Science.gov

Sample records for gramicidin channel cs

  1. Interactions in cation permeation through the gramicidin channel. Cs, Rb, K, Na, Li, Tl, H, and effects of anion binding.

    PubMed Central

    Eisenman, G; Sandblom, J; Neher, E

    1978-01-01

    As a prototype for binding and interaction in biological Na and K channels, the single channel conductances for Li, Na, K, Rb, Cs, H, and Tl and the membrane potentials for Tl-K mixtures are characterized for gramicidin A over wider concentration rangers than previously and analyzed using an "equilibrium domain" model that assumes a central rate-determining barrier. Peculiarities in the conductance-concentration relationship for TlF, TlNO3, and TlAc suggest that anions bind to Tl-loaded channels, and the theory is extended to allow for this. For concreteness, the selectivity of cation permeation is characterized in terms of individual binding and rate constants of this model, with the conclusions that the strongest site binds Cs greater than Rb greater than K greater than Na greater than Li, while the next strongest binds Na greater than K greater than Li greater than Rb greater than Cs. However, because Schagina, Grinfeldt, and Lev's recent finding of single filing (personal communication) indicates that the channel sites in gramicidin cannot be at equilibrium with the solution, and work in progress with Hägglund and Enos (Biophys. J. 21:26a. [Abstr.]) indicates that the simplest model adequate to account for the observed concentration-dependences of flux-ratio, conductance, I--V characteristic, and permeability has three barriers and four sites, some implications of additional rate-determining barriers at the mouth of the channel are discussed. The results are summarized using phenomenological "experimental" parameters that provide a model-independent way to represent that data concisely and which can be interpreted physically in terms of any desired model. PMID:77689

  2. Gramicidins A, B, and C form structurally equivalent ion channels.

    PubMed Central

    Sawyer, D B; Williams, L P; Whaley, W L; Koeppe, R E; Andersen, O S

    1990-01-01

    The membrane structure of the naturally occurring gramicidins A, B, and C was investigated using circular dichroism (CD) spectroscopy and single-channel recording techniques. All three gramicidins form channels with fairly similar properties (Bamberg, E., K. Noda, E. Gross, and P. Läuger. 1976. Biochim. Biophys. Acta. 419:223-228.). When incorporated into lysophosphatidylcholine micelles, however, the CD spectrum of gramicidin B is different from that of gramicidin A or C (cf. Prasad, K. U., T. L. Trapane, D. Busath, G. Szabo, and D. W. Urry. 1983. Int. J. Pept. Protein Res. 22:341-347.). The structural identity of the channels formed by gramicidin B has, therefore, been uncertain. We find that when gramicidins A and B are incorporated into dipalmitoylphosphatidylcholine vesicles, their CD spectra are fairly similar, suggesting that the two channel structures could be similar. In planar bilayers, gramicidins A, B, and C all form hybrid channels with each other. The properties of the hybrid channels are intermediate to those of the symmetric channels, and the appearance rates of the hybrid channels (relative to the symmetric channels) corresponds to what would be predicted if all three gramicidin molecules were to form structurally equivalent channels. These results allow us to interpret the different behavior of channels formed by the three gramicidins solely on the basis of the amino acid substitution at position 11. PMID:1705449

  3. Theoretical Study of Ion Transport in the Gramicidin a Channel

    NASA Astrophysics Data System (ADS)

    Roux, Benoi T.

    Modern techniques are used to study the permeation process of ions through the gramicidin A channel. The conformation of the gramicidin molecule is investigated experimentally in dimethylsulfoxide/acetone using the techniques of two-dimensional NMR spectroscopy. An empirical energy function is developed from ab initio calculations to represent the interaction of Li^{+}, Na^{+} and K^ {+} ions with the backbone of polypeptides; the parameters are tested in dense systems with free energy simulations. The dynamics of the gramicidin A channel dimer in the absence of water and ions is studied in the harmonic approximation by a vibrational analysis of the atomic motions relative to their equilibrium positions. The behavior of the water molecules in the channel is studied with a molecular dynamics simulation of a fully solvated Gramicidin A dimer embedded in a model membrane. the potential of mean force and the mobility of Na^{+ }, K^{+} and water are calculated in the interior of a gramicidin-like periodic poly (L,D)-alanine beta -helix. The potential of mean force of Na^ {+} ion along the axis of the gramicidin A channel is calculated with a molecular dynamics simulation of a fully solvated Gramicidin A dimer embedded in a model membrane; the gramicidin channel is modeled as a right -handed head-to-head beta-helix dimer. Binding sites are found at the extremities of the channel; no large activation energy barrier is caused by the dehydration process at the entrance of the channel. In the appendices, Statistical Mechanical theories are used to investigate the equilibrium and dynamical properties of the liquid state. A theory of aqueous solutions is used to provide an interpretation for the Born model of ion hydration at the molecular level; the Born radius of hydration is interpreted in terms of the first peak in the solute-solvent radial distribution function. We show that some proposed closures for the RISM equation of Chandler and Andersen possess no solution because

  4. Ion transport in the gramicidin channel: molecular dynamics study of single and double occupancy.

    PubMed Central

    Roux, B; Prod'hom, B; Karplus, M

    1995-01-01

    The structural and thermodynamic factors responsible for the singly and doubly occupied saturation states of the gramicidin channel are investigated with molecular dynamics simulations and free energy perturbation methods. The relative free energy of binding of all of the five common cations Li+, Na+, K+, Rb+, and Cs+ is calculated in the singly and doubly occupied channel and in bulk water. The atomic system, which includes the gramicidin channel, a model membrane made of neutral Lennard-Jones particles and 190 explicit water molecules to form the bulk region, is similar to the one used in previous work to calculate the free energy profile of a Na+ ion along the axis of the channel. In all of the calculations, the ions are positioned in the main binding sites located near the entrances of the channel. The calculations reveal that the doubly occupied state is relatively more favorable for the larger ions. Thermodynamic decomposition is used to show that the origin of the trend observed in the calculations is due to the loss of favorable interactions between the ion and the single file water molecules inside the channel. Small ions are better solvated by the internal water molecules in the singly occupied state than in the doubly occupied state; bigger ions are solvated almost as well in both occupation states. Water-channel interactions play a role in the channel response. The observed trends are related to general thermodynamical properties of electrolyte solutions. Images FIGURE 2 PMID:7538804

  5. Ion transport in a model gramicidin channel. Structure and thermodynamics.

    PubMed Central

    Roux, B; Karplus, M

    1991-01-01

    The potential of mean force for Na+ and K+ ions as a function of position in the interior of a periodic poly(L,D)-alanine model for the gramicidin beta-helix is calculated with a detailed atomic model and realistic interactions. The calculated free energy barriers are 4.5 kcal/mol for Na+ and 1.0 kcal/mol for K+. A decomposition of the free energy demonstrates that the water molecules make a significant contribution to the free energy of activation. There is an increase in entropy at the transition state associated with greater fluctuations. Analysis reveals that the free energy profile of ions in the periodic channel is controlled not by the large interaction energy involving the ion but rather by the weaker water-water, water-peptide and peptide-peptide hydrogen bond interactions. The interior of the channel retains much of the solvation properties of a liquid in its interactions with the cations. Of particular importance is the flexibility of the helix, which permits it to respond to the presence of an ion in a fluidlike manner. The distortion of the helix is local (limited to a few carbonyls) because the structure is too flexible to transmit a perturbation to large distances. The plasticity of the structure (i.e., the property to deform without generating a large energy stress) appears to be an essential factor in the transport of ions, suggesting that a rigid helix model would be inappropriate. Images FIGURE 1 FIGURE 10 PMID:1714305

  6. Evaluation of surface tension and ion occupancy effects on gramicidin A channel lifetime.

    PubMed Central

    Ring, A.; Sandblom, J.

    1988-01-01

    The surface tension of glycerylmonooleate-hexadecane lipid bilayer membranes and the lifetime of gramicidin A channels were measured at various concentrations of the surrounding solutions. For HCl the surface tension is essentially constant at approximately 5 mN/m up to approximately 1 M, whereas the average lifetime increases approximately 40-fold. At higher concentrations the surface tension decreases markedly. For CsCl the surface tension is constant up to about 1 M then increases with salt level. The average lifetime in this case increases about sixfold. In both cases the lifetime levels off and even decreases at higher salt levels. The increase in lifetime observed with ion activity is therefore qualitatively different from, and not explained by, the established dependence of lifetime on membrane properties (Elliot, J.R., D. Needham, J.P. Dilger, and D.A. Haydon. 1983. Biochim. Biophys. Acta. 735:95-103). We have previously proposed that ion occupancy is a determinant of channel stability, and to test this hypothesis the voltage dependence of channel lifetime was measured in asymmetrical solutions. For the case of a potassium chloride solution on one side of the membrane and a hydrogen chloride solution, on the other, the voltage dependence of the lifetime is asymmetrical. The asymmetry is such that when the electrical field is applied in the direction of the chemical gradient for each of the ions, the channel lifetime approaches, at increasing field strengths, that of a symmetrical solution of the respective ion. The voltage dependence of the surface tension, on the other hand, is negligible for the range of voltages used. These results, and the earlier findings that the order of the lifetimes for the alkali cations generally agree with the order of the permeability selectivity of the gramicidin A channel, support the hypothesis that ion occupancy is a major factor determining the lifetime of gramicidin A channels. The effects of multivalent blockers and

  7. Permeation characteristics of gramicidin conformers.

    PubMed Central

    Busath, D; Szabo, G

    1988-01-01

    To investigate the molecular origin of decreased conductance in variant gramicidin channels, we examined the current-voltage (IV) characteristics of single Val1-gramicidin A channels. Unlike standard channels, all variant channels showed pronounced rectification even though bathing solutions were symmetrical. Moreover, channels of lower conductance consistently showed more pronounced rectification. Analysis within the framework of a three-barrier, two-site, single-filing model indicates that the shape of the variant channel IVs could be best explained by an increase in binding affinity near one of the two channel entrances. This conclusion was further tested by characterizing single channel IVs in bi-ionic solutions having different cationic species at each channel entrance. In Cs/Na bi-ionic solutions, reversal potentials of variant channels often differed by a small but significant amount from those of standard channels. When a membrane potential was applied, the ionic currents tended to be reduced more when flowing from the Na+ side than the Cs+ side. These observations support the conclusion that variant channels have increased binding affinity at one end of the channel. Furthermore, H+ currents were increased while Ag+ currents were unaltered for most variant channels exhibiting decreased Na+ or Cs+ currents. The increased H+ conductance argues against long-range coulombic forces as the basis for decreased Na+ or Cs+ conductance while the normal Ag+ conductance suggests that the binding site field strength increases by a change in carbonyl geometry at the channel entrance. PMID:2455549

  8. Spring constants for channel-induced lipid bilayer deformations. Estimates using gramicidin channels.

    PubMed Central

    Lundbaek, J A; Andersen, O S

    1999-01-01

    Hydrophobic interactions between a bilayer and its embedded membrane proteins couple protein conformational changes to changes in the packing of the surrounding lipids. The energetic cost of a protein conformational change therefore includes a contribution from the associated bilayer deformation energy (DeltaGdef0), which provides a mechanism for how membrane protein function depends on the bilayer material properties. Theoretical studies based on an elastic liquid-crystal model of the bilayer deformation show that DeltaGdef0 should be quantifiable by a phenomenological linear spring model, in which the bilayer mechanical characteristics are lumped into a single spring constant. The spring constant scales with the protein radius, meaning that one can use suitable reporter proteins for in situ measurements of the spring constant and thereby evaluate quantitatively the DeltaGdef0 associated with protein conformational changes. Gramicidin channels can be used as such reporter proteins because the channels form by the transmembrane assembly of two nonconducting monomers. The monomerleft arrow over right arrow dimer reaction thus constitutes a well characterized conformational transition, and it should be possible to determine the phenomenological spring constant describing the channel-induced bilayer deformation by examining how DeltaGdef0 varies as a function of a mismatch between the hydrophobic channel length and the unperturbed bilayer thickness. We show this is possible by analyzing experimental studies on the relation between bilayer thickness and gramicidin channel duration. The spring constant in nominally hydrocarbon-free bilayers agrees well with estimates based on a continuum analysis of inclusion-induced bilayer deformations using independently measured material constants. PMID:9929490

  9. Ion-water and ion-polypeptide correlations in a gramicidin-like channel. A molecular dynamics study.

    PubMed Central

    Jordan, P C

    1990-01-01

    This work describes a molecular dynamics study of ion-water and ion-polypeptide correlation in a model gramicidin-like channel (the polyglycine analogue) based upon interaction between polarizable, multipolar groups. The model suggests that the vicinity of the dimer junction and of the ethanolamine tail are regions of unusual flexibility. Cs+ binds weakly in the mouth of the channel: there it coordinates five water molecules and the #11CO group with which it interacts strongly and is ideally aligned. In the channel interior it is generally pentacoordinate; at the dimer junction, because of increased channel flexibility, it again becomes essentially hexacoordinate. The ion is also strongly coupled to the #13 CO but not to either #9 or #15, consistent with 13C NMR data. Water in the channel interior is strikingly different from bulk water; it has a much lower mean dipole moment. This correlates with our observation (which differs from that of previous studies) that water-water angular correlations do not persist within the channel, a result independent of ion occupancy or ionic polarity. In agreement with streaming potential measurements, there are seven single file water molecules associated with Cs+ permeation; one of these is always in direct contact with bulk water. At the mouth of an ion-free channel, there is a pattern of dipole moment alteration among the polar groups. Due to differential interaction with water, exo-carbonyls have unusually large dipole moments whereas those of the endo-carbonyls are low. The computed potential of mean force for CS+ translocation is qualitatively reasonable. However, it only exhibits a weakly articulated binding site and it does not quantitatively account for channel energetics. Correction for membrane polarization reduces, but does not eliminate, these problems. PMID:1705448

  10. Structural restraints and heterogeneous orientation of the gramicidin A channel closed state in lipid bilayers.

    PubMed

    Mo, Y; Cross, T A; Nerdal, W

    2004-05-01

    Although there have been several decades of literature illustrating the opening and closing of the monovalent cation selective gramicidin A channel through single channel conductance, the closed conformation has remained poorly characterized. In sharp contrast, the open-state dimer is one of the highest resolution structures yet characterized in a lipid environment. To shift the open/closed equilibrium dramatically toward the closed state, a lower peptide/lipid molar ratio and, most importantly, long-chain lipids have been used. For the first time, structural evidence for a monomeric state has been observed for the native gramicidin A peptide. Solid-state NMR spectroscopy of single-site (15)N-labeled gramicidin in uniformly aligned bilayers in the L(alpha) phase have been observed. The results suggest a kinked structure with considerable orientational heterogeneity. The C-terminal domain is well structured, has a well-defined orientation in the bilayer, and appears to be in the bilayer interfacial region. On the other hand, the N-terminal domain, although appearing to be well structured and in the hydrophobic core of the bilayer, has a broad range of orientations relative to the bilayer normal. The structure is not just half of the open-state dimer, and neither is the structure restricted to the surface of the bilayer. Consequently, the monomeric or closed state appears to be a hybrid of these two models from the literature.

  11. Time-correlation analysis of simulated water motion in flexible and rigid gramicidin channels.

    PubMed Central

    Chiu, S W; Jakobsson, E; Subramaniam, S; McCammon, J A

    1991-01-01

    Molecular dynamics simulations have been done on a system consisting of the polypeptide membrane channel former gramicidin, plus water molecules in the channel and caps of waters at the two ends of the channel. In the absence of explicit simulation of the surrounding membrane, the helical form of the channel was maintained by artificial restraints on the peptide motion. The characteristic time constant of the artificial restraint was varied to assess the effect of the restraints on the channel structure and water motions. Time-correlation analysis was done on the motions of individual channel waters and on the motions of the center of mass of the channel waters. It is found that individual water molecules confined in the channel execute higher frequency motions than bulk water, for all degrees of channel peptide restraint. The center-of-mass motion of the chain of channel waters (which is the motion that is critical for transmembrane transport, due to the mandatory single filing of water in the channel) does not exhibit these higher frequency motions. The mobility of the water chain is dramatically reduced by holding the channel rigid. Thus permeation through the channel is not like flow through a rigid pipe; rather permeation is facilitated by peptide motion. For the looser restraints we used, the mobility of the water chain was not very much affected by the degree of restraint. Depending on which set of experiments is considered, the computed mobility of our water chain in the flexible channel is four to twenty times too high to account for the experimentally measured resistance of the gramicidin channel to water flow. From this result it appears likely that the peptide motions of an actual gramicidin channel embedded in a lipid membrane may be more restrained than in our flexible channel model, and that these restraints may be a significant modulator of channel permeability. For the completely rigid channel model the "trapping" of the water molecules in

  12. Gramicidin A channel as a test ground for molecular dynamics force fields.

    PubMed

    Allen, Toby W; Baştuğ, Turgut; Kuyucak, Serdar; Chung, Shin-Ho

    2003-04-01

    We use the well-known structural and functional properties of the gramicidin A channel to test the appropriateness of force fields commonly used in molecular dynamics (MD) simulations of ion channels. For this purpose, the high-resolution structure of the gramicidin A dimer is embedded in a dimyristoylphosphatidylcholine bilayer, and the potential of mean force of a K(+) ion is calculated along the channel axis using the umbrella sampling method. Calculations are performed using two of the most common force fields in MD simulations: CHARMM and GROMACS. Both force fields lead to large central barriers for K(+) ion permeation, that are substantially higher than those deduced from the physiological data by inverse methods. In long MD simulations lasting over 60 ns, several ions are observed to enter the binding site but none of them crossed the channel despite the presence of a large driving field. The present results, taken together with many earlier studies, highlights the shortcomings of the standard force fields used in MD simulations of ion channels and calls for construction of more appropriate force fields for this purpose.

  13. Immobilization and characterization of the transmembrane ion channel peptide gramicidin in a sol-gel matrix

    NASA Astrophysics Data System (ADS)

    Esquembre, Rocío; Poveda, José Antonio; Mallavia, Ricardo; Mateo, C. Reyes

    2007-05-01

    Immobilization of ion channels requires of a methodology able to retain the physical properties of the lipid bilayer where their activity is performed. However, most of lipid membrane immobilization methods have been observed to alter the structural properties of the bilayers. Use of sol-gel routes seems to be an interesting alternative, although unstable liposomes were obtained when conventional sol-gel methodology was employed for immobilizing. Recently, we have suggested that use of alcohol-free sol-gel routes combined with negatively charged lipids could minimize effects exerted by host matrix on liposome structure, increasing its stability. Here we confirm this assumption by analysing the physical properties of a series of zwitterionic and anionic liposomes entrapped in a sol-gel matrix and we develop a methodology able to retain the physical properties of the lipid bilayer. This methodology has been successfully used to immobilize the transmembrane ion channel peptide gramicidin. Gramicidin was reconstituted in anionic liposomes and its immobilization was confirmed from changes observed in the photophysical properties of the tryptophan residues. Ion channel activity was determined using the fluorescent dye pyrene-1,3,6,8-tetrasulphonic acid (PTSA) and long term stability of the immobilized system was checked from steady-state fluorescence anisotropy measurements.

  14. Peroxyl radicals promoted changes in water permeability through gramicidin channels in DPPC and lecithin-PC vesicles.

    PubMed

    Soto, M A; Sotomayor, C P; Lissi, E A

    2003-03-01

    Gramicidin incorporation to DPPC or lecithin-PC large unilamellar vesicles (LUVs) leads to pore formation that, under hyper-osmotic conditions, produces a noticeable increase in the rate of trans-membrane water flow. This pore formation is more efficient in the more fluid lecithin-PC LUVs. Exposure of these vesicles to peroxyl radicals generated in the aerobic thermolysis of 2,2'-azo-bis(2-amidinopropane) (AAPH), changes the physical properties of the bilayer (as sensed employing fluorescent probes), modifies gramicidin molecules (as sensed by the decrease in Trp fluorescence) and notably reduces the transbilayer rate of water outflow. In order to evaluate if this reduced water-transport capacity is due to changes in the membrane due to lipid-peroxidation and/or direct damage to gramicidin channels, results obtained in the oxidable vesicles (lecithin-PC) were compared to those obtained in DPPC vesicles. The data obtained show that most of the water transport efficiency loss can be ascribed to a direct disruption of gramicidin channels by AAPH derived peroxyl radicals.

  15. Noncontact dipole effects on channel permeation. III. Anomalous proton conductance effects in gramicidin

    PubMed Central

    Phillips, LR; Cole, CD; Hendershot, RJ; Cotten, M; Cross, TA; Busath, DD

    1999-01-01

    Proton transport on water wires, of interest for many problems in membrane biology, is analyzed in side-chain analogs of gramicidin A channels. In symmetrical 0.1 N HCl solutions, fluorination of channel Trp(11), Trp-(13), or Trp(15) side chains is found to inhibit proton transport, and replacement of one or more Trps with Phe enhances proton transport, the opposite of the effects on K(+) transport in lecithin bilayers. The current-voltage relations are superlinear, indicating that some membrane field-dependent process is rate limiting. The interfacial dipole effects are usually assumed to affect the rate of cation translocation across the channel. For proton conductance, however, water reorientation after proton translocation is anticipated to be rate limiting. We propose that the findings reported here are most readily interpreted as the result of dipole-dipole interactions between channel waters and polar side chains or lipid headgroups. In particular, if reorientation of the water column begins with the water nearest the channel exit, this hypothesis explains the negative impact of fluorination and the positive impact of headgroup dipole on proton conductance. PMID:20540928

  16. Density-functional theory study of gramicidin A ion channel geometry and electronic properties.

    PubMed

    Todorović, Milica; Bowler, David R; Gillan, Michael J; Miyazaki, Tsuyoshi

    2013-12-06

    Understanding the mechanisms underlying ion channel function from the atomic-scale requires accurate ab initio modelling as well as careful experiments. Here, we present a density functional theory (DFT) study of the ion channel gramicidin A (gA), whose inner pore conducts only monovalent cations and whose conductance has been shown to depend on the side chains of the amino acids in the channel. We investigate the ground state geometry and electronic properties of the channel in vacuum, focusing on their dependence on the side chains of the amino acids. We find that the side chains affect the ground state geometry, while the electrostatic potential of the pore is independent of the side chains. This study is also in preparation for a full, linear scaling DFT study of gA in a lipid bilayer with surrounding water. We demonstrate that linear scaling DFT methods can accurately model the system with reasonable computational cost. Linear scaling DFT allows ab initio calculations with 10,000-100,000 atoms and beyond, and will be an important new tool for biomolecular simulations.

  17. Stochastic theory of ion movement in channels with single-ion occupancy. Application to sodium permeation of gramicidin channels.

    PubMed Central

    Jakobsson, E; Chiu, S W

    1987-01-01

    The electrodiffusion equations were solved for the one-ion channel both by the analytical method due to Levitt and also by Brownian dynamic simulations. For both types of calculations equilibration of ion distribution between the bath and the ends of the channel was assumed. Potential profiles were found that give good fits to published data on Na+ permeation of gramicidin channels. The data were best fit by profiles that have no relative energy maximum at the mouth of the channel. This finding suggests that alignment of waters or channel charged groups inside the channel in response to an ion's approach may provide an energetically favorable situation for entry sufficient to overcome the energy required for removing bulk waters of hydration. An alternative possibility is that the barrier to ion entry is situated outside the region restricted to single-ion occupancy. Replacement of valine with more polar amino acids at the No. 1 location was found to correspond to a deepening of the potential minima near the channel mouths, an increase in height of the central barrier to ion translocation across the channel, and possibly a reduction in the mobility of the ion-water complex in the channel. The Levitt theory was extended to calculate passage times for ions to cross the channel and the blocking effects of ions that entered the channel but didn't cross. These quantities were also calculated by the Brownian dynamics method. PMID:2440492

  18. Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance.

    PubMed Central

    Cárdenas, A E; Coalson, R D; Kurnikova, M G

    2000-01-01

    A recently introduced real-space lattice methodology for solving the three-dimensional Poisson-Nernst-Planck equations is used to compute current-voltage relations for ion permeation through the gramicidin A ion channel embedded in membranes characterized by surface dipoles and/or surface charge. Comparisons to a variety of experimental results, presented herein, have proven largely successful. Strengths and weaknesses of the method are discussed. PMID:10866939

  19. High-resolution polypeptide structure and dynamics in anisotropic environments: The gramicidin channel

    SciTech Connect

    Cross, T.A.; Lee, K.C.; Ketchem, R.R.; Hu, W.; Lazo, N.D.; Huo, S.

    1994-12-01

    To understand the details of macromolecular function, high-resolution structural and dynamic detail is essential. The polypeptide fold of the gramicidin channel has been effectively modeled for the past 20 years, yet the functional changes in conductance and channel lifetime associated with amino acid substitutions cannot be predicted. To accomplish this goal, high-resolution electrostatic modeling and the precise orientation of all dipoles are required. Furthermore, an enhanced knowledge of the complex molecular environment of this membrane-bound peptide is needed. An aqueous environment is relatively uniform and achiral. The membrane environment is very heterogenous and chiral. A knowledge of the interactions, specific and nonspecific, between peptide and lipid will aid in developing a better understanding of this environment. To accomplish this goal, it is necessary to study the peptide in an extended lipid bilayer, rather than in a vesicular or micellar form. These latter environments are likely to possess increased dynamics, increased water penetration, and distorted interactions between the polypeptide and membrane surface. To perform NMR studies on bilayer bound peptides, solid state NMR methods are required, and for specific site information, isotopic labels are incorporated using solid phase peptide synthesis.

  20. Double-stranded helical twisted beta-sheet channels in crystals of gramicidin S grown in the presence of trifluoroacetic and hydrochloric acids.

    PubMed

    Llamas-Saiz, Antonio L; Grotenbreg, Gijsbert M; Overhand, Mark; van Raaij, Mark J

    2007-03-01

    Gramicidin S is a nonribosomally synthesized cyclic decapeptide antibiotic with twofold symmetry (Val-Orn-Leu-D-Phe-Pro)(2); a natural source is Bacillus brevis. Gramicidin S is active against Gram-positive and some Gram-negative bacteria. However, its haemolytic toxicity in humans limits its use as an antibiotic to certain topical applications. Synthetically obtained gramicidin S was crystallized from a solution containing water, methanol, trifluoroacetic acid and hydrochloric acid. The structure was solved and refined at 0.95 A resolution. The asymmetric unit contains 1.5 molecules of gramicidin S, two trifluoroacetic acid molecules and ten water molecules located and refined in 14 positions. One gramicidin S molecule has an exact twofold-symmetrical conformation; the other deviates from the molecular twofold symmetry. The cyclic peptide adopts an antiparallel beta-sheet secondary structure with two type II' beta-turns. These turns have the residues D-Phe and Pro at positions i + 1 and i + 2, respectively. In the crystals, the gramicidin S molecules line up into double-stranded helical channels that differ from those observed previously. The implications of the supramolecular structure for several models of gramicidin S conformation and assembly in the membrane are discussed.

  1. Structure of gramicidin A.

    PubMed Central

    Wallace, B A

    1986-01-01

    Gramicidin A, a hydrophobic linear polypeptide, forms channels in phospholipid membranes that are specific for monovalent cations. Nuclear Magnetic Resonance (NMR) spectroscopy provided the first direct physical evidence that the channel conformation in membranes is an amino terminal-to-amino terminal helical dimer, and circular dichroism (CD) spectroscopy has shown the sensitivity of its conformation to different environments and the structural consequences of ion binding. The three-dimensional structure of a gramicidin/cesium complex has been determined by x-ray diffraction of single crystals using single wavelength anomalous scattering for phasing. The left-handed double helix in this crystal form corresponds to one of the intermediates in the process of folding and insertion into membranes. Co-crystals of gramicidin and lipid that appear to have gramicidin in their membrane channel conformation have also been formed and are presently under investigation. Hence, we have used a combination of spectroscopic and diffraction techniques to examine the conformation and functionally-related structural features of gramicidin A. Images FIGURE 7 FIGURE 6 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 FIGURE 12 PMID:2420381

  2. Effect of gating modifier toxins on membrane thickness: implications for toxin effect on gramicidin and mechanosensitive channels.

    PubMed

    Chen, Rong; Chung, Shin-Ho

    2013-02-22

    Various gating modifier toxins partition into membranes and interfere with the gating mechanisms of biological ion channels. For example, GsMTx4 potentiates gramicidin and several bacterial mechanosensitive channels whose gating kinetics are sensitive to mechanical properties of the membrane, whereas binding of HpTx2 shifts the voltage-activity curve of the voltage-gated potassium channel Kv4.2 to the right. The detailed process by which the toxin partitions into membranes has been difficult to probe using molecular dynamics due to the limited time scale accessible. Here we develop a protocol that allows the spontaneous assembly of a polypeptide toxin into membranes in atomistic molecular dynamics simulations of tens of nanoseconds. The protocol is applied to GsMTx4 and HpTx2. Both toxins, released in water at the start of the simulation, spontaneously bind into the lipid bilayer within 50 ns, with their hydrophobic patch penetrated into the bilayer beyond the phosphate groups of the lipids. It is found that the bilayer is about 2 Å thinner upon the binding of a GsMTx4 monomer. Such a thinning effect of GsMTx4 on membranes may explain its potentiation effect on gramicidin and mechanosensitive channels.

  3. Noncontact dipole effects on channel permeation. I. Experiments with (5F-indole)Trp13 gramicidin A channels.

    PubMed Central

    Busath, D D; Thulin, C D; Hendershot, R W; Phillips, L R; Maughan, P; Cole, C D; Bingham, N C; Morrison, S; Baird, L C; Hendershot, R J; Cotten, M; Cross, T A

    1998-01-01

    Gramicidin A (gA), with four Trp residues per monomer, has an increased conductance compared to its Phe replacement analogs. When the dipole moment of the Trp13 side chain is increased by fluorination at indole position 5 (FgA), the conductance is expected to increase further. gA and FgA conductances to Na+, K+, and H+ were measured in planar diphytanoylphosphatidylcholine (DPhPC) or glycerylmonoolein (GMO) bilayers. In DPhPC bilayers, Na+ and K+ conductances increased upon fluorination, whereas in GMO they decreased. The low ratio in the monoglyceride bilayer was not reversed in GMO-ether bilayers, solvent-inflated or -deflated bilayers, or variable fatty acid chain monoglyceride bilayers. In both GMO and DPhPC bilayers, fluorination decreased conductance to H+ but increased conductance in the mixed solution, 1 M KCl at pH 2.0, where K+ dominates conduction. Eadie-Hofstee plot slopes suggest similar destabilization of K+ binding in both lipids. Channel lifetimes were not affected by fluorination in either lipid. These observations indicate that fluorination does not change the rotameric conformation of the side chain. The expected difference in the rate-limiting step for transport through channels in the two bilayers qualitatively explains all of the above trends. PMID:9826605

  4. Noncontact dipole effects on channel permeation. I. Experiments with (5F-indole)Trp13 gramicidin A channels.

    PubMed

    Busath, D D; Thulin, C D; Hendershot, R W; Phillips, L R; Maughan, P; Cole, C D; Bingham, N C; Morrison, S; Baird, L C; Hendershot, R J; Cotten, M; Cross, T A

    1998-12-01

    Gramicidin A (gA), with four Trp residues per monomer, has an increased conductance compared to its Phe replacement analogs. When the dipole moment of the Trp13 side chain is increased by fluorination at indole position 5 (FgA), the conductance is expected to increase further. gA and FgA conductances to Na+, K+, and H+ were measured in planar diphytanoylphosphatidylcholine (DPhPC) or glycerylmonoolein (GMO) bilayers. In DPhPC bilayers, Na+ and K+ conductances increased upon fluorination, whereas in GMO they decreased. The low ratio in the monoglyceride bilayer was not reversed in GMO-ether bilayers, solvent-inflated or -deflated bilayers, or variable fatty acid chain monoglyceride bilayers. In both GMO and DPhPC bilayers, fluorination decreased conductance to H+ but increased conductance in the mixed solution, 1 M KCl at pH 2.0, where K+ dominates conduction. Eadie-Hofstee plot slopes suggest similar destabilization of K+ binding in both lipids. Channel lifetimes were not affected by fluorination in either lipid. These observations indicate that fluorination does not change the rotameric conformation of the side chain. The expected difference in the rate-limiting step for transport through channels in the two bilayers qualitatively explains all of the above trends.

  5. Proton mobilities in water and in different stereoisomers of covalently linked gramicidin A channels.

    PubMed Central

    Cukierman, S

    2000-01-01

    Proton conductivities in bulk solution (lambda(H)) and single-channel proton conductances (g(H)) in two different stereoisomers of the dioxolane-linked gramicidin A channel (the SS and RR dimers) were measured in a wide range of bulk proton concentrations ([H], 0.1-8000 mM). Proton mobilities (micro(H)) in water as well as in the SS and RR dimers were calculated from the conductivity data. In the concentration range of 0.1-2000 mM, a straight line with a slope of 0.75 describes the log (g(H))-log ([H]) relationship in the SS dimer. At [H] > 2000 mM, saturation is followed by a decline in g(H). The g(H)-[H] relationship in the SS dimer is qualitatively similar to the [H] dependence of lambda(H). However, the slope of the straight line in the log(lambda(H))-log([H]) plot is 0.96, indicating that the rate-limiting step for proton conduction through the SS dimer is not the diffusion of protons in bulk solution. The significant difference between the slopes of those linear relationships accounts for the faster decline of micro(H) as a function of [H] in the SS dimer in relation to bulk solution. In the high range of [H], saturation and decline of g(H) in the SS dimer can be accounted for by the significant decrease of micro(H) in bulk solution. At any given [H], g(H) in the RR dimer is significantly smaller than in the SS. Moreover, the g(H)-[H] relationship in the RR stereoisomer is qualitatively different from that in the SS. Between 1 and 50 mM [H], g(H) can be fitted with an adsorption isotherm, suggesting the presence of a proton-binding site inside the pore (pK(a) approximately 2), which limits proton exit from the channel. At 100 mM < [H] < 3000 mM, g(H) increases linearly with [H]. The distinctive shape of the g(H)-[H] relationship in the RR dimer suggests that the channel can be occupied simultaneously by more than one proton. At higher [H], the saturation and decline of g(H) in the RR dimer reflect the properties of micro(H) in bulk solution. In the entire

  6. Conformation states of gramicidin A along the pathway to the formation of channels in model membranes determined by 2D NMR and circular dichroism spectroscopy.

    PubMed

    Abdul-Manan, N; Hinton, J F

    1994-06-07

    Gramicidin A incorporated into SDS (sodium dodecyl sulfate) micelles exists as a right-handed, N-to-N-terminal beta 6.3 helical dimer [Lomize, A. L., Orechov, V. Yu., & Arseniev, A.S. (1992) Bioorg. Khim. 18, 182-189]. In the incorporation procedure to achieve the ion channel state of gramicidin A in SDS micelles, trifluoroethanol (TFE) is used to solubilize the hydrophobic peptide before addition to the aqueous/micelle solution. The conformational transition of gramicidin A to form ion channels in SDS micelles, i.e., in TFE and 10% TFE/water, has been investigated using 2D NMR and CD spectroscopy. In neat TFE, gramicidin A was found to be monomeric and may possibly exist in an equilibrium of rapidly interconverting conformers of at least three different forms believed to be left- and/or right-handed alpha and beta 4.4 helices. It was found that the interconversion between these conformers was slowed down in 55% TFE as evident by the observation of at least three different sets of d alpha N COSY peaks although CD gave a net spectrum similar to that in neat TFE. In 10% TFE gramicidin A spontaneously forms a precipitate. The precipitated species were isolated and solubilized in dioxane where gramicidin conformers undergo very slow interconversion and could be characterized by NMR. At least seven different gramicidin A conformations were found in 10% TFE. Four of thes are the same types of double helices as previously found in ethanol (i.e., a symmetric left-handed parallel beta 5.6 double helix, an unsymmetric left-handed parallel beta 5.6 double helix, a symmetric left-handed antiparallel beta 5.6 double helix, a symmetric right-handed parallel beta 5.6 double helix); the fifth is possibly a symmetric right-handed antiparallel beta 5.6 double helix. There is also evidence for the presence of at least one form of monomeric species. Previous observation on the solvent history dependence in the ease of channel incorporation may be explained by the presence of several

  7. Investigation of Ion Channel Activities of Gramicidin A in the Presence of Ionic Liquids Using Model Cell Membranes

    PubMed Central

    Ryu, Hyunil; Lee, Hwankyu; Iwata, Seigo; Choi, Sangbaek; Ki Kim, Moon; Kim, Young-Rok; Maruta, Shinsaku; Min Kim, Sun; Jeon, Tae-Joon

    2015-01-01

    Ionic liquids (ILs) are considered to be green solvents because of their non-volatility. Although ILs are relatively safe in the atmospheric environment, they may be toxic in other environments. Our previous research showed that the cytotoxicity of ILs to biological organisms is attributable to interference with cell membranes by IL insertion. However, the effects of ILs on ion channels, which play important roles in cell homeostasis, have not been comprehensively studied to date. In this work, we studied the interactions between ILs and lipid bilayer membranes with gramicidin A ion channels. We used two methods, namely electrical and fluorescence measurements of ions that permeate the membrane. The lifetimes of channels were increased by all the ILs tested in this work via stabilizing the compressed structure of the lipid bilayer and the rate of ion flux through gA channels was decreased by changing the membrane surface charge. The former effect, which increased the rate of ion flux, was dominant at high salt concentrations, whereas the latter, which decreased the rate of ion flux, was dominant at low salt concentrations. The effects of ILs increased with increasing concentration and alkyl chain length. The experimental results were further studied using molecular dynamics simulations. PMID:26189604

  8. Investigation of Ion Channel Activities of Gramicidin A in the Presence of Ionic Liquids Using Model Cell Membranes.

    PubMed

    Ryu, Hyunil; Lee, Hwankyu; Iwata, Seigo; Choi, Sangbaek; Kim, Moon Ki; Kim, Young-Rok; Maruta, Shinsaku; Kim, Sun Min; Jeon, Tae-Joon

    2015-07-20

    Ionic liquids (ILs) are considered to be green solvents because of their non-volatility. Although ILs are relatively safe in the atmospheric environment, they may be toxic in other environments. Our previous research showed that the cytotoxicity of ILs to biological organisms is attributable to interference with cell membranes by IL insertion. However, the effects of ILs on ion channels, which play important roles in cell homeostasis, have not been comprehensively studied to date. In this work, we studied the interactions between ILs and lipid bilayer membranes with gramicidin A ion channels. We used two methods, namely electrical and fluorescence measurements of ions that permeate the membrane. The lifetimes of channels were increased by all the ILs tested in this work via stabilizing the compressed structure of the lipid bilayer and the rate of ion flux through gA channels was decreased by changing the membrane surface charge. The former effect, which increased the rate of ion flux, was dominant at high salt concentrations, whereas the latter, which decreased the rate of ion flux, was dominant at low salt concentrations. The effects of ILs increased with increasing concentration and alkyl chain length. The experimental results were further studied using molecular dynamics simulations.

  9. A semi-microscopic Monte Carlo study of permeation energetics in a gramicidin-like channel: the origin of cation selectivity.

    PubMed Central

    Dorman, V; Partenskii, M B; Jordan, P C

    1996-01-01

    The influence of a gramicidin-like channel former on ion free energy barriers is studied using Monte Carlo simulation. The model explicitly describes the ion, the water dipoles, and the peptide carbonyls; the remaining degrees of freedom, bulk electrolyte, non-polar lipid and peptide regions, and electronic (high frequency) permittivity, are treated in continuum terms. Contributions of the channel waters and peptide COs are studied both separately and collectively. We found that if constrained to their original orientations, the COs substantially increase the cationic permeation free energy; with or without water present, CO reorientation is crucial for ion-CO interaction to lower cation free energy barriers; the translocation free energy profiles for potassium-, rubidium-, and cesium-like cations exhibit no broad barriers; the lipid-bound peptide interacts more effectively with anions than cations; anionic translocation free energy profiles exhibit well defined maxima. Using experimental data to estimate transfer free energies of ions and water from bulk electrolyte to a non-polar dielectric (continuum lipid), we found reasonable ion permeation profiles; cations bind and permeate, whereas anions cannot enter the channel. Cation selectivity arises because, for ions of the same size and charge, anions bind hydration water more strongly. PMID:8770192

  10. Enhanced eryptosis following gramicidin exposure.

    PubMed

    Malik, Abaid; Bissinger, Rosi; Liu, Guoxing; Liu, Guilai; Lang, Florian

    2015-04-23

    The peptide antibiotic and ionophore gramicidin has previously been shown to trigger apoptosis of nucleated cells. In analogy to apoptosis, the suicidal death of erythrocytes or eryptosis involves cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress, increase of cytosolic Ca2+ activity ([Ca2+]i), and ceramide. The present study explored, whether gramicidin triggers eryptosis. To this end phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, red blood cell distribution width (RDW) from electronic particle counting, reactive oxidant species (ROS) from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, [Ca2+]i from Fluo3- and Fluo4 fluorescence, and ceramide abundance from binding of specific antibodies. As a result, a 24 h exposure of human erythrocytes to gramicidin significantly increased the percentage of annexin-V-binding cells (≥1 µg/mL), forward scatter (≥0.5 µg/mL) and hemolysis. Gramicidin enhanced ROS activity, [Ca2+]i and ceramide abundance at the erythrocyte surface. The stimulation of annexin-V-binding by gramicidin was significantly blunted but not abolished by removal of extracellular Ca2+. In conclusion, gramicidin stimulates phospholipid scrambling of the erythrocyte cell membrane, an effect at least partially due to induction of oxidative stress, increase of [Ca2+]i and up-regulation of ceramide abundance. Despite increase of [Ca2+]i, gramicidin increases cell volume and slightly reduces RWD.

  11. Synthesis and characterization of a new biotinylated gramicidin.

    PubMed

    Suarez, E; Emmanuelle, E D; Molle, G; Lazaro, R; Viallefont, P

    1998-09-01

    A new linear gramicidin analog bearing a biotinyl group grafted on C-terminal part was designed to study ligand-receptor interactions. The C-terminal alcohol in the native peptide was first replaced by an amino group. Then the peptide was synthesized on a polystyrene resin functionalized by the 2-chlorotrityl chloride following a biotinylation performed in solution. This new N'-biotinyl-(EDA)15-Gramicidin A was reconstituted in planar lipid bilayers and exhibited channel activities similar to those of natural gramicidin, with unitary conductance value about 30 ps in 1 M KCl. Furthermore this ionophore activity was quenched by addition of streptavidin in the surrounding medium. Our system is an outstanding tool for monitoring ligand-receptor interactions and could be used for designing a new biosensor.

  12. Gramicidin conformational studies with mixed-chain unsaturated phospholipid bilayer systems

    SciTech Connect

    Cox, K.J.; Ho, Cojen; Lombardi, J.V.; Stubbs, C.D. )

    1992-02-04

    The transition of gramicidin from a nonchannel to a channel form was investigated using mixed-chain phosphatidylcholine lipid bilayers. Gramicidin and phospholipids were codispersed, after removal of the solvents chloroform/methanol or trifluoroethanol which resulted in nonchannel and channel conformations, respectively, as confirmed using circular dichroism (CD). The fluorescence emission maxima of the nonchannel form were shifted toward shorter wavelengths by heating at 60C (for 0-12 h), which converted it to a channel form, again as confirmed by CD. The channel form did not respond to heat treatment. Heat treatment also increased the fluorescence anisotropy of the nonchannel gramicidin tryptophans. The rate of transition from the nonchannel to channel conformation was found to be faster is phosphatidylethanolamine was present in combination with phosphatidylcholine compared to phosphatidylcholine alone. Using the fluorescence anisotropy of the membrane lipid probe, 1,6-diphenyl-1,3,5-hexatriene, it was also shown that the motional properties of the surrounding lipid acyl chains differed for the channel and nonchannel gramicidin conformations. The possibility that lipids tending to favor the hexagonal phase (H{sub II}) would enhance the rate of the nonchannel to channel transition was supported by {sup 31}P NMR which revealed the presence of some H{sub II} lipids in the channel preparations. The results of this study suggest that gramicidin may serve as a useful model for similar conformational transitions in other more complex membrane proteins.

  13. Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin.

    PubMed Central

    Harroun, T A; Heller, W T; Weiss, T M; Yang, L; Huang, H W

    1999-01-01

    We present a quantitative analysis of the effects of hydrophobic matching and membrane-mediated protein-protein interactions exhibited by gramicidin embedded in dimyristoylphosphatidylcholine (DMPC) and dilauroylphosphatidylcholine (DLPC) bilayers (Harroun et al., 1999. Biophys. J. 76:937-945). Incorporating gramicidin, at 1:10 peptide/lipid molar ratio, decreases the phosphate-to-phosphate (PtP) peak separation in the DMPC bilayer from 35.3 A without gramicidin to 32.7 A. In contrast, the same molar ratio of gramicidin in DLPC increases the PtP from 30.8 A to 32.1 A. Concurrently, x-ray in-plane scattering showed that the most probable nearest-neighbor separation between gramicidin channels was 26.8 A in DLPC, but reduced to 23.3 A in DMPC. In this paper we review the idea of hydrophobic matching in which the lipid bilayer deforms to match the hydrophobic surface of the embedded proteins. We use a simple elasticity theory, including thickness compression, tension, and splay terms to describe the membrane deformation. The energy of membrane deformation is compared with the energy cost of hydrophobic mismatch. We discuss the boundary conditions between a gramicidin channel and the lipid bilayer. We used a numerical method to solve the problem of membrane deformation profile in the presence of a high density of gramicidin channels and ran computer simulations of 81 gramicidin channels to find the equilibrium distributions of the channels in the plane of the bilayer. The simulations contain four parameters: bilayer thickness compressibility 1/B, bilayer bending rigidity Kc, the channel-bilayer mismatch Do, and the slope of the interface at the lipid-protein boundary s. B, Kc, and Do were experimentally measured; the only free parameter is s. The value of s is determined by the requirement that the theory produces the experimental values of bilayer thinning by gramicidin and the shift in the peak position of the in-plane scattering due to membrane-mediated channel-channel

  14. TI-205 nuclear magnetic resonance determination of the thermodynamic parameters for the binding of monovalent cations to gramicidins A and C.

    PubMed Central

    Hinton, J F; Fernandez, J Q; Shungu, D C; Whaley, W L; Koeppe, R E; Millett, F S

    1988-01-01

    Thermodynamic parameters for the binding of the monovalent cations, Li+, Na+, K+, Rb+, Cs+, NH4+, TI+, and Ag+, to gramicidin A and for the binding of TI+ to gramicidin C, incorporated into lysophosphatidylcholine, have been determined using a combination of TI-205 nuclear magnetic resonance spectroscopy and competition binding. The thermodynamic parameters, enthalpy and entropy, are discussed in terms of a process involving the transfer of cations from an aqueous to amide environment. PMID:2462930

  15. Expression of a Cs(+)-resistant guard cell K+ channel confers Cs(+)-resistant, light-induced stomatal opening in transgenic arabidopsis.

    PubMed Central

    Ichida, A M; Pei, Z M; Baizabal-Aguirre, V M; Turner, K J; Schroeder, J I

    1997-01-01

    Inward-rectifying K+ (K+in) channels in the guard cell plasma membrane have been suggested to function as a major pathway for K+ influx into guard cells during stomatal opening. When K+in channels were blocked with external Cs+ in wild-type Arabidopsis guard cells, light-induced stomatal opening was reduced. Transgenic Arabidopsis plants were generated that expressed a mutant of the guard cell K+in channel, KAT1, which shows enhanced resistance to the Cs+ block. Stomata in these transgenic lines opened in the presence of external Cs+. Patch-clamp experiments with transgenic guard cells showed that inward K+(in) currents were blocked less by Cs+ than were K+ currents in controls. These data provide direct evidence that KAT1 functions as a plasma membrane K+ channel in vivo and that K+in channels constitute an important mechanism for light-induced stomatal opening. In addition, biophysical properties of K+in channels in guard cells indicate that components in addition to KAT1 may contribute to the formation of K+in channels in vivo. PMID:9368418

  16. Structure and dynamics of ion transport through gramicidin A.

    PubMed Central

    Mackay, D H; Berens, P H; Wilson, K R; Hagler, A T

    1984-01-01

    Molecular dynamics calculations in which all atoms were allowed to move were performed on a water-filled ion channel of the polypeptide dimer gramicidin A (approximately 600 atoms total) in the head-to-head Urry model conformation. Comparisons were made among nine simulations in which four different ions (lithium, sodium, potassium, and cesium) were each placed at two different locations in the channel as well as a reference simulation with only water present. Each simulation lasted for 5 ps and was carried out at approximately 300 K. The structure and dynamics of the peptide and interior waters were found to depend strongly on the ion tested and upon its location along the pore. Speculations on the solution and diffusion of ions in gramicidin are offered based on the observations in our model that smaller ions tended to lie off axis and to distort the positions of the carbonyl oxygens more to achieve proper solvation and that the monomer-monomer junction was more distortable than the center of the monomer. With the potential energy surface used, the unique properties of the linear chain of interior water molecules were found to be important for optimal solvation of the various ions. Strongly correlated motions persisting over 25 A among the waters in the interior single-file column were observed. PMID:6206901

  17. Gramicidin A: A New Mission for an Old Antibiotic

    PubMed Central

    2015-01-01

    Gramicidin A (GA) is a channel-forming ionophore that renders biological membranes permeable to specific cations which disrupts cellular ionic homeostasis. It is a well-known antibiotic, however it’s potential as a therapeutic agent for cancer has not been widely evaluated. In two recently published studies, we showed that GA treatment is toxic to cell lines and tumor xenografts derived from renal cell carcinoma (RCC), a devastating disease that is highly resistant to conventional therapy. GA was found to possess the qualities of both a cytotoxic drug and a targeted angiogenesis inhibitor, and this combination significantly compromised RCC growth in vitro and in vivo. In this review, we summarize our recent research on GA, discuss the possible mechanisms whereby it exerts its anti-tumor effects, and share our perspectives on the future opportunities and challenges to the use of GA as a new anticancer agent.

  18. Sedimentation rates measurements in former channels of the upper Rhône river using Chernobyl 137Cs and 134Cs as tracers.

    PubMed

    Rostan, J C; Juget, J; Brun, A M

    1997-01-30

    Former river channels are aquatic ecosystems with a different geomorphology generated by fluvial dynamics more or less linked to the main channel. They present different ecological successions to become terrestrial ecosystems and are thus supposed to have different sedimentation rates. The aim of this paper is to assess this sedimentation rate using radioactive tracer methodology commonly used in lake studies. Chernobyl impacts, expressed in 137Cs concentration and 137Cs/134Cs ratio, were determined in sediment cores. Sites (21) were sampled in the alluvial plain of the Upper Rhône River from 1989 to 1994. The contamination presented a high spatial heterogeneity. The maximum values encountered by site ranged between 34 and 541 Bq/kg of dry matter. The method generally gave good core profiles. Sedimentation rate ranged between 0.14 and 0.70 cm/year for the former meanders and between 0.14 and 2.86 cm/year for the braided channels. The sediment accumulation rates ranged from 0.03 to 0.25 g/cm2 per year and 0.03 to 2.26 g/cm2 per year, respectively. These values are similar to those found for Lake Geneva. The importance of the former channels in relation to the main channel is enhanced by the higher contamination and radionuclides retention. The sediment accumulation rate is related to the organic carbon content in the sediment. A comparison between two former channels with different productivity showed that the the allogenous driven system presents a high organic sediment accumulation rate with a low organic content in the sediment and inversely, a low organic sediment accumulation rate with a high organic carbon content was found for the autogenous drive system.

  19. Phase equilibria and molecular packing in the N,N-dimethyldodecylamine oxide/gramicidin D/water system studied by 2H nuclear magnetic resonance spectroscopy.

    PubMed Central

    Orädd, G; Lindblom, G; Arvidson, G; Gunnarsson, K

    1995-01-01

    A partial phase diagram of the system N,N-dimethyldodecylamine oxide (DDAO)/water/gramicidin D was determined by 2H-NMR. Both 2H2O and perdeuterated DDAO (DDAO-d31) were studied by solid state NMR techniques. Addition of gramicidin D to the micellar (L1), normal hexagonal (HI) and cubic (I) phases of DDAO induces phase separations, giving two-phase regions, which all contain a lamellar (L alpha) phase. The L alpha phase containing gramicidin is characterized by larger order parameters for DDAO-d31 compared with the corresponding order parameters in the L alpha and HI phases of DDAO-d31/H2O. The L alpha phase may stay in equilibrium with any other phase in the phase diagram. The DDAO exchange between the coexisting phases is slow on the NMR timescale, which is why the recorded NMR spectrum consists of superimposed spectra from the different phases occurring in the sample. Gramicidin D can be solubilized in appreciable quantities only in the lamellar phase of DDAO-d31. Increasing amounts of gramicidin in the liquid crystalline phases result in a continuous increase in the molecular ordering up to about 5 mol% gramicidin, where a plateau is reached. This is consistent with a recent theoretical model describing the influence on the ordering of lipids by a membrane protein with larger hydrophobic thickness than the lipid bilayer. The solvent used for dissolving gramicidin at the incorporation of the peptide in the lipid aggregates has no effect on the 2H-NMR lineshapes of DDAO-d31. It is concluded that gramicidin is solubilized in the L alpha phase and that it always adopts the channel conformation independent of a particular solvent. The channel conformation is also supported by CD studies. In some of the samples, macroscopic orientation of the lipid aggregates is observed. It is concluded that DDAO-d31 in the binary system favors an orientation with the long axis of the hydrocarbon chain perpendicular to the magnetic field, whereas when gramicidin D is present the

  20. Electronic control of H+ current in a bioprotonic device with Gramicidin A and Alamethicin

    PubMed Central

    Hemmatian, Zahra; Keene, Scott; Josberger, Erik; Miyake, Takeo; Arboleda, Carina; Soto-Rodríguez, Jessica; Baneyx, François; Rolandi, Marco

    2016-01-01

    In biological systems, intercellular communication is mediated by membrane proteins and ion channels that regulate traffic of ions and small molecules across cell membranes. A bioelectronic device with ion channels that control ionic flow across a supported lipid bilayer (SLB) should therefore be ideal for interfacing with biological systems. Here, we demonstrate a biotic–abiotic bioprotonic device with Pd contacts that regulates proton (H+) flow across an SLB incorporating the ion channels Gramicidin A (gA) and Alamethicin (ALM). We model the device characteristics using the Goldman–Hodgkin–Katz (GHK) solution to the Nernst–Planck equation for transport across the membrane. We derive the permeability for an SLB integrating gA and ALM and demonstrate pH control as a function of applied voltage and membrane permeability. This work opens the door to integrating more complex H+ channels at the Pd contact interface to produce responsive biotic–abiotic devices with increased functionality. PMID:27713411

  1. Electronic control of H+ current in a bioprotonic device with Gramicidin A and Alamethicin

    NASA Astrophysics Data System (ADS)

    Hemmatian, Zahra; Keene, Scott; Josberger, Erik; Miyake, Takeo; Arboleda, Carina; Soto-Rodríguez, Jessica; Baneyx, François; Rolandi, Marco

    2016-10-01

    In biological systems, intercellular communication is mediated by membrane proteins and ion channels that regulate traffic of ions and small molecules across cell membranes. A bioelectronic device with ion channels that control ionic flow across a supported lipid bilayer (SLB) should therefore be ideal for interfacing with biological systems. Here, we demonstrate a biotic-abiotic bioprotonic device with Pd contacts that regulates proton (H+) flow across an SLB incorporating the ion channels Gramicidin A (gA) and Alamethicin (ALM). We model the device characteristics using the Goldman-Hodgkin-Katz (GHK) solution to the Nernst-Planck equation for transport across the membrane. We derive the permeability for an SLB integrating gA and ALM and demonstrate pH control as a function of applied voltage and membrane permeability. This work opens the door to integrating more complex H+ channels at the Pd contact interface to produce responsive biotic-abiotic devices with increased functionality.

  2. Heterodimer formation and crystal nucleation of gramicidin D.

    PubMed Central

    Burkhart, B M; Gassman, R M; Langs, D A; Pangborn, W A; Duax, W L

    1998-01-01

    The linear pentadecapeptide antibiotic gramicidin D is a heterogeneous mixture of six components. Precise refinements of three-dimensional structures of naturally occurring gramicidin D in crystals obtained from methanol, ethanol, and n-propanol demonstrate the unexpected presence of stable left-handed antiparallel double-helical heterodimers that vary with the crystallization solvent. The side chains of Trp residues in the three structures exhibit sequence-specific patterns of conformational preference. Tyr substitution for Trp at position 11 appears to favor beta ribbon formation and stabilization of the antiparallel double helix that acts as a template for gramicidin folding and nucleation of different crystal forms. The fact that a minor component in a heterogeneous mixture influences aggregation and crystal nucleation has potential applications to other systems in which anomalous behavior is exhibited by aggregation of apparently homogeneous materials, such as the enigmatic behavior of prion proteins. PMID:9788907

  3. Quantum efficiency of opaque CsI photocathodes with channel electron multiplier arrays in the extreme and far ultraviolet

    NASA Technical Reports Server (NTRS)

    Martin, C.; Bowyer, S.

    1982-01-01

    The arrays are overcoated with a CsI photocathode in the VUV. The measurements are part of the development program for the Extreme Ultraviolet Explorer. Monochromatic light from a hollow cathode discharge source passing through a McPherson grazing incidence monochromator is used to illuminate the CsI photocathode. The beam diameter is kept small (approximately 2 mm) to confine it within the individual thickness strips. A bias grid is used to produce a 50-V/mm electric field to guarantee collection of all photoelectrons emitted by the CEMA (channel electron multiplier array) webbing. The CEMAs are operated with a gain of 2-3 x 10 to the 6th and are moderately saturated. A channeltron secondary transfer standard is used to determine the absolute QE in the EUV, whereas an NBS calibrated windowed photodiode is used to measure the FUV absolute QE. It is noted that the CsI gives a factor of 3 increase in the QE in the EUV and a factor of 50-5000 in the FUV.

  4. Gramicidin-perforated patch revealed depolarizing effect of GABA in cultured frog melanotrophs

    PubMed Central

    Le Foll, Frank; Castel, Hélène; Soriani, Olivier; Vaudry, Hubert; Cazin, Lionel

    1998-01-01

    In frog pituitary melanotrophs, GABA induces a transient stimulation followed by prolonged inhibition of hormone secretion. This biphasic effect is inconsistent with the elevation of cytosolic calcium and the inhibition of electrical activity also provoked by GABA in single melanotrophs. In the present study, standard patch-clamp configurations and gramicidin-perforated patches were used to investigate the physiological GABAA receptor-mediated response and intracellular chloride concentration ([Cl−]i) in cultured frog melanotrophs. In the gramicidin-perforated patch configuration, 1 μM GABA caused a depolarization associated with an action potential discharge and a slight fall of membrane resistance. In contrast, at a higher concentration (10 μm) GABA elicited a depolarization accompanied by a transient volley of action potentials, followed by a sustained inhibitory plateau and a marked fall of membrane resistance. Isoguvacine mimicked the GABA-evoked responses, indicating a mediation by GABAA receptors. In gramicidin-perforated cells, the depolarizing excitatory effect of 1 μm GABA was converted into a depolarizing inhibitory action when 0.4 μm allopregnanolone was added to the bath solution. After gaining the whole-cell configuration, the amplitude and/or direction of the GABA-evoked current (IGABA) rapidly changed before stabilizing. After stabilization, the reversal potential of IGABA followed the values predicted by the Nernst equation for chloride ions when [Cl−]i was varied. In gramicidin-perforated cells, the steady-state I–V relationships of 10 μm GABA- or isoguvacine-evoked currents yielded reversal potentials of −37.5 ± 1.6 (n= 17) and −38.6 ± 2.0 mV (n= 8), respectively. These values were close to those obtained by using a voltage-ramp protocol in the presence of Na+, K+ and Ca2+ channel blockers. The current evoked by 1 μm GABA also reversed at these potentials. We conclude that, in frog pituitary melanotrophs, chloride is the

  5. Anomalous volume change of gramicidin A in ethanol solutions

    NASA Technical Reports Server (NTRS)

    Derechin, M.; Hayashi, D. M.; Jordan, B. E.

    1975-01-01

    Results of studies aimed at clarifying the failure of gramicidin A (GA) to sediment in early experiments are analyzed. In the present work, no sedimentation was observed in pure pentanol or ethanol, while normal sedimentation was observed in ethanol-water mixtures. It is concluded that GA exists in two conformations that differ in volume. Since the apparent specific volume in absolute ethanol sinks to its lowest values on increasing concentration, the GA molecule probably unfolds completely in conditions favorable for dimerization.

  6. Residues beyond the selectivity filter of the K+ channel kir2.1 regulate permeation and block by external Rb+ and Cs+.

    PubMed

    Thompson, G A; Leyland, M L; Ashmole, I; Sutcliffe, M J; Stanfield, P R

    2000-07-15

    1. Kir2.1 channels are blocked by Rb+ and Cs+ in a voltage-dependent manner, characteristic of many inward rectifier K+ channels. Mutation of Ser165 in the transmembrane domain M2 to Leu (S165L) abolished Rb+ blockage and lowered Cs+ blocking affinity. At negative voltages Rb+ carried large inward currents. 2. A model of the Kir2.1 channel, built by homology with the structure of the Streptomyces lividans K+ channel KcsA, suggested the existence of an intersubunit hydrogen bond between Ser165 and Thr141 in the channel pore-forming P-region that helps stabilise the structure of this region. However, mutations of Thr141 and Ser165 did not produce effects consistent with a hydrogen bond between these residues being essential for blockage. 3. An alternative alignment between the M2 regions of Kir2.1 and KcsA suggested that Ser165 is itself a pore-lining residue, more directly affecting blockage. We were able to replace Ser165 with a variety of polar and non-polar residues, consistent with this residue being pore lining. Some of these changes affected channel blockage. 4. We tested the hypothesis that Asp172 - a residue implicated in channel gating by polyamines - formed an additional selectivity filter by using the triple mutant T141A/S165L/D172N. Large Rb+ and Cs+ currents were measured in this mutant. 5. We propose that both Thr141 and Ser165 are likely to provide binding sites for monovalent blocking cations in wild-type channels. These residues lie beyond the carbonyl oxygen tunnel thought to form the channel selectivity filter, which the blocking cations must therefore traverse.

  7. Gramicidin S production by Bacillus brevis in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Fang, A.; Pierson, D. L.; Mishra, S. K.; Koenig, D. W.; Demain, A. L.

    1997-01-01

    In a continuing study of microbial secondary metabolism in simulated microgravity, we have examined gramicidin S (GS) production by Bacillus brevis strain Nagano in NASA High Aspect Rotating Vessels (HARVs), which are designed to simulate some aspects of microgravity. Growth and GS production were found to occur under simulated microgravity. When performance under simulated microgravity was compared with that under normal gravity conditions in the bioreactors, GS production was found to be unaffected by simulated microgravity. The repressive effect of glycerol in flask fermentations was not observed in the HARV. Thus the negative effect of glycerol on specific GS formation is dependent on shear and/or vessel geometry, not gravity.

  8. CNS sites activated by renal pelvic epithelial sodium channels (ENaCs) in response to hypertonic saline in awake rats.

    PubMed

    Goodwill, Vanessa S; Terrill, Christopher; Hopewood, Ian; Loewy, Arthur D; Knuepfer, Mark M

    2017-05-01

    In some patients, renal nerve denervation has been reported to be an effective treatment for essential hypertension. Considerable evidence suggests that afferent renal nerves (ARN) and sodium balance play important roles in the development and maintenance of high blood pressure. ARN are sensitive to sodium concentrations in the renal pelvis. To better understand the role of ARN, we infused isotonic or hypertonic NaCl (308 or 500mOsm) into the left renal pelvis of conscious rats for two 2hours while recording arterial pressure and heart rate. Subsequently, brain tissue was analyzed for immunohistochemical detection of the protein Fos, a marker for neuronal activation. Fos-immunoreactive neurons were identified in numerous sites in the forebrain and brainstem. These areas included the nucleus tractus solitarius (NTS), the lateral parabrachial nucleus, the paraventricular nucleus of the hypothalamus (PVH) and the supraoptic nucleus (SON). The most effective stimulus was 500mOsm NaCl. Activation of these sites was attenuated or prevented by administration of benzamil (1μM) or amiloride (10μM) into the renal pelvis concomitantly with hypertonic saline. In anesthetized rats, infusion of hypertonic saline but not isotonic saline into the renal pelvis elevated ARN activity and this increase was attenuated by simultaneous infusion of benzamil or amiloride. We propose that renal pelvic epithelial sodium channels (ENaCs) play a role in activation of ARN and, via central visceral afferent circuits, this system modulates fluid volume and peripheral blood pressure. These pathways may contribute to the development of hypertension.

  9. Novel gramicidin formulations in cationic lipid as broad-spectrum microbicidal agents

    PubMed Central

    Ragioto, Danielle AMT; Carrasco, Letícia DM; Carmona-Ribeiro, Ana M

    2014-01-01

    Dioctadecyldimethylammonium bromide (DODAB) is an antimicrobial lipid that can be dispersed as large closed bilayers (LV) or bilayer disks (BF). Gramicidin (Gr) is an antimicrobial peptide assembling as channels in membranes and increasing their permeability towards cations. In mammalian cells, DODAB and Gr have the drawbacks of Gram-positive resistance and high toxicity, respectively. In this study, DODAB bilayers incorporating Gr showed good antimicrobial activity and low toxicity. Techniques employed were spectroscopy, photon correlation spectroscopy for sizing and evaluation of the surface potential at the shear plane, turbidimetric detection of dissipation of osmotic gradients in LV/Gr, determination of bacterial cell lysis, and counting of colony-forming units. There was quantitative incorporation of Gr and development of functional channels in LV. Gr increased the bilayer charge density in LV but did not affect the BF charge density, with localization of Gr at the BF borders. DODAB/Gr formulations substantially reduce Gr toxicity against eukaryotic cells and advantageously broaden the antimicrobial activity spectrum, effectively killing Escherichia coli and Staphylococcus aureus bacteria with occurrence of cell lysis. PMID:25061295

  10. Gramicidin D enhances the antibacterial activity of fluoride.

    PubMed

    Nelson, James W; Zhou, Zhiyuan; Breaker, Ronald R

    2014-07-01

    Fluoride is a toxic anion found in many natural environments. One of the major bacterial defenses against fluoride is the cell envelope, which limits passage of the membrane-impermeant fluoride anion. Accordingly, compounds that enhance the permeability of bacterial membranes to fluoride should also enhance fluoride toxicity. In this study, we demonstrate that the pore-forming antibiotic gramicidin D increases fluoride uptake in Bacillus subtilis and that the antibacterial activity of this compound is potentiated by fluoride. Polymyxin B, another membrane-targeting antibiotic with a different mechanism of action, shows no such improvement. These results, along with previous findings, indicate that certain compounds that destabilize bacterial cell envelopes can enhance the toxicity of fluoride.

  11. The antimicrobial activity of gramicidin A is associated with hydroxyl radical formation.

    PubMed

    Liou, Je-Wen; Hung, Yu-Jiun; Yang, Chin-Hao; Chen, Yi-Cheng

    2015-01-01

    Gramicidin A is an antimicrobial peptide that destroys gram-positive bacteria. The bactericidal mechanism of antimicrobial peptides has been linked to membrane permeation and metabolism disruption as well as interruption of DNA and protein functions. However, the exact bacterial killing mechanism of gramicidin A is not clearly understood. In the present study, we examined the antimicrobial activity of gramicidin A on Staphylococcus aureus using biochemical and biophysical methods, including hydroxyl radical and NAD+/NADH cycling assays, atomic force microscopy, and Fourier transform infrared spectroscopy. Gramicidin A induced membrane permeabilization and changed the composition of the membrane. The morphology of Staphylococcus aureus during gramicidin A destruction was divided into four stages: pore formation, water permeability, bacterial flattening, and lysis. Changes in membrane composition included the destruction of membrane lipids, proteins, and carbohydrates. Most interestingly, we demonstrated that gramicidin A not only caused membrane permeabilization but also induced the formation of hydroxyl radicals, which are a possible end product of the transient depletion of NADH from the tricarboxylic acid cycle. The latter may be the main cause of complete Staphylococcus aureus killing. This new finding may provide insight into the underlying bactericidal mechanism of gA.

  12. Computational Investigation of the Effect of Lipid Membranes on Ion Permeation in Gramicidin A

    PubMed Central

    Setiadi, Jeffry; Kuyucak, Serdar

    2016-01-01

    Membrane proteins are embedded in a lipid bilayer and interact with the lipid molecules in subtle ways. This can be studied experimentally by examining the effect of different lipid bilayers on the function of membrane proteins. Understanding the causes of the functional effects of lipids is difficult to dissect experimentally but more amenable to a computational approach. Here we perform molecular dynamics simulations and free energy calculations to study the effect of two lipid types (POPC and NODS) on the conductance of the gramicidin A (gA) channel. A larger energy barrier is found for the K+ potential of mean force in gA embedded in POPC compared to that in NODS, which is consistent with the enhanced experimental conductance of cations in gA embedded in NODS. Further analysis of the contributions to the potential energy of K+ reveals that gA and water molecules in gA make similar contributions in both bilayers but there are significant differences between the two bilayers when the lipid molecules and interfacial waters are considered. It is shown that the stronger dipole moments of the POPC head groups create a thicker layer of interfacial waters with better orientation, which ultimately is responsible for the larger energy barrier in the K+ PMF in POPC. PMID:26999229

  13. Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin.

    PubMed Central

    Harroun, T A; Heller, W T; Weiss, T M; Yang, L; Huang, H W

    1999-01-01

    Hydrophobic matching, in which transmembrane proteins cause the surrounding lipid bilayer to adjust its hydrocarbon thickness to match the length of the hydrophobic surface of the protein, is a commonly accepted idea in membrane biophysics. To test this idea, gramicidin (gD) was embedded in 1, 2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) and 1, 2-myristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers at the peptide/lipid molar ratio of 1:10. Circular dichroism (CD) was measured to ensure that the gramicidin was in the beta6.3 helix form. The bilayer thickness (the phosphate-to-phosphate distance, or PtP) was measured by x-ray lamellar diffraction. In the Lalpha phase near full hydration, PtP is 30.8 A for pure DLPC, 32.1 A for the DLPC/gD mixture, 35.3 A for pure DMPC, and 32.7 A for the DMPC/gD mixture. Gramicidin apparently stretches DLPC and thins DMPC toward a common thickness as expected by hydrophobic matching. Concurrently, gramicidin-gramicidin correlations were measured by x-ray in-plane scattering. In the fluid phase, the gramicidin-gramicidin nearest-neighbor separation is 26.8 A in DLPC, but shortens to 23.3 A in DMPC. These experiments confirm the conjecture that when proteins are embedded in a membrane, hydrophobic matching creates a strain field in the lipid bilayer that in turn gives rise to a membrane-mediated attractive potential between proteins. PMID:9929495

  14. Ionic channels in Langmuir-Blodgett films imaged by a scanning tunneling microscope.

    PubMed Central

    Kolomytkin, O V; Golubok, A O; Davydov, D N; Timofeev, V A; Vinogradova, S A; Tipisev SYa

    1991-01-01

    The molecular structure of channels formed by gramicidin A in a lipid membrane was imaged by a scanning tunneling microscope operating in air. The mono- and bimolecular films of lipid with gramicidin A were deposited onto a highly oriented pyrolitic graphite substrate by the Langmuir-Blodgett technique. It has been shown that under high concentration gramicidin A molecules can form in lipid films a quasi-regular, densely packed structure. Single gramicidin A molecules were imaged for the first time as well. The cavity of 0.4 +/- 0.05 nm in halfwidth was found on the scanning tunneling microscopy image of the gramicidin A molecule. The results of direct observation obtained by means of scanning tunneling microscope are in good agreement with the known molecular model of gramicidin A. It was shown that gramicidin A molecules can exist in a lipid monolayer as individual molecules or combined into clusters. The results demonstrate that scanning tunneling microscope can be used for high spatial resolution study of ionic channel structure. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 PMID:1712239

  15. Aggregation of gramicidin A in phospholipid Langmuir-Blodgett monolayers.

    PubMed Central

    Diociaiuti, Marco; Bordi, Federico; Motta, Annelisa; Carosi, Alessandra; Molinari, Agnese; Arancia, Giuseppe; Coluzza, Carlo

    2002-01-01

    The aggregation of Gramicidin A (gA) in dipalmitoylphosphatidylcoline (DPPC) monolayers is investigated by both thermodynamic and structural methods. Compression isotherm analysis and atomic force microscopy (AFM) observations are performed. Our experimental results indicate that gA aggregation does occur in DPPC monolayers even at very low gA concentration (about 8 x 10(-4) mol%). At the low gA concentration limit, the aggregation process seems to be mainly horizontal (i.e., side-by-side, into the monolayer plane), following a fractal pattern growth producing the formation of typical, flat (0.5 nm height) "doughnut" structures, with a diameter of approximately 150 nm. These structures appear to be composed of smaller subunits (about 70 nm diameter) showing the same doughnut structure. At a molar fraction of approximately 3.8 mol%, the big doughnuts start to disaggregate and only small doughnuts appear. Above a gA concentration of approximately 4.4 mol%, all doughnuts (large and small) disappear, and the morphology assumes the appearance of a patchwork of two distinct phases: one that, being very flat, can be associated with a gA-free or gA-poor DPPC phase, and a second one, characterized by a more corrugated surface, associated with a gA-rich DPPC phase. At gA concentration of approximately 5 mol%, a percolation transition in the gA-rich DPPC phase occurs. Thermodynamic data indicate that the maximum of miscibility between gA and DPPC molecules occurs at approximately 28 mol%, suggesting that gA could aggregate in hexamers that are, on average, bound to 16 DPPC molecules. At the same concentration, AFM images show a network of small gA aggregation units of a size compatible with gA hexamers. PMID:12023244

  16. Gramicidin Peptides Alter Global Lipid Compositions and Bilayer Thicknesses of Coexisting Liquid-Ordered and Liquid-Disordered Membrane Domains.

    PubMed

    Hassan-Zadeh, Ebrahim; Hussain, Fazle; Huang, Juyang

    2017-04-04

    Effects of adding 1 mol % of gramicidin-A on the biochemical properties of coexisting liquid-ordered and liquid-disordered (Lo + Ld) membrane domains were investigated. Quaternary giant unilamellar vesicles (GUV) of di18:1PC(DOPC)/di18:0PC(DSPC)/cholesterol/gramicidin-A were prepared using our recently developed damp-film method. The phase boundary of Lo + Ld coexisting region was determined using video fluorescence microscopy. Through fitting Nile Red fluorescence emission spectra, the thermodynamic tie-lines in the Lo + Ld two-phase region were determined. We found that at 1 mol % (i.e., ∼7% of membrane area), gramicidin peptides alter the phase boundary and thermodynamic tie-lines. Gramicidin abolishes the coexisting phases at some lipid compositions but induces phase separation at others. Previous studies of gramicidin emphasize the local perturbation of bilayer thickness adjacent to the protein through the interaction of "hydrophobic mismatch". For the first time, it becomes clear that adding gramicidin produces significant long-range and global effects on the structure of membrane domains: it alters the overall lipid compositions and bilayer thicknesses of coexisting Lo and Ld domains. We also found that gramicidin partitions favorably into the Ld phase. Adding gramicidin decreases cholesterol in the Ld phase and increases cholesterol in the Lo phase. Those compositional changes broaden the bilayer thickness difference between Lo and Ld domains and facilitate preferential partition of gramicidin into thinner Ld domains. Our results demonstrate that membrane proteins play significant roles in determining lipid compositions and bilayer thicknesses of biomembrane domains.

  17. Photosensitizer binding to lipid bilayers as a precondition for the photoinactivation of membrane channels.

    PubMed Central

    Rokitskaya, T I; Block, M; Antonenko, Y N; Kotova, E A; Pohl, P

    2000-01-01

    The photodynamic activity of sulfonated aluminum phthalocyanines (AlPcS(n), 1 gramicidin channels, as revealed by measurements of the electric current across planar lipid bilayers. The increase in the degree of sulfonation of phthalocyanine progressively reduced its affinity for the lipid bilayer as well as its potency of sensitizing gramicidin channel photoinactivation. The portion of photoinactivated gramicidin channels, alpha, increased with rising photosensitizer concentration up to some optimum. The concentration at which alpha was at half-maximum amounted to 80 nM, 30 nM, 200 nM, and 2 microM for AlPcS(1), AlPcS(2), AlPcS(3), and AlPcS(4), respectively. At high concentrations alpha was found to decrease, which was attributed to quenching of reactive oxygen species and self-quenching of the photosensitizer triplet state by its ground state. Fluoride anions were observed to inhibit both AlPcS(n) (2 gramicidin channels. It is concluded that photosensitizer binding to membrane lipids is a prerequisite for the photodynamic inactivation of gramicidin channels. PMID:10777753

  18. Gramicidin-perforated patch recording: GABA response in mammalian neurones with intact intracellular chloride.

    PubMed Central

    Ebihara, S; Shirato, K; Harata, N; Akaike, N

    1995-01-01

    1. By the development of a new perforated patch method using gramicidin, the effects of GABA on neurones dissociated from the rat substantia nigra pars reticulata (SNR) were examined without disturbing the intracellular chloride concentration. 2. Using the patch pipette solution containing gramicidin (100 micrograms ml-1), the access resistance dropped to less than 20 M omega within 40 min after making the gigaohm seal. 3. Under current-clamp conditions, GABA caused a hyperpolarization accompanied by a blockade of spontaneous firing. Under voltage clamp at a holding potential (Vh) of -50 mV, GABA evoked an outward current by way of bicuculline- and picrotoxin-sensitive GABAA receptors. 4. A 10-fold change of extracellular chloride concentration resulted in a 58 mV shift of the reversal potential of GABA-induced outward current (EGABA), indicating that the membrane behaves like a chloride electrode in the presence of GABA. 5. The intracellular chloride activities (aCli), calculated with the Nernst equation using both extracellular chloride activity and EGABA values, ranged from 2.8 to 19.7 mM with a mean value of 9.5 mM. The aCli was not affected either by different pipette solutions or by different holding potentials more hyperpolarized than -40 mV. 6. In the recording from SNR neurones in brain slice using the gramicidin-perforated patch-clamp technique, the inhibitory and excitatory postsynaptic currents were recorded in different current directions and the former was blocked by bicuculline. 7. In conclusion, the gramicidin-perforated patch method will disclose previously unknown aspects of biological responses involving Cl-. PMID:7541464

  19. Distinguishing gramicidin D conformers through two-dimensional infrared spectroscopy of vibrational excitons

    NASA Astrophysics Data System (ADS)

    Stevenson, Paul; Tokmakoff, Andrei

    2015-06-01

    Gramicidin D is a short peptide which dimerizes to form helical pores, adopting one of two conformations in the process. These conformations differ primarily in number of residues per turn and the hydrogen-bond registry between rungs of the helix. Using amide I 2D infrared (IR) and FTIR, we have demonstrated that it is possible to distinguish between the different conformers of gramicidin D in solution. We show that the spectra observed for this helical peptide bear no resemblance to the spectra of α- or 310-helices and that while the FTIR spectra appear similar to spectra of β-sheets, 2D IR reveals that the observed resonances arise from vibrational modes unlike those observed in β-sheets. We also present an idealized model which reproduces the experimental data with high fidelity. This model is able to explain the polarization-dependence of the experimental 2D IR data. Using this model, we show the coupling between the rungs of the helix dominates the spectra, and as a consequence of this, the number of residues per turn can greatly influence the amide I spectra of gramicidin D.

  20. Gramicidin Alters the Lipid Compositions of Liquid-Ordered and Liquid-Disordered Membrane Domains

    NASA Astrophysics Data System (ADS)

    Hassan-Zadeh, Ebrahim; Huang, Juyang

    2012-10-01

    The effects of adding 1 mol % of gramicidin A to the well-known DOPC/DSPC/cholesterol lipid mixtures were investigated. 4-component giant unilamellar vesicles (GUV) were prepared using our recently developed Wet-Film method. The phase boundary of liquid-ordered and liquid-disordered (Lo-Ld) coexisting region was determined using video fluorescence microscopy. We found that if cares were not taken, light-induced domain artifacts could significantly distort the measured phase boundary. After testing several fluorescence dyes, we found that the emission spectrum of Nile Red is quite sensitive to membrane composition. By fitting the Nile Red emission spectra at the phase boundary to the spectra in the Lo-Ld coexisting region, the thermodynamic tie-lines were determined. As an active component of lipid membranes, gramicidin not only partitions favorably into the liquid-disordered (Ld) phase, it also alters the phase boundary and thermodynamic tie-lines. Even at as low as 1 mol %, gramicidin decreases the cholesterol mole fraction of Ld phase and increases the area of Lo phase.

  1. Multiple solution conformations and internal rotations of the decapeptide gramicidin S.

    PubMed

    Jones, C R; Kuo, M; Gibbons, W A

    1979-10-25

    The conformations of every C alpha H-C beta H2 moiety of the peptide gramicidin S are reported. Internal rotation occurs, but distinct preferences for one side chain rotamer, greater than 80%, are found for the D-phenylalanine and ornithine residues. Leucine and valine exhibit more extensive averaging while proline is shown to be at least 90% in the Ramachandran B conformation. The data are consistent with the coexistence of many tertiary conformations of gramicidin S; the statistical weights of the twelve major tertiary conformations consistent with the rotamer populations are reported. The relative statistical weights of the tertiary conformers depend upon temperature and solvent. A comparison of the conclusions from this publication and conformations derived by energy minimization procedures is made. Partial agreement was found, but the calculations have not yet predicted the wealth of coexisting tertiary conformations nor accounted for the subtle effects of solvent. It is proposed that a more complete picture of the conformational dynamics of gramicidin S and other peptides will result from calculations which use as a basis the extensive data reported here.

  2. Distinguishing gramicidin D conformers through two-dimensional infrared spectroscopy of vibrational excitons

    PubMed Central

    Tokmakoff, Andrei

    2015-01-01

    Gramicidin D is a short peptide which dimerizes to form helical pores, adopting one of two conformations in the process. These conformations differ primarily in number of residues per turn and the hydrogen-bond registry between rungs of the helix. Using amide I 2D infrared (IR) and FTIR, we have demonstrated that it is possible to distinguish between the different conformers of gramicidin D in solution. We show that the spectra observed for this helical peptide bear no resemblance to the spectra of α- or 310-helices and that while the FTIR spectra appear similar to spectra of β-sheets, 2D IR reveals that the observed resonances arise from vibrational modes unlike those observed in β-sheets. We also present an idealized model which reproduces the experimental data with high fidelity. This model is able to explain the polarization-dependence of the experimental 2D IR data. Using this model, we show the coupling between the rungs of the helix dominates the spectra, and as a consequence of this, the number of residues per turn can greatly influence the amide I spectra of gramicidin D. PMID:26049444

  3. Equilibrium binding constants for Tl+ with gramicidins A, B and C in a lysophosphatidylcholine environment determined by 205Tl nuclear magnetic resonance spectroscopy.

    PubMed Central

    Hinton, J F; Koeppe, R E; Shungu, D; Whaley, W L; Paczkowski, J A; Millett, F S

    1986-01-01

    Nuclear Magnetic Resonance (NMR) 205Tl spectroscopy has been used to monitor the binding of Tl+ to gramicidins A, B, and C packaged in aqueous dispersions of lysophosphatidylcholine. For 5 mM gramicidin dimer in the presence of 100 mM lysophosphatidylcholine, only approximately 50% or less of the gramicidin appears to be accessible to Tl+. Analysis of the 205Tl chemical shift as a function of Tl+ concentration over the 0.65-50 mM range indicates that only one Tl+ ion can be bound by gramicidin A, B, or C under these experimental conditions. In this system, the Tl+ equilibrium binding constant is 582 +/- 20 M-1 for gramicidin 1949 +/- 100 M-1 for gramicidin B, and 390 +/- 20 M-1 for gramicidin C. Gramicidin B not only binds Tl+ more strongly but it is also in a different conformational state than that of A and C, as shown by Circular Dichroism spectroscopy. The 205Tl NMR technique can now be extended to determinations of binding constants of other cations to gramicidin by competition studies using a 205Tl probe. PMID:2420383

  4. Reactive Landing of Gramicidin S and Ubiquitin Ions onto Activated Self-Assembled Monolayer Surfaces.

    PubMed

    Laskin, Julia; Hu, Qichi

    2017-03-13

    Using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS), we examined the reactive landing of gramicidin S and ubiquitin ions onto activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester (NHS-SAM) and acyl fluoride (COF-SAM) groups. Doubly protonated gramicidin S, [GS + 2H](2+), and two charge states of ubiquitin, [U + 5H](5+) and [U + 13H](13+), were used as model systems, allowing us to explore the effect of the number of free amino groups and the secondary structure on the efficiency of covalent bond formation between the projectile ion and the surface. For all projectile ions, ion deposition resulted in the depletion of IRRAS bands corresponding to the terminal groups on the SAM and the appearance of several new bands not associated with the deposited species. These new bands were assigned to the C=O stretching vibrations of COOH and COO(-) groups formed on the surface as a result of ion deposition. The presence of these bands was attributed to an alternative reactive landing pathway that competes with covalent bond formation. This pathway with similar yields for both gramicidin S and ubiquitin ions is analogous to the hydrolysis of the NHS ester bond in solution. The covalent bond formation efficiency increased linearly with the number of free amino groups and was found to be lower for the more compact conformation of ubiquitin compared with the fully unfolded conformation. This observation was attributed to the limited availability of amino groups on the surface of the folded conformation. Our results have provided new insights on the efficiency and mechanism of reactive landing of peptides and proteins onto activated SAMs. Graphical Abstract ᅟ.

  5. Reactive Landing of Gramicidin S and Ubiquitin Ions onto Activated Self-Assembled Monolayer Surfaces

    NASA Astrophysics Data System (ADS)

    Laskin, Julia; Hu, Qichi

    2017-03-01

    Using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS), we examined the reactive landing of gramicidin S and ubiquitin ions onto activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester (NHS-SAM) and acyl fluoride (COF-SAM) groups. Doubly protonated gramicidin S, [GS + 2H]2+, and two charge states of ubiquitin, [U + 5H]5+ and [U + 13H]13+, were used as model systems, allowing us to explore the effect of the number of free amino groups and the secondary structure on the efficiency of covalent bond formation between the projectile ion and the surface. For all projectile ions, ion deposition resulted in the depletion of IRRAS bands corresponding to the terminal groups on the SAM and the appearance of several new bands not associated with the deposited species. These new bands were assigned to the C=O stretching vibrations of COOH and COO- groups formed on the surface as a result of ion deposition. The presence of these bands was attributed to an alternative reactive landing pathway that competes with covalent bond formation. This pathway with similar yields for both gramicidin S and ubiquitin ions is analogous to the hydrolysis of the NHS ester bond in solution. The covalent bond formation efficiency increased linearly with the number of free amino groups and was found to be lower for the more compact conformation of ubiquitin compared with the fully unfolded conformation. This observation was attributed to the limited availability of amino groups on the surface of the folded conformation. Our results have provided new insights on the efficiency and mechanism of reactive landing of peptides and proteins onto activated SAMs.

  6. Formation of ultracold X {sup 1}{Sigma}{sup +}(v{sup ''}=0) NaCs molecules via coupled photoassociation channels

    SciTech Connect

    Zabawa, P.; Wakim, A.; Haruza, M.; Bigelow, N. P.

    2011-12-15

    We report production of ultracold X {sup 1}{Sigma}{sup +}(v{sup ''}=0) NaCs molecules via photoassociation. We utilize a combination of spectroscopic techniques to determine formation pathways and label ground-state samples. Efficient free-bound excitation occurs due to coupling between B {sup 1}{Pi} and neighboring electronic states in the Na 3S+Cs 6P complex. An f-wave shape resonance contributes to formation of a rotationally pure sample of X {sup 1}{Sigma}{sup +}(v{sup ''}=0,J{sup ''}=1) molecules.

  7. [The safety evaluation of fradiomycin-gramicidin S troches "Meiji" (author's transl)].

    PubMed

    Yokota, M; Odaki, M; Koeda, T; Sato, K; Akiyoshi, M

    1976-09-01

    The troches "Meiji" contain fradiomycin (neomycin), an aminoglycoside antibiotic, and gramicidin S, and are effective against gram-negative and -positive bacteria. In this paper the safety evaluation of the troches is reported. In this study male guinea pigs of Hartley strain were used, and fradiomycin (FRM) and gramicidin S (GRMN) were administered orally for 35 days consecutively except Sunday. The PRYER'S reflex test was carried out with frequency range of 10,000 approximately 15,000 Hz before, during and after the administration. After the last administration the animals underwent vital perfusion with physiological saline and then with Wittmack's fixative. Bilateral temporal bones were removed and fixed in the same fixative for several days. Using a conventional method, serial celloidin horinzontal sections were prepared and stained with hematoxyline-eosine to observe histopathological effect of the medicines on the organs of CORTI. The results were as follows: 1) There were no remarkable differences in the treated animals from the initial states. No animal died at all the doses tested. 2) All of the guinea pigs received 10 and 50 mg/kg of FRM and 4 and 20 mg/kg of GRMN for 35 days indicated positive pinna reflex in the extensive frequency range of 10,000 approximately 15,000 Hz. There was no remarkable damage in the organ of CORTI on histopathological examination. 3) It was concluded from these results that the troches are highly safe.

  8. [Heavy metal cation-induced increase in the antimicrobial activity of gramicidin S. Increased sensitivity of metal-resistant mutants of Escherichia coli B to the antibiotic].

    PubMed

    Kuzovnikova, T A; Fedorov, Iu I

    1990-04-01

    Gramicidin S response of metal resistant mutants of E. coli B and the effect of concentrations of Cu2+, Ag+, Co2+ and Cd2+ on the growth and sensitivity of E. coli B to cationic antibiotics, i.e. gramicidin S2+ and streptomycin2+, were studied. It was shown that the metal-cumulating mutants of E. coli B with two different mechanisms of cross resistance to Cu2+, Cd2+ and Ag+ had higher sensitivity to gramicidin S than the initial wild type strain of E. coli B. It was found that in the threshold or higher doses the salts of Cu, Ag, Co and Cd increased the gramicidin S antimicrobial action on actively metabolizing cells of E. coli B. Analysis of the experimental data as well as the literature ones suggested that the synergic action of gramicidin S and the heavy metals stemmed from an increase in the cationic conductivity of the cytoplasma membrane modified by the metals in the threshold doses which induced an increase in the transport and accumulation of the cations in the bacterial cells by the electric field gradient (with the negative sign inside). Withdrawal of Ca2+ and Mg2+ from the E. coli outer structures into the cytoplasm impaired the barrier properties of the outer membrane and promoted binding of the gramicidin S cations to the liberated anionic groups of the E. coli outer structures and potentiation of the gramicidin S antimicrobial activity as was shown in our experiments.

  9. Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms.

    PubMed

    Zuo, Rongjun; Wood, Thomas K

    2004-11-01

    A gramicidin-S-producing Bacillus brevis 18-3 biofilm was shown to reduce corrosion rates of mild steel by inhibiting both the sulfate-reducing bacterium Desulfosporosinus orientis and the iron-oxidizing bacterium Leptothrix discophora SP-6. When L. discophora SP-6 was introduced along with D. orientis to a non-antimicrobial-producing biofilm control, Paenibacillus polymyxa ATCC 10401, a corrosive synergy was created and mild steel coupons underwent more severe corrosion than when only D. orientis was present, showing a 2.3-fold increase via electrochemical impedance spectroscopy (EIS) and a 1.8-fold difference via mass-loss measurements. However, when a gramicidin-S-producing, protective B. brevis 18-3 biofilm was established on mild steel, the metal coupons were protected against the simultaneous attack of D. orientis and L. discophora SP-6. EIS data showed that the protective B. brevis 18-3 biofilm decreased the corrosion rate about 20-fold compared with the non-gramicidin-producing P. polymyxa ATCC 10401 biofilm control. The mass loss for the protected mild steel coupons was also significantly lower than that for the unprotected ones (4-fold decrease). Scanning electron microscope images corroborated the corrosion inhibition by the gramicidin-S-producing B. brevis biofilm on mild steel by showing that the metal surface remained untarnished, i.e., the polishing grooves were still visible after exposure to the simultaneous attack of the sulfate-reducing bacterium and the iron-oxidizing bacterium.

  10. A variable Ag-Cr-Oxalate channel lattice: [M(x)Ag(0.5)(-)(x)(H(2)O)(3)]@[Ag(2.5)Cr(C(2)O(4))(3)], M = K, Cs, Ag.

    PubMed

    Dean, Philip A W; Craig, Don; Dance, Ian; Russell, Vanessa; Scudder, Marcia

    2004-01-26

    Reaction of aqueous AgNO(3) with aqueous M(3)[Cr(ox)(3)] in >or=3:1 molar ratio causes the rapid growth of large, cherry-black, light-stable crystals which are not Ag(3)[Cr(ox)(3)], but [M(0.5)(H(2)O)(3)]@[Ag(2.5)Cr(ox)(3)] (ox(2)(-) = oxalate, C(2)O(4)(2)(-); M = Na, K, Cs, Ag, or mixtures of Ag and a group 1 element). The structure of these crystals contains an invariant channeled framework, with composition [[Ag(2.5)Cr(ox)(3)](-)(0.5)]( infinity ), constructed with [Cr(ox)(3)] coordination units linked by Ag atoms through centrosymmetric [Cr-O(2)C(2)O(2)-Ag](2) double bridges. The framework composition [Ag(2.5)Cr(ox)(3)](-)(0.5) occurs because one Ag is located on a 2-fold axis. Within the channels there is a well-defined and ordered set of six water molecules, strongly hydrogen bonded to each other and some of the oxalate O atoms. This invariant channel plus water structure accommodates group 1 cations, and/or Ag cations, in different locations and in variable proportions, but always coordinated by channel water and some oxalate O atoms. The general formulation of these crystals is therefore [M(x)Ag(0.5-x)(H(2)O)(3)]@[Ag(2.5)Cr(ox)(3)]. Five different crystals with this structure are reported, with compositions 1 Ag(0.5)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 2 Cs(0.19)Ag(0.31)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 3 K(0.28)Ag(0.22)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 4 Cs(0.41)Ag(0.09)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), and 5 Cs(0.43)Ag(0.07) [Ag(2.5)Cr(ox)(3)](H(2)O)(3). All crystallize in space group C2/c, with a approximately 18.4, b approximately 14.6, c approximately 12.3 A, beta approximately 113 degrees. Pure Ag(3)[Cr(ox)(3)](H(2)O)(3), which has the same crystal structure (1), was obtained from water by treating Li(3)[Cr(ox)(3)] with excess AgNO(3). Complete dehydration of all of these compounds occurs between 30 and 100 degrees C, with loss of diffraction, but rehydration by exposure to H(2)O(g) at ambient temperature leads to recovery of the original diffraction pattern. In single

  11. Computer Simulation Studies of Ion Channels at High Temperatures

    NASA Astrophysics Data System (ADS)

    Song, Hyun Deok

    The gramicidin channel is the smallest known biological ion channel, and it exhibits cation selectivity. Recently, Dr. John Cuppoletti's group at the University of Cincinnati showed that the gramicidin channel can function at high temperatures (360 ˜ 380K) with significant currents. This finding may have significant implications for fuel cell technology. In this thesis, we have examined the gramicidin channel at 300K, 330K, and 360K by computer simulation. We have investigated how the temperature affects the current and differences in magnitude of free energy between the two gramicidin forms, the helical dimer (HD) and the double helix (DH). A slight decrease of the free energy barrier inside the gramicidin channel and increased diffusion at high temperatures result in an increase of current. An applied external field of 0.2V/nm along the membrane normal results in directly observable ion transport across the channels at high temperatures for both HD and DH forms. We found that higher temperatures also affect the probability distribution of hydrogen bonds, the bending angle, the distance between dimers, and the size of the pore radius for the helical dimer structure. These findings may be related to the gating of the gramicidin channel. Methanococcus jannaschii (MJ) is a methane-producing thermophile, which was discovered at a depth of 2600m in a Pacific Ocean vent in 1983. It has the ability to thrive at high temperatures and high pressures, which are unfavorable for most life forms. There have been some experiments to study its stability under extreme conditions, but still the origin of the stability of MJ is not exactly known. MJ0305 is the chloride channel protein from the thermophile MJ. After generating a structure of MJ0305 by homology modeling based on the Ecoli ClC templates, we examined the thermal stability, and the network stability from the change of network entropy calculated from the adjacency matrices of the protein. High temperatures increase the

  12. The quantitation of nuclear Overhauser effect methods for total conformational analysis of peptides in solution. Application to gramicidin S.

    PubMed Central

    Jones, C R; Sikakana, C T; Hehir, S; Kuo, M C; Gibbons, W A

    1978-01-01

    The [1H:1H] nuclear Overhauser effects (NOE's) and spin-lattice relaxation times (T1's) are reported for the backbone protons of the decapeptide gramicidin S. Several methods for calculating interproton distances from these measurements are presented. Ratios of interproton distances were obtained from [1H:1H] NOE's and from the combination of [1H:1H]NOE'S and T1 values. Actual proton-proton distances were calculated from these ratios either by using the known distance between two geminal protons or distances derived from scalar coupling constants. The interproton distances calculated for gramicidin S are consistent with a II' beta-turn/antiparallel beta-sheet conformation. PMID:83886

  13. Atomic detail peptide-membrane interactions: molecular dynamics simulation of gramicidin S in a DMPC bilayer.

    PubMed Central

    Mihailescu, D; Smith, J C

    2000-01-01

    Molecular dynamics simulations have been performed of the sequence-symmetric cyclic decapeptide antibiotic gramicidin S (GS), in interaction with a hydrated dimyristoylphosphatidylcholine (DMPC) bilayer, and the results compared with a "control" simulation of the system in the absence of GS. Following experimental evidence, the GS was initially set in a single antiparallel beta-sheet conformation with two Type II' beta-turns in an amphiphilic interaction with the membrane. This conformation and position remained in the 6.5 ns simulation. Main-chain dihedrals are on average approximately 26 degrees from those determined by NMR experiment on GS in dimethylsulfoxide (DMSO) solution. Sequence-symmetric main-chain and side-chain dihedral angle pairs converge to within approximately 5 degrees and approximately 10 degrees, respectively. The area per lipid, lipid tail order parameters, and quadrupole spin-lattice relaxation times of the control simulation are mostly in good agreement with corresponding experiments. The GS has little effect on the membrane dipole potential or water permeability. However, it is found to have a disordering effect (in agreement with experiment) and a fluidifying effect on lipids directly interacting with it, and an ordering effect on those not directly interacting. PMID:11023880

  14. Therapeutic Potential of Gramicidin S in the Treatment of Root Canal Infections

    PubMed Central

    Berditsch, Marina; Lux, Hannah; Babii, Oleg; Afonin, Sergii; Ulrich, Anne S.

    2016-01-01

    An intrinsic clindamycin-resistant Enterococcus faecalis, the most common single species present in teeth after failed root canal therapy, often possesses acquired tetracycline resistance. In these cases, root canal infections are commonly treated with Ledermix® paste, which contains demeclocycline, or the new alternative endodontic paste Odontopaste, which contains clindamycin; however, these treatments are often ineffective. We studied the killing activity of the cyclic antimicrobial peptide gramicidin S (GS) against planktonic and biofilm cells of tetracycline-resistant clinical isolates of E. faecalis. The high therapeutic potential of GS for the topical treatment of problematic teeth is based on the rapid bactericidal effect toward the biofilm-forming, tetracycline-resistant E. faecalis. GS reduces the cell number of planktonic cells within 20–40 min at a concentration of 40–80 μg/mL. It kills the cells of pre-grown biofilms at concentrations of 100–200 μg/mL, such that no re-growth is possible. The translocation of the peptide into the cell interior and its complexation with intracellular nucleotides, including the alarmon ppGpp, can explain its anti-biofilm effect. The successful treatment of persistently infected root canals of two volunteers confirms the high effectiveness of GS. The broad GS activity towards resistant, biofilm-forming E. faecalis suggests its applications for approval in root canal medication. PMID:27618065

  15. Antimicrobial peptide gramicidin S is accumulated in granules of producer cells for storage of bacterial phosphagens

    PubMed Central

    Berditsch, Marina; Trapp, Mareike; Afonin, Sergii; Weber, Christian; Misiewicz, Julia; Turkson, Joana; Ulrich, Anne S.

    2017-01-01

    Many antimicrobial peptides are synthesized non-ribosomally in bacteria, but little is known about their subcellular route of biosynthesis, their mode of intracellular accumulation, or their role in the physiology of the producer cells. Here, we present a comprehensive view on the biosynthesis of gramicidin S (GS) in Aneurinibacillus migulanus, having observed a peripheral membrane localization of its synthetases. The peptide gets accumulated in nano-globules, which mature by fusion into larger granules and end up within vacuolar structures. These granules serve as energy storage devices, as they contain GS molecules that are non-covalently attached to alkyl phosphates and protect them from dephosphorylation and premature release of energy. This finding of a fundamentally new type of high-energy phosphate storage mechanism can explain the curious role of GS biosynthesis in the physiology of the bacterial producer cells. The unknown role of the GrsT protein, which is part of the non-ribosomal GS synthetase operon, can thus be assumed to be responsible for the biosynthesis of alkyl phosphates. GS binding to alkyl phosphates may suggest its general affinity to phosphagens such as ATP and GTP, which can represent the important intracellular targets in pathogenic bacteria. PMID:28295017

  16. Lipid-gramicidin interactions: dynamic structure of the boundary lipid by 2D-ELDOR.

    PubMed

    Costa-Filho, Antonio J; Crepeau, Richard H; Borbat, Petr P; Ge, Mingtao; Freed, Jack H

    2003-05-01

    The use of 2D-electron-electron double resonance (2D-ELDOR) for the characterization of the boundary lipid in membrane vesicles of DPPC and gramicidin A' (GA) is reported. We show that 2D-ELDOR, with its enhanced spectral resolution to dynamic structure as compared with continuous-wave electron spin resonance, provides a reliable and useful way of studying lipid-protein interactions. The 2D-ELDOR spectra of the end-chain spin label 16-PC in DPPC/GA vesicles is composed of two components, which are assigned to the bulk lipids (with sharp auto peaks and crosspeaks) and to the boundary lipids (with broad auto peaks). Their distinction is clearest for higher temperatures and higher GA concentrations. The quantitative analysis of these spectra shows relatively faster motions and very low ordering for the end chain of the bulk lipids, whereas the boundary lipids show very high "y-ordering" and slower motions. The y-ordering represents a dynamic bending at the end of the boundary lipid acyl chain, which can then coat the GA molecules. These results are consistent with the previous studies by Ge and Freed (1999) using continuous-wave electron spin resonance, thereby supporting their model for GA aggregation and H(II) phase formation for high GA concentrations. Improved instrumental and simulation methods have been employed.

  17. Shifting the equilibrium mixture of gramicidin double helices toward a single conformation with multivalent cationic salts.

    PubMed Central

    Doyle, D A; Wallace, B A

    1998-01-01

    The conformation of the polypeptide antibiotic gramicidin is greatly influenced by its environment. In methanol, it exists as an equilibrium mixture of four interwound double-helical conformers that differ in their handedness, chain orientation, and alignment. Upon the addition of multivalent cationic salts, there is a shift in the equilibrium to a single conformer, which was monitored in this study by circular dichroism spectroscopy. With increasing concentrations of multivalent cations, both the magnitude of the entire spectrum and the ratio of the 229-nm to the 210-nm peak were increased. The spectral change is not related to the charge on the cation, but appears to be related to the cationic radius, with the maximum change in ellipticity occurring for cations with a radius of approximately 1 A. The effect requires the presence of an anion whose radius is greater than that of a fluoride ion, but is otherwise not a function of anion type. It is postulated that multivalent cations interact with a binding site in one of the conformers, known as species 1 (a left-handed, parallel, no stagger double helix), stabilizing a modified form of this type of structure. PMID:9675165

  18. Cs(3)Sm(7)Se(12).

    PubMed

    Schneck, Christof; Elbe, Andreas; Schurz, Christian M; Schleid, Thomas

    2012-01-01

    The title compound, tricaesium hepta-samarium(III) dodeca-selenide, is setting a new starting point for realization of the channel structure of the Cs(3)M(7)Se(12) series, now with M = Sm, Gd-Er. This Cs(3)Y(7)Se(12)-type arrangement is structurally based on the Z-type sesquiselenides M(2)Se(3) adopting the Sc(2)S(3) structure. Thus, the structural set-up of Cs(3)Sm(7)Se(12) consists of edge- and vertex-connected [SmSe(6)](9-) octa-hedra [d(Ø)(Sm(3+) - Se(2-)) = 2.931 Å], forming a rock-salt-related network [Sm(7)Se(12)](3-) with channels along [001] that are apt to take up monovalent cations (here Cs(+)) with coordination numbers of 7 + 1 for one and of 6 for the second cation. The latter cation has a trigonal-prismatic coordination and shows half-occupancy, resulting in an impossible short distance [2.394 (4) Å] between symmetrically coupled Cs(+) cations of the same kind. While one Sm atom occupies Wyckoff position 2b with site symmetry ..2/m, all other 11 crystallographically different atoms (namely 2 × Cs, 3 × Sm and 6 × Se) are located at Wyckoff positions 4g with site symmetry ..m.

  19. Physical origin of selectivity in ionic channels of biological membranes.

    PubMed Central

    Laio, A; Torre, V

    1999-01-01

    This paper shows that the selectivity properties of monovalent cation channels found in biological membranes can originate simply from geometrical properties of the inner core of the channel without any critical contribution from electrostatic interactions between the permeating ions and charged or polar groups. By using well-known techniques of statistical mechanics, such as the Langevin equations and Kramer theory of reaction rates, a theoretical equation is provided relating the permeability ratio PB/PA between ions A and B to simple physical properties, such as channel geometry, thermodynamics of ion hydration, and electrostatic interactions between the ion and charged (or polar) groups. Diffusive corrections and recrossing rates are also considered and evaluated. It is shown that the selectivity found in usual K+, gramicidin, Na+, cyclic nucleotide gated, and end plate channels can be explained also in the absence of any charged or polar group. If these groups are present, they significantly change the permeability ratio only if the ion at the selectivity filter is in van der Waals contact with them, otherwise these groups simply affect the channel conductance, lowering the free energy barrier of the same amount for the two ions, thus explaining why single channel conductance, as it is experimentally observed, can be very different in channels sharing the same selectivity sequence. The proposed theory also provides an estimate of channel minimum radius for K+, gramicidin, Na+, and cyclic nucleotide gated channels. PMID:9876129

  20. The efficacy and safety of topical polymyxin B, neomycin and gramicidin for treatment of presumed bacterial corneal ulceration

    PubMed Central

    Bosscha, M I; van Dissel, J T; Kuijper, E J; Swart, W; Jager, M J

    2004-01-01

    Aim: To evaluate the clinical efficacy and safety of topical polymyxin B, neomycin, and gramicidin for the treatment of suspected bacterial corneal ulceration at the Leiden University Medical Center. Methods: Patients with a diagnosis of a suspected bacterial corneal ulcer between April 1995 and February 2002 were retrospectively identified and reviewed; clinical and microbiological features and response to therapy were analysed. All patients were treated with Polyspectran eye drops. Results: In total, 91 patients were included in this analysis. Bacteriological cultures of 46 patients (51%) were positive and revealed 51 microorganisms. Staphylococcus aureus (29.4%) and Pseudomonas aeruginosa (23.5%) were the most frequently encountered bacteria. Eighteen patients switched therapy before complete healing of the corneal ulceration, four patients were lost to follow up. Of the 69 patients who completed Polyspectran treatment, re-epithelialisation occurred in 68 patients (99%) and on average took 12.6 (median 8) days. Among 91 patients, there were four perforations and one evisceration. Seven toxic or allergic reactions were reported. Conclusion: This study shows that the combination of polymyxin B, neomycin, and gramicidin is an effective and safe treatment of suspected corneal ulceration. PMID:14693766

  1. An electron spin resonance study of interactions between gramicidin A' and phosphatidylcholine bilayers.

    PubMed Central

    Ge, M; Freed, J H

    1993-01-01

    The model of microscopic order and macroscopic disorder was used to stimulate electron spin resonance spectra of spin-labeled lipids, 5-PC, 10-PC, and 16-PC in multilamellar vesicles of dipalmitoylphosphatidylcholine (DPPC) containing gramicidin A' (GA) at temperatures above the gel-to-liquid crystal transition of DPPC. The simulations show that at a lower concentration of GA (i.e., molar ratios of DPPC/GA greater than 3), GA has only a slight effect on the acyl chain dynamics. The rotational diffusion rate around the axis parallel to the long hydrocarbon chain remains unchanged or increases slightly, while the rate around the perpendicular axes decreases slightly. These spectra from DPPC/GA mixtures could only be fit successfully with two or more components consistent with the well-known concept of "boundary lipids," that is, the peptide induces structural inhomogeneity in lipid bilayers. However, the spectra were significantly better fit with additional components that exhibit increased local ordering, implying decreased amplitude of rotational motion, rather than immobilized components with sharply a reduced rotational rate. The largest relative effects occur at the end of the acyl chains, where the average local order parameter St of 16-PC increases from 0.06 for pure lipid to 0.66 for 1:1 DPPC/GA. The inhomogeneity in ordering in DPPC bilayers due to GA decreases with increasing temperature. The hyperfine tensor component Azz increases for 10-PC and 16-PC when GA is incorporated into DPPC bilayers, indicating that water has deeply penetrated into the DPPC bilayers. Simulations of published electron spin resonance spectra of 14-PC in dimyristoylphosphatidylcholine/cytochrome oxidase complexes were also better fit by additional components that were more ordered, rather than immobilized. The average local order parameter in this case is found to increase from 0.11 for pure dimyristoylphosphatidylcholine to 0.61 for a lipid/protein ratio of 50. These spectra and

  2. Improving CS regulations.

    SciTech Connect

    Nesse, R.J.; Scheer, R.M.; Marasco, A.L.; Furey, R.

    1980-10-01

    President Carter issued Executive Order 12044 (3/28/78) that required all Federal agencies to distinguish between significant and insignificant regulations, and to determine whether a regulation will result in major impacts. This study gathered information on the impact of the order and the guidelines on the Office of Conservation and Solar Energy (CS) regulatory practices, investigated problems encountered by the CS staff when implementing the order and guidelines, and recommended solutions to resolve these problems. Major tasks accomplished and discussed are: (1) legislation, Executive Orders, and DOE Memoranda concerning Federal administrative procedures relevant to the development and analysis of regulations within CS reviewed; (2) relevant DOE Orders and Memoranda analyzed and key DOE and CS staff interviewed in order to accurately describe the current CS regulatory process; (3) DOE staff from the Office of the General Counsel, the Office of Policy and Evaluation, the Office of the Environment, and the Office of the Secretary interviewed to explore issues and problems encountered with current CS regulatory practices; (4) the regulatory processes at five other Federal agencies reviewed in order to see how other agencies have approached the regulatory process, dealt with specific regulatory problems, and responded to the Executive Order; and (5) based on the results of the preceding four tasks, recommendations for potential solutions to the CS regulatory problems developed. (MCW)

  3. Bicarbonate efflux via GABAA receptors depolarizes membrane potential and inhibits two-pore domain potassium channels of astrocytes in rat hippocampal slices

    PubMed Central

    Ma, Bao-Feng; Xie, Min-Jie; Zhou, Min

    2014-01-01

    Increasing evidence indicates the functional expression of ionotropic γ-aminobutyric acid receptor (GABAA-R) in astrocytes. However, it remains controversial in regard to the intracellular Cl− concentration ([Cl−]i) and the functional role of anion-selective GABAA-R in astrocytes. In gramicidin perforated-patch recordings from rat hippocampal CA1 astrocytes, GABA and GABAA-R specific agonist THIP depolarized astrocyte membrane potential (Vm), and the THIP induced currents reversed at the voltages between −75.3 to −78.3 mV, corresponding to a [Cl−]i of 3.1 – 3.9 mM that favors a passive distribution of Cl− anions across astrocyte membrane. Further analysis showed that GABAA-R induced Vm depolarization is ascribed to HCO3− efflux, while a passively distributed Cl− mediates no net flux or influx of Cl-that leads to an unchanged or hyperpolarized Vm. In addition to a rapidly activated GABAA-R current component, GABA and THIP also induced a delayed inward current (DIC) in 63% of astrocytes. The DIC became manifest after agonist withdrawal and enhanced in amplitude with increasing agonist application duration or concentrations. Astrocytic two-pore domain K+ channels (K2Ps), especially TWIK-1, appeared to underlie the DIC, because 1) acidic intracellular pH, as a result of HCO3− efflux, inhibited TWIK-1; 2) the DIC remained in the Cs+ recording solutions that inhibited conventional K+ channels and 3) the DIC was completely inhibited by 1 mM quinine but not by blockers for other cation/anion channels. Altogether, HCO3− efflux through activated GABAA-R depolarizes astrocyte Vm and induces a delayed inhibition of K2Ps K+ channels via intracellular acidification. PMID:22855415

  4. Sequence inversion and phenylalanine surrogates at the β-turn enhance the antibiotic activity of gramicidin S

    PubMed Central

    Solanas, Concepción; de la Torre, Beatriz G.; Fernández-Reyes, María; Santiveri, Clara M.; Jiménez, M. Ángeles; Rivas, Luis; Jiménez, Ana I.; Andreu, David; Cativiela, Carlos

    2010-01-01

    A series of gramicidin S (GS) analogs have been synthesized where the Phe (i+1) and Pro (i+2) residues of the β-turn have been swapped while the respective chiralities (D-, L-) at each position are preserved, and Phe is replaced by surrogates with aromatic side chains of diverse size, orientation and flexibility. Although most analogs preserve the β-sheet structure, as assessed by NMR, their antibiotic activities turn out to be highly dependent on the bulkiness and spatial arrangement of the aromatic side chain. Significant increases in microbicidal potency against both Gram-positive and Gram-negative pathogens are observed for several analogs, resulting in improved therapeutic profiles. Data indicate that seemingly minor replacements at the GS β-turn can have significant impact on antibiotic activity, highlighting this region as a hot spot for modulating GS plasticity and activity. PMID:20411945

  5. EXTRAGALACTIC CS SURVEY

    SciTech Connect

    Bayet, E.; Viti, S.; Aladro, R.; MartIn, S.; MartIn-Pintado, J.

    2009-12-10

    We present a coherent and homogeneous multi-line study of the CS molecule in nearby (D < 10 Mpc) galaxies. We include, from the literature, all the available observations from the J = 1-0 to the J = 7-6 transitions toward NGC 253, NGC 1068, IC 342, Henize 2-10, M 82, the Antennae Galaxies, and M 83. We have, for the first time, detected the CS(7-6) line in NGC 253, M 82 (both in the northeast and southwest molecular lobes), NGC 4038, M 83 and tentatively in NGC 1068, IC 342, and Henize 2-10. We use the CS molecule as a tracer of the densest gas component of the interstellar medium in extragalactic star-forming regions, following previous theoretical and observational studies by Bayet et al. In this first paper out of a series, we analyze the CS data sample under both local thermodynamical equilibrium (LTE) and non-LTE (large velocity gradient) approximations. We show that except for M 83 and Overlap (a shifted gas-rich position from the nucleus NGC 4039 in the Antennae Galaxies), the observations in NGC 253, IC 342, M 82-NE, M 82-SW, and NGC 4038 are not well reproduced by a single set of gas component properties and that, at least, two gas components are required. For each gas component, we provide estimates of the corresponding kinetic temperature, total CS column density, and gas density.

  6. Desformylgramicidin: a model channel with an extremely high water permeability.

    PubMed Central

    Saparov, S M; Antonenko, Y N; Koeppe, R E; Pohl, P

    2000-01-01

    The water conductivity of desformylgramicidin exceeds the permeability of gramicidin A by two orders of magnitude. With respect to its single channel hydraulic permeability coefficient of 1.1.10(-12) cm(3) s(-1), desformylgramicidin may serve as a model for extremely permeable aquaporin water channel proteins (AQP4 and AQPZ). This osmotic permeability exceeds the conductivity that is predicted by the theory of single-file transport. It was derived from the concentration distributions of both pore-impermeable and -permeable cations that were simultaneously measured by double barreled microelectrodes in the immediate vicinity of a planar bilayer. From solvent drag experiments, approximately five water molecules were found to be transported by a single-file process along with one ion through the channel. The single channel proton, potassium, and sodium conductivities were determined to be equal to 17 pS (pH 2.5), 7 and 3 pS, respectively. Under any conditions, the desformyl-channel remains at least 10 times longer in its open state than gramicidin A. PMID:11053127

  7. Charge Fluctuations and Boundary Conditions of Biological Ion Channels: Effect on the Ionic Transition Rate

    SciTech Connect

    Tindjong, R.; McClintock, P. V. E.; Luchinsky, D. G.; Kaufman, I.; Eisenberg, R. S.

    2009-04-23

    A self-consistent solution is derived for the Poisson-Nernst-Planck (PNP) equation, valid both inside a biological ion channel and in the adjacent bulk fluid. An iterative procedure is used to match the two solutions together at the channel mouth. Charge fluctuations at the mouth are modeled as shot noise flipping the height of the potential barrier at the selectivity site. The resultant estimates of the conductivity of the ion channel are in good agreement with Gramicidin experimental measurements and they reproduce the observed current saturation with increasing concentration.

  8. Activation of CS2 and CS by ML3 complexes.

    PubMed

    Ariafard, Alireza; Brookes, Nigel J; Stranger, Robert; Yates, Brian F

    2008-09-10

    The aim of this study was to determine the best neutral ML3 metal complexes for activating and cleaving the multiple bonds in CS2 and CS. Current experimental results show that, so far, only one bond in CS2 can be cleaved, and that CS can be activated but the bond is not broken. In the work described in this paper, density functional theory calculations have been used to evaluate the effectiveness of different ML3 complexes to activate the C-S bonds in CS2 and CS, with M = Mo, Re, W, and Ta and L = NH2. These calculations show that the combination of Re and Ta in the L3Re/CS2/TaL3 complex would be the most promising system for the cleavage of both C-S bonds of CS2. The reaction to cleave both C-S bonds is predicted to be exothermic by about 700 kJ mol(-1) and to proceed in an almost barrierless fashion. In addition, we are able to rationalize why the breaking of the C-S bond in CS has not been observed experimentally with M = Mo: this reaction is strongly endothermic. There is a subtle interplay between charge transfer and pi back-donation, and it appears that the Mo-C and Mo-S bonds are not strong enough to compensate for the breaking of the C-S bond. Our results suggest that, instead, CS could be cleaved with ReL3 or, even better, with a combination of ReL3 and TaL3. Molecular orbitals and Mulliken charges have been used to help explain these trends and to make predictions about the most promising systems for future experimental exploration.

  9. Solid-state 19F-NMR analysis of 19F-labeled tryptophan in gramicidin A in oriented membranes.

    PubMed Central

    Grage, Stephan L; Wang, Junfeng; Cross, Timothy A; Ulrich, Anne S

    2002-01-01

    The response of membrane-associated peptides toward the lipid environment or other binding partners can be monitored by solid-state NMR of suitably labeled side chains. Tryptophan is a prominent amino acid in transmembrane helices, and its (19)F-labeled analogues are generally biocompatible and cause little structural perturbation. Hence, we use 5F-Trp as a highly sensitive NMR probe to monitor the conformation and dynamics of the indole ring. To establish this (19)F-NMR strategy, gramicidin A was labeled with 5F-Trp in position 13 or 15, whose chi(1)/chi(2) torsion angles are known from previous (2)H-NMR studies. First, the alignment of the (19)F chemical shift anisotropy tensor within the membrane was deduced by lineshape analysis of oriented samples. Next, the three principal axes of the (19)F chemical shift anisotropy tensor were assigned within the molecular frame of the indole ring. Finally, determination of chi(1)/chi(2) for 5F-Trp in the lipid gel phase showed that the side chain alignment differs by up to 20 degrees from its known conformation in the liquid crystalline state. The sensitivity gain of (19)F-NMR and the reduction in the amount of material was at least 10-fold compared with previous (2)H-NMR studies on the same system and 100-fold compared with (15)N-NMR. PMID:12496101

  10. The Role of the Dielectric Barrier in Narrow Biological Channels: A Novel Composite Approach to Modeling Single-Channel Currents

    PubMed Central

    Mamonov, Artem B.; Coalson, Rob D.; Nitzan, Abraham; Kurnikova, Maria G.

    2003-01-01

    A composite continuum theory for calculating ion current through a protein channel of known structure is proposed, which incorporates information about the channel dynamics. The approach is utilized to predict current through the Gramicidin A ion channel, a narrow pore in which the applicability of conventional continuum theories is questionable. The proposed approach utilizes a modified version of Poisson-Nernst-Planck (PNP) theory, termed Potential-of-Mean-Force-Poisson-Nernst-Planck theory (PMFPNP), to compute ion currents. As in standard PNP, ion permeation is modeled as a continuum drift-diffusion process in a self-consistent electrostatic potential. In PMFPNP, however, information about the dynamic relaxation of the protein and the surrounding medium is incorporated into the model of ion permeation by including the free energy of inserting a single ion into the channel, i.e., the potential of mean force along the permeation pathway. In this way the dynamic flexibility of the channel environment is approximately accounted for. The PMF profile of the ion along the Gramicidin A channel is obtained by combining an equilibrium molecular dynamics (MD) simulation that samples dynamic protein configurations when an ion resides at a particular location in the channel with a continuum electrostatics calculation of the free energy. The diffusion coefficient of a potassium ion within the channel is also calculated using the MD trajectory. Therefore, except for a reasonable choice of dielectric constants, no direct fitting parameters enter into this model. The results of our study reveal that the channel response to the permeating ion produces significant electrostatic stabilization of the ion inside the channel. The dielectric self-energy of the ion remains essentially unchanged in the course of the MD simulation, indicating that no substantial changes in the protein geometry occur as the ion passes through it. Also, the model accounts for the experimentally observed

  11. High temperature synthesis of two open-framework uranyl silicates with ten-ring channels: Cs{sub 2}(UO{sub 2}){sub 2}Si{sub 8}O{sub 19} and Rb{sub 2}(UO{sub 2}){sub 2}Si{sub 5}O{sub 13}

    SciTech Connect

    Babo, Jean-Marie; Albrecht-Schmitt, Thomas E.

    2013-01-15

    The uranyl silicates Cs{sub 2}(UO{sub 2}){sub 2}Si{sub 8}O{sub 19} and Rb{sub 2}(UO{sub 2}){sub 2}Si{sub 5}O{sub 13} were obtained by mixing stoichiometric amounts of uranium metal, tellurium dioxide, silicon dioxide, and an excess of correspondent alkali metal halide flux. These compounds crystallize in the orthorhombic space groups Pnma and C222 with eight and two units per unit cell, respectively. Their crystal structures are dominated by zippered pentagonal bipyramidal chains of UO{sub 7} and silicates layer that are further connected into 3D frameworks. The cesium compound has silicate double layers while rubidium has a single layer. Six-ring voids and ten-ring channels are found in both compounds. - Graphical abstract: A view of the three-dimensional network structure of Cs{sub 2}(UO{sub 2}){sub 2}Si{sub 8}O{sub 19}. Highlights: Black-Right-Pointing-Pointer Three-dimensional uranium silicates. Black-Right-Pointing-Pointer Analogs of natural uranyl silicate minerals. Black-Right-Pointing-Pointer Complexity and symmetry ambiguity of uranyl silicates.

  12. Integrating Internet Tools into Traditional CS Distance Education Students' Attitudes.

    ERIC Educational Resources Information Center

    Gal-Ezer, Judith; Lupo, David

    2002-01-01

    Describes a study conducted on the attitudes of students towards the integration of the Web as a channel of communication and a study tool in traditional distance teaching of Computer Science (CS) at the Open University of Israel. Results of questionnaires show the Web cannot substitute entirely for face-to-face learning. (Author/LRW)

  13. Mentoring and the 6Cs.

    PubMed

    Young, Lorna

    2016-02-10

    As a staff nurse in a rehabilitation unit, I have been involved in patient care initiatives using the 6Cs of nursing: care, compassion, competence, communication, courage and commitment. However, I had not appreciated the benefits of using the 6Cs of nursing in the mentorship role.

  14. Timing of the developmental switch in GABA(A) mediated signaling from excitation to inhibition in CA3 rat hippocampus using gramicidin perforated patch and extracellular recordings.

    PubMed

    Tyzio, Roman; Holmes, Gregory L; Ben-Ari, Yehezkiel; Khazipov, Roustem

    2007-01-01

    The timing of the developmental switch in the GABA(A) mediated responses from excitatory to inhibitory was studied in Wistar rat CA3 hippocampal pyramidal cells using gramicidin perforated patch-clamp and extracellular recordings. Gramicidin perforated patch recordings revealed a gradual developmental shift in the reversal potential of synaptic and isoguvacine-induced GABA(A) mediated responses from -55 +/- 4 mV at postnatal days P0-2 to -74 +/- 3 mV at P13-15 with a midpoint of disappearance of the excitatory effects of GABA at around P8. Extracellular recordings in CA3 pyramidal cell layer revealed that the effect of isoguvacine on multiple unit activity (MUA) switched from an increase to a decrease at around P10. The effect of synaptic GABA(A) mediated responses on MUA switched from an increase to a decrease at around P8. It is concluded that the developmental switch in the action of GABA via GABA(A) receptors from excitatory to inhibitory occurs in Wistar rat CA3 pyramidal cells at around P8-10, an age that coincides with the transition from immature to mature hippocampal rhythms. We propose that excitatory GABA contributes to enhanced excitability and ictogenesis in the neonatal rat hippocampus.

  15. Single-Molecule Ion Channel Conformational Dynamics in Living Cells

    NASA Astrophysics Data System (ADS)

    Lu, H. Peter

    2014-03-01

    Stochastic and inhomogeneous conformational changes regulate the function and dynamics of ion channels that are crucial for cell functions, neuronal signaling, and brain functions. Such complexity makes it difficult, if not impossible, to characterize ion channel dynamics using conventional electrical recording alone since that the measurement does not specifically interrogate the associated conformational changes but rather the consequences of the conformational changes. Recently, new technology developments on single-molecule spectroscopy, and especially, the combined approaches of using single ion channel patch-clamp electrical recording and single-molecule fluorescence imaging have provided us the capability of probing ion channel conformational changes simultaneously with the electrical single channel recording. By combining real-time single-molecule fluorescence imaging measurements with real-time single-channel electric current measurements in artificial lipid bilayers and in living cell membranes, we were able to probe single ion-channel-protein conformational changes simultaneously, and thus providing an understanding the dynamics and mechanism of ion-channel proteins at the molecular level. The function-regulating and site-specific conformational changes of ion channels are now measurable under physiological conditions in real-time, one molecule at a time. We will focus our discussion on the new development and results of real-time imaging of the dynamics of gramicidin, colicin, and NMDA receptor ion channels in lipid bilayers and living cells. Our results shed light on new perspectives of the intrinsic interplay of lipid membrane dynamics, solvation dynamics, and the ion channel functions.

  16. Bandhead Energies in 125Cs

    NASA Astrophysics Data System (ADS)

    Sun, Ji; Hu, Xue-Yuan; Ma, Ying-Jun; Liu, Yun-Zuo; Tetsuro, Komatsubara; Kohei, Furuno; Zhang, Yu-Hu; Zhou, Wen-Ping; Wang, Shou-Yu

    Excited states in 125Cs have been studied with the fusion-evaporation-reaction 116Cd(14N,5n)125Cs at 65 MeV beam energy, using the Nordball-multidetector-system at the Niels-Bohr-Institute in Denmark. The level scheme of 125Cs was extended with the addition of more than 40 new γ-transitions. Moreover, the bandhead excitation energies of the previously known g9/2 and h11/2 bands were unambiguously corrected with plenty of hard evidence.

  17. Biophysical properties of the voltage gated proton channel HV1

    PubMed Central

    Musset, Boris; DeCoursey, Thomas

    2012-01-01

    The biophysical properties of the voltage gated proton channel (HV1) are the key elements of its physiological function. The voltage gated proton channel is a unique molecule that in contrast to all other ion channels is exclusively selective for protons. Alone among proton channels, it has voltage and time dependent gating like other “classical” ion channels. HV1 is furthermore a sensor for the pH in the cell and the surrounding media. Its voltage dependence is strictly coupled to the pH gradient across the membrane. This regulation restricts opening of the channel to specific voltages at any given pH gradient, therefore allowing HV1 to perform its physiological task in the tissue it is expressed in. For HV1 there is no known blocker. The most potent channel inhibitor is zinc (Zn2+) which prevents channel opening. An additional characteristic of HV1 is its strong temperature dependence of both gating and conductance. In contrast to single-file water filled pores like the gramicidin channel, HV1 exhibits pronounced deuterium effects and temperature effects on conduction, consistent with a different conduction mechanism than other ion channels. These properties may be explained by the recent identification of an aspartate in the pore of HV1 that is essential to its proton selectivity. PMID:23050239

  18. Structures and isomorphous substitutions in Cs-Mg-beryl and Cs-rich beryllian indialite formed in a flux medium

    NASA Astrophysics Data System (ADS)

    Mikhailov, M. A.; Rozhdestvenskaya, I. V.; Bannova, I. I.

    2012-11-01

    The crystal structures of isostructural compounds — Cs-Mg-beryl (Al1.68Mg0.31Fe0.01)(Be2.68Si0.02Al0.26□0.04)Si6.00O18 · Cs0.07 ( a = 9.2359(9) Å, c = 9.204(1)Å) and the Cs variety of beryllian indialite (Mg1.90Fe0.10)(Be1.02Al1.98)(Al0.30Si5.70)O18 · Na0.02Cs0.16 ( a = 9.598(3) Å, c = 9.284(3) Å) — were refined. These compounds were formed in the Al2Be3Si6O18-Mg,Ca/F,Cl flux system in the presence of cesium chloride. The main structural features of these compounds were determined. It was found that the iso-morphous incorporation of Cs+ cations into anhydrous beryl proceeds according to the simple "vacancy" scheme BeT2 → 2(Cs+) R + □T2, whereas the complex heterovalent substitution 9SiT1 + AlT2 → 9AlT1 + BeT2 + 9(Cs, Na) R is observed in Cs-rich beryllian indialite under anhydrous conditions; i.e., no vacancies are formed in the tetrahedral framework of the latter structure. In Cs-Mg-beryl, an increase in the average bond lengths in the M octahedron and in the interring T2 tetrahedron leads to an increase in the unit-cell parameters a and c. In Cs-rich beryllian indialite, a slight increase in the M-O bond length and a decrease in T2-O bond length cause a slight increase in the parameter a and a decrease in the parameter c. The Cs+ cations are incorporated into the channels of both compounds at the height of the interring M-T2 layer (like K+ cations), whereas the Na+ cation is incorporated inside the Si6O18 ring. The δT1 value suggests that the change in the composition caused by the incorporation of Cs+ cations leads to the incongruent melting of beryllian indialite.

  19. Determinants of Water Permeability through Nanoscopic Hydrophilic Channels

    PubMed Central

    Portella, Guillem; de Groot, Bert L.

    2009-01-01

    Naturally occurring pores show a variety of polarities and sizes that are presumably directly linked to their biological function. Many biological channels are selective toward permeants similar or smaller in size than water molecules, and therefore their pores operate in the regime of single-file water pores. Intrinsic factors affecting water permeability through such pores include the channel-membrane match, the structural stability of the channel, the channel geometry and channel-water affinity. We present an extensive molecular dynamics study on the role of the channel geometry and polarity on the water osmotic and diffusive permeability coefficients. We show that the polarity of the naturally occurring peptidic channels is close to optimal for water permeation, and that the water mobility for a wide range of channel polarities is essentially length independent. By systematically varying the geometry and polarity of model hydrophilic pores, based on the fold of gramicidin A, the water density, occupancy, and permeability are studied. Our focus is on the characterization of the transition between different permeation regimes in terms of the structure of water in the pores, the average pore occupancy and the dynamics of the permeating water molecules. We show that a general relationship between osmotic and diffusive water permeability coefficients in the single-file regime accounts for the time averaged pore occupancy, and that the dynamics of the permeating water molecules through narrow non single file channels effectively behaves like independent single-file columns. PMID:19186131

  20. Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers.

    PubMed

    Lundbaek, J A; Andersen, O S

    1994-10-01

    Lipid metabolites, free fatty acids and lysophospholipids, modify the function of membrane proteins including ion channels. Such alterations can occur through signal transduction pathways, but may also result from "direct" effects of the metabolite on the protein. To investigate possible mechanisms for such direct effects, we examined the alterations of gramicidin channel function by lysophospholipids (LPLs): lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), lysophosphatidylserine (LPS), and lysophosphatidylinositol (LPI). The experiments were done on planar bilayers formed by diphytanoylphosphatidylcholine in n-decane a system where receptor-mediated effects can be excluded. At aqueous concentrations below the critical micelle concentration (CMC), LPLs can increase the dimerization constant for membrane-bound gramicidin up to 500-fold (at 2 microM). The relative potency increases as a function of the size of the polar head group, but does not seem to vary as a function of head group charge. The increased dimerization constant results primarily from an increase in the rate constant for channel formation, which can increase more than 100-fold (in the presence of LPC and LPI), whereas the channel dissociation rate constant decreases only about fivefold. The LPL effect cannot be ascribed to an increased membrane fluidity, which would give rise to an increased channel dissociation rate constant. The ability of LPC to decrease the channel dissociation rate constant varies as a function of channel length (which is always less than the membrane's equilibrium thickness): as the channel length is decreased, the potency of LPC is increased. LPC has no effect on membrane thickness or the surface tension of monolayers at the air/electrolyte interface. The bilayer-forming glycerolmonooleate does not decrease the channel dissociation rate constant. These results show that LPLs alter gramicidin channel function by altering the membrane deformation energy, and

  1. Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers

    PubMed Central

    1994-01-01

    Lipid metabolites, free fatty acids and lysophospholipids, modify the function of membrane proteins including ion channels. Such alterations can occur through signal transduction pathways, but may also result from "direct" effects of the metabolite on the protein. To investigate possible mechanisms for such direct effects, we examined the alterations of gramicidin channel function by lysophospholipids (LPLs): lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), lysophosphatidylserine (LPS), and lysophosphatidylinositol (LPI). The experiments were done on planar bilayers formed by diphytanoylphosphatidylcholine in n-decane a system where receptor- mediated effects can be excluded. At aqueous concentrations below the critical micelle concentration (CMC), LPLs can increase the dimerization constant for membrane-bound gramicidin up to 500-fold (at 2 microM). The relative potency increases as a function of the size of the polar head group, but does not seem to vary as a function of head group charge. The increased dimerization constant results primarily from an increase in the rate constant for channel formation, which can increase more than 100-fold (in the presence of LPC and LPI), whereas the channel dissociation rate constant decreases only about fivefold. The LPL effect cannot be ascribed to an increased membrane fluidity, which would give rise to an increased channel dissociation rate constant. The ability of LPC to decrease the channel dissociation rate constant varies as a function of channel length (which is always less than the membrane's equilibrium thickness): as the channel length is decreased, the potency of LPC is increased. LPC has no effect on membrane thickness or the surface tension of monolayers at the air/electrolyte interface. The bilayer-forming glycerolmonooleate does not decrease the channel dissociation rate constant. These results show that LPLs alter gramicidin channel function by altering the membrane deformation energy, and

  2. Linear rate-equilibrium relations arising from ion channel-bilayer energetic coupling

    PubMed Central

    Greisen, Per; Lum, Kevin; Ashrafuzzaman, Md.; Greathouse, Denise V.; Andersen, Olaf S.; Lundbæk, Jens A.

    2011-01-01

    Linear rate-equilibrium (RE) relations, also known as linear free energy relations, are widely observed in chemical reactions, including protein folding, enzymatic catalysis, and channel gating. Despite the widespread occurrence of linear RE relations, the principles underlying the linear relation between changes in activation and equilibrium energy in macromolecular reactions remain enigmatic. When examining amphiphile regulation of gramicidin channel gating in lipid bilayers, we noted that the gating process could be described by a linear RE relation with a simple geometric interpretation. This description is possible because the gating process provides a well-understood reaction, in which structural changes in a bilayer-embedded model protein can be studied at the single-molecule level. It is thus possible to obtain quantitative information about the energetics of the reaction transition state and its position on a spatial coordinate. It turns out that the linear RE relation for the gramicidin monomer-dimer reaction can be understood, and the quantitative relation between changes in activation energy and equilibrium energy can be interpreted, by considering the effects of amphiphiles on the changes in bilayer elastic energy associated with channel gating. We are not aware that a similar simple mechanistic explanation of a linear RE relation has been provided for a chemical reaction in a macromolecule. RE relations generally should be useful for examining how amphiphile-induced changes in bilayer properties modulate membrane protein folding and function, and for distinguishing between direct (e.g., due to binding) and indirect (bilayer-mediated) effects. PMID:21768343

  3. CHeCS Commanding Hardware

    NASA Technical Reports Server (NTRS)

    Moore, Jamie

    2010-01-01

    This slide presentation reviews the Crew Health Care System (CHeCS) commanding hardware. It includes information on the hardware status, commanding plan, and command training status with specific information the EV-CPDS 2 and 3, TEPC, MEC, and T2

  4. Channel Estimation in DCT-Based OFDM

    PubMed Central

    Wang, Yulin; Zhang, Gengxin; Xie, Zhidong; Hu, Jing

    2014-01-01

    This paper derives the channel estimation of a discrete cosine transform- (DCT-) based orthogonal frequency-division multiplexing (OFDM) system over a frequency-selective multipath fading channel. Channel estimation has been proved to improve system throughput and performance by allowing for coherent demodulation. Pilot-aided methods are traditionally used to learn the channel response. Least square (LS) and mean square error estimators (MMSE) are investigated. We also study a compressed sensing (CS) based channel estimation, which takes the sparse property of wireless channel into account. Simulation results have shown that the CS based channel estimation is expected to have better performance than LS. However MMSE can achieve optimal performance because of prior knowledge of the channel statistic. PMID:24757439

  5. Ion channels generating complex spikes in cartwheel cells of the dorsal cochlear nucleus.

    PubMed

    Kim, Yuil; Trussell, Laurence O

    2007-02-01

    Cartwheel cells are glycinergic interneurons that modify somatosensory input to the dorsal cochlear nucleus. They are characterized by firing of mixtures of both simple and complex action potentials. To understand what ion channels determine the generation of these two types of spike waveforms, we recorded from cartwheel cells using the gramicidin perforated-patch technique in brain slices of mouse dorsal cochlear nucleus and applied channel-selective blockers. Complex spikes were distinguished by whether they arose directly from a negative membrane potential or later during a long depolarization. Ca(2+) channels and Ca(2+)-dependent K(+) channels were major determinants of complex spikes. Onset complex spikes required T-type and possibly R-type Ca(2+) channels and were shaped by BK and SK K(+) channels. Complex spikes arising later in a depolarization were dependent on P/Q- and L-type Ca(2+) channels as well as BK and SK channels. BK channels also contributed to fast repolarization of simple spikes. Simple spikes featured an afterdepolarization that is probably the trigger for complex spiking and is shaped by T/R-type Ca(2+) and SK channels. Fast spikes were dependent on Na(+) channels; a large persistent Na(+) current may provide a depolarizing drive for spontaneous activity in cartwheel cells. Thus the diverse electrical behavior of cartwheel cells is determined by the interaction of a wide variety of ion channels with a prominent role played by Ca(2+).

  6. ITER CS Intermodule Support Structure

    SciTech Connect

    Myatt, R.; Freudenberg, Kevin D

    2011-01-01

    With five independently driven, bi-polarity power supplies, the modules of the ITER central solenoid (CS) can be energized in aligned or opposing field directions. This sets up the possibility for repelling modules, which indeed occurs, particularly between CS2L and CS3L around the End of Burn (EOB) time point. Light interface compression between these two modules at EOB and wide variations in these coil currents throughout the pulse produce a tendency for relative motion or slip. Ideally, the slip is purely radial as the modules breathe without any accumulative translational motion. In reality, however, asymmetries such as nonuniformity in intermodule friction, lateral loads from a plasma Vertical Disruption Event (VDE), magnetic forces from manufacturing and assembly tolerances, and earthquakes can all contribute to a combination of radial and lateral module motion. This paper presents 2D and 3D, nonlinear, ANSYS models which simulate these various asymmetries and determine the lateral forces which must be carried by the intermodule structure. Summing all of these asymmetric force contributions leads to a design-basis lateral load which is used in the design of various support concepts: the CS-CDR centering rings and a variation, the 2001 FDR baseline radial keys, and interlocking castles structures. Radial key-type intermodule structure interface slip and stresses are tracked through multiple 15 MA scenario current pulses to demonstrate stable motion following the first few cycles. Detractions and benefits of each candidate intermodule structure are discussed, leading to the simplest and most robust configuration which meets the design requirements: match-drilled radial holes and pin-shaped keys.

  7. Detection of single ion channel activity with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-03-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.

  8. Reactive barriers for {sup 137}Cs retention

    SciTech Connect

    KRUMHANSL,JAMES L.; BRADY,PATRICK V.; ANDERSON,HOWARD L.

    2000-05-19

    {sup 137}Cs was dispersed globally by cold war activities and, more recently, by the Chernobyl accident. Engineered extraction of {sup 137}Cs from soils and groundwaters is exceedingly difficult. Because the half life of {sup 137}Cs is only 30.2 years, remediation might be more effective (and less costly) if {sup 137}Cs bioavailability could be demonstrably limited for even a few decades by use of a reactive barrier. Essentially permanent isolation must be demonstrated in those few settings where high nuclear level wastes contaminated the environment with {sup 135}Cs (half life 2.3x10{sup 6} years) in addition to {sup 137}Cs. Clays are potentially a low-cost barrier to Cs movement, though their long-term effectiveness remains untested. To identify optimal clays for Cs retention Cs resorption was measured for five common clays: Wyoming Montmorillonite (SWy-1), Georgia Kaolinites (KGa-1 and KGa-2), Fithian Illite (F-Ill), and K-Metabentonite (K-Mbt). Exchange sites were pre-saturated with 0.16 M CsCl for 14 days and readily exchangeable Cs was removed by a series of LiNO{sub 3} and LiCl washes. Washed clay were then placed into dialysis bags and the Cs release to the deionized water outside the bags measured. Release rates from 75 to 139 days for SWy-1, K-Mbt and F- 111 were similar; 0.017 to 0.021% sorbed Cs released per day. Both kaolinites released Cs more rapidly (0.12 to 0.05% of the sorbed Cs per day). In a second set of experiments, clays were doped for 110 days and subjected to an extreme and prolonged rinsing process. All the clays exhibited some capacity for irreversible Cs uptake so most soils have some limited ability to act as a natural barrier to Cs migration. However, the residual loading was greatest on K-Mbt ({approximately} 0.33 wt% Cs). Thus, this clay would be the optimal material for constructing artificial reactive barriers.

  9. Label-free study of the function of ion channel protein on a microfluidic optical sensor integrated with artificial cell membrane.

    PubMed

    Li, Zhen; Tang, Yanyan; Zhang, Ling; Wu, Jianmin

    2014-01-21

    A label-free optical sensor was constructed by integrating pH sensing material and supported phospholipid bilayers (SPBs) in a microfluidic chip. The pH sensing material was composed of a double layer structure consisting of chitosan hydrogel and electrochemically etched porous silicon. The pH change in the microchip could induce a reversible swelling of the chitosan hydrogel layer and consequently caused a shift in effective optical thickness (EOT) of the double layer, which could be observed by Fourier transformed reflectometric interference spectroscopy (FT-RIS). After phospholipid bilayers (PLBs) were self-assembled on the sensing layer, the EOT almost remained constant during the cycling of pH from 7.4 to 6.2, indicating the blockage of H(+) translocation by the PLBs. For studying the behavior of ion channel protein, gramicidin A, a typical ion channel protein, was inserted in the SPBs for mimicking the ion transportation function of cell membrane. Due to the H(+) transportation capability of gramicidin A, the optical response to pH change could partially recover. In the presence of Ca(2+), the pore of the ion channel protein was blocked, causing a significant decrease in the EOT response upon pH change. The bio-functionalized microfluidic sensor fabricated in this work will provide a reliable platform for studying the function of ion channel protein, which is an important class of drug targets.

  10. Atomic force microscopy imaging and electrical recording of lipid bilayers supported over microfabricated silicon chip nanopores: lab-on-a-chip system for lipid membranes and ion channels.

    PubMed

    Quist, Arjan P; Chand, Ami; Ramachandran, Srinivasan; Daraio, Chiara; Jin, Sungho; Lal, Ratnesh

    2007-01-30

    We describe a silicon chip-based supported bilayer system to detect the presence of ion channels and their electrical conductance in lipid bilayers. Nanopores were produced in microfabricated silicon membranes by electron beam lithography as well as by using a finely focused ion beam. Thermal oxide was used to shrink pore sizes, if necessary, and to create an insulating surface. The chips with well-defined pores were easily mounted on a double-chamber plastic cell recording system, allowing for controlling the buffer conditions both above and below the window. The double-chamber system allowed using an atomic force microscopy (AFM) tip as one electrode and inserting a platinum wire as the second electrode under the membrane window, to measure electrical current across lipid bilayers that are suspended over the pores. Atomic force imaging, stiffness measurement, and electrical capacitance measurement show the feasibility of supporting lipid bilayers over defined nanopores: a key requirement to use any such technique for structure-function study of ion channels. Online addition of gramicidin, an ion-channel-forming peptide, resulted in electrical current flow across the bilayer, and the I-V curve that was measured using the conducting AFM tip indicates the presence of many conducting gramicidin ion channels.

  11. Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy.

    PubMed

    Hartmann, Mareike; Berditsch, Marina; Hawecker, Jacques; Ardakani, Mohammad Fotouhi; Gerthsen, Dagmar; Ulrich, Anne S

    2010-08-01

    Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the ultrastructural changes in bacteria induced by antimicrobial peptides (AMPs). Both the beta-stranded gramicidin S and the alpha-helical peptidyl-glycylleucine-carboxyamide (PGLa) are cationic amphiphilic AMPs known to interact with bacterial membranes. One representative Gram-negative strain, Escherichia coli ATCC 25922, and one representative Gram-positive strain, Staphylococcus aureus ATCC 25923, were exposed to the AMPs at sub-MICs and supra-MICs in salt-free medium. SEM revealed a shortening and swelling of the E. coli cells, and multiple blisters and bubbles formed on their surface. The S. aureus cells seemed to burst upon AMP exposure, showing open holes and deep craters in their envelope. TEM revealed the formation of intracellular membranous structures in both strains, which is attributed to a lateral expansion of the lipid membrane upon peptide insertion. Also, some morphological alterations in the DNA region were detected for S. aureus. After E. coli was incubated with AMPs in medium with low ionic strength, the cells appeared highly turgid compared to untreated controls. This observation suggests that the AMPs enhance osmosis through the inner membrane, before they eventually cause excessive leakage of the cellular contents. The adverse effect on the osmoregulatory capacity of the bacteria is attributed to the membrane-permeabilizing action of the amphiphilic peptides, even at low (sub-MIC) AMP concentrations. Altogether, the results demonstrate that both TEM and SEM, as well as appropriate sample preparation protocols, are needed to obtain detailed mechanistic insights into peptide function.

  12. Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis

    PubMed Central

    Berditsch, Marina; Afonin, Sergii; Steineker, Anna; Orel, Nataliia; Jakovkin, Igor; Weber, Christian

    2015-01-01

    Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly 13C/15N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive 13C/15N-labeled amino acids. The most cost-effective production of 13C/15N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% 13C-glycerol and 0.5% 15N-ammonium sulfate, supplemented with only 0.025% of 13C/15N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state. PMID:25795666

  13. Localization of a continuum shape resonance - Photoionization of CS2

    NASA Astrophysics Data System (ADS)

    Kakar, Sandeep; Choi, Heung-Cheun; Poliakoff, E. D.

    1992-10-01

    We report a vibrationally resolved investigation into the 5sigma(u) exp -1 shape-resonant ionization dynamics for CS2 in the range h nu 18-30 eV. The intensity of dispersed fluorescence from CS2(+)(B 2Sigma(u)(+) photoions is measured to obtain partial photoionization cross-section curves for the v = (0,0,0) and (1,0,0) levels of CS2(+)(B 2Sigma(u)(+), as well as the vibrational branching ratio. Our results indicate a shape resonance at hv equal to about 21 eV which is insensitive to changes in the symmetric stretching coordinate. These data are consistent with recent theoretical efforts that predict a shape resonance in the 5sigma(u) - epsilon pi(g) channel. All previous vibrationally resolved data on shape resonances have been obtained for systems whose shape resonances occur in the (epsilon sigma) continuum. The current results are in contrast to behavior observed for other shape resonances, highlighting both their diverse nature and possible extensions of the current measurements.

  14. Microstructure of Cs-implanted zirconia: Role of temperature

    NASA Astrophysics Data System (ADS)

    Vincent, L.; Thomé, L.; Garrido, F.; Kaitasov, O.; Houdelier, F.

    2008-12-01

    The aim of this study was to identify experimentally the phase which includes cesium in yttria stabilized zirconia (YSZ). The solubility and retention of cesium in YSZ were studied at high temperature (HT). Cesium was ion implanted (at 300 keV) into YSZ at room temperature (RT), 750 °C, or 900 °C at fluences up to 5×1016 cm-2. The temperature dependence of the radiation-induced damage and of the cesium distribution in YSZ single crystals was investigated by Rutherford backscattering spectrometry and ion channeling. Transmission electron microscopy (TEM) studies were performed in order to determine the damage nature and search for a predicted ternary phase of cesium zirconate. Whatever the implantation temperature, the thickness of the damaged layer increases inwards with ion fluence. At RT, amorphization occurs, caused by the high Cs concentration (7at.%). In situ TEM during postannealing shows recrystallization of cubic zirconia after release of cesium. A high implantation temperature has a significant influence on the nature of radiation defects and on the retained Cs concentration. At HT, dislocation loops and voids are formed but no amorphization is observed whereas polygonization occurs at high fluence. The implanted cesium concentration reaches a saturation value of 1.5 at. % above which Cs can no longer be retained in the matrix and is then released at the surface. At that concentration, cesium forms a solid solution in YSZ; no other phase is formed, neither during irradiation nor after thermal annealing.

  15. Numerical methods for a Poisson-Nernst-Planck-Fermi model of biological ion channels.

    PubMed

    Liu, Jinn-Liang; Eisenberg, Bob

    2015-07-01

    Numerical methods are proposed for an advanced Poisson-Nernst-Planck-Fermi (PNPF) model for studying ion transport through biological ion channels. PNPF contains many more correlations than most models and simulations of channels, because it includes water and calculates dielectric properties consistently as outputs. This model accounts for the steric effect of ions and water molecules with different sizes and interstitial voids, the correlation effect of crowded ions with different valences, and the screening effect of polarized water molecules in an inhomogeneous aqueous electrolyte. The steric energy is shown to be comparable to the electrical energy under physiological conditions, demonstrating the crucial role of the excluded volume of particles and the voids in the natural function of channel proteins. Water is shown to play a critical role in both correlation and steric effects in the model. We extend the classical Scharfetter-Gummel (SG) method for semiconductor devices to include the steric potential for ion channels, which is a fundamental physical property not present in semiconductors. Together with a simplified matched interface and boundary (SMIB) method for treating molecular surfaces and singular charges of channel proteins, the extended SG method is shown to exhibit important features in flow simulations such as optimal convergence, efficient nonlinear iterations, and physical conservation. The generalized SG stability condition shows why the standard discretization (without SG exponential fitting) of NP equations may fail and that divalent Ca(2+) may cause more unstable discrete Ca(2+) fluxes than that of monovalent Na(+). Two different methods-called the SMIB and multiscale methods-are proposed for two different types of channels, namely, the gramicidin A channel and an L-type calcium channel, depending on whether water is allowed to pass through the channel. Numerical methods are first validated with constructed models whose exact solutions are

  16. Numerical methods for a Poisson-Nernst-Planck-Fermi model of biological ion channels

    NASA Astrophysics Data System (ADS)

    Liu, Jinn-Liang; Eisenberg, Bob

    2015-07-01

    Numerical methods are proposed for an advanced Poisson-Nernst-Planck-Fermi (PNPF) model for studying ion transport through biological ion channels. PNPF contains many more correlations than most models and simulations of channels, because it includes water and calculates dielectric properties consistently as outputs. This model accounts for the steric effect of ions and water molecules with different sizes and interstitial voids, the correlation effect of crowded ions with different valences, and the screening effect of polarized water molecules in an inhomogeneous aqueous electrolyte. The steric energy is shown to be comparable to the electrical energy under physiological conditions, demonstrating the crucial role of the excluded volume of particles and the voids in the natural function of channel proteins. Water is shown to play a critical role in both correlation and steric effects in the model. We extend the classical Scharfetter-Gummel (SG) method for semiconductor devices to include the steric potential for ion channels, which is a fundamental physical property not present in semiconductors. Together with a simplified matched interface and boundary (SMIB) method for treating molecular surfaces and singular charges of channel proteins, the extended SG method is shown to exhibit important features in flow simulations such as optimal convergence, efficient nonlinear iterations, and physical conservation. The generalized SG stability condition shows why the standard discretization (without SG exponential fitting) of NP equations may fail and that divalent Ca2 + may cause more unstable discrete Ca2 + fluxes than that of monovalent Na+. Two different methods—called the SMIB and multiscale methods—are proposed for two different types of channels, namely, the gramicidin A channel and an L-type calcium channel, depending on whether water is allowed to pass through the channel. Numerical methods are first validated with constructed models whose exact solutions are

  17. Towards sparse characterisation of on-body ultra-wideband wireless channels.

    PubMed

    Yang, Xiaodong; Ren, Aifeng; Zhang, Zhiya; Ur Rehman, Masood; Abbasi, Qammer Hussain; Alomainy, Akram

    2015-06-01

    With the aim of reducing cost and power consumption of the receiving terminal, compressive sensing (CS) framework is applied to on-body ultra-wideband (UWB) channel estimation. It is demonstrated in this Letter that the sparse on-body UWB channel impulse response recovered by the CS framework fits the original sparse channel well; thus, on-body channel estimation can be achieved using low-speed sampling devices.

  18. Not only enthalpy: large entropy contribution to ion permeation barriers in single-file channels.

    PubMed

    Portella, Guillem; Hub, Jochen S; Vesper, Martin D; de Groot, Bert L

    2008-09-01

    The effect of channel length on the barrier for potassium ion permeation through single-file channels has been studied by means of all-atom molecular dynamics simulations. Using series of peptidic gramicidin-like and simplified ring-structured channels, both embedded in model membranes, we obtained two distinct types of behavior: saturation of the central free energy barriers for peptidic channels and a linear increase in simplified ring-structured channels with increasing channel length. The saturation of the central free energy barrier for the peptidic channels occurs at relatively short lengths, and it is correlated with the desolvation from the bulk water. Remarkably, decomposition of free energy barriers into enthalpic and entropic terms reveals an entropic cost for ion permeation. Furthermore, this entropic cost dominates the ion permeation free energy barrier, since the corresponding free energy contribution is higher than the enthalpic barrier. We conclude that the length dependence of the free energy is enthalpy-dominated, but the entropy is the major contribution to the permeation barrier. The decrease in rotational water motion and the reduction of channel mobility are putative origins for the overall entropic penalty.

  19. Vibrationally resolved cross sections for the photoionization of CS2

    NASA Astrophysics Data System (ADS)

    Stratmann, R. E.; Lucchese, Robert R.

    1994-12-01

    We have performed vibrationally resolved calculations of the excitation of the symmetric stretch in the photoionization of CS2 leading to the X 2Πg, A 2Πu, B 2Σ+u, and C 2Σ+g states of CS+2. Previous theoretical work has determined that the kπg shape resonance in the (5σu)-1 channel consists mainly of a linear combination of low lying virtual d orbitals on sulfur and is thus essentially atomic in nature. This conclusion was primarily based on the shape of the resonant wave function and the insensitivity of the energy of the resonance to bond stretching. Here, we have determined that the energies of the kπ shape resonances located well above threshold and the σ bound states just below threshold are insensitive to bond length. We have also found nearly constant vibrational branching ratios in all channels and polarization components. This is in qualitative agreement with experimental vibrationally resolved cross sections [S. Kakar, H. C. Choi, and E. D. Poliakoff, J. Chem. Phys. 97, 4690 (1992)] which show nearly constant vibrational branching ratios. Our present results indicate that caution must be exercised when using bond length sensitivity as an exclusive means to determine the existence of shape resonances.

  20. Potential value of Cs-137 capsules

    SciTech Connect

    Bloomster, C.H.; Brown, D.R.; Bruno, G.A.; Hazelton, R.F.; Hendrickson, P.L.; Lezberg, A.J.; Tingey, G.L.; Wilfert, G.L.

    1985-04-01

    We determined the value of Cs-137 compared to Co-60 as a source for the irradiation of fruit (apples and cherries), pork and medical supplies. Cs-137, in the WESF capsule form, had a value of approximately $0.40/Ci as a substitute for Co-60 priced at approximately $1.00/Ci. The comparison was based on the available curies emitted from the surface of each capsule. We developed preliminary designs for fourteen irradiation facilities; seven were based on Co-60 and seven were based on Cs-137. These designs provided the basis for estimating capital and operating costs which, in turn, provided the basis for determining the value of Cs-137 relative to Co-60 in these applications. We evaluated the effect of the size of the irradiation facility on the value of Cs-137. The cost of irradiation is low compared to the value of the product. Irradiation of apples for disinfestation costs $.01 to .02 per pound. Irradiation for trichina-safe pork costs $.02 per pound. Irradiation of medical supplies for sterilization costs $.07 to .12 per pound. The cost of the irradiation source, either Co-60 or Cs-137, contributed only a minor amount to the total cost of irradiation, about 5% for the fruit and hog cases and about 20% for the medical supply cases. We analyzed the sensitivity of the irradiation costs and Cs-137 value to several key assumptions.

  1. Memory Is Not Extinguished along with CS Presentation but within a Few Seconds after CS-Offset

    ERIC Educational Resources Information Center

    Perez-Cuesta, Luis Maria; Hepp, Yanil; Pedreira, Maria Eugenia; Maldonado, Hector

    2007-01-01

    Prior work with the crab's contextual memory model showed that CS-US conditioned animals undergoing an unreinforced CS presentation would either reconsolidate or extinguish the CS-US memory, depending on the length of the reexposure to the CS. Either memory process is only triggered once the CS is terminated. Based on these results, the following…

  2. The nature of ion and water barrier crossings in a simulated ion channel.

    PubMed Central

    Chiu, S. W.; Novotny, J. A.; Jakobsson, E.

    1993-01-01

    Using a combination of techniques, including molecular dynamics, time-correlation analysis, stochastic dynamics, and fitting of continuum diffusion theory to electrophysiological data, a characterization is made of thermally driven sodium, water, and D2O motion within the gramicidin A channel. Since the channel contents are constrained to move in a single-file fashion, the motion that corresponds to experimentally measurable rates of permeation of the membrane is the motion of the center of mass of the channel contents. We therefore emphasize channel contents center-of-mass motion in our analysis of molecular dynamics computations. The usual free energy calculation techniques would be of questionable validity when applied to such motion. As an alternative to those techniques, we postulate a periodic sinusoidal free energy profile (related to the periodic structure of the helical channel) and deduce the fluid dynamic diffusion coefficient and the height and spacing of the free energy barriers from the form of the mean-square-deviation function, using stochastic computations. The fluid dynamic friction in each case appears similar to that for aqueous solution. However, the diffusive motions are modulated by a spatially periodic free energy profile with a periodicity characteristic of an L-D pair of amino acids in the gramicidin helix, approximately 1.7 A in the model we use. The barrier height depends on which substance is moving in the channel, but in each case is several times thermal energy. For barriers of this width and height, the motion is intermediate between the low-friction (transition-state) and high-friction (Brownian) limits. Thus, neither of these formalisms that have been used commonly to describe membrane permeation gives an accurate picture of the underlying physical process (although the Brownian description seems closer to correct). The non-Markovian Langevin equation must be solved to describe properly the statistics of the process. The "channel

  3. Channel-forming bacterial toxins in biosensing and macromolecule delivery.

    PubMed

    Gurnev, Philip A; Nestorovich, Ekaterina M

    2014-08-21

    To intoxicate cells, pore-forming bacterial toxins are evolved to allow for the transmembrane traffic of different substrates, ranging from small inorganic ions to cell-specific polypeptides. Recent developments in single-channel electrical recordings, X-ray crystallography, protein engineering, and computational methods have generated a large body of knowledge about the basic principles of channel-mediated molecular transport. These discoveries provide a robust framework for expansion of the described principles and methods toward use of biological nanopores in the growing field of nanobiotechnology. This article, written for a special volume on "Intracellular Traffic and Transport of Bacterial Protein Toxins", reviews the current state of applications of pore-forming bacterial toxins in small- and macromolecule-sensing, targeted cancer therapy, and drug delivery. We discuss the electrophysiological studies that explore molecular details of channel-facilitated protein and polymer transport across cellular membranes using both natural and foreign substrates. The review focuses on the structurally and functionally different bacterial toxins: gramicidin A of Bacillus brevis, α-hemolysin of Staphylococcus aureus, and binary toxin of Bacillus anthracis, which have found their "second life" in a variety of developing medical and technological applications.

  4. Channel-Forming Bacterial Toxins in Biosensing and Macromolecule Delivery

    PubMed Central

    Gurnev, Philip A.; Nestorovich, Ekaterina M.

    2014-01-01

    To intoxicate cells, pore-forming bacterial toxins are evolved to allow for the transmembrane traffic of different substrates, ranging from small inorganic ions to cell-specific polypeptides. Recent developments in single-channel electrical recordings, X-ray crystallography, protein engineering, and computational methods have generated a large body of knowledge about the basic principles of channel-mediated molecular transport. These discoveries provide a robust framework for expansion of the described principles and methods toward use of biological nanopores in the growing field of nanobiotechnology. This article, written for a special volume on “Intracellular Traffic and Transport of Bacterial Protein Toxins”, reviews the current state of applications of pore-forming bacterial toxins in small- and macromolecule-sensing, targeted cancer therapy, and drug delivery. We discuss the electrophysiological studies that explore molecular details of channel-facilitated protein and polymer transport across cellular membranes using both natural and foreign substrates. The review focuses on the structurally and functionally different bacterial toxins: gramicidin A of Bacillus brevis, α-hemolysin of Staphylococcus aureus, and binary toxin of Bacillus anthracis, which have found their “second life” in a variety of developing medical and technological applications. PMID:25153255

  5. Engineered ion channels as emerging tools for chemical biology.

    PubMed

    Mayer, Michael; Yang, Jerry

    2013-12-17

    Over the last 25 years, researchers have developed exogenously expressed, genetically engineered, semi-synthetic, and entirely synthetic ion channels. These structures have sufficient fidelity to serve as unique tools that can reveal information about living organisms. One of the most exciting success stories is optogenetics: the use of light-gated channels to trigger action potentials in specific neurons combined with studies of the response from networks of cells or entire live animals. Despite this breakthrough, the use of molecularly engineered ion channels for studies of biological systems is still in its infancy. Historically, researchers studied ion channels in the context of their own function in single cells or in multicellular signaling and regulation. Only recently have researchers considered ion channels and pore-forming peptides as responsive tools to report on the chemical and physical changes produced by other biochemical processes and reactions. This emerging class of molecular probes has a number of useful characteristics. For instance, these structures can greatly amplify the signal of chemical changes: the binding of one molecule to a ligand-gated ion channel can result in flux of millions of ions across a cell membrane. In addition, gating occurs on sub-microsecond time scales, resulting in fast response times. Moreover, the signal is complementary to existing techniques because the output is ionic current rather than fluorescence or radioactivity. And finally, ion channels are also localized at the membrane of cells where essential processes such as signaling and regulation take place. This Account highlights examples, mostly from our own work, of uses of ion channels and pore-forming peptides such as gramicidin in chemical biology. We discuss various strategies for preparing synthetically tailored ion channels that range from de novo designed synthetic molecules to genetically engineered or simply exogenously expressed or reconstituted wild

  6. The "Seven Cs" for Employee Retention.

    ERIC Educational Resources Information Center

    Taguchi, Sherrie Gong

    2001-01-01

    Defines the "Seven Cs," traditional yet effective business fundamentals used to engage employees. Discusses how many companies are leveraging the basics of good employee relations in order to inspire staff productivity and loyalty. (GCP)

  7. PyCS : Python Curve Shifting

    NASA Astrophysics Data System (ADS)

    Tewes, Malte

    2015-09-01

    PyCS is a software toolbox to estimate time delays between multiple images of strongly lensed quasars, from resolved light curves such as obtained by the COSMOGRAIL monitoring program. The pycs package defines a collection of classes and high level functions, that you can script in a flexible way. PyCS makes it easy to compare different point estimators (including your own) without much code integration. The package heavily depends on numpy, scipy, and matplotlib.

  8. 135Cs activity and 135Cs/137Cs atom ratio in environmental samples before and after the Fukushima Daiichi Nuclear Power Plant accident

    NASA Astrophysics Data System (ADS)

    Yang, Guosheng; Tazoe, Hirofumi; Yamada, Masatoshi

    2016-04-01

    135Cs/137Cs is a potential tracer for radiocesium source identification. However, due to the challenge to measure 135Cs, there were no 135Cs data available for Japanese environmental samples before the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. It was only 3 years after the accident that limited 135Cs values could be measured in heavily contaminated environmental samples. In the present study, activities of 134Cs, 135Cs, and 137Cs, along with their ratios in 67 soil and plant samples heavily and lightly contaminated by the FDNPP accident were measured by combining γ spectrometry with ICP-MS/MS. The arithmetic means of the 134Cs/137Cs activity ratio (1.033 ± 0.006) and 135Cs/137Cs atom ratio (0.334 ± 0.005) (decay corrected to March 11, 2011), from old leaves of plants collected immediately after the FDNPP accident, were confirmed to represent the FDNPP derived radiocesium signature. Subsequently, for the first time, trace 135Cs amounts before the FDNPP accident were deduced according to the contribution of global and FDNPP accident-derived fallout. Apart from two soil samples with a tiny global fallout contribution, contributions of global fallout radiocesium in other soil samples were observed to be 0.338%–52.6%. The obtained 135Cs/137Cs database will be useful for its application as a geochemical tracer in the future.

  9. 135Cs activity and 135Cs/137Cs atom ratio in environmental samples before and after the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Yang, Guosheng; Tazoe, Hirofumi; Yamada, Masatoshi

    2016-04-07

    (135)Cs/(137)Cs is a potential tracer for radiocesium source identification. However, due to the challenge to measure (135)Cs, there were no (135)Cs data available for Japanese environmental samples before the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. It was only 3 years after the accident that limited (135)Cs values could be measured in heavily contaminated environmental samples. In the present study, activities of (134)Cs, (135)Cs, and (137)Cs, along with their ratios in 67 soil and plant samples heavily and lightly contaminated by the FDNPP accident were measured by combining γ spectrometry with ICP-MS/MS. The arithmetic means of the (134)Cs/(137)Cs activity ratio (1.033 ± 0.006) and (135)Cs/(137)Cs atom ratio (0.334 ± 0.005) (decay corrected to March 11, 2011), from old leaves of plants collected immediately after the FDNPP accident, were confirmed to represent the FDNPP derived radiocesium signature. Subsequently, for the first time, trace (135)Cs amounts before the FDNPP accident were deduced according to the contribution of global and FDNPP accident-derived fallout. Apart from two soil samples with a tiny global fallout contribution, contributions of global fallout radiocesium in other soil samples were observed to be 0.338%-52.6%. The obtained (135)Cs/(137)Cs database will be useful for its application as a geochemical tracer in the future.

  10. 135Cs activity and 135Cs/137Cs atom ratio in environmental samples before and after the Fukushima Daiichi Nuclear Power Plant accident

    PubMed Central

    Yang, Guosheng; Tazoe, Hirofumi; Yamada, Masatoshi

    2016-01-01

    135Cs/137Cs is a potential tracer for radiocesium source identification. However, due to the challenge to measure 135Cs, there were no 135Cs data available for Japanese environmental samples before the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. It was only 3 years after the accident that limited 135Cs values could be measured in heavily contaminated environmental samples. In the present study, activities of 134Cs, 135Cs, and 137Cs, along with their ratios in 67 soil and plant samples heavily and lightly contaminated by the FDNPP accident were measured by combining γ spectrometry with ICP-MS/MS. The arithmetic means of the 134Cs/137Cs activity ratio (1.033 ± 0.006) and 135Cs/137Cs atom ratio (0.334 ± 0.005) (decay corrected to March 11, 2011), from old leaves of plants collected immediately after the FDNPP accident, were confirmed to represent the FDNPP derived radiocesium signature. Subsequently, for the first time, trace 135Cs amounts before the FDNPP accident were deduced according to the contribution of global and FDNPP accident-derived fallout. Apart from two soil samples with a tiny global fallout contribution, contributions of global fallout radiocesium in other soil samples were observed to be 0.338%–52.6%. The obtained 135Cs/137Cs database will be useful for its application as a geochemical tracer in the future. PMID:27052481

  11. Fast CsI-phoswich detector

    DOEpatents

    Langenbrunner, J.R.

    1996-05-07

    An improved phoswich radiation detector used pure CsI crystal and a fast plastic scintillator and a single photomultiplier tube. The plastic is arranged to receive incident radiation, and that which passed through then strikes the CsI crystal. Scintillation light from both the plastic and CsI crystal are applied to the photomultiplier tube, with the light from the plastic passing through the crystal without absorption therein. Electronics are provided for analyzing the output of the photomultiplier tube to discriminate responses due to the plastic and the CsI crystal, through short gate and long gate integration, to produce results which are indicative of the characteristics of the different types of incident radiation, even in the presence of large amounts of radiation. The phoswich detector has excellent timing resolution. The scintillators of the CsI- phoswich were chosen for their fast risetimes, of about 3 ns for NE102A, and 30 ns for the pure CsI. 5 figs.

  12. Fast CsI-phoswich detector

    DOEpatents

    Langenbrunner, James R.

    1996-01-01

    An improved phoswich radiation detector used pure CsI crystal and a fast plastic scintillator and a single photomultiplier tube. The plastic is arranged to receive incident radiation, and that which passed through then strikes the CsI crystal. Scintillation light from both the plastic and CsI crystal are applied to the photomultiplier tube, with the light from the plastic passing through the crystal without absorption therein. Electronics are provided for analyzing the output of the photomultiplier tube to discriminate responses due to the plastic and the CsI crystal, through short gate and long gate integration, to produce results which are indicative of the characteristics of the different types of incident radiation, even in the presence of large amounts of radiation. The phoswich detector has excellent timing resolution. The scintillators of the CsI- phoswich were chosen for their fast risetimes, of about 3 ns for NE102A, and 30 ns for the pure CsI.

  13. Distribution of radioactive cesium ((134)Cs plus (137)Cs) in rice fractions during polishing and cooking.

    PubMed

    Hachinohe, Mayumi; Okunishi, Tomoya; Hagiwara, Shoji; Todoriki, Setsuko; Kawamoto, Shinichi; Hamamatsu, Shioka

    2015-03-01

    We investigated the distribution of cesium-134 ((134)Cs) and cesium-137 ((137)Cs) during polishing and cooking of rice to obtain their processing factors (Pf) and food processing retention factors (Fr) to make the information available for an adequate understanding of radioactive Cs dynamics. Polishing brown rice resulted in a decreased radioactive Cs concentration of the polished rice, but the bran and germ (outer layers) exhibited higher concentrations than brown rice. The Pf values for 100% polished rice and outer layers ranged from 0.47 to 0.48 and 6.5 to 7.8, respectively. The Fr values for 100% polished rice and outer layers were 0.43 and 0.58 to 0.60, respectively. The distribution of radioactive Cs in polished rice and outer layers was estimated at approximately 40 and 60%, respectively. On the other hand, cooked rice showed significantly lower levels of radioactive Cs than polished rice, and transfer of radioactive Cs into wash water was observed. The Pf and Fr values for cooked rice were 0.28 and 0.65 to 0.66, respectively. From these results, we can calculate that if the radioactive Cs concentration in brown rice is 100 Bq/kg, the concentrations of Cs in polished rice and cooked rice will be 47 to 48 Bq/kg and 13 Bq/kg, respectively.

  14. Molecular dynamics - potential of mean force calculations as a tool for understanding ion permeation and selectivity in narrow channels.

    PubMed

    Allen, Toby W; Andersen, Olaf S; Roux, Benoit

    2006-12-01

    Ion channels catalyze the permeation of charged molecules across cell membranes and are essential for many vital physiological functions, including nerve and muscle activity. To understand better the mechanisms underlying ion conduction and valence selectivity of narrow ion channels, we have employed free energy techniques to calculate the potential of mean force (PMF) for ion movement through the prototypical gramicidin A channel. Employing modern all-atom molecular dynamics (MD) force fields with umbrella sampling methods that incorporate one hundred 1-2 ns trajectories, we find that it is possible to achieve semi-quantitative agreement with experimental binding and conductance measurements. We also examine the sensitivity of the MD-PMF results to the choice of MD force field and compare PMFs for potassium, calcium and chloride ions to explore the basis for the valence selectivity of this narrow and uncharged ion channel. A large central barrier is observed for both anions and divalent ions, consistent with lack of experimental conductance. Neither anion or divalent cation is seen to be stabilized inside the channel relative to the bulk electrolyte and each leads to large disruptions to the protein and membrane structure when held deep inside the channel. Weak binding of calcium ions outside the channel corresponds to a free energy well that is too shallow to demonstrate channel blocking. Our findings emphasize the success of the MD-PMF approach and the sensitivity of ion energetics to the choice of biomolecular force field.

  15. Potential role of CS2 photooxidation in tropospheric sulfur chemistry

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Chameides, W. L.; Ravishankara, A. R.

    1981-01-01

    Absorption cross section measurements and model calculations indicate that CS2 photooxidation may be an important tropospheric sink for the CS2, giving a lifetime on the order of a week or two. If background CS2 levels are 10-20 pptv, then CS2 photooxidation may be an important global source of OCS as well.

  16. A biokinetic model for {sup 137}Cs

    SciTech Connect

    Melo, D.R.; Lipsztein, J.L.; Oliveira, C.A.N.; Lundgren, D.L.

    1997-08-01

    An improved biokinetic model for {sup 137}Cs in humans was developed based on an analysis of data obtained from individuals internally contaminated during an accident in Goiania, Brazil, and other data. Seventeen children (ten girls and seven boys 1-10 y old), ten adolescents (four females and six males), and thirty adults, (fifteen females and fifteen males) contaminated in the accident in Goiania contributed to this study. {sup 137}Cs retention was determined through periodic measurements in a whole-body counter. In addition to the data on {sup 137}Cs retention from these individuals, data from a study on the metabolism of {sup 137}Cs in immature, adult, and aged Beagle dogs and data from the literature were used in the formulation of the {sup 137}Cs biokinetic model presented. Mathematically, the retention of cesium is described by three exponential terms, and the retention model is based on a step function of body weight. When the ICRP Publication 56 model for cesium was compared to the model suggested in this paper, it was determined that the ICRP model predicts lower effective doses in 5-y-old children and higher effective doses in infants, adolescents, and adults.

  17. CS Unplugged and Middle-School Students' Views, Attitudes, and Intentions regarding CS

    ERIC Educational Resources Information Center

    Taub, Rivka; Armoni, Michal; Ben-Ari, Mordechai

    2012-01-01

    Many students hold incorrect ideas and negative attitudes about computer science (CS). In order to address these difficulties, a series of learning activities called Computer Science Unplugged was developed by Tim Bell and his colleagues. These activities expose young people to central concepts in CS in an entertaining way without requiring a…

  18. CS Emission Near MIR-bubbles

    NASA Astrophysics Data System (ADS)

    Watson, C.; Devine, Kathryn; Quintanar, N.; Candelaria, T.

    2016-02-01

    We survey 44 young stellar objects located near the edges of mid-IR-identified bubbles in CS (1-0) using the Green Bank Telescope. We detect emission in 18 sources, indicating young protostars that are good candidates for being triggered by the expansion of the bubble. We calculate CS column densities and abundances. Three sources show evidence of infall through non-Gaussian line-shapes. Two of these sources are associated with dark clouds and are promising candidates for further exploration of potential triggered star formation. We obtained on-the-fly maps in CS (1-0) of three sources, showing evidence of significant interactions between the sources and the surrounding environment.

  19. CS EMISSION NEAR MIR-BUBBLES

    SciTech Connect

    Watson, C.; Devine, Kathryn; Quintanar, N.; Candelaria, T. E-mail: KDevine@collegeofidaho.edu E-mail: tcandela@nmt.edu

    2016-02-10

    We survey 44 young stellar objects located near the edges of mid-IR-identified bubbles in CS (1–0) using the Green Bank Telescope. We detect emission in 18 sources, indicating young protostars that are good candidates for being triggered by the expansion of the bubble. We calculate CS column densities and abundances. Three sources show evidence of infall through non-Gaussian line-shapes. Two of these sources are associated with dark clouds and are promising candidates for further exploration of potential triggered star formation. We obtained on-the-fly maps in CS (1–0) of three sources, showing evidence of significant interactions between the sources and the surrounding environment.

  20. When and how the melittin ion channel exhibits ohmic behavior.

    PubMed

    Becucci, Lucia; Aloisi, Giovanni; Guidelli, Rolando

    2017-02-01

    Melittin exhibits an ohmic behavior in a lipid bilayer having a DOPC distal leaflet and interposed between a 2.25nm tetraethyleneoxy chain tethered to a mercury drop and an aqueous solution. This behavior is induced in a pH6.8 buffer solution of 0.8μg/mL melittin by a pretreatment consisting of series of electrochemical impedance spectroscopy measurements at bias potentials varied by 50mV steps over a transmembrane potential range from about +250 to -250mV. This metastable ohmic behavior remains unchanged for hours, even after acidifying the solution to pH3. The midpoint potential E1/2 between the positive and negative peaks of the resulting cyclic voltammogram is almost coincident with that of the ohmic channels gramicidin and syringopeptin 25A and shifts by the same amount toward more positive potentials with a pH decrease from 6.8 to 3. This common cyclic voltammetry behavior is explained by a tilt of the DOPC polar heads around the channel mouth of these three peptides and is simulated by a modelistic approach. The ohmic behavior of melittin is explained by the persistence of the peptide orientation initially assumed at trans-negative potentials even after application of trans-positive ones, at sufficiently high peptide-to-lipid molar ratios.

  1. Long haul and high speed network using dual polarization two-band OFDM CS-NRZ-(D)QPSK signal

    NASA Astrophysics Data System (ADS)

    Fazel, Sina; Lourdiane, Mounia; Lepers, Catherine

    2014-09-01

    In this paper, we propose to demonstrate a long haul and high speed network based on a 2 band Orthogonal Frequency Division Multiplexing (OFDM) signal and a Carrier Suppression (CS) Non Return to Zero (NRZ) Differential QPSK non-coherent modulation format. We considered 112 Gbit/s per channel bit rate and multiplexed 32 channels following the 100 GHz WDM ITU grid. We demonstrate a transmission over more than 3000 km with a BER bellow 10-3.

  2. Mitochondrial chloride channels: electrophysiological characterization and pH induction of channel pore dilation.

    PubMed

    Misak, Anton; Grman, Marian; Malekova, Lubica; Novotova, Marta; Markova, Jana; Krizanova, Olga; Ondrias, Karol; Tomaskova, Zuzana

    2013-09-01

    Physiological and pathological functions of mitochondria are highly dependent on the properties and regulation of mitochondrial ion channels. There is still no clear understanding of the molecular identity, regulation, and properties of anion mitochondrial channels. The inner membrane anion channel (IMAC) was assumed to be equivalent to mitochondrial centum picosiemens (mCS). However, the different properties of IMAC and mCS channels challenges this opinion. In our study, we characterized the single-channel anion selectivity and pH regulation of chloride channels from purified cardiac mitochondria. We observed that channel conductance decreased in the order: Cl⁻ > Br⁻ > I⁻ > chlorate ≈ formate > acetate, and that gluconate did not permeate under control conditions. The selectivity sequence was Br⁻ ≥ chlorate ≥ I⁻ ≥ Cl⁻ ≥ formate ≈ acetate. Measurement of the concentration dependence of chloride conductance revealed altered channel gating kinetics, which was demonstrated by prolonged mean open time value with increasing chloride concentration. The observed mitochondrial chloride channels were in many respects similar to those of mCS, but not those of IMAC. Surprisingly, we observed that acidic pH increased channel conductance and that an increase of pH from 7.4 to 8.5 reduced it. The gluconate current appeared and gradually increased when pH decreased from pH 7.0 to 5.6. Our results indicate that pH regulates the channel pore diameter in such a way that dilation increases with more acidic pH. We assume this newly observed pH-dependent anion channel property may be involved in pH regulation of anion distribution in different mitochondrial compartments.

  3. A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording.

    PubMed

    Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco

    2016-05-19

    High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter.

  4. A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording

    PubMed Central

    Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco

    2016-01-01

    High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter. PMID:27213382

  5. Analysis of blocker-labeled channels reveals the dependence of recycling rates of ENaC on the total amount of recycled channels.

    PubMed

    Taruno, Akiyuki; Marunaka, Yoshinori

    2010-01-01

    Trafficking is one of the primary mechanisms of epithelial Na(+) channel (ENaC) regulation. Although it is known that ENaCs are recycled between the apical membrane and the intracellular channel pool, it has been difficult to investigate the recycling of ENaCs; especially endogenously expressed ENaCs. The aim of the present study is to investigate if the recycling rates of ENaCs depend on the total amount of recycled ENaCs. To accomplish this point, we established a novel method to estimate the total amount of recycled ENaCs and the ENaC recycling rates by using a specific blocker (benzamil) of ENaC with a high-affinity for functional label of the channels in recycling. Applying this method, we studied if a decrease in the total amount of ENaCs caused by brefeldin A (5 μg/mL, 1 h) affects respectively the rates of insertion and endocytosis of ENaCs to and from the apical membrane in monolayers of renal epithelial A6 cells. Our observations indicate that: 1) both insertion and endocytosis rates of ENaC increase when the total amount of ENaCs decreases, 2) the increase in the insertion rate is larger than that in the endocytosis rate, and 3) this larger increase in the insertion rate than the endocytosis rate caused by the decrease in the total amount of ENaCs plays an important role in preventing Na(+) transport from drastically diminishing due to a decrease in the total amount of ENaCs. The newly established analysis of blocker-labeled ENaCs in the present study provides a useful tool to investigate the recycling of endogenously expressed ENaCs.

  6. Influence of a channel-forming peptide on energy barriers to ion permeation, viewed from a continuum dielectric perspective.

    PubMed Central

    Partenskii, M B; Dorman, V; Jordan, P C

    1994-01-01

    The continuum three-dielectric model for an aqueous ion channel pore-forming peptide-membrane system is extended to account for the finite length of the channel. We focus on the electrostatic influence that a channel-forming peptide may exert on energy barriers to ion permeation. The nonlinear dielectric behavior of channel water caused by dielectric saturation in the presence of an ion is explicitly modeled by assigning channel water a mean dielectric constant much less than that of bulk water. An exact solution of the continuum problem is formulated by approximating the dielectric behavior of bulk water, assigning it a dielectric constant of infinity. The validity of this approximation is verified by comparison with a Poisson-Boltzmann description of the electrolyte. The formal equivalence of high ionic strength and high electrolyte dielectric constant is demonstrated. We estimate limits on the reduction of the electrostatic free energy caused by ionic interaction with the channel-forming peptide. We find that even assigning this region an epsilon of 100, its influence is insufficient to lower permeation free energy barriers to values consistent with observed channel conductances. We provide estimates of the effective dielectric constant of this highly polarizable region, by comparing energy barriers computed using the continuum approach with those found from a semi-microscopic analysis of a simplified model of a gramicidin-like charge distribution. Possible ways of improving both models are discussed. PMID:7529581

  7. Near-yrast structure of {sup 142}Cs and {sup 144}Cs

    SciTech Connect

    RzaPca-Urban, T.; Sadowski, M. P.; Genevey, J.; Pinston, J. A.; Urban, W.; Smith, A. G.; Simpson, G. S.; Bail, A.; Mathieu, L.; Serot, O.; Michel-Sendis, F.; Ahmad, I.

    2009-12-15

    Excited states in {sup 142}Cs and {sup 144}Cs, populated in the spontaneous fission of {sup 248}Cm and {sup 252}Cf and in thermal neutron-induced fission of {sup 235}U and {sup 242}Am were studied by means of {gamma} spectroscopy using the EUROGAM2 and Gammasphere multidetector Ge arrays and the LOHENGRIN fission-fragment separator, respectively. In {sup 142}Cs, a band and an isomer with a half-life of T{sub 1/2}=11(3) ns have been identified. Spins and parities have been proposed for excited levels in this nucleus. In {sup 144}Cs excited levels have been observed. A T{sub 1/2}=1.1(1) {mu}s isomer was found with a {gamma} cascade, which probably feeds this isomer. There is also an indication of a nanosecond isomer in {sup 144}Cs. Quasiparticle-rotor model calculations done in this work allowed proton-neutron configurations to be proposed for levels in {sup 142}Cs and {sup 144}Cs.

  8. 135Cs/137Cs isotopic composition of environmental samples across Europe: Environmental transport and source term emission applications

    DOE PAGES

    Snow, Mathew S.; Snyder, Darin C.

    2015-11-02

    135Cs/137Cs isotopic analyses represent an important tool for studying the fate and transport of radiocesium in the environment; in this work the 135Cs/137Cs isotopic composition in environmental samples taken from across Europe is reported. Surface soil and vegetation samples from western Russia, Ukraine, Austria, and Hungary show consistent aged thermal fission product 135Cs/137Cs isotope ratios of 0.58 ± 0.01 (age corrected to 1/1/15), with the exception of one sample of soil-moss from Hungary which shows an elevated 135Cs/137Cs ratio of 1.78 ± 0.12. With the exception of the outlier sample from Hungary, surface soil/vegetation data are in quantitative agreement withmore » values previously reported for soils within the Chernobyl exclusion zone, suggesting that radiocesium at these locations is primarily composed of homogenous airborne deposition from Chernobyl. Seawater samples taken from the Irish Sea show 135Cs/137Cs isotope ratios of 1.22 ± 0.11 (age corrected to 1/1/15), suggesting aged thermal fission product Cs discharged from Sellafield. Furthermore, the differences in 135Cs/137Cs isotope ratios between Sellafield, Chernobyl, and global nuclear weapons testing fallout indicate that 135Cs/137Cs isotope ratios can be utilized to discriminate between and track radiocesium transport from different nuclear production source terms, including major emission sources in Europe.« less

  9. Tear gasses CN, CR, and CS are potent activators of the human TRPA1 receptor

    SciTech Connect

    Brone, Bert; Peeters, Pieter J.; Marrannes, Roger; Mercken, Marc; Nuydens, Ronny; Meert, Theo; Gijsen, Harrie J.M.

    2008-09-01

    The TRPA1 channel is activated by a number of pungent chemicals, such as allylisothiocyanate, present in mustard oil and thiosulfinates present in garlic. Most of the known activating compounds contain reactive, electrophilic chemical groups, reacting with cysteine residues in the active site of the TRPA1 channel. This covalent modification results in activation of the channel and has been shown to be reversible for several ligands. Commonly used tear gasses CN, CR and CS are also pungent chemicals, and in this study we show that they are extremely potent and selective activators of the human TRPA1 receptor. To our knowledge, these are the most potent TRPA1 agonists known to date. The identification of the molecular target for these tear gasses may open up possibilities to alleviate the effects of tear gasses via treatment with TRPA1 antagonists. In addition these results may contribute to the basic knowledge of the TRPA1 channel that is gaining importance as a pharmacological target.

  10. Transverse-pumped Cs vapor laser

    NASA Astrophysics Data System (ADS)

    Zhdanov, B. V.; Shaffer, M. K.; Sell, J.; Knize, R. J.

    2009-02-01

    Scaling of alkali lasers to higher powers requires combining beams of multiple diode laser pump sources. For longitudinal pumping this can be very complicated if more than four beams are to be combined. In this paper we report a first demonstration of a transversely pumped Cs laser with fifteen laser diode arrays. The LDA pump beams were individually collimated with a beam size of about 1 x 4 cm as measured at a 1 m distance from the diodes. All these beams were incident on a cylindrical lens to be focused and coupled through the side slit of a hollow, cylindrical diffuse reflector which contained the Cs vapor cell. We measured the output power and efficiency of the Cs laser for pump powers up to 200 W at different cell temperatures. Although the values of output power and slope efficiency obtained for this laser system were less than those for a longitudinally pumped alkali laser, these recent results can be significantly improved by using a more optimal laser cavity design. The demonstrated operation of Cs laser with transverse pumping opens new possibilities in power scaling of alkali lasers.

  11. Atmospheric oxidation of carbon disulfide (CS2)

    NASA Astrophysics Data System (ADS)

    Zeng, Zhe; Altarawneh, Mohammednoor; Dlugogorski, Bogdan Z.

    2017-02-01

    This contribution investigates primary steps governing the OH-initiated atmospheric oxidation of CS2. Our approach comprises high-level density functional theory calculation of energies and optimisation of molecular structures as well as RRKM-ME analysis for estimating pressure-dependent reaction rate constants. We find the overall reaction OH + CS2 → OCS + SH too slow to account for the formation of the reported experimental products. The initial reaction of OH with CS2 proceeds to produce an S-adduct, SCS(OH). Species-formation history for the system OH + CS2 indicates that, the S-adduct represents the most plausible product with a barrier-less addition process and a stability amounting to 48.5 kJ/mol, in reference to the separated reactants. This adduct then undergoes a bimolecular reaction with atmospheric O2 yielding OCS and HOSO, rather than dissociating back into its separated reactants. We also find that further atmospheric oxidation of the C-adduct (if formed) yields two of the major experimental products namely OCS and SO2. The kinetic analysis provided in this study explains the atmospheric fate of reduced sulfur species, an important S-bearing group in the global cycle of sulfur.

  12. TRP Channels

    PubMed Central

    Venkatachalam, Kartik; Montell, Craig

    2011-01-01

    The TRP (Transient Receptor Potential) superfamily of cation channels is remarkable in that it displays greater diversity in activation mechanisms and selectivities than any other group of ion channels. The domain organizations of some TRP proteins are also unusual, as they consist of linked channel and enzyme domains. A unifying theme in this group is that TRP proteins play critical roles in sensory physiology, which include contributions to vision, taste, olfaction, hearing, touch, and thermo- and osmosensation. In addition, TRP channels enable individual cells to sense changes in their local environment. Many TRP channels are activated by a variety of different stimuli and function as signal integrators. The TRP superfamily is divided into seven subfamilies: the five group 1 TRPs (TRPC, TRPV, TRPM, TRPN, and TRPA) and two group 2 subfamilies (TRPP and TRPML). TRP channels are important for human health as mutations in at least four TRP channels underlie disease. PMID:17579562

  13. Surface charge potentiates conduction through the cardiac ryanodine receptor channel

    PubMed Central

    1994-01-01

    Single channel currents through cardiac sarcoplasmic reticulum (SR) Ca2+ release channels were measured in very low levels of current carrier (e.g., 1 mM Ba2+). The hypothesis that surface charge contributes to these anomalously large single channel currents was tested by changing ionic strength and surface charge density. Channel identity and sidedness was pharmacologically determined. At low ionic strength (20 mM Cs+), Cs+ conduction in the lumen-->myoplasm (L-->M) direction was significantly greater than in the reverse direction (301.7 +/- 92.5 vs 59.8 +/- 38 pS, P < 0.001; mean +/- SD, t test). The Cs+ concentration at which conduction reached half saturation was asymmetric (32 vs 222 mM) and voltage independent. At high ionic strength (400 mM Cs+), conduction in both direction saturated at 550 +/- 32 pS. Further, neutralization of carboxyl groups on the lumenal side of the channel significantly reduced conduction (333.0 +/- 22.5 vs 216.2 +/- 24.4 pS, P < 0.002). These results indicate that negative surface charge exists near the lumenal mouth of the channel but outside the electric field of the membrane. In vivo, this surface charge may potentiate conduction by increasing the local Ca2+ concentration and thus act as a preselection filter for this poorly selective channel. PMID:8035165

  14. Bilayer lipid membranes supported on Teflon filters: a functional environment for ion channels.

    PubMed

    Phung, Thai; Zhang, Yanli; Dunlop, James; Dalziel, Julie

    2011-03-15

    Many ion channel proteins have binding sites for toxins and pharmaceutical drugs and therefore have much promise as the sensing entity in high throughput technologies and biosensor devices. Measurement of ionic conductance changes through ion channels requires a robust biological membrane with sufficient longevity for practical applications. The conventional planar BLM is 100-300 μm in diameter and typically contains fewer than a dozen channels whereas pharmaceutical screening methods in cells use current recordings for many ion channels. We present a new, simple method for the fabrication of a disposable porous-supported bilayer lipid membrane (BLM) ion channel biosensor using hydrated Teflon (polytetrafluoroethylene, PTFE) filter material (pore size 5 μm, filter diameter=1 mm). The lipid layer was monitored for its thickness and mechanical stability by electrical impedance spectroscopy. The results showed membrane capacitances of 1.8±0.2 nF and membrane resistances of 25.9±4.1 GΩ, indicating the formation of lipid bilayers. The current level increased upon addition of the pore-forming peptide gramicidin. Following addition of liposomes containing voltage-gated sodium channels, small macroscopic sodium currents (1-80 pA) could be recorded. By preloading the porous Teflon with sodium channel proteoliposomes, prior to BLM formation, currents of 1-10 nA could be recorded in the presence of the activator veratridine that increased with time, and were inhibited by tetrodotoxin. A lack of rectification suggests that the channels incorporated in both orientations. This work demonstrates that PTFE filters can support BLMs that provide an environment in which ion channels can maintain their functional activity relevant for applications in drug discovery, toxin detection, and odour sensing.

  15. Monitoring 137Cs and 134Cs at marine coasts in Indonesia between 2011 and 2013.

    PubMed

    Suseno, Heny; Prihatiningsih, Wahyu Retno

    2014-11-15

    Environmental samples (seawater, sediments and biota) were collected along the eastern and western Indonesian coasts between 2011 and 2013 to anticipate the possible impacts of the Fukushima radioactive releases in Indonesia. On the eastern coasts (south and north Sulawesi), the (137)Cs concentrations in the seawater and sediments were 0.12-0.32 Bq m(-3) and 0.10-1.03 Bq kg(-1), respectively. On the western coasts (West Sumatra, Bangka Island, North Java, South Java and Madura island), the (137)Cs concentrations in the seawater and sediments were 0.12-0.66 Bq m(-3) and 0.19-1.64 Bq kg(-1), respectively. In general, the (137)Cs concentrations in the fish from several Indonesian coasts were Cs concentrations in mollusk, crab and prawn were 10.65-38.78, 4.02 and 6.16 mBq kg(-1), respectively. (134)Cs was not detected in the seawater, sediments or biota. Thus, it was concluded that (137)Cs on the eastern and western Indonesian coasts originated from global fallout.

  16. Luminescence of CsPbBr 3-like quantum dots in CsBr single crystals

    NASA Astrophysics Data System (ADS)

    Nikl, M.; Nitsch, K.; Mihóková, E.; Polák, K.; Fabeni, P.; Pazzi, G. P.; Gurioli, M.; Santucci, S.; Phani, R.; Scacco, A.; Somma, F.

    Luminescence and decay kinetics of the Pb 2+ aggregates in CsBr host crystals were measured in the 4-300 K temperature interval and in 10 -10-10 -3 time scale. Their emission properties are similar to those of CsPbBr 3 bulk crystal showing a subnanosecond free exciton emission in the 520-540 nm spectral region and slower trapped exciton emission in the 530-580 nm spectral region. An efficient energy exchange between the free and trapped exciton states is shown by the temperature dependencies of emission spectra. The quantum size effect is demonstrated in the high energy shift and broadening of the absorption and emission spectra and an estimate of the size of the CsPbBr 3-like aggregates is provided. Independent evidence of the presence of the CsPbBr 3 and Cs 4PbBr 6 aggregated phases in the CsBr host was obtained by X-ray structural studies.

  17. Charging the Quantum Capacitance of Graphene with a Single Biological Ion Channel

    PubMed Central

    2015-01-01

    The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a challenge. Here, we report graphene-based field-effect transistors combined with supported lipid bilayers as a platform for measuring, for the first time, individual ion channel activity. We show that the supported lipid bilayers uniformly coat the single layer graphene surface, acting as a biomimetic barrier that insulates (both electrically and chemically) the graphene from the electrolyte environment. Upon introduction of pore-forming membrane proteins such as alamethicin and gramicidin A, current pulses are observed through the lipid bilayers from the graphene to the electrolyte, which charge the quantum capacitance of the graphene. This approach combines nanotechnology with electrophysiology to demonstrate qualitatively new ways of measuring ion channel currents. PMID:24754625

  18. Charging the quantum capacitance of graphene with a single biological ion channel.

    PubMed

    Wang, Yung Yu; Pham, Ted D; Zand, Katayoun; Li, Jinfeng; Burke, Peter J

    2014-05-27

    The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a challenge. Here, we report graphene-based field-effect transistors combined with supported lipid bilayers as a platform for measuring, for the first time, individual ion channel activity. We show that the supported lipid bilayers uniformly coat the single layer graphene surface, acting as a biomimetic barrier that insulates (both electrically and chemically) the graphene from the electrolyte environment. Upon introduction of pore-forming membrane proteins such as alamethicin and gramicidin A, current pulses are observed through the lipid bilayers from the graphene to the electrolyte, which charge the quantum capacitance of the graphene. This approach combines nanotechnology with electrophysiology to demonstrate qualitatively new ways of measuring ion channel currents.

  19. Translocation of (133)Cs administered to Cryptomeria japonica wood.

    PubMed

    Aoki, Dan; Asai, Ryutaro; Tomioka, Rie; Matsushita, Yasuyuki; Asakura, Hiroyuki; Tabuchi, Masao; Fukushima, Kazuhiko

    2017-04-15

    To reveal the in planta behaviour of caesium (Cs), the stable isotope (133)Cs was administered into 3-year-old Cryptomeria japonica seedlings by the application of (133)CsCl aqueous solution to the bark surface. The administered (133)Cs was quantified by ICP-MS measurements, which showed transportation of (133)Cs in an ascending direction in the stem. Distribution of (133)Cs was visualized using freeze-fixed C. japonica woody stem samples and cryo-time-of-flight secondary ion mass spectrometry/scanning electron microscopy (cryo-TOF-SIMS/SEM) analysis. Cryo-TOF-SIMS/SEM visualization suggested that (133)Cs was rapidly transported radially by ray parenchyma cells followed by axial transportation by pith and axial parenchyma cells. Adsorption experiments using powdered C. japonica wood samples and X-ray absorption fine structure (XAFS) analysis suggested that (133)Cs was in the hydrated state following its deposition into tracheid cell walls.

  20. Communications satellite no. 2 (CS-2)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The purpose of the Japanese CS-2 satellite is to provide national communications and industrial communications, such as special emergency and remote communications, and to contribute to the development of technology pertaining to communications satellites. Description and operating parameters of the following satellite components are presented: structure, communications system, telemetry/command system, electric power system, attitude and antenna control system, secondary propulsion system, apogee motor, framework, and heat control system.

  1. End-Pumped 895 nm Cs Laser

    SciTech Connect

    Beach, R J; Krupke, W F; Kanz, V K; Payne, S A; Dubinskii, M A; Merkle, L D

    2004-02-09

    A scientific demonstration of a Cs laser is described in which the measured slope efficiency is as high as 0.59 W/W using a Ti:Sapphire laser as a surrogate diode-pump. In addition to presenting experimental data, a laser energetics model that accurately predicts laser performance is described and used to model a power-scaled, diode-pumped system.

  2. IR-Improved DGLAP-CS Theory

    DOE PAGES

    Ward, B. F. L.

    2008-01-01

    We show that it is possible to improve the infrared aspects of the standard treatment of the DGLAP-CS evolution theory to take into account a large class of higher-order corrections that significantly improve the precision of the theory for any given level of fixed-order calculation of its respective kernels. We illustrate the size of the effects we resum using the moments of the parton distributions.

  3. Coulomb explosion of CS2 molecule under an intense femtosecond laser field

    NASA Astrophysics Data System (ADS)

    Xiao, Wang; Jian, Zhang; Shi-An, Zhang; Zhen-Rong, Sun

    2016-05-01

    We experimentally demonstrate the Coulomb explosion process of CS2 molecule under a near-infrared (800 nm) intense femtosecond laser field by a DC-sliced ion imaging technique. We obtain the DC-sliced images of these fragment ions S+, S2+, CS+, and CS2+ by breaking one C-S bond, and assign their Coulomb explosion channels by considering their kinetic energy release and angular distribution. We also numerically simulate the dissociation dynamics of parent ions by a Coulomb potential approximation, and obtain the time evolution of Coulomb energy and kinetic energy release, which indicates that the dissociation time of parent ions decreases with the increase of the charge number k. These experimental and theoretical results can serve as a useful benchmark for those researchers who work in the related area. Project supported by the National Natural Science Foundation of China (Grant Nos. 51132004 and 11474096), and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 14JC1401500). We acknowledge the support of the NYU-ECNU Institute of Physics at NYU Shanghai, China.

  4. Cesium Platinide Hydride 4Cs2 Pt⋅CsH: An Intermetallic Double Salt Featuring Metal Anions.

    PubMed

    Smetana, Volodymyr; Mudring, Anja-Verena

    2016-11-14

    With Cs9 Pt4 H a new representative of ionic compounds featuring metal anions can be added to this rare-membered family. Cs9 Pt4 H exhibits a complex crystal structure containing Cs(+) cations, Pt(2-) and H(-) anions. Being a red, transparent compound its band gap is in the visible range of the electromagnetic spectrum and the ionic type of bonding is confirmed by quantum chemical calculations. This cesium platinide hydride can formally be considered as a double salt of the "alloy" cesium-platinum, or better cesium platinide, Cs2 Pt, and the salt cesium hydride CsH according to Cs9 Pt4 H≡4 Cs2 Pt⋅CsH.

  5. Cesium Platinide Hydride 4Cs 2 Pt-CsH: An Intermetallic Double Salt Featuring Metal Anions

    SciTech Connect

    Smetana, Volodymyr; Mudring, Anja-Verena

    2016-10-24

    With Cs9Pt4H a new representative of ionic compounds featuring metal anions can be added to this rare-membered family. Cs9Pt4H exhibits a complex crystal structure containing Cs+ cations, Pt2- and H- anions. Being a red, transparent compound its band gap is in the visible range of the electromagnetic spectrum and the ionic type of bonding is confirmed by quantum chemical calculations. This cesium platinide hydride can formally be considered as a double salt of the “alloy” cesium–platinum, or better cesium platinide, Cs2Pt, and the salt cesium hydride CsH according to Cs9Pt4H≡4 Cs2Pt∙CsH.

  6. TRP Channels

    NASA Astrophysics Data System (ADS)

    Voets, Thomas; Owsianik, Grzegorz; Nilius, Bernd

    The TRP superfamily represents a highly diverse group of cation-permeable ion channels related to the product of the Drosophila trp (transient receptor potential) gene. The cloning and characterization of members of this cation channel family has experienced a remarkable growth during the last decade, uncovering a wealth of information concerning the role of TRP channels in a variety of cell types, tissues, and species. Initially, TRP channels were mainly considered as phospholipase C (PLC)-dependent and/or store-operated Ca2+-permeable cation channels. More recent research has highlighted the sensitivity of TRP channels to a broad array of chemical and physical stimuli, allowing them to function as dedicated biological sensors involved in processes ranging from vision to taste, tactile sensation, and hearing. Moreover, the tailored selectivity of certain TRP channels enables them to play key roles in the cellular uptake and/or transepithelial transport of Ca2+, Mg2+, and trace metal ions. In this chapter we give a brief overview of the TRP channel superfamily followed by a survey of current knowledge concerning their structure and activation mechanisms.

  7. Developments towards detection of 135Cs at VERA

    NASA Astrophysics Data System (ADS)

    Lachner, Johannes; Kasberger, Magdalena; Martschini, Martin; Priller, Alfred; Steier, Peter; Golser, Robin

    2015-10-01

    Radioisotopes produced in natural or anthropogenic fission are widely used for tracer studies of environmental processes, in nuclear forensics, and are important for nuclear waste disposal. Besides the well-known 137Cs, the longer-lived sister isotope 135Cs (T1/2 = 2.3 Myr) is also produced, and the combined measurement of the two isotopes would allow for assessment of contaminating sources. The insufficient suppression of the stable isobar 135Ba presently prevents AMS measurements down to expected natural levels of 135Cs/133Cs ≈ 10-11. Via the difference in electron affinities between Cs and Ba further isobar suppression should be achievable after the installation of the Ion-Laser-Interaction System (ILIAS) at VERA. We present a preparatory study on the performance of the 3 MV VERA AMS facility for 135Cs concerning ion formation, transmission and detection. Since the usual Cs sputtering would obscure the 135Cs/133Cs ratio of a sample, Rb sputtering was successfully applied and tested also for various other typical AMS elements. Partial suppression of 135Ba is possible with the extraction of Cs- and negative Cs-fluorides. Cs- currents of several 10 nA were extracted over hours from mg amounts of Cs2SO4 material. The transmission to various charge states was tested with gas (Ar, He) and foil stripping. Experiments showed that no suppression in the detection system is possible at high beam energies with the VERA facility. For this reason, gas stripping to low charge states (2+, 3+) with transmissions up to 30% is favorable to guarantee optimal beam transport to the detector. In the present setup, utilizing a simple Bragg-type detector, the blank 135Cs/133Cs ratios from chemically pure samples are determined by the 135Ba background to a value of (4.0 ± 1.3)·10-9.

  8. Pressure-induced metathesis reaction to sequester Cs.

    PubMed

    Im, Junhyuck; Seoung, Donghoon; Lee, Seung Yeop; Blom, Douglas A; Vogt, Thomas; Kao, Chi-Chang; Lee, Yongjae

    2015-01-06

    We report here a pressure-driven metathesis reaction where Ag-exchanged natrolite (Ag16Al16Si24O80·16H2O, Ag-NAT) is pressurized in an aqueous CsI solution, resulting in the exchange of Ag(+) by Cs(+) in the natrolite framework forming Cs16Al16Si24O80·16H2O (Cs-NAT-I) and, above 0.5 GPa, its high-pressure polymorph (Cs-NAT-II). During the initial cation exchange, the precipitation of AgI occurs. Additional pressure and heat at 2 GPa and 160 °C transforms Cs-NAT-II to a pollucite-related, highly dense, and water-free triclinic phase with nominal composition CsAlSi2O6. At ambient temperature after pressure release, the Cs remains sequestered in a now monoclinic pollucite phase at close to 40 wt % and a favorably low Cs leaching rate under back-exchange conditions. This process thus efficiently combines the pressure-driven separation of Cs and I at ambient temperature with the subsequent sequestration of Cs under moderate pressures and temperatures in its preferred waste form suitable for long-term storage at ambient conditions. The zeolite pollucite CsAlSi2O6·H2O has been identified as a potential host material for nuclear waste remediation of anthropogenic (137)Cs due to its chemical and thermal stability, low leaching rate, and the large amount of Cs it can contain. The new water-free pollucite phase we characterize during our process will not display radiolysis of water during longterm storage while maintaining the Cs content and low leaching rate.

  9. Histidine substitution identifies a surface position and confers Cs+ selectivity on a K+ pore.

    PubMed Central

    De Biasi, M; Drewe, J A; Kirsch, G E; Brown, A M

    1993-01-01

    The amino acid located at position 369 is a key determinant of the ion conduction pathway or pore of the voltage-gated K+ channels, Kv2.1 and a chimeric channel, CHM, constructed by replacing the pore region of Kv2.1 with that of Kv3.1. To determine the orientation of residue 369 with respect to the aqueous lumen of the pore, the nonpolar Ile at 369 in Kv2.1 was replaced with a basic His. This substitution produced a Cs(+)-selective channel with Cs+:K+ permeability ratio of 4 compared to 0.1 in the wild type. Block by external tetraethylammonium (TEA) was reduced about 20-fold, while block by internal TEA was unaffected. External protons and Zn2+, that are known to interact with the imidazole ring of His, blocked the mutant channel much more effectively than the wild type channel. The blockade by Zn2+ and protons was voltage-independent, and the proton blockade had a pKa of about 6.5, consistent with the pKa for His in solution. The histidyl-specific reagent diethylpyrocarbonate produced greatly exaggerated blockade of the mutated channel compared to the wild type. The residue at position 369 appears to form part of the binding site for external TEA and to influence the selectivity for monovalent cations. We suggest that the imidazole side-chain of His369 is exposed to the aqueous lumen at a surface position near the external mouth of the pore. PMID:8241404

  10. Spin accumulation in thin Cs salts on contact with optically polarized Cs vapor

    SciTech Connect

    Ishikawa, Kiyoshi

    2011-09-15

    The spin angular momentum accumulates in the Cs nuclei of salt on contact with optically pumped Cs vapor. The spin polarization in stable chloride as well as dissociative hydride indicates that nuclear dipole interaction works in spin transferring with a lesser role of atom exchange. In the solid film, not only the spin buildup but also the decay of enhanced polarization is faster than the thermal recovery rate for the bulk salt. Eliminating the signal of thick salt, we find that the nuclear spin polarization in the chloride film reaches over 100 times the thermal equilibrium.

  11. Spatial distribution of 137Cs in surface soil under different land uses in Chao Phraya watershed: Potential used as sediment source tracing

    NASA Astrophysics Data System (ADS)

    Srisuksawad, K.; porntepkasemsan, B.; Noipow, N.; Omanee, A.; Wiriyakitnateekul, W.; Chouybudha, R.; Srimawong, P.

    2015-05-01

    Sediment fingerprinting techniques involves the discrimination of sediment sources based on differences in source material properties and quantification of the relative contributions from these sources to sediment delivered downstream to the river catchments. Results of the previous study indicated that fallout radionuclides (FRNs); 137Cs and excess 210Pb (210Pbex) are the most suitable radionuclides to be used as sediments sources tracers. This study investigated the spatial distribution of 137Cs in soil under different land uses in Chao Phraya watershed; the most significant watershed in Thailand. Emphasis was placed on discriminating among potential sediment sources including the cultivated (upland crops), pasture field, uncultivated (swamp, forest, and grass field), and channel erosion (stream and river bank). One hundred and twenty four soil samples were collected from all sources and determining for 137Cs. The 137Cs mass activities in pasture areas varied from the limit of detection (LLD) to 1.22±0.05 with the average of 0.64±0.14 Bq kg-1. In cultivated areas the 137Cs mass activities varied from LLD to 1.41±0.04 with the average of 0.38±0.04 Bq kg-1. The 137Cs mass activities were higher in uncultivated areas varied from 0.12±0.03 to 1.73±0.05 with the average of 0.76±0.15 Bq kg-1. The 137Cs mass activities in channel bank varied from LLD to 1.16±0.04 with the average of 0.39±0.05 Bq kg-1.GIS and geospatial interpolations revealed pattern in the spatial concentrations of 137Cs and indicated important differences in its distributions showing the differences behaviour of 137Cs in different land uses.

  12. K2CsSb Cathode Development

    SciTech Connect

    Smedley,J.; Rao, T.; Wang, E.

    2008-10-01

    K{sub 2}CsSb is an attractive photocathode for high current applications. With a quantum efficiency of >4% at 532nm and >10% at 355nm, it is the only cathode to have demonstrated an average current of 35mA in an accelerator environment We describe ongoing cathode development work. for the energy recovery linac being constructed at BNL Several cathodes have been created on both copper and stainless steel substrates, and their spatial uniformity and spectral response have been characterized. Preliminary lifetime measurements have been performed at high average current densities (>1 mA/mm{sup 2}).

  13. Channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter provides a comprehensive overview of channel catfish aquaculture. Sections include fish biology; commercial culture; culture facilities; production practices; water quality management; nutrition, feeding and feed formulation; infectious diseases; harvesting and processing; and the...

  14. Mechanosensitive Channels

    NASA Astrophysics Data System (ADS)

    Martinac, Boris

    Living cells are exposed to a variety of mechanical stimuli acting throughout the biosphere. The range of the stimuli extends from thermal molecular agitation to potentially destructive cell swelling caused by osmotic pressure gradients. Cellular membranes present a major target for these stimuli. To detect mechanical forces acting upon them cell membranes are equipped with mechanosensitive (MS) ion channels. Functioning as molecular mechanoelectrical transducers of mechanical forces into electrical and/or chemical intracellular signals these channels play a critical role in the physiology of mechanotransduction. Studies of prokaryotic MS channels and recent work on MS channels of eukaryotes have significantly increased our understanding of their gating mechanism, physiological functions, and evolutionary origins as well as their role in the pathology of disease.

  15. Analyzing Feshbach resonances: A Li6-Cs133 case study

    NASA Astrophysics Data System (ADS)

    Pires, R.; Repp, M.; Ulmanis, J.; Kuhnle, E. D.; Weidemüller, M.; Tiecke, T. G.; Greene, Chris H.; Ruzic, Brandon P.; Bohn, John L.; Tiemann, E.

    2014-07-01

    We provide a comprehensive comparison of a coupled channel calculation, the asymptotic bound-state model (ABM), and the multichannel quantum defect theory (MQDT). Quantitative results for 6Li-133Csare presented and compared to previously measured 6Li-133CsFeshbach resonances (FRs) [Repp et al., Phys. Rev. A 87, 010701(R) (2013), 10.1103/PhysRevA.87.010701]. We demonstrate how the accuracy of the ABM can be stepwise improved by including magnetic dipole-dipole interactions and coupling to a nondominant virtual state. We present a MQDT calculation, where magnetic dipole-dipole and second-order spin-orbit interactions are included. A frame transformation formalism is introduced, which allows the assignment of measured FRs with only three parameters. All three models achieve a total rms error of <1G on the observed FRs. We critically compare the different models in view of the accuracy for the description of FRs and the required input parameters for the calculations.

  16. Thermal Beam Spectroscopy of 133 Cs

    NASA Astrophysics Data System (ADS)

    Gerginov, Vladislav; Tanner, Carol E.

    2001-05-01

    We report our progress towards high resolution frequency measurements of the cesium excited states hyperfine structure (HFS). A thermal beam apparatus is used to eliminate the Doppler background and collision effects present in vapor cells. A tubing array expands the beam size without increasing its divergence. The beam is collimated using thin parallel glass plate collimator. The optical detection system and the photo detector amplifier circuit allow measurements of extremely low fluorescence signals. The direct computer based measurement of the photo detector amplifier output assures a good signal linearity and no systematic line shape distortion. The estimations of different broadening effects are based on Cs D2 line HFS measurements. The spectra are fitted with exactly calculated Voigt profiles using a Fortran fitting program based on Levenberg-Marquardt method. The diode laser linewidth is determined from the beat note between two separate laser systems. The natural linewidth of Cs 6 2P3/2 is taken from our precise lifetime measurements. The residual Doppler broadening due to the finite angular beam distribution and optical alignment is estimated from the data. Financial support for this work is provided by the Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research at the U. S. Department of Energy under contract number DE-FG02-95ER14579.

  17. Antibodies derived from an enterotoxigenic Escherichia coli (ETEC) adhesin tip MEFA (multiepitope fusion antigen) against adherence of nine ETEC adhesins: CFA/I, CS1, CS2, CS3, CS4, CS5, CS6, CS21 and EtpA.

    PubMed

    Nandre, Rahul M; Ruan, Xiaosai; Duan, Qiangde; Sack, David A; Zhang, Weiping

    2016-06-30

    Diarrhea continues to be a leading cause of death in children younger than 5 years in developing countries. Enterotoxigenic Escherichia coli (ETEC) is a leading bacterial cause of children's diarrhea and travelers' diarrhea. ETEC bacteria initiate diarrheal disease by attaching to host receptors at epithelial cells and colonizing in small intestine. Therefore, preventing ETEC attachment has been considered the first line of defense against ETEC diarrhea. However, developing vaccines effectively against ETEC bacterial attachment encounters challenge because ETEC strains produce over 23 immunologically heterogeneous adhesins. In this study, we applied MEFA (multiepitope fusion antigen) approach to integrate epitopes from adhesin tips or adhesive subunits of CFA/I, CS1, CS2, CS3, CS4, CS5, CS6, CS21 and EtpA adhesins and to construct an adhesin tip MEFA peptide. We then examined immunogenicity of this tip MEFA in mouse immunization, and assessed potential application of this tip MEFA for ETEC vaccine development. Data showed that mice intraperitoneally immunized with this adhesin tip MEFA developed IgG antibody responses to all nine ETEC adhesins. Moreover, ETEC and E. coli bacteria expressing these nine adhesins, after incubation with serum of the immunized mice, exhibited significant reduction in attachment to Caco-2 cells. These results indicated that anti-adhesin antibodies induced by this adhesin tip MEFA blocked adherence of the most important ETEC adhesins, suggesting this multivalent tip MEFA may be useful for developing a broadly protective anti-adhesin vaccine against ETEC diarrhea.

  18. Changing US Attributes After CS-US Pairings Changes CS-Attribute-Assessments: Evidence for CS-US Associations in Attribute Conditioning.

    PubMed

    Förderer, Sabine; Unkelbach, Christian

    2016-03-01

    Attribute Conditioning (AC) refers to people's changed assessments of stimuli's (CSs) attributes due to repeated pairing with stimuli (USs) possessing these attributes; for example, when an athletic person (US) is paired with a neutral person (CS), the neutral person is judged to be more athletic after the pairing. We hypothesize that this AC effect is due to CSs' associations with USs rather than direct associations with attributes. Three experiments test this hypothesis by changing US attributes after CS-US pairings. Experiments 1 and 2 conditioned athleticism by pairing neutral men (CSs) with athletic and non-athletic USs. Post-conditioning, USs' athleticism was reversed, which systematically influenced participants' assessment of CS athleticism. Experiment 3 conditioned athleticism and changed USs' musicality after CS-US pairings. This post-conditioning change affected musicality assessments of CSs but did not influence athleticism-assessments. The results indicate that AC effects are based on an associative CS-US-attribute structure.

  19. Unitary conductance variation in Kir2.1 and in cardiac inward rectifier potassium channels.

    PubMed Central

    Picones, A; Keung, E; Timpe, L C

    2001-01-01

    Kir2.1 (IRK1) is the complementary DNA for a component of a cardiac inwardly rectifying potassium channel. When Kir2.1 is expressed in Xenopus oocytes or human embryonic kidney (HEK) cells (150 mM external KCl), the unitary conductances form a broad distribution, ranging from 2 to 33 pS. Channels with a similarly broad distribution of unitary conductance amplitudes are also observed in recordings from adult mouse cardiac myocytes under similar experimental conditions. In all three cell types channels with conductances smaller, and occasionally larger, than the ~30 pS ones are found in the same patches as the ~30 pS openings, or in patches by themselves. The unitary conductances in patches with a single active channel are stable for the durations of the recordings. Channels of all amplitudes share several biophysical characteristics, including inward rectification, voltage sensitivity of open probability, sensitivity of open probability to external divalent cations, shape of the open channel i-V relation, and Cs(+) block. The only biophysical difference found between large and small conductance channels is that the rate constant for Cs(+) block is reduced for the small-amplitude channels. The unblocking rate constant is similar for channels of different unitary conductances. Apparently there is significant channel-to-channel variation at a site in the outer pore or in the selectivity filter, leading to variability in the rate at which K(+) or Cs(+) enters the channel. PMID:11566776

  20. Unitary conductance variation in Kir2.1 and in cardiac inward rectifier potassium channels.

    PubMed

    Picones, A; Keung, E; Timpe, L C

    2001-10-01

    Kir2.1 (IRK1) is the complementary DNA for a component of a cardiac inwardly rectifying potassium channel. When Kir2.1 is expressed in Xenopus oocytes or human embryonic kidney (HEK) cells (150 mM external KCl), the unitary conductances form a broad distribution, ranging from 2 to 33 pS. Channels with a similarly broad distribution of unitary conductance amplitudes are also observed in recordings from adult mouse cardiac myocytes under similar experimental conditions. In all three cell types channels with conductances smaller, and occasionally larger, than the ~30 pS ones are found in the same patches as the ~30 pS openings, or in patches by themselves. The unitary conductances in patches with a single active channel are stable for the durations of the recordings. Channels of all amplitudes share several biophysical characteristics, including inward rectification, voltage sensitivity of open probability, sensitivity of open probability to external divalent cations, shape of the open channel i-V relation, and Cs(+) block. The only biophysical difference found between large and small conductance channels is that the rate constant for Cs(+) block is reduced for the small-amplitude channels. The unblocking rate constant is similar for channels of different unitary conductances. Apparently there is significant channel-to-channel variation at a site in the outer pore or in the selectivity filter, leading to variability in the rate at which K(+) or Cs(+) enters the channel.

  1. Quantum efficiencies of imaging detectors with alkali halide photocathodes. I - Microchannel plates with separate and integral CsI photocathodes

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.

    1987-01-01

    Measurements and comparisons have been made of the quantum efficiencies of microchannel plate (MCP) detectors in the far-UV (below 2000-A) wavelength range using CsI photocathodes (a) deposited on the front surfaces of microchannel plates and (b) deposited on solid substrates as opaque photocathodes with the resulting photoelectrons input to microchannel plates. The efficiences were measured in both pulse-counting and photodiode modes of operation. Typical efficiencies are about 15 percent at 1216 A for a CsI-coated MCP compared with 65 percent for an opaque CsI photocathode MCP detector. Special processing has yielded an efficiency as high as 20 percent for a CsI-coated MCP. This may possibly be further improved by optimization of the tilt angle of the MCP channels relative to the front face of the MCP and incident radiation. However, at present there still remains a factor of at least 3 quantum efficiency advantage in the separate opaque CsI photocathode configuration.

  2. Efimov Physics in a 6Li-133Cs Atomic Mixture

    NASA Astrophysics Data System (ADS)

    Johansen, Jacob; Feng, Lei; Parker, Colin; Chin, Cheng; Wang, Yujun

    2015-05-01

    We investigate Efimov physics based on three-body recombination in an atomic mixture of 6Li and 133Cs in the vicinity of interspecies Feshbach resonances at 843 and 889 G. This allows us to compare the loss spectra near different resonances and test the universality of Efimov states. Theoretically the Efimov spectrum near 889 G is expected to be similar to that near 843 G, except that the first resonance is absent near the former Feshbach resonance. This is due to the difference in the Cs-Cs scattering length near the two resonances: At 843 G it is negative, whereas at 889 G it is positive. Although it is primarily the Li-Cs interactions that lead to Efimov resonances, the Cs-Cs scattering length is expected to influence the spectrum. This work is supported by NSF and Chicago MRSEC.

  3. Experimental Progress in a 6Li-133Cs Atomic Mixture

    NASA Astrophysics Data System (ADS)

    Feng, Lei; Johansen, Jacob; Parker, Colin; Chin, Cheng

    2015-05-01

    We report experimental progress in a mixture of 6Li and 133Cs. The mass imbalance of this system results in a particular challenge, as gravity has a significant influence on Cs position, but not on Li, separating the two gases at temperatures on the order of 200 nK. We overcome this difficulty using a two color optical dipole trap. We demonstrate mixing of these species below 100 nK in preparation for studies of quantum degenerate mixtures of this system. We further report on progress toward degeneracy and many-body physics measurements in this trap. Finally, we consider Efimov physics in this system, studying the effects of Cs-Cs interaction on the spectrum of LiCsCs trimers by a comparison of Feshbach resonances at 843 and 889 G. This work is supported by NSF and Chicago MRSEC.

  4. Methacrylate Polymer Scaffolding Enhances the Stability of Suspended Lipid Bilayers for Ion Channel Recordings and Biosensor Development

    PubMed Central

    Bright, Leonard K.; Baker, Christopher A.; Bränström, Robert; Saavedra, S. Scott; Aspinwall, Craig A.

    2016-01-01

    Black lipid membranes (BLMs) provide a synthetic environment that facilitates measurement of ion channel activity in diverse analytical platforms. The limited electrical, mechanical and temporal stabilities of BLMs pose a significant challenge to development of highly stable measurement platforms. Here, ethylene glycol dimethacrylate (EGDMA) and butyl methacrylate (BMA) were partitioned into BLMs and photopolymerized to create a cross-linked polymer scaffold in the bilayer lamella that dramatically improved BLM stability. The commercially available methacrylate monomers provide a simple, low cost, and broadly accessible approach for preparing highly stabilized BLMs useful for ion channel analytical platforms. When prepared on silane-modified glass microapertures, the resulting polymer scaffold-stabilized (PSS)-BLMs exhibited significantly improved lifetimes of 23 ± 9 to 40 ± 14 h and > 10-fold increase in mechanical stability, with breakdown potentials > 2000 mV attainable, depending on surface modification and polymer cross-link density. Additionally, the polymer scaffold exerted minimal perturbations to membrane electrical integrity as indicated by mean conductance measurements. When gramicidin A and α-hemolysin were reconstituted into PSS-BLMs, the ion channels retained function comparable to conventional BLMs. This approach is a key advance in the formation of stabilized BLMs and should be amenable to a wide range of receptor and ion channel functionalized platforms. PMID:26925461

  5. A semi-synthetic ion channel platform for detection of phosphatase and protease activity.

    PubMed

    Macrae, Michael X; Blake, Steven; Jiang, Xiayun; Capone, Ricardo; Estes, Daniel J; Mayer, Michael; Yang, Jerry

    2009-11-24

    Sensitive methods to probe the activity of enzymes are important for clinical assays and for elucidating the role of these proteins in complex biochemical networks. This paper describes a semi-synthetic ion channel platform for detecting the activity of two different classes of enzymes with high sensitivity. In the first case, this method uses single ion channel conductance measurements to follow the enzyme-catalyzed hydrolysis of a phosphate group attached to the C-terminus of gramicidin A (gA, an ion channel-forming peptide) in the presence of alkaline phosphatase (AP). Enzymatic hydrolysis of this phosphate group removes negative charges from the entrance of the gA pore, resulting in a product with measurably reduced single ion channel conductance compared to the original gA-phosphate substrate. This technique employs a standard, commercial bilayer setup and takes advantage of the catalytic turnover of enzymes and the amplification characteristics of ion flux through individual gA pores to detect picomolar concentrations of active AP in solution. Furthermore, this technique makes it possible to study the kinetics of an enzyme and provides an estimate for the observed rate constant (k(cat)) and the Michaelis constant (K(M)) by following the conversion of the gA-phosphate substrate to product over time in the presence of different concentrations of AP. In the second case, modification of gA with a substrate for proteolytic cleavage by anthrax lethal factor (LF) afforded a sensitive method for detection of LF activity, illustrating the utility of ion channel-based sensing for detection of a potential biowarfare agent. This ion channel-based platform represents a powerful, novel approach to monitor the activity of femtomoles to picomoles of two different classes of enzymes in solution. Furthermore, this platform has the potential for realizing miniaturized, cost-effective bioanalytical assays that complement currently established assays.

  6. Thermionic work function of /Cs/ZnO

    NASA Technical Reports Server (NTRS)

    Sommer, A. H.; Briere, T. R.

    1976-01-01

    The collector electrode of a thermionic converter requires a material having a low thermionic work function and chemical stability in a Cs atmosphere in the 800-K range. This letter reports that ZnO with an adsorbed Cs film meets these requirements. The work function is approximately 1.3 eV. Various methods of preparing the ZnO film are described as well as an experiment in which Cs was replaced by K.

  7. Fractionation of (137)Cs and Pu in natural peatland.

    PubMed

    Mihalík, Ján; Bartusková, Miluše; Hölgye, Zoltán; Ježková, Tereza; Henych, Ondřej

    2014-08-01

    High Cs-137 concentrations in plants growing on peatland inspired us to investigate the quantity of its bioavailable fraction in natural peat. Our investigation aims to: a) estimate the quantity of bioavailable Cs-137 and Pu present in peat, b) verify the similarity of Cs-137 and K-40 behaviours, and c) perform a quantification of Cs-137 and Pu transfer from peat to plants. We analysed the vertical distribution of Cs-137 and Pu isotopes in the peat and their concentrations in plants growing on these places. Bioavailability of radionuclides was investigated by sequential extraction. Sequential analyses revealed that it was the upper layer which contained the majority of Cs-137 in an available form while deeper layers retained Cs-137 in immobile fractions. We can conclude that 18% of all Cs-137 in the peat is still bioavailable. Despite of the low quantity of bioavailable fraction of Cs-137 its transfer factor reached extremely high values. In the case of Pu, 64% of its total amount was associated with fulvic/humic acids which resulted in the high transfer factor from peat to plants. 27 years after the Chernobyl nuclear accident, the significant part of radionuclides deposited in peatland is still bioavailable.

  8. Improved TV-CS Approaches for Inverse Scattering Problem

    PubMed Central

    Bevacqua, M. T.; Di Donato, L.

    2015-01-01

    Total Variation and Compressive Sensing (TV-CS) techniques represent a very attractive approach to inverse scattering problems. In fact, if the unknown is piecewise constant and so has a sparse gradient, TV-CS approaches allow us to achieve optimal reconstructions, reducing considerably the number of measurements and enforcing the sparsity on the gradient of the sought unknowns. In this paper, we introduce two different techniques based on TV-CS that exploit in a different manner the concept of gradient in order to improve the solution of the inverse scattering problems obtained by TV-CS approach. Numerical examples are addressed to show the effectiveness of the method. PMID:26495420

  9. CS-Studio Scan System Parallelization

    SciTech Connect

    Kasemir, Kay; Pearson, Matthew R

    2015-01-01

    For several years, the Control System Studio (CS-Studio) Scan System has successfully automated the operation of beam lines at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and Spallation Neutron Source (SNS). As it is applied to additional beam lines, we need to support simultaneous adjustments of temperatures or motor positions. While this can be implemented via virtual motors or similar logic inside the Experimental Physics and Industrial Control System (EPICS) Input/Output Controllers (IOCs), doing so requires a priori knowledge of experimenters requirements. By adding support for the parallel control of multiple process variables (PVs) to the Scan System, we can better support ad hoc automation of experiments that benefit from such simultaneous PV adjustments.

  10. Thermal ionization of Cs Rydberg states

    NASA Astrophysics Data System (ADS)

    Glukhov, I. L.; Ovsiannikov, V. D.

    2009-01-01

    Rates Pnl of photoionization from Rydberg ns-, np-, nd-states of a valence electron in Cs, induced by black-body radiation, were calculated on the basis of the modified Fues model potential method. The numerical data were approximated with a three-term expression which reproduces in a simple analytical form the dependence of Pnl on the ambient temperature T and on the principal quantum number n. The comparison between approximate and exactly calculated values of the thermal ionization rate demonstrates the applicability of the proposed approximation for highly excited states with n from 20 to 100 in a wide temperature range of T from 100 to 10,000 K. We present coefficients of this approximation for the s-, p- and d-series of Rydberg states.

  11. Comparison of channel assignment techniques for hybrid switching

    NASA Technical Reports Server (NTRS)

    Schwartz, M.; Kraimeche, B.

    1982-01-01

    The performance of four circuit-switched channel assignment strategies for use in a hybrid switch accommodating multiple users is analyzed and compared. Each scheme is associated with a fixed frame movable boundary TDM channel that multiplexes circuit-switched (CS) and packet-switched (PS) traffic. The performance measures used are blocking probability for the circuit-switched traffic and time delay for the packet-switched traffic.

  12. Microhydration of caesium compounds: Cs, CsOH, CsI and Cs₂I₂ complexes with one to three H₂O molecules of nuclear safety interest.

    PubMed

    Sudolská, Mária; Cantrel, Laurent; Cernušák, Ivan

    2014-04-01

    Structure and thermodynamic properties (standard enthalpies of formation and Gibbs free energies) of hydrated caesium species of nuclear safety interest, Cs, CsOH, CsI and its dimer Cs₂I₂, with one up to three water molecules, are calculated to assess their possible existence in severe accident occurring to a pressurized water reactor. The calculations were performed using the coupled cluster theory including single, double and non-iterative triple substitutions (CCSD(T)) in conjunction with the basis sets (ANO-RCC) developed for scalar relativistic calculations. The second-order spin-free Douglas-Kroll-Hess Hamiltonian was used to account for the scalar relativistic effects. Thermodynamic properties obtained by these correlated ab initio calculations (entropies and thermal capacities at constant pressure as a function of temperature) are used in nuclear accident simulations using ASTEC/SOPHAEROS software. Interaction energies, standard enthalpies and Gibbs free energies of successive water molecules addition determine the ordering of the complexes. CsOH forms the most hydrated stable complexes followed by CsI, Cs₂I₂, and Cs. CsOH still exists in steam atmosphere even at quite high temperature, up to around 1100 K.

  13. English Channel

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The cloud covered earthscape of Northern Europe demonstrates the difficulty of photographing this elusive subject from space. The English Channel (51.0N, 1.5E) separating the British Islands from Europe is in the center of the scene. The white cliffs of Dover on the SE coast of the UK, the Thames River estuary and a partial view of the city of London can be seen on the north side of the Channel while the Normandy coast of France is to the south.

  14. Phase Transitions in CsSnCl3 and CsPbBr3 An NMR and NQR Study

    NASA Astrophysics Data System (ADS)

    Sharma, Surendra; Weiden, Norbert; Weiss, Alarich

    1991-04-01

    The phase transitions in CsSnCl3 and CsPbBr3 have been studied by X-ray powder diffraction, by 81Br-NQR and by 'H-, 119Sn-, and 113Cs-NMR. At room temperature in air CsSnCl3 forms a hydrate which can be dehydrated to the monoclinic phase II of CsSnCl3. The high temperature phase I has the Perovskite structure, as the X-ray and NMR experiments show. The three phases of CsPbBr3, known from literature, have been corroborated. The results are discussed in the framework of the group ABX3, A = alkalimetal ion, B = IV main group ion, and X = Halogen ion

  15. Using Atmospheric (137)Cs Measurements and Hysplit to Confirm Chernobyl as a Source of (137)Cs in Europe

    DTIC Science & Technology

    2001-10-01

    USING ATMOSPHERIC 137CS MEASUREMENTS AND HYSPLIT TO CONFIRM CHERNOBYL AS A SOURCE OF 137CS IN EUROPE Erik L. Swanberg1 and Steven G. Hoffert2...Veridian Systems1, Autometric2 Sponsored by Defense Threat Reduction Agency Contract No. DTRA01-99-C-0031 ABSTRACT The Chernobyl ...this 137Cs is the ground contaminated by the Chernobyl accident. The PIDC routinely uses HYSPLIT (HYbrid Single-Particle Lagrangian Integrated

  16. The Mechanism Responsible for Extraordinary Cs-ion Selectivity in Crystalline Silicotitanate

    SciTech Connect

    Celestian,A.; Kubicki, J.; Hanson, J.; Clearfield, A.; Parise, J.

    2008-01-01

    Combining information from time-resolved X-ray and neutron scattering with theoretical calculations has revealed the elegant mechanism whereby hydrogen crystalline silicotitanate (H-CST; H2Ti2SiO7{center_dot}1.5H2O) achieves its remarkable ion-exchange selectivity for cesium. Rather than a simple ion-for-ion displacement reaction into favorable sites, which has been suggested by static structural studies of ion-exchanged variants of CST, Cs+ exchange proceeds via a two-step process mediated by conformational changes in the framework. Similar to the case of ion channels in proteins, occupancy of the most favorable site does not occur until the first lever, cooperative repulsive interactions between water and the initial Cs-exchange site, repels a hydrogen lever on the silicotitanate framework. Here we show that these interactions induce a subtle conformational rearrangement in CST that unlocks the preferred Cs site and increases the overall capacity and selectivity for ion exchange.

  17. Memory is not extinguished along with CS presentation but within a few seconds after CS-offset

    PubMed Central

    Pérez-Cuesta, Luis María; Hepp, Yanil; Pedreira, María Eugenia; Maldonado, Héctor

    2007-01-01

    Prior work with the crab’s contextual memory model showed that CS-US conditioned animals undergoing an unreinforced CS presentation would either reconsolidate or extinguish the CS-US memory, depending on the length of the reexposure to the CS. Either memory process is only triggered once the CS is terminated. Based on these results, the following questions are raised. First, when is extinction memory acquired, if not along extinction training, and how long does it take? Second, can acquisition and consolidation of extinction memory be pharmacologically dissected? Here we address these questions performing three series of experiments: a first one aimed to study systematically the relationship between extinction and increasing periods of unreinforced CS presentations, a second one to determine the time boundaries of the extinction memory acquisition, and the third one to assay the requirement for protein synthesis and NMDA-like receptors of acquisition and consolidation of extinction memory. Our results confirm that it is CS-offset and not the mere retrieval (CS-onset) that triggers acquisition of extinction memory and that it is completed in less than 45 sec after CS-offset. In addition, protein synthesis is required for consolidation but not for acquisition of this memory and, conversely, NMDA-like receptor activity is required for its acquisition but not for its consolidation. Finally, we offer an interpretative scheme of our results and we discuss to what extent it could apply to multitrial extinction. PMID:17272655

  18. CsEuBr3: Crystal structure and its role in the photostimulation of CsBr :Eu2+

    NASA Astrophysics Data System (ADS)

    Hesse, S.; Zimmermann, J.; von Seggern, H.; Ehrenberg, H.; Fuess, H.; Fasel, C.; Riedel, R.

    2006-10-01

    CsBr :Eu2+ has recently been investigated as a photostimulable x-ray storage phosphor with great potential for application in high-resolution image plates. In a recent paper Hackenschmied et al. [J. Appl. Phys. 93, 5109 (2003)] suggested that segregations of CsEuBr3 or Cs4EuBr6 formed within CsBr :Eu2+ during annealing are responsible for an increase in the photostimulated luminescence (PSL) yield. In this work single crystals of CsEuBr3 were prepared by a one step synthesis and identified by x-ray diffraction (XRD) analysis as single phase perovskites. It was concluded that, after preparation, CsEuBr3 degrades in normal atmosphere into at least two phases, one of which is the orthorhombic structure of Cs2EuBr5•10H2O. The XRD powder diffraction pattern of this compound is very similar to that of the segregations observed within CsBr :Eu2+ and reported by Hackenschmied et al. However, the increased PSL yield in CsBr :Eu2+ after annealing cannot be due to the segregations, because the trivalent nature of the europium in the segregations renders them PSL inactive.

  19. Correlated electronic structure of Fe in bulk Cs and on a Cs surface

    NASA Astrophysics Data System (ADS)

    Costa, M.; Thunström, P.; Di Marco, I.; Bergman, A.; Klautau, A. B.; Lichtenstein, A. I.; Katsnelson, M. I.; Eriksson, O.

    2013-03-01

    We have investigated the spectral properties of Fe impurities in a Cs host, for both surface and bulk systems, by means of a combination of density functional theory in the local density approximation and dynamical mean-field theory (LDA + DMFT). The effective impurity model arising in LDA + DMFT was solved via two different techniques, i.e., the Hubbard I approximation and the exact diagonalization. It is shown that noticeable differences can be seen in the unoccupied part of the spectrum for different positions of Fe atoms in the host, despite the fact that hybridization between Fe d-states and Cs is low. Our calculations show good agreement with the experimental photoemission spectra reported by Carbone [Carbone, Veronese, Moras, Gardonio, Grazioli, Zhou, Rader, Varykhalov, Krull, Balashov, Mugarza, Gambardella, Lebègue, Eriksson, Katsnelson, and Lichtenstein, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.104.117601 104, 117601 (2010)].

  20. Cesium Accumulation and Growth Characteristics of Rhodococcus erythropolis CS98 and Rhodococcus sp. Strain CS402

    PubMed Central

    Tomioka, Noriko; Uchiyama, Hiroo; Yagi, Osami

    1994-01-01

    Growth and cesium accumulation characteristics of two cesium-accumulating bacteria isolated from soils were investigated. Rhodococcus erythropolis CS98 and Rhodococcus sp. strain CS402 accumulated high levels of cesium (approximately 690 and 380 μmol/g [dry weight] of cells or 92 and 52 mg/g [dry weight] of cells, respectively) after 24 h of incubation in the presence of 0.5 mM cesium. The optimum pH for cesium uptake by both Rhodococcus strains was 8.5. Rubidium and cesium assumed part of the role of potassium in the growth of both Rhodococcus strains. Potassium and rubidium inhibited cesium accumulation by these Rhodococcus strains. It is likely that both Rhodococcus strains accumulated cesium through a potassium transport system. PMID:16349312

  1. The Crystal Structure of Cs 2TiSi 6O 15

    NASA Astrophysics Data System (ADS)

    Grey, I. E.; Roth, R. S.; Balmer, M. L.

    1997-06-01

    Crystals of a new titanosilicate phase, Cs2TiSi6O15, were grown from a cesium vanadate flux. The compound has monoclinic symmetry, space groupC2/c, witha=13.386(5),b=7.423(3),c=15.134(5) Å,β=107.71(3)°,Z=4. The crystal structure was solved using single crystal X-ray data (MoKαradiation) and refined toR(F)=0.039 for 1874 unique reflections. In the structure, isolated titanium-centred octahedra and silica-centred tetrahedra share all corners to form an open framework structure containing large cavities in which the cesium ions are located. Each cavity is bound by three 5-rings, two 6-rings, and two 8-rings. The cavities are linked via the 8-rings into channels parallel to [101]. The cesium ions occur in pairs along the channels, separated by 3.765(2) Å.

  2. Role of chloride channels in bradykinin-induced guinea pig airway vagal C-fibre activation.

    PubMed

    Lee, Min-Goo; Macglashan, Donald W; Undem, Bradley J

    2005-07-01

    We tested the hypothesis that an ionic current carried by chloride ions contributes to bradykinin (BK)-induced membrane depolarization and activation of vagal afferent C-fibres. In an ex vivo innervated trachea/bronchus preparation, BK (1 microM) consistently produced action potential discharge in vagal afferent C-fibres with receptive fields in the trachea or main stem bronchus. The Ca2+-activated Cl- channel (CLCA) inhibitor, niflumic acid (NFA, 100 microM), significantly reduced BK-induced action potential discharge to 21 +/- 7% of the control BK response. NFA did not inhibit capsaicin-induced or citric-acid-induced action potential discharge in tracheal C-fibres. The inhibitory effect of NFA was mimicked by another CLCA inhibitor, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB, 100 microM). NFA also inhibited the BK-induced inward current in gramicidin-perforated whole-cell patch-clamp recordings of capsaicin-sensitive jugular ganglion neurones retrogradely labelled from the airways. NFA did not inhibit the BK-induced increase in intracellular free Ca2+. The TRPV1 inhibitor, iodo-resiniferatoxin (1 microM), also partially inhibited BK-induced action potential discharge, and the combination of iodo-resiniferatoxin and NFA virtually abolished the BK-induced action potential discharge. We concluded that in vagal afferent C-fibres, BK evokes membrane depolarization and action potential discharge through the additive effects of TRPV1 and Cl- channel activation.

  3. Channel estimation based on quantized MMP for FDD massive MIMO downlink

    NASA Astrophysics Data System (ADS)

    Guo, Yao-ting; Wang, Bing-he; Qu, Yi; Cai, Hua-jie

    2016-10-01

    In this paper, we consider channel estimation for Massive MIMO systems operating in frequency division duplexing mode. By exploiting the sparsity of propagation paths in Massive MIMO channel, we develop a compressed sensing(CS) based channel estimator which can reduce the pilot overhead. As compared with the conventional least squares (LS) and linear minimum mean square error(LMMSE) estimation, the proposed algorithm is based on the quantized multipath matching pursuit - MMP - reduced the pilot overhead and performs better than other CS algorithms. The simulation results demonstrate the advantage of the proposed algorithm over various existing methods including the LS, LMMSE, CoSaMP and conventional MMP estimators.

  4. Small Column Ion Exchange Testing of Superlig 644 for Removal of 137Cs from Hanford Tank Waste Envelope C (Tank 241-AN-107)

    SciTech Connect

    DE Kurath; DL Blanchard; JR Bontha

    2000-06-28

    The current BNFL Inc. flowsheet for the pretreatment of the Hanford high-level tank wastes includes the use of Superlig{reg_sign} materials for removing {sup 137}Cs from the aqueous fraction of the waste. The Superlig materials applicable to cesium removal include the cesium-selective Superlig 632and Superlig 644. These materials have been developed and supplied by IBC Advanced Technologies, Inc., American Fork, Utah. This report describes the testing of the Superlig 644 ion exchange material in a small dual-column system. The bed volume of the lead column was 18.6 mL (L/D = 7), and the bed volume of the lag column was 15.9 mL (L/D = 6) during the loading phase. The sample processed was approximately 1.6 L of diluted waste ([Na{sup +}] = 4.84 M) from Tank 241-AN-107 (Envelope C). This sample had been previously treated for removal of Sr/transuranic (TRU) values and clarified in a single tube cross-flow filtration unit. All ion exchange process steps were tested, including resin-bed preparation, loading, feed displacement, water rinse, elution, eluant rinse, and resin regeneration. A summary of performance measures for both columns is shown in Table S1. The Cs {lambda} values represent a measure of the effective capacity of the SL-644 resin. The Cs {lambda} of 20 for the lead column is much lower than the estimated 150 obtained by the Savannah River Technology Center during Phase 1A testing. Equilibrium data obtained with batch contacts using the AN-107 Cs IX feed predicts a Cs {lambda} of 183. A Cs {lambda} for the lag column could not be determined due to insufficient breakthrough, but it appeared to work well and removed nearly all of the cesium not removed by the lead column. The low value for the lead column indicates that it did not perform as expected. This may have been due to air or gas in the bed that caused fluid channeling or blinding of the resin. The maximum decontamination factor (DF) for {sup 137}Cs listed in Table S1 is based on {sup 137}Cs

  5. Occasion Setting Is Specific to the CS-US Association

    ERIC Educational Resources Information Center

    Bonardi, Charlotte

    2007-01-01

    In Experiment 1, rats were trained on a discrimination in which one occasion setter, A, signaled that one cue (conditioned stimulus, CS), x, would be followed by one outcome, p (unconditioned stimulus, US), and a second CS, y, by a different outcome, q (x [right arrow] p and y [right arrow] q); a second occasion setter, B signalled the reverse…

  6. Narrating Data Structures: The Role of Context in CS2

    ERIC Educational Resources Information Center

    Yarosh, Svetlana; Guzdial, Mark

    2008-01-01

    Learning computing with respect to the context of its use has been linked in previous reports to student motivation in introductory Computer Science (CS) courses. In this report, we consider the role of context in a second course. We present a case study of a CS2 data structures class that uses a media computation context. In this course, students…

  7. The channels of Mars

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.

    1988-01-01

    The geomorphology of Mars is discussed, focusing on the Martian channels. The great flood channels of Mars, the processes of channel erosion, and dendritic channel networks, are examined. The topography of the Channeled Scabland region of the northwestern U.S. is described and compared to the Martian channels. The importance of water in the evolution of the channel systems is considered.

  8. Determination of 135Cs by accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    MacDonald, C. M.; Charles, C. R. J.; Zhao, X.-L.; Kieser, W. E.; Cornett, R. J.; Litherland, A. E.

    2015-10-01

    The ratio of anthropogenic 135Cs and 137Cs isotopes is characteristic of a uranium fission source. This research evaluates the technique of isotope dilution (yield tracing) for the purpose of quantifying 135Cs by accelerator mass spectrometry with on-line isobar separation. Interferences from Ba, Zn2, and isotopes of equal mass to charge ratios were successfully suppressed. However, some sample crosstalk from source contamination remains. The transmission and di-fluoride ionization efficiencies of Cs isotopes were found to be 8 × 10-3 and 1.7 × 10-7 respectively. This quantification of 135Cs using yield tracing by accelerator mass spectrometry shows promise for future environmental sample analysis once the issues of sample crosstalk and low efficiency can be resolved.

  9. Transformation of Sintered CsPbBr3 Nanocrystals to Cubic CsPbI3 and Gradient CsPbBrxI3-x through Halide Exchange.

    PubMed

    Hoffman, Jacob B; Schleper, A Lennart; Kamat, Prashant V

    2016-07-13

    All-inorganic cesium lead halide (CsPbX3, X = Br(-), I(-)) perovskites could potentially provide comparable photovoltaic performance with enhanced stability compared to organic-inorganic lead halide species. However, small-bandgap cubic CsPbI3 has been difficult to study due to challenges forming CsPbI3 in the cubic phase. Here, a low-temperature procedure to form cubic CsPbI3 has been developed through a halide exchange reaction using films of sintered CsPbBr3 nanocrystals. The reaction was found to be strongly dependent upon temperature, featuring an Arrhenius relationship. Additionally, film thickness played a significant role in determining internal film structure at intermediate reaction times. Thin films (50 nm) showed only a small distribution of CsPbBrxI3-x species, while thicker films (350 nm) exhibited much broader distributions. Furthermore, internal film structure was ordered, featuring a compositional gradient within film. Transient absorption spectroscopy showed the influence of halide exchange on the excited state of the material. In thicker films, charge carriers were rapidly transferred to iodide-rich regions near the film surface within the first several picoseconds after excitation. This ultrafast vectorial charge-transfer process illustrates the potential of utilizing compositional gradients to direct charge flow in perovskite-based photovoltaics.

  10. Starburst Channels

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1

    Translucent carbon dioxide ice covers the polar regions of Mars seasonally. It is warmed and sublimates (evaporates) from below, and escaping gas carves a numerous channel morphologies.

    In this example (figure 1) the channels form a 'starburst' pattern, radiating out into feathery extensions. The center of the pattern is being buried with dust and new darker dust fans ring the outer edges. This may be an example of an expanding morphology, where new channels are formed as the older ones fill and are no longer efficiently channeling the subliming gas out.

    Observation Geometry Image PSP_003443_0980 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 21-Apr-2007. The complete image is centered at -81.8 degrees latitude, 76.2 degrees East longitude. The range to the target site was 247.1 km (154.4 miles). At this distance the image scale is 24.7 cm/pixel (with 1 x 1 binning) so objects 74 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel. The image was taken at a local Mars time of 04:52 PM and the scene is illuminated from the west with a solar incidence angle of 71 degrees, thus the sun was about 19 degrees above the horizon. At a solar longitude of 223.4 degrees, the season on Mars is Northern Autumn.

  11. Nonlinear channelizer.

    PubMed

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D; Leung, Daniel; Liu, Norman; Meadows, Brian K; Gordon, Frank; Bulsara, Adi R; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  12. Differential fear conditioning induces reciprocal changes in the sensory responses of lateral amygdala neurons to the CS(+) and CS(-).

    PubMed

    Collins, D R; Paré, D

    2000-01-01

    In classical fear conditioning, a neutral sensory stimulus (CS) acquires the ability to elicit fear responses after pairing to a noxious unconditioned stimulus (US). As amygdala lesions prevent the acquisition of fear responses and the lateral amygdaloid (LA) nucleus is the main input station of the amygdala for auditory afferents, the effect of auditory fear conditioning on the sensory responsiveness of LA neurons has been examined. Although conditioning was shown to increase CS-evoked LA responses, the specificity of the changes in responsiveness was not tested. Because conditioning might induce nonspecific increases in LA responses to auditory afferents, we re-examined this issue in conscious, head-restrained cats using a differential conditioning paradigm where only one of two tones (CS(+) but not CS(-)) was paired to the US. Differential conditioning increased unit and field responses to the CS(+), whereas responses to the CS(-) decreased. Such changes have never been observed in the amygdala except in cases where the CS(-) had been paired to the US before and fear responses not extinguished. This suggests that fear conditioning is not only accompanied by potentiation of amygdalopetal pathways conveying the CS(+) but also by the depression of sensory inputs unpaired to noxious stimuli.

  13. CsAlSi/sub 5/O/sub 12/: a possible host for /sup 137/Cs immobilization

    SciTech Connect

    Adl, T.; Vance, E.R.

    1982-03-31

    CsAlSi/sub 5/O/sub 12/ exhibits more acid resistance than pollucite (CsAlSi/sub 2/O/sub 6/). At pH values of 1.02 and 1.40, the extraction of Cs from CsAlSi/sub 5/O/sub 12/ at 25/sup 0/C was approximately proportional to the square root of leach time. The Cs extraction at 25/sup 0/C varied as (H/sup +/)/sup 0/ /sup 36/ over the pH range of 1 to 6. Also, the Cs extraction in various brines at 300/sup 0/C/30 MPa was comparable with that for pollucite. CsAlSi/sub 5/O/sub 12/ can be crystallized at about 1000/sup 0/C from calcines if a small amount of CaO is present, but in the absence of such sintering acids, crystallization temperatures of about 1400/sup 0/C are necessary. Compatibility data were also obtained with respect to several other phases with which CsAlSi/sub 5/O/sub 12/ might be expected to coexist in tailored ceramics designed for high-level defense waste.

  14. Epithelial Sodium and Chloride Channels and Asthma

    PubMed Central

    Wang, Wen; Ji, Hong-Long

    2015-01-01

    Objective: To focus on the asthmatic pathogenesis and clinical manifestations related to epithelial sodium channel (ENaC)/chlorine ion channel. Data Sources: The data analyzed in this review were the English articles from 1980 to 2015 from journal databases, primarily PubMed and Google Scholar. The terms used in the literature search were: (1) ENaCs; cystic fibrosis (CF) transmembrane conductance regulator (CFTR); asthma/asthmatic, (2) ENaC/sodium salt; CF; asthma/asthmatic, (3) CFTR/chlorine ion channels; asthma/asthmatic, (4) ENaC/sodium channel/scnn1a/scnn1b/scnn1g/scnn1d/amiloride-sensitive/amiloride-inhibtable sodium channels/sodium salt; asthma/asthmatic, lung/pulmonary/respiratory/tracheal/alveolar, and (5) CFTR; CF; asthma/asthmatic (ti). Study Selection: These studies included randomized controlled trials or studies covering asthma pathogenesis and clinical manifestations related to ENaC/chlorine ion channels within the last 25 years (from 1990 to 2015). The data involving chronic obstructive pulmonary disease and CF obtained from individual studies were also reviewed by the authors. Results: Airway surface liquid dehydration can cause airway inflammation and obstruction. ENaC and CFTR are closely related to the airway mucociliary clearance. Ion transporters may play a critical role in pathogenesis of asthmatic exacerbations. Conclusions: Ion channels have been the center of many studies aiming to understand asthmatic pathophysiological mechanisms or to identify therapeutic targets for better control of the disease. PMID:26265620

  15. Integration of biological ion channels onto optically addressable micro-fluidic electrode arrays for single molecule characterization.

    SciTech Connect

    Brozik, Susan Marie; Frink, Laura J. Douglas; Bachand, George David; Keller, David J.; Patrick, Elizabeth L.; Marshall, Jason A.; Ortiz, Theodore P.; Meyer, Lauren A.; Davis, Ryan W.; Brozik, James A.; Flemming, Jeb Hunter

    2004-12-01

    The challenge of modeling the organization and function of biological membranes on a solid support has received considerable attention in recent years, primarily driven by potential applications in biosensor design. Affinity-based biosensors show great promise for extremely sensitive detection of BW agents and toxins. Receptor molecules have been successfully incorporated into phospholipid bilayers supported on sensing platforms. However, a collective body of data detailing a mechanistic understanding of membrane processes involved in receptor-substrate interactions and the competition between localized perturbations and delocalized responses resulting in reorganization of transmembrane protein structure, has yet to be produced. This report describes a systematic procedure to develop detailed correlation between (recognition-induced) protein restructuring and function of a ligand gated ion channel by combining single molecule fluorescence spectroscopy and single channel current recordings. This document is divided into three sections: (1) reported are the thermodynamics and diffusion properties of gramicidin using single molecule fluorescence imaging and (2) preliminary work on the 5HT{sub 3} serotonin receptor. Thirdly, we describe the design and fabrication of a miniaturized platform using the concepts of these two technologies (spectroscopic and single channel electrochemical techniques) for single molecule analysis, with a longer term goal of using the physical and electronic changes caused by a specific molecular recognition event as a transduction pathway in affinity based biosensors for biotoxin detection.

  16. Epiphytic fruticose lichens as biomonitors for retrospective evaluation of the (134)Cs/(137)Cs ratio in Fukushima fallout.

    PubMed

    Ramzaev, V; Barkovsky, A; Gromov, A; Ivanov, S; Kaduka, M

    2014-12-01

    In 2011-2013, sampling of epiphytic fruticose lichens of the genera Usnea, Bryoria and Alectoria was carried out on Sakhalin and Kuril Islands (the Sakhalin region, Russia) to investigate contamination of these organisms with the Fukushima-derived (134)Cs and (137)Cs. Activities of the radionuclides were determined in all 56 samples of lichens taken for the analysis. After correction for radioactive decay (on 15 March 2011), the activity concentrations ranged from 2.1 Bq kg(-1) (d.w.) to 52 Bq kg(-1) for (134)Cs and from 2.3 Bq kg(-1) to 52 Bq kg(-1) for (137)Cs. Cesium-134 and (137)Cs activities for the whole set of lichens (n = 56) were strongly positively correlated; Spearman's rank correlation coefficient was calculated as 0.991 (P < 0.01). The activity concentrations of (134)Cs and (137)Cs in Usnea lichens from the Sakhalin and Kunashir islands declined with a factor of three in the period from 2011 to 2013. The average biological half-time for both cesium radionuclides in lichens of the genus Usnea is estimated as 1.3 y. The mean of 0.99 ± 0.10 and median of 0.99 were calculated for the decay corrected (134)Cs/(137)Cs activities ratios in the lichens (n = 56). The radionuclides ratio in the lichens did not depend on location of sampling site, species and the time that had passed after the Fukushima accident. The regression analysis has shown the background pre-Fukushima level of (137)Cs of 0.4 ± 0.3 Bq kg(-1), whereas the ratio between the Fukushima-borne (134)Cs and (137)Cs in the lichens was estimated as 1.04. The (134)Cs/(137)Cs activities ratio in lichens from the Sakhalin region is consistent with the ratios reported by others for the heavy contaminated areas on Honshu Island in Japan following the Fukushima accident. The activity concentrations of natural (7)Be in lichens from the Sakhalin region varied between 100 Bq kg(-1) and 600 Bq kg(-1); the activity concentrations did not exhibit temporal variations during a 2y

  17. Photoresponse of CsPbBr3 and Cs4PbBr6 Perovskite Single Crystals.

    PubMed

    Cha, Ji-Hyun; Han, Jae Hoon; Yin, Wenping; Park, Cheolwoo; Park, Yongmin; Ahn, Tae Kyu; Cho, Jeong Ho; Jung, Duk-Young

    2017-02-02

    High-quality and millimeter-sized perovskite single crystals of CsPbBr3 and Cs4PbBr6 were prepared in organic solvents and studied for correlation between photocurrent generation and photoluminescence (PL) emission. The CsPbBr3 crystals, which have a 3D perovskite structure, showed a highly sensitive photoresponse and poor PL signal. In contrast, Cs4PbBr6 crystals, which have a 0D perovskite structure, exhibited more than 1 order of magnitude higher PL intensity than CsPbBr3, which generated an ultralow photoresponse under illumination. Their contrasting optoelectrical characteristics were attributed to different exciton binding energies, induced by coordination geometry of the [PbBr6](4-) octahedron sublattices. This work correlated the local structures of lead in the primitive perovskite and its derivatives to PL spectra as well as photoconductivity.

  18. Coaxial Measurement of the Translational Distribution of CS Produced in the Laser Photolysis of CS2 at 193nm.

    DTIC Science & Technology

    1983-11-04

    IKasakawi, and R. Bersohn, J. Chemn. Phys. 72, 4058 (1980). *2. M.C. Addison, C.D. Bryne and R.J. Donovan, Chem. Phys. Letters, 64, 57 (1979). *3. J.E...population of CS2 fragments produced in processes: (a). CS2- + hV CS ( Z ,v" ) + S (3p) represented by 0; (b). CS2 + hv CS (X1 Z +,v") + S (1D...0 0 1 1 1 fl l i 0 z 0 - >0 -) p ~m 0 z D:O m l CCD X CA > 0__ -" -’ o- o 0 -0 "C 0 o 00 CL CL 0 0 -." - ’ .:.-:.- "- * -.5

  19. 137Cs in the western South Pacific Ocean.

    PubMed

    Yamada, Masatoshi; Wang, Zhong-Liang

    2007-09-01

    The 137Cs activities were determined for seawater samples from the East Caroline, Coral Sea, New Hebrides, South Fiji and Tasman Sea (two stations) Basins of the western South Pacific Ocean by gamma spectrometry using a low background Ge detector. The 137Cs activities ranged from 1.4 to 2.3 Bq m(-3) over the depth interval 0-250 m and decreased exponentially from the subsurface to 1000 m depth. The distribution profiles of 137Cs activity at these six western South Pacific Ocean stations did not differ from each other significantly. There was a remarkable difference for the vertical profiles of 137Cs activity between the East Caroline Basin station in this study and the GEOSECS (Geochemical Ocean Sections Study) station at the same latitude in the Equatorial Pacific Ocean; the 137Cs inventory over the depth interval 100-1000 m increased from 400+/-30 Bq m(-2) to 560+/-30 Bq m(-2) during the period from 1973 to 1992. The total 137Cs inventories in the western South Pacific Ocean ranged from 850+/-70 Bq m(-2) in the Coral Sea Basin to 1270+/-90 Bq m(-2) in the South Fiji Basin. Higher 137Cs inventories were observed at middle latitude stations in the subtropical gyre than at low latitude stations. The 137Cs inventories were 1.9-4.5 times (2.9+/-0.7 on average) and 1.7-4.3 times (3.1+/-0.7 on average) higher than that of the expected deposition density of atmospheric global fallout at the same latitude and that of the estimated 137Cs deposition density in 10 degrees latitude by 10 degrees longitude grid data obtained by Aoyama et al. [Aoyama M, Hirose K, Igarashi Y. Re-construction and updating our understanding on the global weapons tests 137Cs fallout. J Environ Monit 2006;8:431-438], respectively. The possible processes for higher 137Cs inventories in the western South Pacific Ocean than that of the expected deposition density of atmospheric global fallout may be attributable to the inter-hemisphere dispersion of the atmospheric nuclear weapons testing 137Cs from

  20. Plutonium, (137)Cs and uranium isotopes in Mongolian surface soils.

    PubMed

    Hirose, K; Kikawada, Y; Igarashi, Y; Fujiwara, H; Jugder, D; Matsumoto, Y; Oi, T; Nomura, M

    2017-01-01

    Plutonium ((238)Pu and (239,240)Pu), (137)Cs and plutonium activity ratios ((238)Pu/(239,240)Pu) as did uranium isotope ratio ((235)U/(238)U) were measured in surface soil samples collected in southeast Mongolia. The (239,240)Pu and (137)Cs concentrations in Mongolian surface soils (<53 μm of particle size) ranged from 0.42 ± 0.03 to 3.53 ± 0.09 mBq g(-1) and from 11.6 ± 0.7 to 102 ± 1 mBq g(-1), respectively. The (238)Pu/(239,240)Pu activity ratios in the surface soils (0.013-0.06) coincided with that of global fallout. The (235)U/(238)U atom ratios in the surface soil show the natural one. There was a good correlation between the (239,240)Pu and (137)Cs concentrations in the surface soils. We introduce the migration depth to have better understanding of migration behaviors of anthropogenic radionuclides in surface soil. We found a difference of the migration behavior between (239,240)Pu and (137)Cs from (137)Cs/(239,240)Pu - (137)Cs plots for the Mongolian and Tsukuba surface soils; plutonium in surface soil is migrated easier than (137)Cs.

  1. Radioactive Cs capture in the early solar system

    PubMed Central

    Hidaka, Hiroshi; Yoneda, Shigekazu

    2013-01-01

    Barium isotopic compositions of primitive materials in the solar system are generally affected by s- and r-process nucleosynthetic components that hide the contribution of the isotopic excess of 135Ba formed by decay of radioactive 135Cs. However, the Ba isotopic composition of the chemical separates from chondrules in the Sayama CM2 chondrite shows an excess of 135Ba isotopic abundance up to (0.33 ± 0.06)%, which is independent of the isotopic components from s- and r-process nucleosyntheses. The isotopic excesses of 135Ba correlate with the elemental abundance of Ba relative to Cs, providing chemical and isotopic evidence for the existence of the presently extinct radionuclide 135Cs (t1/2 = 2.3 million years) in the early solar system. The estimated abundance of 135Cs/133Cs = (6.8 ± 1.9) × 10−4 is more than double that expected from the uniform production model of the short-lived radioisotopes, suggesting remobilization of Cs including 135Cs in the chondrules of the meteorite parent body. PMID:23435551

  2. Dynamic Channel Allocation

    DTIC Science & Technology

    2003-09-01

    7 1 . Fixed Channel Allocation (FCA) ........................................................7 2. Dynamic Channel ...19 7. CSMA/CD-Based Multiple Network Lines .....................................20 8. Hybrid Channel Allocation in Wireless Networks...28 1 . Channel Allocation

  3. Accumulation and transfer of 137Cs and 90Sr in the plants of the forest ecosystem near the Ignalina Nuclear Power Plant.

    PubMed

    Lukšienė, B; Marčiulionienė, D; Gudelienė, I; Schönhofer, F

    2013-02-01

    The radioecological state of the forest ecosystem in the vicinity of the Ignalina Power Plant prior to decommissioning was analysed with specific emphasis on (137)Cs and (90)Sr activity concentrations in plant species growing in two reference sampling sites (Tilze and Grikiniskes). In the period of 1996-2008 the mean contamination of plants with (137)Cs was from 45 to 119 Bq/kg and with (90)Sr - from 3 to 42 Bq/kg. Measured (137)Cs TF values for soil-root transfer mainly ranged between 1.0-1.4, except for Calamagrostis arundinacea which had a TF value of 0.1. On average, the (137)Cs TF value from root to shoot was 1.7 fold higher than for soil to root transfer. (90)Sr TF values (soil-root) were in the range of 1.2-1.8 but for Calluna vulgaris it was 0.2. The mean root to shoot TF value for (90)Sr was 7.7 fold higher. These results indicate the higher (90)Sr bioavailability than that of (137)Cs in the forested area. The Grikiniskes reference site is located nearby the Ignalina NPP, specifically the heated water outlet channel, which results in altered microclimatic conditions. These specific microclimatic conditions result in relationships between (137)Cs TF (soil-root) values and pH, moisture and organic matter content in the soil at Grikiniskes which appear to be different to those at the Tilze reference sampling site.

  4. Physics Design for ARIES-CS

    SciTech Connect

    L.P. Ku, P.R. Garabedian, J. Lyon, A. Turnbull, A. Grossman, T.K. Mau, M. Zarnstorff, and the ARIES Team

    2007-10-10

    Novel stellarator configurations have been developed for ARIES-CS. These configurations are optimized to provide good plasma confinement and flux surface integrity at high beta. Modular coils have been designed for them in which the space needed for the breeding blanket and radiation shielding was specifically targeted such that reactors generating GW electrical powers would require only moderate major radii (<10 m). These configurations are quasi-axially symmetric in the magnetic field topology and have small number of field periods (≤3) and low aspect ratios (≤6). The baseline design chosen for detailed systems and power plant studies has 3 field periods, aspect ratio 4.5 and major radius 7.5 m operating at β~6.5% to yield 1 GW electric power. The shaping of the plasma accounts for ≥75% of the rotational transform. The effective helical ripples are very small (< 0.6% everywhere) and the energy loss of alpha particles is calculated to be ≤5% when operating in high density regimes. An interesting feature in this configuration is that instead of minimizing all residues in the magnetic spectrum, we preferentially retained a small amount of the non-axisymmetric mirror field. The presence of this mirror and its associated helical field alters the ripple distribution, resulting in the reduced ripple-trapped loss of alpha particles despite the long connection length in a tokamak-like field structure. Additionally, we discuss two other potentially attractive classes of configurations, both quasi-axisymmetric: one with only two field periods, very low aspect ratios (~2.5), and less complex coils, and the other with the plasma shaping designed to produce low shear rotational transform so as to assure the robustness and integrity of flux surfaces when operating at high β.

  5. Influence of water management and fertilizer application on (137)Cs and (133)Cs uptake in paddy rice fields.

    PubMed

    Wakabayashi, Shokichi; Itoh, Sumio; Kihou, Nobuharu; Matsunami, Hisaya; Hachinohe, Mayumi; Hamamatsu, Shioka; Takahashi, Shigeru

    2016-06-01

    Cesium-137 derived from the Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident contaminated large areas of agricultural land in Eastern Japan. Previous studies before the accident have indicated that flooding enhances radiocesium uptake in rice fields. We investigated the influence of water management in combination with fertilizers on (137)Cs concentrations in rice plants at two fields in southern Ibaraki Prefecture. Stable Cs ((133)Cs) in the plants was also determined as an analogue for predicting (137)Cs behavior after long-term aging of soil (137)Cs. The experimental periods comprised 3 y starting from 2012 in one field, and 2 y from 2013 in another field. These fields were divided into three water management sections: a long-flooding section without midsummer drainage, and medial-flooding, and short-flooding sections with one- or two-week midsummer drainage and earlier end of flooding than the long-flooding section. Six or four types of fertilizer subsections (most differing only in potassium application) were nested in each water management section. Generally, the long-flooding treatment led to higher (137)Cs and (133)Cs concentrations in both straw and brown rice than medial- and short-flooding treatments, although there were some notable exceptions in the first experimental year at each site. Effects of differing potassium fertilizer treatments were cumulative; the effects on (137)Cs and (133)Cs concentrations in rice plants were not obvious in 2012 and 2013, but in 2014, these concentrations were highest where potassium fertilizer had been absent and lowest where basal dressings of K had been tripled. The relationship between (137)Cs and (133)Cs in rice plants was not correlative in the first experimental year at each site, but correlation became evident in the subsequent year(s). This study demonstrates a novel finding that omitting midsummer drainage and/or delaying drainage during the grain-filling period enhances

  6. Altimeter Products for the Sentinel-6/Jason-CS Mission

    NASA Astrophysics Data System (ADS)

    Scharroo, Remko; Bonekamp, Hans; Ponsard, Christelle; Nogueira Loddo, Carolina

    2015-12-01

    The Sentinel-6 mission will be developed and implemented through a partnership between the EU, ESA, EUMETSAT and NOAA . Its aim is to secure the continuity until 2030+ of critical high precision observations of ocean surface topography beyond Jason-3. The European contribution will be implemented through the combination of the ESA Copernicus Space Component, the EUMETSAT Jason-CS optional programme, and the EU Copernicus programme, for the joint benefits of the meteorological and Copernicus user communities in Europe. NASA and CNES will be supporting partners. The mission will start with the launch of Jason-CS A in 2020, followed by Jason-CS B in 2025.

  7. The transfer of {sup 137}Cs from barley to beer

    SciTech Connect

    Proehl, G.; Mueller, H.; Voigt, G.

    1997-01-01

    Beer has been brewed from barley contaminated with {sup 137}Cs as a consequence of the Chernobyl accident. The {sup 137}Cs activity has been measured in all intermediate steps and in the by-products of the production process. About 35 % of the {sup 137}Cs in barley were recovered in beer. Processing factors defined as the concentration ratio of processed and raw products were determined to be 0.61, 3.3, 0.1 and 0.11 for malt, malt germs, spent grains and beer, respectively. 4 refs., 2 tabs.

  8. A Kv3-like persistent, outwardly rectifying, Cs+-permeable, K+ current in rat subthalamic nucleus neurones

    PubMed Central

    Wigmore, Mark A; Lacey, Michael G

    2000-01-01

    A persistent outward K+ current (IPO), activated by depolarization from resting potential, has been identified and characterized in rat subthalamic nucleus (SThN) neurones using whole-cell voltage-clamp recording in brain slices.IPO both rapidly activated (τ= 8 ms at +5 mV) and deactivated (τ= 2 ms at −68 mV), while showing little inactivation. Tail current reversal potentials varied with extracellular K+ concentration in a Nernstian manner.Intracellular Cs+ did not alter either IPO amplitude or the voltage dependence of activation, but blocked transient (A-like) outward currents activated by depolarization. When extracellular K+ was replaced with Cs+, IPO tail current reversal potentials were dependent upon the extracellular Cs+ concentration, indicating an ability to conduct Cs+, as well as K+.IPO was blocked by Ba2+ (1 mm), 4-aminopyridine (1 mm) and tetraethylammonium (TEA; 20 mm), with an IC50 for TEA of 0.39 mm.The IPO conductance appeared maximal (38 nS) at around +27 mV, half-maximal at −13 mV, with the threshold for activation at around −38 mV.TEA (1 mm) blocked the action potential after-hyperpolarization and permitted accommodation of action potential firing at frequencies greater than around 200 Hz.We conclude that IPO, which shares many characteristics of currents attributable to Kv3.1 K+ channels, enables high-frequency spike trains in SThN neurones. PMID:10990536

  9. New type of borophosphate anionic radical in the crystal structure of CsAl2BP6O20

    NASA Astrophysics Data System (ADS)

    Shvanskaya, L. V.; Yakubovich, O. V.; Belik, V. I.

    2016-09-01

    The crystal structure of a new borophosphate CsAl2BP6O20 obtained by spontaneous crystallization in a multicomponent Cs-Cu-B-P-O system is determined by X-ray diffraction ( a = 11.815(2), b = 10.042(2), and c = 26.630(4) Å; space group Pbca, Z = 8, V = 3159.5(10) Å3; R 1 = 0.043). A new type of borophosphate anionic 2D radical characterized by the lowest B: P = 1: 6 ratio and containing P3O10 phosphate groups is found in the compound. A mixed-type anionic framework consisting of vertex-sharing BO4 and PO4 tetrahedra and AlO6 octahedra is distinguished in the structure. Large cesium atoms are located in the channels of the framework. Topological relationships are revealed between the structures of the CsAl3(P3O10)2 and CsAl2BP6O20 phases having different cationic compositions. These compounds can be considered quasi-polytypic phases.

  10. VizieR Online Data Catalog: TW Hya CO (2-1), CN (2-1) and CS (5-4) data cubes (Teague+, 2016)

    NASA Astrophysics Data System (ADS)

    Teague, R.; Guilloteau, S.; Semenov, D.; Henning, T.; Dutrey, A.; Pietu, V.; Birnstiel, T.; Chapillon, E.; Hollenbach, D.; Gorti, U.

    2016-07-01

    The observations were performed using ALMA on May 13, 2015 under excellent weather conditions (Cycle 2, 2013.1.00387.S). The receivers were tuned to cover CO J=(2-1), CS J=(5-4) and all strong hyperfine components of CN N=(2-1) simultaneously. The correlator was configured to deliver very high spectral resolution, with a channel spacing of 15kHz (and an effective velocity resolution of 40m/s) for the CO J=(2-1) and CS J=(5-4) lines, and 30kHz (80m/s) for the CN N=(2-1) transition. (2 data files).

  11. Status and prospect of the Swiss continuous Cs fountain FoCS-2

    NASA Astrophysics Data System (ADS)

    Jallageas, A.; Devenoges, L.; Petersen, M.; Morel, J.; Bernier, L.-G.; Thomann, P.; Südmeyer, T.

    2016-06-01

    The continuous cesium fountain clock FoCS-2 at METAS presents many unique characteristics and challenges in comparison with standard pulsed fountain clocks. For several years FoCS-2 was limited by an unexplained frequency sensitivity on the velocity of the atoms, in the range of 140 • 10-15. Recent experiments allowed us to identify the origin of this problem as undesirable microwave surface currents circulating on the shield of the coaxial cables that feed the microwave cavity. A strong reduction of this effect was obtained by adding microwave absorbing coatings on the coaxial cables and absorbers inside of the vacuum chamber. This breakthrough opens the door to a true metrological validation of the fountain. A series of simulation tools have already been developed and proved their efficiency in the evaluation of some of the uncertainties of the continuous fountain. With these recent improvements, we are confident in the future demonstration of an uncertainty budget at the 10-15 level and below.

  12. Second-order Poisson Nernst-Planck solver for ion channel transport

    PubMed Central

    Zheng, Qiong; Chen, Duan; Wei, Guo-Wei

    2010-01-01

    The Poisson Nernst-Planck (PNP) theory is a simplified continuum model for a wide variety of chemical, physical and biological applications. Its ability of providing quantitative explanation and increasingly qualitative predictions of experimental measurements has earned itself much recognition in the research community. Numerous computational algorithms have been constructed for the solution of the PNP equations. However, in the realistic ion-channel context, no second order convergent PNP algorithm has ever been reported in the literature, due to many numerical obstacles, including discontinuous coefficients, singular charges, geometric singularities, and nonlinear couplings. The present work introduces a number of numerical algorithms to overcome the abovementioned numerical challenges and constructs the first second-order convergent PNP solver in the ion-channel context. First, a Dirichlet to Neumann mapping (DNM) algorithm is designed to alleviate the charge singularity due to the protein structure. Additionally, the matched interface and boundary (MIB) method is reformulated for solving the PNP equations. The MIB method systematically enforces the interface jump conditions and achieves the second order accuracy in the presence of complex geometry and geometric singularities of molecular surfaces. Moreover, two iterative schemes are utilized to deal with the coupled nonlinear equations. Furthermore, extensive and rigorous numerical validations are carried out over a number of geometries, including a sphere, two proteins and an ion channel, to examine the numerical accuracy and convergence order of the present numerical algorithms. Finally, application is considered to a real transmembrane protein, the Gramicidin A channel protein. The performance of the proposed numerical techniques is tested against a number of factors, including mesh sizes, diffusion coefficient profiles, iterative schemes, ion concentrations, and applied voltages. Numerical predictions are

  13. Low temperature phase transition and crystal structure of CsMgPO{sub 4}

    SciTech Connect

    Orlova, Maria; Khainakov, Sergey; Michailov, Dmitriy; Perfler, Lukas; Langes, Christoph; Kahlenberg, Volker; Orlova, Albina

    2015-01-15

    CsMgPO{sub 4} doped with radioisotopes is a promising compound for usage as a radioactive medical source. However, a low temperature phase transition at temperatures close to ambient conditions (∼−40 °C) was observed. Information about such kind of structural changes is important in order to understand whether it can cause any problem for medical use of this compound. The phase transition has been investigated in detail using synchrotron powder diffraction, Raman spectroscopy and DFT calculations. The structure undergoes a transformation from an orthorhombic modification, space group Pnma (RT phase) to a monoclinic polymorph, space group P2{sub 1}/n (LT phase). New LT modification adopts similar to RT but slightly distorted unit cell: a=9.58199(2) Å, b=8.95501(1) Å, c=5.50344(2) Å, β=90.68583(1)°, V=472.198(3) Å{sup 3}. CsMgPO{sub 4} belongs to the group of framework compounds and is made up of strictly alternating MgO{sub 4}- and PO{sub 4}-tetrahedra sharing vertices. The cesium counter cations are located in the resulting channel-like cavities. Upon the transformation a combined tilting of the tetrahedra is observed. A comparison with other phase transitions in ABW-type framework compounds is given. - Graphical abstract: Structural behavior of β-tridymite-type phosphate CsMgPO{sub 4}, considered as potential chemical form for radioactive Cs-source has been studied at near ambient temperatures. A phase transition at (∼−40 °C) has been found and investigated. It has been established that the known orthorhombic RT modification, space group Pnma, adopts a monoclinic cell with space group P2{sub 1}/n at low temperatures. In this paper, we present results of structural analysis of changes accompanying this phase transition and discuss its possible impact on the application properties. - Highlights: • β-Tridymite type phosphate CsMgPO{sub 4} undergoes so called translationengleiche phase transition of index 2 at −40 °C. • The structure

  14. Measurement of |V{sub cs}| with DELPHI experiment

    SciTech Connect

    Golob, Bostjan

    1998-10-19

    Pair production of charged weak bosons W{sup {+-}} at LEP2 collider can be exploited to measure the absolute value of the V{sub cs} element of Cabbibo-Kobayashi-Maskawa matrix. The value can be most accurately extracted from the measured hadronic branching ratio of W{sup {+-}} bosons. An independent method to obtain the |V{sub cs}| value consists of tagging the flavour of primary quarks in jets, produced in W{sup {+-}} decays. Using both methods on the data collected with DELPHI experiment during 1996 and 1997 runs, we obtained |V{sub cs}|=0.99{+-}0.06(stat.){+-}0.04(syst.). Combined result of |V{sub cs}| measurements with four LEP experiments enables a test of CKM matrix unitarity.

  15. Microbial cleavage of organic C-S bonds

    DOEpatents

    Kilbane, II, John J.

    1994-01-01

    A microbial process for selective cleavage of organic C--S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials, Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C--S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.

  16. Microbial cleavage of organic C-S bonds

    DOEpatents

    Kilbane, J.J. II.

    1994-10-25

    A microbial process is described for selective cleavage of organic C-S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials. Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C-S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.

  17. /sup 137/Cs radioactive dating of Lake Ontario sediment cores

    SciTech Connect

    Ward, T.E.; Breeden, J.; Komisarcik, K.; Porter, R.; Czuczwa, J.; Kaminski, R.; McVeety, B.D.

    1987-12-01

    The distribution of /sup 137/Cs in sediment cores from Lake Ontario provides estimates of the sediment accumulation rates. Geochronology with /sup 210/Pb dating and distribution of Ambrosia (ragweed) pollen compare well with /sup 137/Cs dating. These methods can determine with precision, changes in sedimentation occurring over the past 100 years or so. Typical sedimentation rates of 0.18-0.36 cm/yr were measured. 16 refs., 3 figs., 2 tabs.

  18. Photoassociation spectroscopy of ultracold highly excited NaCs molecules

    NASA Astrophysics Data System (ADS)

    Jayaseelan, Maitreyi; Haruza, Marek; Bigelow, Nicholas

    2013-05-01

    We report on our spectroscopic investigations of translationally ultracold NaCs molecules. Photoassociation from laser cooled mixtures of ground state sodium and excited cesium atoms creates molecules in excited states detuned from the Na(3s) + Cs(6d) dissociation asymptote. This is an as yet unexplored asymptote for molecule formation. We infer properties of the scattering wave from the PA spectra, and investigate the populated ground states using photoionization and depletion spectroscopy.

  19. Surface adsorption of Cs137 ions on quartz crystals

    USGS Publications Warehouse

    Antkiw, Stephen; Waesche, H.; Senftle, F.

    1954-01-01

    Adsorption tests were made on four large synthetic and three natural quartz crystals to see if surface defects might be detected by subsequent autoradiography techniques. The adsorbent used was radioactive Cs137 in a solution of Cs 137Cl. Natural quartz crystals adsorbed more cesium than the synthetic crystals. Certain surface defects were made evident by this method, but twinning features could not be detected.

  20. Measurement of dissolved Cs-137 in stream water, soil water and groundwater at Headwater Forested Catchment in Fukushima after Fukushima Dai-ichi Nuclear Power Plant Accident

    NASA Astrophysics Data System (ADS)

    Iwagami, Sho; Tsujimura, Maki; Onda, Yuichi; Sakakibara, Koichi; Konuma, Ryohei; Sato, Yutaro

    2016-04-01

    Radiocesium migration from headwater forested catchment is important perception as output from the forest which is also input to the subsequent various land use and downstream rivers after Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. In this study, dissolved Cs-137 concentration of stream water, soil water and groundwater were measured. Observations were conducted at headwater catchment in Yamakiya district, located 35 km northwest of FDNPP from April 2014 to November 2015. Stream water discharge was monitored and stream water samples were taken at main channel and sub channel. Stream water discharge was monitored by combination of parshallflume and v-notch weir. Stream water was sampled manually at steady state condition in 3-4 month interval and also intense few hours interval sampling were conducted during rainfall events using automated water sampler. Around the sub channel, it is found that there is a regularly saturated area at the bottom of the slope, temporary saturated area which saturate during the rainy season in summer and regularly dry area. 6 interval cameras were installed to monitor the changing situation of saturated area. Suction lysimeters were installed at three areas (regularly saturated area, temporary saturated area and dry area) for sampling soil water in depth of 0.1 m and 0.3 m. Boreholes were installed at three points along the sub channel. Three boreholes with depth of 3 m, 5 m and 10 m were installed at temporary saturated area, 20 m upstream of sub channel weir. Another three boreholes with depth of 3 m, 5 m and 10 m were installed at dry area, 40 m upstream of sub channel weir. And a borehole with depth of 20 m was installed at ridge of sub catchment, 52 m upstream of sub channel weir. Groundwater was sampled by electrically powered pump and groundwater level was monitored. Also suction-free lysimeter was installed at temporary saturated area for sampling the near surface subsurface water. Soil water samples were collected

  1. Dielectric breakdown during Cs+ sputtering of polyvinyl chloride

    NASA Astrophysics Data System (ADS)

    Wahoud, F.; Guillot, J.; Audinot, J. N.; Bertrand, P.; Delcorte, A.; Migeon, H. N.

    2014-02-01

    Thin films of insulating polymers are sometimes analyzed by secondary ion mass spectrometry (SIMS) or by X-ray photoelectron spectroscopy (XPS) without the use of an electron gun. In this work, both SIMS and XPS have been used to study the chemical and structural modifications due to the charge effect during Cs+ sputtering of a thin film of polyvinyl chloride (PVC). The kinetic energy distribution study shows that at a small primary fluence ˜1015 Cs+ ions/cm2, the dielectric breakdown voltage of the PVC film is reached, i.e. the minimum voltage that causes a portion of an insulator to become electrically conductive. XPS study indicates that the conducting phase created in the PVC film after energetic Cs+ bombardment consists of graphitized carbon and metallic cesium clusters. After the dielectric breakdown of the film, the positive charge, previously accumulated on the surface, is neutralized through the conductive regions, which are created in the insulating film. During Cs+ sputtering of a PVC film, the chemical structure of the analyzed surface is completely modified and some ionic bonds such as CsC and CsCl are also created.

  2. The Transfer of Dissolved Cs-137 from Soil to Plants

    SciTech Connect

    Prorok, V.V.; Melnichenko, L.Yu.; Mason, C.F.V.; Ageyev, V.A.; Ostashko, V.V.

    2006-07-01

    Rapidly maturing plants were grown simultaneously at the same experimental sites under natural conditions at the Chernobyl Exclusion Zone. Roots of the plants were side by side in the soil. During two seasons we selected samples of the plants and of the soils several times every season. Content of Cs-137 in the plant and in the soil solution extracted from the samples of soils was measured. Results of measurements of the samples show that, for the experimental site, Cs-137 content in the plant varies with date of the sample selection. The plant:soil solution Cs-137 concentration ratio depends strongly on the date of selection and also on the type of soil. After analysis of the data we conclude that Cs-137 plant uptake is approximately proportional to the content of dissolved Cs-137 in the soil per unit of volume, and the plant:soil solution Cs-137 concentration ratio for the soil is approximately proportional to the soil moisture. (authors)

  3. From sneeze to wheeze: what we know about rhinovirus Cs.

    PubMed

    Miller, E Kathryn; Mackay, Ian M

    2013-08-01

    While the discovery of HRV-Cs is recent, there are no indications that they are new viruses, or that they are emerging in real-time. Genetically, HRV-Cs are most closely related to the members of HRV-A and HRV-B but even a small genetic difference can impart encompass significant changes to their clinical impact, complicated by a diverse human background of prior virus exposure and underlying host immune and disease variability. It is well known that HRVs are a major trigger of asthma exacerbations and HRV-Cs are now under investigation for their potential involvement in asthma inception. The newly described HRV-Cs account for a large proportion of HRV-related illness, including common colds and wheezing exacerbations. HRV-Cs are genetically diverse and appear to circulate with seasonal variation, exchanging dominance with HRV-A. Whether HRV-Cs are consistently more pathogenic or "asthmagenic" is unproven. Antigenic diversity complicates passive and active prophylactic interventions (i.e. antibodies or vaccines), so further identification and characterisation of individual types (and their neutralising antigens) is likely to inform future preventive strategies. In the meantime, new antivirals should benefit groups at risk of the most severe disease.

  4. Syntheses, structures, and optical properties of the indium/germanium selenides Cs{sub 4}In{sub 8}GeSe{sub 16}, CsInSe{sub 2}, and CsInGeSe{sub 4}

    SciTech Connect

    Ward, Matthew D.; Pozzi, Eric A.; Van Duyne, Richard P.; Ibers, James A.

    2014-04-01

    The three solid-state indium/germanium selenides Cs{sub 4}In{sub 8}GeSe{sub 16}, CsInSe{sub 2}, and CsInGeSe{sub 4} have been synthesized at 1173 K. The structure of Cs{sub 4}In{sub 8}GeSe{sub 16} is a three-dimensional framework whereas those of CsInSe{sub 2} and CsInGeSe{sub 4} comprise sheets separated by Cs cations. Both Cs{sub 4}In{sub 8}GeSe{sub 16} and CsInGeSe{sub 4} display In/Ge disorder. From optical absorption measurements these compounds have band gaps of 2.20 and 2.32 eV, respectively. All three compounds are charge balanced. - Graphical abstract: Structure of Cs{sub 4}In{sub 8}GeSe{sub 16}. - Highlights: • The solid-state In/Ge selenides Cs{sub 4}In{sub 8}GeSe{sub 16}, CsInSe{sub 2}, and CsInGeSe{sub 4} have been synthesized. • Both Cs{sub 4}In{sub 8}GeSe{sub 16} and CsInGeSe{sub 4} display In/Ge disorder. • Cs{sub 4}In{sub 8}GeSe{sub 16} and CsInGeSe{sub 4} have band gaps of 2.20 eV and 2.32 eV, respectively.

  5. Triplet-singlet conversion in ultracold Cs{sub 2} and production of ground-state molecules

    SciTech Connect

    Bouloufa, Nadia; Aymar, Mireille; Dulieu, Olivier; Pichler, Marin

    2011-02-15

    We propose a process to convert ultracold metastable Cs{sub 2} molecules in their lowest triplet state into (singlet) ground-state molecules in their lowest vibrational levels. Molecules are first pumped into an excited triplet state, and the triplet-singlet conversion is facilitated by a two-step spontaneous decay through the coupled A {sup 1{Sigma}}{sub u}{sup +}-b {sup 3{Pi}}{sub u} states. Using spectroscopic data and accurate quantum chemistry calculations for Cs{sub 2} potential curves and transition dipole moments, we show that this process competes favorably with the single-photon decay back to the lowest triplet state. In addition, we demonstrate that this conversion process represents a loss channel for vibrational cooling of metastable triplet molecules, preventing an efficient optical pumping cycle down to low vibrational levels.

  6. The distribution of (137)Cs, K, Rb and Cs in plants in a Sphagnum-dominated peatland in eastern central Sweden.

    PubMed

    Vinichuk, M; Johanson, K J; Rydin, H; Rosén, K

    2010-02-01

    We record the distribution of (137)Cs, K, Rb and Cs within individual Sphagnum plants (down to 20cm depth) as well as (137)Cs in vascular plants growing on a peatland in eastern central Sweden. In Calluna vulgaris(137)Cs was mainly located within the green parts, whereas Andromeda polifolia, Eriophorum vaginatum and Vaccinium oxycoccos showed higher (137)Cs activity in roots. Carex rostrata and Menyanthes trifoliata showed variable distribution of (137)Cs within the plants. The patterns of (137)Cs activity concentration distribution as well as K, Rb and Cs concentrations within individual Sphagnum plants were rather similar and were usually highest in the capitula and/or in the subapical segments and lowest in the lower dead segments, which suggests continuous relocation of those elements to the actively growing apical part. The (137)Cs and K showed relatively weak correlations, especially in capitula and living green segments (0-10cm) of the plant (r=0.50). The strongest correlations were revealed between (137)Cs and Rb (r=0.89), and between (137)Cs and stable Cs (r=0.84). This suggests similarities between (137)Cs and Rb in uptake and relocation within the Sphagnum, but that (137)Cs differs from K.

  7. Safety and immunogenicity of the malaria candidate vaccines FP9 CS and MVA CS in adult Gambian men.

    PubMed

    Imoukhuede, E B; Berthoud, T; Milligan, P; Bojang, K; Ismaili, J; Keating, S; Nwakanma, D; Keita, S; Njie, F; Sowe, M; Todryk, S; Laidlaw, S M; Skinner, M A; Lang, T; Gilbert, S; Greenwood, B M; Hill, A V S

    2006-10-30

    We assessed the safety and immunogenicity of prime-boost vectors encoding the Plasmodium falciparum circumsporozoite (CS) protein expressed either in the attenuated fowl-pox virus (FP9) or modified vaccinia virus Ankara (MVA). Thirty-two adult Gambians in groups of four to eight received one, two or three doses of FP9 CS and/or MVA CS. No serious adverse event was observed following vaccination. The most immunogenic regimen was two doses of FP9 followed by a single dose of MVA 4 weeks later (an average of 1000 IFN-gamma spot forming units/million PBMCs). This level of effector T-cell responses appears higher than that seen in previously reported studies of CS-based candidate malaria vaccines.

  8. Properties of CsI, CsBr and GaAs thin films grown by pulsed laser deposition

    SciTech Connect

    Brendel, V M; Garnov, S V; Yagafarov, T F; Iskhakova, L D; Ermakov, R P

    2014-09-30

    CsI, CsBr and GaAs thin films have been grown by pulsed laser deposition on glass substrates. The morphology and structure of the films have been studied using X-ray diffraction and scanning electron microscopy. The CsI and CsBr films were identical in stoichiometry to the respective targets and had a polycrystalline structure. Increasing the substrate temperature led to an increase in the density of the films. All the GaAs films differed in stoichiometry from the target. An explanation was proposed for this fact. The present results demonstrate that, when the congruent transport condition is not fulfilled, films identical in stoichiometry to targets can be grown by pulsed laser deposition in the case of materials with a low melting point and thermal conductivity. (interaction of laser radiation with matter)

  9. Correlations between potassium, rubidium and cesium ((133)Cs and (137)Cs) in sporocarps of Suillus variegatus in a Swedish boreal forest.

    PubMed

    Vinichuk, M; Rosén, K; Johanson, K J; Dahlberg, A

    2011-04-01

    An analysis of sporocarps of ectomycorrhizal fungi Suillus variegatus assessed whether cesium ((133)Cs and (137)Cs) uptake was correlated with potassium (K) or rubidium (Rb) uptake. The question was whether intraspecific correlations of Rb, K and (133)Cs mass concentrations with (137)Cs activity concentrations in sporocarps were higher within, rather than among, different fungal species, and if genotypic origin of sporocarps within a population affected uptake and correlation. Sporocarps (n = 51) from a Swedish forest population affected by the fallout after the Chernobyl accident were studied. The concentrations were 31.9 ± 6.79 g kg(-1) for K (mean ± SD, dwt), 0.40 ± 0.09 g kg(-1) for Rb, 8.7 ± 4.36 mg kg(-1) for (133)Cs and 63.7 ± 24.2 kBq kg(-1) for (137)Cs. The mass concentrations of (133)Cs correlated with (137)Cs activity concentrations (r = 0.61). There was correlation between both (133)Cs concentrations (r = 0.75) and (137)Cs activity concentrations (r = 0.44) and Rb, but the (137)Cs/(133)Cs isotopic ratio negatively correlated with Rb concentration. Concentrations of K and Rb were weakly correlated (r = 0.51). The (133)Cs mass concentrations, (137)Cs activity concentrations and (137)Cs/(133)Cs isotopic ratios did not correlate with K concentrations. No differences between, within or, among genotypes in S. variegatus were found. This suggested the relationships between K, Rb, (133)Cs and (137)Cs in sporocarps of S. variegatus is similar to other fungal species.

  10. The interaction of H 2S and S 2 with Cs and {Cs}/{ZnO} surfaces: photoemission and molecular-orbital studies

    NASA Astrophysics Data System (ADS)

    Rodriguez, JoséA.; Jirsak, Tomas; Chaturvedi, Sanjay; Hrbek, Jan

    1998-06-01

    the surface chemistry of H 2S and S 2 on metallic Cs and {Cs}/{ZnO} surfaces has been investigated using high-resolution synchrotron based photoemission and ab initio self-consistent-field calculations. Metallic Cs is very reactive toward H 2S and S 2 at temperatures between 100 and 300 K. Pure cesium decomposes H 2S to form Cs 2S compounds. After dosing S 2 to Cs, one obtains Cs 2S and Cs 2S 2 m ( m ≥1 ) compounds. The formation of cesium sulfides induces an increase in the intensity of the Cs 3d levels and large negative shifts (0.8-1.3 eV) in their peak positions. Cesium atoms supported on ZnO are in an ionic state (Cs δ+), but they are still able to interact with H 2S and S 2 more strongly than Zn and O sites of the oxide support. A correlation is found between the electron density on the Cs adatoms and their reactivity: Cs atoms supported on Zn sites of the oxide bond S-containing species (H 2S, HS, S 2, S) are stronger than Cs atoms supported on O sites. H 2S dissociates into HS and atomic S upon adsorption on {Cs}/{ZnO} surfaces at 300 K. The HS species decompose at temperatures below 450 K leaving S atoms that are bonded to Cs and Zn. The adsorption of S 2 on {Cs}/{ZnO} surfaces at 300 K leads to the formation of Cs 2S and Cs 2S 2 m ( m ≥ 1) compounds. Cs↔S interactions increase the thermal stability of cesium on the ZnO surface. The poisoning of Cs/Cu/ZnO catalysts is discussed in light of these results and those previously reported for the S 2/Cu/ZnO system.

  11. Single Na+ channels activated by veratridine and batrachotoxin

    PubMed Central

    1987-01-01

    Voltage-sensitive Na+ channels from rat skeletal muscle plasma membrane vesicles were inserted into planar lipid bilayers in the presence of either of the alkaloid toxins veratridine (VT) or batrachotoxin (BTX). Both of these toxins are known to cause persistent activation of Na+ channels. With BTX as the channel activator, single channels remain open nearly all the time. Channels activated with VT open and close on a time scale of 1-10 s. Increasing the VT concentration enhances the probability of channel opening, primarily by increasing the rate constant of opening. The kinetics and voltage dependence of channel block by 21-sulfo-11-alpha-hydroxysaxitoxin are identical for VT and BTX, as is the ionic selectivity sequence determined by bi-ionic reversal potential (Na+ approximately Li+ greater than K+ greater than Rb+ greater than Cs+). However, there are striking quantitative differences in open channel conduction for channels in the presence of the two activators. Under symmetrical solution conditions, the single channel conductance for Na+ is about twice as high with BTX as with VT. Furthermore, the symmetrical solution single channel conductances show a different selectivity for BTX (Na+ greater than Li+ greater than K+) than for VT (Na+ greater than K+ greater than Li+). Open channel current-voltage curves in symmetrical Na+ and Li+ are roughly linear, while those in symmetrical K+ are inwardly rectifying. Na+ currents are blocked asymmetrically by K+ with both BTX and VT, but the voltage dependence of K+ block is stronger with BTX than with VT. The results show that the alkaloid neurotoxins not only alter the gating process of the Na+ channel, but also affect the structure of the open channel. We further conclude that the rate-determining step for conduction by Na+ does not occur at the channel's "selectivity filter," where poorly permeating ions like K+ are excluded. PMID:2435846

  12. Eukaryotic mechanosensitive channels.

    PubMed

    Arnadóttir, Jóhanna; Chalfie, Martin

    2010-01-01

    Mechanosensitive ion channels are gated directly by physical stimuli and transduce these stimuli into electrical signals. Several criteria must apply for a channel to be considered mechanically gated. Mechanosensitive channels from bacterial systems have met these criteria, but few eukaryotic channels have been confirmed by the same standards. Recent work has suggested or confirmed that diverse types of channels, including TRP channels, K(2P) channels, MscS-like proteins, and DEG/ENaC channels, are mechanically gated. Several studies point to the importance of the plasma membrane for channel gating, but intracellular and/or extracellular structures may also be required.

  13. Resonance-mode electrochemical impedance measurements of silicon dioxide supported lipid bilayer formation and ion channel mediated charge transport.

    PubMed

    Lundgren, Anders; Hedlund, Julia; Andersson, Olof; Brändén, Magnus; Kunze, Angelika; Elwing, Hans; Höök, Fredrik

    2011-10-15

    A single-chip electrochemical method based on impedance measurements in resonance mode has been employed to study lipid monolayer and bilayer formation on hydrophobic alkanethiolate and SiO(2) substrates, respectively. The processes were monitored by temporally resolving changes in interfacial capacitance and resistance, revealing information about the rate of formation, coverage, and defect density (quality) of the layers at saturation. The resonance-based impedance measurements were shown to reveal significant differences in the layer formation process of bilayers made from (i) positively charged lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine (POEPC), (ii) neutral lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) on SiO(2), and (iii) monolayers made from POEPC on hydrophobic alkanethiolate substrates. The observed responses were represented with an equivalent circuit, suggesting that the differences primarily originate from the presence of a conductive aqueous layer between the lipid bilayers and the SiO(2). In addition, by adding the ion channel gramicidin D to bilayers supported on SiO(2), channel-mediated charge transport could be measured with high sensitivity (resolution around 1 pA).

  14. Replacement of 137Cs irradiators with x-ray irradiators.

    PubMed

    Dodd, Brian; Vetter, Richard J

    2009-02-01

    Self-shielded 137Cs irradiators have been used for many years to irradiate blood products to prevent graft vs. host disease and to irradiate cells and small animals in research. A report by the National Academy of Sciences recommends that careful consideration be given to replacement of 137Cs irradiators with x-ray irradiators. Several manufacturers and users of x-ray irradiators were contacted to determine costs of replacing and maintaining 137Cs irradiators with x-ray units and to assess users' experience with x-ray irradiators. Purchase costs of x-ray units are similar to 137Cs irradiators, but maintenance costs are significantly higher if annual service contracts are used. Performance of the two irradiator types appears to be equivalent, but in some cases x-ray irradiations may need to be performed in multiple configurations to achieve adequate uniformity in dose. No literature reports were found that evaluated the biological effectiveness of x rays vs. 137Cs gamma rays; therefore, a careful study should be conducted to determine the biological effectiveness of x rays vs. 137Cs gamma rays for biological responses relevant to transfusion medicine and immunological research. Throughput may be problematic for large transfusion medicine programs, and back-up plans may be necessary in case the x-ray unit needs to be taken out of service for extended maintenance. Disposition of a 137Cs irradiator will add to the cost of replacement with an x-ray unit, but disposal may be possible through the U.S. Department of Energy's Off-Site Source Recovery Program.

  15. High-temperature, high-pressure hydrothermal synthesis, crystal structure, and solid-state NMR spectroscopy of Cs2(UO2)(Si2O6) and variable-temperature powder X-ray diffraction study of the hydrate phase Cs2(UO2)(Si2O6) x 0.5H2O.

    PubMed

    Chen, Chih-Shan; Chiang, Ray-Kuang; Kao, Hsien-Ming; Lii, Kwang-Hwa

    2005-05-30

    A new uranium(VI) silicate, Cs2(UO2)(Si2O6), has been synthesized by a high-temperature, high-pressure hydrothermal method and characterized by single-crystal X-ray diffraction and solid-state NMR spectroscopy. It crystallizes in the orthorhombic space group Ibca (No. 73) with a = 15.137(1) A, b = 15.295(1) A, c = 16.401(1) A, and Z = 16. Its structure consists of corrugated achter single chains of silicate tetrahedra extending along the c axis linked together via corner-sharing by UO6 tetragonal bipyramids to form a 3-D framework which delimits 8- and 6-ring channels. The Cs+ cations are located in the channels or at sites between channels. The 29Si and 133Cs MAS NMR spectra are consistent with the crystal structure as determined from X-ray diffraction, and the resonances in the spectra are assigned. Variable-temperature in situ powder X-ray diffraction study of the hydrate Cs2(UO2)(Si2O6) x 0.5H2O indicates that the framework structure is stable up to 800 degrees C and transforms to the structure of the title compound at 900 degrees C. A comparison of related uranyl silicate structures is made.

  16. Ephedrine QoS: an antidote to slow, congested, bufferless NoCs.

    PubMed

    Fang, Juan; Yao, Zhicheng; Sui, Xiufeng; Bao, Yungang

    2014-01-01

    Datacenters consolidate diverse applications to improve utilization. However when multiple applications are colocated on such platforms, contention for shared resources like networks-on-chip (NoCs) can degrade the performance of latency-critical online services (high-priority applications). Recently proposed bufferless NoCs (Nychis et al.) have the advantages of requiring less area and power, but they pose challenges in quality-of-service (QoS) support, which usually relies on buffer-based virtual channels (VCs). We propose QBLESS, a QoS-aware bufferless NoC scheme for datacenters. QBLESS consists of two components: a routing mechanism (QBLESS-R) that can substantially reduce flit deflection for high-priority applications and a congestion-control mechanism (QBLESS-CC) that guarantees performance for high-priority applications and improves overall system throughput. We use trace-driven simulation to model a 64-core system, finding that, when compared to BLESS, a previous state-of-the-art bufferless NoC design, QBLESS, improves performance of high-priority applications by an average of 33.2% and reduces network-hops by an average of 42.8%.

  17. VUV fluorescence following electron-impact dissociative excitation of CS{sub 2}

    SciTech Connect

    Brotton, S. J.; McConkey, J. W.

    2011-01-15

    Electron-impact dissociation of CS{sub 2} has been studied by observation of the atomic spectral emission features in the range 115-170 nm. Absolute photoemission cross sections are presented over the complete wavelength range for an incident electron energy of 100 eV. As an example, the measured cross section of the strong C i emission at 165.7 nm, which is a prominent feature in many solar and other extraterrestrial spectra, is (1.45{+-}0.19)x10{sup -18} cm{sup 2}. Comparison with earlier cross-sectional measurements suggest that these were too high by a factor of more than three. Excitation functions of the dominant C i (156.1 nm) and S i (147.4 nm) emission lines have been measured for electron-impact energies from threshold to 360 eV. From appearance energy measurements in the near-threshold region, likely fragmentation channels are identified which involve both two-fragment breakup and total fragmentation of the parent CS{sub 2}.

  18. A CsI low-temperature detector for dark matter search

    NASA Astrophysics Data System (ADS)

    Angloher, G.; Dafinei, I.; Gektin, A.; Gironi, L.; Gotti, C.; Gütlein, A.; Hauff, D.; Maino, M.; Nagorny, S. S.; Nisi, S.; Pagnanini, L.; Pattavina, L.; Pessina, G.; Petricca, F.; Pirro, S.; Pröbst, F.; Reindl, F.; Schäffner, K.; Schieck, J.; Seidel, W.; Vasyukov, S.

    2016-11-01

    Cryogenic detectors have a long history of success in the field of rare event searches. In particular scintillating calorimeters are very suitable detectors for this task since two signals are induced by a particle interaction in a scintillating crystal. The thermal signal provides a precise measurement of the deposited energy while the simultaneously measured scintillation light signal yields particle discrimination as the amount of produced scintillation light depends on the nature of the interacting particle. We investigate the calorimetric properties and background rejection capabilities of two large CsI (undoped) crystals (∼122 g each) operated as scintillating calorimeters at milli-Kelvin temperatures. Furthermore, we discuss the feasibility of this detection approach towards a future background-free dark matter experiment based on alkali halide crystals, with active particle discrimination via the two-channel detection.

  19. Chemistry in circumstellar disks - CS toward HL Tauri

    NASA Technical Reports Server (NTRS)

    Blake, Geoffrey A.; Van Dishoeck, Ewine F.; Sargent, Anneila I.

    1992-01-01

    High spatial and spectral resolution dust continuum and CS line-emission maps of the material immediately surrounding HL Tauri are presented. The 3.06-thermal dust map gives an upper limit to the source size of roughly 200 AU. When combined with previous millimeter continuum measurements, a beta value of 1.2 +/-0.3 is derived along with a disk mass of 0.1 solar mass, in agreement with previous disk radiative transfer models of the IR and submillimeter flux from HL Tau. The low dust emissivity index as compared to particles in the diffuse ISM is best explained by grain growth or composition evolution. The present observations of the CS and CO emission lines forming the molecular cloud surrounding HL Tauri are consistent with the 'canonical' temperatures, densities, and abundances derived in other Taurus cloud cores. In contrast, the CS emission in aperture synthesis maps at 650-AU spatial resolution is most consistent with CS/CO ratios at least 25-50 times lower in the gas immediately surrounding HL Tauri if the CS emission is optically thin. The continuum and spectral line results obtained are strong indicators of conditions thought to be similar to those in the presolar nebula some 4.5 AE ago.

  20. Radiation stability of CsBr:Eu needle image plates

    SciTech Connect

    Batentschuk, M.; Neudert, S.; Weidner, M.; Osvet, A.; Struye, L.; Tahon, J.-P.; Leblans, P.

    2009-10-15

    Needle image plates (NIPs) based on CsBr:Eu are a good alternative to the BaFBr:Eu powder image plates due to their higher sensitivity and improved spatial resolution. The x-ray radiation stability of the NIPs produced by Agfa Gevaert was investigated and it was found that the radiation stability of the optimized NIPs is as high as that of the commercial CsI:Tl single crystals and much higher than reported in literature for the CsBr:Eu NIPs. The dependence of the sensitivity of the NIPs on the accumulated dose was determined for three different types of x-ray irradiation. It is shown that degradation of the sensitivity starts at about 10 Gy and it is the strongest for the most hard x-ray beam. If the energy absorbed by a NIP is taken into account, the degradation does not depend on the hardness of the applied x-ray beam. It is suggested that the main reason for the observed high radiation stability of the CsBr:Eu NIPs is the use of the oxygen-free Eu{sup 2+}-containing precursor CsEuBr{sub 3} for the doping in the manufacturing process.

  1. Optimal High-TC Superconductivity in Cs3C60

    NASA Astrophysics Data System (ADS)

    Harshman, Dale; Fiory, Anthony

    The highest superconducting transition temperatures in the (A1-xBx)3C60 superconducting family are seen in the A15 and FCC structural phases of Cs3C60 (optimized under hydrostatic pressure), exhibiting measured values for near-stoichiometric samples of TC0 meas . = 37.8 K and 35.7 K, respectively. It is argued these two Cs-intercalated C60 compounds represent the optimal materials of their respective structures, with superconductivity originating from Coulombic e- h interactions between the C60 molecules, which host the n-type superconductivity, and mediating holes associated with the Cs cations. A variation of the interlayer Coulombic pairing model [Harshman and Fiory, J. Supercond. Nov. Magn. 28 ̲, 2967 (2015), and references therein] is introduced in which TC0 calc . ~ 1 / lζ , where l relates to the mean spacing between interacting charges on surfaces of the C60 molecules, and ζ is the average radial distance between the surface of the C60 molecules and the neighboring Cs cations. For stoichiometric Cs3C60, TC0 calc . = 38.08 K and 35.67 K for the A15 and FCC macrostructures, respectively; the dichotomy is attributable to differences in ζ.

  2. Radiation stability of CsBr:Eu needle image plates

    NASA Astrophysics Data System (ADS)

    Batentschuk, M.; Neudert, S.; Weidner, M.; Osvet, A.; Struye, L.; Tahon, J.-P.; Leblans, P.

    2009-10-01

    Needle image plates (NIPs) based on CsBr:Eu are a good alternative to the BaFBr:Eu powder image plates due to their higher sensitivity and improved spatial resolution. The x-ray radiation stability of the NIPs produced by Agfa Gevaert was investigated and it was found that the radiation stability of the optimized NIPs is as high as that of the commercial CsI:Tl single crystals and much higher than reported in literature for the CsBr:Eu NIPs. The dependence of the sensitivity of the NIPs on the accumulated dose was determined for three different types of x-ray irradiation. It is shown that degradation of the sensitivity starts at about 10 Gy and it is the strongest for the most hard x-ray beam. If the energy absorbed by a NIP is taken into account, the degradation does not depend on the hardness of the applied x-ray beam. It is suggested that the main reason for the observed high radiation stability of the CsBr:Eu NIPs is the use of the oxygen-free Eu2+-containing precursor CsEuBr3 for the doping in the manufacturing process.

  3. Photoelectron Emission Studies in CsBr at 257 nm

    SciTech Connect

    Maldonado, Juan R.; Liu, Zhi; Sun, Yun; Pianetta, Piero A.; Pease, Fabian W.; /Stanford U., Elect. Eng. Dept. /SLAC, SSRL

    2006-09-28

    CsBr/Cr photocathodes were found [1,2] to meet the requirements of a multi-electron beam lithography system operating with a light energy of 4.8 eV (257nm). The fact that photoemission was observed with a light energy below the reported 7.3 eV band gap for CsBr was not understood. This paper presents experimental results on the presence of intra-band gap absorption sites (IBAS) in CsBr thin film photo electron emitters, and presents a model based on IBAS to explain the observed photoelectron emission behavior at energies below band gap. A fluorescence band centered at 330 nm with a FWHM of about 0.34 eV was observed in CsBr/Cr samples under 257 nm laser illumination which can be attributed to IBAS and agrees well with previously obtained synchrotron photoelectron spectra[1] from the valence band of CsBr films.

  4. Atomic sites and stability of Cs+ captured within zeolitic nanocavities

    NASA Astrophysics Data System (ADS)

    Yoshida, Kaname; Toyoura, Kazuaki; Matsunaga, Katsuyuki; Nakahira, Atsushi; Kurata, Hiroki; Ikuhara, Yumi H.; Sasaki, Yukichi

    2013-08-01

    Zeolites have potential application as ion-exchangers, catalysts and molecular sieves. Zeolites are once again drawing attention in Japan as stable adsorbents and solidification materials of fission products, such as 137Cs+ from damaged nuclear-power plants. Although there is a long history of scientific studies on the crystal structures and ion-exchange properties of zeolites for practical application, there are still open questions, at the atomic-level, on the physical and chemical origins of selective ion-exchange abilities of different cations and detailed atomic structures of exchanged cations inside the nanoscale cavities of zeolites. Here, the precise locations of Cs+ ions captured within A-type zeolite were analyzed using high-resolution electron microscopy. Together with theoretical calculations, the stable positions of absorbed Cs+ ions in the nanocavities are identified, and the bonding environment within the zeolitic framework is revealed to be a key factor that influences the locations of absorbed cations.

  5. Quasi-freestanding graphene on Ni(111) by Cs intercalation

    NASA Astrophysics Data System (ADS)

    Alattas, M.; Schwingenschlögl, U.

    2016-05-01

    A possible approach to achieve quasi-freestanding graphene on a substrate for technological purpose is the intercalation of alkali metal atoms. Cs intercalation between graphene and Ni(111) therefore is investigated using density functional theory, incorporating van der Waals corrections. It is known that direct contact between graphene and Ni(111) perturbs the Dirac states. We find that Cs intercalation restores the linear dispersion characteristic of Dirac fermions, which agrees with experiments, but the Dirac cone is shifted to lower energy, i.e., the graphene sheet is n-doped. Cs intercalation therefore decouples the graphene sheet from the substrate except for a charge transfer. On the other hand, the spin polarization of Ni(111) does not extend through the intercalated atoms to the graphene sheet, for which we find virtually spin-degeneracy.

  6. Performance verification tests of JT-60SA CS model coil

    NASA Astrophysics Data System (ADS)

    Obana, Tetsuhiro; Murakami, Haruyuki; Takahata, Kazuya; Hamaguchi, Shinji; Chikaraishi, Hirotaka; Mito, Toshiyuki; Imagawa, Shinsaku; Kizu, Kaname; Natsume, Kyohei; Yoshida, Kiyoshi

    2015-11-01

    As a final check of the coil manufacturing method of the JT-60 Super Advanced (JT-60SA) central solenoid (CS), we verified the performance of a CS model coil. The model coil comprised a quad-pancake wound with a Nb3Sn cable-in-conduit conductor. Measurements of the critical current, joint resistance, pressure drop, and magnetic field were conducted in the verification tests. In the critical-current measurement, the critical current of the model coil coincided with the estimation derived from a strain of -0.62% for the Nb3Sn strands. As a result, critical-current degradation caused by the coil manufacturing process was not observed. The results of the performance verification tests indicate that the model coil met the design requirements. Consequently, the manufacturing process of the JT-60SA CS was established.

  7. Rate of reaction of OH with CS/sub 2/

    SciTech Connect

    Wine, P.H.; Shah, R.C.; Ravishankara, A.R.

    1980-10-02

    The flash photolysis-resonance fluorescence technique has been employed to study the kinetics of the reaction OH + CS/sub 2/ ..-->.. products (k/sub 1/) over the temperature range 251-363 K. Complicating secondary reactions involving CS/sub 2/ photofragments were eliminated only when the photoflash was filtered by 10 torr cm of CS/sub 2/ and SF/sub 6/ was used as the buffer gas. The rate constant was found to be much slower than previous measurements indicated. Based on our experiments, upper limits for k/sub 1/ (in units of 10/sup -15/ cm/sup 3/ molecule/sup -1/s/sup -1/) are 9.9 at 251 K, 1.5 at 297 K, and 1.6 at 363 K. Our results suggest that the title reaction is unimportant as a source for COS in the atmosphere.

  8. Accumulation of K+ and Cs+ in Tropical Plant Species

    NASA Astrophysics Data System (ADS)

    Velasco, H.; Anjos, R. M.; Zamboni, C. B.; Macario, K. D.; Rizzotto, M.; Cid, A. S.; Medeiros, I. M. A.; Fernández, J.; Rubio, L.; Audicio, P.; Lacerda, T.

    2010-08-01

    Concentrations of K+ and 137Cs+ in tissues of the Citrus aurantifolia were measured both by gamma spectrometry and neutron activation analysis, aiming to understand the behavior of monovalent inorganic cations in plants as well as its capability to store these elements. In contrast to K+, Cs+ ions are not essential elements to plants, what might explain the difference in bioavailability. However, our results have shown that 137Cs+ is positively correlated to 40K+ concentration within tropical plant species, suggesting that these elements might be assimilated in a similar way, and that they pass through the biological cycle together. A simple mathematical model was also proposed to describe the temporal evolution of 40K activity concentration in such tropical woody fruit species. This model exhibited close agreement with the 40K experimental results in the fruit ripening processes of lemon trees.

  9. Quantum Efficiency Enhancement in CsI/Metal Photocathodes

    SciTech Connect

    Kong, Lingmei; Joly, Alan G.; Droubay, Timothy C.; Hess, Wayne P.

    2015-02-01

    High quantum efficiency enhancement is found for hybrid metal-insulator photocathodes consisting of thin films of CsI deposited on Cu(100), Ag(100), Au(111) and Au films irradiated by 266 nm laser pulses. Low work functions (near or below 2 eV) are observed following ultraviolet laser activation. Work functions are reduced by roughly 3 eV from that of clean metal surfaces. We discuss various mechanisms of quantum efficiency enhancement for alkali halide/metal photocathode systems and conclude that the large change in work function, due to Cs accumulation of Cs metal at the metal-alkali halide interface, is the dominant mechanism for quantum efficiency enhancement

  10. Estimation of average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors by using the {sup 134}Cs/{sup 137}Cs ratio method

    SciTech Connect

    Endo, T.; Sato, S.; Yamamoto, A.

    2012-07-01

    Average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors is estimated, using the {sup 134}Cs/{sup 137}Cs ratio method for measured radioactivities of {sup 134}Cs and {sup 137}Cs in contaminated soils within the range of 100 km from the Fukushima Dai-ichi nuclear power plants. As a result, the measured {sup 134}Cs/{sup 137}Cs ratio from the contaminated soil is 0.996{+-}0.07 as of March 11, 2011. Based on the {sup 134}Cs/{sup 137}Cs ratio method, the estimated burnup of damaged fuels is approximately 17.2{+-}1.5 [GWd/tHM]. It is noted that the numerical results of various calculation codes (SRAC2006/PIJ, SCALE6.0/TRITON, and MVP-BURN) are almost the same evaluation values of {sup 134}Cs/ {sup 137}Cs ratio with same evaluated nuclear data library (ENDF-B/VII.0). The void fraction effect in depletion calculation has a major impact on {sup 134}Cs/{sup 137}Cs ratio compared with the differences between JENDL-4.0 and ENDF-B/VII.0. (authors)

  11. Cs-137 concentration in reindeer and its fodder plants.

    PubMed

    Rissanen, K; Rahola, T

    1989-09-01

    Radionuclides, especially the long-lived 137Cs (physical half-life 30 years), are accumulated efficiently in the northern, subarctic, lichen-reindeer-man foodchain. Until the Chernobyl accident the fallout nuclides studied originated from nuclear weapons tests. After this accident some fresh fallout was deposited in Finnish Lapland. Lichens grow very slowly and collect nutrients very efficiently from air, rain and snow. During winter the basic fodder plants for reindeer are lichens and some winter-green plants, shrubs and dry leaves. During the bare-ground season, the reindeer eat various grasses, herbs and leaves etc. Lichens constitute 30-50 per cent of the entire vegetable mass consumed by the reindeer in a year. The highest 137Cs-concentration 2500 Bq/kg dry weight was found in lichen in the middle of the 1960s. In 1985 the concentration had decreased to about 240 Bq/kg dry weight. After the Chernobyl accident the 137Cs-concentration in lichen varied from 200 to 2000 Bq/kg dry weight in Finnish Lapland. In reindeer fodder plant samples collected in the 1980s before the Chernobyl accident the 137Cs-concentration varied from 5 to 970 Bq/kg dry weight. The highest 137Cs-concentration in reindeer meat, about 2500 Bq/kg fresh weight, was found in 1965 and thereafter decreased to about 300 Bq/kg fresh weight in the winter before the Chernobyl accident. After the accident the mean 137Cs-concentration in reindeer meat from the 1986-87 slaughtering period was 720 Bq/kg fresh weight and in 1987-88, 630 Bq/kg fresh weight.

  12. Observation of the Symmetry-Forbidden 5σu→kσu CS2 Transition: A Vibrationally Driven Photoionization Resonance

    NASA Astrophysics Data System (ADS)

    Rathbone, G. J.; Poliakoff, E. D.; Bozek, John D.; Lucchese, R. R.

    2004-04-01

    Vibrationally resolved photoelectron spectroscopy and Schwinger calculations are used to characterize a new resonance phenomenon in the 5σu→kσu photoionization of CS2. This resonant channel is symmetry forbidden, yet is observable because it is activated by the antisymmetric stretching vibration. In addition, we show that a Franck-Condon breakdown occurs even though the energy dependence of the cross section is insensitive to geometry changes, which is unprecedented in photoionization.

  13. A parallel finite element simulator for ion transport through three-dimensional ion channel systems.

    PubMed

    Tu, Bin; Chen, Minxin; Xie, Yan; Zhang, Linbo; Eisenberg, Bob; Lu, Benzhuo

    2013-09-15

    A parallel finite element simulator, ichannel, is developed for ion transport through three-dimensional ion channel systems that consist of protein and membrane. The coordinates of heavy atoms of the protein are taken from the Protein Data Bank and the membrane is represented as a slab. The simulator contains two components: a parallel adaptive finite element solver for a set of Poisson-Nernst-Planck (PNP) equations that describe the electrodiffusion process of ion transport, and a mesh generation tool chain for ion channel systems, which is an essential component for the finite element computations. The finite element method has advantages in modeling irregular geometries and complex boundary conditions. We have built a tool chain to get the surface and volume mesh for ion channel systems, which consists of a set of mesh generation tools. The adaptive finite element solver in our simulator is implemented using the parallel adaptive finite element package Parallel Hierarchical Grid (PHG) developed by one of the authors, which provides the capability of doing large scale parallel computations with high parallel efficiency and the flexibility of choosing high order elements to achieve high order accuracy. The simulator is applied to a real transmembrane protein, the gramicidin A (gA) channel protein, to calculate the electrostatic potential, ion concentrations and I - V curve, with which both primitive and transformed PNP equations are studied and their numerical performances are compared. To further validate the method, we also apply the simulator to two other ion channel systems, the voltage dependent anion channel (VDAC) and α-Hemolysin (α-HL). The simulation results agree well with Brownian dynamics (BD) simulation results and experimental results. Moreover, because ionic finite size effects can be included in PNP model now, we also perform simulations using a size-modified PNP (SMPNP) model on VDAC and α-HL. It is shown that the size effects in SMPNP can

  14. A winning combination: the 3Cs of business continuity.

    PubMed

    Glendon, Lee

    2013-01-01

    Contingency planning is a natural part of business life and is used across identified strategic, financial and operational risks. But is it being done well and is it the right approach all of the time? This paper shows how contingency planning forms one layer of a three-line defence termed 'the 3Cs of business continuity': contingency planning; continuity capability; crisis response. Collectively, 'the 3Cs' help organisations deliver a robust response to the risks that can be seen and those that cannot.

  15. Fluorescence polarization studies of autoionization in CS2

    NASA Astrophysics Data System (ADS)

    Poliakoff, E. D.; Dehmer, J. L.; Parr, A. C.; Leroi, G. E.

    1987-03-01

    The fluorescence polarization spectrum of CS2(+) produced by photoionization of CS2 (using synchrotron radiation from the NBS SURF-II electron-storage ring) at excitation wavelengths 875-967 A is investigated experimentally, with a focus on autoionization features. The results of polarization measurements for the A2Pi-X2Pi transition are presented in graphs and compared with spectra simulated using the procedure of Poliakoff et al. (1982); qualitative agreement is obtained, but quantitative discrepancies are noted, especially on the low-wavelength side of the resonance. The spectral assignments of Ogawa and Chang (1970) for the autoionizing Rydberg states are confirmed.

  16. Spin-Exchange-Relaxation-Free Magnetometry with Cs Vapor

    DTIC Science & Technology

    2008-03-13

    Larmor precession 6,7. In Ref. 5, sensitivity of 5 pG /Hz was achieved with the cell operating at 190 °C using potassium atoms. Estimates of the...cell containing a droplet of Cs metal, 600 Torr He buffer gas to reduce the rate at which atoms in the central part of the cell diffuse to the cell...broadening of Cs lines by helium 19, we extrapolate the FWHM of the D1 and D2 optical resonances to be =15.7 and 14.1 GHz, respectively. The cell was

  17. The Submillimeter-Wave Spectrum of the CS+ Radical Ion

    NASA Astrophysics Data System (ADS)

    Bailleux, Stéphane; Walters, Adam; Grigorova, Eva; Margulès, Laurent

    2008-05-01

    The submillimeter-wave spectrum of the CS+ radical cation in its ground electronic state (X2Σ+) has been observed for the first time, in a flowing positive column discharge in a CS2-Ar mixture partially cooled with a limited flow of liquid nitrogen. Nine rotational transition frequencies were recorded between 414 and 622 GHz, leading to the determination of accurate molecular constants B0 = 25908.8560(41) MHz, D0 = 41.344(18) kHz, and γ0 = 597.629(41) MHz, which we use to predict transition frequencies up to the terahertz region in order to stimulate new attempts at astronomical detection.

  18. 137Cs in a raised bog in central Sweden.

    PubMed

    Rosén, K; Vinichuk, M; Johanson, K J

    2009-07-01

    The vertical distribution of (137)Cs activity in peat soil profiles and (137)Cs activity concentration in plants of various species was studied in samples collected at two sites on a raised bog in central Sweden. One site (open bog) was in an area with no trees and only a few sparsely growing plant species, while the other (low pine) was less than 100 m from the open bog site and had slowly growing Scots pine, a field layer dominated by some ericaceous plants and ground well-covered by plants. The plant samples were collected in 2004-2007 and were compared with samples collected in 1989 from the same open bog and low pine sites. Ground deposition of (137)Cs in 2005 was similar at both sites, 23,000 Bq m(-2). In the open bog peat profile it seems to be an upward transport of caesium since a clear peak of (137)Cs activity was found in the uppermost 1-4 cm of Sphagnum layers, whereas at the low pine site (137)Cs was mainly found in deeper (10-12 cm) layers. The migration rate was 0.57 cm yr(-1) at the open bog site and the migration centre of (137)Cs was at a depth of 10.7, while the rate at the low pine site was 0.78 cm yr(-1) and the migration centre was at 14.9 cm. Heather (Calluna vulgaris) was the plant species with the highest (137)Cs activity concentrations at both sites, 43.5 k Bq(-1) DM in 1989 decreasing to 20.4 in 2004-2007 on open bog and 22.3 k Bq kg(-1) DM in 1989 decreasing to 11.2 k Bq(-1) DM by the period 2004-2007 on the low pine site. (137)Cs transfer factors in plants varied between 0.88 and 1.35 on the open bog and between 0.48 and 0.69 m(2)kg(-1) DM at the low pine site.

  19. SorCS1 variants and amyloid precursor protein (APP) are co-transported in neurons but only SorCS1c modulates anterograde APP transport.

    PubMed

    Hermey, Guido; Schmidt, Nadine; Bluhm, Björn; Mensching, Daniel; Ostermann, Kristina; Rupp, Carsten; Kuhl, Dietmar; Kins, Stefan

    2015-10-01

    Processing of amyloid precursor protein (APP) into amyloid-β peptide (Aβ) is crucial for the development of Alzheimer's disease (AD). Because this processing is highly dependent on its intracellular itinerary, altered subcellular targeting of APP is thought to directly affect the degree to which Aβ is generated. The sorting receptor SorCS1 has been genetically linked to AD, but the underlying molecular mechanisms are poorly understood. We analyze two SorCS1 variants; one, SorCS1c, conveys internalization of surface-bound ligands whereas the other, SorCS1b, does not. In agreement with previous studies, we demonstrate co-immunoprecipitation and co-localization of both SorCS1 variants with APP. Our results suggest that SorCS1c and APP are internalized independently, although they mostly share a common post-endocytic pathway. We introduce functional Venus-tagged constructs to study SorCS1b and SorCS1c in living cells. Both variants are transported by fast anterograde axonal transport machinery and about 30% of anterograde APP-positive transport vesicles contain SorCS1. Co-expression of SorCS1b caused no change of APP transport kinetics, but SorCS1c reduced the anterograde transport rate of APP and increased the number of APP-positive stationary vesicles. These data suggest that SorCS1 and APP share trafficking pathways and that SorCS1c can retain APP from insertion into anterograde transport vesicles. Altered APP trafficking is thought to modulate its processing. SorCS1 has been suggested to function in APP trafficking. We analyzed if the two SorCS1 variants, SorCS1b and SorCS1c, tie APP to the cell surface or modify its internalization and intracellular targeting. We observed co-localization and vesicular co-transport of APP and SorCS1, but independent internalization and sorting through a common post-endocytic pathway. Co-expression of one variant, SorCS1c, reduced anterograde APP transport. These data demonstrate that SorCS1 and APP share trafficking pathways and

  20. Patterns and dynamics of Cs-137 soil contamination on the plot scale of the Bryansk Region (Russia): the role of processes, connectivity

    NASA Astrophysics Data System (ADS)

    Linnik, Vitaly; Sokolov, Alexander; Saveliev, Anatoly

    2014-05-01

    parameters, general additive models were used. According to results of modeling using a detailed and a generalized grid it has been found (Linnik, Saveliev et.al., 2007), that in accumulation zones (depressions) 137Cs deposit was lower when Laplace operator was positive (Laplace1>0=915 kBq/m2; Laplace2>0=921 kBq/m2) than in wash-out zones, singled out by negative values of Laplace operator (Laplace1<0=978 kBq/m2; Laplace2<0=979 kBq/m2). The inversion effect revealed in 137Cs deposit distribution could not be accounted for be processes of surface 137Cs wash-off as the chain of depressions was isolated. We found that connectivity of subsurface moving soil moisture saturation was made up by a number of small and shallow channels, covered by litter, they served as 137Cs travel paths at the period of spring wetting in April-May 1986. The total 137Cs output in soluble form from this plot calculated for the two models was 5,9% and 6,4%. References: Linnik V.G., Saveliev A.A., Govorun A.P., Ivanitsky O.M., Sokolov A.V. Spatial Variability and Topographic Factors of 137Cs Soil Contamination at a Field Scale// International Journal of Ecology & Development, 2007, Vol. 8, No.7, p.8-25.

  1. 135Cs/137Cs isotopic composition of environmental samples across Europe: Environmental transport and source term emission applications

    SciTech Connect

    Snow, Mathew S.; Snyder, Darin C.

    2015-11-02

    135Cs/137Cs isotopic analyses represent an important tool for studying the fate and transport of radiocesium in the environment; in this work the 135Cs/137Cs isotopic composition in environmental samples taken from across Europe is reported. Surface soil and vegetation samples from western Russia, Ukraine, Austria, and Hungary show consistent aged thermal fission product 135Cs/137Cs isotope ratios of 0.58 ± 0.01 (age corrected to 1/1/15), with the exception of one sample of soil-moss from Hungary which shows an elevated 135Cs/137Cs ratio of 1.78 ± 0.12. With the exception of the outlier sample from Hungary, surface soil/vegetation data are in quantitative agreement with values previously reported for soils within the Chernobyl exclusion zone, suggesting that radiocesium at these locations is primarily composed of homogenous airborne deposition from Chernobyl. Seawater samples taken from the Irish Sea show 135Cs/137Cs isotope ratios of 1.22 ± 0.11 (age corrected to 1/1/15), suggesting aged thermal fission product Cs discharged from Sellafield. Furthermore, the differences in 135Cs/137Cs isotope ratios between Sellafield, Chernobyl, and global nuclear weapons testing fallout indicate that 135Cs/137Cs isotope ratios can be utilized to discriminate between and track radiocesium transport from different nuclear production source terms, including major emission sources in Europe.

  2. Synthesis, structural characterization and optical properties of a new cesium aluminum borate, Cs{sub 2}Al{sub 2}B{sub 2}O{sub 7}

    SciTech Connect

    Feng Kai; Yin Wenlong; Yao Jiyong; Wu Yicheng

    2011-12-15

    A new borate, Cs{sub 2}Al{sub 2}B{sub 2}O{sub 7}, was synthesized by solid-state reaction. It crystallizes in the monoclinic space group P2{sub 1}/c with a=6.719(1) A, b=7.121(1) A, c=9.626(3) A, {beta}=115.3(1) Degree-Sign , and Z=2. In the structure, two AlO{sub 4} tetrahedra and two BO{sub 3} planar triangles are connected alternately by corner-sharing to from nearly planar [Al{sub 2}B{sub 2}O{sub 10}] rings, which are further linked via common O1 atom to generate layers in the bc plane. These layers then share the O3 atoms lying on a center of inversion to form a three-dimensional framework with Cs atoms residing in the channels. The IR spectrum confirms the presence of both BO{sub 3} and AlO{sub 4} groups and the UV-vis-IR diffuse reflectance spectrum indicates a band gap of about 4.13(2) eV. - Graphical abstract: A new borate, Cs{sub 2}Al{sub 2}B{sub 2}O{sub 7}, was synthesized. In the structure, BO{sub 3} triangles and AlO{sub 4} tetrahedra are connected to form a three-dimensional framework with Cs{sup +} in the channels. Black-Small-Square Highlights: Black-Right-Pointing-Pointer A new borate Cs{sub 2}Al{sub 2}B{sub 2}O{sub 7} was synthesized and crystals were obtained by flux method. Black-Right-Pointing-Pointer Cs{sub 2}Al{sub 2}B{sub 2}O{sub 7} crystallizes in a new structure type. Black-Right-Pointing-Pointer Two AlO{sub 4} and two BO{sub 3} generate a [Al{sub 2}B{sub 2}O{sub 10}] ring in the structure. Black-Right-Pointing-Pointer Rings are linked to form a three-dimensional framework with Cs{sup +} in the channels. Black-Right-Pointing-Pointer Optical band gap is about 4.13 eV.

  3. The Psychology of Channeling.

    ERIC Educational Resources Information Center

    Corey, Michael A.

    1988-01-01

    Theoretically analyzes phenomenon of channeling from perspective of C. G. Jung's analytic psychology. Hypothesizes that contact with otherworldly spiritual beings claimed by channelers is actually projected contact with contents of channeler's own unconscious mind. Suggests that channelers seek more constructive ways of contacting their…

  4. Spatial and temporal variability in sedimentation rates associated with cutoff channel infill deposits: Ain River, France

    USGS Publications Warehouse

    Piegay, H.; Hupp, C.R.; Citterio, A.; Dufour, S.; Moulin, B.; Walling, D.E.

    2008-01-01

    Floodplain development is associated with lateral accretion along stable channel geometry. Along shifting rivers, the floodplain sedimentation is more complex because of changes in channel position but also cutoff channel presence, which exhibit specific overflow patterns. In this contribution, the spatial and temporal variability of sedimentation rates in cutoff channel infill deposits is related to channel changes of a shifting gravel bed river (Ain River, France). The sedimentation rates estimated from dendrogeomorphic analysis are compared between and within 14 cutoff channel infills. Detailed analyses along a single channel infill are performed to assess changes in the sedimentation rates through time by analyzing activity profiles of the fallout radionuclides 137Cs and unsupported 210Pb. Sedimentation rates are also compared within the channel infills with rates in other plots located in the adjacent floodplain. Sedimentation rates range between 0.65 and 2.4 cm a -1 over a period of 10 to 40 years. The data provide additional information on the role of distance from the bank, overbank flow frequency, and channel geometry in controlling the sedimentation rate. Channel infills, lower than adjacent floodplains, exhibit higher sedimentation rates and convey overbank sediment farther away within the floodplain. Additionally, channel degradation, aggradation, and bank erosion, which reduce or increase the distance between the main channel and the cutoff channel aquatic zone, affect local overbank flow magnitude and frequency and therefore sedimentation rates, thereby creating a complex mosaic of sedimentation zones within the floodplain and along the cutoff channel infills. Last, the dendrogeomorphic and 137Cs approaches are cross validated for estimating the sedimentation rate within a channel infill. Copyright 2008 by the American Geophysical Union.

  5. Permeation of internal and external monovalent cations through the catfish cone photoreceptor cGMP-gated channel

    PubMed Central

    1995-01-01

    The permeation of monovalent cations through the cGMP-gated channel of catfish cone outer segments was examined by measuring permeability and conductance ratios under biionic conditions. For monovalent cations presented on the cytoplasmic side of the channel, the permeability ratios with respect to extracellular Na followed the sequence NH4 > K > Li > Rb = Na > Cs while the conductance ratios at +50 mV followed the sequence Na approximately NH4 > K > Rb > Li = Cs. These patterns are broadly similar to the amphibian rod channel. The symmetry of the channel was tested by presenting the test ion on the extracellular side and using Na as the common reference ion on the cytoplasmic side. Under these biionic conditions, the permeability ratios with respect to Na at the intracellular side followed the sequence NH4 > Li > K > Na > Rb > Cs while the conductance ratios at +50 mV followed the sequence NH4 > K approximately Na > Rb > Li > Cs. Thus, the channel is asymmetric with respect to external and internal cations. Under symmetrical 120 mM ionic conditions, the single-channel conductance at +50 mV ranged from 58 pS in NH4 to 15 pS for Cs and was in the order NH4 > Na > K > Rb > Cs. Unexpectedly, the single-channel current-voltage relation showed sufficient outward rectification to account for the rectification observed in multichannel patches without invoking voltage dependence in gating. The concentration dependence of the reversal potential for K showed that chloride was impermeant. Anomalous mole fraction behavior was not observed, nor, over a limited concentration range, were multiple dissociation constants. An Eyring rate theory model with a single binding site was sufficient to explain these observations. PMID:8786344

  6. CHeCS: International Space Station Medical Hardware Catalog

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The purpose of this catalog is to provide a detailed description of each piece of hardware in the Crew Health Care System (CHeCS), including subpacks associated with the hardware, and to briefly describe the interfaces between the hardware and the ISS. The primary user of this document is the Space Medicine/Medical Operations ISS Biomedical Flight Controllers (ISS BMEs).

  7. There and Back Again?: The Disappearing Pulsations of CS 1246

    NASA Astrophysics Data System (ADS)

    Vasquez Soto, Alan; Barlow, Brad

    2016-01-01

    Hot subdwarf stars were once main sequence stars, like the sun, that deviated from normal stellar evolution due to binary interactions and evolved into extreme horizontal branch stars. Several of these stars exhibit rapid pulsations driven by iron opacity instabilities. CS 1246 is a rapidly pulsating hot subdwarf discovered in 2009 that is dominated by a single 371 second pulsation. At the time of its discovery, the pulsational amplitude was one of the largest known, making CS 1246 an ideal candidate for follow up studies. Observations in 2013 implied that the pulsational amplitude had decreased significantly. Since then we have continued monitoring the star using the robotic SKYNET telescopes in Chile, in order to further characterize any changes. Our recent observations show that the pulsational amplitude has gone down by a factor of six: CS 1246 is barely a pulsator anymore. The decay in amplitude over time is reminiscent of a damped harmonic oscillator. Here we present six years of photometry for CS 1246 and discuss possible scenarios that might explain its interesting behavior.

  8. Excitation-transfer collisions in cesium vapor: CS(5d (5/2)) + CS(6s (1/2)) yields CS(5d (3/2)) + CS(6s (1/2))

    SciTech Connect

    Keramati, B.; Masters, M.; Huennekens, J.

    1988-11-01

    The excitation-transfer collision Cs(5D5/2) + Cs(6S) yields CS(5D3/2) + Cs(6S) was studied. The upper 5D5/2 state was excited by a c-w dye laser tuned to the one photon, quadrupole-allowed 6S yields 5D5/2 transition. Since the direct 5D yields 6P fluorescence could not be detected with our apparatus we monitored instead the cascade 6P yields 6S fluorescence. The ratio of 6P 1/2 to 6P3/2 fluorescence contains information on the collisional mixing that takes place in the 5D levels but also includes a significant contribution from mixing in the 6P levels. This latter contribution could effectively be subtracted out using the results of a second experiment in which a tunable cw diode laser was used to pump the 6P3/2 state, and the same fluorescence ratio monitored. The 5D mixing cross section obtained, 70 A, is significantly larger than previous indirect determinations.

  9. Excitation-transfer collisions in cesium vapor: Cs(5D/sub 5/2/)+Cs(6S/sub 1/2/). -->. Cs (5D/sub 3/2/)+ Cs(6S/sub 1/2/)

    SciTech Connect

    Keramati, B.; Masters, M.; Huennekens, J.

    1988-11-01

    We report an experimental investigation of the excitation-transfer collision Cs(5D/sub 5/2/)+Cs(6S)..-->..CS ((5D/sub 3/2/)+Cs(6S). The upper 5D/sub 5/2/ state was excited by a cw dye laser tuned to the one-photon, quadrupole-allowed 6S..-->..5D/sub 5/2/ transition. Since the direct 5D..-->..6P fluorescence could not be detected with our apparatus, we monitored instead the cascade 6P..-->..6S fluorescence. The ratio of 6P/sub 1/2/ to 6P/sub 3/2/ fluorescence contains information on the collisional mixing that takes place in the 5D levels but also includes a significant contribution from mixing in the 6P levels. This latter contribution could effectively be subtracted out using the results of a second experiment in which a tunable cw diode laser was used to pump the 6P/sub 3/2/ state, and the same fluorescence ratio monitored. The 5D mixing cross section we obtain, 70 A/sup 2/, is significantly larger than previous indirect determinations.

  10. Accumulation and distribution of 137Cs in tropical plants

    NASA Astrophysics Data System (ADS)

    Anjos, R. M.; Carvalho, C.; Mosquera, B.; Veiga, R.; Sanches, N.; Bastos, J.; Macario, K.

    2007-02-01

    The accumulation and distribution of 40K and 137Cs in several tropical plant species were studied through measurements of gamma-ray spectra, focusing on establishing the suitability of using radiocesium to trace the plant uptake of nutrients such as potassium.

  11. Fallout 137Cs in reindeer herders in Arctic Norway.

    PubMed

    Skuterud, Lavrans; Thørring, Håvard

    2015-03-03

    Reindeer herders in the Arctic were among the most heavily exposed populations to the global fallout from nuclear weapons testing in the 1950s and 1960s, due to high transfer of radionuclides in the lichens-reindeer-human food chain. Annual studies of (137)Cs in reindeer herders in Kautokeino, Norway, were initiated in 1965 to monitor radiation doses and follow environmental (137)Cs behavior. The (137)Cs concentrations declined from the peak in 1965 with effective half-times of 6-8 years, only interrupted by a temporary doubling in levels from 1986 to 1987 due to the Chernobyl fallout. During the period of 1950-2010 an average herder received an integrated effective dose from incorporated (137)Cs of about 18 mSv. This dose represents an insignificant increase in the risk for developing cancer. Health studies even show a significantly lower cancer incidence among Sámis and reindeer herders in northern Norway compared to other populations in the same area.

  12. A CS1 Pedagogical Approach to Parallel Thinking

    ERIC Educational Resources Information Center

    Rague, Brian William

    2010-01-01

    Almost all collegiate programs in Computer Science offer an introductory course in programming primarily devoted to communicating the foundational principles of software design and development. The ACM designates this introduction to computer programming course for first-year students as CS1, during which methodologies for solving problems within…

  13. Measurements of Cs absorption and retention in man

    SciTech Connect

    Henrichs, H.; Paretzke, H.G.; Voigt, G.; Berg, D. )

    1989-10-01

    One of the consequences of the Chernobyl reactor accident in 1986 was a comparatively high contamination of foodstuffs in Southern Federal Republic of Germany. In order to test radioecological models predicting the radiological consequences of such accidents, several thousand measurements were performed to determine Cs body burdens in members of the public. For the interpretation of these data and as a contribution to the improvement of the available database on the biokinetics of Cs isotopes in humans, we followed a small group of volunteers after their consumption of highly contaminated venison. Intakes, excretion rates and total body activities were measured during a period of more than 200 d. The data obtained were evaluated in terms of a compartment model to derive gastrointestinal uptakes, biological half-lives and dose conversion factors. The resulting uptake factors range from 65-90%, the half-lives of the long-term retention from 45 to 200 d. The majority of the resulting dose conversion factors lie below the values recommended by the ICRP, showing that the ICRP model is a reasonable and safe description of the Cs biokinetics in our study group, while the great variability of the results shows that it is not an accurate representation of the individual Cs retention.

  14. Isoform Specificity of Protein Kinase Cs in Synaptic Plasticity

    ERIC Educational Resources Information Center

    Sossin, Wayne S.

    2007-01-01

    Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used "Aplysia" as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented…

  15. Changing CS Features Alters Evaluative Responses in Evaluative Conditioning

    ERIC Educational Resources Information Center

    Unkelbach, Christian; Stahl, Christoph; Forderer, Sabine

    2012-01-01

    Evaluative conditioning (EC) refers to changes in people's evaluative responses toward initially neutral stimuli (CSs) by mere spatial and temporal contiguity with other positive or negative stimuli (USs). We investigate whether changing CS features from conditioning to evaluation also changes people's evaluative response toward these CSs. We used…

  16. Plutonium and Cs-137 in autopsy tissues in Great Britain.

    PubMed

    Popplewell, D S; Ham, G J; Dodd, N J; Shuttler, S D

    1988-03-01

    Tissues removed at autopsy from members of the general public contain significantly higher concentrations of plutonium and 137Cs in west Cumbrians than in people from three other regions of Great Britain. Several autopsy cases from Cumbria showed unusually high values of plutonium. Subsequently it was found that the subjects had been former employees of British Nuclear Fuels.

  17. Phase transitions in CsCl-type intemetallic compounds

    SciTech Connect

    Chen, Bai-Hao.

    1990-06-13

    Phase transitions in binary intermetallic compounds with the CsCl-type structure have been studied by a novel combination of high-temperature powder X-ray diffraction and Rietveld Landau theory of symmetry and phase transitions and the Gibbs-Knonvalow equation have been applied to understand the phase behavior of some systems with the CsCl-type structure. The nonstoichiometric compounds RhTi, NbRu, and RuTa with the CsCl-type structure at high temperature undergo thermal symmetry breaking transitions upon cooling. The transitions are first to the AuCu-type tetragonal, and taken to the orthorhombic NbRu-type with Cmmm symmetry. Alloys Ir-Ti which are titanium rich have the CsCl-type structure. This cubic structure transforms to the AuCu-type tetragonal structure and then to the NbRu-type structure with increasing atomic percent iridium. New partial phase diagrams for the composition ranges in near equiatomic MnAu, NbRu, and RuTa are also presented.

  18. Developing a Technology Enhanced CS0 Course for Engineering Students

    ERIC Educational Resources Information Center

    Lokkila, Erno; Kaila, Erkki; Lindén, Rolf; Laakso, Mikko-Jussi; Sutinen, Erkki

    2016-01-01

    The CS0 course in the curriculum typically has the role of introducing students into basic concepts and terminology of computer science. Hence, it is used to form a base on which the subsequent programming courses can build on. However, much of the effort to build better methodologies for courses is spent on introductory programming courses…

  19. Teaching a CS Introductory Course: An Active Approach

    ERIC Educational Resources Information Center

    Moura, Isabel C.; van Hattum-Janssen, Natascha

    2011-01-01

    Computer Science (CS) introductory courses that are offered by the Department of Information Systems at the University of Minho (UM), Portugal, seem to abound in non-motivated students. They are characterized by high failure and withdrawal rates and use mainly deductive teaching approaches. Deductive instruction begins with theories and progresses…

  20. ¹³⁴Cs and ¹³⁷Cs radioactivity in soil and moss samples of Jeju Island after Fukushima nuclear reactor accident.

    PubMed

    Park, Kyung-Ho; Kang, Tae-Woo; Kim, Won-Jik; Park, Jae Woo

    2013-11-01

    Specific activities of (134)Cs and (137)Cs in surface soil and moss samples were investigated at 12 locations of Jeju Island, Korea. Specific activities of (134)Cs and (137)Cs in the surface soil vary from less than MDA to 17 Bq/kg and from 12 Bq/kg to 109 Bq/kg, respectively. Specific activities of (134)Cs and (137)Cs in moss samples lie in the range 6 Bq/kg-39 Bq/kg and 15 Bq/kg-41 Bq/kg, respectively. The activity ratios (134)Cs/(137)Cs in the soil samples are much less than the reference value of about 1.0, but they are close to 1.0 in the moss samples. Average amount of (137)Cs added to the surface soil after the Fukushima accident is estimated to be 7.8 ± 1.7 Bq/kg. The depth profile of (137)Cs specific activity has a lognormal shape with a peak between 5 cm and 7.5 cm below the ground. For the cored soil sample, (134)Cs was detected up to 3 cm below the ground.

  1. 137 Cs Activities and 135 Cs/ 137 Cs Isotopic Ratios from Soils at Idaho National Laboratory: A Case Study for Contaminant Source Attribution in the Vicinity of Nuclear Facilities

    SciTech Connect

    Snow, Mathew S.; Snyder, Darin C.; Clark, Sue B.; Kelley, Morgan; Delmore, James E.

    2015-03-03

    Radiometric and mass spectrometric analyses of Cs contamination in the environment can reveal the location of Cs emission sources, release mechanisms, modes of transport, prediction of future contamination migration, and attribution of contamination to specific generator(s) and/or process(es). The Subsurface Disposal Area (SDA) at Idaho National Laboratory (INL) represents a complicated case study for demonstrating the current capabilities and limitations to environmental Cs analyses. 137Cs distribution patterns, 135Cs/137Cs isotope ratios, known Cs chemistry at this site, and historical records enable narrowing the list of possible emission sources and release events to a single source and event, with the SDA identified as the emission source and flood transport of material from within Pit 9 and Trench 48 as the primary release event. These data combined allow refining the possible number of waste generators from dozens to a single generator, with INL on-site research and reactor programs identified as the most likely waste generator. A discussion on the ultimate limitations to the information that 135Cs/137Cs ratios alone can provide is presented and includes (1) uncertainties in the exact date of the fission event and (2) possibility of mixing between different Cs source terms (including nuclear weapons fallout and a source of interest).

  2. Channel nut tool

    DOEpatents

    Olson, Marvin

    2016-01-12

    A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.

  3. Prescription dose in permanent {sup 131}Cs seed prostate implants

    SciTech Connect

    Yue Ning; Heron, Dwight E.; Komanduri, Krishna; Huq, M. Saiful

    2005-08-15

    Recently, {sup 131}Cs seeds have been introduced for prostate permanent seed implants. This type of seed has a relatively short half-life of 9.7 days and has its most prominent emitted photon energy peaks in the 29-34 keV region. Traditionally, 145 and 125 Gy have been prescribed for {sup 125}I and {sup 103}Pd seed prostate implants, respectively. Since both the half-life and dosimetry characteristics of {sup 131}Cs seed are quite different from those of {sup 125}I and {sup 103}Pd, the appropriate prescription dose for {sup 131}Cs seed prostate implant may well be different. This study was designed to use a linear quadratic radiobiological model to determine an appropriate dose prescription scheme for permanent {sup 131}Cs seed prostate implants. In this model, prostate edema was taken into consideration. Calculations were also performed for tumors of different doubling times and for other related radiobiological parameters of different values. As expected, the derived prescription dose values were dependent on type of tumors and types of edema. However, for prostate cancers in which tumor cells are relatively slow growing and are reported to have a mean potential doubling time of around 40 days, the appropriate prescription dose for permanent {sup 131}Cs seed prostate implants was determined to be: 127{sub -12}{sup +5}Gy if the experiences of {sup 125}I seed implants were followed and 121{sub -3}{sup +0}Gy if the experiences of {sup 103}Pd seed implants were followed.

  4. GALAXY EVOLUTION EXPLORER OBSERVATIONS OF CS AND OH EMISSION IN COMET 9P/TEMPEL 1 DURING DEEP IMPACT

    SciTech Connect

    Feldman, Paul D.; McCandliss, Stephan R.; Morgenthaler, Jeffrey P.; Lisse, Carey M.; Weaver, Harold A.; A'Hearn, Michael F.

    2010-03-10

    Galaxy Evolution Explorer (GALEX) observations of comet 9P/Tempel 1 using the near-ultraviolet (NUV) objective grism were made before, during and after the Deep Impact event that occurred on 2005 July 4 at 05:52:03 UT when a 370 kg NASA spacecraft was maneuvered into the path of the comet. The NUV channel provides usable spectral information in a bandpass covering 2000-3400 A with a point source spectral resolving power of R {approx} 100. The primary spectral features in this range include solar continuum scattered from cometary dust and emissions from OH and CS molecular bands centered near 3085 and 2575 A, respectively. In particular, we report the only cometary CS emission detected during this event. The observations allow the evolution of these spectral features to be tracked over the period of the encounter. In general, the NUV emissions observed from Tempel 1 are much fainter than those that have been observed by GALEX from other comets. However, it is possible to derive production rates for the parent molecules of the species detected by GALEX in Tempel 1 and to determine the number of these molecules liberated by the impact. The derived quiescent production rates are Q(H{sub 2}O) = 6.4 x 10{sup 27} molecules s{sup -1} and Q(CS{sub 2}) = 6.7 x 10{sup 24} molecules s{sup -1}, while the impact produced an additional 1.6 x 10{sup 32} H{sub 2}O molecules and 1.3 x 10{sup 29} CS{sub 2} molecules, a similar ratio as in quiescent outgassing.

  5. The fragmentation dynamics of small Cs(CsI)n+ cluster ions under low-energy multiple collision conditions

    NASA Astrophysics Data System (ADS)

    Herzschuh, Rainer; Drewello, Thomas

    2004-04-01

    The collision-induced dissociations of small caesium iodide cluster ions of the type Cs(CsI)n+ where n=3-7, have been investigated under low-energy multiple collision conditions. The collisions were performed in the rf-only quadrupole of a BEqQ hybrid mass spectrometer. Breakdown graphs of selected parent ions were obtained by varying the laboratory collision energy in the range of 0-400 eV. The fragmentation dynamic established under these conditions provides a link between the well-known decay behaviour occurring unimolecularly and the dissociations following high energy (keV) collisional activation. Of particular interest is the observation that the energy-dependent dissociation pattern supplies support for the occurrence of one-step fission reactions, featuring the evaporation of presumably intact (CsI)n neutrals as opposed to a sequential decay via nCsI losses. The breakdown graphs thus provide a valuable tool to enhance insight into the fragmentation mechanism of these clusters.

  6. Microfluidic channel fabrication method

    DOEpatents

    Arnold, Don W.; Schoeniger, Joseph S.; Cardinale, Gregory F.

    2001-01-01

    A new channel structure for microfluidic systems and process for fabricating this structure. In contrast to the conventional practice of fabricating fluid channels as trenches or grooves in a substrate, fluid channels are fabricated as thin walled raised structures on a substrate. Microfluidic devices produced in accordance with the invention are a hybrid assembly generally consisting of three layers: 1) a substrate that can or cannot be an electrical insulator; 2) a middle layer, that is an electrically conducting material and preferably silicon, forms the channel walls whose height defines the channel height, joined to and extending from the substrate; and 3) a top layer, joined to the top of the channels, that forms a cover for the channels. The channels can be defined by photolithographic techniques and are produced by etching away the material around the channel walls.

  7. Mechanosensitivity of an epithelial Na+ channel in planar lipid bilayers: release from Ca2+ block.

    PubMed Central

    Ismailov, I I; Berdiev, B K; Shlyonsky, V G; Benos, D J

    1997-01-01

    A family of novel epithelial Na+ channels (ENaCs) have recently been cloned from several different tissues. Three homologous subunits (alpha, beta, gamma-ENaCs) from the core conductive unit of Na(+)-selective, amiloride-sensitive channels that are found in epithelia. We here report the results of a study assessing the regulation of alpha,beta,gamma-rENaC by Ca2+ in planar lipid bilayers. Buffering of the bilayer bathing solutions to [Ca2+] < 1 nM increased single-channel open probability by fivefold. Further investigation of this phenomenon revealed that Ca2+ ions produced a voltage-dependent block, affecting open probability but not the unitary conductance of ENaC. Imposing a hydrostatic pressure gradient across bilayers containing alpha,beta,gamma-rENaC markedly reduced the sensitivity of these channels to inhibition by [Ca2+]. Conversely, in the nominal absence of Ca2+, the channels lost their sensitivity to mechanical stimulation. These results suggest that the previously observed mechanical activation of ENaCs reflects a release of the channels from block by Ca2+. Images FIGURE 3 FIGURE 4 PMID:9138565

  8. Channel Properties of Nax Expressed in Neurons

    PubMed Central

    Matsumoto, Masahito; Hiyama, Takeshi Y.; Kuboyama, Kazuya; Suzuki, Ryoko; Fujikawa, Akihiro; Noda, Masaharu

    2015-01-01

    Nax is a sodium-concentration ([Na+])-sensitive Na channel with a gating threshold of ~150 mM for extracellular [Na+] ([Na+]o) in vitro. We previously reported that Nax was preferentially expressed in the glial cells of sensory circumventricular organs including the subfornical organ, and was involved in [Na+] sensing for the control of salt-intake behavior. Although Nax was also suggested to be expressed in the neurons of some brain regions including the amygdala and cerebral cortex, the channel properties of Nax have not yet been adequately characterized in neurons. We herein verified that Nax was expressed in neurons in the lateral amygdala of mice using an antibody that was newly generated against mouse Nax. To investigate the channel properties of Nax expressed in neurons, we established an inducible cell line of Nax using the mouse neuroblastoma cell line, Neuro-2a, which is endogenously devoid of the expression of Nax. Functional analyses of this cell line revealed that the [Na+]-sensitivity of Nax in neuronal cells was similar to that expressed in glial cells. The cation selectivity sequence of the Nax channel in cations was revealed to be Na+ ≈ Li+ > Rb+ > Cs+ for the first time. Furthermore, we demonstrated that Nax bound to postsynaptic density protein 95 (PSD95) through its PSD95/Disc-large/ZO-1 (PDZ)-binding motif at the C-terminus in neurons. The interaction between Nax and PSD95 may be involved in promoting the surface expression of Nax channels because the depletion of endogenous PSD95 resulted in a decrease in Nax at the plasma membrane. These results indicated, for the first time, that Nax functions as a [Na+]-sensitive Na channel in neurons as well as in glial cells. PMID:25961826

  9. Vaporization Mechanisms of Water-Insoluble Cs in Ash During Thermal Treatment with Calcium Chloride Addition.

    PubMed

    Jiao, Facun; Iwata, Norie; Kinoshita, Norikazu; Kawaguchi, Masato; Asada, Motoyuki; Honda, Maki; Sueki, Keisuke; Ninomiya, Yoshihiko

    2016-12-20

    The vaporization mechanisms of water-insoluble Cs in raw ash and Cs-doped ash during thermal treatment with CaCl2 addition was systematically examined in a lab-scale electrical heating furnace over a temperature range of 500-1500 °C. The results indicate that the water-insoluble Cs in the ash was associated with aluminosilicate as pollucite. Addition of 10% CaCl2 caused the maximum vaporization ratio of Cs in the raw ash to reach approximately 80% at temperatures higher than 1200 °C, whereas approximately 95% of Cs was vaporized at temperatures higher than 1300 °C when 30% CaCl2 was added. The formation of an intermediate compound, CsCaCl3, through the chemical reaction of Cs with CaCl2 was responsible for Cs vaporization by means of the subsequent decomposition of this intermediate upon the increase in temperature. The indirect chlorination of Cs by the gaseous chlorine released from the decomposition of CaCl2 was insignificant. A high CaCl2 content in the resulting annealed products with 30% CaCl2 addition delayed the decomposition of CsCaCl3 and thus lowered the Cs vaporization ratio compared to that with 10% CaCl2 addition at 900-1250 °C. Thermal treatment with CaCl2 addition is a proposed method to remove Cs from Cs-contaminated incineration ash.

  10. G-protein-coupled inward rectifier potassium channels involved in corticostriatal presynaptic modulation.

    PubMed

    Meneses, David; Mateos, Verónica; Islas, Gustavo; Barral, Jaime

    2015-09-01

    Presynaptic modulation has been associated mainly with calcium channels but recent data suggests that inward rectifier potassium channels (K(IR)) also play a role. In this work we set to characterize the role of presynaptic K(IR) channels in corticostriatal synaptic transmission. We elicited synaptic potentials in striatum by stimulating cortical areas and then determined the synaptic responses of corticostriatal synapsis by using paired pulse ratio (PPR) in the presence and absence of several potassium channel blockers. Unspecific potassium channels blockers Ba(2+) and Cs(+) reduced the PPR, suggesting that these channels are presynaptically located. Further pharmacological characterization showed that application of tertiapin-Q, a specific K(IR)3 channel family blocker, also induced a reduction of PPR, suggesting that K(IR)3 channels are present at corticostriatal terminals. In contrast, exposure to Lq2, a specific K(IR)1.1 inward rectifier potassium channel, did not induce any change in PPR suggesting the absence of these channels in the presynaptic corticostriatal terminals. Our results indicate that K(IR)3 channels are functionally expressed at the corticostriatal synapses, since blockage of these channels result in PPR decrease. Our results also help to explain how synaptic activity may become sensitive to extracellular signals mediated by G-protein coupled receptors. A vast repertoire of receptors may influence neurotransmitter release in an indirect manner through regulation of K(IR)3 channels.

  11. Cholesterol and Ion Channels

    PubMed Central

    Levitan, Irena; Fang, Yun; Rosenhouse-Dantsker, Avia; Romanenko, Victor

    2010-01-01

    A variety of ion channels, including members of all major ion channel families, have been shown to be regulated by changes in the level of membrane cholesterol and partition into cholesterol-rich membrane domains. In general, several types of cholesterol effects have been described. The most common effect is suppression of channel activity by an increase in membrane cholesterol, an effect that was described for several types of inwardly-rectifying K+ channels, voltage-gated K+ channels, Ca+2 sensitive K+ channels, voltage-gated Na+ channels, N-type voltage-gated Ca+2 channels and volume-regulated anion channels. In contrast, several types of ion channels, such as epithelial amiloride-sensitive Na+ channels and Transient Receptor Potential channels, as well as some of the types of inwardly-rectifying and voltage-gated K+ channels were shown to be inhibited by cholesterol depletion. Cholesterol was also shown to alter the kinetic properties and current-voltage dependence of several voltage-gated channels. Finally, maintaining membrane cholesterol level is required for coupling ion channels to signalling cascades. In terms of the mechanisms, three general mechanisms have been proposed: (i) specific interactions between cholesterol and the channel protein, (ii) changes in the physical properties of the membrane bilayer and (iii) maintaining the scaffolds for protein-protein interactions. The goal of this review is to describe systematically the role of cholesterol in regulation of the major types of ion channels and to discuss these effects in the context of the models proposed. PMID:20213557

  12. Fading channel simulator

    SciTech Connect

    Argo, P.E.; Fitzgerald, T.J.

    1991-12-31

    This invention relates to high frequency (HF) radio signal propagation through fading channels and, more particularly, to simulation of fading channels in order to characterize HF radio system performance in transmitting and receiving signals through such fading channels. Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  13. Phytoremediation of stable Cs from solutions by Calendula alata, Amaranthus chlorostachys and Chenopodium album.

    PubMed

    Moogouei, Roxana; Borghei, Mehdi; Arjmandi, Reza

    2011-10-01

    Uptake rate of (133)Cs, at three different concentrations of CsCl, by Calendula alata, Amaranthus chlorostachys and Chenopodium album plants grown outdoors was studied. These plants grow abundantly in semi-arid regions and their varieties exist in many parts of the world. When exposed to lowest Cs concentration 68 percent Cs was remediated by Chenopodium album.(133)Cs accumulation in shoots of Amaranthus chlorostachys reached its highest value of 2146.2 mg kg(-1) at a (133)Cs supply level of 3.95 mg l(-1) of feed solution. The highest concentration ratio value was 4.89 for Amaranthus chlorostachys, whereas for the other tests it ranged from 0.74 to 3.33. Furthermore uptake of (133)Cs by all three species increased with increasing metal concentrations. The results also indicated that hydroponically grown Calendula alata, Amaranthus chlorostachys and Chenopodium album could be used as potential candidate plants for phytoremediation of solutions contaminated with Cs.

  14. A magnesium-carboxylate framework showing luminescent sensing for CS{sub 2} and nitroaromatic compounds

    SciTech Connect

    Wu, Zhao-Feng; Tan, Bin; Feng, Mei-Ling; Du, Cheng-Feng; Huang, Xiao-Ying

    2015-03-15

    A magnesium metal-organic framework compound, namely [NH{sub 2}(CH{sub 3}){sub 2}][Mg{sub 3}(NDC){sub 2.5}(HCO{sub 2}){sub 2}(DMF){sub 0.75}(H{sub 2}O){sub 0.25}]·1.25DMF·0.75H{sub 2}O (1) (H{sub 2}NDC=1,4-naphthalene dicarboxylic acid, DMF=N,N′-dimethylformamide), has been synthesized in solvothermal conditions and structurally characterized. It features a three-dimensionally anionic framework with aligned channels parallel to the b-axis. Luminescent studies indicated that it showed significant luminescence quenching for carbon disulfide (CS{sub 2}) and nitrobenzene after being activated, at a content of only 3.0 and 0.1 vol% in DMF, respectively. In addition, the activated sample showed sensitive luminescence quenching for 1,3,5-trinitrophenol with a low concentration of 5×10{sup −5} mol/L. - Graphical abstract: Presented is a microporous 3D Mg-MOF, namely, [NH{sub 2}(CH{sub 3}){sub 2}][Mg{sub 3}(NDC){sub 2.5}(HCO{sub 2}){sub 2}(DMF){sub 0.75}(H{sub 2}O){sub 0.25}]·1.25DMF·0.75H{sub 2}O (1) (H{sub 2}NDC=1,4-naphthalene dicarboxylic acid) showing significant luminescence quenching for carbon disulfide and nitrobenzene. - Highlights: • A microporous 3D metal-organic framework based on Mg. • The compound shows significant luminescence quenching for CS{sub 2} and nitrobenzene after activated. • The compound shows sensitive luminescence quenching for 1,3,5-trinitrophenol with a low concentration of 5×10{sup −5} mol/L.

  15. Pretreatment/Radionuclide Separations of Cs/Tc from Supernates

    SciTech Connect

    Thompson, M.C.

    1998-09-01

    Significant improvements have been made in ion exchange and solvent extraction materials and processes available for separation of the radionuclides cesium and technetium from both acid and alkaline waste solutions. New ion exchange materials and solvent extraction reagents are more selective for Cs over sodium and potassium than previous materials. The higher selectivity gives higher Cs capacity and improved separation processes. Technetium removal has been improved by new ion exchange resins, which have either improved capacity or easier elution. Several different crown ethers have been shown to extract pertechnetate ion selectively over other anions. Organic complexants in some waste solutions reduce pertechnetate ion and stabilize the reduced species. Selective oxidation allows conversion to pertechnetate without oxidation of the organic complexants.

  16. Flash radiography studies with microcolumnar CsI

    NASA Astrophysics Data System (ADS)

    Smalley, Duane; Lutz, Steve; Baker, Stuart A.; Morgan, Dane V.; Brown, Kristina K.; Corredor, Andrew; Castaneda, Jesus J.; Phillips, David H.; Smith, Andrew S.

    2016-09-01

    There is growing interest in using low-energy flash x-ray sources in radiographic applications to provide high-contrast images of low-density objects. Due to the low-energy nature of the detected photons, thin bright scintillators are desired. In order to pursue an optimum radiographic system, experimental studies have been performed of the static imaging properties of thin microcolumnar CsI using a Platts x-ray source. The Platts source is a nominally 300 keV endpoint rod pinch diode x-ray source with a 35 ns pulse time. The source was used to measure the imaging properties of microcolumnar CsI with various thicknesses and backings. The experimental setup was modeled in GEANT4, and the images were simulated to estimate system performance. Taking into account the source photon production, radiation transport, and system optical performance, an accurate assessment of the detection system can be deduced.

  17. Absorption spectra of shocked liquid CS/sub 2/

    SciTech Connect

    Dallman, J.C.

    1985-01-01

    The importance of shock initiation of high explosives (HE) was understood as early as 1863 when Alfred Nobel introduced the detonator as a means of detonating nitroglycerine. The critical pressure rise times required to achieve shock initiation and steady propagation of detonation are determined by the chemical and mechanical properties of an explosive. Although progress has been made in the understanding of the effects of mechanical properties, the detailed effects of high pressures on chemical reaction mechanisms are still only poorly understood. This paper reports the results of two experiments using CS/sub 2/, which is known to undergo electronic state transitions when shocked to high pressures. The goal of these experiments was to examine the known shock-generated expansion of CS/sub 2/ absorption bands while generating the shocks with a flyer plate system driven by high explosives.

  18. Chemistry, Biochemistry, Pharmacology, and Toxicology of CS and Synthesis of Its Novel Analogs

    DTIC Science & Technology

    2007-10-01

    fluorine and fluorine -containing groups have been synthesized using microwave irradiation and novel catalysts. The structures and physical properties and...safe, and biologically more potent CS analogs. To this end, the synthesis of a novel group of CS-agents incorporating fluorine and fluorine ...CONCLUSION The new CS-analogs are expected to be more potent than CS. This observation is based on the following considerations. First, fluorine is

  19. Assessment of CS (o-Chlorobenzylidene Malononitrile) Environmental Toxicity at Eglin AFB, Florida

    DTIC Science & Technology

    1986-08-01

    duckweed . The growth of two of the three duckweed species tested was reduced at a CS concentration of 1 ppm, while all three had reduced growth at 5...and that the soil burden would tnpelld -on the deposition rate from training exercises. Management of CS use should include rotating exercises...degradation rate of CS on Eglin soil. In addition, it contains recommendations concerning the use of CS and addresses the issue of environmental

  20. Etiology of distinct membrane excitability in pre- and posthearing auditory neurons relies on activity of Cl− channel TMEM16A

    PubMed Central

    Zhang, Xiao-Dong; Lee, Jeong-Han; Lv, Ping; Chen, Wei Chun; Kim, Hyo Jeong; Wei, Dongguang; Wang, Wenying; Sihn, Choong-Ryoul; Doyle, Karen Jo; Rock, Jason R.; Chiamvimonvat, Nipavan; Yamoah, Ebenezer N.

    2015-01-01

    The developmental rehearsal for the debut of hearing is marked by massive changes in the membrane properties of hair cells (HCs) and spiral ganglion neurons (SGNs). Whereas the underlying mechanisms for the developing HC transition to mature stage are understood in detail, the maturation of SGNs from hyperexcitable prehearing to quiescent posthearing neurons with broad dynamic range is unknown. Here, we demonstrated using pharmacological approaches, caged-Ca2+ photolysis, and gramicidin patch recordings that the prehearing SGN uses Ca2+-activated Cl− conductance to depolarize the resting membrane potential and to prime the neurons in a hyperexcitable state. Immunostaining of the cochlea preparation revealed the identity and expression of the Ca2+-activated Cl− channel transmembrane member 16A (TMEM16A) in SGNs. Moreover, null deletion of TMEM16A reduced the Ca2+-activated Cl− currents and action potential firing in SGNs. To determine whether Cl− ions and TMEM16A are involved in the transition between pre- and posthearing features of SGNs we measured the intracellular Cl− concentration [Cl−]i in SGNs. Surprisingly, [Cl−]i in SGNs from prehearing mice was ∼90 mM, which was significantly higher than posthearing neurons, ∼20 mM, demonstrating discernible altered roles of Cl− channels in the developing neuron. The switch in [Cl−]i stems from delayed expression of the development of intracellular Cl− regulating mechanisms. Because the Cl− channel is the only active ion-selective conductance with a reversal potential that lies within the dynamic range of SGN action potentials, developmental alteration of [Cl−]i, and hence the equilibrium potential for Cl− (ECl), transforms pre- to posthearing phenotype. PMID:25675481

  1. High gradient rf gun studies of CsBr photocathodes

    DOE PAGES

    Vecchione, Theodore; Maldonado, Juan R.; Gierman, Stephen; ...

    2015-04-03

    CsBr photocathodes have 10 times higher quantum efficiency with only 3 times larger intrinsic transverse emittance than copper. They are robust and can withstand 80 MV/m fields without breaking down or emitting dark current. They can operate in 2×10⁻⁹ torr vacuum and survive exposure to air. They are well suited for generating high pulse charge in rf guns without a photocathode transfer system.

  2. Predictors of Urinary Morbidity in Cs-131 Prostate Brachytherapy Implants

    SciTech Connect

    Smith, Ryan P.; Jones, Heather A.; Beriwal, Sushil; Gokhale, Abhay; Benoit, Ronald

    2011-11-01

    Purpose: Cesium-131 is a newer radioisotope being used in prostate brachytherapy (PB). This study was conducted to determine the predictors of urinary morbidity with Cs-131 PB. Methods and Materials: A cohort of 159 patients underwent PB with Cs-131 at our institution and were followed by using Expanded Prostate Cancer Index Composite (EPIC) surveys to determine urinary morbidity over time. EPIC scores were obtained preoperatively and postoperatively at 2 and 4 weeks, and 3 and 6 months. Different factors were evaluated to determine their individual effect on urinary morbidity, including patient characteristics, disease characteristics, treatment, and dosimetry. Multivariate analysis of covariance was carried out to identify baseline determinants affecting urinary morbidity. Factors contributing to the need for postoperative catheterization were also studied and reported. Results: At 2 weeks, patient age, dose to 90% of the organ (D90), bladder neck maximum dose (D{sub max}), and external beam radiation therapy (EBRT) predicted for worse function. At 4 weeks, age and EBRT continued to predict for worse function. At the 3-month mark, better preoperative urinary function, preoperative alpha blockers, bladder neck D{sub max}, and EBRT predicted for worse urinary morbidity. At 6 months, better preoperative urinary function, preoperative alpha blockers, bladder neck D{sub max}, and EBRT were predictive of increased urinary problems. High bladder neck D{sub max} and poor preoperative urinary function predicted for the need for catheterization. Conclusions: The use of EBRT plus Cs-131 PB predicts for worse urinary toxicity at all time points studied. Patients should be cautioned about this. Age was a consistent predictor of worsened morbidity immediately following Cs-131 PB, while bladder D{sub max} was the only consistent dosimetric predictor. Paradoxically, patients with better preoperative urinary function had worse urinary morbidity at 3 and 6 months, consistent with

  3. Characterisation of CS Aerosol used in Mask Test Facilities

    DTIC Science & Technology

    2010-04-01

    riot control and military forces for training and combat. It produces transient discomfort and eye closure to render the recipient temporarily...health (IDLH) value 2 mg/m3 [4], [7]. Under normal conditions CS is a white solid with a pepper odour , low vapour pressure (ə mm of Hg), molecular...2.3 Laboratory studies Preliminary assessment of the measuring system and sampling procedures were conducted in the laboratory under controlled

  4. Duration Test Report for the Viryd CS8 Wind Turbine

    SciTech Connect

    Roadman, J.; Murphy, M.; van Dam, J.

    2013-06-01

    This report summarizes the results of a duration noise test that the National Renewable Energy Laboratory (NREL) conducted on the Viryd CS8 wind turbine. This test was conducted in accordance with Clause 9.4 of the International Electrotechnical Commission's (IEC) standard, Wind turbines - Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed. 2.0:2006-03. NREL researchers evaluated the turbine based on structural integrity and material degradation, quality of environmental protection, and dynamic behavior.

  5. Decontamination Efficiencies of Pot-Type Water Purifiers for 131I, 134Cs and 137Cs in Rainwater Contaminated during Fukushima Daiichi Nuclear Disaster

    PubMed Central

    Higaki, Shogo; Hirota, Masahiro

    2012-01-01

    Rainwater was contaminated by a large release of radionuclides into the environment during the Fukushima Daiichi nuclear disaster. It became a matter of concern for Japan when several water purification plants detected 131I contamination in the drinking water. In the present study, the decontamination efficiency of two easily obtainable commercial water purifiers were examined for rainwater contaminated with 131I, 134Cs and 137Cs. The water purifiers removed 94.2–97.8% of the 131I and 84.2–91.5% of the 134Cs and 137Cs after one filtration. Seven filtrations removed 98.2–99.6% of the 131I and over 98.0% of the 134Cs and 137Cs. From a practical perspective, over the fourth filtrations were not needed because of no significant improvements after the third filtration. PMID:22615935

  6. Elastic scattering of electrons from Rb, Cs and Fr atoms

    NASA Astrophysics Data System (ADS)

    Gangwar, R. K.; Tripathi, A. N.; Sharma, L.; Srivastava, R.

    2010-04-01

    Differential, integrated elastic, momentum-transfer and total cross sections as well as differential S, T and U spin parameters for scattering of electrons from rubidium, caesium and francium atoms in the incident energy range up to 300 eV are calculated using a relativistic Dirac equation. The projectile electron-target atom interaction is represented by both real and complex parameter-free optical potentials for obtaining the solution of a Dirac equation for scattered electrons. The Dirac-Fock wavefunctions have been used to represent the Rb, Cs and Fr target atoms. The results of differential cross sections and spin asymmetry parameter S for e-Rb and e-Cs have been compared with the available experimental and theoretical results. Detailed results are reported for the elastic scattering of electrons from the ground states of a francium atom for the first time in the wide range of incident electron energies. The results of electron-Fr elastic scattering show the similar features to those obtained in the case of e-Rb and e-Cs elastic scattering.

  7. ARIES-CS Magnet Conductor and Structure Evaluation

    SciTech Connect

    Wang, X. R.; Raffary, A. R.; Bromberg, L.; Schultz, J. H.; Ku, L. P.; Lyon, J. F.; Mulang, L.; Waganer, L.; El-GuebalyUniv. Wisco, L.; MartinUniv Wiscons, C.

    2008-10-01

    The ARIES-CS study focusing on the conceptual design and assessment of a compact stellarator power plant identified the important advantages and key issues associated with such a design. The coil configuration and structural support approach represent key design challenges, with the final design and material choices affected by a number of material and geometry constraints. This paper describes the design configuration and analysis and material choices for the ARIES-CS magnets and its structure. To meet aggressive cost and assembly/maintenance goals, the magnets are designed as lifetime components. Due to the very complex geometry, one of the goals of the study was to provide a robust operational design. This decision has significant implications on cost and manufacturing requirements. Concepts with both conventional and advanced superconductors have been explored. The coil structure design approach adopted is to wind all six modular coils of one field period in grooves in one monolithic coil structural shell (one per field period). The coil structural shells are then bolted together to form a strong structural shell to react the net radial forces. Extensive engineering analyses of the coil system have been performed using ANSYS shell and solid modeling. These include electromagnetic (EM) analyses to calculate the magnetic fields and EM forces and structural analyses to evaluate the structural responses and optimize the coil support system, which has a considerable impact on the cost of the ARIES-CS power plant.

  8. Cs 728 nm Laser Spectroscopy and Faraday Atomic Filter

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-Zheng; Tao, Zhi-Ming; Jiang, Zhao-Jie; Chen, Jing-Biao

    2014-12-01

    We mainly present the 728 nm laser spectroscopy and Faraday atomic filter of Cs atoms with 650 MHz linewidth and 2.6% transmission based on an electrodeless discharge vapor lamp, compared with Rb 728 nm laser spectroscopy. Accidentally, this remarkably strong Cs 728 nm transition from the 6F7/2 state to the 5D5/2 state is only about 2.5 GHz away from the Rb 728 nm transition of the future potential four-level active optical clock, once laser cooled and trapped from the 7S1/2 state to the 5P1/2 state, as we proposed previously. A Faraday atomic filter stabilized 728 nm laser using a Cs electrodeless discharge vapor lamp with a power of 10mW will provide a frequency reference to evaluate the performance of the potential Rb four-level active optical clock at 728 nm with power less than 1 nW by 2.5 GHz heterodyne measurements.

  9. A (137)Cs erosion model with moving boundary.

    PubMed

    Yin, Chuan; Ji, Hongbing

    2015-12-01

    A novel quantitative model of the relationship between diffused concentration changes and erosion rates using assessment of soil losses was developed. It derived from the analysis of surface soil (137)Cs flux variation under persistent erosion effect and based on the principle of geochemistry kinetics moving boundary. The new moving boundary model improves the basic simplified transport model (Zhang et al., 2008), and mainly applies to uniform rainfall areas which show a long-time soil erosion. The simulation results for this kind of erosion show under a long-time soil erosion, the influence of (137)Cs concentration will decrease exponentially with increasing depth. Using the new model fit to the measured (137)Cs depth distribution data in Zunyi site, Guizhou Province, China which has typical uniform rainfall provided a good fit with R(2) = 0.92. To compare the soil erosion rates calculated by the simple transport model and the new model, we take the Kaixian reference profile as example. The soil losses estimated by the previous simplified transport model are greater than those estimated by the new moving boundary model, which is consistent with our expectations.

  10. A retrieved upper limit of CS in Neptune's atmosphere

    NASA Astrophysics Data System (ADS)

    Iino, T.; Mizuno, A.; Nagahama, T.; Hirota, A.; Nakajima, T.

    2012-12-01

    We present our new result of CS(J=7-6), CO(J=3-2) observations of Neptune's atmosphere carried out with 10-m ASTE sub-mm waveband telescope on August 2010. As a result, while CS line was not detected with 6.4 mK 1-sigma r.m.s. noise level, CO line was detected as 282 mK with 9.7 mK noise level in antenna temperature scale. All of the observations were carried out with 512 MHz bandwidth and 500 kHz resolution, the total integration time for CS and CO were 23 m 40 s and 11 m 00 s, respectively. Abundances have been obtained from the comparison between the intensity and the synthesis spectra modeled by plane parallel 1-D radiative transfer code assuming various mixing ratio of each gas. The retrieved upper limit of CS mixing ratio was 0.03 ppb throughout tropopause to stratosphere. CO mixing ratio have been retrieved 1.0 ppm with errors +0.3 and -0.2 ppm, and the result was consistent with previous observation [1]. The origin of abundant CO in Neptune's atmosphere has been long discussed since its mixing ratio is 30 - 500 times higher than the value of other gas giants [2][3][4]. Assuming that all of CO is produced by thermochemical equilibrium process in deep interior of Neptune, required O/H value in interior is 440 times higher than the solar value [5]. For this reason, it is claimed that the external CO supply source, such as the impact of comet or asteroid, is also the possible candidates of the origin of CO along with the internal supply source [6]. In this observation, we searched the remnant gas of cometary impact in Neptune's atmosphere. Along with CO and HCN, CS could be one of the possible candidate of the remnant gas of cometary impact since CS was largely produced after the impact of comet SL/9 on Jupiter while many other major sulfur compounds have not been detected. Actually, derived < 0.00003 [CS]/[CO] value from our observations is 1000 times more smaller than the value of Jupiter of 0.037 [7]. Our observation result shows the depletion of CS in

  11. Electron Impact Ionization Cross Sections in Rb and Cs.

    NASA Astrophysics Data System (ADS)

    Reddish, T. J.; Lukomski, M.; Sutton, S.; Kedzierski, W.; McConkey, J. W.; Bartschat, K.; Bartlett, P. L.; Stelbovics, A. T.; Bray, I.

    2006-05-01

    We present a new atom trapping technique for determining absolute, total ionisation cross sections (TICS) out of an excited atom. The novel feature of this method is in utilizing Doppler cooling of neutral atoms to determine ionisation cross sections. This fluorescence-monitoring experiment, which is a variant of the `trap loss' technique, has enabled us to obtain the experimental electron impact ionisation cross sections out of the Cs 6^2P3/2 excited state between 7 - 400 eV. New CCC, R-Matrix with Pseudo-States (RMPS), and Born approximation single ionisation cross sections (SICS) are also presented for both the ground and excited states of Cs and Rb, and compared with the available experimental data. The comparison of the results reveals the importance of the autoionisation and multiple ionisation contributions to the TICS. The autoionisation contribution appears to be substantial for ionisation out of the Cs 6^2P and Rb 5^2P excited states; ˜ 3-4 larger than the direct ionisation contribution predicted by CCC at ˜ 30-50 eV. This surprising result shows the importance of multi-electron processes in determining the ionisation cross sections of heavy alkali atoms.

  12. Matched field localization based on CS-MUSIC algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Shuangle; Tang, Ruichun; Peng, Linhui; Ji, Xiaopeng

    2016-04-01

    The problem caused by shortness or excessiveness of snapshots and by coherent sources in underwater acoustic positioning is considered. A matched field localization algorithm based on CS-MUSIC (Compressive Sensing Multiple Signal Classification) is proposed based on the sparse mathematical model of the underwater positioning. The signal matrix is calculated through the SVD (Singular Value Decomposition) of the observation matrix. The observation matrix in the sparse mathematical model is replaced by the signal matrix, and a new concise sparse mathematical model is obtained, which means not only the scale of the localization problem but also the noise level is reduced; then the new sparse mathematical model is solved by the CS-MUSIC algorithm which is a combination of CS (Compressive Sensing) method and MUSIC (Multiple Signal Classification) method. The algorithm proposed in this paper can overcome effectively the difficulties caused by correlated sources and shortness of snapshots, and it can also reduce the time complexity and noise level of the localization problem by using the SVD of the observation matrix when the number of snapshots is large, which will be proved in this paper.

  13. Brachytherapy dosimetry parameters calculated for a 131Cs source.

    PubMed

    Rivard, Mark J

    2007-02-01

    A comprehensive analysis of the IsoRay Medical model CS-1 Rev2 131Cs brachytherapy source was performed. Dose distributions were simulated using Monte Carlo methods (MCNP5) in liquid water, Solid Water, and Virtual Water spherical phantoms. From these results, the in-water brachytherapy dosimetry parameters have been determined, and were compared with those of Murphy et al. [Med. Phys. 31, 1529-1538 (2004)] using measurements and simulations. Our results suggest that calculations obtained using erroneous cross-section libraries should be discarded as recommended by the 2004 AAPM TG-43U1 report. Our Mclambda value of 1.046+/-0.019 cGy h(-1) U(-1) is within 1.3% of that measured by Chen et al. [Med. Phys. 32, 3279-3285 (2005)] using TLDs and the calculated results of Wittman and Fisher [Med. Phys. 34, 49-54 (2007)] using MCNP5. Using the discretized energy approach of Rivard [Appl. Radiat. Isot. 55, 775-782 (2001)] to ascertain the impact of individual 131Cs photons on radial dose function and anisotropy functions, there was virtual equivalence of results for 29.461< or =Egamma< or = 34.419 keV and for a mono-energetic 30.384 keV photon source. Comparisons of radial dose function and 2D anisotropy function data are also included, and an analysis of material composition and cross-section libraries was performed.

  14. Highly Excited States of cs Atoms on Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Lackner, F.; Theisen, M.; Koch, M.; Ernst, W. E.

    2011-06-01

    Cs atoms on the surface of helium nanodroplets have been excited to high lying nS (n = 8-11), nP (n = 8-11), and nD (n = 6-10) levels. A two-step excitation scheme via the 62P1/2(2Π1/2) state using two cw lasers was applied. This intermediate state has the advantage that a large fraction of the excited Cs atoms does not desorb from the helium nanodroplets. An absorption spectrum was recorded by detecting laser induced fluorescence light from the 62P3/2→62S1/2 transition. The pseudo-diatomic model for helium nanodroplets doped with single alkali-metal atoms holds for the observed spectrum. An investigation of spectral trends shows that the n'2P(Π)←62P1/2(2Π1/2) and n'2D(Δ)←62P1/2(2Π1/2) (n' > 9) transitions are lower in energy than the corresponding free-atom transitions. This indicates that the Cs*--HeN potential becomes attractive for these highly excited states. Our results suggest a possibility of generating an artificial super-atom with a positive ion core inside a helium nanodroplet and the electron outside, which will be subject to future experiments. M. Theisen, F. Lackner, F. Ancilotto, C. Callegari, and W.E. Ernst, Eur. Phys. J. D 61, 403-408 (2011)

  15. Kinetics and thermochemistry of reversible adduct formation in the reaction of Cl( sup 2 P sub J ) with CS sub 2

    SciTech Connect

    Nicovich, J.M.; Shackelford, C.J.; Wine, P.H. )

    1990-04-05

    Reversible adduct formation in the reaction of Cl({sup 2}P{sub J}) with CS{sub 2} has been observed over the temperature range 193-258 K by use of time-resolved resonance fluorescence spectroscopy to follow the decay of pulsed-laser-generated Cl({sup 2}P{sub J}) into equilibrium with CS{sub 2}Cl. Rate coefficients for CS{sub 2}Cl formation and decomposition have been determined as a function of temperature and pressure; hence, the equilibrium constant has been determined as a function of temperature. We find that the rate coefficient for CS{sub 2}Cl + O{sub 2} reaction via all channels that do not generate Cl({sup 2}P{sub J}) is <2.5 {times} 10{sup {minus}16} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1} at 293 K and 300-Torr total pressure and that the total rate coefficient is <2 {times} 10{sup {minus}15} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1} at 230 K and 30-Torr total pressure.

  16. Protection from Extinction by Concurrent Presentation of an Excitor or an Extensively Extinguished CS

    ERIC Educational Resources Information Center

    Pineno, Oskar

    2007-01-01

    One conditioned taste aversion experiment with rats assessed the impact of extinguishing a target conditioned stimulus (CS), S, in compound with a second CS, A, upon conditioned responding elicited by CS S when presented alone at test. Following initial conditioning treatment with CSs A and S, the experiment manipulated number of extinction trials…

  17. Quasi-Anonymous Channels

    DTIC Science & Technology

    2003-01-01

    QUASI- ANONYMOUS CHANNELS Ira S. Moskowitz Center for High Assurance Computer Systems - Code 5540 Naval Research Laboratory, Washington, DC...Assurance Computer Systems - Code 5540 Naval Research Laboratory, Washington, DC 20375, USA Abstract Although both anonymity and covert...channels are part of the larger topic of information hiding, there also exists an intrinsic linkage between anonymity and covert channels. This linkage

  18. Temporal variation of post-accident atmospheric (137)Cs in an evacuated area of Fukushima Prefecture: Size-dependent behaviors of (137)Cs-bearing particles.

    PubMed

    Ochiai, Shinya; Hasegawa, Hidenao; Kakiuchi, Hideki; Akata, Naofumi; Ueda, Shinji; Tokonami, Shinji; Hisamatsu, Shun'ichi

    2016-12-01

    The concentrations of (137)Cs in the air, which were divided into coarse (>1.1 μm ϕ) and fine (<1.1 μm ϕ) fractions of particulate matter (PM), were measured from October 2012 to December 2014 in an area evacuated after the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. Total atmospheric (137)Cs concentrations showed a clear seasonal variation, with high concentrations during summer and autumn related to the dominant easterly wind blowing from the highly radioactivity contaminated area. This seasonal peak was dominated by (137)Cs in the coarse PM fraction. The (137)Cs specific activity (massic (137)Cs concentration) in the coarse PM was also found to increase significantly in summer, whereas that in the fine PM showed no variability during the year. These results show that coarse and fine (137)Cs-bearing PM have different origins and behaviors in the resuspension process. The seasonal variation in atmospheric (137)Cs concentration was well correlated with the mean (137)Cs surface contamination (deposition density) around the observation site weighted by the frequency of wind direction, indicating that the atmospheric (137)Cs concentration in the observation site was explained by the distribution of the (137)Cs surface contamination and the frequency of different wind directions. We introduced a resuspension factor corrected for wind direction, consisting of the ratio of the atmospheric (137)Cs concentration to the weighted mean (137)Cs surface contamination, which evaluated the intensity of resuspension better than the conventional resuspension factor. This ratio ranged from 5.7 × 10(-11) to 8.6 × 10(-10) m(-1) and gradually decreased during the study period.

  19. Shape and phase evolution from CsPbBr3 perovskite nanocubes to tetragonal CsPb2Br5 nanosheets with an indirect bandgap.

    PubMed

    Li, Guopeng; Wang, Hui; Zhu, Zhifeng; Chang, Yajing; Zhang, Ting; Song, Zihang; Jiang, Yang

    2016-09-13

    Tetragonal CsPb2Br5 nanosheets were obtained by an oriented attachment of orthorhombic CsPbBr3 nanocubes, involving a lateral shape evolution from octagonal to square. Meanwhile, the experimental results, together with DFT simulation results, indicated that the tetragonal CsPb2Br5 is an indirect bandgap semiconductor that is PL-inactive with a bandgap of 2.979 eV.

  20. Functional and Biochemical Characterization of Cucumber Genes Encoding Two Copper ATPases CsHMA5.1 and CsHMA5.2*

    PubMed Central

    Migocka, Magdalena; Posyniak, Ewelina; Maciaszczyk-Dziubinska, Ewa; Papierniak, Anna; Kosieradzaka, Anna

    2015-01-01

    Plant copper P1B-type ATPases appear to be crucial for maintaining copper homeostasis within plant cells, but until now they have been studied mostly in model plant systems. Here, we present the molecular and biochemical characterization of two cucumber copper ATPases, CsHMA5.1 and CsHMA5.2, indicating a different function for HMA5-like proteins in different plants. When expressed in yeast, CsHMA5.1 and CsHMA5.2 localize to the vacuolar membrane and are activated by monovalent copper or silver ions and cysteine, showing different affinities to Cu+ (Km ∼1 or 0.5 μm, respectively) and similar affinity to Ag+ (Km ∼2.5 μm). Both proteins restore the growth of yeast mutants sensitive to copper excess and silver through intracellular copper sequestration, indicating that they contribute to copper and silver detoxification. Immunoblotting with specific antibodies revealed the presence of CsHMA5.1 and CsHMA5.2 in the tonoplast of cucumber cells. Interestingly, the root-specific CsHMA5.1 was not affected by copper stress, whereas the widely expressed CsHMA5.2 was up-regulated or down-regulated in roots upon copper excess or deficiency, respectively. The copper-induced increase in tonoplast CsHMA5.2 is consistent with the increased activity of ATP-dependent copper transport into tonoplast vesicles isolated from roots of plants grown under copper excess. These data identify CsHMA5.1 and CsHMA5.2 as high affinity Cu+ transporters and suggest that CsHMA5.2 is responsible for the increased sequestration of copper in vacuoles of cucumber root cells under copper excess. PMID:25963145

  1. ENaCs and ASICs as therapeutic targets

    PubMed Central

    Qadri, Yawar J.; Rooj, Arun K.

    2012-01-01

    The epithelial Na+ channel (ENaC) and acid-sensitive ion channel (ASIC) branches of the ENaC/degenerin superfamily of cation channels have drawn increasing attention as potential therapeutic targets in a variety of diseases and conditions. Originally thought to be solely expressed in fluid absorptive epithelia and in neurons, it has become apparent that members of this family exhibit nearly ubiquitous expression. Therapeutic opportunities range from hypertension, due to the role of ENaC in maintaining whole body salt and water homeostasis, to anxiety disorders and pain associated with ASIC activity. As a physiologist intrigued by the fundamental mechanics of salt and water transport, it was natural that Dale Benos, to whom this series of reviews is dedicated, should have been at the forefront of research into the amiloride-sensitive sodium channel. The cloning of ENaC and subsequently the ASIC channels has revealed a far wider role for this channel family than was previously imagined. In this review, we will discuss the known and potential roles of ENaC and ASIC subunits in the wide variety of pathologies in which these channels have been implicated. Some of these, such as the role of ENaC in Liddle's syndrome are well established, others less so; however, all are related in that the fundamental defect is due to inappropriate channel activity. PMID:22277752

  2. Spatially Common Sparsity Based Adaptive Channel Estimation and Feedback for FDD Massive MIMO

    NASA Astrophysics Data System (ADS)

    Gao, Zhen; Dai, Linglong; Wang, Zhaocheng; Chen, Sheng

    2015-12-01

    This paper proposes a spatially common sparsity based adaptive channel estimation and feedback scheme for frequency division duplex based massive multi-input multi-output (MIMO) systems, which adapts training overhead and pilot design to reliably estimate and feed back the downlink channel state information (CSI) with significantly reduced overhead. Specifically, a non-orthogonal downlink pilot design is first proposed, which is very different from standard orthogonal pilots. By exploiting the spatially common sparsity of massive MIMO channels, a compressive sensing (CS) based adaptive CSI acquisition scheme is proposed, where the consumed time slot overhead only adaptively depends on the sparsity level of the channels. Additionally, a distributed sparsity adaptive matching pursuit algorithm is proposed to jointly estimate the channels of multiple subcarriers. Furthermore, by exploiting the temporal channel correlation, a closed-loop channel tracking scheme is provided, which adaptively designs the non-orthogonal pilot according to the previous channel estimation to achieve an enhanced CSI acquisition. Finally, we generalize the results of the multiple-measurement-vectors case in CS and derive the Cramer-Rao lower bound of the proposed scheme, which enlightens us to design the non-orthogonal pilot signals for the improved performance. Simulation results demonstrate that the proposed scheme outperforms its counterparts, and it is capable of approaching the performance bound.

  3. Ingestion doses in Finland due to (90)Sr, (134)Cs, and (137)Cs from nuclear weapons testing and the Chernobyl accident.

    PubMed

    Rantavaara, A

    2008-11-01

    (90)Sr and (137)Cs in domestic foodstuffs and water have been analysed in Finland since the early 1960s, and (134)Cs since 1986. Using data on radionuclide deposition levels, agricultural production, and the processing and consumption of foodstuffs, the average intake and radiation dose from the ingestion of these radionuclides have been assessed. The estimated committed effective dose from the ingestion of (90)Sr, (137)Cs, and (134)Cs in food and water for the period 1960-2005 is 2.2 mSv, and for the period since the Chernobyl accident in 1986 it is 1.3 mSv.

  4. Thermoelectric properties of quaternary Uranium chalcogenides Cs2Pt3US6 and Cs2Pt3USe6

    NASA Astrophysics Data System (ADS)

    Shah, Fahad Ali; Azam, Sikander

    2014-08-01

    Electronic and thermoelectric behaviors of Cs2Pt3US6 and Cs2Pt3USe6 compounds have been revealed in the present work. The calculations have been performed with the help of full potential linearized augmented plane wave method (FP-LAPW). Engel-Vosko generalize gradient approximation was used for the exchange correlation energy. Thermoelectric properties were deal with generalized BoltzTraP program. Band structure calculation resulted in metallic nature of the materials. Calculated Fermi surfaces have been found to consist of two sheets. Bonding characteristics have studied with the help of electron charge density in (1 1 0) crystallographic plane. Seebeck coefficient, electric conductivity, power factor, figure of merit and thermal conductivity has been calculated.

  5. Modified kinetics and selectivity of sodium channels in frog skeletal muscle fibers treated with aconitine

    PubMed Central

    1982-01-01

    The effect of the plant alkaloid aconitine on sodium channel kinetics, ionic selectivity, and blockage by protons and tetrodotoxin (TTX) has been studied in frog skeletal muscle. Treatment with 0.25 or 0.3 mM aconitine alters sodium channels so that the threshold of activation is shifted 40-50 mV in the hyperpolarized direction. In contrast to previous results in frog nerve, inactivation is complete for depolarizations beyond about -60 mV. After aconitine treatment, the steady state level of inactivation is shifted approximately 20 mV in the hyperpolarizing direction. Concomitant with changes in channel kinetics, the relative permeability of the sodium channel to NH4,K, and Cs is increased. This altered selectivity is not accompanied by altered block by protons or TTX. The results suggest that sites other than those involved in channel block by protons and TTX are important in determining sodium channel selectivity. PMID:6294221

  6. Cs and Ag co-incorporation in cubic silicon carbide

    NASA Astrophysics Data System (ADS)

    Londono-Hurtado, Alejandro; Heim, Andrew J.; Kim, Sungtae; Szlufarska, Izabela; Morgan, Dane

    2013-08-01

    Understanding the diffusion of fission products Cs and Ag through the SiC layer of TRISO particles is of particular interest for the progress and improvement of the High Temperature Gas Reactor (HTGR) technologies. Although the SiC layer acts as a barrier for fission products, there is experimental evidence of Cs and Ag diffusion through this layer. Previous considerations of Ag and Cs in SiC have focused on the element interacting with SiC, but have not considered the possibility of co-incorporation with another species. This paper presents a ab initio study on the co-incorporation of Cs and Ag with an anion (Iodine (I) or Oxygen (O)) into SiC as an alternative incorporation mechanism. It is found that for crystalline SiC, Ag co-incorporation with Iodine (I) and Oxygen (O) into SiC is not energetically favorable, while Cs co-incorporation with O is a preferred mechanism under some oxygen partial pressures of interest. However, Cs-O co-incorporation into the crystalline portion of SiC is not sufficiently strong to enable a Cs solubility that accounts for the Cs release observed in some experiments. Formation energies are a function of the chemical potential of Si and C. Calculations in this paper are performed for Si-rich and C-rich conditions, which constitute the boundaries for which the formation energies are allowed to vary. Calculation of the electronic potential shift is required in order to ensure that the Fermi level in a defected cell is defined with respect to the same valence band level in the undefected cell [21,23]. The potential shift is calculated by aligning low energy levels in the total density of states (DOS) [24]. Spurious interactions between images of the charged defects make it necessary to correct for unphysical electrostatic interactions. Both the monopole-monopole and monopole-quadrupole Makov Payne corrections are used for this purpose. However, strain and incompletely corrected electrostatic interactions can still lead to significant

  7. CsI Calorimeter for a Compton-Pair Telescope

    NASA Astrophysics Data System (ADS)

    Grove, Eric J.

    We propose to build and test a hodoscopic CsI(Tl) scintillating-crystal calorimeter for a medium-energy γ-ray Compton and pair telescope. The design and technical approach for this calorimeter relies deeply on heritage from the Fermi LAT CsI Calorimeter, but it dramatically improves the low-energy performance of that design by reading out the scintillation light with silicon photomultipliers (SiPMs), making the technology developed for Fermi applicable in the Compton regime. While such a hodoscopic calorimeter is useful for an entire class of medium-energy γ-ray telescope designs, we propose to build it explicitly to support beam tests and balloon flight of the Proto-ComPair telescope, the development and construction of which was funded in a four-year APRA program beginning in 2015 ("ComPair: Steps to a Medium Energy γ-ray Mission" with PI J. McEnery of GSFC). That award did not include funding for its CsI calorimeter subsystem, and this proposal is intended to cover that gap. ComPair is a MIDEX-class instrument concept to perform a high-sensitivity survey of the γ-ray sky from 0.5 MeV to 500 MeV. ComPair is designed to provide a dramatic increase in sensitivity relative to previous instruments in this energy range (predominantly INTEGRAL/SPI and Compton COMPTEL), with the same transformative sensitivity increase – and corresponding scientific return– that the Fermi Large Area Telescope provided relative to Compton EGRET. To enable transformative science over a broad range of MeV energies and with a wide field of view, ComPair is a combined Compton telescope and pair telescope employing a silicon-strip tracker (for Compton scattering and pair conversion and tracking) and a solid-state CdZnTe calorimeter (for Compton absorption) and CsI calorimeter (for pair calorimetry), surrounded by a plastic scintillator anti-coincidence detector. Under the current proposal, we will complete the detailed design, assembly, and test of the CsI calorimeter for the risk

  8. Ion channels in plants

    PubMed Central

    Baluška, František; Mancuso, Stefano

    2013-01-01

    In his recent opus magnum review paper published in the October issue of Physiology Reviews, Rainer Hedrich summarized the field of plant ion channels.1 He started from the earliest electric recordings initiated by Charles Darwin of carnivorous Dionaea muscipula,1,2 known as Venus flytrap, and covered the topic extensively up to the most recent discoveries on Shaker-type potassium channels, anion channels of SLAC/SLAH families, and ligand-activated channels of glutamate receptor-like type (GLR) and cyclic nucleotide-gated channels (CNGC).1 PMID:23221742

  9. Cardiac ion channels

    PubMed Central

    Priest, Birgit T; McDermott, Jeff S

    2015-01-01

    Ion channels are critical for all aspects of cardiac function, including rhythmicity and contractility. Consequently, ion channels are key targets for therapeutics aimed at cardiac pathophysiologies such as atrial fibrillation or angina. At the same time, off-target interactions of drugs with cardiac ion channels can be the cause of unwanted side effects. This manuscript aims to review the physiology and pharmacology of key cardiac ion channels. The intent is to highlight recent developments for therapeutic development, as well as elucidate potential mechanisms for drug-induced cardiac side effects, rather than present an in-depth review of each channel subtype. PMID:26556552

  10. Incompatibility of quantum channels

    NASA Astrophysics Data System (ADS)

    Heinosaari, Teiko; Miyadera, Takayuki

    2017-03-01

    Two quantum channels are called compatible if they can be obtained as marginals from a single broadcasting channel; otherwise they are incompatible. We derive a characterization of the compatibility relation in terms of concatenation and conjugation, and we show that all pairs of sufficiently noisy quantum channels are compatible. The complement relation of incompatibility can be seen as a unifying aspect for several important quantum features, such as impossibility of universal broadcasting and unavoidable measurement disturbance. We show that the concepts of entanglement breaking channel and antidegradable channel can be completely characterized in terms compatibility.

  11. On 1-qubit channels

    NASA Astrophysics Data System (ADS)

    Uhlmann, Armin

    2001-09-01

    The entropy HT (ρ) of a state with respect to a channel T and the Holevo capacity of the channel require the solution of difficult variational problems. For a class of 1-qubit channels, which contains all the extremal ones, the problem can be significantly simplified by attaching a unique Hermitian antilinear operator ϑ to every channel of the considered class. The channel's concurrence CT can be expressed by ϑ and turns out to be a flat roof. This allows to write down an explicit expression for HT. Its maximum would give the Holevo (one-shot) capacity.

  12. Cs phytoremediation by Sorghum bicolor cultivated in soil and in hydroponic system.

    PubMed

    Wang, Xu; Chen, Can; Wang, Jianlong

    2017-04-03

    Cs accumulation characteristics by Sorghum bicolor were investigated in hydroponic system (Cs level at 50-1000 μmol/L) and in soil (Cs-spiked concentration was 100 and 400 mg/kg soil). Two varieties of S. bicolor Cowly and Nengsi 2# grown on pot soil during the entire growth period (100 days) did not show significant differences on the height, dry weight (DW), and Cs accumulation. S. bicolor showed the potential phytoextraction ability for Cs-contaminated soil with the bioaccumulation factor (BCF) and the translocation factor (TF) values usually higher than 1 in soil system and in hydroponic system. The aerial parts of S. bicolor contributed to 86-92% of the total removed amounts of Cs from soil. Cs level in solution at 100 μmol/L gave the highest BCF and TF values of S. bicolor. Cs at low level tended to transfer to the aerial parts, whereas Cs at high level decreased the transfer ratio from root to shoot. In soil, the plant grew well when Cs spiked level was 100 mg/kg soil, but was inhibited by Cs at 400 mg/kg soil with Cs content in sorghum reaching 1147 mg/kg (roots), 2473 mg/kg (stems), and 2939 mg/kg (leaves). In hydroponic system, average Cs level in sorghum reached 5270 mg/kg (roots) and 4513 mg/kg (aerial parts), without significant damages to its biomass at 30 days after starting Cs treatment. Cs accumulation in sorghum tissues was positively correlated with the metal concentration in medium.

  13. Interception of the Fukushima reactor accident-derived 137Cs, 134Cs and 131I by coniferous forest canopies

    NASA Astrophysics Data System (ADS)

    Kato, Hiroaki; Onda, Yuichi; Gomi, Takashi

    2012-10-01

    The Fukushima Daiichi nuclear power plant accident resulted in extensive radioactive contamination of the surrounding forests. In this study, we analyzed fallout 137Cs, 134Cs, and 131I in rainwater, throughfall, and stemflow in coniferous forest plantations immediately after the accident. We show selective fractionation of the deposited radionuclides by the forest canopy and contrasting transfer of radiocesium and 131I from the canopy to the forest floor in association with precipitation. More than 60% of the total deposited radiocesium remained in the canopy after 5 month of the initial fallout, while marked penetration of the initially deposited 131I through the canopy was observed. The half-lives of 137Cs absorbed in the cypress and cedar canopies were calculated as 620 days and 890 days, respectively for the period of 0-160 days. The transfer of the deposited radiocesium from the canopy to the forest floor was slow compared with that of the spruce forest affected by fallout from the Chernobyl nuclear reactor accident.

  14. Mechanically Activated Ion Channels

    PubMed Central

    Ranade, Sanjeev S.; Syeda, Ruhma; Patapoutian, Ardem

    2015-01-01

    Mechanotransduction, the conversion of physical forces into biochemical signals, is an essential component of numerous physiological processes including not only conscious senses of touch and hearing, but also unconscious senses such as blood pressure regulation. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601

  15. Mechanically Activated Ion Channels.

    PubMed

    Ranade, Sanjeev S; Syeda, Ruhma; Patapoutian, Ardem

    2015-09-23

    Mechanotransduction, the conversion of physical forces into biochemical signals, is essential for various physiological processes such as the conscious sensations of touch and hearing, and the unconscious sensation of blood flow. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels.

  16. Control of competence by related non-coding csRNAs in Streptococcus pneumoniae R6

    PubMed Central

    Laux, Anke; Sexauer, Anne; Sivaselvarajah, Dineshan; Kaysen, Anne; Brückner, Reinhold

    2015-01-01

    The two-component regulatory system CiaRH of Streptococcus pneumoniae is involved in β-lactam resistance, maintenance of cell integrity, bacteriocin production, host colonization, virulence, and competence. The response regulator CiaR controls, among other genes, expression of five highly similar small non-coding RNAs, designated csRNAs. These csRNAs control competence development by targeting comC, encoding the precursor of the competence stimulating peptide, which is essential to initiate the regulatory cascade leading to competence. In addition, another gene product of the CiaR regulon, the serine protease HtrA, is also involved in competence control. In the absence of HtrA, five csRNAs could suppress competence, but one csRNA alone was not effective. To determine if all csRNAs are needed, reporter gene fusions to competence genes were used to monitor competence gene expression in the presence of different csRNAs. These experiments showed that two csRNAs were not enough to prevent competence, but combinations of three csRNAs, csRNA1,2,3, or csRNA1,2,4 were sufficient. In S. pneumoniae strains expressing only csRNA5, a surprising positive effect was detected on the level of early competence gene expression. Hence, the role of the csRNAs in competence regulation is more complex than anticipated. Mutations in comC (comC8) partially disrupting predicted complementarity to the csRNAs led to competence even in the presence of all csRNAs. Reconstitution of csRNA complementarity to comC8 restored competence suppression. Again, more than one csRNA was needed. In this case, even two mutated csRNAs complementary to comC8, csRNA1–8 and csRNA2–8, were suppressive. In conclusion, competence in S. pneumoniae is additively controlled by the csRNAs via post-transcriptional regulation of comC. PMID:26257773

  17. Effect of selective sorptive agents on leachability of {sup 137}Cs and {sup 90}Sr

    SciTech Connect

    Spence, R.D.

    1998-06-01

    Decades ago it was established that illite effectively improves {sup 137}Cs leach resistance. Subsequently, illite has become a standard ingredient used at Oak Ridge National Laboratory in grouts developed to stabilize {sup 137}Cs. Adding illite improves {sup 137}Cs leach resistance by three orders of magnitude, and increasing the illite concentration can add another order of magnitude improvement. Adding crystalline silicotitanate, a selective sorptive agent developed more recently for {sup 137}Cs, not only improves {sup 137}Cs leach resistance by an order-of-magnitude over that obtained using illite but also improves {sup 85}Sr leach resistance by two orders of magnitude.

  18. The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm.

    PubMed

    Lu, Boxun; Su, Yanhua; Das, Sudipto; Liu, Jin; Xia, Jingsheng; Ren, Dejian

    2007-04-20

    Sodium plays a key role in determining the basal excitability of the nervous systems through the resting "leak" Na(+) permeabilities, but the molecular identities of the TTX- and Cs(+)-resistant Na(+) leak conductance are totally unknown. Here we show that this conductance is formed by the protein NALCN, a substantially uncharacterized member of the sodium/calcium channel family. Unlike any of the other 20 family members, NALCN forms a voltage-independent, nonselective cation channel. NALCN mutant mice have a severely disrupted respiratory rhythm and die within 24 hours of birth. Brain stem-spinal cord recordings reveal reduced neuronal firing. The TTX- and Cs(+)-resistant background Na(+) leak current is absent in the mutant hippocampal neurons. The resting membrane potentials of the mutant neurons are relatively insensitive to changes in extracellular Na(+) concentration. Thus, NALCN, a nonselective cation channel, forms the background Na(+) leak conductance and controls neuronal excitability.

  19. Small Column Ion Exchange Testing of Superlig 644 for Removal of 137Cs from Hanford Tank Waste Envelope A (Tank 241-AW-101)

    SciTech Connect

    DE Kurath; DL Blanchard; JR Bontha

    2000-07-12

    The current BNFL Inc. flow sheet for the pretreatment of the Hanford High-Level tank wastes includes the use of Superlig{reg_sign} materials for the removal of {sup 137}Cs from the aqueous fraction of the waste. The Superlig materials applicable to cesium removal include the cesium selective Superlig 632 and Superlig 644. These materials have been developed and supplied by IBC Advanced Technologies, Inc., American Fork, UT. The work contained in this report involves testing the Superlig 644 ion exchange material in a small dual column system (15 mL each; L/D = 5.7). The sample processed was approximately 2.5 L of diluted waste [Na{sup +}] = 4.6M from Tank 241-AW-101 (Envelope A). This waste had been previously clarified in a single tube cross-flow filtration unit. All ion exchange process steps were tested including resin bed preparation, loading, feed displacement water rinse, elution and resin regeneration. During the initial run, the lag column did not perform as expected so that the {sup 137}Cs concentration in the effluent composite was above the LAW treatment limits. This required a second column run with the partially decontaminated feed that was conducted at a higher flow rate. A summary of performance measures for both runs is shown in Table S1. The Cs {lambda} values represent a measure of the effective capacity of the SL-644 resin. The Cs {lambda} of 143 for the lead column in run 1 is very similar to the value obtained by the Savannah River Technology Center during Phase 1A testing. The larger Cs {lambda} value for run 2 reflects a general trend for the effective capacity of the SL-644 material to increase as the cesium concentration decreases. The low value for the lag column during the first run indicates that it did not perform as expected. This may have been due to insufficient conditioning of the bed prior to the start of the loading step or to air in the bed that caused channeling. Equilibrium data obtained with batch contacts using the AW-101 Cs

  20. Mass spectrometry for the determination of fission products 135Cs, 137Cs and 90Sr: A review of methodology and applications

    NASA Astrophysics Data System (ADS)

    Bu, Wenting; Zheng, Jian; Liu, Xuemei; Long, Kaiming; Hu, Sheng; Uchida, Shigeo

    2016-05-01

    The radioactive fission products 135Cs, 137Cs and 90Sr have been released into the environment by human activities such as nuclear weapon tests, nuclear fuel reprocessing and nuclear power plant accidents. Monitoring of these radionuclides is important for dose assessment. Moreover, the 135Cs/137Cs isotopic ratio can be used as an important long-term fingerprint for radioactive source identification as it varies with weapon, reactor and fuel types. In recent years, mass spectrometry has become a powerful method for the determination of 135Cs, 137Cs and 90Sr in environmental samples. Mass spectrometry is characterized by the high sensitivity and low detection limit and the relatively shorter sample preparation and analysis times compared with radiometric methods. However, the mass spectrometric determination of radiocesium and 90Sr is affected by the peak tailings of the stable nuclides 133Cs and 88Sr, respectively, and the related isobaric and polyatomic interferences. Chemical separation and optimization of the mass spectrometry instrumental setup are strongly needed prior to the mass spectrometry detection. In this paper, we have reviewed the published works about the determination of 135Cs, 137Cs and 90Sr by mass spectrometry. The mass spectrometric techniques we cover are resonance ionization mass spectrometry (RIMS), thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICP-MS). For each technique, the principles or strategies used for the analysis of these radionuclides are discussed; these included the abundance sensitivity, ways to suppress the interference signals, and the instrumental setup. In particular, the chemical procedures for eliminating the interferences are also summarized. To date, triple quadrupole ICP-MS (ICP-QQQ) showed great ability for the analysis of these radionuclides and the detection limits were as low as 0.01 pg/mL levels. Finally, some investigations on the

  1. A ring of threonines in the inner vestibule of the pore of CNGA1 channels constitutes a binding site for permeating ions

    PubMed Central

    Marchesi, Arin; Mazzolini, Monica; Torre, Vincent

    2012-01-01

    Cyclic nucleotide-gated (CNG) channels and K+ channels have a significant sequence identity and are thought to share a similar 3D structure. K+ channels can accommodate simultaneously two or three permeating ions inside their pore and therefore are referred to as multi-ion channels. Also CNGA1 channels are multi-ion channels, as they exhibit an anomalous mole fraction effect (AMFE) in the presence of mixtures of 110 mm Li+ and Cs+ on the cytoplasmic side of the membrane. Several observations have identified the ring of Glu363 in the outer vestibule of the pore as one of the binding sites within the pore of CNGA1 channels. In the present work we identify a second binding site in the selectivity filter of CNGA1 channels controlling AMFE. Here, we show also that Cs+ ions at the intracellular side of the membrane block the entry of Na+ ions. This blockage is almost completely removed at high hyperpolarized voltages as expected if the Cs+ blocking site is located within the transmembrane electric field. Indeed, mutagenesis experiments show that the block is relieved when Thr359 and Thr360 at the intracellular entrance of the selectivity filter are replaced with an alanine. In T359A mutant channels AMFE in the presence of intracellular mixtures of Li+ and Cs+ is still present but is abolished in T360A mutant channels. These results suggest that the ring of Thr360 at the intracellular entrance of the selectivity filter forms another ion binding site in the CNGA1 channel. The two binding sites composed of the rings of Glu363 and Thr360 are not independent; in fact they mediate a powerful coupling between permeation and gating, a specific aspect of CNG channels. PMID:22869010

  2. CS1 is a novel topoisomerase IIα inhibitor with favorable drug resistance profiles

    SciTech Connect

    Shen, Yan; Chen, Wang; Zhao, Baobing; Hao, Huilin; Li, Zhenyu; Lu, Chunhua; Shen, Yuemao

    2014-10-24

    Highlights: • CS1 is a novel nonintercalating topoisomerase IIα poison. • CS1 shows potent in vitro and in vivo antitumor activity. • CS1 shows 6–10-fold less toxicity to normal cells compared with etoposide. • CS1 is not a substrate of P-glycoprotein and multidrug resistance irrelevant. - Abstract: DNA topoisomerase II (Topo II) is an essential nuclear enzyme and a validated target for anticancer agent screening. CS1, a novel 2-phenylnaphthalene, had potent cytotoxicity against nine tested tumor cell lines and showed 6–10-fold less toxicity against normal cell lines compared with etoposide. In addition, CS1 showed potential anti-multidrug resistance capabilities. kDNA decatenation, DNA relaxation and cleavage complex assays indicated that CS1 acted as a nonintercalating topoisomerase IIα (Topo IIα) inhibitor by stabilizing the DNA-Topo IIα cleavage complex. CS1 also induced DNA breaks in MDA-MB-231 cells evidenced by comet tails and the accumulation of γH2AX foci. The ability of CS1 in inducing DNA breaks mediated by Topo II resulted in G2/M phase arrest and apoptosis. Moreover, CS1 exhibited dramatic in vivo antitumor activity and lower toxicity compared with etoposide. This work supports the development of CS1 as a promising candidate for the treatment of cancer by targeting Topo IIα.

  3. Effect of minerals on accumulation of Cs by fungus Saccaromyces cerevisiae.

    PubMed

    Ohnuki, Toshihiko; Sakamoto, Fuminori; Yamasaki, Shinya; Kozai, Naofumi; Shiotsu, Hiroyuki; Utsunomiya, Satoshi; Watanabe, Naoko; Kozaki, Tamotsu

    2015-06-01

    The accumulation of Cs by unicellular fungus of Saccharomyces cerevisiae in the presence of minerals has been studied to elucidate the role of microorganisms in the migration of radioactive Cs in the environment. Two different types of experiments were employed: experiments using stable Cs to examine the effect of a carbon source on the accumulation of Cs, and accumulation experiments of radioactive Cs from agar medium containing (137)Cs and zeolite, vermiculite, phlogopite, smectite, mica, or illite as mineral supplements. In the former type of experiments, the Cs-accumulated cells were analyzed by scanning electron microscopy equipped with energy dispersive X-ray analysis (SEM-EDS). In the latter type, the radioactivity in the yeast cells was measured by an autoradiography technique. When a carbon source was present, higher amounts of Cs accumulated in the cells than in the resting condition without a carbon source. Analyses with SEM-EDS showed that no mineral formed on the cell surface. These results indicate that the yeast cells accumulate Cs by adsorption on the cell surface and intracellular accumulation. In the presence of minerals in the agar medium, the radioactivity in the yeast cells was in the order of mica > smectite, illite > vermiculite, phlogopite, zeolite. This order is inversely correlated to the ratio of the concentration of radioactive Cs between the minerals and the medium solution. These results strongly suggest that the yeast accumulates radioactive Cs competitively with minerals.

  4. First experiments with Cs doped Mo as surface converter for negative hydrogen ion sources

    NASA Astrophysics Data System (ADS)

    Schiesko, L.; Cartry, G.; Hopf, C.; Höschen, T.; Meisl, G.; Encke, O.; Heinemann, B.; Achkasov, K.; Amsalem, P.; Fantz, U.

    2015-08-01

    A study was conducted on the properties of molybdenum implanted with caesium as an approach to reduce the Cs consumption of negative hydrogen ion sources based on evaporated Cs. The depth profiles of the implanted Cs were simulated by SDTrimSP and experimentally determined by X-ray photoelectron spectroscopy depth profiling. In particular, one year after implantation, the depth profiles showed no signs of Cs diffusion into the molybdenum, suggesting long term stability of the implanted Cs atoms. The H- surface generation mechanisms on the implanted samples in hydrogen plasma were investigated, and the stability of the H- yield during four hours low power hydrogen plasma discharges was demonstrated. An estimation of the work function reduction (-0.8 eV) by the Cs implantation was performed, and a comparison of the relative negative ion yields between the implanted samples and highly oriented pyrolitic graphite showed that the Cs doped Mo negative ion yield was larger.

  5. Worst configurations (instantons) for compressed sensing over reals: a channel coding approach

    SciTech Connect

    Chertkov, Michael; Chilappagari, Shashi K; Vasic, Bane

    2010-01-01

    We consider Linear Programming (LP) solution of a Compressed Sensing (CS) problem over reals, also known as the Basis Pursuit (BasP) algorithm. The BasP allows interpretation as a channel-coding problem, and it guarantees the error-free reconstruction over reals for properly chosen measurement matrix and sufficiently sparse error vectors. In this manuscript, we examine how the BasP performs on a given measurement matrix and develop a technique to discover sparse vectors for which the BasP fails. The resulting algorithm is a generalization of our previous results on finding the most probable error-patterns, so called instantons, degrading performance of a finite size Low-Density Parity-Check (LDPC) code in the error-floor regime. The BasP fails when its output is different from the actual error-pattern. We design CS-Instanton Search Algorithm (ISA) generating a sparse vector, called CS-instanton, such that the BasP fails on the instanton, while its action on any modification of the CS-instanton decreasing a properly defined norm is successful. We also prove that, given a sufficiently dense random input for the error-vector, the CS-ISA converges to an instanton in a small finite number of steps. Performance of the CS-ISA is tested on example of a randomly generated 512 * 120 matrix, that outputs the shortest instanton (error vector) pattern of length 11.

  6. Cholesterol and Kir channels

    PubMed Central

    Levitan, Irena

    2009-01-01

    To date, most of the major types of Kir channels, Kir2s, Kir3s, Kir4s and Kir6s, have been found to partition into cholesterol-rich membrane domains and/or to be regulated by changes in the level of membrane cholesterol. Surprisingly, however, in spite of the structural similarities between different Kirs, effects of cholesterol on different types of Kir channels vary from cholesterol-induced decrease in the current density (Kir2 channels) to the loss of channel activity by cholesterol depletion (Kir4 channels) and loss of channel coupling by different mediators (Kir3 and Kir6 channels). Recently, we have gained initial insights into the mechanisms responsible for cholesterol-induced suppression Kir2 channels, but mechanisms underlying cholesterol sensitivity of other Kir channels are mostly unknown. The goal of this review is to present a summary of the current knowledge of the distinct effects of cholesterol on different types of Kir channels in vitro and in vivo. PMID:19548316

  7. Fading channel simulator

    DOEpatents

    Argo, Paul E.; Fitzgerald, T. Joseph

    1993-01-01

    Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  8. Fukushima 137Cs at the base of planktonic food webs off Japan

    NASA Astrophysics Data System (ADS)

    Baumann, Z.; Fisher, N. S.; Gobler, C. J.; Buesseler, K. O.; George, J. A.; Breier, C. F.; Nishikawa, J.

    2015-12-01

    The potential bioaccumulation of 137Cs in marine food webs off Japan became a concern following the release of radioactive contaminants from the damaged Fukushima nuclear power plant into the coastal ocean. Previous studies suggest that 137Cs activities increase with trophic level in pelagic food webs, however, the bioaccumulation of 137Cs from seawater to primary producers, to zooplankton has not been evaluated in the field. Since phytoplankton are frequently the largest component of suspended particulate matter (SPM) we used SPM concentrations and particle-associated 137Cs to understand bioaccumulation of 137Cs in through trophic pathways in the field. We determined particle-associated 137Cs for samples collected at 20 m depth from six stations off Japan three months after the initial release from the Fukushima nuclear power plant. At 20 m SPM ranged from 0.65 to 1.60 mg L-1 and rapidly declined with depth. The ratios of particulate organic carbon to chlorophyll a suggested that phytoplankton comprised much of the SPM in these samples. 137Cs activities on particles accounted for on average 0.04% of the total 137Cs in seawater samples, and measured concentration factors of 137Cs on small suspended particles were comparatively low (∼102). However, when 137Cs in crustacean zooplankton was derived based only on modeling dietary 137Cs uptake, we found predicted and measured 137Cs concentrations in good agreement. We therefore postulate the possibility that the dietary route of 137Cs bioaccumulation (i.e., phytoplankton ingestion) could be largely responsible for the measured levels in the copepod-dominated (%) zooplankton assemblages in Japanese coastal waters. Finally, our data did not support the notion that zooplankton grazing on phytoplankton results in a biomagnification of 137Cs.

  9. Active Dendrites and Differential Distribution of Calcium Channels Enable Functional Compartmentalization of Golgi Cells

    PubMed Central

    Rudolph, Stephanie; Hull, Court

    2015-01-01

    Interneurons are essential to controlling excitability, timing, and synaptic integration in neuronal networks. Golgi cells (GoCs) serve these roles at the input layer of the cerebellar cortex by releasing GABA to inhibit granule cells (grcs). GoCs are excited by mossy fibers (MFs) and grcs and provide feedforward and feedback inhibition to grcs. Here we investigate two important aspects of GoC physiology: the properties of GoC dendrites and the role of calcium signaling in regulating GoC spontaneous activity. Although GoC dendrites are extensive, previous studies concluded they are devoid of voltage-gated ion channels. Hence, the current view holds that somatic voltage signals decay passively within GoC dendrites, and grc synapses onto distal dendrites are not amplified and are therefore ineffective at firing GoCs because of strong passive attenuation. Using whole-cell recording and calcium imaging in rat slices, we find that dendritic voltage-gated sodium channels allow somatic action potentials to activate voltage-gated calcium channels (VGCCs) along the entire dendritic length, with R-type and T-type VGCCs preferentially located distally. We show that R- and T-type VGCCs located in the dendrites can boost distal synaptic inputs and promote burst firing. Active dendrites are thus critical to the regulation of GoC activity, and consequently, to the processing of input to the cerebellar cortex. In contrast, we find that N-type channels are preferentially located near the soma, and control the frequency and pattern of spontaneous firing through their close association with calcium-activated potassium (KCa) channels. Thus, VGCC types are differentially distributed and serve specialized functions within GoCs. SIGNIFICANCE STATEMENT Interneurons are essential to neural processing because they modulate excitability, timing, and synaptic integration within circuits. At the input layer of the cerebellar cortex, a single type of interneuron, the Golgi cell (GoC), carries

  10. Paddy-field contamination with 134Cs and 137Cs due to Fukushima Dai-ichi Nuclear Power Plant accident and soil-to-rice transfer coefficients.

    PubMed

    Endo, Satoru; Kajimoto, Tsuyoshi; Shizuma, Kiyoshi

    2013-02-01

    The transfer coefficient (TF) from soil to rice plants of (134)Cs and (137)Cs in the form of radioactive deposition from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in March 2011 was investigated in three rice paddy fields in Minami-Soma City. Rice crops were planted in the following May and harvested at the end of September. Soil cores of 30-cm depth were sampled from rice-planted paddy fields to measure (134)Cs and (137)Cs radioactivity at 5-cm intervals. (134)Cs and (137)Cs radioactivity was also measured in rice ears (rice with chaff), straws and roots. The rice ears were subdivided into chaff, brown rice, polished rice and rice bran, and the (134)Cs and (137)Cs radioactivity concentration of each plant part was measured to calculate the respective TF from the soil. The TF of roots was highest at 0.48 ± 0.10 in the field where the (40)K concentration in the soil core was relatively low, in comparison with TF values of 0.31 and 0.38 in other fields. Similar trends could be found for the TF of whole rice plants, excluding roots. The TF of rice ears was relatively low at 0.019-0.026. The TF of chaff, rice bran, brown rice and polished rice was estimated to be 0.049, 0.10-0.16, 0.013-0.017 and 0.005-0.013, respectively.

  11. Pre-assessment of dose rates of (134)Cs, (137)Cs, and (60)Co for marine biota from discharge of Haiyang Nuclear Power Plant, China.

    PubMed

    Li, Jingjing; Liu, Senlin; Zhang, Yongxing; Chen, Ling; Yan, Yuan; Cheng, Weiya; Lou, Hailin; Zhang, Yongbao

    2015-09-01

    Haiyang Nuclear Power Plant to be built in China was selected as a case for the dose pre-assessment for marine biota in this study. The concentrations of Cs and Co in organisms (turbot, yellow croaker, swimming crab, abalone, sea cucumber, and sea lettuce), seawater, and bottom sediment sampled on-site were measured by neutron activation analysis, and the site-specific transfer parameters (concentration ratios and distribution coefficients) of Cs and Co were calculated. (134)Cs, (137)Cs, and (60)Co activity concentrations in the organisms and the sediment at the site were calculated with the site-specific transfer parameters and the anticipated activity concentrations in the liquid effluent of the nuclear power plant. The ERICA tool was used to estimate the dose rates of (134)Cs, (137)Cs, and (60)Co to the selected organisms based on the biological models developed. The total dose rates of (134)Cs, (137)Cs, and (60)Co to the six organisms were all <0.001 μGy h(-1).

  12. Transfer kinetics and coefficients of {sup 90}Sr, {sup 134}Cs, and {sup 137}Cs from forage contaminated by Chernobyl fallout to milk of cows

    SciTech Connect

    Fabbri, S.; Sogni, R.; Lusardi, E.

    1994-04-01

    A experiment was conducted to study kinetics, transfer coefficients, and biological half-lives of {sup 90}Sr, {sup 134}Cs, and {sup 137}Cs from feed to milk. A cow was fed a diet containing alfalfa hay contaminated by Chernobyl fallout for 14.5 wk. The time-dependent activity in milk was approximated by a two-compartment model with fast biological half-lives of 2, 0.9, and 1 d and slow biological half-lives of 36.9, 8.7, and 12.4 d for {sup 90}Sr, {sup 134}Cs, and {sup 137}Cs respectively. The transfer coefficients determined in the experiment were 0.0008 d L{sup -1} for {sup 90}Sr, 0.0029 d L{sup -1} for {sup 137}Cs, and 0.0031 d L{sup -1} for {sup 137}Cs. The biological elimination phases of {sup 134}Cs and {sup 137}Cs were described by a two-compartment model while a one-compartment model was proposed for {sup 90}Sr. 18 refs., 4 figs., 2 tabs.

  13. Distribution of the 134Cs/137Cs ratio around the Fukushima Daiichi nuclear power plant using an unmanned helicopter radiation monitoring system

    NASA Astrophysics Data System (ADS)

    Torii, T.; Nishizawa, Y.

    2015-12-01

    Many radioactive substances were released by the Fukushima Daiichi nuclear power plant accident occurred on March 11, 2011 in the atmosphere. A lot of short half-life nuclides which are 131I, 132Te (132I) and 133I, etc., in addition to longer half-lived nuclides such as 134Cs and 137Cs. The estimated release amount of these nuclides from the reactor 1st to 3rd unit is reported, but it's found to be quite different in the short half-lived nuclides by the reactor units. Because the radioactivity ratio of 134Cs and 137Cs was slight different between the reactor units, it can be considered that the valuable source is obtained by the measurement of 134Cs/137Cs ratio in the environment around the Fukushima Daiichi nuclear power station at the present stage when the nuclides with short half-lives had already decayed. We have measured high-resolution gamma-ray spectrum using an unmanned helicopter equipped with LaBr3(Ce) detector in a 3-km range from the power station which was near to the release source of the radioactive cesium. Because the LaBr3(Ce) detector has high resolution of gamma rays, the discrimination of many nuclides is possible. In addition, there is extremely much number of the data provided by the distribution measurement with the unmanned helicopter. Because a new map was illustrated by the analysis of the 134Cs/137Cs ratio, we report the outline.

  14. First observation of sol-gel derived Al:CsZnO/CsZnO bilayer thin film for solar cells application

    NASA Astrophysics Data System (ADS)

    Ahmadi, Mehdi; Rashidi Dafeh, Sajjad; Alinazmabadi, Saeid

    2016-10-01

    In this research, we fabricated CsZnO and Al:CsZnO/CsZnO bilayer thin films grown by the spin-coating-assisted sol-gel method on ITO substrate. The influence of diverse velocity of spin-coating (500, 1000, 1500, 2000, 2500 and 3000RPM) and also annealing times (30, 60, 90, 120, 150 and 180min) on the characteristics of the ZnO thin film was examined. The samples were examined by X-ray diffraction, scanning electron microscopy, Uv-Vis spectrometer and conductivity measurement. With the optimization of the velocity of spin-coating (2500RPM) and annealing times (60min), we fabricated Al:CsZnO/CsZnO bilayer thin films with diverse dopant concentration. By comparing the effect of dopant concentration with different dopant ratio (0, 0.5, 1.0 and 2%), 0.5% of CsZnO and Al:CsZnO/CsZnO bilayer was found as the most effective doping level with the best conductivity properties among the selected doping concentrations.

  15. Root endophytic bacteria of a (137)Cs and Mn accumulator plant, Eleutherococcus sciadophylloides, increase (137)Cs and Mn desorption in the soil.

    PubMed

    Yamaji, Keiko; Nagata, Satoshi; Haruma, Toshikatsu; Ohnuki, Toshihiko; Kozaki, Tamotsu; Watanabe, Naoko; Nanba, Kenji

    2016-03-01

    We found that root endophytes of (137)Cs accumulator plant produce siderophores, resulting in the desorption of (137)Cs from the contaminated soil collected at Fukushima, Japan. We selected an endemic Japanese deciduous tree, Eleutherococcus sciadophylloides (Franch. et Sav), that accumulates high concentrations of (137)Cs and Mn. Root endophytic bacteria were isolated from E. sciadophylloides and microbial siderophore production was evaluated via chrome azurol S (CAS) Fe and CAS Al assays. Of the 463 strains that we isolated, 107 (23.1%) produced the siderophores. Using eight strains that showed high siderophore production in our assays, we examined desorption of (137)Cs, Mn, Fe and Al by the bacterial culture filtrates from (137)Cs-contaminated soil after decomposing the soil organic matter using hydrogen peroxide. We found (137)Cs and Mn desorption concomitant with Al and Fe desorption, as well as a decrease of pH. We also detected succinic acid, a well-known siderophore, in the bacterial culture filtrates of our two root endophytic bacteria. Our results strongly suggest that the root endophytic bacteria of E. sciadophylloides produce the siderophores that enhance (137)Cs and Mn desorption in the rhizosphere, making the resulting (137)Cs and Mn ions easier for E. sciadophylloides to absorb from the rhizosphere.

  16. Continuous Nondemolition Measurement of the Cs Clock Transition Pseudospin

    SciTech Connect

    Chaudhury, Souma; Smith, Greg A.; Schulz, Kevin; Jessen, Poul S.

    2006-02-03

    We demonstrate a weak continuous measurement of the pseudospin associated with the clock transition in a sample of Cs atoms. Our scheme uses an optical probe tuned near the D{sub 1} transition to measure the sample birefringence, which depends on the z component of the collective pseudospin. At certain probe frequencies the differential light shift of the clock states vanishes, and the measurement is nonperturbing. In dense samples the measurement can be used to squeeze the collective clock pseudospin and has the potential to improve the performance of atomic clocks and interferometers.

  17. Doubly Magic Optical Trapping for Cs Atom Hyperfine Clock Transitions

    NASA Astrophysics Data System (ADS)

    Carr, A. W.; Saffman, M.

    2016-10-01

    We analyze doubly magic trapping of Cs hyperfine transitions including previously neglected contributions from the ground state hyperpolarizability and the interaction of the laser light and a static magnetic field. Extensive numerical searches do not reveal any doubly magic trapping conditions for any pair of hyperfine states. However, including the hyperpolarizability reveals light intensity insensitive traps for a wide range of wavelengths at specific intensities. We then investigate the use of bichromatic trapping light fields. Deploying a bichromatic scheme, we demonstrate doubly magic red and blue detuned traps for pairs of states separated by one or two single photon transitions.

  18. Relativistic rotation-vibrational energies for the Cs2 molecule

    NASA Astrophysics Data System (ADS)

    Jia, Chun-Sheng; Jia, Yue

    2017-01-01

    We present bound state solutions of the Dirac equation with the improved Rosen-Morse potential energy model. In the non-relativistic limit, the relativistic energy equation becomes the non-relativistic rotation-vibrational energy expression of the diatomic molecule. We find that the relativistic effect of the relative motion of the ions produces an obvious decrease in the vibrational energies for the 33Σg + state of the Cs2 molecule. It is observed that the behavior of the relativistic rotation-vibrational energies in larger rotational quantum numbers remains similar to that of the system with zero rotational quantum number.

  19. Enhanced Temporal Resolution with Ion Channel-Functionalized Sensors Using a Conductance-Based Measurement Protocol.

    PubMed

    Agasid, Mark T; Comi, Troy J; Saavedra, S Scott; Aspinwall, Craig A

    2017-01-17

    The binding of a target analyte to an ion channel (IC), which is readily detected electrochemically in a label-free manner with single-molecule selectivity and specificity, has generated widespread interest in using natural and engineered ICs as transducers in biosensing platforms. To date, the majority of developments in IC-functionalized sensing have focused on IC selectivity or sensitivity or development of suitable membrane environments and aperture geometries. Comparatively little work has addressed analytical performance criteria, particularly criteria required for temporal measurements of dynamic processes. We report a measurement protocol suitable for rapid, time-resolved monitoring (≤30 ms) of IC-modulated membrane conductance. Key features of this protocol include the reduction of membrane area and the use of small voltage steps (10 mV) and short duration voltage pulses (10 ms), which have the net effect of reducing the capacitive charging and decreasing the time required to achieve steady state currents. Application of a conductance protocol employing three sequential, 10 ms voltage steps (-10 mV, -20 mV, -30 mV) in an alternating, pyramid-like arrangement enabled sampling of membrane conductance every 30 ms. Using this protocol, dynamic IC measurements on black lipid membranes (BLMs) functionalized with gramicidin A were conducted using a fast perfusion system. BLM conductance decreased by 76 ± 7.5% within 30 ms of switching from solutions containing 0 to 1 M Ca(2+), which demonstrates the feasibility of using this approach to monitor rapid, dynamic chemical processes. Rapid conductance measurements will be broadly applicable to IC-based sensors that undergo analyte-specific gating.

  20. Thermodynamic studies on Cs 4U 5O 17(s) and Cs 2U 2O 7(s) by emf and calorimetric measurements

    NASA Astrophysics Data System (ADS)

    Jayanthi, K.; Iyer, V. S.; Venugopal, V.

    1997-12-01

    The oxygen potentials over the phase field: Cs 4U 5O 17(s)+Cs 2U 2O 7(s)+Cs 2U 4O 12(s) was determined by measuring the emf values between 1048 and 1206 K using a solid oxide electrolyte galvanic cell. The oxygen potential existing over the phase field for a given temperature can be represented by: Δ μ(O 2) (kJ/mol) (±0.5)=-272.0+0.207 T (K). The differential thermal analysis showed that Cs 4U 5O 17(s) is stable in air up to 1273 K. The molar Gibbs energy formation of Cs 4U 5O 17(s) was calculated from the above oxygen potentials and can be given by, Δ fG0 (kJ/mol)±6=-7729+1.681 T (K). The enthalpy measurements on Cs 4U 5O 17(s) and Cs 2U 2O 7(s) were carried out from 368.3 to 905 K and 430 to 852 K respectively, using a high temperature Calvet calorimeter. The enthalpy increments, ( H0T- H0298), in J/mol for Cs 4U 5O 17(s) and Cs 2U 2O 7(s) can be represented by, H0T- H0298.15 (Cs 4U 5O 17) kJ/mol±0.9=-188.221+0.518 T (K)+0.433×10 -3T2 (K)-2.052×10 -5T3 (K) (368 to 905 K) and H0T- H0298.15 (Cs 2U 2O 7) kJ/mol±0.5=-164.210+0.390 T (K)+0.104×10 -4T2 (K)+0.140×10 5(1/ T (K)) (411 to 860 K). The thermal properties of Cs 4U 5O 17(s) and Cs 2U 2O 7(s) were derived from the experimental values. The enthalpy of formation of (Cs 4U 5O 17, s) at 298.15 K was calculated by the second law method and is: Δ fH0298.15=-7645.0±4.2 kJ/mol.

  1. Multiple ion binding sites in Ih channels of rod photoreceptors from tiger salamanders.

    PubMed

    Wollmuth, L P

    1995-05-01

    The mechanism of ion permeation in K+/Na(+)-permeable Ih channels of tiger salamander rod photoreceptors was investigated using the whole-cell voltage-clamp technique. Ih channels showed features indicative of pores with multiple ion binding sites: in mixtures of K+ and thallium (T1+), the amplitude of the time-dependent current showed an anomalous mole fraction dependence, and K+ permeation was blocked by other permeant ions (with K0.5 values: T1+, 44 microM; Rb+, 220 microM and NH4+, 1100 microM) as well as by essentially impermeant ions (Cs+, 22 microM Ba2+, 9200 microM) which apparently block Ih by binding in the pore. In contrast, Na+ had little blocking action on K+ permeation. The block by all of these ions was sensitive to external K+ with the block by Cs+ being the least sensitive. Na+ was more effective than K+ in reducing the block by T1+, Rb+ and NH4+, but was less effective for the block by Cs+ and Ba2+. The blocking action of Cs+ and Ba2+ was non-competitive, suggesting that they block Ih channels at independent sites. Based on the efficacy of block by the different ions, the degree to which K+ and Na+ antagonize this block and the noncompetitive blocking action of Cs+ and Ba2+, the permeation pathway of Ih channels appears to contain at least three ion binding sites with at least two sites having a higher affinity for K+ over Na+ and another site with a higher affinity for Na+ over K+.

  2. R type anion channel

    PubMed Central

    Diatloff, Eugene; Peyronnet, Rémi; Colcombet, Jean; Thomine, Sébastien; Barbier-Brygoo, Hélène

    2010-01-01

    Plant genomes code for channels involved in the transport of cations, anions and uncharged molecules through membranes. Although the molecular identity of channels for cations and uncharged molecules has progressed rapidly in the recent years, the molecular identity of anion channels has lagged behind. Electrophysiological studies have identified S-type (slow) and R-type (rapid) anion channels. In this brief review, we summarize the proposed functions of the R-type anion channels which, like the S-type, were first characterized by electrophysiology over 20 years ago, but unlike the S-type, have still yet to be cloned. We show that the R-type channel can play multiple roles. PMID:21051946

  3. K-edge x-ray absorption spectra of Cs and Xe

    SciTech Connect

    Gomilsek, J. Padeznik; Kodre, A.; Arcon, I.; Hribar, M.

    2003-10-01

    X-ray absorption spectrum of cesium vapor in the K-edge region is measured in a stainless steel cell. The spectrum is free of the x-ray absorption fine structure signal and shows small features analogous to those in the spectrum of the neighbor noble gas Xe. Although the large natural width of the K vacancy (>10 eV) washes out most of the details, fingerprints of multielectron excitations can be recognized at energies close to Dirac-Fock estimates of doubly excited states 1s4(d,p,s) and 1s3(d,p). Among these, the 1s3p excitation 1000 eV above the K edge in both spectra is the deepest double excitation observed so far. Within the K-edge profile, some resolution is recovered with numerical deconvolution of the spectra, revealing the coexcitation of the 5(p,s) electrons, and even the valence 6s electron in Cs. As in homologue elements, three-electron excitations, either as separate channels or as configuration admixtures are required to explain some spectral features in detail.

  4. Towards comprehensive characterization of Cs-137 Seeds using PRESAGE® dosimetry with optical tomography

    NASA Astrophysics Data System (ADS)

    Adamson, J.; Yang, Y.; Rankine, L.; Newton, J.; Adamovics, J.; Craciunescu, O.; Oldham, M.

    2013-06-01

    We describe a method to directly measure the radial dose and anisotropy functions of brachytherapy sources using polyurethane based dosimeters read out with optical CT. We measured the radial dose and anisotropy functions for a Cs-137 source using a PRESAGE® dosimeter (9.5cm diameter, 9.2cm height) with a 0.35cm channel drilled for source placement. The dosimeter was immersed in water and irradiated to 5.3Gy at 1cm. Pre- and post-irradiation optical CT scans were acquired with the Duke Large field of view Optical CT Scanner (DLOS) and dose was reconstructed with 0.5mm isotropic voxel size. The measured radial dose factor matched the published fit to within 3% for radii between 0.5-3.0cm, and the anisotropy function matched to within 4% except for θ near 0° and 180° and radii >3cm. Further improvements in measurement accuracy may be achieved by optimizing dose, using the high dynamic range scanning capability of DLOS, and irradiating multiple dosimeters. Initial simulations indicate an 8 fold increase in dose is possible while still allowing sufficient light transmission during optical CT. A more comprehensive measurement may be achieved by increasing dosimeter size and flipping the source orientation between irradiations.

  5. Microhard MHX 2420 Orbital Performance Evaluation Using RT Logic T400CS

    NASA Technical Reports Server (NTRS)

    Kearney, Stuart; Lombardi, Mark; Attai, Watson; Oyadomari, Ken; Al Rumhi, Ahmed Saleh Nasser; Rakotonarivo, Sebastien; Chardon, Loic; Gazulla, Oriol Tintore; Wolfe, Jasper; Salas, AlbertoGuillen; DeWald, Jon; Alena, Richard

    2012-01-01

    A major upfront cost of building low cost Nanosatellites is the communications sub-system. Most radios built for space missions cost over $4,000 per unit. This exceeds many budgets. One possible cost effective solution is the Microhard MHX2420, a commercial off-the-shelf transceiver with a unit cost under $1000. This paper aims to support the Nanosatellite community seeking an inexpensive radio by characterizing Microhard's performance envelope. Though not intended for space operations, the ability to test edge cases and increase average data transfer speeds through optimization positions this radio as a solution for Nanosatellite communications by expanding usage to include more missions. The second objective of this paper is to test and verify the optimal radio settings for the most common cases to improve downlinking. All tests were conducted with the aid of the RT Logic T400CS, a hardware-in-the-loop channel simulator designed to emulate real-world radio frequency (RF) link effects. This study provides recommended settings to optimize the downlink speed as well as the environmental parameters that cause the link to fail.

  6. Chemical information on tank supernatants, Cs adsorption from tank liquids onto Hanford sediments, and field observations of Cs migration from past tank leaks

    SciTech Connect

    Serne, R.J.; Zachara, J.M.; Burke, D.S.

    1998-01-01

    Borehole gamma-logging profiles beneath the SX-Tank Farm suggest that contamination from Cs-137 extends to at least a depth of 40 m (130 ft), and may extend even deeper. What is presently not known is the pathway that Cs-137 has taken to reach these depths. In this report we provide an analysis of the chemistry of tank supernates with emphasis on the REDOX waste stream disposed in SX tanks, Cs chemistry in aqueous solutions and adsorption properties onto minerals, available data on Cs adsorption onto Hanford sediments, and information on Cs migration from other Hanford tank leaks that have been studied. The data in this report was used to help guide the vadose zone transport analysis of the SX Tank Farm presented in a companion report. The goal of the vadose zone transport modelling is to attempt to explain the depth and extent of the Cs-137 plume under the SX Tank farm, specifically in the vicinity of the greatest leak, near the SX-109 Tank as inferred from the gamma logs (DOE 1996). In solution Cs is present as the monovalent cation and shows very little tendency to form aqueous complexes with inorganic or organic ligands. Cs is expected to adsorb primarily onto selective minerals that have unique adsorption sites. The small Cs{sup +} ion is accommodated on these frayed edge and interlayer sites. Adsorption within the interlayers often leads to collapse of the layers such that the Cs{sup +} ion is effectively trapped and not readily exchangeable by all other common cations. The degree of adsorption is thus only moderately dependent on the types and high concentrations of other cations in leaking tank liquors.

  7. Switchable topological phonon channels

    NASA Astrophysics Data System (ADS)

    Süsstrunk, Roman; Zimmermann, Philipp; Huber, Sebastian D.

    2017-01-01

    Guiding energy deliberately is one of the central elements in engineering and information processing. It is often achieved by designing specific transport channels in a suitable material. Topological metamaterials offer a way to construct stable and efficient channels of unprecedented versatility. However, due to their stability it can be tricky to terminate them or to temporarily shut them off without changing the material properties massively. While a lot of effort was put into realizing mechanical topological metamaterials, almost no works deal with manipulating their edge channels in sight of applications. Here, we take a step in this direction, by taking advantage of local symmetry breaking potentials to build a switchable topological phonon channel.

  8. Selfcomplementary Quantum Channels

    NASA Astrophysics Data System (ADS)

    Smaczyński, Marek; Roga, Wojciech; Życzkowski, Karol

    2016-10-01

    Selfcomplementary quantum channels are characterized by such an interaction between the principal quantum system and the environment that leads to the same output states of both interacting systems. These maps can describe approximate quantum copy machines, as perfect copying of an unknown quantum state is not possible due to the celebrated no-cloning theorem. We provide here a parametrization of a large class of selfcomplementary channels and analyze their properties. Selfcomplementary channels preserve some residual coherences and residual entanglement. Investigating some measures of non-Markovianity, we show that time evolution under selfcomplementary channels is highly non-Markovian.

  9. Ion channels in asthma.

    PubMed

    Valverde, Miguel A; Cantero-Recasens, Gerard; Garcia-Elias, Anna; Jung, Carole; Carreras-Sureda, Amado; Vicente, Rubén

    2011-09-23

    Ion channels are specialized transmembrane proteins that permit the passive flow of ions following their electrochemical gradients. In the airways, ion channels participate in the production of epithelium-based hydroelectrolytic secretions and in the control of intracellular Ca(2+) levels that will ultimately activate almost all lung cells, either resident or circulating. Thus, ion channels have been the center of many studies aiming to understand asthma pathophysiological mechanisms or to identify therapeutic targets for better control of the disease. In this minireview, we focus on molecular, genetic, and animal model studies associating ion channels with asthma.

  10. High-T C superconductivity in Cs3C60 compounds governed by local Cs-C60 Coulomb interactions.

    PubMed

    Harshman, Dale R; Fiory, Anthony T

    2017-02-02

    Unique among alkali-doped A 3C60 fullerene compounds, the A15 and fcc forms of Cs3C60 exhibit superconducting states varying under hydrostatic pressure with highest transition temperatures at [Formula: see text]  =  38.3 and 35.2 K, respectively. Herein it is argued that these two compounds under pressure represent the optimal materials of the A 3C60 family, and that the C60-associated superconductivity is mediated through Coulombic interactions with charges on the alkalis. A derivation of the interlayer Coulombic pairing model of high-T C superconductivity employing non-planar geometry is introduced, generalizing the picture of two interacting layers to an interaction between charge reservoirs located on the C60 and alkali ions. The optimal transition temperature follows the algebraic expression, T C0  =  (12.474 nm(2) K)/ℓζ, where ℓ relates to the mean spacing between interacting surface charges on the C60 and ζ is the average radial distance between the C60 surface and the neighboring Cs ions. Values of T C0 for the measured cation stoichiometries of Cs3-x C60 with x  ≈  0 are found to be 38.19 and 36.88 K for the A15 and fcc forms, respectively, with the dichotomy in transition temperature reflecting the larger ζ and structural disorder in the fcc form. In the A15 form, modeled interacting charges and Coulomb potential e(2)/ζ are shown to agree quantitatively with findings from nuclear-spin relaxation and mid-infrared optical conductivity. In the fcc form, suppression of [Formula: see text] below T C0 is ascribed to native structural disorder. Phononic effects in conjunction with Coulombic pairing are discussed.

  11. Synthesis and optical properties of CsC1-doped gallium-sodium-sulfide glasses

    SciTech Connect

    Hehlen, Markus P; Bennett, Bryan L; Williams, Darrick J; Muenchausen, Ross E; Castro, Alonso; Tornga, Stephanie C

    2009-01-01

    Ga{sub 2}S{sub 3}-Na{sub 2}S (GNS) glasses doped with CsCl were synthesized in open crucibles under inert atmosphere. The evaporative loss of CsCl during glass melting was measured by energy dispersive X-ray spectroscopy and corrected for by biasing the CsCl concentration in the mixture of starting materials to obtain glasses with accurately controlled stoichiometry. Glass transition temperatures, refractive index dispersions, and band edge energies were measured for four GNS:CsCl glasses, and the respective values were found to significantly improve over earlier studies that did not mitigate CsCl evaporative losses. The refractive index dispersion measurements indicate that the Cs{sup +} and Cl{sup -} radii are 16% larger in GNS:CsCl glass than in bulk crystalline CsCl. The band edge energy increases from 2.97 eV in GNS glass to 3.32 eV in GNS glass doped with 20 mol% CsCl as a result of introducing Cl{sup -} ions having a large optical electronegativity. The large bandgap of 3.32 eV and the low (450 cm{sup -1}) phonon energy make GNS:20%CsCl an attractive host material for rare-earth ions with radiative transitions in the near ultra-violet, visible, and near-infrared spectral regions.

  12. Cesium power: low Cs(+) levels impart stability to perovskite solar cells.

    PubMed

    Deepa, Melepurath; Salado, Manuel; Calio, Laura; Kazim, Samrana; Shivaprasad, S M; Ahmad, Shahzada

    2017-02-01

    Towards increasing the stability of perovskite solar cells, the addition of Cs(+) is found to be a rational approach. Recently triple cation based perovskite solar cells were found to be more effective in terms of stability and efficiency. Heretofore they were unexplored, so we probed the Cs/MA/FA (cesium/methyl ammonium/formamidinium) cation based perovskites by X-ray photoelectron spectroscopy (XPS) and correlated their compositional features with their solar cell performances. The Cs(+) content was found to be optimum at 5%, when incorporated in the (MA0.15FA0.85)Pb(I0.85Br0.15)3 lattice, because the corresponding device yielded the highest fill factor compared to the perovskite without Cs(+) and with 10% Cs(+). XPS studies distinctly reveal how Cs(+) aids in maintaining the expected stoichiometric ratios of I : Pb(2+), I : N and Br : Pb(2+) in the perovskites, and how the valence band (VB) edge is dependent on the Cs(+) proportion, which in turn governs the open circuit voltage. Even at a low content of 5%, Cs(+) resides deep within the absorber layer, and ensures minimum distortion of the VB level (compared to 0% and 10% Cs(+) perovskites) upon Ar(+) sputtering, thus allowing the formation of a stable robust material that delivers excellent solar cell response. This study which brings out the role of Cs(+) is anticipated to be of paramount significance to further engineer the composition and improve device performances.

  13. CS-duration and partial-reinforcement effects counteract overshadowing in select situations.

    PubMed

    Urushihara, Kouji; Miller, Ralph R

    2007-11-01

    Two experiments used rats in a conditioned lick suppression preparation to investigate how the conditioned stimulus (CS)-duration and partial-reinforcement effects (i.e., weakened responding due to conditioning with a CS of longer duration and presenting nonreinforced CSs intermingled with CS-unconditioned stimulus [US] pairings, respectively) interact with overshadowing. Experiment 1 found that when overshadowing treatment was combined with either extended CS duration or partial reinforcement, the response deficit was weaker than when either of these three treatments was administered alone. In Experiment 2, the generality of the findings in Experiment 1 was investigated by replicating it with various US-US intervals. This time counteraction was observed only when both the absolute duration of total CS exposure and the US-US interval were short. The results support neither the view that the ratio between the total CS exposure and total time in the context determines the CS-duration and the partial-reinforcement effects nor the view that these two effects arise from a loss of effectiveness of the excitatory CS-US association during CS-alone exposures in partial reinforcement or early periods of CS exposure with long CSs.

  14. Thermodynamic stability of radiogenic Ba in CsAlSi2O6 pollucite

    NASA Astrophysics Data System (ADS)

    Jaffe, John; van Ginhoven, Renée; Jiang, Weilin

    2013-03-01

    Pollucite, a zeolite-like nanoporous aluminosilicate structure with nominal composition CsAlSi2O6, has been suggested as a nuclear waste storage form for fission-product radioactive isotopes of cesium, especially 137Cs. One factor affecting the long-term stability of this waste form is the valence change associated with the beta decay that converts Cs into barium. We have used first-principles density functional total energy calculations to evaluate the thermodynamic stability of pollucite with Ba replacing Cs at regular lattice sites with respect to the precipitation of Ba, Cs or their oxides. We included small clusters of substitutional BaCs as well as localized complexes of BaCs with compensating electron donor defects, specifically Cs vacancies and interstitial oxygen. We conclude that Cs-Ba pollucite is thermodynamically stable against precipitation of Cs or its oxide, but that partial precipitation of Ba or BaO may be thermodynamically favored under some conditions. Even this change may be kinetically limited, however. Fuel Cycle Research and Development, U.S. Department of Energy Waste Form Campaign

  15. Plasma formation in diode pumped alkali lasers sustained in Cs

    NASA Astrophysics Data System (ADS)

    Markosyan, Aram H.; Kushner, Mark J.

    2016-11-01

    In diode pumped alkali lasers (DPALs), lasing action occurs on the resonant lines of alkali atoms following pumping by broadband semiconductor lasers. The goal is to convert the efficient but usually poor optical quality of inexpensive diode lasers into the high optical quality of atomic vapor lasers. Resonant excitation of alkali vapor leads to plasma formation through the excitation transfer from the 2P states to upper lying states, which then are photoionized by the pump and intracavity radiation. A first principles global model was developed to investigate the operation of the He/Cs DPAL system and the consequences of plasma formation on the efficiency of the laser. Over a range of pump powers, cell temperatures, excitation frequency, and mole fraction of the collision mixing agent (N2 or C2H6), we found that sufficient plasma formation can occur that the Cs vapor is depleted. Although N2 is not a favored collisional mixing agent due to large rates of quenching of the 2P states, we found a range of pump parameters where laser oscillation may occur. The poor performance of N2 buffered systems may be explained in part by plasma formation. We found that during the operation of the DPAL system with N2 as the collisional mixing agent, plasma formation is in excess of 1014-1015 cm-3, which can degrade laser output intensity by both depletion of the neutral vapor and electron collisional mixing of the laser levels.

  16. CsI(Tl) for WIMP dark matter searches

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, V. A.; Spooner, N. J. C.; Tovey, D. R.; Roberts, J. W.; Lehner, M. J.; McMillan, J. E.; Lightfoot, P. K.; Lawson, T. B.; Peak, C. D.; Lüscher, R.; Barton, J. C.

    2001-01-01

    We report a study of CsI(Tl) scintillator to assess its applicability in experiments to search for dark matter particles. Measurements of the mean scintillation pulse shapes due to nuclear and electron recoils have been performed. We find that, as with NaI(Tl), pulse shape analysis can be used to discriminate between electron and nuclear recoils down to 4 keV. However, the discrimination factor is typically 10-15% better than in NaI(Tl) above 4 keV. The quenching factor for caesium and iodine recoils was measured and found to increase from 11% to ˜17% with decreasing recoil energy from 60 to 12 keV. Based on these results, the potential sensitivity of CsI(Tl) to dark matter particles in the form of neutralinos was calculated. We find an improvement over NaI(Tl) for the spin-independent WIMP-nucleon interactions up to a factor of 5 assuming comparable electron background levels in the two scintillators.

  17. Potential of largemouth bass as vectors of 137Cs dispersal.

    PubMed

    Paller, M H; Fletcher, D E; Jones, T; Dyer, S A; Isely, J J; Littrell, J W

    2005-01-01

    We conducted a radio telemetry study on the movements of potentially contaminated largemouth bass between Steel Creek, a restricted access (137)Cs contaminated stream on the Savannah River Site (located in South Carolina, USA), and the publicly accessible Savannah River. Largemouth bass were relatively mobile in lower Steel Creek and the portion of the Savannah River near Steel Creek, and there was considerable movement between these two habitats. Largemouth bass had home ranges of about 500 linear meters of shoreline in the Savannah River but sometimes moved long distances. Such movements occurred primarily during the spawning season, largely upstream, and increased when water levels were changing or elevated. However, approximately 90% of the largemouth bass observations were within 10 km of Steel Creek. The total quantity of (137)Cs transported into the Savannah River by largemouth bass was much less than transported by water and suspended sediments discharged from Steel Creek. We conclude that largemouth bass from the Savannah River Site are unlikely to be responsible for long distance dispersal of substantial radiological contamination in the Savannah River.

  18. Michelle and T-ReCS Monitoring of Classical Novae

    NASA Astrophysics Data System (ADS)

    Helton, L. Andrew; Woodward, Charles E.

    2009-08-01

    The Galactic cycle of chemical evolution depends upon the redistribution into the ambient interstellar medium (ISM) of elements synthesized by thermonuclear processes. Classical novae (CN) contribute to this cycle by deposition into the ISM of gas enriched through explosive nucleosynthesis and dust grains condensed in their envelopes providing the material from which the next generation of stars and planet grow. We propose to observe CNe in the mid-IR with Michelle and T-ReCS to determine the ejecta mass, the degree of elemental enrichment in the ejecta, the dust grain mineralogy, and the processes of dust grain grown and destruction. Michelle and T-ReCS observations fulfill these goals by providing high S/N data in which we can: 1.) measure H recombination, nebular, and coronal emission lines necessary to determine ejecta abundances and masses; 2.) measure prominent dust features from silicates and polycyclic aromatic hydrocarbons to track dust condensation, mass, grain size distribution, and processing; and 3.) estimate the energetics of the eruption providing insight into the underlying white dwarf and the eruption's contribution to the energy budget of the ISM. These observations will complement our extensive, on- going Chandra, Swift, and ground based optical and near-IR observing programs.

  19. MID-INFRARED VARIABILITY OF THE BINARY SYSTEM CS Cha

    SciTech Connect

    Nagel, Erick; Espaillat, Catherine; D'Alessio, Paola; Calvet, Nuria

    2012-03-10

    CS Cha is a binary system surrounded by a circumbinary disk. We construct a model for the inner disk regions and compare the resulting synthetic spectral energy distribution (SED) with Infrared Spectrograph spectra of CS Cha taken at two different epochs. For our model, we adopt a non-axisymmetric mass distribution from results of published numerical simulations of the interaction between a circumbinary disk and a binary system, where each star is surrounded by a disk. In particular, we approximate the streams of mass from which the inner circumstellar disks accrete from the circumbinary disk. This structure is due to the gravitational interaction of the stars with the disk, in which an array of disks and streams is formed in an inner hole. We calculate the temperature distribution of the optically thin dust in these inner regions considering the variable impinging radiation from both stars and use the observations to estimate the mass variations in the streams. We find that the SEDs for both epochs can be explained with emission from an optically thick inner edge of the circumbinary disk and from the optically thin streams that connect the circumbinary disk with the two smaller circumstellar disks. To the best of our knowledge, this is the first time that the emission from the optically thin material in the hole, suggested by the theory, is tested against observations of a binary system.

  20. Static electric field effects in photodetachment of Cs^-

    NASA Astrophysics Data System (ADS)

    Khuskivadze, Amiran; Fabrikant, Ilya; Thumm, Uwe

    2003-05-01

    We calculate near-threshold photodetachment cross sections for Cs^- in the presence of a dc electric field using three different approaches: the frame transformation method (i) including and (ii) not including the rescattering effect and (iii) the Kirchhoff integral approach^1. Radial wavefunctions for electron motion were obtained by using the Pauli-equation method with a model potential describing the effective electron-atom interaction^2. Our calculations show the inadequacy of the frame transformation method in the ^3P resonance region even for weak fields (<10 kV/cm). We show that the triplet and singlet contributions to the total cross section can be manipulated by variation of the electric field. This allows the controlled enhancement of the spin-orbit effects in the photodetachment process and creation of more favorable conditions for observations of the ^3P resonance in Cs^- and other negative ions, such as, e.g. Rb^- ^3. ^1I.I. Fabrikant, J. Phys. B 26, 2533 (1993). ^2C. Bahrim, U. Thumm, A. A. Khuskivadze, and I. I. Fabrikant, Phys. Rev. A 66, 052712 (2002). ^3C. Bahrim, U. Thumm, and I. I. Fabrikant, Phys. Rev. A 63, 042710 (2001).

  1. 137Cs inventory in semi-isolated basins of the western South Pacific

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Wang, Z.

    2007-12-01

    The main introduction routes of 137Cs into the Pacific Ocean are worldwide global fallout from atmospheric nuclear weapons testing and close-in fallout from U. S. tests conducted on the Bikini and Enewetak Atolls. The objectives of this study are to measure the 137Cs activities in water columns of the western South Pacific Ocean and to discuss the processes controlling the 137Cs inventory. The 137Cs activities were determined for seawater samples from the East Caroline, Coral Sea, New Hebrides, South Fiji and Tasman Sea Basins of the western South Pacific Ocean. The 137Cs activities in surface waters ranged from 1.7 Bq m- 3 in the Tasman Sea Basin to 2.3 Bq m-3 in the East Caroline Basin. The latitudinal 137Cs distributions in surface waters showed the opposite trend to the expected deposition density from global fallout. The distribution profiles of 137Cs activity at these six western South Pacific Ocean stations did not differ from each other significantly. The total 137Cs inventories in the western South Pacific Ocean ranged from 850 Bq m-2 in the Coral Sea Basin to 1270 Bq m-2 in the South Fiji Basin. Higher 137Cs inventories were observed at middle latitude stations in the subtropical gyre than at low latitude stations. The 137Cs inventories were 1.9 - 4.5 times higher than that of the expected deposition density of atmospheric global fallout at the same latitude. The possible sources of excess 137Cs inventories in the western South Pacific Ocean might be attributable to both the inter-hemisphere dispersion of the atmospheric nuclear weapons testing 137Cs from the northern stratosphere to the southern one and its subsequent deposition, and water- bearing transport of 137Cs from the North Pacific Ocean to the South Pacific.

  2. Kinetics and Thermochemistry of Reversible Adduct Formation in the Reaction of Cl((sup 2)P(sub J)) with CS2

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Shackelford, C. J.; Wine, P. H.

    1997-01-01

    Reversible adduct formation in the reaction of Cl((sup 2)P(sub J)) with CS2 has been observed over the temperature range 193-258 K by use of time-resolved resonance fluorescence spectroscopy to follow the decay of pulsed-laser-generated Cl((sup 2)P(sub J)) into equilbrium with CS2Cl. Rate coefficients for CS2Cl formation and decomposition have been determined as a function of temperature and pressure; hence, the equilbrium constant has been determined as a function of temperature. A second-law analysis of the temperature dependence of Kp and heat capacity corrections calculated with use of an assumed CS2Cl structure yields the following thermodynamic parameters for the association reaction: Delta-H(sub 298) = -10.5 +/- 0.5 kcal/mol, Delta-H(sub 0) = -9.5 +/- 0.7 kcal/mol, Delta-S(sub 298) = -26.8 +/- 2.4 cal/mol.deg., and Delta-H(sub f,298)(CS2Cl) = 46.4 +/- 0.6 kcal/mol. The resonance fluorescence detection scheme has been adapted to allow detection of Cl((sup 2)P(sub J)) in the presence of large concentrations of O2, thus allowing the CS2Cl + Cl + O2 reaction to be investigated. We find that the rate coefficient for CS2Cl + O2 reaction via all channels that do not generate Cl((sup 2)P(sub J)) is less than 2.5 x 10(exp-16) cu cm/(molecule.s) at 293 K and 300-Torr total pressure and that the total rate coefficient is less than 2 x 10 (exp -15) cu cm/(molecule.s) at 230 K and 30-Torr total pressure. Evidence for reversible adduct formation in the reaction of Cl((sup 2)P(sub J)) with COS was sought but not observed, even at temperatures as low as 194 K.

  3. A linearization of quantum channels

    NASA Astrophysics Data System (ADS)

    Crowder, Tanner

    2015-06-01

    Because the quantum channels form a compact, convex set, we can express any quantum channel as a convex combination of extremal channels. We give a Euclidean representation for the channels whose inverses are also valid channels; these are a subset of the extreme points. They form a compact, connected Lie group, and we calculate its Lie algebra. Lastly, we calculate a maximal torus for the group and provide a constructive approach to decomposing any invertible channel into a product of elementary channels.

  4. Ion channels in toxicology.

    PubMed

    Restrepo-Angulo, Iván; De Vizcaya-Ruiz, Andrea; Camacho, Javier

    2010-08-01

    Ion channels play essential roles in human physiology and toxicology. Cardiac contraction, neural transmission, temperature sensing, insulin release, regulation of apoptosis, cellular pH and oxidative stress, as well as detection of active compounds from chilli, are some of the processes in which ion channels have an important role. Regulation of ion channels by several chemicals including those found in air, water and soil represents an interesting potential link between environmental pollution and human diseases; for instance, de novo expression of ion channels in response to exposure to carcinogens is being considered as a potential tool for cancer diagnosis and therapy. Non-specific binding of several drugs to ion channels is responsible for a huge number of undesirable side-effects, and testing guidelines for several drugs now require ion channel screening for pharmaceutical safety. Animal toxins targeting human ion channels have serious effects on the population and have also provided a remarkable tool to study the molecular structure and function of ion channels. In this review, we will summarize the participation of ion channels in biological processes extensively used in toxicological studies, including cardiac function, apoptosis and cell proliferation. Major findings on the adverse effects of drugs on ion channels as well as the regulation of these proteins by different chemicals, including some pesticides, are also reviewed. Association of ion channels and toxicology in several biological processes strongly suggests these proteins to be excellent candidates to follow the toxic effects of xenobiotics, and as potential early indicators of life-threatening situations including chronic degenerative diseases.

  5. Quantifying sediment sources in a lowland agricultural catchment pond using (137)Cs activities and radiogenic (87)Sr/(86)Sr ratios.

    PubMed

    Le Gall, Marion; Evrard, Olivier; Foucher, Anthony; Laceby, J Patrick; Salvador-Blanes, Sébastien; Thil, François; Dapoigny, Arnaud; Lefèvre, Irène; Cerdan, Olivier; Ayrault, Sophie

    2016-10-01

    Soil erosion often supplies high sediment loads to rivers, degrading water quality and contributing to the siltation of reservoirs and lowland river channels. These impacts are exacerbated in agricultural catchments where modifications in land management and agricultural practices were shown to accelerate sediment supply. In this study, sediment sources were identified with a novel tracing approach combining cesium ((137)Cs) and strontium isotopes ((87)Sr/(86)Sr) in the Louroux pond, at the outlet of a lowland cultivated catchment (24km(2), Loire River basin, France) representative of drained agricultural areas of Northwestern Europe. Surface soil (n=36) and subsurface channel bank (n=17) samples were collected to characterize potential sources. Deposited sediment (n=41) was sampled across the entire surface of the pond to examine spatial variation in sediment deposits. In addition, a 1.10m sediment core was sampled in the middle of the pond to reconstruct source variations throughout time. (137)Cs was used to discriminate between surface and subsurface sources, whereas (87)Sr/(86)Sr ratios discriminated between lithological sources. A distribution modeling approach quantified the relative contribution of these sources to the sampled sediment. Results indicate that surface sources contributed to the majority of pond (μ 82%, σ 1%) and core (μ 88%, σ 2%) sediment with elevated subsurface contributions modeled near specific sites close to the banks of the Louroux pond. Contributions of the lithological sources were well mixed in surface sediment across the pond (i.e., carbonate sediment contribution, μ 48%, σ 1% and non-carbonate sediment contribution, μ 52%, σ 3%) although there were significant variations of these source contributions modeled for the sediment core between 1955 and 2013. These fluctuations reflect both the progressive implementation of land consolidation schemes in the catchment and the eutrophication of the pond. This original sediment

  6. Basaltic Lava Channels

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.; Griffiths, R. W.; Kerr, R. C.

    2004-12-01

    In Hawaii, the mode of lava transport - through open channels or through insulating lava tubes - determines the thermal, rheological, and emplacement history of a lava flow. Most Hawaiian lavas are erupted at near-liquidus temperatures and are therefore crystal-poor; lava transport through open channels allows rapid cooling and consequent rapid increases in lava crystallinity. Solidified aa flows resulting from channelized flow are typically fine-grained throughout their thickness, indicating cooling of the entire flow thickness during transport. In contrast, transport of lava through insulating tubes permits flow over long distances with little cooling. Flows emerging from such tubes typically have pahoehoe flow surfaces with glassy crusts. Groundmass textures that coarsen from the flow rind to the interior reflect rates of post-emplacement, rather than syn-emplacement, cooling. To distinguish eruption conditions that result in lava channels from those that allow formation of lava tubes, we have performed a series of laboratory experiments involving injection of PEG 600 (a wax with a Newtonian rheology and freezing temperature of 19ºC) into cold water through both uniform and non-uniform sloping channels. In uniform channels, tube formation can be distinguished from open channel flow using a dimensionless parameter based on a solidification time scale, an advection time scale, and a Rayleigh number that describes convection by heat loss from crust-free shear zones. Theoretical analysis predicts that in the open channel regime, the width of the crust (dc) will vary with the channel width (W) as dc = W5/3. Crustal coverage of non-uniform channels in both laboratory experiments and field examples from Kilauea Volcano, Hawaii, is consistent with this prediction. However, experiments in non-uniform channels illustrate additional controls on the surface coverage of lava channels. Most important is crustal extension resulting from flow acceleration through constrictions

  7. Reconstruction of 137Cs activity in the ocean following the Fukushima Daiichi Nuclear Power Plant Accident

    NASA Astrophysics Data System (ADS)

    Tsumune, Daisuke; Aoyama, Michio; Tsubono, Takaki; Tateda, Yutaka; Misumi, Kazuhiro; Hayami, Hiroshi; Toyoda, Yasuhiro; Maeda, Yoshiaki; Yoshida, Yoshikatsu; Uematsu, Mitsuo

    2014-05-01

    A series of accidents at the Fukushima Dai-ichi Nuclear Power Plant following the earthquake and tsunami of 11 March 2011 resulted in the release of radioactive materials to the ocean by two major pathways, direct release from the accident site and atmospheric deposition. We reconstructed spatiotemporal variability of 137Cs activity in the ocean by the comparison model simulations and observed data. We employed a regional scale and the North Pacific scale oceanic dispersion models, an atmospheric transport model, a sediment transport model, a dynamic biological compartment model for marine biota and river runoff model to investigate the oceanic contamination. Direct releases of 137Cs were estimated for more than 2 years after the accident by comparing simulated results and observed activities very close to the site. The estimated total amounts of directly released 137Cs was 3.6±0.7 PBq. Directly release rate of 137Cs decreased exponentially with time by the end of December 2012 and then, was almost constant. The daily release rate of 137Cs was estimated to be 3.0 x 1010 Bq day-1 by the end of September 2013. The activity of directly released 137Cs was detectable only in the coastal zone after December 2012. Simulated 137Cs activities attributable to direct release were in good agreement with observed activities, a result that implies the estimated direct release rate was reasonable, while simulated 137Cs activities attributable to atmospheric deposition were low compared to measured activities. The rate of atmospheric deposition onto the ocean was underestimated because of a lack of measurements of dose rate and air activity of 137Cs over the ocean when atmospheric deposition rates were being estimated. Observed 137Cs activities attributable to atmospheric deposition in the ocean helped to improve the accuracy of simulated atmospheric deposition rates. Although there is no observed data of 137Cs activity in the ocean from 11 to 21 March 2011, observed data of

  8. Behavior of 131I and 137Cs in environments released from the Fukushima nuclear disaster

    NASA Astrophysics Data System (ADS)

    Ohta, T.; Mahara, Y.; Kubota, T.; Igarashi, T.

    2011-12-01

    The devastating tsunami that caused by the great earthquake (M = 9.0) off the coast of northeastern Honshu on 11 March 2011 destroyed large coastal areas of Tohoku and north Kanto, Japan. Radionuclides, including 131I, 134Cs, and 137Cs, were released into the atmosphere from the Fukushima Daiichi plants. Concentration of levels of 131I, 134Cs, and 137Cs in Ibaraki Prefecture, Japan, released from the Fukushima Daiichi plant were investigated in the soil and precipitation. The concentrations of 131I and 137Cs in the soil from the surface to 1 cm depth in Ibaraki Prefecture were 9360-13,400 Bq/kg and 720-3250 Bq/kg, respectively. The concentration of 137Cs at this soil observation site originating from the Fukushima plant was 8.4 to 21 times that found locally after the Nagasaki atomic bomb explosion. Most of the 134Cs and 137Cs from rainwater were trapped by the surface soil and sand to a depth of 1 cm, whereas only about 30% of the 131I was collected by the surface soil, suggesting that 131I would move deeper than 137Cs and 134Cs. The 131I in the rainwater was in the anion exchangeable form, and all of it could be collected by anion exchangeable mechanisms, whereas 30% of the 131I that had passed through the soil could not be trapped by the anion exchange resin, suggesting that the chemical form of this 30% was in a changeable, organic-bound form. The 131I, 134Cs, and 137Cs that were absorbed on soil were difficult to be dissolved into water. As the half-life of 131I is short and 137Cs is strongly adsorbed on the surface soil and sand, these radionuclides would be unlikely to reach the groundwater before completely decaying; contamination of groundwater with 131I and 137Cs supplied from rainwater to the surface soil is therefore exceedingly unlikely. As the 137Cs is likely to migrate only 0.6 cm in 10 years, people living in the Fukushima and Kanto areas will be exposed to radiation from 137Cs in the surface soil and sand. For protection, surface soils and sands

  9. A trapped intracellular cation modulates K+ channel recovery from slow inactivation.

    PubMed

    Ray, Evan C; Deutsch, Carol

    2006-08-01

    Upon depolarization, many voltage-gated potassium channels undergo a time-dependent decrease in conductance known as inactivation. Both entry of channels into an inactivated state and recovery from this state govern cellular excitability. In this study, we show that recovery from slow inactivation is regulated by intracellular permeant cations. When inactivated channels are hyperpolarized, closure of the activation gate traps a cation between the activation and inactivation gates. The identity of the trapped cation determines the rate of recovery, and the ability of cations to promote recovery follows the rank order K+ > NH4+ > Rb+ > Cs+ > Na+, TMA. The striking similarity between this rank order and that for single channel conductance suggests that these two processes share a common feature. We propose that the rate of recovery from slow inactivation is determined by the ability of entrapped cations to move into a binding site in the channel's selectivity filter, and refilling of this site is required for recovery.

  10. Ion channels in microbes

    PubMed Central

    Martinac, Boris; Saimi, Yoshiro; Kung, Ching

    2008-01-01

    Summary Studies of ion channels have for long been dominated by the animalcentric, if not anthropocentric view of physiology. The structures and activities of ion channels had, however, evolved long before the appearance of complex multicellular organisms on Earth. The diversity of ion channels existing in cellular membranes of prokaryotes is a good example. Though at first it may appear as a paradox that most of what we know about the structure of eukaryotic ion channels is based on the structure of bacterial channels, this should not be surprising given the evolutionary relatedness of all living organisms and suitability of microbial cells for structural studies of biological macromolecules in a laboratory environment. Genome sequences of the human as well as various microbial, plant and animal organisms unambiguously established the evolutionary links, whereas crystallographic studies of the structures of major types of ion channels published over the last decade clearly demonstrated the advantage of using microbes as experimental organisms. The purpose of this review is not only to provide an account of acquired knowledge on microbial ion channels but also to show that the study of microbes and their ion channels may also hold a key to solving unresolved molecular mysteries in the future. PMID:18923187

  11. Ternary chalcogenides Cs2Zn3Se4 and Cs2Zn3Te4 : Potential p -type transparent conducting materials

    DOE PAGES

    Shi, Hongliang; Saparov, Bayrammurad; Singh, David J.; ...

    2014-11-11

    Here we report prediction of two new ternary chalcogenides that can potentially be used as p-type transparent conductors along with experimental synthesis and initial characterization of these previously unknown compounds, Cs2Zn3Ch4 (Ch = Se, Te). In particular, the structures are predicted based on density functional calculations and confirmed by experiments. Phase diagrams, electronic structure, optical properties, and defect properties of Cs2Zn3Se4 and Cs2Zn3Te4 are calculated to assess the viability of these materials as p-type TCMs. Cs2Zn3Se4 and Cs2Zn3Te4, which are stable under ambient air, display large optical band gaps (calculated to be 3.61 and 2.83 eV, respectively) and have smallmore » hole effective masses (0.5-0.77 me) that compare favorably with other proposed p-type TCMs. Defect calculations show that undoped Cs2Zn3Se4 and Cs2Zn3Te4 are p-type materials. However, the free hole concentration may be limited by low-energy native donor defects, e.g., Zn interstitials. Lastly, non-equilibrium growth techniques should be useful for suppressing the formation of native donor defects, thereby increasing the hole concentration.« less

  12. Isoelectronic caesium compounds: the triphosphenide Cs[tBu3SiPPPSitBu3] and the enolate Cs[OCH=CH2].

    PubMed

    Lerner, Hans-Wolfram; Sänger, Inge; Schödel, Frauke; Lorbach, Andreas; Bolte, Michael; Wagner, Matthias

    2008-02-14

    The caesium triphosphenide Cs[tBu3SiPPPSitBu3] was accessible from the reaction of CsF with the sodium triphosphenide Na[tBu3SiPPPSitBu3] in tetrahydrofuran at room temperature. In contrast to the preparation of tetrahydrofuran-solvated silanides M[SitBu3] (M = Li, Na, K), our efforts to synthesize the caesium silanide Cs[SitBu3] as a tetrahydrofuran complex failed. When tBu3SiBr was treated with an excess of caesium metal in tetrahydrofuran at room temperature, the caesium enolate Cs[OCH=CH2] and the supersilane tBu3SiH formed rather than the silanide Cs[SitBu3]. X-Ray quality crystals of the enolate Cs[OCH=CH2] (orthorhombic, Pnma) were obtained from tetrahydrofuran at ambient temperature. In contrast to the structures of its homologues M[tBu3SiPPPSitBu3] (M = Na, K), the caesium triphosphenide Cs[tBu3SiPPPSitBu3] features a polymer in the solid state (orthorhombic, Cmcm).

  13. Evidence for the involvement of a K+ channel in isosmotic cell shrinking in vestibular dark cells.

    PubMed

    Wangemann, P; Shiga, N; Welch, C; Marcus, D C

    1992-09-01

    Cell volume changes were measured in dark cells. Isosmotic addition of 21.4 mM K+, Rb+, Cs+, or NH4+ to a control solution containing 3.6 mM K+ caused piretanide-sensitive cell swelling (initial rate for K+, 0.100 +/- 0.005 microns/s; n = 119), suggesting dependence on the Na(+)-Cl(-)-K+ cotransporter. Subsequent isosmotic removal of 21.4 mM K+ caused piretanide-insensitive cell shrinking (initial rate, -0.104 +/- 0.005 microns/s; n = 119), which was inhibited by barium, lidocaine, quinidine, quinine, verapamil, and 4-aminopyridine but not tetraethylammonium (TEA) or glibenclamide, suggesting the involvement of K+ channel(s). Barium, lidocaine, quinine, quinidine, and 4-aminopyridine caused cell swelling in control solution (initial rate for barium, 0.011 +/- 0.004 microns/s; n = 6), suggesting that the K+ channel is also involved in efflux under control conditions. Cell shrinking was slowed by 21.4 mM extracellular K+, Rb+, or Cs+ but unaffected by Na+, Li+, TEA+, or NH4+ (all in the presence of piretanide and compared with N-methyl-D-glucamine), supporting the notion that the efflux mechanism is permeable to and/or inhibited by K+, Rb+, and Cs+. Cell shrinking was slowed by the presumed replacement of intracellular K+ by Cs+ but not by Rb+. Circumstantial evidence suggests that this putative K+ channel is present in the basolateral membrane. The physiological relevance of such a K+ channel might encompass regulatory volume decrease during K+ secretion.

  14. Uptake and elimination of 137Cs by climbing perch (Anabus testudineus).

    PubMed

    Malek, M A

    1999-12-01

    This work describes the uptake and retention/biological elimination of 137Cs by climbing perch (Anabus testudineus) under laboratory conditions. The accumulated 137Cs concentration in the whole body of the fish was measured at certain intervals up to 38 d. A significant accumulation of 137Cs was found, but a steady state accumulation of 137Cs was not achieved by the end of the experiment. The bioaccumulation factors and the distribution of the radionuclide in edible parts of the fish were determined. The effective half-life of 137Cs in the fish species was found to be approximately 147 d (average) for elderly and adult fishes and approximately 300 d for younger fishes. Accumulation of 137Cs in the edible parts of the fish was found to be approximately 77% of whole body accumulation.

  15. Athermalized channeled spectropolarimeter enhancement.

    SciTech Connect

    Jones, Julia Craven; Way, Brandyn Michael; Mercier, Jeffrey Alan; Hunt, Jeffery P.

    2013-09-01

    Channeled spectropolarimetry can measure the complete polarization state of light as a function of wavelength. Typically, a channeled spectropolarimeter uses high order retarders made of uniaxial crystal to amplitude modulate the measured spectrum with the spectrally-dependent Stokes polarization information. A primary limitation of conventional channeled spectropolarimeters is related to the thermal variability of the retarders. Thermal variation often forces frequent system recalibration, particularly for field deployed systems. However, implementing thermally stable retarders, made of biaxial crystal, results in an athermal channeled spectropolarimeter that relieves the need for frequent recalibration. This report presents experimental results for an anthermalized channeled spectropolarimeter prototype produced using potassium titanyl phosphate. The results of this prototype are compared to the current thermal stabilization state of the art. Finally, the application of the technique to the thermal infrared is studied, and the athermalization concept is applied to an infrared imaging spectropolarimeter design.

  16. The channels of Mars

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1982-01-01

    Early observations of Mars conducted by means of telescopes are considered. Secchi introduced the Italian word 'canale' ('channel') in 1869 to describe apparent lines on the planet's surface. Between 1877 and 1888 Schiaparelli mapped a profusion of 'canali'. Schiaparelli's work led to famous controversies about Mars. This book attempts to investigate the puzzle posed by the Martian channels, taking into account also the results of the studies conducted with the aid of the two orbiting Viking spacecraft which have produced a total number of nearly 60,000 pictures. The channel types are discussed along with questions regarding the distribution, the ages, and the proposed origins of the channels. Attention is given to the geomorphology of Mars, the patterns and networks of Martian valleys, ice and the Martian surface, the outflow channels, catastrophic flood processes, questions of analogy between terrestrial and Martian geographic features, and Martian phenomena associated with water liquid or water ice.

  17. Transfer factors and effective half-lives of (134)Cs and (137)Cs in different environmental sample types obtained from Northern Finland: case Fukushima accident.

    PubMed

    Koivurova, Matias; Leppänen, Ari-Pekka; Kallio, Antti

    2015-08-01

    The Fukushima NPP accident caused a small but detectable cesium fallout in northern Finland, of the order of 1 Bq/m(2). This fallout transferred further to soil, water, flora and fauna. By using modern HPGe detector systems traces of (134)Cs from the Fukushima fallout were observed in various samples of biota. In northern Finland different types of environmental samples such as reindeer meat, berries, fish, lichens and wolf were collected during 2011-2013. The observed (134)Cs concentrations varied from 0.1 Bq/kg to a few Bq/kg. By using the known (134)Cs/(137)Cs ratio observed in Fukushima fallout the increase of the Fukushima accident to the (137)Cs concentrations was found to vary from 0.06 % to 6.9 % depending on the sample type. The aggregated transfer factors (Tag) and effective half-lives (Teff) for (134)Cs and (137)Cs were also determined and then compared with known values found from earlier studies which are calculated based on the fallout from the Chernobyl accident. Generally, the Tag and Teff values determined in this study were found to agree with the values found in the earlier studies. The Teff values were sample-type specific and were found to vary from 0.91 to 2.1 years for (134)Cs and the estimates for (137)Cs ranged between 1.6 and 19 years. Interestingly, the ground lichens had the longest Teff whereas the beard lichen had the shortest. In fauna, highest Tag values were determined for wolf meat ranging between 1.0 and 2.2 m(2)/kg. In flora, the highest Tag values were determined for beard lichens, ranging from 1.9 m(2)/kg to 3.5 m(2)/kg.

  18. A CS1 pedagogical approach to parallel thinking

    NASA Astrophysics Data System (ADS)

    Rague, Brian William

    Almost all collegiate programs in Computer Science offer an introductory course in programming primarily devoted to communicating the foundational principles of software design and development. The ACM designates this introduction to computer programming course for first-year students as CS1, during which methodologies for solving problems within a discrete computational context are presented. Logical thinking is highlighted, guided primarily by a sequential approach to algorithm development and made manifest by typically using the latest, commercially successful programming language. In response to the most recent developments in accessible multicore computers, instructors of these introductory classes may wish to include training on how to design workable parallel code. Novel issues arise when programming concurrent applications which can make teaching these concepts to beginning programmers a seemingly formidable task. Student comprehension of design strategies related to parallel systems should be monitored to ensure an effective classroom experience. This research investigated the feasibility of integrating parallel computing concepts into the first-year CS classroom. To quantitatively assess student comprehension of parallel computing, an experimental educational study using a two-factor mixed group design was conducted to evaluate two instructional interventions in addition to a control group: (1) topic lecture only, and (2) topic lecture with laboratory work using a software visualization Parallel Analysis Tool (PAT) specifically designed for this project. A new evaluation instrument developed for this study, the Perceptions of Parallelism Survey (PoPS), was used to measure student learning regarding parallel systems. The results from this educational study show a statistically significant main effect among the repeated measures, implying that student comprehension levels of parallel concepts as measured by the PoPS improve immediately after the delivery of

  19. REMOVAL OF 137Cs FROM DISSOLVED HANFORD TANK SALTCAKE BY TREATMENT WITH IONSIV IE-911

    SciTech Connect

    Rapko, Brian M.; Sinkov, Serguei I.; Levitskaia, Tatiana G.

    2005-03-01

    This paper describes the preparation of a 137Cs-depleted form of dissolved Hanford tank saltcake. A composite feed solution was treated with IONSIV{reg_sign} IE-911, which effectively reduced the concentration of 137Cs. This allowed for subsequent testing of waste immobilization without significant radiological hazard. Limited characterization of the initial feed solution and a more extensive characterization of the 137Cs-depleted material also are provided.

  20. Radioactive Cs in the estuary sediments near Fukushima Daiichi Nuclear Power Plant.

    PubMed

    Yamasaki, Shinya; Imoto, Junpei; Furuki, Genki; Ochiai, Asumi; Ohnuki, Toshihiko; Sueki, Keisuke; Nanba, Kenji; Ewing, Rodney C; Utsunomiya, Satoshi

    2016-05-01

    The migration and dispersion of radioactive Cs (mainly (134)Cs and (137)Cs) are of critical concern in the area surrounding the Fukushima Daiichi Nuclear Power Plant (FDNPP). Considerable uncertainty remains in understanding the properties and dynamics of radioactive Cs transport by surface water, particularly during rainfall-induced flood events to the ocean. Physical and chemical properties of unique estuary sediments, collected from the Kuma River, 4.0km south of the FDNPP, were quantified in this study. These were deposited after storm events and now occur as dried platy sediments on beach sand. The platy sediments exhibit median particle sizes ranging from 28 to 32μm. There is increasing radioactivity towards the bottom of the layers deposited; approximately 28 and 38Bqg(-1) in the upper and lower layers, respectively. The difference in the radioactivity is attributed to a larger number of particles associated with radioactive Cs in the lower part of the section, suggesting that radioactive Cs in the suspended soils transported by surface water has decreased over time. Sequential chemical extractions showed that ~90% of (137)Cs was strongly bound to the residual fraction in the estuary samples, whereas 60~80% of (137)Cs was bound to clays in the six paddy soils. This high concentration in the residual fraction facilitates ease of transport of clay and silt size particles through the river system. Estuary sediments consist of particles <100μm. Radioactive Cs desorption experiments using the estuary samples in artificial seawater revealed that 3.4±0.6% of (137)Cs was desorbed within 8h. More than 96% of (137)Cs remained strongly bound to clays. Hence, particle size is a key factor that determines the travel time and distance during the dispersion of (137)Cs in the ocean.

  1. Experimental observation of structural phase transition in CsBr clusters

    NASA Astrophysics Data System (ADS)

    Hautala, L.; Jänkälä, K.; Löytynoja, T.; Mikkelä, M.-H.; Prisle, N.; Tchaplyguine, M.; Huttula, M.

    2017-01-01

    Formation and growth of CsBr clusters embedded in unsupported Ar clusters was studied using synchrotron radiation photoelectron spectroscopy. The development of the core-level electronic structure for cluster sizes between a few and a few hundred atoms contained information about the local coordination of the constituent particles. The experimental results indicate that a gradual structural phase transition from NaCl structure to CsCl structure for CsBr clusters takes place at around 160 atoms per cluster.

  2. Determination of the amount of Cs-137 in the sea water obtained from the Dardanelles

    NASA Astrophysics Data System (ADS)

    Ataseven, D.; Şen, S.

    2017-02-01

    After the Chernobyl accident, high concentrations of Cs-137 radioisotope reached the Black Sea through dry and wet fallout. Therefore, a number of studies were performed to determine the current activity of Cs-137 near this region in the sea water and in marine organisms. Cs-137 activity was determined in the Dardanelles sea water taken from three separate locations and two different depths for each location. The old data base obtained in our previous studies was updated.

  3. Functional Characterization of Cnidarian HCN Channels Points to an Early Evolution of Ih

    PubMed Central

    Baker, Emma C.; Layden, Michael J.; van Rossum, Damian B.; Kamel, Bishoy; Medina, Monica; Simpson, Eboni; Jegla, Timothy

    2015-01-01

    HCN channels play a unique role in bilaterian physiology as the only hyperpolarization-gated cation channels. Their voltage-gating is regulated by cyclic nucleotides and phosphatidylinositol 4,5-bisphosphate (PIP2). Activation of HCN channels provides the depolarizing current in response to hyperpolarization that is critical for intrinsic rhythmicity in neurons and the sinoatrial node. Additionally, HCN channels regulate dendritic excitability in a wide variety of neurons. Little is known about the early functional evolution of HCN channels, but the presence of HCN sequences in basal metazoan phyla and choanoflagellates, a protozoan sister group to the metazoans, indicate that the gene family predates metazoan emergence. We functionally characterized two HCN channel orthologs from Nematostella vectensis (Cnidaria, Anthozoa) to determine which properties of HCN channels were established prior to the emergence of bilaterians. We find Nematostella HCN channels share all the major functional features of bilaterian HCNs, including reversed voltage-dependence, activation by cAMP and PIP2, and block by extracellular Cs+. Thus bilaterian-like HCN channels were already present in the common parahoxozoan ancestor of bilaterians and cnidarians, at a time when the functional diversity of voltage-gated K+ channels was rapidly expanding. NvHCN1 and NvHCN2 are expressed broadly in planulae and in both the endoderm and ectoderm of juvenile polyps. PMID:26555239

  4. The effect of channelization on floodplain sediment deposition and subsidence along the Pocomoke River, Maryland

    USGS Publications Warehouse

    Kroes, D.E.; Hupp, C.R.

    2010-01-01

    The nontidal Pocomoke River was intensively ditched and channelized by the mid-1900s. In response to channelization; channel incision, head-cut erosion, and spoil bank perforation have occurred in this previously nonalluvial system. Six sites were selected for study of floodplain sediment dynamics in relation to channel condition. Short- and long-term sediment deposition/subsidence rates and composition were determined. Short-term rates (four years) ranged from 0.6 to 3.6 mm/year. Long-term rates (15-100+ years) ranged from -11.9 to 1.7 mm/year. 137Cs rates (43 years) indicate rates of 0.24 to 7.4 mm/year depending on channel condition. Channelization has limited contact between streamflow and the floodplain, resulting in little or no sediment retention in channelized reaches. Along unchannelized reaches, extended contact and depth of river water on the floodplain resulted in high deposition rates. Drainage of floodplains exposed organic sediments to oxygen resulting in subsidence and releasing stored carbon. Channelization increased sediment deposition in downstream reaches relative to the presettlement system. The sediment storage function of this river has been dramatically altered by channelization. Results indicate that perforation of spoil banks along channelized reaches may help to alleviate some of these issues. ?? 2010 American Water Resources Association. No claim to original U.S. government works.

  5. Inferring the chemical form of 137Cs deposited by the Fukushima Dai-ichi Nuclear Power Plant accident by measuring (137)Cs incorporated into needle leaves and male cones of Japanese cedar trees.

    PubMed

    Kanasashi, Tsutomu; Takenaka, Chisato; Sugiura, Yuki

    2016-05-15

    We hypothesized that the water-soluble (ionic) and water-insoluble (stable) radiocesium from the initial fallout of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident was distributed in various proportions in the surrounding areas and that this distribution was reflected in the trees that suffered deposition from the initial fallout. This study attempted to evaluate local variations in the chemical form of (137)Cs derived from the initial fallout of the FDNPP accident and whether its chemical form affected the radiocesium concentration in the tissues currently growing in trees, even after the initial fallout ceased. For these estimations, the ratio between the (137)Cs concentration in Cryptomeria japonica needle leaves in the tree crown, which existed before the FDNPP accident and subsequently directly exposed to the initial fallout ((137)Cs pre-accident N), and the amount of (137)Cs in the initial fallout itself ((137)Cs fallout) was determined ((137)Cs pre-accident N/(137)Cs fallout) at 66 sites. In addition, the (137)Cs ratios between the male cones produced in 2012 ((137)Cs male cone) and needle leaves that had elongated in the spring of 2011 ((137)Cs 2011N) was determined at 82 sites ((137)Cs male cone/(137) Cs 2011N). Most of the sites with lower (137)Cs pre-accident N /(137)Cs fallout ratios were distributed in eastern Fukushima, relatively close to the Pacific Ocean coastline. Lower (137)Cs pre-accident N/(137)Cs fallout and higher (137)Cs malecone/(137)Cs 2011N were found to be associated with higher proportions of (137)Cs in ionic forms. These observations are consistent with the hypothesis, and likely reflect regional variations in the chemical form of the deposited radiocesium.

  6. Different cucumber CsYUC genes regulate response to abiotic stresses and flower development

    PubMed Central

    Yan, Shuangshuang; Che, Gen; Ding, Lian; Chen, Zijing; Liu, Xiaofeng; Wang, Hongyin; Zhao, Wensheng; Ning, Kang; Zhao, Jianyu; Tesfamichael, Kiflom; Wang, Qian; Zhang, Xiaolan

    2016-01-01

    The phytohormone auxin is essential for plant growth and development, and YUCCA (YUC) proteins catalyze a rate-limiting step for endogenous auxin biosynthesis. Despite YUC family genes have been isolated from several species, systematic expression analyses of YUCs in response to abiotic stress are lacking, and little is known about the function of YUC homologs in agricultural crops. Cucumber (Cucumis sativus L.) is a world cultivated vegetable crop with great economical and nutritional value. In this study, we isolated 10 YUC family genes (CsYUCs) from cucumber and explored their expression pattern under four types of stress treatments. Our data showed that CsYUC8 and CsYUC9 were specifically upregulated to elevate the auxin level under high temperature. CsYUC10b was dramatically increased but CsYUC4 was repressed in response to low temperature. CsYUC10a and CsYUC11 act against the upregulation of CsYUC10b under salinity stress, suggesting that distinct YUC members participate in different stress response, and may even antagonize each other to maintain the proper auxin levels in cucumber. Further, CsYUC11 was specifically expressed in the male flower in cucumber, and enhanced tolerance to salinity stress and regulated pedicel and stamen development through auxin biosynthesis in Arabidopsis. PMID:26857463

  7. Half metallic ferromagnetism in alkali metal nitrides MN (M = Rb, Cs): A first principles study

    SciTech Connect

    Murugan, A. Rajeswarapalanichamy, R. Santhosh, M. Sudhapriyanga, G.; Kanagaprabha, S.

    2014-04-24

    The structural, electronic and elastic properties of two alkali metal nitrides (MN: M= Rb, Cs) are investigated by the first principles calculations based on density functional theory using the Vienna ab-initio simulation package. At ambient pressure the two nitrides are stable in ferromagnetic state with CsCl structure. The calculated lattice parameters are in good agreement with the available results. The electronic structure reveals that these materials are half metallic in nature. A pressure-induced structural phase transition from CsCl to ZB phase is observed in RbN and CsN.

  8. Photoluminescence and photostimulated luminescence of oxygen impurities in CsBr

    SciTech Connect

    Appleby, G. A.; Zimmermann, J.; Hesse, S.; Seggern, H. von

    2011-01-01

    Oxygen impurities have been detected in undoped CsBr by photoluminescence (PL) spectroscopy and their contribution to photostimulated luminescence (PSL) properties of powdered CsBr is discussed. When excited at 200 nm, PL is observed from CsBr which consists of three separate emission peaks. The intrinsic luminescence of CsBr at 379 nm is accompanied by two emission peaks at 395 and 460 nm which arise from oxygen impurities, the latter of which is also PSL active following x-irradiation. Sintering of CsBr with the reducing agent NH{sub 4}Br removes the oxygen impurities so that the 395 and 460 nm emissions are no longer detectable, and subsequently the PSL emission is significantly reduced. PSL storage time measurements of these materials show that oxygen impurities favorably increase both the PSL sensitivity and radiation induced charge-center stability in CsBr:Eu{sup 2+}. The oxygen impurities and their associated luminescence properties can be reintroduced to the CsBr matrix with a controlled concentration by doping with CsOH and then subsequently sintering the resultant CsBr:OH{sup -} with NH{sub 4}Br, which in this system reduces the OH{sup -} centers to O{sup 2-}.

  9. Molecular Simulation of Interlayer Structure and Dynamics in 12.4 Å Cs-Smectite Hydrates.

    PubMed

    Sutton, Rebecca; Sposito, Garrison

    2001-05-15

    A detailed understanding of hydrated Cs-smectites is necessary to predict the permeability of clay liners to radiocesium cations at nuclear waste containment facilities. Monte Carlo (MC) and molecular dynamics (MD) modeling techniques were applied to three representative Cs-smectites to interpret a variety of experimental data on interlayer structure and dynamics. Spectroscopic and surface chemistry methods that attempt to differentiate interlayer water from water residing in micropores have provided data suggesting that, in stable 12.4 Å Cs-smectite hydrates, the interlamellar water content is less than one-half monolayer. Convergence profiles in MC simulations predicted stable hydrates at interlayer water contents of 1/3 or possibly 2/3 water monolayer. Radial distribution functions and coordination number data illustrated the ability of Cs(+) to organize water molecules into partial hydration shells and displayed the distortions of water structure induced by the clay surface. Molecular dynamics simulations of the MC-stable Cs-smectites revealed interlayer Cs(+) to be strongly bound as innersphere surface complexes, in agreement with published bulk diffusion coefficients. The strongly adsorbed Cs(+) can be associated with one of the species identified in (133)Cs NMR spectroscopic studies of hydrated Cs-smectites. These cations typically exhibited jump diffusion, whereas continuous diffusion of H(2)O occurred. Copyright 2001 Academic Press.

  10. Synchrotron radiation photoemission study of the ultrathin Cs/InN interface

    NASA Astrophysics Data System (ADS)

    Benemanskaya, G. V.; Lapushkin, M. N.; Timoshnev, S. N.; Nelubov, A. V.

    2015-09-01

    Electronic structure of the ultrathin Cs/n-InN interface has been studied in situ via synchrotron-based photoemission spectroscopy by excitation in the energy range of 70-400 eV. Changes in the In 4d, Cs 4d, Cs 5p, N 2s core level spectra and in the surface state spectra have been revealed under different cesium coverages. The intrinsic surface state for the clean InN surface at binding energy of 2.5 eV (SS1) is found to attenuate during the Cs adsorption. Simultaneously the Cs induced surface state at binding energy of 0.9 eV (SS2) arises. For the Cs/InN interface, the In 4d peak displays the strong core level shift and the appearance of an additional In 4d peak originated from In-Cs interface bonding. Change in the surface electronic structure of the InN caused by Cs adsorption is found to originate predominantly from suppression of the intrinsic surface state concerned with the local interaction of In dangling bonds and Cs adatoms.

  11. Evidence for octupole excitations in the odd-odd neutron-rich nucleus {sup 142}Cs

    SciTech Connect

    Liu, S. H.; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Luo, Y. X.; Rasmussen, J. O.; Zhu, S. J.; Ma, W. C.; Daniel, A. V.; Ter-Akopian, G. M.

    2010-05-15

    High-spin states in the neutron-rich nucleus {sup 142}Cs are reinvestigated from a study of the spontaneous fission of {sup 252}Cf with the Gammasphere detector array. A new level scheme is built and spin-parities are assigned to levels based on angular correlation measurements and systematics. The new structure of {sup 142}Cs is proposed to be related to octupole correlations. The electric dipole moment of {sup 142}Cs is measured and a dramatic decrease of the dipole moments with increasing neutron numbers in the Cs isotopic chain is found.

  12. An exploratory study of recycled sputtering and CsF2- current enhancement for AMS

    NASA Astrophysics Data System (ADS)

    Zhao, X.-L.; Charles, C. R. J.; Cornett, R. J.; Kieser, W. E.; MacDonald, C.; Kazi, Z.; St-Jean, N.

    2016-01-01

    The analysis of 135Cs/Cs ratios at levels below 10-12 by accelerator mass spectrometry (AMS) would preferably use commonly available negative ion injection systems. The sputter ion sources in these injectors should ideally produce currents of Cs- or Cs-containing molecular anions approaching μA levels from targets containing mg quantities of Cs. However, since Cs is the most electro-positive stable element in nature with a low electron affinity, the generation of large negative atomic, or molecular beams containing Cs, has been very challenging. In addition, the reduction of the interferences from the 135Ba isobar and the primary 133Cs+ beam used for sputtering are also necessary. The measurement of a wide range of the isotope ratios also requires the ion source memory of previous samples be minimized. This paper describes some progresses towards a potential solution of all these problems by recycled sputtering using fluorinating targets of PbF2 with mg CsF mixed in. The problems encountered indicate that considerable further studies and some redesign of the present ion sources will be desirable.

  13. Experimental investigation of the influence of Mo contained in stainless steel on Cs chemisorption behavior

    NASA Astrophysics Data System (ADS)

    Di Lemma, F. G.; Nakajima, K.; Yamashita, S.; Osaka, M.

    2017-02-01

    Chemisorption phenomena can affect fission products (FP) retention in a nuclear reactor vessel during a severe accident (SA). Detailed information on the FP chemisorbed deposits, especially for Cs, are important for a rational decommissioning of the reactor following a SA, as for the Fukushima Daiichi Power Station. Moreover the retention of Cs will influence the source term assessment and thus improved models for this phenomenon are needed in SA codes. This paper describes the influence on Cs chemisorption of molybdenum contained in stainless steel (SS) type 316. In our experiments it was observed that Cs-Mo deposits (CsFe(MoO4)3, Cs2MoO4) were formed together with CsFeSiO4, which is the predominant compound formed by chemisorption. The Cs-Mo deposits were found to revaporize from the SS sample at 1000 °C, and thus could contribute to the source term. On the other hand, CsFeSiO4 will be probably retained in the reactor during a SA due to its stability.

  14. Transcranial current brain stimulation (tCS): models and technologies.

    PubMed

    Ruffini, Giulio; Wendling, Fabrice; Merlet, Isabelle; Molaee-Ardekani, Behnam; Mekonnen, Abeye; Salvador, Ricardo; Soria-Frisch, Aureli; Grau, Carles; Dunne, Stephen; Miranda, Pedro C

    2013-05-01

    In this paper, we provide a broad overview of models and technologies pertaining to transcranial current brain stimulation (tCS), a family of related noninvasive techniques including direct current (tDCS), alternating current (tACS), and random noise current stimulation (tRNS). These techniques are based on the delivery of weak currents through the scalp (with electrode current intensity to area ratios of about 0.3-5 A/m2) at low frequencies (typically < 1 kHz) resulting in weak electric fields in the brain (with amplitudes of about 0.2-2 V/m). Here we review the biophysics and simulation of noninvasive, current-controlled generation of electric fields in the human brain and the models for the interaction of these electric fields with neurons, including a survey of in vitro and in vivo related studies. Finally, we outline directions for future fundamental and technological research.

  15. 137Cs uptake with cafeteria food after the Chernobyl accident

    SciTech Connect

    Voigt, G.; Paretzke, H.G. )

    1992-11-01

    After the Chernobyl accident, the activity concentrations of radiocesium were measured in both the meals served at the cafeteria of a research center and in the employees eating there. The time-dependent means of monthly 137Cs activities in meals and people show a similar distribution pattern with highest values between March and July 1987, i.e., only 1 y after the accident. In meals, the highest activities were found when the menu consisted of pork, milk, or milk products. The 50-y cumulative effective dose calculated from the whole-body measurements is 0.21 mSv for male and 0.15 mSv for female employees. Cafeteria food contributed only a small share to this exposure.

  16. Recent 137Cs deposition in sediments of Admiralty Bay, Antarctica.

    PubMed

    Sanders, Christian J; Santos, Isaac R; Patchineelam, Sambasiva R; Schaefer, Carlos; Silva-Filho, Emmanoel V

    2010-05-01

    Cesium-137, radium-226 and lead-210 profiles of a 25 cm sediment core give an indication of recent changes in land-ocean interactions at a polar coastal environment (Admiralty Bay, King George Island, Antarctica). The linear sedimentation accumulation rate at the study site calculated from the unsupported (210)Pb profile was 6.7 mm/year from 1965 to 2005. A 3.5-fold increase in (137)Cs concentrations was observed in the top layer of this sediment core. This sharp increase seems to indicate a recent redistribution of fallout radionuclides previously deposited on soil, vegetation and snow. These results imply enhanced land-ocean interactions at this site likely as a result of climate change. Because our results are based on a single core, additional investigations are needed to confirm our observations.

  17. Experimental Studies of Interacting Electronic States in NaCs

    NASA Astrophysics Data System (ADS)

    Faust, Carl E.

    This dissertation describes methods and results of spectroscopic studies of the NaCs molecule. NaCs is of particular interest in many labs where experimental studies of ultra-cold molecules are being conducted. Data obtained in the present work will also be useful as benchmarks for various theoretical calculations. Our goals in studying this molecule were to map out high lying electronic states and to understand how these states interact with one another. Sodium and cesium metal were heated in a heat-pipe oven to form a vapor of NaCs molecules. These molecules were excited using narrow band, continuous wave (cw), tunable lasers. We employed the optical-optical double resonance (OODR) technique to obtain Doppler-free spectra of transitions to rotational and vibrational levels of high lying electronic states. One state of particular interest was the 12(0+) electronic state. Rovibrational level energies corresponding to this state were measured and used to generate a potential energy curve using computer programs to implement both the Rydberg-Klein-Rees (RKR) method and the inverted perturbation approach (IPA). By observing fluorescence from the 12(0+) state resolved as a function of wavelength, we determined that this state interacts with the nearby 11(0+) electronic state, which was previously mapped out by Ashman et al. A two-stage coupling model was devised to describe the resolved fluorescence originating from these two interacting states. The electronic states interact via spin-orbit coupling, while the individual rovibrational levels interact via a second mechanism, likely nonadiabatic coupling. This two-stage coupling between the levels of these states causes quantum interference between fluorescence pathways associated with different components of the wavefunctions describing these levels. This interference results in more complicated resolved fluorescence spectra. The model was used to fit parameters describing these interactions so that the resolved

  18. Magic wavelengths, matrix elements, polarizabilities, and lifetimes of Cs

    NASA Astrophysics Data System (ADS)

    Safronova, M. S.; Safronova, U. I.; Clark, Charles W.

    2016-07-01

    Motivated by recent interest in their applications, we report a systematic study of Cs atomic properties calculated by a high-precision relativistic all-order method. Excitation energies, reduced matrix elements, transition rates, and lifetimes are determined for levels with principal quantum numbers n ≤12 and orbital angular momentum quantum numbers l ≤3 . Recommended values and estimates of uncertainties are provided for a number of electric-dipole transitions and the electric dipole polarizabilities of the n s , n p , and n d states. We also report a calculation of the electric quadrupole polarizability of the ground state. We display the dynamic polarizabilities of the 6 s and 7 p states for optical wavelengths between 1160 and 1800 nm and identify corresponding magic wavelengths for the 6 s -7 p1 /2 and 6 s -7 p3 /2 transitions. The values of relevant matrix elements needed for polarizability calculations at other wavelengths are provided.

  19. Compact DEMO, SlimCS: design progress and issues

    NASA Astrophysics Data System (ADS)

    Tobita, K.; Nishio, S.; Enoeda, M.; Kawashima, H.; Kurita, G.; Tanigawa, H.; Nakamura, H.; Honda, M.; Saito, A.; Sato, S.; Hayashi, T.; Asakura, N.; Sakurai, S.; Nishitani, T.; Ozeki, T.; Ando, M.; Ezato, K.; Hamamatsu, K.; Hirose, T.; Hoshino, T.; Ide, S.; Inoue, T.; Isono, T.; Liu, C.; Kakudate, S.; Kawamura, Y.; Mori, S.; Nakamichi, M.; Nishi, H.; Nozawa, T.; Ochiai, K.; Ogiwara, H.; Oyama, N.; Sakamoto, K.; Sakamoto, Y.; Seki, Y.; Shibama, Y.; Shimizu, K.; Suzuki, S.; Takahashi, K.; Tanigawa, H.; Tsuru, D.; Yamanishi, T.; Yoshida, T.

    2009-07-01

    The design progress in a compact low aspect ratio (low A) DEMO reactor, 'SlimCS', and its design issues are reported. The design study focused mainly on the torus configuration including the blanket, divertor, materials and maintenance scheme. For continuity with the Japanese ITER-TBM, the blanket is based on a water-cooled solid breeder blanket. For vertical stability of the elongated plasma and high beta access, the blanket is segmented into replaceable and permanent blankets and a sector-wide conducting shell is arranged inbetween these blankets. A numerical calculation indicates that fuel self-sufficiency can be satisfied when the blanket interior is ideally fabricated. An allowable heat load to the divertor plate should be 8 MW m-2 or lower, which can be a critical constraint for determining a handling power of DEMO.

  20. Intermolecular potential energy surface for CS2 dimer.

    PubMed

    Farrokhpour, Hossein; Mombeini, Zainab; Namazian, Mansoor; Coote, Michelle L

    2011-04-15

    A new four-dimensional intermolecular potential energy surface for CS(2) dimer is obtained by ab initio calculation of the interaction energies for a range of configurations and center-of-mass separation distances for the first time. The calculations were performed using the supermolecular approach at the Møller-Plesset second-order perturbation (MP2) level of theory with the augmented correlation consistent basis sets (aug-cc-pVxZ, x = D, T) and corrected for the basis-set superposition error using the full counterpoise correction method. A two-point extrapolation method was used to extrapolate the calculated energy points to the complete basis set limit. The effect of using the higher levels of theory, quadratic configuration interaction containing single, double, and perturbative triple excitations QCISD(T) and coupled cluster singles, doubles and perturbative triples excitations CCSD(T), on the shape of potential energy surface was investigated. It is shown that the MP2 level of theory apparently performs extremely poorly for describing the intermolecular potential energy surface, overestimating the total energy by a factor of nearly 1.73 in comparison with the QCISD(T) and CCSD(T) values. The value of isotropic dipole-dipole dispersion coefficient (C(6) ) of CS(2) fluid was obtained from the extrapolated MP2 potential energy surface. The MP2 extrapolated energy points were fitted to well-known analytical potential functions using two different methods to represent the potential energy surface analytically. The most stable configuration of the dimer was determined at R = 6.23 au, α = 90°, β = 90°, and γ = 90°, with a well depth of 3.980 kcal mol(-1) at the MP2 level of theory. Finally, the calculated second virial coefficients were compared with experimental values to test the quality of the presented potential energy surface.

  1. Assay for calcium channels

    SciTech Connect

    Glossmann, H.; Ferry, D.R.

    1985-01-01

    This chapter focuses on biochemical assays for Ca/sup 2 +/-selective channels in electrically excitable membranes which are blocked in electrophysiological and pharmacological experiments by verapamil, 1,4-dihydropyridines, diltiazen (and various other drugs), as well as inorganic di- or trivalent cations. The strategy employed is to use radiolabeled 1,4-dihydropyridine derivatives which block calcium channels with ED/sub 50/ values in the nanomolar range. Although tritiated d-cis-diltiazem and verapamil can be used to label calcium channels, the 1,4-dihydropyridines offer numerous advantages. The various sections cover tissue specificity of channel labeling, the complex interactions of divalent cations with the (/sup 3/H)nimodipine-labeled calcium channels, and the allosteric regulation of (/sup 3/H)nimodipine binding by the optically pure enantiomers of phenylalkylamine and benzothiazepine calcium channel blockers. A comparison of the properties of different tritiated 1,4-dihydropyridine radioligands and the iodinated channel probe (/sup 125/I)iodipine is given.

  2. Fine Channel Networks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A color image of fine channel networks on Mars; north toward top. The scene shows heavily cratered highlands dissected by dendritic open channel networks that dissect steep slopes of impact crater walls. This image is a composite of Viking high-resolution images in black and white and low-resolution images in color. The image extends from latitude 9 degrees S. to 5 degrees S. and from longitude 312 degrees to 320 degrees; Mercator projection. The dendritic pattern of the fine channels and their location on steep slopes leads to the interpretation that these are runoff channels. The restriction of these types of channels to ancient highland rocks suggests that these channels are old and date from a time on Mars when conditions existed for precipitation to actively erode rocks. After the channels reach a low plain, they appear to end. Termination may have resulted from burial by younger deposits or perhaps the flows percolated into the surface materials and continued underground.

  3. Channel Access in Erlang

    SciTech Connect

    Nicklaus, Dennis J.

    2013-10-13

    We have developed an Erlang language implementation of the Channel Access protocol. Included are low-level functions for encoding and decoding Channel Access protocol network packets as well as higher level functions for monitoring or setting EPICS process variables. This provides access to EPICS process variables for the Fermilab Acnet control system via our Erlang-based front-end architecture without having to interface to C/C++ programs and libraries. Erlang is a functional programming language originally developed for real-time telecommunications applications. Its network programming features and list management functions make it particularly well-suited for the task of managing multiple Channel Access circuits and PV monitors.

  4. Fractional channel multichannel analyzer

    DOEpatents

    Brackenbush, Larry W.; Anderson, Gordon A.

    1994-01-01

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynscronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board.

  5. Fractional channel multichannel analyzer

    DOEpatents

    Brackenbush, L.W.; Anderson, G.A.

    1994-08-23

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynchronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board. 9 figs.

  6. A novel C-S lyase from the latex-producing plant Taraxacum brevicorniculatum displays alanine aminotransferase and l-cystine lyase activity.

    PubMed

    Munt, Oliver; Prüfer, Dirk; Schulze Gronover, Christian

    2013-01-01

    We isolated a novel pyridoxal-5-phosphate-dependent l-cystine lyase from the dandelion Taraxacum brevicorniculatum. Real time qPCR analysis showed that C-S lyase from Taraxacum brevicorniculatum (TbCSL) mRNA is expressed in all plant tissues, although at relatively low levels in the latex and pedicel. The 1251 bp TbCSL cDNA encodes a protein with a calculated molecular mass of 46,127 kDa. It is homologous to tyrosine and alanine aminotransferases (AlaATs) as well as to an Arabidopsis thaliana carbon-sulfur lyase (C-S lyase) (SUR1), which has a role in glucosinolate metabolism. TbCSL displayed in vitrol-cystine lyase and AlaAT activities of 4 and 19nkatmg(-1) protein, respectively. However, we detected no in vitro tyrosine aminotransferase (TyrAT) activity and RNAi knockdown of the enzyme had no effect on phenotype, showing that TbCSL substrates might be channeled into redundant pathways. TbCSL is in vivo localized in the cytosol and functions as a C-S lyase or an aminotransferase in planta, but the purified enzyme converts at least two substrates specifically, and can thus be utilized for further in vitro applications.

  7. Apparatus development for measurement of (134)Cs and (137)Cs radioactivity of soil contaminated by the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Kajimoto, Tsuyoshi; Endo, Satoru; Tanaka, Kenichi; Okashiro, Yasuharu; Kai, Hiroaki; Fujii, Syuuji; Mishima, Atsushi; Matsubara, Takahide; Yoshida, Shinji

    2016-09-01

    We developed an apparatus containing a NaI(Tl) scintillator to measure the (134)Cs and (137)Cs radioactivity of soil contaminated by the Fukushima Daiichi Nuclear Power Plant accident. The unfolding method with the least-squares technique was used to determine the radioactivity. Detector responses for each radionuclide in soil were calculated with EGS5 code for the unfolding method. The radionuclides that were measured were (40)K, (134)Cs, (137)Cs, (208)Tl, (214)Bi, and (228)Ac. The measured spectrum agreed well with the spectrum calculated from the response matrix and measured radioactivities. The unfolding method allows us to use the NaI(Tl) scintillator despite the overlap of peaks.

  8. Estimation of total released amount of Cs-137 and Cs-134 derived from TEPCO-FNPP1 accident into the North Pacific Ocean by using optimal interpolation analysis

    NASA Astrophysics Data System (ADS)

    Inomata, Yayoi; Aoyama, Michio; Tsubono, Takaki; Tsumune, Daisuke; Hirose, Katsumi

    2015-04-01

    The oceanic distribution of Cs-137 and Cs-134 released from the Tokyo Electric Power Company-Fukushima Daiichi Nuclear Power Plant (TEPCO-FNPP1) accident were investigated by using the optimal interpolation (OI) analysis. The two domains (open ocean, >141.5°E; coastal region near the TEPCO-FNPP1, <141.5°E) were set to the OI analysis. During the period from end of March to early of April 2011, extremely high activities of Cs-137 and Cs-134 in seawater were concentrated along the coast near the TEPCO-FNPP1. The high activities area spread to the region of 165°E with a latitudinal center of 40°N in the western North Pacific Ocean. Atmospheric deposition is also cause to high activities in the region between 180° and 130° W in the North Pacific Ocean. The total inventory of FNPP1-released Cs-134 in the North Pacific Ocean is estimated to be 15.2±1.8 PBq. In these, about half (8.3±1.8 PBq) of the total released Cs-134 amount existed in the coastal region near the TEPCO-FNPP1. It appeared that the total OICs134 inventory, which is defined as a total Cs-134 inventory in the coastal area near the TEPCO-FNPP1, is controlled by direct release, atmospheric deposition, and coastal current system. Leak of stagnant water induced by heavy rainfall would also cause the increase of the total OICs134 inventory. After the direct discharge of the contaminated water ceased on 6 April, 2011, the total OICs134 inventory exponentially with a half-time of 4.2±0.5 days and became to about 2.0±0.4 PBq at the middle of May 2011. Considering that the Cs-134/Cs-137 activity ratios for the FNPP1 accident were very close to one (0.99±0.03) and extremely uniform during the first month, the total amount of Cs-137 released by the TEPCO-FNPP1 accident reached to 20% of a current North Pacific inventory (60 PBq, Aoyama et al., 2012) of bomb-derived Cs-137 injected in the 1950s and early 1960s.

  9. Characteristics method with cubic-spline interpolation for open channel flow computation

    NASA Astrophysics Data System (ADS)

    Tsai, Tung-Lin; Chiang, Shih-Wei; Yang, Jinn-Chuang

    2004-10-01

    In the framework of the specified-time-interval scheme, the accuracy of the characteristic method is greatly related to the form of the interpolation. The linear interpolation was commonly used to couple the characteristics method (LI method) in open channel flow computation. The LI method is easy to implement, but it leads to an inevitable smoothing of the solution. The characteristics method with the Hermite cubic interpolation (HP method, originally developed by Holly and Preissmann, 1977) was then proposed to largely reduce the error induced by the LI method. In this paper, the cubic-spline interpolation on the space line or on the time line is employed to integrate with characteristics method (CS method) for unsteady flow computation in open channel. Two hypothetical examples, including gradually and rapidly varied flows, are used to examine the applicability of the CS method as compared with the LI method, the HP method, and the analytical solutions. The simulated results show that the CS method is comparable to the HP method and more accurate than the LI method. Without tackling the additional equations for spatial or temporal derivatives, the CS method is easier to implement and more efficient than the HP method.

  10. Identification of the slow E3 transition {sup 136}Cs{sup m{yields}136}Cs with conversion electrons

    SciTech Connect

    Wimmer, K.; Koester, U.; Hoff, P.; Kroell, Th.; Kruecken, R.; Lutter, R.; Morgan, Th.; Schwerdtfeger, W.; Thirolf, P. G.; Mach, H.; Sarkar, S.; Sarkar, M. Saha; Srivastava, P. C.; Van Isacker, P.

    2011-07-15

    We performed at ISOLDE the spectroscopy of the decay of the 8{sup -} isomer in {sup 136}Cs by {gamma} and conversion-electron detection. For the first time the excitation energy of the isomer and the multipolarity of its decay have been measured. The half-life of the isomeric state was remeasured to T{sub 1/2}=17.5(2) s. This isomer decays via a very slow 518-keV E3 transition to the ground state. In addition to this, a much weaker decay branch via a 413-keV M4 and a subsequent 105-keV E2 transition has been found. Thus we have found a new level at 105 keV with spin 4{sup +} between the isomeric and the ground state. The results are discussed in comparison to shell-model calculations.

  11. CsI-Silicon Particle detector for Heavy ions Orbiting in Storage rings (CsISiPHOS)

    NASA Astrophysics Data System (ADS)

    Najafi, M. A.; Dillmann, I.; Bosch, F.; Faestermann, T.; Gao, B.; Gernhäuser, R.; Kozhuharov, C.; Litvinov, S. A.; Litvinov, Yu. A.; Maier, L.; Nolden, F.; Popp, U.; Sanjari, M. S.; Spillmann, U.; Steck, M.; Stöhlker, T.; Weick, H.

    2016-11-01

    A heavy-ion detector was developed for decay studies in the Experimental Storage Ring (ESR) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. This detector serves as a prototype for the in-pocket particle detectors for future experiments with the Collector Ring (CR) at FAIR (Facility for Antiproton and Ion Research). The detector includes a stack of six silicon pad sensors, a double-sided silicon strip detector (DSSD), and a CsI(Tl) scintillation detector. It was used successfully in a recent experiment for the detection of the β+-decay of highly charged 142Pm60+ ions. Based on the ΔE / E technique for particle identification and an energy resolution of 0.9% for ΔE and 0.5% for E (Full Width at Half Maximum (FWHM)), the detector is well-suited to distinguish neighbouring isobars in the region of interest.

  12. PLA/CS/Nifedipine Nanocomposite Films: Properties and the In Vitro Release of Nifedipine

    NASA Astrophysics Data System (ADS)

    Trang, Nguyen Thi Thu; Chinh, Nguyen Thuy; Giang, Nguyen Vu; Thanh, Dinh Thi Mai; Lam, Tran Dai; Hoang, Thai

    2016-07-01

    The polylactic acid (PLA)/chitosan (CS) films containing a drug, nifedipine (NIF), in the presence of polyethylene oxide (PEO) as a compatibilizer were prepared by the solution method. This method has not been used to form films containing four components (PLA, CS, NIF, PEO) up to now. The CS, PEO, and NIF contents are 25 wt.%, 6-8 wt.%, and 10-50 wt.% in comparison with PLA weight, respectively. Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), and field emission scanning electron microscopy (FESEM) were used to characterize the interactions, properties, and morphology of the PLA/CS/PEO/NIF films. The FTIR, TGA, and DSC results show that NIF carried by PLA/CS/PEO films and PLA, CS, NIF had better interaction and were more compatible when using PEO. The surface morphology of PLA/CS/PEO/NIF films was similar to that of PLA/CS/PEO films. Moreover, this was the first time drug loading and NIF release content from PLA/CS/PEO films were determined by the ultraviolet-visible (UV-Vis) spectroscopy method. The drug loading of PLA/CS/PEO/NIF films was from 80.99% to 93.61%. The in vitro NIF release studies were carried out in pH 2, 6.8, and 7.4 solutions corresponding to the pH of stomach, colon, and duodenum regions in the human body, respectively. The NIF release content in different pH solutions is in the order: pH 2 > pH 6.8 > pH 7.4 and increases when there is increasing NIF loading. The PLA/CS/PEO films are potential materials to apply for long-circulating systems for NIF delivery.

  13. Synthesis and optical properties of Ga 2S 3-Na 2S-CsCl glasses

    NASA Astrophysics Data System (ADS)

    Hehlen, Markus P.; Bennett, Bryan L.; Castro, Alonso; Williams, Darrick J.; Tornga, Stephanie C.; Muenchausen, Ross E.

    2010-02-01

    Ga 2S 3-Na 2S-CsCl (GNC) glasses were synthesized in open crucibles under inert atmosphere. The evaporative loss of CsCl during glass melting was measured by energy-dispersive X-ray spectroscopy and corrected for by biasing the CsCl concentration in the mixture of starting materials to obtain glasses with accurately controlled stoichiometry. Glass-transition temperatures, refractive-index dispersions, visible and near-infrared transmittance, and band edge energies were measured for four GNC glasses with varying CsCl content, and the respective values were found to significantly improve over earlier studies that did not mitigate CsCl evaporative losses. Glass durability was assessed by a water immersion test at 74 °C. A respective weight loss rate of 39.2 ± 0.3 μg/(cm 2 h) was found for a GNC glass containing 14 mol% CsCl, indicating good glass durability despite the high CsCl content. The refractive-index dispersion measurements indicate that the Cs + and Cl - radii are 16% larger in GNC glass than in bulk crystalline CsCl. The band edge energy increases from 2.97 eV in Ga 2S 3-Na 2S glass to 3.32 eV in Ga 2S 3-Na 2S-CsCl glass containing 20 mol% CsCl as a result of introducing Cl - ions having a large optical electronegativity. The large bandgap of 3.32 eV, the low (450 cm -1) phonon energy, and the good chemical durability make GNC glass an attractive host material for rare-earth ions with radiative transitions in the near ultra-violet, visible, and near-infrared spectral regions.

  14. Plutonium as a chronomarker in Australian and New Zealand sediments: a comparison with (137)Cs.

    PubMed

    Hancock, G J; Leslie, C; Everett, S E; Tims, S G; Brunskill, G J; Haese, R

    2011-10-01

    The construction of high resolution chronologies of sediment profiles corresponding to the last 50-100 years usually entails the measurement of fallout radionuclides (210)Pb and (137)Cs. The anthropogenic radionuclide, (137)Cs, originating from atmospheric nuclear weapons testing can provide an important "first appearance" horizon of known age (1954-1955), providing much-needed validation for the sometimes uncertain interpretations associated with (210)Pb geochronology. However, while (137)Cs usually provides a strong signal in sediment in the northern hemisphere, total fallout of (137)Cs in the southern hemisphere was only 25% that of the north and the low activities of (137)Cs seen in Australian and New Zealand sediments can make its horizon of first appearance somewhat arguable. Low (137)Cs fallout also limited the size of the 1963-1964 fallout peak, a peak that is usually seen in northern hemisphere sediment profiles but is often difficult to discern south of the equator. This paper shows examples of the use of nuclear weapons fallout Pu as a chronomarker in sediment cores from Australia (3 sites) and New Zealand (1 site). The Pu profiles of five cores are examined and compared with the corresponding (137)Cs profiles and (210)Pb geochronologies. We find that Pu has significant advantages over (137)Cs, including greater measurement sensitivity using alpha spectrometry and mass spectrometric techniques compared to (137)Cs measurements by gamma spectrometry. Moreover, Pu provides additional chronomarkers associated with changes in the Pu isotopic composition of fallout during the 1950s and 1960s. In particular, the (238)Pu/(239+240)Pu activity ratio shows distinct shifts in the early 1950s and the mid to late 1960s, providing important known-age horizons in southern hemisphere sediments. For estuarine and near-shore sediments Pu sometimes has another significant advantage over (137)Cs due to its enrichment in bottom sediment relative to (137)Cs resulting from the

  15. CsMgCl{sub 3}: A promising cross luminescence material

    SciTech Connect

    Shwetha, G.; Kanchana, V.; Vaitheeswaran, G.

    2015-07-15

    Full-potential linearized augmented plane wave method has been used to study the cross luminescence of halide scintillators. The electronic structure and optical properties of alkali halides such as CsMgCl{sub 3}, CsCaCl{sub 3}, and CsSrCl{sub 3} are presented. One of the major criteria for the cross luminescence to happen is the energy difference between valence band and next deeper core valence band being lesser when compared to energy gap of the compound, so that radiative electronic transition may occur between core valence band and valence band which might lead to fast scintillation. We found this criterion to be satisfied in these compounds leading to cross luminescence. The presence of high energy peaks in the absorption spectra indicates the creation of holes in the core valence band, which is an essential criterion for the occurrence of cross luminescence. The electronic structure, and optical properties studies clearly indicate CsMgCl{sub 3}, CsCaCl{sub 3}, and CsSrCl{sub 3} to be cross luminescence materials comparable to CsCl which is one of the well known fast scintillators. In addition, CsMgCl{sub 3} is found to be better among the studied compounds with optical isotropy though the compound is structurally anisotropic. - Graphical abstract: Absorption spectra of CsMCl{sub 3} (M=Mg, Ca, and Sr) along with CsCl, indicating both the spectra are similar in the lower energy region. - Highlights: • These are cross valence luminescence (CVL) materials with short day time of the order of nanosecond. • Chemical bonding of these compounds studied observed the ionic nature. • These are fast scintillators comparable to their binary halide. • CsMgCl{sub 3} good scintillator with optically isotropic nature.

  16. Isolation and functional characterization of CsLsi1, a silicon transporter gene in Cucumis sativus.

    PubMed

    Sun, Hao; Guo, Jia; Duan, Yaoke; Zhang, Tiantian; Huo, Heqiang; Gong, Haijun

    2017-02-01

    Cucumber (Cucumis sativus) is a widely grown cucurbitaceous vegetable that exhibits a relatively high capacity for silicon (Si) accumulation, but the molecular mechanism for silicon uptake remains to be clarified. Here we isolated and characterized CsLsi1, a gene encoding a silicon transporter in cucumber (cv. Mch-4). CsLsi1 shares 55.70 and 90.63% homology with the Lsi1s of a monocot and dicot, rice (Oryza sativa) and pumpkin (Cucurbita moschata), respectively. CsLsi1 was predominantly expressed in the roots, and application of exogenous silicon suppressed its expression. Transient expression in cucumber protoplasts showed that CsLsi1 was localized in the plasma membrane. Heterologous expression in Xenopus laevis oocytes showed that CsLsi1 evidenced influx transport activity for silicon but not urea or glycerol. Expression of cucumber CsLsi1-mGFP under its own promoter showed that CsLsi1 was localized at the distal side of the endodermis and the cortical cells in the root tips as well as in the root hairs near the root tips. Heterologous expression of CsLsi1 in a rice mutant defective in silicon uptake and the over-expression of this gene in cucumber further confirmed the role of CsLsi1 in silicon uptake. Our results suggest that CsLsi1 is a silicon influx transporter in cucumber. The cellular localization of CsLsi1 in cucumber roots is different from that in other plants, implying the possible effect of transporter localization on silicon uptake capability.

  17. Cucumber Metallothionein-Like 2 (CsMTL2) Exhibits Metal-Binding Properties

    PubMed Central

    Pan, Yu; Pan, Yanglu; Zhai, Junpeng; Xiong, Yan; Li, Jinhua; Du, Xiaobing; Su, Chenggang; Zhang, Xingguo

    2016-01-01

    We identified a novel member of the metallothionein (MT) family, Cucumis sativus metallothionein-like 2 (CsMTL2), by screening a young cucumber fruit complementary DNA (cDNA) library. The CsMTL2 encodes a putative 77-amino acid Class II MT protein that contains two cysteine (Cys)-rich domains separated by a Cys-free spacer region. We found that CsMTL2 expression was regulated by metal stress and was specifically induced by Cd2+ treatment. We investigated the metal-binding characteristics of CsMTL2 and its possible role in the homeostasis and/or detoxification of metals by heterologous overexpression in Escherichia coli cells. Furthermore, we produced a deletion mutant form of the protein, CsMTL2m, that contained the two Cys-rich clusters but lacked the spacer region, in E. coli. We compared the metal-binding properties of CsMTL2 with those of CsMTL2m, the β domain of human metallothionein-like protein 1 (HsMTXb), and phytochelatin-like (PCL) heterologously expressed in E. coli using metal-binding assays. We found that E. coli cells expressing CsMTL2 accumulated the highest levels of Zn2+ and Cd2+ of the four transformed cell types, with levels being significantly higher than those of control cells containing empty vector. E. coli cells expressing CsMTL2 had a higher tolerance for cadmium than for zinc ions. These findings show that CsMTL2 improves metal tolerance when heterologously expressed in E. coli. Future studies should examine whether CsMTL2 improves metal tolerance in planta. PMID:27916887

  18. A Phase Ia Study to Assess the Safety and Immunogenicity of New Malaria Vaccine Candidates ChAd63 CS Administered Alone and with MVA CS

    PubMed Central

    de Barra, Eoghan; Hodgson, Susanne H.; Ewer, Katie J.; Bliss, Carly M.; Hennigan, Kerrie; Collins, Ann; Berrie, Eleanor; Lawrie, Alison M.; Gilbert, Sarah C.; Nicosia, Alfredo

    2014-01-01

    Background Plasmodium falciparum (P. falciparum) malaria remains a significant cause of mortality and morbidity throughout the world. Development of an effective vaccine would be a key intervention to reduce the considerable social and economic impact of malaria. Methodology We conducted a Phase Ia, non-randomized, clinical trial in 24 healthy, malaria-naïve adults of the chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) replication-deficient viral vectored vaccines encoding the circumsporozoite protein (CS) of P. falciparum. Results ChAd63-MVA CS administered in a heterologous prime-boost regime was shown to be safe and immunogenic, inducing high-level T cell responses to CS. With a priming ChAd63 CS dose of 5×109 vp responses peaked at a mean of 1947 SFC/million PBMC (median 1524) measured by ELIspot 7 days after the MVA boost and showed a mixed CD4+/CD8+ phenotype. With a higher priming dose of ChAd63 CS dose 5×1010 vp T cell responses did not increase (mean 1659 SFC/million PBMC, median 1049). Serum IgG responses to CS were modest and peaked at day 14 post ChAd63 CS (median antibody concentration for all groups at day 14 of 1.3 µg/ml (range 0–11.9), but persisted throughout late follow-up (day 140 median antibody concentration groups 1B & 2B 0.9 µg/ml (range 0–4.7). Conclusions ChAd63-MVA is a safe and highly immunogenic delivery platform for the CS antigen in humans which warrants efficacy testing. Trial Registration ClinicalTrials.gov NCT01450280 PMID:25522180

  19. In situ 7Li and 133Cs nuclear magnetic resonance investigations on the role of Cs+ additive in lithium-metal deposition process

    SciTech Connect

    Hu, Jian Zhi; Zhao, Zhenchao; Hu, Mary Y.; Feng, Ju; Deng, Xuchu; Chen, Xilin; Xu, Wu; Liu, Jun; Zhang, Ji-Guang

    2016-02-01

    Application of Li metal electrode in rechargeable lithium battery is hindered by safety concerns due to dendritic growth on the electrode over several charge-discharge cycles. We have found previously that adding low concentration Cs+ in electrolytes can promote smooth deposition of lithium onto metal electrode during repeated charge-discharge cycling using idea Li|Cu battery without the using of a separator. In this work, quantitative in situ 7Li and 133Cs NMR investigations using real planar symmetric lithium battery cells with and without Cs+ additives were carried out. It is found that the deposited lithium atoms on electrodes are highly porous. Detailed analysis of the data were carried out by separating the 7Li signal from deposited lithium that was oriented parallel to the electrode surface with the signal from the Li-metal nanorodes oriented perpendicular or nearly perpendicular to the electrode surface. The results demonstrate that addition of Cs+ can significantly enhance both the formation of uniform Li nanorods, and the reversibility of electrode. In situ 133Cs NMR directly confirms that Cs+ migrates to the electrode to form a positively charged electrostatic shield during cycling process. Combining the quantitative analysis of the orientation dependent signals of deposited metal Li and previous ex-situ results, different Li deposition models are proposed. During cycling process, more “active” lithium participates in the Li transfer between the electrode and nanorods for the battery with Cs+, while for the battery without Cs+ more dead and thinker lithium rods are formed and Li transfer between dendrites from different electrodes dominates.

  20. Cooperative gating between ion channels.

    PubMed

    Choi, Kee-Hyun

    2014-01-01

    Cooperative gating between ion channels, i.e. the gating of one channel directly coupled to the gating of neighboring channels, has been observed in diverse channel types at the single-channel level. Positively coupled gating could enhance channel-mediated signaling while negative coupling may effectively reduce channel gating noise. Indeed, the physiological significance of cooperative channel gating in signal transduction has been recognized in several in vivo studies. Moreover, coupled gating of ion channels was reported to be associated with some human disease states. In this review, physiological roles for channel cooperativity and channel clustering observed in vitro and in vivo are introduced, and stimulation-induced channel clustering and direct channel cross linking are suggested as the physical mechanisms of channel assembly. Along with physical clustering, several molecular mechanisms proposed as the molecular basis for functional coupling of neighboring channels are covered: permeant ions as a channel coupling mediator, concerted channel activation through the membrane, and allosteric mechanisms. Also, single-channel analysis methods for cooperative gating such as the binomial analysis, the variance analysis, the conditional dwell time density analysis, and the maximum likelihood fitting analysis are reviewed and discussed.

  1. Ion Channels in Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Palmer, Lawrence G.

    Ion channels in epithelial cells serve to move ions, and in some cases fluid, between compartments of the body. This function of the transfer of material is fundamentally different from that of the transfer of information, which is the main job of most channels in excitable cells. Nevertheless the basic construction of the channels is similar in many respects in the two tissue types. This chapter reviews the nature of channels in epithelia and discusses how their functions have evolved to accomplish the basic tasks for which they are responsible. I will focus on three channel types: epithelial Na+ channels, inward-rectifier K+ channels, and CFTR Cl- channels.

  2. A 32-Channel Head Coil Array with Circularly Symmetric Geometry for Accelerated Human Brain Imaging

    PubMed Central

    Chu, Ying-Hua; Hsu, Yi-Cheng; Keil, Boris; Kuo, Wen-Jui; Lin, Fa-Hsuan

    2016-01-01

    The goal of this study is to optimize a 32-channel head coil array for accelerated 3T human brain proton MRI using either a Cartesian or a radial k-space trajectory. Coils had curved trapezoidal shapes and were arranged in a circular symmetry (CS) geometry. Coils were optimally overlapped to reduce mutual inductance. Low-noise pre-amplifiers were used to further decouple between coils. The SNR and noise amplification in accelerated imaging were compared to results from a head coil array with a soccer-ball (SB) geometry. The maximal SNR in the CS array was about 120% (1070 vs. 892) and 62% (303 vs. 488) of the SB array at the periphery and the center of the FOV on a transverse plane, respectively. In one-dimensional 4-fold acceleration, the CS array has higher averaged SNR than the SB array across the whole FOV. Compared to the SB array, the CS array has a smaller g-factor at head periphery in all accelerated acquisitions. Reconstructed images using a radial k-space trajectory show that the CS array has a smaller error than the SB array in 2- to 5-fold accelerations. PMID:26909652

  3. The Dependence of the Oxidation Enhancement of InP(100) Surface on the Coverage of the Adsorbed Cs

    SciTech Connect

    Sun, Yun

    2010-06-07

    We report the oxidation of the InP(100) surface promoted by adsorbed Cs by synchrotron radiation photoemission. Oxygen exposure causes reduction of the charge transferred to the InP substrate from Cs and the growth of indium oxide and phosphorous oxide. The oxide growth displays a clear dependence on the Cs coverage. The oxidation of phosphorous is negligible up to 1000 L of O{sub 2} exposure when the Cs coverage is less than half a monolayer (ML), but the formation of the second half monolayer of Cs greatly accelerates the oxidation. This different enhancement of the InP oxidation by the first and the second half monolayer of Cs is due to the double layer structure of the adsorbed Cs atoms, and consequently the higher 6s electron density in the Cs atoms when Cs coverage is larger than 0.5 ML.

  4. 28-Channel rotary transformer

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1981-01-01

    Transformer transmits power and digital data across rotating interface. Array has many parallel data channels, each with potential l megabaud data rate. Ferrite-cored transformers are spaced along rotor; airgap between them reduces crosstalk.

  5. A Simple Water Channel

    ERIC Educational Resources Information Center

    White, A. S.

    1976-01-01

    Describes a simple water channel, for use with an overhead projector. It is run from a water tap and may be used for flow visualization experiments, including the effect of streamlining and elementary building aerodynamics. (MLH)

  6. Chondrocyte channel transcriptomics

    PubMed Central

    Lewis, Rebecca; May, Hannah; Mobasheri, Ali; Barrett-Jolley, Richard

    2013-01-01

    To date, a range of ion channels have been identified in chondrocytes using a number of different techniques, predominantly electrophysiological and/or biomolecular; each of these has its advantages and disadvantages. Here we aim to compare and contrast the data available from biophysical and microarray experiments. This letter analyses recent transcriptomics datasets from chondrocytes, accessible from the European Bioinformatics Institute (EBI). We discuss whether such bioinformatic analysis of microarray datasets can potentially accelerate identification and discovery of ion channels in chondrocytes. The ion channels which appear most frequently across these microarray datasets are discussed, along with their possible functions. We discuss whether functional or protein data exist which support the microarray data. A microarray experiment comparing gene expression in osteoarthritis and healthy cartilage is also discussed and we verify the differential expression of 2 of these genes, namely the genes encoding large calcium-activated potassium (BK) and aquaporin channels. PMID:23995703

  7. Calcium Channel Blockers

    MedlinePlus

    ... such as high blood pressure, chest pain and Raynaud's disease. Find out more about this class of medication. ... Irregular heartbeats (arrhythmia) Some circulatory conditions, such as Raynaud's disease For black people and older people, calcium channel ...

  8. Proton channel models

    PubMed Central

    Pupo, Amaury; Baez-Nieto, David; Martínez, Agustín; Latorre, Ramón; González, Carlos

    2014-01-01

    Voltage-gated proton channels are integral membrane proteins with the capacity to permeate elementary particles in a voltage and pH dependent manner. These proteins have been found in several species and are involved in various physiological processes. Although their primary topology is known, lack of details regarding their structures in the open conformation has limited analyses toward a deeper understanding of the molecular determinants of their function and regulation. Consequently, the function-structure relationships have been inferred based on homology models. In the present work, we review the existing proton channel models, their assumptions, predictions and the experimental facts that support them. Modeling proton channels is not a trivial task due to the lack of a close homolog template. Hence, there are important differences between published models. This work attempts to critically review existing proton channel models toward the aim of contributing to a better understanding of the structural features of these proteins. PMID:24755912

  9. Export of 134Cs and 137Cs in the Fukushima river systems at heavy rains by Typhoon Roke in September 2011

    NASA Astrophysics Data System (ADS)

    Nagao, S.; Kanamori, M.; Ochiai, S.; Tomihara, S.; Fukushi, K.; Yamamoto, M.

    2013-02-01

    Effects of a heavy rain event on radiocesium export were studied at stations on the Natsui River and the Same River in Fukushima Prefecture, Japan after Typhoon Roke during 21-22 September 2011, six months after the Fukushima Daiichi Nuclear Power Plant accident. Radioactivity of 134Cs and 137Cs in river waters was 0.011-0.098 Bq L-1 at normal flow conditions during July-September in 2011, but it increased to 0.85 Bq L-1 in high flow conditions by heavy rains occurring with the typhoon. The particulate fractions of 134Cs and 137Cs were 21-56% in the normal flow condition, but were close to 100% after the typhoon. These results indicate that the pulse input of radiocesium associated with suspended particles from land to coastal ocean occurred by the heavy rain event. Export flux of 134Cs and 137Cs by the heavy rain accounts for 30-50% of annual radiocesium flux in 2011. Results show that rain events are one factor controlling the transport and dispersion of radiocesium in river watersheds and coastal marine environments.

  10. Utilization of (134)Cs/(137)Cs in the environment to identify the reactor units that caused atmospheric releases during the Fukushima Daiichi accident.

    PubMed

    Chino, Masamichi; Terada, Hiroaki; Nagai, Haruyasu; Katata, Genki; Mikami, Satoshi; Torii, Tatsuo; Saito, Kimiaki; Nishizawa, Yukiyasu

    2016-08-22

    The Fukushima Daiichi nuclear power reactor units that generated large amounts of airborne discharges during the period of March 12-21, 2011 were identified individually by analyzing the combination of measured (134)Cs/(137)Cs depositions on ground surfaces and atmospheric transport and deposition simulations. Because the values of (134)Cs/(137)Cs are different in reactor units owing to fuel burnup differences, the (134)Cs/(137)Cs ratio measured in the environment was used to determine which reactor unit ultimately contaminated a specific area. Atmospheric dispersion model simulations were used for predicting specific areas contaminated by each dominant release. Finally, by comparing the results from both sources, the specific reactor units that yielded the most dominant atmospheric release quantities could be determined. The major source reactor units were Unit 1 in the afternoon of March 12, 2011, Unit 2 during the period from the late night of March 14 to the morning of March 15, 2011. These results corresponded to those assumed in our previous source term estimation studies. Furthermore, new findings suggested that the major source reactors from the evening of March 15, 2011 were Units 2 and 3 and that the dominant source reactor on March 20, 2011 temporally changed from Unit 3 to Unit 2.

  11. Utilization of 134Cs/137Cs in the environment to identify the reactor units that caused atmospheric releases during the Fukushima Daiichi accident

    PubMed Central

    Chino, Masamichi; Terada, Hiroaki; Nagai, Haruyasu; Katata, Genki; Mikami, Satoshi; Torii, Tatsuo; Saito, Kimiaki; Nishizawa, Yukiyasu

    2016-01-01

    The Fukushima Daiichi nuclear power reactor units that generated large amounts of airborne discharges during the period of March 12–21, 2011 were identified individually by analyzing the combination of measured 134Cs/137Cs depositions on ground surfaces and atmospheric transport and deposition simulations. Because the values of 134Cs/137Cs are different in reactor units owing to fuel burnup differences, the 134Cs/137Cs ratio measured in the environment was used to determine which reactor unit ultimately contaminated a specific area. Atmospheric dispersion model simulations were used for predicting specific areas contaminated by each dominant release. Finally, by comparing the results from both sources, the specific reactor units that yielded the most dominant atmospheric release quantities could be determined. The major source reactor units were Unit 1 in the afternoon of March 12, 2011, Unit 2 during the period from the late night of March 14 to the morning of March 15, 2011. These results corresponded to those assumed in our previous source term estimation studies. Furthermore, new findings suggested that the major source reactors from the evening of March 15, 2011 were Units 2 and 3 and that the dominant source reactor on March 20, 2011 temporally changed from Unit 3 to Unit 2. PMID:27546490

  12. Emission mechanism of polyatomic ions Cs2Cl+ and Cs2BO2(+) in thermal ionization mass spectrometry with various carbon materials.

    PubMed

    Wei, Hai-Zhen; Jiang, Shao-Yong; Hemming, Gary N; Yang, Jing-Hong; Xiao, Ying-Kai; Yang, Tao; Yan, Xiong; Yan, Yan

    2011-12-29

    The emission behavior of polyatomic ions Cs(2)Cl(+) and Cs(2)BO(2)(+) in the presence of various carbon materials (Graphite, Carbon, SWNTs, and Fullerenes) in the ionization source of thermal ionization mass spectrometry (TIMS) has been investigated. The emission capacity of various carbon materials are remarkably different as evidenced by the obvious discrepancy in signal intensity of polyatomic ions and accuracy/precision of boron and chlorine isotopic composition determined using Cs(2)Cl(+)-graphite-PTIMS/Cs(2)BO(2)(+)-graphite-PTIMS methods. Combined with morphology and microstructure properties of four selected carbon materials, it could be concluded that the emission behavior of the polyatomic ions strongly depends on the microstructure of the carbon materials used. A surface-induced collision mechanism for formation of such kinds of polyatomic ions in the ionization source of TIMS has been proposed based on the optimized configuration of Cs(2)BO(2)(+) and Cs(2)Cl(+) ions in the gas phase using a molecular dynamics method. The combination of the geometry of the selected carbon materials with the configuration of two polyatomic ions explains the structure effect of carbon materials on the emission behavior of polyatomic ions, where graphite samples with perfect parallels and equidistant layers ensure the capacity of emission to the maximum extent, and fullerenes worsen the emission of polyatomic ions by blocking their pathway.

  13. Utilization of 134Cs/137Cs in the environment to identify the reactor units that caused atmospheric releases during the Fukushima Daiichi accident

    NASA Astrophysics Data System (ADS)

    Chino, Masamichi; Terada, Hiroaki; Nagai, Haruyasu; Katata, Genki; Mikami, Satoshi; Torii, Tatsuo; Saito, Kimiaki; Nishizawa, Yukiyasu

    2016-08-01

    The Fukushima Daiichi nuclear power reactor units that generated large amounts of airborne discharges during the period of March 12–21, 2011 were identified individually by analyzing the combination of measured 134Cs/137Cs depositions on ground surfaces and atmospheric transport and deposition simulations. Because the values of 134Cs/137Cs are different in reactor units owing to fuel burnup differences, the 134Cs/137Cs ratio measured in the environment was used to determine which reactor unit ultimately contaminated a specific area. Atmospheric dispersion model simulations were used for predicting specific areas contaminated by each dominant release. Finally, by comparing the results from both sources, the specific reactor units that yielded the most dominant atmospheric release quantities could be determined. The major source reactor units were Unit 1 in the afternoon of March 12, 2011, Unit 2 during the period from the late night of March 14 to the morning of March 15, 2011. These results corresponded to those assumed in our previous source term estimation studies. Furthermore, new findings suggested that the major source reactors from the evening of March 15, 2011 were Units 2 and 3 and that the dominant source reactor on March 20, 2011 temporally changed from Unit 3 to Unit 2.

  14. Mineralogical and geomicrobial examination of soil contamination by radioactive Cs due to 2011 Fukushima Daiichi Nuclear Power Plant accident

    NASA Astrophysics Data System (ADS)

    Akai, Junji; Nomura, Nao; Matsushita, Shin; Kudo, Hisaaki; Fukuhara, Haruo; Matsuoka, Shiro; Matsumoto, Jinko

    Soil contamination by radioactive Cs from Fukushima Daiichi Nuclear Power Plant accident was investigated. Absorption and desorption experiments of Cs were conducted for several phyllosillicates (kaolinite, sericite, montmorillonite, vermiculite, chrysotile and biotite), zeolite and solid organic matter (dead and green leaves). The results confirmed the characteristic sorption and desorption of Cs by these materials. The 2:1 type phyllosilicate, especially, vermiculite and montmorillonite absorbed Cs well. Heated vermiculite for agricultural use and weathered montmorillonite also adsorbed Cs. Leaves also absorbed Cs considerably but easily desorbed it. In summary, the relative capacity and strength of different materials for sorption of Cs followed the order: zeolite (clinoptilolite) > 2:1 type clay mineral > 1:1 type clay mineral > dead and green leaves. Culture experiments using bacteria of both naturally living on dead leaves in Iitate village, Fukushima Pref. and bacterial strains of Bacillus subtillis, Rhodococus erythropolis, Streptomyces aomiensis and Actinomycetospora chlora were carried out. Non-radioactive 1% Cs solution (CsCl) was added to the culture media. Two types of strong or considerable bacterial uptakes of Cs were found in bacterial cells. One is that Cs was contained mainly as globules inside bacteria and the other is that Cs was absorbed in the whole bacterial cells. The globules consisted mainly of Cs and P. Based on all these results, future diffusion and re-circulation behavior of Cs in the surface environment was discussed.

  15. Upward mobilization of 137Cs in surface soils of Chamaecyparis obtusa Sieb. et Zucc. (hinoki) plantation in Japan.

    PubMed

    Fukuyama, Taijiro; Takenaka, Chisato

    2004-01-05

    The use of 137Cs has recently been adopted to estimate erosion in hinoki plantations in Japan. However, there have been several reports of the upward mobilization of 137Cs in forest humus layers. In this study, the vertical distribution of 137Cs within the soil profile was measured in a hinoki plantation. In order to confirm the upward migration of 137Cs from mineral soil to fresh surface litter and to identify mechanisms of the transfer, changes in 137Cs specific activity in the contents of litterbags were examined in a hinoki plantation. A controlled laboratory experiment was also conducted to assess the effect of microbial activity on the upward migration of 137Cs. As a result, the higher 137Cs activities in the surface organic layer of a hinoki plantation than in fresh litter and the increasing 137Cs total content of litterbags with time demonstrated the upward mobilization of 137Cs from mineral soil to the surface organic layer. Physical movement of soil particles by raindrop splash was considered an important process in 137Cs upward migration. The results of our laboratory experiment indicate an influence from soil microbial activity on the upward mobilization of 137Cs. Thus, upward migration of 137Cs and constant litter removal by runoff may induce 137Cs loss from steep forested catchments and underestimation of the 137Cs inventory leading to the overestimation of soil redistribution rates.

  16. Permeation and block of TRPV1 channels by the cationic lidocaine derivative QX-314.

    PubMed

    Puopolo, Michelino; Binshtok, Alexander M; Yao, Gui-Lan; Oh, Seog Bae; Woolf, Clifford J; Bean, Bruce P

    2013-04-01

    QX-314 (N-ethyl-lidocaine) is a cationic lidocaine derivative that blocks voltage-dependent sodium channels when applied internally to axons or neuronal cell bodies. Coapplication of external QX-314 with the transient receptor potential vanilloid 1 protein (TRPV1) agonist capsaicin produces long-lasting sodium channel inhibition in TRPV1-expressing neurons, suggestive of QX-314 entry into the neurons. We asked whether QX-314 entry occurs directly through TRPV1 channels or through a different pathway (e.g., pannexin channels) activated downstream of TRPV1 and whether QX-314 entry requires the phenomenon of "pore dilation" previously reported for TRPV1. With external solutions containing 10 or 20 mM QX-314 as the only cation, inward currents were activated by stimulation of both heterologously expressed and native TRPV1 channels in rat dorsal root ganglion neurons. QX-314-mediated inward current did not require pore dilation, as it activated within several seconds and in parallel with Cs-mediated outward current, with a reversal potential consistent with PQX-314/PCs = 0.12. QX-314-mediated current was no different when TRPV1 channels were expressed in C6 glioma cells, which lack expression of pannexin channels. Rapid addition of QX-314 to physiological external solutions produced instant partial inhibition of inward currents carried by sodium ions, suggesting that QX-314 is a permeant blocker. Maintained coapplication of QX-314 with capsaicin produced slowly developing reduction of outward currents carried by internal Cs, consistent with intracellular accumulation of QX-314 to concentrations of 50-100 μM. We conclude that QX-314 is directly permeant in the "standard" pore formed by TRPV1 channels and does not require either pore dilation or activation of additional downstream channels for entry.

  17. Fracture channel waves

    NASA Astrophysics Data System (ADS)

    Nihei, Kurt T.; Yi, Weidong; Myer, Larry R.; Cook, Neville G. W.; Schoenberg, Michael

    1999-03-01

    The properties of guided waves which propagate between two parallel fractures are examined. Plane wave analysis is used to obtain a dispersion equation for the velocities of fracture channel waves. Analysis of this equation demonstrates that parallel fractures form an elastic waveguide that supports two symmetric and two antisymmetric dispersive Rayleigh channel waves, each with particle motions and velocities that are sensitive to the normal and tangential stiffnesses of the fractures. These fracture channel waves degenerate to shear waves when the fracture stiffnesses are large, to Rayleigh waves and Rayleigh-Lamb plate waves when the fracture stiffnesses are low, and to fracture interface waves when the fractures are either very closely spaced or widely separated. For intermediate fracture stiffnesses typical of fractured rock masses, fracture channel waves are dispersive and exhibit moderate to strong localization of guided wave energy between the fractures. The existence of these waves is examined using laboratory acoustic measurements on a fractured marble plate. This experiment confirms the distinct particle motion of the fundamental antisymmetric fracture channel wave (A0 mode) and demonstrates the ease with which a fracture channel wave can be generated and detected.

  18. Cl(-) channels in apoptosis.

    PubMed

    Wanitchakool, Podchanart; Ousingsawat, Jiraporn; Sirianant, Lalida; MacAulay, Nanna; Schreiber, Rainer; Kunzelmann, Karl

    2016-10-01

    A remarkable feature of apoptosis is the initial massive cell shrinkage, which requires opening of ion channels to allow release of K(+), Cl(-), and organic osmolytes to drive osmotic water movement and cell shrinkage. This article focuses on the role of the Cl(-) channels LRRC8, TMEM16/anoctamin, and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also determines sensitivity towards cytostatic drugs such as cisplatin. Recent data point to a molecular and functional relationship of LRRC8A and anoctamins (ANOs). ANO6, 9, and 10 (TMEM16F, J, and K) augment apoptotic Cl(-) currents and AVD, but it remains unclear whether these anoctamins operate as Cl(-) channels or as regulators of other apoptotic Cl(-) channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated by cell swelling, it is possible that CFTR serves RVD/AVD through accumulation of ROS and activation of independent membrane channels such as ANO6. Thus activation of ANO6 will support cell shrinkage and induce additional apoptotic events, such as membrane phospholipid scrambling.

  19. Mucosal and systemic immune responses in patients with diarrhea due to CS6-expressing enterotoxigenic Escherichia coli.

    PubMed

    Qadri, Firdausi; Ahmed, Tanvir; Ahmed, Firoz; Bhuiyan, M Saruar; Mostofa, Mohammad Golam; Cassels, Frederick J; Helander, Anna; Svennerholm, Ann-Mari

    2007-05-01

    Colonization factor CS6 expressed by enterotoxigenic Escherichia coli (ETEC) is a nonfimbrial polymeric protein. A substantial proportion of ETEC strains isolated from patients in endemic settings and in people who travel to regions where ETEC is endemic are ETEC strains expressing CS6, either alone or in combination with fimbrial colonization factor CS5 or CS4. However, relatively little is known about the natural immune responses elicited against CS6 expressed by ETEC strains causing disease. We studied patients who were hospitalized with diarrhea (n = 46) caused by CS6-expressing ETEC (ETEC expressing CS6 or CS5 plus CS6) and had a disease spectrum ranging from severe dehydration (27%) to moderate or mild dehydration (73%). Using recombinant CS6 antigen, we found that more than 90% of the patients had mucosal immune responses to CS6 expressed as immunoglobulin (IgA) antibody-secreting cells (ASC) or antibody in lymphocyte supernatant (ALS) and that about 57% responded with CS6-specific IgA antibodies in feces. More than 80% of the patients showed IgA seroconversion to CS6. Significant increases in the levels of anti-CS6 antibodies of the IgG isotype were also observed in assays for ASC (75%), ALS (100%), and serum (70%). These studies demonstrated that patients hospitalized with the noninvasive enteric pathogen CS6-expressing ETEC responded with both mucosal and systemic antibodies against CS6. Studies are needed to determine if the anti-CS6 responses protect against reinfection and if protective levels of CS6 immunity are induced by vaccination.

  20. Electronically forbidden (5σu-->kσu) photoionization of CS2: Mode-specific electronic-vibrational coupling

    NASA Astrophysics Data System (ADS)

    Rathbone, G. J.; Poliakoff, E. D.; Bozek, John D.; Lucchese, R. R.

    2005-02-01

    Vibrationally resolved photoelectron spectroscopy of the CS2+(BΣu +2) state is used to show how nontotally symmetric vibrations "activate" a forbidden electronic transition in the photoionization continuum, specifically, a 5σu→kσu shape resonance, that would be inaccessible in the absence of a symmetry breaking vibration. This electronic channel is forbidden owing to inversion symmetry selection rules, but it can be accessed when a nonsymmetric vibration is excited, such as bending or antisymmetric stretching. Photoelectron spectra are acquired for photon energies 17⩽hν⩽72eV, and it is observed that the forbidden vibrational transitions are selectively enhanced in the region of a symmetry-forbidden continuum shape resonance centered at hν ≈42eV. Schwinger variational calculations are performed to analyze the data, and the theoretical analysis demonstrates that the observed forbidden transitions are due to photoelectron-mediated vibronic coupling, rather than interchannel Herzberg-Teller mixing. We observe and explain the counterintuitive result that some vibrational branching ratios vary strongly with energy in the region of the resonance, even though the resonance position and width are not appreciably influenced by geometry changes that correspond to the affected vibrations. In addition, we find that another resonant channel, 5σu→kπg, influences the symmetric stretch branching ratio. All of the observed effects can be understood within the framework of the Chase adiabatic approximation, i.e., the Born-Oppenheimer approximation applied to photoionization.

  1. Cs diffusion in local Taiwan laterite with different solution concentration, pH and packing density.

    PubMed

    Wang, Tsing-Hai; Li, Ming-Hsu; Teng, Shi-Ping

    2008-09-01

    In this work we used an "in-diffusion" method to study the effects of pH, solution concentration and packing density on Cs diffusion by packing local Taiwan laterite (LTL) into modified capillary columns with 5mm diameter. These packed columns were first pre-equilibrated with synthetic groundwater (GW) for 3 weeks. The diffusion experiments were then carried out at ambient condition for 2 weeks. Our experimental results showed that the Cs diffusion profile fits Fick's second law very well in given experimental conditions, indicating the validity of modified capillary column method. Generally speaking, Cs diffusion in LTL decreases as the pH increases and as Cs concentration decreases. The apparent diffusion coefficient (D(a)) increases from 5.52 x 10(-12) (10(-7)M) to 2.18 x 10(-11) (10(-3)M)m(2)/s, while the effective diffusion coefficient (D(e)) shows slight variation as the Cs concentration changes. Both the derived D(a) and D(e) values decrease as the pH increases, implying that the diffusion mechanisms of Cs nuclide in alkaline and acid environment are different. In addition, our results show that Cs diffusion is unaffected by the given packing density, indicating the interlaminary space is not the major determinant of Cs adsorption and diffusion in LTL.

  2. Behaviour of (137)Cs in forest humus detected across the territory of the Czech Republic.

    PubMed

    Škrkal, Jan; Pilátová, Helena; Rulík, Petr; Suchara, Ivan; Sucharová, Julie; Holá, Marie

    2017-03-22

    The activity concentration of (137)Cs in samples of coniferous forest humus collected across the territory of the Czech Republic in 1995 and 2005 was analysed, and it was found significantly correlated with the surface deposition caused by the Chernobyl accident. The effective (12.8 y) and environmental (22.3 y) half-lives of radiocaesium in humus were calculated and compared with those in spruce bark. The impact of important forest stand factors, that is, precipitation, content of organic matter, age of trees and pH, on the behaviour of (137)Cs in humus was studied. It was observed that humus samples with a higher proportion of organic matter, higher pH(H2O) and pH(CaCl2) contained higher amounts of (137)Cs. Conversely, with the age of trees, the activity concentration of (137)Cs in humus is decreasing. Higher precipitation and humus acidity decrease the reduction rate of the (137)Cs in humus. These stand factors increase bioavailability of (137)Cs in humus. The transfer and retention of available (137)Cs in biomass of organisms living in humus for a long time can satisfactorily explain the longer residence time of (137)Cs in humus affected by the studied factors.

  3. Experiments for improving fabrication, recovery and surface-protection of Cs3Sb photocathode

    NASA Astrophysics Data System (ADS)

    Kimoto, Takayoshi; Arai, Yoshihiro; Nagayama, Kuniak

    2017-01-01

    We examined 1) the photocurrent from Cs3Sb photocathode as a function of anode voltage below 200 V, 2) the relationship between the quantum efficiency of photoemission and the conditions for fabrication by the sandwich method, 3) recovery of the photoemission by additional Cs deposition, and 4) the effects of surface protection of Cs3Sb photocathodes by WO3 and Cr2O3 films in the passive state. The photocurrent had a maximum at approximately 68 V except when we increased the anode voltage extraordinarily slowly. Cs3Sb photocathodes were fabricated by increasing the temperature of sandwiched layers of Sb, Cs and Sb deposited on the fine tips of eight cathodes at less than -12 °C. Cs3Sb photocathodes having higher quantum efficiency were fabricated by smoothly increasing the temperature of the layers quickly after we deposited the second Sb layer. The photocurrent from the Cs3Sb photocathodes was significantly higher when Cs was deposited at temperatures of 50-70 °C. Deposition of a one- to three- atomic-layer W or Cr film extended the photoemission lifetime after the layers were oxidized to WO3 or Cr2O3 in the passive state due to oxidation. The WO3 or Cr2O3 in the passive state provided more surface protection as their thickness increased.

  4. Theoretical investigation on reactivity of Ag and Au atoms toward CS2 in gas phase

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Yang, Ling; Tian, An-Min; Wong, Ning-Bew

    2008-02-01

    The reaction mechanisms of Ag and Au atoms with CS2 on both doublet and quartet potential energy surfaces (PESs) have been investigated using UBPW91 and UCCSD(T) methods. The two studied reactions proceed via a similar insertion-elimination mechanism instead of a direct abstract mechanism. The reaction Ag + CS2 --> SAgCS is endothermic by about 21E0 kcal/mol. But another reaction Au + CS2 --> SAuCS is slightly exothermic by about 8.8 kcal/mol, which is different from the previous theoretical prediction. In the overall reactions, the rate-determining step is found to be the C-S bond cleavage step with a high-activation barrier of about 40 kcal/mol. The calculated vibration frequencies are in good agreement with the experiment values and show that the BPW91 method is very good for the calculation of small molecules containing Ag and Au. The reactivity of the two atoms toward CS2 is compared with those of the first-row transition-metal atoms. The present study provides a detailed picture of the C-S bond activation and cleavage in carbon disulfide mediated by second and the third row transition-metal atoms Ag and Au.

  5. On the crystal structure of colloidally prepared CsPbBr3 quantum dots.

    PubMed

    Cottingham, Patrick; Brutchey, Richard L

    2016-04-18

    Colloidally synthesized quantum dots of CsPbBr3 are highly promising for light-emitting applications. Previous reports based on benchtop diffraction conflict as to the crystal structure of CsPbBr3 quantum dots. We present X-ray diffraction and PDF analysis of X-ray total scattering data that indicate that the crystal structure is unequivocally orthorhombic (Pnma).

  6. Encapsulation of Cs/Sr contaminated clinoptilolite in geopolymers produced from metakaolin

    NASA Astrophysics Data System (ADS)

    Kuenzel, C.; Cisneros, J. F.; Neville, T. P.; Vandeperre, L. J.; Simons, S. J. R.; Bensted, J.; Cheeseman, C. R.

    2015-11-01

    The encapsulation of caesium (Cs) and strontium (Sr) contaminated clinoptilolite in Na and K based metakaolin geopolymers is reported. When Cs or Sr loaded clinoptilolite is mixed with a metakaolin geopolymer paste, the high pH of the activating solution and the high concentration of ions in solution cause ion exchange reactions and dissolution of clinoptilolite with release of Cs and Sr into the geopolymer matrix. The leaching of Cs and Sr from metakaolin-based geopolymer has therefore been investigated. It was found that Na-based geopolymers reduce leaching of Cs compared to K-based geopolymers and the results are in agreement with the hard and soft acids and bases (HSAB) theory. Cs ions are weak Lewis acids and aluminates are a weak Lewis base. During the formation of the geopolymer matrix Cs ions are preferentially bound to aluminate phases and replace Na in the geopolymer structure. Sr uptake by Na-geopolymers is limited to 0.4 mol Sr per mole of Al and any additional Sr is immobilised by the high pH which causes precipitation of Sr as low solubility hydroxide and carbonate phases. There was no evidence of any other phases being formed when Sr or Cs are added to metakaolin geopolymers.

  7. CsAP3: A Cucumber Homolog to Arabidopsis APETALA3 with Novel Characteristics

    PubMed Central

    Sun, Jin-Jing; Li, Feng; Wang, Dong-Hui; Liu, Xiao-Feng; Li, Xia; Liu, Na; Gu, Hai-Tao; Zou, Cheng; Luo, Jing-Chu; He, Chao-Xing; Huang, San-Wen; Zhang, Xiao-Lan; Xu, Zhi-Hong; Bai, Shu-Nong

    2016-01-01

    In our previous efforts to understand the regulatory mechanisms of cucumber unisexual flower development, we observed a stamen-specific down-regulation of the ethylene receptor CsETR1 in stage 6 female flowers of cucumber (Cucumis sativus L.). This down-regulation is correlated with the primordial anther-specific DNA damage that characterizes inappropriate stamen development in cucumber female flowers. To understand how CsETR1 is down regulated in the stamen, we characterized a cucumber MADS box gene homologous to Arabidopsis AP3, CsAP3. We demonstrated that CsAP3 is functionally equivalent to the Arabidopsis B-class MADS gene AP3. However, three novel characteristics of CsAP3 were found. These include firstly, binding and activating CsETR1 promoter in vitro and in vivo; secondly, containing a GV repeat in its C-terminus, which is conserved in cucurbits and required for the transcription activation; and thirdly, decreased expression as the node number increases, which is similar to that found for CsETR1. These findings revealed not only the conserved function of CsAP3 as a B-class floral identity gene, but also its unique functions in regulation of female flower development in cucumber. PMID:27540391

  8. The sorption behavior of Cs and Cd onto oxide and clay surfaces

    SciTech Connect

    Westrich, H.R.; Cygan, R.T.; Brady, P.V.; Nagy, K.L.; Anderson, H.L.; Kirkpatrick, R.J.

    1995-03-01

    The sorption of Cs and Cd on model soil minerals was examined by complementary analytical and experimental procedures. X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) spectroscopy were used to characterize the chemical and physical nature of Cs-reacted soil minerals. Cd and Cs adsorption isotherms for kaolinite were also measured at variable pH and temperature to establish likely reaction stoichiometries, while atomic force microscopy (AFM) was used to characterize the microtopography of the clay surface. XPS analyses of Cs-exchanged samples show that Cs is sorbed at mineral surfaces and at the interlayer site of smectite clays, although the spectral resolution of XPS analyses is insufficient to differentiate between basal, edge or interlayer sites. {sup 133}Cs MAS-NMR results also show that Cs is adsorbed primarily in an interlayer site of montmorillonite and on edge and basal sites for kaolinite. Cd adsorption isotherms on kaolinite were found to be additive using Al{sub 2}0{sub 3} + Si0{sub 2} Cd binding constants. AFM quantification of kaolinite crystallites suggest that edges comprise up to 50% of the BET surface area, and are consistent with NMR and surface charge results that Cs an Cd adsorption occur primarily at edge sites.

  9. A Purposeful MOOC to Alleviate Insufficient CS Education in Finnish Schools

    ERIC Educational Resources Information Center

    Kurhila, Jaakko; Vihavainen, Arto

    2015-01-01

    The Finnish national school curriculum, effective from 2004, does not include any topics related to Computer Science (CS). To alleviate the problem that school students are not able to study CS-related topics, the Department of Computer Science at the University of Helsinki prepared a completely online course that is open to pupils and students in…

  10. Computational modeling of 137Cs contaminant transfer associated with sediment transport in Abukuma River.

    PubMed

    Iwasaki, T; Nabi, M; Shimizu, Y; Kimura, I

    2015-01-01

    A numerical model capable of simulating the transfer of (137)Cs in rivers associated with transport of fine sediment is presented. The accident at Fukushima Dai-ichi Nuclear Power Plant (FDNPP) released radionuclides into the atmosphere, and after fallout several radionuclides in them, such as radiocesium ((134)Cs, (137)Cs) and radioiodine ((131)I) were adsorbed on surface soil particles around FDNPP and transported by surface water. To understand the transport and deposition of the radioactive contaminant along with surface soil particles and its flux to the ocean, we modeled the transport of the (137)Cs contaminant by computing the water flow and the associated washload and suspended load transport. We have developed a two-dimensional model to simulate the plane flow structure, sediment transport and associated (137)Cs contaminant transport in rivers by combining a shallow water flow model and an advection-diffusion equation for the transport of sediment. The proposed model has been applied to the lower reach of Abukuma River, which is the main river in the highly contaminated area around FDNPP. The numerical results indicate that most (137)Cs supplied from the upstream river reach with washload would directly reach to Pacific Ocean. In contrast, washload-oriented (137)Cs supplied from the upstream river basin has a limited role in the radioactive contamination in the river. The results also suggest that the proposed framework of computational model can be a potential tool for understanding the sediment-oriented (137)Cs behavior in rivers.

  11. Long-term selective retention of natural Cs and Rb by highly weathered coastal plain soils.

    PubMed

    Wampler, J M; Krogstad, Eirik J; Elliott, W Crawford; Kahn, Bernd; Kaplan, Daniel I

    2012-04-03

    Naturally occurring Cs and Rb are distinctly more abundant relative to K in the highly weathered upland soils of the Savannah River Site, South Carolina, than in average rock of Earth's upper continental crust (UCC), by factors of 10 and 4, respectively. Naturally occurring Cs has been selectively retained during soil evolution, and Rb to a lesser extent, while K has been leached away. In acid extracts of the soils, the Cs/K ratio is about 50 times and the Rb/K ratio about 15 times the corresponding ratios for the UCC, indicating that relatively large amounts of natural Cs and Rb have been sequestered in soil microenvironments that are highly selective for these elements relative to K. Cation exchange favoring Cs and Rb ions, and subsequent fixation of the ions, at sites in interlayer wedge zones within hydroxy-interlayered vermiculite particles may account for the observations. The amounts of stable Cs retained and the inferred duration of the soil evolution, many thousands of years, provide new insights regarding long-term stewardship of radiocesium in waste repositories and contaminated environments. Study of natural Cs in soil adds a long-term perspective on Cs transport in soils not available from studies of radiocesium.

  12. First-Year Students' Impressions of Pair Programming in CS1

    ERIC Educational Resources Information Center

    Simon, Beth; Hanks, Brian

    2008-01-01

    Pair programming, as part of the Agile Development process, has noted benefits in professional software development scenarios. These successes have led to a rise in use of pair programming in educational settings, particularly in Computer Science 1 (CS1). Specifically, McDowell et al. [2006] has shown that students using pair programming in CS1 do…

  13. Using Radioactive Fallout Cesium (137Cs) to Distinguish Sediment Sources in an Agricultural Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radioactive fallout Cesium (Cs-137) has been used for quantifying sources of accumulating sediment in water bodies and to determine the rates and pattern of soil erosion. The objectives of this research are to use Cs-137 as a tracer to determine patterns of soil erosion and deposition of eroding soi...

  14. Effect of N-bromoacetamide on single sodium channel currents in excised membrane patches

    PubMed Central

    1982-01-01

    We have studied the effect of N-bromoacetamide (NBA) on the behavior of single sodium channel currents in excised patches of rat myotube membrane at 10 degree C. Inward sodium currents were activated by voltage steps from holding potentials of about -100 mV to test potentials of -40 mV. The cytoplasmic-face solution was isotonic CsF. Application of NBA or pronase to the cytoplasmic face of the membrane irreversibly removed sodium channel inactivation, as determined by averaged single-channel records. Teh lifetime of the open channel at - 40 mV was increased about 10-fold by NBA treatment without affecting the amplitude of single-channel currents. A binomial analysis was used both before and after treatment to determine the number of channels within the excised patch. NBA was shown to have little effect on activation kinetics, as determined by an examination of both the rising phase of averaged currents and measurements f the delay between the start of the pulse and the first channel opening. Our data support a kinetic model of sodium channel activation in which the rate constant leading back from the open state to the last closed state is slower than expected from a strict Hodgkin-Huxley model. The data also suggest that the normal open-channel lifetime is primarily determined by the inactivation process in the voltage range we have examined. PMID:6281357

  15. Activation of single cardiac and skeletal ryanodine receptor channels by flash photolysis of caged Ca2+.

    PubMed Central

    Györke, S; Vélez, P; Suárez-Isla, B; Fill, M

    1994-01-01

    Single ryanodine-sensitive sarcoplasmic reticulum (SR) Ca2+ release channels isolated from rabbit skeletal and canine cardiac muscle were reconstituted in planar lipid bilayers. Single channel activity was measured in simple solutions (no ATP or Mg2+) with 250 mM symmetrical Cs+ as charge carrier. A laser flash was used to photolyze caged-Ca2+ (DM-nitrophen) in a small volume directly in front of the bilayer. The free [Ca2+] in this small volume and in the bulk solution was monitored with Ca2+ electrodes. This setup allowed fast, calibrated free [Ca2+] stimuli to be applied repetitively to single SR Ca2+ release channels. A standard photolytically induced free [Ca2+] step (pCa 7-->6) was applied to both the cardiac and skeletal release channels. The rate of channel activation was determined by fitting a single exponential to ensemble currents generated from at least 50 single channel sweeps. The time constants of activation were 1.43 +/- 0.65 ms (mean +/- SD; n = 5) and 1.28 +/- 0.61 ms (n = 5) for cardiac and skeletal channels, respectively. This study presents a method for defining the fast Ca2+ regulation kinetics of single SR Ca2+ release channels and shows that the activation rate of skeletal SR Ca2+ release channels is consistent with a role for CICR in skeletal muscle excitation-contraction coupling. PMID:8075325

  16. Characterization of an inward rectifying cationic channel in onion guard cell vacuoles

    SciTech Connect

    Amodeo, G.; Zeiger, E.; Escobar, A. )

    1993-05-01

    Ion channels modulate the large ion fluxes across the guard cell plasma membrane and tonoplast that are required for stomatal movement. In contrast to the well known ion channels at the plasma membrane, those at the guard cell tonoplast have not been described. We used patch clamping with guard cell protoplasts (GCP) from Allium cepa cotyledons to study channels from isolated tonoplast patches. The GCPs, obtained after a brief digestion time, released their vacuoles when exposed to an osmotic shock in the presence of EGTA. In inside-out patches bathed in symmetrical solutions (200 mM KCl as predominant ion) a 207[plus minus]1.6 pS channel was the most frequently observed. The channel was activated at negative potential and showed a very large rectification in the open probability in the absence of divalent cations in the vacuolar side. Replacement of monovalent ions in the bath solution gave a sequence of selectivity: Na[sup +]>K[sup +]>Rb[sup +]>Cs[sup +]. Both conduction and gating were investigated at the single channel level. Pulse protocols were achieved for the kinetic analysis of the activation and deactivation of the ionic channel. Records at different potentials were averaged to generate the ensemble profile of the macroscopic conductance. The analysis showed that this channel has at least one closed state and two open states. We suggest that this predominant inward rectifying cationic channel has an important role in the modulation of fluxes between the vacuole and cytosol of guard cells.

  17. Ion selectivity of porcine skeletal muscle Ca2+ release channels is unaffected by the Arg615 to Cys615 mutation.