity of AZD0914 against key Gram-positive and fastidious Gram-negative clinical isolates collected globally in 2013. AZD0914 demonstrated potent activity, with MIC90s for AZD0914 of 0.25 mg/liter against Staphylococcus aureus (n = 11,680), coagulase-negative staphylococci (n = 1,923), streptococci (n = 4,380), and Moraxella catarrhalis (n = 145), 0.5 mg/liter against Staphylococcus lugdunensis (n = 120) and Haemophilus influenzae (n = 352), 1 mg/liter against Enterococcus faecalis (n = 1,241), and 2 mg/liter against Haemophilus parainfluenzae (n = 70). The activity against Enterococcus faecium was more limited (MIC90, 8 mg/liter). The spectrum and potency of AZD0914 included fluoroquinolone-resistant isolates in each species group, including methicillin-resistant staphylococci, penicillin-resistant streptococci, vancomycin-resistant enterococci, β-lactamase-producing Haemophilus spp., and M. catarrhalis. Based on these in vitro findings, AZD0914 warrants further investigation for its utility against a variety of Gram-positive and fastidious Gram-negative bacterial species. PMID:26195518

  20. In Vitro Activity of AZD0914, a Novel Bacterial DNA Gyrase/Topoisomerase IV Inhibitor, against Clinically Relevant Gram-Positive and Fastidious Gram-Negative Pathogens.

    PubMed

    Biedenbach, Douglas J; Huband, Michael D; Hackel, Meredith; de Jonge, Boudewijn L M; Sahm, Daniel F; Bradford, Patricia A

    2015-10-01

    AZD0914, a new spiropyrimidinetrione bacterial DNA gyrase inhibitor with a novel mode of inhibition, has activity against bacterial species commonly cultured from patient infection specimens, including fluoroquinolone-resistant isolates. This study assessed the in vitro activity of AZD0914 against key Gram-positive and fastidious Gram-negative clinical isolates collected globally in 2013. AZD0914 demonstrated potent activity, with MIC90s for AZD0914 of 0.25 mg/liter against Staphylococcus aureus (n = 11,680), coagulase-negative staphylococci (n = 1,923), streptococci (n = 4,380), and Moraxella catarrhalis (n = 145), 0.5 mg/liter against Staphylococcus lugdunensis (n = 120) and Haemophilus influenzae (n = 352), 1 mg/liter against Enterococcus faecalis (n = 1,241), and 2 mg/liter against Haemophilus parainfluenzae (n = 70). The activity against Enterococcus faecium was more limited (MIC90, 8 mg/liter). The spectrum and potency of AZD0914 included fluoroquinolone-resistant isolates in each species group, including methicillin-resistant staphylococci, penicillin-resistant streptococci, vancomycin-resistant enterococci, β-lactamase-producing Haemophilus spp., and M. catarrhalis. Based on these in vitro findings, AZD0914 warrants further investigation for its utility against a variety of Gram-positive and fastidious Gram-negative bacterial species.

  1. Facile synthesis of gold nanoparticles on propylamine functionalized SBA-15 and effect of surface functionality of its enhanced bactericidal activity against gram positive bacteria

    NASA Astrophysics Data System (ADS)

    Bhuyan, Diganta; Gogoi, Animesh; Saikia, Mrinal; Saikia, Ratul; Saikia, Lakshi

    2015-07-01

    The facile synthesis of an SBA-15-pr-+NH3.Au0 nano-hybrid material by spontaneous autoreduction of aqueous chloroaurate anions on propylamine functionalized SBA-15 was successfully demonstrated. The as-synthesized SBA-15-pr-+NH3.Au0 nano-hybrid material was well characterized using low and wide angle x-ray diffraction (XRD), N2 adsorption-desorption isotherms, Fourier transform infrared (FTIR), transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX), x-ray photoelectron spectroscopy (XPS), UV-Visible spectroscopy and atomic absorption spectroscopy (AAS). The activity of the nano-hybrid material as a potent bactericidal agent was successfully tested against Gram positive/negative bacteria viz. Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The colony killing percentage of Gram positive bacteria was found to be higher than Gram negative bacteria due to the stronger electrostatic interaction between the positively-charged amine functionality of SBA-15 and the negatively charged functionality of the bacterial cell wall.

  2. Occurrence of ferredoxin:NAD+ oxidoreductase activity and its ion specificity in several Gram-positive and Gram-negative bacteria

    PubMed Central

    Hess, Verena; Gallegos, Rene; Jones, J Andrew; Barquera, Blanca; Malamy, Michael H

    2016-01-01

    A ferredoxin:NAD+ oxidoreductase was recently discovered as a redox-driven ion pump in the anaerobic, acetogenic bacterium Acetobacterium woodii. The enzyme is assumed to be encoded by the rnf genes. Since these genes are present in the genomes of many bacteria, we tested for ferredoxin:NAD+ oxidoreductase activity in cytoplasmic membranes from several different Gram-positive and Gram-negative bacteria that have annotated rnf genes. We found this activity in Clostridium tetanomorphum, Clostridium ljungdahlii, Bacteroides fragilis, and Vibrio cholerae but not in Escherichia coli and Rhodobacter capsulatus. As in A. woodii, the activity was Na+-dependent in C. tetanomorphum and B. fragilis but Na+-independent in C. ljungdahlii and V. cholerae. We deleted the rnf genes from B. fragilis and demonstrated that the mutant has greatly reduced ferredoxin:NAD+ oxidoreductase activity. This is the first genetic proof that the rnf genes indeed encode the reduced ferredoxin:NAD+ oxidoreductase activity. PMID:26793417

  3. In Vitro Activities of Tedizolid and Linezolid against Gram-Positive Cocci Associated with Acute Bacterial Skin and Skin Structure Infections and Pneumonia

    PubMed Central

    Chen, Ko-Hung; Huang, Yu-Tsung; Liao, Chun-Hsing; Sheng, Wang-Hui

    2015-01-01

    Tedizolid is a novel, expanded-spectrum oxazolidinone with potent activity against a wide range of Gram-positive pathogens. A total of 425 isolates of Gram-positive bacteria were obtained consecutively from patients with acute bacterial skin and skin structure infections (ABSSSIs) or pneumonia. These isolates included methicillin-susceptible Staphylococcus aureus (MSSA) (n = 100), methicillin-resistant Staphylococcus aureus (MRSA) (n = 100), Streptococcus pyogenes (n = 50), Streptococcus agalactiae (n = 50), Streptococcus anginosus group (n = 75), Enterococcus faecalis (n = 50), and vancomycin-resistant enterococci (VRE) (Enterococcus faecium) (n = 50). The MICs of tedizolid and linezolid were determined by the agar dilution method. Tedizolid exhibited better in vitro activities than linezolid against MSSA (MIC90s, 0.5 versus 2 μg/ml), MRSA (MIC90s, 0.5 versus 2 μg/ml), S. pyogenes (MIC90s, 0.5 versus 2 μg/ml), S. agalactiae (MIC90s, 0.5 versus 2 μg/ml), Streptococcus anginosus group (MIC90s, 0.5 versus 2 μg/ml), E. faecalis (MIC90s, 0.5 versus 2 μg/ml), and VRE (MIC90s, 0.5 versus 2 μg/ml). The tedizolid MICs against E. faecalis (n = 3) and VRE (n = 2) intermediate to linezolid (MICs, 4 μg/ml) were 1 μg/ml and 0.5 μg/ml, respectively. The tedizolid MIC90s against S. anginosus, S. constellatus, and S. intermedius were 0.5, 1, and 0.5 μg/ml, respectively, and the rates of susceptibility based on the U.S. FDA MIC interpretive breakpoints to the isolates were 16%, 28%, and 72%, respectively. Tedizolid exhibited 2- to 4-fold better in vitro activities than linezolid against a variety of Gram-positive cocci associated with ABSSSIs and pneumonia. The lower susceptibilities of tedizolid against isolates of S. anginosus and S. constellatus than against those of S. intermedius in Taiwan were noted. PMID:26248355

  4. In Vitro Activities of Tedizolid and Linezolid against Gram-Positive Cocci Associated with Acute Bacterial Skin and Skin Structure Infections and Pneumonia.

    PubMed

    Chen, Ko-Hung; Huang, Yu-Tsung; Liao, Chun-Hsing; Sheng, Wang-Hui; Hsueh, Po-Ren

    2015-10-01

    Tedizolid is a novel, expanded-spectrum oxazolidinone with potent activity against a wide range of Gram-positive pathogens. A total of 425 isolates of Gram-positive bacteria were obtained consecutively from patients with acute bacterial skin and skin structure infections (ABSSSIs) or pneumonia. These isolates included methicillin-susceptible Staphylococcus aureus (MSSA) (n = 100), methicillin-resistant Staphylococcus aureus (MRSA) (n = 100), Streptococcus pyogenes (n = 50), Streptococcus agalactiae (n = 50), Streptococcus anginosus group (n = 75), Enterococcus faecalis (n = 50), and vancomycin-resistant enterococci (VRE) (Enterococcus faecium) (n = 50). The MICs of tedizolid and linezolid were determined by the agar dilution method. Tedizolid exhibited better in vitro activities than linezolid against MSSA (MIC90s, 0.5 versus 2 μg/ml), MRSA (MIC90s, 0.5 versus 2 μg/ml), S. pyogenes (MIC90s, 0.5 versus 2 μg/ml), S. agalactiae (MIC90s, 0.5 versus 2 μg/ml), Streptococcus anginosus group (MIC90s, 0.5 versus 2 μg/ml), E. faecalis (MIC90s, 0.5 versus 2 μg/ml), and VRE (MIC90s, 0.5 versus 2 μg/ml). The tedizolid MICs against E. faecalis (n = 3) and VRE (n = 2) intermediate to linezolid (MICs, 4 μg/ml) were 1 μg/ml and 0.5 μg/ml, respectively. The tedizolid MIC90s against S. anginosus, S. constellatus, and S. intermedius were 0.5, 1, and 0.5 μg/ml, respectively, and the rates of susceptibility based on the U.S. FDA MIC interpretive breakpoints to the isolates were 16%, 28%, and 72%, respectively. Tedizolid exhibited 2- to 4-fold better in vitro activities than linezolid against a variety of Gram-positive cocci associated with ABSSSIs and pneumonia. The lower susceptibilities of tedizolid against isolates of S. anginosus and S. constellatus than against those of S. intermedius in Taiwan were noted.

  5. [Estimation of activity of pharmakopeal disinfectants and antiseptics against Gram-negative and Gram-positive bacteria isolated from clinical specimens, drugs and environment].

    PubMed

    Grzybowska, Wanda; Młynarczyk, Grazyna; Młynarczyk, Andrzej; Bocian, Ewa; Luczak, Mirosław; Tyski, Stefan

    2007-01-01

    The MIC of nine different disinfectants and antiseptics were determined for the Gram-negative and Gram-positive bacteria. Strains originated from clinical specimens, drugs and environment. A sensitivity was determined against chlorhexidinum digluconate (Gram-negative: 0,625-80 mg/L, Gram-positive: 0,3-10 mg/L), benzalconium chloride (Gram-negative: 2,5-1280 mg/L, Gram-positive: 1,25-20 mg/L), salicilic acid (Gram-negative and Gram-positive: 400-1600 mg/L), benzoic acid (Gram-negative: 800-1600 mg/L, Gram-positive: 400-1 600 mg/L), boric acid (Gram-negative: 800-12 800 mg/L, Gram-positive: 1 600-6400 mg/L), chloramine B (Gram-negative: 1600-6400 mg/L, Gram-positive:800- 6400 mg/L), jodine (Gram-negative: 200-1600 mg/L, Gram-positive: 200-1600 mg/L), etacridine lactate (Gram-negative: 40 do > 20480 mg/L, Gram-positive: 40-1280 mg/L) and resorcine (Gram-negative: 1600-6400 mg/L, Gram-positive: 800-6400 mg/L). Diversified values of MIC for different strains were obtained, especially in the case of benzalconium chloride, etacridine lactate, chlorhexidinum digluconate, boric acid and iodine. Strains isolated from environment were usually more susceptible to examined compounds than clinical strains. The biggest diversification of sensitivity was observed among strains originated from drugs where besides sensitive appeared strains characterizing by very high MIC values of some substances, eg. boric acid.

  6. Activity of the Lichen Usnea steineri and its Major Metabolites against Gram-positive, Multidrug-resistant Bacteria.

    PubMed

    Tozatti, Marcos G; Ferreira, Daniele S; Flauzino, Lúzio G Bocalon; Moraes, Thaís da Silva; Martins, Carlos H G; Groppo, Milton; Andrade e Silva, Márcio L; Januário, Ana H; Pauletti, Patricia M; Cunhaa, Wilson R

    2016-04-01

    The antimicrobial activity and possible synergistic effects of extracts and compounds isolated from Usnea steineri were evaluated against four resistant bacterial species. A phytochemical study of the acetone extract of U. steineri resulted in the isolation and characterization of difractaic acid and (+)-usnic acid as the main compounds. The acetone extract showed strong activity (less than 10 µg/mL) against resistant strains of Staphylococcus epidermidis and Enterococcus faecalis, and (+)-usnic acid exhibited strong activity against S. epidermidis (MIC 3.12 µg/mL), S. aureus and S. haemnolyticus (MIC 12.5 µg/mL). Combinations of penicillin and tetracycline with (+)-usnic acid did not show any synergistic antimicrobial effects. Difractaic acid was inactive. Our results showed that the acetone extract of U. steineri possesses significant in vitro antimicrobial activity, which is likely related to the presence of (+)-usnic acid. PMID:27396202

  7. Active stable maintenance functions in low copy-number plasmids of Gram-positive bacteria II. Post-segregational killing systems.

    PubMed

    Dmowski, Michał; Jagura-Burdzy, Grazyna

    2013-01-01

    Active support is needed for low copy-number plasmids to be stably maintained in bacterial cells. The mechanisms that fulfill this role are (i) partition systems (PAR) acting to separate plasmid molecules to daughter cells and (ii) toxin-andidote (TA) (post-segregational killing-PSK) systems which arrest cell growth until the plasmid reaches the correct copy-number or kill the cells that have not inherited the plasmid. Our knowledge of toxin-antidote systems comes mainly from studies on Gram-negative bacteria. However, some addiction systems of Gram-positive bacteria have been characterized in detail or recently identified. Altogether, they bring new interesting data on toxin-antidote functioning in bacteria.

  8. Highly selective antibacterial activities of silver nanoparticles against Bacillus subtilis.

    PubMed

    Li, Ju; Rong, Kaifeng; Zhao, Huiping; Li, Fei; Lu, Zhong; Chen, Rong

    2013-10-01

    Silver nanoparticles (AgNPs) with different sizes (5, 15 and 55 nm) were synthesized via simple method, and characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray microanalysis (EDX) and ultraviolet-visible absorption spectroscopy (UV-Vis). The antibacterial activities of the prepared AgNPs against Gram-negative Escherichia coli (E. coli), Gram-positive Staphylococcus aureus (S. aureus) and Bacillus subtilis (B. subtilis) were evaluated by inhibition zone, inhibition curve, and colony counting methods. The results showed that the AgNPs exhibited obvious bacterium-selective and size-dependent antibacterial activities. The Gram-positive bacteria S. aureus and B. subtilis were more sensitive to AgNPs than Gram-negative bacterium E. coli. Interestingly, AgNPs displayed remarkably antibacterial activities against B. subtilis among Gram-positive bacteria, regardless of whether in separately or cocultured bacteria. It also showed that AgNPs with 5 nm in size presented the highest antibacterial activity against both Gram-negative and Gram-positive bacteria. The effects of AgNPs on the membrane leakage of the reducing sugars from three bacteria were also measured by 3,5-dinitrosalicylic acid method. The leakage amount of reducing sugars from B. subtilis was the highest among the tested bacteria, indicating that AgNPs could damage the structure of bacteria cell membrane and resulted in the leakage of reducing sugars, leading to the death of bacteria.

  9. Cyclic Hexapeptides from the Deep South China Sea-Derived Streptomyces scopuliridis SCSIO ZJ46 Active Against Pathogenic Gram-Positive Bacteria.

    PubMed

    Song, Yongxiang; Li, Qinglian; Liu, Xue; Chen, Yuchan; Zhang, Yun; Sun, Aijun; Zhang, Weimin; Zhang, Jingren; Ju, Jianhua

    2014-08-22

    Three new cyclohexapeptides, desotamides B-D (2-4), and the known desotamide (1) were isolated from marine microbe Streptomyces scopuliridis SCSIO ZJ46. The sequences and absolute configurations of 2-4 were elucidated on the basis of high-resolution spectroscopic data, Marfey's method, and chiral-phase HPLC data. Desotamide C (3) contains a unique N-formyl-kynurenine residue, whereas 4 lacks formylation at the same site. Compounds 1 and 2 displayed notable antibacterial activities against strains of Streptococcus pnuemoniae, Staphylococcus aureus, and methicillin-resistant Staphylococcus epidermidis (MRSE), and structure activity relationship studies revealed the indispensability of the Trp component for antibacterial activity within this new scaffold.

  10. In vitro assessment of Ag2O nanoparticles toxicity against Gram-positive and Gram-negative bacteria.

    PubMed

    Negi, Harshita; Rathinavelu Saravanan, Palaniyandi; Agarwal, Tithi; Ghulam Haider Zaidi, Mohd; Goel, Reeta

    2013-01-01

    In view of antibiotic resistance among pathogens, the present study is to address the toxicity of Ag2O nanoparticles against the Gram-positive and Gram-negative bacteria through in vitro assays. The preliminary screening by agar diffusion assay confirms the antibacterial activity of Ag2O nanoparticles against all the test bacteria. Comparative antibacterial activity of Ag2O nanoparticles and respective antibiotics reveals their broad range of activity and lower inhibitory dose against the used bacterial strains. Further, they can inhibit E. coli with an effective dose of 0.036 mg/ml within 1 h of exposure time as determined by luciferin based ATP assay. Moreover, the Ag2O nanoparticles exhibit higher antibacterial efficacy against Gram-negative bacteria than Gram-positive bacteria, as revealed by their MIC & MBC values. Therefore, Ag2O nanoparticles pave the way for a new generation of antibacterial agents against the emerging multidrug resistant pathogens.

  11. In vitro activity of ceftazidime, ceftaroline and aztreonam alone and in combination with avibactam against European Gram-negative and Gram-positive clinical isolates.

    PubMed

    Testa, Raymond; Cantón, Rafael; Giani, Tommaso; Morosini, María-Isabel; Nichols, Wright W; Seifert, Harald; Stefanik, Danuta; Rossolini, Gian Maria; Nordmann, Patrice

    2015-06-01

    Recent clinical isolates of key Gram-negative and Gram-positive bacteria were collected in 2012 from hospitalised patients in medical centres in four European countries (France, Germany, Italy and Spain) and were tested using standard broth microdilution methodology to assess the impact of 4 mg/L avibactam on the in vitro activities of ceftazidime, ceftaroline and aztreonam. Against Enterobacteriaceae, addition of avibactam significantly enhanced the level of activity of these antimicrobials. MIC(90) values (minimum inhibitory concentration that inhibits 90% of the isolates) of ceftazidime, ceftaroline and aztreonam for Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Enterobacter aerogenes, Citrobacter freundii and Morganella morganii were reduced up to 128-fold or greater when combined with avibactam. A two-fold reduction in the MIC(90) of ceftazidime to 8 mg/L was noted in Pseudomonas aeruginosa isolates when combined with avibactam, whereas little effect of avibactam was noted on the MIC values of the test compounds when tested against Acinetobacter baumannii isolates. Avibactam had little effect on the excellent activity of ceftazidime, ceftaroline and aztreonam against Haemophilus influenzae. It had no impact on the in vitro activity of ceftazidime and ceftaroline against staphylococci and streptococci. This study demonstrates that addition of avibactam enhances the activities of ceftazidime, ceftaroline and aztreonam against Enterobacteriaceae and P. aeruginosa but not against A. baumannii.

  12. Growth of Ag-nanoparticles in an aqueous solution and their antimicrobial activities against Gram positive, Gram negative bacterial strains and Candida fungus.

    PubMed

    Aazam, Elham Shafik; Zaheer, Zoya

    2016-04-01

    Silver nanoparticles (AgNPs) were synthesized using Ocimum sanctum (Tulsi) leaves aqueous extract as reducing as well as a capping agent in absence and presence of cetyltrimethylammonium bromide (CTAB). The resulting nanomaterials were characterized by UV-visible spectrophotometer, and transmission electron microscope. The UV-Vis spectroscopy revealed the formation of AgNPs at 400-450 nm. TEM photographs indicate that the truncated triangular silver nanoplates and/or spherical morphology of the AgNPs with an average diameter of 25 nm have been distorted markedly in presence of CTAB. The AgNPs were almost mono disperse in nature. Antimicrobial activities of AgNPs were determined by using two bacteria (Gram positive Staphylococcus aureus MTCC-3160), Gram negative Escherichia coli MTCC-450) and one species of Candida fungus (Candida albicans ATCC 90030) with Kirby-Bauer or disc diffusion method. The zone of inhibition seems extremely good showing a relatively large zone of inhibition in both Staphylococcus aureus, Escherichia coli, and Candida albicans strains. PMID:26796584

  13. Antimicrobial Activity of the Investigational Pleuromutilin Compound BC-3781 Tested against Gram-Positive Organisms Commonly Associated with Acute Bacterial Skin and Skin Structure Infections

    PubMed Central

    Biedenbach, Douglas J.; Paukner, Susanne; Ivezic-Schoenfeld, Zrinka; Jones, Ronald N.

    2012-01-01

    BC-3781 is a novel semisynthetic pleuromutilin antimicrobial agent developed as an intravenous and oral therapy for acute bacterial skin and skin structure infections (ABSSSI) and respiratory tract infections (RTI). BC-3781 and comparator agents were tested by the broth microdilution method against 1,893 clinical Gram-positive organisms predominantly causing ABSSSI. BC-3781 exhibited potent activity against methicillin-resistant Staphylococcus aureus (MIC50/90, 0.12/0.25 μg/ml), coagulase-negative staphylococci (MIC50/90, 0.06/0.12 μg/ml), β-hemolytic streptococci (MIC50/90, 0.03/0.06 μg/ml), viridans group streptococci (MIC50/90, 0.12/0.5 μg/ml), and Enterococcus faecium (including vancomycin-nonsusceptible strains) (MIC50/90, 0.12/2 μg/ml). Compared with other antibiotics in use for the treatment of ABSSSI, BC-3781 displayed the lowest MICs and only a minimal potential for cross-resistance with other antimicrobial classes. PMID:22232289

  14. Bacillus subtilis subsp. subtilis CBMDC3f with antimicrobial activity against Gram-positive foodborne pathogenic bacteria: UV-MALDI-TOF MS analysis of its bioactive compounds.

    PubMed

    Torres, M J; Petroselli, G; Daz, M; Erra-Balsells, R; Audisio, M C

    2015-06-01

    In this work a new Bacillus sp. strain, isolated from honey, was characterized phylogenetically. Its antibacterial activity against three relevant foodborne pathogenic bacteria was studied; the main bioactive metabolites were analyzed using ultraviolet matrix assisted laser desorption-ionization mass spectrometry (UV-MALDI MS). Bacillus CBMDC3f was phylogenetically characterized as Bacillus subtilis subsp. subtilis after rRNA analysis of the 16S subunit and the gyrA gene (access codes Genbank JX120508 and JX120516, respectively). Its antibacterial potential was evaluated against Listeria monocytogenes (9 strains), B. cereus (3 strains) and Staphylococcus aureus ATCC29213. Its cell suspension and cell-free supernatant (CFS) exerted significant anti-Listeria and anti-S. aureus activities, while the lipopeptides fraction (LF) also showed anti-B. cereus effect. The UV-MALDI-MS analysis revealed surfactin, iturin and fengycin in the CFS, whereas surfactin predominated in the LF. The CFS from CBMDC3f contained surfactin, iturin and fengycin with four, two and four homologues per family, respectively, whereas four surfactin, one iturin and one fengycin homologues were identified in the LF. For some surfactin homologues, their UV-MALDI-TOF/TOF (MS/MS; Laser Induced Decomposition method, LID) spectra were also obtained. Mass spectrometry analysis contributed with relevant information about the type of lipopeptides that Bacillus strains can synthesize. From our results, surfactin would be the main metabolite responsible for the antibacterial effect. PMID:25820813

  15. Antimicrobial activity of Calendula officinalis petal extracts against fungi, as well as Gram-negative and Gram-positive clinical pathogens.

    PubMed

    Efstratiou, Efstratios; Hussain, Abdullah I; Nigam, Poonam S; Moore, John E; Ayub, Muhammad A; Rao, Juluri R

    2012-08-01

    The aim of the present study was to assess the antimicrobial activity of methanol and ethanol extracts of pot marigold (Calendula officinalis) petals against clinical pathogens. The antimicrobial potential of C. officinalis extracts was evaluated against a panel of microorganisms isolated from patients at the Belfast City Hospital (BCH), including bacteria and fungi, using disc diffusion assay. Methanol extract of C. officinalis exhibited better antibacterial activity against most of the bacteria tested, than ethanol extract. Both methanol and ethanol extracts showed excellent antifungal activity against tested strains of fungi, while comparing with Fluconazole. PMID:22789794

  16. Antimicrobial activity of Calendula officinalis petal extracts against fungi, as well as Gram-negative and Gram-positive clinical pathogens.

    PubMed

    Efstratiou, Efstratios; Hussain, Abdullah I; Nigam, Poonam S; Moore, John E; Ayub, Muhammad A; Rao, Juluri R

    2012-08-01

    The aim of the present study was to assess the antimicrobial activity of methanol and ethanol extracts of pot marigold (Calendula officinalis) petals against clinical pathogens. The antimicrobial potential of C. officinalis extracts was evaluated against a panel of microorganisms isolated from patients at the Belfast City Hospital (BCH), including bacteria and fungi, using disc diffusion assay. Methanol extract of C. officinalis exhibited better antibacterial activity against most of the bacteria tested, than ethanol extract. Both methanol and ethanol extracts showed excellent antifungal activity against tested strains of fungi, while comparing with Fluconazole.

  17. Antibacterial activity of human natural killer cells

    PubMed Central

    1989-01-01

    The in vitro effects of human NK cells on viability of Gram-negative and Gram-positive bacteria was investigated. PBLs depleted of glass- adherent cells showed a significant antibacterial activity that was increased as the concentration of NK cells became higher. Leu-11- enriched cells exhibited the most efficient bactericidal activity. Stimulation of NK cells with staphylococcal enterotoxin B for 16 h produced a significant increase in the antibacterial activity of all NK cells tested. The antibacterial activity of monocyte-depleted cells and Leu-11-enriched cells was also enhanced after culturing in vitro for 16- 24 h without exogenous cytokines. Dependence of the antibacterial activity on the presence of serum in the culture medium was not found. Ultrastructural studies revealed close contact between NK cell membranes and bacteria, no evidence of phagocytosis, and extracellular bacterial ghosts, after incubation at 37 degrees C. Supernatants from purified NK cells exhibited potent bactericidal activity with kinetics and target specificity similar to that of effector cells. These results document the potent antibacterial activity of purified NK cells and suggest an extracellular mechanism of killing. PMID:2642532

  18. Antibacterial activity of resin rich plant extracts

    PubMed Central

    Shuaib, Mohd; Ali, Abuzer; Ali, Mohd; Panda, Bibhu Prasad; Ahmad, Mohd Imtiyaz

    2013-01-01

    Background: The in vitro antibacterial activity of resin rich methanolic extracts (RRMEs) of Commiphora myrrha, Operculina turpethum, and Pinus roxburghii. Materials and Methods: Different concentration were studied by agar-well diffusion method against Gram-positive (Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus, Enterococcus faecalis) and Gram-negative bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Shigella dysenteriae). Results: Among all the bacterial strains tested, E. faecalis was most sensitive and S. typhi was resistant to C. myrrha and P. roxburghii. The extracts of O. turpethum were active against all tested strains in which B. subtilis and S. aureus were the most sensitive. Conclusion: This suggested that the antibacterial activity of RRMEs of O. turpethum was more than C. myrrha and P. roxburghii. This probably explains the potential of these plants against a number of infections caused by bacterial strains tested. PMID:24302834

  19. Transformation of gram positive bacteria by sonoporation

    DOEpatents

    Yang, Yunfeng; Li, Yongchao

    2014-03-11

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  20. Antimicrobial Peptides Targeting Gram-Positive Bacteria.

    PubMed

    Malanovic, Nermina; Lohner, Karl

    2016-01-01

    Antimicrobial peptides (AMPs) have remarkably different structures as well as biological activity profiles, whereupon most of these peptides are supposed to kill bacteria via membrane damage. In order to understand their molecular mechanism and target cell specificity for Gram-positive bacteria, it is essential to consider the architecture of their cell envelopes. Before AMPs can interact with the cytoplasmic membrane of Gram-positive bacteria, they have to traverse the cell wall composed of wall- and lipoteichoic acids and peptidoglycan. While interaction of AMPs with peptidoglycan might rather facilitate penetration, interaction with anionic teichoic acids may act as either a trap for AMPs or a ladder for a route to the cytoplasmic membrane. Interaction with the cytoplasmic membrane frequently leads to lipid segregation affecting membrane domain organization, which affects membrane permeability, inhibits cell division processes or leads to delocalization of essential peripheral membrane proteins. Further, precursors of cell wall components, especially the highly conserved lipid II, are directly targeted by AMPs. Thereby, the peptides do not inhibit peptidoglycan synthesis via binding to proteins like common antibiotics, but form a complex with the precursor molecule, which in addition can promote pore formation and membrane disruption. Thus, the multifaceted mode of actions will make AMPs superior to antibiotics that act only on one specific target. PMID:27657092

  1. Antimicrobial Peptides Targeting Gram-Positive Bacteria

    PubMed Central

    Malanovic, Nermina; Lohner, Karl

    2016-01-01

    Antimicrobial peptides (AMPs) have remarkably different structures as well as biological activity profiles, whereupon most of these peptides are supposed to kill bacteria via membrane damage. In order to understand their molecular mechanism and target cell specificity for Gram-positive bacteria, it is essential to consider the architecture of their cell envelopes. Before AMPs can interact with the cytoplasmic membrane of Gram-positive bacteria, they have to traverse the cell wall composed of wall- and lipoteichoic acids and peptidoglycan. While interaction of AMPs with peptidoglycan might rather facilitate penetration, interaction with anionic teichoic acids may act as either a trap for AMPs or a ladder for a route to the cytoplasmic membrane. Interaction with the cytoplasmic membrane frequently leads to lipid segregation affecting membrane domain organization, which affects membrane permeability, inhibits cell division processes or leads to delocalization of essential peripheral membrane proteins. Further, precursors of cell wall components, especially the highly conserved lipid II, are directly targeted by AMPs. Thereby, the peptides do not inhibit peptidoglycan synthesis via binding to proteins like common antibiotics, but form a complex with the precursor molecule, which in addition can promote pore formation and membrane disruption. Thus, the multifaceted mode of actions will make AMPs superior to antibiotics that act only on one specific target. PMID:27657092

  2. Novel Acylphosphate Mimics that Target PlsY, an Essential Acyltransferase in Gram-Positive Bacteria

    PubMed Central

    Grimes, Kimberly D.; Lu, Ying-Jie; Zhang, Yong-Mei; Luna, Vicki A.; Hurdle, Julian G.; Carson, Elizabeth I.; Qi, Jianjun; Kudrimoti, Sucheta; Rock, Charles O.

    2009-01-01

    PlsY is a recently discovered acyltransferase that executes an essential step in membrane phospholipid biosynthesis in Gram-positive bacteria. Using a bioisosteric replacement approach to generate substrate-based inhibitors of PlsY as potential novel antibacterial agents, a series of stabilized acylphosphate mimetics, including acylphosphonates, acyl αα,-difluoromethyl phosphonates, acyl phosphoramides, reverse amide phosphonates, acylsulfamates and acylsulfamides were designed and synthesized. Several acyl phosphonates, phosphoramides and sulfamates were identified as inhibitors of PlsY from Streptococcus pneumoniae and Bacillus anthracis. As anticipated, these inhibitors were competitive inhibitors with respect to the acylphosphate substrate. Antimicrobial testing showed the inhibitors to have generally weak anti Gram-positive activity with the exception of some acyl phosphonates, reverse amide phosphonates, and acylsulfamates that had potent activity against multiple strains of Bacillus anthracis. PMID:19016283

  3. Potential antibacterial activity of coumarin and coumarin-3-acetic acid derivatives.

    PubMed

    Chattha, Fauzia Anjum; Munawar, Munawar Ali; Nisa, Mehrun; Ashraf, Mohammad; Kousar, Samina; Arshad, Shafia

    2015-05-01

    Coumarin and coumarin-3-acetic acid derivatives were synthesized by reacting phenols with malic acid, ethyl acetoacetate and ethyl acetylsuccinate in appropriate reaction conditions. All synthesized compounds were subjected to test for their antimicrobial activities against variety of gram positive (Bacillus subtilis, Staphylococcus aureus) and gram negative bacterial stains (Shigella sonnei, Escherichia coli) by agar dilution method. Several of them exhibited appreciable good antibacterial activity against the different strains of gram positive and gram negative bacteria. These findings suggest a great potential of these compounds for screening and use as antibacterial agents for further studies with a battery of bacteria.

  4. Identification of proteins capable of metal reduction from the proteome of the Gram-positive bacterium Desulfotomaculum reducens MI-1 using an NADH-based activity assay

    SciTech Connect

    Otwell, Annie E.; Sherwood, Roberts; Zhang, Sheng; Nelson, Ornella D.; Li, Zhi; Lin, Hening; Callister, Stephen J.; Richardson, Ruth E.

    2015-01-01

    Metal reduction capability has been found in numerous species of environmentally abundant Gram-positive bacteria. However, understanding of microbial metal reduction is based almost solely on studies of Gram-negative organisms. In this study, we focus on Desulfotomaculum reducens MI-1, a Gram-positive metal reducer whose genome lacks genes with similarity to any characterized metal reductase. D. reducens has been shown to reduce not only Fe(III), but also the environmentally important contaminants U(VI) and Cr(VI). By extracting, separating, and analyzing the functional proteome of D. reducens, using a ferrozine-based assay in order to screen for chelated Fe(III)-NTA reduction with NADH as electron donor, we have identified proteins not previously characterized as iron reductases. Their function was confirmed by heterologous expression in E. coli. These are the protein NADH:flavin oxidoreductase (Dred_2421) and a protein complex composed of oxidoreductase FAD/NAD(P)-binding subunit (Dred_1685) and dihydroorotate dehydrogenase 1B (Dred_1686). Dred_2421 was identified in the soluble proteome and is predicted to be a cytoplasmic protein. Dred_1685 and Dred_1686 were identified in both the soluble as well as the insoluble (presumably membrane) protein fraction, suggesting a type of membrane-association, although PSORTb predicts both proteins are cytoplasmic. Furthermore, we show that these proteins have the capability to reduce soluble Cr(VI) and U(VI) with NADH as electron donor. This study is the first functional proteomic analysis of D. reducens, and one of the first analyses of metal and radionuclide reduction in an environmentally relevant Gram-positive bacterium.

  5. Developing of a novel antibacterial agent by functionalization of graphene oxide with guanidine polymer with enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Li, Ping; Sun, Shiyu; Dong, Alideertu; Hao, Yanping; Shi, Shuangqiang; Sun, Zijia; Gao, Ge; Chen, Yuxin

    2015-11-01

    New materials with excellent antibacterial activity attract numerous research interests. Herein, a facile synthetic method of polyethylene glycol (PEG) and polyhexamethylene guanidine hydrochloride (PHGC) dual-polymer-functionalized graphene oxide (GO) (GO-PEG-PHGC), a novel antibacterial material, was reported. The as-prepared products were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), X-ray pattern (XRD) and elemental analysis. The antibacterial effect on the bacterial strain was investigated by incubating both Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus). The results show that GO-PEG-PHGC has enhanced antibacterial activity when compared to GO, GO-PEG or GO-PHGC alone. The improved antibacterial activity was described to be related to a better dispersion of GO-PEG-PHGC in the presence of PEG. This better dispersion leads to a greater contact between the bacteria membrane and nanomaterials, therefore leading to greater cell damage. Not only Gram-negative bacteria but also Gram-positive bacteria are greatly inhibited by this antibacterial agent. With the powerful antibacterial activity as well as its low cost and facile preparation, the GO-PEG-PHGC as a novel antibacterial agent can find potential application in the areas of healthcare and environmental engineering.

  6. Results of the surveillance of Tedizolid activity and resistance program: in vitro susceptibility of gram-positive pathogens collected in 2011 and 2012 from the United States and Europe.

    PubMed

    Sahm, Daniel F; Deane, Jennifer; Bien, Paul A; Locke, Jeffrey B; Zuill, Douglas E; Shaw, Karen J; Bartizal, Ken F

    2015-02-01

    The in vitro activity and spectrum of tedizolid and comparators were analyzed against 6884 Gram-positive clinical isolates collected from multiple US and European sites as part of the Surveillance of Tedizolid Activity and Resistance Program in 2011 and 2012. Organisms included 4499 Staphylococcus aureus, 537 coagulase-negative staphylococci (CoNS), 873 enterococci, and 975 β-hemolytic streptococci. The MIC values that inhibited 90% of the isolates within each group (MIC90) were 0.25 μg/mL for Staphylococcus epidermidis and β-hemolytic streptococci and 0.5 μg/mL for S. aureus, other CoNS, and enterococci. Of 16 isolates with elevated tedizolid or linezolid MIC values (intermediate or resistant isolates), 10 had mutations in the genes encoding 23S rRNA (primarily G2576T), 5 had mutations in the genes encoding ribosomal proteins L3 or L4, and 5 carried the cfr multidrug resistance gene. Overall, tedizolid showed excellent activity against Gram-positive bacteria and was at least 4-fold more potent than linezolid against wild-type and linezolid-resistant isolates. Given the low overall frequency of isolates that would be resistant to tedizolid at the proposed break point of 0.5 μg/mL (0.19%) and potent activity against contemporary US and European isolates, tedizolid has the potential to serve as a valuable therapeutic option in the treatment of infections caused by Gram-positive pathogens.

  7. Chemical composition and antibacterial activity of essential oils from different parts of Leonurus japonicus Houtt.

    PubMed

    Xiong, Liang; Peng, Cheng; Zhou, Qin-Mei; Wan, Feng; Xie, Xiao-Fang; Guo, Li; Li, Xiao-Hong; He, Cheng-Jun; Dai, Ou

    2013-01-01

    The herb and fruits of Leonurus japonicus Houtt., named "Yimucao" and "Chongweizi", respectively, in Chinese, have been widely used in China as gynecological medicines. The components of the essential oils obtained by hydrodistillation were investigated by GC-MS. The antibacterial activity of the essential oils was determined by micro-dilution assay. The results showed large variations in the chemical composition and antibacterial activity of the oils. The oil of "Yimucao" showed antibacterial activity against various Gram-positive bacteria and consisted mainly of sesquiterpenes and diterpenes, with phytone, phytol, caryophyllene oxide and β-caryophyllene being the most significant constituents, whereas the oil of "Chongweizi", mainly made up of bornyl acetate and aliphatic hydrocarbons, was inactive in the antibacterial assay. Further study of the main compounds in "Yimucao oil" showed that β-caryophyllene had wide-spectrum activity against Gram-positive bacteria. PMID:23344204

  8. Antibacterial activity of lichen Usnea rubrotincta, Ramalina dumeticola, and Cladonia verticillata

    NASA Astrophysics Data System (ADS)

    Gunasekaran, Saranyapiriya; Rajan, Vinoshene Pillai; Samsudin, Mohd. Wahid; Din, Laily; Ramanathan, Surash; Murugaiyah, Vikneswaran

    2015-09-01

    The present study was carried out to evaluate the antibacterial activity of extract and chemical constituents of Usnea rubrotincta, Ramalina dumeticola and Cladonia verticillata. Extracts of U. rubrotincta and R. dumeticola showed promising antibacterial activity against gram positive bacteria Staphylococcus aureus and Bacillus subtilis. The lowest value of MIC (15.63 μg/mL) was observed for the acetone extract of U. rubrotincta against B. subtilis. While extract of C. verticillata was neither active against gram positive nor gram negative bacteria at the highest tested concentration of 500 μg/m. This is the first evaluation of antibacterial activity of lichens found in Malaysia and to our knowledge, this is the first report of antibacterial

  9. Chemical composition and antibacterial activity of essential oils from different parts of Leonurus japonicus Houtt.

    PubMed

    Xiong, Liang; Peng, Cheng; Zhou, Qin-Mei; Wan, Feng; Xie, Xiao-Fang; Guo, Li; Li, Xiao-Hong; He, Cheng-Jun; Dai, Ou

    2013-01-01

    The herb and fruits of Leonurus japonicus Houtt., named "Yimucao" and "Chongweizi", respectively, in Chinese, have been widely used in China as gynecological medicines. The components of the essential oils obtained by hydrodistillation were investigated by GC-MS. The antibacterial activity of the essential oils was determined by micro-dilution assay. The results showed large variations in the chemical composition and antibacterial activity of the oils. The oil of "Yimucao" showed antibacterial activity against various Gram-positive bacteria and consisted mainly of sesquiterpenes and diterpenes, with phytone, phytol, caryophyllene oxide and β-caryophyllene being the most significant constituents, whereas the oil of "Chongweizi", mainly made up of bornyl acetate and aliphatic hydrocarbons, was inactive in the antibacterial assay. Further study of the main compounds in "Yimucao oil" showed that β-caryophyllene had wide-spectrum activity against Gram-positive bacteria.

  10. Suicin 90-1330 from a nonvirulent strain of Streptococcus suis: a nisin-related lantibiotic active on gram-positive swine pathogens.

    PubMed

    LeBel, Geneviève; Vaillancourt, Katy; Frenette, Michel; Gottschalk, Marcelo; Grenier, Daniel

    2014-09-01

    Streptococcus suis serotype 2 is known to cause severe infections (meningitis, endocarditis, and septicemia) in pigs and is considered an emerging zoonotic agent. Antibiotics have long been used in the swine industry for disease treatment/prevention and growth promoters. This pattern of utilization resulted in the spread of antibiotic resistance in S. suis worldwide. Interestingly, pigs may harbor S. suis in their tonsils without developing diseases, while North American strains belonging to the sequence type 28 (ST28) are nonvirulent in animal models. Consequently, the aim of this study was to purify and characterize a bacteriocin produced by a nonvirulent strain of S. suis serotype 2, with a view to a potential therapeutic and preventive application. S. suis 90-1330 belonging to ST28 and previously shown to be nonvirulent in an animal model exhibited antibacterial activity toward all S. suis pathogenic isolates tested. The bacteriocin produced by this strain was purified to homogeneity by cationic exchange and reversed-phase fast protein liquid chromatography. Given its properties (molecular mass of <4 kDa, heat, pH and protease stability, and the presence of modified amino acids), the bacteriocin, named suicin 90-1330, belongs to the lantibiotic class. Using a DNA-binding fluorophore, the bacteriocin was found to possess a membrane permeabilization activity. When tested on other swine pathogens, the suicin showed activity against Staphylococcus hyicus and Staphylococcus aureus, whereas it was inactive against all Gram-negative bacteria tested. Amino acid sequencing of the purified bacteriocin showed homology (90.9% identity) with nisin U produced by Streptococcus uberis. The putative gene cluster involved in suicin production was amplified by PCR and sequence analysis revealed the presence of 11 open reading frames, including the structural gene and those required for the modification of amino acids, export, regulation, and immunity. Further studies will

  11. Suicin 90-1330 from a nonvirulent strain of Streptococcus suis: a nisin-related lantibiotic active on gram-positive swine pathogens.

    PubMed

    LeBel, Geneviève; Vaillancourt, Katy; Frenette, Michel; Gottschalk, Marcelo; Grenier, Daniel

    2014-09-01

    Streptococcus suis serotype 2 is known to cause severe infections (meningitis, endocarditis, and septicemia) in pigs and is considered an emerging zoonotic agent. Antibiotics have long been used in the swine industry for disease treatment/prevention and growth promoters. This pattern of utilization resulted in the spread of antibiotic resistance in S. suis worldwide. Interestingly, pigs may harbor S. suis in their tonsils without developing diseases, while North American strains belonging to the sequence type 28 (ST28) are nonvirulent in animal models. Consequently, the aim of this study was to purify and characterize a bacteriocin produced by a nonvirulent strain of S. suis serotype 2, with a view to a potential therapeutic and preventive application. S. suis 90-1330 belonging to ST28 and previously shown to be nonvirulent in an animal model exhibited antibacterial activity toward all S. suis pathogenic isolates tested. The bacteriocin produced by this strain was purified to homogeneity by cationic exchange and reversed-phase fast protein liquid chromatography. Given its properties (molecular mass of <4 kDa, heat, pH and protease stability, and the presence of modified amino acids), the bacteriocin, named suicin 90-1330, belongs to the lantibiotic class. Using a DNA-binding fluorophore, the bacteriocin was found to possess a membrane permeabilization activity. When tested on other swine pathogens, the suicin showed activity against Staphylococcus hyicus and Staphylococcus aureus, whereas it was inactive against all Gram-negative bacteria tested. Amino acid sequencing of the purified bacteriocin showed homology (90.9% identity) with nisin U produced by Streptococcus uberis. The putative gene cluster involved in suicin production was amplified by PCR and sequence analysis revealed the presence of 11 open reading frames, including the structural gene and those required for the modification of amino acids, export, regulation, and immunity. Further studies will

  12. Suicin 90-1330 from a Nonvirulent Strain of Streptococcus suis: a Nisin-Related Lantibiotic Active on Gram-Positive Swine Pathogens

    PubMed Central

    LeBel, Geneviève; Vaillancourt, Katy; Frenette, Michel; Gottschalk, Marcelo

    2014-01-01

    Streptococcus suis serotype 2 is known to cause severe infections (meningitis, endocarditis, and septicemia) in pigs and is considered an emerging zoonotic agent. Antibiotics have long been used in the swine industry for disease treatment/prevention and growth promoters. This pattern of utilization resulted in the spread of antibiotic resistance in S. suis worldwide. Interestingly, pigs may harbor S. suis in their tonsils without developing diseases, while North American strains belonging to the sequence type 28 (ST28) are nonvirulent in animal models. Consequently, the aim of this study was to purify and characterize a bacteriocin produced by a nonvirulent strain of S. suis serotype 2, with a view to a potential therapeutic and preventive application. S. suis 90-1330 belonging to ST28 and previously shown to be nonvirulent in an animal model exhibited antibacterial activity toward all S. suis pathogenic isolates tested. The bacteriocin produced by this strain was purified to homogeneity by cationic exchange and reversed-phase fast protein liquid chromatography. Given its properties (molecular mass of <4 kDa, heat, pH and protease stability, and the presence of modified amino acids), the bacteriocin, named suicin 90-1330, belongs to the lantibiotic class. Using a DNA-binding fluorophore, the bacteriocin was found to possess a membrane permeabilization activity. When tested on other swine pathogens, the suicin showed activity against Staphylococcus hyicus and Staphylococcus aureus, whereas it was inactive against all Gram-negative bacteria tested. Amino acid sequencing of the purified bacteriocin showed homology (90.9% identity) with nisin U produced by Streptococcus uberis. The putative gene cluster involved in suicin production was amplified by PCR and sequence analysis revealed the presence of 11 open reading frames, including the structural gene and those required for the modification of amino acids, export, regulation, and immunity. Further studies will

  13. Trans-generational Immune Priming Protects the Eggs Only against Gram-Positive Bacteria in the Mealworm Beetle

    PubMed Central

    Dubuffet, Aurore; Zanchi, Caroline; Boutet, Gwendoline; Moreau, Jérôme; Teixeira, Maria; Moret, Yannick

    2015-01-01

    In many vertebrates and invertebrates, offspring whose mothers have been exposed to pathogens can exhibit increased levels of immune activity and/or increased survival to infection. Such phenomena, called “Trans-generational immune priming” (TGIP) are expected to provide immune protection to the offspring. As the offspring and their mother may share the same environment, and consequently similar microbial threats, we expect the immune molecules present in the progeny to be specific to the microbes that immune challenged the mother. We provide evidence in the mealworm beetle Tenebrio molitor that the antimicrobial activity found in the eggs is only active against Gram-positive bacteria, even when females were exposed to Gram-negative bacteria or fungi. Fungi were weak inducers of TGIP while we obtained similar levels of anti-Gram-positive activity using different bacteria for the maternal challenge. Furthermore, we have identified an antibacterial peptide from the defensin family, the tenecin 1, which spectrum of activity is exclusively directed toward Gram-positive bacteria as potential contributor to this antimicrobial activity. We conclude that maternal transfer of antimicrobial activity in the eggs of T. molitor might have evolved from persistent Gram-positive bacterial pathogens between insect generations. PMID:26430786

  14. Trans-generational Immune Priming Protects the Eggs Only against Gram-Positive Bacteria in the Mealworm Beetle.

    PubMed

    Dubuffet, Aurore; Zanchi, Caroline; Boutet, Gwendoline; Moreau, Jérôme; Teixeira, Maria; Moret, Yannick

    2015-10-01

    In many vertebrates and invertebrates, offspring whose mothers have been exposed to pathogens can exhibit increased levels of immune activity and/or increased survival to infection. Such phenomena, called "Trans-generational immune priming" (TGIP) are expected to provide immune protection to the offspring. As the offspring and their mother may share the same environment, and consequently similar microbial threats, we expect the immune molecules present in the progeny to be specific to the microbes that immune challenged the mother. We provide evidence in the mealworm beetle Tenebrio molitor that the antimicrobial activity found in the eggs is only active against Gram-positive bacteria, even when females were exposed to Gram-negative bacteria or fungi. Fungi were weak inducers of TGIP while we obtained similar levels of anti-Gram-positive activity using different bacteria for the maternal challenge. Furthermore, we have identified an antibacterial peptide from the defensin family, the tenecin 1, which spectrum of activity is exclusively directed toward Gram-positive bacteria as potential contributor to this antimicrobial activity. We conclude that maternal transfer of antimicrobial activity in the eggs of T. molitor might have evolved from persistent Gram-positive bacterial pathogens between insect generations.

  15. Trans-generational Immune Priming Protects the Eggs Only against Gram-Positive Bacteria in the Mealworm Beetle.

    PubMed

    Dubuffet, Aurore; Zanchi, Caroline; Boutet, Gwendoline; Moreau, Jérôme; Teixeira, Maria; Moret, Yannick

    2015-10-01

    In many vertebrates and invertebrates, offspring whose mothers have been exposed to pathogens can exhibit increased levels of immune activity and/or increased survival to infection. Such phenomena, called "Trans-generational immune priming" (TGIP) are expected to provide immune protection to the offspring. As the offspring and their mother may share the same environment, and consequently similar microbial threats, we expect the immune molecules present in the progeny to be specific to the microbes that immune challenged the mother. We provide evidence in the mealworm beetle Tenebrio molitor that the antimicrobial activity found in the eggs is only active against Gram-positive bacteria, even when females were exposed to Gram-negative bacteria or fungi. Fungi were weak inducers of TGIP while we obtained similar levels of anti-Gram-positive activity using different bacteria for the maternal challenge. Furthermore, we have identified an antibacterial peptide from the defensin family, the tenecin 1, which spectrum of activity is exclusively directed toward Gram-positive bacteria as potential contributor to this antimicrobial activity. We conclude that maternal transfer of antimicrobial activity in the eggs of T. molitor might have evolved from persistent Gram-positive bacterial pathogens between insect generations. PMID:26430786

  16. Zn or O? An Atomic Level Comparison on Antibacterial Activities of Zinc Oxides.

    PubMed

    Yu, Fen; Fang, Xuan; Jia, Huimin; Liu, Miaoxing; Shi, Xiaotong; Xue, Chaowen; Chen, Tingtao; Wei, Zhipeng; Fang, Fang; Zhu, Hui; Xin, Hongbo; Feng, Jing; Wang, Xiaolei

    2016-06-01

    For the first time, the influence of different types of atoms (Zn and O) on the antibacterial activities of nanosized ZnO was quantitatively evaluated with the aid of a 3D-printing-manufactured evaluation system. Two different outermost atomic layers were manufactured separately by using an ALD (atomic layer deposition) method. Interestingly, we found that each outermost atomic layer exhibited certain differences against gram-positive or gram-negative bacterial species. Zinc atoms as outermost layer (ZnO-Zn) showed a more pronounced antibacterial effect towards gram-negative E. coli (Escherichia coli), whereas oxygen atoms (ZnO-O) showed a stronger antibacterial activity against gram-positive S. aureus (Staphylococcus aureus). A possible antibacterial mechanism has been comprehensively discussed from different perspectives, including Zn(2+) concentrations, oxygen vacancies, photocatalytic activities and the DNA structural characteristics of different bacterial species.

  17. Zn or O? An Atomic Level Comparison on Antibacterial Activities of Zinc Oxides.

    PubMed

    Yu, Fen; Fang, Xuan; Jia, Huimin; Liu, Miaoxing; Shi, Xiaotong; Xue, Chaowen; Chen, Tingtao; Wei, Zhipeng; Fang, Fang; Zhu, Hui; Xin, Hongbo; Feng, Jing; Wang, Xiaolei

    2016-06-01

    For the first time, the influence of different types of atoms (Zn and O) on the antibacterial activities of nanosized ZnO was quantitatively evaluated with the aid of a 3D-printing-manufactured evaluation system. Two different outermost atomic layers were manufactured separately by using an ALD (atomic layer deposition) method. Interestingly, we found that each outermost atomic layer exhibited certain differences against gram-positive or gram-negative bacterial species. Zinc atoms as outermost layer (ZnO-Zn) showed a more pronounced antibacterial effect towards gram-negative E. coli (Escherichia coli), whereas oxygen atoms (ZnO-O) showed a stronger antibacterial activity against gram-positive S. aureus (Staphylococcus aureus). A possible antibacterial mechanism has been comprehensively discussed from different perspectives, including Zn(2+) concentrations, oxygen vacancies, photocatalytic activities and the DNA structural characteristics of different bacterial species. PMID:27124263

  18. Antibacterial activity of Pseudoalteromonas in the coral holobiont.

    PubMed

    Shnit-Orland, Maya; Sivan, Alex; Kushmaro, Ariel

    2012-11-01

    Corals harbor diverse and abundant prokaryotic populations. Bacterial communities residing in the coral mucus layer may be either pathogenic or symbiotic. Some species may produce antibiotics as a method of controlling populations of competing microbial species. The present study characterizes cultivable Pseudoalteromonas sp. isolated from the mucus layer of different coral species from the northern Gulf of Eilat, Red Sea, Israel. Six mucus-associated Pseudoalteromonas spp. obtained from different coral species were screened for antibacterial activity against 23 tester strains. Five of the six Pseudoalteromonas strains demonstrated extracellular antibacterial activity against Gram-positive-but not Gram-negative-tester strains. Active substances secreted into the cell-free supernatant are heat-tolerant and inhibit growth of Bacillus cereus, Staphylococcus aureus, and of ten endogenous Gram-positive marine bacteria isolated from corals. The Pseudoalteromonas spp. isolated from Red sea corals aligned in a phylogenetic tree with previously isolated Pseudoalteromonas spp. of marine origin that demonstrated antimicrobial activity. These results suggest that coral mucus-associated Pseudoalteromonas may play a protective role in the coral holobiont's defense against potential Gram-positive coral pathogens. PMID:22767125

  19. Antimicrobial Activity of Cationic Antimicrobial Peptides against Gram-Positives: Current Progress Made in Understanding the Mode of Action and the Response of Bacteria

    PubMed Central

    Omardien, Soraya; Brul, Stanley; Zaat, Sebastian A. J.

    2016-01-01

    Antimicrobial peptides (AMPs) have been proposed as a novel class of antimicrobials that could aid the fight against antibiotic resistant bacteria. The mode of action of AMPs as acting on the bacterial cytoplasmic membrane has often been presented as an enigma and there are doubts whether the membrane is the sole target of AMPs. Progress has been made in clarifying the possible targets of these peptides, which is reported in this review with as focus gram-positive vegetative cells and spores. Numerical estimates are discussed to evaluate the possibility that targets, other than the membrane, could play a role in susceptibility to AMPs. Concerns about possible resistance that bacteria might develop to AMPs are addressed. Proteomics, transcriptomics, and other molecular techniques are reviewed in the context of explaining the response of bacteria to the presence of AMPs and to predict what resistance strategies might be. Emergent mechanisms are cell envelope stress responses as well as enzymes able to degrade and/or specifically bind (and thus inactivate) AMPs. Further studies are needed to address the broadness of the AMP resistance and stress responses observed. PMID:27790614

  20. A new prenylated flavanoid with antibacterial activity from propolis collected in Egypt.

    PubMed

    El-Bassuony, Ashraf; AbouZid, Sameh

    2010-01-01

    A novel prenylated flavanoid, isonymphaeol-D (1), together with two known compounds, isonymphaeol-B (2) and nymphaeol-B (3), were isolated from Egyptian propolis. The structures of the isolated compounds were determined by various spectroscopic methods. 1 exhibited antibacterial activity against Gram-positive (Bacillus cereus, Staphylococcus aureus) and Gram-negative strains (Serratia sp., Pseudomonos sp., Escherichia coli).

  1. Evolving resistance among Gram-positive pathogens.

    PubMed

    Munita, Jose M; Bayer, Arnold S; Arias, Cesar A

    2015-09-15

    Antimicrobial therapy is a key component of modern medical practice and a cornerstone for the development of complex clinical interventions in critically ill patients. Unfortunately, the increasing problem of antimicrobial resistance is now recognized as a major public health threat jeopardizing the care of thousands of patients worldwide. Gram-positive pathogens exhibit an immense genetic repertoire to adapt and develop resistance to virtually all antimicrobials clinically available. As more molecules become available to treat resistant gram-positive infections, resistance emerges as an evolutionary response. Thus, antimicrobial resistance has to be envisaged as an evolving phenomenon that demands constant surveillance and continuous efforts to identify emerging mechanisms of resistance to optimize the use of antibiotics and create strategies to circumvent this problem. Here, we will provide a broad perspective on the clinical aspects of antibiotic resistance in relevant gram-positive pathogens with emphasis on the mechanistic strategies used by these organisms to avoid being killed by commonly used antimicrobial agents.

  2. Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications.

    PubMed

    Tao, Yu; Ju, Enguo; Ren, Jinsong; Qu, Xiaogang

    2015-02-11

    Bifunctionalized mesoporous silica-supported gold nanoparticles as oxidase and peroxidase mimics for antibacterial applications are demonstrated. For the first time, these mesoporous silica-supported gold nanoparticles are applied as oxidase and peroxidase mimics. Taking advantage of their prominent enzyme activities, the MSN-AuNPs show excellent antibacterial properties against both Gram-negative and Gram-positive bacteria. Furthermore, MSN-AuNPs also exhibit outstanding performance in biofilm elimination . PMID:25655182

  3. Reversal of antibiotic resistance in Gram-positive bacteria by the antihistaminic azelastine.

    PubMed

    El-Nakeeb, Moustafa A; Abou-Shleib, Hamida M; Khalil, Amal M; Omar, Hoda G; El-Halfawy, Omar M

    2012-03-01

    Antibiotic resistance represents a serious problem that complicates microbial infection. The use of 'helper compounds' capable of enhancing the antimicrobial activity of antibiotics is being investigated. Azelastine, a new generation antihistaminic, possesses certain antibacterial activity and is capable of inducing alteration in the bacterial membrane permeability. Hence, we hypothesized that it could reverse resistance to antibiotics. Azelastine significantly increased the antibacterial activity of eight antibiotics belonging to five different classes (β-lactams, macrolides, fluoroquinolones, aminoglycosides and tetracyclines) against nine Gram-positive clinical isolates: five Staphylococcus aureus, two Staphylococcus epidermidis and two Enterococcus faecium, seven of which were multi-drug resistant, reversing their resistance to the tested antibiotics. The synergistic effects of azelastine with the studied antibiotics increased with raising the pH from 5 to 8. Antibiotics did not affect the ability of azelastine to alter the permeability of a liposomal artificial membrane model, an effect thought to be critical for the interaction with antibiotics. The findings of this study present azelastine as a potential 'helper compound' that could reverse the resistance of multi-drug resistant Gram-positive clinical isolates to antibiotics. PMID:22339679

  4. Antifungal and antibacterial activity of Haliclona sp. from the Persian Gulf, Iran.

    PubMed

    Nazemi, M; Alidoust Salimi, M; Alidoust Salimi, P; Motallebi, A; Tamadoni Jahromi, S; Ahmadzadeh, O

    2014-09-01

    In this study, antifungal and antibacterial activities of diethyl ether, methanol and aqueous extracts of Haliclona sp. were assessed (in vitro). The antibacterial activity of the extracts was determined by broth dilution methods against clinical Gram-negative bacteria: Escherichia coli, Pseudomonas aeruginosa and Gram-positive bacteria: Staphylococcus aureus aureus, Bacillus subtilis spizizenii. The antifungal activity of the extracts was determined by using a broth microdilution test against clinical fungi Candida albicans and Aspergillus fumigatus. Our results showed diethyl ether extract of Haliclona sp. was active on Gram-positive bacteria. In addition, methanol extract in comparison with diethyl ether extract had better activity against C. albicans (MIC: 0.75 mg/mL, MFC: 1.5mg/mL) and A. fumigatus (MIC: 2mg/mL, MFC: 3mg/mL). Aqueous extract had neither antifungal nor antibacterial activities. Based our results, Haliclona sp. can be considered as a source of novel antibiotic and antifungal.

  5. Ethanol production in Gram-positive microbes

    DOEpatents

    Ingram, L.O.; Barbosa-Alleyne, M.D.F.

    1996-01-09

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase. 2 figs.

  6. Ethanol production in gram-positive microbes

    DOEpatents

    Ingram, Lonnie O'Neal; Barbosa-Alleyne, Maria D. F.

    1999-01-01

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

  7. Ethanol production in Gram-positive microbes

    DOEpatents

    Ingram, Lonnie O'Neal; Barbosa-Alleyne, Maria D. F.

    1996-01-01

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

  8. Ethanol production in Gram-positive microbes

    DOEpatents

    Ingram, L.O.; Barbosa-Alleyne, M.D.F.

    1999-06-29

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase. 2 figs.

  9. Mechanism of action of recombinant acc-royalisin from royal jelly of Asian honeybee against gram-positive bacteria.

    PubMed

    Shen, Lirong; Liu, Dandan; Li, Meilu; Jin, Feng; Din, Meihui; Parnell, Laurence D; Lai, Chao-Qiang

    2012-01-01

    The antibacterial activity of royalisin, an antimicrobial peptide from the royal jelly produced by honeybees, has been addressed extensively. However, its mechanism of action remains unclear. In this study, a recombinant royalisin, RAcc-royalisin from the royal jelly of Asian honeybee Apis cerana cerana, was expressed by fusing with glutathione S-transferase (GST) in Escherichia coli BL21, isolated and purified. The agar dilution assays with inhibition zone showed that RAcc-royalisin, similar to nisin, inhibits the growth of Gram-positive bacteria. The antibacterial activity of RAcc-royalisin was associated with its concentration, and was weakened by heat treatment ranging from 55°C to 85°C for 15 min. Both RAcc-royalisin and nisin exhibited the minimum inhibitory concentrations (MIC) of 62.5 µg/ml, 125 µg/ml, and 250 µg/ml against Gram-positive bacterial strains, Bacillus subtilis and Micrococcus flavus and Staphyloccocus aureus in the microplate assay, respectively. However, RAcc-royalisin did not show antimicrobial activity against tested Gram-negative bacterial and fungal strains. The antibacterial activity of RAcc-royalisin agrees well with the decrease in bacterial cell hydrophobicity, the leakage of 260-nm absorbing materials, and the observation by transmission electron microscopy, all indicating that RAcc-royalisin induced the disruption and dysfunction of cell walls and membranes. This is the first report detailing the antibacterial mechanism of royalisin against Gram-positive bacteria, and provides insight into the application of recombinant royalisin in food and pharmaceutical industries as an antimicrobial agent. PMID:23056609

  10. Mechanism of Action of Recombinant Acc-Royalisin from Royal Jelly of Asian Honeybee against Gram-Positive Bacteria

    PubMed Central

    Shen, Lirong; Liu, Dandan; Li, Meilu; Jin, Feng; Din, Meihui; Parnell, Laurence D.; Lai, Chao-Qiang

    2012-01-01

    The antibacterial activity of royalisin, an antimicrobial peptide from the royal jelly produced by honeybees, has been addressed extensively. However, its mechanism of action remains unclear. In this study, a recombinant royalisin, RAcc-royalisin from the royal jelly of Asian honeybee Apis cerana cerana, was expressed by fusing with glutathione S-transferase (GST) in Escherichia coli BL21, isolated and purified. The agar dilution assays with inhibition zone showed that RAcc-royalisin, similar to nisin, inhibits the growth of Gram-positive bacteria. The antibacterial activity of RAcc-royalisin was associated with its concentration, and was weakened by heat treatment ranging from 55°C to 85°C for 15 min. Both RAcc-royalisin and nisin exhibited the minimum inhibitory concentrations (MIC) of 62.5 µg/ml, 125 µg/ml, and 250 µg/ml against Gram-positive bacterial strains, Bacillus subtilis and Micrococcus flavus and Staphyloccocus aureus in the microplate assay, respectively. However, RAcc-royalisin did not show antimicrobial activity against tested Gram-negative bacterial and fungal strains. The antibacterial activity of RAcc-royalisin agrees well with the decrease in bacterial cell hydrophobicity, the leakage of 260-nm absorbing materials, and the observation by transmission electron microscopy, all indicating that RAcc-royalisin induced the disruption and dysfunction of cell walls and membranes. This is the first report detailing the antibacterial mechanism of royalisin against Gram-positive bacteria, and provides insight into the application of recombinant royalisin in food and pharmaceutical industries as an antimicrobial agent. PMID:23056609

  11. Mechanism of action of recombinant acc-royalisin from royal jelly of Asian honeybee against gram-positive bacteria.

    PubMed

    Shen, Lirong; Liu, Dandan; Li, Meilu; Jin, Feng; Din, Meihui; Parnell, Laurence D; Lai, Chao-Qiang

    2012-01-01

    The antibacterial activity of royalisin, an antimicrobial peptide from the royal jelly produced by honeybees, has been addressed extensively. However, its mechanism of action remains unclear. In this study, a recombinant royalisin, RAcc-royalisin from the royal jelly of Asian honeybee Apis cerana cerana, was expressed by fusing with glutathione S-transferase (GST) in Escherichia coli BL21, isolated and purified. The agar dilution assays with inhibition zone showed that RAcc-royalisin, similar to nisin, inhibits the growth of Gram-positive bacteria. The antibacterial activity of RAcc-royalisin was associated with its concentration, and was weakened by heat treatment ranging from 55°C to 85°C for 15 min. Both RAcc-royalisin and nisin exhibited the minimum inhibitory concentrations (MIC) of 62.5 µg/ml, 125 µg/ml, and 250 µg/ml against Gram-positive bacterial strains, Bacillus subtilis and Micrococcus flavus and Staphyloccocus aureus in the microplate assay, respectively. However, RAcc-royalisin did not show antimicrobial activity against tested Gram-negative bacterial and fungal strains. The antibacterial activity of RAcc-royalisin agrees well with the decrease in bacterial cell hydrophobicity, the leakage of 260-nm absorbing materials, and the observation by transmission electron microscopy, all indicating that RAcc-royalisin induced the disruption and dysfunction of cell walls and membranes. This is the first report detailing the antibacterial mechanism of royalisin against Gram-positive bacteria, and provides insight into the application of recombinant royalisin in food and pharmaceutical industries as an antimicrobial agent.

  12. Evolving Resistance Among Gram-positive Pathogens

    PubMed Central

    Munita, Jose M.; Bayer, Arnold S.; Arias, Cesar A.

    2015-01-01

    Antimicrobial therapy is a key component of modern medical practice and a cornerstone for the development of complex clinical interventions in critically ill patients. Unfortunately, the increasing problem of antimicrobial resistance is now recognized as a major public health threat jeopardizing the care of thousands of patients worldwide. Gram-positive pathogens exhibit an immense genetic repertoire to adapt and develop resistance to virtually all antimicrobials clinically available. As more molecules become available to treat resistant gram-positive infections, resistance emerges as an evolutionary response. Thus, antimicrobial resistance has to be envisaged as an evolving phenomenon that demands constant surveillance and continuous efforts to identify emerging mechanisms of resistance to optimize the use of antibiotics and create strategies to circumvent this problem. Here, we will provide a broad perspective on the clinical aspects of antibiotic resistance in relevant gram-positive pathogens with emphasis on the mechanistic strategies used by these organisms to avoid being killed by commonly used antimicrobial agents. PMID:26316558

  13. Screening of solvent dependent antibacterial activity of Prunus domestica.

    PubMed

    Yaqeen, Zahra; Naqvi, Naim-ul-Hasan; Sohail, Tehmina; Rehman, Zakir-ur; Fatima, Nudrat; Imran, Hina; Rehman, Atiqur

    2013-03-01

    Fruit of Prunus domestica was extracted in ethanol. The ethanol extract was further extracted with two solvents ethyl acetate and chloroform. The crude ethanol extract and two fractions (ethyl acetate and chloroform) were screened for their antibacterial activity using the agar well diffusion method .They were tested against nine bacteria; five Gram positive bacteria (Staphylococcus aureus, Streptococcuc intermedius, Bacillus cereus, Bacillus pumilus) and four Gram negative bacteria (Eschrichia coli, Proteus mirabilis Shigella flexneri, Salmonella typhi and Klebsiela pneumoniae). The susceptibility of microorganisms to all three fractions was compared with each other and with standard antibiotic (Ampicillin) Among all fractions ethyl acetate exhibited highest antibacterial activity (average zone of inhibition 34.57mm ± 1.3) while ethyl alcohol exhibited least antibacterial activity (average zone of inhibition 17.42mm ± 3.3). Minimum inhibitory concentration of ethanol, ethyl acetate and chloroform fractions was found in the range of 78 μ g/ml to 2500 μ gl/ml against gram positive and gram negative bacteria.

  14. Distribution and significance of heterotrophic marine bacteria with antibacterial activity.

    PubMed Central

    Nair, S; Simidu, U

    1987-01-01

    Bacteria with antibacterial activity were isolated from seawater, sediments, phytoplankton, and zooplankton of Suruga, Sagami, and Tokyo Bays and from soft corals and sponges collected from the Taiwan coast. Of the 726 strains isolated, 37 showed antibacterial activity against either Vibrio parahaemolyticus (ATCC 17802) or Staphylococcus aureus (P209). Sediment harbored the lowest number of these forms of bacteria, and those from Tokyo Bay did not show any activity. Attached isolates showed greater activity compared with free-living forms. Relatively high numbers of strains with antibacterial activity were associated with phytoplankton. Among the zooplankton isolates, cladocerans harbored the maximum number of antibacterial strains. Isolates were more inhibitory to gram-positive test cultures. Autoinhibition was observed only among 8% of the isolates. Marine nonproducers were more susceptible. Pseudomonas/Alteromonas species made up 81.0% of isolates, of which 30% were pigmented strains. The absence or reduction in number of bacteria with antibacterial activity in Tokyo Bay is attributed to its eutrophic nature, which may tend to moderate the production of antibacterial compounds. PMID:3435149

  15. Antibacterial activity in Actinidia chinensis, Feijoa sellowiana and Aberia caffra.

    PubMed

    Basile, A; Vuotto, M L; Violante, U; Sorbo, S; Martone, G; Castaldo-Cobianchi, R

    1997-01-01

    The antibacterial activity of extracts from various parts of plants (leaves, fruits and stems) was studied in Actinidia chinensis, Feijoa sellowiana and Aberia caffra. These are tropical plants used for food. The fruits (subdivided into skin, pulp and seeds), leaves and stems were separately extracted and tested, in triplicate, against eight Gram positive and Gram negative bacterial strains. All the extracts, except from the leaves of A. caffra, showed activity against all the strains employed. Inhibition of bacterial growth was tested against Na-cefotaxime, benzyl penicillin and tetracycline. The antibiotic activity of fruit resides essentially in the seeds. The antibacterial activity of extracts from vegetative plant parts was generally less active that from fruit extracts. The minimum inhibiting concentration (MIC) and minimum bactericidal concentration (MBC) were determined for all the extracts and showed exclusively bacteriostatic activity.

  16. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance.

    PubMed

    Valle, Demetrio L; Cabrera, Esperanza C; Puzon, Juliana Janet M; Rivera, Windell L

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria. PMID

  17. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance.

    PubMed

    Valle, Demetrio L; Cabrera, Esperanza C; Puzon, Juliana Janet M; Rivera, Windell L

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria.

  18. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance

    PubMed Central

    Valle, Demetrio L.; Cabrera, Esperanza C.; Puzon, Juliana Janet M.; Rivera, Windell L.

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria. PMID

  19. Disulfide-Bond-Forming Pathways in Gram-Positive Bacteria

    PubMed Central

    2015-01-01

    Disulfide bonds are important for the stability and function of many secreted proteins. In Gram-negative bacteria, these linkages are catalyzed by thiol-disulfide oxidoreductases (Dsb) in the periplasm. Protein oxidation has been well studied in these organisms, but it has not fully been explored in Gram-positive bacteria, which lack traditional periplasmic compartments. Recent bioinformatics analyses have suggested that the high-GC-content bacteria (i.e., actinobacteria) rely on disulfide-bond-forming pathways. In support of this, Dsb-like proteins have been identified in Mycobacterium tuberculosis, but their functions are not known. Actinomyces oris and Corynebacterium diphtheriae have recently emerged as models to study disulfide bond formation in actinobacteria. In both organisms, disulfide bonds are catalyzed by the membrane-bound oxidoreductase MdbA. Remarkably, unlike known Dsb proteins, MdbA is important for pathogenesis and growth, which makes it a potential target for new antibacterial drugs. This review will discuss disulfide-bond-forming pathways in bacteria, with a special focus on Gram-positive bacteria. PMID:26644434

  20. Draft Genome Sequence Analysis of a Pseudomonas putida W15Oct28 Strain with Antagonistic Activity to Gram-Positive and Pseudomonas sp. Pathogens

    PubMed Central

    Ye, Lumeng; Hildebrand, Falk; Dingemans, Jozef; Ballet, Steven; Laus, George; Matthijs, Sandra; Berendsen, Roeland; Cornelis, Pierre

    2014-01-01

    Pseudomonas putida is a member of the fluorescent pseudomonads known to produce the yellow-green fluorescent pyoverdine siderophore. P. putida W15Oct28, isolated from a stream in Brussels, was found to produce compound(s) with antimicrobial activity against the opportunistic pathogens Staphylococcus aureus, Pseudomonas aeruginosa, and the plant pathogen Pseudomonas syringae, an unusual characteristic for P. putida. The active compound production only occurred in media with low iron content and without organic nitrogen sources. Transposon mutants which lost their antimicrobial activity had the majority of insertions in genes involved in the biosynthesis of pyoverdine, although purified pyoverdine was not responsible for the antagonism. Separation of compounds present in culture supernatants revealed the presence of two fractions containing highly hydrophobic molecules active against P. aeruginosa. Analysis of the draft genome confirmed the presence of putisolvin biosynthesis genes and the corresponding lipopeptides were found to contribute to the antimicrobial activity. One cluster of ten genes was detected, comprising a NAD-dependent epimerase, an acetylornithine aminotransferase, an acyl CoA dehydrogenase, a short chain dehydrogenase, a fatty acid desaturase and three genes for a RND efflux pump. P. putida W15Oct28 genome also contains 56 genes encoding TonB-dependent receptors, conferring a high capacity to utilize pyoverdines from other pseudomonads. One unique feature of W15Oct28 is also the presence of different secretion systems including a full set of genes for type IV secretion, and several genes for type VI secretion and their VgrG effectors. PMID:25369289

  1. Draft genome sequence analysis of a Pseudomonas putida W15Oct28 strain with antagonistic activity to Gram-positive and Pseudomonas sp. pathogens.

    PubMed

    Ye, Lumeng; Hildebrand, Falk; Dingemans, Jozef; Ballet, Steven; Laus, George; Matthijs, Sandra; Berendsen, Roeland; Cornelis, Pierre

    2014-01-01

    Pseudomonas putida is a member of the fluorescent pseudomonads known to produce the yellow-green fluorescent pyoverdine siderophore. P. putida W15Oct28, isolated from a stream in Brussels, was found to produce compound(s) with antimicrobial activity against the opportunistic pathogens Staphylococcus aureus, Pseudomonas aeruginosa, and the plant pathogen Pseudomonas syringae, an unusual characteristic for P. putida. The active compound production only occurred in media with low iron content and without organic nitrogen sources. Transposon mutants which lost their antimicrobial activity had the majority of insertions in genes involved in the biosynthesis of pyoverdine, although purified pyoverdine was not responsible for the antagonism. Separation of compounds present in culture supernatants revealed the presence of two fractions containing highly hydrophobic molecules active against P. aeruginosa. Analysis of the draft genome confirmed the presence of putisolvin biosynthesis genes and the corresponding lipopeptides were found to contribute to the antimicrobial activity. One cluster of ten genes was detected, comprising a NAD-dependent epimerase, an acetylornithine aminotransferase, an acyl CoA dehydrogenase, a short chain dehydrogenase, a fatty acid desaturase and three genes for a RND efflux pump. P. putida W15Oct28 genome also contains 56 genes encoding TonB-dependent receptors, conferring a high capacity to utilize pyoverdines from other pseudomonads. One unique feature of W15Oct28 is also the presence of different secretion systems including a full set of genes for type IV secretion, and several genes for type VI secretion and their VgrG effectors. PMID:25369289

  2. Synthesis and antibacterial activity of nisin-containing block copolymers.

    PubMed

    Joshi, Pranav R; McGuire, Joseph; Neff, Jennifer A

    2009-10-01

    Nisin, an antibacterial peptide proven to be an effective inhibitor of Gram-positive bacteria, was incorporated into novel block copolymer constructs and tested for retained antibacterial activity. Covalent coupling was achieved by chemical modification of the N-terminal isoleucine to introduce a thiol group. Thiolated-nisin derivatives were then linked to poly[ethylene oxide]-poly[propylene oxide]-poly[ethylene oxide] (PEO-PPO-PEO) triblocks that had been end-activated such that terminal hydroxyl groups of the PEO chains were replaced with pyridyl disulfide moieties. The nisin-containing block copolymers were separated from free nisin by dialysis and showed antimicrobial activity against the Gram-positive indicator strain Pediococcus pentosaceus. The contribution to antimicrobial activity from nisin that was covalently linked was not distinguished from the contribution of nisin that had associated with the PEO-PPO-PEO triblocks through noncovalent interactions. However, nisin that was covalently linked showed activity upon reduction of the disulfide bond and release from the end-activated PEO. PMID:19358262

  3. Fighting infections due to multidrug-resistant Gram-positive pathogens.

    PubMed

    Cornaglia, G

    2009-03-01

    Growing bacterial resistance in Gram-positive pathogens means that what were once effective and inexpensive treatments for infections caused by these bacteria are now being seriously questioned, including penicillin and macrolides for use against pneumococcal infections and-in hospitals-oxacillin for use against staphylococcal infections. As a whole, multidrug-resistant (MDR) Gram-positive pathogens are rapidly becoming an urgent and sometimes unmanageable clinical problem. Nevertheless, and despite decades of research into the effects of antibiotics, the actual risk posed to human health by antibiotic resistance has been poorly defined; the lack of reliable data concerning the outcomes resulting from antimicrobial resistance stems, in part, from problems with study designs and the methods used in resistence determination. Surprisingly little is known, too, about the actual effectiveness of the many types of intervention aimed at controlling antibiotic resistance. New antibiotics active against MDR Gram-positive pathogens have been recently introduced into clinical practice, and the antibiotic pipeline contains additional compounds at an advanced stage of development, including new glycopeptides, new anti-methicillin-resistant Staphylococcus aureus (MRSA) beta-lactams, and new diaminopyrimidines. Many novel antimicrobial agents are likely to be niche products, endowed with narrow antibacterial spectra and/or targeted at specific clinical problems. Therefore, an important educational goal will be to change the current, long-lasting attitudes of both physicians and customers towards broad-spectrum and multipurpose compounds. Scientific societies, such as the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), must play a leading role in this process.

  4. [Antioxidant and antibacterial activities of dimeric phenol compounds].

    PubMed

    Ogata, Masahiro

    2008-08-01

    We studied the antioxidant and antibacterial activities of monomeric and dimeric phenol compounds. Dimeric compounds had higher antioxidant activities than monomeric compounds. Electron spin resonance spin-trapping experiments showed that phenol compounds with an allyl substituent on their aromatic rings directly scavenged superoxide, and that only eugenol trapped hydroxyl radicals. We developed a generation system of the hydroxyl radical without using any metals by adding L-DOPA and DMPO to PBS or MiliQ water in vitro. We found that eugenol trapped hydroxyl radicals directly and is metabolized to a dimer. On the other hand, dipropofol, a dimer of propofol, has strong antibacterial activity against Gram-positive bacteria. However, it lacks solubility in water and this property is assumed to limit its efficacy. We tried to improve the solubility and found a new solubilization method of dipropofol in water with the addition of a monosaccharide or ascorbic acid.

  5. Synthesis and antibacterial activity of sulfonamides. SAR and DFT studies

    NASA Astrophysics Data System (ADS)

    Boufas, Wahida; Dupont, Nathalie; Berredjem, Malika; Berrezag, Kamel; Becheker, Imène; Berredjem, Hajira; Aouf, Nour-Eddine

    2014-09-01

    A series of substituted sulfonamide derivatives were synthesized from chlorosulfonyl isocyanate (CSI) in tree steps (carbamoylation, sulfamoylation and deprotection). Antibacterial activity in vitro of some newly formed compounds investigated against clinical strains Gram-positive and Gram-negative: Escherichia coli and Staphylococcus aureus applying the method of dilution and minimal inhibition concentration (MIC) methods. These compounds have significant bacteriostatic activity with totalities of bacterial strains used. DFT calculations with B3LYP/6-31G(d) level have been used to analyze the electronic and geometric characteristics deduced for the stable structure of three compounds presenting conjugation between a nitrogen atom N through its lone pair and an aromatic ring next to it. The principal quantum chemical descriptors have been correlated with the antibacterial activity.

  6. Antibacterial and allelopathic activity of extract from Castanea sativa leaves.

    PubMed

    Basile, A; Sorbo, S; Giordano, S; Ricciardi, L; Ferrara, S; Montesano, D; Castaldo Cobianchi, R; Vuotto, M L; Ferrara, L

    2000-08-01

    Following the extraction of Castanea sativa with an aqueous solution of sulfuric acid (pH 3.0), the ethyl acetate soluble fraction was tested for its antibacterial and allelopathic activity. The extract was shown to have pronounced antibacterial effects against seven of the eight strains of Gram-positive and Gram-negative bacteria used (MIC in the range of 64-256 microg/ml and MBC in the range of 256-512 microg/ml). The active fraction was analyzed by TLC and HPLC showing the presence of rutin, hesperidin, quercetin, apigenin, morin, naringin, galangin and kaempferol. Standards of the identified flavonoids were tested against the same bacterial strains. The highest activity was shown by quercetin, rutin and apigenin. The allelopathic effect was tested against Raphanus sativus seed germination. The extract, quercetin, rutin and apigenin caused a decrease in the percentage of seed germination and root and epicotyl growth.

  7. Chemical Composition and Antibacterial Activity of Essential Oil of Cosmos bipinnatus Cav. Leaves from South Africa

    PubMed Central

    Olajuyigbe, Olufunmiso; Ashafa, Anofi

    2014-01-01

    The chemical composition of essential oils isolated from the leaves of Cosmos bipinnatus and its antibacterial activity were analyzed by GC-MS and microbroth dilution assay respectively. The essential oil extracted from this plant was predominantly composed of monoterpenes (69.62%) and sesquiterpenes (22.73%). The antibacterial assay showed that the oil had significant inhibitory effects against both Gram-negative and Gram-positive bacteria isolates. The MIC of Gram-positive strains ranged between 0.16 and 0.31 mg/mL while those of Gram-negative bacteria ranged between 0.31 and 0.63 mg/mL. The Gram-positive bacteria were more susceptible to the essential oil than the Gram-negative bacteria. Most of the major components of this oil in other plants have been reported for antimicrobial activities. The antibacterial activity can be attributed to effects of the combination of several components of the oil. The results indicate that the C. bipinnatus might be exploited as natural antibacterial agent and have application in the treatment of several infectious diseases caused by these bacteria. Since this species is endemic to the eastern Free State, the plant could be collected during its bloom and used efficiently in the management of bacterial infections in South Africa. PMID:25587332

  8. Chemical Composition and Antibacterial Activity of Essential Oil of Cosmos bipinnatus Cav. Leaves from South Africa.

    PubMed

    Olajuyigbe, Olufunmiso; Ashafa, Anofi

    2014-01-01

    The chemical composition of essential oils isolated from the leaves of Cosmos bipinnatus and its antibacterial activity were analyzed by GC-MS and microbroth dilution assay respectively. The essential oil extracted from this plant was predominantly composed of monoterpenes (69.62%) and sesquiterpenes (22.73%). The antibacterial assay showed that the oil had significant inhibitory effects against both Gram-negative and Gram-positive bacteria isolates. The MIC of Gram-positive strains ranged between 0.16 and 0.31 mg/mL while those of Gram-negative bacteria ranged between 0.31 and 0.63 mg/mL. The Gram-positive bacteria were more susceptible to the essential oil than the Gram-negative bacteria. Most of the major components of this oil in other plants have been reported for antimicrobial activities. The antibacterial activity can be attributed to effects of the combination of several components of the oil. The results indicate that the C. bipinnatus might be exploited as natural antibacterial agent and have application in the treatment of several infectious diseases caused by these bacteria. Since this species is endemic to the eastern Free State, the plant could be collected during its bloom and used efficiently in the management of bacterial infections in South Africa.

  9. Characterization of a Novel Small Molecule That Potentiates β-Lactam Activity against Gram-Positive and Gram-Negative Pathogens

    PubMed Central

    Nair, Dhanalakshmi R.; Monteiro, João M.; Memmi, Guido; Thanassi, Jane; Pucci, Michael; Schwartzman, Joseph; Pinho, Mariana G.

    2015-01-01

    In a loss-of-viability screen using small molecules against methicillin-resistant Staphylococcus aureus (MRSA) strain USA300 with a sub-MIC of a β-lactam, we found a small molecule, designated DNAC-1, which potentiated the effect of oxacillin (i.e., the MIC of oxacillin decreased from 64 to 0.25 μg/ml). Fluorescence microscopy indicated a disruption in the membrane structures within 15 min of exposure to DNAC-1 at 2× MIC. This permeabilization was accompanied by a rapid loss of membrane potential, as monitored by use of the DiOC2 (3,3′-diethyloxacarbocyanine iodide) dye. Macromolecular analysis showed the inhibition of staphylococcal cell wall synthesis by DNAC-1. Transmission electron microscopy of treated MRSA USA300 cells revealed a slightly thicker cell wall, together with mesosome-like projections into the cytosol. The exposure of USA300 cells to DNAC-1 was associated with the mislocalization of FtsZ accompanied by the localization of penicillin-binding protein 2 (PBP2) and PBP4 away from the septum, as well as mild activation of the vraRS-mediated cell wall stress response. However, DNAC-1 does not have any generalized toxicity toward mammalian host cells. DNAC-1 in combination with ceftriaxone is also effective against an assortment of Gram-negative pathogens. Using a murine subcutaneous coinjection model with 108 CFU of USA300 as a challenge inoculum, DNAC-1 alone or DNAC-1 with a sub-MIC of oxacillin resulted in a 6-log reduction in bacterial load and decreased abscess formation compared to the untreated control. We propose that DNAC-1, by exerting a bimodal effect on the cell membrane and cell wall, is a viable candidate in the development of combination therapy against many common bacterial pathogens. PMID:25583731

  10. Characterization of a novel small molecule that potentiates β-lactam activity against gram-positive and gram-negative pathogens.

    PubMed

    Nair, Dhanalakshmi R; Monteiro, João M; Memmi, Guido; Thanassi, Jane; Pucci, Michael; Schwartzman, Joseph; Pinho, Mariana G; Cheung, Ambrose L

    2015-04-01

    In a loss-of-viability screen using small molecules against methicillin-resistant Staphylococcus aureus (MRSA) strain USA300 with a sub-MIC of a β-lactam, we found a small molecule, designated DNAC-1, which potentiated the effect of oxacillin (i.e., the MIC of oxacillin decreased from 64 to 0.25 μg/ml). Fluorescence microscopy indicated a disruption in the membrane structures within 15 min of exposure to DNAC-1 at 2× MIC. This permeabilization was accompanied by a rapid loss of membrane potential, as monitored by use of the DiOC2 (3,3'-diethyloxacarbocyanine iodide) dye. Macromolecular analysis showed the inhibition of staphylococcal cell wall synthesis by DNAC-1. Transmission electron microscopy of treated MRSA USA300 cells revealed a slightly thicker cell wall, together with mesosome-like projections into the cytosol. The exposure of USA300 cells to DNAC-1 was associated with the mislocalization of FtsZ accompanied by the localization of penicillin-binding protein 2 (PBP2) and PBP4 away from the septum, as well as mild activation of the vraRS-mediated cell wall stress response. However, DNAC-1 does not have any generalized toxicity toward mammalian host cells. DNAC-1 in combination with ceftriaxone is also effective against an assortment of Gram-negative pathogens. Using a murine subcutaneous coinjection model with 10(8) CFU of USA300 as a challenge inoculum, DNAC-1 alone or DNAC-1 with a sub-MIC of oxacillin resulted in a 6-log reduction in bacterial load and decreased abscess formation compared to the untreated control. We propose that DNAC-1, by exerting a bimodal effect on the cell membrane and cell wall, is a viable candidate in the development of combination therapy against many common bacterial pathogens.

  11. Influence of metallocene substitution on the antibacterial activity of multivalent peptide conjugates.

    PubMed

    Hoffknecht, Barbara C; Prochnow, Pascal; Bandow, Julia E; Metzler-Nolte, Nils

    2016-07-01

    Peptide dendrimers and derivatisation of peptides with metallocenes showed promising results in the search for new antibacterial agents. The two concepts are combined in this work leading to multivalent, metallocene-containing peptide derivates. These new peptides were synthesised utilising microwave assisted, copper(I) catalyzed alkyne-azide cycloaddition (CuAAC, "click" chemistry). Twelve new peptide conjugates, containing either a ferrocenoyl group or a ruthenocenoyl group on so-called ultrashort (i.e. < 5 amino acids) peptides, and ranging from monovalent to trivalent conjugates, were synthesised and their antibacterial activity was investigated by minimal inhibitory concentration (MIC) assays on five different bacterial strains. The antibacterial activity was compared to the same peptide conjugates without metallocenes. The resulting MIC values showed a significant enhancement of the antibacterial activity of these peptide conjugates against Gram-positive bacteria by the metallocenoyl groups. Additionally, the compounds with two metallocenoyl groups presented the best antibacterial activities overall. PMID:26988572

  12. Microwave-assisted synthesis and anti-bacterial activity of some 2-amino-6-aryl-4-(2-thienyl)pyrimidines.

    PubMed

    Chandrasekaran, S; Nagarajan, S

    2005-04-01

    Some novel 2-amino-6-aryl-4-(2-thienyl)pyrimidines were synthesized from 3-aryl-1-thien-2-ylprop-2-en-1-ones and guanidine hydrochloride in presence of alkali by conventional heating in alcoholic medium and microwave heating in solvent-free conditions. The compounds were evaluated for in vitro anti-bacterial activity. The anti-bacterial data revealed that compounds 5a-e had better activity against tested gram-positive organisms than the reference ciprofloxacin and norfloxacin. However, the compounds were nearly inactive against gram-negative bacteria. Compounds 5c and e were the most active compounds against gram-positive bacteria. PMID:15848201

  13. In vitro antibacterial activity in seed extracts of Manilkara zapota, Anona squamosa, and Tamarindus indica.

    PubMed

    Kothari, Vijay; Seshadri, Sriram

    2010-01-01

    Extracts prepared from seeds of Manilkara zapota, Anona squamosa, and Tamarindus indica were screened for their antibacterial activity by disc diffusion and broth dilution methods. Acetone and methanol extracts of T. indica seeds were found active against both gram-positive and gram-negative organisms. MIC values of potent extracts against susceptible organisms ranged from 53-380 μg/mL. Methanol extract of T. indica and acetone extract of M. zapota seeds were found to be bactericidal.

  14. Pili in gram-positive pathogens.

    PubMed

    Telford, John L; Barocchi, Michèle A; Margarit, Immaculada; Rappuoli, Rino; Grandi, Guido

    2006-07-01

    Most bacterial pathogens have long filamentous structures known as pili or fimbriae extending from their surface. These structures are often involved in the initial adhesion of the bacteria to host tissues during colonization. In gram-negative bacteria, pili are typically formed by non-covalent interactions between pilin subunits. By contrast, the recently discovered pili in gram-positive pathogens are formed by covalent polymerization of adhesive pilin subunits. Evidence from studies of pili in the three principal streptococcal pathogens of humans indicates that the genes that encode the pilin subunits and the enzymes that are required for the assembly of these subunits into pili have been acquired en bloc by the horizontal transfer of a pathogenicity island.

  15. Antibacterial and Cytotoxic Activity of Ethanol Extract of Mikania Cordata (Burm.F.) B.L. Robinson Leaves

    PubMed Central

    Ali, Md. Sekendar; Islam, Md. Saiful; Rahman, Md. Masudur; Islam, Md. Rabiul; Sayeed, Mohammed Aktar; Islam, Md. Rafikul

    2011-01-01

    The purpose of the present study to examine the antibacterial and cytotoxic properties of ethanol extract of leaves of Mikania cordata (Burm.f.) B.L. Robinson. To determine antibacterial activities, the extract was tested against four Gram positive and six Gram negative bacteria at three concentrations (500, 800, 1000 μg disc-1) through disc diffusion method. The extract showed moderate antibacterial actions and that was increased by increasing the concentration of the sample. The maximum antimicrobial potential was obtained against Shigella flexneri and no sen sitivity was found for Klebsiella sp. Comparatively gram-positive bacteria demonstrated more susceptibility to the extract than gram-negative bacteria. Cytotoxic property of the sample was done using Brine shrimp lethality bioassay where it did not show noticeable toxicity. So, our present study reveals that the leaves extract of M. cordata possess considerable antibacterial properties along with lesser amount of cytotoxicity PMID:24826008

  16. Comparative study of the antibacterial activity of propolis from different geographical and climatic zones.

    PubMed

    Seidel, Véronique; Peyfoon, Elham; Watson, David G; Fearnley, James

    2008-09-01

    Propolis is a natural substance produced by honeybees upon collection and transformation of resins and exudates from plants. Comparative studies on propolis collected from a wide range of countries are crucial for linking its provenance to antibacterial activity and thus ensuring that the beneficial properties of propolis are used more efficiently by the general public. This study reports the in vitro screening of ethanol extracts of propolis (n = 40), collected from a wide range of countries within the tropical, subtropical and temperate zones, and on the comparison of their activity against a range of Gram-positive and Gram-negative bacteria using a broth microdilution assay. The results obtained revealed that propolis extracts were mostly active against Gram-positive bacteria. The samples were subjected to principal component analysis (PCA) in order to model their activity against Gram-positive microorganisms. Three distinct clusters were distinguished in the PCA mapping based on MIC values, categorizing samples with strong (MIC range 3.9-31.25 mg/L), moderate (MIC range 31.25-> or =500 mg/L) and weak antibacterial activity or inactivity (MIC > or = 500 mg/L only). It is hypothesized that for samples of tropical provenance differences in the activity profiles may depend on the climatic characteristics of the collection sites. High antibacterial activity was observed for samples from locations characterized by a wet-tropical rainforest-type climate.

  17. Antimicrobials targeted to the replication-specific DNA polymerases of gram-positive bacteria: target potential of dnaE.

    PubMed

    Barnes, Marjorie H; Butler, Michelle M; Wright, George E; Brown, Neal C

    2012-10-01

    DNA polymerases pol IIIC and dnaE [i.e. pol IIIE] are essential for replicative DNA synthesis in low G:C Gram-positive eubacteria. Therefore, they have strong potential as targets for development of Gram-positive-selective antibacterial agents. This work has sought to extend to dnaE the recent discovery of antimicrobial agents based on pol IIIC-specific dGTP analogs. Compound 324C, a member of the same dGTP analog family, was found to be a potent and selective inhibitor of isolated dnaE in vitro. Surprisingly, 324C had no inhibitory effect in either intact Bacillus subtilis cells or in permeabilized cell preparations used to assess replicative DNA synthesis directly. It is proposed that the failure of 324C in the intact cell is a consequence of two major factors: (i) its template-dependent base pairing mechanism, and (ii) a specific subordinate role which dnaE apparently plays to pol IIIC. To generate an effective dnaE-selective inhibitor of replicative DNA synthesis in Gram-positive bacteria, it will likely be necessary to develop a molecule that attacks the enzyme's active site directly, without binding to template DNA.

  18. Synthesis and Antibacterial Activity of Pentacyclines: A Novel Class of Tetracycline Analogs

    PubMed Central

    2011-01-01

    Employing a highly efficient total synthesis approach, we synthesized and evaluated for antibacterial activity diverse and novel pentacycline analogs with systematic variations at C7, C8, C9, and C10. Certain substitution groups, as well as substitution patterns at various positions, were found to be preferred for increased antibacterial activity. A number of pentacycline analogs displayed potent activity in vitro and in vivo, especially against Gram-positive organisms. Several analogs have also shown promising oral bioavailability in rats and cynomolgus monkey. PMID:21500832

  19. [Epidemiology of the infection by resistant Gram-positive microorganisms].

    PubMed

    Cercenado, E

    2016-09-01

    Resistance among Gram-positive microorganisms to classical and new antimicrobials is a therapeutic threat. In Spain, methicillin resistance among Staphylococcus aureus (25-30%) and coagulase-negative staphylococci (50-60%) seems to have stabilized in the last decade. Among enterococci, vancomycin resistance is less than 5%. Both linezolid and daptomycin, in general, show good activity against these microorganisms. However, the resistance rates of Staphylococcus epidermidis to linezolid (20.9%), and of Enterococcus faecium to daptomycin (10.5%) in isolates from intensive care units are a worrying. PMID:27608305

  20. Current and novel antibiotics against resistant Gram-positive bacteria

    PubMed Central

    Perez, Federico; Salata, Robert A; Bonomo, Robert A

    2008-01-01

    The challenge posed by resistance among Gram-positive bacteria, epitomized by methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE) and vancomycin-intermediate and -resistant S. aureus (VISA and VRSA) is being met by a new generation of antimicrobials. This review focuses on the new β-lactams with activity against MRSA (ceftobiprole and ceftaroline) and on the new glycopeptides (oritavancin, dalbavancin, and telavancin). It will also consider the role of vancomycin in an era of existing alternatives such as linezolid, daptomycin and tigecycline. Finally, compounds in early development are described, such as iclaprim, friulimicin, and retapamulin, among others. PMID:21694878

  1. Enhanced antibacterial activities of leonuri herba extracts containing silver nanoparticles.

    PubMed

    Im, A-Rang; Han, Lina; Kim, E Ray; Kim, Jinwoong; Kim, Yeong Shik; Park, Youmie

    2012-08-01

    We report an efficient and powerful green process to enhance the antibacterial activities of the Leonuri herba extract. Plant sources, especially leaves and herbs, are precious for the generation of gold and silver nanoparticles. Various kinds of polyphenols and hydroxyl groups are capable of processing a reduction reaction to generate metals from its corresponding salts. We have prepared gold and silver nanoparticles with 70% ethanol and water extracts. No other toxic chemicals were utilized and the extracts played dual roles as reducing and stabilizing agents. For the generation of nanoparticles, both oven incubation and autoclaving methods were applied and the reaction conditions were optimized. Surface plasmon resonance band indicated that the formation of nanoparticles was successful. Images of high-resolution transmission electron microscopy revealed mostly spherical nanoparticles ranging from 9.9 to 13.0 nm in size. A water extract containing silver nanoparticles exhibited remarkable (approximately 127-fold) enhancement in antibacterial activities against Pseudomonas aeruginosa, Escherichia coli and Enterobacter cloacae when compared with the water extract alone. In addition, antibacterial activity towards Gram-negative bacteria was greater than that against Gram-positive bacteria. The process reported here has the potential to be a new approach to improve the antibacterial activities of plant extracts.

  2. Antibacterial, Antifungal and antioxidant activities of some medicinal plants.

    PubMed

    Wazir, Asma; Mehjabeen, -; Jahan, Noor; Sherwani, Sikander Khan; Ahmad, Mansoor

    2014-11-01

    The purpose of this study was to evaluate the antibacterial, antifungal and antioxidant activities of medicinal plants. The antibacterial activity of methanolic extracts of three medicinal plants (Swertia chirata, Terminalia bellerica and Zanthoxylum armatum) were tested against Gentamicin (standard drug) on eleven gram positive and seventeen gram negative bacteria by agar well method. It was revealed that seven-gram negative and six gram positive bacterial species were inhibited by these plant extracts. Minimum inhibitory concentrations (MIC) of the extracts were determined by broth micro-dilution method. The significant MIC value of Swertia chirata was 20mg/ml against Serratia marcesens, Zanthoxylum armatum was 10 mg/ml against Aeromonas hydrophila and Terminali bellerica was 20mg/ml against Acinetobacter baumanii as well as Serratia marcesens. Antifungal screening was done for methanolic extracts of these plants by agar well method with the 6 saprophytic, 5 dermatophytic and 6 yeasts. In this case Griseofulvin was used as a standard. All saprophytes and dermatophytes were showed resistance by these plants extracts except Microsporum canis, which was inhibited by Z. armatum and S. chirata extracts. The significant MIC value of Zanthoxylum armatum was 10mg/ml against Microsporum canis and Swertia chirata was 10mg/ml against Candida tropicalis. The anti-oxidant study was performed by DPPH free radical scavenging assay using ascorbic acid as a reference standard. Significant antioxidant activities were observed by Swertia chirata and Zanthoxylum armatum at concentration 200μg/ml was 70% DPPH scavenging activity (EC50=937.5μg/ml) while Terminalia bellerica showed 55.6% DPPH scavenging activity (EC50=100μg/ml). This study has shown that these plants could provide potent antibacterial compounds and may possible preventive agents in ROS related ailments.

  3. Rose Bengal-decorated silica nanoparticles as photosensitizers for inactivation of gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Guo, Yanyan; Rogelj, Snezna; Zhang, Peng

    2010-02-01

    A new type of photosensitizer, made from Rose Bengal (RB)-decorated silica (SiO2-NH2-RB) nanoparticles, was developed to inactivate gram-positive bacteria, including Methicillin-resistant Staphylococcus aureus (MRSA), with high efficiency through photodynamic action. The nanoparticles were characterized microscopically and spectroscopically to confirm their structures. The characterization of singlet oxygen generated by RB, both free and immobilized on a nanoparticle surface, was performed in the presence of anthracene-9,10-dipropionic acid. The capability of SiO2-NH2-RB nanoparticles to inactivate bacteria was tested in vitro on both gram-positive and gram-negative bacteria. The results showed that RB-decorated silica nanoparticles can inactivate MRSA and Staphylococcus epidermidis (both gram-positive) very effectively (up to eight-orders-of-magnitude reduction). Photosensitizers of such design should have good potential as antibacterial agents through a photodynamic mechanism.

  4. Antibacterial Activity of Myristica fragrans against Oral Pathogens.

    PubMed

    Shafiei, Zaleha; Shuhairi, Nadia Najwa; Md Fazly Shah Yap, Nordiyana; Harry Sibungkil, Carrie-Anne; Latip, Jalifah

    2012-01-01

    Myristica fragrans Houtt is mostly cultivated for spices in Penang Island, Malaysia. The ethyl acetate and ethanol extracts of flesh, mace and seed of Myristica fragrans was evaluated the bactericidal potential against three Gram-positive cariogenic bacteria (Streptococcus mutans ATCC 25175, Streptococcus mitis ATCC 6249, and Streptococcus salivarius ATCC 13419) and three Gram-negative periodontopathic bacteria (Aggregatibacter actinomycetemcomitans ATCC 29522, Porphyromonas gingivalis ATCC 33277, and Fusobacterium nucleatum ATCC 25586). Antibacterial activities of the extracts was determined by twofold serial microdilution, with minimum inhibitory concentrations (MIC) ranging from 1.25 to 640 mg/mL and 0.075 to 40 mg/mL. The minimum bactericidal concentration (MBC) was obtained by subculturing method. Among all extracts tested, ethyl acetate extract of flesh has the highest significant inhibitory effects against Gram-positive and Gram-negative bacteria with mean MIC value ranging from 0.625 to 1.25 ± 0.00 (SD) mg/mL; P = 0.017) and highest bactericidal effects at mean MBC value ranging from 0.625 mg/mL to 20 ± 0.00 (SD) mg/mL. While for seed and mace of Myristica fragrans, their ethanol extracts exhibited good antibacterial activity against both groups of test pathogens compared to its ethyl acetate extracts. All of the extracts of Myristica fragrans did not show any antibacterial activities against Fusobacterium nucleatum ATCC 25586. Thus, our study showed the potential effect of ethyl acetate and ethanol extracts from flesh, seed and mace of Myristica fragrans to be new natural agent that can be incorporated in oral care products.

  5. Fabrication of silver-coated cobalt ferrite nanocomposite and the study of its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Kooti, M.; Saiahi, S.; Motamedi, H.

    2013-05-01

    A new silver coated cobalt ferrite nanocomposite, Ag@CoFe2O4, was prepared by a two-step procedure. In the first step, cobalt ferrite nanoparticles were synthesized by a combustion method using glycine as a fuel. This ferrite was then coated with nanosilver via chemical reduction of Ag+ solution. The as-synthesized Ag@CoFe2O4 was characterized by X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The antibacterial activity of this composite was investigated against some Gram-positive and Gram-negative bacteria and compared with those of silver nanoparticles and some standard antibacterial drugs.

  6. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity.

    PubMed

    Kaviya, S; Santhanalakshmi, J; Viswanathan, B; Muthumary, J; Srinivasan, K

    2011-08-01

    Biosynthesis of silver nanoparticles (AgNPs) was achieved by a novel, simple green chemistry procedure using citrus sinensis peel extract as a reducing and a capping agent. The effect of temperature on the synthesis of silver nanoparticles was carried out at room temperature (25°C) and 60°C. The successful formation of silver nanoparticles has been confirmed by UV-vis, FTIR, XRD, EDAX, FESEM and TEM analysis and their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa (gram-negative), and Staphylococcus aureus (gram-positive) has been studied. The results suggest that the synthesized AgNPs act as an effective antibacterial agent.

  7. Report: Studies on antibacterial activity of some traditional medicinal plants used in folk medicine.

    PubMed

    Israr, Fozia; Hassan, Fouzia; Naqvi, Baqir Shyum; Azhar, Iqbal; Jabeen, Sabahat; Hasan, S M Farid

    2012-07-01

    Ethanolic extracts of eight medicinal plants commonly used in folk medicine were tested for their antibacterial activity against four Gram positive strains (Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis and, Streptococcus pneumoniae) and six Gram negative strains (Escherichia coli, Proteus vulgaris, Proteus mirabilis. Salmonella typhi para A, Salmonella typhi para B and Shigella dysenteriae) that were obtained from different pathological laboratories located in Karachi, Pakistan. Disc diffusion method was used to analyze antibacterial activity. Out of eight, five medicinal plants showed antibacterial activity against two or more than two microbial species. The most effective antimicrobial plant found to be Punica granatum followed by Curcuma zedoaria Rosc, Grewia asiatica L and Carissa carandas L, Curcuma caesia Roxb respectively. From these results, it is evident that medicinal plants could be used as a potential source of new antibacterial agents.

  8. Synthesis and Antibacterial Activity of Quaternary Ammonium 4-Deoxypyridoxine Derivatives

    PubMed Central

    Shtyrlin, Nikita V.; Sapozhnikov, Sergey V.; Galiullina, Albina S.; Kayumov, Airat R.; Bondar, Oksana V.; Mirchink, Elena P.; Isakova, Elena B.; Firsov, Alexander A.; Balakin, Konstantin V.

    2016-01-01

    A series of novel quaternary ammonium 4-deoxypyridoxine derivatives was synthesized. Two compounds demonstrated excellent activity against a panel of Gram-positive methicillin-resistant S. aureus strains with MICs in the range of 0.5–2 μg/mL, exceeding the activity of miramistin. At the same time, both compounds were inactive against the Gram-negative E. coli and P. aeruginosa strains. Cytotoxicity studies on human skin fibroblasts and embryonic kidney cells demonstrated that the active compounds possessed similar toxicity with benzalkonium chloride but were slightly more toxic than miramistin. SOS-chromotest in S. typhimurium showed the lack of DNA-damage activity of both compounds; meanwhile, one compound showed some mutagenic potential in the Ames test. The obtained results make the described chemotype a promising starting point for the development of new antibacterial therapies. PMID:27800491

  9. Acquired inducible antimicrobial resistance in Gram-positive bacteria

    PubMed Central

    Chancey, Scott T; Zähner, Dorothea; Stephens, David S

    2012-01-01

    A major contributor to the emergence of antibiotic resistance in Gram-positive bacterial pathogens is the expansion of acquired, inducible genetic elements. Although acquired, inducible antibiotic resistance is not new, the interest in its molecular basis has been accelerated by the widening distribution and often ‘silent’ spread of the elements responsible, the diagnostic challenges of such resistance and the mounting limitations of available agents to treat Gram-positive infections. Acquired, inducible antibiotic resistance elements belong to the accessory genome of a species and are horizontally acquired by transformation/recombination or through the transfer of mobile DNA elements. The two key, but mechanistically very different, induction mechanisms are: ribosome-sensed induction, characteristic of the macrolide–lincosamide–streptogramin B antibiotics and tetracycline resistance, leading to ribosomal modifications or efflux pump activation; and resistance by cell surface-associated sensing of β-lactams (e.g., oxacillin), glycopeptides (e.g., vancomycin) and the polypeptide bacitracin, leading to drug inactivation or resistance due to cell wall alterations. PMID:22913355

  10. Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis.

    PubMed

    Joray, Mariana Belén; Trucco, Lucas Daniel; González, María Laura; Napal, Georgina Natalia Díaz; Palacios, Sara María; Bocco, José Luis; Carpinella, María Cecilia

    2015-01-01

    The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2',4'-dihydroxychalcone (1), isoliquiritigenin (2), pinocembrin (3), 7-hydroxyflavanone (4), and 7,4'-dihydroxy-3'-methoxyflavanone (5). Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC) values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1-5 was determined by MTT assay on acute lymphoblastic leukemia (ALL) and chronic myeloid leukemia (CML) cell lines including their multidrug resistant (MDR) phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6-9.9 μM) and a lower effect against CML cells (IC50 = 27.5-30.0 μM). Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound. PMID:26819623

  11. Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis

    PubMed Central

    Joray, Mariana Belén; Trucco, Lucas Daniel; González, María Laura; Napal, Georgina Natalia Díaz; Palacios, Sara María; Bocco, José Luis; Carpinella, María Cecilia

    2015-01-01

    The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2′,4′-dihydroxychalcone (1), isoliquiritigenin (2), pinocembrin (3), 7-hydroxyflavanone (4), and 7,4′-dihydroxy-3′-methoxyflavanone (5). Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC) values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1–5 was determined by MTT assay on acute lymphoblastic leukemia (ALL) and chronic myeloid leukemia (CML) cell lines including their multidrug resistant (MDR) phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6–9.9 μM) and a lower effect against CML cells (IC50 = 27.5–30.0 μM). Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound. PMID:26819623

  12. Evaluation of Parmotrema reticulatum Taylor for Antibacterial and Antiinflammatory Activities

    PubMed Central

    Jain, A. P.; Bhandarkar, S.; Rai, G.; Yadav, A. K.; Lodhi, S.

    2016-01-01

    Lichens produce variety of secondary metabolites including depsides, depsidones and dibenzofurans having multifunctional activity in response to external environmental condition. Present study provides evidence for in vitro antibacterial and in vivo antiinflammatory activity of acetone and ethanol extracts of Parmotrema reticulatum. In vitro antibacterial activity was investigated against gram positive and gram negative bacteria. Cotton pellet-induced granuloma, xylene-induced ear swelling, carragennan-induced edema, histamine-induced and carboxymethylcellulose sodium-induced leukocyte emigration in mice models were used to quantify the antiinflammatory activity. Acetone and ethanol extracts were showed antibacterial activity against Bacillus subtilis (minimal inhibitory concentration: 100 and 150 μg/ml) and Staphylococcus aureus (minimal inhibitory concentration: 100 and 200 μg/ml), Escherichia coli (minimal inhibitory concentration: 200 and 250 μg/ml), and Pseudomonasa eruginosa (minimal inhibitory concentration: 200 and 300 μg/ml). Acetone extract was inhibited edema significantly at 200 mg/kg with xylene, cotton pellet, carragennan and histamine induced edema in vivo models. Ethanol extract was found effective at dose of 300 mg/kg with all in vivo antiinflammatory models. The results showed significant (P<0.01) antiinflammatory effects at 200 and 300 mg/kg dose of acetone and ethanol extracts, respectively, which can be concluded that significant activity may be due to presence of flavanoids in ethanol extract and usnic acid in acetone extract. PMID:27168687

  13. Efficacy of telavancin, a lipoglycopeptide antibiotic, in experimental models of Gram-positive infection.

    PubMed

    Hegde, Sharath S; Janc, James W

    2014-12-01

    Telavancin is a parenteral lipoglycopeptide antibiotic with a dual mechanism of action contributing to bactericidal activity against multidrug-resistant Gram-positive pathogens. It has been approved for the treatment of complicated skin and skin structure infections due to susceptible Gram-positive bacteria and hospital-acquired/ventilator-associated bacterial pneumonia due to Staphylococcus aureus when other alternatives are unsuitable. Telavancin has been demonstrated to be efficacious in multiple animal models of soft tissue, cardiac, systemic, lung, bone, brain and device-associated infections involving clinically relevant Gram-positive pathogens, including methicillin-resistant S. aureus, glycopeptide-intermediate S. aureus, heterogeneous vancomycin-intermediate S. aureus and daptomycin non-susceptible methicillin-resistant S. aureus. The AUC0-24h/MIC ratio is the primary pharmacodynamically-linked pharmacokinetic parameter. The preclinical data for telavancin supports further investigative clinical evaluation of its efficacy in additional serious infections caused by susceptible Gram-positive pathogens.

  14. Microcins from Enterobacteria: On the Edge Between Gram-Positive Bacteriocins and Colicins

    NASA Astrophysics Data System (ADS)

    Rebuffat, Sylvie

    Most bacteria and archaea produce gene-encoded antimicrobial peptides/proteins called bacteriocins, which are secreted by the producing bacteria to compete against other microorganisms in a given niche. They are considered important mediators of intra- and interspecies interactions and therefore a factor in ­maintaining the microbial diversity and stability. They are ribosomally synthesized, and most of them are produced as inactive precursor proteins, which in some cases are further enzymatically modified. Bacteriocins generally exert potent antibacterial activities directed against bacterial species closely related to the producing bacteria. Bacteriocins are abundant and diverse in Gram-negative and Gram-positive bacteria. This chapter focuses on colicins and microcins from enterobacteria (mainly Escherichia coli) and on bacteriocins from lactic acid bacteria (LAB). Microcins are the lower-molecular-mass bacteriocins produced by Gram-negative bacteria with a repertoire of only 14 representatives. They form a very restricted family of bacteriocins, compared to the huge family of LAB bacteriocins that is constituted of several hundreds of peptides, with which microcins share common characteristics. Nevertheless, microcins also show similarities, particularly in their uptake mechanisms, with the higher-molecular-mass colicins, also produced by E. coli strains. On the edge between LAB bacteriocins and colicins, microcins appear to combine highly efficient strategies developed by both Gram-positive and Gram-negative bacteria at different levels, including uptake, translocation, killing of target cells, and immunity of the producing bacteria, making them important actors of bacterial competitions and fascinating models for novel concepts toward antimicrobial strategies and against resistance mechanisms.

  15. An adamantyl amino acid containing gramicidin S analogue with broad spectrum antibacterial activity and reduced hemolytic activity.

    PubMed

    Kapoerchan, Varsha V; Knijnenburg, Annemiek D; Niamat, Miquel; Spalburg, Emile; de Neeling, Albert J; Nibbering, Peter H; Mars-Groenendijk, Roos H; Noort, Daan; Otero, José M; Llamas-Saiz, Antonio L; van Raaij, Mark J; van der Marel, Gijs A; Overkleeft, Herman S; Overhand, Mark

    2010-10-25

    The cyclic cationic antimicrobial peptide gramicidin S (GS) is an effective topical antibacterial agent that is toxic for human red blood cells (hemolysis). Herein, we present a series of amphiphilic derivatives of GS with either two or four positive charges and characteristics ranging between very polar and very hydrophobic. Screening of this series of peptide derivatives identified a compound that combines effective antibacterial activity with virtually no toxicity within the same concentration range. This peptide acts against both Gram-negative and Gram-positive bacteria, including several MRSA strains, and represents an interesting lead for the development of a broadly applicable antibiotic.

  16. Secretory phospholipase A2 in dromedary tears: a host defense against staphylococci and other gram-positive bacteria.

    PubMed

    Ben Bacha, Abir; Abid, Islem

    2013-03-01

    The best known physiologic function of secreted phospholipase A2 (sPLA2) group IIA (sPLA2-IIA) is defense against bacterial infection through hydrolytic degradation of bacterial membrane phospholipids. In fact, sPLA2-IIA effectively kills Gram-positive bacteria and to a lesser extent Gram-negative bacteria and is considered a major component of the eye's innate immune defense system. The antibacterial properties of sPLA2 have been demonstrated in rabbit and human tears. In this report, we have analyzed the bactericidal activity of dromedary tears and the subsequently purified sPLA2 on several Gram-positive bacteria. Our results showed that the sPLA2 displays a potent bactericidal activity against all the tested bacteria particularly against the Staphylococcus strains when tested in the ionic environment of tears. There is a synergic action of the sPLA2 with lysozyme when added to the bacteria culture prior to sPLA2. Interestingly, lysozyme purified from dromedary tears showed a significant bactericidal activity against Listeria monocytogene and Staphylococcus epidermidis, whereas the one purified from human tears displayed no activity against these two strains. We have also demonstrated that Ca(2+) is crucial for the activity of dromedary tear sPLA2 and to a less extent Mg(2+) ions. Given the presence of sPLA2 in tears and intestinal secretions, this enzyme may play a substantial role in innate mucosal and systemic bactericidal defenses against Gram-positive bacteria.

  17. Methods for targetted mutagenesis in gram-positive bacteria

    SciTech Connect

    Yang, Yunfeng

    2014-05-27

    The present invention provides a method of targeted mutagenesis in Gram-positive bacteria. In particular, the present invention provides a method that effectively integrates a suicide integrative vector into a target gene in the chromosome of a Gram-positive bacterium, resulting in inactivation of the target gene.

  18. Antioxidant Content, Antioxidant Activity, and Antibacterial Activity of Five Plants from the Commelinaceae Family.

    PubMed

    Tan, Joash Ban Lee; Yap, Wei Jin; Tan, Shen Yeng; Lim, Yau Yan; Lee, Sui Mae

    2014-01-01

    Commelinaceae is a family of herbaceous flowering plants with many species used in ethnobotany, particularly in South America. However, thus far reports of their bioactivity are few and far between. The primary aim of this study was to quantify the antioxidant and antibacterial activity of five Commelinaceae methanolic leaf extracts. The antioxidant content was evaluated by the total phenolic content (TPC), total tannin content (TTC), and total flavonoid content (TFC) assays. The antioxidant activities measured were DPPH free radical scavenging (FRS), ferric reducing power (FRP), and ferrous ion chelating (FIC); of the five plants, the methanolic leaf extract of Tradescantia zebrina showed the highest antioxidant content and activity, and exhibited antibacterial activity against six species of Gram-positive and two species of Gram-negative bacteria in a range of 5-10 mg/mL based on the broth microdilution method. PMID:26785239

  19. Antioxidant Content, Antioxidant Activity, and Antibacterial Activity of Five Plants from the Commelinaceae Family

    PubMed Central

    Tan, Joash Ban Lee; Yap, Wei Jin; Tan, Shen Yeng; Lim, Yau Yan; Lee, Sui Mae

    2014-01-01

    Commelinaceae is a family of herbaceous flowering plants with many species used in ethnobotany, particularly in South America. However, thus far reports of their bioactivity are few and far between. The primary aim of this study was to quantify the antioxidant and antibacterial activity of five Commelinaceae methanolic leaf extracts. The antioxidant content was evaluated by the total phenolic content (TPC), total tannin content (TTC), and total flavonoid content (TFC) assays. The antioxidant activities measured were DPPH free radical scavenging (FRS), ferric reducing power (FRP), and ferrous ion chelating (FIC); of the five plants, the methanolic leaf extract of Tradescantia zebrina showed the highest antioxidant content and activity, and exhibited antibacterial activity against six species of Gram-positive and two species of Gram-negative bacteria in a range of 5–10 mg/mL based on the broth microdilution method. PMID:26785239

  20. In Vitro Study to Evaluate Antibacterial and Non-haemolytic Activities of Four Iranian Medicinal Plants

    PubMed Central

    Sepahi, S; Ghorani-Azam, A; Sepahi, S; Asoodeh, A; Rostami, S

    2014-01-01

    Objective: Aqueous extracts of four medicinal plants including Ferula gummosa, Echinophora orientalis, Nasturtium microphyllum and Verbascum thapsus were used to determine their antibacterial activities and minimum inhibitory concentration (MIC). The aim of this study was to assess antibacterial activity of extracts of four medicinal plants against a Gram-positive and a Gram-negative bacteria (Staphylococcus aureus PTCC1431, and Escherichia coli HP101BA 7601c). Methods: Radial diffusion assay was used to assess the antibacterial activity of extracted samples. Haemolysis assay was also used to examine their nontoxic effects on human red blood cells. Results: This study showed that all the mentioned plants have satisfactory antibacterial effects against both Gram-positive and Gram-negative bacteria. Minimum inhibitory concentration values of these samples were less than 750 μg/mL. In addition, no significant haemolytic activity was observed at their MIC values. Conclusion: The results of this study showed that all these studied plants have good potential for further studies for drug discovery. PMID:25429470

  1. Antibacterial Activity of Ti₃C₂Tx MXene.

    PubMed

    Rasool, Kashif; Helal, Mohamed; Ali, Adnan; Ren, Chang E; Gogotsi, Yury; Mahmoud, Khaled A

    2016-03-22

    MXenes are a family of atomically thin, two-dimensional (2D) transition metal carbides and carbonitrides with many attractive properties. Two-dimensional Ti3C2Tx (MXene) has been recently explored for applications in water desalination/purification membranes. A major success indicator for any water treatment membrane is the resistance to biofouling. To validate this and to understand better the health and environmental impacts of the new 2D carbides, we investigated the antibacterial properties of single- and few-layer Ti3C2Tx MXene flakes in colloidal solution. The antibacterial properties of Ti3C2Tx were tested against Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) by using bacterial growth curves based on optical densities (OD) and colonies growth on agar nutritive plates. Ti3C2Tx shows a higher antibacterial efficiency toward both Gram-negative E. coli and Gram-positive B. subtilis compared with graphene oxide (GO), which has been widely reported as an antibacterial agent. Concentration dependent antibacterial activity was observed and more than 98% bacterial cell viability loss was found at 200 μg/mL Ti3C2Tx for both bacterial cells within 4 h of exposure, as confirmed by colony forming unit (CFU) and regrowth curve. Antibacterial mechanism investigation by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) coupled with lactate dehydrogenase (LDH) release assay indicated the damage to the cell membrane, which resulted in release of cytoplasmic materials from the bacterial cells. Reactive oxygen species (ROS) dependent and independent stress induction by Ti3C2Tx was investigated in two separate abiotic assays. MXenes are expected to be resistant to biofouling and offer bactericidal properties.

  2. Catabolite repression and inducer control in Gram-positive bacteria.

    PubMed

    Saier, M H; Chauvaux, S; Cook, G M; Deutscher, J; Paulsen, I T; Reizer, J; Ye, J J

    1996-02-01

    Results currently available clearly indicate that the metabolite-activated protein kinase-mediated phosphorylation of Ser-46 in HPr plays a key role in catabolite repression and the control of inducer levels in low-GC Gram-positive bacteria. This protein kinase is not found in enteric bacteria such as E. coli and Salmonella typhimurium where an entirely different PTS-mediated regulatory mechanism is responsible for catabolite repression and inducer concentration control. In Table 2 these two mechanistically dissimilar but functionally related processes are compared (Saier et al., 1995b). In Gram-negative enteric bacteria, an external sugar is sensed by the sugar-recognition constituent of an Enzyme II complex of the PTS (IIC), and a dephosphorylating signal is transmitted via the Enzyme IIB/HPr proteins to the central regulatory protein, IIAGlc. Targets regulated include (1) permeases specific for lactose, maltose, melibiose and raffinose, (2) catabolic enzymes such as glycerol kinase that generate cytoplasmic inducers, and (3) the cAMP biosynthetic enzyme, adenylate cyclase that mediates catabolite repression (Saier, 1989, 1993). In low-GC Gram-positive bacteria, cytoplasmic phosphorylated sugar metabolites are sensed by the HPr kinase which is allostericlaly activated. HPr becomes phosphorylated on Ser-46, and this phosphorylated derivative regulates the activities of its target proteins. These targets include (1) the PTS, (2) non-PTS permeases (both of which are inhibited) and (3) a cytoplasmic sugar-P phosphatase which is activated to reduce cytoplasmic inducer levels. Other important targets of HPr(ser-P) action are (4) the CcpA protein and probably (5) the CepB transcription factor. These two proteins together are believed to determine the intensity of catabolite repression. Their relative importance depends on physiological conditions. Both proteins may respond to the cytoplasmic concentration of HPr(ser-P) and appropriate metabolites. CepA possibly binds

  3. New antimicrobial approaches to gram positive respiratory infections.

    PubMed

    Liapikou, Adamantia; Cilloniz, Catia; Mensa, Josep; Torres, Antonio

    2015-06-01

    Nowadays, we face growing resistance among gram-positive and gram-negative pathogens that cause respiratory infection in the hospital and in the community. The spread of penicillin- and macrolide-resistant pneumococci, Community-acquired methicillin-resistant staphylococcus aureus (Ca-MRSA), the emergence of glycopeptide-resistant staphylococci underline the need for underline the need for therapeutic alternatives. A number of new therapeutic agents, with activity against the above Gram (+) respiratory pathogens, as ceftaroline, ceftopibrole, telavancin, tedizolid have become available, either in clinical trials or have been approved for clinical use. Especially, the development of new oral antibiotics, as nemonaxacin, omadacyclin, cethromycin and solithromycin will give a solution to the lack of oral drugs for outpatient treatment. In the future the clinician needs to optimize the use of old and new antibiotics to treat gram (+) respiratory serious infections.

  4. Chemical composition and antibacterial activity of the essential oil of Espeletia nana.

    PubMed

    Peña, Alexis; Rojas, Luis; Aparicio, Rosa; Alarcón, Libia; Baptista, José Gregorio; Velasco, Judith; Carmona, Juan; Usubillaga, Alfredo

    2012-05-01

    The essential oil of the leaves of Espeletia nana Cuatrec., obtained by hydrodistillation, was analyzed by GC-MS, which allowed the identification of 24 components, which made up 99.9% of the oil. The most abundant compounds were a-pinene (38.1%), beta-pinene (17.2%), myrcene (15.0%), spathulenol (4.2%), bicyclogermacrene (4.0%), a-zingiberene (4.0%), and gamma-himachalene (3.7%). Antibacterial activity was tested against Gram-positive and Gram-negative bacteria using the agar disk diffusion method. Activity was observed only against Gram-positive bacteria. MIC values were determined for Staphylococcus aureus ATCC 25923 (200 microg/mL) and Enterococcusfaecalis ATCC 29212 (600 microg/mL).

  5. Antibacterial Activities of Actinomycete Isolates Collected from Soils of Rajshahi, Bangladesh

    PubMed Central

    Rahman, Md. Ajijur; Islam, Mohammad Zahidul; Islam, Md. Anwar Ul

    2011-01-01

    This study was performed to isolate actinomycete colonies having antibacterial activity from soil samples collected from different places around Rajshahi, Bangladesh. Thirty actinomycete colonies were isolated in pure culture from five soil samples using Starch-casein-nitrate-agar medium. The isolates were grouped in five color series based on their aerial mycelia color and screened for their antibacterial activity against a range of test bacteria. Sixteen isolates (53.3%) were found to have moderate to high activity against four gram-positive and four gram-negative bacteria. Since many isolates showed inhibitory activity against indicator bacteria, it is suggestive that Bangladeshi soil could be an interesting source to explore for antibacterial secondary metabolites. PMID:21904683

  6. Synthesis, characterization and antibacterial activities of some new ferrocene-containing penems.

    PubMed

    Long, Bohua; He, Chunlian; Yang, Yingbin; Xiang, Jiannan

    2010-03-01

    The synthesis and structure-activity relationships of a series of new penems bearing ferrocenyl group attached to the C-2 position of the penem nucleus were described. The beta-lactanic derivatives obtained had been characterized as sodium salts, through (1)H NMR and IR, as well as through element analysis. Their in vitro antibacterial activities against both Gram-positive including meticillin-resistant Staphylococcus aureus (MRSA) and Gram-negative bacteria were tested. Most of the penems exhibited superior or equivalent efficacy of antibacterial activity as well as high stability to renal dehydropeptidase-I (DHP-I) compared with faropenem. In particular, the compound 14h having a heterocyclic group showed the most potent antibacterial activity. PMID:20053481

  7. Antibacterial activity of extracts from plants of central Argentina--isolation of an active principle from Achyrocline satureioides.

    PubMed

    Joray, Mariana B; del Rollán, María R; Ruiz, Gustavo M; Palacios, Sara M; Carpinella, María C

    2011-01-01

    The great increase in bacterial infections is fueling interest in the search for antibacterial products of plant origin. Extracts obtained from 51 native and naturalized plants from central Argentina were therefore evaluated for their IN VITRO inhibitory activity on pathogenic bacteria with the aim of selecting the most active ones as new sources of effective antibiotics. The susceptibility of reference and clinical strains of Enterococcus faecalis, Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella enterica serovar Enteritidis, and Staphylococcus aureus was determined. Extracts from Achyrocline satureioides, Flourensia oolepis, Lepechinia floribunda, and Lithrea molleoides were the most potent, with MIC and MBC values ranging from 0.006 to 2 and 0.012 to 10 mg/mL, respectively, on both gram-positive and negative bacteria. The antibacterial activity-guided isolation of A. satureioides ethanol extract showed 23-methyl-6-O-desmethylauricepyrone (1) to be the most active compound. This compound showed inhibitory effects against gram-positive bacteria with MIC and MBC values of 0.002 and 0.008 mg/mL, respectively, while on gram-negative strains, the MIC and MBC were 0.062-0.250 and 0.062-0.500 mg/mL, respectively. The strong antibacterial activity shown by the four plant extracts or the compound isolated from A. satureioides suggests that they could become part of the arsenal of antibacterial drugs currently used.

  8. Microwave-assisted synthesis of CdO-ZnO nanocomposite and its antibacterial activity against human pathogens

    NASA Astrophysics Data System (ADS)

    Karthik, K.; Dhanuskodi, S.; Gobinath, C.; Sivaramakrishnan, S.

    2015-03-01

    CdO-ZnO nanocomposite was prepared by microwave-assisted method and characterized by X-ray crystallography (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FT-IR). It exhibits hexagonal cubic structure with an average crystallite size of 27 nm. From the UV-Vis spectra, the bandgap is estimated as 2.92 eV. The fluorescence spectrum shows a near band edge emission at 422 nm. In addition the antibacterial activity of CdO-ZnO nanocomposite was carried out in-vitro against two kinds of bacteria: gram negative bacteria (G -ve) i.e. Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and gram positive bacteria (G +ve): Staphylococcus aureus, Proteus vulgaris and Bacillus spp. This study indicates the zone of inhibition of 40 mm has high antibacterial activity towards the gram positive bacterium S. aureus.

  9. Cytotoxicity of Ultrasmall Gold Nanoparticles on Planktonic and Biofilm Encapsulated Gram-Positive Staphylococci.

    PubMed

    Boda, Sunil Kumar; Broda, Janine; Schiefer, Frank; Weber-Heynemann, Josefine; Hoss, Mareike; Simon, Ulrich; Basu, Bikramjit; Jahnen-Dechent, Willi

    2015-07-01

    The emergence of multidrug resistant bacteria, especially biofilm-associated Staphylococci, urgently requires novel antimicrobial agents. The antibacterial activity of ultrasmall gold nanoparticles (AuNPs) is tested against two gram positive: S. aureus and S. epidermidis and two gram negative: Escherichia coli and Pseudomonas aeruginosa strains. Ultrasmall AuNPs with core diameters of 0.8 and 1.4 nm and a triphenylphosphine-monosulfonate shell (Au0.8MS and Au1.4MS) both have minimum inhibitory concentration (MIC) and minimum bactericidal concentration of 25 × 10(-6) m [Au]. Disc agar diffusion test demonstrates greater bactericidal activity of the Au0.8MS nanoparticles over Au1.4MS. In contrast, thiol-stabilized AuNPs with a diameter of 1.9 nm (AuroVist) cause no significant toxicity in any of the bacterial strains. Ultrasmall AuNPs cause a near 5 log bacterial growth reduction in the first 5 h of exposure, and incomplete recovery after 21 h. Bacteria show marked membrane blebbing and lysis in biofilm-associated bacteria treated with ultrasmall AuNP. Importantly, a twofold MIC dosage of Au0.8MS and Au1.4MS each cause around 80%-90% reduction in the viability of Staphylococci enveloped in biofilms. Altogether, this study demonstrates potential therapeutic activity of ultrasmall AuNPs as an effective treatment option against staphylococcal infections. PMID:25712910

  10. Antibacterial activity of Leonurus sibiricus aerial parts.

    PubMed

    Ahmed, Firoj; Islam, M Amirul; Rahman, M Mustafizur

    2006-06-01

    Different solvent extracts (carbon tetrachloride, chloroform, acetone and methanol) of Leonurus sibiricus were studied for their antibacterial activity. Carbon tetrachloride and chloroform extracts showed a broad spectrum of antibacterial activity.

  11. Unveiling the Mode of Action of Two Antibacterial Tanshinone Derivatives.

    PubMed

    Wang, Dongdong; Zhang, Wuxia; Wang, Tingting; Li, Na; Mu, Haibo; Zhang, Jiwen; Duan, Jinyou

    2015-01-01

    In this study, 2-(N-pyrrolidine-alkyl) tanshinones bearing pyrrolidine groups were synthesized and the antibacterial mechanism was explored. These derivatives selectively elicited antibacterial activity against Gram-positive bacteria. Moreover, their antibacterial activities were time-, concentration-dependent and persistent. It appeared that Fenton-mediated hydroxyl radicals were involved, and the disruption of cell membranes was observed. This study indicates that 2-(N-pyrrolidine-alkyl) tanshinones might be potential candidates as antibacterial agents. PMID:26263982

  12. Unveiling the Mode of Action of Two Antibacterial Tanshinone Derivatives

    PubMed Central

    Wang, Dongdong; Zhang, Wuxia; Wang, Tingting; Li, Na; Mu, Haibo; Zhang, Jiwen; Duan, Jinyou

    2015-01-01

    In this study, 2-(N-pyrrolidine-alkyl) tanshinones bearing pyrrolidine groups were synthesized and the antibacterial mechanism was explored. These derivatives selectively elicited antibacterial activity against Gram-positive bacteria. Moreover, their antibacterial activities were time-, concentration-dependent and persistent. It appeared that Fenton-mediated hydroxyl radicals were involved, and the disruption of cell membranes was observed. This study indicates that 2-(N-pyrrolidine-alkyl) tanshinones might be potential candidates as antibacterial agents. PMID:26263982

  13. Human Defensin 5 Disulfide Array Mutants: Disulfide Bond Deletion Attenuates Antibacterial Activity Against Staphylococcus aureus

    PubMed Central

    Wanniarachchi, Yoshitha A.; Kaczmarek, Piotr; Wan, Andrea; Nolan, Elizabeth M.

    2011-01-01

    Human α-defensin 5 (HD5, HD5ox to specify the oxidized and disulfide linked form) is a 32-residue cysteine-rich host-defense peptide, expressed and released by small intestinal Paneth cells, that exhibits antibacterial activity against a number of Gram-negative and –positive bacterial strains. To ascertain the contributions of its disulfide array to structure, antimicrobial activity, and proteolytic stability, a series of HD5 double mutant peptides where pairs of cysteine residues corresponding to native disulfide linkages (Cys3—Cys31, Cys5—Cys20, Cys10—Cys30) were mutated to Ser or Ala residues were overexpressed in E. coli, purified and characterized. A hexa mutant peptide, HD5[Serhexa], where all six native Cys residues are replaced by Ser residues was also evaluated. Removal of a single native S—S linkage influences oxidative folding and regioisomerization, antibacterial activity, Gram-negative bacterial membrane permeabilization, and proteolytic stability. Whereas the majority of the HD5 mutant peptides show low-micromolar activity against Gram-negative E. coli ATCC 25922 in colony counting assays, the wild-type disulfide array is essential for low-micromolar activity against Gram-positive S. aureus ATCC 25923. Removal of a single disulfide bond attenuates the activity observed for HD5ox against this Gram-positive bacterial strain. This observation supports the notion that the HD5ox mechanism of antibacterial action differs for Gram-negative and Gram-positive species (Wei, G.; de Leeuw, E., Pazgier, M., Yuan, W., Zou, G., Wang, J., Ericksen, B., Lu, W.-Y.; Lehrer, R. I.; Lu, W. (2009) J. Biol. Chem. 284, 29180-29192), and that the native disulfide array is a requirement for its activity against S. aureus. PMID:21861459

  14. Antibacterial activity of Artocarpus heterophyllus.

    PubMed

    Khan, M R; Omoloso, A D; Kihara, M

    2003-07-01

    The crude methanolic extracts of the stem and root barks, stem and root heart-wood, leaves, fruits and seeds of Artocarpus heterophyllus and their subsequent partitioning with petrol, dichloromethane, ethyl acetate and butanol gave fractions that exhibited a broad spectrum of antibacterial activity. The butanol fractions of the root bark and fruits were found to be the most active. None of the fractions were active against the fungi tested.

  15. Synthesis and antibacterial activities of acylide derivatives bearing an aryl-tetrazolyl chain

    PubMed Central

    Shan, Ling-Xing; Sun, Ping-Hua; Guo, Bao-Qin; Xu, Xing-Jun; Li, Zhi-Qiang; Sun, Jia-Zhi; Zhou, Shu-Feng; Chen, Wei-Min

    2014-01-01

    Seventeen acylides bearing an aryl-tetrazolyl alkyl-substituted side chain were synthesized, starting from clarithromycin, via several reactions including hydrolysis, acetylating, esterification, carbamylation, and Michael addition. The structures of all new compounds were confirmed by 1H nuclear magnetic resonance spectroscopy, 13C nuclear magnetic resonance spectroscopy, and mass spectrometry. All these synthesized acylides were evaluated for in vitro antimicrobial activities against gram-positive pathogens (Staphylococcus aureus, Staphylococcus epidermidis) and gram-negative pathogens (Pseudomonas aeruginosa, Escherichia coli), using the broth microdilution method. Results showed that compounds 10e, 10f, 10g, 10 h, 10o have good antibacterial activities. PMID:25284984

  16. Novel cajaninstilbene acid derivatives as antibacterial agents.

    PubMed

    Geng, Zhi-Zhong; Zhang, Jian-Jun; Lin, Jing; Huang, Mei-Yan; An, Lin-Kun; Zhang, Hong-Bin; Sun, Ping-Hua; Ye, Wen-Cai; Chen, Wei-Min

    2015-07-15

    Discovery of novel antibacterial agents with new structural scaffolds that combat drug-resistant pathogens is an urgent task. Cajaninstilbene acid, which is isolated from pigeonpea leaves, has shown antibacterial activity. In this study, a series of cajaninstilbene acid derivatives were designed and synthesized. The antibacterial activities of these compounds against gram-negative and gram-positive bacteria, as well as nine strains of methicillin-resistant staphylococcus aureus (MRSA) bacteria are evaluated,and the related structure-activity relationships are discussed. Assays suggest that some of the synthetic cajaninstilbene acid derivatives exhibit potent antibacterial activity against gram-positive bacterial strains and MRSA. Among these compounds, 5b, 5c, 5j and 5k show better antibacterial activity than the positive control compounds. The results of MTT assays illustrate the low cytotoxicity of the active compounds.

  17. Diversity and antibacterial activities of fungi derived from the Gorgonian Echinogorgia rebekka from the South China Sea.

    PubMed

    Wang, Ya-Nan; Shao, Chang-Lun; Zheng, Cai-Juan; Chen, Yi-Yan; Wang, Chang-Yun

    2011-01-01

    The diversity of symbiotic fungi associated with the gorgonian coral Echinogorgia rebekka from the Weizhou coral reef in the South China Sea was investigated. Combined with morphologic traits, ITS-rDNA sequences revealed 18 fungal strains from this gorgonian. All of the 18 fungi belonged to the phylum Ascomycota and were distributed among seven genera in five orders: Eurotiales (Aspergillus and Penicillium), Pleosporales (Alternaria), Capnodiales (Cladosporium), Trichosphaeriales (Nigrospora) and Hypocreales (Hypocrea and Nectria). Antibacterial activities of these fungal strains were investigated with five pathogenic bacteria. All of the 18 fungal strains displayed different levels of antibacterial activities, most of which exhibited moderate to high antibacterial activities to the Gram-positive pathogens Staphylococcus aureus and Micrococcus tetragenus, and showed relatively low bioactivities to other three pathogenic bacteria. Several fungal strains in the genera Penicillium and Cladosporium with strong antibacterial activities provide potential for further research on isolation of bioactive secondary metabolites.

  18. Physicochemical Properties That Enhance Discriminative Antibacterial Activity of Short Dermaseptin Derivatives

    PubMed Central

    Rotem, Shahar; Radzishevsky, Inna; Mor, Amram

    2006-01-01

    Antimicrobial peptides are widely believed to exert their effects by nonspecific mechanisms. We assessed the extent to which physicochemical properties can be exploited to promote discriminative activity by manipulating the N-terminal sequence of the 13-mer dermaseptin derivative K4-S4(1-13) (P). Inhibitory activity determined in culture media against 16 strains of bacteria showed that when its hydrophobicity and charge were changed, P became predominantly active against either gram-positive or gram-negative bacteria. Thus, conjugation of various aminoacyl-lysin moieties (e.g., aminohexyl-K-P) led to inactivity against gram-positive bacteria (MIC50 > 50 μM) but potent activity against gram-negative bacteria (MIC50, 6.2 μM). Conversely, conjugation of equivalent acyls to the substituted analog M4-S4(1-13) (e.g., hexyl-M4-P) led to inactivity against gram-negative bacteria (MIC50 > 50 μM) but potent activity against gram-positive bacteria (MIC50, 3.1 μM). Surface plasmon resonance experiments, used to investigate peptides' binding properties to lipopolysaccharide-containing idealized phospholipid membranes, suggest that although the acylated derivatives have increased lipophilic properties with parallel antibacterial behavior, hydrophobic derivatives are prevented from reaching the cytoplasmic membranes of gram-negative bacteria. Moreover, unlike modifications that enhanced the activity against gram-positive bacteria, which also enhanced hemolysis, we found that modifications that enhanced activity against gram-negative bacteria generally reduced hemolysis. Thus, compared with the clinically tested peptides MSI-78 and IB-367, the dermaseptin derivative aminohexyl-K-P performed similarly in terms of potency and bactericidal kinetics but was significantly more selective in terms of discrimination between bacteria and human erythrocytes. Overall, the data suggest that similar strategies maybe useful to derive potent and safe compounds from known antimicrobial

  19. Resistance to bacteriocins produced by Gram-positive bacteria.

    PubMed

    Bastos, Maria do Carmo de Freire; Coelho, Marcus Lívio Varella; Santos, Olinda Cabral da Silva

    2015-04-01

    Bacteriocins are prokaryotic proteins or peptides with antimicrobial activity. Most of them exhibit a broad spectrum of activity, inhibiting micro-organisms belonging to different genera and species, including many bacterial pathogens which cause human, animal or plant infections. Therefore, these substances have potential biotechnological applications in either food preservation or prevention and control of bacterial infectious diseases. However, there is concern that continuous exposure of bacteria to bacteriocins may select cells resistant to them, as observed for conventional antimicrobials. Based on the models already investigated, bacteriocin resistance may be either innate or acquired and seems to be a complex phenomenon, arising at different frequencies (generally from 10(-9) to 10(-2)) and by different mechanisms, even amongst strains of the same bacterial species. In the present review, we discuss the prevalence, development and molecular mechanisms involved in resistance to bacteriocins produced by Gram-positive bacteria. These mechanisms generally involve changes in the bacterial cell envelope, which result in (i) reduction or loss of bacteriocin binding or insertion, (ii) bacteriocin sequestering, (iii) bacteriocin efflux pumping (export) and (iv) bacteriocin degradation, amongst others. Strategies that can be used to overcome this resistance are also addressed.

  20. Apolipophorin III from honeybees (Apis cerana) exhibits antibacterial activity.

    PubMed

    Kim, Bo Yeon; Jin, Byung Rae

    2015-04-01

    Apolipophorin III (apoLp-III) is involved in lipid transport and innate immunity in insects. In this study, an apoLp-III protein that exhibits antibacterial activity was identified in honeybees (Apis cerana). A. cerana apoLp-III cDNA encodes a 193 amino acid sequence that shares high identity with other members of the hymenopteran insect apoLp-III family. A. cerana apoLp-III is expressed constitutively in the fat body, epidermis, and venom gland and is detected as a 23-kDa protein. A. cerana apoLp-III expression is induced in the fat body after injection with Escherichia coli, Bacillus thuringiensis, or Beauveria bassiana. However, recombinant A. cerana apoLp-III (expressed in baculovirus-infected insect cells) binds directly to E. coli and B. thuringiensis but not to B. bassiana. Consistent with these findings, A. cerana apoLp-III exhibited antibacterial activity against both Gram-negative and Gram-positive bacteria. These results provide insight into the role of A. cerana apoLp-III during the innate immune response following bacterial infection.

  1. In vitro and in vivo antibacterial activity of AT-2266.

    PubMed

    Kouno, K; Inoue, M; Mitsuhashi, S

    1983-07-01

    AT-2266 [1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-1,8-naphthyridine-3-carbo xylic acid] showed a broad spectrum of antibacterial activity against gram-positive and gram-negative microorganisms, including Pseudomonas aeruginosa. The in vitro antibacterial activity of AT-2266 was in general comparable to that of norfloxacin, but much higher than that of pipemidic or nalidixic acid. The 90% minimal inhibitory concentrations (MIC90s) of AT-2266 for P. aeruginosa resistant to gentamicin (MIC range, 25 to greater than 200 microgram/ml) and Enterobacteriaceae resistant to nalidixic acid (25 to greater than 1,600 micrograms/ml) were 3.13 and 12.5 micrograms/ml, respectively. The to nalidixic acid (25 to 1,600 micrograms/ml) were 3.13 and 12.5 micrograms/ml, respectively. The MICs of AT-2266 were only slightly affected by the addition of horse serum or sodium cholate, by the pH of the medium, and by inoculum size. AT-2266 was sodium cholate, by the pH of the medium, and by inoculum size. AT-2266 was bactericidal at concentrations near its MIC value. The 50% effective doses of AT-2266 after oral administration against systemic infections in mice were about 1/2 those of norfloxacin, about 1/10 those of pipemidic acid, and between 1/20 and 1/40 those of nalidixic acid.

  2. Antibacterial activity of casein-derived peptides isolated from rabbit (Oryctolagus cuniculus) milk.

    PubMed

    Baranyi, Maria; Thomas, Ursula; Pellegrini, Antonio

    2003-05-01

    Acid-precipitated rabbit 'whole casein' was digested by trypsin, chymotrypsin, pepsin, and clostripain to screen for possible peptides with antibacterial properties. The peptide fragments were separated by reversed-phase chromatography. The collected fractions were pooled and their antibacterial properties tested against Escherichia coli, Bacillus subtilis and Staphylococcus lentus. Three antibacterial peptide fragments derived from tryptic digestion of rabbit casein were isolated and identified. Their sequences were found as follows: HVEQLLR (residues 50-56 of beta-casein), ILPFIQSLFPFAER (residues 64-77 of beta-casein), and FHLGHLK (residues 19-25 of alpha(s1)-casein). The three peptides were synthesized and found to exert antibacterial effect against gram positive bacteria only. Proteolytic digestion of rabbit casein by chymotrypsin, pepsin and clostripain yielded several peptide fragments with antibacterial activity. Since antibiotic peptides can be released from casein during the digestion of milk proteins, our results suggest a possible antibacterial function of rabbit caseins. It is conceivable that antibacterial peptides can be generated by endopeptidases of the mammalian gastrointestinal tract possibly providing protection for new-born rabbits against aggression of micro-organisms.

  3. Management of gram-positive bacterial infections in patients with cancer.

    PubMed

    Kosmidis, Christos I; Chandrasekar, Pranatharthi H

    2012-01-01

    Bacterial infections, particularly those due to gram-positive bacteria, continue to predominate in patients with cancer. Coagulase-negative and coagulase-positive staphylococci and enterococci remain as common pathogenic microorganisms. Clostridium difficile has emerged as a significant pathogen. Major clinical syndromes include vascular catheter-related infection, febrile neutropenia, diarrhea and colitis. Rising antimicrobial resistance among gram-positive bacteria is of serious concern. The clinical utility of penicillin against streptococci and vancomycin against coagulase-negative and coagulase-positive staphylococci and enterococci may be rapidly diminishing. Liberal empiric use of vancomycin during neutropenic fever needs careful reconsideration. Newer promising anti-gram-positive bacterial drugs with activity against methicillin-resistant staphylococci include daptomycin, linezolid, tigecycline and telavancin. However, toxicity concerns, limited data in immunocompromised populations and high cost prevent the widespread use of these drugs among patients with cancer.

  4. Phytochemical screening, cytotoxicity and antibacterial activities of two Bangladeshi medicinal plants.

    PubMed

    Roy, Ajoy; Biswas, Subrata Kumar; Chowdhury, Anusua; Shill, Manik Chandra; Raihan, Sheikh Zahir; Muhit, Md Abdul

    2011-10-01

    The objectives of the present study were to investigate phytochemical screening and to assay cytotoxicity and antibacterial activities of ethanolic extracts of leaves of two medicinal plants, Aglaonema hookerianum Schott (Family: Araceae) and Lannea grandis Engl. (Family: Anacardiaceae) available in Bangladesh. The brine shrimp lethality bioassay showed that the ethanolic extracts of Aglaonema hookerianum and Lannea grandis possessed cytotoxic activities with LC50 5.25 (microg mL(-1)) and 5.75 (microg mL(-1)) and LC90 10.47 (microg mL(-1)) and 9.55 (microg mL(-1)), respectively. Two extracts obtained from leaves were examined for their antibacterial activities against some gram positive bacteria such as Bacillus subtilis, Bacillus megaterium and Staphylococcus aureus, also gram negative strains of Pseudomonas aeruginosa, Escherichia coli, Shigella dysenteriae, Salmonella typhi, Salmonella paratyphi and Vibrio cholerae. Agar disc diffusion method was applied to observe the antibacterial efficacy of the extracts. Results indicated that both plant extracts (500 microg disc(-1)) displayed antibacterial activity against all of the tested microorganisms. These results were also compared with the zones of inhibition produced by commercially available standard antibiotic, Amoxicillin at concentration of 10 microg disc(-1). Observed antibacterial properties of the ethanolic extract of Aglaonema hookerianum Schott and Lannea grandis Engl. showed that both plants might be useful sources for the development of new potent antibacterial agents.

  5. Evaluation of antioxidant and antibacterial activity of methanolic extracts of Gentiana kurroo royle

    PubMed Central

    Baba, Shoib A.; Malik, Shahid A.

    2014-01-01

    In this study our objective was to evaluate the antioxidant and antimicrobial activity of methanolic extracts of leaves and roots of Gentiana kurroo. The antioxidant activities of the extracts were examined using different biochemical assays namely diphenylpicrylhydrazyl (DPPH), nitroblue tetrazolium (NBT) and ferric reducing power (FRAP). In all the assays, root extract exhibited stronger antioxidant activity than that of leaves. The antibacterial activity of the extracts was also evaluated and MIC values were calculated by broth dilution method. Although, the extracts prevented the growth of both Gram positive and Gram negative bacteria, the MIC values of methanolic extract of the leaves were higher than those of the root extract. The antibacterial and antioxidant activity of the extracts was found to be positively associated with the total phenolic and flavonoid content of the extracts. PMID:25313286

  6. Multidrug efflux pumps of Gram-positive bacteria.

    PubMed

    Schindler, Bryan D; Kaatz, Glenn W

    2016-07-01

    Gram-positive organisms are responsible for some of the most serious of human infections. Resistance to front-line antimicrobial agents can complicate otherwise curative therapy. These organisms possess multiple drug resistance mechanisms, with drug efflux being a significant contributing factor. Efflux proteins belonging to all five transporter families are involved, and frequently can transport multiple structurally unrelated compounds resulting in a multidrug resistance (MDR) phenotype. In addition to clinically relevant antimicrobial agents, MDR efflux proteins can transport environmental biocides and disinfectants which may allow persistence in the healthcare environment and subsequent acquisition by patients or staff. Intensive research on MDR efflux proteins and the regulation of expression of their genes is ongoing, providing some insight into the mechanisms of multidrug recognition and transport. Inhibitors of many of these proteins have been identified, including drugs currently being used for other indications. Structural modifications guided by structure-activity studies have resulted in the identification of potent compounds. However, lack of broad-spectrum pump inhibition combined with potential toxicity has hampered progress. Further work is required to gain a detailed understanding of the multidrug recognition process, followed by application of this knowledge in the design of safer and more highly potent inhibitors. PMID:27449594

  7. Gram-negative and Gram-positive bacterial extracellular vesicles.

    PubMed

    Kim, Ji Hyun; Lee, Jaewook; Park, Jaesung; Gho, Yong Song

    2015-04-01

    Like mammalian cells, Gram-negative and Gram-positive bacteria release nano-sized membrane vesicles into the extracellular environment either in a constitutive manner or in a regulated manner. These bacterial extracellular vesicles are spherical bilayered proteolipids enriched with bioactive proteins, lipids, nucleic acids, and virulence factors. Recent progress in this field supports the critical pathophysiological functions of these vesicles in both bacteria-bacteria and bacteria-host interactions. This review provides an overview of the current understanding on Gram-negative and Gram-positive bacterial extracellular vesicles, especially regarding the biogenesis, components, and functions in poly-species communities. We hope that this review will stimulate additional research in this emerging field of bacterial extracellular vesicles and contribute to the development of extracellular vesicle-based diagnostic tools and effective vaccines against pathogenic Gram-negative and Gram-positive bacteria.

  8. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites.

    PubMed

    Song, Cunfeng; Chang, Ying; Cheng, Ling; Xu, Yiting; Chen, Xiaoling; Zhang, Long; Zhong, Lina; Dai, Lizong

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. PMID:24433897

  9. Antibacterial activity of silver nanoparticles synthesized from serine.

    PubMed

    Jayaprakash, N; Judith Vijaya, J; John Kennedy, L; Priadharsini, K; Palani, P

    2015-04-01

    Silver nanoparticles (Ag NPs) were synthesized by a simple microwave irradiation method using polyvinyl pyrrolidone (PVP) as a capping agent and serine as a reducing agent. UV-Visible spectra were used to confirm the formation of Ag NPs by observing the surface plasmon resonance (SPR) band at 443nm. The emission spectrum of Ag NPs showed an emission band at 484nm. In the presence of microwave radiation, serine acts as a reducing agent, which was confirmed by Fourier transformed infrared (FT-IR) spectrum. High-resolution transmission electron microscopy (HR-TEM) and high-resolution scanning electron microscopy (HR-SEM) were used to investigate the morphology of the synthesized sample. These images showed the sphere-like morphology. The elemental composition of the sample was determined by the energy dispersive X-ray analysis (EDX). Selected area electron diffraction (SAED) was used to find the crystalline nature of the Ag NPs. The electrochemical behavior of the synthesized Ag NPs was analyzed by the cyclic voltammetry (CV). Antibacterial experiments showed that the prepared Ag NPs showed relatively similar antibacterial activities, when compared with AgNO3 against Gram-positive and Gram-negative bacteria.

  10. Nanostructured Ag(4)O(4) films with enhanced antibacterial activity.

    PubMed

    Dellasega, D; Facibeni, A; Di Fonzo, F; Bogana, M; Polissi, A; Conti, C; Ducati, C; Casari, C S; Li Bassi, A; Bottani, C E

    2008-11-26

    Ag(4)O(4) (i.e. silver(I)-silver(III) oxide) thin films with tailored structure and morphology at the nanoscale have been grown by reactive pulsed laser deposition (PLD) in an oxygen-containing atmosphere and they are shown to exhibit a very strong antibacterial activity towards Gram-negative bacteria (E. coli) and to completely inhibit the growth of Gram-positive bacteria (S. aureus). The formation of this particular high-valence silver oxide is explained in terms of the reactions occurring during the expansion of the ablated species in the reactive atmosphere, leading to the formation of low-stability Ag-O dimers and atomic oxygen, providing reactive species at the substrate where the film grows. PLD is shown to allow control of the structure (i.e. crystallinity and grain size) and of the morphology of the films, from compact and columnar to foam-like, thus allowing the deposition of nanocrystalline films with increased porosity and surface area. The antibacterial action towards E. coli is demonstrated and is shown to be superior to that of nanostructured Ag-based medical products. This can be related to the release of Ag ions with high oxidation number, which are known to be very reactive towards bacteria, and to the peculiar morphology at the nanoscale resulting in a large effective surface area.

  11. Colloidal polyaniline dispersions: antibacterial activity, cytotoxicity and neutrophil oxidative burst.

    PubMed

    Kucekova, Zdenka; Humpolicek, Petr; Kasparkova, Vera; Perecko, Tomas; Lehocký, Marián; Hauerlandová, Iva; Sáha, Petr; Stejskal, Jaroslav

    2014-04-01

    Polyaniline colloids rank among promising application forms of this conducting polymer. Cytotoxicity, antibacterial activity, and neutrophil oxidative burst tests were performed on cells treated with colloidal polyaniline dispersions. The antibacterial effect of colloidal polyaniline against gram-positive and gram-negative bacteria was most pronounced for Bacillus cereus and Escherichia coli, with a minimum inhibitory concentration of 3,500 μg mL(-1). The data recorded on human keratinocyte (HaCaT) and a mouse embryonic fibroblast (NIH/3T3) cell lines using an MTT assay and flow cytometry indicated a concentration-dependent cytotoxicity of colloid, with the absence of cytotoxic effect at around 150 μg mL(-1). The neutrophil oxidative burst test then showed that colloidal polyaniline, in concentrations <150 μg mL(-1), was not able to stimulate the production of reactive oxygen species in neutrophils and whole human blood. However, it worked efficiently as a scavenger of those already formed.

  12. Wall Teichoic Acids of Gram-Positive Bacteria

    PubMed Central

    Brown, Stephanie; Santa Maria, John P.; Walker, Suzanne

    2013-01-01

    The peptidoglycan layers of many gram-positive bacteria are densely functionalized with anionic glycopolymers called wall teichoic acids (WTAs). These polymers play crucial roles in cell shape determination, regulation of cell division, and other fundamental aspects of gram-positive bacterial physiology. Additionally, WTAs are important in pathogenesis and play key roles in antibiotic resistance. We provide an overview of WTA structure and biosynthesis, review recent studies on the biological roles of these polymers, and highlight remaining questions. We also discuss prospects for exploiting WTA biosynthesis as a target for new therapies to overcome resistant infections. PMID:24024634

  13. Is the use o f Gunnera perpensa extracts in endometritis related to antibacterial activity?

    PubMed

    McGaw, L J; Gehring, R; Katsoulis, L; Eloff, J N

    2005-06-01

    Rhizome extracts of Gunnera perpensa are used in traditional remedies in South Africa to treat endometritis both in humans and animals. An investigation was undertaken to determine whether this plant possesses antibacterial activity, which may explain its efficacy. Gunnera perpensa rhizome extracts were prepared serially with solvents of increasing polarity and tested for antibacterial activity. Test bacteria included the Gram-positive Enterococcus faecalis and Staphylococcus aureus and the Gram-negative Escherichia coli and Pseudomonas aeruginosa. A moderate to weak level of antibacterial activity in most of the extracts resulted, with the best minimal inhibitory concentration (MIC) value of 2.61 mg ml(-1) shown by the acetone extract against S. aureus. The extracts were also submitted to the brine shrimp assay to detect possible toxic or pharmacological effects. All the extracts were lethal to the brine shrimp larvae at a concentration of 5 mg ml(-1). The acetone extract was extremely toxic at 1 mg ml(-1), with some toxicity evident at 0.1 mg ml(-1). The remainder of the extracts generally displayed little activity at concentrations lower than 5 mg ml(-1). In summary, the results indicate that although the extracts demonstrated a level of pharmacological activity, the relatively weak antibacterial activity is unlikely to justify the use of G. perpensa rhizomes in the traditional treatment of endometritis. Rather, the slightly antibacterial nature of the rhizomes may contribute to an additive effect, along with their known uterotonic activity, to the overall efficacy of the preparation. PMID:16137130

  14. Effects of Lactobacillus plantarum immobilization in alginate coated with chitosan and gelatin on antibacterial activity.

    PubMed

    Trabelsi, Imen; Ayadi, Dorra; Bejar, Wacim; Bejar, Samir; Chouayekh, Hichem; Ben Salah, Riadh

    2014-03-01

    The present study aimed to investigate and evaluate the efficiency of immobilizing the Lactobacillus plantarum TN9 strain in alginate using chitosan and gelatin as coating materials, in terms of viability and antibacterial activity. The results indicate that maximum concentrations of L. plantarum TN9 strain were produced with 2% sodium alginate, 10(8)UFC/ml, and 1M calcium chloride. The viability and antibacterial activity of the L. plantarum TN9 cultures before and after immobilization in alginate, chitosan-coated alginate, and gelatin-coated alginate, were studied. The findings revealed that the viability of encapsulated L. plantarum could be preserved more than 5.8 log CFU/ml after 35 day of incubation at 4 °C, and no effects were observed when gelatin was used. The antibacterial activity of encapsulated L. plantarum TN9 against Gram-positive and Gram-negative pathogenic bacteria was enhanced in the presence of chitosan coating materials, and no activity was observed in the presence of gelatin. The effects of catalase and proteolytic enzymes on the culture supernatant of L. plantarum TN9 were also investigated, and the results suggested that the antibacterial activity observed was due to the production of organic acids. Taken together, the findings indicated that immobilization in chitosan enhanced the antibacterial activity of L. plantarum TN9 against several pathogenic bacteria. This encapsulated strain could be considered as a potential strong candidate for future application as an additive in the food and animal feed industries.

  15. Facile Preparation of Ag/NiO Composite Nanosheets and Their Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Shi, Cui-E.; Pan, Lu; Wang, Cheng-Run; He, Yi; Wu, Yong-Feng; Xue, Sai-Sai

    2016-01-01

    Sheet-like precursors of NiO and Ag/NiO with different Ag contents were synthesized by a facile and easily controlled hydrothermal method. The NiO and Ag/NiO composite nanosheets were prepared by calcination of the corresponding precursors at 400°C for 3 h. The as-synthesized samples were characterized by thermogravimetric analysis, x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. The antibacterial activity of NiO and Ag/NiO composites to several gram-positive and gram-negative bacteria was examined. Results showed that NiO nanosheets hardly exhibited antibacterial activity; however, Ag/NiO composites displayed higher activity even with low Ag content.

  16. Isothiazolopyridones: synthesis, structure, and biological activity of a new class of antibacterial agents.

    PubMed

    Wiles, Jason A; Hashimoto, Akihiro; Thanassi, Jane A; Cheng, Jijun; Incarvito, Christopher D; Deshpande, Milind; Pucci, Michael J; Bradbury, Barton J

    2006-01-12

    We report the syntheses of first-generation derivatives of isothiazolopyridones and their in vitro evaluation as antibacterial agents. These compounds, containing a novel heterocyclic nucleus composed of an isothiazolone fused to a quinolizin-4-one (at C-2 and C-3 of the quinolizin-4-one), were prepared using a sequence of seven synthetic transformations. The solid-state structure of 7-chloro-9-ethyl-1-thia-2,4a-diazacyclopenta[b]naphthalene-3,4-dione was determined by X-ray diffraction. The prepared derivatives of desfluoroisothiazolopyridones exhibited (a) antibacterial activity against Gram-negative and Gram-positive organisms, (b) inhibitory activities against DNA gyrase and topoisomerase IV, and (c) no inhibitory activity against human topoisomerase II.

  17. Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria

    PubMed Central

    Nawrocki, Kathryn L.; Crispell, Emily K.; McBride, Shonna M.

    2014-01-01

    Antimicrobial peptides, or AMPs, play a significant role in many environments as a tool to remove competing organisms. In response, many bacteria have evolved mechanisms to resist these peptides and prevent AMP-mediated killing. The development of AMP resistance mechanisms is driven by direct competition between bacterial species, as well as host and pathogen interactions. Akin to the number of different AMPs found in nature, resistance mechanisms that have evolved are just as varied and may confer broad-range resistance or specific resistance to AMPs. Specific mechanisms of AMP resistance prevent AMP-mediated killing against a single type of AMP, while broad resistance mechanisms often lead to a global change in the bacterial cell surface and protect the bacterium from a large group of AMPs that have similar characteristics. AMP resistance mechanisms can be found in many species of bacteria and can provide a competitive edge against other bacterial species or a host immune response. Gram-positive bacteria are one of the largest AMP producing groups, but characterization of Gram-positive AMP resistance mechanisms lags behind that of Gram-negative species. In this review we present a summary of the AMP resistance mechanisms that have been identified and characterized in Gram-positive bacteria. Understanding the mechanisms of AMP resistance in Gram-positive species can provide guidelines in developing and applying AMPs as therapeutics, and offer insight into the role of resistance in bacterial pathogenesis. PMID:25419466

  18. Antibacterial activity of baking soda.

    PubMed

    Drake, D

    1996-01-01

    The antibacterial activity of baking soda (sodium bicarbonate) was assessed using three different experimental approaches. Standard minimum inhibitory concentration analyses revealed substantial inhibitory activity against Streptococcus mutans that was not due to ionic strength or high osmolarity. Short-term exposure assays showed significant killing of bacterial suspensions when baking soda was combined with the detergent sodium dodecylsulfate. Multiple, brief exposures of sucrose-colonized S mutans to baking soda and sodium dodecylsulfate caused statistically significant decreases in numbers of viable cells. Use of oral health care products with high concentrations of baking soda could conceivably result in decreased levels of cariogenic S mutans in saliva and plaque. PMID:11524862

  19. Antibacterial activity of baking soda.

    PubMed

    Drake, D

    1997-01-01

    The antibacterial activity of baking soda (sodium bicarbonate) was assessed using three different experimental approaches. Standard minimum inhibitory concentration analyses revealed substantial inhibitory activity against Streptococcus mutans that was not due to ionic strength or high osmolarity. Short-term exposure assays showed significant killing of bacterial suspensions when baking soda was combined with the detergent sodium dodecylsulfate. Multiple, brief exposures of sucrose-colonized S mutans to baking soda and sodium dodecylsulfate caused statistically significant decreases in numbers of viable cells. Use of oral health care products with high concentrations of baking soda could conceivably result in decreased levels of cariogenic S mutans in saliva and plaque. PMID:12017929

  20. Antibacterial activity of baking soda.

    PubMed

    Drake, D

    1997-01-01

    The antibacterial activity of baking soda (sodium bicarbonate) was assessed using three different experimental approaches. Standard minimum inhibitory concentration analyses revealed substantial inhibitory activity against Streptococcus mutans that was not due to ionic strength or high osmolarity. Short-term exposure assays showed significant killing of bacterial suspensions when baking soda was combined with the detergent sodium dodecylsulfate. Multiple, brief exposures of sucrose-colonized S mutans to baking soda and sodium dodecylsulfate caused statistically significant decreases in numbers of viable cells. Use of oral health care products with high concentrations of baking soda could conceivably result in decreased levels of cariogenic S mutans in saliva and plaque.

  1. Antibacterial activity of baking soda.

    PubMed

    Drake, D

    1996-01-01

    The antibacterial activity of baking soda (sodium bicarbonate) was assessed using three different experimental approaches. Standard minimum inhibitory concentration analyses revealed substantial inhibitory activity against Streptococcus mutans that was not due to ionic strength or high osmolarity. Short-term exposure assays showed significant killing of bacterial suspensions when baking soda was combined with the detergent sodium dodecylsulfate. Multiple, brief exposures of sucrose-colonized S mutans to baking soda and sodium dodecylsulfate caused statistically significant decreases in numbers of viable cells. Use of oral health care products with high concentrations of baking soda could conceivably result in decreased levels of cariogenic S mutans in saliva and plaque.

  2. Diversity of pigmented Gram-positive bacteria associated with marine macroalgae from Antarctica.

    PubMed

    Leiva, Sergio; Alvarado, Pamela; Huang, Ying; Wang, Jian; Garrido, Ignacio

    2015-12-01

    Little is known about the diversity and roles of Gram-positive and pigmented bacteria in Antarctic environments, especially those associated with marine macroorganisms. This work is the first study about the diversity and antimicrobial activity of culturable pigmented Gram-positive bacteria associated with marine Antarctic macroalgae. A total of 31 pigmented Gram-positive strains were isolated from the surface of six species of macroalgae collected in the King George Island, South Shetland Islands. On the basis of 16S rRNA gene sequence similarities ≥99%, 18 phylotypes were defined, which were clustered into 11 genera of Actinobacteria (Agrococcus, Arthrobacter, Brachybacterium, Citricoccus, Kocuria, Labedella, Microbacterium, Micrococcus, Rhodococcus, Salinibacterium and Sanguibacter) and one genus of the Firmicutes (Staphylococcus). It was found that five isolates displayed antimicrobial activity against a set of macroalgae-associated bacteria. The active isolates were phylogenetically related to Agrococcus baldri, Brachybacterium rhamnosum, Citricoccus zhacaiensis and Kocuria palustris. The results indicate that a diverse community of pigmented Gram-positive bacteria is associated with Antartic macroalgae and suggest its potential as a promising source of antimicrobial and pigmented natural compounds.

  3. Antibacterial activity on Citrullus colocynthis Leaf extract

    PubMed Central

    gowri, S. Shyamala; Priyavardhini, S.; Vasantha, K.; Umadevi, M.

    2009-01-01

    Studies on the antibacterial activities of the leaf extract of Citrullus colocynthis (Cucurbitaceae), a medicinal plant used for the treatment of various ailments was carried out using agar disc diffusion technique. The results revealed that the crude acetone extract exhibited antibacterial activities against Pseudomonas aeruginosa with zones of inhibition measuring 14.0mm. The chloroform leaf extract exhibited no antibacterial activity against Staphylococcus aureus. The minimum inhibitory concentration for the chloroform extract was 4.0mm for Escherichia coli. PMID:22557336

  4. Conjugative plasmid transfer in gram-positive bacteria.

    PubMed

    Grohmann, Elisabeth; Muth, Günther; Espinosa, Manuel

    2003-06-01

    Conjugative transfer of bacterial plasmids is the most efficient way of horizontal gene spread, and it is therefore considered one of the major reasons for the increase in the number of bacteria exhibiting multiple-antibiotic resistance. Thus, conjugation and spread of antibiotic resistance represents a severe problem in antibiotic treatment, especially of immunosuppressed patients and in intensive care units. While conjugation in gram-negative bacteria has been studied in great detail over the last decades, the transfer mechanisms of antibiotic resistance plasmids in gram-positive bacteria remained obscure. In the last few years, the entire nucleotide sequences of several large conjugative plasmids from gram-positive bacteria have been determined. Sequence analyses and data bank comparisons of their putative transfer (tra) regions have revealed significant similarities to tra regions of plasmids from gram-negative bacteria with regard to the respective DNA relaxases and their targets, the origins of transfer (oriT), and putative nucleoside triphosphatases NTP-ases with homologies to type IV secretion systems. In contrast, a single gene encoding a septal DNA translocator protein is involved in plasmid transfer between micelle-forming streptomycetes. Based on these clues, we propose the existence of two fundamentally different plasmid-mediated conjugative mechanisms in gram-positive microorganisms, namely, the mechanism taking place in unicellular gram-positive bacteria, which is functionally similar to that in gram-negative bacteria, and a second type that occurs in multicellular gram-positive bacteria, which seems to be characterized by double-stranded DNA transfer. PMID:12794193

  5. Chemical composition and antibacterial activity of propolis collected by three different races of honeybees in the same region.

    PubMed

    Silici, Sibel; Kutluca, Semiramis

    2005-05-13

    The chemical analysis and antibacterial activity of three types of propolis collected three different races of Apis mellifera bee in the same apiary were investigated. Propolis samples were investigated by GC/MS, 48 compounds were identified 32 being new for propolis. The compounds identified indicated that the main plant sources of propolis were Populus alba, Populus tremuloides and Salix alba. The antimicrobial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans was evaluated. Ethanolic extracts of propolis samples showed high antibacterial activity against Gram-positive cocci (Staphylococcus aureus), but had a weak activity against Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and yeast (Candida albicans). Propolis sample collected by Apis mellifera caucasica showed a higher antibacterial activity than collected by Apis mellifera anatolica and Apis mellifera carnica.

  6. Decoction, infusion and hydroalcoholic extract of cultivated thyme: antioxidant and antibacterial activities, and phenolic characterisation.

    PubMed

    Martins, Natália; Barros, Lillian; Santos-Buelga, Celestino; Silva, Sónia; Henriques, Mariana; Ferreira, Isabel C F R

    2015-01-15

    Bioactivity of thyme has been described, but mostly related to its essential oils, while studies with aqueous extracts are scarce. Herein, the antioxidant and antibacterial properties of decoction, infusion and hydroalcoholic extract, as also their phenolic compounds, were evaluated and compared. Decoction showed the highest concentration of phenolic compounds (either phenolic acids or flavonoids), followed by infusion and hydroalcoholic extract. In general, the samples were effective against gram-positive (Staphylococcus aureus and Staphylococcus epidermidis) and gram-negative (Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, Enterococcus aerogenes, Proteus vulgaris and Enterobacter sakazakii) bacteria, with decoction presenting the most pronounced effect. This sample also displayed the highest radical scavenging activity and reducing power. Data obtained support the idea that compounds with strong antioxidant and antibacterial activities are also water-soluble. Furthermore, the use of thyme infusion and decoction, by both internal and external use, at recommended doses, is safe and no adverse reactions have been described.

  7. Decoction, infusion and hydroalcoholic extract of cultivated thyme: antioxidant and antibacterial activities, and phenolic characterisation.

    PubMed

    Martins, Natália; Barros, Lillian; Santos-Buelga, Celestino; Silva, Sónia; Henriques, Mariana; Ferreira, Isabel C F R

    2015-01-15

    Bioactivity of thyme has been described, but mostly related to its essential oils, while studies with aqueous extracts are scarce. Herein, the antioxidant and antibacterial properties of decoction, infusion and hydroalcoholic extract, as also their phenolic compounds, were evaluated and compared. Decoction showed the highest concentration of phenolic compounds (either phenolic acids or flavonoids), followed by infusion and hydroalcoholic extract. In general, the samples were effective against gram-positive (Staphylococcus aureus and Staphylococcus epidermidis) and gram-negative (Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, Enterococcus aerogenes, Proteus vulgaris and Enterobacter sakazakii) bacteria, with decoction presenting the most pronounced effect. This sample also displayed the highest radical scavenging activity and reducing power. Data obtained support the idea that compounds with strong antioxidant and antibacterial activities are also water-soluble. Furthermore, the use of thyme infusion and decoction, by both internal and external use, at recommended doses, is safe and no adverse reactions have been described. PMID:25148969

  8. In vitro effects on biofilm viability and antibacterial and antiadherent activities of silymarin.

    PubMed

    Evren, Ebru; Yurtcu, Erkan

    2015-07-01

    Limited treatment options in infectious diseases caused by resistant microorganisms created the need to search new approaches. Several herbal extracts are studied for their enormous therapeutic potential. Silymarin extract, from Silybum marianum (milk thistle), is an old and a new remedy for this goal. The purpose of this study is to evaluate the antibacterial and antiadherent effects of silymarin besides biofilm viability activity on standard bacterial strains. Minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), antiadherent/antibiofilm activity, and effects on biofilm viability of silymarin were evaluated against standard bacterial strains. MIC values were observed between 60 and >241 μg/mL (0.25->1 mmol/L). Gram-positive bacteria were inhibited at concentrations between 60 and 120 μg/mL. Gram-negative bacteria were not inhibited by the silymarin concentrations included in this study. MBC values for Gram-positive bacteria were greater than 241 μg/mL. Adherence/biofilm formations were decreased to 15 μg/mL silymarin concentration when compared with silymarin-untreated group. Silymarin reduced the biofilm viabilities to 13 and 46 % at 1 and 0.5 mmol/L concentrations, respectively. We demonstrated that silymarin shows antibacterial and antiadherent/antibiofilm activity against certain standard bacterial strains which may be beneficial when used as a dietary supplement or a drug. PMID:25937395

  9. Optical control of antibacterial activity

    NASA Astrophysics Data System (ADS)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  10. Native and heterologous production of bacteriocins from gram-positive microorganisms.

    PubMed

    Muñoz, Mabel; Jaramillo, Diana; Melendez, Adelina Del Pilar; J Alméciga-Diaz, Carlos; Sánchez, Oscar F

    2011-12-01

    In nature, microorganisms can present several mechanisms for setting intercommunication and defense. One of these mechanisms is related to the production of bacteriocins, which are peptides with antimicrobial activity. Bacteriocins can be found in Gram-positive and Gram-negative bacteria. Nevertheless, bacteriocins produced by Gram-positive bacteria are of particular interest due to the industrial use of several strains that belong to this group, especially lactic acid bacteria (LAB), which have the status of generally recognized as safe (GRAS) microorganisms. In this work, we will review recent tendencies in the field of invention and state of art related to bacteriocin production by Gram-positive microorganism. Hundred-eight patents related to Gram-positive bacteriocin producers have been disclosed since 1965, from which 57% are related bacteriocins derived from Lactococcus, Lactobacillus, Streptococcus, and Pediococcus strains. Surprisingly, patents regarding heterologous bacteriocins production were mainly presented just in the last decade. Although the major application of bacteriocins is concerned to food industry to control spoilage and foodborne bacteria, during the last years bacteriocin applications have been displacing to the diagnosis and treatment of cancer, and plant disease resistance and growth promotion.

  11. Distinct localization of the complement C5b-9 complex on Gram-positive bacteria.

    PubMed

    Berends, Evelien T M; Dekkers, Johanna F; Nijland, Reindert; Kuipers, Annemarie; Soppe, Jasper A; van Strijp, Jos A G; Rooijakkers, Suzan H M

    2013-12-01

    The plasma proteins of the complement system fulfil important immune defence functions, including opsonization of bacteria for phagocytosis, generation of chemo-attractants and direct bacterial killing via the Membrane Attack Complex (MAC or C5b-9). The MAC is comprised of C5b, C6, C7, C8, and multiple copies of C9 that generate lytic pores in cellular membranes. Gram-positive bacteria are protected from MAC-dependent lysis by their thick peptidoglycan layer. Paradoxically, several Gram-positive pathogens secrete small proteins that inhibit C5b-9 formation. In this study, we found that complement activation on Gram-positive bacteria in serum results in specific surface deposition of C5b-9 complexes. Immunoblotting revealed that C9 occurs in both monomeric and polymeric (SDS-stable) forms, indicating the presence of ring-structured C5b-9. Surprisingly, confocal microscopy demonstrated that C5b-9 deposition occurs at specialized regions on the bacterial cell. On Streptococcus pyogenes, C5b-9 deposits near the division septum whereas on Bacillus subtilis the complex is located at the poles. This is in contrast to C3b deposition, which occurs randomly on the bacterial surface. Altogether, these results show a previously unrecognized interaction between the C5b-9 complex and Gram-positive bacteria, which might ultimately lead to a new model of MAC assembly and functioning.

  12. Coriander (Coriandrum sativum L.) essential oil: its antibacterial activity and mode of action evaluated by flow cytometry.

    PubMed

    Silva, Filomena; Ferreira, Susana; Queiroz, João A; Domingues, Fernanda C

    2011-10-01

    The aim of this work was to study the antibacterial effect of coriander (Coriandrum sativum) essential oil against Gram-positive and Gram-negative bacteria. Antibacterial susceptibility was evaluated using classical microbiological techniques concomitantly with the use of flow cytometry for the evaluation of cellular physiology. Our results showed that coriander oil has an effective antimicrobial activity against all bacteria tested. Also, coriander oil exhibited bactericidal activity against almost all bacteria tested, with the exception of Bacillus cereus and Enterococcus faecalis. Propidium iodide incorporation and concomitant loss of all other cellular functions such as efflux activity, respiratory activity and membrane potential seem to suggest that the primary mechanism of action of coriander oil is membrane damage, which leads to cell death. The results obtained herein further encourage the use of coriander oil in antibacterial formulations due to the fact that coriander oil effectively kills pathogenic bacteria related to foodborne diseases and hospital infections.

  13. Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa; Rahman, Russly Abdul; Jokar, Maryam; Darroudi, Majid

    2010-01-01

    In this study, antibacterial characteristic of silver/poly (lactic acid) nanocomposite (Ag/PLA-NC) films was investigated, while silver nanoparticles (Ag-NPs) were synthesized into biodegradable PLA via chemical reduction method in diphase solvent. Silver nitrate and sodium borohydride were respectively used as a silver precursor and reducing agent in the PLA, which acted as a polymeric matrix and stabilizer. Meanwhile, the properties of Ag/PLA-NCs were studied as a function of the Ag-NP weight percentages (8, 16, and 32 wt% respectively), in relation to the use of PLA. The morphology of the Ag/PLA-NC films and the distribution of the Ag-NPs were also characterized. The silver ions released from the Ag/PLA-NC films and their antibacterial activities were scrutinized. The antibacterial activities of the Ag/PLA-NC films were examined against Gram-negative bacteria (Escherichia coli and Vibrio parahaemolyticus) and Gram-positive bacteria (Staphylococcus aureus) by diffusion method using Muller–Hinton agar. The results indicated that Ag/PLA-NC films possessed a strong antibacterial activity with the increase in the percentage of Ag-NPs in the PLA. Thus, Ag/PLA-NC films can be used as an antibacterial scaffold for tissue engineering and medical application. PMID:20856832

  14. Bioinspired synthesis of polydopamine/Ag nanocomposite particles with antibacterial activities.

    PubMed

    Wu, Chengjiao; Zhang, Guoxing; Xia, Tian; Li, Zhenni; Zhao, Kai; Deng, Ziwei; Guo, Dingzong; Peng, Bo

    2015-10-01

    Mussel-inspired chemistry (polydopamine) offers great opportunities to develop inexpensive and efficient process for many types of materials with complex shapes and functions in a mild and friendly environment. This paper describes a facile, yet green approach to synthesize polydopamine/silver (PDA/Ag) nanocomposite particles with a combination use of polydopamine chemistry and electroless metallization of Ag. In this approach, monodisperse spherical polydopamine particles are first synthesized by the oxidation and self-polymerization of dopamine (monomer) in an alkaline water-ethanol solution at room temperature, which are served as the active templates for secondary reactions due to the abundant catechol and amine groups on the surface. Subsequently, the silver precursor-[Ag(NH3)2](+) ions introduced are easily absorbed onto the surface of the PDA particles, and are immediately in situ reduced to metallic Ag nanoparticles with the help of these active catechol and amine groups. During the preparation, no additional reductants, toxic reagents and intricate instruments are needed. These as-synthesized PDA/Ag nanocomposite particles are ideal candidates for antibacterial application because they do not show significant cytotoxicity against HEK293T human embryonic kidney cells in the in vitro cytotoxicity assay, whereas demonstrate enhanced antibacterial abilities against Escherichia coli (Gram-negative bacteria) and Staphylococcus aureus (Gram-positive bacteria) in the antibacterial assays. Owing to their excellent cytocompatibilities and antibacterial activities, these PDA/Ag nanocomposite particles can be considered as the promising antibacterial materials for future biomedical applications.

  15. Bacitracin-conjugated superparamagnetic iron oxide nanoparticles: synthesis, characterization and antibacterial activity.

    PubMed

    Zhang, Wenjing; Shi, Xinhao; Huang, Jing; Zhang, Yixuan; Wu, Zirong; Xian, Yuezhong

    2012-10-01

    Bacitracin-conjugated superparamagnetic iron oxide (Fe(3)O(4)) nanoparticles were prepared by click chemistry and their antibacterial activity was investigated. After functionalization with hydrophilic and biocompatible poly(acrylic acid), water-soluble Fe(3)O(4) nanoparticles were obtained. Propargylated Fe(3)O(4) nanoparticles were then synthesized by carbodiimide reaction of propargylamine with the carboxyl groups on the surface of the iron oxide nanoparticles. By further reaction with N(3)-bacitracin in a Cu(I)-catalyzed azide-alkyne cycloaddition, the magnetic Fe(3)O(4) nanoparticles were modified with the peptide bacitracin. The functionalized magnetic nanoparticles were characterized by powder X-ray diffraction, X-ray photoelectron spectroscopy, TEM, zeta-potential analysis, FTIR spectroscopy and vibrating-sample magnetometry. Cell cytotoxicity tests indicate that bacitracin-conjugated Fe(3)O(4) nanoparticles show very low cytotoxicity to human fibroblast cells, even at relatively high concentrations. In view of the antibacterial activity of bacitracin, the biofunctionalized Fe(3)O(4) nanoparticles exhibit an antibacterial effect against both Gram-positive and Gram-negative organisms, which is even higher than that of bacitracin itself. The enhanced antibacterial activity of the magnetic nanocomposites allows the dosage and the side effects of the antibiotic to be reduced. Due to the antibacterial effect and magnetism, the bacitracin-functionalized magnetic nanoparticles have potential application in magnetic-targeting biomedical applications.

  16. Antibacterial, antifungal and cytotoxic activities of amblyone isolated from Amorphophallus campanulatus

    PubMed Central

    Khan, Alam; Rahman, Moizur; Islam, M.S.

    2008-01-01

    Objective: To assess the in vitro antibacterial, antifungal and cytotoxic activities of amblyone, a triterpenoid isolated from Amorphophallus campanulatus (Roxb). Methods: Disc diffusion technique was used for in vitro antibacterial and antifungal screening. Cytotoxicity was determined against brine shrimp nauplii. In addition, minimum inhibitory concentration (MIC) was determined using serial dilution technique to determine the antibacterial potency. Results: Large zones of inhibition were observed in disc diffusion antibacterial screening against four Gram-positive bacteria (Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus and Streptococcus pyogenes) and six Gram-negative bacteria (Escherichia coli, Shigella dysenteriae, Shigella sonnei, Shigella flexneri, Pseudomonas aeruginosa and Salmonella typhi). The MIC values against these bacteria ranged from 8 to 64 μg/ml. In antifungal screening, the compound showed small zones of inhibition against Aspergillus flavus, Aspergillus niger and Rhizopus aryzae. Candida albicans was resistant against the compound. In the cytotoxicity determination, LC50 of the compound against brine shrimp nauplii was 13.25 μg/ml. Conclusions: These results suggest that the compound has good antibacterial activity against the tested bacteria, moderate cytotoxicity against brine shrimp nauplii and insignificant antifungal activity against the tested fungi. PMID:21264161

  17. Antibacterial properties of propolis (bee glue).

    PubMed Central

    Grange, J M; Davey, R W

    1990-01-01

    Propolis (bee glue) was found to have antibacterial activity against a range of commonly encountered cocci and Gram-positive rods, including the human tubercle bacillus, but only limited activity against Gram-negative bacilli. These findings confirm previous reports of antimicrobial properties of this material, possibly attributable to its high flavonoid content. PMID:2182860

  18. Assessment of Tamarindus indica extracts for antibacterial activity.

    PubMed

    Nwodo, Uchechukwu U; Obiiyeke, Grace E; Chigor, Vincent N; Okoh, Anthony I

    2011-01-01

    Ethanolic and aqueous (hot and cold) extracts of the fruit pulp, stem bark and leaves of Tamarindus indica were evaluated for antibacterial activity, in vitro, against 13 Gram negative and 5 Gram positive bacterial strains using agar well diffusion and macro broth dilution techniques, simultaneously. The fruit pulp extracts exhibited a wide spectrum of activity; the cold water extract against 95.5% of the test bacterial strains; and the hot water and ethanolic extracts against 90.9% and 86.4%, respectively. In contrast the cold water extract of the leaves and stem bark, each was active against 16.7%; while the ethanolic extract of each was active against 75% of the test strains. The minimum inhibitory concentrations (MIC) ranged from 7.81 mg/mL against Bacillus subtilis ATCC 6051 to 31.25 mg/mL against Escherichia coli ATCC 11775; and the minimum bactericidal concentration (MBC) ranged from 125 mg/mL against Pseudomonas aeruginosa ATCC 10145 to 250 mg/mL against Bacillus subtilis ATCC 6051.

  19. Assessment of Tamarindus indica extracts for antibacterial activity.

    PubMed

    Nwodo, Uchechukwu U; Obiiyeke, Grace E; Chigor, Vincent N; Okoh, Anthony I

    2011-01-01

    Ethanolic and aqueous (hot and cold) extracts of the fruit pulp, stem bark and leaves of Tamarindus indica were evaluated for antibacterial activity, in vitro, against 13 Gram negative and 5 Gram positive bacterial strains using agar well diffusion and macro broth dilution techniques, simultaneously. The fruit pulp extracts exhibited a wide spectrum of activity; the cold water extract against 95.5% of the test bacterial strains; and the hot water and ethanolic extracts against 90.9% and 86.4%, respectively. In contrast the cold water extract of the leaves and stem bark, each was active against 16.7%; while the ethanolic extract of each was active against 75% of the test strains. The minimum inhibitory concentrations (MIC) ranged from 7.81 mg/mL against Bacillus subtilis ATCC 6051 to 31.25 mg/mL against Escherichia coli ATCC 11775; and the minimum bactericidal concentration (MBC) ranged from 125 mg/mL against Pseudomonas aeruginosa ATCC 10145 to 250 mg/mL against Bacillus subtilis ATCC 6051. PMID:22072893

  20. Antifungal and antibacterial activity of marine microorganisms.

    PubMed

    El Amraoui, B; El Amraoui, M; Cohen, N; Fassouane, A

    2014-03-01

    In order to explore marine microorganisms with pharmaceutical potential, marine bacteria, collected from different coastal areas of the Moroccan Atlantic Ocean, were previously isolated from seawater, sediment, marine invertebrates and seaweeds. The antimicrobial activities of these microorganisms were investigated against the pathogens involved in human pathologies. Whole cultures of 34 marine microorganisms were screened for antimicrobial activities using the method of agar diffusion against three Gram-positive bacteria, two Gram-negative bacteria, and against yeast. The results showed that among the 34 isolates studied, 28 (82%) strains have antimicrobial activity against at least one pathogen studied, 11 (32%) strains have antifungal activity and 24 (76%) strains are active against Gram-positive bacteria, while 21 (62%) strains are active against Gram-negative bacteria. Among isolates having antimicrobial activity, 14 were identified and were assigned to the genera Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Enterococcus, Pantoea and Pseudomonas. Due to a competitive role for space and nutrient, the marine microorganisms can produce antibiotic substance; therefore, these marine microorganisms were expected to be potential resources of natural antibiotic products.

  1. Postantibiotic effect of ceftaroline against gram-positive organisms.

    PubMed

    Pankuch, G A; Appelbaum, P C

    2009-10-01

    The postantibiotic effects (PAEs), postantibiotic sub-MIC effects (PA-SMEs), and sub-MIC effects (SMEs) of ceftaroline, a novel injectable cephalosporin, were determined for 15 gram-positive organisms. The pneumococcal, staphylococcal, and enterococcal PAEs were 0.8 to 1.8 h, 0.7 to 2.2 h, and 0.2 to 1.1 h, respectively. The corresponding PA-SMEs (0.4 times the MIC) were 2.5 to 6.7 h, 2.9 to >0.0 h, and 7.9 to >10.3 h, respectively. The PA-SMEs were longer than the PAEs, suggesting that sub-MIC levels extend the PAE of ceftaroline against gram-positive cocci.

  2. Which antibiotic for resistant Gram-positives, and why?

    PubMed

    Bradley, John S

    2014-01-01

    Increasing resistance in Gram-positive pathogens, particularly Staphylococcus aureus, and enterococcus, has become a major clinical problem, particularly in the hospital environment, causing significant morbidity and mortality in both healthy hosts and in those with underlying comorbidities. Increased resistance drives the use of empiric therapy with less well-studied and potentially more toxic agents. Resistance mechanisms for currently recommended agents are discussed, with options for therapy of resistant pathogens. For any new agent used, resistance is likely to develop, which underscores the concept that both antibiotics and antimicrobial resistance are ancient, and only by prudent use of antimicrobial agents and effective infection control measures when resistance arises, will effective agents be available to treat Gram-positive pathogens in the future.

  3. Oligomerization of esculin improves its antibacterial activity and modulates antibiotic resistance.

    PubMed

    Mokdad-Bzeouich, Imen; Mustapha, Nadia; Chaabane, Fadwa; Ghedira, Zied; Ghedira, Kamel; Ghoul, Mohamed; Chebil, Latifa; Chekir-Ghedira, Leila

    2015-03-01

    In this particular study, the antibacterial activity of esculin and oligomer fractions was assessed. MIC values of esculin and its oligomer fractions as well as of some antibiotics against Gram-positive and Gram-negative strains and against Escherichia coli multiresistant variants were determined by the standard broth microdilution method. Both esculin and oligoesculin fractions exhibited antibacterial effect against reference strains; Staphylococcus aureus, Enterococcus faecalis, Salmonella enteritidis and Salmonella typhimurium. It appears that E3 oligomer fraction had the greatest antibacterial activity against these reference strains. Besides, as E2 and E3 revealed the best antibacterial effect against multiresistant variants of E. coli, we decided to test the effect of each, combined to the antibiotic against which the variants were resistant. In the interaction study, E2 and E3 oligoesculin fractions were found to be effective in reducing the resistance of E. coli 6574 to ofloxacin and the resistance of E. coli 6228 to amoxicillin. Only E3 oligoesculin fraction showed a synergetic interaction with amoxicillin and tetracyclin against E. coli 6708, but no interaction was found either with E2 or E3 fractions against E. coli 6234. Our study allowed us to conclude that oligomerization of esculin increases its antibacterial potential, according to the degree of polymerization.

  4. Virulence Plasmids of Nonsporulating Gram-Positive Pathogens.

    PubMed

    Van Tyne, Daria; Gilmore, Michael S

    2014-10-01

    Gram-positive bacteria are leading causes of many types of human infection, including pneumonia, skin and nasopharyngeal infections, as well as urinary tract and surgical wound infections among hospitalized patients. These infections have become particularly problematic because many of the species causing them have become highly resistant to antibiotics. The role of mobile genetic elements, such as plasmids, in the dissemination of antibiotic resistance among Gram-positive bacteria has been well studied; less well understood is the role of mobile elements in the evolution and spread of virulence traits among these pathogens. While these organisms are leading agents of infection, they are also prominent members of the human commensal ecology. It appears that these bacteria are able to take advantage of the intimate association between host and commensal, via virulence traits that exacerbate infection and cause disease. However, evolution into an obligate pathogen has not occurred, presumably because it would lead to rejection of pathogenic organisms from the host ecology. Instead, in organisms that exist as both commensal and pathogen, selection has favored the development of mechanisms for variability. As a result, many virulence traits are localized on mobile genetic elements, such as virulence plasmids and pathogenicity islands. Virulence traits may occur within a minority of isolates of a given species, but these minority populations have nonetheless emerged as a leading problem in infectious disease. This chapter reviews virulence plasmids in nonsporulating Gram-positive bacteria, and examines their contribution to disease pathogenesis.

  5. Cyclic diguanylate signaling in Gram-positive bacteria.

    PubMed

    Purcell, Erin B; Tamayo, Rita

    2016-09-01

    The nucleotide second messenger 3'-5' cyclic diguanylate monophosphate (c-di-GMP) is a central regulator of the transition between motile and non-motile lifestyles in bacteria, favoring sessility. Most research investigating the functions of c-di-GMP has focused on Gram-negative species, especially pathogens. Recent work in Gram-positive species has revealed that c-di-GMP plays similar roles in Gram-positives, though the precise targets and mechanisms of regulation may differ. The majority of bacterial life exists in a surface-associated state, with motility allowing bacteria to disseminate and colonize new environments. c-di-GMP signaling regulates flagellum biosynthesis and production of adherence factors and appears to be a primary mechanism by which bacteria sense and respond to surfaces. Ultimately, c-di-GMP influences the ability of a bacterium to alter its transcriptional program, physiology and behavior upon surface contact. This review discusses how bacteria are able to sense a surface via flagella and type IV pili, and the role of c-di-GMP in regulating the response to surfaces, with emphasis on studies of Gram-positive bacteria.

  6. Cyclic diguanylate signaling in Gram-positive bacteria.

    PubMed

    Purcell, Erin B; Tamayo, Rita

    2016-09-01

    The nucleotide second messenger 3'-5' cyclic diguanylate monophosphate (c-di-GMP) is a central regulator of the transition between motile and non-motile lifestyles in bacteria, favoring sessility. Most research investigating the functions of c-di-GMP has focused on Gram-negative species, especially pathogens. Recent work in Gram-positive species has revealed that c-di-GMP plays similar roles in Gram-positives, though the precise targets and mechanisms of regulation may differ. The majority of bacterial life exists in a surface-associated state, with motility allowing bacteria to disseminate and colonize new environments. c-di-GMP signaling regulates flagellum biosynthesis and production of adherence factors and appears to be a primary mechanism by which bacteria sense and respond to surfaces. Ultimately, c-di-GMP influences the ability of a bacterium to alter its transcriptional program, physiology and behavior upon surface contact. This review discusses how bacteria are able to sense a surface via flagella and type IV pili, and the role of c-di-GMP in regulating the response to surfaces, with emphasis on studies of Gram-positive bacteria. PMID:27354347

  7. Structure-activity relationship of buffalo antibacterial hepcidin analogs.

    PubMed

    Chanu, Khangembam Victoria; Kumar, Ashok; Kumar, Satish

    2011-10-01

    Hepcidin is an anti-microbial peptide expressed predominantly in the liver of many species. Based on the amino acid sequence deduced from buffalo (Bubalus bubalis) hepcidin cDNA (Accession no. EU399814), six peptides Hepc(1-25), Hepc(6-25), Hepc(7-25), Hepc(9-25), Hepc(11-25) and Hepc(15-25) were synthesized using solid-phase fluorenylmethoxycarbonyl (Fmoc) chemistry. CD spectroscopy revealed different spectra of the peptides in different solvents and in all the cases beta-structure was found to be dominant with less alpha-helix as predicted. Quantitation of secondary structure indicated the highest beta-structure for all the six peptides in SDS solution, when used as mimetic for membrane-like environment. The CD spectra of all the peptides taken in water showed that degree of randomness decreased with increase in chain length of the peptide. Out of the six peptides, only Hepc(1-25), Hepc(6-25) and Hepc(7-25) showed antibacterial activity against Staphylococcus aureus (Gram-positive bacteria). The peptides did not show any sensitivity toward E. coli (Gram-negative bacteria). Minimum inhibitory concentration (MIC) showed the lowest value for Hepc(7-25) as an antibacterial agent, followed by Hepc(6-25) and Hepc(1-25). The peptides Hepc(9-25), Hepc(11-25) and Hepc(15-25) with more random structure did not show any antimicrobial activity The study demonstrated that 5 amino acids at N-terminal in buffalo hepcidin can be truncated without loss of antimicrobial activity and further reduction of length of the analog from 20 to 19 amino acids resulted increase in the activity because of increase in beta-structure of the peptide shown by CD spectroscopy.

  8. Search for factors affecting antibacterial activity and toxicity of 1,2,4-triazole-ciprofloxacin hybrids.

    PubMed

    Plech, Tomasz; Kaproń, Barbara; Paneth, Agata; Kosikowska, Urszula; Malm, Anna; Strzelczyk, Aleksandra; Stączek, Paweł; Świątek, Łukasz; Rajtar, Barbara; Polz-Dacewicz, Małgorzata

    2015-06-01

    A series of 1,2,4-triazole-based compounds was designed as potential antibacterial agents using molecular hybridization approach. The target compounds (23-44) were synthesized by Mannich reaction of 1,2,4-triazole-3-thione derivatives with ciprofloxacin (CPX) and formaldehyde. Their potent antibacterial effect on Gram-positive bacteria was accompanied by similarly strong activity against Gram-negative strains. The toxicity of the CPX-triazole hybrids for bacterial cells was even up to 18930 times higher than the toxicity for human cells. The results of enzymatic studies showed that the antibacterial activity of the CPX-triazole hybrids is not dependent solely on the degree of their affinity to DNA gyrase and topoisomerase IV. PMID:25951434

  9. Synthesis and structure-activity relationship studies of novel [6,6,5] tricyclic oxazolidinone derivatives as potential antibacterial agents.

    PubMed

    Xue, Tao; Ding, Shi; Guo, Bin; Chu, Wenjing; Wang, Hui; Yang, Yushe

    2015-01-01

    In our previous Letter, we reported the discovery of a novel benzoxazinyl-oxazolidinone antibacterial candidate 2. In order to identify a potential backup compound, extensive modifications on the B/C ring and C3 side chain were undertaken. A series of novel [6,6,5] tricyclic analogues were synthesized and their in vitro antibacterial activities were tested against a panel of susceptible and resistant Gram-positive pathogens. Among of them, benzothiazinyl-oxazolidinones with acetamide or thioamide as C3 side chains exhibited moderate to good antibacterial activity, such as compounds 54, 58, 59 and 63. In vitro liver microsomal stability was further evaluated and the results manifested that compounds 54 and 58 were both metabolically stable in rat and human liver microsomes. Additionally, insights gained from this investigation should provide directions for the further research of new oxazolidinone antibiotics.

  10. Preparation and antibacterial activity of Fe3O4@Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Gong, Ping; Li, Huimin; He, Xiaoxiao; Wang, Kemin; Hu, Jianbing; Tan, Weihong; Zhang, Shouchun; Yang, Xiaohai

    2007-07-01

    Bifunctional Fe3O4@Ag nanoparticles with both superparamagnetic and antibacterial properties were prepared by reducing silver nitrate on the surface of Fe3O4 nanoparticles using the water-in-oil microemulsion method. Formation of well-dispersed nanoparticles with sizes of 60 ± 20 nm was confirmed by transmission electron microscopy and dynamic light scattering. X-ray diffraction patterns and UV-visible spectroscopy indicated that both Fe3O4 and silver are present in the same particle. The superparamagnetism of Fe3O4@Ag nanoparticles was confirmed with a vibrating sample magnetometer. Their antibacterial activity was evaluated by means of minimum inhibitory concentration value, flow cytometry, and antibacterial rate assays. The results showed that Fe3O4@Ag nanoparticles presented good antibacterial performance against Escherichia coli (gram-negative bacteria), Staphylococcus epidermidis (gram-positive bacteria) and Bacillus subtilis (spore bacteria). Furthermore, Fe3O4@Ag nanoparticles can be easily removed from water by using a magnetic field to avoid contamination of surroundings. Reclaimed Fe3O4@Ag nanoparticles can still have antibacterial capability and can be reused.

  11. Full Spectrum Visible LED Light Activated Antibacterial System Realized by Optimized Cu2O Crystals.

    PubMed

    Shi, Xiaotong; Xue, Chaowen; Fang, Fang; Song, Xiangwei; Yu, Fen; Liu, Miaoxing; Wei, Zhipeng; Fang, Xuan; Zhao, Dongxu; Xin, Hongbo; Wang, Xiaolei

    2016-04-01

    Assisted by three-dimensional printing technology, we proposed and demonstrated a full spectrum visible light activated antibacterial system by using a combination of 500 nm sized Cu2O crystals and light-emitting diode (LED) lamps. Further improved antibacterial ratios were achieved, for the first time, with pure Cu2O for both Gram-positive bacteria and Gram-negative bacteria among all of the six different color LED lamps. For practical antibacterial applications, we revealed that the nonwoven fabric could act as excellent carrier for Cu2O crystals and provide impressive antibacterial performance. Furthermore, integrated with our self-developed app, the poly(ethylene terephthalate) film loaded with Cu2O crystals also showed significant antibacterial property, thus making it possible to be applied in field of touch screen. The present research not only provided a healthier alternative to traditional ultraviolet-based sterilization but also opened an auto-response manner to decrease the rate of microbial contamination on billions of touch screen devices. PMID:26978589

  12. Full Spectrum Visible LED Light Activated Antibacterial System Realized by Optimized Cu2O Crystals.

    PubMed

    Shi, Xiaotong; Xue, Chaowen; Fang, Fang; Song, Xiangwei; Yu, Fen; Liu, Miaoxing; Wei, Zhipeng; Fang, Xuan; Zhao, Dongxu; Xin, Hongbo; Wang, Xiaolei

    2016-04-01

    Assisted by three-dimensional printing technology, we proposed and demonstrated a full spectrum visible light activated antibacterial system by using a combination of 500 nm sized Cu2O crystals and light-emitting diode (LED) lamps. Further improved antibacterial ratios were achieved, for the first time, with pure Cu2O for both Gram-positive bacteria and Gram-negative bacteria among all of the six different color LED lamps. For practical antibacterial applications, we revealed that the nonwoven fabric could act as excellent carrier for Cu2O crystals and provide impressive antibacterial performance. Furthermore, integrated with our self-developed app, the poly(ethylene terephthalate) film loaded with Cu2O crystals also showed significant antibacterial property, thus making it possible to be applied in field of touch screen. The present research not only provided a healthier alternative to traditional ultraviolet-based sterilization but also opened an auto-response manner to decrease the rate of microbial contamination on billions of touch screen devices.

  13. Preservation of viability and antibacterial activity of Lactobacillus spp. in calcium alginate beads.

    PubMed

    Brachkova, Mariya I; Duarte, Maria A; Pinto, João F

    2010-12-23

    The objective of the study was to produce calcium alginate beads able to deliver Lactobacillus spp. (Lactobacillus plantarum, Lactobacillus rhamnosus GG, Lactobacillus bulgaricus and Lactobacillus lactis) with preserved viability and antibacterial activity. Four types of beads, containing entrapped (E), surface and entrapped (ES), surface (S) and concentrated surface and entrapped lactobacilli (C(ES)) were prepared and physically characterized. The antibacterial activity of lactobacilli cultures before and after immobilization, freeze-drying and throughout storage was studied in relationship to the viable number of lactobacilli. Multi-resistant clinical isolates (methicillin-resistant Staphylococcus aureus, vancomycine-resistant Enterococcus faecalis, VIM-2-metalo-β-lactamase producing Pseudomonas aeruginosa and CTX-M-15-β-lactamase producing strains: Escherichia coli and Klebsiella pneumoniae) were used as indicator strains. Alginate beads in which lactobacilli proliferated to the beads surface (ES and C(ES)) differed significantly from the other types of beads in their physicochemical properties, showing smoother surface morphology, more spherical shape, bigger weight, lower calcium content, density and crushing force. Lactobacilli cultures, at high cell concentrations (10(8)cfu/ml) were active against both Gram-positive and negative multi-resistant bacteria. Beads containing both entrapped and surface lactobacilli (ES) resulted in viability and antibacterial activity most similar to non-processed lactobacilli cultures. The viability and antibacterial activity of the immobilized lactobacilli remained stable after 6 months storage.

  14. Enhanced antibacterial activity of copper/copper oxide nanowires prepared by pulsed laser ablation in water medium

    NASA Astrophysics Data System (ADS)

    Swarnkar, R. K.; Pandey, J. K.; Soumya, K. K.; Dwivedi, P.; Sundaram, S.; Prasad, Sanjay; Gopal, R.

    2016-07-01

    Copper/copper oxide nanowires (NWs) are well known for its antibacterial activity against various pathogens. In the present study, we have shown the enhanced antibacterial activity of the NWs against gram-negative bacterial strains ( Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi) and gram-positive bacterial strains ( Bacillus subtilis and Staphylococcus aureus). The increase in the activity is because of the shape and size of the colloidal NWs which were prepared at room temperature in a one-step process by pulsed laser ablation of copper metal target. The purity, shape and size of the colloidal NWs were well characterized by UV-visible absorption spectroscopy and transmission electron microscopy (TEM). The NWs were of diameters in the range of 15-30 nm and lengths ranging from 200 to 600 nm. The dose-dependent antibacterial activity of these NWs was found to be more effective against gram-negative bacteria compared to gram-positive bacteria. As gram-negative bacteria have thinner layer of cell wall made up of peptidoglycan possibly which makes them more susceptible to Cu/Cu2O NWs, Cu/Cu2O NWs can be a potent candidate to be used as bactericidal or as growth inhibitor.

  15. Effect of seasonality on chemical composition and antibacterial and anticandida activities of Argentine propolis. Design of a topical formulation.

    PubMed

    Isla, María Inés; Dantur, Yanina; Salas, Ana; Danert, Carolina; Zampini, Catiana; Arias, Myriam; Ordóñez, Roxana; Maldonado, Luis; Bedascarrasbure, Enrique; Nieva Moreno, María Inés

    2012-10-01

    The effect of seasonality on Argentine propolis collected during one year on its phenolic and flavonoid content and on the growth of Gram-positive and Gram-negative antibiotic resistant bacteria and Candida species was evaluated. Extracts of propolis samples collected in the summer and spring showed higher phenolic and flavonoid contents than the samples collected in other seasons (5.86 to 6.06 mg GAE/mL and 3.77 to 4.23 mg QE/mL, respectively). The propolis collected in summer and autumn showed higher antibacterial activity (30 microg/mL) than the other samples (MIC values between 30 and 120 microg/mL). No antibacterial activity was detected against Gram-negative bacteria. Also, these extracts were able to inhibit the development of five Candida species, with MFC values of 15-120 microg/mL. Pharmaceutical formulations containing the more active propolis extract were prepared. The hydrogel of acrylic acid polymer containing summer propolis extract as an antimicrobial agent showed microbiological, physical and functional stability during storage for 180 days. The pharmaceutical preparation, as well as the propolis extracts, was active against Candida sp. and antibiotic-multi-resistant Gram-positive bacteria. These results reveal that propolis samples collected by scraping in four seasons, especially in summer in Calingasta, San Juan, Argentina, can be used to obtain tinctures and hydrogels with antibacterial and antimycotic potential for topical use.

  16. Antibacterial Activity of Polyphenols of Garcinia Indica

    PubMed Central

    Lakshmi, C.; Kumar, K. Akshaya; Dennis, T. J.; Kumar, T. S. S. P. N. S. Sanath

    2011-01-01

    The aim of present work is to study the antibacterial activity of polyphenols isolated from the ethyl acetate soluble of methanol extract of stem bark of Garcinia indica against Staphylococcus aureus, Salmonella typhi and Escherichia coli by paper disc method. The results showed good antibacterial activity against S. aureus at higher concentrations, moderate at lower concentrations, against S. typhi moderate at higher concentrations but no activity against E. coli even at higher concentration for flavononylflavone. With proauthocyanin S. Aureus, S. Typhi and E. coli showed good antibacterial activity at higher concentration only. PMID:22707838

  17. Essential oil composition and antibacterial activity of Monticalia greenmaniana (Asteraceae).

    PubMed

    Cárdenas, José; Rojas, Janne; Rojas-Fermin, Luís; Lucena, María; Buitrago, Alexis

    2012-02-01

    The essential oils from fresh aerial parts of Monticalia greenmaniana (Hieron) C. Jeffrey (Asteraceae) collected in March, were analyzed by GC/MS. Oil yields (w/v) of 0.1% (flowers), 0.07%, (stems) and 0.1% (leaves) were obtained by hydrodistillation. Thirteen, sixteen and eighteen components, respectively, were identified by comparison of their mass spectra with those in the Wiley GC-MS Library data base. The major components of the flower and stem oils were 1-nonane (38.8% flowers; 33.5% stems), alpha-pinene (29.0% flowers; 14.8% stems) and germacrene D (15.6% flowers; 18.6% stems). However, in the leaf oil, germacrene D was observed at 50.7%, followed by beta-cedrene at 8.4%. The leaf essential oil showed a broad spectrum of antibacterial activity against the important human pathogenic Gram-positive and Gram-negative bacteria Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 19433), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853) and Klebsiella pneumoniae (ATCC 25955) with MIC values ranging from 75 to 6000 ppm.

  18. Pilins in gram-positive bacteria: A structural perspective.

    PubMed

    Krishnan, Vengadesan

    2015-07-01

    Pilins or fimbrilins are a class of proteins found in bacterial surface pilus, a hair-like surface appendage. Both the Gram-negative and -positive bacteria produce pilins to assemble pili on their cell-surface for different purposes including adherence, twitching motility, conjugation, immunomodulation, biofilm formation, and electron transfer. Immunogenic properties of the pilins make them attractive vaccine candidates. The polymerized pilins play a key role in the initiation of host adhesion, which is a critical step for bacterial colonization and infection. Because of their key role in adhesion and exposure on the cell surface, targeting the pilins-mediated adhesion (anti-adhesion therapy) is also seen as a promising alternative approach for preventing and treating bacterial infections, one that may overcome their ever-increasing repertoires of resistance mechanisms. Individual pilins interact with each other non-covalently to assemble the pilus fiber with the help of associated proteins like chaperones and Usher in Gram-negative bacteria. In contrast, the pilins in Gram-positive bacteria often connect with each other covalently, with the help of sortases. Certain unique structural features present on the pilins distinguish them from one another across different bacterial strains, and these dictate their cellular targets and functions. While the structure of pilins has been extensively studied in Gram-negative pathogenic bacteria, the pilins in Gram-positive pathogenic bacteria have been in only during the last decade. Recently, the discovery of pilins in non-pathogenic bacteria, such as Lactobacillus rhamnosus GG, has received great attention, though traditionally the attention was on pathogenic bacteria. This review summarizes and discusses the current structural knowledge of pilins in Gram-positive bacteria with emphasis on those pilins which are sortase substrates.

  19. In Vitro Antibacterial Activity of Rhodanine Derivatives against Pathogenic Clinical Isolates

    PubMed Central

    AbdelKhalek, Ahmed; Ashby, Charles R.; Patel, Bhargav A.; Talele, Tanaji T.; Seleem, Mohamed N.

    2016-01-01

    Bacterial infections present a serious challenge to healthcare practitioners due to the emergence of resistance to numerous conventional antibacterial drugs. Therefore, new bacterial targets and new antimicrobials are unmet medical needs. Rhodanine derivatives have been shown to possess potent antimicrobial activity via a novel mechanism. However, their potential use as antibacterials has not been fully examined. In this study, we determined the spectrum of activity of seven rhodanine derivatives (compounds Rh 1–7) against clinical isolates of Gram-positive and Gram-negative bacterial strains and Candida albicans. We also synthesized and tested three additional compounds, ethyl ester and amide of rhodanine 2 (Rh 8 and Rh 10, respectively) and ethyl ester of rhodanine 3 (Rh 9) to determine the significance of the carboxyl group modification towards antibacterial activity and human serum albumin binding. A broth microdilution assay confirmed Rh 1–7 exhibit bactericidal activity against Gram-positive pathogens. Rh 2 had significant activity against various vancomycin-resistant (MIC90 = 4 μM) and methicillin-resistant (MIC90 = 4 μM) Staphylococcus aureus (VRSA and MRSA), Staphylococcus epidermidis (MIC = 4 μM) and vancomycin-resistant Enterococcus (VRE) strains (MIC90 = 8 μM). The rhodanine compounds exhibited potent activity against Bacillus spp., including Bacillus anthracis, with MIC range of 2–8 μM. In addition, they had potent activity against Clostridium difficile. The most potent compound, Rh 2, at 4 and 8 times its MIC, significantly decreased S. epidermidis biofilm mass by more than 35% and 45%, respectively. None of the rhodanine compounds showed antimicrobial activity (MIC > 128 μM) against various 1) Gram-negative pathogens (Acinetobacter baumannii, Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, and Salmonella Typhimurium) or 2) strains of Candida albicans (MIC > 64 μM). The MTS assay confirmed that rhodanines were not toxic to

  20. Evaluation of the antibacterial and antibiofilm activities of novel CRAMP-vancomycin conjugates with diverse linkers.

    PubMed

    Mishra, Nigam M; Briers, Yves; Lamberigts, Chris; Steenackers, Hans; Robijns, Stijn; Landuyt, Bart; Vanderleyden, Jos; Schoofs, Liliane; Lavigne, Rob; Luyten, Walter; Van der Eycken, Erik V

    2015-07-21

    We report the design, synthesis and antibacterial activity analysis of conjugates of vancomycin and cathelicidin-related antimicrobial peptides (CRAMP). Vancomycin inhibits the nascent peptidoglycan synthesis and is highly active against Gram-positive bacteria, whereas Gram-negative bacteria are generally insensitive due to a protective outer membrane. CRAMP is known to translocate across the Gram-negative outer membrane by a self-promoted uptake mechanism. Vancomycin-CRAMP conjugates were synthesized using click chemistry with diverse hydrophilic and hydrophobic linkers, with CRAMP functioning as a carrier peptide for the transfer of vancomycin through the outer membrane. Small hydrophobic linkers with an aromatic group result in the most active conjugates against planktonic Gram-negative bacteria, while maintaining the high activity of vancomycin against Gram-positive bacteria. These conjugates thus show a broad-spectrum activity, which is absent in CRAMP or vancomycin alone, and which is strongly improved compared to an equimolar mixture of CRAMP and vancomycin. In addition, these conjugates also show a strong inhibitory activity against S. Typhimurium biofilm formation. PMID:26068402

  1. Synthetic teichoic acid conjugate vaccine against nosocomial Gram-positive bacteria.

    PubMed

    Laverde, Diana; Wobser, Dominique; Romero-Saavedra, Felipe; Hogendorf, Wouter; van der Marel, Gijsbert; Berthold, Martin; Kropec, Andrea; Codee, Jeroen; Huebner, Johannes

    2014-01-01

    Lipoteichoic acids (LTA) are amphiphilic polymers that are important constituents of the cell wall of many Gram-positive bacteria. The chemical structures of LTA vary among organisms, albeit in the majority of Gram-positive bacteria the LTAs feature a common poly-1,3-(glycerolphosphate) backbone. Previously, the specificity of opsonic antibodies for this backbone present in some Gram-positive bacteria has been demonstrated, suggesting that this minimal structure may be sufficient for vaccine development. In the present work, we studied a well-defined synthetic LTA-fragment, which is able to inhibit opsonic killing of polyclonal rabbit sera raised against native LTA from Enterococcus faecalis 12030. This promising compound was conjugated with BSA and used to raise rabbit polyclonal antibodies. Subsequently, the opsonic activity of this serum was tested in an opsonophagocytic assay and specificity was confirmed by an opsonophagocytic inhibition assay. The conjugated LTA-fragment was able to induce specific opsonic antibodies that mediate killing of the clinical strains E. faecalis 12030, Enterococcus faecium E1162, and community-acquired Staphylococcus aureus strain MW2 (USA400). Prophylactic immunization with the teichoic acid conjugate and with the rabbit serum raised against this compound was evaluated in active and passive immunization studies in mice, and in an enterococcal endocarditis rat model. In all animal models, a statistically significant reduction of colony counts was observed indicating that the novel synthetic LTA-fragment conjugate is a promising vaccine candidate for active or passive immunotherapy against E. faecalis and other Gram-positive bacteria.

  2. Improvement of antibacterial activity of some sulfa drugs through linkage to certain phthalazin-1(2H)-one scaffolds.

    PubMed

    Ibrahim, Hany S; Eldehna, Wagdy M; Abdel-Aziz, Hatem A; Elaasser, Mahmoud M; Abdel-Aziz, Marwa M

    2014-10-01

    RAB1 5 is a lead antibacterial agent in which trimethoprim is linked to phthalazine moiety. Similarly, our strategy in this research depends on the interconnection between some sulfa drugs and certain phthalazin-1(2H)-one scaffolds in an attempt to enhance their antibacterial activity. This approach was achieved through the combination of 4-substituted phthalazin-1(2H)-ones 9a, b or 14a, b with sulfanilamide 1a, sulfathiazole 1b or sulfadiazine 1c through amide linkers 6a, b to produce the target compounds 10a-d and 15a-e, respectively. The antibacterial activity of the newly synthesized compounds showed that all tested compounds have antibacterial activity higher than that of their reference sulfa drugs 1a-c. Compound 10c represented the highest antibacterial activity against Gram-positive bacteria Streptococcus pneumonia and Staphylococcus aureus with MIC = 0.39 μmol/mL. Moreover, compound 10d displayed excellent antibacterial activity against Gram-negative bacteria Escherichia coli and Salmonella typhimurium with MIC = 0.39 and 0.78 μmol/mL, respectively.

  3. Common patterns - unique features: nitrogen metabolism and regulation in Gram-positive bacteria.

    PubMed

    Amon, Johannes; Titgemeyer, Fritz; Burkovski, Andreas

    2010-07-01

    Gram-positive bacteria have developed elaborate mechanisms to control ammonium assimilation, at the levels of both transcription and enzyme activity. In this review, the common and specific mechanisms of nitrogen assimilation and regulation in Gram-positive bacteria are summarized and compared for the genera Bacillus, Clostridium, Streptomyces, Mycobacterium and Corynebacterium, with emphasis on the high G+C genera. Furthermore, the importance of nitrogen metabolism and control for the pathogenic lifestyle and virulence is discussed. In summary, the regulation of nitrogen metabolism in prokaryotes shows an impressive diversity. Virtually every phylum of bacteria evolved its own strategy to react to the changing conditions of nitrogen supply. Not only do the transcription factors differ between the phyla and sometimes even between families, but the genetic targets of a given regulon can also differ between closely related species.

  4. Type IV Pili in Gram-Positive Bacteria

    PubMed Central

    Craig, Lisa

    2013-01-01

    SUMMARY Type IV pili (T4P) are surface-exposed fibers that mediate many functions in bacteria, including locomotion, adherence to host cells, DNA uptake (competence), and protein secretion and that can act as nanowires carrying electric current. T4P are composed of a polymerized protein, pilin, and their assembly apparatuses share protein homologs with type II secretion systems in eubacteria and the flagella of archaea. T4P are found throughout Gram-negative bacterial families and have been studied most extensively in certain model Gram-negative species. Recently, it was discovered that T4P systems are also widespread among Gram-positive species, in particular the clostridia. Since Gram-positive and Gram-negative bacteria have many differences in cell wall architecture and other features, it is remarkable how similar the T4P core proteins are between these organisms, yet there are many key and interesting differences to be found as well. In this review, we compare the two T4P systems and identify and discuss the features they have in common and where they differ to provide a very broad-based view of T4P systems across all eubacterial species. PMID:24006467

  5. Teicoplanin in the treatment of gram-positive-bacterial endocarditis.

    PubMed Central

    Martino, P; Venditti, M; Micozzi, A; Brandimarte, C; Gentile, G; Santini, C; Serra, P

    1989-01-01

    Intravenous teicoplanin has been used to treat 23 cases of gram-positive-bacterial endocarditis, usually with 3 to 7 mg/kg every 12 h on the first day, followed by 3 to 7 mg/kg every 24 h. For some cases (staphylococcal and enterococcal endocarditis), the dosage was 8 to 14.4 mg/kg per day and/or other antibiotics were given. The mean duration was 48.2 days (range, 23 to 130 days). Of 23 patients, 21 (91.3%) had negative cultures or were cured. A total of 18 patients were treated with teicoplanin alone; of these, 4 had surgery, and all (except 2 who relapsed) were cured. Teicoplanin was combined with one or more antibiotics in five cases; in all cases appropriate cultures were negative, but three patients died during therapy or follow-up. Mild renal impairment was seen in two patients; both were receiving teicoplanin in combination with an aminoglycoside. We conclude that intravenous teicoplanin administered once a day at doses of 7 to 14 mg/kg per day is well tolerated, easy to administer, and may represent an efficacious therapy for gram-positive-bacterial endocarditis. PMID:2529815

  6. Review of meta-analyses of vancomycin compared with new treatments for Gram-positive skin and soft-tissue infections: Are we any clearer?

    PubMed

    Tsoulas, Christos; Nathwani, Dilip

    2015-07-01

    Vancomycin has been considered the standard of care for treatment of Gram-positive skin and soft-tissue infections (SSTIs). Its value has been questioned over the last decade owing to well acknowledged limitations in efficacy and tolerability and the emergence of newer meticillin-resistant Staphylococcus aureus (MRSA)-active antibacterial agents. However, no single agent has shown better results versus vancomycin in SSTI trials. The aim of this review was to identify and summarise data from meta-analyses (MAs) for the treatment of Gram-positive and MRSA SSTIs. A systematic search identified 21 published MAs examining the use of newer antibiotics and vancomycin in SSTIs. In terms of clinical and microbiological efficacy, linezolid (in Gram-positive and MRSA SSTIs) and telavancin (in MRSA SSTIs) were shown to be more effective than vancomycin. The safety of newer antimicrobials in general was comparable with vancomycin, except for telavancin, which was associated with more severe adverse events (AEs), and tigecycline owing to an all-cause mortality imbalance observed in all infections but not confirmed in SSTIs. Specific AEs were related to the use of newer agents, such as nephrotoxicity for telavancin, creatine phosphokinase elevations for daptomycin, and thrombocytopenia with linezolid. Some evidence suggests that daptomycin could be associated with reduced treatment duration, and linezolid with reduced length of intravenous treatment and hospital length of stay compared with vancomycin. Considering the limitations of this type of research and the comparative efficacy results demonstrated in head-to-head randomised controlled trials, data are still not sufficient to support the widespread use of new agents over vancomycin.

  7. Evaluation of antibacterial and anthelmintic activities with total phenolic contents of Piper betel leaves

    PubMed Central

    Akter, Kazi Nahid; Karmakar, Palash; Das, Abhijit; Anonna, Shamima Nasrin; Shoma, Sharmin Akter; Sattar, Mohammad Mafruhi

    2014-01-01

    Objective: The study was conducted to investigate the antibacterial and anthelmintic activities and to determine total phenolic contents of methanolic extract of Piper betel leaves. Materials and Methods: The extract was subjected to assay for antibacterial activity using both gram positive and gram negative bacterial strains through disc diffusion method; anthelmintic activity with the determination of paralysis and death time using earthworm (Pheritima posthuma) at five different concentrations and the determination of total phenolic contents using the Folin-ciocalteau method. Results: The extract showed significant (p<0.01) zone of inhibitions against gram positive Staphylococcus aureus [(6.77±0.25) mm] and Gram negative Escherichia coli [(8.53±0.25) mm], Salmonella typhi [(5.20±0.26) mm], Shigella dysenteriae [(11.20±0.26) mm] compared to positive control Azithromycin (ranging from 20.10±0.17 to 25.20±0.35 mm) while no zone inhibitory activity was found for both the extract and the standard drug against Gram positive Bacillus cereus. The extract also showed potent anthelmintic activity requiring less time for paralysis and death compared to the standard drug albendazole (10 mg/ml). At concentrations 10, 20, 40, 60 and 80 mg/ml, leaves extract showed paralysis at mean time of 9.83±0.60, 8.50±0.29, 6.60±0.17, 6.20±0.44 and 4.16±0.60; death at 11.33±0.88, 9.67±0.33, 7.83±0.17, 7.16±0.60 and 5.16±0.72 minutes, respectively. Whereas the standard drug showed paralysis and death at 19.33±0.71 and 51.00±0.23 minutes respectively. The extract confirmed the higher concentration of phenolic contents (124.42±0.14 mg of GAE /g of extract) when screened for total phenolic compounds. Conclusion: As results confirmed potential antibacterial and anthelmintic activities of Piper betel leaves extract, therefore it may be processed for further drug research. PMID:25386394

  8. Surface enhanced Raman scattering, antibacterial and antifungal active triangular gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Smitha, S. L.; Gopchandran, K. G.

    2013-02-01

    Shape controlled syntheses of gold nanoparticles have attracted a great deal of attention as their optical, electronic, magnetic and biological properties are strongly dependent on the size and shape of the particles. Here is a report on the surface enhanced Raman scattering (SERS) activity of Cinnamomum zeylanicum leaf broth reduced gold nanoparticles consisting of triangular and spherical like particles, using 2-aminothiophenol (2-ATP) and crystal violet (CV) as probe molecules. Nanoparticles prepared with a minimum leaf broth concentration, having a greater number of triangular like particles exhibit a SERS activity of the order of 107. The synthesized nanoparticles exhibit efficient antibacterial activity against the tested gram negative bacterium Escherichia coli and gram positive bacterium Staphylococcus aureus. Investigations on the antifungal activity of the synthesized nanoparticles against Aspergillus niger and Fusarium oxysporum positive is also discussed.

  9. Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities.

    PubMed

    Younes, Islem; Sellimi, Sabrine; Rinaudo, Marguerite; Jellouli, Kemel; Nasri, Moncef

    2014-08-18

    The results given in the literature are conflicting when considering the relationship between antimicrobial activity and chitosan characteristics. To be able to clarify, we prepared fifteen homogeneous chitosans with different acetylation degrees (DA) and molecular weights (MW) by reacetylation of a fully deacetylated chitin under homogeneous conditions. They were tested at different pH values for their antimicrobial activities against four Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Salmonella typhi), four Gram-positive bacteria (Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis and Micrococcus luteus) and three fungi (Aspergillus niger, Fusarium oxysporum and Alternaria solani). Chitosans markedly inhibited growth of most bacteria and fungi tested, although the inhibitory effect depends on the type of microorganism and on the chitosan characteristics (DA and MW) with minimum inhibitory concentrations in the range of 0.001 to 0.1 w%. Considering chitosan efficiency on bacteria, our series of data clearly show that the lower DA and the lower pH give the larger efficiency. Antibacterial activity was further enhanced for Gram-negative bacteria with decreasing MW, whereas, opposite effect was observed with the Gram-positive. Concerning the antifungal activity, the influence of chitosan characteristics was dependent on the particular type of fungus. Fungal growth decreased with increasing MW for F. oxysporum and decreasing DA for A. solani, but no MW or DA dependences were observed with A. niger. PMID:24929684

  10. Synthesis and evaluation of isatin-β-thiosemicarbazones as novel agents against antibiotic-resistant Gram-positive bacterial species.

    PubMed

    Zhang, Xu-Meng; Guo, Hui; Li, Zai-Shun; Song, Fu-Hang; Wang, Wei-Min; Dai, Huan-Qin; Zhang, Li-Xin; Wang, Jian-Guo

    2015-08-28

    Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) have caused an increasing mortality rate, which means that antibiotic resistance is becoming an important health issue. In the course to screen new agents for resistant bacteria, we identified that a series of isatin-β-thiosemicarbazones (IBTs) could inhibit the growth of MRSA and VRE. This was the first time that the "familiar" IBT compounds exhibited significant anti Gram-positive pathogen activity. Against a clinical isolated MRSA strain, 20 of the 51 synthesized compounds showed minimum inhibitory concentration (MIC) data of 0.78 mg/L and another 12 novel compounds had MICs of 0.39 mg/L. Moreover, these compounds also inhibited Enterococcus faecalis and VRE at similar levels, indicating that IBTs might have different mode of action compared with vancomycin. For these IBTs, comparative field analysis (CoMFA) models were further established to understand the structure-activity relationships in order to design new compounds from steric and electrostatic contributions. This work has suggested that IBTs can be considered as potential lead compounds to discover antibacterial inhibitors to combat drug resistance.

  11. Synthesis and evaluation of isatin-β-thiosemicarbazones as novel agents against antibiotic-resistant Gram-positive bacterial species.

    PubMed

    Zhang, Xu-Meng; Guo, Hui; Li, Zai-Shun; Song, Fu-Hang; Wang, Wei-Min; Dai, Huan-Qin; Zhang, Li-Xin; Wang, Jian-Guo

    2015-08-28

    Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) have caused an increasing mortality rate, which means that antibiotic resistance is becoming an important health issue. In the course to screen new agents for resistant bacteria, we identified that a series of isatin-β-thiosemicarbazones (IBTs) could inhibit the growth of MRSA and VRE. This was the first time that the "familiar" IBT compounds exhibited significant anti Gram-positive pathogen activity. Against a clinical isolated MRSA strain, 20 of the 51 synthesized compounds showed minimum inhibitory concentration (MIC) data of 0.78 mg/L and another 12 novel compounds had MICs of 0.39 mg/L. Moreover, these compounds also inhibited Enterococcus faecalis and VRE at similar levels, indicating that IBTs might have different mode of action compared with vancomycin. For these IBTs, comparative field analysis (CoMFA) models were further established to understand the structure-activity relationships in order to design new compounds from steric and electrostatic contributions. This work has suggested that IBTs can be considered as potential lead compounds to discover antibacterial inhibitors to combat drug resistance. PMID:26185006

  12. The CodY pleiotropic repressor controls virulence in gram-positive pathogens.

    PubMed

    Stenz, Ludwig; Francois, Patrice; Whiteson, Katrine; Wolz, Christiane; Linder, Patrick; Schrenzel, Jacques

    2011-07-01

    CodY is involved in the adaptive response to starvation in at least 30 different low G+C gram-positive bacteria. After dimerization and activation by cofactor binding, CodY binds to a consensus palindromic DNA sequence, leading to the repression of approximately 5% of the genome. CodY represses the transcription of target genes when bound to DNA by competition with the RNA polymerase for promoter binding, or by interference with transcriptional elongation as a roadblock. CodY displays enhanced affinity for its DNA target when bound to GTP and/or branched chain amino acids (BCAA). When nutrients become limiting in the postexponential growth phase, a decrease of intracellular levels of GTP and BCAA causes a deactivation of CodY and decreases its affinity for DNA, leading to the induction of its regulon. CodY-regulated genes trigger adaptation of the bacteria to starvation by highly diverse mechanisms, such as secretion of proteases coupled to expression of amino acid transporters, and promotion of survival strategies like sporulation or biofilm formation. Additionally, in pathogenic bacteria, several virulence factors are regulated by CodY. As a function of their access to nutrients, pathogenic gram-positive bacteria express virulence factors in a codY-dependant manner. This is true for the anthrax toxins of Bacillus anthracis and the haemolysins of Staphylococcus aureus. The purpose of this review is to illustrate CodY-regulated mechanisms on virulence in major gram-positive pathogens.

  13. Potential enhancement of antibacterial activity of graphene oxide-silver nanocomposite by introducing C2 carbon chain linkage

    NASA Astrophysics Data System (ADS)

    Yun, Hyosuk; Ahmed, Mohammad Shamsuddin; Lee, Kyungmi; Jeon, Seungwon; Lee, Chul Won

    2016-01-01

    Various carbon chain linkages were introduced during the process of synthesizing silver-nanoparticles (AgNPs)-decorated graphene nanocomposites [referred to as GO-Cx-Ag where, HS-(CH2)x-SH = Cx and x = 0, 2, or 4] to evaluate antibacterial properties. The nano-structures of GO-Cx-Ag were characterized using TEM and XPS, revealing that GO-C2-Ag comprises well-dispersed and smaller AgNPs anchored onto the surface of graphene sheets than the GO-C0-Ag and GO-C4-Ag. The antibacterial activities of those nanocomposites were assessed using paper-disk diffusion and minimal inhibitory concentration (MIC) methods against Gram-negative and Gram-positive bacteria. The results showed that carbon chain linkers enhanced the antibacterial activity against Gram-negative Salmonella typhimurium and Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. In particular, GO-C2-Ag showed higher antibacterial activity than GO-C0-Ag and GO-C4-Ag due to nearly eight times higher reactive oxygen species (ROS) formation which determined by fluorescence-based ROS detection experiment. Also, LC-inductively coupled plasma mass spectrometer (LC-ICP-MS) demonstrated that the Ag release from GO-Cx-Ag was insignificant (0.03%). However, the higher ROS formation from GO-C2-Ag was facilitated by higher dispersion, smaller size, and well attachment of AgNPs with AgO species onto graphene sheets. These results suggest that the medium length carbon chain linkers in between Ag and GO can be utilized to improve antibacterial activity.

  14. In Vitro antibacterial and in Vivo cytotoxic activities of Grewia paniculata

    PubMed Central

    Nasrin, Mahmuda; Dash, Pritesh Ranjan; Ali, Mohammad Shawkat

    2015-01-01

    Objectives: Grewia paniculata (Family: Malvaceae) has been used to treat inflammation, respiratory disorders and fever. It is additionally employed for other health conditions including colds, diarrhea and as an insecticide in Bangladesh. The aim of the present study was to investigate the antibacterial and cytotoxic activities of different extracts of Grewia paniculata. Materials and Methods: The antibacterial activity was evaluated against both gram negative and gram positive bacteria using disc diffusion method by determination of the diameter of zone of inhibition. Cytotoxic activity was performed by brine shrimp (Artemia salina) lethality bioassay. Results: In disc diffusion method, all the natural products (400 μg/disc) showed moderate to potent activity against all the tested bacteria. The ethanol extract of bark (EEB) and ethanol fraction of bark (EFB) (400 μg/disc) exhibited highest activity against Shigella dysenteriae with a zone of inhibition of 23±1.63 mm and 23±1.77 mm respectively. In the brine shrimp lethality bioassay all the extracts showed moderate cytotoxic activity when compared with the standard drug vincristin sulphate. For example, LC50 value of the ethanol fraction of bark (EFB) was 3.01 μg/ml while the LC50 of vincristine sulphate was 0.52 μg/ml. Conclusions: The results suggest that all the natural products possess potent antibacterial and moderate cytotoxic. PMID:25949950

  15. Novel ureas and thioureas of 15-membered azalides with antibacterial activity against key respiratory pathogens.

    PubMed

    Bukvić Krajacić, Mirjana; Novak, Predrag; Dumić, Miljenko; Cindrić, Mario; Paljetak, Hana Cipcić; Kujundzić, Nedjeljko

    2009-09-01

    The new ureas and thioureas of 15-membered azalides, N''-substituted 9a-(N'-carbamoyl-gamma-aminopropyl) (4), 9a-(N'-thiocarbamoyl-gamma-aminopropyl) (6), 9a-[N'-(beta-cyanoethyl)-N'-(carbamoyl-gamma-aminopropyl)] (8) and 9a-[N'-(beta-cyanoethyl)-N'-(thiocarbamoyl-gamma-aminopropyl)] (10) of 9-deoxo-9-dihydro-9a-aza-9a-homoerythromycin A (2), were synthesized and structurally characterized by NMR and IR spectroscopic methods and mass spectrometry. The new compounds were evaluated in vitro against a panel of erythromycin susceptible and erythromycin-resistant gram-positive and gram-negative bacterial strains. These compounds displayed an excellent overall antibacterial in vitro activity against erythromycin sensitive gram-positive strains, Streptococcus pneumoniae, Streptococcus pyogenes, Staphylococcus aureus, and good against negative strains, Moraxella catarrhalis and Haemophilus influenzae. In addition, several ureas with naphthyl substituents (4f, 4g, 4h) showed better activity in comparison to azithromycin against inducible resistant S. pyogenes. Ureas with naphthyl substituents 4g, 4h and thiourea 8h displayed moderate activity against constitutively resistant S. pneumoniae.

  16. Antibacterial activity of two chalcones, xanthoangelol and 4-hydroxyderricin, isolated from the root of Angelica keiskei KOIDZUMI.

    PubMed

    Inamori, Y; Baba, K; Tsujibo, H; Taniguchi, M; Nakata, K; Kozawa, M

    1991-06-01

    Two chalcones, xanthoangelol (I) and 4-hydroxyderricin (II), isolated from the root of Angelica keiskei KOIDZUMI (Umbelliferae) showed antibacterial activity against gram-positive pathogenic bacteria. The activity of I on Micrococcus luteus IFO-12708 (minimum inhibitory concentration (MIC), 0.76 microgram/ml) was the same potency as that of gentamicin, which is used as a standard. Although the activity of both chalcones on plant-pathogenic bacteria was lower than that of streptomycin sulfate, used as a positive control, they also exhibited growth-inhibitory effects. The antibacterial activity of I isolated from Angelica keiskei KOIDZUMI is being reported here for the first time. The growth-inhibitory effect of II on plant-pathogenic bacteria is also reported for the first time in this paper.

  17. Antibacterial and anticoagulant activities of coumarins isolated from the flowers of Magydaris tomentosa.

    PubMed

    Rosselli, Sergio; Maggio, Antonella; Bellone, Gabriella; Formisano, Carmen; Basile, Adriana; Cicala, Carla; Alfieri, Alessio; Mascolo, Nicola; Bruno, Maurizio

    2007-02-01

    The phytochemical investigation of the acetone and methanol extracts of the flowers of Magydaris tomentosa (Desf.) DC afforded six known coumarins as well as (+)-meranzin hydrate (7), not previously reported as a natural product. The antibacterial activity of umbelliprenin (1), osthol (2), imperatorin (3), citropten (4) and (+)-meranzin hydrate (7) was tested against Gram-positive and Gram-negative bacteria. All coumarins (1-7) isolated in this study inhibited growth of all bacterial strains tested (MIC between 16 and 256 microg/mL), the most active being imperatorin (3) (MICs between 32 and 128 microg/mL) and citropten (4) (MICs between 16 and 256 microg/mL). The anticoagulant activity of compounds 1-4 and 7 was also evaluated.

  18. Antibacterial activity of Cuminum cyminum L. and Carum carvi L. essential oils.

    PubMed

    Iacobellis, Nicola S; Lo Cantore, Pietro; Capasso, Francesco; Senatore, Felice

    2005-01-12

    Essential oils extracted by hydrodistillation from fruits of Cuminum cyminum L. and Carum carvi L. were analyzed by gas chromatography (GC) and GC-mass spectrometry (MS). The main components of C. cyminum oil were p-mentha-1,4-dien-7-al, cumin aldehyde, gamma-terpinene, and beta-pinene, while those of the C. carvi oil were carvone, limonene, germacrene D, and trans-dihydrocarvone. Antibacterial activity, determined with the agar diffusion method, was observed against Gram-positive and Gram-negative bacterial species in this study. The activity was particularly high against the genera Clavibacter, Curtobacterium, Rhodococcus, Erwinia, Xanthomonas, Ralstonia, and Agrobacterium, which are responsible for plant or cultivated mushroom diseases worldwide. In general, a lower activity was observed against bacteria belonging to the genus Pseudomonas. These results suggest the potential use of the above essential oils for the control of bacterial diseases.

  19. Rational Design of Berberine-Based FtsZ Inhibitors with Broad-Spectrum Antibacterial Activity

    PubMed Central

    Sun, Ning; Chan, Fung-Yi; Lu, Yu-Jing; Neves, Marco A. C.; Lui, Hok-Kiu; Wang, Yong; Chow, Ka-Yan; Chan, Kin-Fai; Yan, Siu-Cheong; Leung, Yun-Chung; Abagyan, Ruben; Chan, Tak-Hang; Wong, Kwok-Yin

    2014-01-01

    Inhibition of the functional activity of Filamenting temperature-sensitive mutant Z (FtsZ) protein, an essential and highly conserved bacterial cytokinesis protein, is a promising approach for the development of a new class of antibacterial agents. Berberine, a benzylisoquinoline alkaloid widely used in traditional Chinese and native American medicines for its antimicrobial properties, has been recently reported to inhibit FtsZ. Using a combination of in silico structure-based design and in vitro biological assays, 9-phenoxyalkyl berberine derivatives were identified as potent FtsZ inhibitors. Compared to the parent compound berberine, the derivatives showed a significant enhancement of antibacterial activity against clinically relevant bacteria, and an improved potency against the GTPase activity and polymerization of FtsZ. The most potent compound 2 strongly inhibited the proliferation of Gram-positive bacteria, including methicillin-resistant S. aureus and vancomycin-resistant E. faecium, with MIC values between 2 and 4 µg/mL, and was active against the Gram-negative E. coli and K. pneumoniae, with MIC values of 32 and 64 µg/mL respectively. The compound perturbed the formation of cytokinetic Z-ring in E. coli. Also, the compound interfered with in vitro polymerization of S. aureus FtsZ. Taken together, the chemical modification of berberine with 9-phenoxyalkyl substituent groups greatly improved the antibacterial activity via targeting FtsZ. PMID:24824618

  20. Antibacterial Activity of Alkaloid Fractions from Berberis microphylla G. Forst and Study of Synergism with Ampicillin and Cephalothin.

    PubMed

    Manosalva, Loreto; Mutis, Ana; Urzúa, Alejandro; Fajardo, Victor; Quiroz, Andrés

    2016-01-11

    Berberis microphylla is a native plant that grows in Patagonia and is commonly used by aboriginal ethnic groups in traditional medicine as an antiseptic for different diseases. The present study evaluated the antibacterial and synergistic activity of alkaloid extracts of B. microphylla leaves, stems and roots used either individually or in combination with antibiotics against Gram-positive and Gram-negative bacteria. The in vitro antibacterial activities of leaf, stem and root alkaloid extracts had significant activity only against Gram-positive bacteria. Disc diffusion tests demonstrated that the root extract showed similar activity against B. cereus and S. epidermidis compared to commercial antibiotics, namely ampicillin and cephalothin, and pure berberine, the principal component of the alkaloid extracts, was found to be active only against S. aureus and S. epidermidis with similar activity to that of the root extract. The minimum inhibitory concentrations (MICs) of the alkaloid extracts ranged from 333 to 83 μg/mL, whereas minimum bactericidal concentrations (MBCs) varied from 717 to 167 μg/mL. In addition, synergistic or indifferent effects between the alkaloid extracts and antibiotics against bacterial strains were confirmed.

  1. Antibacterial Activity of Geminized Amphiphilic Cationic Homopolymers.

    PubMed

    Wang, Hui; Shi, Xuefeng; Yu, Danfeng; Zhang, Jian; Yang, Guang; Cui, Yingxian; Sun, Keji; Wang, Jinben; Yan, Haike

    2015-12-22

    The current study is aimed at investigating the effect of cationic charge density and hydrophobicity on the antibacterial and hemolytic activities. Two kinds of cationic surfmers, containing single or double hydrophobic tails (octyl chains or benzyl groups), and the corresponding homopolymers were synthesized. The antimicrobial activity of these candidate antibacterials was studied by microbial growth inhibition assays against Escherichia coli, and hemolysis activity was carried out using human red blood cells. It was interestingly found that the homopolymers were much more effective in antibacterial property than their corresponding monomers. Furthermore, the geminized homopolymers had significantly higher antibacterial activity than that of their counterparts but with single amphiphilic side chains in each repeated unit. Geminized homopolymers, with high positive charge density and moderate hydrophobicity (such as benzyl groups), combine both advantages of efficient antibacterial property and prominently high selectivity. To further explain the antibacterial performance of the novel polymer series, the molecular interaction mechanism is proposed according to experimental data which shows that these specimens are likely to kill microbes by disrupting bacterial membranes, leading them unlikely to induce resistance.

  2. Walnut (Juglans regia L.) leaves: phenolic compounds, antibacterial activity and antioxidant potential of different cultivars.

    PubMed

    Pereira, José Alberto; Oliveira, Ivo; Sousa, Anabela; Valentão, Patrícia; Andrade, Paula B; Ferreira, Isabel C F R; Ferreres, Federico; Bento, Albino; Seabra, Rosa; Estevinho, Letícia

    2007-11-01

    Different cultivars of walnut (Juglans regia L.) leaves (Cv. Lara, Franquette, Mayette, Marbot, Mellanaise and Parisienne) grown in Portugal, were investigated in what concerns phenolic compounds and antimicrobial and antioxidant properties. Phenolics analysis was performed by reversed-phase HPLC/DAD and 10 compounds were identified and quantified: 3- and 5-caffeoylquinic acids, 3- and 4-p-coumaroylquinic acids, p-coumaric acid, quercetin 3-galactoside, quercetin 3-pentoside derivative, quercetin 3-arabinoside, quercetin 3-xyloside and quercetin 3-rhamnoside. The antimicrobial capacity was screened against Gram positive (Bacillus cereus, B. subtilis, Staphylococcus aureus) and Gram negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae) and fungi (Candida albicans, Cryptococcus neoformans). Walnut leaves selectively inhibited the growth of Gram positive bacteria, being B. cereus the most susceptible one (MIC 0.1mg/mL). Gram negative bacteria and fungi were resistant to the extracts at 100mg/mL. Lara walnut leaves were also submitted to antibacterial assays using 18 clinical isolates of Staphylococcus sp. Antioxidant activity was accessed by the reducing power assay, the scavenging effect on DPPH (2,2-diphenyl-1-picrylhydrazyl) radicals and beta-carotene linoleate model system. In a general way, all of the studied walnut leaves cultivars presented high antioxidant activity (EC(50) values lower than 1mg/mL), being Cv. Lara the most effective one.

  3. Walnut (Juglans regia L.) leaves: phenolic compounds, antibacterial activity and antioxidant potential of different cultivars.

    PubMed

    Pereira, José Alberto; Oliveira, Ivo; Sousa, Anabela; Valentão, Patrícia; Andrade, Paula B; Ferreira, Isabel C F R; Ferreres, Federico; Bento, Albino; Seabra, Rosa; Estevinho, Letícia

    2007-11-01

    Different cultivars of walnut (Juglans regia L.) leaves (Cv. Lara, Franquette, Mayette, Marbot, Mellanaise and Parisienne) grown in Portugal, were investigated in what concerns phenolic compounds and antimicrobial and antioxidant properties. Phenolics analysis was performed by reversed-phase HPLC/DAD and 10 compounds were identified and quantified: 3- and 5-caffeoylquinic acids, 3- and 4-p-coumaroylquinic acids, p-coumaric acid, quercetin 3-galactoside, quercetin 3-pentoside derivative, quercetin 3-arabinoside, quercetin 3-xyloside and quercetin 3-rhamnoside. The antimicrobial capacity was screened against Gram positive (Bacillus cereus, B. subtilis, Staphylococcus aureus) and Gram negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae) and fungi (Candida albicans, Cryptococcus neoformans). Walnut leaves selectively inhibited the growth of Gram positive bacteria, being B. cereus the most susceptible one (MIC 0.1mg/mL). Gram negative bacteria and fungi were resistant to the extracts at 100mg/mL. Lara walnut leaves were also submitted to antibacterial assays using 18 clinical isolates of Staphylococcus sp. Antioxidant activity was accessed by the reducing power assay, the scavenging effect on DPPH (2,2-diphenyl-1-picrylhydrazyl) radicals and beta-carotene linoleate model system. In a general way, all of the studied walnut leaves cultivars presented high antioxidant activity (EC(50) values lower than 1mg/mL), being Cv. Lara the most effective one. PMID:17637491

  4. Anti-bacterial activity and brine shrimp lethality bioassay of methanolic extracts of fourteen different edible vegetables from Bangladesh

    PubMed Central

    Ullah, M. Obayed; Haque, Mahmuda; Urmi, Kaniz Fatima; Zulfiker, Abu Hasanat Md.; Anita, Elichea Synthi; Begum, Momtaj; Hamid, Kaiser

    2013-01-01

    Objective To investigate the antibacterial and cytotoxic activity of fourteen different edible vegetables methanolic extract from Bangladesh. Methods The antibacterial activity was evaluated using disc diffusion assay method against 12 bacteria (both gram positive and gram negative). The plant extracts were also screened for cytotoxic activity using the brine shrimp lethality bioassay method and the lethal concentrations (LC50) were determined at 95% confidence intervals by analyzing the data on a computer loaded with “Finney Programme”. Results All the vegetable extracts showed low to elevated levels of antibacterial activity against most of the tested strains (zone of inhibition=5-28 mm). The most active extract against all bacterial strains was from Xanthium indicum which showed remarkable antibacterial activity having the diameter of growth inhibition zone ranging from 12 to 28 mm followed by Alternanthera sessilis (zone of inhibition=6-21 mm). All extracts exhibited considerable general toxicity towards brine shrimps. The LC50 value of the tested extracts was within the range of 8.447 to 60.323 µg/mL with respect to the positive control (vincristine sulphate) which was 0.91 µg/mL. Among all studied extracts, Xanthium indicum displayed the highest cytotoxic effect with LC50 value of 8.447 µg/mL. Conclusions The results of the present investigation suggest that most of the studied plants are potentially good source of antibacterial and anticancer agents. PMID:23570009

  5. [Antibacterial Activity of Alkylated and Acylated Derivatives of Low-Molecular Weight Chitosan].

    PubMed

    Shagdarova, B Ts; Il'ina, A V; Varlamov, V P

    2016-01-01

    A number of alkylated (quaternized) and acylated derivatives of low-molecular weight chitosan were obtained. The structure and composition of the compounds were confirmed by the results of IR and PMR spectroscopy, as well as conductometric titration. The effect of the acyl substituent and the degree of substitution of N-(2-hydroxy-3-trimethylammonium) with the propyl fragment appended to amino groups of the C2 atom of polymer chains on antibacterial activity against typical representatives of gram-positive and gram-negative microorganisms (Staphylococcus epidermidis and Escherichia coli) was studied. The highest activity was in the case of N-[(2-hydroxy-3-trimethylammonium)propyl]chitosan chloride with the maximal substitution (98%). The minimal inhibitory concentration of the derivative was 0.48 µg/mL and 3.90 µg/mL for S. epidermis and E. coli, respectively. PMID:27266254

  6. Chemical composition and antibacterial activity of the essential oil of Monticalia andicola (Asteraceae) collected in Venezuela.

    PubMed

    Baldovino, Shirley; Rojas, Janne; Rojas, Luis B; Lucena, María; Buitrago, Alexis; Morales, Antonio

    2009-11-01

    The essential oil from the leaves of Monticalia andicola Turcz., collected in November 2008, was analyzed by GC/MS. A yield of 0.15% oil was obtained by hydrodistillation. Thirty-six components were identified by comparison of their mass spectra with those in the Wiley GC-MS Library data base. The major components were alpha-pinene (19.6%), beta-pinene (10.5%), alpha-longipinene (6.5%), delta-3-carene (6.2%), cyperene (5.4%) and beta-phellandrene (5.2%). The antibacterial activity of the essential oil was evaluated against Gram- positive (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212) and Gram-negative (Escherichia coli ATCC 25992, Klebsiella pneumoniae ATCC 23357, Pseudomonas aeruginosa ATCC 27853) bacteria, using the disc diffusion agar method. The results showed a broad spectrum of activity with minimal inhibitory concentration (MIC) values ranging from 10 to 150 microg/mL.

  7. Chemical composition and antibacterial activity of the essential oil of Cordia verbenacea from the Venezuelan Andes.

    PubMed

    Meccia, Gina; Rojas, Luis B; Velasco, Judith; Díaz, Tulia; Usubillaga, Alfredo; Arzola, Juan Carmona; Ramos, Sulymar

    2009-08-01

    The essential oil of Cordia verbenacea D.C. (Boraginaceae) that grows in Mérida-Venezuela was obtained by hydrodistillation from the aerial parts of the plant, yielding 0.21%. The oil was analyzed by GC-FID and GC-MS. Thirty one components which made up 94.3% of the oil were identified. The most abundant constituents found were: tricyclene (23.9%), bicyclogermacrene (11.7%), germacrene D (9.9%) and beta-caryophyllene (8.2%). Antibacterial activity determination was carried out according to the disc diffusion assay. Activity against Gram-positive bacteria Staphylococcus aureus ATCC 6538 and Enterococcus faecalis ATCC 29212, at a minimal inhibitory concentration (MIC) of 170 microg/mL and 200 microg/mL, was found.

  8. In vitro antibacterial, antioxidant activity and total phenolic content of some essential oils.

    PubMed

    Srivastava, Upma; Ojha, Swati; Tripathi, N N; Singh, Pooja

    2015-11-01

    In vitro antibacterial activity of 16 essential oils was investigated by disc diffusion method against two Gram positive bacteria Bacillus subtilis and Staphylococcus aureus and two Gram negative bacteria, Shigella flexneri and Escherichia coli. Oils of Cymbopogon citratus and Ocimum basilicum showed highest antibacterial activity. Gram positive bacteria were found to be more sensitive than Gram negative. Antioxidant activities were tested by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and ABTS radical cation decolourization assay while Folin-Ciocalteu method was used to determine the total phenolic content. In DPPH assay, highest antioxidant activity was observed in 0. basilicum oil followed by Azeratum conyzoides, A. marmelos and C. citratus, with percent inhibition and IC50 value ranging from 66.11-71.93% and 14.10-17.92 µl ml(-1) respectively. In ABTS assay, similar results were obtained but with higher percent inhibition which ranged from 67.48-76.23% and lower IC50 value (12.12-17.21 µ ml(-1)). Moreover, radical scavenging activity of essential oils was lower than that observed for the synthetic antioxidant BHA and BHT. The total phenolic content of the essential oils as GAE in mg 100 µl(-1) of EO was found to be highest in O. basilicum (0.406) oil followed byA. conyzoides (0.322), A. marmelos (0.238) and C. citratus (0.231). The results provide evidence that the oils of C. citratus and O. basilicum can be further commended for treatment of infections caused by these bacterial pathogens and are potential source of natural antioxidants having appreciable amount of total phenolic content. PMID:26688969

  9. In vitro antibacterial, antioxidant activity and total phenolic content of some essential oils.

    PubMed

    Srivastava, Upma; Ojha, Swati; Tripathi, N N; Singh, Pooja

    2015-11-01

    In vitro antibacterial activity of 16 essential oils was investigated by disc diffusion method against two Gram positive bacteria Bacillus subtilis and Staphylococcus aureus and two Gram negative bacteria, Shigella flexneri and Escherichia coli. Oils of Cymbopogon citratus and Ocimum basilicum showed highest antibacterial activity. Gram positive bacteria were found to be more sensitive than Gram negative. Antioxidant activities were tested by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and ABTS radical cation decolourization assay while Folin-Ciocalteu method was used to determine the total phenolic content. In DPPH assay, highest antioxidant activity was observed in 0. basilicum oil followed by Azeratum conyzoides, A. marmelos and C. citratus, with percent inhibition and IC50 value ranging from 66.11-71.93% and 14.10-17.92 µl ml(-1) respectively. In ABTS assay, similar results were obtained but with higher percent inhibition which ranged from 67.48-76.23% and lower IC50 value (12.12-17.21 µ ml(-1)). Moreover, radical scavenging activity of essential oils was lower than that observed for the synthetic antioxidant BHA and BHT. The total phenolic content of the essential oils as GAE in mg 100 µl(-1) of EO was found to be highest in O. basilicum (0.406) oil followed byA. conyzoides (0.322), A. marmelos (0.238) and C. citratus (0.231). The results provide evidence that the oils of C. citratus and O. basilicum can be further commended for treatment of infections caused by these bacterial pathogens and are potential source of natural antioxidants having appreciable amount of total phenolic content.

  10. Mechanistic and physiological consequences of HPr(ser) phosphorylation on the activities of the phosphoenolpyruvate:sugar phosphotransferase system in gram-positive bacteria: studies with site-specific mutants of HPr.

    PubMed Central

    Reizer, J; Sutrina, S L; Saier, M H; Stewart, G C; Peterkofsky, A; Reddy, P

    1989-01-01

    The bacterial phosphotransferase system (PTS) catalyzes the transport and phosphorylation of its sugar substrates. The protein-kinase-catalyzed phosphorylation of serine 46 in the phosphocarrier protein, HPr, inhibits PTS activity, but neither the mechanism of this inhibition nor its physiological significance is known. Site-specific HPr mutants were constructed in which serine 46 was replaced by alanine (S46A), threonine (S46T), tyrosine (S46Y) or aspartate (S46D). The purified S46D protein exhibited markedly lower Vmax and higher Km values than the wild-type, S46T or S46A protein for the phosphoryl transfer reactions involving HPr(His approximately P). Interactions of HPr with the enzymes catalyzing phosphoryl transfer to and from HPr regulated the kinase-catalyzed reaction. These results establish the inhibitory effect of a negative charge at position 46 on PTS-mediated phosphoryl transfer and suggest that HPr is phosphorylated on both histidyl and seryl residues by enzymes that recognize its tertiary rather than its primary structure. In vivo studies showed that a negative charge on residue 46 of HPr strongly inhibits PTS-mediated sugar uptake, but that competition of two PTS permeases for HPr(His approximately P) is quantitatively more important to the regulation of PTS function than serine 46 phosphorylation. Images PMID:2507315

  11. Antibacterial products of marine organisms.

    PubMed

    Ng, Tzi Bun; Cheung, Randy Chi Fai; Wong, Jack Ho; Bekhit, Adnan A; Bekhit, Alaa El-Din

    2015-05-01

    Marine organisms comprising microbes, plants, invertebrates, and vertebrates elaborate an impressive array of structurally diverse antimicrobial products ranging from small cyclic compounds to macromolecules such as proteins. Some of these biomolecules originate directly from marine animals while others arise from microbes associated with the animals. It is noteworthy that some of the biomolecules referred to above are structurally unique while others belong to known classes of compounds, peptides, and proteins. Some of the antibacterial agents are more active against Gram-positive bacteria while others have higher effectiveness on Gram-negative bacteria. Some are efficacious against both Gram-positive and Gram-negative bacteria and against drug-resistant strains as well. The mechanism of antibacterial action of a large number of the chemically identified antibacterial agents, possible synergism with currently used antibiotics, and the issue of possible toxicity on mammalian cells and tissues await elucidation. The structural characteristics pivotal to antibacterial activity have been ascertained in only a few studies. Demonstration of efficacy of the antibacterial agents in animal models of bacterial infection is highly desirable. Structural characterization of the active principles present in aqueous and organic extracts of marine organisms with reportedly antibacterial activity would be desirable.

  12. Antibacterial Activity of Salvadora persica L. (Miswak) Extracts against Multidrug Resistant Bacterial Clinical Isolates

    PubMed Central

    Al-Ayed, Mohamed Saeed Zayed; Asaad, Ahmed Morad; Qureshi, Mohamed Ansar; Attia, Hany Goda; AlMarrani, Abduljabbar Hadi

    2016-01-01

    Much effort has focused on examining the inhibitory effect of Salvadora persica (miswak) on oral microorganisms, but information concerning its antibacterial activity against other human pathogens, particularly multidrug resistant (MDR) isolates, is scarce. Therefore, this study aimed to assess the in vitro antibacterial activities of Salvadora persica L. extracts against 10 MDR bacterial clinical isolates other than oral pathogens. The antibacterial activity of aqueous and methanol miswak extracts was assessed using the agar dilution and minimum inhibitory concentration (MIC) methods. Overall, the 400 mg/mL of miswak extract was the most effective on all strains. The methanol extract exhibited a stronger antibacterial activity against Gram-negative (3.3–13.6 mm) than Gram-positive (1.8–8.3 mm) bacteria. The lowest MIC value was seen for E. coli (0.39, 1.56 µg/mL), followed by Streptococcus pyogenes (1.56 µg/mL). The highest MIC value (6.25, 12.5 µg/mL) was recorded for methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumannii, and Stenotrophomonas maltophilia. This study demonstrates, for the first time, the moderate to strong antibacterial activity of miswak extracts against all tested MDR-pathogens. Methanol extract appears to be a potent antimicrobial agent that could be considered as complementary and alternative medicine against resistant pathogens. Further studies on a large number of MDR organisms are necessary to investigate and standardize the inhibitory effect of miswak extracts against these emerging pathogens. PMID:26904146

  13. Antibacterial Activity of Salvadora persica L. (Miswak) Extracts against Multidrug Resistant Bacterial Clinical Isolates.

    PubMed

    Al-Ayed, Mohamed Saeed Zayed; Asaad, Ahmed Morad; Qureshi, Mohamed Ansar; Attia, Hany Goda; AlMarrani, Abduljabbar Hadi

    2016-01-01

    Much effort has focused on examining the inhibitory effect of Salvadora persica (miswak) on oral microorganisms, but information concerning its antibacterial activity against other human pathogens, particularly multidrug resistant (MDR) isolates, is scarce. Therefore, this study aimed to assess the in vitro antibacterial activities of Salvadora persica L. extracts against 10 MDR bacterial clinical isolates other than oral pathogens. The antibacterial activity of aqueous and methanol miswak extracts was assessed using the agar dilution and minimum inhibitory concentration (MIC) methods. Overall, the 400 mg/mL of miswak extract was the most effective on all strains. The methanol extract exhibited a stronger antibacterial activity against Gram-negative (3.3-13.6 mm) than Gram-positive (1.8-8.3 mm) bacteria. The lowest MIC value was seen for E. coli (0.39, 1.56 µg/mL), followed by Streptococcus pyogenes (1.56 µg/mL). The highest MIC value (6.25, 12.5 µg/mL) was recorded for methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumannii, and Stenotrophomonas maltophilia. This study demonstrates, for the first time, the moderate to strong antibacterial activity of miswak extracts against all tested MDR-pathogens. Methanol extract appears to be a potent antimicrobial agent that could be considered as complementary and alternative medicine against resistant pathogens. Further studies on a large number of MDR organisms are necessary to investigate and standardize the inhibitory effect of miswak extracts against these emerging pathogens. PMID:26904146

  14. Antibiotic-decorated titanium with enhanced antibacterial activity through adhesive polydopamine for dental/bone implant.

    PubMed

    He, Shu; Zhou, Ping; Wang, Linxin; Xiong, Xiaoling; Zhang, Yifei; Deng, Yi; Wei, Shicheng

    2014-06-01

    Implant-associated infections, which are normally induced by microbial adhesion and subsequent biofilm formation, are a major cause of morbidity and mortality. Therefore, practical approaches to prevent implant-associated infections are in great demand. Inspired by adhesive proteins in mussels, here we have developed a novel antibiotic-decorated titanium (Ti) material with enhanced antibacterial activity. In this study, Ti substrate was coated by one-step pH-induced polymerization of dopamine followed by immobilization of the antibiotic cefotaxime sodium (CS) onto the polydopamine-coated Ti through catechol chemistry. Contact angle measurement and X-ray photoelectron spectroscopy confirmed the presence of CS grafted on the Ti surface. Our results demonstrated that the antibiotic-grafted Ti substrate showed good biocompatibility and well-behaved haemocompatibility. In addition, the antibiotic-grafted Ti could effectively prevent adhesion and proliferation of Escherichia coli (Gram-negative) and Streptococcus mutans (Gram-positive). Moreover, the inhibition of biofilm formation on the antibiotic-decorated Ti indicated that the grafted CS could maintain its long-term antibacterial activity. This modified Ti substrate with enhanced antibacterial activity holds great potential as implant material for applications in dental and bone graft substitutes.

  15. Apolipoprotein A-I from striped bass (Morone saxatilis) demonstrates antibacterial activity in vitro.

    PubMed

    Johnston, L Danielle; Brown, Gwynne; Gauthier, David; Reece, Kimberly; Kator, Howard; Van Veld, Peter

    2008-10-01

    HDL and apolipoprotein A-I from teleostean fishes demonstrate in vitro activity against gram-positive and gram-negative bacteria. In this study, we purified ApoA-1 from striped bass (Morone saxatilis) plasma and examined its in vitro antibacterial activity against Streptococcus sp., Escherichia coli, and Mycobacterium marinum. In addition, we obtained sequence for a putative striped bass ApoA-1 gene, which when translated contained the identical sequence generated from N-terminal sequencing of the purified ApoA-1. The predicted secondary and tertiary structures contained the characteristic proline residues and high alpha-helical content conserved between mammals and fishes. Purified ApoA-1 exhibited antibacterial activity against the bacteria assayed. Concentrations of 125 microg/mL for E. coli, 250 microg/mL for Streptococcus sp., and 250 microg/mL for M. marinum, inhibited bacterial growth by 50% compared to control. ApoA-1 plasma concentrations in experimental and wild fish ranged from undetectable levels to greater than 5 mg/mL, indicating that striped bass ApoA-1 is an effective antibacterial agent at concentrations below the range of physiological concentrations in striped bass plasma. We therefore conclude that ApoA-1 could play a role in innate defense against bacterial pathogens in striped bass.

  16. Assessment of total phenolic, antioxidant, and antibacterial activities of Passiflora species.

    PubMed

    Ramaiya, Shiamala Devi; Bujang, Japar Sidik; Zakaria, Muta Harah

    2014-01-01

    This study focused on total phenolic content (TPC) and antioxidant and antibacterial activities of the leaves and stems of Passiflora quadrangularis, P. maliformis, and P. edulis extracted using three solvents: petroleum ether, acetone, and methanol. The maximum extraction yields of antioxidant components from the leaves and stems were isolated using methanol extracts of P. edulis (24.28%) and P. quadrangularis (9.76%), respectively. Among the leaf extracts, the methanol extract of P. maliformis had the significantly highest TPC and the strongest antioxidant activity, whereas among the stem extracts, the methanol extract of P. quadrangularis showed the highest phenolic amount and possessed the strongest antioxidant activity. The antibacterial properties of the Passiflora species were tested using the disc diffusion method against 10 human pathogenic bacteria. The largest inhibition zone was observed for the methanol extract of P. maliformis against B. subtilis. Generally, extracts from the Passiflora species exhibit distinct inhibition against Gram-positive but not Gram-negative bacteria. Based on the generated biplot, three clusters of bacteria were designated according to their performance towards the tested extracts. The present study revealed that methanol extracts of the Passiflora contain constituents with significant phenolic, antioxidant, and antibacterial properties for pharmaceutical and nutraceutical uses. PMID:25028673

  17. Assessment of Total Phenolic, Antioxidant, and Antibacterial Activities of Passiflora Species

    PubMed Central

    Ramaiya, Shiamala Devi; Bujang, Japar Sidik; Zakaria, Muta Harah

    2014-01-01

    This study focused on total phenolic content (TPC) and antioxidant and antibacterial activities of the leaves and stems of Passiflora quadrangularis, P. maliformis, and P. edulis extracted using three solvents: petroleum ether, acetone, and methanol. The maximum extraction yields of antioxidant components from the leaves and stems were isolated using methanol extracts of P. edulis (24.28%) and P. quadrangularis (9.76%), respectively. Among the leaf extracts, the methanol extract of P. maliformis had the significantly highest TPC and the strongest antioxidant activity, whereas among the stem extracts, the methanol extract of P. quadrangularis showed the highest phenolic amount and possessed the strongest antioxidant activity. The antibacterial properties of the Passiflora species were tested using the disc diffusion method against 10 human pathogenic bacteria. The largest inhibition zone was observed for the methanol extract of P. maliformis against B. subtilis. Generally, extracts from the Passiflora species exhibit distinct inhibition against Gram-positive but not Gram-negative bacteria. Based on the generated biplot, three clusters of bacteria were designated according to their performance towards the tested extracts. The present study revealed that methanol extracts of the Passiflora contain constituents with significant phenolic, antioxidant, and antibacterial properties for pharmaceutical and nutraceutical uses. PMID:25028673

  18. Antibacterial activity of biogenic silver nanoparticles synthesized with gum ghatti and gum olibanum: a comparative study.

    PubMed

    Kora, Aruna Jyothi; Sashidhar, Rao Beedu

    2015-02-01

    Presently, silver nanoparticles produced by biological methods have received considerable significance owing to the natural abundance of renewable, cost-effective and biodegradable materials, thus implementing the green chemistry principles. Compared with the nanoparticles synthesized using chemical methods, most biogenic silver nanoparticles are protein capped, which imparts stability and biocompatibility, and enhanced antibacterial activity. In this study, we compared the antibacterial effect of two biogenic silver nanoparticles produced with natural plant gums: gum ghatti and gum olibanum against Gram-negative and Gram-positive bacteria. Bacterial interaction with nanoparticles was probed both in planktonic and biofilm modes of growth; employing solid agar and liquid broth assays for inhibition zone, antibiofilm activity, inhibition of growth kinetics, leakage of intracellular contents, membrane permeabilization and reactive oxygen species production. In addition, cytotoxicity of the biogenic nanoparticles was evaluated in HeLa cells, a human carcinoma cell line. Antibacterial activity and cytotoxicity of the silver nanoparticles synthesized with gum ghatti (Ag NP-GT) was greater than that produced with gum olibanum (Ag NP-OB). This could be attributed to the smaller size (5.7 nm), monodispersity and zeta potential of the Ag NP-GT. The study suggests that Ag NP-GT can be employed as a cytotoxic bactericidal agent, whereas Ag NP-OB (7.5 nm) as a biocompatible bactericidal agent. PMID:25138141

  19. Antibiotic-decorated titanium with enhanced antibacterial activity through adhesive polydopamine for dental/bone implant

    PubMed Central

    He, Shu; Zhou, Ping; Wang, Linxin; Xiong, Xiaoling; Zhang, Yifei; Deng, Yi; Wei, Shicheng

    2014-01-01

    Implant-associated infections, which are normally induced by microbial adhesion and subsequent biofilm formation, are a major cause of morbidity and mortality. Therefore, practical approaches to prevent implant-associated infections are in great demand. Inspired by adhesive proteins in mussels, here we have developed a novel antibiotic-decorated titanium (Ti) material with enhanced antibacterial activity. In this study, Ti substrate was coated by one-step pH-induced polymerization of dopamine followed by immobilization of the antibiotic cefotaxime sodium (CS) onto the polydopamine-coated Ti through catechol chemistry. Contact angle measurement and X-ray photoelectron spectroscopy confirmed the presence of CS grafted on the Ti surface. Our results demonstrated that the antibiotic-grafted Ti substrate showed good biocompatibility and well-behaved haemocompatibility. In addition, the antibiotic-grafted Ti could effectively prevent adhesion and proliferation of Escherichia coli (Gram-negative) and Streptococcus mutans (Gram-positive). Moreover, the inhibition of biofilm formation on the antibiotic-decorated Ti indicated that the grafted CS could maintain its long-term antibacterial activity. This modified Ti substrate with enhanced antibacterial activity holds great potential as implant material for applications in dental and bone graft substitutes. PMID:24647910

  20. Tunable, antibacterial activity of silicone polyether surfactants.

    PubMed

    Khan, Madiha F; Zepeda-Velazquez, Laura; Brook, Michael A

    2015-08-01

    Silicone surfactants are used in a variety of applications, however, limited data is available on the relationship between surfactant structure and biological activity. A series of seven nonionic, silicone polyether surfactants with known structures was tested for in vitro antibacterial activity against Escherichia coli BL21. The compounds varied in their hydrophobic head, comprised of branched silicone structures with 3-10 siloxane linkages and, in two cases, phenyl substitution, and hydrophilic tail of 8-44 poly(ethylene glycol) units. The surfactants were tested at three concentrations: below, at, and above their Critical Micelle Concentrations (CMC) against 5 concentrations of E. coli BL21 in a three-step assay comprised of a 14-24h turbidometric screen, a live-dead stain and viable colony counts. The bacterial concentration had little effect on antibacterial activity. For most of the surfactants, antibacterial activity was higher at concentrations above the CMC. Surfactants with smaller silicone head groups had as much as 4 times the bioactivity of surfactants with larger groups, with the smallest hydrophobe exhibiting potency equivalent to sodium dodecyl sulfate (SDS). Smaller PEG chains were similarly associated with higher potency. These data link lower micelle stability and enhanced permeability of smaller silicone head groups to antibacterial activity. The results demonstrate that simple manipulation of nonionic silicone polyether structure leads to significant changes in antibacterial activity.

  1. Tunable, antibacterial activity of silicone polyether surfactants.

    PubMed

    Khan, Madiha F; Zepeda-Velazquez, Laura; Brook, Michael A

    2015-08-01

    Silicone surfactants are used in a variety of applications, however, limited data is available on the relationship between surfactant structure and biological activity. A series of seven nonionic, silicone polyether surfactants with known structures was tested for in vitro antibacterial activity against Escherichia coli BL21. The compounds varied in their hydrophobic head, comprised of branched silicone structures with 3-10 siloxane linkages and, in two cases, phenyl substitution, and hydrophilic tail of 8-44 poly(ethylene glycol) units. The surfactants were tested at three concentrations: below, at, and above their Critical Micelle Concentrations (CMC) against 5 concentrations of E. coli BL21 in a three-step assay comprised of a 14-24h turbidometric screen, a live-dead stain and viable colony counts. The bacterial concentration had little effect on antibacterial activity. For most of the surfactants, antibacterial activity was higher at concentrations above the CMC. Surfactants with smaller silicone head groups had as much as 4 times the bioactivity of surfactants with larger groups, with the smallest hydrophobe exhibiting potency equivalent to sodium dodecyl sulfate (SDS). Smaller PEG chains were similarly associated with higher potency. These data link lower micelle stability and enhanced permeability of smaller silicone head groups to antibacterial activity. The results demonstrate that simple manipulation of nonionic silicone polyether structure leads to significant changes in antibacterial activity. PMID:26057244

  2. Antibacterial activity of eight Brazilian annonaceae plants.

    PubMed

    Takahashi, Jacqueline A; Pereira, Cássia R; Pimenta, Lúcia P S; Boaventura, Maria Amélia D; Silva, Luiz G F E

    2006-01-01

    Sixteen extracts, obtained from eight Brazilian plants of Annonaceae family, were screened for their antibacterial activity: Xylopia frutescens, X. aromatica, X. amazonica, X. benthamii, Annona ambotay, A. crassiflora, A. muricata and A. cherimolia. Amongst the investigated extracts, six showed antibacterial activity against at least one of the tested organisms at the concentration of 100 microg/mL. The most active extracts were those prepared from X. frutescens, X. amazonica, and A. ambotay. A phytochemical screening showed the presence of anonaceus acetogenins in some active extracts. Eleven diterpenoids were also tested for comparison purposes. Six were natural products, previously isolated from Xylopia sp. (kaurenoic, frutoic, xylopic, 15beta-hydroxy-kaurenoic and trachylobanic acids plus kaurenol) and five were derivatives of such compounds, obtained by esterification or reduction reactions. Trachylobanic acid showed antibacterial activity against B. subtilis and S. aureus.

  3. Chemical Composition and In Vitro Antibacterial Activity of Mentha spicata Essential Oil against Common Food-Borne Pathogenic Bacteria.

    PubMed

    Shahbazi, Yasser

    2015-01-01

    The aim of the present study was to investigate chemical composition and antibacterial activity of essential oil from the leaf of Mentha spicata plant against common food-borne pathogenic bacteria (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Listeria monocytogenes, Salmonella typhimurium, and Escherichia coli O157:H7). Chemical composition of the essential oil was identified by gas chromatography coupled with mass spectrometer detector (GC-MS). The antibacterial activity of the essential oil was evaluated by broth microdilution method and agar disk diffusion assay. According to the result of GC-MS analysis, 18 components were identified, accounting for 99.89% of the whole essential oil. The main components were carvone (78.76%), limonene (11.50%), β-bourbonene (11.23%), cis-dihydrocarveol (1.43%), trans-caryophyllene (1.04%), menthone (1.01%), menthol (1%), and terpinen-4-ol (0.99). The essential oil exhibited moderate level of antibacterial activity against all test microorganisms. In general, Gram-positive bacteria were more susceptible to M. spicata essential oil than Gram-negative bacteria. L. monocytogenes was the most sensitive of the microorganisms to the antibacterial activity of M. spicata essential oil (inhibition zone = 22 mm and MIC and MBC = 2.5 µL/mL). Based on our results, the essential oil of M. spicata plant collected from Kermanshah province, west of Iran, has a potential to be applied as antibacterial agent.

  4. Chemical Composition and In Vitro Antibacterial Activity of Mentha spicata Essential Oil against Common Food-Borne Pathogenic Bacteria

    PubMed Central

    Shahbazi, Yasser

    2015-01-01

    The aim of the present study was to investigate chemical composition and antibacterial activity of essential oil from the leaf of Mentha spicata plant against common food-borne pathogenic bacteria (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Listeria monocytogenes, Salmonella typhimurium, and Escherichia coli O157:H7). Chemical composition of the essential oil was identified by gas chromatography coupled with mass spectrometer detector (GC-MS). The antibacterial activity of the essential oil was evaluated by broth microdilution method and agar disk diffusion assay. According to the result of GC-MS analysis, 18 components were identified, accounting for 99.89% of the whole essential oil. The main components were carvone (78.76%), limonene (11.50%), β-bourbonene (11.23%), cis-dihydrocarveol (1.43%), trans-caryophyllene (1.04%), menthone (1.01%), menthol (1%), and terpinen-4-ol (0.99). The essential oil exhibited moderate level of antibacterial activity against all test microorganisms. In general, Gram-positive bacteria were more susceptible to M. spicata essential oil than Gram-negative bacteria. L. monocytogenes was the most sensitive of the microorganisms to the antibacterial activity of M. spicata essential oil (inhibition zone = 22 mm and MIC and MBC = 2.5 µL/mL). Based on our results, the essential oil of M. spicata plant collected from Kermanshah province, west of Iran, has a potential to be applied as antibacterial agent. PMID:26351584

  5. ‘Artilysation’ of endolysin λSa2lys strongly improves its enzymatic and antibacterial activity against streptococci

    PubMed Central

    Rodríguez-Rubio, Lorena; Chang, Wai-Ling; Gutiérrez, Diana; Lavigne, Rob; Martínez, Beatriz; Rodríguez, Ana; Govers, Sander K.; Aertsen, Abram; Hirl, Christine; Biebl, Manfred; Briers, Yves; García, Pilar

    2016-01-01

    Endolysins constitute a promising class of antibacterials against Gram-positive bacteria. Recently, endolysins have been engineered with selected peptides to obtain a new generation of lytic proteins, Artilysins, with specific activity against Gram-negative bacteria. Here, we demonstrate that artilysation can also be used to enhance the antibacterial activity of endolysins against Gram-positive bacteria and to reduce the dependence on external conditions. Art-240, a chimeric protein of the anti-streptococcal endolysin λSa2lys and the polycationic peptide PCNP, shows a similar species specificity as the parental endolysin, but the bactericidal activity against streptococci increases and is less affected by elevated NaCl concentrations and pH variations. Time-kill experiments and time-lapse microscopy demonstrate that the killing rate of Art-240 is approximately two-fold higher compared to wildtype endolysin λSa2lys, with a reduction in viable bacteria of 3 log units after 10 min. In addition, lower doses of Art-240 are required to achieve the same bactericidal effect. PMID:27775093

  6. Silver deposition on polypyrrole films electrosynthesised onto Nitinol alloy. Corrosion protection and antibacterial activity.

    PubMed

    Saugo, M; Flamini, D O; Brugnoni, L I; Saidman, S B

    2015-11-01

    The electrosynthesis of polypyrrole films onto Nitinol from sodium salicylate solutions of different concentrations is reported. The morphology and corrosion protection properties of the resulting coatings were examined and they both depend on the sodium salicylate concentration. The immobilisation of silver species in PPy films constituted by hollow rectangular microtubes was studied as a function of the polymer oxidation degree. The highest amount of silver was deposited when the coated electrode was prepolarised at -1.00V (SCE) before silver deposition, suggesting an increase in the amount of non-oxidised segments in the polymer. Finally, the antibacterial activity of the coating against the Gram positive Staphylococcus aureus and Staphylococcus epidermidis bacteria was evaluated. Both strains resulted sensitive to the modified coatings, obtaining a slightly better result against S. aureus.

  7. Flavonoid glycosides from Prunus armeniaca and the antibacterial activity of a crude extract.

    PubMed

    Rashid, Fahima; Ahmed, Rehana; Mahmood, Azhar; Ahmad, Zaheer; Bibi, Nazia; Kazmi, Shahana Urooj

    2007-08-01

    Investigations on the chemical constituents of the fruits of Prunus armeniaca have led to the isolation of two new flavonoid glycosides, 4',5,7-trihydroxy flavone-7-O-[beta-D-mannopyranosyl (1'''-->2")]-beta-D-allopyranoside (1) and 3,4',5,7-tetrahydroxy-3',5'-di-methoxy flavone 3-O-[alpha-L-rhamnopyranosyl (1'''-->6")]-beta-D-galactopyranoside (2), from the butanolic fraction of the fruits. The butanolic extract exhibited antibacterial activity against both Gram positive and Gram negative bacteria. The structures of these compounds were elucidated through spectral studies, including 2D-NMR (COSY, NOESY, J-resolved), HMQC and HMBC experiments.

  8. Calixarene Assisted Rapid Synthesis of Silver-Graphene Nanocomposites with Enhanced Antibacterial Activity.

    PubMed

    Kellici, Suela; Acord, John; Vaughn, Arni; Power, Nicholas P; Morgan, David J; Heil, Tobias; Facq, Sébastien P; Lampronti, Giulio I

    2016-07-27

    Demonstrated herein is a single rapid approach employed for synthesis of Ag-graphene nanocomposites, with excellent antibacterial properties and low cytotoxicity, by utilizing a continuous hydrothermal flow synthesis (CHFS) process in combination with p-hexasulfonic acid calix[6]arene (SCX6) as an effective particle stabilizer. The nanocomposites showed high activity against E. coli (Gram-negative) and S. aureus (Gram-positive) bacteria. The materials were characterized using a range of techniques including transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-vis spectrophotometry, FT-IR, and X-ray powder diffraction (XRD). This rapid, single step synthetic approach not only provides a facile means of enabling and controlling graphene reduction (under alkaline conditions) but also offers an optimal route for homogeneously producing and depositing highly crystalline Ag nanostructures into reduced graphene oxide substrate. PMID:27378104

  9. Hierarchical-structured anatase-titania/cellulose composite sheet with high photocatalytic performance and antibacterial activity.

    PubMed

    Luo, Yan; Huang, Jianguo

    2015-02-01

    Bulk hierarchical anatase-titania/cellulose composite sheets were fabricated by subjecting an ultrathin titania gel film pre-deposited filter paper to a solvo-co-hydrothermal treatment by using titanium butoxide as the precursor to grow anatase-titania nanocrystallites on the cellulose nanofiber surfaces. The titanium butoxide specie is firstly absorbed onto the nanofibers of the cellulose substance through a solvothermal process, which was thereafter hydrolyzed and crystallized upon the subsequent hydrothermal treatment, leading to the formation of fine anatase-titania nanoparticles with sizes of 2-5 nm uniformly anchored on the cellulose nanofibers. The resulting anatase-titania/cellulose composite sheet shows a significant photocatalytic performance towards degradation of a methylene blue dye, and introduction of silver nanoparticles into the composite sheet yields an Ag-NP/anatase-titania/cellulose composite material possessing excellent antibacterial activity against both Gram-positive and Gram-negative bacteria.

  10. Antibacterial activity of Pd(II) complexes with salicylaldehyde-amino acids Schiff bases ligands.

    PubMed

    Rîmbu, Cristina; Danac, Ramona; Pui, Aurel

    2014-01-01

    Palladium(II) complexes with Schiff bases ligands derived from salicylaldehyde and amino acids (Ala, Gly, Met, Ser, Val) have been synthesized and characterized by Fourier transform (FT)-IR, UV-Vis and (1)H-NMR spectroscopy. The electrospray mass spectrometry (ES-MS) spectrometry confirms the formation of palladium(II) complexes in 1/2 (M/L) molar ratio. All the Pd(II) complexes 1, [Pd(SalAla)2]Cl2; 2, [Pd(SalGly)2]Cl2; 3, [Pd(SalMet)2]Cl2; 4, [Pd(SalSer)2]Cl2; 5, [Pd(SalVal)2]Cl2; have shown antibacterial activity against Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli.

  11. Synthesis of silver nanoparticles using A. indicum leaf extract and their antibacterial activity.

    PubMed

    Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S

    2015-01-01

    Green synthesis of silver nanoparticles has been achieved using environmentally acceptable plant extract. It is observed that Abutilon indicum leaf extract can reduce silver ions into silver nanoparticles within 15 min of reaction time. The formation and stability of the reduced silver nanoparticles in the colloidal solution were monitored by UV-Vis spectrophotometer analysis. The mean particle diameter of silver nanoparticles was calculated from the XRD pattern. FT-IR spectra of the leaf extract after the development of nanoparticles are determined to allow identification of possible functional groups responsible for the conversion of metal ions to metal nanoparticles. The AgNPs thus obtained showed highly potent antibacterial activity toward Gram-positive (Staphyloccocus aureus and Bacillus subtilis) and Gram-negative (Salmonella typhi and Escherichia coli) microorganisms. PMID:24997264

  12. Silver deposition on polypyrrole films electrosynthesised onto Nitinol alloy. Corrosion protection and antibacterial activity.

    PubMed

    Saugo, M; Flamini, D O; Brugnoni, L I; Saidman, S B

    2015-11-01

    The electrosynthesis of polypyrrole films onto Nitinol from sodium salicylate solutions of different concentrations is reported. The morphology and corrosion protection properties of the resulting coatings were examined and they both depend on the sodium salicylate concentration. The immobilisation of silver species in PPy films constituted by hollow rectangular microtubes was studied as a function of the polymer oxidation degree. The highest amount of silver was deposited when the coated electrode was prepolarised at -1.00V (SCE) before silver deposition, suggesting an increase in the amount of non-oxidised segments in the polymer. Finally, the antibacterial activity of the coating against the Gram positive Staphylococcus aureus and Staphylococcus epidermidis bacteria was evaluated. Both strains resulted sensitive to the modified coatings, obtaining a slightly better result against S. aureus. PMID:26249570

  13. Spectroscopic study of silver halides in montmorillonite and their antibacterial activity.

    PubMed

    Sohrabnezhad, Sh; Rassa, M; Mohammadi Dahanesari, E

    2016-10-01

    In this study silver halides (AgX, X=Cl, Br, I) in montmorillonite (MMT) were prepared by dispersion method in dark. AgNO3 was used as a silver precursor. The nanocomposites (NCs) (AgX-MMT) were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The powder X-ray diffraction showed intercalation of AgCl and AgBr nanoparticles (NPs) into the clay interlayer space. The diffuse reflectance spectra indicated a broad surface plasmon resonance (SPR) absorption band in the visible region for AgCl-MMT and AgBr-MMT NCs, resulting of metallic Ag nanoparticles (Ag NPs). But the results were opposite in case of AgI-MMT NC. The antibacterial activity of NCs was investigated against Gram-positive bacteria, i.e., Staphylococcus aureus and Micrococcus luteus and Gram-negative bacteria, i.e., Escherichia coli, Pseudomonas aeruginosa, by the well diffusion method. The antibacterial effects on Staphylococcus aureus, Micrococcus luteus and Escherichia coli decrease in the order: AgCl-MMT>AgBr-MMT>AgI-MMT. No antibacterial activity was detected for Pseudomonas aeruginosa.

  14. Study on antibacterial activity of chemically synthesized PANI-Ag-Au nanocomposite

    NASA Astrophysics Data System (ADS)

    Boomi, Pandi; Prabu, Halliah Gurumallesh; Manisankar, Paramasivam; Ravikumar, Sundaram

    2014-05-01

    Pristine polyaniline (PANI), PANI-Ag, PANI-Au and PANI-Ag-Au nanocomposites have been successfully synthesized by chemical oxidative polymerization method using aniline as monomer, ammonium persulphate as oxidant and metal (Ag, Au and Ag-Au) colloids. UV-Vis analysis exhibited surface Plasmon resonances of Ag, Au, Ag-Au nanoparticles. FT-IR spectra revealed the shift in peak position of N-H stretching. X-ray diffraction (XRD) results confirm the presence of Ag, Au and Au-Ag nanoparticles. HR-TEM images show nanosizes of Ag, Au, Ag-Au and the incorporation of such nanoparticles into the PANI matrix. Pristine PANI, PANI-Ag, PANI-Au and PANI-Ag-Au nanocomposites were tested for antibacterial activity by agar well diffusion method. PANI-Ag-Au nanocomposite exhibited higher antibacterial activity against both gram-positive [Streptococcus sp. (MTCC 890), Staphylococcus sp. (MTCC 96)] and gram-negative bacteria [Escherichia coli (MTCC 1671) and Klebsiella sp. (MTCC 7407)] when compared with PANI-Ag nanocomposite, PANI-Au nanocomposite and pristine PANI. The novelty of this study is the polymer-bimetal synthesis and its antibacterial potential.

  15. High-level fluorescence labeling of gram-positive pathogens.

    PubMed

    Aymanns, Simone; Mauerer, Stefanie; van Zandbergen, Ger; Wolz, Christiane; Spellerberg, Barbara

    2011-01-01

    Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb) promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10-50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration.

  16. Superior Antibacterial Activity of Fe3O4-TiO2 Nanosheets under Solar Light.

    PubMed

    Ma, Shuanglong; Zhan, Sihui; Jia, Yanan; Zhou, Qixing

    2015-10-01

    Fe3O4-TiO2 nanosheets (Fe3O4-TNS) were synthesized by means of lamellar reverse micelles and solvothermal method, which were characterized by TEM, XRD, XPS, BET, and magnetic property analysis. It can be found that Fe3O4-TNS nanosheets exhibited better photocatalytic antibacterial activity toward Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus than pure Fe3O4 and TNS, and the antibacterial efficiency could reach 87.2% and 93.7% toward E. coli and S. aureus with 100 μg/mL Fe3O4-TNS after 2 h of simulated solar light illumination, respectively. The photocatalytic destruction of bacteria was further confirmed by fluorescent-based cell live/dead test and SEM images. It was uncovered that Fe3O4-TNS inactivated G- E. coli and G+ S. aureus by different mechanisms: the destruction of outer membranes and ruptured cell bodies were responsible for the bactericidal effect against E. coli, while the antibacterial effect toward S. aureus were due to the fact that the cells were adsorbed in form of clusters by massive Fe3O4-TNS, which could restrict their activities and cause malfunction of the selective permeable barriers. Furthermore, the antibacterial mechanism was studied by employing scavengers to understand exact roles of different reactive species, indicating the key roles of h(+) and H2O2. The recovery and reusability experiments indicated that Fe3O4-TNS still retained more than 90% bacteria removal efficiency even after five cycles. Considering the easy magnetic separation, bulk availability, and high antibacterial activity of Fe3O4-TNS, it is a promising candidate for cleaning the microbial contaminated water environment.

  17. Superior Antibacterial Activity of Fe3O4-TiO2 Nanosheets under Solar Light.

    PubMed

    Ma, Shuanglong; Zhan, Sihui; Jia, Yanan; Zhou, Qixing

    2015-10-01

    Fe3O4-TiO2 nanosheets (Fe3O4-TNS) were synthesized by means of lamellar reverse micelles and solvothermal method, which were characterized by TEM, XRD, XPS, BET, and magnetic property analysis. It can be found that Fe3O4-TNS nanosheets exhibited better photocatalytic antibacterial activity toward Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus than pure Fe3O4 and TNS, and the antibacterial efficiency could reach 87.2% and 93.7% toward E. coli and S. aureus with 100 μg/mL Fe3O4-TNS after 2 h of simulated solar light illumination, respectively. The photocatalytic destruction of bacteria was further confirmed by fluorescent-based cell live/dead test and SEM images. It was uncovered that Fe3O4-TNS inactivated G- E. coli and G+ S. aureus by different mechanisms: the destruction of outer membranes and ruptured cell bodies were responsible for the bactericidal effect against E. coli, while the antibacterial effect toward S. aureus were due to the fact that the cells were adsorbed in form of clusters by massive Fe3O4-TNS, which could restrict their activities and cause malfunction of the selective permeable barriers. Furthermore, the antibacterial mechanism was studied by employing scavengers to understand exact roles of different reactive species, indicating the key roles of h(+) and H2O2. The recovery and reusability experiments indicated that Fe3O4-TNS still retained more than 90% bacteria removal efficiency even after five cycles. Considering the easy magnetic separation, bulk availability, and high antibacterial activity of Fe3O4-TNS, it is a promising candidate for cleaning the microbial contaminated water environment. PMID:26372171

  18. Antibacterial activity-guided purification and identification of a novel C-20 oxygenated ent-kaurane from Rabdosia serra (MAXIM.) HARA.

    PubMed

    Lin, Lianzhu; Zhu, Dashuai; Zou, Linwu; Yang, Bao; Zhao, Mouming

    2013-08-15

    The objective of this work was to conduct an activity-guided isolation of antibacterial compounds from Rabdosia serra. The ethanol extracts of R. serra leaf and stem were partitioned sequentially into petroleum ether, ethyl acetate, butanol and water fractions, respectively. The ethanol extract of leaf evidenced broad-spectrum antibacterial activity against gram-positive bacterial, including Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, and Listeria monocytogenes. The ethyl acetate fractions of leaf and stem exhibited strong inhibition against gram-positive bacteria, and were then purified further. On the basis of antibacterial assay-guided purification, three phenolic compounds (rosmarinic acid, methyl rosmarinate and pedalitin) and four C-20 oxygenated ent-kauranes (effusanin E, lasiodin, rabdosichuanin D and a new compound namely effusanin F) were obtained, whose contents were determined by HPLC analysis. The broth microdilution method confirmed the important inhibition potential of C-20 oxygenated ent-kauranes with low minimum inhibitory concentration (MIC) values. Effusanin E, lasiodin and effusanin F could be useful for the development of new antibacterial agents. PMID:23561188

  19. Comparison of tryptophan biosynthetic operon regulation in different Gram-positive bacterial species.

    PubMed

    Gutiérrez-Preciado, Ana; Yanofsky, Charles; Merino, Enrique

    2007-09-01

    The tryptophan biosynthetic operon has been widely used as a model system for studying transcription regulation. In Bacillus subtilis, the trp operon is primarily regulated by a tryptophan-activated RNA-binding protein, TRAP. Here we show that in many other Gram-positive species the trp operon is regulated differently, by tRNA(Trp) sensing by the RNA-based T-box mechanism, with T-boxes arranged in tandem. Our analyses reveal an apparent relationship between trp operon organization and the specific regulatory mechanism(s) used. PMID:17555843

  20. Antibacterial activity of Pulicaria dysenterica extracts.

    PubMed

    Nickavar, Bahman; Mojab, Faraz

    2003-06-01

    Aqueous, methanolic and chloroformic extracts of Pulicaria dysenterica aerial parts were tested for their antibacterial activity using the disc-diffusion assay technique. The methanolic extract was found to be the most effective extract against three out of six tested bacteria. All of the extracts were active against Vibrio cholera.

  1. Novel Synthesis of Kanamycin Conjugated Gold Nanoparticles with Potent Antibacterial Activity

    PubMed Central

    Payne, Jason N.; Waghwani, Hitesh K.; Connor, Michael G.; Hamilton, William; Tockstein, Sarah; Moolani, Harsh; Chavda, Fenil; Badwaik, Vivek; Lawrenz, Matthew B.; Dakshinamurthy, Rajalingam

    2016-01-01

    With a sharp increase in the cases of multi-drug resistant (MDR) bacteria all over the world, there is a huge demand to develop a new generation of antibiotic agents to fight them. As an alternative to the traditional drug discovery route, we have designed an effective antibacterial agent by modifying an existing commercial antibiotic, kanamycin, conjugated on the surface of gold nanoparticles (AuNPs). In this study, we report a single-step synthesis of kanamycin-capped AuNPs (Kan-AuNPs) utilizing the combined reducing and capping properties of kanamycin. While Kan-AuNPs have increased toxicity to a primate cell line (Vero 76), antibacterial assays showed dose-dependent broad spectrum activity of Kan-AuNPs against both Gram-positive and Gram-negative bacteria, including Kanamycin resistant bacteria. Further, a significant reduction in the minimum inhibitory concentration (MIC) of Kan-AuNPs was observed when compared to free kanamycin against all the bacterial strains tested. Mechanistic studies using transmission electron microscopy and fluorescence microscopy indicated that at least part of Kan-AuNPs increased efficacy may be through disrupting the bacterial envelope, resulting in the leakage of cytoplasmic content and the death of bacterial cells. Results of this study provide critical information about a novel method for the development of antibiotic capped AuNPs as potent next-generation antibacterial agents. PMID:27330535

  2. Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite.

    PubMed

    Shao, Wei; Liu, Xiufeng; Min, Huihua; Dong, Guanghui; Feng, Qingyuan; Zuo, Songlin

    2015-04-01

    In this work, we report a facile and green approach to prepare a uniform silver nanoparticles (AgNPs) decorated graphene oxide (GO) nanocomposite (GO-Ag). The nanocomposite was fully characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectra, ultraviolet-visible (UV-vis) absorption spectra, and X-ray photoelectron spectroscopy (XPS), which demonstrated that AgNPs with a diameter of approximately 22 nm were uniformly and compactly deposited on GO. To investigate the silver ion release behaviors, HEPES buffers with different pH (5.5, 7, and 8.5) were selected and the mechanism of release actions was discussed in detail. The cytotoxicity of GO-Ag nanocomposite was also studied using HEK 293 cells. GO-Ag nanocomposite displayed good cytocompatibility. Furthermore, the antibacterial properties of GO-Ag nanocomposite were studied using Gram-negative E. coli ATCC 25922 and Gram-positive S. aureus ATCC 6538 by both the plate count method and disk diffusion method. The nanocomposite showed excellent antibacterial activity. These results demonstrated that GO-Ag nanocomposite, as a kind of antibacterial material, had a great promise for application in a wide range of biomedical applications.

  3. Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration

    NASA Astrophysics Data System (ADS)

    Banerjee, Madhuchanda; Sharma, Shilpa; Chattopadhyay, Arun; Ghosh, Siddhartha Sankar

    2011-12-01

    Herein we report the development of bimetallic Au@Ag core-shell nanoparticles (NPs) where gold nanoparticles (Au NPs) served as the seeds for continuous deposition of silver atoms on its surface. The core-shell structure and morphology were examined by UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). The core-shell NPs showed antibacterial activity against both Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis and Pediococcus acidilactici) bacteria at low concentration of silver present in the shell, with more efficacy against Gram negative bacteria. TEM and flow cytometric studies showed that the core-shell NPs attached to the bacterial surface and caused membrane damage leading to cell death. The enhanced antibacterial properties of Au@Ag core-shell NPs was possibly due to the more active silver atoms in the shell surrounding gold core due to high surface free energy of the surface Ag atoms owing to shell thinness in the bimetallic NP structure.Herein we report the development of bimetallic Au@Ag core-shell nanoparticles (NPs) where gold nanoparticles (Au NPs) served as the seeds for continuous deposition of silver atoms on its surface. The core-shell structure and morphology were examined by UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). The core-shell NPs showed antibacterial activity against both Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis and Pediococcus acidilactici) bacteria at low concentration of silver present in the shell, with more efficacy against Gram negative bacteria. TEM and flow cytometric studies showed that the core-shell NPs attached to the bacterial surface and caused membrane damage leading to cell death. The enhanced antibacterial properties of Au@Ag core-shell NPs was

  4. Synthesis, antibacterial and anti-MRSA activity, in vivo toxicity and a structure-activity relationship study of a quinoline thiourea.

    PubMed

    Dolan, Niamh; Gavin, Declan P; Eshwika, Ahmed; Kavanagh, Kevin; McGinley, John; Stephens, John C

    2016-01-15

    We report the synthesis, antibacterial evaluation of a series of thiourea-containing compounds. 1-(3,5-Bis(trifluoromethyl)phenyl)-3-((S)-(6-methoxyquinolin-4-yl)-((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)thiourea 5, was the most active against a range of Gram-positive and Gram-negative bacteria, and exhibited bacteriostatic activity against methicillin resistant Staphylococcus aureus (MRSA) comparable to that of the well-known antibacterial agent vancomycin. Quinoline thiourea 5 was subjected to a detailed structure-activity relationship study, with 5 and its derivatives evaluated for their bacteriostatic activity against both Gram-negative and Gram-positive bacteria. A number of structural features important for the overall activity of quinoline thiourea 5 have been identified. A selection of compounds, including 5, was also evaluated for their in vivo toxicity using the larvae of the Greater wax moth, Galleria mellonella. Compound 5, and a number of derivatives, were found to be non-toxic to the larvae of Galleria mellonella. A new class of antibiotic can result from the further development of this family of compounds.

  5. Regulatory mechanisms differ in UMP kinases from gram-negative and gram-positive bacteria.

    PubMed

    Evrin, Cécile; Straut, Monica; Slavova-Azmanova, Neli; Bucurenci, Nadia; Onu, Adrian; Assairi, Liliane; Ionescu, Mihaela; Palibroda, Nicolae; Bârzu, Octavian; Gilles, Anne-Marie

    2007-03-01

    In this work, we examined the regulation by GTP and UTP of the UMP kinases from eight bacterial species. The enzyme from Gram-positive organisms exhibited cooperative kinetics with ATP as substrate. GTP decreased this cooperativity and increased the affinity for ATP. UTP had the opposite effect, as it decreased the enzyme affinity for ATP. The nucleotide analogs 5-bromo-UTP and 5-iodo-UTP were 5-10 times stronger inhibitors than the parent compound. On the other hand, UMP kinases from the Gram-negative organisms did not show cooperativity in substrate binding and catalysis. Activation by GTP resulted mainly from the reversal of inhibition caused by excess UMP, and inhibition by UTP was accompanied by a strong increase in the apparent K(m) for UMP. Altogether, these results indicate that, depending on the bacteria considered, GTP and UTP interact with different enzyme recognition sites. In Gram-positive bacteria, GTP and UTP bind to a single site or largely overlapping sites, shifting the T R equilibrium to either the R or T form, a scenario corresponding to almost all regulatory proteins, commonly called K systems. In Gram-negative organisms, the GTP-binding site corresponds to the unique allosteric site of the Gram-positive bacteria. In contrast, UTP interacts cooperatively with a site that overlaps the catalytic center, i.e. the UMP-binding site and part of the ATP-binding site. These characteristics make UTP an original regulator of UMP kinases from Gram-negative organisms, beyond the common scheme of allosteric control.

  6. Priming the tooth surface with chlorhexidine and antibacterial activity of resin cement

    PubMed Central

    Saini, Monika; Singh, Yashpal; Garg, Rishabh; Pandey, Anita

    2013-01-01

    AIM: To evaluate the effect of priming the tooth surface with 2% chlorhexidine gluconate on antibacterial activity of resin cement. METHODS: Ten patients in whom a single missing tooth was present on both the right and left side in the upper or lower arch were selected. Two fixed partial dentures (FPDs) in each patient on the right and left side were planned. Each FPD was assigned either to the control or test group. In the control group, FPD was luted with resin cement and in the test group, the tooth surface was primed with 2% chlorhexidine gluconate before luting with resin cement. Bacteriological samples were collected at base line level, as the patient came to the outpatient department before the start of any treatment, 5 wk prior to cementation of FPD and at 13 wk (8 wk after final cementation). Microbiological processing of all samples was done and the results were statistically analyzed. RESULTS: In the test group, a predominance of aerobic/facultative gram positive cocci rod was seen which indicates a healthy periodontal site, whereas in the control group, a predominance of anaerobic gram negative rods was present which indicates an unhealthy periodontal condition. This is evident by the fact that the anaerobic bacteria percentage in the control sample is 57% and 15% in the test sample after 13 wk, whereas the aerobic/facultative bacteria percentage is 43% in the control sample and 85% in the test sample after 13 wk. The percentage of gram negative bacteria in the control sample is 61% and in the test sample is 20% after 13 wk, whereas the percentage of gram positive bacteria in the control sample is 39% and in the test sample is 80% after 13 wk. The shift from anaerobic gram negative bacteria to aerobic gram positive bacteria is clearly seen from the control to test sample after 13 wk. CONCLUSION: The present study demonstrated that priming the tooth surface with 2% chlorhexidine gluconate may enhance antibacterial activity of the resin cement. PMID

  7. Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi--Metabolites, enzymes and residual antibacterial activity.

    PubMed

    Čvančarová, Monika; Moeder, Monika; Filipová, Alena; Cajthaml, Tomáš

    2015-10-01

    A group of white rot fungi (Irpex lacteus, Panus tigrinus, Dichomitus squalens, Trametes versicolor and Pleurotus ostreatus) was investigated for the biodegradation of norfloxacin (NOR), ofloxacin (OF) and ciprofloxacin (CIP). The selected fluoroquinolones were readily degraded almost completely by I. lacteus and T. versicolor within 10 and 14 d of incubation in liquid medium, respectively. The biodegradation products were identified by liquid chromatography-mass spectrometry. The analyses indicated that the fungi use similar mechanisms to degrade structurally related antibiotics. The piperazine ring of the molecules is preferably attacked via either substitution or/and decomposition. In addition to the degradation efficiency, attention was devoted to the residual antibiotic activities estimated using Gram-positive and Gram-negative bacteria. Only I. lacteus was able to remove the antibiotic activity during the course of the degradation of NOR and OF. The product-effect correlations evaluated by Principal Component Analysis (PCA) enabled elucidation of the participation of the individual metabolites in the residual antibacterial activity. Most of the metabolites correlated with the antibacterial activity, explaining the rather high residual activity remaining after the biodegradation. PCA of ligninolytic enzyme activities indicated that manganese peroxidase might participate in the degradation.

  8. Chemical modification of capuramycins to enhance antibacterial activity

    PubMed Central

    Bogatcheva, Elena; Dubuisson, Tia; Protopopova, Marina; Einck, Leo; Nacy, Carol A.; Reddy, Venkata M.

    2011-01-01

    Objectives To extend capuramycin spectrum of activity beyond mycobacteria and improve intracellular drug activity. Methods Three capuramycin analogues (SQ997, SQ922 and SQ641) were conjugated with different natural and unnatural amino acids or decanoic acid (DEC) through an ester bond at one or more available hydroxyl groups. In vitro activity of the modified compounds was determined against Mycobacterium spp. and representative Gram-positive and Gram-negative bacteria. Intracellular activity was evaluated in J774A.1 mouse macrophages infected with Mycobacterium tuberculosis (H37Rv). Results Acylation of SQ997 and SQ641 with amino undecanoic acid (AUA) improved in vitro activity against most of the bacteria tested. Conjugation of SQ922 with DEC, but not AUA, improved its activity against Gram-positive bacteria. In the presence of efflux pump inhibitor phenylalanine arginine β-naphthyl amide, MICs of SQ997-AUA, SQ641-AUA and SQ922-DEC compounds improved even further against drug-susceptible and drug-resistant Staphylococcus aureus. In Gram-negative bacteria, EDTA-mediated permeabilization caused 4- to 16-fold enhancement of the activity of AUA-conjugated SQ997, SQ922 and SQ641. Conjugation of all three capuramycin analogues with AUA improved intracellular killing of H37Rv in murine macrophages. Conclusions Conjugation of capuramycin analogues with AUA or DEC enhanced in vitro activity, extended the spectrum of activity in Gram-positive bacteria and increased intracellular activity against H37Rv. PMID:21186194

  9. In Vitro and In Vivo Antibacterial Activities of OPC-20011, a Novel Parenteral Broad-Spectrum 2-Oxaisocephem Antibiotic

    PubMed Central

    Matsumoto, Makoto; Tamaoka, Hisashi; Ishikawa, Hiroshi; Kikuchi, Mikio

    1998-01-01

    OPC-20011, a new parenteral 2-oxaisocephem antibiotic, has an oxygen atom at the 2- position of the cephalosporin frame. OPC-20011 had the best antibacterial activities against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, and penicillin-resistant Streptococcus pneumoniae: MICs at which 90% of the isolates were inhibited were 6.25, 6.25, and 0.05 μg/ml, respectively. Its activity is due to a high affinity of the penicillin-binding protein 2′ in MRSA, an affinity which was approximately 1,050 times as high as that for flomoxef. Against gram-negative bacteria, OPC-20011 also showed antibacterial activities similar to those of ceftazidime. The in vivo activities of OPC-20011 were comparable to or greater than those of reference compounds in murine models of systemic infection caused by gram-positive and -negative pathogens. OPC-20011 was up to 10 times as effective as vancomycin against MRSA infections in mice. This better in vivo efficacy is probably due to the bactericidal activity of OPC-20011, while vancomycin showed bacteriostatic activity against MRSA. OPC-20011 produced a significant decrease of viable counts in lung tissue at a dose of 2.5 mg/kg of body weight, an efficacy similar to that of ampicillin at a dose of 10 to 20 mg/kg on an experimental murine model of respiratory tract infection caused by non-ampicillin-susceptible S. pneumoniae T-0005. The better therapeutic efficacy of OPC-20011 was considered to be due to its potent antibacterial activity and low affinity for serum proteins of experimental animals (29% in mice and 6.4% in rats). PMID:9797230

  10. Performance properties and antibacterial activity of crosslinked films of quaternary ammonium modified starch and poly(vinyl alcohol).

    PubMed

    Sekhavat Pour, Zahra; Makvandi, Pooyan; Ghaemy, Mousa

    2015-09-01

    There has been a growing interest in developing antibacterial polymeric materials. In the present work, novel antibacterial cross-linked blend films were prepared based on polyvinyl alcohol (PVA) and quaternary ammonium starch (ST-GTMAC) using citric acid (CA) as plasticizer and glutaraldehyde (GA) as cross-linker. The ST-GTMAC was successfully synthesized from reaction between water-soluble oxidized starch and glycidyltrimethylammonium chloride (GTMAC). The effect of ST-GTMAC, CA and GA contents on the swelling, solubility, mechanical and thermal properties of the films was investigated. It was found that incorporation of ST-GTMAC reduced UV-transmittance and provided antibacterial properties, increasing GA content increased tensile strength and decreased solubility and swelling degree of the films, while CA acted as plasticizer when its concentration was above 10 wt%. The results showed that ST-GTMAC/PVA/CA/GA film has fair antibacterial activity against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. These results suggest that the prepared film might be used as potential antibacterial material in medical and packaging applications.

  11. Antibacterial, antioxidant and tyrosinase-inhibition activities of pomegranate fruit peel methanolic extract

    PubMed Central

    2012-01-01

    Background This study evaluated, using in vitro assays, the antibacterial, antioxidant, and tyrosinase-inhibition activities of methanolic extracts from peels of seven commercially grown pomegranate cultivars. Methods Antibacterial activity was tested on Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Klebsiella pneumonia) using a microdilution method. Several potential antioxidant activities, including radical-scavenging ability (RSA), ferrous ion chelating (FIC) and ferric ion reducing antioxidant power (FRAP), were evaluated. Tyrosinase enzyme inhibition was investigated against monophenolase (tyrosine) and diphenolase (DOPA), with arbutin and kojic acid as positive controls. Furthermore, phenolic contents including total flavonoid content (TFC), gallotannin content (GTC) and total anthocyanin content (TAC) were determined using colourimetric methods. HPLC-ESI/MSn analysis of phenolic composition of methanolic extracts was also performed. Results Methanolic peel extracts showed strong broad-spectrum activity against Gram-positive and Gram-negative bacteria, with the minimum inhibitory concentrations (MIC) ranging from 0.2 to 0.78 mg/ml. At the highest concentration tested (1000 μg/ml), radical scavenging activities were significantly higher in Arakta (83.54%), Ganesh (83.56%), and Ruby (83.34%) cultivars (P< 0.05). Dose dependent FIC and FRAP activities were exhibited by all the peel extracts. All extracts also exhibited high inhibition (>50%) against monophenolase and diphenolase activities at the highest screening concentration. The most active peel extract was the Bhagwa cultivar against monophenolase and the Arakta cultivar against diphenolase with IC50 values of 3.66 μg/ml and 15.88 μg/ml, respectively. High amounts of phenolic compounds were found in peel extracts with the highest and lowest total phenolic contents of 295.5 (Ganesh) and 179.3 mg/g dry extract (Molla de Elche), respectively

  12. Characterization of Antibacterial Activities of Eastern Subterranean Termite, Reticulitermes flavipes, against Human Pathogens

    PubMed Central

    Zeng, Yuan; Hu, Xing Ping

    2016-01-01

    The emergence and dissemination of multidrug resistant bacterial pathogens necessitate research to find new antimicrobials against these organisms. We investigated antimicrobial production by eastern subterranean termites, Reticulitermes flavipes, against a panel of bacteria including three multidrug resistant (MDR) and four non-MDR human pathogens. We determined that the crude extract of naïve termites had a broad-spectrum activity against the non-MDR bacteria but it was ineffective against the three MDR pathogens Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus (MRSA), and Acinetobacter baumannii. Heat or trypsin treatment resulted in a complete loss of activity suggesting that antibacterial activity was proteinaceous in nature. The antimicrobial activity changed dramatically when the termites were fed with either heat-killed P. aeruginosa or MRSA. Heat-killed P. aeruginosa induced activity against P. aeruginosa and MRSA while maintaining or slightly increasing activity against non-MDR bacteria. Heat-killed MRSA induced activity specifically against MRSA, altered the activity against two other Gram-positive bacteria, and inhibited activity against three Gram-negative bacteria. Neither the naïve termites nor the termites challenged with heat-killed pathogens produced antibacterial activity against A. baumannii. Further investigation demonstrated that hemolymph, not the hindgut, was the primary source of antibiotic activity. This suggests that the termite produces these antibacterial activities and not the hindgut microbiota. Two-dimensional gel electrophoretic analyses of 493 hemolymph protein spots indicated that a total of 38 and 65 proteins were differentially expressed at least 2.5-fold upon being fed with P. aeruginosa and MRSA, respectively. Our results provide the first evidence of constitutive and inducible activities produced by R. flavipes against human bacterial pathogens. PMID:27611223

  13. Characterization of Antibacterial Activities of Eastern Subterranean Termite, Reticulitermes flavipes, against Human Pathogens.

    PubMed

    Zeng, Yuan; Hu, Xing Ping; Suh, Sang-Jin

    2016-01-01

    The emergence and dissemination of multidrug resistant bacterial pathogens necessitate research to find new antimicrobials against these organisms. We investigated antimicrobial production by eastern subterranean termites, Reticulitermes flavipes, against a panel of bacteria including three multidrug resistant (MDR) and four non-MDR human pathogens. We determined that the crude extract of naïve termites had a broad-spectrum activity against the non-MDR bacteria but it was ineffective against the three MDR pathogens Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus (MRSA), and Acinetobacter baumannii. Heat or trypsin treatment resulted in a complete loss of activity suggesting that antibacterial activity was proteinaceous in nature. The antimicrobial activity changed dramatically when the termites were fed with either heat-killed P. aeruginosa or MRSA. Heat-killed P. aeruginosa induced activity against P. aeruginosa and MRSA while maintaining or slightly increasing activity against non-MDR bacteria. Heat-killed MRSA induced activity specifically against MRSA, altered the activity against two other Gram-positive bacteria, and inhibited activity against three Gram-negative bacteria. Neither the naïve termites nor the termites challenged with heat-killed pathogens produced antibacterial activity against A. baumannii. Further investigation demonstrated that hemolymph, not the hindgut, was the primary source of antibiotic activity. This suggests that the termite produces these antibacterial activities and not the hindgut microbiota. Two-dimensional gel electrophoretic analyses of 493 hemolymph protein spots indicated that a total of 38 and 65 proteins were differentially expressed at least 2.5-fold upon being fed with P. aeruginosa and MRSA, respectively. Our results provide the first evidence of constitutive and inducible activities produced by R. flavipes against human bacterial pathogens. PMID:27611223

  14. Detection of antibacterial activity of an enzymatic hydrolysate generated by processing rainbow trout by-products with trout pepsin.

    PubMed

    Wald, Maleen; Schwarz, Karin; Rehbein, Hartmut; Bußmann, Bettina; Beermann, Christopher

    2016-08-15

    Trout by-product hydrolysates, generated using trout pepsin, were characterized and studied in terms of their antibacterial effects against food contaminants and fish farming pathogens. After a hydrolysis time of 25 min, the hydrolysates demonstrated inhibitory activity against several gram-positive and gram-negative bacteria. The degree of hydrolysis (DH) was found to exert a considerable influence on antibacterial activity, with a significant increase in the observed inhibitory effect at the beginning of hydrolysis. The highest antibacterial activity was obtained at a DH of 30% (enzyme/protein ratio 0.04 U/mg of protein, enzyme activity 6.5 U/mg protein, hydrolysis conditions 37°C, pH 3.0). The highest antibacterial activity detected was against the fish farming bacteria Flavobacterium psychrophilum and Renibacterium salmoninarum, with minimal inhibition concentrations of 2mg/ml and 5mg/ml, respectively. The amino acid determination of the hydrolysate (DH 30%) revealed that lysine, leucine, alanine, arginine, glycine, aspartic acid and glutamic acid residues represented the major amino acids. PMID:27006234

  15. Antibacterial activity of ribostamycin on Enterobacteriaceae.

    PubMed

    Yourassowsky, E; Vander Linden, M P

    1976-02-01

    The study of the inhibitory activity of ribostamvcin (Vistamycin), an antibiotic derived from Streptomyces ribosidificus, on 161 strains of Gram-negative bacilli shows that the antibacterial spectrum of this antibiotic is identical to that of kanamycin. If controlled clinical studies confirm that ribostamycin is less toxic than kanamycin on the otovestibular system, this antibiotic will constitute a real therapeutic advance.

  16. Complex secondary metabolites from Ludwigia leptocarpa with potent antibacterial and antioxidant activities.

    PubMed

    Mabou, Florence Déclaire; Tamokou, Jean-de-Dieu; Ngnokam, David; Voutquenne-Nazabadioko, Laurence; Kuiate, Jules-Roger; Bag, Prasanta Kumar

    2016-01-01

    Diarrhea continues to be one of the most common causes of morbidity and mortality among infants and children in developing countries. The aim of the present study was to evaluate the antibacterial and antioxidant activities of extracts and compounds from Ludwigia leptocarpa, a plant traditionally used for its vermifugal, anti-dysenteric, and antimicrobial properties. A methanol extract was prepared by maceration of the dried plant and this was successively extracted with ethyl acetate to obtain an EtOAc extract and with n-butanol to obtain an n-BuOH extract. Column chromatography of the EtOAc and n-BuOH extracts was followed by purification of different fractions, leading to the isolation of 10 known compounds. Structures of isolated compounds were assigned on the basis of spectral analysis and by comparison to structures of compounds described in the literature. Antioxidant activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and gallic acid equivalent antioxidant capacity (GAEAC) assays. Antibacterial activity was assessed with the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) with respect to strains of a Gram-positive bacterium, Staphylococcus aureus (a major cause of community and hospital-associated infection), and Gram-negative multi-drug-resistant bacteria, Vibrio cholerae (a cause of cholera) and Shigella flexneri (a cause of shigellosis). All of the extracts showed different degrees of antioxidant and antibacterial activities. 2β-hydroxyoleanolic acid, (2R,3S,2''S)-3''',4',4''',5,5'',7,7''-heptahydroxy-3,8"-biflavanone, and luteolin-8-C-glucoside displayed the most potent antibacterial and antioxidant properties, and these properties were in some cases equal to or more potent than those of reference drugs. Overall, the present results show that L. leptocarpa has the potential to be a natural source of anti-diarrheal and antioxidant products, so further investigation is warranted. PMID:27431270

  17. Teicoplanin or vancomycin in the treatment of gram-positive infections?

    PubMed

    Murphy, S; Pinney, R J

    1995-02-01

    The glycopeptide antibiotics vancomycin and teicoplanin have similar mechanisms of action on bacterial cell wall synthesis. Their spectra of activity are limited to Gram-positive bacteria, with the degree of bactericidal activity depending on the species of micro-organism. Staphylococcus aureus, Staphylococcus epidermis, enterococci and Clostridium difficile are generally sensitive, including methicillin-resistant strains of S. aureus and S. epidermidis. Glycopeptide resistance has recently emerged in staphylococci and enterococci. Vancomycin has a shorter half-life than teicoplanin and requires multiple dosing to maintain adequate serum levels. It can only be given by prolonged intravenous infusion over 1 h. In contrast, the pharmacokinetics of teicoplanin allow for once-daily dosing, either by rapid intravenous infusion or by the intramuscular route. The latter offers reliable absorption for patients with limited venous access and is also of benefit for out-patient therapy. Teicoplanin is a safer drug than vancomycin. It is associated with a lower incidence of nephrotoxicity or ototoxicity. Compared to vancomycin, the availability of the intramuscular route and the absence of a requirement for routine serum monitoring, together with the reduced need to treat drug-related side-effects make teicoplanin more cost-effective. It is as effective as vancomycin for most indications, is safe, easy to administer and an important agent for treating Gram-positive infections. Its role in hospitals is likely to increase if the price of drug acquisition is kept low. PMID:7775615

  18. Distinctive Binding of Avibactam to Penicillin-Binding Proteins of Gram-Negative and Gram-Positive Bacteria

    PubMed Central

    Asli, Abdelhamid; Brouillette, Eric; Krause, Kevin M.; Nichols, Wright W.

    2015-01-01

    Avibactam is a novel non-β-lactam β-lactamase inhibitor that covalently acylates a variety of β-lactamases, causing inhibition. Although avibactam presents limited antibacterial activity, its acylation ability toward bacterial penicillin-binding proteins (PBPs) was investigated. Staphylococcus aureus was of particular interest due to the reported β-lactamase activity of PBP4. The binding of avibactam to PBPs was measured by adding increasing concentrations to membrane preparations of a variety of Gram-positive and Gram-negative bacteria prior to addition of the fluorescent reagent Bocillin FL. Relative binding (measured here as the 50% inhibitory concentration [IC50]) to PBPs was estimated by quantification of fluorescence after gel electrophoresis. Avibactam was found to selectively bind to some PBPs. In Escherichia coli, Pseudomonas aeruginosa, Haemophilus influenzae, and S. aureus, avibactam primarily bound to PBP2, with IC50s of 0.92, 1.1, 3.0, and 51 μg/ml, respectively, whereas binding to PBP3 was observed in Streptococcus pneumoniae (IC50, 8.1 μg/ml). Interestingly, avibactam was able to significantly enhance labeling of S. aureus PBP4 by Bocillin FL. In PBP competition assays with S. aureus, where avibactam was used at a fixed concentration in combination with varied amounts of ceftazidime, the apparent IC50 of ceftazidime was found to be very similar to that determined for ceftazidime when used alone. In conclusion, avibactam is able to covalently bind to some bacterial PBPs. Identification of those PBP targets may allow the development of new diazabicyclooctane derivatives with improved affinity for PBPs or new combination therapies that act on multiple PBP targets. PMID:26574008

  19. Antibacterial activity of nanosilver ions and particles.

    PubMed

    Sotiriou, Georgios A; Pratsinis, Sotiris E

    2010-07-15

    The antibacterial activity of nanosilver against Gram negative Escherichia coli bacteria is investigated by immobilizing nanosilver on nanostructured silica particles and closely controlling Ag content and size. These Ag/SiO(2) nanoparticles were characterized by S/TEM, EDX spectroscopy, X-ray diffraction the exposed Ag surface area was measured qualitatively by O(2) chemisorption. Furthermore, the fraction of dissolved nanosilver was determined by measuring the released (leached) Ag(+) ion concentration in aqueous suspensions of such Ag/SiO(2) particles. The antibacterial effect of Ag(+) ions was distinguished from that of nanosilver particles by monitoring the growth of E. coli populations in the presence and absence of Ag/SiO(2) particles. The antibacterial activity of nanosilver was dominated by Ag(+) ions when fine Ag nanoparticles (less than about 10 nm in average diameter) were employed that release high concentrations of Ag(+) ions. In contrast, when relatively larger Ag nanoparticles were used, the concentration of the released Ag(+) ions was lower. Then the antibacterial activity of the released Ag(+) ions and nanosilver particles was comparable.

  20. Synthesis, cytotoxicity and antibacterial activity of new esters of polyether antibiotic - salinomycin.

    PubMed

    Antoszczak, Michał; Popiel, Katarzyna; Stefańska, Joanna; Wietrzyk, Joanna; Maj, Ewa; Janczak, Jan; Michalska, Greta; Brzezinski, Bogumil; Huczyński, Adam

    2014-04-01

    A series of 12 novel ester derivatives of naturally occurring polyether antibiotic - salinomycin were synthesized, characterised by spectroscopic method and evaluated for their in vitro antibacterial activity and cytotoxicity. The new esters were demonstrated to form complexes with monovalent and divalent metal cation of 1:1 stoichiometry in contrast to the salinomycin which forms only complexes with monovalent cations. All the obtained compounds show potent antiproliferative activity against human cancer cell lines and a good selectivity index for cancer versus mammalian cells. Additionally, 3 compounds showed higher antiproliferative activity against the drug-resistant cancer cells and lower toxicity towards normal cells than those of unmodified salinomycin and standard anticancer drugs such as cisplatin and doxorubicin. Some of the synthesized compounds showed good inhibitory activity against Staphylococcus strains and clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE). These studies show that salinomycin esters are interesting scaffolds for the development of novel anticancer and Gram-positive antibacterial agents.

  1. Synthesis, characterization and antibacterial activity of biodegradable films prepared from Schiff bases of zein.

    PubMed

    Soliman, E A; Khalil, A A; Deraz, S F; El-Fawal, G; Elrahman, S Abd

    2014-10-01

    Pure zein is known to be very hydrophobic, but is still inappropriate for coating and film applications because of their brittle nature. In an attempt to improve the flexibility and the antimicrobial activity of these coatings and films, Chemical modification of zein through forming Schiff bases with different phenolic aldhydes was tried. Influence of this modifications on mechanical, topographical, wetting properties and antimicrobial activity of zein films were evaluated. The chemical structure of the Schiff bases films were characterized by ATR-FTIR spectroscopy. The results indicate an improvement in mechanical properties with chemically modification of zein to form Schiff bases leading to a reduction in the elastic modulus. An increase in the elongation at break has been observed, but with slight influence on tensile strength. Plasticized zein films have similar initial contact angle (∼40°). An increase in reaction temperature and time increases film's affinity towards water. As shown by contact angle measurements, a noticeable relation was found between film composition and the hydrophilicity. Surface topography also varied by forming Schiff bases, becoming rougher than zein-based films. The antibacterial activities of zein and Schiff bases of zein-based films were investigated against gram-positive bacteria (Listeria innocua, Listeria monocytogenes, Bacillus cereus and Clostridium sporogenes) and gram-negative bacteria (Escherichia coli, Yersinia enterocolitica and Salmonella enterica). It was found that the antibacterial activity of the Schiff bases-based films was more effective than that of zein-based films. PMID:25328181

  2. Daptomycin: an evidence-based review of its role in the treatment of Gram-positive infections.

    PubMed

    Gonzalez-Ruiz, Armando; Seaton, R Andrew; Hamed, Kamal

    2016-01-01

    Infections caused by Gram-positive pathogens remain a major public health burden and are associated with high morbidity and mortality. Increasing rates of infection with Gram-positive bacteria and the emergence of resistance to commonly used antibiotics have led to the need for novel antibiotics. Daptomycin, a cyclic lipopeptide with rapid bactericidal activity against a wide range of Gram-positive bacteria including methicillin-resistant Staphylococcus aureus, has been shown to be effective and has a good safety profile for the approved indications of complicated skin and soft tissue infections (4 mg/kg/day), right-sided infective endocarditis caused by S. aureus, and bacteremia associated with complicated skin and soft tissue infections or right-sided infective endocarditis (6 mg/kg/day). Based on its pharmacokinetic profile and concentration-dependent bactericidal activity, high-dose (>6 mg/kg/day) daptomycin is considered an important treatment option in the management of various difficult-to-treat Gram-positive infections. Although daptomycin resistance has been documented, it remains uncommon despite the increasing use of daptomycin. To enhance activity and to minimize resistance, daptomycin in combination with other antibiotics has also been explored and found to be beneficial in certain severe infections. The availability of daptomycin via a 2-minute intravenous bolus facilitates its outpatient administration, providing an opportunity to reduce risk of health care-associated infections, improve patient satisfaction, and minimize health care costs. Daptomycin, not currently approved for use in the pediatric population, has been shown to be widely used for treating Gram-positive infections in children.

  3. Daptomycin: an evidence-based review of its role in the treatment of Gram-positive infections

    PubMed Central

    Gonzalez-Ruiz, Armando; Seaton, R Andrew; Hamed, Kamal

    2016-01-01

    Infections caused by Gram-positive pathogens remain a major public health burden and are associated with high morbidity and mortality. Increasing rates of infection with Gram-positive bacteria and the emergence of resistance to commonly used antibiotics have led to the need for novel antibiotics. Daptomycin, a cyclic lipopeptide with rapid bactericidal activity against a wide range of Gram-positive bacteria including methicillin-resistant Staphylococcus aureus, has been shown to be effective and has a good safety profile for the approved indications of complicated skin and soft tissue infections (4 mg/kg/day), right-sided infective endocarditis caused by S. aureus, and bacteremia associated with complicated skin and soft tissue infections or right-sided infective endocarditis (6 mg/kg/day). Based on its pharmacokinetic profile and concentration-dependent bactericidal activity, high-dose (>6 mg/kg/day) daptomycin is considered an important treatment option in the management of various difficult-to-treat Gram-positive infections. Although daptomycin resistance has been documented, it remains uncommon despite the increasing use of daptomycin. To enhance activity and to minimize resistance, daptomycin in combination with other antibiotics has also been explored and found to be beneficial in certain severe infections. The availability of daptomycin via a 2-minute intravenous bolus facilitates its outpatient administration, providing an opportunity to reduce risk of health care-associated infections, improve patient satisfaction, and minimize health care costs. Daptomycin, not currently approved for use in the pediatric population, has been shown to be widely used for treating Gram-positive infections in children. PMID:27143941

  4. The ability of "low G + C gram-positive" ruminal bacteria to resist monensin and counteract potassium depletion.

    PubMed

    Callaway, T R; Adams, K A; Russell, J B

    1999-10-01

    Gram-negative ruminal bacteria with an outer membrane are generally more resistant to the feed additive, monensin, than Gram-positive species, but some bacteria can adapt and increase their resistance. 16S rRNA sequencing indicates that a variety of ruminal bacteria are found in the "low G + C Gram-positive group," but some of these bacteria are monensin resistant and were previously described as Gram-negative species (e.g., Selenomonas ruminantium and Megasphaera elsdenii). The activity of monensin can be assayed by its ability to cause potassium loss, and results indicated that the amount of monensin needed to catalyze half maximal potassium depletion (K(d)) from low G + C gram-positive ruminal bacteria varied by as much as 130-fold. The K(d) values for Butyrivibrio fibrisolvens 49, Streptococcus bovis JB1, Clostridium aminophilum F, S. ruminantium HD4, and M. elsdenii B159 were 10, 65, 100, 1020, and 1330 nM monensin, respectively. B. fibrisolvens was very sensitive to monensin, and it did not adapt. S. bovis and C. aminophilum cultures that were transferred repeatedly with sub-lethal doses of monensin had higher K(d) values than unadapted cultures, but the K(d) was always less than 800 nM. S. ruminantium and M. elsdenii cells were highly resistant (K(d) > 1000 nM), and this resistance could be explained by the ability of these low G + C Gram-positive bacteria to synthesize outer membranes.

  5. Analysis of effects of MCB3681, the antibacterially active substance of prodrug MCB3837, on human resident microflora as proof of principle.

    PubMed

    Dalhoff, A; Rashid, M-U; Kapsner, T; Panagiotidis, G; Weintraub, A; Nord, C E

    2015-08-01

    The water-soluble prodrug MCB3837 is rapidly converted to MCB3681, active against Gram-positive bacterial species, after intravenous infusion. The aim of this study was to prove the principle that MCB3681 is efficacious in vivo by demonstrating its effect on the resident microflora or colonizers of the human skin, nose, oropharynx and intestine. MCB3837 was infused at a daily dose of 6 mg/kg for 5 days. MCB3681 was active against clostridia, bifidobacteria, lactobacilli, enterococci and Staphylococcus aureus, thus proving the principle that MCB3681 is antibacterially efficacious in vivo without affecting the Gram-negative microflora.

  6. Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials.

    PubMed

    Torres, Sebastian; Pandey, Ashok; Castro, Guillermo R

    2011-01-01

    Organic-solvent-tolerant bacteria are considered extremophiles with different tolerance levels that change among species and strains, but also depend on the inherent toxicity of the solvent. Extensive studies to understand the mechanisms of organic solvent tolerance have been done in Gram-negative bacteria. On the contrary, the information on the solvent tolerance mechanisms in Gram-positive bacteria remains scarce. Possible shared mechanisms among Gram-(-) and Gram-(+) microorganisms include: energy-dependent active efflux pumps that export toxic organic solvents to the external medium; cis-to-trans isomerization of unsaturated membrane fatty acids and modifications in the membrane phospholipid headgroups; formation of vesicles loaded with toxic compounds; and changes in the biosynthesis rate of phospholipids to accelerate repair processes. However, additional physiological responses of Gram-(+) bacteria to organic solvents seem to be specific. The aim of the present work is to review the state of the art of responsible mechanisms for organic solvent tolerance in Gram-positive bacteria, and their industrial and environmental biotechnology potential. PMID:21504787

  7. Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans.

    PubMed

    Anné, Jozef; Vrancken, Kristof; Van Mellaert, Lieve; Van Impe, Jan; Bernaerts, Kristel

    2014-08-01

    Proteins secreted by Gram-positive bacteria are released into the culture medium with the obvious benefit that they usually retain their native conformation. This property makes these host cells potentially interesting for the production of recombinant proteins, as one can take full profit of established protocols for the purification of active proteins. Several state-of-the-art strategies to increase the yield of the secreted proteins will be discussed, using Streptomyces lividans as an example and compared with approaches used in some other host cells. It will be shown that approaches such as increasing expression and translation levels, choice of secretion pathway and modulation of proteins thereof, avoiding stress responses by changing expression levels of specific (stress) proteins, can be helpful to boost production yield. In addition, the potential of multi-omics approaches as a tool to understand the genetic background and metabolic fluxes in the host cell and to seek for new targets for strain and protein secretion improvement is discussed. It will be shown that S. lividans, along with other Gram-positive host cells, certainly plays a role as a production host for recombinant proteins in an economically viable way. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.

  8. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes

    PubMed Central

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-01-01

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them. PMID:27561546

  9. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes

    NASA Astrophysics Data System (ADS)

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-08-01

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them.

  10. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes.

    PubMed

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-01-01

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them. PMID:27561546

  11. Synthesis, Structure–Activity Relationship Studies, and Antibacterial Evaluation of 4-Chromanones and Chalcones, as Well as Olympicin A and Derivatives

    PubMed Central

    2015-01-01

    On the basis of recently reported abyssinone II and olympicin A, a series of chemically modified flavonoid phytochemicals were synthesized and evaluated against Mycobacterium tuberculosis and a panel of Gram-positive and -negative bacterial pathogens. Some of the synthesized compounds exhibited good antibacterial activities against Gram-positive pathogens including methicillin resistant Staphylococcus aureus with minimum inhibitory concentration as low as 0.39 μg/mL. SAR analysis revealed that the 2-hydrophobic substituent and the 4-hydrogen bond donor/acceptor of the 4-chromanone scaffold together with the hydroxy groups at 5- and 7-positions enhanced antibacterial activities; the 2′,4′-dihydroxylated A ring and the lipophilic substituted B ring of chalcone derivatives were pharmacophoric elements for antibacterial activities. Mode of action studies performed on selected compounds revealed that they dissipated the bacterial membrane potential, resulting in the inhibition of macromolecular biosynthesis; further studies showed that selected compounds inhibited DNA topoisomerase IV, suggesting complex mechanisms of actions for compounds in this series. PMID:25238443

  12. Colloidal and antibacterial properties of novel triple-headed, double-tailed amphiphiles: exploring structure-activity relationships and synergistic mixtures.

    PubMed

    Marafino, John N; Gallagher, Tara M; Barragan, Jhosdyn; Volkers, Brandi L; LaDow, Jade E; Bonifer, Kyle; Fitzgerald, Gabriel; Floyd, Jason L; McKenna, Kristin; Minahan, Nicholas T; Walsh, Brenna; Seifert, Kyle; Caran, Kevin L

    2015-07-01

    Two novel series of tris-cationic, tripled-headed, double-tailed amphiphiles were synthesized and the effects of tail length and head group composition on the critical aggregation concentration (CAC), thermodynamic parameters, and minimum inhibitory concentration (MIC) against six bacterial strains were investigated. Synergistic antibacterial combinations of these amphiphiles were also identified. Amphiphiles in this study are composed of a benzene core with three benzylic ammonium bromide groups, two of which have alkyl chains, each 8-16 carbons in length. The third head group is a trimethylammonium or pyridinium. Log of critical aggregation concentration (log[CAC]) and heat of aggregation (ΔHagg) were both inversely proportional to the length of the linear hydrocarbon chains. Antibacterial activity increases with tail length until an optimal tail length of 12 carbons per chain, above which, activity decreased. The derivatives with two 12 carbon chains had the best antibacterial activity, killing all tested strains at concentrations of 1-2μM for Gram-positive and 4-16μM for Gram-negative bacteria. The identity of the third head group (trimethylammonium or pyridinium) had minimal effect on colloidal and antibacterial activity. The antibacterial activity of several binary combinations of amphiphiles from this study was higher than activity of individual amphiphiles, indicating that these combinations are synergistic. These amphiphiles show promise as novel antibacterial agents that could be used in a variety of applications.

  13. Chemical composition, antibacterial and antioxidant activities of six essentials oils from the Alliaceae family.

    PubMed

    Mnayer, Dima; Fabiano-Tixier, Anne-Sylvie; Petitcolas, Emmanuel; Hamieh, Tayssir; Nehme, Nancy; Ferrant, Christine; Fernandez, Xavier; Chemat, Farid

    2014-12-01

    Six essential oils (EOs) from the Alliaceae family, namely garlic (Allium sativum), onion (Allium cepa), leek (Allium porrum), Chinese chive (Allium tuberosum), shallot (Allium ascalonicum) and chive (Allium schoenoprasum) were characterized by GC and GC-MS and evaluated for their functional food properties. Antibacterial properties were tested on five food-borne pathogens: Two Gram-positive Staphylococcus aureus (ATCC 25923), Listeria monocytogenes (ATCC 19115) and three Gram-negative Salmonella Typhimurium (ATCC 14028), Escherichia coli (ATCC 8739) and Campylobacter jejuni (ATCC 33291) bacteria. Antioxidant and radical-scavenging properties were tested by means of Folin-Ciocalteu and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. Garlic, Chinese chive and onion EOs had the highest antibacterial activity whereas shallot and leek EOs were the strongest antioxidants. Heating caused a decrease in the antioxidant activity of these Eos, as shown in the Total Polar Materials (TPM) test. Suggestions on relationships between chemical composition and biological activities are presented. Results show that the EOs could be of value in the food industry as alternatives to synthetic antioxidants.

  14. Evaluation of the antibacterial activity of Piperaceae extracts and nisin on Alicyclobacillus acidoterrestris.

    PubMed

    Ruiz, Suelen P; Anjos, Márcia Maria Dos; Carrara, Vanessa S; Delima, Juliana N; Cortez, Diógenes Aparício G; Nakamura, Tânia U; Nakamura, Celso V; de Abreu Filho, Benício A

    2013-11-01

    Alicyclobacillus acidoterrestris is a gram-positive aerobic bacterium. This bacterium resists pasteurization temperatures and low pH and is usually involved in the spoilage of juices and acidic drinks. The objective of this study was to evaluate the antibacterial activities of nisin and the species Piper (Piperaceae) on A. acidoterrestris. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined by the broth microdilution method. The species Piper aduncum had the lowest MIC and an MBC of 15.6 μg/mL and was selected for fractionation. Six fractions were obtained, and the dichloromethane fraction (F.3) had the lowest MIC/MBC (7.81 μg/mL). The dichloromethane fraction was again fractionized, and a spectral analysis revealed that the compound was prenylated chromene (F.3.7). The checkerboard method demonstrated that the crude extract (CE) of P. aduncum plus nisin had a synergistic interaction (fractional inhibitory concentration [FIC] = 0.24). The bactericidal activity of (F.3.7) was confirmed by the time-kill curve. P. aduncum, nisin, and prenylated chromene exhibited strong antibacterial activity against the spores and vegetative cells of A. acidoterrestris. The results of this study suggest that extracts of the genus Piper may provide an alternative to the use of thermal processing for controlling A. spoilage.

  15. Chemical composition, antibacterial and antioxidant activities of six essentials oils from the Alliaceae family.

    PubMed

    Mnayer, Dima; Fabiano-Tixier, Anne-Sylvie; Petitcolas, Emmanuel; Hamieh, Tayssir; Nehme, Nancy; Ferrant, Christine; Fernandez, Xavier; Chemat, Farid

    2014-01-01

    Six essential oils (EOs) from the Alliaceae family, namely garlic (Allium sativum), onion (Allium cepa), leek (Allium porrum), Chinese chive (Allium tuberosum), shallot (Allium ascalonicum) and chive (Allium schoenoprasum) were characterized by GC and GC-MS and evaluated for their functional food properties. Antibacterial properties were tested on five food-borne pathogens: Two Gram-positive Staphylococcus aureus (ATCC 25923), Listeria monocytogenes (ATCC 19115) and three Gram-negative Salmonella Typhimurium (ATCC 14028), Escherichia coli (ATCC 8739) and Campylobacter jejuni (ATCC 33291) bacteria. Antioxidant and radical-scavenging properties were tested by means of Folin-Ciocalteu and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. Garlic, Chinese chive and onion EOs had the highest antibacterial activity whereas shallot and leek EOs were the strongest antioxidants. Heating caused a decrease in the antioxidant activity of these Eos, as shown in the Total Polar Materials (TPM) test. Suggestions on relationships between chemical composition and biological activities are presented. Results show that the EOs could be of value in the food industry as alternatives to synthetic antioxidants. PMID:25470273

  16. Evaluation of the antibacterial activity of Piperaceae extracts and nisin on Alicyclobacillus acidoterrestris.

    PubMed

    Ruiz, Suelen P; Anjos, Márcia Maria Dos; Carrara, Vanessa S; Delima, Juliana N; Cortez, Diógenes Aparício G; Nakamura, Tânia U; Nakamura, Celso V; de Abreu Filho, Benício A

    2013-11-01

    Alicyclobacillus acidoterrestris is a gram-positive aerobic bacterium. This bacterium resists pasteurization temperatures and low pH and is usually involved in the spoilage of juices and acidic drinks. The objective of this study was to evaluate the antibacterial activities of nisin and the species Piper (Piperaceae) on A. acidoterrestris. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined by the broth microdilution method. The species Piper aduncum had the lowest MIC and an MBC of 15.6 μg/mL and was selected for fractionation. Six fractions were obtained, and the dichloromethane fraction (F.3) had the lowest MIC/MBC (7.81 μg/mL). The dichloromethane fraction was again fractionized, and a spectral analysis revealed that the compound was prenylated chromene (F.3.7). The checkerboard method demonstrated that the crude extract (CE) of P. aduncum plus nisin had a synergistic interaction (fractional inhibitory concentration [FIC] = 0.24). The bactericidal activity of (F.3.7) was confirmed by the time-kill curve. P. aduncum, nisin, and prenylated chromene exhibited strong antibacterial activity against the spores and vegetative cells of A. acidoterrestris. The results of this study suggest that extracts of the genus Piper may provide an alternative to the use of thermal processing for controlling A. spoilage. PMID:24138211

  17. Antibacterial activity of novel benzopolycyclic amines.

    PubMed

    Barniol-Xicota, Marta; Escandell, Alex; Valverde, Elena; Julián, Esther; Torrents, Eduard; Vázquez, Santiago

    2015-01-15

    Staphylococcus aureus, especially strains resistant to multiple antibiotics, is a major pathogen for humans and animals. In this paper we have synthesized and evaluated the antibacterial activity of a new series of benzopolycyclic amines. Some of them exhibited μM MIC values against Staphylococcus aureus and other bacteria, including methicillin-resistant S. aureus MRSA. Compound 8 that displayed a good selectivity index, showed to be active in eliminating bacterial cells forming a preexisting biofilm. PMID:25515953

  18. Considering the antibacterial activity of Zataria multiflora Boiss essential oil treated with gamma-irradiation in vitro and in vivo systems

    NASA Astrophysics Data System (ADS)

    Faezeh, Fatema; Salome, Dini; Abolfazl, Dadkhah; Reza, Zolfaghari Mohammad

    2015-01-01

    The aim of the present study was to evaluate the antibacterial activities of essential oils (EOs) obtained from the aerial parts of Zataria multiflora Boiss against Bacillus cereus, Pseudomonas aeroginosa, Escherichia coli and Staphylococcus aureus by in vivo and in vitro methods. Also, the effects of gamma-irradiation (0, 10 and 25 kGy) as a new microbial decontamination on the antibacterial activities of Z. multiflora were examined. For this purpose, the collected herbs were exposed to radiation at doses of 0, 10 and 25 kGy following essential oil (EOs) extraction by steam distillation. Then, the in vitro antibacterial potency of the irradiated and non-irradiated oils was determined by using disc diffusion, agar well diffusion and MIC and MBC determination assays. The in vivo antibacterial activity was also studied in sepsis model induced by CLP surgery by Colony forming units (CFUs) determination. The results showed that the extracted oils were discovered to be effective against all the gram positive and gram negative pathogens in vitro system. In addition, the oil significantly diminished the increased CFU count observed in CLP group. Moreover, the irradiated samples were found to possess the antibacterial activities as the non-irradiated ones both in vitro and in vivo systems. These data indicated the potential use of gamma-irradiation as a safe technique for preservation of Z. multiflora as a medicinal plant with effective antibacterial activities.

  19. Towards squalamine mimics: synthesis and antibacterial activities of head-to-tail dimeric sterol-polyamine conjugates.

    PubMed

    Chen, Wen-Hua; Wennersten, Christine; Moellering, Robert C; Regen, Steven L

    2013-03-01

    Four dimeric sterol-polyamine conjugates have been synthesized from the homo- and hetero-connection of monomeric sterol-polyamine analogs in a head-to-tail manner. These dimeric conjugates show strong antibacterial activity against a broad spectrum of Gram-positive bacteria, whereas their corresponding activities against Gram-negative bacteria are relatively moderate. Though no significant difference was observed in the activities of these conjugates, cholic acid-containing dimeric conjugates generally exhibit higher activities than the corresponding deoxycholic acid-derived analogs. This is in contrast to the finding that a monomeric deoxycholic acid-spermine conjugate was more active than the corresponding cholic acid-derived analog. PMID:23495155

  20. Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida).

    PubMed

    Céspedes, Carlos L; Avila, J Guillermo; Martínez, Andrés; Serrato, Blanca; Calderón-Mugica, José C; Salgado-Garciglia, Rafael

    2006-05-17

    Mexican tarragon (Tagetes lucida Cv. Asteraceae: Campanulatae) is an important, nutritious plant and an effective herbal medicine. Seven coumarins, 7,8-dihydroxycoumarin (4), umbelliferone (7-hydroxycoumarin) (5), scoparone (6,7-dimethoxycoumarin) (7), esculetin (6,7-dihydroxycoumarin) (11), 6-hydroxy-7-methoxycoumarin (12), herniarin (7-methoxycoumarin) (13), and scopoletin (6-methoxy-7-hydroxycoumarin) (14), and three flavonoids, patuletin (18), quercetin (19), and quercetagetin (20), were isolated from CH2Cl2 and MeOH extracts from aerial parts of T. lucida. In addition, 6,7-diacetoxy coumarin (15), 6-methoxy-7-acetylcoumarin (16), and 6-acetoxy-7-methoxycoumarin (17) derivatives were synthesized. 8-Methoxypsoralen (1), 8-acetyl-7-hydroxycoumarin (2), 7,8-dihydroxy-6-meth-oxycoumarin (3), 6,7-dimethoxy-4-methylcoumarin (6), 5,7-dihydroxy-4-methylcoumarin (8), 4-hydroxycoumarin (9), 4-hydroxy-6,7-dimethylcoumarin (10), naringenin (21), glycoside-7-rhamnonaringin (22), and rutin (23) were commercially obtained (Sigma-Aldrich). All of these compounds and extracts (M1 and M2) were assayed against bacteria and fungi. The antibacterial activity was determined on Bacillus subtilis, Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Salmonella typhi, Salmonella sp., Shigella boydii, Shigella sp., Enterobacter aerogenes, Enterobacter agglomerans, Sarcina lutea, Staphylococcus epidermidis, Staphylococcus aureus, Yersinia enterolitica, Vibrio cholerae (three El Tor strains, CDC-V12, clinic case, and INDRE-206, were obtained from contaminated water), and V. cholerae (NO-O1). The evaluated fungi were Aspergillus niger, Penicillium notatum, Fusarium moniliforme, Fusarium sporotrichum, Rhizoctonia solani, and Trichophyton mentagrophytes. The most active compounds against Gram-positive and -negative bacteria were the dihydroxylated coumarins 3 and 4. In addition, 2-4, 6, 7, and 11 showed an interesting activity against V. cholerae, a key bacterium in the contaminated

  1. [Antibacterial activity of natural compounds - essential oils].

    PubMed

    Hassan, Sherif T S; Majerová, Michaela; Šudomová, Miroslava; Berchová, Kateřina

    2015-12-01

    Since the problem of bacterial resistance has become a serious problem worldwide, it was necessary to search for new active substances that can overcome the problem and enhance the treatment efficacy of bacterial infections. Numerous plant-derived essential oils exhibited significant antibacterial activities. This review aimed to summarize the most promising essential oils that exhibited remarkable antibacterial activities against various bacterial infections, including staphylococcal infections, Helicobacter pylori infections, skin infections, tuberculosis infection and dental bacterial infection. The synergy effect of essential oils in combination with antibiotics, as well as their role in the treatment of bacterial infections have been discussed. Essential oils can be used as models for further studies in vivo and clinical trials.

  2. Antibacterial and antifungal activities of crude plant extracts from Colombian biodiversity.

    PubMed

    Niño, Jaime; Mosquera, Oscar M; Correa, Yaned M

    2012-12-01

    On a global scale, people have used plants to treat diseases and infections, and this has raised interest on the plant biodiversity potencial in the search of antimicrobial principles. In this work, 75 crude n-hexanes, dichloromethane and methanol extracts from the aerial parts of 25 plants belonging to four botanical families (Asteraceae, Euphorbiaceae, Rubiaceae and Solanaceae), collected at the Natural Regional Park Ucumari (Risaralda, Colombia), were evaluated for their antibacterial and antifungal activities by the agar well diffusion method. The antibacterial activities were assayed against two Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis, and three Gram-negative ones named, Klebsiella pneumoniae, Escherichia coli and Pseudomonas aeruginosa. In addition, the same plant extracts were tested against the yeast Candida albicans and the fungi Aspergillus fumigatus and Fusarium solani. Overall, the plant extracts examined displayed better bactericide rather than fungicide activities. In general, the best antibacterial activity was showed by the plant extracts from the Rubiaceae family, followed in order by the extracts from the Euphorbiaceae and Solanaceae ones. It is important to emphasize the great activity displayed by the methanol extract of Alchornea coelophylla (Euphorbiaceae) that inhibited four out of five bacteria tested (B. Subtilis, P. aeruginosa, S. aureus and E. coli). Furthermore, the best Minimal Inhibitory Concentration for the extracts with antifungal activities were displayed by the dichloromethane extracts from Acalypha diversifolia and Euphorbia sp (Euphorbiaceae). The most susceptible fungus evaluated was F. Solani since 60% and 20% of the dichloromethane and methanol extracts evaluated inhibited the growth of this phytopathogenic fungus. The antimicrobial activity of the different plant extracts examined in this work could be related to the secondary metabolites contents and their interaction and susceptibility of

  3. Antioxidant, Antibacterial, and Cytotoxic Activities of the Ethanolic Origanum vulgare Extract and Its Major Constituents.

    PubMed

    Coccimiglio, John; Alipour, Misagh; Jiang, Zi-Hua; Gottardo, Christine; Suntres, Zacharias

    2016-01-01

    Oregano is a perennial shrub that grows in the mountains of the Mediterranean and Euro/Irano-Siberian regions. This study was conducted to identify the major constituents of the ethanolic Origanum vulgare extract and examine the cytotoxic, antioxidant, and antibacterial properties of the extract but more importantly the contribution of its specific major constituent(s) or their combination to the overall extract biological activity. Gas chromatography/mass spectroscopy analysis showed that the extract contained monoterpene hydrocarbons and phenolic compounds, the major ones being carvacrol and thymol and to a lesser extent p-cymene, 1-octacosanol, creosol, and phytol. A549 epithelial cells challenged with the extract showed a concentration-dependent increase in cytotoxicity. A combination of thymol and carvacrol at equimolar concentrations to those present in the extract was less cytotoxic. The A549 cells pretreated with nonlethal extract concentrations protected against hydrogen-peroxide-induced cytotoxicity, an antioxidant effect more effective than the combination of equimolar concentrations of thymol/carvacrol. Inclusion of p-cymene and/or 1-octacosanol did not alter the synergistic antioxidant effects of the carvacrol/thymol mixture. The extract also exhibited antimicrobial properties against Gram-positive and Gram-negative bacterial strains including clinical isolates. In conclusion, the oregano extract has cytotoxic, antioxidant, and antibacterial activities mostly attributed to carvacrol and thymol. PMID:27051475

  4. Antioxidant, Antibacterial, and Cytotoxic Activities of the Ethanolic Origanum vulgare Extract and Its Major Constituents

    PubMed Central

    Coccimiglio, John; Alipour, Misagh; Jiang, Zi-Hua; Gottardo, Christine

    2016-01-01

    Oregano is a perennial shrub that grows in the mountains of the Mediterranean and Euro/Irano-Siberian regions. This study was conducted to identify the major constituents of the ethanolic Origanum vulgare extract and examine the cytotoxic, antioxidant, and antibacterial properties of the extract but more importantly the contribution of its specific major constituent(s) or their combination to the overall extract biological activity. Gas chromatography/mass spectroscopy analysis showed that the extract contained monoterpene hydrocarbons and phenolic compounds, the major ones being carvacrol and thymol and to a lesser extent p-cymene, 1-octacosanol, creosol, and phytol. A549 epithelial cells challenged with the extract showed a concentration-dependent increase in cytotoxicity. A combination of thymol and carvacrol at equimolar concentrations to those present in the extract was less cytotoxic. The A549 cells pretreated with nonlethal extract concentrations protected against hydrogen-peroxide-induced cytotoxicity, an antioxidant effect more effective than the combination of equimolar concentrations of thymol/carvacrol. Inclusion of p-cymene and/or 1-octacosanol did not alter the synergistic antioxidant effects of the carvacrol/thymol mixture. The extract also exhibited antimicrobial properties against Gram-positive and Gram-negative bacterial strains including clinical isolates. In conclusion, the oregano extract has cytotoxic, antioxidant, and antibacterial activities mostly attributed to carvacrol and thymol. PMID:27051475

  5. Newly Developed Topical Cefotaxime Sodium Hydrogels: Antibacterial Activity and In Vivo Evaluation

    PubMed Central

    Zakaria, Azza S.; Afifi, Samar A.; Elkhodairy, Kadria A.

    2016-01-01

    In an attempt to reach better treatment of skin infections, gel formulations containing Cefotaxime (CTX) were prepared. The gel was formulated using Carbopol 934 (C934), Hydroxypropyl Methylcellulose 4000 (HPMC 4000), Carboxymethylcellulose Sodium (Na CMC), Pectin (PEC), Xanthan Gum (XG), or Guar Gum (GG). Thirteen different formulas were prepared and characterized physically in terms of color, syneresis, spreadability, pH, drug content, and rheological properties. Drug-excipients compatibility studies were confirmed by FTIR and then in vitro drug release study was conducted. In vitro and in vivo antibacterial activities of CTX were studied against wound pathogens such as, Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa), using either pure drug or Fucidin® cream as control. F13 provides better spreadability compared to F1 (XG) or F11 (HPMC). Moreover, the release of the drug from hydrogel F13 containing C934 was slower and sustained for 8 h. Stability study revealed that, upon storage, there were no significant changes in pH, drug content, and viscosity of the gels. Also, F13 showed the larger inhibition zone and highest antibacterial activity among other formulations. Histological analysis demonstrated that after single treatment with F13 gel formulation, a noticeable reduction in microbial bioburden occurred in case of both Gram positive and Gram negative bacterial isolates. PMID:27314033

  6. Newly Developed Topical Cefotaxime Sodium Hydrogels: Antibacterial Activity and In Vivo Evaluation.

    PubMed

    Zakaria, Azza S; Afifi, Samar A; Elkhodairy, Kadria A

    2016-01-01

    In an attempt to reach better treatment of skin infections, gel formulations containing Cefotaxime (CTX) were prepared. The gel was formulated using Carbopol 934 (C934), Hydroxypropyl Methylcellulose 4000 (HPMC 4000), Carboxymethylcellulose Sodium (Na CMC), Pectin (PEC), Xanthan Gum (XG), or Guar Gum (GG). Thirteen different formulas were prepared and characterized physically in terms of color, syneresis, spreadability, pH, drug content, and rheological properties. Drug-excipients compatibility studies were confirmed by FTIR and then in vitro drug release study was conducted. In vitro and in vivo antibacterial activities of CTX were studied against wound pathogens such as, Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa), using either pure drug or Fucidin® cream as control. F13 provides better spreadability compared to F1 (XG) or F11 (HPMC). Moreover, the release of the drug from hydrogel F13 containing C934 was slower and sustained for 8 h. Stability study revealed that, upon storage, there were no significant changes in pH, drug content, and viscosity of the gels. Also, F13 showed the larger inhibition zone and highest antibacterial activity among other formulations. Histological analysis demonstrated that after single treatment with F13 gel formulation, a noticeable reduction in microbial bioburden occurred in case of both Gram positive and Gram negative bacterial isolates.

  7. Antibacterial and antifungal activities of acetonic extract from Paullinia cupana Mart. seeds.

    PubMed

    Basile, Adriana; Rigano, Daniela; Conte, Barbara; Bruno, Maurizio; Rosselli, Sergio; Sorbo, Sergio

    2013-01-01

    The antibacterial and antifungal activities of the acetone extract from Paullinia cupana var. sorbilis Mart. (Sapindaceae) seeds, commonly called guarana, were assessed against selected bacterial and fungal strains. We tested the extract against both standard American Type Culture Collection (ATCC) and clinically isolated (CI) bacterial strains and three fungal strains. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values for bacteria and MIC and minimum fungicidal concentration for fungi were determined. The extract showed an activity against the nine bacterial strains tested, both CI and ATCC strains (MIC comprised between 32 and 128 μm/mL and MBC between 128 and 512 μm/mL), showing a significant antibacterial effect against both Gram-negative and Gram-positive bacteria. Also, the tested fungi were sensitive to the extract (MIC between 125 and 250 μm/mL). The contemporaneous presence of different bioactivities in the extract from guarana suggests this plant as a source of bioactive substances. PMID:23672664

  8. Antibacterial and antifungal activities of acetonic extract from Paullinia cupana Mart. seeds.

    PubMed

    Basile, Adriana; Rigano, Daniela; Conte, Barbara; Bruno, Maurizio; Rosselli, Sergio; Sorbo, Sergio

    2013-01-01

    The antibacterial and antifungal activities of the acetone extract from Paullinia cupana var. sorbilis Mart. (Sapindaceae) seeds, commonly called guarana, were assessed against selected bacterial and fungal strains. We tested the extract against both standard American Type Culture Collection (ATCC) and clinically isolated (CI) bacterial strains and three fungal strains. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values for bacteria and MIC and minimum fungicidal concentration for fungi were determined. The extract showed an activity against the nine bacterial strains tested, both CI and ATCC strains (MIC comprised between 32 and 128 μm/mL and MBC between 128 and 512 μm/mL), showing a significant antibacterial effect against both Gram-negative and Gram-positive bacteria. Also, the tested fungi were sensitive to the extract (MIC between 125 and 250 μm/mL). The contemporaneous presence of different bioactivities in the extract from guarana suggests this plant as a source of bioactive substances.

  9. Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa

    2011-01-01

    Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12–3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO3. The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller–Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications. PMID:21383858

  10. Bio-based nanoemulsion formulation, characterization and antibacterial activity against food-borne pathogens.

    PubMed

    Sugumar, Saranya; Nirmala, Joyce; Ghosh, Vijayalakshmi; Anjali, Haridasan; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2013-08-01

    The current study deals with the formulation and characterization of bio-based oil in water nanoemulsion and its potential antibacterial activity. A typical v/v% of eucalyptus oil (16.66%), Tween 80 (16.66%), and water (68.68%) was prepared by ultrasonication method. The mean droplet size was 17.1 nm as confirmed by dynamic light scattering. Different concentrations of the formulation ranging from undiluted to 10-, 100-, and 1000-fold dilutions were used to check the antibacterial activity in three different microorganisms, namely, Bacillus cereus, Staphylococcus aureus (Gram-positive), and Escherichia coli (Gram-negative). All three species showed a 100% bactericidal at the 10-fold dilution of the nanoemulsion formulation in the following order: B. cereus at 0th min, S. aureus at 15 min and E. coli at 1 h, respectively. A 10-fold dilution of the nanoemulsion showed that, the cytoplasmic content leakage from the bacterial species was high for S. aureus when compared to B. cereus and E. coli as determined by UV-Vis spectroscopic method. Fluorescence microscopic technique further confirmed this study.

  11. Newly Developed Topical Cefotaxime Sodium Hydrogels: Antibacterial Activity and In Vivo Evaluation.

    PubMed

    Zakaria, Azza S; Afifi, Samar A; Elkhodairy, Kadria A

    2016-01-01

    In an attempt to reach better treatment of skin infections, gel formulations containing Cefotaxime (CTX) were prepared. The gel was formulated using Carbopol 934 (C934), Hydroxypropyl Methylcellulose 4000 (HPMC 4000), Carboxymethylcellulose Sodium (Na CMC), Pectin (PEC), Xanthan Gum (XG), or Guar Gum (GG). Thirteen different formulas were prepared and characterized physically in terms of color, syneresis, spreadability, pH, drug content, and rheological properties. Drug-excipients compatibility studies were confirmed by FTIR and then in vitro drug release study was conducted. In vitro and in vivo antibacterial activities of CTX were studied against wound pathogens such as, Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa), using either pure drug or Fucidin® cream as control. F13 provides better spreadability compared to F1 (XG) or F11 (HPMC). Moreover, the release of the drug from hydrogel F13 containing C934 was slower and sustained for 8 h. Stability study revealed that, upon storage, there were no significant changes in pH, drug content, and viscosity of the gels. Also, F13 showed the larger inhibition zone and highest antibacterial activity among other formulations. Histological analysis demonstrated that after single treatment with F13 gel formulation, a noticeable reduction in microbial bioburden occurred in case of both Gram positive and Gram negative bacterial isolates. PMID:27314033

  12. Papain-templated Cu nanoclusters: assaying and exhibiting dramatic antibacterial activity cooperating with H2O2

    NASA Astrophysics Data System (ADS)

    Miao, Hong; Zhong, Dan; Zhou, Zinan; Yang, Xiaoming

    2015-11-01

    Herein, papain-functionalized Cu nanoclusters (CuNCs@Papain) were originally synthesized in aqueous solution together with a quantum yield of 14.3%, and showed obviously red fluorescence at 620 nm. Meanwhile, their corresponding fluorescence mechanism was fully elucidated by fluorescence spectroscopy, HR-TEM, FTIR spectroscopy, and XPS. Subsequently, the as-prepared CuNCs were employed as probes for detecting H2O2. Using CuNCs as probes, H2O2 was determined in the range from 1 μM to 50 μM based on a linear decrease of fluorescence intensity as well as a detection limit of 0.2 μM with a signal-to-noise ratio of 3. More significantly, it has been proved that CuNCs could convert H2O2 to &z.rad;OH, which exhibited dramatic antibacterial activity. Both in vitro and in vivo experiments were performed to validate their antibacterial activity against Gram-positive/negative bacteria and actual wound infection, suggesting their potential for serving as one type of promising antibacterial material.Herein, papain-functionalized Cu nanoclusters (CuNCs@Papain) were originally synthesized in aqueous solution together with a quantum yield of 14.3%, and showed obviously red fluorescence at 620 nm. Meanwhile, their corresponding fluorescence mechanism was fully elucidated by fluorescence spectroscopy, HR-TEM, FTIR spectroscopy, and XPS. Subsequently, the as-prepared CuNCs were employed as probes for detecting H2O2. Using CuNCs as probes, H2O2 was determined in the range from 1 μM to 50 μM based on a linear decrease of fluorescence intensity as well as a detection limit of 0.2 μM with a signal-to-noise ratio of 3. More significantly, it has been proved that CuNCs could convert H2O2 to &z.rad;OH, which exhibited dramatic antibacterial activity. Both in vitro and in vivo experiments were performed to validate their antibacterial activity against Gram-positive/negative bacteria and actual wound infection, suggesting their potential for serving as one type of promising

  13. Isolation of the Entomopathogenic Fungal Strain Cod-MK1201 from a Cicada Nymph and Assessment of Its Antibacterial Activities.

    PubMed

    Sangdee, Kusavadee; Nakbanpote, Woranan; Sangdee, Aphidech

    2015-01-01

    The entomopathogenic fungus Cod-MK1201 was isolated from a dead cicada nymph. Three regions of ribosomal nuclear DNA, the internal transcribed spacers of nuclear ribosomal DNA repeats (ITS), the partial small subunit of rDNA (nrSSU) , and the partial large subunit of rDNA (nrLSU), and two protein-coding regions, the elongation factor 1α (EF-1α), and the largest subunit of the RNA polymerase II (rpb1) gene, were sequenced and used for fungal identification. The phylogenetic analysis of the ITS and the combined data set of the five genes indicated that the fungal isolate Cod-MK1201 is a new strain of Cordyceps sp. that is closely related to Cordyceps nipponica and C. kanzashiana. Crude extracts of mycelium-cultured Cod-MK1201 were obtained using distilled water and 50% (v/v) ethanol, and the antibacterial activity of each was determined. Both extracts had activity against Gram-positive and Gram-negative bacteria, but the ethanol extract was the more potent of the two. The antibacterial activity of the protein fractions of these extracts was also determined. The protein fraction from the ethanol extract was more antibacterial than the protein fraction from the aqueous extract. Three antibacterial constituents including adenosine, the total phenolic content (TPC), and the total flavonoid content (TFC) was also determined. The results showed that the adenosine content, the TPC, and the TFC of the ethanol extract were more active than those of the aqueous extract. Moreover, synergism was detected between these antibacterial constituents. In conclusion, the entomopathogenic fungal isolate Cod-MK1201 represents a natural source of antibacterial agents. PMID:25746406

  14. Evaluation of Antibacterial Activity, Phytochemical Constituents, and Cytotoxicity Effects of Thai Household Ancient Remedies

    PubMed Central

    Sinvaraphan, Naruephan; Chaipak, Ploypailin; Luxsananuwong, Atita; Voravuthikunchai, Supayang Piyawan

    2014-01-01

    Abstract Aim: Household ancient remedies reported here are described in the National List of Essential Medicines and have traditionally been used in Thailand to treat infection-related ailments. However, the safety and effectiveness of these remedies have been poorly evaluated. The aim of this study was to evaluate the antibacterial properties of these remedies against seven gram-positive and gram-negative multidrug-resistant bacteria species. Phytochemical constituents and cytotoxicity of these remedies were also determined. Methods: Seven remedies, consisting of Um-Ma-Luk-Ka-Wa-Tee, Chan-Ta-Lee-La, Kheaw-Hom, Learng-Pid-Sa-Mud, Pra-Sa-Chan-Dang, Dhart-Ban-Chob, and Tree-Hom, were prepared by a licensed traditional medical doctor using a mixture of medicinal plants. Antibacterial activity of ethanol extracts of the remedies was determined by using a broth microdilution method. Qualitative phytochemical screening analysis was carried out to identify the presence of major components. Cytotoxicity activities of the extracts against Vero cells were assessed by green fluorescent protein–based assay. Results: With the exception of Dhart-Ban-Chob extract, significant minimum inhibitory concentrations (MICs) of <16 to 32 μg/mL were observed for the remedy extracts depending on the bacterial strains. The Um-Ma-Luk-Ka-Wa-Tee extract was noncytotoxic against Vero cells and possessed the highest activity, with MICs of <16 to 31 μg/mL against all methicillin-resistant Staphylococcus aureus isolates. Conclusions: Remarkable antibacterial activities against multidrug-resistant pathogens, as well as low toxicity on Vero cells, of Um-Ma-Luk-Ka-Wa-Tee support the use of this remedy in traditional medicine. Further investigation on other biological activities related to traditional applications, appropriate biomarkers, and treatment mechanisms of the household remedy are required. PMID:25415453

  15. A study of the antibacterial activity of L-phenylalanine and L-tyrosine esters in relation to their CMCs and their interactions with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC as model membrane.

    PubMed

    Joondan, Nausheen; Jhaumeer-Laulloo, Sabina; Caumul, Prakashanand

    2014-01-01

    Cationic amino acid-based surfactants are known to interact with the lipid bilayer of cell membranes resulting in depolarization, lysis and cell death through a disruption of the membrane topology. A range of cationic surfactant analogues derived from L-Phenylalanine (C1-C20) and L-Tyrosine (C8-C14) esters have been synthesized and screened for their antibacterial activity. The esters were more active against gram positive than gram negative bacteria. The activity increased with increasing chain length, exhibiting a cut-off effect at C12 for gram positive and C8/C10 for gram negative bacteria. The cut-off effect for gram negative bacteria was observed at a lower alkyl chain length. The CMC was correlated with the MIC, inferring that micellar activity contribute to the cut-off effect in antibacterial activity. The interaction of the cationic surfactants with the phospholipid vesicles (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC) in the presence of 1-anilino-8-naphthalene sulfonate (ANS) and 1,6-diphenyl-1,3,5-hexatriene (DPH) as fluorescence probes showed that an increase in ionic interaction causes an increase in antibacterial activity. Increase in hydrophobic interaction increases the antibacterial activity only to a certain chain length, attributing to the cut-off effect. Therefore, both electrostatic and hydrophobic interactions, involving the polar and nonpolar moieties are of paramount importance for the bactericidal properties.

  16. Synthesis, micellisation and interaction of novel quaternary ammonium compounds derived from l-Phenylalanine with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine as model membrane in relation to their antibacterial activity, and their selectivity over human red blood cells.

    PubMed

    Joondan, Nausheen; Caumul, Prakashanand; Akerman, Matthew; Jhaumeer-Laulloo, Sabina

    2015-02-01

    A series of quaternary ammonium compounds (QUATS) derived from l-Phenylalanine have been synthesized and their antibacterial efficiencies were determined against various strains of Gram-positive and Gram-negative bacteria. The antibacterial activity increased with increasing chain length, exhibiting a cut-off effect at C14 for Gram-positive and C12 for Gram-negative bacteria. The l-Phenylalanine QUATS displayed enhanced antibacterial properties with a higher cut-off point compared to their corresponding l-Phenylalanine ester hydrochlorides. The CMC was correlated with the MIC, inferring that micellar activity contributes to the cut-off effect in antibacterial activity. The hemolytic activities (HC50) of the QUATS against human red blood cells were also determined to illustrate the selectivity of these QUATS for bacterial over mammalian cells. In general, the MIC was lower than the HC50, and assessment of the micellar contribution to the antibacterial and hemolytic evaluation in TBS as a common medium confirmed that these QUATS can act as antibacterial, yet non-toxic molecules at their monomer concentrations. The interaction of the QUATS with the phospholipid vesicles (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC) in the presence of 1-anilino-8-naphthalene sulfonate (ANS) and 1,6-diphenyl-1,3,5-hexatriene (DPH) as fluorescence probes showed that the presence of the quaternary ammonium moiety causes an increase in hydrophobic interactions, thus causing an increase in antibacterial activity.

  17. Chemical composition and antibacterial and cytotoxic activities of Allium hirtifolium Boiss.

    PubMed

    Ismail, Salmiah; Jalilian, Farid Azizi; Talebpour, Amir Hossein; Zargar, Mohsen; Shameli, Kamyar; Sekawi, Zamberi; Jahanshiri, Fatemeh

    2013-01-01

    Allium hirtifolium Boiss. known as Persian shallot, is a spice used as a traditional medicine in Iran and, Mediterranean region. In this study, the chemical composition of the hydromethanolic extract of this plant was analyzed using GC/MS. The result showed that 9-hexadecenoic acid, 11,14-eicosadienoic acid, and n-hexadecanoic acid are the main constituents. The antibacterial activity of the shallot extract was also examined by disk diffusion and microdilution broth assays. It was demonstrated that Persian shallot hydromethanolic extract was effective against 10 different species of pathogenic bacteria including methicillin resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Escherichia coli, Escherichia coli O157:H7, Salmonella typhimurium, Proteus mirabilis, and Klebsiella pneumoniae. Specifically, the minimum concentration of the extract which inhibited bacterial growth (MIC values) was 1.88 mg/mL for most of the gram-positive bacteria. This concentration was not much different from the concentration that was safe for mammalian cells (1.50 mg/mL) suggesting that the hydromethanolic extract of Persian shallot may be a safe and strong antibacterial agent.

  18. Green synthesis of silk sericin-capped silver nanoparticles and their potent anti-bacterial activity

    NASA Astrophysics Data System (ADS)

    Aramwit, Pornanong; Bang, Nipaporn; Ratanavaraporn, Juthamas; Ekgasit, Sanong

    2014-02-01

    In this study, a `green chemistry' approach was introduced to synthesize silk sericin (SS)-capped silver nanoparticles (AgNPs) under an alkaline condition (pH 11) using SS as a reducing and stabilizing agent instead of toxic chemicals. The SS-capped AgNPs were successfully synthesized at various concentrations of SS and AgNO3, but the yields were different. A higher yield of SS-capped AgNPs was obtained when the concentrations of SS and AgNO3 were increased. The SS-capped AgNPs showed a round shape and uniform size with diameter at around 48 to 117 nm. The Fourier transform infrared (FT-IR) spectroscopy result proved that the carboxylate groups obtained from alkaline degradation of SS would be a reducing agent for the generation of AgNPs while COO- and NH2 + groups stabilized the AgNPs and prevented their precipitation or aggregation. Furthermore, the SS-capped AgNPs showed potent anti-bacterial activity against various gram-positive bacteria (minimal inhibitory concentration (MIC) 0.008 mM) and gram-negative bacteria (MIC ranging from 0.001 to 0.004 mM). Therefore, the SS-capped AgNPs would be a safe candidate for anti-bacterial applications.

  19. Green synthesis of silk sericin-capped silver nanoparticles and their potent anti-bacterial activity

    PubMed Central

    2014-01-01

    In this study, a ‘green chemistry’ approach was introduced to synthesize silk sericin (SS)-capped silver nanoparticles (AgNPs) under an alkaline condition (pH 11) using SS as a reducing and stabilizing agent instead of toxic chemicals. The SS-capped AgNPs were successfully synthesized at various concentrations of SS and AgNO3, but the yields were different. A higher yield of SS-capped AgNPs was obtained when the concentrations of SS and AgNO3 were increased. The SS-capped AgNPs showed a round shape and uniform size with diameter at around 48 to 117 nm. The Fourier transform infrared (FT-IR) spectroscopy result proved that the carboxylate groups obtained from alkaline degradation of SS would be a reducing agent for the generation of AgNPs while COO− and NH2 + groups stabilized the AgNPs and prevented their precipitation or aggregation. Furthermore, the SS-capped AgNPs showed potent anti-bacterial activity against various gram-positive bacteria (minimal inhibitory concentration (MIC) 0.008 mM) and gram-negative bacteria (MIC ranging from 0.001 to 0.004 mM). Therefore, the SS-capped AgNPs would be a safe candidate for anti-bacterial applications. PMID:24533676

  20. Chemical Composition and Antibacterial and Cytotoxic Activities of Allium hirtifolium Boiss

    PubMed Central

    Ismail, Salmiah; Jalilian, Farid Azizi; Talebpour, Amir Hossein; Zargar, Mohsen; Shameli, Kamyar; Sekawi, Zamberi; Jahanshiri, Fatemeh

    2013-01-01

    Allium hirtifolium Boiss. known as Persian shallot, is a spice used as a traditional medicine in Iran and, Mediterranean region. In this study, the chemical composition of the hydromethanolic extract of this plant was analyzed using GC/MS. The result showed that 9-hexadecenoic acid, 11,14-eicosadienoic acid, and n-hexadecanoic acid are the main constituents. The antibacterial activity of the shallot extract was also examined by disk diffusion and microdilution broth assays. It was demonstrated that Persian shallot hydromethanolic extract was effective against 10 different species of pathogenic bacteria including methicillin resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Escherichia coli, Escherichia coli O157:H7, Salmonella typhimurium, Proteus mirabilis, and Klebsiella pneumoniae. Specifically, the minimum concentration of the extract which inhibited bacterial growth (MIC values) was 1.88 mg/mL for most of the gram-positive bacteria. This concentration was not much different from the concentration that was safe for mammalian cells (1.50 mg/mL) suggesting that the hydromethanolic extract of Persian shallot may be a safe and strong antibacterial agent. PMID:23484141

  1. Chemical composition and antibacterial and cytotoxic activities of Allium hirtifolium Boiss.

    PubMed

    Ismail, Salmiah; Jalilian, Farid Azizi; Talebpour, Amir Hossein; Zargar, Mohsen; Shameli, Kamyar; Sekawi, Zamberi; Jahanshiri, Fatemeh

    2013-01-01

    Allium hirtifolium Boiss. known as Persian shallot, is a spice used as a traditional medicine in Iran and, Mediterranean region. In this study, the chemical composition of the hydromethanolic extract of this plant was analyzed using GC/MS. The result showed that 9-hexadecenoic acid, 11,14-eicosadienoic acid, and n-hexadecanoic acid are the main constituents. The antibacterial activity of the shallot extract was also examined by disk diffusion and microdilution broth assays. It was demonstrated that Persian shallot hydromethanolic extract was effective against 10 different species of pathogenic bacteria including methicillin resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Escherichia coli, Escherichia coli O157:H7, Salmonella typhimurium, Proteus mirabilis, and Klebsiella pneumoniae. Specifically, the minimum concentration of the extract which inhibited bacterial growth (MIC values) was 1.88 mg/mL for most of the gram-positive bacteria. This concentration was not much different from the concentration that was safe for mammalian cells (1.50 mg/mL) suggesting that the hydromethanolic extract of Persian shallot may be a safe and strong antibacterial agent. PMID:23484141

  2. Silver carboxylate metal-organic frameworks with highly antibacterial activity and biocompatibility.

    PubMed

    Lu, Xinyi; Ye, Junwei; Zhang, Dekui; Xie, Ruixia; Bogale, Raji Feyisa; Sun, Yuan; Zhao, Limei; Zhao, Qi; Ning, Guiling

    2014-09-01

    Two novel Ag-based metal-organic frameworks (MOFs) [Ag2(O-IPA)(H2O)·(H3O)] (1) and [Ag5(PYDC)2(OH)] (2) were synthesized under the hydrothermal conditions using aromatic-carboxylic acids containing hydroxyl and pyridyl groups as ligands (HO-H2IPA=5-hydroxyisophthalic acid and H2PYDC=pyridine-3, 5-dicarboxylic acid). Single crystal X-ray diffraction indicated that two compounds exhibit three-dimensional frameworks constructed from different rod-shaped molecular building blocks. Both compounds favor slow release of Ag(+) ions leading to excellent and long-term antimicrobial activities towards Gram-negative bacteria, Escherichia coli (E. coli) and Gram-positive bacteria, Staphylococcus aureus (S. aureus). Their antibacterial potency was evaluated by using a minimal inhibition concentration (MIC) benchmark and an inhibition zone testing. High-resolution transmission electron microscope images indicate that the Ag-based MOFs could rupture the bacterial membrane resulting in cell death. Hematological study showed that these MOFs exhibit good biocompatibility in mice. In addition, good thermal stability and optical stability under UV-visible and visible light are beneficial for their antibacterial application.

  3. A versatile effect of chitosan-silver nanocomposite for surface plasmonic photocatalytic and antibacterial activity.

    PubMed

    Nithya, Arjunan; JeevaKumari, Henry Linda; Rokesh, Karuppannan; Ruckmani, Kandasamy; Jeganathan, Kulandaivel; Jothivenkatachalam, Kandasamy

    2015-12-01

    Chitosan-silver (CS-Ag) nanocomposite was green synthesised without the aid of any external chemical-reducing agents. The synthesised nanocomposite was characterised by UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HR-TEM) with selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), and zeta potential analyser. The particle size of the synthesised CS-Ag nanocomposite was around 20 nm and was found to be thermally stable in comparison with pure chitosan. The prepared nanocomposite acts as a photocatalyst for dye decolourisation, with a maximum of 81% of methyl orange (MO) decolourisation that occurred under visible light irradiation. The kinetics was found to follow pseudo-first-order according to Langmuir-Hinshelwood (L-H) model. The nanocomposite also proved to be an excellent antimicrobial agent against both Gram-positive and Gram-negative bacteria, possessing a broad spectrum of antimicrobial activity. The zone of inhibition ranged between 16.000 ± 1.000 and 19.333 ± 1.155 (mm), proving its high susceptibility than chitosan itself. The minimum inhibitory concentration (MIC) values were from 8 to 64 μg/mL, whereas the minimum bactericidal concentration (MBC) values ranged from 16 to 128 μg/mL, with the highest antibacterial activity shown against Gram-positive Staphlococcus aureus. This report illustrates the eco-friendly approach for the reduction of silver using chitosan as a reducing agent, and its potential to dye decay and microbial contaminants. PMID:26562805

  4. A versatile effect of chitosan-silver nanocomposite for surface plasmonic photocatalytic and antibacterial activity.

    PubMed

    Nithya, Arjunan; JeevaKumari, Henry Linda; Rokesh, Karuppannan; Ruckmani, Kandasamy; Jeganathan, Kulandaivel; Jothivenkatachalam, Kandasamy

    2015-12-01

    Chitosan-silver (CS-Ag) nanocomposite was green synthesised without the aid of any external chemical-reducing agents. The synthesised nanocomposite was characterised by UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HR-TEM) with selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), and zeta potential analyser. The particle size of the synthesised CS-Ag nanocomposite was around 20 nm and was found to be thermally stable in comparison with pure chitosan. The prepared nanocomposite acts as a photocatalyst for dye decolourisation, with a maximum of 81% of methyl orange (MO) decolourisation that occurred under visible light irradiation. The kinetics was found to follow pseudo-first-order according to Langmuir-Hinshelwood (L-H) model. The nanocomposite also proved to be an excellent antimicrobial agent against both Gram-positive and Gram-negative bacteria, possessing a broad spectrum of antimicrobial activity. The zone of inhibition ranged between 16.000 ± 1.000 and 19.333 ± 1.155 (mm), proving its high susceptibility than chitosan itself. The minimum inhibitory concentration (MIC) values were from 8 to 64 μg/mL, whereas the minimum bactericidal concentration (MBC) values ranged from 16 to 128 μg/mL, with the highest antibacterial activity shown against Gram-positive Staphlococcus aureus. This report illustrates the eco-friendly approach for the reduction of silver using chitosan as a reducing agent, and its potential to dye decay and microbial contaminants.

  5. Brush-like polycarbonates containing dopamine, cations, and PEG providing a broad-spectrum, antibacterial, and antifouling surface via one-step coating.

    PubMed

    Yang, Chuan; Ding, Xin; Ono, Robert J; Lee, Haeshin; Hsu, Li Yang; Tong, Yen Wah; Hedrick, James; Yang, Yi Yan

    2014-11-19

    An antibacterial and antifouling surface is obtained by simple one-step immersion of a catheter surface with brush-like polycarbonates containing pendent adhesive dopamine, antifouling polyethylene glycol (PEG), and antibacterial cations. This coating demonstrates excellent antibacterial and antifouling activities against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria, proteins, and platelets, good stability under simulated blood-flow conditions, and no toxicity.

  6. Antibacterial and antifungal activities of polyketide metabolite from marine Streptomyces sp. AP-123 and its cytotoxic effect.

    PubMed

    Arasu, Mariadhas Valan; Duraipandiyan, Veeramuthu; Ignacimuthu, Savarimuthu

    2013-01-01

    A Gram positive, filamentous, spore forming antagonistic Streptomyces sp. AP-123 derived from marine region of Andra Pradesh, India, was studied for its medical importance. Among the 210 Streptomyces strains screened at 64.3% exhibited activity against Gram positive bacteria, 48.5% showed activity towards Gram negative bacteria, 38.8% exhibited both Gram positive and negative bacteria and 80.85% strains revealed significant antifungal activity. However, primary screening revealed that Streptomyces sp. AP-123 exhibited significant antimicrobial activity against all the tested bacteria compared to other Streptomyces strains. The presence of l-diaminopimelic acid and glycine in the cell wall hydrolysates and streptomycin resistance indicated the strain belonged to Streptomyces genus. The 16S rDNA gene based phylogenetic affiliation was determined by using bioinformatic tools and it was identified as Streptomyces sp. AP-123 with 99% sequence similarity to Streptomyces flavogriseus. The antimicrobial substances were extracted by hexane and ethyl acetate from spent medium in which Streptomyces sp. AP-123 was cultivated at 30 °C for 5 d. The antimicrobial activity was assessed using broth micro-dilution technique. A compound was obtained by eluting the crude extract using varying concentrations of solvents followed by the chromatographic purification. Based on the IR, (13)C NMR and (1)H NMR spectral data, the compound was identified as polyketide related antibiotic. It exhibited significant antibacterial activity against Gram positive and Gram negative bacteria and also showed a potent cytotoxic activity against cell lines viz. Vero (Green monkey kidney) and HEP2 (laryngeal carcinoma cells) in vitro. The lowest Minimum Inhibitory Concentration (MIC) of the compound against Bacillus subtilis and Staphylococcus aureus were 25 and 37.5 μg mL(-1), respectively. Against Escherichia coli and Pseudomonas aeruginosa it exhibited MIC of 50 and 37.58 μg mL(-1), respectively

  7. Flavones with antibacterial activity against cariogenic bacteria.

    PubMed

    Sato, M; Fujiwara, S; Tsuchiya, H; Fujii, T; Iinuma, M; Tosa, H; Ohkawa, Y

    1996-11-01

    Methanolic extracts obtained from 13 plants were studied for their antibacterial activity against cariogenic bacteria. Among them, the extract from Artocarpus heterophyllus showed the most intensive activity. Serial chromatographic purifications offered two active compounds which were identified as 6-(3-methyl-1-butenyl)-5,2',4'-trihydroxy-3-isoprenyl-7-methoxy flavone and 5,7,2',4'-tetrahydroxy-6-isoprenylflavone. Both isolates completely inhibited the growth of primary cariogenic bacteria at 3.13-12.5 micrograms/ml. They also exhibited the growth inhibitory effects on plaque-forming streptococci. These phytochemical isoprenylflavones would be potent compounds for the prevention of dental caries.

  8. Structure of homoserine O-acetyltransferase from Staphylococcus aureus: the first Gram-positive ortholog structure

    PubMed Central

    Thangavelu, Bharani; Pavlovsky, Alexander G.; Viola, Ronald

    2014-01-01

    Homoserine O-acetyltransferase (HTA) catalyzes the formation of l-O-acetyl-homoserine from l-homoserine through the transfer of an acetyl group from acetyl-CoA. This is the first committed step required for the biosynthesis of methionine in many fungi, Gram-positive bacteria and some Gram-negative bacteria. The structure of HTA from Staphylococcus aureus (SaHTA) has been determined to a resolution of 2.45 Å. The structure belongs to the α/β-hydrolase superfamily, consisting of two distinct domains: a core α/β-domain containing the catalytic site and a lid domain assembled into a helical bundle. The active site consists of a classical catalytic triad located at the end of a deep tunnel. Structure analysis revealed some important differences for SaHTA compared with the few known structures of HTA. PMID:25286936

  9. Structure of homoserine O-acetyltransferase from Staphylococcus aureus: the first Gram-positive ortholog structure.

    PubMed

    Thangavelu, Bharani; Pavlovsky, Alexander G; Viola, Ronald

    2014-10-01

    Homoserine O-acetyltransferase (HTA) catalyzes the formation of L-O-acetyl-homoserine from L-homoserine through the transfer of an acetyl group from acetyl-CoA. This is the first committed step required for the biosynthesis of methionine in many fungi, Gram-positive bacteria and some Gram-negative bacteria. The structure of HTA from Staphylococcus aureus (SaHTA) has been determined to a resolution of 2.45 Å. The structure belongs to the α/β-hydrolase superfamily, consisting of two distinct domains: a core α/β-domain containing the catalytic site and a lid domain assembled into a helical bundle. The active site consists of a classical catalytic triad located at the end of a deep tunnel. Structure analysis revealed some important differences for SaHTA compared with the few known structures of HTA.

  10. Complete genome sequence of Paenibacillus riograndensis SBR5(T), a Gram-positive diazotrophic rhizobacterium.

    PubMed

    Brito, Luciana Fernandes; Bach, Evelise; Kalinowski, Jörn; Rückert, Christian; Wibberg, Daniel; Passaglia, Luciane M; Wendisch, Volker F

    2015-08-10

    Paenibacillus riograndensis is a Gram-positive rhizobacterium which exhibits plant growth promoting activities. It was isolated from the rhizosphere of wheat grown in the state of Rio Grande do Sul, Brazil. Here we announce the complete genome sequence of P. riograndensis strain SBR5(T). The genome of P. riograndensis SBR5(T) consists of a circular chromosome of 7,893,056bps. The genome was finished and fully annotated, containing 6705 protein coding genes, 87 tRNAs and 27 rRNAs. The knowledge of the complete genome helped to explain why P. riograndensis SBR5(T) can grow with the carbon sources arabinose and mannitol, but not myo-inositol, and to explain physiological features such as biotin auxotrophy and antibiotic resistances. The genome sequence will be valuable for functional genomics and ecological studies as well as for application of P. riograndensis SBR5(T) as plant growth-promoting rhizobacterium.

  11. Purification Techniques of Bacteriocins from Lactic Acid Bacteria and Other Gram-Positive Bacteria

    NASA Astrophysics Data System (ADS)

    Saavedra, Lucila; Sesma, Fernando

    The search for new antimicrobial peptides produced by lactic acid ­bacteria and other Gram-positive microorganisms has become an interesting field of research in the past decades. The fact that bacteriocins are active against numerous foodborne and human pathogens, are produced by generally regarded as safe (GRAS) microorganisms, and are readily degraded by proteolytic host systems makes them attractive candidates for biotechnological applications. However, before suggesting or choosing a new bacteriocin for future technology developments, it is necessary to elucidate its biochemical structure and its mode of action, which may be carried out once the bacteriocin is purified to homogeneity. This chapter focuses on describing the main strategies used for the purification of numerous bacteriocins.

  12. Regulating the Intersection of Metabolism and Pathogenesis in Gram-positive Bacteria

    PubMed Central

    RICHARDSON, ANTHONY R.; SOMERVILLE, GREG A.; SONENSHEIN, ABRAHAM L.

    2015-01-01

    Pathogenic bacteria must contend with immune systems that actively restrict the availability of nutrients and cofactors, and create a hostile growth environment. To deal with these hostile environments, pathogenic bacteria have evolved or acquired virulence determinants that aid in the acquisition of nutrients. This connection between pathogenesis and nutrition may explain why regulators of metabolism in nonpathogenic bacteria are used by pathogenic bacteria to regulate both metabolism and virulence. Such coordinated regulation is presumably advantageous because it conserves carbon and energy by aligning synthesis of virulence determinants with the nutritional environment. In Gram-positive bacterial pathogens, at least three metabolite-responsive global regulators, CcpA, CodY, and Rex, have been shown to coordinate the expression of metabolism and virulence genes. In this chapter, we discuss how environmental challenges alter metabolism, the regulators that respond to this altered metabolism, and how these regulators influence the host-pathogen interaction. PMID:26185086

  13. Preparation and Antibacterial Activity Evaluation of 18-β-glycyrrhetinic Acid Loaded PLGA Nanoparticles

    PubMed Central

    Darvishi, Behrad; Manoochehri, Saeed; Kamalinia, Golnaz; Samadi, Nasrin; Amini, Mohsen; Mostafavi, Seyyed Hossein; Maghazei, Shahab; Atyabi, Fatemeh; Dinarvand, Rassoul

    2015-01-01

    The aim of the present study was to formulate poly (lactide-co-glycolide) (PLGA) nanoparticles loaded with 18-β-glycyrrhetinic acid (GLA) with appropriate physicochemical properties and antimicrobial activity. GLA loaded PLGA nanoparticles were prepared with different drug to polymer ratios, acetone contents and sonication times and the antibacterial activity of the developed nanoparticles was examined against different gram-negative and gram-positive bacteria. The antibacterial effect was studied using serial dilution technique to determine the minimum inhibitory concentration of nanoparticles. Results demonstrated that physicochemical properties of nanoparticles were affected by the above mentioned parameters where nanoscale size particles ranging from 175 to 212 nm were achieved. The highest encapsulation efficiency (53.2 ± 2.4%) was obtained when the ratio of drug to polymer was 1:4. Zeta potential of the developed nanoparticles was fairly negative (-11±1.5). In-vitro release profile of nanoparticles showed two phases: an initial phase of burst release for 10 h followed by a slow release pattern up to the end. The antimicrobial results revealed that the nanoparticles were more effective than pure GLA against P. aeuroginosa, S. aureus and S. epidermidis. This improvement in antibacterial activity of GLA loaded nanoparticles when compared to pure GLA may be related to higher nanoparticles penetration into infected cells and a higher amount of GLA delivery in its site of action. Herein, it was shown that GLA loaded PLGA nanoparticles displayed appropriate physicochemical properties as well as an improved antimicrobial effect. PMID:25901144

  14. Extraction of chitosan from shrimp shells waste and application in antibacterial finishing of bamboo rayon.

    PubMed

    Teli, M D; Sheikh, Javed

    2012-06-01

    Chitosan can be best utilized as safe antibacterial agent for textiles but there is always a limitation of its durability. The chitin containing shellfish waste is available in huge quantities, but very low quantities are utilized for extraction of high value products like chitosan. In the current work chitosan was extracted from shrimp shells and then used as antibacterial exhaust finishing agent for grafted bamboo rayon. Chitosan bound bamboo rayon was then evaluated for antibacterial activity against both gram positive and gram negative bacteria. The product showed antibacterial activity against both types of bacterias which was durable till 30 washes.

  15. Synthesis, Antibacterial and Antitubercular Activities of Some 5H-Thiazolo[3,2-a]pyrimidin-5-ones and Sulfonic Acid Derivatives.

    PubMed

    Cai, Dong; Zhang, Zhi-Hua; Chen, Yu; Yan, Xin-Jia; Zou, Liang-Jing; Wang, Ya-Xin; Liu, Xue-Qi

    2015-09-10

    A series of 5H-thiazolo[3,2-a]pyrimidin-5-ones were synthesized by the cyclization reactions of S-alkylated derivatives in concentrated H₂SO₄. Upon treatment of S-alkylated derivatives at different temperatures, intramolecular cyclization to 7-(substituted phenylamino)-5H-thiazolo[3,2-a]pyrimidin-5-ones or sulfonation of cyclized products to sulfonic acid derivatives occurred. The structures of the target compounds were confirmed by IR, ¹H-NMR, (13)C-NMR and HRMS studies. The compounds were evaluated for their preliminary in vitro antibacterial activity against some Gram-positive and Gram-negative bacteria and screened for antitubercular activity against Mycobacterium tuberculosis by the broth dilution assay method. Some compounds showed good antibacterial and antitubercular activities.

  16. Chemical composition and in vitro antioxidant and antibacterial activity of Heracleum transcaucasicum and Heracleum anisactis roots essential oil

    PubMed Central

    Torbati, Mohammadali; Nazemiyeh, Hossein; Lotfipour, Farzaneh; Nemati, Mahboob; Asnaashari, Solmaz; Fathiazad, Fatemeh

    2014-01-01

    Introduction: In vitro antioxidant and antibacterial activity and volatile compositions of two Heracleum species (Apiaceae) including Heracleum transcaucasicum and Heracleum anisactis roots Essential Oil (EO) were investigated. Methods: The volatile compositions of EOs were analyzed by GC/Mass spectroscopy. To detect the antioxidant activity of essential oils TLC-bioautography and DPPH radical scavenging assay by spectrophotometry was performed. Additionally, the antibacterial activity of two essential oils were studied and compared against four pathogenic bacteria by agar disc diffusion method and MIC values of the EOs were determined using the broth dilution method. Results: Myristicin was the dominant component in both EOs. It was identified as 96.87% and 95.15% of the essential oil composition of H. transcaucasicum and H. anisactis roots, respectively. The TLC-bioautography showed antioxidant spots in both EOs and IC50 of H. anisactis and H. transcaucasicum EO was found to be 54 μg × ml (-1) and 77 μg × ml (-1), respectively. Regarding the antimicrobial assay, H. anisactis EO exhibited weak to moderate antibacterial activity against gram-positive bacteria and also Escherichia coli, whereas the essential oil from H. transcaucasicum was inactive. Conclusion: Based on the results from this study, both tested EOs mainly consist of myristicin. Despite the presence of myristicin with known antibacterial property, the EO from H. transcacausicum showed no antibacterial activity. Thus it is supposed that the biological activity of plants is remarkably linked to the extracts’ chemical profile and intercomponents’ synergistic or antagonistic effect could play a crucial role in bioactivity of EOs and other plant extracts. PMID:25035849

  17. Isolation, characterisation and antibacterial activity of new compounds from methanolic extract of seeds of Caesalpinia crista L. (Caesalpinaceae).

    PubMed

    Kumar, Ankit; Garg, Vikas; Chaudhary, Anurag; Jain, Pankaj Kumar; Tomar, Praveen Kumar

    2014-01-01

    Phytochemical study on the methanolic extract of Caesalpinia crista afforded two novel compounds, 2-hydroxytrideca-3,6-dienyl-pentanoate and octacosa-12,15-diene along with known compounds 3-O-methylellagic acid 3'O-α-rhamnopyranoside, β-sitosterol and sucrose. Compound 3-O-methylellagic acid 3'O-α-rhamnopyranoside is reported for the first time from the plant. Molecular structures, of isolated compounds, were elucidated by using the NMR spectroscopy in combination with IR and mass spectral data. All isolated compounds, extract and fractions were evaluated for in vitro antibacterial activity against various Gram-positive and Gram-negative bacterial strains and found to be significantly active against Staphylococcus aureus and methicillin-resistant S. aureus (minimum inhibitory concentration: 64-512 μg mL(- 1)).

  18. Chemical composition, antioxidant and antibacterial activities of the leaf essential oil of Juglans regia L. and its constituents.

    PubMed

    Rather, Manzoor A; Dar, Bilal A; Dar, Mohd Yousuf; Wani, Bilal A; Shah, Wajahat A; Bhat, Bilal A; Ganai, Bashir A; Bhat, Khursheed A; Anand, Rajneesh; Qurishi, Mushtaq A

    2012-10-15

    The essential oil from the leaves of Juglans regia L. (Juglandaceae) growing wild in Kashmir (India) was obtained by hydrodistillation and analysed by a combination of capillary GC-FID and GC-MS. A total of 38 compounds, representing 92.7% of the oil, were identified and the major components were found to be α-pinene (15.1%), β-pinene (30.5%), β-caryophyllene (15.5%) germacrene D (14.4%) and limonene (3.6%). The essential oil and the main individual constituents were screened for antibacterial activity and the essential oil evaluated for antioxidant activity. Antibacterial activity was evaluated using the disc diffusion and microdilution methods against a group of clinically significant Gram-positive (Staphylococcus epidermidis MTCC-435, Bacillus subtilis MTCC-441, Staphylococcus aureus) and Gram-negative bacteria (Proteus vulgaris MTCC-321, Pseudomonas aeruginosa MTCC-1688, Salmonella typhi, Shigella dyssenteriae, Klebsiella pneumonia and Escherichia coli). The essential oil and its major components exhibited broad spectrum inhibition against all the bacterial strains with Gram-positive being more susceptible to the oil than Gram-negative bacteria. Antioxidant activity of the oil was evaluated by the scavenging effect on DPPH (2,2-diphenyl-1-picrylhydrazyl) and hydroxyl radicals. In general, the essential oil exhibited high antioxidant activity which was comparable to the reference standards at the same dose (ascorbic acid and butylated hydroxyl toluene, BHT) with IC(50) values of 34.5 and 56.4μg/ml calculated by DPPH and hydroxyl radical scavenging assays respectively.

  19. Chemical composition, antioxidant and antibacterial activities of the leaf essential oil of Juglans regia L. and its constituents.

    PubMed

    Rather, Manzoor A; Dar, Bilal A; Dar, Mohd Yousuf; Wani, Bilal A; Shah, Wajahat A; Bhat, Bilal A; Ganai, Bashir A; Bhat, Khursheed A; Anand, Rajneesh; Qurishi, Mushtaq A

    2012-10-15

    The essential oil from the leaves of Juglans regia L. (Juglandaceae) growing wild in Kashmir (India) was obtained by hydrodistillation and analysed by a combination of capillary GC-FID and GC-MS. A total of 38 compounds, representing 92.7% of the oil, were identified and the major components were found to be α-pinene (15.1%), β-pinene (30.5%), β-caryophyllene (15.5%) germacrene D (14.4%) and limonene (3.6%). The essential oil and the main individual constituents were screened for antibacterial activity and the essential oil evaluated for antioxidant activity. Antibacterial activity was evaluated using the disc diffusion and microdilution methods against a group of clinically significant Gram-positive (Staphylococcus epidermidis MTCC-435, Bacillus subtilis MTCC-441, Staphylococcus aureus) and Gram-negative bacteria (Proteus vulgaris MTCC-321, Pseudomonas aeruginosa MTCC-1688, Salmonella typhi, Shigella dyssenteriae, Klebsiella pneumonia and Escherichia coli). The essential oil and its major components exhibited broad spectrum inhibition against all the bacterial strains with Gram-positive being more susceptible to the oil than Gram-negative bacteria. Antioxidant activity of the oil was evaluated by the scavenging effect on DPPH (2,2-diphenyl-1-picrylhydrazyl) and hydroxyl radicals. In general, the essential oil exhibited high antioxidant activity which was comparable to the reference standards at the same dose (ascorbic acid and butylated hydroxyl toluene, BHT) with IC(50) values of 34.5 and 56.4μg/ml calculated by DPPH and hydroxyl radical scavenging assays respectively. PMID:22951389

  20. Anticancer and Antibacterial Activity Studies of Gold(I)-Alkynyl Chromones.

    PubMed

    Hikisz, Paweł; Szczupak, Łukasz; Koceva-Chyła, Aneta; Gu Spiel, Adam; Oehninger, Luciano; Ott, Ingo; Therrien, Bruno; Solecka, Jolanta; Kowalski, Konrad

    2015-10-30

    Three gold(I) complexes of alkynyl chromones were synthesized and characterized. The single-crystal X-ray structure analysis of a dinuclear compound and of a flavone derivative exhibit a typical d10 gold(I)-alkynyl linear arrangement. All complexes were evaluated as anticancer and antibacterial agents against four human cancer cell lines and four pathogenic bacterial strains. All compounds show antiproliferative activity at lower micromolar range concentrations. Complex 4 showed a broad activity profile, being more active than the reference drug auranofin against HepG2, MCF-7 and CCRF-CEM cancer cells. The cellular uptake into MCF-7 cells of the investigated complexes was measured by atomic absorption spectroscopy (AAS). These measurements showed a positive correlation between an increased cellular gold content and the incubation time of the complexes. Unexpectedly an opposite effect was observed for the most active compound. Biological assays revealed various molecular mechanisms for these compounds, comprising: (i) thioredoxin reductase (TrxR) inhibition, (ii) caspases-9 and -3 activation; (iii) DNA damaging activity and (iv) cell cycle disturbance. The gold(I) complexes were also bactericidal against Gram-positive methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) bacterial strains, while showing no activity against the Gram-negative Escherichia coli bacterial strain.

  1. Synthesis and structure-activity relationship of amidine derivatives of 3,4-ethylenedioxythiophene as novel antibacterial agents.

    PubMed

    Stolić, Ivana; Čipčić Paljetak, Hana; Perić, Mihaela; Matijašić, Mario; Stepanić, Višnja; Verbanac, Donatella; Bajić, Miroslav

    2015-01-27

    Current antibacterial chemotherapeutics are facing an alarming increase in bacterial resistance pressuring the search for novel agents that would expand the available therapeutic arsenal against resistant bacterial pathogens. In line with these efforts, a series of 9 amidine derivatives of 3,4-ethylenedioxythiophene were synthesized and, together with 18 previously synthesized analogs, evaluated for their relative DNA binding affinity, in vitro antibacterial activities and preliminary in vitro safety profile. Encouraging antibacterial activity of several subclasses of tested amidine derivatives against Gram-positive (including resistant MRSA, MRSE, VRE strains) and Gram-negative bacterial strains was observed. The bis-phenyl derivatives were the most antibacterially active, while compound 19 from bis-benzimidazole class exhibited the widest spectrum of activity (with MIC of 4, 2, 0.5 and ≤0.25 μg/ml against laboratory strains of Staphyloccocus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Moraxella catarrhalis, respectively and 4-32 μg/ml against clinical isolates of sensitive and resistant S. aureus, Staphylococcus epidermidis and Enterococcus faecium) and also demonstrated the strongest DNA binding affinity (ΔTm of 15.4 °C). Asymmetrically designed compounds and carboxamide-amidines were, in general, less active. Molecular docking indicated that the shape of the 3,4-ethylenedioxythiophene derivatives and their ability to form multiple electrostatic and hydrogen bonds with DNA, corresponds to the binding modes of other minor-groove binders. Herein reported results encourage further investigation of this class of compounds as novel antibacterial DNA binding agents.

  2. Biosynthesis characterization of silver nanoparticles using Cassia roxburghii DC. aqueous extract, and coated on cotton cloth for effective antibacterial activity.

    PubMed

    Balashanmugam, Pannerselvam; Kalaichelvan, Pudupalayam Thangavelu

    2015-01-01

    The present study reports the green synthesis of silver nanoparticles (AgNPs) from silver precursor using a plant biomaterial, Cassia roxburghii DC., aqueous extract. The AgNPs were synthesized from the shade-dried leaf extract and assessed for their stability; they elucidated characteristics under UV-visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy, and energy dispersive X-ray spectroscopy. The synthesized AgNPs exhibited a maximum absorption at 430 nm, and the X-ray diffraction patterns showed that they were crystal in nature. Fourier transform infrared spectroscopy analysis confirmed the conversion of Ag+ ions to AgNPs due to the reduction by capping material of plant extract. The HR-TEM analysis revealed that they are spherical ranging from 10 nm to 30 nm. The spot EDAX analysis showed the presence of silver atoms. In addition, AgNPs were evaluated for their antibacterial activity against six different pathogenic bacteria: three Gram-positive bacteria, Bacillus subtilis, Staphylococcus aureus, and Micrococcus luteus, and three Gram-negative bacteria, Pseudomonas aeruginosa, Escherichia coli, and Enterobacter aerogenes. They were highly sensitive to AgNPs, whereas less sensitive to AgNO3. Furthermore, the green synthesized AgNPs were immobilized on cotton fabrics and screened for antibacterial activity. The immobilized AgNPs on cotton cloth showed high antibacterial activity. Therefore, they could be a feasible alternative source in treating wounds or may help in replacing pharmaceutical band-aids.

  3. Performance of the Verigene Gram-Positive Blood Culture Assay for Direct Detection of Gram-Positive Organisms and Resistance Markers in a Pediatric Hospital

    PubMed Central

    Mestas, Javier; Polanco, Claudia M.; Felsenstein, Susanna

    2014-01-01

    The performance characteristics of the Verigene Gram-positive blood culture (BC-GP) assay were evaluated in pediatric patients. Concordance of the BC-GP assay was 95.8%, with significant decreases in turnaround time for identification and resistance detection. BC-GP is highly accurate and can be integrated into the routine workflow of the microbiology laboratory. PMID:24131696

  4. Wound-dressing materials with antibacterial activity from electrospun polyurethane-dextran nanofiber mats containing ciprofloxacin HCl.

    PubMed

    Unnithan, Afeesh R; Barakat, Nasser A M; Pichiah, P B Tirupathi; Gnanasekaran, Gopalsamy; Nirmala, R; Cha, Youn-Soo; Jung, Che-Hun; El-Newehy, Mohamed; Kim, Hak Yong

    2012-11-01

    Dextran is a versatile biomacromolecule for preparing electrospun nanofibrous membranes by blending with either water-soluble bioactive agents or hydrophobic biodegradable polymers for biomedical applications. In this study, an antibacterial electrospun scaffold was prepared by electrospinning of a solution composed of dextran, polyurethane (PU) and ciprofloxacin HCl (CipHCl) drug. The obtained nanofiber mats have good morphology. The mats were characterized by various analytical techniques. The interaction parameters between fibroblasts and the PU-dextran and PU-dextran-drug scaffolds such as viability, proliferation, and attachment were investigated. The results indicated that the cells interacted favorably with the scaffolds especially the drug-containing one. Moreover, the composite mat showed good bactericidal activity against both of Gram-positive and Gram-negative bacteria. Overall, our results conclude that the introduced scaffold might be an ideal biomaterial for wound dressing applications.

  5. Effect of zinc oxide amounts on the properties and antibacterial activities of zeolite/zinc oxide nanocomposite.

    PubMed

    Alswat, Abdullah A; Ahmad, Mansor Bin; Saleh, Tawfik A; Hussein, Mohd Zobir Bin; Ibrahim, Nor Azowa

    2016-11-01

    Nanocomposites of zinc oxide loaded on a zeolite (Zeolite/ZnO NCs) were prepared using co-precipitation method. The ratio effect of ZnO wt.% to the Zeolite on the antibacterial activities was investigated. Various techniques were used for the nanocomposite characterization, including UV-vis, FTIR, XRD, EDX, FESEM and TEM. XRD patterns showed that ZnO peak intensity increased while the intensities of Zeolite peaks decreased. TEM images indicated a good distribution of ZnO-NPs onto the Zeolite framework and the cubic structure of the zeolite was maintained. The average particle size of ZnO-nanoparticles loaded on the surface of the Zeolite was in the range of 1-10nm. Moreover, Zeolite/ZnO NCs showed noticeable antibacterial activities against the tested bacteria; Gram- positive and Gram- negative bacteria, under normal light. The efficiency of the antibacterial increased with increasing the wt.% from 3 to 8 of ZnO NPs, and it reached 87% against Escherichia coli E266.

  6. Effect of zinc oxide amounts on the properties and antibacterial activities of zeolite/zinc oxide nanocomposite.

    PubMed

    Alswat, Abdullah A; Ahmad, Mansor Bin; Saleh, Tawfik A; Hussein, Mohd Zobir Bin; Ibrahim, Nor Azowa

    2016-11-01

    Nanocomposites of zinc oxide loaded on a zeolite (Zeolite/ZnO NCs) were prepared using co-precipitation method. The ratio effect of ZnO wt.% to the Zeolite on the antibacterial activities was investigated. Various techniques were used for the nanocomposite characterization, including UV-vis, FTIR, XRD, EDX, FESEM and TEM. XRD patterns showed that ZnO peak intensity increased while the intensities of Zeolite peaks decreased. TEM images indicated a good distribution of ZnO-NPs onto the Zeolite framework and the cubic structure of the zeolite was maintained. The average particle size of ZnO-nanoparticles loaded on the surface of the Zeolite was in the range of 1-10nm. Moreover, Zeolite/ZnO NCs showed noticeable antibacterial activities against the tested bacteria; Gram- positive and Gram- negative bacteria, under normal light. The efficiency of the antibacterial increased with increasing the wt.% from 3 to 8 of ZnO NPs, and it reached 87% against Escherichia coli E266. PMID:27524047

  7. Expression of Acc-Royalisin gene from royal jelly of Chinese honeybee in Escherichia coli and its antibacterial activity.

    PubMed

    Shen, Lirong; Ding, Meihui; Zhang, Liwen; Jin, Feng; Zhang, Weiguang; Li, Duo

    2010-02-24

    Royalisin is an antibacterial peptide found in Royal Jelly. Two gene fragments of Chinese honeybee (Apis cerana cerana) head, 280 bp cDNA encoding pre-pro-Acc-royalisin (PPAR) of 95 amino acid residues, and 165 bp cDNA encoding mature Acc-royalisin (MAR) of 51 amino acid residues were cloned into the pGEX-4T-2 vector. They were then transformed individually into Escherichia coli for expression. Two expressed fusion proteins, glutathione S-transferase (GST)-PPAR of 36 kDa and GST-MAR of 32 kDa were obtained, which were cross reacted with GST antibody accounting for up to 16.3% and 15.4% of bacterial protein, respectively. In addition, 41% of GST-PPAR and nearly 100% of GST-MAR were soluble proteins. Both lysates of the two purified fusion proteins displayed antibacterial activities, similar to that of nisin against Gram-positive bacteria strains, Staphylococcus aureus, Bacillus subtilis and Micrococcus luteus. MAR peptide released from the thrombin-cleaved GST-MAR fusion protein has a stronger antibacterial activity than that of GST-MAR fusion protein.

  8. Isolating "Unknown" Bacteria in the Introductory Microbiology Laboratory: A New Selective Medium for Gram-Positives.

    ERIC Educational Resources Information Center

    McKillip, John L.; Drake, MaryAnne

    1999-01-01

    Describes the development, preparation, and use of a medium that can select against a wide variety of Gram-negative bacteria while still allowing growth and differentiation of a wide range of Gram-positives. (WRM)

  9. Efficacy of linezolid on gram-positive bacterial infection in elderly patients and the risk factors associated with thrombocytopenia

    PubMed Central

    Bi, Li-qing; Zhou, Jing; Huang, Ming; Zhou, Su-ming

    2013-01-01

    Objective : Linezolid is active against drug-resistant gram-positive bacteria. However, the efficacy and safety of linezolid in the treatment of the elderly have not been well characterized. The purpose of this study was to evaluate the efficacy of linezolid in the treatment of the elderly with gram-positive bacterial infection and to investigate the risk factors associated with the development of thrombocytopenia in these patients. Methodology: This was a retrospective analysis of 50 elderly patients who were treated with intravenous linezolid for gram-positive bacterial infection. Clinical data and bacteriological responses were assessed. Risk factors associated with thrombocytopenia in elderly patients were analyzed. Results: The overall clinical cure rate of linezolid was 74%, and the bacteriological eradication rate was 69%. Thrombocytopenia occurred in 24 patients, and thrombocytopenia was associated with both the duration of treatment (P = 0.005) and the baseline platelet count (P = 0.042). Based on a logistic regression analysis, the baseline platelet count <200×109/L (OR = 0.244; 95% CI = 0.068- 0.874; P = 0.030) was identified as the only significant risk factor for linezolid-associated thrombocytopenia in elderly patients. The mean platelet count decreased significantly from the 7th day of treatment, and decreased to the lowest value 1-2 days after the end of therapy. Conclusions : Linezolid is effective and safe for the elderly with gram-positive bacterial infections. Adverse effects such as thrombocytopenia are of greater concern. Platelet counts should be monitored in patients who are treated with linezolid and that measures should be taken in advance to avoid hemorrhagic tendencies. PMID:24353639

  10. Chemical composition, antibacterial and antifungal activities of essential oil from Cordia verbenacea DC leaves

    PubMed Central

    Rodrigues, Fabiola F. G.; Oliveira, Liana G. S.; Rodrigues, Fábio F. G.; Saraiva, Manuele E.; Almeida, Sheyla C. X.; Cabral, Mario E. S.; Campos, Adriana R.; Costa, Jose Galberto M.

    2012-01-01

    Background: Cordia verbenacea is a Brazilian coastal shrub popularly known as “erva baleeira”. The essential oil from fresh leaves was obtained by hydrodistillation and analyzed by CG/MS. The main components were identified as β-caryophyllene (25.4%), bicyclogermacrene (11.3%), δ-cadinene (9.%) and α-pinene (9.5%). In this study, the antimicrobial activity of Cordia verbenacea was evaluated. Materials and Methods: The minimal inhibitory concentration (MIC) of the essential oil was obtained using the broth microdilution assay (from 512 to 8 μg/ml). Results: The results showed that the essential oil presented fungistatic activity against Candida albicans and Candida krusei and antibacterial activity against Gram-positive strains (Staphylococcus aureus and Bacillus cereus) and against multiresistant Gram-negative (Escherichia coli 27), in all tests the MIC was 64 μg/ml. When the essential oil was associated to aminoglycosides (subinhibitory concentrations, MIC/8), a synergic and antagonic activity was verified. The synergic effect was observed to the amikacin association (MIC reduction from 256 mlto 64 μg/ml) in all strains tested. Conclusion: The essential oil of Cordia verbenacea influences the activity of antibiotics and may be used as an adjuvant in antibiotic therapy against respiratory tract bacterial pathogens. PMID:22923954

  11. The Antibacterial Activity of Date Syrup Polyphenols against S. aureus and E. coli

    PubMed Central

    Taleb, Hajer; Maddocks, Sarah E.; Morris, R. Keith; Kanekanian, Ara D.

    2016-01-01

    Plant-derived products such as date syrup (DS) have demonstrated antibacterial activity and can inhibit bacteria through numerous different mechanisms, which may be attributed to bioactive compounds including plant-derived phenolic molecules. DS is rich in polyphenols and this study hypothesized that DS polyphenols demonstrate inherent antimicrobial activity, which cause oxidative damage. This investigation revealed that DS has a high content of total polyphenols (605 mg/100 g), and is rich in tannins (357 mg/100 g), flavonoids (40.5 mg/100 g), and flavanols (31.7 mg/100 g) that are known potent antioxidants. Furthermore, DS, and polyphenols extracted from DS, the most abundant bioactive constituent of DS are bacteriostatic to both Gram positive and Gram negative Escherichia coli and Staphylococcus aureus, respectively. It has further been shown that the extracted polyphenols independently suppress the growth of bacteria at minimum inhibitory concentration (MIC) of 30 and 20 mg/mL for E. coli and S. aureus, and have observed that DS behaves as a prooxidant by generating hydrogen peroxide that mediates bacterial growth inhibition as a result of oxidative stress. At sub-lethal MIC concentrations DS demonstrated antioxidative activity by reducing hydrogen peroxide, and at lethal concentrations DS demonstrated prooxidant activity that inhibited the growth of E. coli and S. aureus. The high sugar content naturally present in DS did not significantly contribute to this effect. These findings highlight that DS’s antimicrobial activity is mediated through hydrogen peroxide generation in inducing oxidative stress in bacteria. PMID:26952177

  12. In-vitro antibacterial, antifungal and cytotoxic activity of cobalt (II), copper (II), nickel (II) and zinc (II) complexes with furanylmethyl- and thienylmethyl-dithiolenes: [1, 3-dithiole- 2-one and 1,3-dithiole-2-thione].

    PubMed

    Chohan, Zahid H; Shaikh, Ali U; Supuran, Claudiu T

    2006-12-01

    Some antibacterial and antifungal furanylmethyl-and thienylmethyl dithiolenes and, their Co(II), Cu(II), Ni (II) and Zn (II) complexes have been synthesized, characterized and screened for their in vitro antibacterial activity against four Gram-negative; Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi and Shigella flexeneri, and two Gram-positive; Bacillus subtilis and Staphylococcus aureus bacterial strains, and for in-vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. All compounds showed significant antibacterial and antifungal activity. The metal complexes, however, were shown to possess better activity as compared to the simple ligands. The brine shrimp bioassay was also carried out to study their in-vitro cytotoxic properties. PMID:17252947

  13. Evidence for Direct Electron Transfer by a Gram-Positive Bacterium Isolated from a Microbial Fuel Cell▿†

    PubMed Central

    Wrighton, K. C.; Thrash, J. C.; Melnyk, R. A.; Bigi, J. P.; Byrne-Bailey, K. G.; Remis, J. P.; Schichnes, D.; Auer, M.; Chang, C. J.; Coates, J. D.

    2011-01-01

    Despite their importance in iron redox cycles and bioenergy production, the underlying physiological, genetic, and biochemical mechanisms of extracellular electron transfer by Gram-positive bacteria remain insufficiently understood. In this work, we investigated respiration by Thermincola potens strain JR, a Gram-positive isolate obtained from the anode surface of a microbial fuel cell, using insoluble electron acceptors. We found no evidence that soluble redox-active components were secreted into the surrounding medium on the basis of physiological experiments and cyclic voltammetry measurements. Confocal microscopy revealed highly stratified biofilms in which cells contacting the electrode surface were disproportionately viable relative to the rest of the biofilm. Furthermore, there was no correlation between biofilm thickness and power production, suggesting that cells in contact with the electrode were primarily responsible for current generation. These data, along with cryo-electron microscopy experiments, support contact-dependent electron transfer by T. potens strain JR from the cell membrane across the 37-nm cell envelope to the cell surface. Furthermore, we present physiological and genomic evidence that c-type cytochromes play a role in charge transfer across the Gram-positive bacterial cell envelope during metal reduction. PMID:21908627

  14. [GEIPC-SEIMC and GTEI-SEMICYUC recommendations for antibiotic treatment of gram positive coccal infections in the critical patient].

    PubMed

    Olaechea Astigarraga, P M; Garnacho Montero, J; Grau Cerrato, S; Rodríguez Colomo, O; Palomar Martínez, M; Zaragoza Crespo, R; Muñoz García-Paredes, P; Cerdá Cerdá, E; Alvarez Lerma, F

    2007-01-01

    In recent years, an increment of infections caused by gram-positive cocci has been documented in nosocomial and hospital-acquired infections. In diverse countries, a rapid development of resistance to common antibiotics against gram-positive cocci has been observed. This situation is exceptional in Spain but our country might be affected in the near future. New antimicrobials active against these multi-drug resistant pathogens are nowadays available. It is essential to improve our current knowledge about pharmacokinetic properties of traditional and new antimicrobials to maximize its effectiveness and to minimize toxicity. These issues are even more important in critically ill patients because inadequate empirical therapy is associated with therapeutic failure and a poor outcome. Experts representing two scientific societies (Grupo de estudio de Infecciones en el Paciente Critico de la SEIMC and Grupo de trabajo de Enfermedades Infecciosas de la SEMICYUC) have elaborated a consensus document based on the current scientific evidence to summarize recommendations for the treatment of serious infections caused by gram-positive cocci in critically ill patients.

  15. σECF factors of gram-positive bacteria

    PubMed Central

    Souza, Bianca Mendes; Castro, Thiago Luiz de Paula; Carvalho, Rodrigo Dias de Oliveira; Seyffert, Nubia; Silva, Artur; Miyoshi, Anderson; Azevedo, Vasco

    2014-01-01

    The survival of bacteria to different environmental conditions depends on the activation of adaptive mechanisms, which are intricately driven through gene regulation. Because transcriptional initiation is considered to be the major step in the control of bacterial genes, we discuss the characteristics and roles of the sigma factors, addressing (1) their structural, functional and phylogenetic classification; (2) how their activity is regulated; and (3) the promoters recognized by these factors. Finally, we focus on a specific group of alternative sigma factors, the so-called σECF factors, in Bacillus subtilis and some of the main species that comprise the CMNR group, providing information on the roles they play in the microorganisms’ physiology and indicating some of the genes whose transcription they regulate. PMID:24921931

  16. Injectable bioadhesive hydrogels with innate antibacterial properties

    NASA Astrophysics Data System (ADS)

    Giano, Michael C.; Ibrahim, Zuhaib; Medina, Scott H.; Sarhane, Karim A.; Christensen, Joani M.; Yamada, Yuji; Brandacher, Gerald; Schneider, Joel P.

    2014-06-01

    Surgical site infections cause significant postoperative morbidity and increased healthcare costs. Bioadhesives used to fill surgical voids and support wound healing are typically devoid of antibacterial activity. Here we report novel syringe-injectable bioadhesive hydrogels with inherent antibacterial properties prepared from mixing polydextran aldehyde and branched polyethylenimine. These adhesives kill both Gram-negative and Gram-positive bacteria, while sparing human erythrocytes. An optimal composition of 2.5 wt% oxidized dextran and 6.9 wt% polyethylenimine sets within seconds forming a mechanically rigid (~\

  17. Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging Microbiota of the Urinary Tract.

    PubMed

    Kline, Kimberly A; Lewis, Amanda L

    2016-04-01

    Gram-positive bacteria are a common cause of urinary-tract infection (UTI), particularly among individuals who are elderly, pregnant, or who have other risk factors for UTI. Here we review the epidemiology, virulence mechanisms, and host response to the most frequently isolated Gram-positive uropathogens: Staphylococcus saprophyticus, Enterococcus faecalis, and Streptococcus agalactiae. We also review several emerging, rare, misclassified, and otherwise underreported Gram-positive pathogens of the urinary tract including Aerococcus, Corynebacterium, Actinobaculum, and Gardnerella. The literature strongly suggests that urologic diseases involving Gram-positive bacteria may be easily overlooked due to limited culture-based assays typically utilized for urine in hospital microbiology laboratories. Some UTIs are polymicrobial in nature, often involving one or more Gram-positive bacteria. We herein review the risk factors and recent evidence for mechanisms of bacterial synergy in experimental models of polymicrobial UTI. Recent experimental data has demonstrated that, despite being cleared quickly from the bladder, some Gram-positive bacteria can impact pathogenic outcomes of co-infecting organisms. When taken together, the available evidence argues that Gram-positive bacteria are important uropathogens in their own right, but that some can be easily overlooked because they are missed by routine diagnostic methods. Finally, a growing body of evidence demonstrates that a surprising variety of fastidious Gram-positive bacteria may either reside in or be regularly exposed to the urinary tract and further suggests that their presence is widespread among women, as well as men. Experimental studies in this area are needed; however, there is a growing appreciation that the composition of bacteria found in the bladder could be a potentially important determinant in urologic disease, including susceptibility to UTI.

  18. Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging Microbiota of the Urinary Tract

    PubMed Central

    Kline, Kimberly A.; Lewis, Amanda L.

    2015-01-01

    Gram-positive bacteria are a common cause of urinary tract infection (UTI), particularly among individuals who are elderly, pregnant, or who have other risk factors for UTI. Here we review the epidemiology, virulence mechanisms, and host response to the most frequently isolated Gram-positive uropathogens: Staphylococcus saprophyticus, Enterococcus faecalis, and Streptococcus agalactiae. We also review several emerging, rare, misclassified, and otherwise underreported Gram-positive pathogens of the urinary tract including Aerococcus, Corynebacterium, Actinobaculum, and Gardnerella. The literature strongly suggests that urologic diseases involving Gram-positive bacteria may be easily overlooked due to limited culture-based assays typically utilized for urine in hospital microbiology laboratories. Some UTIs are polymicrobial in nature, often involving one or more Gram-positive bacteria. We herein review the risk factors and recent evidence for mechanisms of bacterial synergy in experimental models of polymicrobial UTI. Recent experimental data has demonstrated that, despite being cleared quickly from the bladder, some Gram-positive bacteria can impact pathogenic outcomes of co-infecting organisms. When taken together, the available evidence argues that Gram-positive bacteria are important uropathogens in their own right, but that some can be easily overlooked because they are missed by routine diagnostic methods. Finally, a growing body of evidence demonstrates that a surprising variety of fastidious Gram-positive bacteria may either reside in or be regularly exposed to the urinary tract and further suggests that their presence is widespread among women, as well as men. Experimental studies in this area are needed; however, there is a growing appreciation that the composition of bacteria found in the bladder could be a potentially important determinant in urologic disease, including susceptibility to UTI. PMID:27227294

  19. Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging Microbiota of the Urinary Tract.

    PubMed

    Kline, Kimberly A; Lewis, Amanda L

    2016-04-01

    Gram-positive bacteria are a common cause of urinary-tract infection (UTI), particularly among individuals who are elderly, pregnant, or who have other risk factors for UTI. Here we review the epidemiology, virulence mechanisms, and host response to the most frequently isolated Gram-positive uropathogens: Staphylococcus saprophyticus, Enterococcus faecalis, and Streptococcus agalactiae. We also review several emerging, rare, misclassified, and otherwise underreported Gram-positive pathogens of the urinary tract including Aerococcus, Corynebacterium, Actinobaculum, and Gardnerella. The literature strongly suggests that urologic diseases involving Gram-positive bacteria may be easily overlooked due to limited culture-based assays typically utilized for urine in hospital microbiology laboratories. Some UTIs are polymicrobial in nature, often involving one or more Gram-positive bacteria. We herein review the risk factors and recent evidence for mechanisms of bacterial synergy in experimental models of polymicrobial UTI. Recent experimental data has demonstrated that, despite being cleared quickly from the bladder, some Gram-positive bacteria can impact pathogenic outcomes of co-infecting organisms. When taken together, the available evidence argues that Gram-positive bacteria are important uropathogens in their own right, but that some can be easily overlooked because they are missed by routine diagnostic methods. Finally, a growing body of evidence demonstrates that a surprising variety of fastidious Gram-positive bacteria may either reside in or be regularly exposed to the urinary tract and further suggests that their presence is widespread among women, as well as men. Experimental studies in this area are needed; however, there is a growing appreciation that the composition of bacteria found in the bladder could be a potentially important determinant in urologic disease, including susceptibility to UTI. PMID:27227294

  20. Induction of nitric oxide production by polyosides from the cell walls of Streptococcus mutans OMZ 175, a gram-positive bacterium, in the rat aorta.

    PubMed Central

    Martin, V; Kleschyov, A L; Klein, J P; Beretz, A

    1997-01-01

    The cardiovascular dysfunctions associated with septic shock induced by gram-negative or gram-positive bacteria (gram-positive or gram-negative septic shock) are comparable. In gram-negative septic shock, lipopolysaccharide (LPS) induces nitric oxide (NO) synthase, which contributes to the vascular hypotension and hyporeactivity to vasoconstrictors. The role of NO in gram-positive septic shock and the nature of the bacterial wall components responsible for the vascular effects of gram-positive bacteria are not well known. This study investigated the vascular effects of cell wall serotype polyosides, rhamnose glucose polymers (RGPs), from Streptococcus mutans, in comparison with lipoteichoic acid (LTA) from Staphylococcus aureus, on the induction of NO synthase activity in the rat aorta. We show that 10 microg of both RGPs and LTA per ml induced hyporeactivity to noradrenaline, L-arginine-induced relaxation, increases of 2.2- and 7.8-fold, respectively, of cyclic GMP production, and increases of 7- and 12-fold in nitrite release. All of these effects appeared after several hours of incubation and were inhibited by N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NO synthase. Electron paramagnetic resonance spin trapping experiments demonstrated directly that RGPs and LTA induced NO overproduction (four- to eightfold, respectively) in rat aortic rings; this production was inhibited by L-NAME and prevented by dexamethasone. These results demonstrate directly the induction of NO production in vascular tissue by LTA and show that another, chemically different component of gram-positive bacteria can also have these properties. This result suggests that different components of the gram-positive bacterial wall could be implicated in the genesis of cardiovascular dysfunctions observed in gram-positive septic shock. PMID:9169734

  1. Antibacterial activity against Porphyromonas gingivalis and biological characteristics of antibacterial stainless steel.

    PubMed

    Zhang, Dan; Ren, Ling; Zhang, Yang; Xue, Nan; Yang, Ke; Zhong, Ming

    2013-05-01

    To evaluate the possibility of an alternative to the traditional orthodontic stainless steel implants, the antibacterial activity against Porphyromonas gingivalis (P. gingivalis) and the related cytotoxicity of a type 304 Cu bearing antibacterial stainless steel were studied. The results indicated that the antibacterial stainless steel showed excellent antibacterial property against P. gingivalis, compared with the control steel (a purchased medical grade 304 stainless steel). Compared to the control steel, there were fewer bacteria on the surface of the antibacterial stainless steel, with significant difference in morphology. The cytotoxicities of the antibacterial stainless steel to both MG-63 and KB cells were all grade 1, the same as those of the control steel. There were no significant differences in the apoptosis rates on MG-63 and KB cells between the antibacterial stainless steel and the control steel. This study demonstrates that the antibacterial stainless steel is possible to reduce the incidence of implant-related infections and can be a more suitable material for the micro-implant than the conventional stainless steel in orthodontic treatment.

  2. Chemical composition, olfactory analysis and antibacterial activity of Thymus vulgaris chemotypes geraniol, 4-thujanol/terpinen-4-ol, thymol and linalool cultivated in southern France.

    PubMed

    Schmidt, Erich; Wanner, Jürgen; Hiiferl, Martina; Jirovetz, Leopold; Buchbauer, Gerhard; Gochev, Velizar; Girova, Tania; Stoyanova, Albena; Geissler, Margit

    2012-08-01

    The essential oils of four chemotypes of Thymus vulgaris L. (Lamiaceae) were analyzed for their composition and antibacterial activity to assess their different properties. GC-MS and GC-FID analyses revealed that the essentials oils can be classified into the chemotypes thymol (41.0% thymol), geraniol (26.4% geraniol), linalool (72.5% linalool) and 4-thujanol/terpinen-4-ol (42.2% cis- and 7.3% trans-sabinene hydrate, 6.5 % terpinen-4-ol). The olfactory examination confirmed the explicit differences between these chemotypes. Furthermore, antibacterial activity was investigated against several strains of two Gram-positive (Brochothrix thermosphacta and Staphylococcus aureus) and four Gram-negative food-borne bacteria (Escherichia coli, Salmonella abony, Pseudomonas aeruginosa and P. fragi). All essential oil samples were demonstrated to be highly effective against Gram-positive strains, whereas the impact on Gram-negative microorganisms was significantly smaller, but still considerable. The results obtained indicate that, despite their different properties, the essential oils of selected T. vulgaris chemotypes are potent antimicrobials to be employed as useful additives in food products as well as for therapeutic applications. PMID:22978238

  3. Antibacterial activity and synergy, in vitro and in vivo, of a combination of amoxycillin and flucloxacillin.

    PubMed

    Comber, K R; Merrikin, D J; Sutherland, R

    1979-01-01

    The antibacterial activity of a combination of equal parts of amoxycillin and flucloxacillin was compared in vitro and in vivo with that of amoxycillin and flucloxacillin against a range of gram-positive and gram-negative bacteria. The combination generally showed additive effects against bacteria sensitive to the individual penicillins and there was no evidence of antagonism, but synergistic effects were observed between amoxycillin and flucloxacillin against certain amoxycillin-resistant gram-negative bacilli. The extent of synergism varied according to the particular bacterial species under test and synergy was observed only against bacteria with chromosomally-mediated beta-lactamases and not against bacteria with R-factor-mediated beta-lactamases. In general, amoxycillin + flucloxacillin demonstrated activity against experimental mouse infections in good agreement with demonstrated activity against experimental mouse infections in good agreement with its in vitro activity, and synergy was produced against a range of gram-negative bacilli in vivo. The data suggest that clinical trial with amoxycillin + flucloxacillin in the treatment of selected infections including those due to some amoxycillin-resistant bacteria may well be justified.

  4. Antibacterial and Antifungal Activity of Biopolymers Modified with Ionic Liquid and Laponite.

    PubMed

    Sharma, Anshu; Prakash, Prem; Rawat, Kamla; Solanki, Pratima R; Bohidar, H B

    2015-09-01

    In the present study, the antimicrobial properties of modified biopolymers such as gelatin and agar have been investigated. These biopolymers (agar and gelatin) are modified by dissolving in ionic liquid (IL) [1-ethyl-3-methylimidazolium chloride ([C2mim][Cl]) and 1-octyl-3-methyl imidazolium chloride ([C8mim][Cl])] solutions. It was noticed that agar-ionogel (Ag-IL), gelatin-ionogel (GB-IL), and gelatin organogel (gelatin-glycerol solution along with laponite, nanoclay) nanocomposite (GA-NC) formed are highly stable, optically clear, and transparent without any air bubbles. The antimicrobial activity of these (Ag-IL), (GB-IL), and GA-NC were analyzed for both gram-negative (Escherichia coli, Klebsiella pneumoniae) and gram-positive bacterial strains (Staphylococcus aureus and Staphylococcus pyogenes) and fungus A. niger, C. albicans. Antibacterial and antifungal activity studies were carried out at different dilutions such as 100, 99, and 90 % (v/v). It was found that Ag-IL, GB-IL, and individual IL ([C8mim][Cl]) exhibited superior antimicrobial activities, indicating that longer IL chain enhance the cell membrane permeability of S. aureus, S. pyogenes, and E. coli cells. However, GA-NC nanocomposite and [C2mim][Cl]-based composites does not exhibit any bacterial inhibition activity for all bacterial strains. PMID:26142901

  5. Antibacterial activity of endophytic fungi from leaves of Indigofera suffruticosa Miller (Fabaceae).

    PubMed

    Dos Santos, Irailton Prazeres; da Silva, Luís Cláudio Nascimento; da Silva, Márcia Vanusa; de Araújo, Janete Magali; Cavalcanti, Marilene da Silva; Lima, Vera Lucia de Menezes

    2015-01-01

    Endophytic fungi were isolated from healthy leaves of Indigofera suffruticosa Miller, a medicinal plant found in Brazil which is used in folk medicine to treat various diseases. Among 65 endophytic fungi isolated, 18 fungi showed activity against at least one tested microorganism in preliminary screening, and the best results were obtained with Nigrospora sphaerica (URM-6060) and Pestalotiopsis maculans (URM-6061). After fermentation in liquid media and in semisolid media, only N. sphaerica demonstrated antibacterial activity (in Potato Dextrose Broth-PDB and in semisolid rice culture medium). In the next step, a methanolic extract from rice culture medium (NsME) and an ethyl acetate extract (NsEAE) from the supernatant of PDB were prepared and both exhibited antimicrobial activity against Gram-negative and Gram-positive bacteria. The best result was observed against Staphylococcus aureus, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 1.56 mg/mL and 6.25 mg/mL, respectively, for NsME and MIC and MBC values of 0.39 mg/mL and 3.12 mg/mL, respectively, for NsEAE. This study is the first report about the antimicrobial activity of endophytic fungi residing in I. suffruticosa leaves, in which the fungus N. sphaerica demonstrated the ability to produce bioactive agents with pharmaceutical potential, and may provide a new lead in the pursuit of new biological sources of drug candidates.

  6. Antibacterial activity of endophytic fungi from leaves of Indigofera suffruticosa Miller (Fabaceae)

    PubMed Central

    dos Santos, Irailton Prazeres; da Silva, Luís Cláudio Nascimento; da Silva, Márcia Vanusa; de Araújo, Janete Magali; Cavalcanti, Marilene da Silva; Lima, Vera Lucia de Menezes

    2015-01-01

    Endophytic fungi were isolated from healthy leaves of Indigofera suffruticosa Miller, a medicinal plant found in Brazil which is used in folk medicine to treat various diseases. Among 65 endophytic fungi isolated, 18 fungi showed activity against at least one tested microorganism in preliminary screening, and the best results were obtained with Nigrospora sphaerica (URM-6060) and Pestalotiopsis maculans (URM-6061). After fermentation in liquid media and in semisolid media, only N. sphaerica demonstrated antibacterial activity (in Potato Dextrose Broth-PDB and in semisolid rice culture medium). In the next step, a methanolic extract from rice culture medium (NsME) and an ethyl acetate extract (NsEAE) from the supernatant of PDB were prepared and both exhibited antimicrobial activity against Gram-negative and Gram-positive bacteria. The best result was observed against Staphylococcus aureus, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 1.56 mg/mL and 6.25 mg/mL, respectively, for NsME and MIC and MBC values of 0.39 mg/mL and 3.12 mg/mL, respectively, for NsEAE. This study is the first report about the antimicrobial activity of endophytic fungi residing in I. suffruticosa leaves, in which the fungus N. sphaerica demonstrated the ability to produce bioactive agents with pharmaceutical potential, and may provide a new lead in the pursuit of new biological sources of drug candidates. PMID:25999918

  7. In vitro Antioxidant and Antibacterial Activities of Methanol Extract of Kyllinga nemoralis

    PubMed Central

    Sindhu, T.; Rajamanikandan, S.; Srinivasan, P.

    2014-01-01

    The present study was designed to evaluate the antioxidant and antibacterial activity of methanol extract of Kyllinga nemoralis. Six different in vitro antioxidant assays including 2,2-diphenyl-1-picrylhydrazyl, hydroxyl radical, superoxide anion radical, hydrogen peroxide radical, ferric reducing antioxidant power assay and reducing power were carried out to ensure the scavenging effect of the plant on free radicals. In addition, total antioxidant capacity assay, total phenolic contents, tannins, flavonoids and flavonol contents of the plant were also analysed by the standard protocols. Kyllinga nemoralis exhibited high antioxidant activity on 2,2-diphenyl-1-picrylhydrazyl assay (IC50= 90 μg/ml), superoxide radical scavenging assay (IC50= 180 μg/ml) and hydrogen peroxide radical scavenging assay (IC50= 200 μg/ml), compared with standards. These observations provide comprehensible supporting evidence for the antioxidant potential of the plant extract. Reducing power (IC50= 213.16 μg/ml) and hydroxyl radical scavenging activity (IC50= 223 μg/ml) of the plant extract was remarkable. The methanol extract of K. nemoralis exhibited significant antimicrobial activity against Gram-positive human pathogenic bacteria. Standard in vitro antioxidant assays assessed the electron donating ability of the plant extract in scavenging free radicals. The inhibitory effect of the plant extract against bacterial pathogens may be due to the presence of phytochemicals. Thus, the results suggest that Kyllinga nemoralis is a potential source of antioxidants and could serve as the base for drug development. PMID:24843192

  8. Antibacterial Activity of Eravacycline (TP-434), a Novel Fluorocycline, against Hospital and Community Pathogens

    PubMed Central

    O'Brien, W.; Fyfe, C.; Grossman, T. H.

    2013-01-01

    Eravacycline (TP-434 or 7-fluoro-9-pyrrolidinoacetamido-6-demethyl-6-deoxytetracycline) is a novel fluorocycline that was evaluated for antimicrobial activity against panels of recently isolated aerobic and anaerobic Gram-negative and Gram-positive bacteria. Eravacycline showed potent broad-spectrum activity against 90% of the isolates (MIC90) in each panel at concentrations ranging from ≤0.008 to 2 μg/ml for all species panels except those of Pseudomonas aeruginosa and Burkholderia cenocepacia (MIC90 values of 32 μg/ml for both organisms). The antibacterial activity of eravacycline was minimally affected by expression of tetracycline-specific efflux and ribosomal protection mechanisms in clinical isolates. Furthermore, eravacycline was active against multidrug-resistant bacteria, including those expressing extended-spectrum β-lactamases and mechanisms conferring resistance to other classes of antibiotics, including carbapenem resistance. Eravacycline has the potential to be a promising new intravenous (i.v.)/oral antibiotic for the empirical treatment of complicated hospital/health care infections and moderate-to-severe community-acquired infections. PMID:23979750

  9. Synthesis and evaluation of antibacterial and antitumor activities of new galactopyranosylated amino alcohols.

    PubMed

    de Souza Fernandes, Fábio; Fernandes, Tayrine Silva; da Silveira, Lígia Souza; Caneschi, Wiliam; Lourenço, Maria Cristina S; Diniz, Claudio G; de Oliveira, Pollyanna Francielli; Martins, Sabrina de Paula Lima; Pereira, Daiane Eleutério; Tavares, Denise Crispim; Le Hyaric, Mireille; de Almeida, Mauro V; Couri, Mara Rubia C

    2016-01-27

    Three series of d-galactose derivatives linked to a lipophilic aminoalcohol moiety were synthesized and their antibacterial activity was evaluated against Mycobacterium tuberculosis and representative species of Gram positive and Gram negative bacteria. Five out of the thirteen tested compounds displayed activity against M. tuberculosis, with a minimal inhibitory concentration (MIC) of 12.5 μg/mL and seven compounds were active against the four bacterial strains tested. The best results were obtained for amino alcohols 10 and 11 against Staphylococcus epidermidis (MIC = 2 μg/mL). The antitumor activity was evaluated against three tumor cell lines (MCF-7, HeLa and MO59J) and compared to the normal cell line GM07492A. The results showed that the lowest IC50 values were observed for the amino alcohol 16 against MCF-7 (11.9 μM) and MO59J (10.0 μM).

  10. Antibacterial and Antifungal Activity of Biopolymers Modified with Ionic Liquid and Laponite.

    PubMed

    Sharma, Anshu; Prakash, Prem; Rawat, Kamla; Solanki, Pratima R; Bohidar, H B

    2015-09-01

    In the present study, the antimicrobial properties of modified biopolymers such as gelatin and agar have been investigated. These biopolymers (agar and gelatin) are modified by dissolving in ionic liquid (IL) [1-ethyl-3-methylimidazolium chloride ([C2mim][Cl]) and 1-octyl-3-methyl imidazolium chloride ([C8mim][Cl])] solutions. It was noticed that agar-ionogel (Ag-IL), gelatin-ionogel (GB-IL), and gelatin organogel (gelatin-glycerol solution along with laponite, nanoclay) nanocomposite (GA-NC) formed are highly stable, optically clear, and transparent without any air bubbles. The antimicrobial activity of these (Ag-IL), (GB-IL), and GA-NC were analyzed for both gram-negative (Escherichia coli, Klebsiella pneumoniae) and gram-positive bacterial strains (Staphylococcus aureus and Staphylococcus pyogenes) and fungus A. niger, C. albicans. Antibacterial and antifungal activity studies were carried out at different dilutions such as 100, 99, and 90 % (v/v). It was found that Ag-IL, GB-IL, and individual IL ([C8mim][Cl]) exhibited superior antimicrobial activities, indicating that longer IL chain enhance the cell membrane permeability of S. aureus, S. pyogenes, and E. coli cells. However, GA-NC nanocomposite and [C2mim][Cl]-based composites does not exhibit any bacterial inhibition activity for all bacterial strains.

  11. Antibacterial activity of clarithromycin loaded PLGA nanoparticles.

    PubMed

    Valizadeh, H; Mohammadi, G; Ehyaei, R; Milani, M; Azhdarzadeh, M; Zakeri-Milani, P; Lotfipour, F

    2012-01-01

    Novel drug delivery systems such as nanoparticles (NPs) have been proved to enhance the effectiveness of many drugs. Clarithromycin is a broad spectrum macrolide antibiotic, used in many infectious conditions like upper and lower respiratory tract infections, and skin and other soft tissue infections. This paper describes the preparation and enhanced in vitro antibacterial activities of clarithromycin loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles. A modified quasi-emulsion solvent diffusion (MQESD) method was used to prepare clarithromycin (CLR) NPs. The antibacterial activity of the NPs was evaluated using the agar well diffusion method against Escherichia coli (PTCC 1330), Haemophilus influenzae (PTCC 1623), Salmonella typhi (PTCC 1609), Staphylococcus aureus (PTCC 1112) and Streptococcus pneumoniae (PTCC 1240). The inhibition zone diameters related to each nano formulation were compared with those for untreated CLR at the same concentrations. The results indicated that the mean inhibition zone diameters of NPs against all the bacteria tested were significantly higher than those of untreated CLR, particularly in the case of S. aureus. The increased potency of CLR NPs may be related to some physicochemical properties of NPs like modified surface characteristics, lower drug degradation, and increased drug adsorption and uptake.

  12. Thermophilic Gram-Positive Biocatalysts for Biomass Conversion to Ethanol

    SciTech Connect

    Shanmugam, K.T.; Ingram, L.O.; Maupin-Furlow, J.A.; Preston, J.F.; Aldrich, H.C.

    2003-12-01

    Production of energy from renewable sources is receiving increased attention due to the finite nature of fossil fuels and the environmental impact associated with the continued large scale use of fossil energy sources. Biomass, a CO2-neutral abundant resource, is an attractive alternate source of energy. Biomass-derived sugars, such as glucose, xylose, and other minor sugars, can be readily fermented to fuel ethanol and commodity chemicals. Extracellular cellulases produced by fungi are commercially developed for depolymerization of cellulose in biomass to glucose for fermentation by appropriate biocatalysts in a simultaneous saccharification and fermentation (SSF) process. Due to the differences in the optimum conditions for the activity of the fungal cellulases and the growth and fermentation characteristics of the current industrial biocatalysts, SSF of cellulose is envisioned at conditions that are not optimal for the fungal cellulase activity leading to higher than required cost of cellulase in SSF. We have isolated bacterial biocatalysts whose growth and fermentation requirements match the optimum conditions for commercial fungal cellulase activity (pH 5.0 and 50 deg. C). These isolates fermented both glucose and xylose, major components of cellulose and hemicellulose, respectively, to L(+)-lactic acid. Xylose was metabolized through the pentose-phosphate pathway by these organisms as evidenced by the fermentation profile and analysis of the fermentation products of 13C1-xylose by NMR. As expected for the metabolism of xylose by the pentose-phosphate pathway, 13C-lactate accounted for more than 90% of the total 13C-labeled products. All three strains fermented crystalline cellulose to lactic acid with the addition of fungal cellulase (Spezyme CE) (SSF) at an optimum of about 10 FPU/g cellulose. These isolates also fermented cellulose and sugar cane bagasse hemicellulose acid hydrolysate simultaneously. Based on fatty acid profile and 16S rRNA sequence, these

  13. Efficient Photodynamic Therapy against Gram-Positive and Gram-Negative Bacteria Using THPTS, a Cationic Photosensitizer Excited by Infrared Wavelength

    PubMed Central

    Schastak, Stanislaw; Ziganshyna, Svitlana; Gitter, Burkhard; Wiedemann, Peter; Claudepierre, Thomas

    2010-01-01

    The worldwide rise in the rates of antibiotic resistance of bacteria underlines the need for alternative antibacterial agents. A promising approach to kill antibiotic-resistant bacteria uses light in combination with a photosensitizer to induce a phototoxic reaction. Concentrations of 1, 10 and 100µM of tetrahydroporphyrin-tetratosylat (THPTS) and different incubation times (30, 90 and 180min) were used to measure photodynamic efficiency against two Gram-positive strains of S.aureus (MSSA and MRSA), and two Gram-negative strains of E.coli and P.aeruginosa. We found that phototoxicity of the drug is independent of the antibiotic resistance pattern when incubated in PBS for the investigated strains. Also, an incubation with 100µM THPTS followed by illumination, yielded a 6lg (≥99.999%) decrease in the viable numbers of all bacteria strains tested, indicating that the THPTS drug has a high degree of photodynamic inactivation. We then modulated incubation time, photosensitizer concentration and monitored the effect of serum on the THPTS activity. In doing so, we established the conditions to obtain the strongest bactericidal effect. Our results suggest that this new and highly pure synthetic compound should improve the efficiency of photodynamic therapy against multiresistant bacteria and has a significant potential for clinical applications in the treatment of nosocomial infections. PMID:20652031

  14. Domino Synthesis of Embelin Derivatives with Antibacterial Activity.

    PubMed

    Peña, Rosalyn; Martín, Pedro; Feresin, Gabriela E; Tapia, Alejandro; Machín, Félix; Estévez-Braun, Ana

    2016-04-22

    A series of dihydropyran embelin derivatives was synthesized through a direct and highly efficient approach based on a domino Knoevenagel intramolecular hetero-Diels-Alder reaction from natural embelin (1), using unsaturated aldehydes in the presence of organocatalysts such as ethylendiamine diacetate or l-proline. The aliphatic aldehydes yielded exclusively trans adducts, while mixtures of trans and cis isomers were found in reactions with aromatic aldehydes, with the cis form always predominating. Some of the compounds obtained were active and selective against Gram-positive bacteria, including multiresistant Staphylococcus aureus clinical isolates. PMID:26924672

  15. Antibacterial activity of Artemisia nilagirica leaf extracts against clinical and phytopathogenic bacteria

    PubMed Central

    2010-01-01

    Background The six organic solvent extracts of Artemisia nilagirica were screened for the potential antimicrobial activity against phytopathogens and clinically important standard reference bacterial strains. Methods The agar disk diffusion method was used to study the antibacterial activity of A. nilagirica extracts against 15 bacterial strains. The Minimum Inhibitory Concentration (MIC) of the plant extracts were tested using two fold agar dilution method at concentrations ranging from 32 to 512 μg/ml. The phytochemical screening of extracts was carried out for major phytochemical derivatives in A. nilagirica. Results All the extracts showed inhibitory activity for gram-positive and gram-negative bacteria except for Klebsiella pneumoniae, Enterococcus faecalis and Staphylococcus aureus. The hexane extract was found to be effective against all phytopathogens with low MIC of 32 μg/ml and the methanol extract exhibited a higher inhibition activity against Escherichia coli, Yersinia enterocolitica, Salmonella typhi, Enterobacter aerogenes, Proteus vulgaris, Pseudomonas aeruginosa (32 μg/ml), Bacillus subtilis (64 μg/ml) and Shigella flaxneri (128 μg/ml). The phytochemical screening of extracts answered for the major derivative of alkaloids, amino acids, flavonoids, phenol, quinines, tannins and terpenoids. Conclusion All the extracts showed antibacterial activity against the tested strains. Of all, methanol and hexane extracts showed high inhibition against clinical and phytopathogens, respectively. The results also indicate the presence of major phytochemical derivatives in the A. nilagirica extracts. Hence, the isolation and purification of therapeutic potential compounds from A. nilagirica could be used as an effective source against bacterial diseases in human and plants. PMID:20109237

  16. Modeling and optimization of antibacterial activity of the chitosan-based hydrogel films using central composite design.

    PubMed

    Lahooti, Behnaz; Khorram, Mohammad; Karimi, Gholamreza; Mohammadi, Aliakbar; Emami, Amir

    2016-10-01

    In the present study, hydrogel films composed of chitosan-poly(vinyl alcohol)-gelatin-thyme honey were successfully prepared by casting method, and their anti-bacterial properties were modeled and optimized. Antibacterial properties of the prepared films were analyzed by applying agar diffusion method. Staphylococcus aureus and Pseudomonas aeruginosa were tested as Gram-positive and Gram-negative bacteria, respectively. In order to obtain the composition of the film with maximum inhibition zone against both above-mentioned bacterial strains, the experiments were designed using response surface methodology based on five-level central composite design with four parameters, including concentrations of chitosan, poly(vinyl alcohol), gelatin, and honey. The results indicated that the prepared samples had good antibacterial activities against these two studied bacteria strains. Response surface method is conducted to develop mathematical models for process responses. Variance analysis on the experimental data shows that inhibition zone can be predicted effectively with quadratic models. In addition, swelling properties and rate of water vapor transmission of the prepared hydrogel films were studied. Due to the successful results, this hydrogel film has an excellent potential to be explored further as a wound healing material. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2544-2553, 2016. PMID:27241899

  17. Volatile compounds of Lamiaceae exhibit a synergistic antibacterial activity with streptomycin.

    PubMed

    Araújo, Sthéfane G; Alves, Lucas F; Pinto, Maria Eduarda A; Oliveira, Graziela T; Siqueira, Ezequias P; Ribeiro, Rosy I M A; Ferreira, Jaqueline M S; Lima, Luciana A R S

    2014-01-01

    Bacterial infections cause thousands of deaths in the world every year. In most cases, infections are more serious because the patient is already weakened, and often, the bacteria are already resistant to the antibiotics used. Counterparting this negative scenario, the interest in medicinal plants as an alternative to the synthetic antimicrobial drugs is blossoming worldwide. In the present work, we identified the volatile compounds of ethanol extracts of Melissa officinalis, Mentha sp., Ocimum basilicum, Plectranthus barbatus, and Rosmarinus officinalis by gas chromatography/mass spectrometry (GC/MS). Also was evaluated antimicrobial activity of ethanol extracts against 6 bacteria of clinical interest, and was tested the interaction of these extracts with a commercial antibiotic streptomycin. Phytol was a compound identified in all extracts by GC/MS, being majoritary component in Plectranthus barbatus and Rosmarinus officinalis. The Gram-positive bacteria were more sensitive to ethanol extracts, and Plectranthus barbatus and Rosmarinus officinalis were the most active extracts. Ethanol extracts exhibited a synergetic effect with streptomycin. These results encourage additional studies, in order to evaluate the possibilities of using ethanol extracts of Lamiaceae family as natural source for antibacterial activity.

  18. Volatile compounds of Lamiaceae exhibit a synergistic antibacterial activity with streptomycin.

    PubMed

    Araújo, Sthéfane G; Alves, Lucas F; Pinto, Maria Eduarda A; Oliveira, Graziela T; Siqueira, Ezequias P; Ribeiro, Rosy I M A; Ferreira, Jaqueline M S; Lima, Luciana A R S

    2014-01-01

    Bacterial infections cause thousands of deaths in the world every year. In most cases, infections are more serious because the patient is already weakened, and often, the bacteria are already resistant to the antibiotics used. Counterparting this negative scenario, the interest in medicinal plants as an alternative to the synthetic antimicrobial drugs is blossoming worldwide. In the present work, we identified the volatile compounds of ethanol extracts of Melissa officinalis, Mentha sp., Ocimum basilicum, Plectranthus barbatus, and Rosmarinus officinalis by gas chromatography/mass spectrometry (GC/MS). Also was evaluated antimicrobial activity of ethanol extracts against 6 bacteria of clinical interest, and was tested the interaction of these extracts with a commercial antibiotic streptomycin. Phytol was a compound identified in all extracts by GC/MS, being majoritary component in Plectranthus barbatus and Rosmarinus officinalis. The Gram-positive bacteria were more sensitive to ethanol extracts, and Plectranthus barbatus and Rosmarinus officinalis were the most active extracts. Ethanol extracts exhibited a synergetic effect with streptomycin. These results encourage additional studies, in order to evaluate the possibilities of using ethanol extracts of Lamiaceae family as natural source for antibacterial activity. PMID:25763039

  19. Photocatalytic and antibacterial activities of gold and silver nanoparticles synthesized using biomass of Parkia roxburghii leaf.

    PubMed

    Paul, Bappi; Bhuyan, Bishal; Purkayastha, Debraj Dhar; Dhar, Siddhartha Sankar

    2016-01-01

    The present study reports a green approach for synthesis of gold (Au) and silver (Ag) nanoparticles (NPs) using dried biomass of Parkia roxburghii leaf. The biomass of the leaf acts as both reductant as well as stabilizer. The as-synthesized nanoparticles were characterized by time-dependent UV-visible, Fourier transform infrared (FT-IR), powder X-ray diffraction (XRD), and transmission electron microscopy (TEM) analyses. The UV-visible spectra of synthesized Au and Ag NPs showed surface plasmon resonance (SPR) at 555 and 440 nm after 12h. Powder XRD studies revealed formation of face-centered cubic structure for both Au and Ag NPs with average crystallite size of 8.4 and 14.74 nm, respectively. The TEM image showed the Au NPs to be monodispersed, spherical in shape with sizes in the range of 5-25 nm. On the other hand, Ag NPs were polydispersed, quasi-spherical in shape with sizes in the range of 5-25 nm. Investigation of photocatalytic activities of Au and Ag NPs under solar light illumination reveals that both these particles have pronounced effect on degradation of dyes viz., methylene blue (MB) and rhodamine b (RhB). Antibacterial activity of the synthesized NPs was studied on Gram positive bacteria Staphylococcus aureus and Gram negative bacteria Escherichia coli. Both Au and Ag NPs showed slightly higher activity on S. aureus than on E. coli.

  20. Helical 1:1 α/Sulfono-γ-AA Heterogeneous Peptides with Antibacterial Activity.

    PubMed

    She, Fengyu; Nimmagadda, Alekhya; Teng, Peng; Su, Ma; Zuo, Xiaobing; Cai, Jianfeng

    2016-05-01

    As one of the greatest threats facing the 21st century, antibiotic resistance is now a major public health concern. Host-defense peptides (HDPs) offer an alternative approach to combat emerging multi-drug-resistant bacteria. It is known that helical HDPs such as magainin 2 and its analogs adopt cationic amphipathic conformations upon interaction with bacterial membranes, leading to membrane disruption and subsequent bacterial cell death. We have previously shown that amphipathic sulfono-γ-AApeptides could mimic magainin 2 and exhibit bactericidal activity. In this article, we demonstrate for the first time that amphipathic helical 1:1 α/sulfono-γ-AA heterogeneous peptides, in which regular amino acids and sulfono-γ-AApeptide building blocks are alternatively present in a 1:1 pattern, display potent antibacterial activity against both Gram-positive and Gram-negative bacterial pathogens. Small angle X-ray scattering (SAXS) suggests that the lead sequences adopt defined helical structures. The subsequent studies including fluorescence microscopy and time-kill experiments indicate that these hybrid peptides exert antimicrobial activity by mimicking the mechanism of HDPs. Our findings may lead to the development of HDP-mimicking antimicrobial peptidomimetics that combat drug-resistant bacterial pathogens. In addition, our results also demonstrate the effective design of a new class of helical foldamer, which could be employed to interrogate other important biological targets such as protein-protein interactions in the future. PMID:27030636

  1. Volatile compounds of Lamiaceae exhibit a synergistic antibacterial activity with streptomycin

    PubMed Central

    Araújo, Sthéfane G.; Alves, Lucas F.; Pinto, Maria Eduarda A.; Oliveira, Graziela T.; Siqueira, Ezequias P.; Ribeiro, Rosy I. M. A.; Ferreira, Jaqueline M. S.; Lima, Luciana A. R. S.

    2014-01-01

    Bacterial infections cause thousands of deaths in the world every year. In most cases, infections are more serious because the patient is already weakened, and often, the bacteria are already resistant to the antibiotics used. Counterparting this negative scenario, the interest in medicinal plants as an alternative to the synthetic antimicrobial drugs is blossoming worldwide. In the present work, we identified the volatile compounds of ethanol extracts of Melissa officinalis, Mentha sp., Ocimum basilicum, Plectranthus barbatus, and Rosmarinus officinalis by gas chromatography/mass spectrometry (GC/MS). Also was evaluated antimicrobial activity of ethanol extracts against 6 bacteria of clinical interest, and was tested the interaction of these extracts with a commercial antibiotic streptomycin. Phytol was a compound identified in all extracts by GC/MS, being majoritary component in Plectranthus barbatus and Rosmarinus officinalis. The Gram-positive bacteria were more sensitive to ethanol extracts, and Plectranthus barbatus and Rosmarinus officinalis were the most active extracts. Ethanol extracts exhibited a synergetic effect with streptomycin. These results encourage additional studies, in order to evaluate the possibilities of using ethanol extracts of Lamiaceae family as natural source for antibacterial activity. PMID:25763039

  2. Chemical conjugation of 2-hexadecynoic acid to C5-curcumin enhances its antibacterial activity against multi-drug resistant bacteria.

    PubMed

    Sanabria-Ríos, David J; Rivera-Torres, Yaritza; Rosario, Joshua; Gutierrez, Ricardo; Torres-García, Yeireliz; Montano, Nashbly; Ortíz-Soto, Gabriela; Ríos-Olivares, Eddy; Rodríguez, José W; Carballeira, Néstor M

    2015-11-15

    The first total synthesis of a C5-curcumin-2-hexadecynoic acid (C5-Curc-2-HDA, 6) conjugate was successfully performed. Through a three-step synthetic route, conjugate 6 was obtained in 13% overall yield and tested for antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) strains. Our results revealed that 6 was active against eight MRSA strains at MICs that range between 31.3 and 62.5 μg/mL. It was found that the presence of 2-hexadecynoic acid (2-HDA, 4) in conjugate 6 increased 4-8-fold its antibacterial activity against MRSA strains supporting our hypothesis that the chemical connection of 4 to C5-curcumin (2) increases the antibacterial activity of 2 against Gram-positive bacteria. Combinational index (CIn) values that range between 1.6 and 2.3 were obtained when eight MRSA strains were treated with an equimolar mixture of 2 and 4. These results demonstrated that an antagonistic effect is taking place. Finally, it was investigated whether conjugate 6 can affect the replication process of S. aureus, since this compound inhibited the supercoiling activity of the S. aureus DNA gyrase at minimum inhibitory concentrations (MIC) of 250 μg/mL (IC50=100.2±13.9 μg/mL). Moreover, it was observed that the presence of 4 in conjugate 6 improves the anti-topoisomerase activity of 2 towards S. aureus DNA gyrase, which is in agreement with results obtained from antibacterial susceptibility tests involving MRSA strains. PMID:26483137

  3. Chemical conjugation of 2-hexadecynoic acid to C5-curcumin enhances its antibacterial activity against multi-drug resistant bacteria.

    PubMed

    Sanabria-Ríos, David J; Rivera-Torres, Yaritza; Rosario, Joshua; Gutierrez, Ricardo; Torres-García, Yeireliz; Montano, Nashbly; Ortíz-Soto, Gabriela; Ríos-Olivares, Eddy; Rodríguez, José W; Carballeira, Néstor M

    2015-11-15

    The first total synthesis of a C5-curcumin-2-hexadecynoic acid (C5-Curc-2-HDA, 6) conjugate was successfully performed. Through a three-step synthetic route, conjugate 6 was obtained in 13% overall yield and tested for antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) strains. Our results revealed that 6 was active against eight MRSA strains at MICs that range between 31.3 and 62.5 μg/mL. It was found that the presence of 2-hexadecynoic acid (2-HDA, 4) in conjugate 6 increased 4-8-fold its antibacterial activity against MRSA strains supporting our hypothesis that the chemical connection of 4 to C5-curcumin (2) increases the antibacterial activity of 2 against Gram-positive bacteria. Combinational index (CIn) values that range between 1.6 and 2.3 were obtained when eight MRSA strains were treated with an equimolar mixture of 2 and 4. These results demonstrated that an antagonistic effect is taking place. Finally, it was investigated whether conjugate 6 can affect the replication process of S. aureus, since this compound inhibited the supercoiling activity of the S. aureus DNA gyrase at minimum inhibitory concentrations (MIC) of 250 μg/mL (IC50=100.2±13.9 μg/mL). Moreover, it was observed that the presence of 4 in conjugate 6 improves the anti-topoisomerase activity of 2 towards S. aureus DNA gyrase, which is in agreement with results obtained from antibacterial susceptibility tests involving MRSA strains.

  4. Antibacterial activity of silver nanoparticles with different morphologies as well as their possible antibacterial mechanism

    NASA Astrophysics Data System (ADS)

    Hu, Guansong; Jin, Wenxiu; Chen, Qingyuan; Cai, Yuchun; Zhu, Qiuhua; Zhang, Wanzhong

    2016-10-01

    Silver nanoparticles (AgNPs) have good antibacterial activity and their morphologies have important influence on their activity. The relationship between their bactericidal property and morphology has not been studied thoroughly. Silver triangular nanoplates have basic {111} surface, nanospheres and nanocubes mainly have {100} planes, and nanorods have {100} side surfaces and {111} end facets. It was said that {111} crystal plane of AgNPs may play a prime role in antibacterial progress. Moreover, the antibacterial activity of nanocubes is not very clear when compared to nanoparticles with other morphologies. In this paper, we studied the antibacterial activity of nanocubes and attempted to confirm whether nanoparticles with {111} crystal facet truly had stronger antibacterial activity than other nanoparticles. We prepared four kinds of AgNPs and found silver triangle nanoplates had the best antibacterial activity, while nanospheres, nanocubes and short nanorods showed similar efficacy. It may provide a reference for safe application of AgNPs with different morphologies in the medical field.

  5. Importance of the disulfide bridges in the antibacterial activity of human hepcidin.

    PubMed

    Hocquellet, Agnès; le Senechal, Caroline; Garbay, Bertrand

    2012-08-01

    Hepcidin was first identified as an antimicrobial peptide present in human serum and urine. It was later demonstrated that hepcidin is the long sought hormone that regulates iron homeostasis in mammals. The native peptide of 25 amino acids (Hepc25) contains four disulfide bridges that maintain a β-hairpin motif. The aim of the present study was to assess whether the intramolecular disulfide bridges are necessary for Hepc25 antimicrobial activity. We show that a synthetic peptide corresponding to human Hepc25, and which contains the four disulfide bridges, has an antibacterial activity against several strains of Gram-positive and Gram-negative bacteria. On the contrary, a synthetic peptide where all cysteines were replaced by alanines (Hepc25-Ala) had no detectable activity against the same strains of bacteria. In a further step, the mode of action of Hepc25 on Escherichia coli was studied. SYTOX Green uptake was used to assess bacterial membrane integrity. No permeabilization of the membrane was observed with Hepc25, indicating that this peptide does not kill bacteria by destroying their membranes. Gel retardation assay showed that the Hepc25 binds to DNA with high efficiency, and that this binding ability is dependent on the presence of the intramolecular disulfide bridges. Reduction of Hepc25 or replacement of the eight cysteines by alanine residues led to peptides that were no longer able to bind DNA in the in vitro assay. Altogether, these results demonstrate that Hepc25 should adopt a three-dimensional structure stabilized by the intramolecular disulfide bridges in order to have antibacterial activity.

  6. In Vitro Antibacterial Activity of Essential Oils against Streptococcus pyogenes

    PubMed Central

    Sfeir, Julien; Lefrançois, Corinne; Baudoux, Dominique; Derbré, Séverine; Licznar, Patricia

    2013-01-01

    Streptococcus pyogenes plays an important role in the pathogenesis of tonsillitis. The present study was conducted to evaluate the in vitro antibacterial activities of 18 essential oils chemotypes from aromatic medicinal plants against S. pyogenes. Antibacterial activity of essential oils was investigated using disc diffusion method. Minimum Inhibitory Concentration of essential oils showing an important antibacterial activity was measured using broth dilution method. Out of 18 essential oils tested, 14 showed antibacterial activity against S. pyogenes. Among them Cinnamomum verum, Cymbopogon citratus, Thymus vulgaris CT thymol, Origanum compactum, and Satureja montana essential oils exhibited significant antibacterial activity. The in vitro results reported here suggest that, for patients suffering from bacterial throat infections, if aromatherapy is used, these essential oils, considered as potential antimicrobial agents, should be preferred. PMID:23662123

  7. Antibacterial activity of Citrus reticulata peel extracts.

    PubMed

    Jayaprakasha, G K; Negi, P S; Sikder, S; Rao, L J; Sakariah, K K

    2000-01-01

    Citrus peels were successively extracted with hexane, chloroform and acetone using a soxhlet extractor. The hexane and chloroform extracts were fractionated into alcohol-soluble and alcohol-insoluble fractions. These fractions were tested against different gram positive and gram negative bacteria. The EtOH-soluble fraction was found to be most effective. Fractionation of EtOH-soluble fraction on silica gel column yielded three polymethoxylated flavones, namely desmethylnobiletin, nobiletin and tangeretin. Their structures were confirmed by UV, 1H, 13C NMR and mass spectral studies. The findings indicated a potential of these natural compounds as biopreservatives in food applications. PMID:11204182

  8. Antibacterial activities and structure-activity relationships of a panel of 48 compounds from Kenyan plants against multidrug resistant phenotypes.

    PubMed

    Omosa, Leonidah K; Midiwo, Jacob O; Mbaveng, Armelle T; Tankeo, Simplice B; Seukep, Jackson A; Voukeng, Igor K; Dzotam, Joachim K; Isemeki, John; Derese, Solomon; Omolle, Ruth A; Efferth, Thomas; Kuete, Victor

    2016-01-01

    In the current study forty eight compounds belonging to anthraquinones, naphthoquinones, benzoquinones, flavonoids (chalcones and polymethoxylated flavones) and diterpenoids (clerodanes and kauranes) were explored for their antimicrobial potential against a panel of sensitive and multi-drug resistant Gram-negative and Gram-positive bacteria. The minimal inhibitory concentration (MIC) determinations on the tested bacteria were conducted using modified rapid INT colorimetric assay. To evaluate the role of efflux pumps in the susceptibility of Gram-negative bacteria to the most active compounds, they were tested in the presence of phenylalanine arginine β-naphthylamide (PAβN) (at 30 µg/mL) against selected multidrug resistance (MDR) bacteria. The anthraquinone, emodin, naphthaquinone, plumbagin and the benzoquinone, rapanone were active against methicillin resistant Staphylococcus aureus (MRSA) strains of bacteria with MIC values ranging from 2 to 128 μg/mL. The structure activity relationships of benzoquinones against the MDR Gram-negative phenotype showed antibacterial activities increasing with increase in side chain length. In the chalcone series the presence of a hydroxyl group at C3' together with a methoxy group and a second hydroxyl group in meta orientation in ring B of the chalcone skeleton appeared to be necessary for minimal activities against MRSA. In most cases, the optimal potential of the active compounds were not attained as they were extruded by bacterial efflux pumps. However, the presence of the PAβN significantly increased the antibacterial activities of emodin against Gram-negative MDR E. coli AG102, 100ATet; K. pneumoniae KP55 and KP63 by >4-64 g/mL. The antibacterial activities were substantially enhanced and were higher than those of the standard drug, chloramphenicol. These data clearly demonstrate that the active compounds, having the necessary pharmacophores for antibacterial activities, including some quinones and chalcones are

  9. Ligational behavior of Schiff bases towards transition metal ion and metalation effect on their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Devi, Jai; Batra, Nisha; Malhotra, Rajesh

    2012-11-01

    New Schiff bases pyrazine-2-carboxylicacid (phenyl-pyridin-2-yl-methylene)-hydrazide (Hpch-bp) HL1 and pyrazine-2-carboxylicacid (pyridin-2-ylmethylene)-hydrazide (Hpch-pc) HL2 derived from condensation of pyrazine carboxylic hydrazide (Hpch) with 2-benzoyl pyridine (bp) or pyridine 2-carbaldehyde (pc) and their transition metal complexes of type ML(1-2)2 have been synthesized, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Characterization of ligands and their metal complexes was carried out by elemental analysis, conductimetric studies, magnetic susceptibility, spectroscopic techniques (IR, UV-VIS, NMR, ESR, Mass) and thermogravimetric analysis. The physico-chemical studies revealed octahedral geometry or distorted octahedral geometry around metal ion. These azomethine Schiff base ligands acted as tridentate ? coordinating through carbonyl, azomethine and pyridine nitrogen present in the ligand. The thermodynamic and thermal properties of the complexes have been investigated and it was observed on the basis of these studies that thermal stability of complexes follows the order Mn < Zn < Cu < Co < Ni. The ligands and their complexes were tested for in vitro antibacterial activity at different concentrations against bacteria viz. Gram positive Bacillus subtilis, Micrococcus luteus and Gram negative Pseudomonas aeruginosa, Pseudomonas mendocina. A marked enhancement in biocidal activity of the ligands under similar experimental conditions was observed as a consequence of coordination with metal ions. The trend of growth inhibition in the complexes was found to be in the order: Cu > Mn > Ni > Co > Zn.

  10. Chemical composition, antibacterial and antioxidant activities of the essential oils from Thymus satureioides and Thymus pallidus.

    PubMed

    Ichrak, Ghalbane; Rim, Belaqziz; Loubna, Ait Said; Khalid, Oufdou; Abderrahmane, Romane; Said, El Messoussi

    2011-10-01

    This study was designed to examine the in vitro antibacterial and antioxidant activities of the essential oils (EOs) of Thymus satureioides (T.s) and T. pallidus (T.p). EOs were isolated by steam distillation and analyzed by capillary gas chromatography and gas chromatography coupled to mass spectrometry (GC-MS). The major constituents of the volatile fraction of T. satureioides were bomeol (29.5%), carvacrol (9.1%), and beta-caryophyllene (8.2%), while those of T. pallidus were camphor (29.8%), dihydrocarvone (17.6%), bomeol (7.6%) and camphene (7.5%). The essential oils were tested against a panel of Gram+ and Gram- bacteria by using agar diffusion and broth dilution methods. The data indicated that the Gram-positive Bacillus subtilis was the most sensitive strain producing an average inhibition zone of 51.7 mm. Furthermore, Pseudomonas aeruginosa, known as a resistant strain, was also sensitive. The samples were also subjected to screening for their possible antioxidant activity by using the 2,2-diphenyl-l-picrylhydrazyl (DPPH) assay. The IC50 values of the oil of T. satureioides and T. pallidus were 0.32 and 11.6 mg/mL, respectively. PMID:22164795

  11. Novel conductive polypyrrole/zinc oxide/chitosan bionanocomposite: synthesis, characterization, antioxidant, and antibacterial activities.

    PubMed

    Ebrahimiasl, Saeideh; Zakaria, Azmi; Kassim, Anuar; Basri, Sri Norleha

    2015-01-01

    An antibacterial and conductive bionanocomposite (BNC) film consisting of polypyrrole (Ppy), zinc oxide (ZnO) nanoparticles (NPs), and chitosan (CS) was electrochemically synthesized on indium tin oxide (ITO) glass substrate by electrooxidation of 0.1 M pyrrole in aqueous solution containing appropriate amounts of ZnO NPs uniformly dispersed in CS. This method enables the room temperature electrosynthesis of BNC film consisting of ZnO NPs incorporated within the growing Ppy/CS composite. The morphology of Ppy/ZnO/CS BNC was characterized by scanning electron microscopy. ITO-Ppy/CS and ITO-Ppy/ZnO/CS bioelectrodes were characterized using the Fourier transform infrared technique, X-ray diffraction, and thermogravimetric analysis. The electrical conductivity of nanocomposites was investigated by a four-probe method. The prepared nanocomposites were analyzed for antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl assay. The results demonstrated that the antioxidant activity of nanocomposites increased remarkably by addition of ZnO NPs. The electrical conductivity of films showed a sudden decrease for lower weight ratios of ZnO NPs (5 wt%), while it was increased gradually for higher ratios (10, 15, and 20 wt%). The nanocomposites were analyzed for antibacterial activity against Gram-positive and Gram-negative bacteria. The results indicated that the synthesized BNC is effective against all of the studied bacteria, and its effectiveness is higher for Pseudomonas aeruginosa. The thermal stability and physical properties of BNC films were increased by an increase in the weight ratio of ZnO NPs, promising novel applications for the electrically conductive polysaccharide-based nanocomposites, particularly those that may exploit the antimicrobial nature of Ppy/ZnO/CS BNCs. PMID:25565815

  12. Novel conductive polypyrrole/zinc oxide/chitosan bionanocomposite: synthesis, characterization, antioxidant, and antibacterial activities.

    PubMed

    Ebrahimiasl, Saeideh; Zakaria, Azmi; Kassim, Anuar; Basri, Sri Norleha

    2015-01-01

    An antibacterial and conductive bionanocomposite (BNC) film consisting of polypyrrole (Ppy), zinc oxide (ZnO) nanoparticles (NPs), and chitosan (CS) was electrochemically synthesized on indium tin oxide (ITO) glass substrate by electrooxidation of 0.1 M pyrrole in aqueous solution containing appropriate amounts of ZnO NPs uniformly dispersed in CS. This method enables the room temperature electrosynthesis of BNC film consisting of ZnO NPs incorporated within the growing Ppy/CS composite. The morphology of Ppy/ZnO/CS BNC was characterized by scanning electron microscopy. ITO-Ppy/CS and ITO-Ppy/ZnO/CS bioelectrodes were characterized using the Fourier transform infrared technique, X-ray diffraction, and thermogravimetric analysis. The electrical conductivity of nanocomposites was investigated by a four-probe method. The prepared nanocomposites were analyzed for antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl assay. The results demonstrated that the antioxidant activity of nanocomposites increased remarkably by addition of ZnO NPs. The electrical conductivity of films showed a sudden decrease for lower weight ratios of ZnO NPs (5 wt%), while it was increased gradually for higher ratios (10, 15, and 20 wt%). The nanocomposites were analyzed for antibacterial activity against Gram-positive and Gram-negative bacteria. The results indicated that the synthesized BNC is effective against all of the studied bacteria, and its effectiveness is higher for Pseudomonas aeruginosa. The thermal stability and physical properties of BNC films were increased by an increase in the weight ratio of ZnO NPs, promising novel applications for the electrically conductive polysaccharide-based nanocomposites, particularly those that may exploit the antimicrobial nature of Ppy/ZnO/CS BNCs.

  13. Antibacterial and antioxidant activities of ethanol extract from Paullinia cupana Mart.

    PubMed

    Basile, Adriana; Ferrara, Lydia; Pezzo, Marisa Del; Mele, Guido; Sorbo, Sergio; Bassi, Paola; Montesano, Domenico

    2005-10-31

    The antibacterial and antioxidant activity of the ethanol extract from Paullinia cupana var. sorbilis Mart. (Sapindaceae) seeds, commonly called guarana, was assessed towards selected bacteria as well as in different antioxidant models. The extract, at a concentration between 16 and 128 microg/ml, showed a significant antibacterial effect expressed as minimum inhibitory concentration (MIC) against both Gram-negative and Gram-positive bacteria. In particular, Pseudomonas aeruginosa (MIC=16 microg/ml), Proteus mirabilis (MIC=32 microg/ml), Proteus vulgaris (MIC=32 microg/ml) and Escherichia coli (MIC=32 microg/ml) were the most inhibited. The antioxidant activity was determined by the malonyldialdehyde (MDA) test, measuring the MDA concentration in 3T3-L1 cells after induced cellular damage using ferric ammonium citrate (FAC). The reduction of lipid peroxidation was 62.5% using a guarana extract with a concentration of 2 microg/ml. This effect was dose/dependent. The ethanol extract from Paullinia cupana seeds was analysed by spectrophotometry to determine the concentration of catechol substances after treatment of the extract with p-aminophenol. The total phenolics content in the ethanol extract was also determined spectrophotometrically according to the Folin-Ciocalteu procedure and calculated as gallic acid equivalents (GAE). The concentration of catechol equivalent was 6.06+/-0.13 mg/g (mean+/-S.D.), while the total phenolic content was 8.43+/-0.21 mg/g (mean+/-S.D.). The correlation index between antioxidant activity and catechol content was 0.96.

  14. Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties.

    PubMed

    Rizzello, C G; Losito, I; Gobbetti, M; Carbonara, T; De Bari, M D; Zambonin, P G

    2005-07-01

    Water-soluble extracts of 9 Italian cheese varieties that differed mainly for type of cheese milk, starter, technology, and time of ripening were fractionated by reversed-phase fast protein liquid chromatography, and the antimicrobial activity of each fraction was first assayed toward Lactobacillus sakei A15 by well-diffusion assay. Active fractions were further analyzed by HPLC coupled to electrospray ionization-ion trap mass spectrometry, and peptide sequences were identified by comparison with a proteomic database. Parmigiano Reggiano, Fossa, and Gorgonzola water-soluble extracts did not show antibacterial peptides. Fractions of Pecorino Romano, Canestrato Pugliese, Crescenza, and Caprino del Piemonte contained a mixture of peptides with a high degree of homology. Pasta filata cheeses (Caciocavallo and Mozzarella) also had antibacterial peptides. Peptides showed high levels of homology with N-terminal, C-terminal, or whole fragments of well known antimicrobial or multifunctional peptides reported in the literature: alphaS1-casokinin (e.g., sheep alphaS1-casein (CN) f22-30 of Pecorino Romano and cow alphaS1-CN f24-33 of Canestrato Pugliese); isracidin (e.g., sheep alphaS1-CN f10-21 of Pecorino Romano); kappacin and casoplatelin (e.g., cow kappa-CN f106-115 of Canestrato Pugliese and Crescenza); and beta-casomorphin-11 (e.g., goat beta-CN f60-68 of Caprino del Piemonte). As shown by the broth microdilution technique, most of the water-soluble fractions had a large spectrum of inhibition (minimal inhibitory concentration of 20 to 200 microg/mL) toward gram-positive and gram-negative bacterial species, including potentially pathogenic bacteria of clinical interest. Cheeses manufactured from different types of cheese milk (cow, sheep, and goat) have the potential to generate similar peptides with antimicrobial activity.

  15. Novel conductive polypyrrole/zinc oxide/chitosan bionanocomposite: synthesis, characterization, antioxidant, and antibacterial activities

    PubMed Central

    Ebrahimiasl, Saeideh; Zakaria, Azmi; Kassim, Anuar; Basri, Sri Norleha

    2015-01-01

    An antibacterial and conductive bionanocomposite (BNC) film consisting of polypyrrole (Ppy), zinc oxide (ZnO) nanoparticles (NPs), and chitosan (CS) was electrochemically synthesized on indium tin oxide (ITO) glass substrate by electrooxidation of 0.1 M pyrrole in aqueous solution containing appropriate amounts of ZnO NPs uniformly dispersed in CS. This method enables the room temperature electrosynthesis of BNC film consisting of ZnO NPs incorporated within the growing Ppy/CS composite. The morphology of Ppy/ZnO/CS BNC was characterized by scanning electron microscopy. ITO–Ppy/CS and ITO–Ppy/ZnO/CS bioelectrodes were characterized using the Fourier transform infrared technique, X-ray diffraction, and thermogravimetric analysis. The electrical conductivity of nanocomposites was investigated by a four-probe method. The prepared nanocomposites were analyzed for antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl assay. The results demonstrated that the antioxidant activity of nanocomposites increased remarkably by addition of ZnO NPs. The electrical conductivity of films showed a sudden decrease for lower weight ratios of ZnO NPs (5 wt%), while it was increased gradually for higher ratios (10, 15, and 20 wt%). The nanocomposites were analyzed for antibacterial activity against Gram-positive and Gram-negative bacteria. The results indicated that the synthesized BNC is effective against all of the studied bacteria, and its effectiveness is higher for Pseudomonas aeruginosa. The thermal stability and physical properties of BNC films were increased by an increase in the weight ratio of ZnO NPs, promising novel applications for the electrically conductive polysaccharide-based nanocomposites, particularly those that may exploit the antimicrobial nature of Ppy/ZnO/CS BNCs. PMID:25565815

  16. Effect of N-terminal truncation on antibacterial activity, cytotoxicity and membrane perturbation activity of Cc-CATH3.

    PubMed

    Jittikoon, Jiraphun; Ngamsaithong, Narumon; Pimthon, Jutarat; Vajragupta, Opa

    2015-10-01

    A series of amino-terminal truncated analogues of quail antimicrobial peptide Cc-CATH3(1-29) were created and examined antibacterial activity against Gram-positive bacteria, cytotoxicity against mouse fibroblast cell line, and membrane perturbation activity against various membrane models. Parent peptide Cc-CATH3(1-29) and the first four-residue truncated peptide Cc-CATH3(5-29) were active in all tested experiments. In contrast, the eight- and twelve-residue truncated variants Cc-CATH3(9-29) and Cc-CATH3(13-29) appeared to have lost activities. Cc-CATH3(1-29) and Cc-CATH3(5-29) possessed antibacterial activity with minimum inhibitory concentrations of 2-4 and 1-2 µM, respectively. For cytotoxicity, Cc-CATH3(1-29) and Cc-CATH3(5-29) displayed cytotoxicity with the IC50 values of 9.33 and 4.93 μM, respectively. Cc-CATH3(5-29) induced greater liposome membranes disruption than Cc-CATH3(1-29) regardless of lipid type and composition. The leakage results of Cc-CATH3(1-29) share a similar trend with that in Cc-CATH3(5-29); they exhibit no preferential binding to anionic phospholipids. In conclusion, the results suggested that the first four residues at the N-terminus "RVRR" is not essential for presenting all test activities. In contrast, residues five to eight of "FWPL" are necessary as the exclusion of this short motif in Cc-CATH3(9-29) and Cc-CATH3(13-29) leads to a loss of activities. This study will be beneficial for further design and development of Cc-CATH3 to be novel antibiotic.

  17. Transport Capabilities of Eleven Gram-positive Bacteria: Comparative Genomic Analyses

    PubMed Central

    Lorca, Graciela L.; Barabote, Ravi D.; Zlotopolski, Vladimir; Tran, Can; Winnen, Brit; Hvorup, Rikki N.; Stonestrom, Aaron J.; Nguyen, Elizabeth; Huang, Li-Wen; Kim, David S.; Saier, Milton H.

    2007-01-01

    The genomes of eleven Gram-positive bacteria that are important for human health and the food industry, nine low G+C lactic acid bacteria and two high G+C Gram-positive organisms, were analyzed for their complement of genes encoding transport proteins. Thirteen to eighteen percent of their genes encode transport proteins, larger percentages than observed for most other bacteria. All of these bacteria possess channel proteins, some of which probably function to relieve osmotic stress. Amino acid uptake systems predominate over sugar and peptide cation symporters, and of the sugar uptake porters, those specific for oligosaccharides and glycosides often outnumber those for free sugars. About 10% of the total transport proteins are constituents of putative multidrug efflux pumps with Major Facilitator Superfamily (MFS)-type pumps (55%) being more prevalent than ATP-binding cassette (ABC)-type pumps (33%), which, however, usually greatly outnumber all other types. An exception to this generalization is Streptococcus thermophilus with 54% of its drug efflux pumps belonging to the ABC superfamily and 23% belonging each to the Multidrug/Oligosaccharide/Polysaccharide (MOP) superfamily and the MFS. These bacteria also display peptide efflux pumps that may function in intercellular signalling, and macromolecular efflux pumps, many of predictable specificities. Most of the bacteria analyzed have no pmf-coupled or transmembrane flow electron carriers. The one exception is Brevibacterium linens, which in addition to these carriers, also has transporters of several families not represented in the other ten bacteria examined. Comparisons with the genomes of organisms from other bacterial kingdoms revealed that lactic acid bacteria possess distinctive proportions of recognized transporter types (e.g., more porters specific for glycosides than reducing sugars). Some homologues of transporters identified had previously been identified only in Gram-negative bacteria or in eukaryotes

  18. Antimicrobial susceptibility of non-enterococcal intrinsic glycopeptide-resistant Gram-positive organisms.

    PubMed

    Vay, Carlos; Cittadini, Roxana; Barberis, Claudia; Hernán Rodríguez, Carlos; Perez Martínez, Herminia; Genero, Fabiana; Famiglietti, Angela

    2007-02-01

    Non-enterococcal Gram-positive bacteria that are intrinsically vancomycin-resistant have been infrequently isolated in association with serious infections. However, well-documented infections have lately been reported with increasing frequency. Because these organisms may be pathogens, we tested the MICs of 19 antimicrobial agents by the agar dilution method for predicting susceptibility. The activity of these antimicrobial agents was assessed against 28 strains (Lactobacillus rhamnosus, 6; Lactobacillus acidophilus, 1; Lactobacillus casei, 1; Lactobacillus fermentum, 2; Lactobacillus brevis, 1; Lactobacillus plantarum, 1; Weissella confusa, 2; Leuconostoc mesenteroides, 7; Leuconostoc lactis, 4; Pediococcus acidilactici, 2; Pediococcus pentosaceus, 1), isolated from clinical specimens in an Argentinian university hospital from 1997 to 2003. The MICs of penicillin for 67% of the Lactobacillus strains and 100% of the Leuconostoc spp. and Pediococcus spp. strains tested were in the 0.25-2 microg/mL range. Erythromycin was the most active antimicrobial overall. Multiresistance was observed in 2 strains (Lactobacillus rhamnosus, 1; Lactobacillus plantarum, 1).

  19. Antibacterial and Antibiofilm Activities of Makaluvamine Analogs

    PubMed Central

    Nijampatnam, Bhavitavya; Nadkarni, Dwayaja H.; Wu, Hui; Velu, Sadanandan E.

    2015-01-01

    Streptococcus mutans is a key etiological agent in the formation of dental caries. The major virulence factor is its ability to form biofilms. Inhibition of S. mutans biofilms offers therapeutic prospects for the treatment and the prevention of dental caries. In this study, 14 analogs of makaluvamine, a marine alkaloid, were evaluated for their antibacterial activity against S. mutans and for their ability to inhibit S. mutans biofilm formation. All analogs contained the tricyclic pyrroloiminoquinone core of makaluvamines. The structural variations of the analogs are on the amino substituents at the 7-position of the ring and the inclusion of a tosyl group on the pyrrole ring N of the makaluvamine core. The makaluvamine analogs displayed biofilm inhibition with IC50 values ranging from 0.4 μM to 88 μM. Further, the observed bactericidal activity of the majority of the analogs was found to be consistent with the anti-biofilm activity, leading to the conclusion that the anti-biofilm activity of these analogs stems from their ability to kill S. mutans. However, three of the most potent N-tosyl analogs showed biofilm IC50 values at least an order of magnitude lower than that of bactericidal activity, indicating that the biofilm activity of these analogs is more selective and perhaps independent of bactericidal activity. PMID:25767719

  20. Human cytokine responses induced by Gram-positive cell walls of normal intestinal microbiota

    PubMed Central

    Chen, T; Isomäki, P; Rimpiläinen, M; Toivanen, P

    1999-01-01

    The normal microbiota plays an important role in the health of the host, but little is known of how the human immune system recognizes and responds to Gram-positive indigenous bacteria. We have investigated cytokine responses of peripheral blood mononuclear cells (PBMC) to Gram-positive cell walls (CW) derived from four common intestinal indigenous bacteria, Eubacterium aerofaciens (Eu.a.), Eubacterium limosum(Eu.l.), Lactobacillus casei(L.c.), and Lactobacillus fermentum (L.f.). Our results indicate that Gram-positive CW of the normal intestinal microbiota can induce cytokine responses of the human PBMC. The profile, level and kinetics of these responses are similar to those induced by lipopolysaccharide (LPS) or CW derived from a pathogen, Streptococcus pyogenes (S.p.). Bacterial CW are capable of inducing production of a proinflammatory cytokine, tumour necrosis factor-alpha (TNF-α), and an anti-inflammatory cytokine, IL-10, but not that of IL-4 or interferon-gamma (IFN-γ). Monocytes are the main cell population in PBMC to produce TNF-α and IL-10. Induction of cytokine secretion is serum-dependent; both CD14-dependent and -independent pathways are involved. These findings suggest that the human cytokine responses induced by Gram-positive CW of the normal intestinal microbiota are similar to those induced by LPS or Gram-positive CW of the pathogens. PMID:10540188

  1. Antibacterial activity of aquatic gliding bacteria.

    PubMed

    Sangnoi, Yutthapong; Anantapong, Theerasak; Kanjana-Opas, Akkharawit

    2016-01-01

    The study aimed to screen and isolate strains of freshwater aquatic gliding bacteria, and to investigate their antibacterial activity against seven common pathogenic bacteria. Submerged specimens were collected and isolated for aquatic gliding bacteria using four different isolation media (DW, MA, SAP2, and Vy/2). Gliding bacteria identification was performed by 16S rRNA gene sequencing and phylogenetic analysis. Crude extracts were obtained by methanol extraction. Antibacterial activity against seven pathogenic bacteria was examined by agar-well diffusion assay. Five strains of aquatic gliding bacteria including RPD001, RPD008, RPD018, RPD027 and RPD049 were isolated. Each submerged biofilm and plastic specimen provided two isolates of gliding bacteria, whereas plant debris gave only one isolate. Two strains of gliding bacteria were obtained from each DW and Vy/2 isolation medium, while one strain was obtained from the SAP2 medium. Gliding bacteria strains RPD001, RPD008 and RPD018 were identified as Flavobacterium anhuiense with 96, 82 and 96 % similarity, respectively. Strains RPD049 and RPD027 were identified as F. johnsoniae and Lysobacter brunescens, respectively, with similarity equal to 96 %. Only crude extract obtained from RPD001 inhibited growth of Listeria monocytogenes (MIC 150 µg/ml), Staphylococcus aureus (MIC 75 µg/ml) and Vibrio cholerae (MIC 300 µg/ml), but showed weak inhibitory effect on Salmonella typhimurium (MIC > 300 µg/ml). Gliding bacterium strain RPD008 should be considered to a novel genus separate from Flavobacterium due to its low similarity value. Crude extract produced by RPD001 showed potential for development as a broad antibiotic agent. PMID:26885469

  2. Inhibition of various gram-positive and gram-negative bacteria growth on selenium nanoparticle coated paper towels.

    PubMed

    Wang, Qi; Larese-Casanova, Philip; Webster, Thomas J

    2015-01-01

    There are wide spread bacterial contamination issues on various paper products, such as paper towels hanging in sink splash zones or those used to clean surfaces, filter papers used in water and air purifying systems, and wrappings used in the food industry; such contamination may lead to the potential spread of bacteria and consequent severe health concerns. In this study, selenium nanoparticles were coated on normal paper towel surfaces through a quick precipitation method, introducing antibacterial properties to the paper towels in a healthy way. Their effectiveness at preventing biofilm formation was tested in bacterial assays involving Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus epidermidis. The results showed significant and continuous bacteria inhibition with about a 90% reduction from 24 to 72 hours for gram-positive bacteria including S. aureus and S. epidermidis. The selenium coated paper towels also showed significant inhibition of gram-negative bacteria like P. aeruginosa and E. coli growth at about 57% and 84%, respectively, after 72 hours of treatment. Therefore, this study established a promising selenium-based antibacterial strategy to prevent bacterial growth on paper products, which may lead to the avoidance of bacteria spreading and consequent severe health concerns. PMID:25926733

  3. Inhibition of various gram-positive and gram-negative bacteria growth on selenium nanoparticle coated paper towels.

    PubMed

    Wang, Qi; Larese-Casanova, Philip; Webster, Thomas J

    2015-01-01

    There are wide spread bacterial contamination issues on various paper products, such as paper towels hanging in sink splash zones or those used to clean surfaces, filter papers used in water and air purifying systems, and wrappings used in the food industry; such contamination may lead to the potential spread of bacteria and consequent severe health concerns. In this study, selenium nanoparticles were coated on normal paper towel surfaces through a quick precipitation method, introducing antibacterial properties to the paper towels in a healthy way. Their effectiveness at preventing biofilm formation was tested in bacterial assays involving Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus epidermidis. The results showed significant and continuous bacteria inhibition with about a 90% reduction from 24 to 72 hours for gram-positive bacteria including S. aureus and S. epidermidis. The selenium coated paper towels also showed significant inhibition of gram-negative bacteria like P. aeruginosa and E. coli growth at about 57% and 84%, respectively, after 72 hours of treatment. Therefore, this study established a promising selenium-based antibacterial strategy to prevent bacterial growth on paper products, which may lead to the avoidance of bacteria spreading and consequent severe health concerns.

  4. Biodegradable and conducting hydrogels based on Guar gum polysaccharide for antibacterial and dye removal applications.

    PubMed

    Sharma, Reena; Kaith, Balbir S; Kalia, Susheel; Pathania, D; Kumar, Amit; Sharma, Neha; Street, Reva M; Schauer, Caroline

    2015-10-01

    Conducting hydrogels possessing antibacterial activity were developed using a two-step free-radical aqueous polymerization method to incorporate polyaniline chains into an adsorbent Guar gum/acrylic acid hydrogel network. The material properties of the synthesized samples were characterized using FTIR spectroscopy, thermal analysis and scanning electron microscopy techniques. Conducting hydrogels were tested for antibacterial activities against gram-positive Staphylococcus aureus and gram-negative Escherichia coli bacteria and demonstrated antibacterial activity. Synthesized hydrogel samples can be potential adsorbent materials for dye removal applications. PMID:26217888

  5. Biodegradable and conducting hydrogels based on Guar gum polysaccharide for antibacterial and dye removal applications.

    PubMed

    Sharma, Reena; Kaith, Balbir S; Kalia, Susheel; Pathania, D; Kumar, Amit; Sharma, Neha; Street, Reva M; Schauer, Caroline

    2015-10-01

    Conducting hydrogels possessing antibacterial activity were developed using a two-step free-radical aqueous polymerization method to incorporate polyaniline chains into an adsorbent Guar gum/acrylic acid hydrogel network. The material properties of the synthesized samples were characterized using FTIR spectroscopy, thermal analysis and scanning electron microscopy techniques. Conducting hydrogels were tested for antibacterial activities against gram-positive Staphylococcus aureus and gram-negative Escherichia coli bacteria and demonstrated antibacterial activity. Synthesized hydrogel samples can be potential adsorbent materials for dye removal applications.

  6. Essential Oil Composition and Antibacterial Activity of Origanum vulgare subsp. glandulosum Desf. at Different Phenological Stages

    PubMed Central

    Chaabane, Hédia; Jemli, Maroua; Boulila, Abdennacer; Boussaid, Mohamed

    2013-01-01

    Abstract Variation in the quantity and quality of the essential oil (EO) of wild population of Origanum vulgare at different phenological stages, including vegetative, late vegetative, and flowering set, is reported. The oils of air-dried samples were obtained by hydrodistillation. The yield of oils (w/w%) at different stages were in the order of late vegetative (2.0%), early vegetative (1.7%), and flowering (0.6%) set. The oils were analyzed by gas chromatography (GC) and GC–mass spectrometry (GC-MS). In total, 36, 33, and 16 components were identified and quantified in vegetative, late vegetative, and flowering set, representing 94.47%, 95.91%, and 99.62% of the oil, respectively. Carvacrol was the major compound in all samples. The ranges of major constituents were as follows: carvacrol (61.08–83.37%), p-cymene (3.02–9.87%), and γ-terpinene (4.13–6.34%). Antibacterial activity of the oils was tested against three Gram-positive and two Gram-negative bacteria by the disc diffusion method and determining their diameter of inhibition and the minimum inhibitory concentration (MIC) values. The inhibition zones and MIC values for bacterial strains, which were sensitive to the EO of O. vulgare subsp. glandulosum, were in the range of 9–36 mm and 125–600 μg/mL, respectively. The oils of various phenological stages showed high activity against all tested bacteria, of which Bacillus subtilis was the most sensitive and resistant strain, respectively. Thus, they represent an inexpensive source of natural antibacterial substances that exhibited potential for use in pathogenic systems. PMID:24320986

  7. Essential oil composition and antibacterial activity of Origanum vulgare subsp. glandulosum Desf. at different phenological stages.

    PubMed

    Béjaoui, Afef; Chaabane, Hédia; Jemli, Maroua; Boulila, Abdennacer; Boussaid, Mohamed

    2013-12-01

    Variation in the quantity and quality of the essential oil (EO) of wild population of Origanum vulgare at different phenological stages, including vegetative, late vegetative, and flowering set, is reported. The oils of air-dried samples were obtained by hydrodistillation. The yield of oils (w/w%) at different stages were in the order of late vegetative (2.0%), early vegetative (1.7%), and flowering (0.6%) set. The oils were analyzed by gas chromatography (GC) and GC-mass spectrometry (GC-MS). In total, 36, 33, and 16 components were identified and quantified in vegetative, late vegetative, and flowering set, representing 94.47%, 95.91%, and 99.62% of the oil, respectively. Carvacrol was the major compound in all samples. The ranges of major constituents were as follows: carvacrol (61.08-83.37%), p-cymene (3.02-9.87%), and γ-terpinene (4.13-6.34%). Antibacterial activity of the oils was tested against three Gram-positive and two Gram-negative bacteria by the disc diffusion method and determining their diameter of inhibition and the minimum inhibitory concentration (MIC) values. The inhibition zones and MIC values for bacterial strains, which were sensitive to the EO of O. vulgare subsp. glandulosum, were in the range of 9-36 mm and 125-600 μg/mL, respectively. The oils of various phenological stages showed high activity against all tested bacteria, of which Bacillus subtilis was the most sensitive and resistant strain, respectively. Thus, they represent an inexpensive source of natural antibacterial substances that exhibited potential for use in pathogenic systems. PMID:24320986

  8. Chemotyping of diverse Eucalyptus species grown in Egypt and antioxidant and antibacterial activities of its respective essential oils.

    PubMed

    Salem, Mohamed Z M; Ashmawy, Nader A; Elansary, Hosam O; El-Settawy, Ahmed A

    2015-01-01

    The chemical composition of the essential oil from the leaves of Eucalyptus camaldulensis, Eucalyptus camaldulensis var. obtusa and Eucalyptus gomphocephala grown in northern Egypt was analysed by using GC-FID and GC-MS techniques. The antibacterial (agar disc diffusion and minimum inhibitory concentration methods) and antioxidant activities (2,2'-diphenypicrylhydrazyl) were examined. The main oils constituents were 1,8-cineole (21.75%), β-pinene (20.51%) and methyleugenol (6.10%) in E. camaldulensis; spathulenol (37.46%), p-cymene (17.20%) and crypton (8.88%) in E. gomphocephala; spathulenol (18.37%), p-cymene (19.38%) and crypton (16.91%) in E. camaldulensis var. obtusa. The essential oils from the leaves of Eucalyptus spp. exhibited considerable antibacterial activity against Gram-positive and Gram-negative bacteria. The values of total antioxidant activity were 70 ± 3.13%, 50 ± 3.34% and 84 ± 4.64% for E. camaldulensis, E. camaldulensis var. obtusa and E. gomphocephala, respectively. The highest antioxidant activity value of 84 ± 4.64% could be attributed to the high amount of spathulenol (37.46%).

  9. Chemotyping of diverse Eucalyptus species grown in Egypt and antioxidant and antibacterial activities of its respective essential oils.

    PubMed

    Salem, Mohamed Z M; Ashmawy, Nader A; Elansary, Hosam O; El-Settawy, Ahmed A

    2015-01-01

    The chemical composition of the essential oil from the leaves of Eucalyptus camaldulensis, Eucalyptus camaldulensis var. obtusa and Eucalyptus gomphocephala grown in northern Egypt was analysed by using GC-FID and GC-MS techniques. The antibacterial (agar disc diffusion and minimum inhibitory concentration methods) and antioxidant activities (2,2'-diphenypicrylhydrazyl) were examined. The main oils constituents were 1,8-cineole (21.75%), β-pinene (20.51%) and methyleugenol (6.10%) in E. camaldulensis; spathulenol (37.46%), p-cymene (17.20%) and crypton (8.88%) in E. gomphocephala; spathulenol (18.37%), p-cymene (19.38%) and crypton (16.91%) in E. camaldulensis var. obtusa. The essential oils from the leaves of Eucalyptus spp. exhibited considerable antibacterial activity against Gram-positive and Gram-negative bacteria. The values of total antioxidant activity were 70 ± 3.13%, 50 ± 3.34% and 84 ± 4.64% for E. camaldulensis, E. camaldulensis var. obtusa and E. gomphocephala, respectively. The highest antioxidant activity value of 84 ± 4.64% could be attributed to the high amount of spathulenol (37.46%). PMID:25421867

  10. Effect of betamethasone in combination with antibiotics on gram positive and gram negative bacteria.

    PubMed

    Artini, M; Papa, R; Cellini, A; Tilotta, M; Barbato, G; Koverech, A; Selan, L

    2014-01-01

    Betamethasone is an anti-inflammatory steroid drug used in cases of anaphylactic and allergic reactions, of Alzheimer and Addison diseases and in soft tissue injuries. It modulates gene expression for anti-inflammatory activity suppressing the immune system response. This latter effect might decrease the effectiveness of immune system response against microbial infections. Corticosteroids, in fact, mask some symptoms of infection and during their use superimposed infections may occur. Thus, the use of glucocorticoids in patients with sepsis remains extremely controversial. In this study we analyzed the in vitro effect of a commercial formulation of betamethasone (Bentelan) on several Gram positive and Gram negative bacteria of clinical relevance. It was found to be an inhibitor of the growth of most of the strains examined. Also the effect of betamethasone in combination with some classes of antibiotics was evaluated. Antibiotic-steroid combination therapy is, in such cases, superior to antibiotic-alone treatment to impair bacterial growths. Such effect was essentially not at all observable on Staphylococcus aureus or Coagulase Negative Staphylococci (CoNS).

  11. CHEMICAL COMPOSITION AND ANTIBACTERIAL ACTIVITY OF SOME MEDICINAL PLANTS FROM LAMIACEAE FAMILY.

    PubMed

    Kozłowska, Mariola; Laudy, Agnieszka E; Przybył, Jarosław; Ziarno, Małgorzata; Majewska, Ewa

    2015-01-01

    Chemical composition and antibacterial activity of aqueous (ethanolic and methanolic) extracts from herbs often used in Polish cuisine and traditional herbal medicine including thyme (Thymus vulgaris L.), rosemary (Rosmarinus officinalis L.), oregano (Origanum vulgare L.), peppermint (Mentha piperita L.) and sage (Salvia officinalis L.) were compared. The aqueous ethanolic extracts contained slightly higher levels of phenolics compared to the aqueous methanolic extracts. In turn, GC-MS analysis showed that the aqueous methanolic extracts of thyme, rosemary and sage contained several additional compounds such as eugenol or ledol. The present studies also indicated that the bacterial species applied in the experiment exhibited different sensitivities towards tested extracts. Staphylococcus aureus strains were found to be the most sensitive bacteria to aqueous (ethanolic and methanolic) rosemary and sage extracts and aqueous methanolic thyme extract. Klebsiella pneumoniae ATCC 13883 and Proteus vulgaris NCTC 4635 were more susceptible to the aqueous methanolic thyme extract. However, Listeria monocytogenes 1043S was the most sensitive to the aqueous ethanolic rosemary extract. Gram-positive bacteria were generally more sensitive to the tested extracts than Gram-negative ones. PMID:26647633

  12. In vitro evaluation of anticancer and antibacterial activities of cobalt oxide nanoparticles.

    PubMed

    Khan, Shahanavaj; Ansari, Anees A; Khan, Abdul Arif; Ahmad, Rehan; Al-Obaid, Omar; Al-Kattan, Wael

    2015-12-01

    Cobalt oxide nanoparticles (Co3O4-NPs) were synthesized using simple urea-based thermal decomposition method. Phase purity and particle size of as-synthesized nanoparticles were characterized through X-ray diffraction pattern (XRD) and transmission electron microscopy. Through XRD morphology of the Co3O4-NPs was found to be variable in size with range of 36 nm. In our present study, we explored the potential cytotoxic and antibacterial effects of Co3O4-NPs in human colorectal types of cancerous cells (HT29 and SW620) and also nine Gram-positive and Gram-negative bacteria. Co3O4-NPs showed promising anticancer activity against HT29 and SW620 cells with IC50 value of 2.26 and 394.5 μg/mL, respectively. However, no significant effect of Co3O4-NPs was observed against bacterial strains. Furthermore, a detailed study has been carried out to investigate the possible mechanism of cell death in HT29 cancer cell line through the analysis of expression level of anti-apoptotic Bcl2 and BclxL markers. Western blot analysis results suggested significant role of Co3O4-NPs exposure in cell death due to apoptosis.

  13. Water-dispersible silver nanoparticles-decorated carbon nanomaterials: synthesis and enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Dinh, Ngo Xuan; Chi, Do Thi; Lan, Nguyen Thi; Lan, Hoang; Van Tuan, Hoang; Van Quy, Nguyen; Phan, Vu Ngoc; Huy, Tran Quang; Le, Anh-Tuan

    2015-04-01

    In recent years, a growing number of outbreak of infectious diseases have emerged all over the world. The outbreak of re-emerging and emerging infectious diseases is a considerable burden on global economies and public health. Nano-antimicrobials have been studied as an effective solution for the prevention of infectious diseases. In this work, we demonstrated a modified photochemical approach for the preparation of carbon nanotubes-silver nanoparticles (CNTs-Ag) and graphene oxide-silver nanoparticles (GO-Ag) nanocomposites, which can be stably dispersible in aqueous solution. The formation of silver nanoparticles (Ag-NPs) on the functionalized CNTs and GO nanosheets was analyzed by X-ray diffraction, transmission electron microscopy, Raman spectroscopy and UV-Vis measurements. These analyses indicated that the average particle sizes of Ag-NPs deposited on GO/CNTs nanostructures were ~6-7 nm with nearly uniform size distribution. Moreover, these nanocomposites were found to exhibit enhanced antibacterial activity against two strains of infectious bacteria including Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria as compared to bare Ag-NPs. Our obtained studies showed a high potential of GO-Ag and CNTs-Ag nanocomposites as effective and long-term disinfection solution to eliminate infectious bacterial pathogens.

  14. Synthesis, characterization, antibacterial activity and quantum chemical studies of N'-Acetyl propane sulfonic acid hydrazide

    NASA Astrophysics Data System (ADS)

    Alyar, Saliha; Alyar, Hamit; Ozdemir, Ummuhan Ozmen; Sahin, Omer; Kaya, Kerem; Ozbek, Neslihan; Gunduzalp, Ayla Balaban

    2015-08-01

    A new N'-Acetyl propane sulfonic acid hydrazide, C3H7sbnd SO2sbnd NHsbnd NHsbnd COCH3 (Apsh, an sulfon amide compound) has been synthesized for the first time. The structure of Apsh was investigated using elemental analysis, spectral (IR, 1H/13C NMR) measurements. In addition, molecular structure of the Apsh was determined by single crystal X-ray diffraction technique and found that the compound crystallizes in monoclinic, space group P 21/c. 1H and 13C shielding tensors for crystal structure were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The structure of Apsh is optimized using Density Functional Theory (DFT) method. The vibrational band assignments were performed at B3LYP/6-311++G(d,p) theory level combined with scaled quantum mechanics force field (SQMFF) methodology. The theoretical IR frequencies are found to be in good agreement with the experimental IR frequencies. Nonlinear optical (NLO) behaviour of Apsh is also examined by the theoretically predicted values of dipole moment (μ), polarizability (α0) and first hyperpolarizability (βtot). The antibacterial activities of synthesized compound were studied against Gram positive bacteria: Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 23212, Staphylococcus epidermidis ATCC 34384, Gram negative bacteria: Eschericha coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 70063 by using microdilution method (as MICs) and disc diffusion method.

  15. Silver(I) complexes of N-methylbenzothiazole-2-thione: synthesis, structures and antibacterial activity.

    PubMed

    Aslanidis, P; Hatzidimitriou, A G; Andreadou, E G; Pantazaki, A A; Voulgarakis, N

    2015-05-01

    Three silver(I) complexes containing N-methylbenzothiazole-2-thione (mbtt) have been prepared and structurally characterized by X-ray single-crystal analysis. Silver(I) nitrate, and silver(I) triflate react with mbtt to give homoleptic complexes of formula [(mbtt)2Ag(μ-mbtt)2Ag(mbtt)2](NO3)2 (1) and [Ag(mbtt)3](CF3SO3) (2) respectively, while silver(I) chloride gives the binuclear halide-bridged [(mbtt)2Ag(μ2-Cl)2Ag(mbtt)2] (3). In the binuclear complex 1 the two metal ions, separated by 3.73 Å from each other, are doubly bridged by the exocyclic S-atoms of two mbtt ligands, with the tetrahedral environment around each silver ion being completed by the S-atoms of two terminally bonded mbtt units. Compound 2 is mononuclear with the metal ion surrounded by the exocyclic S-atoms of three mbtt ligands in a nearly ideal trigonal planar arrangement. The new complexes showed significant in vitro antibacterial activity against certain Gram-positive and Gram-negative bacterial strains.

  16. Synthesis, characterisation and antibacterial activity of PVA/TEOS/Ag-Np hybrid thin films.

    PubMed

    Bryaskova, Rayna; Pencheva, Daniela; Kale, Girish M; Lad, Umesh; Kantardjiev, T

    2010-09-01

    Novel hybrid material thin films based on polyvinyl alcohol (PVA)/tetraethyl orthosilicate (TEOS) with embedded silver nanoparticles (AgNps) were synthesized using sol-gel method. Two different strategies for the synthesis of silver nanoparticles in PVA/TEOS matrix were applied based on reduction of the silver ions by thermal annealing of the films or by preliminary preparation of silver nanoparticles using PVA as a reducing agent. The successful incorporation of silver nanoparticles ranging from 5 to 7nm in PVA/TEOS matrix was confirmed by TEM and EDX analysis, UV-Vis spectroscopy and XRD analysis. The antibacterial activity of the synthesized hybrid materials against etalon strains of three different groups of bacteria -Staphylococcus aureus (gram-positive bacteria), Escherichia coli (gram-negative bacteria), Pseudomonas aeruginosa (non-ferment gram-negative bacteria) has been studied as they are commonly found in hospital environment. The hybrid materials showed a strong bactericidal effect against E. coli, S. aureus and P. aeruginosa and therefore have potential applications in biotechnology and biomedical science.

  17. Cellulose aerogels functionalized with polypyrrole and silver nanoparticles: In-situ synthesis, characterization and antibacterial activity.

    PubMed

    Wan, Caichao; Li, Jian

    2016-08-01

    Green porous and lightweight cellulose aerogels have been considered as promising candidates to substitute some petrochemical host materials to support various nanomaterials. In this work, waste wheat straw was collected as feedstock to fabricate cellulose hydrogels, and a green inexpensive NaOH/polyethylene glycol solution was used as cellulose solvent. Prior to freeze-drying treatment, the cellulose hydrogels were integrated with polypyrrole and silver nanoparticles by easily-operated in-situ oxidative polymerization of pyrrole using silver ions as oxidizing agent. The tri-component hybrid aerogels were characterized by scanning electron microscope, transmission electron microscope, energy dispersive X-ray spectroscopy, selected area electron diffraction, X-ray photoelectron spectroscopy, and X-ray diffraction. Moreover, the antibacterial activity of the hybrid aerogels against Escherichia coli (Gram-negative), Staphylococcus aureus (Gram-positive) and Listeria monocytogenes (intracellular bacteria) was qualitatively and quantitatively investigated by parallel streak method and determination of minimal inhibitory concentration, respectively. This work provides an example of combining cellulose aerogels with nanomaterials, and helps to develop novel forms of cellulose-based functional materials. PMID:27112885

  18. Influence of quaternization of ammonium on antibacterial activity and cytocompatibility of thin copolymer layers on titanium.

    PubMed

    Waßmann, Marco; Winkel, Andreas; Haak, Katharina; Dempwolf, Wibke; Stiesch, Meike; Menzel, Henning

    2016-10-01

    Antimicrobial coatings are able to improve the osseointegration of dental implants. Copolymers are promising materials for such applications due to their combined properties of two different monomers. To investigate the influence of different monomer mixtures, we have been synthesized copolymers of dimethyl (methacryloxyethyl) phosphonate (DMMEP) and dipicolyl aminoethyl methacrylate in different compositions and have them characterized to obtain the r-parameters. Some of the copolymers with different compositions have also been alkylated with 1-bromohexane, resulting in quaternized ammonium groups. The copolymers have been deposited onto titanium surfaces resulting in ultrathin, covalently bound layers. These layers have been characterized by water contact angle measurements and ellipsometry. The influence of quaternary ammonium groups on antibacterial properties and cytocompatibility was studied: Activity against bacteria was tested with a gram positive Staphylococcus aureus strain. Cytocompatibility was tested with a modified LDH assay after 24 and 72 h to investigate adhesion and proliferation of human fibroblast cells on modified surfaces. The copolymer with the highest content of DMMEP showed a good reduction of S. aureus and in the alkylated version a very good reduction of about 95%. On the other hand, poor cytocompatibility is observed. However, our results show that this trend cannot be generalized for this copolymer system.

  19. Class D β-lactamases do exist in Gram-positive bacteria

    SciTech Connect

    Toth, Marta; Antunes, Nuno Tiago; Stewart, Nichole K.; Frase, Hilary; Bhattacharya, Monolekha; Smith, Clyde A.; Vakulenko, Sergei B.

    2015-11-09

    Production of β-lactamases of one of four molecular classes (A, B, C and D) is the major mechanism of bacterial resistance to β-lactams, the largest class of antibiotics, which have saved countless lives since their inception 70 years ago. Although several hundred efficient class D enzymes have been identified in Gram-negative pathogens over the last four decades, none have been reported in Gram-positive bacteria. Here we demonstrate that efficient class D β-lactamases capable of hydrolyzing a wide array of β-lactam substrates are widely disseminated in various species of environmental Gram-positive organisms. Class D enzymes of Gram-positive bacteria have a distinct structural architecture and employ a unique substrate-binding mode that is quite different from that of all currently known class A, C and D β-lactamases. In conclusion, these enzymes thus constitute a previously unknown reservoir of novel antibiotic-resistance enzymes.

  20. Class D β-lactamases do exist in Gram-positive bacteria

    PubMed Central

    Toth, Marta; Antunes, Nuno Tiago; Stewart, Nichole K.; Frase, Hilary; Bhattacharya, Monolekha; Smith, Clyde; Vakulenko, Sergei

    2015-01-01

    Production of β-lactamases of the four molecular classes (A, B, C, and D) is the major mechanism of bacterial resistance to β-lactams, the largest class of antibiotics that have saved countless lives since their inception 70 years ago. Although several hundred efficient class D enzymes have been identified in Gram-negative pathogens over the last four decades, they have not been reported in Gram-positive bacteria. Here we demonstrate that efficient class D β-lactamases capable of hydrolyzing a wide array of β-lactam substrates are widely disseminated in various species of environmental Gram-positive organisms. Class D enzymes of Gram-positive bacteria have a distinct structural architecture and employ a unique substrate binding mode quite different from that of all currently known class A, C, and D β-lactamases. They constitute a novel reservoir of antibiotic resistance enzymes. PMID:26551395

  1. New insights into regulation of the tryptophan biosynthetic operon in Gram-positive bacteria.

    PubMed

    Gutierrez-Preciado, A; Jensen, R A; Yanofsky, C; Merino, E

    2005-08-01

    The tryptophan operon of Bacillus subtilis serves as an excellent model for investigating transcription regulation in Gram-positive bacteria. In this article, we extend this knowledge by analyzing the predicted regulatory regions in the trp operons of other fully sequenced Gram-positive bacteria. Interestingly, it appears that in eight of the organisms examined, transcription of the trp operon appears to be regulated by tandem T-box elements. These regulatory elements have recently been described in the trp operons of two bacterial species. Single T-box elements are commonly found in Gram-positive bacteria in operons encoding aminoacyl tRNA synthetases and proteins performing other functions. Different regulatory mechanisms appear to be associated with variations of trp gene organization within the trp operon. PMID:15953653

  2. Labeling and Selective Inactivation of Gram-Positive Bacteria Employing Bimodal Photoprobes with Dual Readouts.

    PubMed

    Galstyan,