Science.gov

Sample records for granular jet formation

  1. Granular Crater Formation

    NASA Astrophysics Data System (ADS)

    Clark, Abe; Behringer, Robert; Brandenburg, John

    2009-11-01

    This project characterizes crater formation in a granular material by a jet of gas impinging on a granular material, such as a retro-rocket landing on the moon. We have constructed a 2D model of a planetary surface, which consists of a thin, clear box partially filled with granular materials (sand, lunar and Mars simulants...). A metal pipe connected to a tank of nitrogen gas via a solenoid valve is inserted into the top of the box to model the rocket. The results are recorded using high-speed video. We process these images and videos in order to test existing models and develop new ones for describing crater formation. A similar set-up has been used by Metzger et al.footnotetextP. T. Metzger et al. Journal of Aerospace Engineering (2009) We find that the long-time shape of the crater is consistent with a predicted catenary shape (Brandenburg). The depth and width of the crater both evolve logarithmically in time, suggesting an analogy to a description in terms of an activated process: dD/dt = A (-aD) (D is the crater depth, a and A constants). This model provides a useful context to understand the role of the jet speed, as characterized by the pressure used to drive the flow. The box width also plays an important role in setting the width of the crater.

  2. Subharmonic instability of a self-organized granular jet

    PubMed Central

    Kollmer, J. E.; Pöschel, T.

    2016-01-01

    Downhill flows of granular matter colliding in the lowest point of a valley, may induce a self-organized jet. By means of a quasi two-dimensional experiment where fine grained sand flows in a vertically sinusoidally agitated cylinder, we show that the emergent jet, that is, a sheet of ejecta, does not follow the frequency of agitation but reveals subharmonic response. The order of the subharmonics is a complex function of the parameters of driving. PMID:27001207

  3. Subharmonic instability of a self-organized granular jet

    NASA Astrophysics Data System (ADS)

    Kollmer, J. E.; Pöschel, T.

    2016-03-01

    Downhill flows of granular matter colliding in the lowest point of a valley, may induce a self-organized jet. By means of a quasi two-dimensional experiment where fine grained sand flows in a vertically sinusoidally agitated cylinder, we show that the emergent jet, that is, a sheet of ejecta, does not follow the frequency of agitation but reveals subharmonic response. The order of the subharmonics is a complex function of the parameters of driving.

  4. Craters and Granular Jets Generated by Underground Cavity Collapse

    NASA Astrophysics Data System (ADS)

    Loranca-Ramos, F. E.; Carrillo-Estrada, J. L.; Pacheco-Vázquez, F.

    2015-07-01

    We study experimentally the cratering process due to the explosion and collapse of a pressurized air cavity inside a sand bed. The process starts when the cavity breaks and the liberated air then rises through the overlying granular layer and produces a violent eruption; it depressurizes the cavity and, as the gas is released, the sand sinks under gravity, generating a crater. We find that the crater dimensions are totally determined by the cavity volume; the pressure does not affect the morphology because the air is expelled vertically during the eruption. In contrast with impact craters, the rim is flat and, regardless of the cavity shape, it evolves into a circle as the cavity depth increases or if the chamber is located deep enough inside the bed, which could explain why most of the subsidence craters observed in nature are circular. Moreover, for shallow spherical cavities, a collimated jet emerges from the collision of sand avalanches that converge concentrically at the bottom of the depression, revealing that collapse under gravity is the main mechanism driving the jet formation.

  5. Pattern formation in granular and granular-fluid flows

    NASA Astrophysics Data System (ADS)

    Duong, Nhat-Hang P.

    Particles and suspensions of particles in fluids are regularly used in many engineering disciplines such as catalysis and reaction engineering, environmental engineering, pharmaceutical engineering, etc. A few issues that are commonly encountered include ensuring homogeneity in pharmaceutical suspensions, predicting particle transport in atmospheric and effluent streams, and manufacturing uniform composite materials. Yet the fundamental study of particle motions in granular media or in highly concentrated granular suspensions has received little attention. Relevant issues of research interest include development of adaptive models that permit wide ranges of particle concentrations, improvement of analyses that allow physical interpretation of particle motions in any medium, of scales ranging from particle size to system size, and accurate validation of theoretical with experimental data. Given the above shortcomings, this dissertation will focus on investigating basic transport behavior of particles in fluids and developing predictive models for granular media and granular suspensions. Emphasis will be given to combining experiments with computations through examples of pattern forming phenomena in a granular medium and a dense granular-fluid system. The background motivation and the objectives of this dissertation are stated in the opening chapter 1. The next three chapters address these objectives in detail. First, chapter 2 presents experimental evidence, descriptions, and characteristics of novel patterns in a dense granular suspension. This is followed by chapter 3 in which a mean-field continuum model is derived to further elucidate the reported patterning phenomena. Chapter 4 uncovers several novel granular patterns experimentally and is concluded with a coarse-grained phenomenological model for granular surface flows. Lastly, chapter 5 closes the dissertation with conclusions and possible future directions. This work provides additional understanding and

  6. Contraction of an inviscid swirling liquid jet: Comparison with results for a rotating granular jet.

    NASA Astrophysics Data System (ADS)

    Weidman, P. D.; Kubitschek, J. P.

    2007-11-01

    In honor of the tercentenary of Leonhard Euler, we report a new solution of the Euler equations for the shape of an inviscid rotating liquid jet emanating from a tube of inner radius R0 aligned with gravity. Jet contraction is dependent on the exit swirl parameter χ0 = R0 φ0/U0 where φ0 and U0 are the uniform rotation rate and axial velocity of the liquid at the exit. The results reveal that rotation reduces the rate of jet contraction. In the limit χ0-> 0 one recovers the contraction profile for a non-rotating jet and the limit χ0->∞ gives a jet of constant radius. In contrast, experiments and a kinematic model for a rotating non-cohesive granular jet show that it expands rather than contracts when a certain small angular velocity is exceeded. The blossoming profiles are parabolic in nature. The model predicts a jet of uniform radius for χ0-> 0 and a jet with an initially horizontal trajectory in the limit χ0->∞.

  7. Dynamic Current Sheet Formation and Evolution with Application to Inter-(Super)granular Flow Lanes and Quasi-Homologous Jet Activity

    NASA Astrophysics Data System (ADS)

    Edmondson, Justin K.; Velli, M.

    2011-05-01

    The coronal magnetic field structure is an immensely complex system constantly driven away from equilibrium by global drivers such as photospheric flow, flux emergence/cancellation at the lower boundary, helicity injection and transport, etc. In low-beta plasma systems, such as solar corona, the Maxwell stresses dominate forces and therefore the system dynamics. General Poynting stress injection (i.e., flux injection, helicity injection, translational motions, or any combination thereof) results in (possibly large) geometric deformations of the magnetic field, such that the Maxwell stresses distribute as uniformly as possible, constrained by the distorted geometry and topology of the bounding separatricies. Since the topological connectivity is discontinuous across these separatrix surfaces, the magnetic stresses will be discontinuous there as well, manifesting as current sheets within the field. The solar magnetic field undergoes major geometric expansion passing from the photosphere, through the chromosphere, into the corona. No matter the specific details, a mixed polarity distribution at the lower boundary and the divergence-free condition require invariant topological features such as an X-line and separatricies to exist between fields emanating from separate regions of the photosphere. We present the results of fully-3D numerical simulations of a simplified low-beta model of this field expansion. A symmetric injection of Maxwell stresses into this geometry inflates strongly line-tied fields, generating a region of large current densities and magnetic energy dissipation. Elsewhere the injected stresses accumulate along the existing separatricies. There is no evidence of reconnection dynamics until after the initial left-right parity is broken. Once the symmetry breaks, the X-line deforms explosively into a Syrovatskii-type current sheet, leading to a succession of quasi-homologous jet dynamics. The bursty-oscillations of these jets occur as the stresses within

  8. The formation of interstellar jets

    NASA Technical Reports Server (NTRS)

    Tenorio-Tagle, G.; Canto, J.; Rozyczka, M.

    1988-01-01

    The formation of interstellar jets by convergence of supersonic conical flows and the further dynamical evolution of these jets are investigated theoretically by means of numerical simulations. The results are presented in extensive graphs and characterized in detail. Strong radiative cooling is shown to result in jets with Mach numbers 2.5-29 propagating to lengths 50-100 times their original widths, with condensation of swept-up interstellar matter at Mach 5 or greater. The characteristics of so-called molecular outflows are well reproduced by the simulations of low-Mach-number and quasi-adiabatic jets.

  9. Jet-Induced Star Formation

    SciTech Connect

    van Breugel, W; Fragile, C; Anninos, P; Murray, S

    2003-12-16

    Jets from radio galaxies can have dramatic effects on the medium through which they propagate. We review observational evidence for jet-induced star formation in low ('FR-I') and high ('FR-II') luminosity radio galaxies, at low and high redshifts respectively. We then discuss numerical simulations which are aimed to explain a jet-induced starburst ('Minkowski's Object') in the nearby FR-I type radio galaxy NGC 541. We conclude that jets can induce star formation in moderately dense (10 cm{sup -3}), warm (10{sup 4} K) gas; that this may be more common in the dense environments of forming, active galaxies; and that this may provide a mechanism for 'positive' feedback from AGN in the galaxy formation process.

  10. Still water: dead zones and collimated ejecta from the impact of granular jets.

    PubMed

    Ellowitz, Jake; Turlier, Hervé; Guttenberg, Nicholas; Zhang, Wendy W; Nagel, Sidney R

    2013-10-18

    When a dense granular jet hits a target, it forms a large dead zone and ejects a highly collimated conical sheet with a well-defined opening angle. Using experiments, simulations, and continuum modeling, we find that this opening angle is insensitive to the precise target shape and the dissipation mechanisms in the flow. We show that this surprising insensitivity arises because dense granular jet impact, though highly dissipative, is nonetheless controlled by the limit of perfect fluid flow.

  11. Solid-particle jet formation under shock-wave acceleration.

    PubMed

    Rodriguez, V; Saurel, R; Jourdan, G; Houas, L

    2013-12-01

    When solid particles are impulsively dispersed by a shock wave, they develop a spatial distribution which takes the form of particle jets whose selection mechanism is still unidentified. The aim of the present experimental work is to study particle dispersal with fingering effects in an original quasi-two-dimensional experiment facility in order to accurately extract information. Shock and blast waves are generated in the carrier gas at the center of a granular medium ring initially confined inside a Hele-Shaw cell and impulsively accelerated. With the present experimental setup, the particle jet formation is clearly observed. From fast flow visualizations, we notice, in all instances, that the jets are initially generated inside the particle ring and thereafter expelled outward. This point has not been observed in three-dimensional experiments. We highlight that the number of jets is unsteady and decreases with time. For a fixed configuration, considering the very early times following the initial acceleration, the jet size selection is independent of the particle diameter. Moreover, the influence of the initial overpressure and the material density on the particle jet formation have been studied. It is shown that the wave number of particle jets increases with the overpressure and with the decrease of the material density. The normalized number of jets as a function of the initial ring acceleration shows a power law valid for all studied configurations involving various initial pressure ratios, particle sizes, and particle materials.

  12. Formation Criterion for Synthetic Jets

    DTIC Science & Technology

    2005-10-01

    formation data for the axisymmetric case were published over 50 years ago by Ingard and Labate.10 More recent studies33,34 suggest that L0/d > 1 for...with the axisymmetric data from Ingard and Labate10 and Smith et al.33 are compared in Fig. 7. It is found that the available data are consis- tent with...the jet formation criterion with an empirically determined constant K equal to approximately 0.16. The deviation of Ingard and Labate’s data at their

  13. Experimental evidence of a Rayleigh-plateau instability in free falling granular jets.

    PubMed

    Prado, G; Amarouchene, Y; Kellay, H

    2011-05-13

    A granular jet falling out of a funnel shaped container, subjected to small vertical vibrations, develops an instability farther downstream as may happen for ordinary liquid jets. Our results show that this instability is reminiscent of the Rayleigh-Plateau capillary instability leading to breakup of the jet at large scales. The first stages of this instability are captured in detail allowing a determination of the dispersion relation. Surface tensions measured in this unstable regime (of the order of mN/m) are in agreement with previously reported measurements carried out at much smaller scales. This instability and the breakup of the jet can be inhibited when the effect of the surrounding medium (air) is reduced by enclosing the jet in an evacuated chamber, showing that the effective surface tension measured is the result of a strong interaction with the surrounding air.

  14. Pattern formation during mixing and segregation of flowing granular materials

    NASA Astrophysics Data System (ADS)

    Metcalfe, Guy; Shattuck, Mark

    1996-02-01

    Powder mixing plays an important role in a number of industries ranging from pharmaceuticals and food to ceramics and mining. Avalanches provide a mechanism for the stretching and folding needed to mix granular solids. However, unlike fluids, when particles dissimilar in size, density, or shape flow, they can spontaneously demix or segregate. Using magnetic resonance imaging, we track the transport of granular solids in a slowly rotating tube both with and without segregation effects. Compared with experiments in a 2-dimensional rotating disk partially filled with colored particles, the mixing kinematics and the granular pattern formation in a tube are changed by an axial flow instability. From simple physical principles we argue how size and density segregation mechanisms can be made to cancel, allowing good mixing of dissimilar particles, and we show experiments verifying this. Further experiments isolate the axial transport in the slowly rotating tube. Axial transport can appear faster with segregation than without.

  15. Perfect fluid flow from the impact of a dense granular jet

    NASA Astrophysics Data System (ADS)

    Zhang, Wendy W.; Ellowitz, Jake; Guttenberg, Nicholas; Turlier, Herve; Nagel, Sidney R.

    2011-03-01

    Axisymmetric collision of a cylindrical water jet with a circular target generates a thin conical sheet, also known as a water bell [Cheng et al. Phys. Rev. Lett. 99, 2007]. Intriguingly, recent experiments on granular jet impact in the regime of dense inertial flow reveal similar behavior: the angles by which the collimated sheets of particles are ejected from the target agree closely with the angles measured in the water-bell experiments [Clanet, C. J. Fluid Mech. 430, 2001]. This quantitative correspondence suggests that the collective granular motion during impact can be modeled as an incompressible, continuum fluid. Since viscous effects are weak in water-jet impact and the granular jet is comprised of non-cohesive particles (hence possessing zero surface tension), the simplest scenario is that the continuum motion corresponds to the flow of a perfect fluid. We show an exact solution of 2D perfect fluid impact agrees quantitatively with 2D discrete-particle simulation results. Therefore, the emergence of a highly collimated outgoing sheet does not necessarily signal the creation of a thermodynamic liquid phase. Such a coherent outcome results generically when the motion is nearly incompressible and dominated by inertia.

  16. Martian gullies: possible formation mechanism by dry granular material..

    NASA Astrophysics Data System (ADS)

    Cedillo-Flores, Y.; Durand-Manterola, H. J.

    section Some of the geomorphological features in Mars are the gullies Some theories developed tried explain its origin either by liquid water liquid carbon dioxide or flows of dry granular material We made a comparative analysis of the Martian gullies with the terrestrial ones We propose that the mechanism of formation of the gullies is as follows In winter CO 2 snow mixed with sand falls in the terrain In spring the CO 2 snow sublimate and gaseous CO 2 make fluid the sand which flows like liquid eroding the terrain and forming the gullies By experimental work with dry granular material we simulated the development of the Martian gullies injecting air in the granular material section We present the characteristics of some terrestrial gullies forms at cold environment sited at Nevado de Toluca Volcano near Toluca City M e xico We compare them with Martian gullies choose from four different areas to target goal recognize or to distinguish to identify possible processes evolved in its formation Also we measured the lengths of those Martian gullies and the range was from 24 m to 1775 meters Finally we present results of our experimental work at laboratory with dry granular material

  17. 2D ultra-fast MRI of granular dispersion by a liquid jet

    NASA Astrophysics Data System (ADS)

    Peng, Yunan; Sederman, Andrew J.; Ramaioli, Marco; Hughes, Eric; Gladden, Lynn F.; Mantle, Mick D.

    2017-06-01

    This paper illustrates the application of ultra-fast magnetic resonance imaging (MRI) as a noninvasive tool to study the dispersion of a dry, static granular bed by the injection of a liquid. Spatial distributions of undispersed grains (poppy seeds) and injected water were independently imaged at sub-millimetre resolution in 2D with ultra-fast MRI techniques. A liquid jet was observed above the bottom injection orifice, complementing optical imaging. Co-registration of the grains and water images enables the interaction of the static grains and of the liquid jet to be observed for the first time in situ. This visualization of the dispersion process can be used to identify optimal process parameters for a fast and uniform dispersion and to validate quantitatively numerical granular-fluid simulations [1].

  18. Erosion onset of a cohesionless granular medium by an immersed impinging round jet

    NASA Astrophysics Data System (ADS)

    Brunier-Coulin, Florian; Cuéllar, Pablo; Philippe, Pierre

    2017-03-01

    Among different devices developed quite recently to quantify the resistance to erosion of natural soil within the broader context of dyke safety, the most commonly used is probably the jet erosion test in which a scouring crater is induced by impingement of an immersed water jet. A comprehensive experimental investigation on the jet erosion in the specific situation of a cohesionless granular material is presented here. The tests were performed by combining special optical techniques allowing for an accurate measurement of the scouring onset and evolution inside an artificially translucent granular sample. The impinging jet hydrodynamics are also analyzed, empirically validating the use of a self-similar theoretical framework for the laminar round jet. The critical conditions at the onset of erosion appear to be best described by a dimensionless Shields number based on the inertial drag force created by the fluid flow on the eroded particles rather than on the pressure gradients around them. To conclude, a tentative empirical model for the maximal flow velocity initiating erosion at the bottom of the scoured crater is put forward and discussed in the light of some preliminary results.

  19. Substructures in Simulations of Relativistic Jet Formation

    NASA Astrophysics Data System (ADS)

    Garcia, Raphael de Oliveira; Oliveira, Samuel Rocha de

    2017-02-01

    We present a set of simulations of relativistic jets from accretion disk initial setup with numerical solutions of a system of general-relativistic magnetohydrodynamics (GRMHD) partial differential equations in a fixed black hole (BH) spacetime which is able to show substructures formations inside the jet as well as lobe formation on the jet head. For this, we used a central scheme of finite volume method without dimensional split and with no Riemann solvers namely the Nessyahu-Tadmor method. Thus, we were able to obtain stable numerical solutions with spurious oscillations under control and with no excessive numerical dissipation. Therefore, we developed some setups for initial conditions capable of simulating the formation of relativistic jets from the accretion disk falling onto central black hole until its ejection, both immersed in a magnetosphere. In our simulations, we were able to observe some substructure of a jet created from an accretion initial disk, namely, jet head, knots, cocoon, and lobe. Also, we present an explanation for cocoon formation and lobe formation. Each initial scenario was determined by ratio between disk density and magnetosphere density, showing that this relation is very important for the shape of the jet and its substructures.

  20. Substructures in Simulations of Relativistic Jet Formation

    NASA Astrophysics Data System (ADS)

    Garcia, Raphael de Oliveira; Oliveira, Samuel Rocha de

    2017-04-01

    We present a set of simulations of relativistic jets from accretion disk initial setup with numerical solutions of a system of general-relativistic magnetohydrodynamics (GRMHD) partial differential equations in a fixed black hole (BH) spacetime which is able to show substructures formations inside the jet as well as lobe formation on the jet head. For this, we used a central scheme of finite volume method without dimensional split and with no Riemann solvers namely the Nessyahu-Tadmor method. Thus, we were able to obtain stable numerical solutions with spurious oscillations under control and with no excessive numerical dissipation. Therefore, we developed some setups for initial conditions capable of simulating the formation of relativistic jets from the accretion disk falling onto central black hole until its ejection, both immersed in a magnetosphere. In our simulations, we were able to observe some substructure of a jet created from an accretion initial disk, namely, jet head, knots, cocoon, and lobe. Also, we present an explanation for cocoon formation and lobe formation. Each initial scenario was determined by ratio between disk density and magnetosphere density, showing that this relation is very important for the shape of the jet and its substructures.

  1. Granular dynamics simulations of two-dimensional heap formation

    NASA Astrophysics Data System (ADS)

    Baxter, J.; Tüautzüautn, U.; Burnell, J.; Heyes, D. M.

    1997-03-01

    Granular dynamics simulations have been carried out of vertical feed two-dimensional heap formation by a freefall method using a more realistic granule interaction law than has been employed in previous studies to permit prolonged contacts between adjacent granules. Stable heaps are found to form only on a geometrically rough base comprised of discrete particles, and heap formation is only weakly sensitive to the value of the contact friction coefficient. The appearance of avalanches, the pressure distribution on the base, and the voidage distribution are sensitive to the analytic form of the elastic component of the normal interaction, with a soft-sphere r-36 potential giving more realistic behavior than an equivalent Hooke law interaction with the same apparent spring constant. The r-36 interaction gives more realistic assembly dynamics as it introduces medium range collective motion caused by particle roughness and shape found in typical granular materials, without having to model anisotropic particles.

  2. General Relativistic MHD Simulations of Jet Formation

    NASA Technical Reports Server (NTRS)

    Mizuno, Y.; Nishikawa, K.-I.; Hardee, P.; Koide, S.; Fishman, G. J.

    2005-01-01

    We have performed 3-dimensional general relativistic magnetohydrodynamic (GRMHD) simulations of jet formation from an accretion disk with/without initial perturbation around a rotating black hole. We input a sinusoidal perturbation (m = 5 mode) in the rotation velocity of the accretion disk. The simulation results show the formation of a relativistic jet from the accretion disk. Although the initial perturbation becomes weakened by the coupling among different modes, it survives and triggers lower modes. As a result, complex non-axisymmetric density structure develops in the disk and the jet. Newtonian MHD simulations of jet formation with a non-axisymmetric mode show the growth of the m = 2 mode but GRMHD simulations cannot see the clear growth of the m = 2 mode.

  3. Pattern formation in granular binary mixtures under shear flow

    NASA Astrophysics Data System (ADS)

    Gao, X.; Narteau, C.; Rozier, O.

    2012-12-01

    Polydisperse granular materials are ubiquitous in the field of geomorphology. Nevertheless, it remains a challenge to address the impact of segregation, stratification and mixing on landscape dynamics and sediment transport. Here, we study numerically the formation and evolution of bed forms using a binary granular mixture. The two types of particles may have different dynamic properties and angle of repose. We associate these changes to two different grain sizes, the so-called coarse and thin particles. Our computation are based on a real-space cellular automaton that combines a model of sediment transport with a lattice-gas cellular automaton. Thus, we implement the permanent feedbacks between fluid flow and topography. Keeping constant the strength of the flow, we explore a parameter-space by varying the size of the coarse particles and their proportion within the bed. As a result of avalanches and sediment transport, we systematically find regions of segregation and stratification. In a vast majority of cases, we also observe the formation of an armoring layer mainly composed of coarse particles. Its depth is mainly controlled by the proportion of coarse grains and not by the size of these larger particles. When there is a larger proportion of thin particles, transverse dunes develop on the top of the armoring layer. As this proportion decreases, we may observe barchans or even no clear bed forms. Not surprisingly, we conclude that the main control parameter for dune pattern formation is the thin sediment availability. Finally, we discuss the processes responsible for the formation of the armoring layer and show how it controls the overall sediment transport.

  4. Experimental study of shear bands formation in a granular material

    NASA Astrophysics Data System (ADS)

    Nguyen, Thai Binh; McNamara, Sean; Crassous, Jérôme; Amon, Axelle

    2017-06-01

    We present an experimental investigation of the formation of shear bands in a granular sample submitted to a biaxial test. Our principal result is the direct observation of the bifurcation at the origin of the localization process in the material. At the bifurcation, the shear band is spatially extended: we observe a breaking of symmetry without any sudden localization of the deformation in a narrow band. Our work thus allows to clearly distinguish different phenomena: bifurcation which is a ponctual event which occurs before the peak, localization which is a process that covers a range of deformation of several percents during which the peak occurs and finally stationary shear bands which are well-defined permanent structures that can be observed at the end of the localization process, after the peak.

  5. Pattern formation in granular binary mixtures under shear flow

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Narteau, Clement; Rozier, Olivier

    2013-04-01

    We study numerically the formation and evolution of bed forms using a binary granular mixture. The two types of particles may have different dynamic properties and angle of repose. We associate these changes to two different grain sizes, the so-called coarse and thin particles. Our computation are based on a real-space cellular automaton that combines a model of sediment transport with a lattice-gas cellular automaton. Thus, we implement the permanent feedbacks between fluid flow and topography. Keeping constant the strength of the flow, we explore a parameter-space by varying the size of the coarse particles and their proportion within the bed. As a result of avalanches and sediment transport, we systematically find regions of segregation and stratification. In a vast majority of cases, we also observe the formation of an armoring layer mainly composed of coarse particles. Its depth is mainly controlled by the proportion of coarse grains and not by the size of these larger particles. When there is a larger proportion of thin particles, transverse dunes develop on the top of the armoring layer. As this proportion decreases, we may observe barchans or even no clear bed forms. We conclude that the main control parameter for dune pattern formation is the thin sediment availability. Finally, we discuss the processes responsible for the formation of the armoring layer and show how it controls the overall sediment transport.

  6. Formation and inflammation of a turbulent jet

    NASA Technical Reports Server (NTRS)

    Ghoniem, A. F.; Chen, D. Y.; Oppenheim, A. K.

    1984-01-01

    The formation and inflammation of a planar, turbulent jet in an incompressible medium is modeled numerically by the use of the random vortex method amended by a flame propagation algorithm. The results demonstrate the dominant influence of turbulent eddies and their interactions upon the development of the jet. Its growth is shown to consist of three stages: formation of small eddies, pairing of eddies with the same sign of circulation, and pairing of eddies of opposite signs. On this basis a number of features of the jet mechanism are revealed, namely penetration, engulfment, entrainment, and intermittency. Two cases of inflammation are considered. In one, the jet is ignited at the center of the orifice, the solution tracing its own inflammation. In the other, combustion is initiated across its full cross section, the results modeling the action of a turbulent torch as it spreads the flame into the combustible surroundings. In both cases the flow field is still dominated by the turbulent eddies and their interactions. However, the coherence among them is encumbered as a consequence of expansion due to the exothermicity of the combustion process.

  7. Filament Channel Formation, Eruption, and Jet Generation

    NASA Astrophysics Data System (ADS)

    DeVore, C. Richard; Antiochos, Spiro K.; Karpen, Judith T.

    2017-08-01

    The mechanism behind filament-channel formation is a longstanding mystery, while that underlying the initiation of coronal mass ejections and jets has been studied intensively but is not yet firmly established. In previous work, we and collaborators have investigated separately the consequences of magnetic-helicity condensation (Antiochos 2013) for forming filament channels (Zhao et al. 2015; Knizhnik et al. 2015, 2017a,b) and of the embedded-bipole model (Antiochos 1996) for generating reconnection-driven jets (Pariat et al. 2009, 2010, 2015, 2016; Wyper et al. 2016, 2017). Now we have taken a first step toward synthesizing these two lines of investigation. Our recent study (Karpen et al. 2017) of coronal-hole jets with gravity and wind employed an ad hoc, large-scale shear flow at the surface to introduce magnetic free energy and form the filament channel. In this effort, we replace the shear flow with an ensemble of local rotation cells, to emulate the Sun’s ever-changing granules and supergranules. As in our previous studies, we find that reconnection between twisted flux tubes within the closed-field region concentrates magnetic shear and free energy near the polarity inversion line, forming the filament channel. Onset of reconnection between this field and the external, unsheared, open field releases stored energy to drive the impulsive jet. We discuss the results of our new simulations with implications for understanding solar activity and space weather.

  8. Impact of numerical method on a side jets formation in a round jet

    NASA Astrophysics Data System (ADS)

    Wawrzak, K.; Boguslawski, A.

    2016-10-01

    Numerical analysis of a formation of side jets in an externally modulated round jet is presented. The research is performed applying Large Eddy Simulation method and high-order codes based on Cartesian and cylindrical coordinates. The main attention is paid to an impact of numerical approach on the formation of the side jets, their number and localisation. The results obtained suggest that on Cartesian meshes the number and directions of the side jets are dependent on the distribution of the mesh nodes.

  9. String Mechanism for Relativistic Jet Formation

    NASA Astrophysics Data System (ADS)

    Dyadechkin, S. A.; Semenov, V. S.; Punsly, B.; Biernat, H. K.

    Here we present our latest studies of relativistic jet formation in the vicinity of a rotating black hole where the reconnection process has been taken into account. In order to simplify the problem, we use Lagrangian formalism and develop a method which enables us to consider a magnetized plasma as a set of magnetic flux tubes [5,6]. Within the limits of the Lagrangian approach, we perform numerical simulations of the flux tube (nonlinear string) behavior which clearly demonstrates the process of relativistic jet formation in the form of outgoing torsional nonlinear aves. It turns out that the jet is produced deep inside the ergosphere where the flux tube takes away spinning energy from the black hole due to the nonlocal Penrose process [2]. This is similar to the Blandford-Znajek (BZ) mechanism to some extent [8], however, the string mechanism is essentially time dependent. It is shown that the leading part of the accreting tube gains negative energy and therefore has to stay in the ergosphere forever. Simultaneously, another part of the tube propagates along the spinning axis away from the hole with nearly the speed of light. As a result, the tube is continuously stretching and our mechanism is essentially time dependent. Obviously, such process cannot last infinitely long and we have to take into account the reconnection process. Due to reconnection, the topology of the flux tube is changed and it gives rise to a plasmoid creation which propagates along spin axis of the hole with relativistic speed carrying off the energy and angular momentum away from the black hole.

  10. GRMHD Simulations of Jet Formation with RAISHIN

    NASA Technical Reports Server (NTRS)

    Mizuno, Y.; Hartmann, D. H.; Nishikawa, K.-I.; Koide, S.; Hardee, P.; Fishman, G. J.

    2006-01-01

    We have developed a new three dimensional general relativistic magnetohydrodynamic (GRMHD) code, RAISHIN, using a conservative, high-resolution shock capturing scheme. Numerical fluxes are calculated using the Harten, Lax, & van Leer (HLL) approximate Riemann solver scheme. The flux-interpolated, constrained transport scheme is used to maintain a divergence-free magnetic field. We describe code performance on some test problems in both special and general relativity. Our new GRMHD code has proven to be accurate to second order and has successfully passed several numerical test problems including highly relativistic and magnetized tests in both special and general relativity. We have performed several simulations of non-rotating and rotating black hole systems with a geometrically thin accretion disk. The simulations show the formation of jets driven by the Lorentz force and the gas pressure. It appears that the rotating black hole creates an additional faster, and more collimated outflow inside a broader, slower outflow that is also generated by the rotating accretion disk around a non-rotating black hole. The kinematic jet structure could thus be a sensitive function of black hole rotation.

  11. Effect and behaviour of different substrates in relation to the formation of aerobic granular sludge.

    PubMed

    Pronk, M; Abbas, B; Al-Zuhairy, S H K; Kraan, R; Kleerebezem, R; van Loosdrecht, M C M

    2015-06-01

    When aerobic granular sludge is applied for industrial wastewater treatment, different soluble substrates can be present. For stable granular sludge formation on volatile fatty acids (e.g. acetate), production of storage polymers under anaerobic feeding conditions has been shown to be important. This prevents direct aerobic growth on readily available chemical oxygen demand (COD), which is thought to result in unstable granule formation. Here, we investigate the impact of acetate, methanol, butanol, propanol, propionaldehyde, and valeraldehyde on granular sludge formation at 35 °C. Methanogenic archaea, growing on methanol, were present in the aerobic granular sludge system. Methanol was completely converted to methane and carbon dioxide by the methanogenic archaeum Methanomethylovorans uponensis during the 1-h anaerobic feeding period, despite the relative high dissolved oxygen concentration (3.5 mg O2 L(-1)) during the subsequent 2-h aeration period. Propionaldehyde and valeraldehyde were fully disproportionated anaerobically into their corresponding carboxylic acids and alcohols. The organic acids produced were converted to storage polymers, while the alcohols (produced and from influent) were absorbed onto the granular sludge matrix and converted aerobically. Our observations show that easy biodegradable substrates not converted anaerobically into storage polymers could lead to unstable granular sludge formation. However, when the easy biodegradable COD is absorbed in the granules and/or when the substrate is converted by relatively slow growing bacteria in the aerobic period, stable granulation can occur.

  12. The formation of small scale granularities in latex particles

    NASA Technical Reports Server (NTRS)

    Zukoski, C. F.; Saville, D. A.

    1985-01-01

    A series of latices were synthesized using emulsifier-free emulsion copolymerization of styrene and sodium styrene sulfonic acid. The final latex particles display an internal granular structure which can be ascribed to the primary particles present in the early stages of particle growth. In these systems, the primary particles appear to have maintained their integrity during the swelling and growth stage.

  13. Inert plug formation in the DDT of granular energetic materials

    SciTech Connect

    Son, S.F.; Asay, B.W.; Bdzil, J.B.

    1996-05-01

    A mechanism is proposed to explain the {open_quotes}plugs{close_quotes} that have been observed in deflagration-to-detonation transition (DDT) of granular explosives. Numerical simulations are performed that demonstrate the proposed mechanism. Observed trends are reproduced. {copyright} {ital 1996 American Institute of Physics.}

  14. The formation of small scale granularities in latex particles

    NASA Technical Reports Server (NTRS)

    Zukoski, C. F.; Saville, D. A.

    1985-01-01

    A series of latices were synthesized using emulsifier-free emulsion copolymerization of styrene and sodium styrene sulfonic acid. The final latex particles display an internal granular structure which can be ascribed to the primary particles present in the early stages of particle growth. In these systems, the primary particles appear to have maintained their integrity during the swelling and growth stage.

  15. Electrical characteristics and formation mechanism of atmospheric pressure plasma jet

    SciTech Connect

    Liu, Lijuan; Zhang, Yu; Tian, Weijing; Meng, Ying; Ouyang, Jiting

    2014-06-16

    The behavior of atmospheric pressure plasma jet produced by a coplanar dielectric barrier discharge in helium in external electrostatic and magnetic field is investigated. Net negative charges in the plasma jet outside the tube were detected. The deflection of the plume in the external field was observed. The plasma jet is suggested to be formed by the electron beam from the temporal cathode which is accelerated by a longitudinal field induced by the surface charges on the dielectric tube or interface between the helium and ambient air. The helium flow is necessary for the jet formation in the surrounding air.

  16. Size limits the formation of liquid jets during bubble bursting

    PubMed Central

    Lee, Ji San; Weon, Byung Mook; Park, Su Ji; Je, Jung Ho; Fezzaa, Kamel; Lee, Wah-Keat

    2011-01-01

    A bubble reaching an air–liquid interface usually bursts and forms a liquid jet. Jetting is relevant to climate and health as it is a source of aerosol droplets from breaking waves. Jetting has been observed for large bubbles with radii of R≫100 μm. However, few studies have been devoted to small bubbles (R<100 μm) despite the entrainment of a large number of such bubbles in sea water. Here we show that jet formation is inhibited by bubble size; a jet is not formed during bursting for bubbles smaller than a critical size. Using ultrafast X-ray and optical imaging methods, we build a phase diagram for jetting and the absence of jetting. Our results demonstrate that jetting in bubble bursting is analogous to pinching-off in liquid coalescence. The coalescence mechanism for bubble bursting may be useful in preventing jet formation in industry and improving climate models concerning aerosol production. PMID:21694715

  17. High-Speed Jet Formation after Solid Object Impact

    NASA Astrophysics Data System (ADS)

    Gekle, Stephan; Gordillo, José Manuel; van der Meer, Devaraj; Lohse, Detlef

    2009-01-01

    A circular disc hitting a water surface creates an impact crater which after collapse leads to a vigorous jet. Upon impact an axisymmetric air cavity forms and eventually pinches off in a single point halfway down the cavity. Two fast sharp-pointed jets are observed shooting up- and downwards from the closure location, which by then has turned into a stagnation point surrounded by a locally hyperbolic flow pattern. This flow, however, is not the mechanism feeding the jets. Using high-speed imaging and numerical simulations we show that jetting is fed by the local flow around the base of the jet, which is forced by the colliding cavity walls. We show how the well-known theory of a collapsing void (using a line of sinks on the symmetry axis) can be continued beyond pinch-off to obtain a new and quantitative model for jet formation which agrees well with numerical and experimental data.

  18. Stellar signatures of AGN-jet-triggered star formation

    SciTech Connect

    Dugan, Zachary; Silk, Joseph; Bryan, Sarah; Gaibler, Volker; Haas, Marcel

    2014-12-01

    To investigate feedback between relativistic jets emanating from active galactic nuclei and the stellar population of the host galaxy, we analyze the long-term evolution of the orbits of the stars formed in the galaxy-scale simulations by Gaibler et al. of jets in massive, gas-rich galaxies at z ∼ 2-3. We find strong, jet-induced differences in the resulting stellar populations of galaxies that host relativistic jets and galaxies that do not, including correlations in stellar locations, velocities, and ages. Jets are found to generate distributions of increased radial and vertical velocities that persist long enough to effectively augment the stellar structure of the host. The jets cause the formation of bow shocks that move out through the disk, generating rings of star formation within the disk. The bow shock often accelerates pockets of gas in which stars form, yielding populations of stars with significant radial and vertical velocities, some of which have large enough velocities to escape the galaxy. These stellar population signatures can serve to identify past jet activity as well as jet-induced star formation.

  19. Spray formation processes of impinging jet injectors

    NASA Technical Reports Server (NTRS)

    Anderson, W. E.; Ryan, H. M.; Pal, S.; Santoro, R. J.

    1993-01-01

    A study examining impinging liquid jets has been underway to determine physical mechanisms responsible for combustion instabilities in liquid bi-propellant rocket engines. Primary atomization has been identified as an important process. Measurements of atomization length, wave structure, and drop size and velocity distribution were made under various ambient conditions. Test parameters included geometric effects and flow effects. It was observed that pre-impingement jet conditions, specifically whether they were laminar or turbulent, had the major effect on primary atomization. Comparison of the measurements with results from a two dimensional linear aerodynamic stability model of a thinning, viscous sheet were made. Measured turbulent impinging jet characteristics were contrary to model predictions; the structure of waves generated near the point of jet impingement were dependent primarily on jet diameter and independent of jet velocity. It has been postulated that these impact waves are related to pressure and momentum fluctuations near the impingement region and control the eventual disintegration of the liquid sheet into ligaments. Examination of the temporal characteristics of primary atomization (ligament shedding frequency) strongly suggests that the periodic nature of primary atomization is a key process in combustion instability.

  20. Spray formation processes of impinging jet injectors

    NASA Astrophysics Data System (ADS)

    Anderson, W. E.; Ryan, H. M.; Pal, S.; Santoro, R. J.

    1993-11-01

    A study examining impinging liquid jets has been underway to determine physical mechanisms responsible for combustion instabilities in liquid bi-propellant rocket engines. Primary atomization has been identified as an important process. Measurements of atomization length, wave structure, and drop size and velocity distribution were made under various ambient conditions. Test parameters included geometric effects and flow effects. It was observed that pre-impingement jet conditions, specifically whether they were laminar or turbulent, had the major effect on primary atomization. Comparison of the measurements with results from a two dimensional linear aerodynamic stability model of a thinning, viscous sheet were made. Measured turbulent impinging jet characteristics were contrary to model predictions; the structure of waves generated near the point of jet impingement were dependent primarily on jet diameter and independent of jet velocity. It has been postulated that these impact waves are related to pressure and momentum fluctuations near the impingement region and control the eventual disintegration of the liquid sheet into ligaments. Examination of the temporal characteristics of primary atomization (ligament shedding frequency) strongly suggests that the periodic nature of primary atomization is a key process in combustion instability.

  1. Probe initial parton density and formation time via jet quenching

    SciTech Connect

    Wang, Xin-Nian

    2002-09-20

    Medium modification of jet fragmentation function due to multiple scattering and induced gluon radiation leads directly to jet quenching or suppression of leading particle distribution from jet fragmentation. One can extract an effective total parton energy loss which can be related to the total transverse momentum broadening. For an expanding medium, both are shown to be sensitive to the initial parton density and formation time. Therefore, one can extract the initial parton density and formation time from simultaneous measurements of parton energy loss and transverse momentum broadening. Implication of the recent experimental data on effects of detailed balance in parton energy loss is also discussed.

  2. Formation and characterization of polymer jets in electrospinning

    NASA Astrophysics Data System (ADS)

    Xu, Han

    The electrospinning jet is defined as a continuous fluid flow ejected from the surface of a fluid when the applied electrical force overcomes the surface tension of the fluid. The electrospinning jet is a micron-scale, often vibrating, tapered, fast developing, electrically charged fluid flow with a high tensile force along the axis. These characteristics create many difficulties in understanding the nature of the jet. The formation and development of the electrospinning jets was introduced using a newly discovered slow developing electrospinning system. The reasons for this system to spin considerably slower and larger in scale than most of the other systems reported were discussed. A fluid mechanical stretching apparatus was designed to apply a uniaxial elongation to the polymer fluid. A rheological model was developed to interpret the experimental data. The elongational relaxation time and the elongational viscosity of polymer solutions were characterized. A novel method was developed to characterize the micron scale jet diameter from the interference color shown on the jet. The relationship between the jet diameter and the interference color on the jet was investigated experimentally and theoretically. The jet diameters were calculated from the interference colors by a comprehensive computer model developed. It was also demonstrated that interference fringes on a cylindrical jet generated by a plane of laser light can be used to characterize the diameter of a micron scale jet. Fluid velocities as a function of positions along the jet axis were characterized by tracing particle movement during electrospinning using high-speed photography. The effects of the electric field on the fluid jet velocity and acceleration were investigated. The strain rate of the electrospinning jets was calculated from the jet diameter, the taper rate and the jet velocity. The strain rate increases when spinning voltage is decreased. The strain rate at different positions along jet

  3. Granular-front formation in free-surface flow of concentrated suspensions

    NASA Astrophysics Data System (ADS)

    Leonardi, Alessandro; Cabrera, Miguel; Wittel, Falk K.; Kaitna, Roland; Mendoza, Miller; Wu, Wei; Herrmann, Hans J.

    2015-11-01

    A granular front emerges whenever the free-surface flow of a concentrated suspension spontaneously alters its internal structure, exhibiting a higher concentration of particles close to its front. This is a common and yet unexplained phenomenon, which is usually believed to be the result of fluid convection in combination with particle size segregation. However, suspensions composed of uniformly sized particles also develop a granular front. Within a large rotating drum, a stationary recirculating avalanche is generated. The flowing material is a mixture of a viscoplastic fluid obtained from a kaolin-water dispersion with spherical ceramic particles denser than the fluid. The goal is to mimic the composition of many common granular-fluid materials, such as fresh concrete or debris flow. In these materials, granular and fluid phases have the natural tendency to separate due to particle settling. However, through the shearing caused by the rotation of the drum, a reorganization of the phases is induced, leading to the formation of a granular front. By tuning the particle concentration and the drum velocity, it is possible to control this phenomenon. The setting is reproduced in a numerical environment, where the fluid is solved by a lattice-Boltzmann method, and the particles are explicitly represented using the discrete element method. The simulations confirm the findings of the experiments, and provide insight into the internal mechanisms. Comparing the time scale of particle settling with the one of particle recirculation, a nondimensional number is defined, and is found to be effective in predicting the formation of a granular front.

  4. Modeling jet and outflow feedback during star cluster formation

    SciTech Connect

    Federrath, Christoph; Schrön, Martin; Banerjee, Robi; Klessen, Ralf S.

    2014-08-01

    Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ∼1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ∼1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ∼ three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.

  5. Granular assembly of alpha-synuclein leading to the accelerated amyloid fibril formation with shear stress.

    PubMed

    Bhak, Ghibom; Lee, Jung-Ho; Hahn, Ji-Sook; Paik, Seung R

    2009-01-01

    alpha-Synuclein participates in the Lewy body formation of Parkinson's disease. Elucidation of the underlying molecular mechanism of the amyloid fibril formation is crucial not only to develop a controlling strategy toward the disease, but also to apply the protein fibrils for future biotechnology. Discernable homogeneous granules of alpha-synuclein composed of approximately 11 monomers in average were isolated in the middle of a lag phase during the in vitro fibrillation process. They were demonstrated to experience almost instantaneous fibrillation during a single 12-min centrifugal membrane-filtration at 14,000 x g. The granular assembly leading to the drastically accelerated fibril formation was demonstrated to be a result of the physical influence of shear force imposed on the preformed granular structures by either centrifugal filtration or rheometer. Structural rearrangement of the preformed oligomomeric structures is attributable for the suprastructure formation in which the granules act as a growing unit for the fibril formation. To parallel the prevailing notion of nucleation-dependent amyloidosis, we propose a double-concerted fibrillation model as one of the mechanisms to explain the in vitro fibrillation of alpha-synuclein, in which two consecutive concerted associations of monomers and subsequent oligomeric granular species are responsible for the eventual amyloid fibril formation.

  6. Granular Assembly of α-Synuclein Leading to the Accelerated Amyloid Fibril Formation with Shear Stress

    PubMed Central

    Bhak, Ghibom; Lee, Jung-Ho; Hahn, Ji-Sook; Paik, Seung R.

    2009-01-01

    α-Synuclein participates in the Lewy body formation of Parkinson's disease. Elucidation of the underlying molecular mechanism of the amyloid fibril formation is crucial not only to develop a controlling strategy toward the disease, but also to apply the protein fibrils for future biotechnology. Discernable homogeneous granules of α-synuclein composed of approximately 11 monomers in average were isolated in the middle of a lag phase during the in vitro fibrillation process. They were demonstrated to experience almost instantaneous fibrillation during a single 12-min centrifugal membrane-filtration at 14,000×g. The granular assembly leading to the drastically accelerated fibril formation was demonstrated to be a result of the physical influence of shear force imposed on the preformed granular structures by either centrifugal filtration or rheometer. Structural rearrangement of the preformed oligomomeric structures is attributable for the suprastructure formation in which the granules act as a growing unit for the fibril formation. To parallel the prevailing notion of nucleation-dependent amyloidosis, we propose a double-concerted fibrillation model as one of the mechanisms to explain the in vitro fibrillation of α-synuclein, in which two consecutive concerted associations of monomers and subsequent oligomeric granular species are responsible for the eventual amyloid fibril formation. PMID:19137068

  7. Jets.

    PubMed

    Rhines, Peter B.

    1994-06-01

    This is a discussion of concentrated large-scale flows in planetary atmospheres and oceans, argued from the viewpoint of basic geophysical fluid dynamics. We give several elementary examples in which these flows form jets on rotating spheres. Jet formation occurs under a variety of circumstances: when flows driven by external stress have a rigid boundary which can balance the Coriolis force, and at which further concentration can be caused by the beta effect; when there are singular lines like the line of vanishing windstress or windstress-curl, or the Equator; when compact sources of momentum, heat or mass radiate jet-like beta plumes along latitude circles; when random external stirring of the fluid becomes organized by the beta effect into jets; when internal instability of the mass field generates zonal flow which then is concentrated into jets; when bottom topographic obstacles radiate jets, and when frontogenesis leads to shallow jet formation. Essential to the process of jet formation in stratified fluids is the baroclinic life cycle described in geostrophic turbulence studies; there, conversion from potential to kinetic energy generates eddy motions, and these convert to quasibarotropic motions which then radiate and induce jet-like large-scale circulation. Ideas of potential vorticity stirring by eddies generalize the notion of Rossby-wave radiation, showing how jets embedded in an ambient potential vorticity gradient (typically due to the spherical geometry of the rotating planet) gain eastward momentum while promoting broader, weaker westward circulation. Homogenization of potential vorticity is an important limit point, which many geophysical circulations achieve. This well-mixed state is found in subdomains of the terrestrial midlatitude oceans, the high-latitude circumpolar ocean, and episodically in the middle atmosphere. Homogenization expels potential vorticity gradients vertically to the top and bottom of the fluid, and sideways to the edges of

  8. Granular Shear Zone Formation: Acoustic Emission Measurements and Fiber-bundle Models

    NASA Astrophysics Data System (ADS)

    Michlmayr, Gernot; Or, Dani

    2013-04-01

    We couple the acoustic emissions method with conceptual models of granular material behavior for investigation of granular shear zone formation and to assess eminence of landslide hazard. When granular materials are mechanically loaded or sheared, they tend to produce discrete events of force network restructuring, and frictional interaction at grain contacts. Such abrupt perturbations within the granular lattice release part of the elastic energy stored in the strained material. Elastic waves generated by such events can be measured as acoustic emissions (AE) and may be used as surrogates for intermittent structural transitions associated with shear zone formation. To experimentally investigate the connection between granular shearing and acoustic signals we performed an array of strain-controlled shear-frame tests using glass beads. AE were measured with two different systems operating at two frequency ranges. High temporal resolution measurements of the shear stresses revealed the presence of small fluctuations typically associated with low-frequency (< 20 kHz) acoustic bursts. Shear stress jumps and linked acoustic signals give account of discrete events of grain network rearrangements and obey characteristic exponential frequency-size distributions. We found that statistical features of force jumps and AE events depend on mechanical boundary conditions and evolve during the straining process. Activity characteristics of high-frequency (> 30 kHz) AE events is linked to friction between grains. To interpret failure associated AE signals, we adapted a conceptual fiber-bundle model (FBM) that describes some of the salient statistical features of failure and associated energy production. Using FBMs for the abrupt mechanical response of the granular medium and an associated grain and force chain AE generation model provides us with a full description of the mechanical-acoustical granular shearing process. Highly resolved AE may serve as a diagnostic tool not only

  9. Pattern formation in a sandpile of ternary granular mixtures

    NASA Astrophysics Data System (ADS)

    Shimokawa, Michiko; Suetsugu, Yuki; Hiroshige, Ryoma; Hirano, Takeru; Sakaguchi, Hidetsugu

    2015-06-01

    Pattern formation in a sandpile is investigated by pouring a ternary mixture of grains into a vertical narrow cell. Size segregation in avalanches causes the formation of patterns. Four kinds of patterns emerge: stratification, segregation, upper stratification-lower segregation, and upper segregation-lower stratification. A phase diagram is constructed in a parameter space of θ11/θ33 and θ22/θ33 , where θ11,θ22 , and θ33 are the repose angles of small, intermediate, and large grains, respectively. To qualitatively understand pattern formation, a phenomenological model based on a roll-or-stay rule is proposed. A similar pattern formation is found in a numerical simulation of the phenomenological model. These results suggest that the ratios of the repose angles of three kinds of grains are important for pattern formation in a sandpile.

  10. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, C.D.

    1980-02-26

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets are disclosed. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member. 4 figs.

  11. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, Charles D. [Livermore, CA

    1980-02-26

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.

  12. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, Charles D.

    1981-01-01

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.

  13. Jet Formation Mechanisms in the presence of Topography

    NASA Astrophysics Data System (ADS)

    Boland, Emma; Haynes, Peter; Shuckburgh, Emily

    2013-04-01

    Despite over 35 years of discussion, there still remain a range of theories describing the formation of jets on a beta plane. One such theory, first proposed by Rhines (1975), is that jets form as a result of an inverse cascade of energy that is halted by the excitation of Rossby waves. We present the results of an investigation in which we attempt to apply this theory to the case of tilted jets forming over a uniform slope in bottom topography in a quasi-geostrophic, two-layer, doubly periodic model. The forms of the Rossby wave frequencies of this system depend on the Rossby deformation radius, and have two limits: a shortwave limit in which the two frequencies are the equivalent layer-wise frequencies, and orientated with the layer-wise PV gradients; and a longwave limit in which the two frequencies are barotropic- and baroclinic-like, and orientated with the barotropic PV gradient. Freely decaying simulations of the system show that the anisotropy of the frequencies successfully predicts the orientation of the jets that form, which are found to be decoupled and follow layer-wise PV gradients in the shortwave limit, and to be coupled and follow the barotropic PV gradient in the longwave limit. Introducing shear and bottom friction does not change the qualitative form of the Rossby wave frequencies, but due to the forcing by baroclinic instability occurring close to the deformation radius, all such quasi-equilibrated simulations are in the longwave limit and jets follow the barotropic PV gradient. However, only some simulations demonstrate the predicted inverse cascade and associated cascade barrier. Other simulations do not have a well developed inverse cascade, and yet still show jet formation. Previous studies have also shown that significant non-local transfers of energy occur in quasi-geostrophic systems with jets, which suggests a richer picture of jet formation. We thus propose that Rossby waves provide a barrier to further energy transfer, and their

  14. Rapid Formation of Aerobic Granular Sludge and Its Mechanism in a Continuous-Flow Bioreactor.

    PubMed

    Xin, Xin; Lu, Hang; Yao, Li; Leng, Lu; Guan, Lei

    2017-01-01

    Based on the principle of self-coagulation of microorganisms, the flocculant-producing denitrifying bacterial TN-14 sludge was added to the continuous-flow reactor for treating domestic sewage. The bacterial TN-14 sludge acted as the main seed sludge to promote the rapid formation of aerobic granular sludge. The sludge morphology, sludge volume index (SVI) values, amounts of extracellular polymeric substances (EPS), and the role of calcium in the granulation process of the sludge were investigated. Results showed that brown aerobic granules with the particle size of 0.5 ~ 2.0 mm was successfully cultivated at 40 days, and its SVI30 decreased from 122.62 mL g(-1) initially to 46.61 mL g(-1) and remained at 44.28 ~ 60.51 mL g(-1) afterwards. The protein (PN) content in sludge EPS increased from 76.4 mg g(-1) initially to 512.3 mg g(-1). Compared with PN, the polysaccharide (PS) content did not change much throughout the operation process of the bioreactor. Energy-dispersive spectrum (EDS) showed that Ca elements were deposited inside the granular sludge, and X-ray diffraction (XRD) showed that Ca elements existed in the granular sludge in the forms of CaCO3, K2CaP2O7, Ca2P2O7, and Ca4O(PO4)2. The formation mechanism of continuous-flow aerobic granular sludge was that bacterial TN-14 sludge could promote the EPS content of sludge, and PN content of EPS increases the hydrophobicity and settling performance of the sludge. Calcium mainly exists in the granular sludge in the form of inorganic calcium phosphate, and therefore plays the role of nucleation in sludge granulation.

  15. Prediction of Hot Tear Formation in Vertical DC Casting of Aluminum Billets Using a Granular Approach

    NASA Astrophysics Data System (ADS)

    Sistaninia, M.; Drezet, J.-M.; Phillion, A. B.; Rappaz, M.

    2013-09-01

    A coupled hydromechanical granular model aimed at predicting hot tear formation and stress-strain behavior in metallic alloys during solidification is applied to the semicontinuous direct chill casting of aluminum alloy round billets. This granular model consists of four separate three-dimensional (3D) modules: (I) a solidification module that is used for generating the solid-liquid geometry at a given solid fraction, (II) a fluid flow module that is used to calculate the solidification shrinkage and deformation-induced pressure drop within the intergranular liquid, (III) a semisolid deformation module that is based on a combined finite element/discrete element method and simulates the rheological behavior of the granular structure, and (IV) a failure module that simulates crack initiation and propagation. To investigate hot tearing, the granular model has been applied to a representative volume within the direct chill cast billet that is located at the bottom of the liquid sump, and it reveals that semisolid deformations imposed on the mushy zone open the liquid channels due to localization of the deformation at grains boundaries. At a low casting speed, only individual pores are able to form in the widest channels because liquid feeding remains efficient. However, as the casting speed increases, the flow of liquid required to compensate for solidification shrinkage also increases and as a result the pores propagate and coalesce to form a centerline crack.

  16. Formation of periodic and localized patterns in an oscillating granular layer.

    SciTech Connect

    Aranson, I.; Tsimring, L. S.; Materials Science Division; Bar Ilan Univ.; Univ. of California at San Diego

    1998-02-01

    A simple phenomenological model for pattern formation in a vertically vibrated layer of granular particles is proposed. This model exhibits a variety of stable cellular patterns including standing rolls and squares as well as localized excitations (oscillons and worms), similar to recent experimental observations (Umbanhowar et al., 1996). The model is an order parameter equation for the parametrically excited waves coupled to the mass conservation law. The structure and dynamics of the solutions resemble closely the properties of patterns observed in the experiments.

  17. Formation and Destruction of Jets in X-ray Binaries

    NASA Technical Reports Server (NTRS)

    Kylafix, N. D.; Contopoulos, I.; Kazanas, D.; Christodoulou, D. M.

    2011-01-01

    Context. Neutron-star and black-hole X-ray binaries (XRBs) exhibit radio jets, whose properties depend on the X-ray spectral state e.nd history of the source. In particular, black-hole XRBs emit compact, 8teady radio jets when they are in the so-called hard state. These jets become eruptive as the sources move toward the soft state, disappear in the soft state, and then re-appear when the sources return to the hard state. The jets from neutron-star X-ray binaries are typically weaker radio emitters than the black-hole ones at the same X-ray luminosity and in some cases radio emission is detected in the soft state. Aims. Significant phenomenology has been developed to describe the spectral states of neutron-star and black-hole XRBs, and there is general agreement about the type of the accretion disk around the compact object in the various spectral states. We investigate whether the phenomenology describing the X-ray emission on one hand and the jet appearance and disappearance on the other can be put together in a consistent physical picture. Methods. We consider the so-called Poynting-Robertson cosmic battery (PRCB), which has been shown to explain in a natural way the formation of magnetic fields in the disks of AGNs and the ejection of jets. We investigate whether the PRCB can also explain the [ormation, destruction, and variability or jets in XRBs. Results. We find excellent agreement between the conditions under which the PRCB is efficient (i.e., the type of the accretion disk) and the emission or destruction of the r.adio jet. Conclusions. The disk-jet connection in XRBs can be explained in a natural way using the PRCB.

  18. Simulation of Granular Flows and Pile Formation in a Flat-Bottomed Hopper and Bin, and Experimental Verification

    PubMed Central

    Yuu, Shinichi; Umekage, Toshihiko

    2011-01-01

    Granular flows of 200 μm particles and the pile formation in a flat-bottomed hopper and bin in the presence of air and in a vacuum were predicted based on three-dimensional numerically empirical constitutive relations using Smoothed Particle Hydrodynamics and Computational Fluid Dynamics methods. The constitutive relations for the strain rate independent stress have been obtained as the functions of the Almansi strain including the large deformation by the same method as Yuu et al. [1]. The constitutive relations cover the elastic and the plastic regions including the flow state and represent the friction mechanism of granular material. We considered the effect of air on the granular flow and pile by the two-way coupling method. The granular flow patterns, the shapes of piles and the granular flow rates in the evolution are compared with experimental data measured under the same conditions. There was good agreement between these results, which suggests that the constitutive relations and the simulation method would be applicable for predicting granular flows and pile formation with complex geometry including free surface geometry. We describe the mechanisms by which the air decreases the granular flow rate and forms the convergence granular flow below the hopper outlet. PMID:28824153

  19. Experimental and numerical investigation of cylindrical and hemispherical jet formation

    NASA Astrophysics Data System (ADS)

    Betney, Matthew; Foster, Peta; Ringrose, Tim; Edwards, Thomas; Tully, Brett; Doyle, Hugo; Hawker, Nicholas; First Light Fusion Ltd. Team

    2016-11-01

    This paper presents a detailed investigation of the formation of jets in cylindrical and spherical cavities, when impacted by shocks at extreme pressures. As the shock pressure increases the effects of material strength lessen in proportion. Beyond a certain magnitude the behaviour is referred to as "hydrodynamic". In this domain both cylindrical and spherical cavities involute to form jets, which go on to strike the leeward cavity wall, compressing the cavity contents to high pressures and temperatures. In this study, the jet formation process is isolated by cutting hemispherical and half-cylindrical cavities from the rear side of PMMA and copper blocks. This allows direct measurement of the jet speed and shape using high speed imaging, providing data against which numerical models may be compared. Shock waves at pressures of up to 30 GPa are formed in the targets by the impact of projectiles from a two-stage light gas gun, at velocities of up to 7 km/s. Numerically, the jet formation process is modelled using our in-house front-tracking code. This code uses Lagrangian hypersurfaces to model the interfaces between different media, with an underlying Eulerian mesh used to model the bulk flow. Detailed comparisons between numerical and experimental results are presented.

  20. The formation of granular fronts in debris flow - A combined experimental-numerical study

    NASA Astrophysics Data System (ADS)

    Leonardi, Alessandro; Cabrera, Miguel; Wittel, Falk K.; Kaitna, Roland; Mendoza, Miller; Wu, Wei; Herrmann, Hans J.

    2015-04-01

    Granular fronts are amongst the most spectacular features of debris flows, and are also one of the reasons why such events are associated with a strong destructive power. They are usually believed to be the result of the convective mechanism of the debris flow, combined with internal size segregation of the grains. However, the knowledge about the conditions leading to the formation of a granular front is not up to date. We present a combined study with experimental and numerical features that aims at providing insight into the phenomenon. A stationary, long-lived avalanche is created within a rotating drum. In order to mimic the composition of an actual debris flow, the material is composed by a mixture of a plastic fluid, obtained with water and kaolin powder, and a collection of monodisperse spherical particles heavier than the fluid. Tuning the material properties and the drum settings, we are able to reproduce and control the formation of a granular front. To gain insight into the internal mechanism, the same scenario is replicated in a numerical environment, using a coupling technique between a discrete solver for the particles, the Discrete Element Method, and a continuum solver for the plastic fluid, the Lattice-Boltzmann Method. The simulations compare well with the experiments, and show the internal reorganization of the material transport. The formation of a granular front is shown to be favored by a higher drum rotational speed, which in turn forces a higher shear rate on the particles, breaks their internal organization, and contrasts their natural tendency to settle. Starting from dimensional analysis, we generalize the obtained results and are able to draw implications for debris flow research.

  1. Liquid Jet Formation in Laser-Induced Forward Transfer

    NASA Astrophysics Data System (ADS)

    Brasz, C. Frederik

    Laser-induced forward transfer (LIFT) is a direct-write technique capable of printing precise patterns of a wide variety of materials. In this process, a laser pulse is focused through a transparent support and absorbed in a thin donor film, propelling material onto an adjacent acceptor substrate. For fluid materials, this transfer occurs through the formation of a narrow liquid jet, which eventually pinches off due to surface tension. This thesis examines in detail the fluid mechanics of the jet formation process occurring in LIFT. The main focus is on a variant of LIFT known as blister-actuated LIFT (BA-LIFT), in which the laser pulse is absorbed in an ink-coated polymer layer, rapidly deforming it locally into a blister to induce liquid jet formation. The early-time response of a fluid layer to a deforming boundary is analyzed with a domain perturbation method and potential-flow simulations, revealing scalings for energy and momentum transfer to the fluid and providing physical insight on how and why a jet forms in BA-LIFT. The remaining chapters explore more complex applications and modifications of LIFT. One is the possibility of high-repetition rate printing and limits on time delay and separation between pulses imposed by a tilting effect found for adjacent jets. Another examines a focusing effect achieved by perturbing the interface with ring-shaped disturbances. The third contains an experimental study of LIFT using a silver paste as the donor material instead of a Newtonian liquid. The transfer mechanism is significantly different, although with repeated pulses at one location, a focusing effect is again observed. All three of these chapters investigate how perturbations to the interface can strongly influence the jet formation process.

  2. The Determination of Formation Number for Starting Buoyant Jets

    NASA Astrophysics Data System (ADS)

    Wang, Ruo-Qian; Law, Adrian Wing-Keung; Eric Adams, E.; Fringer, Oliver B.

    2010-05-01

    Starting buoyant jets are widely observed in nature as well as in engineering applications. The interactions between the leading vortex ring and the trailing stem play a significant role on the development of the staring processes, and the Formation Number is established to be the criterion that demarcates the presence of the trailing stem and thus, the occurrence of pinch-off. In this study, the buoyant formation number for a starting buoyant jet which includes the momentum inducement due to presence of buoyancy is examined numerically. The investigation is based on the results of a series of numerical simulations with the Large-Eddy Simulation (LES) approach to reproduce the starting buoyant jet in a wide range of conditions from pure jets to lazy plumes. Based on the results, the buoyant formation number can be obtained following the occurrence of a step-jump in the vortex ring circulation in the following manner. First, the vorticity is integrated through the half central plane of the computational domain, which a trough can be observed to follow the head vortex ring in the vertical distribution. The trailing stem and the head vortex ring are differentiated based on this trough location. Subsequently, if and just before a pitch off occurs, a step-jump in the circulation of the head vortex ring is typically observed. The jump value is then traced back to the total circulation, and the non-dimensional time that it occurs. This non-dimensional time is found to the same as the formation number for the runs conducted. Using this method, a comparison of the numerical results with the experimental data for a starting pure jet is performed, and the widely accepted formation number (≈4.0) is obtained which verifies that the method is satisfactory. The effect of buoyancy on the formation number is then investigated for two turbulent discharge conditions of Re = 2000 and 2500 and with a wide range of buoyancy fluxes.

  3. The Formation of Relativistic Jets from Kerr Black Holes

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Richardson, G.; Preece, R.; Hardee, P.; Koide, S.; Shibata, K.; Kudoh, T.; Sol, H.; Fishman, G. J.

    2003-01-01

    We have performed the first fully three-dimensional general relativistic magnetohydrodynamics (GRMHD) simulation for Schwarzschild and Kerr black holes with a free falling corona and thin accretion disk. The initial simulation results with a Schwarzschild metric show that a jet is created as in the previous axisymmetric simulations with mirror symmetry at the equator. However, the time to form the jet is slightly longer than in the 2-D axisymmetric simulation. We expect that the dynamics of jet formation are modified due to the additional freedom in the azimuth dimension without axisymmetry with respect to the Z axis and reflection symmetry respect to the equatorial plane. The jet which is initially formed due to the twisted magnetic fields and shocks becomes a wind at the later time. The wind flows out with a much wider angle than the initial jet. The twisted magnetic fields at the earlier time were untwisted and less pinched. The accretion disk became thicker than the initial condition. Further simulations with initial perturbations will provide insights for accretion dynamics with instabilities such as magneto-rotational instability (MRI) and accretion-eject instability (AEI). These instabilities may contribute to variabilities observed in microquasars and AGN jets.

  4. GRMHD Simulations of Jet Formation with a New Code

    NASA Technical Reports Server (NTRS)

    Mizuno, Y.; Nishikawa, K.-I.; Koide, S.; Hardee, P.; Fishman, G. J.

    2006-01-01

    We have developed a new three-dimensional general relativistic magnetohydrodynamic (GRMHD) code by using a conservative, high-resolution shock-capturing scheme. The numerical fluxes are calculated using the HLL approximate Riemann solver scheme. The flux-interpolated, constrained transport scheme is used to maintain a divergence-free magnetic field. Various one-dimensional test problems in both special and general relativity show significant improvements over our previous model. We have performed simulations of jet formations from a geometrically thin accretion disk near both nonrotating and rotating black holes. The new simulation results show that the jet is formed in the same manner as in previous work and propagates outward. In the rotating black hole cases, jets form much closer to the black hole's ergosphere and the magnetic field is strongly twisted due the frame-dragging effect. As the magnetic field strength becomes weaker, a larger amount of matter is launched with the jet. On the other hand, when the magnetic field strength becomes stronger, the jet has less matter and becomes poynting-flux dominated. We will also discuss how the jet properties depend on the rotation of a black hole.

  5. BATHYMETRIC IRREGULARITIES, JET FORMATION, AND SUBSEQUENT MIXING PROCESSES

    EPA Science Inventory

    It is well known that bathymetric contours influence and steer currents and that irregularities in bathymetry contribute to the formation of aquatic non-buoyant jets and buoyant plumes. For example, bathymetric irregularities can channel flow through canyons or accelerate flow ov...

  6. BATHYMETRIC IRREGULARITIES, JET FORMATION, AND SUBSEQUENT MIXING PROCESSES

    EPA Science Inventory

    It is well known that bathymetric contours influence and steer currents and that irregularities in bathymetry contribute to the formation of aquatic non-buoyant jets and buoyant plumes. For example, bathymetric irregularities can channel flow through canyons or accelerate flow ov...

  7. Impact on Granular Beds

    NASA Astrophysics Data System (ADS)

    van der Meer, Devaraj

    2017-01-01

    The impact of an object on a granular solid is an ubiquitous phenomenon in nature, the scale of which ranges from the impact of a raindrop onto sand all the way to that of a large asteroid on a planet. Despite the obvious relevance of these impact events, the study of the underlying physics mechanisms that guide them is relatively young, with most work concentrated in the past decade. Upon impact, an object starts to interact with a granular bed and experiences a drag force from the sand. This ultimately leads to phenomena such as crater formation and the creation of a transient cavity that upon collapse may cause a jet to appear from above the surface of the sand. This review provides an overview of research that targets these phenomena, from the perspective of the analogous but markedly different impact of an object on a liquid. It successively addresses the drag an object experiences inside a granular bed, the expansion and collapse of the cavity created by the object leading to the formation of a jet, and the remarkable role played by the air that resides within the pores between the grains.

  8. A General Relativistic Magnetohydrodynamic Simulation of Jet Formation

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Richardson, G.; Koide, S.; Shibata, K.; Kudoh, T.; Hardee, P.; Fishman, G. J.

    2005-01-01

    We have performed a fully three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulation ofjet formation from a thin accretion disk around a Schwarzschild black hole with a free-falling corona. The initial simulation results show that a bipolar jet (velocity approx.0.3c) is created, as shown by previous two-dimensional axi- symmetric simulations with mirror symmetry at the equator. The three-dimensional simulation ran over 100 light crossing time units (T(sub s) = r(sub s)/c, where r(sub s = 2GM/c(sup 2), which is considerably longer than the previous simulations. We show that the jet is initially formed as predicted owing in part to magnetic pressure from the twisting of the initially uniform magnetic field and from gas pressure associated with shock formation in the region around r = 3r(sub s). At later times, the accretion disk becomes thick and the jet fades resulting in a wind that is ejected from the surface ofthe thickened (torus-like) disk. It should be noted that no streaming matter from a donor is included at the outer boundary in the simulation (an isolated black hole not binary black hole). The wind flows outward with a wider angle than the initial jet. The widening of the jet is consistent with the outward-moving torsional Alfven waves. This evolution of disk-jet coupling suggests that the jet fades with a thickened accretion disk because of the iack of streaming materiai from an accompanying star.

  9. R Aqr: a prototype for non-relativistic astrophysical jets and a key for understanding jet formation

    NASA Astrophysics Data System (ADS)

    Stute, Matthias

    2013-10-01

    R Aqr is a well-known prototype for non-relativistic astrophysical jets. The R Aqr jet has been extensively observed in the ultraviolet, optical, and radio regimes. We propose to re-visit this enigmatic object with HST after twelve years, in order to measure the proper motions of its inner knots with unprecedented accuracy, to derive emission lines ratios for these knots, and to investigate the width of the jet at several distances from the jet source. We will compare the results with numerical models of radiative shocks in propagating jets and of jet formation models and will determine the kinematics of the jet, the history of ejection events and basic parameters of the jet engine as e.g. the launching radius of the jet-ejecting accretion disk.

  10. Spray Formation of Herschel-Bulkley Fluids using Impinging Jets

    NASA Astrophysics Data System (ADS)

    Rodrigues, Neil; Gao, Jian; Chen, Jun; Sojka, Paul E.

    2015-11-01

    The impinging jet spray formation of two non-Newtonian, shear-thinning, Herschel-Bulkley fluids was investigated in this work. The water-based gelled solutions used were 1.0 wt.-% agar and 1.0 wt.-% kappa carrageenan. A rotational rheometer and a capillary viscometer were used to measure the strain-rate dependency of viscosity and the Herschel-Bulkley Extended (HBE) rheological model was used to characterize the shear-thinning behavior. A generalized HBE jet Reynolds number Rej , gen - HBE was used as the primary parameter to characterize the spray formation. A like-on-like impinging jet doublet was used to produce atomization. Shadowgraphs were captured in the plane of the sheet formed by the two jets using a CCD camera with an Nd:YAG laser beam providing the back-illumination. Typical behavior for impinging jet atomization using Newtonian liquids was not generally observed due to the non-Newtonian, viscous properties of the agar and kappa carrageenan gels. Instead various spray patterns were observed depending on Rej , gen - HBE. Spray characteristics of maximum instability wavelength and sheet breakup length were extracted from the shadowgraphs. Multi-University Research Initiative Grant Number W911NF-08-1-0171.

  11. Effect of packing fraction on shear band formation in a granular material forced by a penetrometer

    NASA Astrophysics Data System (ADS)

    Tapia, Franco; Espíndola, David; Hamm, Eugenio; Melo, Francisco

    2013-01-01

    Granular ensembles subjected to confinement forces can reach metastable states that often break down via formation of shear bands for sufficiently high deviatoric stress. In this article we investigate the flow induced in a granular ensemble that is perturbed by a vertically moving finger in a quasiplanar geometry. The flow exhibits spiral-like shear bands and evolves discontinuously in time, in concert with an oscillating penetration force. We characterize the nature of this nucleation-relaxation type process for loose to dense packing fractions. The nucleation dynamics is reasonably well described by a simple Mohr-Coulomb failure criterium in which the friction coefficient is a function of packing fraction. We contrast our findings with the recent work of Gravish [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.128301 105, 128301 (2010)].

  12. Effect of packing fraction on shear band formation in a granular material forced by a penetrometer.

    PubMed

    Tapia, Franco; Espíndola, David; Hamm, Eugenio; Melo, Francisco

    2013-01-01

    Granular ensembles subjected to confinement forces can reach metastable states that often break down via formation of shear bands for sufficiently high deviatoric stress. In this article we investigate the flow induced in a granular ensemble that is perturbed by a vertically moving finger in a quasiplanar geometry. The flow exhibits spiral-like shear bands and evolves discontinuously in time, in concert with an oscillating penetration force. We characterize the nature of this nucleation-relaxation type process for loose to dense packing fractions. The nucleation dynamics is reasonably well described by a simple Mohr-Coulomb failure criterium in which the friction coefficient is a function of packing fraction. We contrast our findings with the recent work of Gravish et al. [Phys. Rev. Lett. 105, 128301 (2010)].

  13. Soot Formation in Hydrocarbon/Air Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Faeth, G. M.

    1994-01-01

    Soot processes within hydrocarbon/air diffusion flames are important because they affect the durability and performance of propulsion systems, the hazards of unwanted fires, the pollutant and particulate emissions from combustion processes, and the potential for developing computational combustion. Motivated by these observations, this investigation involved an experimental study of the structure and soot properties of round laminar jet diffusion flames, seeking an improved understanding of soot formation (growth and nucleation) within diffusion flames. The present study extends earlier work in this laboratory concerning laminar smoke points (l) and soot formation in acetylene/air laminar jet diffusion flames (2), emphasizing soot formation in hydrocarbon/air laminar jet diffusion flames for fuels other than acetylene. In the flame system, acetylene is the dominant gas species in the soot formation region and both nucleation and growth were successfully attributed to first-order reactions of acetylene, with nucleation exhibiting an activation energy of 32 kcal/gmol while growth involved negligible activation energy and a collision efficiency of O.53%. In addition, soot growth in the acetylene diffusion flames was comparable to new soot in premixed flame (which also has been attributed to first-order acetylene reactions). In view of this status, a major issue is the nature of soot formation processes in diffusion flame involving hydrocarbon fuels other than acetylene. In particular, information is needed about th dominant gas species in the soot formation region and the impact of gas species other than acetylene on soot nucleation and growth.

  14. Numerical study of nanoparticle formation in a free turbulent jet

    NASA Astrophysics Data System (ADS)

    Gilfanov, A. K.; Koch, W.; Zaripov, S. K.; Rybdylova, O. D.

    2016-11-01

    Di-ethyl-hexyl-sebacate (DEHS) aerosol nanoparticle formation in a free turbulent jet as a result of nucleation, condensation and coagulation is studied using fluid flow simulation and the method of moments under the assumption of lognormal particle size distribution. The case of high nucleation rates and the coagulation-controlled growth of particles is considered. The formed aerosol performance is jet is numerically investigated for the various nozzle diameters and two approximations of the saturation pressure dependence on the temperature. It is demonstrated that a higher polydispersity of the aerosol is obtained for smaller nozzle diameters.

  15. Laser-induced jet formation in liquid films

    NASA Astrophysics Data System (ADS)

    Brasz, Frederik; Arnold, Craig

    2014-11-01

    The absorption of a focused laser pulse in a liquid film generates a cavitation bubble on which a narrow jet can form. This is the basis of laser-induced forward transfer (LIFT), a versatile printing technique that offers an alternative to inkjet printing. We study the influence of the fluid properties and laser pulse energy on jet formation using numerical simulations and time-resolved imaging. At low energies, surface tension causes the jet to retract without transferring a drop, and at high energies, the bubble breaks up into a splashing spray. We explore the parameter space of Weber number, Ohnesorge number, and ratio of film thickness to maximum bubble radius, revealing regions where uniform drops are transferred.

  16. Multi-jets formation using laser forward transfer

    NASA Astrophysics Data System (ADS)

    Biver, Emeric; Rapp, Ludovic; Alloncle, Anne-Patricia; Delaporte, Philippe

    2014-05-01

    The dynamics of multi-jets formation in liquid films has been investigated using the laser-induced forward transfer (LIFT) technique. This technique allows the deposition of micrometer-sized droplets with a high spatial resolution from a donor substrate to a receiver substrate. The donor was a silver nanoparticles ink-coated substrate. The interaction of the laser pulse with the donor ink layer generates an expanding bubble in the liquid which propels a jet towards the receiver. Silver lines have already been printed by depositing overlapping droplets in a “low speed” process. In order to increase the throughput, it is necessary to decrease the time between the depositions of two droplets. By scanning the beam of a high repetition rate UV picosecond laser (343 nm; 30 ps; 500 kHz) with a galvanometric mirror, successive pulses are focused on the silver nanoparticles ink-coated donor substrate. The shape and dynamics of single jets and adjacent jets have been investigated by means of a time-resolved imaging technique. By varying the distance between the laser spots, different behaviours were observed and compared to the printed droplets. A spacing of 25 μm between laser spots was found to generate both stable jets and well-controlled, reproducible droplets at high speed.

  17. Singular jets in the formation of bubbles in viscous fluids

    NASA Astrophysics Data System (ADS)

    Seon, Thomas; Duclaux, Virginie; Antkowiak, Arnaud

    2010-11-01

    We study experimentally the process of formation of large bubbles in viscous fluids. Whereas at low flow rates, the produced individual bubbles quickly recover a quasi-spherical shape, collective behaviors between bubbles are identified as the feeding gas flow rate is increased. These interactions may lead to the surprising gobbling of a bubble by another, resulting in large sized bubbles with inner viscous shells. At even higher feeding rates, a violent Worthington jet following bubble pinch-off appears. This jet is so intense and concentrated that perforation of the bubble may occur. We analyze the whole phenomenology of the large interface deformations associated with bubble formation in viscous fluids with detailed experiments conducted with high-speed video imaging.

  18. VLBA Reveals Formation Region of Giant Cosmic Jet

    NASA Astrophysics Data System (ADS)

    1999-10-01

    Astronomers have gained their first glimpse of the mysterious region near a black hole at the heart of a distant galaxy, where a powerful stream of subatomic particles spewing outward at nearly the speed of light is formed into a beam, or jet, that then goes nearly straight for thousands of light-years. The astronomers used radio telescopes in Europe and the U.S., including the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) to make the most detailed images ever of the center of the galaxy M87, some 50 million light-years away. "This is the first time anyone has seen the region in which a cosmic jet is formed into a narrow beam," said Bill Junor of the University of New Mexico, in Albuquerque. "We had always speculated that the jet had to be made by some mechanism relatively near the black hole, but as we looked closer and closer to the center, we kept seeing an already-formed beam. That was becoming embarrassing, because we were running out of places to put the formation mechanism that we knew had to be there." Junor, along with John Biretta and Mario Livio of the Space Telescope Science Institute, in Baltimore, MD, now have shown that M87's jet is formed within a few tenths of a light-year of the galaxy's core, presumed to be a black hole three billion times more massive than the sun. In the formation region, the jet is seen opening widely, at an angle of about 60 degrees, nearest the black hole, but is squeezed down to only 6 degrees a few light-years away. "The 60-degree angle of the inner part of M87's jet is the widest such angle yet seen in any jet in the universe," said Junor. "We found this by being able to see the jet to within a few hundredths of a light-year of the galaxy's core -- an unprecedented level of detail." The scientists reported their findings in the October 28 issue of the journal Nature. At the center of M87, material being drawn inward by the strong gravitation of the black hole is formed into a rapidly-spinning flat

  19. Textural and Isotopic Evidence for Silica Cementation in 1.88 GA Granular Iron Formation

    NASA Astrophysics Data System (ADS)

    Brengman, L. A.; Fedo, C.; Martin, W.

    2016-12-01

    Controls on quartz precipitation mechanisms and silicon isotope fractionation during diagenesis of Precambrian iron formation (IF) are not well constrained. The goal of this study is to identify textural evidence for the relative timing of silica cementation of granular units from the near un-metamorphosed 1.88 Ga Biwabik IF and determine the silicon isotope composition for such a silicification event. The lowermost IF (lower cherty, LC) consists of granular units associated with high-energy sedimentary structures interpreted to represent shallow-marine shelf deposition. Up-section is marked by an abrupt shift to banded units interpreted as a transition to quiescent (deeper) water, followed by a return to granular textures and shallower conditions (upper cherty, UC). We first surveyed granular samples of the lower stromatolitic (LC) and upper oncolitic facies (UC) to identify sedimentary textures and cement. LC units consist of microquartz (chert), megaquartz, hematite, carbonate, and detrital quartz, chert, and quartz/Fe-oxide intraclastic material. In UC samples, space between granular material (hematite, magnetite, quartz ooids/intraclasts) is filled by mega-quartz cement, and cross-cutting mega-quartz veins. We targeted mega-quartz cement, and veins for δ30Si analysis via secondary ion mass spectrometry. The average measured δ30Si value of cement (δ30Siavg. cement UC6b = -3.11 ± 0.21 ‰) is significantly different than associated veins (δ30Siavg. vein UC6b = 0.21 ± 0.21 ‰; δ30Siavg. vein LC4 = 0.39 ± 0.21 ‰), both within and between samples. We interpret the relative difference between cement and veins to represent quartz precipitation under different geochemical conditions, and therefore at different times. Combining isotopic and textural evidence, we interpret silica cementation to pre-date veins, and represent quartz precipitation that either varied in rate, or occurred under closed-system conditions affected by Rayleigh distillation. Both

  20. Jet formation in cerium metal to examine material strength

    SciTech Connect

    Jensen, B. J. Cherne, F. J.; Prime, M. B.; Yeager, J. D.; Ramos, K. J.; Hooks, D. E.; Cooley, J. C.; Dimonte, G.; Fezzaa, K.; Iverson, A. J.; Carlson, C. A.

    2015-11-21

    Examining the evolution of material properties at extreme conditions advances our understanding of numerous high-pressure phenomena from natural events like meteorite impacts to general solid mechanics and fluid flow behavior. Recent advances in synchrotron diagnostics coupled with dynamic compression platforms have introduced new possibilities for examining in-situ, spatially resolved material response with nanosecond time resolution. In this work, we examined jet formation from a Richtmyer-Meshkov instability in cerium initially shocked into a transient, high-pressure phase, and then released to a low-pressure, higher-temperature state. Cerium's rich phase diagram allows us to study the yield stress following a shock induced solid-solid phase transition. X-ray imaging was used to obtain images of jet formation and evolution with 2–3 μm spatial resolution. From these images, an analytic method was used to estimate the post-shock yield stress, and these results were compared to continuum calculations that incorporated an experimentally validated equation-of-state (EOS) for cerium coupled with a deviatoric strength model. Reasonable agreement was observed between the calculations and the data illustrating the sensitivity of jet formation on the yield stress values. The data and analysis shown here provide insight into material strength during dynamic loading which is expected to aid in the development of strength aware multi-phase EOS required to predict the response of matter at extreme conditions.

  1. Jet Formation in Solar Atmosphere due to Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    González-Avilés, J. J.; Guzmán, F. S.; Fedun, V.

    2017-02-01

    Using numerical simulations, we show that jets with features of type II spicules and cool coronal jets corresponding to temperatures of 104 K can be formed as a result of magnetic reconnection in a scenario with magnetic resistivity. For this, we model the low chromosphere–corona region using the C7 equilibrium solar atmosphere model, assuming that resistive MHD rules the dynamics of the plasma. The magnetic field configurations we analyze correspond to two neighboring loops with opposite polarity. The formation of a high-speed and sharp structure depends on the separation of the loops’ feet. We analyze the cases where the magnetic field strength of the two loops is equal and different. In the first case, with a symmetric configuration the jets rise vertically, whereas in an asymmetric configuration the structure shows an inclination. With a number of simulations carried out under a 2.5D approach, we explore various properties of the excited jets, namely, inclination, lifetime, and velocity. The parameter space involves a magnetic field strength between 20 and 40 G, and the resistivity is assumed to be uniform with a constant value of the order {10}-2{{Ω }}\\cdot m.

  2. Explaining formation of Astronomical Jets using Dynamic Universe Model

    NASA Astrophysics Data System (ADS)

    Naga Parameswara Gupta, Satyavarapu

    2016-07-01

    Astronomical jets are observed from the centres of many Galaxies including our own Milkyway. The formation of such jet is explained using SITA simulations of Dynamic Universe Model. For this purpose the path traced by a test neutron is calculated and depicted using a set up of one densemass of the mass equivalent to mass of Galaxy center, 90 stars with similar masses of stars near Galaxy center, mass equivalents of 23 Globular Cluster groups, 16 Milkyway parts, Andromeda and Triangulum Galaxies at appropriate distances. Five different kinds of theoretical simulations gave positive results The path travelled by this test neutron was found to be an astronomical jet emerging from Galaxy center. This is another result from Dynamic Universe Model. It solves new problems like a. Variable Mass Rocket Trajectory Problem b. Explaining Very long baseline interferometry (VLBI) observations c. Astronomical jets observed from Milkyway Center d. Prediction of Blue shifted Galaxies e. Explaining Pioneer Anomaly f. Prediction of New Horizons satellite trajectory etc. Dynamic Universe Model never reduces to General relativity on any condition. It uses a different type of mathematics based on Newtonian physics. This mathematics used here is simple and straightforward. As there are no differential equations present in Dynamic Universe Model, the set of equations give single solution in x y z Cartesian coordinates for every point mass for every time step

  3. Cometary activity, discrete outgassing areas, and dust-jet formation

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1991-01-01

    Conceptual models for various types of features observed in cometary comae (jets, spirals, halos, fans, etc.), their computer simulation, and the hydrodynamic models for jet formation are critically reviewed, and evidence for anisotropic, strongly collimated flows of ejecta emanating from discrete active regions (vents) on the rotating cometary nuclei is presented. Techniques employed to generate synthetic comet images that simulate the features observed are described, and their relevance to the primary objects of coma-morphology studies is discussed. Modeling of temporal variations in the water emission from discrete active regions suggests that production curves asymmetric with respect to perihelion should be commonplace. Critical comparisons with the activity profiles of Enke's comet and with light curves of disappearing comets and comets that undergo outbursts are presented. Recent developments in the understanding of the processes that cause the nongravitational perturbations of cometary motions are reviewed, and the observed discontinuities are identified with the birth of new sources and/or deactivation of old vents.

  4. Cometary activity, discrete outgassing areas, and dust-jet formation

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1991-01-01

    Conceptual models for various types of features observed in cometary comae (jets, spirals, halos, fans, etc.), their computer simulation, and the hydrodynamic models for jet formation are critically reviewed, and evidence for anisotropic, strongly collimated flows of ejecta emanating from discrete active regions (vents) on the rotating cometary nuclei is presented. Techniques employed to generate synthetic comet images that simulate the features observed are described, and their relevance to the primary objects of coma-morphology studies is discussed. Modeling of temporal variations in the water emission from discrete active regions suggests that production curves asymmetric with respect to perihelion should be commonplace. Critical comparisons with the activity profiles of Enke's comet and with light curves of disappearing comets and comets that undergo outbursts are presented. Recent developments in the understanding of the processes that cause the nongravitational perturbations of cometary motions are reviewed, and the observed discontinuities are identified with the birth of new sources and/or deactivation of old vents.

  5. Experimental investigation of impinging jet erosion on model cohesive granular materials

    NASA Astrophysics Data System (ADS)

    Brunier-Coulin, Florian; Sarrat, Jean-Loup; Cuéllar, Pablo; Philippe, Pierre

    2017-06-01

    Erosion of soils affects both natural landscapes and engineering constructions as embankment dams or levees. Improving the safety of such earthen structures requires in particular finding out more about the elementary mechanisms involved in soil erosion. Towards this end, an experimental work was undertaken in three steps. First, several model materials were developed, made of grains (mostly glass beads) with solid bridges at particle contacts whose mechanical yield strength can be continuously varied. Furthermore, for most of them, we succeeded in obtaining a translucent system for the purpose of direct visualization. Second, these materials were tested against surface erosion by an impinging jet to determine a critical shear stress and a kinetic coefficient [2, 3]. Note that an adapted device based on optical techniques (combination of Refractive Index Matching and Planar Laser Induced Fluorescence [3]) was used specifically for the transparent media. Third, some specifically developed mechanical tests, and particularly traction tests, were implemented to estimate the mechanical strength of the solid bridges both at micro-scale (single contact) and at macro-scale (sample) and to investigate a supposed relationship with soil resistance to erosion.

  6. Effect of interspecies quorum sensing on the formation of aerobic granular sludge.

    PubMed

    Zhang, Sheng-Hua; Yu, Xin; Guo, Feng; Wu, Zhuo-Ying

    2011-01-01

    Quorum sensing (QS) is a form of microbial communication that relies on small signal molecules to regulate group behaviors such as biofilm formation in response to population density. In this study, we attempted to apply the paradigm of bacterial QS to aerobic granular sludge (AGS) formation for wastewater treatment. An essential element of interspecies QS signals, boron, was added to a sequencing batch reactor (SBR) to stimulate AGS growth. Bioassays elaborated the activity of autoinducer-2 (AI-2). We found that boron accelerated AGS growth, resulting in improved settlement performance and increased biomass in the SBR. During continuous SBR operation, the AGS showed an obvious increase in AI-2 activity, which implies that interspecies QS was closely associated with AGS formation. Analysis of EPS showed that boron stimulated tryptophan production, and increased the hydrophobia of AGS. From these results, it was speculated that the addition of boron may have promoted the formation of boron complexed to (R)-4, 5-dihydroxy-2,3-pentanedione (DPD) as the precursor of AI-2, which resulted in accelerated interspecies QS. The results also suggested QS as a novel regulation target for the biogranulation process, such as AGS formation.

  7. WAVE PROPAGATION AND JET FORMATION IN THE CHROMOSPHERE

    SciTech Connect

    Heggland, L.; Hansteen, V. H.; Carlsson, M.; De Pontieu, B.

    2011-12-20

    We present the results of numerical simulations of wave propagation and jet formation in solar atmosphere models with different magnetic field configurations. The presence in the chromosphere of waves with periods longer than the acoustic cutoff period has been ascribed to either strong inclined magnetic fields, or changes in the radiative relaxation time. Our simulations include a sophisticated treatment of radiative losses, as well as fields with different strengths and inclinations. Using Fourier and wavelet analysis techniques, we investigate the periodicity of the waves that travel through the chromosphere. We find that the velocity signal is dominated by waves with periods around 5 minutes in regions of strong, inclined field, including at the edges of strong flux tubes where the field expands, whereas 3 minute waves dominate in regions of weak or vertically oriented fields. Our results show that the field inclination is very important for long-period wave propagation, whereas variations in the radiative relaxation time have little effect. Furthermore, we find that atmospheric conditions can vary significantly on timescales of a few minutes, meaning that a Fourier analysis of wave propagation can be misleading. Wavelet techniques take variations with time into account and are more suitable analysis tools. Finally, we investigate the properties of jets formed by the propagating waves once they reach the transition region, and find systematic differences between the jets in inclined-field regions and those in vertical field regions, in agreement with observations of dynamic fibrils.

  8. Laser-induced jetting and controlled droplet formation

    NASA Astrophysics Data System (ADS)

    Pascu, Mihail Lucian; Andrei, Ionut Relu; Delville, Jean-Pierre

    2016-12-01

    The article reports, in the general context of developing techniques to generate microjets, nanojets and even individual nanodroplets, a new method to obtain such formations by interaction of a single laser pulse at 532 nm with an individual/single mother droplet in pendant position in open air. The beam energy per pulse is varied between 0.25 and 1 mJ, the focus diameter is 90 μm, and the droplet's volumes are either 3 μl or 3.5 μl. Droplet's shape evolution and jet emission at impact with laser pulse was visualised with a high speed camera working at 10 kfps. Reproducible jets and/or separated microdroplets and nanodroplets are obtained which shows potential for applications in particular in jet printing. It is demonstrated that it becomes possible to play with the geometrical symmetry of both laser excitation and liquid in order to manage the number and the orientation of an induced microjet and consequently to actuate the orientation and the production of nanodroplets by light.

  9. Zonal Flow as Pattern Formation: Merging Jets and the Ultimate Jet Length Scale

    SciTech Connect

    Jeffrey B. Parker and John A. Krommes

    2013-01-30

    Zonal flows are well known to arise spontaneously out of turbulence. It is shown that for statisti- cally averaged equations of quasigeostrophic turbulence on a beta plane, zonal flows and inhomoge- neous turbulence fit into the framework of pattern formation. There are many implications. First, the zonal flow wavelength is not unique. Indeed, in an idealized, infinite system, any wavelength within a certain continuous band corresponds to a solution. Second, of these wavelengths, only those within a smaller subband are linearly stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets.

  10. Magnetohydrodynamic simulations of a jet drilling an H I cloud: Shock induced formation of molecular clouds and jet breakup

    SciTech Connect

    Asahina, Yuta; Ogawa, Takayuki; Matsumoto, Ryoji; Kawashima, Tomohisa; Furukawa, Naoko; Enokiya, Rei; Yamamoto, Hiroaki; Fukui, Yasuo

    2014-07-01

    The formation mechanism of the jet-aligned CO clouds found by NANTEN CO observations is studied by magnetohydrodynamical (MHD) simulations taking into account the cooling of the interstellar medium. Motivated by the association of the CO clouds with the enhancement of H I gas density, we carried out MHD simulations of the propagation of a supersonic jet injected into the dense H I gas. We found that the H I gas compressed by the bow shock ahead of the jet is cooled down by growth of the cooling instability triggered by the density enhancement. As a result, a cold dense sheath is formed around the interface between the jet and the H I gas. The radial speed of the cold, dense gas in the sheath is a few km s{sup –1} almost independent of the jet speed. Molecular clouds can be formed in this region. Since the dense sheath wrapping the jet reflects waves generated in the cocoon, the jet is strongly perturbed by the vortices of the warm gas in the cocoon, which breaks up the jet and forms a secondary shock in the H I-cavity drilled by the jet. The particle acceleration at the shock can be the origin of radio and X-ray filaments observed near the eastern edge of the W50 nebula surrounding the galactic jet source SS433.

  11. Relativistic Jet Properties of GeV-TeV Blazars and Possible Implications for the Jet Formation, Composition, and Cavity

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Zhang, Shuang-Nan; Liang, En-Wei; Sun, Xiao Na

    We present spectral energy distributions (SEDs) fits to a sample of GeV-TeV flat spectrum radio quasars (FSRQs) and compare the jet properties between FSRQs and BL Lacs. We show that the SEDs can be fit with the single-zone leptonic model, and both the minimum and broken Lorentz factors of relativistic electrons can be constrained, with medians of gamma_{min}˜ 48 and gamma_b˜ 240. No statistical difference on the Doppler factors between the FSRQs and BL Lacs is found. Assuming that the jet power is carried by electron-proton pairs, the magnetic field, and the radiation field, we calculate the powers of these components and the total jet power (P_jet) based on our fitting results, hence derive the radiation efficiency and magnetization parameter of the jets. It is found that the FSRQ jets are dominated by the Poynting flux and have a high radiation efficiency, whereas the BL Lac jets are dominated by particles and have a lower radiation efficiency than FSRQs. Interestingly, different from BL Lacs, P_jet of FSRQs are proportional to their central black hole (BH) masses. Measuring the jet production and radiation rates per central BH mass with P_jet/L_Edd and P_r/L_Edd, we find P_r/L_Edd~ (P_jet/L_Edd)({1.24±) 0.16} for FSRQs and P_r/L_Edd~ (P_jet/L_Edd)({0.85±) 0.09} for BL Lacs. The distribution of P_jet/L_Edd of FSRQs is in a narrow range, whereas it varies over several orders of magnitude for BL Lacs. These results likely suggest that the essential difference of FSRQs and BL Lacs may be due to the different jet production mechanisms. The dominating formation mechanism of FSRQ jets may be the BZ process. BL Lac jets may be produced via the BP and/or BZ processes, depending on structures and accretion rates of accretion disks. P_jet is correlated with the cavity kinetic power L_kin for our blazar sample. The magnetic field energy in the jets may provide the cavity kinetic energy for FSRQs and the kinetic energy of cold protons in the jets may be crucial for

  12. Gum and deposit formation from jet turbine and diesel fuels

    SciTech Connect

    Mayo, F.R.; Lan, B.Y.

    1983-09-01

    The objective of this work is to determine the chemistry of deposit formation in hot parts of jet turbine and diesel engines and, thus, to predict and prevent deposit formation. Previous work in the field has been extensive, but a real understanding of deposit formation has been elusive. Work at SRI started on the basis that deposit formation from fuels must take place stepwise and is associated with autoxidation and the hydroperoxide produced. More recent work showed that in the absence of dissolved oxygen, higher temperatures are required for deposit formation. A recent report indicated that gum and deposit formation proceed mainly through oxidation products of the parent hydrocarbon, coupling of these products to dimeric, trimeric and higher condensation products (partly or wholly by radicals from hydroperoxides) and precipitation of insoluble products. The authors know of no information on how these first precipitates are converted to the ultimate, very insoluble, carbonaceous materials that cause engine problems. The present paper describes measurements of rates of oxidation and soluble gum formation in both pure hydrocarbons and mixed hydrocarbon fuels. Some patterns appear that can be largely explained on the basis of what is known about co-oxidations of hydrocarbon mixtures.

  13. Preliminary study on aerobic granular biomass formation with aerobic continuous flow reactor

    NASA Astrophysics Data System (ADS)

    Yulianto, Andik; Soewondo, Prayatni; Handajani, Marissa; Ariesyady, Herto Dwi

    2017-03-01

    A paradigm shift in waste processing is done to obtain additional benefits from treated wastewater. By using the appropriate processing, wastewater can be turned into a resource. The use of aerobic granular biomass (AGB) can be used for such purposes, particularly for the processing of nutrients in wastewater. During this time, the use of AGB for processing nutrients more reactors based on a Sequencing Batch Reactor (SBR). Studies on the use of SBR Reactor for AGB demonstrate satisfactory performance in both formation and use. SBR reactor with AGB also has been applied on a full scale. However, the use use of SBR reactor still posses some problems, such as the need for additional buffer tank and the change of operation mode from conventional activated sludge to SBR. This gives room for further reactor research with the use of a different type, one of which is a continuous reactor. The purpose of this study is to compare AGB formation using continuous reactor and SBR with same operation parameter. Operation parameter are Organic Loading Rate (OLR) set to 2,5 Kg COD/m3.day with acetate as substrate, aeration rate 3 L/min, and microorganism from Hospital WWTP as microbial source. SBR use two column reactor with volumes 2 m3, and continuous reactor uses continuous airlift reactor, with two compartments and working volume of 5 L. Results from preliminary research shows that although the optimum results are not yet obtained, AGB can be formed on the continuous reactor. When compared with AGB generated by SBR, then the characteristics of granular diameter showed similarities, while the sedimentation rate and Sludge Volume Index (SVI) characteristics showed lower yields.

  14. Chondrule Formation via Impact Jetting Triggered by Planetary Accretion

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yasuhiro; Wakita, Shigeru; Matsumoto, Yuji; Oshino, Shoichi

    2016-01-01

    Chondrules are one of the most primitive elements that can serve as a fundamental clue to the origin of our solar system. We investigate a formation scenario of chondrules that involves planetesimal collisions and the resultant impact jetting. Planetesimal collisions are the main agent to regulate planetary accretion that leads to the formation of terrestrial planets and cores of gas giants. The key component of this scenario is that ejected materials can melt when the impact velocity between colliding planetesimals exceeds about 2.5 km s-1. Previous simulations have shown that the process is efficient enough to reproduce the primordial abundance of chondrules. We examine this scenario carefully by performing semi-analytical calculations that are developed based on the results of direct N-body simulations. As found in the previous work, we confirm that planetesimal collisions that occur during planetary accretion can play an important role in forming chondrules. This arises because protoplanet-planetesimal collisions can achieve an impact velocity of about 2.5 km s-1 or higher, as protoplanets approach the isolation mass (Mp,iso). Assuming that the ejected mass is a fraction (Fch) of the colliding planetesimals’ mass, we show that the resultant abundance of chondrules is expressed well by FchMp,iso, as long as the formation of protoplanets is completed within a given disk lifetime. We perform a parameter study and examine how the abundance of chondrules and the timing of their formation change. We find that the impact jetting scenario generally works reasonably well for a certain range of parameters, while more dedicated work would be needed to include other physical processes that are neglected in this work and to examine their effects on chondrule formation.

  15. Study of budding yeast colony formation and its characterizations by using circular granular cell

    NASA Astrophysics Data System (ADS)

    Aprianti, D.; Haryanto, F.; Purqon, A.; Khotimah, S. N.; Viridi, S.

    2016-03-01

    Budding yeast can exhibit colony formation in solid substrate. The colony of pathogenic budding yeast can colonize various surfaces of the human body and medical devices. Furthermore, it can form biofilm that resists drug effective therapy. The formation of the colony is affected by the interaction between cells and with its growth media. The cell budding pattern holds an important role in colony expansion. To study this colony growth, the molecular dynamic method was chosen to simulate the interaction between budding yeast cells. Every cell was modelled by circular granular cells, which can grow and produce buds. Cohesion force, contact force, and Stokes force govern this model to mimic the interaction between cells and with the growth substrate. Characterization was determined by the maximum (L max) and minimum (L min) distances between two cells within the colony and whether two lines that connect the two cells in the maximum and minimum distances intersect each other. Therefore, it can be recognized the colony shape in circular, oval, and irregular shapes. Simulation resulted that colony formation are mostly in oval shape with little branch. It also shows that greater cohesion strength obtains more compact colony formation.

  16. Effects of Gravity on Bubble Formation in an Annular Jet

    NASA Technical Reports Server (NTRS)

    Koepp, R. A.; Parthasarathy, R. N.; Gollahalli, S. R.

    2004-01-01

    The effects of gravity on the bubble formation in an annular jet were studied. The experiments were conducted in the 2.2-second drop tower at the NASA Glenn Research Center. Terrestrial gravity experiments were conducted at the Fluid Dynamics Research Laboratory at the University of Oklahoma. Stainless steel tubing with inner diameters of 1/8" (gas inner annulus) and 5/16" (liquid outer annulus) served as the injector. A rectangular test section, 6" x 6" x 14" tall, made out of half-inch thick Lexan was used. Images of the annular jet were acquired using a high-speed camera. The effects of gravity and varying liquid and gas flow rates on bubble size, wavelength, and breakup length were documented. In general, the bubble diameter was found to be larger in terrestrial gravity than in microgravity for varying Weber numbers (0.05 - 0.16 and 5 - 11) and liquid flow rates (1.5 ft/s - 3.0 ft/s). The wavelength was found to be larger in terrestrial gravity than in microgravity, but remained constant for varying Weber numbers. For low Weber numbers (0.05 - 0.16), the breakup length in microgravity was significantly higher than in terrestrial gravity. Comparison with linear stability analysis showed estimated bubble sizes within 9% of experimental bubble sizes. Bubble size compared to other terrestrial gravity experiments with same flow conditions showed distinct differences in bubble size, which displayed the importance of injector geometry on bubble formation.

  17. Structure and mechanism of the formation of granular bainite in steel 20Kh2NACh

    NASA Astrophysics Data System (ADS)

    Kremnev, L. S.; Svishchenko, V. V.; Cheprasov, D. P.

    1997-09-01

    At the present time the structure of granular bainite is widely used in heat treatment. The novel technologies include spheroidizing treatment of rolled stock from steel 20Kh2NACh. The composition of the steel provides a structure of granular bainite in rolled strips up to 10 mm wide with their cooling in still air from the temperature attained at the end of hot rolling. After a high-temperature tempering of the strips for 4 h the granular bainite transforms into granular pearlite which is optimum for cold forging. The available published data on the structure of granular bainite are insufficient for explaining the causes of the accelerated transformation. In this connection, it is interesting to investigate the phase composition, the microstructure, and the transformation mechanism of granular bainite.

  18. Fat crystal migration and aggregation and polymorphism evolution during the formation of granular crystals in beef tallow and palm oil.

    PubMed

    Meng, Zong; Geng, Wenxin; Wang, Xingguo; Liu, Yuanfa

    2013-12-26

    Six rectangular block all beef tallow (BT)-based and all palm oil (PO)-based model shortenings prepared on a laboratory scale, denoted BTMS and POMS, respectively, were stored under two storage conditions, (1) constant temperatures (5 and 20 °C, respectively and (2) temperature fluctuations (5 °C for 12 h and 20 °C for 12 h for a cycle), to induce granular crystals. The fat crystal migration and aggregation, sensory evaluations, and polymorphism evolutions during the formation of granular crystals in the above samples were investigated systematically. In comparison to the constant temperature storage, the crystal growth and hierarchical aggregation process were more quick and the conversion rate of the β-form crystal was also faster in both BTMS and POMS under temperature cycling storage and, concomitantly, easier to induce the formation of granular crystals. From the comprehensive analysis of crystal sizes and the sensory evaluation results, it can be concluded that the detection threshold for graininess ranged from 40 to 90 μm, with the smaller size being perceived only at higher crystal concentrations. The possible formation mechanism and the realistic control approaches for granular crystals in plastic fats also are clarified in the present study.

  19. Rebound and jet formation of a fluid-filled sphere

    NASA Astrophysics Data System (ADS)

    Killian, Taylor W.; Klaus, Robert A.; Truscott, Tadd T.

    2012-12-01

    This study investigates the impact dynamics of hollow elastic spheres partially filled with fluid. Unlike an empty sphere, the internal fluid mitigates some of the rebound through an impulse driven exchange of energy wherein the fluid forms a jet inside the sphere. Surprisingly, this occurs on the second rebound or when the free surface is initially perturbed. Images gathered through experimentation show that the fluid reacts more quickly to the impact than the sphere, which decouples the two masses (fluid and sphere), imparts energy to the fluid, and removes rebound energy from the sphere. The experimental results are analyzed in terms of acceleration, momentum and an energy method suggesting an optimal fill volume in the neighborhood of 30%. While the characteristics of the fluid (i.e., density, viscosity, etc.) affect the fluid motion (i.e., type and size of jet formation), the rebound characteristics remain similar for a given fluid volume independent of fluid type. Implications of this work are a potential use of similar passive damping systems in sports technology and marine engineering.

  20. Jet formation at interaction of a vibrating plate with liquid

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. A.; Kopysov, S. P.; Tonkov, L. Y.

    2017-06-01

    In this work, we experimentally investigate the mechanism of jet formation on liquid surface near the edge of a vibrating plate that is partially immersed in the liquid. Under the conditions of resonant bending vibrations, the vibrating plate excites capillary waves in the form of Faraday ripples on the surface of the liquid layer wetting the plate surface. Two-dimensional capillary waves also appear on the curved surface of the liquid near the edges of the vibrating plate. The vibrations of the plate area generate hydrodynamic pressure on the liquid surface, which initiates surface eddy flows. At a certain position of the vibrating plate in the liquid, capillary oscillations in the form of standing waves appear along the boundary of the wetting layer of the liquid, directly under the free edge of the plate. The vibrations of the plate edge modulate the standing waves in the transverse direction, which results in the periodic variation of the surface curvature of the wetting liquid layer, from negative to positive values. The inertia forces, periodically varying with the frequency of the plate vibrations, combined with the Laplace pressure, in the excited standing capillary waves on the surface flow under the plate edge, initiates the periodic ejection of particles of the liquid forming a jet.

  1. Metatranscriptomics reveals the molecular mechanism of large granule formation in granular anammox reactor

    PubMed Central

    Bagchi, Samik; Lamendella, Regina; Strutt, Steven; Van Loosdrecht, Mark C. M.; Saikaly, Pascal E.

    2016-01-01

    Granules enriched with anammox bacteria are essential in enhancing the treatment of ammonia-rich wastewater, but little is known about how anammox bacteria grow and multiply inside granules. Here, we combined metatranscriptomics, quantitative PCR and 16S rRNA gene sequencing to study the changes in community composition, metabolic gene content and gene expression in a granular anammox reactor with the objective of understanding the molecular mechanism of anammox growth and multiplication that led to formation of large granules. Size distribution analysis revealed the spatial distribution of granules in which large granules having higher abundance of anammox bacteria (genus Brocadia) dominated the bottom biomass. Metatranscriptomics analysis detected all the essential transcripts for anammox metabolism. During the later stage of reactor operation, higher expression of ammonia and nitrite transport proteins and key metabolic enzymes mainly in the bottom large granules facilitated anammox bacteria activity. The high activity resulted in higher growth and multiplication of anammox bacteria and expanded the size of the granules. This conceptual model for large granule formation proposed here may assist in the future design of anammox processes for mainstream wastewater treatment. PMID:27319320

  2. Metatranscriptomics reveals the molecular mechanism of large granule formation in granular anammox reactor

    NASA Astrophysics Data System (ADS)

    Bagchi, Samik; Lamendella, Regina; Strutt, Steven; van Loosdrecht, Mark C. M.; Saikaly, Pascal E.

    2016-06-01

    Granules enriched with anammox bacteria are essential in enhancing the treatment of ammonia-rich wastewater, but little is known about how anammox bacteria grow and multiply inside granules. Here, we combined metatranscriptomics, quantitative PCR and 16S rRNA gene sequencing to study the changes in community composition, metabolic gene content and gene expression in a granular anammox reactor with the objective of understanding the molecular mechanism of anammox growth and multiplication that led to formation of large granules. Size distribution analysis revealed the spatial distribution of granules in which large granules having higher abundance of anammox bacteria (genus Brocadia) dominated the bottom biomass. Metatranscriptomics analysis detected all the essential transcripts for anammox metabolism. During the later stage of reactor operation, higher expression of ammonia and nitrite transport proteins and key metabolic enzymes mainly in the bottom large granules facilitated anammox bacteria activity. The high activity resulted in higher growth and multiplication of anammox bacteria and expanded the size of the granules. This conceptual model for large granule formation proposed here may assist in the future design of anammox processes for mainstream wastewater treatment.

  3. Observation of cloud formation caused by low-level jets

    NASA Astrophysics Data System (ADS)

    Su, J.; McCormick, M. P.; Lei, L.

    2015-12-01

    We present the results of analyses performed on high-resolution remotely-sensed and in situ atmospheric measurements of the boundary layer and lower atmosphere centered over the northeast coast of the Hampton Roads body of water in southeast Virginia. This region is adjacent to the confluence of the Chesapeake Bay and the Atlantic Ocean where often times, low-level jets (LLJs) are found in the boundary layer during summer months. An East Hampton Roads Aerosol Flux (EHRAF) campaign, was conducted from the campus of Hampton University (HU) to examine small-scale aerosol transport using aerosol, Raman, and Doppler lidars, as well as rawindsondes over a one-week period in May 2014 . LLJs were observed from evening of 20 May to the morning of 21 May, and were found to lead to cloud formation. In this paper, the cloud formation caused by LLJs is analyzed using data that includes high-resolution profiles of: aerosol backscatter, turbulence structure, temperature, wind speed and direction, and water vapor. It is found that enhanced nighttime turbulence triggered by LLJs causes the aerosol and water vapor content of boundary layer to be lifted up forming a well-mixed region. We show that this region contains the cloud condensation nuclei that are very important for the formation of clouds.

  4. The significance of vortex ring formation and nozzle exit over-pressure to pulsatile jet propulsion

    NASA Astrophysics Data System (ADS)

    Krueger, Paul Samuel

    Pulsatile jet propulsion can be accomplished using a fully-pulsed jet (i.e., a periodic series of starting jets or pulses), the unsteady nature of which engenders vortex ring formation. The propulsive significance of vortex ring formation in this setting is studied experimentally using a piston-cylinder mechanism to generate starting and fully-pulsed, round jets of water into water. Starting jets are considered separately since they are the limiting case of a fully-pulsed jet at zero pulsing frequency. Measurements of the total impulse per pulse (starting jets) and time-averaged thrust (fully-pulsed jets) are made using a force balance. Digital particle image velocimetry (DPIV) measurements provide information about the resulting jet flow. Piston stroke to diameter ratios (L/D) between 2 and 8 are used to generate the pulses for both types of jets. This range brackets the transition between pulses that generate isolated vortex rings (small L/D) and pulses that yield a leading vortex ring that has pinched off from the generating jet, producing a trailing jet (large L/D). Impulse measurements for the starting jets as a function of L/D indicate the leading vortex ring adds proportionately more impulse per pulse than a trailing jet. This leads to a maximum in the average thrust during a pulse at an L/D just before vortex ring pinch off is observed. The propulsive advantage of vortex ring formation over trailing-jet ejection is due to nozzle exit over-pressure. This over-pressure can be related to the acceleration of ambient fluid in the form of added and entrained mass during ring formation. A simple model is proposed to describe these effects at the initiation of an impulsive pulse. The thrust measurements for fully-pulsed jets show a propulsive benefit from vortex ring formation (i.e., non-dimensional thrust, FIJ , > 1) for all non-dimensional pulsing frequencies, StL, accessible by a fully-pulsed jet. As with starting jets (StL = 0), vortex ring pinch off reduces

  5. Effect of iron ions (Fe(2+), Fe(3+)) on the formation and structure of aerobic granular sludge.

    PubMed

    Yilmaz, Gulsum; Bozkurt, Umit; Magden, Karin Aleksanyan

    2017-02-01

    Aerobic granulation is a promising technology for wastewater treatment, but problems regarding its formation and stability need to be solved. Divalent metal ions, especially Ca(2+), Mg(2+) and Mn(2+), have been demonstrated to play an important role in the process of aerobic granulation. Here, we studied whether iron ions can affect aerobic granulation. Granular sludge formed without iron ion addition (<0.02 mg Fe(2+) L(-1)) was fluffy and had a finger-type structure and filamentous out-growth. The addition of iron ions to concentrations of 1 and 10 mg Fe(2+) L(-1) repressed the finger-type structure and filamentous out-growth. The results show that chemical precipitation in the granules with iron ion addition was higher than that in the granules without ferrous addition. The amount of precipitates was higher inside the granules than outside. This study demonstrates that iron ions (Fe(2+)/Fe(3+)) increase the size and stability of aerobic granular sludge but do not affect the granulation time, which is the time that the first granular sludge is observed. The study shows that aerobic granular sludge technology can be confidently applied to actual wastewater containing a high concentration of iron compounds.

  6. The Effect of Jetting Parameters on the Performance of Droplet Formation for Ink-Jet Rapid Prototyping

    NASA Technical Reports Server (NTRS)

    Helmer, Wayne

    1998-01-01

    Heinzl et al. (1985) reports that experiments in ink-jets to produce drawings or signals occurred as early as 1930. Various companies such as IBM and Pitney-Bowes have conducted extensive studies on these devices for many years. Many such reports are available in such journals as the IBM Journal of Research and Development. While numerous articles have been published on the jetting characteristics of ink and water, the literature is rather limited on fluids such as waxes (Gao & Sonin 1994) or non-water based fluids (Passow, et al. 1993). This present study extends the knowledge base to determine the performance of molten waxes in "ink-jet" type printers for rapid prototyping. The purpose of this research was to qualitatively and quantitatively study the droplet formation of a drop-on-demand ink-jet type nozzle system for rapid prototyping.

  7. High Performance Simulations of Accretion Disk Dynamics and Jet Formations Around Kerr Black Holes

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Mizuno, Yosuke; Watson, Michael

    2007-01-01

    We investigate jet formation in black-hole systems using 3-D General Relativistic Particle-In-Cell (GRPIC) and 3-D GRMHD simulations. GRPIC simulations, which allow charge separations in a collisionless plasma, do not need to invoke the frozen condition as in GRMHD simulations. 3-D GRPIC simulations show that jets are launched from Kerr black holes as in 3-D GRMHD simulations, but jet formation in the two cases may not be identical. Comparative study of black hole systems with GRPIC and GRMHD simulations with the inclusion of radiate transfer will further clarify the mechanisms that drive the evolution of disk-jet systems.

  8. STEADY TWIN-JETS ORIENTATION: IMPLICATIONS FOR THEIR FORMATION MECHANISM

    SciTech Connect

    Soker, Noam; Mcley, Liron E-mail: lironmc@tx.technion.ac.il

    2013-08-01

    We compare the structures of the jets of the pre-planetary nebulae (pre-PNe) CRL618 and the young stellar object (YSO) NGC 1333 IRAS 4A2 and propose that in both cases the jets are launched near periastron passages of a highly eccentric binary system. The pre-PN CRL618 has two ''twin-jets'' on each side, where by ''twin-jets'' we refer to a structure where one side is composed of two very close and narrow jets that were launched at the same time. We analyze the position-velocity diagram of NGC 1333 IRAS 4A2, and find that it also has the twin-jet structure. In both systems, the orientation of the two twin-jets does not change with time. By comparing these two seemingly different objects, we speculate that the constant relative direction of the two twin-jets is fixed by the direction of a highly eccentric orbit of a binary star. For example, a double-arm spiral structure in the accretion disk induced by the companion might lead to the launching of the twin-jets. We predict the presence of a low-mass stellar companion in CRL618 that accretes mass and launches the jets, and a substellar (a planet of a brown dwarf) companion to the YSO NGC 1333 IRAS 4A2 that perturbed the accretion disk. In both cases the orbit has a high eccentricity.

  9. Analysis of microstructure-dependent shock dissipation and hot-spot formation in granular metalized explosive

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Sunada; Gonthier, Keith A.

    2016-07-01

    Variations in the microstructure of granular explosives (i.e., particle packing density, size, shape, and composition) can affect their shock sensitivity by altering thermomechanical fields at the particle-scale during pore collapse within shocks. If the deformation rate is fast, hot-spots can form, ignite, and interact, resulting in burn at the macro-scale. In this study, a two-dimensional finite and discrete element technique is used to simulate and examine shock-induced dissipation and hot-spot formation within low density explosives (68%-84% theoretical maximum density (TMD)) consisting of large ensembles of HMX (C4H8N8O8) and aluminum (Al) particles (size ˜ 60 -360 μm). Emphasis is placed on identifying how the inclusion of Al influences effective shock dissipation and hot-spot fields relative to equivalent ensembles of neat/pure HMX for shocks that are sufficiently strong to eliminate porosity. Spatially distributed hot-spot fields are characterized by their number density and area fraction enabling their dynamics to be described in terms of nucleation, growth, and agglomeration-dominated phases with increasing shock strength. For fixed shock particle speed, predictions indicate that decreasing packing density enhances shock dissipation and hot-spot formation, and that the inclusion of Al increases dissipation relative to neat HMX by pressure enhanced compaction resulting in fewer but larger HMX hot-spots. Ensembles having bimodal particle sizes are shown to significantly affect hot-spot dynamics by altering the spatial distribution of hot-spots behind shocks.

  10. Geologic control of jet formation on Comet 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Bruck Syal, Megan; Schultz, Peter H.; Sunshine, Jessica M.; A'Hearn, Michael F.; Farnham, Tony L.; Dearborn, David S. P.

    2013-02-01

    The EPOXI mission flyby of Comet 103P/Hartley 2 revealed numerous discrete dust jets extending from the nucleus, thereby providing an unprecedented opportunity to visually connect these features to the nuclear surface. The observed distribution of jets yields fresh insight into the conditions under which these cometary features may form. This study examines the geomorphology associated with areas of jet activity and then applies observed topographic correlations in the construction of a 2-D hydrodynamic model of a single dust jet. Visible light images of Hartley 2 show correlations between specific surface structures with both narrow-angle and fan-shaped dust jets; associations include pits, arcuate depressions, scarps, and rimless depressions. Notably, many source regions for jets appear finer than the practical mapping resolution of the imaging instruments (˜12 m). This observation indicates that the processes controlling jet formation operate at significantly finer scales than the resolution of most cometary activity models and motivates a complementary numerical investigation of dust jet formation and evolution. In order to assess controlling variables, our parametric numerical study incorporates different geometries and volatile abundances for the observed source regions. Results indicate that the expression of jet activity not only depends on local topography but also contributes to the evolution and development of surface features. Heterogeneous distributions of volatiles within the nucleus also may contribute to differences in local styles of jet activity.

  11. Experimental study of ice lens formation using fine granular materials under terrestrial and martian conditions

    NASA Astrophysics Data System (ADS)

    Saruya, T.; Rempel, A. W.; Kurita, K.

    2012-12-01

    Detailed exploration of Mars has yielded a range of direct and indirect evidence for the distribution of ice. Significantly, direct observations of segregated ice (i.e. sediment free) were obtained by Phoenix lander. This segregated ice most likely originated as an ice lens, which formed by the migration and solidification of unfrozen water. Unfrozen water that is adsorbed to particle surfaces and confined to capillary regions remains in the liquid state below the normal melting temperature. This water is known to migrate in frozen materials and form ice lenses. Zent et al. (2012) developed a numerical model for ice lens formation (Rempel et al. 2004) and demonstrated that the nucleation of ice lenses at the Phoenix landing site was possible in the recent past. However, many questions remain regarding the detailed conditions of ice lens nucleation and growth, even in the terrestrial environment. Further experimental checks of numerical models are especially needed. Here, we describe laboratory investigations of ice lens behavior under both terrestrial conditions and with experimental conditions approaching those in the martian environment. We have performed a series of step-freezing experiments in fine, granular materials to observe the initiation and growth of ice lenses. Our experiments reveal clear and systematic relationships between ice-lens behavior and the imposed cooling temperature and host particle size. We compared our experimental results to numerical predictions from a model of ice lens formation (Rempel et al. 2004) that was applied to our experimental conditions. We find that the trend is consistent between the experiment and model, however, there are important quantitative differences. Most notably, modeled ice-lens nucleation occurred more quickly and enabled ice lenses to grow larger than occurred during our experiments. We infer that some additional mechanisms must be responsible for restricting the formation and growth of ice lenses. Further

  12. Experimental and Numerical Studies for Soot Formation in Laminar Coflow Diffusion Flames of Jet A-1 and Synthetic Jet Fuels

    NASA Astrophysics Data System (ADS)

    Saffaripour, Meghdad

    In the present doctoral thesis, fundamental experimental and numerical studies are conducted for the laminar, atmospheric pressure, sooting, coflow diffusion flames of Jet A-1 and synthetic jet fuels. The first part of this thesis presents a comparative experimental study for Jet A-1, which is a widely used petroleum-based fuel, and four synthetically produced alternative jet fuels. The main goals of this part of the thesis are to compare the soot emission levels of the alternative fuels to those of a standard fuel, Jet A-1, and to determine the effect of fuel chemical composition on soot formation characteristics. To achieve these goals, experimental measurements are constructed and performed for flame temperature, soot concentration, soot particle size, and soot aggregate structure in the flames of pre-vaporized jet fuels. The results show that a considerable reduction in soot production, compared to the standard fuel, can be obtained by using synthetic fuels which will help in addressing future regulations. A strong correlation between the aromatic content of the fuels and the soot concentration levels in the flames is observed. The second part of this thesis presents the development and experimental validation of a fully-coupled soot formation model for laminar coflow jet fuel diffusion flames. The model is coupled to a detailed kinetic mechanism to predict the chemical structure of the flames and soot precursor concentrations. This model also provides information on size and morphology of soot particles. The flames of a three-component surrogate for Jet A-1, a three-component surrogate for a synthetic jet fuel, and pure n-decane are simulated using this model. Concentrations of major gaseous species and flame temperatures are well predicted by the model. Soot volume fractions are predicted reasonably well everywhere in the flame, except near the flame centerline where soot concentrations are underpredicted by a factor of up to five. There is an excellent

  13. Formation of Jets and Equatorial Superrotation on Jupiter

    NASA Astrophysics Data System (ADS)

    Liu, Junjun; Schneider, T.

    2008-09-01

    The zonal flow in Jupiter's upper troposphere is organized into alternating retrograde and prograde jets, with a prograde (superrotating) jet at the equator. Existing models posit as the driver of the flow either differential radiative heating of the atmosphere or intrinsic heat fluxes emanating from the deep interior; however, they do not reproduce all large-scale features of Jupiter's jets and thermal structure. Here it is shown that the difficulties in accounting for Jupiter's jets and thermal structure resolve if the effects of differential radiative heating and intrinsic heat fluxes are considered together and if upper-tropospheric dynamics are linked to a magnetohydrodynamic drag deep in the atmosphere. Baroclinic eddies generated by differential radiative heating can account for the off-equatorial jets; meridionally propagating equatorial Rossby waves generated by intrinsic convective heat fluxes can account for the equatorial superrotation. The zonal flow extends deeply into the atmosphere, with its speed changing with depth, up to depths at which the magnetohydrodynamic drag acts. The theory is supported by simulations with an energetically consistent general circulation model of Jupiter's outer atmosphere. A simulation that incorporates differential radiative heating and intrinsic heat fluxes reproduces Jupiter's observed jets and thermal structure. A control simulation that incorporates only differential radiative heating but no intrinsic heat fluxes produces off-equatorial jets but no equatorial superrotation; another control simulation that incorporates only intrinsic heat fluxes but no differential radiative heating produces equatorial superrotation but no off-equatorial jets. The proposed mechanisms act in the atmospheres of all giant planets. Saturn's prograde equatorial jet is wider and stronger than Jupiter's due to its larger tropospheric gravity wave speed and consequently greater equatorial Rossby radius. Uranus and Neptune do not exhibit

  14. The formation of double working surfaces in periodically variable jets

    NASA Astrophysics Data System (ADS)

    Raga, A.; Cantó, J. http://www. astroscu. unam. mx/rmaa/RMxAA.. 53-2/PDF/RMxAA.. 53-2 asaad. pdf

    2017-10-01

    It is a well known result that a periodic ejection variability in a hypersonic jet results in the production of a train of internal working surfaces (one working surface produced by each period of the ejection variability) travelling down the jet beam. This mechanism has been successfully applied to model the knot structures of Herbig-Haro (HH) jets. In this paper we explore the possibility of producing more than one working surface with each ejection variability period. We derive the mathematical criteria that have to be satisfied by the functional form of an ejection velocity variability that produces double working surfaces, and study a family of functions with appropriate properties.

  15. Jet Formation with 3-D General Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Richardson, G. A.; Nishikawa, K.-I.; Preece, R.; Hardee, P.; Koide, S.; Shibata, K.; Kudoh, T.; Sol, H.; Hughes, J. P.; Fishman, J.

    2002-12-01

    We have investigated the dynamics of an accretion disk around Schwarzschild black holes initially threaded by a uniform poloidal magnetic field in a non-rotating corona (in a steady-state infalling state) around a non-rotating black hole using 3-D GRMHD with the ``axisymmetry'' along the z-direction. The magnetic field is tightly twisted by the rotation of the accretion disk, and plasmas in the shocked region of the disk are accelerated by the J x B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and the magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code with a full 3-dimensional system without the axisymmetry. We have investigated how the third dimension affects the global disk dynamics and jet generation. We will perform simulations with various incoming flows from an accompanying star.

  16. The Formation of Non-Zonal Jets over Sloped Topography

    NASA Astrophysics Data System (ADS)

    Boland, E.; Thompson, A. F.; Shuckburgh, E.; Haynes, P. H.

    2012-04-01

    We present the results of an investigation into the effect of a spatially uniform slope in bottom topography in a quasi-geostrophic, doubly periodic, two-layer model. A slope in the meridional direction results in the enhancement of the 'beta' effect, producing zonal jets, familiar from many previous studies. The novel aspect of this investigation is that the bottom slope has arbitrary orientation. Jets continue to form but they are non-zonal and tilted relative to layer-wise potential vorticity gradients. We show that these non-zonal jets follow the barotropic potential vorticity gradient, and we find that eddy energies are larger when the barotropic potential vorticity gradient is aligned with the direction of the shear in the system. The tilted jets are also demonstrated to be weaker barriers to transport than their zonal counterparts using an effective diffusivity diagnostic. These results are shown to be independent of the ratio of layer depths and to carry over to more complicated topographies containing slopes. We also interpret these results in the light of linear Rossby wave theory, showing the extent to which the jet orientation can be explained by the alteration of the linear dispersion relation by the presence of sloped topography, and the extent to which a Rhines scale can explain the separation of such jets. This work is of relevance to the many regions of the oceans where strong non-zonal jets are present, and is a significant step towards understanding the influence of topography on the dynamical properties of jets.

  17. High-speed jet formation after solid object impact

    NASA Astrophysics Data System (ADS)

    Gekle, Stephan; Gordillo, Jose Manuel; van der Meer, Devaraj; Lohse, Detlef

    2008-11-01

    A circular disc impacting on a water surface creates a remarkably vigorous jet. Upon impact an axisymmetric air cavity forms and eventually pinches off in a single point halfway down the cavity. Immediately after closure two fast sharp-pointed jets are observed shooting up- respectively downwards from the closure location, which by then has turned into a stagnation point surrounded by a locally hyperbolic flow pattern. This flow, however, is not the mechanism feeding the two jets. Using high-speed imaging and numerical simulations we show that jetting occurs as a consequence of the local flow around the base of the jet, which is forced by the colliding cavity walls. Based on this insight, we then show how the analytical description of a collapsing void (using a line of sinks along the axis of symmetry) can be continued beyond the time of pinch-off, namely by turning it into a discontinuous line plus a point sink located near the base of the jet. The model is in quantitative agreement with the numerical and experimental data.

  18. Numerical Study on GRB-Jet Formation in Collapsars

    SciTech Connect

    Nagataki, Shigehiro; Takahashi, Rohta; Mizuta, Akira; Takiwaki, Tomoya; /Tokyo U.

    2006-08-22

    Two-dimensional magnetohydrodynamic simulations are performed using the ZEUS-2D code to investigate the dynamics of a collapsar that generates a GRB jet, taking account of realistic equation of state, neutrino cooling and heating processes, magnetic fields, and gravitational force from the central black hole and self gravity. It is found that neutrino heating processes are not so efficient to launch a jet in this study. It is also found that a jet is launched mainly by B{sub {phi}} fields that are amplified by the winding-up effect. However, since the ratio of total energy relative to the rest mass energy in the jet is not so high as several hundred, we conclude that the jets seen in this study are not be a GRB jet. This result suggests that general relativistic effects, which are not included in this study, will be important to generate a GRB jet. Also, the accretion disk with magnetic fields may still play an important role to launch a GRB jet, although a simulation for much longer physical time {approx} 10-100 s is required to confirm this effect. It is shown that considerable amount of {sup 56}Ni is synthesized in the accretion disk. Thus there will be a possibility for the accretion disk to supply sufficient amount of {sup 56}Ni required to explain the luminosity of a hypernova. Also, it is shown that neutron-rich matter due to electron captures with high entropy per baryon is ejected along the polar axis. Moreover, it is found that the electron fraction becomes larger than 0.5 around the polar axis near the black hole by {nu}{sub e} capture at the region. Thus there will be a possibility that r-process and r/p-process nucleosynthesis occur at these regions. Finally, much neutrons will be ejected from the jet, which suggests that signals from the neutron decays may be observed as the delayed bump of the light curve of the afterglow or gamma-rays.

  19. A General Relativistic Magnetohydrodynamics Simulation of Jet Formation with a State Transition

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Richardson, G.; Koide, S.; Shibata, K.; Kudoh, T.; Hardee, P.; Fushman, G. J.

    2004-01-01

    We have performed the first fully three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulation of jet formation from a thin accretion disk around a Schwarzschild black hole with a free-falling corona. The initial simulation results show that a bipolar jet (velocity sim 0.3c) is created as shown by previous two-dimensional axisymmetric simulations with mirror symmetry at the equator. The 3-D simulation ran over one hundred light-crossing time units which is considerably longer than the previous simulations. We show that the jet is initially formed as predicted due in part to magnetic pressure from the twisting the initially uniform magnetic field and from gas pressure associated with shock formation. At later times, the accretion disk becomes thick and the jet fades resulting in a wind that is ejected from the surface of the thickened (torus-like) disk. It should be noted that no streaming matter from a donor is included at the outer boundary in the simulation (an isolated black hole not binary black hole). The wind flows outwards with a wider angle than the initial jet. The widening of the jet is consistent with the outward moving shock wave. This evolution of jet-disk coupling suggests that the low/hard state of the jet system may switch to the high/soft state with a wind, as the accretion rate diminishes.

  20. Connections Between Jet Formation and Multiwavelength Spectral Evolution in Black Hole Transients

    NASA Technical Reports Server (NTRS)

    Kakemci, Emrah; Chun, Yoon-Young; Dincer, Tolga; Buxton, Michelle; Tomsick, John A.; Corbel, Stephane; Kaaret, Philip

    2011-01-01

    Multiwavelength observations are the key to understand conditions of jet formation in Galactic black hole transient (GBHT) systems. By studying radio and optical-infrared evolution of such systems during outburst decays, the compact jet formation can be traced. Comparing this with X-ray spectral and timing evolution we can obtain physical and geometrical conditions for jet formation, and study the contribution of jets to X-ray emission. In this work, first X-ray evolution - jet relation for XTE J1752-223 will be discussed. This source had very good coverage in X-rays, optical, infrared and radio. A long exposure with INTEGRAL also allowed us to study gamma-ray behavior after the jet turns on. We will also show results from the analysis of data from GX 339-4 in the hard state with SUZAKU at low flux levels. The fits to iron line fluorescence emission show that the inner disk radius increases by a factor of greater than 27 with respect to radii in bright states. This result, along with other disk radius measurements in the hard state will be discussed within the context of conditions for launching and sustaining jets.

  1. Connections between jet formation and multiwavelength spectral evolution in black hole transients

    NASA Astrophysics Data System (ADS)

    Kalemci, Emrah; Chun, Yoon-Young; Dinçer, Tolga; Buxton, Michelle; Tomsick, John A.; Corbel, Stephane; Kaaret, Philip

    2011-02-01

    Multiwavelength observations are the key to understand conditions of jet formation in Galactic black hole transient (GBHT) systems. By studying radio and optical-infrared evolution of such systems during outburst decays, the compact jet formation can be traced. Comparing this with X-ray spectral and timing evolution we can obtain physical and geometrical conditions for jet formation, and study the contribution of jets to X-ray emission. In this work, first X-ray evolution - jet relation for XTE J1752-223 will be discussed. This source had very good coverage in X-rays, optical, infrared and radio. A long exposure with INTEGRAL also allowed us to study gamma-ray behavior after the jet turns on. We will also show results from the analysis of data from GX 339-4 in the hard state with SUZAKU at low flux levels. The fits to iron line fluorescence emission show that the inner disk radius increases by a factor of >27 with respect to radii in bright states. This result, along with other disk radius measurements in the hard state will be discussed within the context of conditions for launching and sustaining jets.

  2. Connections Between Jet Formation and Multiwavelength Spectral Evolution in Black Hole Transients

    NASA Technical Reports Server (NTRS)

    Kakemci, Emrah; Chun, Yoon-Young; Dincer, Tolga; Buxton, Michelle; Tomsick, John A.; Corbel, Stephane; Kaaret, Philip

    2011-01-01

    Multiwavelength observations are the key to understand conditions of jet formation in Galactic black hole transient (GBHT) systems. By studying radio and optical-infrared evolution of such systems during outburst decays, the compact jet formation can be traced. Comparing this with X-ray spectral and timing evolution we can obtain physical and geometrical conditions for jet formation, and study the contribution of jets to X-ray emission. In this work, first X-ray evolution - jet relation for XTE J1752-223 will be discussed. This source had very good coverage in X-rays, optical, infrared and radio. A long exposure with INTEGRAL also allowed us to study gamma-ray behavior after the jet turns on. We will also show results from the analysis of data from GX 339-4 in the hard state with SUZAKU at low flux levels. The fits to iron line fluorescence emission show that the inner disk radius increases by a factor of greater than 27 with respect to radii in bright states. This result, along with other disk radius measurements in the hard state will be discussed within the context of conditions for launching and sustaining jets.

  3. Impact of a single drop on the same liquid: formation, growth and disintegration of jets

    NASA Astrophysics Data System (ADS)

    Agbaglah, G. Gilou; Deegan, Robert

    2015-11-01

    One of the simplest splashing scenarios results from the impact of a single drop on on the same liquid. The traditional understanding of this process is that the impact generates a jet that later breaks up into secondary droplets. Recently it was shown that even this simplest of scenarios is more complicated than expected because multiple jets can be generated from a single impact event and there are bifurcations in the multiplicity of jets. First, we study the formation, growth and disintegration of jets following the impact of a drop on a thin film of the same liquid using a combination of numerical simulations and linear stability theory. We obtain scaling relations from our simulations and use these as inputs to our stability analysis. We also use experiments and numerical simulations of a single drop impacting on a deep pool to examine the bifurcation from a single jet into two jets. Using high speed X-ray imaging methods we show that vortex separation within the drop leads to the formation of a second jet long after the formation of the ejecta sheet.

  4. Study of Jet Formation in Wire X-pinches

    SciTech Connect

    Beg, F.N.; Ross, I.; Zhu, Y.; Dangor, A.E.; Krushelnick, K.

    2006-01-05

    Observations of x-pinch discharges driven by the 160 kA, 80 ns IMP generator are reported. X-pinches consisting of two wires of aluminum and molybdenum were used. X-pinches were mounted at two angles (120 deg. and 83 deg. ). The coronal plasma from the wires was observed to be streaming towards the mid plane of an x-pinch, forming jets on either side of the cross-point. Streaming of the coronal plasma was significant for a narrow angle and jets were observed to be m=1 unstable indicating a transfer of current.

  5. The significance of vortex ring formation to the impulse and thrust of a starting jet

    NASA Astrophysics Data System (ADS)

    Krueger, Paul S.; Gharib, M.

    2003-05-01

    The recent work of Gharib, Rambod, and Shariff [J. Fluid Mech. 360, 121 (1998)] studied vortex rings formed by starting jets generated using a piston-cylinder mechanism. Their results showed that vortex rings generated from starting jets stop forming and pinch off from the generating jet for sufficiently large values of the piston stroke to diameter ratio (L/D), suggesting a maximization principle may exist for propulsion utilizing starting jets. The importance of vortex ring formation and pinch off to propulsion, however, rests on the relative contribution of the leading vortex ring and the trailing jet (which appears after pinch off) to the impulse supplied to the flow. To resolve the relative importance of the vortex ring and trailing jet for propulsion, a piston-cylinder mechanism attached to a force balance is used to investigate the impulse and thrust generated by starting jets for L/D ratios in the range 2-8. Two different velocity programs are used, providing two different L/D values beyond which pinch off is observed, in order to determine the effect of vortex ring pinch off. Measurements of the impulse associated with vortex ring formation show it to be much larger than that expected from the jet velocity alone and proportionally larger than that associated with a trailing jet for L/D large enough to observe pinch off. The latter result leads to a local maximum in the average thrust during a pulse near L/D values associated with vortex rings whose circulation has been maximized. These results are shown to be related to the nozzle exit over-pressure generated during vortex ring formation. The over-pressure is in turn shown to be associated with the acceleration of ambient fluid by vortex ring formation in the form of added and entrained mass.

  6. Introduction: Undergraduate research with examples from pattern formation, mixing, and granular flow

    NASA Astrophysics Data System (ADS)

    Gollub, Jerry P.

    1998-11-01

    Undergraduate research, often in collaboration with graduate students, postdoctoral fellows, and faculty members, has many advantages for all participants. The students mature quickly in this environment and gain important information needed for career choices; the more experienced researchers can multiply their productivity through these collaborations and gain experience in the arts of teaching. I will briefly describe several examples of student projects in the area of hydrodynamic stability, mixing, and granular flow.

  7. Self-assembly and the Formation of Structure in Granular Materials

    NASA Astrophysics Data System (ADS)

    Behringer, Robert

    2015-03-01

    Particle systems self-assemble in ways that are sensitive to their environments. Proteins fold, polymers crosslink, and molecular systems form crystals. Granular materials, unlike proteins, polymers or molecules, are not sensitive to temperature, and will only form new structures when they are driven. This raises the question of how a granular state depends on the preparation protocol, and an even more basic question of what is needed to specify a granular state. I will focus on granular systems near jamming, where key state variables include the density and stresses. Systems of frictionless grains follow the Liu-Nagel1 scenario of jamming, with a lowest packing fraction, ϕJ, such that any system with ϕ <ϕJ is unjammed, and all isotopic states (shear stress τ = 0) are jammed for ϕ >ϕJ . For frictional grains the picture changes. For a given ϕ in the range ϕS < ϕ <ϕJ , it is possible to have stress-free (unjammed) states, highly anisotropic fragile states, and robustly jammed states. The fragile and strongly jammed states form spontaneously in response to shear. By inference, ϕ is not a state variable, but recent experiments2 indicate that the non-rattler fraction, fNR is. In ϕS < ϕ <ϕJ , the system response is inherently non-linear; under cyclic shear, the system self-organizes to new steady states via a process that resembles thermal activation, with shear stress replacing energy3. The activation is provided by shear strain. We observe similar relaxation under cyclic compression. An important question is, what is (are) the organizing principle(s) which govern jamming by shear, and systematic reorganization under cyclic driving. NSF grants DMR1206351 and DMS1248071, NASA grant NNX10AU10G, and ARO grant W911NF-1-11-0110

  8. GRMHD Simulations of Jet Formation with a Newly-Developed GRMHD Code

    NASA Technical Reports Server (NTRS)

    Mizuno, Y.; Nishikawa, K.-I.; Koide, S.; Hardee, P.; Fishman, G. J.

    2006-01-01

    We have developed a new three-dimensional general relativistic magnetohydrodynamic code by using a conservative, high-resolution shock-capturing scheme. The numerical fluxes are calculated using the HLL approximate Riemann solver scheme. The flux-CT scheme is used to maintain a divergence-free magnetic field. Various 1-dimensional test problems show significant improvements over our previous GRMHD code. We have performed simulations of jet formations from a geometrically thin accretion disk near a non-rotating and a rotating black hole. The new simulation results show that the jet is formed by the same manner as in previous works and propagates outward. As the magnetic field strength becomes weaker, larger amount of matter launches with the jet. On the other hand when the magnetic field strength becomes stronger, the jet has less-matter and becomes poynting flux dominated. We will also discuss how the jet properties depend on the rotation of a black hole.

  9. Statistical state dynamics based theory for the formation and equilibration of Saturn's north polar jet

    NASA Astrophysics Data System (ADS)

    Farrell, Brian F.; Ioannou, Petros J.

    2017-07-01

    Coherent jets containing most of the kinetic energy of the flow are a common feature in observations of atmospheric turbulence at the planetary scale. In the gaseous planets these jets are embedded in a field of incoherent turbulence on scales small relative to the jet scale. Large-scale coherent waves are sometimes observed to coexist with the coherent jets and the incoherent turbulence with a prominent example of this phenomenon being the distortion of Saturn's north polar jet (NPJ) into a distinct hexagonal form. Observations of this large-scale jet-wave-turbulence coexistence regime raise the question of identifying the mechanism responsible for forming and maintaining this turbulent state. The coherent planetary scale jet component of the turbulence arises and is maintained by interaction with the incoherent small-scale turbulence component. It follows that theoretical understanding of the dynamics of the jet-wave-turbulence coexistence regime can be facilitated by employing a statistical state dynamics (SSD) model in which the interaction between coherent and incoherent components is explicitly represented. In this work a two-layer β -plane SSD model closed at second order is used to develop a theory that accounts for the structure and dynamics of the NPJ. An asymptotic analysis is performed of the SSD equilibrium in the weak jet damping limit that predicts a universal jet structure in agreement with observations of the NPJ. This asymptotic theory also predicts the wave number of the prominent jet perturbation. Analysis of the jet-wave-turbulence regime dynamics using this SSD model reveals that jet formation is controlled by the effective value of β and the required value of this parameter for correspondence with observation is obtained. As this is a robust prediction it is taken as an indirect observation of a deep poleward sloping stable layer beneath the NPJ. The slope required is obtained from observations of the magnitude of the zonal wind component

  10. Jet Formation and Dynamics: Comparison of Quasars and Microquasars

    NASA Astrophysics Data System (ADS)

    Kundt, Wolfgang

    Quasars and Microquasars share the following properties: (i) They have similar, elongated morphologies - reminiscent of being driven by supersonic beams - consisting of cores, knots, and heads, with jet-opening angles <~ 10^-2, and no beam branching; (ii) core/lobe power ratios of 10^2 +/- 2; (iii) fluctuating, broad and hard core spectra; (iv) (occasional) sidedness; (v) (occasional) superluminal growth. In all cases, the central engine is thought to be a rotating magnet whose reconnecting magnetic fields generate the relativistic pair plasma - of typical Lorentz factor 10^3 +/- 2 - which rams the jet channels and blows the cocoons (subsonically) after having been stalled in a head. The supersonic jets form on passing a central deLaval nozzle, first proposed by Blandford and Rees in 1974, which forms naturally due to the huge density contrast of 10^-8.3T_4 with respect to the ambient medium (of temperature T, T_4:=T/10^4 K). Beam stability and narrowness are likewise guaranteed by the density contrast (of jet fluid and CSM). Observed are both the (thermal) radiation of the rammed channel-wall material, and the synchrotron radiation of the deflected beam particles.

  11. Asymmetric frequency dependence of plasma jet formation in resonator electrode

    NASA Astrophysics Data System (ADS)

    Nam, Woo Jin; Lee, Seung Taek; Jeong, Seok Yong; Lee, Jae Koo; Yun, Gunsu S.

    2017-05-01

    Large aspect ratio plasma jets with sub-mm diameter are produced by a microwave coaxial resonator electrode. The jet length shows a sharp asymmetric dependence on the drive frequency: the plasma jet suddenly turns off below a critical frequency while the jet length slowly decreases above the frequency. A general mechanism is proposed to explain the asymmetry based on a universal feedback relation among the plasma impedance, the power coupling efficiency and the plasma dimension in resonator type electrodes. The input impedance of the resonator electrode changes depending on the plasma size formed in the electrode. The degree of the impedance mismatch between the electrode-plasma and the power source determines the power coupling efficiency and the resistive loss in the electrode which in turn affects the plasma size. The asymmetric dependence on the drive frequency is a consequence of the fact that the resonance frequency decreases for increasing plasma size. The feedback model shows a good agreement with the experimental measurements, providing essential information for the plasma control.

  12. [Formation of the phosphorus removal granular sludge and phosphorus removal characteristics of the anaerobic/oxic and anaerobic/anoxic/oxic granular sludge process in SBR].

    PubMed

    Liu, Xiao-Ying; Jiang, Ying-He; Guo, Chao; Peng, Dang-Cong

    2009-09-15

    Phosphorous removal & denitrifying phosphate uptake of the granular sludge was investigated in this study. Inoculated with flocculation sludge, the granulation of the biological phosphorous removal sludge was realized in a sequencing batch reactor (SBR) fed with sodium acetate by means of hydraulic selection under an anaerobic/oxic alternating operation (referred to as an A/O). Then the biological phosphorous removal granular sludge was induced into the denitrifying phosphate uptake granular sludge under an anaerobic/anoxic/oxic alternating operation (referred to as an A/A/O). The properties of the two kinds of granular sludge were studied. The biological phosphorus removal granular sludge was completed on the 82nd day. The biological phosphorus removal granule sludge showed some characteristics, e.g. pallideflavens in color, 0.5-1.5 mm in diameter, 20-30 m/h in settling velocity, 94% in water content, 1.043 9 in specific gravity, and below 50 mL/g in SVI. The max. specific release phosphorus rate (SRPR), the max. specific uptake phosphorus rate (SUPR) and the phosphorus content of the MLSS (TP/SS) was 67.7 mg/(g x h), 43.2 mg/(g x h) and 6.5% respectively on the 437th day. On the 448th day the operation of the reactor was changed into A/A/O. The max. SRPR, the max. anoxic SUPR and the TP/SS of the denitrifying phosphate uptake granular sludge was 30 mg/(g x h), 27.9 mg/(g x h) and 6.3% respectively on the 653rd day. The two kinds of granular sludge had potential to carry out phosphorus removal.

  13. Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets

    PubMed Central

    Das, Siddhartha; Kumar, Aloke

    2014-01-01

    It has been recently reported that in presence of low Reynolds number (Re ≪ 1) transport, preformed bacterial biofilms, several hours after their formation, may degenerate in form of filamentous structures, known as streamers. In this work, we explain that such streamers form as the highly viscous liquid states of the intrinsically viscoelastic biofilms. Such “viscous liquid” state can be hypothesized by noting that the time of appearance of the streamers is substantially larger than the viscoelastic relaxation time scale of the biofilms, and this appearance is explained by the inability of a viscous liquid to withstand external shear. Further, by identifying the post formation dynamics of the streamers as that of a viscous liquid jet in a surrounding flow field, we can interpret several unexplained issues associated with the post-formation dynamics of streamers, such as the clogging of the flow passage or the exponential time growth of streamer dimensions. Overall our manuscript provides a biophysical basis for understanding the evolution of biofilm streamers in creeping flows. PMID:25410423

  14. Studying the Dynamics of Non-stationary Jet Streams Formation in the Northern Hemisphere Troposphere

    NASA Astrophysics Data System (ADS)

    Emtsev, Sergey; Krasouski, Aliaksandr; Svetashev, Alexander; Turishev, Leonid; Barodka, Siarhei

    2015-04-01

    In the present study, we investigate dynamics of non-stationary jets formation in troposphere by means of mesoscale simulations in the Weather Research & Forecasting (WRF) modeling system, analyzing jet streams that affected the territory of Belarus over the time period of 2010-2012. For that purpose, we perform modeling on domains with 5 km, 3 km and 1 km grid steps and 35 vertical coordinate levels with an upper boundary of 10 hPa. We focus our attention to identification of basic regularities in formation, movements and transformations of jet streams, as well as to analysis of their characteristic features, geographical position and underlying atmospheric processes and their classification. On the basis of these regularities, we define basic meteorological parameters that can be used to directly or indirectly (as well as qualitatively and quantitatively) identify the presence of jet streams in the specific region of troposphere, and also to determine their localization, stage of development and other characteristics. Furthermore, we estimate energetic parameters of the identified jet streams and their impact on synoptic situation in the surrounding region. Analyzing meteorological fields obtained from satellite observations, we elaborate a methodology of operational detection and localization of non-stationary jet streams from satellite data. Validation of WRF modeling results with these data proves that mesoscale simulations with WRF are able to provide quite successful forecasts of non-stationary tropospheric jet streams occurrence and also determination of their localization and main characteristics up to 3 days in advance.

  15. Experimental evidence for collisional shock formation via two obliquely merging supersonic plasma jets

    SciTech Connect

    Merritt, Elizabeth C. Adams, Colin S.; Moser, Auna L.; Hsu, Scott C. Dunn, John P.; Miguel Holgado, A.; Gilmore, Mark A.

    2014-05-15

    We report spatially resolved measurements of the oblique merging of two supersonic laboratory plasma jets. The jets are formed and launched by pulsed-power-driven railguns using injected argon, and have electron density ∼10{sup 14} cm{sup −3}, electron temperature ≈1.4 eV, ionization fraction near unity, and velocity ≈40 km/s just prior to merging. The jet merging produces a few-cm-thick stagnation layer, as observed in both fast-framing camera images and multi-chord interferometer data, consistent with collisional shock formation [E. C. Merritt et al., Phys. Rev. Lett. 111, 085003 (2013)].

  16. Influence of Material Viscosity on the Theory of Shaped-Charge Jet Formation

    DTIC Science & Technology

    1979-08-01

    No. 5, May 1952. 12. M. .rýfourneaux, "Hydrodynamic Theory of Shaped Charges and of Jet Penetration, Memorial De L’art Illerie Francasise-T, 44...UNCLASSIFIED AD NUMBER ADB041485 NEW LIMITATION CHANGE TO Approved for public release, distribution unlimited FROM Distribution authorized to U.S...DISTRIBUTION UNLIMITED, AD- ( , MEMORANDUM REPORT ARBRL-MR-02941 INFLUENCE OF MATERIAL VISCOSITY ON THE 00, THEORY OF SHAPED -CHARGE JET FORMATION William P

  17. Modeling of the merging, liner formation, implosion of hypervelocity plasma jets for the PLX- α project

    NASA Astrophysics Data System (ADS)

    Cassibry, Jason; Hsu, Scott; Schillo, Kevin; Samulyak, Roman; Stoltz, Peter; Beckwith, Kris

    2015-11-01

    A suite of numerical tools will support the conical and 4 π plasma-liner-formation experiments for the PLX- α project. A new Lagrangian particles (LP) method will provide detailed studies of the merging of plasma jets and plasma-liner formation/convergence. A 3d smooth particle hydrodynamic (SPH) code will simulate conical (up to 9 jets) and 4 π spherical (up to 60 jets) liner formation and implosion. Both LP and SPH will use the same tabular EOS generated by Propaceos, thermal conductivity, optically thin radiation and physical viscosity models. With LP and SPH,the major objectives are to study Mach-number degradation during jet merging, provide RMS amplitude and wave number of the liner nonuniformity at the leading edge, and develop scaling laws for ram pressure and liner uniformity as a function of jet parameters. USIM, a 3D multi-fluid plasma code, will be used to perform 1D and 2D simulations of plasma-jet-driven magneto-inertial fusion (PJMIF) to identify initial conditions in which the ``liner gain'' exceeds unity. A brief overview of the modeling program will be provided. Results from SPH modeling to support the PLX- α experimental design will also be presented, including preliminary ram-pressure scaling and non-uniformity characterization.

  18. Probing the shear-band formation in granular media with sound waves

    NASA Astrophysics Data System (ADS)

    Khidas, Y.; Jia, X.

    2012-05-01

    We investigate the mechanical responses of dense granular materials, using a direct shear box combined with simultaneous acoustic measurements. Measured shear wave speeds evidence the structural change of the material under shear, from the jammed state to the flowing state. There is a clear acoustic signature when the shear band is formed. Subjected to cyclic shear, both shear stress and wave speed show the strong hysteretic dependence on the shear strain, likely associated with the geometry change in the packing structure. Moreover, the correlation function of configuration-specific multiply scattered waves reveals an intermittent behavior before the failure of material.

  19. Enhancement of N-nitrosamine formation on granular-activated carbon from N-methylaniline and nitrite

    SciTech Connect

    Dietrich, A.M.; Gallagher, D.L.; DeRosa, P.M.; Millington, D.S.; DiGiano, F.A.

    1986-10-01

    Sterile aqueous N-methylaniline solutions were allowed to equilibrate at various nitrite, F-400 granular-activated carbon, and pH levels for 1 week. The aqueous and activated carbon phases were extracted and analyzed for nitrosamines relative to an added internal standard. Selected ion monitoring GC/MS, utilizing continuous monitoring of the NO/sup +/ ion (m/z 29.9980) characteristic of nitrosamines, at medium resolution (R = 2500-3000) was applied to quantitatively measure nitrosamines at picograms per microliter concentrations. This method selected for nitrosamine products only and eliminated interferences from non-nitrosamine reaction products. Results indicate that the pressure of granular-activated carbon significantly enhanced the formation of nitrosamine from N-methyl-aniline (F = 145, P< 0.0001). The amount of N-nitrosomethylaniline formed in the presence of activated carbon was 75 times more than that formed in the absence of activated carbon under the same nitrite, pH, and precursor amine conditions. High nitrite concentrations and loss pH values significantly increased the conversion of secondary amine to nitrosamine. 25 references, 4 figures, 4 tables.

  20. Blob Formation and Ejection in Coronal Jets due to the Plasmoid and Kelvin-Helmholtz Instabilities

    NASA Astrophysics Data System (ADS)

    Ni, Lei; Zhang, Qing-Min; Murphy, Nicholas A.; Lin, Jun

    2017-05-01

    We perform 2D resistive magnetohydrodynamic simulations of coronal jets driven by flux emergence along the lower boundary. The reconnection layers are susceptible to the formation of blobs that are ejected in the jet. Our simulation with low plasma β (Case I) shows that magnetic islands form easily and propagate upward in the jet. These islands are multithermal and thus are predicted to show up in hot channels (335 Å and 211 Å) and the cool channel (304 Å) in observations by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory. The islands have maximum temperatures of 8 MK, lifetimes of 120 s, diameters of 6 Mm, and velocities of 200 km s-1. These parameters are similar to the properties of blobs observed in extreme-ultraviolet (EUV) jets by AIA. The Kelvin-Helmholtz instability develops in our simulation with moderately high plasma β (Case II) and leads to the formation of bright vortex-like blobs above the multiple high magnetosonic Mach number regions that appear along the jet. These vortex-like blobs can also be identified in the AIA channels. However, they eventually move downward and disappear after the high magnetosonic Mach number regions disappear. In the lower plasma β case, the lifetime for the jet is shorter, the jet and magnetic islands are formed with higher velocities and temperatures, the current-sheet fragments are more chaotic, and more magnetic islands are generated. Our results show that the plasmoid instability and Kelvin-Helmholtz instability along the jet are both possible causes of the formation of blobs observed at EUV wavelengths.

  1. [Formation Mechanism of Aerobic Granular Sludge and Removal Efficiencies in Integrated ABR-CSTR Reactor].

    PubMed

    Wu, Kai-cheng; Wu, Peng; Xu, Yue-zhong; Li, Yue-han; Shen, Yao-liang

    2015-08-01

    Anaerobic Baffled Reactor (ABR) was altered to make an integrated anaerobic-aerobic reactor. The research investigated the mechanism of aerobic sludge granulation, under the condition of continuous-flow. The last two compartments of the ABR were altered into aeration tank and sedimentation tank respectively with seeded sludge of anaerobic granular sludge in anaerobic zone and conventional activated sludge in aerobic zone. The HRT was gradually decreased in sedimentation tank from 2.0 h to 0.75 h and organic loading rate was increased from 1.5 kg x (M3 x d)(-1) to 2.0 kg x (M3 x d)(-1) while the C/N of 2 was controlled in aerobic zone. When the system operated for 110 days, the mature granular sludge in aerobic zone were characterized by compact structure, excellent sedimentation performance (average sedimentation rate was 20.8 m x h(-1)) and slight yellow color. The system performed well in nitrogen and phosphorus removal under the conditions of setting time of 0.75 h and organic loading rate of 2.0 kg (m3 x d)(-1) in aerobic zone, the removal efficiencies of COD, NH4+ -N, TP and TN were 90%, 80%, 65% and 45%, respectively. The results showed that the increasing selection pressure and the high organic loading rate were the main propulsions of the aerobic sludge granulation.

  2. Formation of jet-like spikes from the ablative Rayleigh-Taylor instability

    SciTech Connect

    Wang, L. F.; Ye, W. H.; He, X. T.; Zhang, W. Y.; Sheng, Z. M.; Yu, M. Y.

    2012-10-15

    The mechanism of jet-like spike formation from the ablative Rayleigh-Taylor instability (ARTI) in the presence of preheating is reported. It is found that the preheating plays an essential role in the formation of the jet-like spikes. In the early stage, the preheating significantly increases the plasma density gradient, which can reduce the linear growth of ARTI and suppress its harmonics. In the middle stage, the preheating can markedly increase the vorticity convection and effectively reduce the vorticity intensity resulting in a broadened velocity shear layer near the spikes. Then the growth of ablative Kelvin-Helmholtz instability is dramatically suppressed and the ARTI remains dominant. In the late stage, nonlinear bubble acceleration further elongates the bubble-spike amplitude and eventually leads to the formation of jet-like spikes.

  3. Impinging jet spray formation using non-Newtonian liquids

    NASA Astrophysics Data System (ADS)

    Rodrigues, Neil S.

    Over the past two decades there has been a heightened interest in implementing gelled propellants for rocket propulsion, especially for hypergolic bi-propellants such as monomethylhydrazine (MMH) and nitrogen tetroxide oxidizer (NTO). Due to the very high level of toxicity of hypergolic liquid rocket propellants, increasing safety is an important area of need for continued space exploration and defense operations. Gelled propellants provide an attractive solution to meeting the requirements for safety, while also potentially improving performance. A gelling agent can be added to liquid propellants exhibiting Newtonian behavior to transform the liquid into a non-Newtonian fluid with some solid-like behavior, i.e. a gel. Non-Newtonian jet impingement is very different from its Newtonian counterpart in terms of fluid flow, atomization, and combustion. This is due to the added agents changing physical properties such as the bulk rheology (viscosity) and interfacial rheology (surface tension). Spray characterization of jet impingement with Newtonian liquids has been studied extensively in existing literature. However, there is a scarcity in literature of studies that consider the spray characterization of jet impingement with gelled propellants. This is a rather critical void since a major tradeoff of utilizing gelled propellants is the difficulty with atomization due to the increased effective viscosity. However, this difficulty can be overcome by using gels that exhibit shear-thinning behavior---viscosity decreases with increasing strain rate. Shear-thinning fluids are ideal because they have the distinct advantage of only flowing easily upon pressure. Thereby, greatly reducing the amount of propellant that could be accidentally leaked during both critical functions such as liftoff or engagement in the battlefield and regular tasks like refilling propellant tanks. This experimental work seeks to help resolve the scarcity in existing literature by providing drop size

  4. A comparative study of abiological granular sludge (ABGS) formation in different processes for zinc removal from wastewater.

    PubMed

    Chai, Liyuan; Yan, Xu; Li, Qingzhu; Yang, Bentao; Wang, Qingwei

    2014-11-01

    Abiological granular sludge (ABGS) formation is a potential and facile strategy for improving sludge settling performance during zinc removal from wastewater using chemical precipitation. In this study, the effect of pH, seed dosage, and flocculant dosage on ABGS formation and treated water quality was investigated. Results show that settling velocity of ABGS can reach up to 4.00 cm/s under optimal conditions, e.g., pH of 9.0, zinc oxide (ZnO) seeds dosage of 1.5 g/l, and polyacrylamide (PAM) dosage of 10 mg/l. More importantly, ABGS formation mechanism was investigated in NaOH precipitation process and compared with that in bio-polymer ferric sulfate (BPFS)-NaOH precipitation process regarding their sludge structure and composition. In the NaOH precipitation process, ABGS formation depends on some attractions between particles, such as van der Waals attraction and bridging attraction. However, during the BPFS-NaOH sludge formation process, steric repulsion becomes dominant due to the adsorption of BPFS on ZnO seeds. This repulsion further causes extremely loose structure and poor settling performance of BPFS-NaOH sludge.

  5. Formation of a rotating jet during the filament eruption on 2013 April 10-11

    NASA Astrophysics Data System (ADS)

    Filippov, B.; Srivastava, A. K.; Dwivedi, B. N.; Masson, S.; Aulanier, G.; Joshi, N. C.; Uddin, W.

    2015-07-01

    We analyse multiwavelength and multiviewpoint observations of a helically twisted plasma jet formed during a confined filament eruption on 2013 April 10-11. Given a rather large-scale event with its high spatial and temporal resolution observations, it allows us to clearly understand some new physical details about the formation and triggering mechanism of twisting jet. We identify a pre-existing flux rope associated with a sinistral filament, which was observed several days before the event. The confined eruption of the filament within a null-point topology, also known as an Eiffel tower (or inverted-Y) magnetic field configuration results in the formation of a twisted jet after the magnetic reconnection near a null point. The sign of helicity in the jet is found to be the same as that of the sign of helicity in the filament. Untwisting motion of the reconnected magnetic field lines gives rise to the accelerating plasma along the jet axis. The event clearly shows the twist injection from the pre-eruptive magnetic field to the jet.

  6. Drop impact into a deep pool: vortex shedding and jet formation

    SciTech Connect

    Agbaglah, G.; Thoraval, M. -J.; Thoroddsen, S. T.; Zhang, L. V.; Fezzaa, K.; Deegan, R. D.

    2015-02-01

    One of the simplest splashing scenarios results from the impact of a single drop on a deep pool. The traditional understanding of this process is that the impact generates an axisymmetric sheet-like jet that later breaks up into secondary droplets. Recently it was shown that even this simplest of scenarios is more complicated than expected because multiple jets can be generated from a single impact event and there are transitions in the multiplicity of jets as the experimental parameters are varied. Here, we use experiments and numerical simulations of a single drop impacting on a deep pool to examine the transition from impacts that produce a single jet to those that produce two jets. Using high-speed X-ray imaging methods we show that vortex separation within the drop leads to the formation of a second jet long after the formation of the ejecta sheet. Using numerical simulations we develop a phase diagram for this transition and show that the capillary number is the most appropriate order parameter for the transition.

  7. The Significance of Vortex Ring Formation to the Impulse and Thrust of a Starting Jet

    NASA Astrophysics Data System (ADS)

    Krueger, Paul S.; Gharib, Morteza

    2001-11-01

    A jet or pulse ejected into quiescent fluid is referred to as a starting jet and engenders vortex ring formation due to the roll up of the jet shear layer as the pulse is ejected. The recent work of Gharib et al. [JFM, 360, 121-140 (1998)] demonstrated that vortex rings generated by starting jets will stop entraining circulation (pinch off) for sufficiently large values of the ratio of the length of the ejected pulse to the nozzle diameter (L/D). The effect of this pinch-off phenomenon on the thrust and impulse generated by a starting jet is studied using a piston-cylinder arrangement to produce pulses of water into water for a range of L/D. The results show a maximum in the average thrust during a pulse for L/D just before pinch off occurs. This optimum exists because a vortex ring contributes more impulse per unit L/D than the jet trailing a pinched-off vortex ring. The propulsive benefit provided by the leading vortex ring is due to over-pressure at the nozzle exit, which can be related to the acceleration of ambient fluid during ring formation by entrainment and added mass effects. The implications for pulsatile propulsion will be discussed.

  8. Effects of basin bottom slope on jet hydrodynamics and river mouth bar formation

    NASA Astrophysics Data System (ADS)

    Jiménez-Robles, A. M.; Ortega-Sánchez, M.; Losada, M. A.

    2016-06-01

    River mouth bars are strategic morphological units primarily responsible for the development of entire deltaic systems. This paper addresses the role of receiving basin slope in the hydrodynamics of an exiting sediment-laden turbulent jet and in resulting mouth bar morphodynamics. We use Delft3D, a coupled hydrodynamic and morphodynamic numerical model, along with a theoretical formulation to reproduce the physics of the problem, characterized by a fluvially dominated inlet free of waves and tides. We propose an updated theoretical model with a slope-dependent entrainment coefficient, showing that the rate at which ambient fluid is incorporated into a jet increases with higher basin slopes. Transient results reveal that the magnitude of a basin slope can alter the stability of a jet, favoring the formation of an unstable meandering jet. While a stable jet gives rise to "middle-ground" bars accompanied by diverging channels, a "lunate" mouth bar results from unstable jets. Additional morphodynamic simulations demonstrate that the time required for mouth bar stagnation in its final position increases linearly with the basin slope. In contrast, the distance at which the mouth bar eventually forms decreases until reaching an asymptotic value for slopes higher than 2%. Moreover, the basin slope highly influences sedimentary processes responsible for bar formation: for milder slopes, progradation processes prevail, while in steeper basins aggradation is more relevant. Finally, the minimum relative water depth over a bar crest that forces the flow to bifurcate around a fully developed bar decreases with the basin slope.

  9. Constraints on Jet Formation Mechanisms with the Most Energetic Giant Outbursts in MS 0735+7421

    NASA Astrophysics Data System (ADS)

    Li, Shuang-Liang; Cao, Xinwu

    2012-07-01

    Giant X-ray cavities lie in some active galactic nuclei (AGNs) locating in central galaxies of clusters, which are estimated to have stored 1055-1062 erg of energy. Most of these cavities are thought to be inflated by jets of AGNs on a timescale of >~ 107 years. The jets can be either powered by rotating black holes or the accretion disks surrounding black holes, or both. The observations of giant X-ray cavities can therefore be used to constrain jet formation mechanisms. In this work, we choose the most energetic cavity, MS 0735+7421, with stored energy ~1062 erg, to constrain the jet formation mechanisms and the evolution of the central massive black hole in this source. The bolometric luminosity of the AGN in this cavity is ~10-5 L Edd, however, the mean power of the jet required to inflate the cavity is estimated as ~0.02L Edd, which implies that the source has previously experienced strong outbursts. During outbursts, the jet power and the mass accretion rate should be significantly higher than its present values. We construct an accretion disk model in which the angular momentum and energy carried away by jets are properly included to calculate the spin and mass evolution of the massive black hole. In our calculations, different jet formation mechanisms are employed, and we find that the jets generated with the Blandford-Znajek (BZ) mechanism are unable to produce the giant cavity with ~1062 erg in this source. Only the jets accelerated with a combination of the Blandford-Payne and BZ mechanisms can successfully inflate such a giant cavity if the magnetic pressure is close to equipartition with the total (radiation+gas) pressure of the accretion disk. For a dynamo-generated magnetic field in the disk, such an energetic giant cavity can be inflated by the magnetically driven jets only if the initial black hole spin parameter a 0 >~ 0.95. Our calculations show that the final spin parameter a of the black hole is always ~0.9-0.998 for all the computational

  10. Droplet formation from the breakup of micron-sized liquid jets

    NASA Astrophysics Data System (ADS)

    van Hoeve, Wim; van der Bos, Arjan; Versluis, Michel; Snoeijer, Jacco; Brenner, Michael P.; Lohse, Detlef

    2009-11-01

    Droplet formation from the breakup of a liquid jet emerging from a micron-sized circular nozzle is investigated with ultra high-speed imaging at 1 million frames per second and within a lubrication approximation model [Eggers and Dupont, Phys. Rev. Lett. 262, 1994, 205-221]. The capillary time τc= √ρr^3 / γ is extremely small -- of the order of 1μs. In the analyzed low Reynolds number regime the jet breakup is driven by surface tension forces only. Rayleigh breakup is not influenced by the surrounding air. The high- speed imaging results and those from the model calculation perfectly agree for various liquid viscosities and jet velocities, confirming a universal scaling law also for diminutive Rayleigh jets.

  11. Formation and mechanics of granular waves in gravity and shallow overland flow

    NASA Astrophysics Data System (ADS)

    Römkens, Mathias J. M.; Suryadevara, Madhu R.; Prasad, Shyam N.

    2010-05-01

    Sediment transport in overland flow is a highly complex process involving many properties relative to the flow regime characteristics, soil surface conditions, and type of sediment. From a practical standpoint, most sediment transport studies are concerned with developing relationships of rates of sediment movement under different hydraulic regimes in channel flow for use in soil erosion and sediment transport prediction models. Relatively few studies have focused on the more basic aspects of sediment movement in which particle-to-particle, particle-to-boundary, and particle-to-fluid interactions determine in an important way the nature of the movement. Our experimental work under highly controlled experimental conditions with both gravity flow of granular material (glass beads) in air and sediment transport (sand particles and glass beads) in shallow overland flow have shown that sediment movement is not a simple phenomenon solely determined by flow rates on a proportional basis, but that it is represented by a highly structured and organized regime determined by sedimentary fluid mechanical principles which yield very characteristic waves during transport. In the gravity flow case involving granular chute flow, two-dimensional grain waves developed into the rolling and saltating moving grain mass at certain grain concentrations. This phenomenon appeared to be related to an energy exchange process as a result of collisions between moving grain particles that led to reduced kinetic velocities. As a result, particle concentration differences in the direction of flow developed that were noted as denser zones. In these zones, particles dropped out at the upstream part of these denser zones to resume their accelerating motion once they reached the downstream part of the zone until, during the next collision event, the process is repeated. Thus a periodic granular wave structure evolved. Depending on the addition rate, the granular flow regime may be a fluidized

  12. Formation of printable granular and colloidal chains through capillary effects and dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Rozynek, Zbigniew; Han, Ming; Dutka, Filip; Garstecki, Piotr; Józefczak, Arkadiusz; Luijten, Erik

    2017-05-01

    One-dimensional conductive particle assembly holds promise for a variety of practical applications, in particular for a new generation of electronic devices. However, synthesis of such chains with programmable shapes outside a liquid environment has proven difficult. Here we report a route to simply `pull' flexible granular and colloidal chains out of a dispersion by combining field-directed assembly and capillary effects. These chains are automatically stabilized by liquid bridges formed between adjacent particles, without the need for continuous energy input or special particle functionalization. They can further be deposited onto any surface and form desired conductive patterns, potentially applicable to the manufacturing of simple electronic circuits. Various aspects of our route, including the role of particle size and the voltages needed, are studied in detail. Looking towards practical applications, we also present the possibility of two-dimensional writing, rapid solidification of chains and methods to scale up chain production.

  13. Formation of Martian araneiforms by gas-driven erosion of granular material

    SciTech Connect

    S. de Villiers; A. Nermoen; B. Jamtveit; J. Mathiesen; P. Meakin; S. C. Werner

    2012-07-01

    Sublimation at the lower surface of a seasonal sheet of translucent CO2 ice at high southern latitudes during the Martian spring, and rapid outflow of the CO2 gas generated in this manner through holes in the ice, has been proposed as the origin of dendritic 100 m-1 km scale branched channels known as spiders or araneiforms and dark dust fans deposited on top of the ice. We show that patterns very similar to araneiforms are formed in a Hele-Shaw cell filled with an unconsolidated granular material by slowly deforming the upper wall upward and allowing it to return rapidly to its original position to drive air and entrained particles through a small hole in the upper wall. Straight, braided and quasiperiodic oscillating channels, unlike meandering channels on Earth were also formed.

  14. Formation of liquid drops at an orifice and dynamics of pinch-off in liquid jets

    NASA Astrophysics Data System (ADS)

    Borthakur, Manash Pratim; Biswas, Gautam; Bandyopadhyay, Dipankar

    2017-07-01

    This paper presents a numerical investigation of the dynamics of pinch-off in liquid drops and jets during injection of a liquid through an orifice into another fluid. The current study is carried out by solving axisymmetric Navier-Stokes equations and the interface is captured using a coupled level-set and volume-of-fluid approach. The delicate interplay of inertia and viscous effects plays a crucial role in deciding the dynamics of the formation as well as breakup of liquid drops and jets. In the dripping regime, the growth and breakup rate of a drop are studied and quantified by corroborating with theoretical predictions. During the growth stage of the drops, a self-similar behavior of the drop profile is identified over a relatively short duration of time. The viscosity of the drop liquid shows substantial influence on the thinning behavior of a liquid neck and a transition is observed from an inertia dominated regime to an inertia-viscous regime beyond a critical minimum value of the neck radius. The phenomenon of interface overturning is fundamentally related to the magnitude of drop viscosity. The variation of overturning angle as a function of drop viscosity is computed and a critical value of Ohnesorge number is obtained beyond which overturning ceases. Increasing the inertia of drop liquid transforms the system from a periodically dripping regime to a quasiperiodic regime and finally it culminates into an elongated liquid jet. Another interesting transition from dripping to jetting regime is demonstrated by varying the viscosity of the ambient medium. The breakup of jets in Rayleigh mode is explored and the breakup length obtained from our computations shows excellent agreement with the theoretical predictions owing to Rayleigh's analysis. The ambient medium is entrained as the jet moves downstream with the creation of a vortical structure just outside the jet signifying increased participation of the ambient medium in the dynamics of jet breakup at

  15. Shock induced hot-spot formation and subsequent decomposition in granular, porous hexanitrostilbene explosive

    SciTech Connect

    Hayes, D B

    1981-01-01

    Experimental and theoretical studies on granular, porous hexanitrostilbene (HNS) explosive have yielded an increased understanding of microstructural processes occurring during initiation by shock loading. Experiments involved the planar impact of HNS specimens onto fused-silica targets. Chemical decomposition liberated gaseous products, causing the pressure in the HNS to rise. Velocity interferometry measured material velocity, hence, pressure at the fused silica/HNS interface. An analysis of this pressure excursion yields chemical decomposition history. The data are interpreted in terms of a quantitative two-temperature model which considers hot spots to be formed at pore sites as a result of the irreversible work accompanying the shock. Subsequently, decomposition completion is achieved by burn fronts which propagate radially out from each hot spot at a velocity which can be determined from the bulk decomposition rate. Analysis of the experimental data in the context of the model yields several important results: the delay times corresponding to hot-spot decomposition are shorter than expected; model calculations show about the same inferred hot-spot temperature for different initial porosities and particle sizes in HNS, shock-loaded to equal pressures, which is consistent with experimental results.

  16. Formation of aerobic granular sludge during the treatment of petrochemical wastewater.

    PubMed

    Caluwé, Michel; Dobbeleers, Thomas; D'aes, Jolien; Miele, Solange; Akkermans, Veerle; Daens, Dominique; Geuens, Luc; Kiekens, Filip; Blust, Ronny; Dries, Jan

    2017-08-01

    In this study, petrochemical wastewater from the port of Antwerp was used for the development of aerobic granular sludge. Two different reactor setups were used, (1) a completely aerated sequencing batch reactor (SBRae) with a feast/famine regime and (2) a sequencing batch reactor operated with an anaerobic feast/aerobic famine strategy (SBRan). The seed sludge showed poor settling characteristics with a sludge volume index (SVI) of 285mL.gMLSS(-1) and a median particle size by volume of 86.0µm±1.9µm. In both reactors, granulation was reached after 30days with a SVI of 71mL.gMLSS(-1) and median granule size of 264.7µm in SBRan and a SVI of 56mL.gMLSS(-1) and median granule size of 307.4µm in SBRae. The chemical oxygen demand (COD) and dissolved organic carbon (DOC) removal was similar in both reactors and above 95%. The anaerobic DOC uptake increased from 0.13% to 43.2% in 60days in SBRan. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Large format ink-jet poster production: a case report.

    PubMed

    Harris, R

    1998-03-01

    To complement the services offered by the Medical Illustration Department of Frenchay Hospital, Bristol, we decided to look at the possibility of producing posters using the ink-jet process. Our designers wanted to use the full scope of their computers and software to expand their design talents. The method of cutting and pasting sheets of paper onto card seemed old fashioned and denied clients the benefit of the exciting techniques that have become available. After seeking sponsorship, a drug company gave 8000 Pounds towards setting up the department's poster printing service. A Kodak DS1000 printer was installed together with Posterjet and Posterworks software and we went into production, servicing not only our hospital but others in the area who gave their support for the service. High quality photographic reproduction was achieved and clients and consultants were very pleased with the results. The designers were happy that their skills were being used and interest in this and other services in the department have increased. The resulting increased income has helped finance other projects. The printer has enabled us also to see output proofs before sending work off to be offset printed--a very useful tool and a cost-saving process.

  18. Investigation of the Methane Hydrate Formation by Cavitation Jet

    NASA Astrophysics Data System (ADS)

    Morita, H.; Nagao, J.

    2015-12-01

    Methane hydrate (hereafter called "MH") is crystalline solid compound consisting of hydrogen-bonded water molecules forming cages and methane gas molecules enclosed in the cage. When using MH as an energy resource, MH is dissociated to methane gas and water and collect only the methane gas. The optimum MH production method was the "depressurization method". Here, the production of MH means dissociating MH in the geologic layers and collecting the resultant methane gas by production systems. In the production of MH by depressurization method, MH regeneration was consider to important problem for the flow assurance of MH production system. Therefore, it is necessary to clarify the effect of flow phenomena in the pipeline on hydrate regeneration. Cavitation is one of the flow phenomena which was considered a cause of MH regeneration. Large quantity of microbubbles are produced by cavitation in a moment, therefore, it is considered to promote MH formation. In order to verify the possible of MH regeneration by cavitation, it is necessary to detailed understanding the condition of MH formation by cavitation. As a part of a Japanese National hydrate research program (MH21, funded by METI), we performed a study on MH formation using by cavitation. The primary objective of this study is to demonstrate the formation MH by using cavitation in the various temperature and pressure condition, and to clarify the condition of MH formation by using observation results.

  19. Two-gluon emission and interference in a thin QCD medium: insights into jet formation

    NASA Astrophysics Data System (ADS)

    Casalderrey-Solana, Jorge; Pablos, Daniel; Tywoniuk, Konrad

    2016-11-01

    In heavy-ion collisions, an abundant production of high-energy QCD jets allows to study how these multiparticle sprays are modified as they pass through the quark-gluon plasma. In order to shed new light on this process, we compute the inclusive two-gluon rate off a hard quark propagating through a color deconfined medium at first order in medium opacity. We explicitly impose an energy ordering of the two emitted gluons, such that the "hard" gluon can be thought of as belonging to the jet substructure while the other is a "soft" emission (which can be collinear or medium-induced). Our analysis focusses on two specific limits that clarify the modification of the additional angle- and formation time-ordering of splittings. In one limit, the formation time of the "hard" gluon is short compared to the "soft" gluon formation time, leading to a probabilistic formula for production of and subsequent radiation off a quark-gluon antenna. In the other limit, the ordering of formation is reverted, which automatically leads to the fact that the jet substructure is resolved by the medium. We observe in this case a characteristic delay: the jet radiates as one color current (quark) up to the formation of the "hard" gluon, at which point we observe the onset of radiation of the new color current (gluon). Within our kinematic constraints, our computation supports a picture in which the in-medium jet dynamics are described as a collection of subsequent antennas which are resolved by the medium according to their transverse extent.

  20. Formation of NOx precursors during Chinese pulverized coal pyrolysis in an arc plasma jet

    SciTech Connect

    Wei-ren Bao; Jin-cao Zhang; Fan Li; Li-ping Chang

    2007-08-15

    The formation of NOx precursors (HCN and NH{sub 3}) from the pyrolysis of several Chinese pulverized coals in an arc plasma jet was investigated through both thermodynamic analysis of the C-H-O-N system and experiments. Results of thermodynamic analysis show that the dominant N-containing gaseous species is HCN together with a small amount of ammonia above the temperature of 2000 K. The increase of H content advances the formation of HCN and NH{sub 3}, but the yields of HCN and NH{sub 3} are decreased with a high concentration of O in the system. These results are accordant with the experimental data. The increasing of input power promotes the formation of HCN and NH{sub 3} from coal pyrolysis in an arc plasma jet. Tar-N is not formed during the process. The yield of HCN changes insignificantly with the changing of the residence time of coal particles in the reactor, but that of NH{sub 3} decreases as residence times increase because of the relative instability at high temperature. Adsorption and gasification of CO{sub 2} on the coal surface also can restrain the formation of HCN and NH{sub 3} compare to the results in an Ar plasma jet. Yields of HCN and NH{sub 3} are sensitive to the coal feeding rate, indicating that NOx precursors could interact with the nascent char to form other N-containing species. The formation of HCN and NH{sub 3} during coal pyrolysis in a H{sub 2}/Ar plasma jet are not dependent on coal rank. The N-containing gaseous species is released faster than others in the volatiles during coal pyrolysis in an arc plasma jet, and the final nitrogen content in the char is lower than that in the parent coal, which it is independent of coal type. 16 refs., 9 figs., 1 tab.

  1. Formation of X-ray emitting stationary shocks in magnetized protostellar jets

    NASA Astrophysics Data System (ADS)

    Ustamujic, S.; Orlando, S.; Bonito, R.; Miceli, M.; Gómez de Castro, A. I.; López-Santiago, J.

    2016-12-01

    Context. X-ray observations of protostellar jets show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. Aims: We investigate the physics that guides the formation of X-ray emitting stationary shocks in protostellar jets; the role of the magnetic field in determining the location, stability, and detectability in X-rays of these shocks; and the physical properties of the shocked plasma. Methods: We performed a set of 2.5-dimensional magnetohydrodynamic numerical simulations that modelled supersonic jets ramming into a magnetized medium and explored different configurations of the magnetic field. The model takes into account the most relevant physical effects, namely thermal conduction and radiative losses. We compared the model results with observations, via the emission measure and the X-ray luminosity synthesized from the simulations. Results: Our model explains the formation of X-ray emitting stationary shocks in a natural way. The magnetic field collimates the plasma at the base of the jet and forms a magnetic nozzle there. After an initial transient, the nozzle leads to the formation of a shock diamond at its exit which is stationary over the time covered by the simulations ( 40-60 yr; comparable with timescales of the observations). The shock generates a point-like X-ray source located close to the base of the jet with luminosity comparable with that inferred from X-ray observations of protostellar jets. For the range of parameters explored, the evolution of the post-shock plasma is dominated by the radiative cooling, whereas the thermal conduction slightly affects the structure of the shock. A movie is available at http://www.aanda.org

  2. Controlling pulsatile jet formation number with variable diameter exit nozzle for maximum impulse generation

    NASA Astrophysics Data System (ADS)

    Krieg, Mike; Thomas, Tyler; Mohseni, Kamran

    2009-11-01

    Both jellyfish and Squid propel themselves by ejecting high momentum vortex rings. A set of vortex ring generating thrusters were developed and tested for application in underwater vehicle propulsion. Vortex rings generated from a steady piston cylinder mechanism have a universal formation time, known as the formation number (Gharib et al. 1998), associated with reaching maximum circulation, where the vortex ring separates from its trailing shear flow. The non-dimensional jet formation time (also called the stroke ratio) plays a key role in the thrust output of the device; since thrusters operating above the formation number re-ingest the trailing jet. A variable diameter exit nozzle was used to increase the formation number of the jet to maximize thrust (which is a technique observed in squid and jellyfish locomotion). Visualization studies confirmed the ability to delay the onset of ring ``pinch-off'', using a variable nozzle, and the thrust was empirically shown to achieve a higher maximum. Additionally, a fluid slug model which was developed to predict the thrust output was adapted to incorporate a changing nozzle diameter. This model was verified with the empirical thrust data and was again shown to be accurate for stroke ratios below the formation number.

  3. In-situ formation and immobilization of biogenic nanopalladium into anaerobic granular sludge enhances azo dyes degradation.

    PubMed

    Quan, Xiangchun; Zhang, Xin; Xu, Hengduo

    2015-07-01

    Azo dyes are toxic and recalcitrant wastewater pollutants. An innovative technology based on biogenic nanopalladium (Bio-Pd) supported anaerobic granular sludge (AGS) was developed for azo dyes reduction. In-situ formation of Bio-Pd in the AGS was observed by Scanning Electron Microscopy coupled with Energy Dispersive Spectrometer (SEM-EDS). The Pd associated AGS (Pd-AGS) showed enhanced decolorization rates to the three azo dyes of Congo Red, Evans Blue and Orange II, with the degradation kinetic constants increased by 2.3-10 fold compared to the control AGS in the presence of electron donor formate. Impacts of different electron donors on Orange II decolorization were further investigated. Results showed that formic acid, formate, acetate, glucose, ethanol and lactate could serve as electron and hydrogen donors to stimulate Orange II decolorization by the Pd-AGS, and their activities followed the order: formic acid > formate > ethanol > glucose > lactate > acetate. Most of the Bio-Pd was bound with microbes in the AGS with a small fraction in the extracellular polymer substances (EPS). Transmission Electronic Microscopy analysis revealed that the Bio-Pd formed in the periplasmic space, cytoplasm and on the cell walls of bacteria. This study provides a new concept for azo dye reduction, which couples sludge microbial degradation ability with Bio-Pd catalytic ability via in-situ formation and immobilization of Bio-Pd into AGS, and offers an alternative for the current azo dye treatment technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Isotope enrichment during the formation of water clusters in supersonic free jet expansions. [p

    SciTech Connect

    Kay, B.D.; Castleman, A.W. Jr.

    1983-03-15

    Presently, investigation of the dynamics, energetics, and structure of microscopic molecular clusters constitutes an active area of research in chemical physics. Herein the RRKM theory of primary isotope effects is extended to qualitatively predict isotope enrichment in water cluster formation. The theoretical model is verified experimentally by neutral free jet expansion modulated molecular beam mass spectrometry of mixed (H/sub 2/O)/sub m/(D/sub 2/O)/sub n/ clusters. The results further support the previously presented mechanism for neutral cluster growth in free jet expansions. The observed enrichment factors (approx.30%) suggest that techniques involving clustering may find practical applications in the area of isotope separation.

  5. JET FORMATION FROM MASSIVE YOUNG STARS: MAGNETOHYDRODYNAMICS VERSUS RADIATION PRESSURE

    SciTech Connect

    Vaidya, Bhargav; Porth, Oliver; Fendt, Christian; Beuther, Henrik E-mail: fendt@mpia.de

    2011-11-20

    Observations indicate that outflows from massive young stars are more collimated during their early evolution compared to later stages. Our paper investigates various physical processes that impact the outflow dynamics, i.e., its acceleration and collimation. We perform axisymmetric magnetohydrodynamic (MHD) simulations particularly considering the radiation pressure exerted by the star and the disk. We have modified the PLUTO code to include radiative forces in the line-driving approximation. We launch the outflow from the innermost disk region (r < 50 AU) by magnetocentrifugal acceleration. In order to disentangle MHD effects from radiative forces, we start the simulation in pure MHD and later switch on the radiation force. We perform a parameter study considering different stellar masses (thus luminosity), magnetic flux, and line-force strength. For our reference simulation-assuming a 30 M{sub Sun} star-we find substantial de-collimation of 35% due to radiation forces. The opening angle increases from 20 Degree-Sign to 32 Degree-Sign for stellar masses from 20 M{sub Sun} to 60 M{sub Sun }. A small change in the line-force parameter {alpha} from 0.60 to 0.55 changes the opening angle by {approx}8 Degree-Sign . We find that it is mainly the stellar radiation that affects the jet dynamics. Unless the disk extends very close to the star, its force is too small to have much impact. Essentially, our parameter runs with different stellar masses can be understood as a proxy for the time evolution of the star-outflow system. Thus, we have shown that when the stellar mass (thus luminosity) increases with age, the outflows become less collimated.

  6. Jet Formation from Massive Young Stars: Magnetohydrodynamics versus Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Vaidya, Bhargav; Fendt, Christian; Beuther, Henrik; Porth, Oliver

    2011-11-01

    Observations indicate that outflows from massive young stars are more collimated during their early evolution compared to later stages. Our paper investigates various physical processes that impact the outflow dynamics, i.e., its acceleration and collimation. We perform axisymmetric magnetohydrodynamic (MHD) simulations particularly considering the radiation pressure exerted by the star and the disk. We have modified the PLUTO code to include radiative forces in the line-driving approximation. We launch the outflow from the innermost disk region (r < 50 AU) by magnetocentrifugal acceleration. In order to disentangle MHD effects from radiative forces, we start the simulation in pure MHD and later switch on the radiation force. We perform a parameter study considering different stellar masses (thus luminosity), magnetic flux, and line-force strength. For our reference simulation—assuming a 30 M ⊙ star—we find substantial de-collimation of 35% due to radiation forces. The opening angle increases from 20° to 32° for stellar masses from 20 M ⊙ to 60 M ⊙. A small change in the line-force parameter α from 0.60 to 0.55 changes the opening angle by ~8°. We find that it is mainly the stellar radiation that affects the jet dynamics. Unless the disk extends very close to the star, its force is too small to have much impact. Essentially, our parameter runs with different stellar masses can be understood as a proxy for the time evolution of the star-outflow system. Thus, we have shown that when the stellar mass (thus luminosity) increases with age, the outflows become less collimated.

  7. Ion-viscosity effects on plasma-liner formation and implosion via merging supersonic plasma jets

    NASA Astrophysics Data System (ADS)

    Schillo, Kevin; Cassibry, Jason; Samulyak, Roman; Shih, Wen; Hsu, Scott; PLX-Alpha Team

    2016-10-01

    The PLX- α project endeavors to study plasma-liner formation and implosion by merging a spherical array of plasma jets as a candidate standoff driver for MIF. Smoothed particle hydrodynamics is used to model the liner formation and implosion processes. SPH is a meshless Lagrangian method to simulate fluid flows by dividing a fluid into a set of particles and using a summation interpolant function to calculate the properties and gradients for each of these particles. Ion viscosity is anticipated to be an important mechanism for momentum transport during liner formation, implosion, and stagnation. To study this, ion viscosity was incorporated into the code. To provide confidence in the numerical output and to help identify the difference between numerical and physical diffusion, a series of test cases were performed, consisting of Couette flow, Gresho vortex, and a Taylor-Green vortex. An L2-norm analysis was performed to measure the error and convergence. Simulations of conical (6 jets) and 4 π (60 jets) liners with and without ion viscosity reveal potential effects of viscosity on ram pressure, Mach-number degradation, and evolution of liner perturbations during jet merging and liner implosion.

  8. Analysis of Computational Models of Shaped Charges for Jet Formation and Penetration

    NASA Astrophysics Data System (ADS)

    Haefner, Jonah; Ferguson, Jim

    2016-11-01

    Shaped charges came into use during the Second World War demonstrating the immense penetration power of explosively formed projectiles and since has become a tool used by nearly every nation in the world. Penetration is critically dependent on how the metal liner is collapsed into a jet. The theory of jet formation has been studied in depth since the late 1940s, based on simple models that neglect the strength and compressibility of the metal liner. Although attempts have been made to improve these models, simplifying assumptions limit the understanding of how the material properties affect the jet formation. With a wide range of material and strength models available for simulation, a validation study was necessary to guide code users in choosing models for shaped charge simulations. Using PAGOSA, a finite-volume Eulerian hydrocode designed to model hypervelocity materials and strong shock waves developed by Los Alamos National Laboratory, and experimental data, we investigated the effects of various equations of state and material strength models on jet formation and penetration of a steel target. Comparing PAGOSA simulations against modern experimental data, we analyzed the strengths and weaknesses of available computational models. LA-UR-16-25639 Los Alamos National Laboratory.

  9. Mechanisms of microhole formation on glasses by an abrasive slurry jet

    SciTech Connect

    Wang, J.; Nguyen, T.; Pang, K. L.

    2009-02-15

    Abrasive jet micromachining is considered as a promising precision processing technology for brittle materials such as silicon substrates and glasses that are increasingly used in various applications. In this paper, the mechanisms of microhole formation on brittle glasses by an abrasive slurry jet are studied based on the viscous flow and erosion theories. It is shown that the hole cross section is characterized by a ''W'' shape and can be classified into three zones caused, respectively, by jet direct impact, viscous flow, and turbulent flow induced erosion. An analysis of the surface morphology shows that ductile-mode erosion is dominant. The effect of process parameters on material removal is studied which shows that increasing the pressure and erosion time increases the hole depth, but has little effect on the hole diameter.

  10. Evolution of Fine-scale Penumbral Magnetic Structure and Formation of Penumbral Jets

    NASA Astrophysics Data System (ADS)

    Tiwari, S. K.; Moore, R. L.; Rempel, M.; Winebarger, A. R.

    2015-12-01

    Sunspot penumbra consists of spines (more vertical field) and penumbral filaments (interspines). Spines are outward extension of umbra. Penumbral filaments are recently found, both in observations and magnetohydrodynamic (MHD) simulations, to be magnetized stretched granule-like convective cells, with strong upflows near the head that continues along the central axis with weakening strength of the flow. Strong downflows are found at the tails of filaments and weak downflows along the sides of it. These lateral downflows often contain opposite polarity magnetic field to that of spines; most strongly near the heads of filaments. In spite of this advancement in understanding of small-scale structure of sunspot penumbra, how the filaments and spines evolve and interact remains uncertain. Penumbral jets, bright, transient features, seen in the chromosphere, are one of several dynamic events in sunspot penumbra. It has been proposed that these penumbral microjets result from component (acute angle) reconnection of the magnetic field in spines with that in interspines and could contribute to transition-region and coronal heating above sunspots. In a recent investigation, it was proposed that the jets form as a result of reconnection between the opposite polarity field at edges of filaments with spine field, and it was found that these jets do not significantly directly heat the corona above sunspots. We discuss how the proposed formation of penumbral jets is integral to the formation mechanism of penumbral filaments and spines, and may explain why penumbral jets are few and far between. We also point out that the generation of the penumbral jets could indirectly drive coronal heating via generation of MHD waves or braiding of the magnetic field.

  11. DISINFECTION BY-PRODUCT FORMATION BY ALTERNATIVE DISINFECTANTS AND REMOVAL BY GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    The effects of the use of the alternative disinfectants on the formation of halogenated disinfection by–products (DBPs) including total organic halide, trihalomethanes, haloacetic acids, haloacetonitriles, haloketones, chloral hydrate, and chloropicrin, were examined along ...

  12. Formation And Ingestion Of Vortices Into Jet Engines During Operation

    NASA Astrophysics Data System (ADS)

    Hua, Ho Wei; Jermy, Mark

    2009-01-01

    Vortices can be produced and ingested into the intake of a turbofan and turbojet aero engine during high power operation near solid surfaces. This can happen either on the runway during take-off or during engine test runs in a test cell. The vortex can throw debris into the intake or cause the compressor to stall causing significant damage to the engine and may require major overhaul. The ability to predict the onset of a vortex is therefore extremely valuable to the industry and could potentially save millions of dollars in overhaul costs. The factors that determines whether or not a vortex forms include engine thrust level, geometric factors such as the distance between the engine core and the ground and the size of the engine core, and flow conditions such as ambient vorticity and height of boundary layer. Computational fluid dynamic studies have been carried out by the authors to attempt to predict the effects that these factors have on the threshold of vortex formation. These works include the first reported studies of numerical predictions of the vortex formation threshold on both the runway or test cell scenarios and include factors that have not been previously studied either numerically or experimentally.

  13. Gas Cloud Accretion onto the SMBH SgrA* and Formation of Jet

    NASA Astrophysics Data System (ADS)

    Nishiyama, Shogo

    2013-01-01

    A dense gas cloud is rapidly approaching the Galactic supermassive black hole (SMBH) SgrA^*, and will be ~ 2,200 Schwarzschild radii from the SMBH at the pericenter of its eccentric orbit in Sep 2013. The cloud is expected to be disrupted by instabilities and tidal forces, and the cloud fragments accrete onto the SMBH on the dynamical timescale of several days to several weeks, suggesting a jet formation in 2013. So we are carrying out daily monitoring observations of SgrA^* in near-infrared and radio wavelengths, and we propose quick follow-up observations with Subaru/Gemini. Br-gamma line emission maps obtained with Gemini/NIFS will be used to fine tune our 3D simulation to estimate how much mass is, and when the fragment is accreted onto the SMBH. Polarimetric signals from a jet taken with Subaru/HiCIAO will be compared with the finely tuned simulation to understand the timescale of a jet formation, and to investigate the correlation between the accreted mass of the cloud fragment and a luminosity of a newly-formed jet. Spectroscopic and imaging observations from 1.6 - 11 mum (Subaru/IRCS, COMICS) will also be conducted to understand processes responsible for near to mid-infrared emission during the accretion event.

  14. Gas Cloud Accretion onto the SMBH SgrA* and Formation of Jet 3

    NASA Astrophysics Data System (ADS)

    Nishiyama, Shogo

    2014-01-01

    A dense gas cloud is rapidly approaching the Galactic supermassive black hole (SMBH) SgrA*, and will be ~ 1,600$ Schwarzschild radii from the SMBH at the pericenter of its eccentric orbit in Mar 2014 (updated). The cloud is expected to be disrupted by instabilities and tidal forces, and cloud fragments accrete onto the SMBH on dynamical timescales of several weeks to several months, suggesting a jet formation in 2014. So we are carrying out daily monitoring observations of SgrA* in near-infrared and radio wavelengths, and we propose quick follow-up observations with Subaru/Gemini. Br-gamma line emission maps obtained with Gemini/NIFS will be used to fine tune our 3D simulation to estimate how much mass accretes, and when the fragments accrete onto the SMBH. Polarimetric and astrometric signals from a jet taken with Subaru/HiCIAO and KaVA will be compared with the finely tuned simulation to understand the timescale of jet formation, and to investigate the correlation between the accreted mass of the cloud fragments and a luminosity of the newly-formed jet. Spectroscopic and imaging observations from 1.6 - 11mum (Subaru/IRCS, COMICS) will also be conducted to understand processes responsible for near to mid-infrared emission during the accretion event.

  15. Gas Cloud Accretion onto the SMBH SgrA* and Formation of Jet 2

    NASA Astrophysics Data System (ADS)

    Nishiyama, Shogo

    2014-01-01

    A dense gas cloud is rapidly approaching the Galactic supermassive black hole (SMBH) SgrA*, and will be ~ 1,600 Schwarzschild radii from the SMBH at the pericenter of its eccentric orbit in Mar 2014 (updated). The cloud is expected to be disrupted by instabilities and tidal forces, and cloud fragments accrete onto the SMBH on dynamical timescales of several weeks to several months, suggesting a jet formation in 2014. So we are carrying out daily monitoring observations of SgrA* in near-infrared and radio wavelengths, and we propose quick follow-up observations with Subaru/Gemini. Br-γ line emission maps obtained with Gemini/NIFS will be used to fine tune our 3D simulation to estimate how much mass accretes, and when the fragments accrete onto the SMBH. Polarimetric and astrometric signals from a jet taken with Subaru/HiCIAO and VERA will be compared with the finely tuned simulation to understand the timescale of jet formation, and to investigate the correlation between the accreted mass of the cloud fragments and a luminosity of the newly-formed jet. Spectroscopic and imaging observations from 1.6 - 11μm (Subaru/IRCS, COMICS) will also be conducted to understand processes responsible for near to mid-infrared emission during the accretion event.

  16. Gas Cloud Accretion onto the SMBH SgrA* and Formation of Jet 4

    NASA Astrophysics Data System (ADS)

    Nishiyama, Shogo

    2015-06-01

    A dense gas cloud was detected to be rapidly approaching the Galactic supermassive black hole (SMBH) Sgr A*, and was 1,600 Schwarzschild radii from the SMBH at the pericenter of its eccentric orbit in Mar 2014. Ongoing tidal disruption has been observed, and cloud fragments are expected to accrete onto the SMBH on dynamical timescales, suggesting a jet formation in the following years. So we are carrying out daily monitoring observations of Sgr A* in near-infrared and radio wavelengths, and we propose quick follow-up observations with Subaru/Gemini. Br-gamma line emission maps obtained with Gemini/NIFS will be used to fine tune our 3D simulation to estimate how much mass accretes, and when the fragments accrete onto the SMBH. Polarimetric and astrometric signals from a jet taken with Subaru/HiCIAO and KaVA will be compared with the finely tuned simulation to understand the timescale of jet formation, and to investigate the correlation between the accreted mass of the cloud fragments and a luminosity of the newly-formed jet. Spectroscopic and imaging observations from 1.6 - 11 mum (Subaru/IRCS, COMICS) will also be conducted to understand processes responsible for near to mid-infrared emission during the accretion event.

  17. Selforganized Structure Formation in Organized Microstructuring by Laser-Jet Etching

    NASA Astrophysics Data System (ADS)

    Rabbow, T. J.; Plath, P. J.; Mora, A.; Haase, M.

    Laser-jet induced wet etching of stainless steel in 5M H3PO4 has been investigated. By this method, it is possible to cut and microstructure metals and alloys that form passive layers in strong etchants. Due to the laser heating of the metal and the adjacent layers of the etchant, the passive layer is removed and an active dissolution of the base metal together with the formation of hydrogen is observed. The reactions are limited by the transport of fresh acid and the removal of dissolved metal. A jet of etchant reduces the transport limitations. For definite ranges of the laser power, the feed velocity and the etchant jet velocity, a regime of periodic structure formation of the kerf, often called ripples, has been found. The ripple length depends on all three parameters. The ripple formation can be brought into correlation with a periodic change of the intensity of the reflected light as well as oscillations of the potential workpiece. It could be shown that the periodic structure formation is connected to a spreading of an etching front from the laser activated area, that temporarily moves ahead to the laser. This leads to modulations of the interface for the laser absorption, which results, for example, in oscillations of the intensity of the reflected light. This means the laser induced etching reaction attracts a feedback based on the conditions of absorption for the laser. For those parameters of feed velocity, laser power and etchant jet velocity, without ripple formation the laser induced etching front is of a constant distance to the laser which results in steady conditions at the interface for the absorption of the laser.

  18. The formation of interstellar jets by the convergence of supersonic conical flows

    NASA Technical Reports Server (NTRS)

    Canto, J.; Tenorio-Tagle, G.; Rozyczka, M.

    1988-01-01

    The interaction of a stellar wind with a nonuniform environment leads, under the assumption of steady state, to the formation of an ovoidal cavity with acute ending tips. The stellar wind recollected by the walls of the cavity ends up being deposited at the tips. Here, it is shown that this focusing effect leads to the formation of a narrow cylindrical stream or 'jet' of reshocked stellar wind matter moving directly away from the star with a large velocity. A 'typical' T Tauri star may produce jets with densities of 1000-10,000/cu cm, velocities about 100 km/s, widths about 0.00001-0.001 pc over a length of 0.001-0.01 pc. The opening angles are 7 deg or less.

  19. A Review of One Dimensional Shaped Charge Theory. Part 1. Jet Formation

    DTIC Science & Technology

    1984-11-01

    o A REVIEW OF ONE DIMENSIONAL SHAPED CHARGE THEORY PART 1 - JET FORMATION 1o INTRODUCTION -,. ". The shaped charge warhead , based on the Munroe...these weapons has recently been given by Backofen (1]. Shaped charge warheads are currently in use by the Australian Army in the 66 mm M72L A2 (IAW) and...charge warheads for defeat of submarine pressure hulls, as in the Stingray torpedo used by the Royal Navy. MRL has been engaged on various investigations

  20. High Resolution Simulations of Tearing and Flux-Rope Formation in Active Region Jets

    NASA Astrophysics Data System (ADS)

    Wyper, P. F.; DeVore, C. R.; Karpen, J. T.

    2015-12-01

    Observations of coronal jets increasingly suggest that local fragmentation and the generation of small-scale structure plays an important role in the dynamics of these events. In the magnetically closed corona, jets most often occur near active regions and are associated with an embedded-bipole topology consisting of a 3D magnetic null point atop a domed fan separatrix surface at the base of a coronal loop. Impulsive reconnection in the vicinity of the null point between the magnetic fluxes inside and outside the dome launches the jet along the loop. Wyper & Pontin 2014 showed that the 3D current layers that facilitate such reconnection are explosively unstable to tearing, generating complex flux-rope structures. Utilizing the adaptive mesh capabilities of the Adaptively Refined Magnetohydrodynamics Solver, we investigate the generation of such fine-scale structure in high-resolution simulations of active-region jets. We observe the formation of multiple flux-rope structures forming across the fan separatrix surface and discuss the photospheric signatures of these flux ropes and the associated local topology change. We also introduce a new way of identifying such flux ropes in the magnetic field, based on structures observed in the magnetic squashing factor calculated on the photosphere. By tracking the position and number of new null points produced by the fragmentation, we also show that the formation of flux ropes can occur away from the main null region on the flanks of the separatrix dome and that the jet curtain has a highly complex magnetic structure. This work was funded through an appointment to the NASA Postdoctoral Program and by NASA's Living With a Star TR&T program.

  1. Self-consistent modeling of jet formation process in the nanosecond laser pulse regime

    NASA Astrophysics Data System (ADS)

    Mézel, C.; Hallo, L.; Souquet, A.; Breil, J.; Hébert, D.; Guillemot, F.

    2009-12-01

    Laser induced forward transfer (LIFT) is a direct printing technique. Because of its high application potential, interest continues to increase. LIFT is routinely used in printing, spray generation and thermal-spike sputtering. Biological material such as cells and proteins have already been transferred successfully for the creation of biological microarrays. Recently, modeling has been used to explain parts of the ejection transfer process. No global modeling strategy is currently available. In this paper, a hydrodynamic code is utilized to model the jet formation process and estimate the constraints obeyed by the bioelements during the transfer. A self-consistent model that includes laser energy absorption, plasma formation via ablation, and hydrodynamic processes is proposed and confirmed with experimental results. Fundamental physical mechanisms via one-dimensional modeling are presented. Two-dimensional (2D) simplified solutions of the jet formation model equations are proposed. Predicted results of the model are jet existence and its velocity. The 2D simulation results are in good agreement with a simple model presented by a previous investigator.

  2. Liquid phase products and solid deposit formation from thermally stressed model jet fuels

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Bittker, D. A.

    1984-01-01

    The relationship between solid deposit formation and liquid degradation product concentration was studied for the high temperature (400 C) stressing of three hydrocarbon model fuels. A Jet Fuel Thermal Oxidation Tester was used to simulate actual engine fuel system conditions. The effects of fuel type, dissolved oxygen concentration, and hot surface contact time (reaction time) were studied. Effects of reaction time and removal of dissolved oxygen on deposit formation were found to be different for n-dodecane and for 2-ethylnaphthalene. When ten percent tetralin is added to n-dodecane to give a simpler model of an actual jet fuel, the tetralin inhibits both the deposit formation and the degradation of n-dodecane. For 2-ethylnaphthalene primary product analyses indicate a possible self-inhibition at long reaction times of the secondary reactions which form the deposit precursors. The mechanism of the primary breakdown of these fuels is suggested and the primary products which participate in these precursor-forming reactions are identified. Some implications of the results to the thermal degradation of real jet fuels are given.

  3. Self-consistent modeling of jet formation process in the nanosecond laser pulse regime

    SciTech Connect

    Mezel, C.; Hallo, L.; Breil, J.; Souquet, A.; Guillemot, F.; Hebert, D.

    2009-12-15

    Laser induced forward transfer (LIFT) is a direct printing technique. Because of its high application potential, interest continues to increase. LIFT is routinely used in printing, spray generation and thermal-spike sputtering. Biological material such as cells and proteins have already been transferred successfully for the creation of biological microarrays. Recently, modeling has been used to explain parts of the ejection transfer process. No global modeling strategy is currently available. In this paper, a hydrodynamic code is utilized to model the jet formation process and estimate the constraints obeyed by the bioelements during the transfer. A self-consistent model that includes laser energy absorption, plasma formation via ablation, and hydrodynamic processes is proposed and confirmed with experimental results. Fundamental physical mechanisms via one-dimensional modeling are presented. Two-dimensional (2D) simplified solutions of the jet formation model equations are proposed. Predicted results of the model are jet existence and its velocity. The 2D simulation results are in good agreement with a simple model presented by a previous investigator.

  4. General Relativistic Magnetohydrodynamic Simulations of Jet Formation with a Thin Keplerian Disk

    NASA Technical Reports Server (NTRS)

    Mizuno, Yosuke; Nishikawa, Ken-Ichi; Koide, Shinji; Hardee, Philip; Gerald, J. Fishman

    2006-01-01

    We have performed several simulations of black hole systems (non-rotating, black hole spin parameter a = 0.0 and rapidly rotating, a = 0.95) with a geometrically thin Keplerian disk using the newly developed RAISHIN code. The simulation results show the formation of jets driven by the Lorentz force and the gas pressure gradient. The jets have mildly relativistic speed (greater than or equal to 0.4 c). The matter is continuously supplied from the accretion disk and the jet propagates outward until each applicable terminal simulation time (non-rotating: t/tau S = 275 and rotating: t/tau S = 200, tau s equivalent to r(sub s/c). It appears that a rotating black hole creates an additional, faster, and more collimated inner outflow (greater than or equal to 0.5 c) formed and accelerated by the twisted magnetic field resulting from frame-dragging in the black hole ergosphere. This new result indicates that jet kinematic structure depends on black hole rotation.

  5. Skewness and shock formation in laboratory-scale supersonic jet data.

    PubMed

    Gee, Kent L; Neilsen, Tracianne B; Atchley, Anthony A

    2013-06-01

    Spatial properties of noise statistics near unheated, laboratory-scale supersonic jets yield insights into source characteristics and near-field shock formation. Primary findings are (1) waveforms with positive pressure skewness radiate from the source with a directivity upstream of maximum overall level and (2) skewness of the time derivative of the pressure waveforms increases significantly with range, indicating formation of shocks during propagation. These results corroborate findings of a previous study involving full-scale engine data. Further, a comparison of ideally and over-expanded laboratory data show that while derivative skewness maps are similar, waveform skewness maps are substantially different for the two cases.

  6. Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling.

    PubMed

    Mézel, C; Souquet, A; Hallo, L; Guillemot, F

    2010-03-01

    In this paper, a nanosecond LIFT process is analyzed both from experimental and modeling points of view. Experimental results are first presented and compared to simple estimates obtained from physical analysis, i.e. energy balance, jump relations and analytical pocket dynamics. Then a self-consistent 2D axisymmetric modeling strategy is presented. It is shown that data accessible from experiments, i.e. jet diameter and velocity, can be reproduced. Moreover, some specific mechanisms involved in the rear-surface deformation and jet formation may be described by some scales of hydrodynamic process, i.e. shock waves propagation and expansion waves, as a consequence of the laser heating. It shows that the LIFT process is essentially driven by hydrodynamics and thermal transfer, and that a coupled approach including self-consistent laser energy deposition, heating by thermal conduction and specific models for matter is required.

  7. Droplet Behaviors on Substrates in Thin-Film Formation Using Ink-Jet Printing

    NASA Astrophysics Data System (ADS)

    Ikegawa, Masato; Azuma, Hitoshi

    Physical phenomena associated with the dynamic spreading and dried shape of droplets on solid surfaces were demonstrated reviewing several models and discussed with regard to designing the most suitable thin-film formation processes using ink-jet printing. After droplets strike a substrate surface and expand for several microseconds, they spread semi-statically for tens of seconds and asymptotically approach the final equilibrium shape determined by droplet volume and contact angle. The contact angle and the volume, number, and impact velocity of droplets for various ink-jet-deposition applications can be designed by using semi-empirical formulas. If the contact angle at the edge of droplet on the substrate is small, a large amount of solute might accumulate there during the drying process because the evaporation rate there is high. The evaporation rate distribution on droplet surfaces should therefore be controlled to be uniform in radial direction during drying.

  8. Newly-Developed 3D GRMHD Code and its Application to Jet Formation

    NASA Technical Reports Server (NTRS)

    Mizuno, Y.; Nishikawa, K.-I.; Koide, S.; Hardee, P.; Fishman, G. J.

    2006-01-01

    We have developed a new three-dimensional general relativistic magnetohydrodynamic code by using a conservative, high-resolution shock-capturing scheme. The numerical fluxes are calculated using the HLL approximate Riemann solver scheme. The flux-interpolated constrained transport scheme is used to maintain a divergence-free magnetic field. We have performed various 1-dimensional test problems in both special and general relativity by using several reconstruction methods and found that the new 3D GRMHD code shows substantial improvements over our previous model. The . preliminary results show the jet formations from a geometrically thin accretion disk near a non-rotating and a rotating black hole. We will discuss the jet properties depended on the rotation of a black hole and the magnetic field strength.

  9. A PHYSICAL LINK BETWEEN JET FORMATION AND HOT PLASMA IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Wu Qingwen; Wang Dingxiong; Cao Xinwu; Ho, Luis C. E-mail: dxwang@hust.edu.cn E-mail: lho@obs.carnegiescience.edu

    2013-06-10

    Recent observations suggest that in black hole X-ray binaries jet/outflow formation is related to the hot plasma in the vicinity of the black hole, either in the form of an advection-dominated accretion flow at low accretion rates or in a disk corona at high accretion rates. We test the viability of this scenario for supermassive black holes using two samples of active galactic nuclei distinguished by the presence (radio-strong) and absence (radio-weak) of well-collimated, relativistic jets. Each is centered on a narrow range of black hole mass but spans a very broad range of Eddington ratios, effectively simulating in a statistical manner the behavior of a single black hole evolving across a wide spread in accretion states. Unlike the relationship between the radio and optical luminosity, which shows an abrupt break between high- and low-luminosity sources at an Eddington ratio of {approx}1%, the radio emission-a measure of the jet power-varies continuously with the hard X-ray (2-10 keV) luminosity, roughly as L{sub R} {proportional_to} L{sub X}{sup 0.6-0.75}. This relation, which holds for both radio-weak and radio-strong active galaxies, is similar to the one seen in X-ray binaries. Jet/outflow formation appears to be closely linked to the conditions that give rise to the hot, optically thin coronal emission associated with accretion flows, both in the regime of low and high accretion rates.

  10. On the dynamic nature of the prolate solar chromosphere: jet formation

    NASA Astrophysics Data System (ADS)

    Filippov, B.; Koutchmy, S.; Vilinga, J.

    2007-03-01

    Context: In "cool" spectral lines, the smoothed upper edge of the solar chromosphere is prolate in the South-North direction at the epoch of minimum solar activity and nearly spherically symmetric at the maximum phase. We attribute the effect to the dynamical nature of the upper chromosphere, which consists of a large number of small jet-like structures ascending into the corona. We could not resolve the source region of an individual jetlet, although similar but larger structures are visible, especially in EUV coronal lines. Aims: We consider the problem of the formation of an individual jet above the limb, assuming that a large number of jet-like events is responsible for the prolate solar upper chromosphere. We then assume that spicules, being the cool part of the phenomenon, behave similarly, and we will mainly concentrate the analysis on the magnetic origin of the event. Methods: Image processing is used to reveal the displacement of magnetic field tubes filled with coronal plasma and jet formation due to field aligned motion above the null point created in the corona by the emerging magnetic bipole. Results: The growth of the bipole leads to a reconnection of the field lines and to a specific plasma motion in the vicinity of the null point that results in a plasma flow along the spine line of the 3D null. We assume that similar but smaller processes could happen very often at a smaller scale in the chromosphere, near emerging magnetic ephemeral regions, forming numerous jetlets in the upper chromosphere. As the field aligned motion is guided by the magnetic field, at the epoch of low activity the large-scale structure of the polar magnetic field and the one of the quiet equatorial region is sufficiently different to explain the prolateness of the chromosphere.

  11. A Physical Link between Jet Formation and Hot Plasma in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Wu, Qingwen; Cao, Xinwu; Ho, Luis C.; Wang, Ding-Xiong

    2013-06-01

    Recent observations suggest that in black hole X-ray binaries jet/outflow formation is related to the hot plasma in the vicinity of the black hole, either in the form of an advection-dominated accretion flow at low accretion rates or in a disk corona at high accretion rates. We test the viability of this scenario for supermassive black holes using two samples of active galactic nuclei distinguished by the presence (radio-strong) and absence (radio-weak) of well-collimated, relativistic jets. Each is centered on a narrow range of black hole mass but spans a very broad range of Eddington ratios, effectively simulating in a statistical manner the behavior of a single black hole evolving across a wide spread in accretion states. Unlike the relationship between the radio and optical luminosity, which shows an abrupt break between high- and low-luminosity sources at an Eddington ratio of ~1%, the radio emission—a measure of the jet power—varies continuously with the hard X-ray (2-10 keV) luminosity, roughly as L_R \\propto L_X^{0.6{--}0.75}. This relation, which holds for both radio-weak and radio-strong active galaxies, is similar to the one seen in X-ray binaries. Jet/outflow formation appears to be closely linked to the conditions that give rise to the hot, optically thin coronal emission associated with accretion flows, both in the regime of low and high accretion rates.

  12. Jet-induced star formation in 3C 285 and Minkowski's Object

    NASA Astrophysics Data System (ADS)

    Salomé, Q.; Salomé, P.; Combes, F.

    2015-02-01

    How efficiently star formation proceeds in galaxies is still an open question. Recent studies suggest that active galactic nucleus (AGN) can regulate the gas accretion and thus slow down star formation (negative feedback). However, evidence of AGN positive feedback has also been observed in a few radio galaxies (e.g. Centaurus A, Minkowski's Object, 3C 285, and the higher redshift 4C 41.17). Here we present CO observations of 3C 285 and Minkowski's Object, which are examples of jet-induced star formation. A spot (named 3C 285/09.6 in the present paper) aligned with the 3C 285 radio jet at a projected distance of ~70 kpc from the galaxy centre shows star formation that is detected in optical emission. Minkowski's Object is located along the jet of NGC 541 and also shows star formation. Knowing the distribution of molecular gas along the jets is a way to study the physical processes at play in the AGN interaction with the intergalactic medium. We observed CO lines in 3C 285, NGC 541, 3C 285/09.6, and Minkowski's Object with the IRAM 30 m telescope. In the central galaxies, the spectra present a double-horn profile, typical of a rotation pattern, from which we are able to estimate the molecular gas density profile of the galaxy. The molecular gas appears to be in a compact reservoir, which could be evidence of an early phase of the gas accretion after a recent merger event in 3C 285. No kinematic signature of a molecular outflow is detected by the 30 m telescope. Interestingly, 3C 285/09.6 and Minkowski's Object are not detected in CO. The cold gas mass upper limits are consistent with a star formation induced by the compression of dense ambient material by the jet. The depletion time scales in 3C 285/09.6 and Minkowski's Object are of the order of and even shorter than what is found in 3C 285, NGC 541, and local spiral galaxies (109 yr). The upper limit of the molecular gas surface density in 3C 285/09.6 at least follows a Schmidt-Kennicutt law if the emitting region

  13. Parametric studies of contrail ice particle formation in jet regime using microphysical parcel modeling

    NASA Astrophysics Data System (ADS)

    Wong, H.-W.; Miake-Lye, R. C.

    2010-04-01

    Condensation trails (contrails) formed from water vapor emissions behind aircraft engines are the most uncertain components of the aviation impacts on climate change. To gain improved knowledge of contrail and contrail-induced cirrus cloud formation, understanding of contrail ice particle formation immediately after aircraft engines is needed. Despite many efforts spent in modeling the microphysics of ice crystal formation in jet regime (with a plume age <5 s), systematic understanding of parametric effects of variables affecting contrail ice particle formation is still limited. In this work, we apply a microphysical parcel modeling approach to study contrail ice particle formation in near-field aircraft plumes up to 1000 m downstream of an aircraft engine in the soot-rich regime (soot number emission index >1×1015 (kg-fuel)-1) at cruise. The effects of dilution history, ion-mediated nucleation, ambient relative humidity, fuel sulfur contents, and initial soot emissions were investigated. Our simulation results suggest that ice particles are mainly formed by water condensation on emitted soot particles. The growth of ice coated soot particles is driven by water vapor emissions in the first 1000 m and by ambient relative humidity afterwards. The presence of chemi-ions does not significantly contribute to the formation of ice particles in the soot-rich regime, and the effect of fuel sulfur contents is small over the range typical of standard jet fuels. The initial properties of soot emissions play the most critical role, and our calculations suggest that higher number concentration and smaller size of contrail particle nuclei may be able to effectively suppress the formation of contrail ice particles. Further modeling and experimental studies are needed to verify if our findings can provide a possible approach for contrail mitigation.

  14. The Enigmatic Longevity of Granular Materials on Mars: The Case for Geologically Episodic Dune Formation

    NASA Astrophysics Data System (ADS)

    Marshall, J.

    1999-09-01

    Martian sand dunes are concentrated in vast sand seas in the circumpolar belt of the planet's northern hemisphere, but they are also pervasive over the whole planet. Their occurrence is to be expected on a super-arid planetary surface subjected to boundary layer drag from a continually active atmosphere. Whilst their occurrence is to be expected, their survival is enigmatic. But the enigma only arises if the martian system is considered similar to Earth's --where sand is moved highly frequently, more or less on a seasonal basis. Experimentally it is readily demonstrated that active sand will soon wear down to small grains and eventually diminish to below the critical sand size required to sustain dune formation. According to conventional wisdom, sand moves at higher speeds on Mars than on Earth, and if it were to move as frequently as it does on Earth, then the dune-forming sand population should have long since disappeared, given the great longevity of the martian aeolian system (Sagan coined the term "kamikaze" grains to express this disappearance). No supply of sand could keep pace with this depletion, especially in light of the fact that Mars does not have very active weathering, nor significant crustal differentiation. On Earth, plate tectonics, magmatic activity, and general crustal differentiation over geological time have produced great concentrations of quartz crystals in the continental crustal masses. Not only are these quartz grains chemically and mechanically resilient, they are about the right size for being transported by either wind or water. Add to this, the geologically recent contribution of glacial grinding, and it is easy to see why there are dune field on Earth. So what are the martian dunes composed of, and how does the material survive the eons of attrition? In addition to experimental demonstrations of sand comminution in laboratory aeolian simulations, the problem can be approached from first principles. Sagan showed that by simple

  15. The Enigmatic Longevity of Granular Materials on Mars: The Case for Geologically Episodic Dune Formation

    NASA Technical Reports Server (NTRS)

    Marshall, J.

    1999-01-01

    Martian sand dunes are concentrated in vast sand seas in the circumpolar belt of the planet's northern hemisphere, but they are also pervasive over the whole planet. Their occurrence is to be expected on a super-arid planetary surface subjected to boundary layer drag from a continually active atmosphere. Whilst their occurrence is to be expected, their survival is enigmatic. But the enigma only arises if the martian system is considered similar to Earth's --where sand is moved highly frequently, more or less on a seasonal basis. Experimentally it is readily demonstrated that active sand will soon wear down to small grains and eventually diminish to below the critical sand size required to sustain dune formation. According to conventional wisdom, sand moves at higher speeds on Mars than on Earth, and if it were to move as frequently as it does on Earth, then the dune-forming sand population should have long since disappeared, given the great longevity of the martian aeolian system (Sagan coined the term "kamikaze" grains to express this disappearance). No supply of sand could keep pace with this depletion, especially in light of the fact that Mars does not have very active weathering, nor significant crustal differentiation. On Earth, plate tectonics, magmatic activity, and general crustal differentiation over geological time have produced great concentrations of quartz crystals in the continental crustal masses. Not only are these quartz grains chemically and mechanically resilient, they are about the right size for being transported by either wind or water. Add to this, the geologically recent contribution of glacial grinding, and it is easy to see why there are dune field on Earth. So what are the martian dunes composed of, and how does the material survive the eons of attrition? In addition to experimental demonstrations of sand comminution in laboratory aeolian simulations, the problem can be approached from first principles. Sagan showed that by simple

  16. The Enigmatic Longevity of Granular Materials on Mars: The Case for Geologically Episodic Dune Formation

    NASA Technical Reports Server (NTRS)

    Marshall, J.

    1999-01-01

    Martian sand dunes are concentrated in vast sand seas in the circumpolar belt of the planet's northern hemisphere, but they are also pervasive over the whole planet. Their occurrence is to be expected on a super-arid planetary surface subjected to boundary layer drag from a continually active atmosphere. Whilst their occurrence is to be expected, their survival is enigmatic. But the enigma only arises if the martian system is considered similar to Earth's --where sand is moved highly frequently, more or less on a seasonal basis. Experimentally it is readily demonstrated that active sand will soon wear down to small grains and eventually diminish to below the critical sand size required to sustain dune formation. According to conventional wisdom, sand moves at higher speeds on Mars than on Earth, and if it were to move as frequently as it does on Earth, then the dune-forming sand population should have long since disappeared, given the great longevity of the martian aeolian system (Sagan coined the term "kamikaze" grains to express this disappearance). No supply of sand could keep pace with this depletion, especially in light of the fact that Mars does not have very active weathering, nor significant crustal differentiation. On Earth, plate tectonics, magmatic activity, and general crustal differentiation over geological time have produced great concentrations of quartz crystals in the continental crustal masses. Not only are these quartz grains chemically and mechanically resilient, they are about the right size for being transported by either wind or water. Add to this, the geologically recent contribution of glacial grinding, and it is easy to see why there are dune field on Earth. So what are the martian dunes composed of, and how does the material survive the eons of attrition? In addition to experimental demonstrations of sand comminution in laboratory aeolian simulations, the problem can be approached from first principles. Sagan showed that by simple

  17. Thermodynamic study on the formation of acetylene during coal pyrolysis in the arc plasma jet

    SciTech Connect

    Bao, W.; Li, F.; Cai, G.; Lu, Y.; Chang, L.

    2009-07-01

    Based on the principle of minimizing the Gibbs free energy, the composition of C-H-O-N-S equilibrium system about acetylene formation during the pyrolysis in arc plasma jet for four kinds of different rank-ordered coals such as Datong, Xianfeng, Yangcheng, and Luan was analyzed and calculated. The results indicated that hydrogen, as the reactive atmosphere, was beneficial to the acetylene formation. The coal ranks and the hydrogen, oxygen, nitrogen, and sulfur in coal all could obviously affect the acetylene yield. The mole fraction of acetylene is the maximum when the ratio value of atom H/C was 2. The content of oxygen was related to the acetylene yield, but it does not compete with CO formation. These agreed with the experimental results, and they could help to select the coal type for the production of acetylene through plasma pyrolysis process.

  18. Simulation of Plasma Jet Merger and Liner Formation within the PLX- α Project

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Chen, Hsin-Chiang; Shih, Wen; Hsu, Scott

    2015-11-01

    Detailed numerical studies of the propagation and merger of high Mach number argon plasma jets and the formation of plasma liners have been performed using the newly developed method of Lagrangian particles (LP). The LP method significantly improves accuracy and mathematical rigor of common particle-based numerical methods such as smooth particle hydrodynamics while preserving their main advantages compared to grid-based methods. A brief overview of the LP method will be presented. The Lagrangian particle code implements main relevant physics models such as an equation of state for argon undergoing atomic physics transformation, radiation losses in thin optical limit, and heat conduction. Simulations of the merger of two plasma jets are compared with experimental data from past PLX experiments. Simulations quantify the effect of oblique shock waves, ionization, and radiation processes on the jet merger process. Results of preliminary simulations of future PLX- alpha experiments involving the ~ π / 2 -solid-angle plasma-liner configuration with 9 guns will also be presented. Partially supported by ARPA-E's ALPHA program.

  19. Measurements and Modeling of Soot Formation and Radiation in Microgravity Jet Diffusion Flames. Volume 4

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.; Tong, Li; Greenberg, Paul S.

    1996-01-01

    This is a computational and experimental study for soot formation and radiative heat transfer in jet diffusion flames under normal gravity (1-g) and microgravity (0-g) conditions. Instantaneous soot volume fraction maps are measured using a full-field imaging absorption technique developed by the authors. A compact, self-contained drop rig is used for microgravity experiments in the 2.2-second drop tower facility at NASA Lewis Research Center. On modeling, we have coupled flame structure and soot formation models with detailed radiation transfer calculations. Favre-averaged boundary layer equations with a k-e-g turbulence model are used to predict the flow field, and a conserved scalar approach with an assumed Beta-pdf are used to predict gaseous species mole fraction. Scalar transport equations are used to describe soot volume fraction and number density distributions, with formation and oxidation terms modeled by one-step rate equations and thermophoretic effects included. An energy equation is included to couple flame structure and radiation analyses through iterations, neglecting turbulence-radiation interactions. The YIX solution for a finite cylindrical enclosure is used for radiative heat transfer calculations. The spectral absorption coefficient for soot aggregates is calculated from the Rayleigh solution using complex refractive index data from a Drude- Lorentz model. The exponential-wide-band model is used to calculate the spectral absorption coefficient for H20 and C02. It is shown that when compared to results from true spectral integration, the Rosseland mean absorption coefficient can provide reasonably accurate predictions for the type of flames studied. The soot formation model proposed by Moss, Syed, and Stewart seems to produce better fits to experimental data and more physically sound than the simpler model by Khan et al. Predicted soot volume fraction and temperature results agree well with published data for a normal gravity co-flow laminar

  20. Modeling of jet-induced geyser formation in a reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Wendl, M. C.; Hochstein, J. I.; Sasmal, G. P.

    1991-01-01

    Flow patterns predicted by a computational model of jet-induced geyser formation in a reduced gravity environment are presented and comparison is made to patterns predicted by experimentally based correlations. The configuration studied is an idealization of a forthcoming flight experiment to examine cryogenic propellant management issues. A transitional version of the ECLIPSE code used as a computational tool for the analyses is described. It is shown that computationally predicted flow patterns are in qualitative agreement with the correlation-based predictions, and some details of the predicted flow fields are given.

  1. Monte Carlo simulation of the jet stream process. [planetary/satellite systems formation

    NASA Technical Reports Server (NTRS)

    Ip, W.-H.

    1977-01-01

    A Monte Carlo model is formulated to simulate the orbital evolution of a system of colliding particles. It is found that inelastic collision alone (even if the impact energy dissipation from collision is very large) does not lead to the formation of a narrow ring-like jet stream; instead, a flat disk structure, similar to Saturn's rings, usually results. To produce the radial focusing effect, it is argued that additional dynamical effects, which would strengthen the collisional interaction between the particles in near-circular orbits, is needed.

  2. THE JET/COUNTERJET INFRARED SYMMETRY OF HH 34 AND THE SIZE OF THE JET FORMATION REGION

    SciTech Connect

    Raga, A. C.; Noriega-Crespo, A.; Carey, S. J.; Lora, V.; Stapelfeldt, K. R.

    2011-04-01

    We present new Spitzer IRAC images of the HH 34 outflow. These are the first images that detect both the knots along the southern jet and the northern counterjet (the counterjet knots were only detected previously in a long-slit spectrum). This result removes the problem of the apparent coexistence of a large-scale symmetry (at distances of up to {approx}1 pc) and a complete lack of symmetry close to the source (at distances of {approx}10{sup 17} cm) for this outflow. We present a quantitative evaluation of the newly found symmetry between the HH 34 jet and counterjet, and show that the observed degree of symmetry implies that the jet production region has a characteristic size <2.8 AU. This is the strongest constraint yet derived for the size of the region in which HH jets are produced.

  3. Shaking of pyroclastic cones and the formation of granular flows on their flanks: Results from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Cagnoli, B.; Romano, G. P.; Ventura, G.

    2015-11-01

    We have carried out laboratory experiments to study the generation of granular flows on the slopes of pyroclastic cones that are experiencing volcanic tremor or tectonic earthquakes. These experiments are inspired by the occurrence of granular flows on the flanks of Mount Vesuvius during its 1944 eruption. Our laboratory model consists of sand cones built around a vibrating tube which represents a volcanic conduit with erupting magma inside. A video camera allows the study of the granular flow inception, movement and deposition. Although the collapse of the entire cone is obtained at a specific resonance frequency, single granular flows can be generated by all the vibration frequencies (1-16 Hz) and all the vibration amplitudes (0.5-1.5 mm) that our experimental apparatus has allowed us to adopt. We believe that this is due to the fact that the energy threshold to trigger the flows is small in value. Therefore, if this is true in nature as well, shaken pyroclastic cones are always potentially dangerous because they can easily generate flows that can strike the surrounding areas.

  4. Time-Resolved imaging Studies of Laser-Induced Jet Formation in Non-Newtonian Liquid Films

    NASA Astrophysics Data System (ADS)

    Turkoz, Emre; Arnold, Craig

    2016-11-01

    Blister-actuated laser-induced forward transfer (BA-LIFT) is a nozzle-less printing technique that offers an alternative to inkjet printing. The lack of a nozzle allows for a wider range of inks since clogging is not a concern. In this work, a focused laser pulse is absorbed within a polymer layer coated with a thin liquid film. The pulse causes a rapidly expanding blister to be formed that induces a liquid jet. Various well-studied non-Newtonian solutions are tested to examine how the shear-thinning and shear-thickening characteristics affect jet formation. The time delay between pulses is varied along with the energy, and different regimes of transfer are identified. We explore how Ohnesorge number, Weber number and spot size affect the jet formation and evaluate parameters that lead to breakup of jets into droplets.

  5. SOL density profile formation and intermittent ion fluxes to the first wall in JET

    NASA Astrophysics Data System (ADS)

    Walkden, Nicholas; Militello, F.; Matthews, G.; Harrison, J.; Moulton, D.; Wynn, A.; Lipschultz, B.; Guillemaut, C.; JET Team

    2016-10-01

    The ion flux in the scrape-off layer (SOL) of a tokamak is highly non-diffusive due to the radial propagation of intermittent burst events known as filaments. As a result the formation of mean profiles in the SOL and the flux incident on the outer wall are strongly impacted by transient events. This has been investigated over a series of pulses in an Ohmic L-mode horizontal target configuration in JET. Broadening of the SOL density profile is reduced as plasma current is increased or the density is decreased. The mean and variance of the ion flux at the outer wall change concurrently with this broadening. Upon renormalization the PDFs of the ion flux at the outer-wall collapse indicating universality in the dynamics of their constituent fluctuations. This universality is shown to result from a balance between the duration and frequency of burst events which keeps the intermittency parameter constant. These measurements will be compared to synthetically produced measurements created using a stochastic framework based on filamentary dynamics. Through this comparison possible models of filamentary dynamics will be assessed and compared quantitatively to gain an understanding of the processes underlying density profile formation and fluxes to the outer wall of JET. This work has been carried out within the framework of the EURO- fusion Consortium.

  6. Numerical Simulation of Star Formation by the Bow Shock of the Centaurus A Jet

    NASA Astrophysics Data System (ADS)

    Gardner, Carl L.; Jones, Jeremiah R.; Scannapieco, Evan; Windhorst, Rogier A.

    2017-02-01

    Recent Hubble Space Telescope (HST) observations of the extragalactic radio source Centaurus A (Cen A) display a young stellar population around the southwest tip of the inner filament 8.5 kpc from the galactic center of Cen A, with ages in the range 1–3 Myr. Crockett et al. have argued that the transverse bow shock of the Cen A jet triggered this star formation as it impacted dense molecular cores of clouds in the filament. To test this hypothesis, we perform three-dimensional numerical simulations of star formation induced by the jet bow shock in the inner filament of Cen A, using a positivity-preserving, weighted, essentially non-oscillatory method to solve the equations of gas dynamics with radiative cooling. We find that star clusters form inside a bow-shocked molecular cloud when the maximum initial density of the cloud is ≥slant 40 H2 molecules cm‑3. In a typical molecular cloud of mass {10}6 {M}ȯ and diameter 200 pc, approximately 20 star clusters of mass {10}4 {M}ȯ are formed, matching the HST images.

  7. Effects of real viscosity on plasma liner formation and implosion from supersonic plasma jets

    NASA Astrophysics Data System (ADS)

    Schillo, Kevin; Cassibry, Jason; Hsu, Scott; PLX-Alpha Team

    2015-11-01

    The PLX- α project endeavors to study plasma liner formation and implosion by merging of a spherical array of plasma jets as a candidate standoff driver for magneto-inertial fusion (MIF). Smoothed particle hydrodynamics (SPH) is being used to model the liner formation and implosion processes. SPH is a meshless Lagrangian method to simulate fluid flows by dividing a fluid into a set of particles and using a summation interpolant function to calculate the properties and gradients for each of these particles. The SPH code was used to simulate test cases in which the number of plasma guns and initial conditions for the plasma were varied. Linear stabilizations were observed, but the possibility exists that this stabilization was due to the implementation of artificial viscosity in the code. A real viscosity model was added to our SPHC model using the Braginskii ion viscosity. Preliminary results for test cases that incorporate real viscosity are presented.

  8. Granular Physics

    NASA Astrophysics Data System (ADS)

    Mehta, Anita

    2011-03-01

    1. Introduction; 2. Computer simulation approaches - an overview; 3. Structure of vibrated powders - numerical results; 4. Collective structures in sand - the phenomenon of bridging; 5. On angles of repose: bistability and collapse; 6. Compaction of disordered grains in the jamming limit: sand on random graphs; 7. Shaking a box of sand I - a simple lattice model; 8. Shaking a box of sand II - at the jamming limit, when shape matters!; 9. Avalanches with reorganising grains; 10. From earthquakes to sandpiles - stick-slip motion; 11. Coupled continuum equations: the dynamics of sand-pile surfaces; 12. Theory of rapid granular flows; 13. The thermodynamics of granular materials; 14. Static properties of granular materials; Author index; Subject index; Bibliography.

  9. Granular Physics

    NASA Astrophysics Data System (ADS)

    Mehta, Anita

    2007-06-01

    1. Introduction; 2. Computer simulation approaches - an overview; 3. Structure of vibrated powders - numerical results; 4. Collective structures in sand - the phenomenon of bridging; 5. On angles of repose: bistability and collapse; 6. Compaction of disordered grains in the jamming limit: sand on random graphs; 7. Shaking a box of sand I - a simple lattice model; 8. Shaking a box of sand II - at the jamming limit, when shape matters!; 9. Avalanches with reorganising grains; 10. From earthquakes to sandpiles - stick-slip motion; 11. Coupled continuum equations: the dynamics of sand-pile surfaces; 12. Theory of rapid granular flows; 13. The thermodynamics of granular materials; 14. Static properties of granular materials; Author index; Subject index; Bibliography.

  10. Subsurface Explosions in Granular Media

    NASA Astrophysics Data System (ADS)

    Lai, Shuyue; Houim, Ryan; Oran, Elaine

    2015-11-01

    Numerical simulations of coupled gas-granular flows are used to study properties of shock formation and propagation in media, such as sand or regolith on the moon, asteroids, or comets. The simulations were performed with a multidimensional fully compressible model, GRAF, which solves two sets of coupled Navier-Stokes equations, one for the gas and one for the granular medium. The specific case discussed here is for a subsurface explosion in a granular medium initiated by an equivalent of 200g of TNT in depths ranging from 0.1m to 3m. The background conditions of 100K, 10 Pa and loose initial particle volume fraction of 25% are consistent with an event on a comet. The initial blast creates a cavity as a granular shock expands outwards. Since the gas-phase shock propagates faster than the granular shock in loose, granular material, some gas and particles are ejected before the granular shock arrives. When the granular shock reaches the surface, a cap-like structure forms. This cap breaks and may fall back on the surface and in this process, relatively dense particle clusters form. At lower temperatures, the explosion timescales are increased and entrained particles are more densely packed.

  11. Particle-in-cell simulations of collisionless shock formation via head-on merging of two laboratory supersonic plasma jets

    SciTech Connect

    Thoma, C.; Welch, D. R.; Hsu, S. C.

    2013-08-15

    We describe numerical simulations, using the particle-in-cell (PIC) and hybrid-PIC code lsp[T. P. Hughes et al., Phys. Rev. ST Accel. Beams 2, 110401 (1999)], of the head-on merging of two laboratory supersonic plasma jets. The goals of these experiments are to form and study astrophysically relevant collisionless shocks in the laboratory. Using the plasma jet initial conditions (density ∼10{sup 14}–10{sup 16} cm{sup −3}, temperature ∼ few eV, and propagation speed ∼20–150 km/s), large-scale simulations of jet propagation demonstrate that interactions between the two jets are essentially collisionless at the merge region. In highly resolved one- and two-dimensional simulations, we show that collisionless shocks are generated by the merging jets when immersed in applied magnetic fields (B∼0.1–1 T). At expected plasma jet speeds of up to 150 km/s, our simulations do not give rise to unmagnetized collisionless shocks, which require much higher velocities. The orientation of the magnetic field and the axial and transverse density gradients of the jets have a strong effect on the nature of the interaction. We compare some of our simulation results with those of previously published PIC simulation studies of collisionless shock formation.

  12. Complete multiwavelength evolution of Galactic black hole transients during outburst decay. I. Conditions for 'compact' jet formation

    SciTech Connect

    Kalemci, E.; Dinçer, T.; Chun, Y. Y.; Tomsick, J. A.; Buxton, M. M.; Bailyn, C. D.

    2013-12-20

    Compact, steady jets are observed in the near infrared and radio bands in the hard state of Galactic black hole transients as their luminosity decreases and the source moves toward a quiescent state. Recent radio observations indicate that the jets turn off completely in the soft state; therefore, multiwavelength monitoring of black hole transients is essential to probe the formation of jets. In this work, we conducted a systematic study of all black hole transients with near infrared and radio coverage during their outburst decays. We characterized the timescales of changes in X-ray spectral and temporal properties and also in near infrared and/or in radio emission. We confirmed that state transitions occur in black hole transients at a very similar fraction of their respective Eddington luminosities. We also found that the near infrared flux increase that could be due to the formation of a compact jet is delayed by a time period of days with respect to the formation of a corona. Finally, we found a threshold disk Eddington luminosity fraction for the compact jets to form. We explain these results with a model such that the increase in the near infrared flux corresponds to a transition from a patchy, small-scale height corona along with an optically thin outflow to a large-scale height corona that allows for collimation of a steady compact jet. We discuss the timescale of jet formation in terms of transport of magnetic fields from the outer parts of the disk, and we also consider two alternative explanations for the multiwavelength emission: hot inner accretion flows and irradiation.

  13. Granular slumps

    NASA Astrophysics Data System (ADS)

    Balmforth, Neil J.; Kerswell, Richard R.

    2002-11-01

    We report an experimental and theoretical study of slumping granular fluids. We use a variety of different materials, and explore how they slump in a chute once a gate holding one side of the material is suddenly released, in a set-up intended to mimic the classical dambreak problem of hydrodynamics. Two widths of the chute are used, one relatively thin, and one relatively thick. After a violent transient in which material rains down ballistically, the granular mass enters a slower phase of evolution in which it slumps towards a final equilibrium state. We compare the predictions of some theoretical models with the shape of the final equilibrium.

  14. Susceptibility of fibrous-insulation pillows to debris formation under exposure to energetic jet flows. [PWR; BWR

    SciTech Connect

    Durgin, W.W.; Noreika, J.

    1983-03-01

    In the event of a loss of coolant accident (LOCA) in a nuclear power plant, it is possible that insulation for pipes or other items inside the containment building could be dislodged by the high energy break jet. To help in assessing the susceptibility of fibrous insulation pillows to debris formation under impingement by break-flow jets, three types of insulation pillows were tested using liquid water jets. The jet stagnation pressure required for cover fabric damage and for pillow failure through insulation release were determined for each of the three types at two impingement angles. In all cases it was found that these pressures were substantially higher than that suggested in NUREG/CR-2791 (Methodology for Evaluation of Insulation Debris Effects) for evaluation of debris generation. Based on the experiments conducted here, a value of 20 psi for incipient insulation material release could be used for evaluation purposes for insulation pillows of construction similar to those tested.

  15. Vortex Ring Formation Characteristics in Synthetic Jet due to Changes of Excitation Frequency in the ½-Ball Cavity Actuator

    NASA Astrophysics Data System (ADS)

    Kosasih, Engkos A.; Harinaldi; Trisno, Ramon

    2017-04-01

    A jet flow that contains vortex ring has a large energy compared to a regular jet. As one of the causes of the aerodynamic drag to the vehicle, the flow separation that occurs behind the bluff body must be controlled, so that aerodynamic drag can be significantly reduced. This study is a basic work on the development of turbulent flow separation control for aerodynamic purpose, especially in the design of the vehicle body. The main objective of this study is to analyze the performance of the synthetic jet (SJA) as one of flow control tool to reduce separation area. To get the maximum performance of the synthetic jet actuator, the research starts by characterizing the actuator. Characterization of ½ ball-shaped cavity is done with excitation frequency changes and orifice diameter of 3, 5 and 8 mm. The study was conducted using computational and experimental methods. The experimental data was obtained by testing synthetic jet actuator with providing sinusoidal signal to drive the membrane and at the orifice end a hotwire probe that is set and plugged into a CTA (Constant Temperature Anemometry) to obtain the speed velocity of the exhaust jet. Computational methods used a commercial CFD software (FLUENT 6.3) with a Reynolds Stress Model as a model of turbulence. Each of these calculations or measurements was conducted under the same conditions. The research result is displayed in frequency testing curve to get the maximum velocity of the jet stream. The results are further indicative of the synthetic jet actuator capability to generate vortex rings. In the experimental results, the determination of ring vortex formation taken from the calculation of the flow velocity, while the CFD simulations, the formation of vortex rings can be seen from the visualization of the flow contour. Vortex ring formed from this ½ -ball cavity, occurred at 3 mm and 5 mm orifice diameter, while the 8 mm orifice diameter cavity cannot form a ring vortex.

  16. Modeling of plasma jet production from rail and coaxial guns for imploding plasma liner formation*

    NASA Astrophysics Data System (ADS)

    Mason, R. J.; Faehl, R. J.; Kirikpatrick, R. C.; Witherspoon, D.; Cassibry, J.

    2010-11-01

    We study the generation of plasma jets for forming imploding plasma liners using an enhanced version of the ePLAS implicit/hybrid model.^1 Typically, the jets are partially ionized D or Ar gases, in initial 3-10 cm long slugs at 10^16-10^18 electron/cm^3, accelerated for microseconds along 15-30 cm rail or coaxial guns with a 1 cm inter-electrode gap and driven by magnetic fields of a few Tesla. We re-examine the B-field penetration mechanisms that can be active in such wall-connected plasmas,^2 including erosion and EMHD influences, which can subsequently impact plasma liner formation and implosion. For the background and emitted plasma components we discuss optimized PIC and fluid modeling techniques, and the use of implicit fields and hybridized electrons to speed simulation. The plasmas are relatively cold (˜3 eV), so results with fixed atomic Z are compared to those from a simple analytic EOS, and allowing radiative heat loss from the plasma. The use of PIC ions is explored to extract large mean-free-path kinetic effects. 1. R. J. Mason and C. Cranfill, IEEE Trans. Plasma Sci. PS-14, 45 (1986) 2. R. Mason, et al., Phys. Fluids B, 5, 1115 (1993). [4pt] *Research supported in part by USDOE Grant DE-SC0004207.

  17. Model of Blue Jet Formation and Propagation in the Nonuniform Atmosphere

    NASA Astrophysics Data System (ADS)

    Shneider, M.; Mokrov, M.; Milikh, G. M.

    2013-12-01

    It is broadly accepted that Blue Jets are produced by a lightning leader running upward in the nonuniform atmosphere. In turn, the formation of a leader is governed by contraction of the current of a streamer flash into a small radius channel, followed by the gas heating to the characteristic temperature of an arc discharge [Bazelyan et al., 2007]. The objective of this work is to develop the current contraction model which addresses the question how leader develops in thundercloud and propagates upward in the nonuniform atmosphere. It was shown that the contraction occurs in the hysteresis, or "hard-mode', while the critical current for the transition from the diffuse to contracted state increases when the atmospheric pressure drops. Therefore, in the discharge that occurs in the nonuniform atmosphere, the contracted and diffuse states could coexist in the current flowing along the density gradient. This may explain the observed termination of the giant blue jet leader at an altitude of about 50 km [Neubert et al., 2011]. In addition we took into account stabilization effect of transverse convective cooling (atmospheric winds). Bazelyan, E.M. et al., (2007), J. Phys. D: Appl. Phys., 40, 4134-4144. Neubert, T. et al., (2011), J. Geophys. Res., 116, A12329, doi:10.1029/2011JA016928.

  18. Visualization of the evolution of charged droplet formation and jet transition in electrostatic atomization

    SciTech Connect

    Huo, Yuanping Wang, Junfeng Zuo, Ziwen; Fan, Yajun

    2015-11-15

    A detailed experimental study on the evolution of charged droplet formation and jet transition from a capillary is reported. By means of high-speed microscopy, special attention has been paid to the dynamics of the liquid thread and satellite droplets in the dripping mode, and a method for calculating the surface charge on the satellite droplet is proposed. Jet transition behavior based on the electric Bond number has been visualized, droplet sizes and velocities are measured to obtain the ejection characteristic of the spray plume, and the charge and hydrodynamic relaxation are linked to give explanations for ejection dynamics with different properties. The results show that the relative length is very sensitive to the hydrodynamic relaxation time. The magnitude of the electric field strength dominates the behavior of coalescence and noncoalescence, with the charge relationship between the satellite droplet and the main droplet being clear for every noncoalescence movement. Ejection mode transitions mainly depend on the magnitude of the electric Bond number, and the meniscus dynamics is determined by the ratio of the charge relaxation time to the hydrodynamic relaxation time.

  19. Lidar remote sensing of cloud formation caused by low-level jets

    NASA Astrophysics Data System (ADS)

    Su, Jia; Felton, Melvin; Lei, Liqiao; McCormick, M. Patrick; Delgado, Ruben; St. Pé, Alexandra

    2016-05-01

    In May 2014, the East Hampton Roads Aerosol Flux campaign was conducted at Hampton University to examine small-scale aerosol transport using aerosol, Raman, and Doppler lidars and rawindsonde launches. We present the results of analyses performed on these high-resolution planetary boundary layer and lower atmospheric measurements, with a focus on the low-level jets (LLJs) that form in this region during spring and summer. We present a detailed case study of a LLJ lasting from evening of 20 May to morning of 21 May using vertical profiles of aerosol backscatter, wind speed and direction, water vapor mixing ratio, temperature, and turbulence structure. We show with higher resolution than in previous studies that enhanced nighttime turbulence triggered by LLJs can cause the aerosol and water vapor content of the boundary layer to be transported vertically and form a well-mixed region containing the cloud condensation nuclei that are necessary for cloud formation.

  20. Formation of Ceramic Nanoparticle Patterns Using Electrohydrodynamic Jet Printing with Pin-to-Pin Electrodes

    NASA Astrophysics Data System (ADS)

    Lee, Dae-Young; Yu, Jae-Hun; Shin, Yun-Soo; Park, Dongho; Yu, Tae-U.; Hwang, Jungho

    2008-03-01

    As one of the direct write technologies, electrohydrodynamic jet printing was used in obtaining fine ceramic lines. We used pin electrodes of various diameters, each of which was located below the substrate, and analyzed the effects of pin diameter on Al2O3 nanoparticle one- and two-dimensional patterns formed with pin (nozzle)-to-pin (ground) electrodes. The onset voltage required to start the formation of a pattern for a 1-µm-diameter electrode was fourfold lower than the voltage required for a 1000-µm-diameter electrode. Additionally, an Al2O3 nanoparticle pattern with a uniform width as fine as 25 µm was obtained despite using the very large diameter of the nozzle (920 µm) used.

  1. Formation and crystallisation of a liquid jet in a film exposed to a tightly focused laser beam

    NASA Astrophysics Data System (ADS)

    Anisimov, S. I.; Zhakhovsky, V. V.; Inogamov, N. A.; Murzov, S. A.; Khokhlov, V. A.

    2017-06-01

    This paper considers the effect of an ultrashort laser pulse on a thin gold film on a glass substrate at a focal spot size near 1 μm. We analyse the motion and thermal history of a film that has peeled off from the substrate in the heating spot as a consequence of melting. The detached zone is shown to form a domeshaped bump whose motion is hindered by surface tension. After the dome stops and turns back, towards the substrate, a jet begins to grow on its top. Concurrently, because of the heat dissipation in the film, melt recrystallisation begins, involving first the dome and then the jet. The liquid part of the jet elongates and breaks up into droplets because of the Plateau-Rayleigh instability development. The formation of a neck and the detachment of the last droplet occur in the solidification zone between the crystalline and liquid parts of the jet. The propagation of the crystallisation zone in the jet leads the necking process, so neck disruption occurs in the solid phase under nonequilibrium crystallisation conditions (the melt temperature is hundreds of kelvins lower than the melting point), at limiting mechanical stress and at high deformation rates. As a result, the jet transforms into a high needle with an extremely small tip radius (a few nanometres).

  2. Experimental examination of vortex-sound generation in an organ pipe: A proposal of jet vortex-layer formation model

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Shigeru; Tashiro, Hiromi; Sakamoto, Yumiko

    2012-05-01

    Aero-dynamical models of sound generation in an organ pipe driven by a thin jet are investigated through an experimental examination of the vortex-sound theory. An important measurement requirement (acoustic cross-flow as an irrotational potential flow reciprocating sinusoidally) from the vortex-sound theory is carefully realized when the pipe is driven with low blowing pressures of about 60 Pa (jet velocities of about 10 m/s). Particle image velocimetry (PIV) is applied to measure the jet velocity and the acoustic cross-flow velocity over the mouth area at the same phase by quickly switching the jet drive and the loudspeaker-horn drive. The vorticity of the jet flow field and the associated acoustic generation term are evaluated from the measurement data. It is recognized that the model of the "jet vortex-layer formation" is more relevant to the sound production than the vortex-shedding model. The acoustic power is dominantly generated by the flow-acoustic interaction near the edge, where the acoustic cross-flow velocity takes larger magnitudes. The acoustic generation formula on the vortex sound cannot deny the conventional acoustical volume-flow model because of the in-phase relation satisfied between the acoustic pressure at the mouth and the acoustic volume flow into the pipe. The vortex layers formed along both sides of the jet act as the source of an accelerating force (through the "acceleration unbalance") with periodically alternating direction to oscillate the jet flow and to reinforce the acoustic cross-flow at the pipe mouth.

  3. Formation of a supersonic laser-driven plasma jet in a cylindrical channel

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Pisarczyk, T.; Chodukowski, T.; Kasperczuk, A.; Parys, P.; Rosiński, M.; Wołowski, J.; Krousky, E.; Krasa, J.; Mašek, K.; Pfeifer, M.; Skala, J.; Ullschmied, J.; Velyhan, A.; Dhareshwar, L. J.; Gupta, N. K.; Rhee, Yong-Joo; Torrisi, L.; Pisarczyk, P.

    2009-11-01

    A simple method of supersonic plasma jet production where the jet is formed in a cylindrical channel guiding the plasma generated from a laser-irradiated thin foil target is proposed and examined. High-Mach number (≥10) plasma jets of parameters relevant to laboratory astrophysics applications using 120 J, 1.315 μm, and 0.3 ns laser pulse for a thin CH foil irradiation are demonstrated. The method seems to be flexible in the production of jets of various compositions and hydrodynamic parameters and does not require high-energy lasers for the jet generation.

  4. Impulsive dispersion of a granular layer by a weak blast wave

    NASA Astrophysics Data System (ADS)

    Rodriguez, V.; Saurel, R.; Jourdan, G.; Houas, L.

    2017-03-01

    The dispersion of particles by blast or shock waves induces the formation of coherent structures taking the shape of particle jets. In the present study, a blast wave, issued from an open shock tube, is generated at the center of a granular ring initially confined in a Hele-Shaw cell. With the present experimental setup, solid particle jet formation is clearly observed in a quasi-two-dimensional configuration. In all instances, the jets are initially generated inside the particle ring and thereafter expelled outward. Furthermore, thanks to the two-dimensional experimental configuration, a general study of the main parameters involved in these types of flows can be performed. Among them, the particle diameter, the density of the particles, the initial size of the ring, the shape of the overpressure generated and the surface friction of the Hele-Shaw cell are investigated. Empirical relationships are deduced from experimental results.

  5. Hydrodynamic Suppression of Soot Formation in Laminar Coflowing Jet Diffusion Flames. Appendix C

    NASA Technical Reports Server (NTRS)

    Dai, Z.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    Effects of flow (hydrodynamic) properties on limiting conditions for soot-free laminar non-premixed hydrocarbon/air flames (called laminar soot-point conditions) were studied, emphasizing non-buoyant laminar coflowing jet diffusion flames. Effects of air/fuel-stream velocity ratios were of particular interest; therefore, the experiments were carried out at reduced pressures to minimize effects of flow acceleration due to the intrusion of buoyancy. Test conditions included reactant temperatures of 300 K; ambient pressures of 3.7-49 8 kPa; methane-, acetylene-, ethylene-, propane-, and methane-fueled flames burning in coflowing air with fuel-port diameters of 1.7, 3.2, and 6.4 mm, fuel jet Reynolds numbers of 18-121; air coflow velocities of 0-6 m/s; and air/fuel-stream velocity ratios of 0.003-70. Measurements included laminar soot-point flame lengths, laminar soot-point fuel flow rates, and laminar liftoff conditions. The measurements show that laminar soot-point flame lengths and fuel flow rates can be increased, broadening the range of fuel flow rates where the flames remain soot free, by increasing air/fuel-stream velocity ratios. The mechanism of this effect involves the magnitude and direction of flow velocities relative to the flame sheet where increased air/fuel-stream velocity ratios cause progressive reduction of flame residence times in the fuel-rich soot-formation region. The range of soot-free conditions is limited by both liftoff, particularly at low pressures, and the intrusion of effects of buoyancy on effective air/fuel-stream velocity ratios, particularly at high pressures. Effective correlations of laminar soot- and smoke-point flame lengths were also found in terms of a corrected fuel flow rate parameter, based on simplified analysis of laminar jet diffusion flame structure. The results show that laminar smoke-point flame lengths in coflowing air environments are roughly twice as long as soot-free (blue) flames under comparable conditions due to

  6. Shear flow of dense granular materials near smooth walls. II. Block formation and suppression of slip by rolling friction.

    PubMed

    Shojaaee, Zahra; Brendel, Lothar; Török, János; Wolf, Dietrich E

    2012-07-01

    The role of rotational degrees of freedom and of microscopic contact properties at smooth walls in two dimensional planar shear has been investigated by contact dynamics simulations of round hard frictional particles. Our default system setup consists of smooth frictional walls, giving rise to slip. We show that there exists a critical microscopic friction coefficient at the walls, above which they are able to shear the granular medium. We observe distinctive features at this critical point, which to our knowledge have not been reported before. Activating rolling friction at smooth walls reduces slip, leading to similar shear behavior as for rough walls (with particles glued on their surface). Our simulations with rough walls are in agreement with previous results, provided the roughness is strong enough. In the limit of small roughness amplitude, however, the distinctive features of shearing with smooth walls are confirmed.

  7. Numerical Methods for 3D Magneto-Rotational Core-Collapse Supernova Simulation with Jet Formation

    NASA Astrophysics Data System (ADS)

    Käppeli, R. Y.

    2013-12-01

    The work presented in this thesis is devoted to the development of a numerical model for the three dimensional simulation of magneto-rotational core-collapse supernovae (MHD-CCSNe) with jet formation. The numerical model then suggests that MHD-CCSNe naturally provide a possible site for the strong rapid neutron capture process in agreement with observations of the early Galactic chemical evolution. In the first part of this thesis, we develop several numerical methods and describe thoroughly their efficient implementations on current high-performance computer architectures. We develop a fast and simple computer code texttt{FISH} that solves the equations of magnetohydrodynamics. The code is parallelized with an optimal combination of shared and distributed memory paradigms and scales to several thousands processes on high-performance computer clusters. We develop a novel well-balanced numerical scheme for the Euler equations with gravitational source terms to preserve a discrete hydrostatic equilibrium exactly. Being able to accurately represent hydrostatic equilibria is of particular interest for the simulation of CCSN, because a large part of the newly forming neutron star evolves in a quasi-hydrostatic manner. We include an approximate and computationally efficient treatment of neutrino physics in the form of a spectral leakage scheme. It enables us to capture approximately the most important neutrino cooling effects, which are responsible for the shock stall and for the neutronisation of matter behind the shock. The latter is crucial for the nucleosynthesis yields. To fit into our multidimensional MHD-CCSN model, the spectral leakage scheme is implemented in a ray-by-ray approach. In the second part of this thesis, we apply our three-dimensional numerical model to the study of the MHD-CCSN explosion mechanism. We investigate a series of models with poloidal magnetic field and varying initial angular momentum distribution through the collapse, bounce and jet

  8. FAST X-RAY/IR CROSS-CORRELATIONS AND RELATIVISTIC JET FORMATION IN GRS 1915+105

    SciTech Connect

    Lasso-Cabrera, N. M.; Eikenberry, S. S.

    2013-10-01

    We present cross-correlation analyses of simultaneous X-ray and near-infrared (near-IR) observations of the microquasar GRS 1915+105 during relativistic jet-producing epochs (X-ray class α and β). While previous studies have linked the large amplitude IR flares and X-ray behaviors to jet formation in these states, our new analyses are sensitive to much lower amplitude IR variability, providing more sensitive probes of the jet formation process. The X-ray to IR cross-correlation function (CCF) shows significant correlations that vary in form between the different X-ray states. During low/hard dips in both classes, we find no significant X-ray/IR correlation. During high-variability epochs, we find consistently significant correlations in both α and β classes, but with strong differences in the CCF structure. The high variability α CCF shows strong anti-correlation between X-ray/IR, with the X-ray preceding the IR by ∼13 ± 2 s. The high variability β state shows a time-variable CCF structure, which is statistically significant but without a clearly consistent lag. Our simulated IR light curves, designed to match the observed CCFs, show variably flickering IR emission during the class β high-variability epoch, while class α can be fit by IR flickering with frequencies in the range 0.1-0.3 Hz, strengthening ∼10 s after every X-ray subflare. We interpret these features in the context of the X-ray-emitting accretion disk and IR emission from relativistic jet formation in GRS 1915+105, concluding that the CCF analysis places the origin in a synchrotron-emitting relativistic compact jet at a distance from the compact object of ∼0.02 AU.

  9. Large eddy simulation of soot formation in a turbulent non-premixed jet flame

    SciTech Connect

    El-Asrag, Hossam; Menon, Suresh

    2009-02-15

    A recently developed subgrid model for soot dynamics [H. El-Asrag, T. Lu, C.K. Law, S. Menon, Combust. Flame 150 (2007) 108-126] is used to study the soot formation in a non-premixed turbulent flame. The model allows coupling between reaction, diffusion and soot (including soot diffusion and thermophoretic forces) processes in the subgrid domain without requiring ad hoc filtering or model parameter adjustments. The combined model includes the entire process, from the initial phase, when the soot nucleus diameter is much smaller than the mean free path, to the final phase, after coagulation and aggregation, where it can be considered in the continuum regime. A relatively detailed but reduced kinetics for ethylene-air is used to simulate an experimentally studied non-premixed ethylene/air jet diffusion flame. Acetylene is used as a soot precursor species. The soot volume fraction order of magnitude, the location of its maxima, and the soot particle size distribution are all captured reasonably. Along the centerline, an initial region dominated by nucleation and surface growth is established followed by an oxidation region. The diffusion effect is found to be most important in the nucleation regime, while the thermophoretic forces become more influential downstream of the potential core in the oxidation zone. The particle size distribution shows a log-normal distribution in the nucleation region, and a more Gaussian like distribution further downstream. Limitations of the current approach and possible solution strategies are also discussed. (author)

  10. Analytical study of mechanisms for nitric oxide formation during combustion of methane in a jet-stirred combustor

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.

    1975-01-01

    The role of chemical kinetics in the formation of nitric oxide during the combustion of methane was examined analytically by means of a detailed chemical mechanism for the oxidation of methane, for the reaction between hydrocarbon fragments, and for the formation of nitric oxide. By comparing predicted nitric oxide levels with values reported in the literature from jet-stirred combuster experiments, it was determined that the nitric oxide levels observed in fuel-rich flames cannot be described by a mechanism in which the rate of nitric oxide formation is controlled solely by the kinetics of oxygen atom formation. A proposed mechanism for the formation of nitric oxide in methane-rich flames reproduces the observed levels. The oxidation of hydrogen cyanide appears to be an important factor in nitric oxide formation.

  11. Granular parakeratosis.

    PubMed

    Martín, José M; Pinazo, Isabel; Molina, Inmaculada; Monteagudo, Carlos; Villalón, Guillermo; Jordá, Esperanza

    2008-07-01

    A healthy 62-year-old woman was referred to our dermatology department with a 1-month history of a pruritic axillary eruption. On examination, multiple erythematous and brownish hyperkeratotic papules were seen in both axillae. Some of these lesions coalesced into plaques, with small areas of sparing, and a background erythematous color was also found in the axillary vaults (Fig. 1). There was no involvement of other intertriginous sites and there were no associated systemic symptoms. The patient was not obese. The patient had removed the hair from her axillae with wax 3 weeks before the development of the eruption. Moreover, she had changed her antiperspirant 1 week before the onset of the lesions. A cutaneous biopsy for histologic analysis was performed. Histologically, the stratum corneum was thickened, with persistent nuclei together with countless small basophilic granules. The granular layer was preserved and, in some areas, hypergranulosis was found (Fig. 2). These findings were characteristic of granular parakeratosis. The cutaneous lesions resolved completely after 1 week of treatment with topical betamethasone dipropionate and gentamicin sulfate (twice daily). The patient was urged to discontinue her use of deodorants.

  12. Aeration control strategies to stimulate simultaneous nitrification-denitrification via nitrite during the formation of aerobic granular sludge.

    PubMed

    Dobbeleers, Thomas; D'aes, Jolien; Miele, Solange; Caluwé, Michel; Akkermans, Veerle; Daens, Dominique; Geuens, Luc; Dries, Jan

    2017-07-17

    In this study, a sequencing batch reactor (SBR), treating synthetic wastewater (COD/N = 5), was operated in two stages. During stage I, an aeration control strategy based on oxygen uptake rate (OUR) was applied, to accomplish nitrogen removal via nitrite >80%. In stage II, the development of aerobic granular sludge (AGS) was examined while two aeration control strategies (OUR and pH slope) maintained the nitrite pathway and optimized the simultaneous nitrification-denitrification (SND) performance. Stimulation of slow-growing organisms, (denitrifying) polyphosphate-accumulating organisms (D)PAO and (denitrifying) glycogen-accumulating organisms (D)GAO leads to full granulation (at day 200, SVI10 = 47.0 mL/g and SVI30 = 43.1 mL/g). The average biological nutrient removal efficiencies, for nitrogen and phosphorus, were 94.6 and 83.7%, respectively. Furthermore, the benefits of an increased dissolved oxygen concentration (1.0-2.0 mg O2/L) were shown as biomass concentrations increased with approximately 2 g/L, and specific ammonium removal rate and phosphorus uptake rate increased with 33 and 44%, respectively. It was shown that the combination of both aeration phase-length control strategies provided an innovative method to achieve SND via nitrite in AGS.

  13. Dynamics of Droplet Detachment from a Granular Raft

    NASA Astrophysics Data System (ADS)

    Protiere, Suzie; Roche, Matthieu

    2016-11-01

    When we sprinkle dense particles at an oil/water interface these particles self-assemble due to long-range capillary interactions into a monolayer that we call a granular raft. Particles can progressively be added to the raft until it destabilizes due to the balance between the local buoyancy forces and the capillary forces at the border of the raft. When the raft destabilizes it sinks and forms oil-in-water armored droplets. We study the formation of such armored droplets and compare its detachment to the behavior observed in suspensions or in pure viscous fluids. Indeed for pure fluids the radius of the neck of the forming droplet decays linearly. Here, we find that depending on the size and on the density of the particles two types of behaviors are observed during droplet formation. Either the raft sinks and no particles are found along the neck during the armored droplet formation, or an "interfacial granular jet" forms which breaks, due to a Rayleigh-Plateau-like instability, into a multitude of small millimeter-sized armored droplets. We show that since the particles are adsorbed at the interface, those two types of behaviors depend on a dimensionless parameter that takes into account the particle size and density. Moreover we find that the position of the particles during the formation of the drop dramatically modifies the dynamics, proving that the initial conditions are important during droplet breakup.

  14. Two modes of interfacial pattern formation by atmospheric pressure helium plasma jet-ITO interactions under positive and negative polarity

    NASA Astrophysics Data System (ADS)

    Liu, Zhijie; Liu, Dingxin; Xu, Dehui; Cai, Haifeng; Xia, Wenjie; Wang, Bingchuan; Li, Qiaosong; Kong, Michael G.

    2017-05-01

    In this paper, we report the observation of an interfacial pattern formation on the ITO surface by atmospheric pressure helium plasma jet-ITO interactions. By changing the voltage polarity of positive and negative pulses, the interfacial phenomenon displays two different pattern modes, i.e. a double ring pattern with a combination of homogeneous and filamentous modes as well as a single ring pattern with a homogeneous mode. The reasons may mainly be attributed to the spread of a radially outward traveling surface ionization wave that would cause electric field distributions and charge accumulations on the ITO surface. The spatial-temporal distribution of \\text{N}2+≤ft({{B}2}{\\sum}\\text{u}+\\right) , He(3s3S), and O(3p5P) emissions are diagnosed to better understand the formation mechanism and the differences of plasma jet patterns under positive and negative polarities. Results show that the distribution of \\text{N}2+≤ft({{B}2}{\\sum}\\text{u}+\\right) emission is the main contributor for generating the filament structure in a double ring pattern for positive polarity, the homogeneous mode pattern mainly depends on the distribution of O(3p5P) emission for positive and negative polarity. Additionally, in order to further systematically understand the behaviors of plasma jet patterns, some parametric results, such as behaviors versus pulse peak voltage, dielectric material, pulse repetition rate, and flow rate are investigated. Some interesting phenomena and additional insights for the plasma jet pattern are found with different parametric conditions. This study might help to better understand effects of plasma jets in interaction with surfaces, or its application in the medical sector.

  15. The origin and role of autophagy in the formation of cytoplasmic granules in canine lingual granular cell tumors.

    PubMed

    Suzuki, S; Uchida, K; Harada, T; Nibe, K; Yamashita, M; Ono, K; Nakayama, H

    2015-05-01

    Granular cell tumors (GCTs) are histologically characterized by polygonal neoplastic cells with abundant eosinophilic cytoplasmic granules. In humans, these cells are considered to be derived from Schwann cells, and the cytoplasmic granules are assumed to be autophagosomes or autophagolysosomes. However, the origin and nature of the cytoplasmic granules in canine GCTs have not been well characterized. The present study examined 9 canine lingual GCTs using immunohistochemistry, transmission electron microscopy (TEM), and cell culture and xenotransplantation experiments. In some cases, the tumor cells expressed S100, CD133, and desmin. The cytoplasmic granules were positive for LC3, p62, NBR1, and ubiquitin. TEM revealed autophagosome-like structures in the cytoplasm of the granule-containing cells. The cultured GCT cells were round to spindle shaped and expressed S100, nestin, Melan-A, CD133, LC3, p62, NBR1, and ubiquitin, suggesting that they were of neural crest origin, redifferentiated into melanocytes, and exhibited upregulated autophagy. The xenotransplanted tumors consisted of spindle to polygonal cells. Only a few cells contained cytoplasmic granules, and some had melanin pigments in their cytoplasm. The xenotransplanted cells expressed S100, nestin, Melan-A, and CD133. P62 and ubiquitin were detected, regardless of the presence or absence of cytoplasmic granules, while LC3 and NBR1 were detected only in the neoplastic cells containing cytoplasmic granules. These findings suggest that some xenotransplanted cells redifferentiated into melanocytes and that autophagy was upregulated in the cytoplasmic granule-containing cells. In conclusion, canine lingual GCTs originate from the neural crest and develop cytoplasmic granules via autophagy. In addition, the microenvironment of GCT cells affects their morphology. © The Author(s) 2014.

  16. Numerical Study of Gamma-Ray Burst Jet Formation in Collapsars

    SciTech Connect

    Nagataki, S.; Takahashi, R.; Mizuta, A.; Takiwaki, T.; /Garching, Max Planck Inst. /Tokyo U.

    2007-06-08

    Two-dimensional MHD simulations are performed using the ZEUS-2D code to investigate the dynamics of a collapsar that generates a GRB jet, taking account of realistic equation of state, neutrino cooling and heating processes, magnetic fields, and gravitational force from the central black hole and self-gravity. It is found that neutrino heating processes are not efficient enough to launch a jet in this study. It is also found that a jet is launched mainly by B{sub {phi}} fields that are amplified by the winding-up effect. However, since the ratio of total energy relative to the rest-mass energy in the jet is not as high as several hundred, we conclude that the jets seen in this study are not GRB jets. This result suggests that general relativistic effects will be important to generating a GRB jet. Also, the accretion disk with magnetic fields may still play an important role in launching a GRB jet, although a simulation for much longer physical time ({approx}10-100 s) is required to confirm this effect. It is shown that a considerable amount of {sup 56}Ni is synthesized in the accretion disk. Thus, there will be a possibility for the accretion disk to supply the sufficient amount of {sup 56}Ni required to explain the luminosity of a hypernova. Also, it is shown that neutron-rich matter due to electron captures with high entropy per baryon is ejected along the polar axis. Thus, there will be a possibility that r-process nucleosynthesis occurs at such a region. Finally, many neutrons will be ejected from the jet, which suggests that signals from the neutron decays may be observed as the delayed bump of the light curve of the afterglow or gamma rays.

  17. Detailed modeling of soot formation and turbulence-radiation interactions in turbulent jet flames

    NASA Astrophysics Data System (ADS)

    Mehta, Ranjan S.

    Detailed radiation modeling of turbulent sooting flames faces a number of challenges. Principal among these have been been a lack of good models for predicting soot formation and effective means to capture turbulence-chemistry interactions in soot subprocesses. Uncertainties in measurement and prediction of soot properties has also been a problem. Radiative heat transfer becomes important in combustion environments due to the very high temperatures encountered and has not yet been studied in sufficient detail in the case of luminous (i.e., sooting) flames. A comprehensive approach for modeling turbulent reacting flows, including detailed chemistry, radiation and soot models with detailed closures for turbulence-chemistry interactions (TCI) and turbulence-radiation interactions (TRI) is developed in this work. A review of up-to-date literature on turbulent combustion modeling, turbulence-radiation interactions and soot modeling is given. A transported probability density function (PDF) approach is used to model turbulence-chemistry interactions and extended to include soot formation. Nongray gas and soot radiation is modeled using a photon Monte Carlo (PMC) method coupled with the PDF method. Soot formation is modeled based on the method of moments (MOM) approach with interpolative closure. Optimal soot submodel parameters are identified based on comparison of model predictions with experimental data from various laminar premixed and (opposed) diffusion flames. These parameters (including gas-phase chemistry) are applied to turbulent flames without further "tuning." Six turbulent jet flames with Reynolds numbers varying from 6700 to 15000, varying fuel types---pure ethylene, 90% methane-10% ethylene blend and different oxygen concentrations in the oxidizer stream from 21%O2 (air) to 55%O 2, are simulated. The predicted soot volume fractions, temperature and radiative wall fluxes (when available) are compared with experiments. All the simulations are carried out with

  18. Influence of thick surface coatings on jet formation in flyer plate impacts

    NASA Astrophysics Data System (ADS)

    Georges, William; Loiseau, Jason; Higgins, Andrew; Tyler, Troy; Zimmermann, Joerg

    2017-01-01

    The criteria for jetting upon the impact of flyer plates is that an oblique shock solution in the impact point reference frame does not exist. This criterion has been extensively verified experimentally over the last few decades. Comparatively, there has been no studies in the open literature regarding the jetting criterion for the impact of multi-layered flyers or flyer plates featuring thick coatings. In this work we have developed an experimental set-up that allowed us to determine whether or not the impact of multi-layered flyers resulted in a jet or not using laser heterodyne velocimetry.

  19. Characterization of jet formation and flow field produced by tandem bubbles

    NASA Astrophysics Data System (ADS)

    Yang, Chen; Koff, Andrew S.; Yuan, Fang; Zhong, Pei; Hsiao, Chao-Tsung; Chahine, Georges L.

    2017-03-01

    Tandem bubble (TB) interactions have been shown to produce directional jets that can be used to create membrane poration on single cells. Jet speed and associated flow field produced around the TB have been postulated to play an important role in TB-induced bioeffects. In this study, dynamics of tandem bubble interaction in a microfluidic channel (25 µm in height) was analyzed by high-speed imaging and simulated using 3DYNAFS-BEM© (DYNAFLOW, INC.). The results suggest that jet size and geometry are primarily controlled by the maximum diameter of the first bubble (D1) while jet speed is about linearly correlated with maximum diameter of the second bubble (D2).

  20. Labyrinthine granular landscapes.

    PubMed

    Caps, H; Vandewalle, N

    2001-11-01

    We have numerically studied a model of granular landscape eroded by wind. We show the appearance of labyrinthic patterns when the wind orientation turns by 90 degrees. The occurrence of such structures is discussed. Moreover, we introduce the density n(k) of "defects" as the dynamic parameter governing the landscape evolution. A power-law behavior of n(k) is found as a function of time. In the case of wind variations, the exponent (drastically) shifts from two to one. The presence of two asymptotic values of n(k) implies the irreversibility of the labyrinthic formation process.

  1. Formation of sub-micron size carbon structures by plasma jets emitted from a pulsed capillary discharge

    NASA Astrophysics Data System (ADS)

    Bhuyan, H.; Favre, M.; Valderrama, E.; Avaria, G.; Wyndham, E.; Chuaqui, H.; Baier, J.; Kelly, H.; Grondona, D.; Marquez, A.

    2009-01-01

    We have performed an experimental investigation of the potential use of intense plasma jets produced in a repetitive pulsed capillary discharge (PCD) operating in methane gas, to irradiate Si (1 0 0) substrates. The surface modifications induced by the plasma jet using two different material inserts at the capillary end, graphite and titanium, are characterized using standard surface science diagnostic tools, such as scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis and Raman spectroscopy (RS). It has been found that the application of methane plasma jet results in the formation of sub-micron size carbon structures. It is observed that the resulting plasma irradiated surface morphologies are different, depending on the different material inserts used at the capillary end, at otherwise identical operational conditions. To investigate the species responsible for the observed surface changes in different material inserts to the capillary, optical-emission spectroscopy (OES) was recorded using a 300-1000 nm spectrometer. The OES results show the presence of H, CH and C 2 Swan band in the discharge plasma, which play a significant role in the formation of the carbon structures.

  2. Granular cell ameloblastoma of mandible.

    PubMed

    Jansari, Trupti R; Samanta, Satarupa T; Trivedi, Priti P; Shah, Manoj J

    2014-01-01

    Ameloblastoma is a neoplasm of odontogenic epithelium, especially of enamel organ-type tissue that has not undergone differentiation to the point of hard tissue formation. Granular cell ameloblastoma is a rare condition, accounting for 3-5% of all ameloblastoma cases. A 30-year-old female patient presented with the chief complaint of swelling at the right lower jaw region since 1 year. Orthopantomogram and computed tomography scan was suggestive of primary bone tumor. Histopathologically, diagnosis of granular cell ameloblastoma of right mandible was made.

  3. Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets

    NASA Astrophysics Data System (ADS)

    Castillo-Orozco, Eduardo; Davanlou, Ashkan; Choudhury, Pretam K.; Kumar, Ranganathan

    2015-11-01

    The impact of droplets on a deep pool has applications in cleaning up oil spills, spray cooling, painting, inkjet printing, and forensic analysis, relying on the changes in properties such as viscosity, interfacial tension, and density. Despite the exhaustive research on different aspects of droplet impact, it is not clear how liquid properties can affect the instabilities leading to Rayleigh jet breakup and number of daughter drops formed after its pinch-off. In this article, through systematic experiments we investigate the droplet impact phenomena by varying viscosity and surface tension of liquids as well as impact speeds. Further, using numerical simulations, we show that Rayleigh-Plateau instability is influenced by these parameters, and capillary time scale is the appropriate scale to normalize the breakup time. Based on Ohnesorge number (Oh) and impact Weber number (We), a regime map for no breakup, Rayleigh jet breakup, and crown splash is suggested. Interestingly, crown splash is observed to occur at all Ohnesorge numbers; however, at high Oh, a large portion of kinetic energy is dissipated, and thus the Rayleigh jet is suppressed regardless of high impact velocity. The normalized required time for the Rayleigh jet to reach its peak varies linearly with the critical height of the jet.

  4. Ignition kernel formation and lift-off behaviour of jet-in-hot-coflow flames

    SciTech Connect

    Oldenhof, E.; Tummers, M.J.; van Veen, E.H.; Roekaerts, D.J.E.M.

    2010-06-15

    The stabilisation region of turbulent non-premixed flames of natural gas mixtures burning in a hot and diluted coflow is studied by recording the flame luminescence with an intensified high-speed camera. The flame base is found to behave fundamentally differently from that of a conventional lifted jet flame in a cold air coflow. Whereas the latter flame has a sharp interface that moves up and down, ignition kernels are continuously being formed in the jet-in-hot-coflow flames, growing in size while being convected downstream. To study the lift-off height effectively given these highly variable flame structures, a new definition of lift-off height is introduced. An important parameter determining lift-off height is the mean ignition frequency density in the flame stabilisation region. An increase in coflow temperature and the addition of small quantities of higher alkanes both increase ignition frequencies, and decrease the distance between the jet exit and the location where the first ignition kernels appear. Both mechanisms lower the lift-off height. An increase in jet Reynolds number initially leads to a significant decrease of the location where ignition first occurs. Higher jet Reynolds numbers (above 5000) do not strongly alter the location of first ignition but hamper the growth of flame pockets and reduce ignition frequencies in flames with lower coflow temperatures, leading to larger lift-off heights. (author)

  5. The Non-Thermal Radio Jet Toward the NGC 2264 Star Formation Region

    NASA Astrophysics Data System (ADS)

    Trejo, Alfonso; Rodríguez, Luis F.

    2008-02-01

    We report sensitive VLA 3.6 cm radio observations toward the head of the Cone Nebula in NGC 2264, made in 2006. The purpose of these observations was to study a non-thermal radio jet recently discovered, which appears to emanate from the head of the Cone Nebula. The jet is highly polarized, with well-defined knots, and one-sided. Comparison of our images with 1995 archive data indicates no evidence of proper motions or polarization changes. We find reliable flux density variations in only one knot, which we tentatively identify as the core of a quasar or radio galaxy. An extragalactic location seems to be the best explanation for this jet.

  6. Near-field shock formation in noise propagation from a high-power jet aircraft.

    PubMed

    Gee, Kent L; Neilsen, Tracianne B; Downing, J Micah; James, Michael M; McKinley, Richard L; McKinley, Robert C; Wall, Alan T

    2013-02-01

    Noise measurements near the F-35A Joint Strike Fighter at military power are analyzed via spatial maps of overall and band pressure levels and skewness. Relative constancy of the pressure waveform skewness reveals that waveform asymmetry, characteristic of supersonic jets, is a source phenomenon originating farther upstream than the maximum overall level. Conversely, growth of the skewness of the time derivative with distance indicates that acoustic shocks largely form through the course of near-field propagation and are not generated explicitly by a source mechanism. These results potentially counter previous arguments that jet "crackle" is a source phenomenon.

  7. Two modes of jet formation in fluid flow out of a slit

    NASA Astrophysics Data System (ADS)

    Romanov, D. M.

    Two types of fluid outflow into a submerged space are considered: (1) a mode of outflow with a jet front on which a spiral structure is present and (2) a mode of outflow with a smooth jet front. The asymptotic behavior of the solution at the connection point of the ends of a vortex sheet is examined for the second mode. A numerical solution to the self-similar problem is presented. It is shown that both modes of outflow occur in specific ranges of the parameters of the problem: the discharge coefficient and the self-similarity index.

  8. Experimental and analytical study of nitric oxide formation during combustion of propane in a jet-stirred combustor

    NASA Technical Reports Server (NTRS)

    Wakelyn, N. T.; Jachimowski, C. J.; Wilson, C. H.

    1978-01-01

    A jet-stirred combustor, constructed of castable zirconia and with an Inconel injector, was used to study nitric oxide formation in propane-air combustion with residence times in the range from 3.2 to 3.3 msec and equivalence ratios varying from 0.7 to 1.4. Measurements were made of combustor operating temperature and of nitric oxide concentration. Maximum nitric oxide concentrations of the order of 55 ppm were found in the range of equivalence ratio from 1.0 to 1.1. A finite-rate chemical kinetic mechanism for propane combustion and nitric oxide formation was assembled by coupling an existing propane oxidation mechanism with the Zeldovich reactions and reactions of molecular nitrogen with hydrocarbon fragments. Analytical studies using this mechanism in a computer simulation of the experimental conditions revealed that the hydrocarbon-fragment-nitrogen reactions play a significant role in nitric oxide formation during fuel-rich combustion.

  9. Jetting instability mechanisms of particles from explosive dispersal

    NASA Astrophysics Data System (ADS)

    Ripley, R. C.; Zhang, F.

    2014-05-01

    The formation of post-detonation 'particle' jets is widely observed in many problems associated with explosive dispersal of granular materials and liquids. Jets have been shown to form very early, however the mechanism controlling the number of jetting instabilities remains unresolved despite a number of active theories. Recent experiments involving cylindrical charges with a range of central explosive masses for dispersal of dry solid particles and pure liquid are used to formulate macroscopic numerical models for jet formation and growth. The number of jets is strongly related to the dominant perturbation during the shock interaction timescale that controls the initial fracturing of the particle bed and liquid bulk. Perturbations may originate at the interfaces between explosive, shock-dispersed media, and outer edge of the charge due to Richtmyer-Meshkov instabilities. The inner boundary controls the number of major structures, while the outer boundary may introduce additional overlapping structures and microjets that are overtaken by the major structures. In practice, each interface may feature a thin casing material that breaks up, thereby influencing or possibly dominating the instabilities. Hydrocode simulation is used to examine the role of each interface in conjunction with casing effects on the perturbation leading to jet initiation. The subsequent formation of coherent jet structures requires dense multiphase flow of particles and droplets that interact though inelastic collision, agglomeration, and turbulent flow. Macroscopic multiphase flow simulation shows dense particle clustering and major jet structures overtaking smaller instabilities. Late-time dispersal is controlled by particle drag and evaporation of droplets. Numerical results for dispersal and jetting evolution are compared with experiments.

  10. Plasma-Jet-Driven Magneto-Inertial Fusion (PJMIF): Physics and Design for a Plasma Liner Formation Experiment

    NASA Astrophysics Data System (ADS)

    Hsu, Scott; Cassibry, Jason; Witherspoon, F. Douglas

    2014-10-01

    Spherically imploding plasma liners are a potential standoff compression driver for magneto-inertial fusion, which is a hybrid of and operates in an intermediate density between those of magnetic and inertial fusion. We propose to use an array of merging supersonic plasma jets to form a spherically imploding plasma liner. The jets are to be formed by pulsed coaxial guns with contoured electrodes that are placed sufficiently far from the location of target compression such that no hardware is repetitively destroyed. As such, the repetition rate can be higher (e.g., 1 Hz) and ultimately the power-plant economics can be more attractive than most other MIF approaches. During the R&D phase, a high experimental shot rate at reasonably low cost (e.g., < 1 k/shot) may be achieved with excellent diagnostic access, thus enabling a rapid learning rate. After some background on PJMIF and its prospects for reactor-relevant energy gain, this poster describes the physics objectives and design of a proposed 60-gun plasma-liner-formation experiment, which will provide experimental data on: (i) scaling of peak liner ram pressure versus initial jet parameters, (ii) liner non-uniformity characterization and control, and (iii) control of liner profiles for eventual gain optimization.

  11. Formation of a Micropinch and Generation of Multiply Charged Ions at the Front of a Current-Carrying Plasma Jet

    SciTech Connect

    Zverev, E.A.; Krasov, V.I.; Krinberg, I.A.; Papernyi, V.L.

    2005-10-15

    The formation of a neck in the cathode plasma jet in the initial stage of a low-voltage vacuum spark is investigated experimentally and theoretically. X-ray bursts corresponding to an electron temperature of 150-300 eV are detected. With the use of a pinhole camera, it is found that an emitting region less than 1 mm in size is located near the cathode. The free expansion of a current-carrying cathode plasma jet with a current growing in accordance with the experimentally observed time dependence is simulated using a hydrodynamic model. It is shown that the neck forms at the front of the plasma jet due to the plasma compression by the magnetic self-field. In the constriction region, the plasma is rapidly heated and multiply charged ions are generated. The calculated spatial and temporal variations in the electron temperature and average ion charge are close to the measured dependences over a wide range of the discharge parameters.

  12. Formation of a Liquid Jet by Interaction between a Laser-induced Bubble and a Shock Wave

    PubMed Central

    Hirano, T.; Komatsu, M.; Ezura, M.; Uenohara, H.; Takahashi, A.; Takayama, K.; Yoshimoto, T.

    2001-01-01

    Summary There are some problems such as a narrow therapeutic time window and severe side effects of fibrinolytics in the therapy of cerebral embolisms. Therefore, it is necessary to develop a new method to remove a cerebral thrombus more rapidly with fewer fibrinolytics. A Q-switch pulsed holmium (Ho): YAG laser with 86 mJ/pulse, pulse duration of 200ns and wavelength of 2.1 mm was used. The laser beam was transmitted through a 0.6 mm diameter quartz optical fiber. Experiments were conducted in a stainless steel container equipped with observation windows .The test chamber was filled with distilled water at 283K. At first, the formation of laser-induced bubbles in a 4 mm diameter glass tube was observed. The bubble gradually expanded and reached a maximum size at about lms after irradiation. A shock wave induced by ignition of silver azide pellet was interacted with it at 500µs before Ho:YAG laser irradiation, which resulted in forming a liquid jet. This liquid jet penetrated into an artificial thrombus made of gelatin, and its maximum penetration depth was 4.2 mm, which was nearly twice deeper than the laser irradiation only (2.2 mm). Combination of this liquid jet and fibrinolytics will realize more rapid recanalization with fewer drugs. PMID:20663374

  13. Formation of jets in Comet 19P/Borrelly by subsurface geysers

    USGS Publications Warehouse

    Yelle, R.V.; Soderblom, L.A.; Jokipii, J.R.

    2004-01-01

    Observations of the inner coma of Comet 19P/Borrelly with the camera on the Deep Space 1 spacecraft revealed several highly collimated dust jets emanating from the nucleus. The observed jets can be produced by acceleration of evolved gas from a subsurface cavity through a narrow orifice to the surface. As long as the cavity is larger than the orifice, the pressure in the cavity will be greater than the ambient pressure in the coma and the flow from the geyser will be supersonic. The gas flow becomes collimated as the sound speed is approached and dust entrainment in the gas flow creates the observed jets. Outside the cavity, the expanding gas loses its collimated character, but the density drops rapidly decoupling the dust and gas, allowing the dust to continue in a collimated beam. The hypothesis proposed here can explain the jets seen in the inner coma of Comet 1P/Halley as well, and may be a primary mechanism for cometary activity. ?? 2003 Published by Elsevier Inc.

  14. Formation of inclusion complexes between high amylose starch and octadecyl ferulate via steam jet cooking.

    PubMed

    Kenar, James A; Compton, David L; Little, Jeanette A; Peterson, Steve C

    2016-04-20

    Amylose-ligand inclusion complexes represent an interesting approach to deliver bioactive molecules. However, ferulic acid has been shown not to form single helical inclusion complexes with amylose from high amylose maize starch. To overcome this problem a lipophilic ferulic acid ester, octadecyl ferulate, was prepared and complexed with amylose via excess steam jet cooking. Jet-cooking octadecyl ferulate and high amylose starch gave an amylose-octadecyl ferulate inclusion complex in 51.0% isolated yield. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) confirmed that a 61 V-type inclusion complex was formed. Amylose and extraction assays showed the complex to be enriched in amylose (91.9±4.3%) and contain 70.6±5.6mgg(-1) octadecyl ferulate, although, minor hydrolysis (∼4%) of the octadecyl ferulate was observed under the excess steam jet-cooking conditions utilized. This study demonstrates that steam jet cooking is a rapid and scalable process in which to prepare amylose-octadecyl ferulate inclusion complexes.

  15. Excimer formation in jet-cooled van der Waals clusters of 1-cyanonaphthalene and 1-cyano-4-methylnaphthalene

    NASA Astrophysics Data System (ADS)

    Itoh, Michiya; Takamatsu, Miki

    1990-07-01

    The fluorescence excitation spectra of 1-cyanonaphthalene and 1-cyano-4-methylnaphthalene in jet expansion indicate the formation of van der Waals clusters of these compounds. The excitation of the cluster bands (n > 3-4) affords a large Stokes-shifted excimer fluorescence with decay times of 140-150 ns, while that of the dimer band gives only short wavelength resonance fluorescence. Similar excimer fluorescence was detected by excitation of the ground-state dimer in a low temperature (77 K) rigid solution of 3-methylpentane and also of polycrystalline samples of these compounds.

  16. Counter-propagating plasma jet collision and shock formation on a compact current driver

    NASA Astrophysics Data System (ADS)

    Valenzuela, J. C.; Collins, G. W.; Zick, T.; Narkis, J.; Krasheninnikov, I.; Beg, F. N.

    2015-12-01

    In this paper we report on the ability of a compact current driver yielding 250 kA in 150 ns to produce counter-propagating plasma flows. The flows were produced by two vertically-opposed conical wire arrays separated by 1 cm, each comprised of 8 wires. With this array configuration, we were able to produce two supersonic plasma jets with velocities on the order of 100-200 km/s that propagate towards each other and collide. Aluminum wires were tested first; we observed a shock wave forming at the collision region that remained stationary for an extended period of time (∼50 ns) using optical probing diagnostics and Extreme Ultraviolet imaging. After this period, a bow shock is formed that propagates at 20 km/s towards the cathode of the array, likely due to small differences in the density and/or speed of the jets. The inter-jet ion mean free path was estimated to be larger than the shock scale length for aluminum, indicating that the shock is not mediated by collisions, but possibly by a magnetic field, whose potential sources are also discussed. Radiative cooling and density contrast between the jets were found to be important in the shock wave dynamics. We studied the importance of these effects by colliding jets of two different materials, using aluminum in one and copper in the other. In this configuration, the bow shock was observed to collapse into a thin shell and then to fragment, forming clumpy features. Simultaneously, the tip of the bow shock is seen to narrow as the bow shock moves at a similar speed observed in the Al-Al case. We discuss the similarity criteria for scaling astrophysical objects to the laboratory, finding that the dimensionless numbers are promising.

  17. Enhanced formation of aerobic granular sludge with yellow earth as nucleating agent in a sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    He, Q. L.; Zhang, S. L.; Zou, Z. C.; Wang, H. Y.

    2016-08-01

    Enhanced formation of aerobic granulation was investigated by adding yellow earth as a nucleating agent in a sequencing batch reactor with a constant setting time of 10 min. As a result, granules with an average diameter over 1 mm were obtained on the 4th day. The mature granules behaved better than the seed sludge in the water content, specific gravity, sludge volume index, settling velocity, and specific oxygen uptake rate. The yellow earth stimulated the secretion of extracellular polymeric substances, especially proteins. Both chemical oxygen demand and ammonia nitrogen had a removal rate over 90%, and more than 80% of the total inorganic nitrogen was removed even under aeration conditions due to simultaneous denitrification. The enhancement effects of the yellow earth might be based on the unique physicochemical characteristics and short settling time. A settling time of 10 min or more turned out not to be a prerequisite for a rapid granulation process.

  18. Formation of a White-Light Jet Within a Quadrupolar Magnetic Configuration

    NASA Astrophysics Data System (ADS)

    Filippov, Boris; Koutchmy, Serge; Tavabi, Ehsan

    2013-08-01

    We analyze multi-wavelength and multi-viewpoint observations of a large-scale event viewed on 7 April 2011, originating from an active-region complex. The activity leads to a white-light jet being formed in the outer corona. The topology and evolution of the coronal structures were imaged in high resolution using the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). In addition, large field-of-view images of the corona were obtained using the Sun Watcher using Active Pixel System detector and Image Processing (SWAP) telescope onboard the PRoject for Onboard Autonomy (PROBA2) microsatellite, providing evidence for the connectivity of the coronal structures with outer coronal features that were imaged with the Large Angle Spectrometric Coronagraph (LASCO) C2 on the S olar and Heliospheric Observatory (SOHO). The data sets reveal an Eiffel-tower type jet configuration extending into a narrow jet in the outer corona. The event starts from the growth of a dark area in the central part of the structure. The darkening was also observed in projection on the disk by the Solar TErrestrial RElations Observatory-Ahead (STEREO-A) spacecraft from a different point of view. We assume that the dark volume in the corona descends from a coronal cavity of a flux rope that moved up higher in the corona but still failed to erupt. The quadrupolar magnetic configuration corresponds to a saddle-like shape of the dark volume and provides a possibility for the plasma to escape along the open field lines into the outer corona, forming the white-light jet.

  19. Suppression of Soot Formation and Shapes of Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Dai, Z.; Faeth, G. M.

    2001-01-01

    Laminar nonpremixed (diffusion) flames are of interest because they provide model flame systems that are far more tractable for analysis and experiments than practical turbulent flames. In addition, many properties of laminar diffusion flames are directly relevant to turbulent diffusion flames using laminar flamelet concepts. Finally, laminar diffusion flame shapes have been of interest since the classical study of Burke and Schumann because they involve a simple nonintrusive measurement that is convenient for evaluating flame shape predictions. Motivated by these observations, the shapes of round hydrocarbon-fueled laminar jet diffusion flames were considered, emphasizing conditions where effects of buoyancy are small because most practical flames are not buoyant. Earlier studies of shapes of hydrocarbon-fueled nonbuoyant laminar jet diffusion flames considered combustion in still air and have shown that flames at the laminar smoke point are roughly twice as long as corresponding soot-free (blue) flames and have developed simple ways to estimate their shapes. Corresponding studies of hydrocarbon-fueled weakly-buoyant laminar jet diffusion flames in coflowing air have also been reported. These studies were limited to soot-containing flames at laminar smoke point conditions and also developed simple ways to estimate their shapes but the behavior of corresponding soot-free flames has not been addressed. This is unfortunate because ways of selecting flame flow properties to reduce soot concentrations are of great interest; in addition, soot-free flames are fundamentally important because they are much more computationally tractable than corresponding soot-containing flames. Thus, the objectives of the present investigation were to observe the shapes of weakly-buoyant laminar jet diffusion flames at both soot-free and smoke point conditions and to use the results to evaluate simplified flame shape models. The present discussion is brief.

  20. Three-dimensional direct numerical simulation of soot formation and transport in a temporally evolving nonpremixed ethylene jet flame

    SciTech Connect

    Lignell, David O.; Chen, Jacqueline H.; Smith, Philip J.

    2008-10-15

    Three-dimensional direct numerical simulation of soot formation with complex chemistry is presented. The simulation consists of a temporally evolving, planar, nonpremixed ethylene jet flame with a validated, 19-species reduced mechanism. A four-step, three-moment, semiempirical soot model is employed. Previous two-dimensional decaying turbulence simulations have shown the importance of multidimensional flame dynamical effects on soot concentration [D.O. Lignell, J.H. Chen, P.J. Smith, T. Lu, C.K. Law, Combust. Flame 151 (1-2) (2007) 2-28]. It was shown that flame curvature strongly impacts the diffusive motion of the flame relative to soot (which is essentially convected with the flow), resulting in soot being differentially transported toward or away from the flame zone. The proximity of the soot to the flame directly influences soot reactivity and radiative properties. Here, the analysis is extended to three dimensions in a temporal jet configuration with mean shear. Results show that similar local flame dynamic effects of strain and curvature are important, but that enhanced turbulent mixing of fuel and oxidizer streams has a first-order effect on transport of soot toward flame zones. Soot modeling in turbulent flames is a challenge due to the complexity of soot formation and transport processes and the lack of detailed experimental soot-flame-flow structural data. The present direct numerical simulation provides the first step toward providing such data. (author)

  1. Granular Material Flows with Interstitial Fluid Effects

    NASA Technical Reports Server (NTRS)

    Hunt, Melany L.; Brennen, Christopher E.

    2004-01-01

    The research focused on experimental measurements of the rheological properties of liquid-solid and granular flows. In these flows, the viscous effects of the interstitial fluid, the inertia of the fluid and particles, and the collisional interactions of the particles may all contribute to the flow mechanics. These multiphase flows include industrial problems such as coal slurry pipelines, hydraulic fracturing processes, fluidized beds, mining and milling operation, abrasive water jet machining, and polishing and surface erosion technologies. In addition, there are a wide range of geophysical flows such as debris flows, landslides and sediment transport. In extraterrestrial applications, the study of transport of particulate materials is fundamental to the mining and processing of lunar and Martian soils and the transport of atmospheric dust (National Research Council 2000). The recent images from Mars Global Surveyor spacecraft dramatically depict the complex sand and dust flows on Mars, including dune formation and dust avalanches on the slip-face of dune surfaces. These Aeolian features involve a complex interaction of the prevailing winds and deposition or erosion of the sediment layer; these features make a good test bed for the verification of global circulation models of the Martian atmosphere.

  2. Modeling micro-droplet formation in near-field electrohydrodynamic jet printing

    NASA Astrophysics Data System (ADS)

    Popell, George Colin

    Near-field electrohydrodynamic jet (E-jet) printing has recently gained significant interest within the manufacturing research community because of its ability to produce micro/sub-micron-scale droplets using a wide variety of inks and substrates. However, the process currently operates in open-loop and as a result suffers from unpredictable printing quality. The use of physics-based, control-oriented process models is expected to enable closed-loop control of this printing technique. The objective of this research is to perform a fundamental study of the substrate-side droplet shape-evolution in near-field E-jet printing and to develop a physics-based model of the same that links input parameters such as voltage magnitude and ink properties to the height and diameter of the printed droplet. In order to achieve this objective, a synchronized high-speed imaging and substrate-side current-detection system was used implemented to enable a correlation between the droplet shape parameters and the measured current signal. The experimental data reveals characteristic process signatures and droplet spreading regimes. The results of these studies are then used as the basis for a model that predicts the droplet diameter and height using the measured current signal as the input. A unique scaling factor based on the measured current signal is used in this model instead of relying on empirical scaling laws found in literature. For each of the three inks tested in this study, the average absolute error in the model predictions is under 4.6% for diameter predictions and under 10.6% for height predictions of the steady-state droplet. While printing under non-conducive ambient conditions of low humidity and high temperatures, the use of the environmental correction factor in the model is seen to result in average absolute errors of 10.35% and 12.5% for diameter and height predictions.

  3. ON THE ORIGIN OF INTERGRANULAR JETS

    SciTech Connect

    Yurchyshyn, V. B.; Goode, P. R.; Abramenko, V. I.; Steiner, O.

    2011-08-01

    We observe that intergranular jets, originating in the intergranular space surrounding individual granules, tend to be associated with granular fragmentation, in particular, with the formation and evolution of a bright granular lane (BGL) within individual granules. The BGLs have recently been identified as vortex tubes by Steiner et al. We further discover the development of a well-defined bright grain located between the BGL and the dark intergranular lane to which it is connected. Signatures of a BGL may reach the lower chromosphere and can be detected in off-band H{alpha} images. Simulations also indicate that vortex tubes are frequently associated with small-scale magnetic fields. We speculate that the intergranular jets detected in the New Solar Telescope (NST) data may result from the interaction between the turbulent small-scale fields associated with the vortex tube and the larger-scale fields existing in the intergranular lanes. The intergranular jets are much smaller and weaker than all previously known jet-like events. At the same time, they appear much more numerous than the larger events, leading us to the speculation that the total energy release and mass transport by these tiny events may not be negligible in the energy and mass-flux balance near the temperature minimum atop the photosphere. The study is based on the photospheric TiO broadband (1.0 nm) filter data acquired with the 1.6 m NST operating at the Big Bear Solar Observatory. The data set also includes NST off-band H{alpha} images collected through a Zeiss Lyot filter with a passband of 0.025 nm.

  4. On the Origin of Intergranular Jets

    NASA Astrophysics Data System (ADS)

    Yurchyshyn, V. B.; Goode, P. R.; Abramenko, V. I.; Steiner, O.

    2011-08-01

    We observe that intergranular jets, originating in the intergranular space surrounding individual granules, tend to be associated with granular fragmentation, in particular, with the formation and evolution of a bright granular lane (BGL) within individual granules. The BGLs have recently been identified as vortex tubes by Steiner et al. We further discover the development of a well-defined bright grain located between the BGL and the dark intergranular lane to which it is connected. Signatures of a BGL may reach the lower chromosphere and can be detected in off-band Hα images. Simulations also indicate that vortex tubes are frequently associated with small-scale magnetic fields. We speculate that the intergranular jets detected in the New Solar Telescope (NST) data may result from the interaction between the turbulent small-scale fields associated with the vortex tube and the larger-scale fields existing in the intergranular lanes. The intergranular jets are much smaller and weaker than all previously known jet-like events. At the same time, they appear much more numerous than the larger events, leading us to the speculation that the total energy release and mass transport by these tiny events may not be negligible in the energy and mass-flux balance near the temperature minimum atop the photosphere. The study is based on the photospheric TiO broadband (1.0 nm) filter data acquired with the 1.6 m NST operating at the Big Bear Solar Observatory. The data set also includes NST off-band Hα images collected through a Zeiss Lyot filter with a passband of 0.025 nm.

  5. Granular flow in the marginal ice zone.

    PubMed

    Feltham, Daniel L

    2005-07-15

    The region of sea ice near the edge of the sea ice pack is known as the marginal ice zone (MIZ), and its dynamics are complicated by ocean wave interaction with the ice cover, strong gradients in the atmosphere and ocean and variations in sea ice rheology. This paper focuses on the role of sea ice rheology in determining the dynamics of the MIZ. Here, sea ice is treated as a granular material with a composite rheology describing collisional ice floe interaction and plastic interaction. The collisional component of sea ice rheology depends upon the granular temperature, a measure of the kinetic energy of flow fluctuations. A simplified model of the MIZ is introduced consisting of the along and across momentum balance of the sea ice and the balance equation of fluctuation kinetic energy. The steady solution of these equations is found to leading order using elementary methods. This reveals a concentrated region of rapid ice flow parallel to the ice edge, which is in accordance with field observations, and previously called the ice jet. Previous explanations of the ice jet relied upon the existence of ocean currents beneath the ice cover. We show that an ice jet results as a natural consequence of the granular nature of sea ice.

  6. Effects of nucleating species on soot formation in turbulent non-premixed sooting jet flames

    NASA Astrophysics Data System (ADS)

    Jain, Abhishek; Xuan, Yuan

    2016-11-01

    Soot nucleation is one of the most unknown processes in the soot life cycle, and it is believed to occur from Polycyclic Aromatic Hydrocarbons (PAH) generated from the combustion of various fuel sources under locally fuel-rich conditions. Current soot nucleation models may include as few as one (typically naphthalene) or as many as a dozen of nucleating species. In this study, the effects of PAH inclusion in the soot nucleation model on soot yield and distribution are studied by means of Large-Eddy Simulations (LES) of two piloted turbulent non-premixed sooting jet flames, using ethylene and a jet fuel surrogate, respectively. Two sets of simulations are performed for each flame, one considering only a single nucleating PAH (naphthalene) and the other one considering a range of nucleating PAH from naphthalene to cyclopenta[cd]pyrene. Flamelet-based chemistry tabulation is used for the major thermochemical quantities, and a recently developed relaxation model is used for PAH species to account for the interactions between turbulence and their chemistry. The effects of nucleating PAH species on soot are highlighted by comparing the mean soot volume fraction distributions and statistical characteristics of soot obtained from both sets of simulations against experimental measurements. Graduate Student, MNE.

  7. Modeling of aerosol formation in a turbulent jet with the transported population balance equation-probability density function approach

    NASA Astrophysics Data System (ADS)

    Di Veroli, G. Y.; Rigopoulos, S.

    2011-04-01

    Processes involving particle formation in turbulent flows feature complex interactions between turbulence and the various physicochemical processes involved. An example of such a process is aerosol formation in a turbulent jet, a process investigated experimentally by Lesniewski and Friedlander [Proc. R. Soc. London, Ser. A 454, 2477 (1998)]. Polydispersed particle formation can be described mathematically by a population balance (also called general dynamic) equation, but its formulation and use within a turbulent flow are riddled with problems, as straightforward averaging results in unknown correlations. In this paper we employ a probability density function formalism in conjunction with the population balance equation (the PBE-PDF method) to simulate and study the experiments of Lesniewski and Friedlander. The approach allows studying the effects of turbulence-particle formation interaction, as well as the prediction of the particle size distribution and the incorporation of kinetics of arbitrary complexity in the population balance equation. It is found that turbulence critically affects the first stages of the process, while it seems to have a secondary effect downstream. While Lesniewski and Friedlander argued that the bulk of the nucleation arises in the initial mixing layer, our results indicate that most of the particles nucleate downstream. The full particle size distributions are obtained via our method and can be compared to the experimental results showing good agreement. The sources of uncertainties in the experiments and the kinetic expressions are analyzed, and the underlying mechanisms that affect the evolution of particle size distribution are discussed.

  8. Formation of Copper Zinc Tin Sulfide Thin Films from Colloidal Nanocrystal Dispersions via Aerosol-Jet Printing and Compaction.

    PubMed

    Williams, Bryce A; Mahajan, Ankit; Smeaton, Michelle A; Holgate, Collin S; Aydil, Eray S; Francis, Lorraine F

    2015-06-03

    A three-step method to create dense polycrystalline semiconductor thin films from nanocrystal liquid dispersions is described. First, suitable substrates are coated with nanocrystals using aerosol-jet printing. Second, the porous nanocrystal coatings are compacted using a weighted roller or a hydraulic press to increase the coating density. Finally, the resulting coating is annealed for grain growth. The approach is demonstrated for making polycrystalline films of copper zinc tin sulfide (CZTS), a new solar absorber composed of earth-abundant elements. The range of coating morphologies accessible through aerosol-jet printing is examined and their formation mechanisms are revealed. Crack-free albeit porous films are obtained if most of the solvent in the aerosolized dispersion droplets containing the nanocrystals evaporates before they impinge on the substrate. In this case, nanocrystals agglomerate in flight and arrive at the substrate as solid spherical agglomerates. These porous coatings are mechanically compacted, and the density of the coating increases with compaction pressure. Dense coatings annealed in sulfur produce large-grain (>1 μm) polycrystalline CZTS films with microstructure suitable for thin-film solar cells.

  9. Study of the conditions necessary for propane-jet freezing of fresh biological tissues without detectable ice formation.

    PubMed

    Haggis, G H

    1986-09-01

    The performance of a commercial double-propane-jet freezer (Balzers QFD 101) has been assessed, for rapid freezing of fresh tissues in freeze-etch work. Samples of diaphragm muscle and intestinal villi were frozen between copper sheets, with a spacer to give 20-30 microns thickness of tissue. Fracture cuts were made with the Balzers BAF 400 freeze-etch microtome within 5-10 microns of a freezing face (i.e. a tissue face in contact with the copper sheets of the frozen sandwich). After some modifications to the QFD 101, replicas showing no evidence of ice were obtained of muscle cells, although for intestinal epithelial cells some evidence of ice formation was found. Infiltration with 5% glycerol or dimethylsulphoxide improves the depth of good freezing. Results and problems arising from such infiltration are briefly discussed.

  10. Facile Formation of Acetic Sulfuric Anhydride in a Supersonic Jet: Characterization by Microwave Spectroscopy and Computational Chemistry

    NASA Astrophysics Data System (ADS)

    Huff, Anna; Smith, CJ; Mackenzie, Becca; Leopold, Ken

    2017-06-01

    Sulfur trioxide and acetic acid are shown to react under supersonic jet conditions to form acetic sulfuric anhydride, CH_{3}COOSO_{2}OH. Rotational spectra of the parent, ^{34}S, methyl ^{13}C, and fully deuterated isotopologues have been observed by chirped-pulse and conventional cavity microwave spectroscopy. A and E internal rotation states have been observed for each isotopologue studied and the methyl group internal rotation barriers have been determined (241.043(65) \\wn for the parent species). The reaction is analogous to that of our previous report on the reaction of sulfur trioxide and formic acid. DFT and CCSD calculations are also presented which indicate that the reaction proceeds via a π_{2} + π_{2} + σ_{2} cycloaddition reaction. These results support our previous conjecture that the reaction of SO_{3} with carboxylic acids is both facile and general. Possible implications for atmospheric aerosol formation are discussed.

  11. Effect of additives on the formation of insolubles in a jet fuel

    SciTech Connect

    Anderson, S.D.; Jones, E.G.; Goss, L.P.; Balster, W.J.

    1995-05-01

    Dynamic near-isothermal techniques have proven to be valuable in assessing the tendency of aviation fuels to form surface and bulk insolubles under thermal stress. These methods are applied in this study to the investigation of the neat Jet-A fuel POSF-2827 and changes introduced by a series of four candidate additives. In each case fuel is stressed while flowing through a heat exchanger under near-isothermal conditions at 185{degrees}C. The average surface deposition rate as a function of stress duration and the quantity of both surface and bulk insolubles have been determined after complete consumption of the dissolved oxygen. The additives, introduced individually, include a common antioxidant, a metal deactivator, a dispersant, and a combination detergent/dispersant. Of the four additives, only the dispersant-types are found to improve fuel thermal stability.

  12. Prompt particle acceleration and plasma jet formation during current loop coalescence in solar flares

    NASA Astrophysics Data System (ADS)

    Sakai, Jun-Ichi

    1990-06-01

    Numerical simulations based on the theory of Sakai and Tajima (1986) are used to study high-energy particle acceleration during current loop coalescence in solar flares. The results show that the electrons and protons can be quasi-periodically accelerated to relativistic energies in a very short period of time (much less than 1 sec) when the ratio of poloidal (loop current) to toroidal (potential field) components of the magnetic field is greater than one. It is shown that the spiral two-sided plasma jet can be explosively driven by the plasma rotational motion during the two-current loop coalescence process. Also, it is found that the rebound following the plasma collapse caused by the magnetic pinch effect may induce super-magnetosonic flow that can lead to fast magnetosonic shock waves.

  13. Stationary zonal flows during the formation of the edge transport barrier in the JET tokamak

    DOE PAGES

    Hillesheim, J. C.; Meyer, H.; Maggi, C. F.; ...

    2016-02-10

    In this study, high spatial resolution Doppler backscattering measurements in JET have enabled new insights into the development of the edge Er. We observe fine-scale spatial structures in the edge Er well with a wave number krρi ≈ 0.4-0.8, consistent with stationary zonal flows, the characteristics of which vary with density. The zonal flow amplitude and wavelength both decrease with local collisionality, such that the zonal flow E x B shear increases. Above the minimum of the L-H transition power threshold dependence on density, the zonal flows are present during L mode and disappear following the H-mode transition, while belowmore » the minimum they are reduced below measurable amplitude during L mode, before the L-H transition.« less

  14. Stationary zonal flows during the formation of the edge transport barrier in the JET tokamak

    SciTech Connect

    Hillesheim, J. C.; Meyer, H.; Maggi, C. F.; Meneses, L.; Poli, E.; Delabie, E.

    2016-02-10

    In this study, high spatial resolution Doppler backscattering measurements in JET have enabled new insights into the development of the edge Er. We observe fine-scale spatial structures in the edge Er well with a wave number krρi ≈ 0.4-0.8, consistent with stationary zonal flows, the characteristics of which vary with density. The zonal flow amplitude and wavelength both decrease with local collisionality, such that the zonal flow E x B shear increases. Above the minimum of the L-H transition power threshold dependence on density, the zonal flows are present during L mode and disappear following the H-mode transition, while below the minimum they are reduced below measurable amplitude during L mode, before the L-H transition.

  15. Stationary Zonal Flows during the Formation of the Edge Transport Barrier in the JET Tokamak

    NASA Astrophysics Data System (ADS)

    Hillesheim, J. C.; Delabie, E.; Meyer, H.; Maggi, C. F.; Meneses, L.; Poli, E.; JET Contributors; EUROfusion Consortium, JET, Culham Science Centre, Abingdon, Oxon OX14 3DB, United Kingdom

    2016-02-01

    High spatial resolution Doppler backscattering measurements in JET have enabled new insights into the development of the edge Er. We observe fine-scale spatial structures in the edge Er well with a wave number krρi≈0.4 -0.8 , consistent with stationary zonal flows, the characteristics of which vary with density. The zonal flow amplitude and wavelength both decrease with local collisionality, such that the zonal flow E ×B shear increases. Above the minimum of the L -H transition power threshold dependence on density, the zonal flows are present during L mode and disappear following the H -mode transition, while below the minimum they are reduced below measurable amplitude during L mode, before the L -H transition.

  16. VARIABLE TeV EMISSION AS A MANIFESTATION OF JET FORMATION IN M87?

    SciTech Connect

    Levinson, Amir; Rieger, Frank

    2011-04-01

    It is proposed that the variable TeV emission observed in M87 may be produced in a starved magnetospheric region, above which the outflow associated with the VLBA jet is established. It is shown that annihilation of MeV photons emitted by the radiative inefficient flow in the vicinity of the black hole can lead to injection of seed charges on open magnetic field lines, with a density that depends sensitively on accretion rate, n{sub {+-}}{proportional_to} m-dot {sup 4}. For an accretion rate that corresponds to the inferred jet power, and to a fit of the observed spectral energy distribution by an ADAF model, the density of injected pairs is found to be smaller than the Goldreich-Julian (GJ) density by a factor of a few. It is also shown that inverse Compton scattering of ambient photons by electrons (positrons) accelerating in the gap can lead to a large multiplicity, {approx}10{sup 3}, while still allowing photons at energies of up to a few TeV to freely escape the system. The estimated gap width is not smaller than 0.01r{sub s} if the density of seed charges is below the GJ value. The very high energy power radiated by the gap can easily account for the luminosity of the TeV source detected by H.E.S.S. The strong dependence of injected pair density on accretion rate should render the gap emission highly intermittent. We also discuss briefly the application of this mechanism to Sgr A{sup *}.

  17. Jet formation driven by the expansion of magnetic bridges between the ergosphere and the disk around a rapidly rotating black hole

    SciTech Connect

    Koide, Shinji; Kudoh, Takahiro; Shibata, Kazunari

    2006-08-15

    We report two-dimensional numerical results of jet formation driven by a magnetic field due to a current loop near a rapidly rotating black hole. We initially set the current loop along the intersection of the equatorial plane and the surface of the ergosphere around the black hole. In such magnetic configurations, there are magnetic flux tubes which bridge the region between the ergosphere and the corotating disk. The magnetic flux tube, which we call a 'magnetic bridge', is twisted rapidly by the plasma in the ergosphere due to the frame-dragging effect. The magnetic pressure of the magnetic flux tube increases and the strong magnetic pressure blows off the plasma near the ergosphere to form outflow. The outflow is pinched by the magnetic tension of the magnetic flux tube. Then, eventually, the jet is formed. That is, the magnetic bridges cannot be stationary, and they expand explosively to form a jet. The parameter survey of the background pressure shows that the radius of the collimated jet depends on the gas pressure of the corona. However, this does not mean the gas pressure collimates the jet. The gas pressure decelerates the jet and the pinch effect by the magnetic field becomes significant.

  18. Driven low density granular mixtures.

    PubMed

    Pagnani, Riccardo; Bettolo Marconi, Umberto Marini; Puglisi, Andrea

    2002-11-01

    We study the steady state properties of a two-dimensional granular mixture in the presence of energy driving by employing simple analytical estimates and direct simulation Monte Carlo. We adopt two different driving mechanisms, (a) a homogeneous heat bath with friction and (b) a vibrating boundary (thermal or harmonic) in the presence of gravity. The main findings are the appearance of two different granular temperatures, one for each species; the existence of overpopulated tails in the velocity distribution functions and of nontrivial spatial correlations indicating the spontaneous formation of cluster aggregates. In the case of a fluid subject to gravity and to a vibrating boundary, both densities and temperatures display nonuniform profiles along the direction normal to the wall, in particular, the temperature profiles are different for the two species while the temperature ratio is almost constant with the height. Finally, we obtained the velocity distributions at different heights and verified the non-Gaussianity of the resulting distributions.

  19. Formation of biomolecule clusters in a supersonic jet: An example of molecular recognition?

    SciTech Connect

    Meffert, Anja; Moritz, Fritz; Dey, Michael; Grotemeyer, Juergen

    1995-04-01

    In this paper some results of the formation of biomolecular clusters in a supersonic beam are discussed. The clusters from nucleobases and nucleosides are formed by laser desorption and are probed by multiphoton ionization. It is shown that complementary nucleobase pairs as found in DNA can be observed in preference to noncomplementary base pairs. Association constants for the formation of free nucleobases and nucleosides in the gas phase are calculated.

  20. Metal organic chemical vapor deposition of environmental barrier coatings for the inhibition of solid deposit formation from heated jet fuel

    NASA Astrophysics Data System (ADS)

    Mohan, Arun Ram

    Solid deposit formation from jet fuel compromises the fuel handling system of an aviation turbine engine and increases the maintenance downtime of an aircraft. The deposit formation process depends upon the composition of the fuel, the nature of metal surfaces that come in contact with the heated fuel and the operating conditions of the engine. The objective of the study is to investigate the effect of substrate surfaces on the amount and nature of solid deposits in the intermediate regime where both autoxidation and pyrolysis play an important role in deposit formation. A particular focus has been directed to examining the effectiveness of barrier coatings produced by metal organic chemical vapor deposition (MOCVD) on metal surfaces for inhibiting the solid deposit formation from jet fuel degradation. In the first part of the experimental study, a commercial Jet-A sample was stressed in a flow reactor on seven different metal surfaces: AISI316, AISI 321, AISI 304, AISI 347, Inconel 600, Inconel 718, Inconel 750X and FecrAlloy. Examination of deposits by thermal and microscopic analysis shows that the solid deposit formation is influenced by the interaction of organosulfur compounds and autoxidation products with the metal surfaces. The nature of metal sulfides was predicted by Fe-Ni-S ternary phase diagram. Thermal stressing on uncoated surfaces produced coke deposits with varying degree of structural order. They are hydrogen-rich and structurally disordered deposits, spherulitic deposits, small carbon particles with relatively ordered structures and large platelets of ordered carbon structures formed by metal catalysis. In the second part of the study, environmental barrier coatings were deposited on tube surfaces to inhibit solid deposit formation from the heated fuel. A new CVD system was configured by the proper choice of components for mass flow, pressure and temperature control in the reactor. A bubbler was designed to deliver the precursor into the reactor

  1. Influence of operating parameters on cake formation in pilot scale pulse-jet bag filter

    PubMed Central

    Saleem, Mahmood; Krammer, Gernot; Khan, Rafi Ullah; Tahir, M. Suleman

    2012-01-01

    Bag filters are commonly used for fine particles removal in off-gas purification. There dust laden gas pervades through permeable filter media starting at a lower pressure drop limit leaving dust (called filter cake) on the filter media. The filter cakeformation is influenced by many factors including filtration velocity, dust concentration, pressure drop limits, and filter media resistance. Effect of the stated parameters is investigated experimentally in a pilot scale pulse-jet bag filter test facility where lime stone dust is separated from air at ambient conditions. Results reveal that filtration velocity significantly affects filter pressure drop as well as cake properties; cake density and specific cake resistance. Cake density is slightly affected by dust concentration. Specific resistance of filter cake increases with velocity, slightly affected by dust concentration, changes inversely with the upper pressure drop limit and decreases over a prolonged use (aging). Specific resistance of filter media is independent of upper pressure drop limit and increases linearly over a prolonged use. PMID:24415802

  2. Influence of operating parameters on cake formation in pilot scale pulse-jet bag filter.

    PubMed

    Saleem, Mahmood; Krammer, Gernot; Khan, Rafi Ullah; Tahir, M Suleman

    2012-07-01

    Bag filters are commonly used for fine particles removal in off-gas purification. There dust laden gas pervades through permeable filter media starting at a lower pressure drop limit leaving dust (called filter cake) on the filter media. The filter cakeformation is influenced by many factors including filtration velocity, dust concentration, pressure drop limits, and filter media resistance. Effect of the stated parameters is investigated experimentally in a pilot scale pulse-jet bag filter test facility where lime stone dust is separated from air at ambient conditions. Results reveal that filtration velocity significantly affects filter pressure drop as well as cake properties; cake density and specific cake resistance. Cake density is slightly affected by dust concentration. Specific resistance of filter cake increases with velocity, slightly affected by dust concentration, changes inversely with the upper pressure drop limit and decreases over a prolonged use (aging). Specific resistance of filter media is independent of upper pressure drop limit and increases linearly over a prolonged use.

  3. Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution.

    PubMed

    Ali, Muhammad; Pages, Emeline; Ducom, Alexandre; Fontaine, Aurelien; Guillemot, Fabien

    2014-09-12

    Laser-assisted bioprinting is a versatile, non-contact, nozzle-free printing technique which has demonstrated high potential for cell printing with high resolution. Improving cell viability requires determining printing conditions which minimize shear stress for cells within the jet and cell impact at droplet landing. In this context, this study deals with laser-induced jet dynamics to determine conditions from which jets arise with minimum kinetic energies. The transition from a sub-threshold regime to jetting regime has been associated with a geometrical parameter (vertex angle) which can be harnessed to print mesenchymal stem cells with high viability using slow jet conditions. Finally, hydrodynamic jet stability is also studied for higher laser pulse energies which give rise to supersonic but turbulent jets.

  4. Mechanism and Structure of Subsurface Explosions in Granular Media

    NASA Astrophysics Data System (ADS)

    Lai, Shuyue; Houim, Ryan; Oran, Elaine

    2016-11-01

    Numerical simulations of explosions in granular media were performed with an unsteady multidimensional fully compressible model, which solves two sets of coupled Euler equations, one for the gas and one for the granular medium. An explosive charge, buried in the granular medium, is modeled by a pocket of high-pressure and high-temperature gas. The initial conditions were determined based on an estimate of subsurface conditions on a comet. A series of simulations were performed in which the charge was buried at 3 m and 1.5 m and the particle volume fractions and the coefficient of restitution varied in the ranges 0.25 to 0.45 and 0 to 1, respectively. The simulations show the process of granular shock formation and propagation as a blast wave is created during the explosion. The blast wave initiates the particle motion and the particles accumulate to form a granular shock. The granular shock, in turn, produces a weak gas shock following it. There is a power law that relates the granular-shock radius to the explosion time: R t0.4, which is consistent with the results found by G. I. Taylor for 3-D spherical shock waves. The exponent of the power law remains at 0.4 regardless of the volume fraction and the elasticity of the granular material. For denser granular flows, the intergranular stress becomes stronger, and so the granular shock propagates at a higher velocity.

  5. Formation of "photonic jet" upon irradiation of spherical microparticles by a focused laser beam

    NASA Astrophysics Data System (ADS)

    Geints, Yurii E.; Zemlyanov, Alexander A.; Panina, Ekaterina K.

    2014-11-01

    Features of formation "photonic nanojets" (PNJs) near the surface of spherical dielectric microparticles irradiated by a spatially limited laser beam are theoretically investigated. The influence of the waist size of a light beam with the Gaussian transverse intensity profile on PNJ spatial parameters and peak intensity is found for the first time.

  6. Oblique impact of dense granular sheets

    NASA Astrophysics Data System (ADS)

    Ellowitz, Jake; Guttenberg, Nicholas; Jaeger, Heinrich M.; Nagel, Sidney R.; Zhang, Wendy W.

    2013-11-01

    Motivated by experiments showing impacts of granular jets with non-circular cross sections produce thin ejecta sheets with anisotropic shapes, we study what happens when two sheets containing densely packed, rigid grains traveling at the same speed collide asymmetrically. Discrete particle simulations and a continuum frictional fluid model yield the same steady-state solution of two exit streams emerging from incident streams. When the incident angle Δθ is less than Δθc =120° +/-10° , the exit streams' angles differ from that measured in water sheet experiments. Below Δθc , the exit angles from granular and water sheet impacts agree. This correspondence is surprising because 2D Euler jet impact, the idealization relevant for both situations, is ill posed: a generic Δθ value permits a continuous family of solutions. Our finding that granular and water sheet impacts evolve into the same member of the solution family suggests previous proposals that perturbations such as viscous drag, surface tension or air entrapment select the actual outcome are not correct. Currently at Department of Physics, University of Oregon, Eugene, OR 97403.

  7. Magnetorotational collapse of supermassive stars: Black hole formation, gravitational waves, and jets

    NASA Astrophysics Data System (ADS)

    Sun, Lunan; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart L.

    2017-08-01

    We perform magnetohydrodynamic simulations in full general relativity of uniformly rotating stars that are marginally unstable to collapse. These simulations model the direct collapse of supermassive stars (SMSs) to seed black holes that can grow to become the supermassive black holes at the centers of quasars and active galactic nuclei. They also crudely model the collapse of massive Population III stars to black holes, which could power a fraction of distant, long gamma-ray bursts. The initial stellar models we adopt are Γ =4 /3 polytropes initially with a dynamically unimportant dipole magnetic field. We treat initial magnetic-field configurations either confined to the stellar interior or extending out from the stellar interior into the exterior. We find that the black hole formed following collapse has mass MBH≃0.9 M (where M is the mass of the initial star) and dimensionless spin parameter aBH/MBH≃0.7 . A massive, hot, magnetized torus surrounds the remnant black hole. At Δ t ˜400 - 550 M ≈2000 -2700 (M /106 M⊙)s following the gravitational wave peak amplitude, an incipient jet is launched. The disk lifetime is Δ t ˜105(M /106 M⊙)s , and the outgoing Poynting luminosity is LEM˜1 051 -52 ergs /s . If≳1 %-10 % of this power is converted into gamma rays, Swift and Fermi could potentially detect these events out to large redshifts z ˜20 . Thus, SMSs could be sources of ultra-long gamma-ray bursts (ULGRBs), and massive Population III stars could be the progenitors that power a fraction of the long GRBs observed at redshift z ˜5 - 8 . Gravitational waves are copiously emitted during the collapse and peak at ˜15 (106 M⊙/M ) mHz [˜0.15 (104 M⊙/M ) Hz ], i.e., in the LISA (DECIGO/BBO) band; optimally oriented SMSs could be detectable by LISA (DECIGO/BBO) at z ≲3 (z ≲11 ). Hence, 1 04 M⊙ SMSs collapsing at z ˜10 are promising multimessenger sources of coincident gravitational and electromagnetic waves.

  8. Magnetohydrodynamic Simulations of the Formation of Molecular Clouds toward the Stellar Cluster Westerlund 2: Interaction of a Jet with a Clumpy Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Asahina, Yuta; Kawashima, Tomohisa; Furukawa, Naoko; Enokiya, Rei; Yamamoto, Hiroaki; Fukui, Yasuo; Matsumoto, Ryoji

    2017-02-01

    The formation mechanism of CO clouds observed with the NANTEN2 and Mopra telescopes toward the stellar cluster Westerlund 2 is studied by 3D magnetohydrodynamic simulations, taking into account the interstellar cooling. These molecular clouds show a peculiar shape composed of an arc-shaped cloud on one side of the TeV γ-ray source HESS J1023-575 and a linear distribution of clouds (jet clouds) on the other side. We propose that these clouds are formed by the interaction of a jet with clumps of interstellar neutral hydrogen (H i). By studying the dependence of the shape of dense cold clouds formed by shock compression and cooling on the filling factor of H i clumps, we found that the density distribution of H i clumps determines the shape of molecular clouds formed by the jet-cloud interaction: arc clouds are formed when the filling factor is large. On the other hand, when the filling factor is small, molecular clouds align with the jet. The jet propagates faster in models with small filling factors.

  9. On granular elasticity

    PubMed Central

    Sun, Qicheng; Jin, Feng; Wang, Guangqian; Song, Shixiong; Zhang, Guohua

    2015-01-01

    Mesoscopic structures form in dense granular materials due to the self-organisation of the constituent particles. These structures have internal structural degrees of freedom in addition to the translational degree of freedom. The resultant granular elasticity, which exhibits intrinsic variations and inevitable relaxation, is a key quantity that accounts for macroscopic solid- or fluid-like properties and the transitions between them. In this work, we propose a potential energy landscape (PEL) with local stable basins and low elastic energy barriers to analyse the nature of granular elasticity. A function for the elastic energy density is proposed for stable states and is further calibrated with ultrasonic measurements. Fluctuations in the elastic energy due to the evolution of internal structures are proposed to describe a so-called configuration temperature Tc as a counterpart of the classical kinetic granular temperature Tk that is attributed to the translational degrees of freedom. The two granular temperatures are chosen as the state variables, and a fundamental equation is established to develop non-equilibrium thermodynamics for granular materials. Due to the relatively low elastic energy barrier in the PEL, granular elasticity relaxes more under common mechanical loadings, and a simple model based on mean-field theory is developed to account for this behaviour. PMID:25951049

  10. Particle Deposition in Granular Media

    SciTech Connect

    Tien, C.

    1992-01-01

    Objective is to understand aerosol deposition from gas streams flowing through granular media; this is important to the design of granular filtration systems. The following investigations were carried out: transient behavior of granular filtration of aerosols, and stochastic simulation of aerosol deposition in granular media.

  11. Granular flow: Dry and wet

    NASA Astrophysics Data System (ADS)

    Mitarai, N.; Nakanishi, H.

    2012-04-01

    Granular material is a collection of macroscopic particles that are visible with naked eyes. The non-equilibrium nature of the granular materials makes their rheology quite different from that of molecular systems. In this minireview, we present the unique features of granular materials focusing on the shear flow of dry granular materials and granule-liquid mixture.

  12. Simulations of Granular Media

    NASA Astrophysics Data System (ADS)

    Herrmann, H. J.; Müller, M.

    For the last ten years there has been an enormous progress in the simulation of granular media like sand or powders. These simulations consist in simulating trajectories of each particle individually. Essentially one has to solve the Newton's equations including the effects of Coulomb friction and the physics occuring at a collision. But the details of the trajectories are not important for the collective behaviour. Therefore simplifications are introduced on the smallest scales. I will introduce various methods like molecular dynamics that are used to simulate large amounts of particles (over 109). Some of these medhods are based on the exploitation of parallelisation and metacomputing. Other approaches are more stochastic (DSMC Direct Simulation Monte Carlo) which simplify the calculation of collisions, positions and collision times. Very successful has been also the use of cellular automata which have been able to predict details such as the logarithmic tale of sand heaps. I will also discuss numerical techniques used for the surrounding fluid. This can be water in the case of sedimentation or air when one studies the formation of dunes in the desert. The calculation of velocity and pressure field of the fluid are done using multigrid techniques on parallel computers. We will compare the performance of the various techniques and show some benchmarks on the dependence on the size of the system, the density of particles and the number of processors used.

  13. Measurements of condensation nuclei above the jet stream - Evidence for cross jet transport by waves and new particle formation at high altitudes

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Lai, W. T.; Smith, S. D.

    1991-01-01

    Condensation nuclei were used as a tracer in midlatitude NASA Stratosphere-Troposphere Exchange Project (STEP) experiments in April and May 1984 in order to study transport in the stratosphere. The very large scale, mean CN distribution was distorted by waves which had the effect of transporting air with anticyclonic properties several degrees to the cyclonic side of the jet and created a strongly layered structure in the CN distribution. Unfiltered CN data revealed short-wavelength oscillations in the CN distribution at the interface between the transported anticyclonic air parcel and the adjacent cyclonic air mass. These oscillations were also seen in the ozone data and increase the potential for mixing along that interface. If the mixing does occur, a wave mechanism for cross-jet transport has been observed.

  14. Measurements of condensation nuclei above the jet stream - Evidence for cross jet transport by waves and new particle formation at high altitudes

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Lai, W. T.; Smith, S. D.

    1991-01-01

    Condensation nuclei were used as a tracer in midlatitude NASA Stratosphere-Troposphere Exchange Project (STEP) experiments in April and May 1984 in order to study transport in the stratosphere. The very large scale, mean CN distribution was distorted by waves which had the effect of transporting air with anticyclonic properties several degrees to the cyclonic side of the jet and created a strongly layered structure in the CN distribution. Unfiltered CN data revealed short-wavelength oscillations in the CN distribution at the interface between the transported anticyclonic air parcel and the adjacent cyclonic air mass. These oscillations were also seen in the ozone data and increase the potential for mixing along that interface. If the mixing does occur, a wave mechanism for cross-jet transport has been observed.

  15. A reexamination of the formation of exhaust condensation trails by jet aircraft

    SciTech Connect

    Hanson, H.M.; Hanson, D.M.

    1995-11-01

    With the end of World War II, it became apparent that a study should be undertaken to identify the factors controlling the production of aircraft condensation trails (contrails). This early work provided a theoretical prediction of T{sub c}, the critical temperature at which the values of the relative humidity and pressure are such that the formation of the contrail phenomenon will occur. As empirical data were obtained, the general agreement at increased altitude was not precise and several studies were made to obtain both theoretical and empirical fits that would provide a {open_quotes}yes/no{close_quotes} decision. These modifications did allow a better decision for the formation of contrails but were found to be increasingly inaccurate at greater altitudes. This study provides an improved algorithm that yields a theoretical prediction that is in general agreement with the available empirical data at all altitudes. It demonstrates that there is a need for additional effort in the identification and precision of relative humidity and pressure that are input to this computation. 7 refs., 3 figs.

  16. Stable Drop Formation and Deposition Control in Ink Jet Printing of Polyvinylidene Fluoride Solution

    NASA Astrophysics Data System (ADS)

    Thorne, Nathaniel; Yang, Xin; Sun, Ying; Complex Fluids and Multiphase Transport Lab-Drexel University Team

    2013-11-01

    Using inkjet printing as an additive fabrication method is an enabling technology for low-cost, high-throughput production of flexible electronics and photonics. Polymeric materials, such as Polyvinylidene fluoride (PVDF), are widely used as dielectric materials for microelectronics, batteries, among others. However, due to its large molecular weight and incompatibility with moisture in air, the stable drop formation of PVDF solution is quite challenging. In this study, we examine the effects of solute concentration, nozzle back pressure, ejection waveform, and ambient moisture on the formation of PVDF droplets. The deposition dynamics of inkjet-printed PVDF solutions are then examined as a function of the solvent concentration. Bi-solvents of different surface tensions and vapor pressures are used to induce Marangoni flows in order to suppress the coffee-ring effect. The deposition of a single droplet and the interactions between multiple drops are examined for a better control of the deposition uniformity. Printing of lines and patterns with reduced instability is also discussed.

  17. Gravity and Granular Materials

    NASA Technical Reports Server (NTRS)

    Behringer, R. P.; Hovell, Daniel; Kondic, Lou; Tennakoon, Sarath; Veje, Christian

    1999-01-01

    We describe experiments that probe a number of different types of granular flow where either gravity is effectively eliminated or it is modulated in time. These experiments include the shaking of granular materials both vertically and horizontally, and the shearing of a 2D granular material. For the shaken system, we identify interesting dynamical phenomena and relate them to standard simple friction models. An interesting application of this set of experiments is to the mixing of dissimilar materials. For the sheared system we identify a new kind of dynamical phase transition.

  18. Collapse of tall granular columns in fluid

    NASA Astrophysics Data System (ADS)

    Kumar, Krishna; Soga, Kenichi; Delenne, Jean-Yves

    2017-06-01

    Avalanches, landslides, and debris flows are geophysical hazards, which involve rapid mass movement of granular solids, water, and air as a multi-phase system. In order to describe the mechanism of immersed granular flows, it is important to consider both the dynamics of the solid phase and the role of the ambient fluid. In the present study, the collapse of a granular column in fluid is studied using 2D LBM - DEM. The flow kinematics are compared with the dry and buoyant granular collapse to understand the influence of hydrodynamic forces and lubrication on the run-out. In the case of tall columns, the amount of material destabilised above the failure plane is larger than that of short columns. Therefore, the surface area of the mobilised mass that interacts with the surrounding fluid in tall columns is significantly higher than the short columns. This increase in the area of soil - fluid interaction results in an increase in the formation of turbulent vortices thereby altering the deposit morphology. It is observed that the vortices result in the formation of heaps that significantly affects the distribution of mass in the flow. In order to understand the behaviour of tall columns, the run-out behaviour of a dense granular column with an initial aspect ratio of 6 is studied. The collapse behaviour is analysed for different slope angles: 0°, 2.5°, 5° and 7.5°.

  19. The formation and evolution of extreme shear reversal in JET and its influence on local thermal transport

    NASA Astrophysics Data System (ADS)

    Hawkes, N. C.; Andrew, Y.; Challis, C. D.; DeAngelis, R.; Drozdov, V.; Hobirk, J.; Joffrin, E.; Lotte, P.; Mazon, D.; Rachlew, E.; Reyes-Cortes, S.; Sattin, F.; Solano, E.; Stratton, B. C.; Tala, T.; Valisa, M.; EFDA-JET workprogramme, contributors to the

    2002-07-01

    In JET discharges where lower hybrid heating and current drive (LHCD) is applied early during the current ramp, a region of the plasma with zero current density is formed near the axis. At the boundary of this region the current density is large and Bθ increases rapidly over a small distance. In the central region the safety factor, q, is effectively infinite, but this falls steeply in the boundary region. Outside the boundary region q reaches a minimum, where the magnetic shear s≡r/q (dq/dr) becomes zero. The formation of this region of zero current is dependent on both the heating and the current drive effects of the LHCD. When LHCD is switched off the current profile begins to relax towards the resistive peaked current distribution of fully inductive tokamak operation. If LHCD is not used in the current rise then these current profiles are not established. Although the physical mechanism exists to drive the central plasma current below zero, in most cases it appears to be prevented from going negative. At least one MHD mechanism has been identified which could be responsible for this. The presence of the zero central current is closely linked to the periodic relaxation events seen in these discharges. In these discharges, internal transport barriers have been observed with additional heating powers substantially below the values required to obtain barriers in monotonic q profile cases.

  20. Soot formation and radiation in turbulent jet diffusion flames under normal and reduced gravity conditions

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.; Tong, LI; Sun, Jun; Greenberg, Paul S.; Griffin, Devon W.

    1993-01-01

    Most practical combustion processes, as well as fires and explosions, exhibit some characteristics of turbulent diffusion flames. For hydrocarbon fuels, the presence of soot particles significantly increases the level of radiative heat transfer from flames. In some cases, flame radiation can reach up to 75 percent of the heat release by combustion. Laminar diffusion flame results show that radiation becomes stronger under reduced gravity conditions. Therefore, detailed soot formation and radiation must be included in the flame structure analysis. A study of sooting turbulent diffusion flames under reduced-gravity conditions will not only provide necessary information for such practical issues as spacecraft fire safety, but also develop better understanding of fundamentals for diffusion combustion. In this paper, a summary of the work to date and of future plans is reported.

  1. Dynamics of wet granular hexagons

    NASA Astrophysics Data System (ADS)

    Baur, Manuel; Huang, Kai

    2017-03-01

    The collective behavior of vibrated hexagonal disks confined in a monolayer is investigated experimentally. Due to the broken circular symmetry, hexagons prefer to rotate upon sufficiently strong driving. Due to the formation of liquid bridges, short-ranged cohesive interactions are introduced upon wetting. Consequently, a nonequilibrium stationary state with the rotating disks self-organized in a hexagonal structure arises. The bond length of the hexagonal structure is slightly smaller than the circumdiameter of a hexagon, indicating geometric frustration. This investigation provides an example where the collective behavior of granular matter is tuned by the shape of individual particles.

  2. A numerical investigation on the vortex formation and flow separation of the oscillatory flow in jet pumps.

    PubMed

    Oosterhuis, Joris P; Bühler, Simon; van der Meer, Theo H; Wilcox, Douglas

    2015-04-01

    A two-dimensional computational fluid dynamics model is used to predict the oscillatory flow through a tapered cylindrical tube section (jet pump) placed in a larger outer tube. Due to the shape of the jet pump, an asymmetry in the hydrodynamic end effects will exist which will cause a time-averaged pressure drop to occur that can be used to cancel Gedeon streaming in a closed-loop thermoacoustic device. The performance of two jet pump geometries with different taper angles is investigated. A specific time-domain impedance boundary condition is implemented in order to simulate traveling acoustic wave conditions. It is shown that by scaling the acoustic displacement amplitude to the jet pump dimensions, similar minor losses are observed independent of the jet pump geometry. Four different flow regimes are distinguished and the observed flow phenomena are related to the jet pump performance. The simulated jet pump performance is compared to an existing quasi-steady approximation which is shown to only be valid for small displacement amplitudes compared to the jet pump length.

  3. AGN jet power, formation of X-ray cavities, and FR I/II dichotomy in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Fujita, Yutaka; Kawakatu, Nozomu; Shlosman, Isaac

    2016-04-01

    We investigate the ability of jets in active galactic nuclei to break out of the ambient gas with sufficiently large advance velocities. Using observationally estimated jet power, we analyze 28 bright elliptical galaxies in nearby galaxy clusters. Because the gas density profiles in the innermost regions of galaxies have not been resolved so far, we consider two extreme cases for temperature and density profiles. We also follow two types of evolution for the jet cocoons: being driven by the pressure inside the cocoon [Fanaroff-Riley (FR) type I], and being driven by the jet momentum (FR type II). Our main result is that regardless of the assumed form of the density profiles, jets with observed powers of ≲1044 erg s-1 are not powerful enough to evolve as FR II sources. Instead, they evolve as FR I sources and appear to be decelerated below the buoyant velocities of the cocoons when jets were propagating through the central dense regions of the host galaxies. This explains why FR I sources are more frequent than FR II sources in clusters. Furthermore, we predict the sizes of X-ray cavities from the observed jet powers and compare them with the observed ones-they are consistent within a factor of two if the FR I type evolution is realized. Finally, we find that the jets with a power ≳1044 erg s-1 are less affected by the ambient medium, and some of them, but not all, could serve as precursors of the FR II sources.

  4. Tangential deflection and formation of counterstreaming flows at the impact of a plasma jet on a tangential discontinuity

    NASA Astrophysics Data System (ADS)

    Voitcu, G.; Echim, M.

    2017-06-01

    In this letter we report three-dimensional particle-in-cell simulations of the interaction between a nonpenetrable magnetosheath jet and the magnetopause, for northward interplanetary magnetic field. The magnetopause is modeled as a tangential discontinuity with no magnetic shear. We investigate the deflection of the plasma jet in the direction tangential to the magnetopause. We find that as the frontal edge of the jet interacts with the magnetopause, the electrons and ions are scattered in opposite directions, tangential to the magnetopause, by the energy-dependent gradient-B drift. This effect is more effective on the nonthermal particles that tend to accumulate at the two sides of the jet and sustain a polarization electric field in the direction normal to the discontinuity surface. The electric drift of the bulk of particles under the action of this polarization electric field explains the deflection and counterstreaming at the impact of the plasma jet on the tangential discontinuity.

  5. Dynamics of Granular Materials

    NASA Technical Reports Server (NTRS)

    Behringer, Robert P.

    1996-01-01

    Granular materials exhibit a rich variety of dynamical behavior, much of which is poorly understood. Fractal-like stress chains, convection, a variety of wave dynamics, including waves which resemble capillary waves, l/f noise, and fractional Brownian motion provide examples. Work beginning at Duke will focus on gravity driven convection, mixing and gravitational collapse. Although granular materials consist of collections of interacting particles, there are important differences between the dynamics of a collections of grains and the dynamics of a collections of molecules. In particular, the ergodic hypothesis is generally invalid for granular materials, so that ordinary statistical physics does not apply. In the absence of a steady energy input, granular materials undergo a rapid collapse which is strongly influenced by the presence of gravity. Fluctuations on laboratory scales in such quantities as the stress can be very large-as much as an order of magnitude greater than the mean.

  6. Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse

    SciTech Connect

    Inogamov, N. A.; Zhakhovskii, V. V.; Khokhlov, V. A.

    2015-01-15

    It is well known that during ablation by an ultrashort laser pulse, the main contribution to ablation of the substance is determined not by evaporation, but by the thermomechanical spallation of the substance. For identical metals and pulse parameters, the type of spallation is determined by film thickness d{sub f}. An important gauge is metal heating depth d{sub T} at the two-temperature stage, at which electron temperature is higher than ion temperature. We compare cases with d{sub f} < d{sub T} (thin film) and d{sub f} ≫ d{sub T} (bulk target). Radius R{sub L} of the spot of heating by an optical laser is the next (after d{sub f}) important geometrical parameter. The morphology of film bulging in cases where d{sub f} < d{sub T} on the substrate (blistering) changes upon a change in radius R{sub L} in the range from diffraction limit R{sub L} ∼ λ to high values of R{sub L} ≫ λ, where λ ∼ 1 μm is the wavelength of optical laser radiation. When d{sub f} < d{sub T}, R{sub L} ∼ λ, and F{sub abs} > F{sub m}, gold film deposited on the glass target acquires a cupola-shaped blister with a miniature frozen nanojet in the form of a tip on the circular top of the cupola (F{sub abs} and F{sub m} are the absorbed energy and the melting threshold of the film per unit surface area of the film). A new physical mechanism leading to the formation of the nanojet is proposed.

  7. Entropy driven patterning in vibrofluidized granular materials

    NASA Astrophysics Data System (ADS)

    Galanis, Jennifer

    2008-10-01

    We investigate pattern formation in vertically vibrofluidized rod and sphere granular mixtures confined to quasi-2D containers. In a pure rod system, crowding induces an isotropic-to-nematic phase transition. The inclusion of spheres destabilizes both the isotropic and nematic states. Instead, small independent rod bundles form, where the long axes of rods are closely approximated. To investigate the role of entropy maximization in the granular experiments, we performed strict-2D equilibrium Monte Carlo simulations of hard rods and spheres and found analogous patterning. Similarities and differences between the steady state experiments and equilibrium simulations will be discussed. In collaboration with Daniel Harries, The Hebrew University of Jerusalem.

  8. Richtmyer-Meshkov jet formation from rear target ripples in plastic and plastic/aluminum laser targets

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Velikovich, A. L.; Karasik, M.; Serlin, V.; Weaver, J. L.; Schmitt, A. J.; Obenschain, S. P.

    2015-11-01

    We report experimental observations of jets produced from the rear surface of laser targets after a passage of the laser-driven shock wave. As in our previous work, Aglitskiy et al., Phys. Plasmas (2012), the jets are produced via the shaped-charge mechanism, a manifestation of a Richtmyer-Meshkov instability for a particular case of the Atwood number A =-1. The experiments done on the KrF Nike laser facility with laser wavelength 248 nm, a 4 ns pulse, and low-energy drive regime that used only 1 to 3 overlapping Nike beams and generated ablative pressure below 1 Mbar. Our 50 um thick planar targets were rippled on the rear side with wavelength 45 μm and peak-to-valley amplitude 15 μm. The targets were made either of solid plastic or of aluminum with a 10 μm thick plastic ablator attached to avoid the radiation preheat. The jets were extremely well collimated, which made possible our side-on observations with monochromatic x-ray imaging. We saw a regular set of jets, clearly separated along the 500 μm line of sight. Aluminum jets were found to be slightly better collimated than plastic jets. A quasi-spherical late-time expansion of Al jets starting from the tips has not been previously seen in experiments or simulations. Work supported by the US DOE/NNSA.

  9. Influence of Geometry and Flow Variation on Jet Mixing and NO Formation in a Model Staged Combustor Mixer with Eight Orifices

    NASA Technical Reports Server (NTRS)

    Samuelsen, G. S.; Sowa, W. A.; Hatch, M. S.

    1996-01-01

    A series of non-reacting parametric experiments was conducted to investigate the effect of geometric and flow variations on mixing of cold jets in an axis-symmetric, heated cross flow. The confined, cylindrical geometries tested represent the quick mix region of a Rich-Burn/Quick-Mix/Lean-Burn (RQL) combustor. The experiments show that orifice geometry and jet to mainstream momentum-flux ratio significantly impact the mixing characteristic of jets in a cylindrical cross stream. A computational code was used to extrapolate the results of the non-reacting experiments to reacting conditions in order to examine the nitric oxide (NO) formation potential of the configurations examined. The results show that the rate of NO formation is highest immediately downstream of the injection plane. For a given momentum-flux ratio, the orifice geometry that mixes effectively in both the immediate vicinity of the injection plane, and in the wall regions at downstream locations, has the potential to produce the lowest NO emissions. The results suggest that further study may not necessarily lead to a universal guideline for designing a low NO mixer. Instead, an assessment of each application may be required to determine the optimum combination of momentum-flux ratio and orifice geometry to minimize NO formation. Experiments at reacting conditions are needed to verify the present results.

  10. Granular computing: perspectives and challenges.

    PubMed

    Yao, JingTao; Vasilakos, Athanasios V; Pedrycz, Witold

    2013-12-01

    Granular computing, as a new and rapidly growing paradigm of information processing, has attracted many researchers and practitioners. Granular computing is an umbrella term to cover any theories, methodologies, techniques, and tools that make use of information granules in complex problem solving. The aim of this paper is to review foundations and schools of research and to elaborate on current developments in granular computing research. We first review some basic notions of granular computing. Classification and descriptions of various schools of research in granular computing are given. We also present and identify some research directions in granular computing.

  11. A Study of Shaped-Charge Collapse and Jet Formation Using the HEMP (hydrodynamic, Elastic, Magneto, and Plastic) Code and a Comparison with Experimental Observations

    DTIC Science & Technology

    1984-12-01

    at BRL was used for the copper liners. A plotting package developed by Mr. John Harrison of BRL was included in the version of HEMP used in this study...AD-A149 472 AD IB MEMORANDUM REPORT BRL-MR-3417 L A STUDY OF SHAPED-CHARGE COLLAPSE AND JET FORMATION USING THE HEMP CODE AND A COMPARISON WITH...FORMATION USING THE HEMP CODE AND A COMPARISON FINAL WITH EXPERIMENTAL OBSERVATIONS S. PERFORMING ORG. REPORT NUMOER 7. AUTHOR(-) 8. CONTRACT OR GRANT

  12. An Experimental and Computational Study on Soot Formation in a Coflow Jet Flame Under Microgravity and Normal Gravity

    NASA Technical Reports Server (NTRS)

    Ma, Bin; Cao, Su; Giassi, Davide; Stocker, Dennis P.; Takahashi, Fumiaki; Bennett, Beth Anne V.; Smooke, Mitchell D.; Long, Marshall B.

    2014-01-01

    Upon the completion of the Structure and Liftoff in Combustion Experiment (SLICE) in March 2012, a comprehensive and unique set of microgravity coflow diffusion flame data was obtained. This data covers a range of conditions from weak flames near extinction to strong, highly sooting flames, and enabled the study of gravitational effects on phenomena such as liftoff, blowout and soot formation. The microgravity experiment was carried out in the Microgravity Science Glovebox (MSG) on board the International Space Station (ISS), while the normal gravity experiment was performed at Yale utilizing a copy of the flight hardware. Computational simulations of microgravity and normal gravity flames were also carried out to facilitate understanding of the experimental observations. This paper focuses on the different sooting behaviors of CH4 coflow jet flames in microgravity and normal gravity. The unique set of data serves as an excellent test case for developing more accurate computational models.Experimentally, the flame shape and size, lift-off height, and soot temperature were determined from line-of-sight flame emission images taken with a color digital camera. Soot volume fraction was determined by performing an absolute light calibration using the incandescence from a flame-heated thermocouple. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the chemically reacting flow, and the soot evolution was modeled by the sectional aerosol equations. The governing equations and boundary conditions were discretized on an axisymmetric computational domain by finite differences, and the resulting system of fully coupled, highly nonlinear equations was solved by a damped, modified Newtons method. The microgravity sooting flames were found to have lower soot temperatures and higher volume fraction than their normal gravity counterparts. The soot distribution tends to shift from the centerline of the flame to the wings from normal gravity to

  13. Direct evidence of stationary zonal flows and critical gradient behavior for Er during formation of the edge pedestal in JET

    NASA Astrophysics Data System (ADS)

    Hillesheim, Jon

    2015-11-01

    High spatial resolution measurements with Doppler backscattering in JET have provided new insights into the development of the edge radial electric field during pedestal formation. The characteristics of Er have been studied as a function of density at 2.5 MA plasma current and 3 T toroidal magnetic field. We observe fine-scale spatial structure in the edge Er well prior to the LH transition, consistent with stationary zonal flows. Zonal flows are a fundamental mechanism for the saturation of turbulence and this is the first direct evidence of stationary zonal flows in a tokamak. The radial wavelength of the zonal flows systematically decreases with density. The zonal flows are clearest in Ohmic conditions, weaker in L-mode, and absent in H-mode. Measurements also show that after neutral beam heating is applied, the edge Er builds up at a constant gradient into the core during L-mode, at radii where Er is mainly due to toroidal velocity. The local stability of velocity shear driven turbulence, such as the parallel velocity gradient mode, will be assessed with gyrokinetic simulations. This critical Er shear persists across the LH transition into H-mode. Surprisingly, a reduction in the apparent magnitude of the Er well depth is observed directly following the LH transition at high densities. Establishing the physics basis for the LH transition is important for projecting scalings to ITER and these observations challenge existing models based on increased Er shear or strong zonal flows as the trigger for the transition. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

  14. Twin Jet

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Bozak, Rick

    2010-01-01

    Many subsonic and supersonic vehicles in the current fleet have multiple engines mounted near one another. Some future vehicle concepts may use innovative propulsion systems such as distributed propulsion which will result in multiple jets mounted in close proximity. Engine configurations with multiple jets have the ability to exploit jet-by-jet shielding which may significantly reduce noise. Jet-by-jet shielding is the ability of one jet to shield noise that is emitted by another jet. The sensitivity of jet-by-jet shielding to jet spacing and simulated flight stream Mach number are not well understood. The current experiment investigates the impact of jet spacing, jet operating condition, and flight stream Mach number on the noise radiated from subsonic and supersonic twin jets.

  15. Regulation of aerobic granular sludge reformulation after granular sludge broken: effect of poly aluminum chloride (PAC).

    PubMed

    Liu, Yongjun; Liu, Zhe; Wang, Fukun; Chen, Yiping; Kuschk, Peter; Wang, Xiaochang

    2014-04-01

    The present study focuses on the effect of poly aluminum chloride (PAC) on the re-formation of aerobic granular sludge after its rupture. The morphological changes, physical characteristics such as SVI, mechanical strength and surface properties of aerobic granular sludge during the re-formation process of broken granules were investigated. Moreover, components (protein (PN), polysaccharides (PS)) and distributions (soluble, loosely-bound (LB), tightly-bound (TB)) of extracellular polymeric substances (EPS) in sludge flocs were taken into consideration. It was found that the effect of charge neutralization and bridging induced by PAC treatment improved the surface properties of sludge, the re-formed granules had a larger size, more compact structure and that the removal performance of pollutants after chemical coagulation had improved. The results of correlation analysis demonstrated that PN in EPS correlated well with the surface characteristics and settling ability of sludge flocs, and PAC treatment strengthened the influence, further accelerated the reformation of granular sludge.

  16. Fluctuations in granular materials

    NASA Astrophysics Data System (ADS)

    Behringer, R. P.

    The intent of this work is to provide an overview of granular materials, with a particular focus on the dense granular states. The first part consists of a broad overview of granular properties. Then, there is an exploration of a range of phenomena that are illustrated through a series of experiments. The work presented here has benefitted from a number of collaborators, including in particular Eric Clément, Junfei Geng, Daniel Howell, Stefan Luding, Trushant Majmudar, Corey O'Hern, Guillaume Reydellet Matthias Sperl, Brian Utter and Peidong Yu who are represented by results that are presented in this work. Support has been provided by the US National Science Foundation, by NASA, and by ARO.

  17. Shaken granular lasers.

    PubMed

    Folli, Viola; Puglisi, Andrea; Leuzzi, Luca; Conti, Claudio

    2012-06-15

    Granular materials have been studied for decades, driven by industrial and technological applications. These very simple systems, composed of agglomerations of mesoscopic particles, are characterized, in specific regimes, by a large number of metastable states and an extreme sensitivity (e.g., in sound transmission) to the arrangement of grains; they are not substantially affected by thermal phenomena, but can be controlled by mechanical solicitations. Laser emission from shaken granular matter is so far unexplored. Here we provide experimental evidence that laser emission can be affected and controlled by the status of the motion of the granular material; we also find that competitive random lasers can be observed. We hence demonstrate the potentialities of gravity-affected moving disordered materials for optical applications, and open the road to a variety of novel interdisciplinary investigations, involving modern statistical mechanics and disordered photonics.

  18. Extended granular micromechanics

    NASA Astrophysics Data System (ADS)

    Giovine, Pasquale

    2017-06-01

    We analyze an extended mechanical model in the conservative case in order to describe a dilatant granular material with rotating grains for which the kinetic energy, in addition to the usual translational one, consists of three terms owing to microstructural motions: in particular, it includes the rotation of the grains, the dilatational expansion and contraction of the individual granules and of the granules relative to one another. Hence, we model the body as a continuum with a peculiar microstructure; after we follow classical procedures and define a variational principle of local type for a perfect fluid with microstructure, in accordance with the fluid-like behavior of granular materials: the motion equations are in good agreement with those obtained by other authors. At the end the particular case of a suspension of rotating rigid granules puts in evidence the possibility for granular materials to support shear stresses through the generation of micro-rotational gradients.

  19. Granular electronic systems.

    SciTech Connect

    Beloborodov, I. S.; Lopatin, A. V.; Vinokur, V. M.; Efetov, K. B.; Materials Science Division; Ruhr-Univ. Bochum; Landau Inst. Theor. Phys.

    2007-04-02

    Granular metals are arrays of metallic particles of a size ranging usually from a few to hundreds of nanometers embedded into an insulating matrix. Metallic granules are often viewed as artificial atoms. Accordingly, granular arrays can be treated as artificial solids with programmable electronic properties. The ease of adjusting electronic properties of granular metals assures them an important role for nanotechnological applications and makes them most suitable for fundamental studies of disordered solids. This review discusses recent theoretical advances in the study of granular metals, emphasizing the interplay of disorder, quantum effects, fluctuations, and effects of confinement. These key elements are quantified by the tunneling conductance between granules g, the charging energy of a single granule E{sub c}, the mean level spacing within a granule {delta}, and the mean electronic lifetime within the granule {h_bar}/g{delta}. By tuning the coupling between granules the system can be made either a good metal for g>gc=(1/2pid)ln(Ec/{delta}) (d is the system dimensionality), or an insulator for gGamma the resistivity exhibits universal logarithmic temperature behavior specific to granular materials, while at Tgranular materials, as is required for their applications.

  20. Impact of natural organic matter on arsenic removal by modified granular natural siderite: Evidence of ternary complex formation by HPSEC-UV-ICP-MS.

    PubMed

    Li, Fulan; Guo, Huaming; Zhou, Xiaoqian; Zhao, Kai; Shen, Jiaxing; Liu, Fei; Wei, Chao

    2017-02-01

    High arsenic (As) groundwater usually has high concentrations of natural organic matter (NOM). Effects of NOM on arsenic adsorption were investigated to evaluate the efficiency of modified granular natural siderite (MGNS) as an adsorbent for groundwater arsenic remediation. Humic and fulvic acids (HA/FA) were selected as model NOM compounds. In batch tests, HA or FA was either first adsorbed onto the MGNS, or applied together with dissolved arsenic to investigate effects of both adsorbed and dissolved NOM on arsenic removal. The kinetic data showed no significant effects of both adsorbed and dissolved HA/FA on As(III) adsorption. However, As(V) removal was inhibited, whereby the adsorbed NOM compounds had greater inhibitory effect. The inhibitory effect on As(V) removal increased with increasing NOM concentrations. FA exhibited higher inhibitory effect than HA at the same concentration. Steric Exclusion Chromatography-HPLC (SEC-HPLC), and High-Performance Size Exclusion Chromatography-UV-Inductively Coupled Plasma Mass Spectrometry (HPSEC-UV-ICP-MS) revealed that As(V) removal was mostly achieved by the oxyanion adsorption and adversely affected by dissolved FA via competitive adsorption for surface sites. In addition to oxyanion adsorption, removal of As(V) was related to scavenging of ternary HA-As-Fe complexes, which led to the less inhibitory effect of dissolved HA on As(V) removal than dissolved FA via competitive adsorption.

  1. Simulating granular media on the computer

    NASA Astrophysics Data System (ADS)

    Herrmann, H. J.

    Granular materials, like sand or powder, can present very intriguing effects. When shaken, sheared or poured they show segregation, convection and spontaneous fluctuations in densities and stresses. I will discuss the modeling of a granular medium on a computer by simulating a packing of elastic spheres via Molecular Dynamics. Dissipation of energy and shear friction at collisions are included. In the physical range the friction coefficient is found to be a linear function of the angle of repose. On a vibrating plate the formation of convection cells due to walls or amplitude modulations can be observed. The onset of fluidization can be determined and is in good agreement with experiments. Segregation of larger particles is found to be always accompanied by convection cells. There is also ample experimental evidence showing the existence of spontaneous density patterns in granular material flowing through pipes or hoppers. The Molecular Dynamics simulations show that these density fluctuations follow a 1/f α spectrum. I compare this behavior to deterministic one-dimensional traffic models. A model with continuous positions and velocities shows self-organized critical jamming behind a slower car. The experimentally observed effects are also reproduced by Lattice Gas and Boltzmann Lattice Models. Density waves are spontaneously generated when the viscosity has a nonlinear dependence on density which characterizes granular flow. We also briefly sketch a thermodynamic formalism for loose granular material. In a dense packing non-linear acoustic phenomena, like the pressure dependence of the sound velocity are studied. Finally the plastic shear bands occurring in large scale deformations of compactified granular media are investigated using an explicit Lagrangian technique.

  2. Dynamics of Sheared Granular Materials

    NASA Technical Reports Server (NTRS)

    Kondic, Lou; Utter, Brian; Behringer, Robert P.

    2002-01-01

    characterize the transition region in an earth-bound experiment. In the DE modeling, we analyze dynamics of a sheared granular system in Couette geometry in two (2D) and three (3D) space dimensions. Here, the idea is to both better understand what we might encounter in a reduced-g environment, and at a deeper level to deduce the physics of sheared systems in a density regime that has not been addressed by past experiments or simulations. One aspect of the simulations addresses sheared 2D system in zero-g environment. For low volume fractions, the expected dynamics of this type of system is relatively well understood. However, as the volume fraction is increased, the system undergoes a phase transition, as explained above. The DES concentrate on the evolution of the system as the solid volume fraction is slowly increased, and in particular on the behavior of very dense systems. For these configurations, the simulations show that polydispersity of the sheared particles is a crucial factor that determines the system response. Figures 1 and 2 below, that present the total force on each grain, show that even relatively small (10 %) nonuniformity of the size of the grains (expected in typical experiments) may lead to significant modifications of the system properties, such as velocity profiles, temperature, force propagation, and formation shear bands. The simulations are extended in a few other directions, in order to provide additional insight to the experimental system analyzed above. In one direction, both gravity, and driving due to vibrations are included. These simulations allow for predictions on the driving regime that is required in the experiments in order to analyze the jamming transition. Furthermore, direct comparison of experiments and DES will allow for verification of the modeling assumptions. We have also extended our modeling efforts to 3D. The (preliminary) results of these simulations of an annular system in zero-g environment will conclude the presentation.

  3. Jet shielding of jet noise

    NASA Technical Reports Server (NTRS)

    Simonich, J. C.; Amiet, R. K.; Schlinker, R. H.

    1986-01-01

    An experimental and theoretical study was conducted to develop a validated first principle analysis for predicting the jet noise reduction achieved by shielding one jet exhaust flow with a second, closely spaced, identical jet flow. A generalized fuel jet noise analytical model was formulated in which the acoustic radiation from a source jet propagates through the velocity and temperature discontinuity of the adjacent shielding jet. Input variables to the prediction procedure include jet Mach number, spacing, temperature, diameter, and source frequency. Refraction, diffraction, and reflection effects, which control the dual jet directivity pattern, are incorporated in the theory. The analysis calculates the difference in sound pressure level between the dual jet configuration and the radiation field based on superimposing two independent jet noise directivity patterns. Jet shielding was found experimentally to reduce noise levels in the common plane of the dual jet system relative to the noise generated by two independent jets.

  4. Partially saturated granular column collapse

    NASA Astrophysics Data System (ADS)

    Turnbull, Barbara; Johnson, Chris

    2017-04-01

    Debris flows are gravity-driven sub-aerial mass movements containing water, sediments, soil and rocks. These elements lead to characteristics common to dry granular media (e.g. levee formation) and viscous gravity currents (viscous fingering and surge instabilities). The importance of pore fluid in these flows is widely recognised, but there is significant debate over the mechanisms of build up and dissipation of pore fluid pressure within debris flows, and the resultant effect this has on dilation and mobility of the grains. Here we specifically consider the effects of the liquid surface in the flow. We start with a simple experiment constituting a classical axisymmetric granular column collapse, but with fluid filling the column up to a depth comparable to the depth of grains. Thus, as the column collapses, capillary forces may be generated between the grains that prevent dilation. We explore a parameter space to uncover the effects of fluid viscosity, particle size, column size, aspect ratio, grain shape, saturation level, initial packing fraction and significantly, the effects of fine sediments in suspension which can alter the capillary interaction between wetted macroscopic grains. This work presents an initial scaling analysis and attempts to relate the findings to current debris flow modelling approaches.

  5. Pollutant formation in fuel lean recirculating flows. Ph.D. Thesis. Final Report; [in an Opposed Reacting Jet Combustor

    NASA Technical Reports Server (NTRS)

    Schefer, R. W.; Sawyer, R. F.

    1976-01-01

    An opposed reacting jet combustor (ORJ) was tested at a pressure of 1 atmosphere. A premixed propane/air stream was stabilized by a counterflowing jet of the same reactants. The resulting intensely mixed zone of partially reacted combustion products produced stable combustion at equivalence ratios as low as 0.45. Measurements are presented for main stream velocities of 7.74 and 13.6 m/sec with an opposed jet velocity of 96 m/sec, inlet air temperatures from 300 to 600 K, and equivalence ratios from 0.45 to 0.625. Fuel lean premixed combustion was an effective method of achieving low NOx emissions and high combustion efficiencies simultaneously. Under conditions promoting lower flame temperature, NO2 constituted up to 100 percent of the total NOx. At higher temperatures this percentage decreased to a minimum of 50 percent.

  6. Axillary granular parakeratosis.

    PubMed

    Kossard, S; White, A

    1998-08-01

    A 54-year-old woman had a 3 year history of a recurrent bilateral axillary rash during the summer months. Both axillae showed hyperkeratotic, fissured and cobblestone plaques. Skin biopsy showed the histology previously defined as axillary granular parakeratosis. This finding may indeed represent an unusual contact reaction to anti-perspirants interfering with epidermal keratinization.

  7. Blending liquid into a flowing dry granular material

    NASA Astrophysics Data System (ADS)

    Saingier, Guillaume; Sauret, Alban; Jop, Pierre

    2017-06-01

    We study experimentally the growth dynamics of a horizontal wet granular aggregate produced by accretion when a dry granular jet impacts a wet substrate. The tomographic imaging demonstrates that the wet aggregate is fully saturated and its cohesion is related to the capillary suction due to the pressure drop at the liquid/air interface. We highlight that the accretion process is characterized by two different growth dynamics depending on the hydrostatic depression in the material. At low depression, the growth dynamics exibits a "diffusive" regime whereas the dynamics becomes linear for higher depressions. A competition between the viscous displacement of the fluid into the granular material and the sticking dynamics is proposed to understand the transition in the growth velocity.

  8. Challenges in Predicting Planetary Granular Mechanics

    NASA Technical Reports Server (NTRS)

    Metzger, Philip T.

    2005-01-01

    Through the course of human history, our needs in agriculture, habitat construction, and resource extraction have driven us to gain more experience working with the granular materials of planet Earth than with any other type of substance in nature, with the possible exception being water. Furthermore, throughout the past two centuries we have seen a dramatic and ever growing interest among scientists and engineers to understand and predict both its static and rheological properties. Ironically, however, despite this wealth of experience we still do not have a fundamental understanding of the complex physical phenomena that emerge even as just ordinary sand is shaken, squeezed or poured. As humanity is now reaching outward through the solar system, not only robotic ally but also with our immediate human presence, the need to understand and predict granular mechanics has taken on a new dimension. We must learn to farm, build and mine the regoliths of other planets where the environmental conditions are different than on Earth, and we are rapidly discovering that the effects of these environmental conditions are not trivial. Some of the relevant environmental features include the regolith formation processes throughout a planet's geologic and hydrologic history, the unknown mixtures of volatiles residing within the soil, the relative strength of gravitation, d the atm9spheric pressure and its seasonal variations. The need to work with soils outside our terrestrial experience base provides us with both a challenge and an opportunity. The challenge is to learn how to extrapolate our experience into these new planetary conditions, enabling the engineering decisions that are needed right now as we take the next few steps in solar system exploration. The opportunity is to use these new planetary environments as laboratories that will help us to see granular mechanics in new ways, to challenge our assumptions, and to help us finally unravel the elusive physics that lie

  9. The many lives of active galactic nuclei-II: The formation and evolution of radio jets and their impact on galaxy evolution

    NASA Astrophysics Data System (ADS)

    Raouf, Mojtaba; Shabala, Stanislav S.; Croton, Darren J.; Khosroshahi, Habib G.; Bernyk, Maksym

    2017-10-01

    We describe new efforts to model radio active galactic nuclei (AGN) in a cosmological context using the Semi-Analytic Galaxy Evolution (SAGE) semi-analytic galaxy model. Our new method tracks the physical properties of radio jets in massive galaxies including the evolution of radio lobes and their impact on the surrounding gas. This model also self consistently follows the gas cooling-heating cycle that significantly shapes star formation and the life and death of many galaxy types. Adding jet physics to SAGE adds new physical properties to the model output, which in turn allows us to make more detailed predictions for the radio AGN population. After calibrating the model to a set of core observations we analyse predictions for jet power, radio cocoon size, radio luminosity and stellar mass. We find that the model is able to match the stellar mass-radio luminosity relation at z ∼ 0 and the radio luminosity function out to z ∼ 1. This updated model will make possible the construction of customised AGN-focused mock survey catalogues to be used for large-scale observing programs.

  10. Effects of the nozzle design on the properties of plasma jet and formation of YSZ coatings under low pressure conditions

    NASA Astrophysics Data System (ADS)

    Sun, Chengqi; Gao, Yang; Yang, Deming; Fu, Yingqing

    2016-09-01

    How to control the quality of the coatings has become a major problem during the plasma spraying. Because nozzle contour has a great influence on the characteristic of the plasma jet, two kinds of plasma torches equipped with a standard cylindrical nozzle and a converging-diverging nozzle are designed for low pressure plasma spraying(LPPS) and very low pressure plasma spraying(VLPPS). Yttria stabilized zirconia(YSZ) coatings are obtained in the reducing pressure environment. The properties of the plasma jet without or with powder injection are analyzed by optical emission spectroscopy, and the electron temperature is calculated based on the ratio of the relative intensity of two Ar I spectral lines. The results show that some of the YSZ powder can be vaporized in the low pressure enlarged plasma jet, and the long anode nozzle may improve the characteristics of the plasma jet. The coatings deposited by LPPS are mainly composed of the equiaxed grains and while the unmelted powder particles and large scalar pores appear in the coatings made by VLPPS. The long anode nozzle could improve the melting of the powders and deposition efficiency, and enhance the coatings' hardness. At the same time, the long anode nozzle could lead to a decrease in the overspray phenomenon. Through the comparison of the two different size's nozzle, the long anode is much more suitable for making the YSZ coatings.

  11. Capillary Fracturing in Granular Media

    NASA Astrophysics Data System (ADS)

    Holtzman, Ran; Szulczewski, Michael L.; Juanes, Ruben

    2012-06-01

    We study the displacement of immiscible fluids in deformable, noncohesive granular media. Experimentally, we inject air into a thin bed of water-saturated glass beads and observe the invasion morphology. The control parameters are the injection rate, the bead size, and the confining stress. We identify three invasion regimes: capillary fingering, viscous fingering, and “capillary fracturing,” where capillary forces overcome frictional resistance and induce the opening of conduits. We derive two dimensionless numbers that govern the transition among the different regimes: a modified capillary number and a fracturing number. The experiments and analysis predict the emergence of fracturing in fine-grained media under low confining stress, a phenomenon that likely plays a fundamental role in many natural processes such as primary oil migration, methane venting from lake sediments, and the formation of desiccation cracks.

  12. Capillary fracturing in granular media.

    PubMed

    Holtzman, Ran; Szulczewski, Michael L; Juanes, Ruben

    2012-06-29

    We study the displacement of immiscible fluids in deformable, noncohesive granular media. Experimentally, we inject air into a thin bed of water-saturated glass beads and observe the invasion morphology. The control parameters are the injection rate, the bead size, and the confining stress. We identify three invasion regimes: capillary fingering, viscous fingering, and "capillary fracturing," where capillary forces overcome frictional resistance and induce the opening of conduits. We derive two dimensionless numbers that govern the transition among the different regimes: a modified capillary number and a fracturing number. The experiments and analysis predict the emergence of fracturing in fine-grained media under low confining stress, a phenomenon that likely plays a fundamental role in many natural processes such as primary oil migration, methane venting from lake sediments, and the formation of desiccation cracks.

  13. Localized fluidization in a granular medium.

    PubMed

    Philippe, P; Badiane, M

    2013-04-01

    We present here experimental results on the progressive development of a fluidized zone in a bed of grains, immersed in a liquid, under the effect of a localized upward flow injected through a small orifice at the bottom of the bed. Visualization inside the model granular medium consisting of glass beads is made possible by the combined use of two optical techniques: refractive index matching between the liquid and the beads and planar laser-induced fluorescence. Gradually increasing the injection rate, three regimes are successively observed: static bed, fluidized cavity that does not open to the upper surface of the granular bed, and finally fluidization over the entire height of the granular bed inside a fluidized chimney. The phase diagram is plotted and partially interpreted using a model previously developed by Zoueshtiagh and Merlen [F. Zoueshtiagh and A. Merlen, Phys. Rev. E 75, 053613 (2007)]. A typical sequence, where the flow rate is first increased and then decreased back to zero, reveals a strong hysteretic behavior since the stability of the fluidized cavity is considerably strengthened during the defluidization phase. This effect can be explained by the formation of force arches within the granular packing when the chimney closes up at the top of the bed. A study of the expansion rate of the fluidized cavity was also conducted as well as the analysis of the interaction between two injection orifices with respect to their spacing.

  14. Focus on granular segregation

    NASA Astrophysics Data System (ADS)

    Daniels, Karen E.; Schröter, Matthias

    2013-03-01

    Ordinary fluids mix themselves through thermal motions, or can be even more efficiently mixed by stirring. In contrast, granular materials such as sand often unmix when they are stirred, shaken or sheared. This granular segregation is both a practical means to separate materials in industry, and a persistent challenge to uniformly mixing them. While segregation phenomena are ubiquitous, a large number of different mechanisms have been identified and the underlying physics remains the subject of much inquiry. Particle size, shape, density and even surface roughness can play significant roles. The aim of this focus issue is to provide a snapshot of the current state of the science, covering a wide range of packing densities and driving mechanisms, from thermal-like dilute systems to dense flows.

  15. Measurement of granular entropy.

    PubMed

    McNamara, Sean; Richard, Patrick; de Richter, Sébastien Kiesgen; Le Caër, Gérard; Delannay, Renaud

    2009-09-01

    Recently, Dean and Lefèvre [Phys. Rev. Lett. 90, 198301 (2003)] developed a method for testing the statistical mechanical theory of granular packings proposed by Edwards and co-workers [Physica A 157, 1080 (1989); Phys. Rev. E 58, 4758 (1998)]. The method relies on the prediction that the ratio of two overlapping volume histograms should be exponential in volume. We extend the method by showing that one can also calculate the entropy of the packing and also that the method can yield false positive results when the histograms are Gaussians with nearly identical variances. We then apply the method to simulations and experiments of granular compaction. The distribution of global volumes (the volume of the entire packing) is nearly Gaussian and it is difficult to conclude if the theory is valid. On the other hand, the distribution of Voronoï volumes clearly obeys the theoretical prediction.

  16. Granular topological insulators.

    PubMed

    Banerjee, Abhishek; Deb, Oindrila; Majhi, Kunjalata; Ganesan, R; Sen, Diptiman; Anil Kumar, P S

    2017-05-25

    We demonstrate experimentally that a macroscopic topological insulator (TI) phase can emerge in a granular conductor composed of an assembly of tunnel coupled TI nanocrystals of dimension ∼10 nm × 10 nm × 2 nm. Electrical transport measurements on thin films of Bi2Se3 nanocrystals reveal the presence of decoupled top and bottom topological surface states that exhibit large surface state penetration depths (∼30 nm at 2 K). By tuning the size of the nanocrystals and the couplings between them, this new class of TIs may be readily tuned from a non-topological to a topological insulator phase, that too with designer properties. Paradoxically, this seemingly 'dirty' system displays properties that are closer to an ideal TI than most known single crystal systems, making granular/nanocrystalline TIs an attractive platform for future TI research.

  17. Formation of high-speed electron jets as the evidence for magnetic reconnection in laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Huang, Can; Dong, Quanli; Lu, Quanming; Lu, San; Sheng, Zhengming; Wang, Shui; Zhang, Jie

    2017-04-01

    Experiments about the flow-driven magnetic reconnection in high-energy-density laser-produced plasmas have recently been conducted on different platforms of giant laser facilities. In this paper, we perform two-dimensional (2D) particle-in-cell simulations to study the interactions of two colliding laser-produced plasma bubbles with a self-generated toroidal magnetic field. Two cases are investigated: in one case, the two plasma bubbles have an anti-parallel magnetic field (AP-case) in the colliding region, and in the other case, the two interacting parts of the magnetic field are configured parallel to each other (P-case). In both cases, the quadrupole structure of the out-of-plane magnetic field is observed, as well as the Hall electric field and the electron energization in the colliding region. However, only in the AP-case, three well-collimated in-plane electron jets are observed. Two electron jets along the magnetic field at the edge of the plasma bubbles are formed because the electrons are trapped and accelerated by the out-of-plane electric field located between the two colliding bubbles and then move outward along the magnetic field. The high-speed electron jet in the middle of the outflow region is formed as the electrons are reflected and accelerated in the pileup region of the magnetic field, which is moving outward quickly. We demonstrate that besides the annihilation of the magnetic field in the colliding region between the two laser-produced plasma bubbles approaching each other, the three well-collimated electron jets can also be considered as the evidence for the magnetic reconnection.

  18. Jetting tool

    SciTech Connect

    Szarka, D.D.; Schwegman, S.L.

    1991-07-09

    This patent describes an apparatus for hydraulically jetting a well tool disposed in a well, the well tool having a sliding member. It comprises positioner means for operably engaging the sliding member of the well tool; and a jetting means, connected at a rotatable connection to the positioner means so that the jetting means is rotatable relative to the positioner means and the well tool, for hydraulically jetting the well tool as the jetting means is rotated relative thereto.

  19. Granular cell ameloblastoma.

    PubMed

    Martin, Yakob; Sathyakumar, M; Premkumar, Jeyanthi; Magesh, K T

    2017-01-01

    A 42-year-female patient presented with a swelling on the left side of the face for the past 10 years. The radiograph shows multilocular radiolucency with evidence of root resorption. Histopathology reveals fibrous connective tissue exhibiting numerous odontogenic epithelial islands with peripheral tall columnar cells showing a reversal of polarity. The center of the island shows stellate reticulum like cells. The connective tissue also shows the presence of extensive coarse granular eosinophilic cells distributed throughout the section.

  20. The design of free structure granular mappings: the use of the principle of justifiable granularity.

    PubMed

    Pedrycz, Witold; Al-Hmouz, Rami; Morfeq, Ali; Balamash, Abdullah

    2013-12-01

    The study introduces a concept of mappings realized in presence of information granules and offers a design framework supporting the formation of such mappings. Information granules are conceptually meaningful entities formed on a basis of a large number of experimental input–output numeric data available for the construction of the model. We develop a conceptually and algorithmically sound way of forming information granules. Considering the directional nature of the mapping to be formed, this directionality aspect needs to be taken into account when developing information granules. The property of directionality implies that while the information granules in the input space could be constructed with a great deal of flexibility, the information granules formed in the output space have to inherently relate to those built in the input space. The input space is granulated by running a clustering algorithm; for illustrative purposes, the focus here is on fuzzy clustering realized with the aid of the fuzzy C-means algorithm. The information granules in the output space are constructed with the aid of the principle of justifiable granularity (being one of the underlying fundamental conceptual pursuits of Granular Computing). The construct exhibits two important features. First, the constructed information granules are formed in the presence of information granules already constructed in the input space (and this realization is reflective of the direction of the mapping from the input to the output space). Second, the principle of justifiable granularity does not confine the realization of information granules to a single formalism such as fuzzy sets but helps form the granules expressed any required formalism of information granulation. The quality of the granular mapping (viz. the mapping realized for the information granules formed in the input and output spaces) is expressed in terms of the coverage criterion (articulating how well the experimental data are

  1. Siegel FIRST EXPERIMENTAL DISCOVERY of Granular-Giant-Magnetoresistance (G-GMR) DiagnosES/ED Wigner's-Disease/.../Spinodal-Decomposition in ``Super''Alloys Generic Endemic Extant in: Nuclear-Reactors/ Petrochemical-Plants/Jet/ Missile-Engines/...

    NASA Astrophysics Data System (ADS)

    Hoffman, Ace; Wigner-Weinberg, Eugene-Alvin; Siegel, Edward Carl-Ludwig Sidney; ORNL/Wigner/Weinberg/Siegel/Hollifeld/Yu/... Collaboration; ANL/Fermi/Wigner/Arrott/Weeks/Bader/Freeman/Sinha/Palazlotti/Nichols/Petersen/Rosner/Zimmer/... Collaboration; BNL/Chudahri/Damask/Dienes/Emery/Goldberg/Bak//Bari/Lofaro/... Collaboration; LLNL-LANL/Hecker/Tatro/Meara/Isbell/Wilkins/YFreund/Yudof/Dynes/Yang/... Collaboration; WestinKLouse/EPRI/PSEG/IAEA/ABB/Rickover/Nine/Carter/Starr/Stern/Hamilton/Richards/Lawes/OGrady/Izzo Collaboration

    2013-03-01

    Siegel[APS Shock-Physics Mtg., Chicago(11)] carbides solid-state chemistry[PSS (a)11,45(72); Semis. & Insuls. 5: 39,47,62 (79)], following: Weinberg-Siegel-Loretto-Hargraves-Savage-Westwood-Seitz-Overhauser-..., FIRST EXPERIMENTAL DISCOVERY of G-GMR[JMMM 7, 312(78); Google: ``If LEAKS Could KILL Ana Mayo''] identifIED/IES GENERIC ENDEMIC EXTANT domination of old/new (so mis-called) ``super''alloys': nuclear-reactors/spent-fuel-casks/refineries/jet/missile/rocket-engines in austenitic/FCC Ni/Fe/Co-based (so mis-called) ''super''alloys (182/82; Hastelloy-X,600,304/304L-Stainless-Steels,...,690!!!) GENERIC ENDEMIC EXTANT detrimental(synonyms!!!): THERMAL: Wigner's-disease(WD physics) [J.Appl.Phys.17,857(46)]/ Ostwald-ripening

  2. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Brujan, E. A.; Ikeda, T.; Matsumoto, Y.

    2005-10-01

    The dynamics of inertial cavitation bubbles produced by short pulses of high-intensity focused ultrasound near a rigid boundary are studied to get a better understanding of the role of jet formation and shock wave emission during bubble collapse in the therapeutic applications of ultrasound. The bubble dynamics are investigated by high-speed photography with up to 2 million frames/s and acoustic measurements, as well as by numerical calculations. The significant parameter of this study is the dimensionless stand-off, γ, which is defined as the distance of the bubble centre at its maximum expansion scaled by the maximum bubble radius. High-speed photography is applied to observe the bubble motion and the velocity of the liquid jet formed during bubble collapse. Hydrophone measurements are used to determine the pressure and the duration of the shock wave emitted during bubble rebound. Calculations yield the variation with time of the bubble wall, the maximum velocity and the kinetic energy of the re-entrant jet. The comparisons between experimental and numerical data are favourable with regard to both shape history and translational motion of the bubble. The acoustic energy constitutes the largest individual amount in the energy balance of bubble collapse. The ratio of the shock wave energy, measured at 10 mm from the emission centre, to the cavitation bubble energy was 1:2.4 at γ = 1.55 and 1:3.5 at γ = 1. At this distance, the shock wave pressure ranges from 0.122 MPa, at γ = 1, to 0.162 MPa, at γ = 1.55, and the temporal duration at the half maximum level is 87 ns. The maximum jet velocity ranges from 27 m s-1, at γ = 1, to 36 m s-1, at γ = 1.55. For γ < 1.2, the re-entrant jet can generate an impact pressure on the nearby boundary larger than 50 MPa. We discuss the implications of the results for the therapeutic applications of high-intensity focused ultrasound.

  3. Plastic Deformation of Granular Materials

    DTIC Science & Technology

    1993-01-25

    discontinuities. These result will be important in our granular flow work, when considering viscoplastic constitutive relations (i.e. relaxation systems...5 CUNDN( NUMRES Plastic Deformation of Granular Materials (U) 61102F 6. AUTHOR(S) 2304/A4 Dr. E. Bruce Pitman 7 PERFORMING ORGANIZATION NA .h • 8...lose hyperbolicity. 98 3 81 061! SUBJECT TERMS 15. NUMBER OF PAGES granular material ; plastic deformation; hyperbolic 12 equations 16. PRICE CODE 17

  4. Self-Structuring of Granular material under Capillary Bulldozing

    NASA Astrophysics Data System (ADS)

    Dumazer, Guillaume; Sandnes, Bjørnar; Ayaz, Monem; Måløy, Knut Jørgen; Flekkøy, Eirik

    2017-06-01

    An experimental observation of the structuring of a granular suspension under the progress of a gas/liquid meniscus in a narrow tube is reported here. The granular material is moved and compactifies as a growing accumulation front. The frictional interaction with the confining walls increases until the pore capillary entry pressure is reached. The gas then penetrates the clogged granular packing and a further accumulation front is formed at the far side of the plug. This cyclic process continues until the gas/liquid interface reaches the tube's outlet, leaving a trail of plugs in the tube. Such 1D pattern formation belongs to a larger family of patterning dynamics observed in 2D Hele-Shaw geometry. The cylindrical geometry considered here provides an ideal case for a theoretical modelling for forced granular matter oscillating between a long frictional phase and a sudden viscous fluidization.

  5. Bifurcation and nonlinear behavior of compartmentalized granular gases

    NASA Astrophysics Data System (ADS)

    Hou, Meiying; Liu, Rui; Li, Yinchang; Zhang, Yin; Shah, Sajjad Hussain

    2014-12-01

    Different from the molecular gas, clustering is a most commonly observed feature of the granular gas. A review is given of our previous work on the clustering, especially the oscillatory clustering for shaken fluidized granular matter in connected compartments, as examples for pattern formation and bifurcations in far from equilibrium systems. Flux model is presented and discussed for mono-disperse and bi-disperse granular systems. Comparison of the flux model with simulation results is given. They show reasonably well agreements. Besides the homogeneous (HOM), segregation (SEG), and oscillatory (OSC) states, two new stationary states (d-OSC and s-HOM) in the bi-disperse granular system are predicted by our simulation. In our recent work these two new states are observed experimentally, and their flow diagrams are obtained based on the flux model. The transition from degenerate oscillation state to oscillation state demonstrates a homoclinic gluing bifurcation.

  6. Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field: recent results and new exeprimental studies

    NASA Astrophysics Data System (ADS)

    Vinci, Tommaso; Revet, Guilhem; Higginson, Drew; Béard, Jérome; Burdonov, K.; Chen, Sophia; Khagani, D.; Khiar, B.; Naughton, K.; Pikuz, S.; Riconda, Caterina; Riquier, R.; Soloviev, A.; Willi, O.; Portugall, O.; Pépin, Henry; Ciardi, Andrea; Fuchs, Julien; Albertazzi, Bruno

    2015-08-01

    Accretion shocks in Young Stellar Objects (YSO) are a subject of great interest in astrophysics; they exhibit intense magnetic activity and are surrounded by an accretion disk from which matter falls down onto the stellar surface in the form of columns following the magnetic lines (B ~ kG) at the free-fall velocity (100-500 km/s). As a column impacts the stellar surface, a radiative shock is created which heats up the infalling flow. As a consequence, a new reverse shock forms and some oscillations are expected in the emitted radiation as a proof of this periodic dynamic, but no periodicity has yet been detected in observations.To understand the reasons for this apparent inconsistency, we have recently developped an experimental setup [B. Albertazzi et al. Science 346, 325 (2014)] in which a plasma flow (generated by a high energy laser: 1013 W/cm2 - 0.6 ns pulse) is confined inside a poloidal magnetic field (20 T). This jet has an aspect ratio >10, a temperature of tens of eV, an electron density of 1018 cm-3 and propagates at 700 km/s as show by our previous numerical work [A. Ciardi et al. Physical Review Letters, 110 (2013)]. To investigate the accretion dynamics, the jet acts as the accretion column and hits a secondary target acting as the stellar surface. We will present the recent results on generation and dynamics of the jet and the new experimental results of this configuration, namely of a supersonic reverse shock traveling within the accretion column with a speed of 100 km/s, representing a Mach number of ~ 30, and the observation of increased density structures along the edges of the interaction. This will be discussed in the light of 3D-magneto-hydrodynamic simulations which parametric variations allow to understand how the various plasma parameters affect the accretion.

  7. Small solar system bodies as granular systems

    NASA Astrophysics Data System (ADS)

    Hestroffer, Daniel; Campo Bagatín, Adriano; Losert, Wolfgang; Opsomer, Eric; Sánchez, Paul; Scheeres, Daniel J.; Staron, Lydie; Taberlet, Nicolas; Yano, Hajime; Eggl, Siegfried; Lecomte, Charles-Edouard; Murdoch, Naomi; Radjai, Fahrang; Richardson, Derek C.; Salazar, Marcos; Schwartz, Stephen R.; Tanga, Paolo

    2017-06-01

    Asteroids and other Small Solar System Bodies (SSSBs) are currently of great scientific and even industrial interest. Asteroids exist as the permanent record of the formation of the Solar System and therefore hold many clues to its understanding as a whole, as well as insights into the formation of planetary bodies. Additionally, SSSBs are being investigated in the context of impact risks for the Earth, space situational awareness and their possible industrial exploitation (asteroid mining). In all these aspects, the knowledge of the geophysical characteristics of SSSB surface and internal structure are of great importance. Given their size, constitution, and the evidence that many SSSBs are not simple monoliths, these bodies should be studied and modelled as self-gravitating granular systems in general, or as granular systems in micro-gravity environments in particular contexts. As such, the study of the geophysical characteristics of SSSBs is a multi-disciplinary effort that lies at the crossroads between Granular Mechanics, Celestial Mechanics, Soil Mechanics, Aerospace Engineering and Computer Sciences.

  8. Double layers and plasma-wave resistivity in extragalactic jets - Cavity formation and radio-wave emission

    NASA Technical Reports Server (NTRS)

    Borovsky, Joseph E.

    1987-01-01

    Current driven electrostatic-wave- and electromagnetic-wave-produced resistivities do not occur in extragalactic jets for estimated values of the carried currents. Strong plasma double layers, however, may exist within self-maintained density cavities. The relativistic double-layer-emitted electron and ion beams drive plasma-wave resistivities in the low- and high-potential plasma adjacent to the double layers. The double-layer-emitted electron beams may also emit polarized radio waves via a collective bremsstrahlung process mediated by electrostatic two-stream instabilities.

  9. Double layers and plasma-wave resistivity in extragalactic jets: Cavity formation and radio-wave emission

    NASA Technical Reports Server (NTRS)

    Borovsky, Joseph E.

    1987-01-01

    For estimated values of the currents carried by extragalactic jets, current-driven electrostatic-wave- and electromagnetic-wave-produced resistivities do not occur. Strong plasma double layers, however, may exist within self-maintained density cavities, the relativistic double-layer-emitted electron, and ion beams driving plasma-wave resistivities in the low- and high-potential plasma adjacent to the double layers. The double-layer-emitted electron beams may also emit polarized radio waves via a collective bremsstrahlung process mediated by electrostatic two-stream instabilities.

  10. Observed transition from Richtmyer-Meshkov jet formation through feedout oscillations to Rayleigh-Taylor instability in a laser target

    SciTech Connect

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Nikitin, S. P.; Oh, J.; Metzler, N.

    2012-10-15

    Experimental study of hydrodynamic perturbation evolution triggered by a laser-driven shock wave breakout at the free rippled rear surface of a plastic target is reported. At sub-megabar shock pressure, planar jets manifesting the development of the Richtmyer-Meshkov-type instability in a non-accelerated target are observed. As the shock pressure exceeds 1 Mbar, an oscillatory rippled expansion wave is observed, followed by the 'feedout' of the rear-surface perturbations to the ablation front and the development of the Rayleigh-Taylor instability, which breaks up the accelerated target.

  11. Double layers and plasma-wave resistivity in extragalactic jets - Cavity formation and radio-wave emission

    NASA Technical Reports Server (NTRS)

    Borovsky, Joseph E.

    1987-01-01

    Current driven electrostatic-wave- and electromagnetic-wave-produced resistivities do not occur in extragalactic jets for estimated values of the carried currents. Strong plasma double layers, however, may exist within self-maintained density cavities. The relativistic double-layer-emitted electron and ion beams drive plasma-wave resistivities in the low- and high-potential plasma adjacent to the double layers. The double-layer-emitted electron beams may also emit polarized radio waves via a collective bremsstrahlung process mediated by electrostatic two-stream instabilities.

  12. Impact of liquid droplets on granular media.

    PubMed

    Delon, G; Terwagne, D; Dorbolo, S; Vandewalle, N; Caps, H

    2011-10-01

    The crater formation due to the impact of a water droplet onto a granular bed has been experimentally investigated. Three parameters were tuned: the impact velocity, the size of the droplet, and the size of the grains. The aim is to determine the influence of the kinetic energy on the droplet pattern. The shape of the crater depends on the kinetic energy at the moment the droplet starts to impact the bed. The spreading and recession of the liquid during the impact were carefully analyzed from the dynamical point of view, using image analysis of high-speed video recordings. The different observed regimes are characterized by the balance between the impregnation time of the water by the granular bed by the water and the capillary time responsible for the recession of the drop.

  13. Erosion and flow of hydrophobic granular materials

    NASA Astrophysics Data System (ADS)

    Utter, Brian; Benns, Thomas; Foltz, Benjamin; Mahler, Joseph

    2015-03-01

    We experimentally investigate submerged granular flows of hydrophobic and hydrophilic grains both in a rotating drum geometry and under erosion by a surface water flow. While slurry and suspension flows are common in nature and industry, effects of surface chemistry on flow behavior have received relatively little attention. In the rotating drum, we use varying concentrations of hydrophobic and hydrophilic grains of sand submerged in water rotated at a constant angular velocity. Sequential images of the resulting avalanches are taken and analyzed. High concentrations of hydrophobic grains result in an effectively cohesive interaction between the grains forming aggregates, with aggregate size and repose angle increasing with hydrophobic concentration. However, the formation and nature of the aggregates depends significantly on the presence of air in the system. We present results from a related experiment on erosion by a surface water flow designed to characterize the effects of heterogeneous granular surfaces on channelization and erosion.

  14. Erosion and flow of hydrophobic granular materials

    NASA Astrophysics Data System (ADS)

    Utter, Brian; Benns, Thomas; Mahler, Joseph

    2013-11-01

    We experimentally investigate submerged granular flows of hydrophobic and hydrophilic grains both in a rotating drum geometry and under erosion by a surface water flow. While slurry and suspension flows are common in nature and industry, effects of surface chemistry on flow behavior have received relatively little attention. In the rotating drum , we use varying concentrations of hydrophobic and hydrophilic grains of sand submerged in water rotated at a constant angular velocity. Sequential images of the resulting avalanches are taken and analyzed. High concentrations of hydrophobic grains result in an effectively cohesive interaction between the grains forming aggregates, with aggregate size and repose angle increasing with hydrophobic concentration. However, the formation and nature of the aggregates depends significantly on the presence of air in the system. We present results from a related experiment on erosion by a surface water flow designed to characterize the effects of heterogeneous granular surfaces on channelization and erosion. Supported by NSF CBET Award 1067598.

  15. Fracture reveals clustering in cohesive granular matter

    NASA Astrophysics Data System (ADS)

    Tapia, Franco; Santucci, Stéphane; Géminard, Jean-Christophe

    2016-09-01

    We report an experimental study of the morphology of fractures in cohesive granular materials. Cohesion is introduced by equilibrating the grains with a humid atmosphere. The setup allows to produce a controlled crack in a thin layer of a glass beads assembly, and observe with an extremely high resolution the edge of the fracture at the free surface of the layer. The detailed multi-scale analysis of the fracture profile reveals the presence, in the bulk of the material, of clusters of grains whose size increases monotonically with the relative humidity. These results are important because the formation of clusters, resulting in a heterogeneity of the cohesion force, governs the mechanical properties of cohesive granular matter in contact with a humid atmosphere.

  16. Elastic Granular Flows

    NASA Astrophysics Data System (ADS)

    Campbell, Charles

    2006-03-01

    There is no fundamental understanding of the mechanics of granular solids. Partially this is because granular flows have historically been divided into two very distinct flow regimes, (1) the slow, quasistatic regime, in which the bulk friction coefficient is taken to be a material constant, and (2) the fast, rapid-flow regime, where the particles interact collisionally. But slow hopper flow simulations indicate that the bulk friction coefficient is not a constant. Rapidly moving large scale landslide simulations never entered the collisional regime and operate in a separate intermediate flow regime. In other words, most realistic granular flows are not described by either the quasistatic or rapid flow models and it is high time that the field look beyond those early models. This talk will discuss computer simulation studies that draw out the entire flowmap of shearing granular materials, spanning the quasistatic, rapid and the intermediate regimes. The key was to include the elastic properties of the solid material in the set of rheological parameters; in effect, this puts solid properties back into the rheology of granular solids. The solid properties were previously unnecessary in the plasticity and kinetic theory formalisms that respectively form the foundations of the quasistatic and rapid-flow theories. Granular flows can now be divided into two broad categories, the Elastic Regimes, in which the particles are locked in force chains and interact elastically over long duration contact with their neighbors and the Inertial regimes, where the particles have broken free of the force chains. The Elastic regimes can be further subdivided into the Elastic-Quasistatic regime (the old quasistatic regime) and the Elastic-Inertial regime. The Elastic-Inertial regime is the ``new'' regime observed in the landslide simulations, in which the inertially induced stresses are significant compared to the elastically induced stresses. The Inertial regime can also be sub

  17. Water Fountains in the Sky: Streaming Water Jets from Aging Star Provide Clues to Planetary-Nebula Formation

    NASA Astrophysics Data System (ADS)

    2002-06-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have found that an aging star is spewing narrow, rotating streams of water molecules into space, like a jerking garden hose that has escaped its owner's grasp. The discovery may help resolve a longstanding mystery about how the stunningly beautiful objects called planetary nebulae are formed. Artist's Conception of W43A. Artist's conception of W43A, with the aging star surrounded by a disk of material and a precessing, twisted jet of molecules streaming away from it in two directions. Credit: Kirk Woellert/National Science Foundation. The astronomers used the VLBA, operated by the National Radio Astronomy Observatory, to study a star called W43A. W43A is about 8,500 light-years from Earth in the direction of the constellation Aquila, the eagle. This star has come to the end of its normal lifetime and, astronomers believe, is about to start forming a planetary nebula, a shell of brightly glowing gas lit by the hot ember into which the star will collapse. "A prime mystery about planetary nebulae is that many are not spherical even though the star from which they are ejected is a sphere," said Phillip Diamond, director of the MERLIN radio observatory at Jodrell Bank in England, and one of the researchers using the VLBA. "The spinning jets of water molecules we found coming from this star may be one mechanism for producing the structures seen in many planetary nebulae," he added. The research team, led by Hiroshi Imai of Japan's National Astronomical Observatory (now at the Joint Institute for VLBI in Europe, based in the Netherlands), also includes Kumiko Obara of the Mizusawa Astrogeodynamics Observatory and Kagoshima University; Toshihiro Omodaka, also of Kagoshima University; and Tetsuo Sasao of the Japanese National Astronomical Observatory. The scientists reported their findings in the June 20 issue of the scientific journal Nature. As stars similar to our Sun

  18. Sinking a Granular Raft

    NASA Astrophysics Data System (ADS)

    Protière, Suzie; Josserand, Christophe; Aristoff, Jeffrey M.; Stone, Howard A.; Abkarian, Manouk

    2017-03-01

    We report experiments that yield new insights on the behavior of granular rafts at an oil-water interface. We show that these particle aggregates can float or sink depending on dimensionless parameters taking into account the particle densities and size and the densities of the two fluids. We characterize the raft shape and stability and propose a model to predict its shape and maximum length to remain afloat. Finally we find that wrinkles and folds appear along the raft due to compression by its own weight, which can trigger destabilization. These features are characteristics of an elastic instability, which we discuss, including the limitations of our model.

  19. Sinking a Granular Raft.

    PubMed

    Protière, Suzie; Josserand, Christophe; Aristoff, Jeffrey M; Stone, Howard A; Abkarian, Manouk

    2017-03-10

    We report experiments that yield new insights on the behavior of granular rafts at an oil-water interface. We show that these particle aggregates can float or sink depending on dimensionless parameters taking into account the particle densities and size and the densities of the two fluids. We characterize the raft shape and stability and propose a model to predict its shape and maximum length to remain afloat. Finally we find that wrinkles and folds appear along the raft due to compression by its own weight, which can trigger destabilization. These features are characteristics of an elastic instability, which we discuss, including the limitations of our model.

  20. Fuzzy jets

    NASA Astrophysics Data System (ADS)

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; Stansbury, Conrad

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets. To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets, are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.

  1. Fuzzy jets

    DOE PAGES

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; ...

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variablesmore » in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  2. Fuzzy jets

    SciTech Connect

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; Stansbury, Conrad

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.

  3. Granular cell tumor of trachea.

    PubMed

    Bekteshi, Edgar; Toth, Jennifer W; Benninghoff, Michael G; Kang, Jason; Betancourt, Manuel

    2009-01-01

    Granular cell tumors of the tracheobronchial tree are rare benign lesions of neurogenic origin. These benign tumors mostly involve the skin, oral cavity, or esophagus. There is no consensus regarding treatment of granular cell tumors. Treatment varies from simple observation to different bronchoscopic interventions, such as laser therapy or fulguration to surgical resection.

  4. Spreading of a granular droplet

    NASA Astrophysics Data System (ADS)

    Clement, Eric; Sanchez, Ivan; Raynaud, Franck; Lanuza, Jose; Andreotti, Bruno; Aranson, Igor

    2008-03-01

    The influence of controlled vibrations on the granular rheology is investigated in a specifically designed experiment in which a granular film spreads under the action of horizontal vibrations. A nonlinear diffusion equation is derived theoretically that describes the evolution of the deposit shape. A self-similar parabolic shape (the``granular droplet'') and a spreading dynamics are predicted that both agree quantitatively with the experimental results. The theoretical analysis is used to extract effective friction coefficients between the base and the granular layer under sustained and controlled vibrations. A shear thickening regime characteristic of dense granular flows is evidenced at low vibration energy, both for glass beads and natural sand. Conversely, shear thinning is observed at high agitation.

  5. Spreading of a granular droplet

    NASA Astrophysics Data System (ADS)

    Sánchez, Iván; Raynaud, Franck; Lanuza, José; Andreotti, Bruno; Clément, Eric; Aranson, Igor S.

    2007-12-01

    The influence of controlled vibrations on the granular rheology is investigated in a specifically designed experiment in which a granular film spreads under the action of horizontal vibrations. A nonlinear diffusion equation is derived theoretically that describes the evolution of the deposit shape. A self-similar parabolic shape (the“granular droplet”) and a spreading dynamics are predicted that both agree quantitatively with the experimental results. The theoretical analysis is used to extract effective friction coefficients between the base and the granular layer under sustained and controlled vibrations. A shear thickening regime characteristic of dense granular flows is evidenced at low vibration energy, both for glass beads and natural sand. Conversely, shear thinning is observed at high agitation.

  6. Jamming in granular materials

    NASA Astrophysics Data System (ADS)

    Behringer, Robert P.

    2015-01-01

    Granular materials are one of a class of materials which undergo a transition from mechanically unstable to mechanically stable states as key system parameters change. Pioneering work by Liu and Nagel and O'Hern et al. focused on models consisting of frictionless grains. In this case, density, commonly expressed in terms of the packing fraction, ϕ, is of particular importance. For instance, O'Hern et al. found that there is a minimum ϕ =ϕJ, such that below this value there are no jammed states, and that above this value, all stress-isotropic states are jammed. Recently, simulations and experiments have explored the case of grains with friction. This case is more subtle, and ϕ does not play such a simple role. Recently, several experiments have shown that there exists a range of relatively low ϕ's such that at the same ϕ it is possible to have jammed, unjammed, and fragile states in the sense of Cates et al. This review discusses some of this recent work, and contrasts the cases of jamming for frictionless and frictional granular systems.

  7. Heterogeneities in granular dynamics

    PubMed Central

    Mehta, A.; Barker, G. C.; Luck, J. M.

    2008-01-01

    The absence of Brownian motion in granular media is a source of much complexity, including the prevalence of heterogeneity, whether static or dynamic, within a given system. Such strong heterogeneities can exist as a function of depth in a box of grains; this is the system we study here. First, we present results from three-dimensional, cooperative and stochastic Monte Carlo shaking simulations of spheres on heterogeneous density fluctuations. Next, we juxtapose these with results obtained from a theoretical model of a column of grains under gravity; frustration via competing local fields is included in our model, whereas the effect of gravity is to slow down the dynamics of successively deeper layers. The combined conclusions suggest that the dynamics of a real granular column can be divided into different phases—ballistic, logarithmic, activated, and glassy—as a function of depth. The nature of the ground states and their retrieval (under zero-temperature dynamics) is analyzed; the glassy phase shows clear evidence of its intrinsic (“crystalline”) states, which lie below a band of approximately degenerate ground states. In the other three phases, by contrast, the system jams into a state chosen randomly from this upper band of metastable states. PMID:18541918

  8. Nitric oxide formation in a lean, premixed-prevaporized jet A/air flame tube: An experimental and analytical study

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Bianco, Jean; Deur, John M.; Ghorashi, Bahman

    1992-01-01

    An experimental and analytical study was performed on a lean, premixed-prevaporized Jet A/air flame tube. The NO(x) emissions were measured in a flame tube apparatus at inlet temperatures ranging from 755 to 866 K (900 to 1100 F), pressures from 10 to 15 atm, and equivalence ratios from 0.37 to 0.62. The data were then used in regressing an equation to predict the NO(x) production levels in combustors of similar design. Through an evaluation of parameters it was found that NO(x) is dependent on adiabatic flame temperature and combustion residence time, yet independent of pressure and inlet air temperature for the range of conditions studied. This equation was then applied to experimental data that were obtained from the literature, and a good correlation was achieved.

  9. Sequential plug formation, disintegration by Vulcanian explosions, and the generation of granular Pyroclastic Density Currents at Tungurahua volcano (2013-2014), Ecuador

    NASA Astrophysics Data System (ADS)

    Hall, Minard L.; Steele, Alexander L.; Bernard, Benjamin; Mothes, Patricia A.; Vallejo, Silvia X.; Douillet, Guilhem A.; Ramón, Patricio A.; Aguaiza, Santiago X.; Ruiz, Mario C.

    2015-11-01

    Following 84 years of repose, Tungurahua volcano, Ecuador initiated its present eruptive episode in October 1999, but its PDC activity only began in July 2006. A period of highly energetic Vulcanian eruptions started in 2012, those of 14 July 2013, 18 October 2013, and 1 February 2014 being the most important. These eruptions were well-monitored by a 5-station broadband seismic and acoustic array. Repeated repose intervals of ~ 3.5 months between Vulcanian events (VEI ~ 2) suggest that gases in the ascending juvenile magma experienced sequential pressurization cycles, as magma of preceding eruptive events solidified to form plugs that sealed the conduit. Every 34 months plug failure occurred, abrupt decompression followed, and the resulting Vulcanian explosions are associated with the highest seismic and acoustic energies ever registered anywhere. Small to moderate-sized PDC flows associated with the explosions and fountain collapses were generated and traveled ≤ 7 km down the steep N, NW, and W flanks of Tungurahua's cone at velocities of 11 to 18 m/s, although a small lateral blast and its PDC were clocked at 33 m/s descending the N flank. The explosive fragmentation of the plugs (a dense microcrystalline andesite) and the juvenile magma (a vesiculated glassy andesite) comprise the principal rock fragments of the PDC deposits. Each deposit typically consisting of two layers; a thin upper layer of large segregated and abraded clasts with few fines and a thicker lower layer that is fines-rich with few large clasts. Many deposits were studied and photographed within a few days of their formation, which are presented.

  10. Structural characterization of submerged granular packings

    NASA Astrophysics Data System (ADS)

    Jakšić, Z. M.; Šćepanović, J. R.; Lončarević, I.; Budinski-Petković, Lj.; Vrhovac, S. B.; Belić, A.

    2014-12-01

    We consider the impact of the effective gravitational acceleration on microstructural properties of granular packings through experimental studies of spherical granular materials saturated within fluids of varying density. We characterize the local organization of spheres in terms of contact connectivity, distribution of the Delaunay free volumes, and the shape factor (parameter of nonsphericity) of the Voronoï polygons. The shape factor gives a clear physical picture of the competition between less and more ordered domains of particles in experimentally obtained packings. As the effective gravity increases, the probability distribution of the shape factor becomes narrower and more localized around the lowest values of the shape factor corresponding to regular hexagon. It is found that curves of the pore distributions are asymmetric with a long tail on the right-hand side, which progressively reduces while the effective gravity gets stronger for lower densities of interstitial fluid. We show that the distribution of local areas (Voronoï cells) broadens with decreasing value of the effective gravity due to the formation of lose structures such as large pores and chainlike structures (arches or bridges). Our results should be particularly helpful in testing the newly developed simulation techniques involving liquid-related forces associated with immersed granular particles.

  11. Structural characterization of submerged granular packings.

    PubMed

    Jakšić, Z M; Šćepanović, J R; Lončarević, I; Budinski-Petković, Lj; Vrhovac, S B; Belić, A

    2014-12-01

    We consider the impact of the effective gravitational acceleration on microstructural properties of granular packings through experimental studies of spherical granular materials saturated within fluids of varying density. We characterize the local organization of spheres in terms of contact connectivity, distribution of the Delaunay free volumes, and the shape factor (parameter of nonsphericity) of the Voronoï polygons. The shape factor gives a clear physical picture of the competition between less and more ordered domains of particles in experimentally obtained packings. As the effective gravity increases, the probability distribution of the shape factor becomes narrower and more localized around the lowest values of the shape factor corresponding to regular hexagon. It is found that curves of the pore distributions are asymmetric with a long tail on the right-hand side, which progressively reduces while the effective gravity gets stronger for lower densities of interstitial fluid. We show that the distribution of local areas (Voronoï cells) broadens with decreasing value of the effective gravity due to the formation of lose structures such as large pores and chainlike structures (arches or bridges). Our results should be particularly helpful in testing the newly developed simulation techniques involving liquid-related forces associated with immersed granular particles.

  12. Comparison of Mesomechanical and Continuum Granular Flow Models for Ceramics

    SciTech Connect

    Curran, D. R.

    2006-07-28

    Constitutive models for the shear strength of ceramics undergoing fracture are needed for modeling long rod and shaped-charge jet penetration events in ceramic armor. The ceramic material ahead of the penetrator has been observed to be finely comminuted material that flows around the nose of the eroding penetrator (Shockey et al.). The most-used continuum models are of the Drucker-Prager type with an upper cutoff, or of the Mohr-Coulomb type with strain rate dependence and strain softening. A disadvantage of such models is that they have an unclear connection to the actual microscopic processes of granular flow and comminution. An alternate approach is to use mesomechanical models that describe the dynamics of the granular flow, as well as containing a description of the granular comminution and resultant material softening. However, a disadvantage of the mesomechanical models is that they are computationally more burdensome to apply. In the present paper, we compare the behaviors of a mesomechanical model, FRAGBED2, with the Walker and Johnson-Holmquist continuum models, where the granular material is subjected to simple strain histories under various confining pressures and strain rates. We conclude that the mesomechanical model can provide valuable input to the continuum models, both in interpretation of the continuum models' parameters and in suggesting their range of applicability.

  13. Interacting jets from binary protostars

    NASA Astrophysics Data System (ADS)

    Murphy, G. C.; Lery, T.; O'Sullivan, S.; Spicer, D.; Bacciotti, F.; Rosen, A.

    2008-02-01

    Aims: We investigate potential models that could explain why multiple proto-stellar systems predominantly show single jets. During their formation, stars most frequently produce energetic outflows and jets. However, binary jets have only been observed in a very small number of systems. Methods: We model numerically 3D binary jets for various outflow parameters. We also model the propagation of jets from a specific source, namely L1551 IRS 5, known to have two jets, using recent observations as constraints for simulations with a new MHD code. We examine their morphology and dynamics, and produce synthetic emission maps. Results: We find that the two jets interfere up to the stage where one of them is almost destroyed or engulfed into the second one. We are able to reproduce some of the observational features of L1551 such as the bending of the secondary jet. Conclusions: While the effects of orbital motion are negligible over the jets dynamical timeline, their interaction has significant impact on their morphology. If the jets are not strictly parallel, as in most observed cases, we show that the magnetic field can help the collimation and refocusing of both of the two jets.

  14. Particle Deposition in Granular Media. Final report

    SciTech Connect

    Tien, C.

    1992-12-31

    Objective is to understand aerosol deposition from gas streams flowing through granular media; this is important to the design of granular filtration systems. The following investigations were carried out: transient behavior of granular filtration of aerosols, and stochastic simulation of aerosol deposition in granular media.

  15. Aerobic granular sludge: recent advances.

    PubMed

    Adav, Sunil S; Lee, Duu-Jong; Show, Kuan-Yeow; Tay, Joo-Hwa

    2008-01-01

    Aerobic granulation, a novel environmental biotechnological process, was increasingly drawing interest of researchers engaging in work in the area of biological wastewater treatment. Developed about one decade ago, it was exciting research work that explored beyond the limits of aerobic wastewater treatment such as treatment of high strength organic wastewaters, bioremediation of toxic aromatic pollutants including phenol, toluene, pyridine and textile dyes, removal of nitrogen, phosphate, sulphate and nuclear waste and adsorption of heavy metals. Despite this intensive research the mechanisms responsible for aerobic granulation and the strategy to expedite the formation of granular sludge, and effects of different operational and environmental factors have not yet been clearly described. This paper provides an up-to-date review on recent research development in aerobic biogranulation technology and applications in treating toxic industrial and municipal wastewaters. Factors affecting granulation, granule characterization, granulation hypotheses, effects of different operational parameters on aerobic granulation, response of aerobic granules to different environmental conditions, their applications in bioremediations, and possible future trends were delineated. The review attempts to shed light on the fundamental understanding in aerobic granulation by newly employed confocal laser scanning microscopic techniques and microscopic observations of granules.

  16. Self-assembled granular towers

    NASA Astrophysics Data System (ADS)

    Pacheco-Vazquez, Felipe; Moreau, Florian; Vandewalle, Nicolas; Dorbolo, Stephan; GroupResearch; Applications in Statistical Physics Team

    2013-03-01

    When some water is added to sand, cohesion among the grains is induced. In fact, only 1% of liquid volume respect to the total pore space of the sand is necessary to built impressive sandcastles. Inspired on this experience, the mechanical properties of wet piles and sand columns have been widely studied during the last years. However, most of these studies only consider wet materials with less than 35% of liquid volume. Here we report the spontaneous formation of granular towers produced when dry sand is poured on a highly wet sand bed: The impacting grains stick on the wet grains due to instantaneous liquid bridges created during the impact. The grains become wet by the capillary ascension of water and the process continues, giving rise to stable narrow sand towers. Actually, the towers can reach the maximum theoretical limit of stability predicted by previous models, only expected for low liquid volumes. The authors would like to thank FNRS and Conacyt Mexico for financial support. FPV is a beneficiary of a movility grant from BELSPO/Marie Curie and the University of Liege.

  17. Jet injection into polyacrylamide gels: investigation of jet injection mechanics.

    PubMed

    Schramm-Baxter, Joy; Katrencik, Jeffrey; Mitragotri, Samir

    2004-08-01

    Jet injectors employ high-velocity liquid jets that penetrate into human skin and deposit drugs in the dermal or subdermal region. Although jet injectors have been marketed for a number of years, relatively little is known about the interactions of high-speed jets with soft materials such as skin. Using polyacrylamide gels as a model system, the mechanics of jet penetration, including the dependence of jet penetration on mechanical properties, was studied. Jets employed in a typical commercial injector, (orifice diameter: 152 microm, velocity: 170-180 m/s) were used to inject fluid into polyacrylamide gels possessing Young's moduli in the range of 0.06-0.77 MPa and hardness values in the range of 4-70 H(OO). Motion analysis of jet entry into polyacrylamide gels revealed that jet penetration can be divided into three distinct events: erosion, stagnation, and dispersion. During the erosion phase, the jet removed the gel at the impact site and led to the formation of a distinct cylindrical hole. Cessation of erosion induced a period of jet stagnation ( approximately 600 micros) characterized by constant penetration depth. This stage was followed by dispersion of the liquid into the gel. The dispersion took place by crack propagation and was nearly symmetrical with the exception of injections into 10% acrylamide (Young's modulus of 0.06 MPa). The penetration depth of the jets as well as the rate of erosion decreased with increasing Young's modulus. The mechanics of jet penetration into polyacrylamide gels provides an important tool for understanding jet injection into skin.

  18. SEARCH FOR CIRCUMSTELLAR DISKS AND RADIO JETS IN THE MASSIVE STAR-FORMATION REGION IRAS 23033+5951

    SciTech Connect

    Rodriguez, T.; Trinidad, M. A.; Migenes, V. E-mail: trinidad@astro.ugto.mx

    2012-08-20

    We present radio continuum (1.3 and 3.6 cm) and H{sub 2}O maser observations toward the high-mass star-forming region IRAS 23033+5951 carried out with the VLA-EVLA (in transition phase) in the A configuration. Three radio continuum sources are detected at 3.6 cm, which are aligned in the east-west direction. However, no continuum emission is detected in the region at 1.3 cm. Based on the continuum information, we find that the two continuum sources detected in the region could be consistent with ultracompact H II regions harboring ZAMS B2 and B2.5 stars; however, we do not rule out that they could be associated with a radio jet. In addition, nine water maser spots are detected toward IRAS 23033+5951, which are clustered in two groups and located about 2'' to the south of the continuum sources. The spatio-kinematical distribution of the water masers suggests that they are tracing a circumstellar disk associated with a central star ZAMS B0, which could be the least evolved source in the region and has not developed an H II region yet. Moreover, as the circumstellar disk seems to be associated with the CO molecular outflow observed in the region, this conforms to a disk-YSO-outflow system, similar to that found in low-mass stars.

  19. Optimal Jet Finder

    NASA Astrophysics Data System (ADS)

    Grigoriev, D. Yu.; Jankowski, E.; Tkachov, F. V.

    2003-09-01

    We describe a FORTRAN 77 implementation of the optimal jet definition for identification of jets in hadronic final states of particle collisions. We discuss details of the implementation, explain interface subroutines and provide a usage example. The source code is available from http://www.inr.ac.ru/~ftkachov/projects/jets/. Program summaryTitle of program: Optimal Jet Finder (OJF_014) Catalogue identifier: ADSB Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSB Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: Any computer with the FORTRAN 77 compiler Tested with: g77/Linux on Intel, Alpha and Sparc; Sun f77/Solaris (thwgs.cern.ch); xlf/AIX (rsplus.cern.ch); MS Fortran PowerStation 4.0/Win98 Programming language used: FORTRAN 77 Memory required: ˜1 MB (or more, depending on the settings) Number of bytes in distributed program, including examples and test data: 251 463 Distribution format: tar gzip file Keywords: Hadronic jets, jet finding algorithms Nature of physical problem: Analysis of hadronic final states in high energy particle collision experiments often involves identification of hadronic jets. A large number of hadrons detected in the calorimeter is reduced to a few jets by means of a jet finding algorithm. The jets are used in further analysis which would be difficult or impossible when applied directly to the hadrons. Grigoriev et al. [ hep-ph/0301185] provide a brief introduction to the subject of jet finding algorithms and a general review of the physics of jets can be found in [Rep. Prog. Phys. 36 (1993) 1067]. Method of solution: The software we provide is an implementation of the so-called optimal jet definition ( OJD). The theory of OJD was developed by Tkachov [Phys. Rev. Lett. 73 (1994) 2405; 74 (1995) 2618; Int. J. Mod. Phys. A 12 (1997) 5411; 17 (2002) 2783]. The desired jet configuration is obtained as the one that minimizes Ω R, a certain function of the input particles and jet

  20. Simulations of Solar Jets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    Formation of a coronal jet from twisted field lines that have reconnected with the ambient field. The colors show the radial velocity of the plasma. [Adapted from Szente et al. 2017]How do jets emitted from the Suns surface contribute to its corona and to the solar wind? In a recent study, a team of scientists performed complex three-dimensional simulations of coronal jets to answer these questions.Small ExplosionsCoronal jets are relatively small eruptions from the Suns surface, with heights of roughly 100 to 10,000 km, speeds of 10 to 1,000 km/s, and lifetimes of a few minutes to around ten hours. These jets are constantly present theyre emitted even from the quiet Sun, when activity is otherwise low and weve observed them with a fleet of Sun-watching space telescopes spanning the visible, extreme ultraviolet (EUV), and X-ray wavelength bands.A comparison of simulated observations based on the authors model (left panels) to actual EUV and X-ray observations of jets (right panels). [Szente et al. 2017]Due to their ubiquity, we speculate that these jets might contribute to heating the global solar corona (which is significantly hotter than the surface below it, a curiosity known as the coronal heating problem). We can also wonder what role these jets might play in driving the overall solar wind.Launching a JetLed by Judit Szente (University of Michigan), a team of scientists has explored the impact of coronal jets on the global corona and solar wind with a series of numerical simulations. Szente and collaborators used three-dimensional, magnetohydrodynamic simulations that provide realistic treatment of the solar atmosphere, the solar wind acceleration, and the complexities of heat transfer throughout the corona.In the authors simulations, a jet is initiated as a magnetic dipole rotates at the solar surface, winding up field lines. Magnetic reconnection between the twisted lines and the background field then launches the jet from the dense and hot solar

  1. Correlating shaped charge performance with processing conditions and microstructure of an aluminum alloy 1100 liner enabled by a new method to arrest nascent jet formation

    NASA Astrophysics Data System (ADS)

    Scheid, James Eric

    Aluminum-lined shaped charges are used in special applications where jet and / or slug residue in the target is undesired. The three different microstructures of the aluminum liners studied herein resulted from three different manufacturing interpretations of the same design. One interpretation was completely machining the liners from best available annealed round stock. The second was to cold-forge the liners from annealed round-stock in an open-die forge to near-final dimensions, and then machine the liners to the final dimensions. The third variant in this study was to use the above forged liner, but with annealing after the machining. These three manufacturing choices resulted in significant variations in shaped charge performance. The goal of this research was to clarify the relationships between the liner metal microstructure and properties, and the corresponding shaped charge dynamic flow behavior. What began as an investigation into user-reported performance problems associated inherently with liner manufacturing processes and resultant microstructure, resolved into new understandings of the relationships between aluminum liner microstructure and shaped charge collapse kinetics. This understanding was achieved through an extensive literature review and the comprehensive characterization of the material properties of three variants of an 1100 aluminum shaped charge liner with a focus on collapse and nascent jet formation. The machined liner had a microstructure with large millimeter-sized grains and fine particles aligned in bands parallel to the charge axis. The forged liner microstructure consisted of very small one micrometer-sized (1 mum) subgrains and fine particles aligned largely in bands elongated parallel to the liner contour. The annealed liner was characterized by ten micrometer (10 mum) sized equiaxed grains with residual fine particles in the forged alignment. This characterization was enabled by the development, execution and validation of a

  2. Granular size segregation in underwater sand ripples.

    PubMed

    Rousseaux, G; Caps, H; Wesfreid, J-E

    2004-02-01

    We report an experimental study of a binary sand bed under an oscillating water flow. The formation and evolution of ripples is observed. The appearance of a granular segregation is shown to strongly depend on the sand bed preparation. The initial wavelength of the mixture is measured. In the final steady state, a segregation in volume is observed instead of a segregation at the surface as reported before. The correlation between this phenomenon and the fluid flow is emphasised. Finally, different "exotic" patterns and their geophysical implications are presented.

  3. Star Formation Under the Outflow: The Discovery of a Non-thermal Jet from OMC-2 FIR 3 and Its Relationship to the Deeply Embedded FIR 4 Protostar

    NASA Astrophysics Data System (ADS)

    Osorio, Mayra; Díaz-Rodríguez, Ana K.; Anglada, Guillem; Megeath, S. Thomas; Rodríguez, Luis F.; Tobin, John J.; Stutz, Amelia M.; Furlan, Elise; Fischer, William J.; Manoj, P.; Gómez, José F.; González-García, Beatriz; Stanke, Thomas; Watson, Dan M.; Loinard, Laurent; Vavrek, Roland; Carrasco-González, Carlos

    2017-05-01

    We carried out multiwavelength (0.7-5 cm), multi-epoch (1994-2015) Very Large Array (VLA) observations toward the region enclosing the bright far-IR sources FIR 3 (HOPS 370) and FIR 4 (HOPS 108) in OMC-2. We report the detection of 10 radio sources, 7 of them identified as young stellar objects. We image a well-collimated radio jet with a thermal free-free core (VLA 11) associated with the Class I intermediate-mass protostar HOPS 370. The jet features several knots (VLA 12N, 12C, 12S) of non-thermal radio emission (likely synchrotron from shock-accelerated relativistic electrons) at distances of ˜7500-12,500 au from the protostar, in a region where other shock tracers have been previously identified. These knots are moving away from the HOPS 370 protostar at ˜100 km s-1. The Class 0 protostar HOPS 108, which itself is detected as an independent, kinematically decoupled radio source, falls in the path of these non-thermal radio knots. These results favor the previously proposed scenario in which the formation of HOPS 108 is triggered by the impact of the HOPS 370 outflow with a dense clump. However, HOPS 108 has a large proper motion velocity of ˜30 km s-1, similar to that of other runaway stars in Orion, whose origin would be puzzling within this scenario. Alternatively, an apparent proper motion could result because of changes in the position of the centroid of the source due to blending with nearby extended emission, variations in the source shape, and/or opacity effects.

  4. Discrete particle modelling of granular roll waves

    NASA Astrophysics Data System (ADS)

    Tsang, Jonathan; Dalziel, Stuart; Vriend, Nathalie

    2016-11-01

    A granular current flowing down an inclined chute or plane can undergo an instability that leads to the formation of surface waves, known as roll waves. Examples of roll waves are found in avalanches and debris flows in landslides, and in many industrial processes. Although related to the Kapitza instability of viscous fluid films, granular roll waves are not yet as well understood. Laboratory experiments typically measure the surface height and velocity of a current as functions of position and time, but they do not give insight into the processes below the surface: in particular, the possible formation of a boundary layer at the free surface as well as the base. To overcome this, we are running discrete particle model (DPM) simulations. Simulations are validated against our laboratory experiments, but they also allow us to examine a much larger range of parameters, such as material properties, chute geometry and particle size dispersity, than that which is possible in the lab. We shall present results from simulations in which we vary particle size and dispersity, and examine the implications on roll wave formation and propagation. Future work will include simulations in which the shape of the chute is varied, both cross-sectionally and in the downstream direction. EPSRC studentship (Tsang) and Royal Society Research Fellowship (Vriend).

  5. Granularity analysis for mathematical proofs.

    PubMed

    Schiller, Marvin R G

    2013-04-01

    Mathematical proofs generally allow for various levels of detail and conciseness, such that they can be adapted for a particular audience or purpose. Using automated reasoning approaches for teaching proof construction in mathematics presupposes that the step size of proofs in such a system is appropriate within the teaching context. This work proposes a framework that supports the granularity analysis of mathematical proofs, to be used in the automated assessment of students' proof attempts and for the presentation of hints and solutions at a suitable pace. Models for granularity are represented by classifiers, which can be generated by hand or inferred from a corpus of sample judgments via machine-learning techniques. This latter procedure is studied by modeling granularity judgments from four experts. The results provide support for the granularity of assertion-level proofs but also illustrate a degree of subjectivity in assessing step size.

  6. Cosmic jets

    NASA Technical Reports Server (NTRS)

    Rees, M. J.

    1986-01-01

    The evidence that active galactic nuclei produce collimated plasma jets is summarised. The strongest radio galaxies are probably energised by relativistic plasma jets generated by spinning black holes interacting with magnetic fields attached to infalling matter. Such objects can produce e(+)-e(-) plasma, and may be relevant to the acceleration of the highest-energy cosmic ray primaries. Small-scale counterparts of the jet phenomenon within our own galaxy are briefly reviewed.

  7. Water Jetting

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Hi-Tech Inc., a company which manufactures water jetting equipment, needed a high pressure rotating swivel, but found that available hardware for the system was unsatisfactory. They were assisted by Marshall, which had developed water jetting technology to clean the Space Shuttles. The result was a completely automatic water jetting system which cuts rock and granite and removes concrete. Labor costs have been reduced; dust is suppressed and production has been increased.

  8. Optimized Simulation of Granular Materials

    NASA Astrophysics Data System (ADS)

    Holladay, Seth

    Visual effects for film and animation often require simulated granular materials, such as sand, wheat, or dirt, to meet a director's needs. Simulating granular materials can be time consuming, in both computation and labor, as these particulate materials have complex behavior and an enormous amount of small-scale detail. Furthermore, a single cubic meter of granular material, where each grain is a cubic millimeter, would contain a billion granules, and simulating all such interacting granules would take an impractical amount of time for productions. This calls for a simplified model for granular materials that retains high surface detail and granular behavior yet requires significantly less computational time. Our proposed method simulates a minimal number of individual granules while retaining particulate detail on the surface by supporting surface particles with simplified interior granular models. We introduce a multi-state model where, depending on the material state of the interior granules, we replace interior granules with a simplified simulation model for the state they are in and automate the transitions between those states. The majority of simulation time can thus be focused on visible portions of the material, reducing the time spent on non-visible portions, while maintaining the appearance and behavior of the mass as a whole.

  9. On the coarsening dynamics of a granular lattice gas.

    PubMed

    Opsomer, E; Noirhomme, M; Ludewig, F; Vandewalle, N

    2016-06-01

    We investigated experimentally and theoretically the dynamics of a driven granular gas on a square lattice and discovered two characteristic regimes: Initially, given the dissipative nature of the collisions, particles move erratically through the system and start to gather on selected sites called traps. Later on, the formation of those traps leads to a strong decrease of the grain mobility and slows down dramatically the dynamics of the entire system. We realize detailed measurements linking a trap's stability to the global evolution of the system and propose a model reproducing the entire dynamics of the system. Our work emphasizes the complexity of coarsening dynamics of dilute granular systems.

  10. MODELING THE ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE IN A GRANULAR GRAPHITE-PACKED REACTOR

    EPA Science Inventory

    A comprehensive reactor model was developed for the electrolytic dechlorination of trichloroethylene (TCE) at a granular-graphite cathode. The reactor model describes the dynamic processes of TCE dechlorination and adsorption, and the formation and dechlorination of all the major...

  11. MODELING THE ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE IN A GRANULAR GRAPHITE-PACKED REACTOR

    EPA Science Inventory

    A comprehensive reactor model was developed for the electrolytic dechlorination of trichloroethylene (TCE) at a granular-graphite cathode. The reactor model describes the dynamic processes of TCE dechlorination and adsorption, and the formation and dechlorination of all the major...

  12. Formation and propagation of laser-driven plasma jets in an ambient medium studied with X-ray radiography and optical diagnostics

    SciTech Connect

    Dizière, A.; Pelka, A.; Ravasio, A.; Yurchak, R.; Loupias, B.; Falize, E.; Kuramitsu, Y.; Sakawa, Y.; Morita, T.; Pikuz, S.; Koenig, M.

    2015-01-15

    In this paper, we present experimental results obtained on the LULI2000 laser facility regarding structure and dynamics of astrophysical jets propagating in interstellar medium. The jets, generated by using a cone-shaped target, propagate in a nitrogen gas that mimics the interstellar medium. X-ray radiography as well as optical diagnostics were used to probe both high and low density regions. In this paper, we show how collimation of the jets evolves with the gas density.

  13. Jets in relativistic heavy ion collisions

    SciTech Connect

    Wang, Xin-Nian; Gyulassy, M.

    1990-09-01

    Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs.

  14. Granular Superconductors and Gravity

    NASA Technical Reports Server (NTRS)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  15. Granular compaction by fluidization

    NASA Astrophysics Data System (ADS)

    Tariot, Alexis; Gauthier, Georges; Gondret, Philippe

    2017-06-01

    How to arrange a packing of spheres is a scientific question that aroused many fundamental works since a long time from Kepler's conjecture to Edward's theory (S. F. Edwards and R.B.S Oakeshott. Theory of powders. Physica A, 157: 1080-1090, 1989), where the role traditionally played by the energy in statistical problems is replaced by the volume for athermal grains. We present experimental results on the compaction of a granular pile immersed in a viscous fluid when submited to a continuous or bursting upward flow. An initial fluidized bed leads to a well reproduced initial loose packing by the settling of grains when the high enough continuous upward flow is turned off. When the upward flow is then turned on again, we record the dynamical evolution of the bed packing. For a low enough continuous upward flow, below the critical velocity of fluidization, a slow compaction dynamics is observed. Strikingly, a slow compaction can be also observed in the case of "fluidization taps" with bursts of fluid velocity higher than the critical fluidization velocity. The different compaction dynamics is discussed when varying the different control parameters of these "fluidization taps".

  16. Infrared absorption imaging of 2D supersonic jet expansions: Free expansion, cluster formation, and shock wave patterns.

    PubMed

    Zischang, Julia; Suhm, Martin A

    2013-07-14

    N2O/He gas mixtures are expanded through a 10 × 0.5 mm(2) slit nozzle and imaged by direct absorption vibrational spectroscopy, employing a HgCdTe focal plane array detector after interferometric modulation. N2O cluster formation in the free supersonic expansion is visualized. The expansion structure behind the frontal shock is investigated as a function of background pressure. At high pressures, a sequence of stationary density peaks along a narrow directed flow channel is characterized. The potential of the technique for the elucidation of aggregation mechanisms is emphasized.

  17. Granular chaos and mixing: Whirled in a grain of sand

    SciTech Connect

    Shinbrot, Troy

    2015-09-15

    In this paper, we overview examples of chaos in granular flows. We begin by reviewing several remarkable behaviors that have intrigued researchers over the past few decades, and we then focus on three areas in which chaos plays an intrinsic role in granular behavior. First, we discuss pattern formation in vibrated beds, which we show is a direct result of chaotic scattering combined with dynamical dissipation. Next, we consider stick-slip motion, which involves chaotic scattering on the micro-scale, and which results in complex and as yet unexplained peculiarities on the macro-scale. Finally, we examine granular mixing, which we show combines micro-scale chaotic scattering and macro-scale stick-slip motion into behaviors that are well described by dynamical systems tools, such as iterative mappings.

  18. Factors influencing the density of aerobic granular sludge.

    PubMed

    Winkler, M-K H; Kleerebezem, R; Strous, M; Chandran, K; van Loosdrecht, M C M

    2013-08-01

    In the present study, the factors influencing density of granular sludge particles were evaluated. Granules consist of microbes, precipitates and of extracellular polymeric substance. The volume fractions of the bacterial layers were experimentally estimated by fluorescent in situ hybridisation staining. The volume fraction occupied by precipitates was determined by computed tomography scanning. PHREEQC was used to estimate potential formation of precipitates to determine a density of the inorganic fraction. Densities of bacteria were investigated by Percoll density centrifugation. The volume fractions were then coupled with the corresponding densities and the total density of a granule was calculated. The sensitivity of the density of the entire granule on the corresponding settling velocity was evaluated by changing the volume fractions of precipitates or bacteria in a settling model. Results from granules originating from a Nereda reactor for simultaneous phosphate COD and nitrogen removal revealed that phosphate-accumulating organisms (PAOs) had a higher density than glycogen-accumulating organisms leading to significantly higher settling velocities for PAO-dominated granules explaining earlier observations of the segregation of the granular sludge bed inside reactors. The model showed that a small increase in the volume fraction of precipitates (1-5 %) strongly increased the granular density and thereby the settling velocity. For nitritation-anammox granular sludge, mainly granular diameter and not density differences are causing a segregation of the biomass in the bed.

  19. Three-phase fracturing in granular material

    NASA Astrophysics Data System (ADS)

    Campbell, James; Sandnes, Bjornar

    2015-04-01

    There exist numerous geo-engineering scenarios involving the invasion of a gas into a water-saturated porous medium: in fracking, this may occur during the fracking process itself or during subsequent gas penetration into propant beds; the process is also at the heart of carbon dioxide sequestration. We use a bed of water-saturated glass beads confined within a Hele-Shaw cell as a model system to illuminate these processes. Depending on packing density, injection rate and other factors, air injected into this system may invade in a broad variety of patterns, including viscous fingering, capillary invasion, bubble formation and fracturing. Here we focus primarily on the latter case. Fracturing is observed when air is injected into a loosely packed bed of unconsolidated granular material. Our approach allows us to image the complete fracture pattern as it forms, and as such to study both the topographical properties of the resulting pattern (fracture density, braching frequency etc) and the dynamics of its growth. We present an overview of the fracturing phenomenon within the context of pattern formation in granular fluids as a whole. We discuss how fracturing arises from an interplay between frictional, capillary and viscous forces, and demonstrate the influence of various parameters on the result.

  20. Rainwater Channelization and Infiltration in Granular Media

    NASA Astrophysics Data System (ADS)

    Cejas, Cesare; Wei, Yuli; Barrois, Remi; Durian, Douglas; Dreyfus, Remi; Compass Team

    2013-03-01

    We investigate the formation of fingered flow in dry granular media under simulated rainfall using a quasi-2D experimental set-up composed of a random close packing of mono-disperse glass beads. We determine effects of grain diameter and surface wetting properties on the formation and infiltration of water channels. For hydrophilic granular media, rainwater initially infiltrates a shallow top layer of soil creating a uniform horizontal wetting front before instabilities occur and grow to form water channels. For hydrophobic media, rainwater ponds on the soil surface rather than infiltrates and water channels may still occur at a later time when the hydraulic pressure of the ponding water exceeds the capillary repellency of the soil. We probe the kinetics of the fingering instabilities that serve as precursors for the growth and drainage of water channels. We also examine the effects of several different methods on improving rainwater channelization such as varying the level of pre-saturation, modifying the soil surface flatness, and adding superabsorbent hydrogel particles.

  1. Dynamics of granular segregation in quasi two-dimensional system

    NASA Astrophysics Data System (ADS)

    Gharat, Sandip H.

    2017-06-01

    Segregation during flow of granular materials is important from an industrial point of view. Considerable work has been done on granular segregation in heap flows by continuous pouring. We studied the flow and segregation of granular mixtures during heap formation in a quasi two-dimensional rectangular bin by intermittent pouring. The heap formed by repeatedly pouring a fixed mass of the mixture. Each feeding results in the formation of a layer of the mixture on the surface of the heap. The system is a simplified model for the feeding of raw materials to a blast furnace, which is widely used for the manufacture of iron and steel. Experiments were carried out to study the dynamics of granular materials during heap formation. The number density, area fraction and average velocity of small and big particles are plotted across the flowing depth with time. Results shows that larger particles are always on top flowing over small particles. During flow small particles easily percolate through the gaps between the large particles. A thin layer of small particles is also observed at the free surface. Here the system never reached a steady state as we are pouring the mixture intermittently and system is closed. The velocity increases initially and then decreases towards the end. The number density (i.e. area fraction) profile changes for small and big particles during flow. Image analysis is done to detect the position of each particle on the side wall. Each experiment is repeated six times to get average data.

  2. Shock Loading of Granular Ni/Al Composites. Part 1. Mechanics of Loading

    SciTech Connect

    Cherukara, Mathew J.; Germann, Timothy C.; Kober, Edward M.; Strachan, Alejandro

    2014-10-16

    We present molecular dynamics simulations of the thermomechanical response under shock loading of a granular material consisting of laminated Ni/Al grains. We observe two regimes: At low piston velocities (up ≲ 1km/s), the shock wave is diffuse, and the width of the shock front decreases with increasing piston velocity. Beyond a critical shock strength, however, the width remains relatively constant at approximately the mean grain radius. This change in behavior follows from an evolution of the mechanism of compaction with increasing insult strength. Furthermore, the mechanism evolves from plastic deformation-mediated pore collapse for relatively weak shocks, to solid extrusion and fluid ejecta filling pores ahead of the shock front at intermediate strengths, and finally to atomic jetting into the pore for very strong shocks (up ≳ 2 km/s). High-energy fluid ejecta into pores leads to the formation of flow vorticity and can result in a large fraction of the input energy localizing into translational kinetic energy components including the formation of hot spots. This has implications for the mechanical mixing of Ni and Al in these reactive composites.

  3. Shock Loading of Granular Ni/Al Composites. Part 1. Mechanics of Loading

    DOE PAGES

    Cherukara, Mathew J.; Germann, Timothy C.; Kober, Edward M.; ...

    2014-10-16

    We present molecular dynamics simulations of the thermomechanical response under shock loading of a granular material consisting of laminated Ni/Al grains. We observe two regimes: At low piston velocities (up ≲ 1km/s), the shock wave is diffuse, and the width of the shock front decreases with increasing piston velocity. Beyond a critical shock strength, however, the width remains relatively constant at approximately the mean grain radius. This change in behavior follows from an evolution of the mechanism of compaction with increasing insult strength. Furthermore, the mechanism evolves from plastic deformation-mediated pore collapse for relatively weak shocks, to solid extrusion andmore » fluid ejecta filling pores ahead of the shock front at intermediate strengths, and finally to atomic jetting into the pore for very strong shocks (up ≳ 2 km/s). High-energy fluid ejecta into pores leads to the formation of flow vorticity and can result in a large fraction of the input energy localizing into translational kinetic energy components including the formation of hot spots. This has implications for the mechanical mixing of Ni and Al in these reactive composites.« less

  4. Synthetic Jets in Cross-flow. Part 1; Round Jet

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Milanovic, Ivana M.

    2003-01-01

    Results of an experimental investigation on synthetic jets from round orifices with and without cross-flow are presented. Jet Reynolds number up to 46,000 with a fully turbulent approach boundary layer, and Stokes number up to 400. are covered. The threshold of stroke length for synthetic jet formation. in the absence of the cross-flow, is found to be Lo /D approximately 0.5. Above Lo /D is approximately 10, the profiles of normalized centerline mean velocity appear to become invariant. It is reasoned that the latter threshold may be related to the phenomenon of saturation of impulsively generated vortices. In the presence of the cross-flow, the penetration height of a synthetic jet is found to depend on the momentum- flux ratio . When this ratio is defined in terms of the maximum jet velocity and the cross-flow velocity. not only all data collapse but also the jet trajectory is predicted well by correlation equation available for steady jets-in-cross-flow. Distributions of mean velocity, streamwise vorticity as well as turbulence intensity for a synthetic jet in cross-flow are found to be similar to those of a steady jet-in-cross-flow. A pair of counter-rotating streamwise vortices, corresponding to the bound vortex pair of the steady case, is clearly observed. Mean velocity distribution exhibits a dome of low momentum fluid pulled up from the boundary layer, and the entire domain is characterized by high turbulence.

  5. Formation of Mn-Co-Ni-O Nanoceramic Microspheres Using In Situ Ink-Jet Printing: Sintering Process Effect on the Microstructure and Electrical Properties.

    PubMed

    Chen, Long; Zhang, Qinan; Yao, Jincheng; Wang, Junhua; Kong, Wenwen; Jiang, Chunping; Chang, Aimin

    2016-09-01

    Mn-Co-Ni-O nanoceramic microspheres with high density, uniformity, and size tunability are successfully fabricated using in situ ink-jet printing and two step sintering (TSS) techniques. The microspheres, synthesized by an effective and facile reverse microemulsion method, consist of uncalcined Mn-Co-Ni-O nanocrystallines that show a well formed single tetragonal spinel phase and an average particle size distribution of ≈20 nm. The sintering behavior, microstructure, and electrical properties of the Mn-Co-Ni-O nanoceramic microspheres are systematically investigated and characterized. The results indicate that the sintered Mn-Co-Ni-O nanoceramic microspheres show high density and improved electrical properties. The highest R25 , B25/50 , Ea , and α25 values achieved at sintering temperature of 1150 °C are 4846.7 KΩ, 4320 K, 0.401 eV, and -5.24% K(-1) , respectively for these Mn-Co-Ni-O nanoceramic microspheres. Furthermore, the formation mechanism of uncalcined Mn-Co-Ni-O nanocrystallines and an analysis of the TSS procedure of the nanoceramic microspheres are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Global hydromagnetic simulations of a planet embedded in a dead zone: Gap opening, gas accretion, and formation of a protoplanetary jet

    SciTech Connect

    Gressel, O.; Nelson, R. P.; Turner, N. J.; Ziegler, U. E-mail: r.p.nelson@qmul.ac.uk E-mail: uziegler@aip.de

    2013-12-10

    We present global hydrodynamic (HD) and magnetohydrodynamic (MHD) simulations with mesh refinement of accreting planets embedded in protoplanetary disks (PPDs). The magnetized disk includes Ohmic resistivity that depends on the overlying mass column, leading to turbulent surface layers and a dead zone near the midplane. The main results are: (1) the accretion flow in the Hill sphere is intrinsically three-dimensional for HD and MHD models. Net inflow toward the planet is dominated by high-latitude flows. A circumplanetary disk (CPD) forms. Its midplane flows outward in a pattern whose details differ between models. (2) The opening of a gap magnetically couples and ignites the dead zone near the planet, leading to stochastic accretion, a quasi-turbulent flow in the Hill sphere, and a CPD whose structure displays high levels of variability. (3) Advection of magnetized gas onto the rotating CPD generates helical fields that launch magnetocentrifugally driven outflows. During one specific epoch, a highly collimated, one-sided jet is observed. (4) The CPD's surface density is ∼30 g cm{sup −2}, small enough for significant ionization and turbulence to develop. (5) The accretion rate onto the planet in the MHD simulation reaches a steady value 8 × 10{sup –3} M {sub ⊕} yr{sup –1} and is similar in the viscous HD runs. Our results suggest that gas accretion onto a forming giant planet within a magnetized PPD with a dead zone allows rapid growth from Saturnian to Jovian masses. As well as being relevant for giant planet formation, these results have important implications for the formation of regular satellites around gas giant planets.

  7. Elastic Granular Flows

    NASA Astrophysics Data System (ADS)

    Campbell, C. S.

    2014-12-01

    The dry granular flowmap can be broken into two broad categories, the Elastic and the Inertial. Elastic flows are dominated by force chains and stresses are generated by the compression of the interparticle contacts within those chains, and thus are proportional to the stiffness of the contacts. The Elastic zone can be subdivided into two regimes, the Elastic-Quasistatic where forces are independent of the shear rate which at high shear rates transitions to Elastic-Inertial where the particle inertia is reflected in the forces and the stresses increase linearly with the shear rate. In the Inertial regime, the stresses vary with the square of the shear rate. It also is divided into two regimes, the Dense-Inertial where the flow is dominated by clusters of particles, and the Inertial-Collisional where the flow is dominated by binary collisions. Appropriately the elastic theory grew out of an old study of landslides. But like most such studies, all of the above depend on idealized computer simulations of uniform sized spherical particles. Real particles are never round, never of uniform size, and the process of flowing changes surface properties and may even shatter the particles. But all indications are that real systems still fit into the pattern drawn out in the last paragraph. A grave problem facing the field is how to incorporate these effects without losing a fundamental understanding of the internal rheological processes. This talk will begin with an overview of the Elastic flowmap and the behaviors associated with each flow regime. It will then discuss early work to include effects of particle shape and size mixtures and perhaps some effects of particle breakage.

  8. Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas.

    PubMed

    Kolvin, Itamar; Livne, Eli; Meerson, Baruch

    2010-08-01

    We show that, in dimension higher than one, heat diffusion and viscosity cannot arrest thermal collapse in a freely evolving dilute granular gas, even in the absence of gravity. Thermal collapse involves a finite-time blowup of the gas density. It was predicted earlier in ideal, Euler hydrodynamics of dilute granular gases in the absence of gravity, and in nonideal, Navier-Stokes granular hydrodynamics in the presence of gravity. We determine, analytically and numerically, the dynamic scaling laws that characterize the gas flow close to collapse. We also investigate bifurcations of a freely evolving dilute granular gas in circular and wedge-shaped containers. Our results imply that, in general, thermal collapse can only be arrested when the gas density becomes comparable with the close-packing density of grains. This provides a natural explanation to the formation of densely packed clusters of particles in a variety of initially dilute granular flows.

  9. Silo Collapse under Granular Discharge

    NASA Astrophysics Data System (ADS)

    Gutiérrez, G.; Colonnello, C.; Boltenhagen, P.; Darias, J. R.; Peralta-Fabi, R.; Brau, F.; Clément, E.

    2015-01-01

    We investigate, at a laboratory scale, the collapse of cylindrical shells of radius R and thickness t induced by a granular discharge. We measure the critical filling height for which the structure fails upon discharge. We observe that the silos sustain filling heights significantly above an estimation obtained by coupling standard shell-buckling and granular stress distribution theories. Two effects contribute to stabilize the structure: (i) below the critical filling height, a dynamical stabilization due to granular wall friction prevents the localized shell-buckling modes to grow irreversibly; (ii) above the critical filling height, collapse occurs before the downward sliding motion of the whole granular column sets in, such that only a partial friction mobilization is at play. However, we notice also that the critical filling height is reduced as the grain size d increases. The importance of grain size contribution is controlled by the ratio d /√{R t }. We rationalize these antagonist effects with a novel fluid-structure theory both accounting for the actual status of granular friction at the wall and the inherent shell imperfections mediated by the grains. This theory yields new scaling predictions which are compared with the experimental results.

  10. Collision of a vortex ring on granular material. Part II. Erosion of the granular layer

    NASA Astrophysics Data System (ADS)

    Yoshida, Junya; Masuda, Naoya; Ito, Boku; Furuya, Takayoshi; Sano, Osamu

    2012-02-01

    In our previous paper (part I), an experimental result was presented on the normal impact of a vortex ring on the granular layer (glass beads of diameter 0.10 mm), which was placed at a specified distance from the outlet of the vortex ring generator. The Reynolds number of the vortex ring ranged from 1000 to 6000, whereas the traveling distance ranged from 2 to 13 times of the diameter of the vortex ring generator nozzle. In part I, the deformation of the vortex ring impacting on the granular layer and the development of the secondary vortex ring were focused. In this paper (part II), the erosion of the granular surface by the vortex ring is described. Various patterns were found depending on the Reynolds number of the vortex ring and the traveling distance. Two patterns, one (grooves) which has radial striations from the central depressed region to the outer edge of the rim and the other (dimples) which is characterized by isolated small depressions around the outer edge of the rim, are examined in detail. The formation processes of these patterns are elucidated in terms of the deformation of the vortex ring.

  11. Bouncing Jets

    NASA Astrophysics Data System (ADS)

    Wadhwa, Navish; Vlachos, Pavlos; Jung, Sunghwan

    2011-11-01

    Contrary to common intuition, free jets of fluid can ``bounce'' off each other on collision in mid-air, through the effect of a lubricating air film that separates the jets. We have developed a simple experimental setup to stably demonstrate and study the non-coalescence of jets on collision. We present the results of an experimental investigation of oblique collision between two silicone oil jets, supported by a simple analytical explanation. Our focus is on elucidating the role of various physical forces at play such as viscous stresses, capillary force and inertia. A parametric study conducted by varying the nozzle diameter, jet velocity, angle of inclination and fluid viscosity reveals the scaling laws for the quantities involved such as contact time. We observed a transition from bouncing to coalescence with an increase in jet velocity and inclination angle. We propose that a balance between the contact time of jets and the time required for drainage of the trapped air film can provide a criterion for transition from non-coalescence to coalescence.

  12. Impact of gas backing pressure and geometry of conical nozzle on the formation of methane clusters in supersonic jets.

    PubMed

    Lu, Haiyang; Chen, Guanglong; Ni, Guoquan; Li, Ruxin; Xu, Zhizhan

    2010-01-14

    We present an experimental investigation of the dependence of the production of large methane clusters on the cluster source conditions. The clusters were produced at room temperature through supersonic expansion of methane gas at the backing pressures P(0) ranging from 10 to 84 bar using five conical nozzles of different geometries. The cluster size was characterized by Rayleigh scattering measurements and calibrated with Coulomb explosion of the clusters at P(0) = 44 bar subjected to an ultraintense laser pulse. A quantitative evaluation of the performance of the conical nozzles against the nozzle geometry and the backing pressure was made by introducing a parameter delta. Differ from the idealized case where the performance of the conical nozzle can be described by the equivalent sonic nozzle of diameter d(eq), in the present work, the "effective equivalent sonic-nozzle diameter" of the conical nozzle defined by d(eq)* = deltad(eq) is introduced. delta represents the deviation of the performance in cluster formation of the conical nozzles from that predicted on the basis of the concept of the equivalent diameter d(eq) = d/tan alpha, with d being the throat diameter, and alpha the half-opening angle of the conical nozzle. Experimental results show that the cluster growth process will be restricted when the gas backing pressure P(0) is higher and/or d/tan alpha of the conical nozzle becomes larger, resulting in smaller delta. From the experimental data, delta can be expressed by an empirical relation delta = A/[P(0)(B)(d/tan alpha)(1.36)], where A = 8.4 and B = 0.26 for 24 bar

  13. Pore configuration landscape of granular crystallization

    NASA Astrophysics Data System (ADS)

    Saadatfar, M.; Takeuchi, H.; Robins, V.; Francois, N.; Hiraoka, Y.

    2017-05-01

    Uncovering grain-scale mechanisms that underlie the disorder-order transition in assemblies of dissipative, athermal particles is a fundamental problem with technological relevance. To date, the study of granular crystallization has mainly focussed on the symmetry of crystalline patterns while their emergence and growth from irregular clusters of grains remains largely unexplored. Here crystallization of three-dimensional packings of frictional spheres is studied at the grain-scale using X-ray tomography and persistent homology. The latter produces a map of the topological configurations of grains within static partially crystallized packings. Using numerical simulations, we show that similar maps are measured dynamically during the melting of a perfect crystal. This map encodes new information on the formation process of tetrahedral and octahedral pores, the building blocks of perfect crystals. Four key formation mechanisms of these pores reproduce the main changes of the map during crystallization and provide continuous deformation pathways representative of the crystallization dynamics.

  14. Ubiquitous quiet-Sun jets

    NASA Astrophysics Data System (ADS)

    Martínez Pillet, V.; Del Toro Iniesta, J. C.; Quintero Noda, C.

    2011-06-01

    Context. IMaX/Sunrise has recently reported the temporal evolution of highly dynamic and strongly Doppler shifted Stokes V signals in the quiet Sun. Aims: We attempt to identify the same quiet-Sun jets in the Hinode spectropolarimeter (SP) data set. Methods: We generate combinations of linear polarization magnetograms with blue- and redshifted far-wing circular polarization magnetograms to allow an easy identification of the quiet-Sun jets. Results: The jets are identified in the Hinode data where both red- and blueshifted cases are often found in pairs. They appear next to regions of transverse fields that exhibit quiet-Sun neutral lines. They also have a clear tendency to occur in the outer boundary of the granules. These regions always display highly displaced and anomalous Stokes V profiles. Conclusions: The quiet Sun is pervaded with jets formed when new field regions emerge at granular scales loaded with horizontal field lines that interact with their surroundings. This interaction is suggestive of some form of reconnection of the involved field lines that generates the observed high speed flows.

  15. Granular Rayleigh-Taylor instability

    SciTech Connect

    Vinningland, Jan Ludvig; Johnsen, Oistein; Flekkoey, Eirik G.; Maaloey, Knut Joergen; Toussaint, Renaud

    2009-06-18

    A granular instability driven by gravity is studied experimentally and numerically. The instability arises as grains fall in a closed Hele-Shaw cell where a layer of dense granular material is positioned above a layer of air. The initially flat front defined by the grains subsequently develops into a pattern of falling granular fingers separated by rising bubbles of air. A transient coarsening of the front is observed right from the start by a finger merging process. The coarsening is later stabilized by new fingers growing from the center of the rising bubbles. The structures are quantified by means of Fourier analysis and quantitative agreement between experiment and computation is shown. This analysis also reveals scale invariance of the flow structures under overall change of spatial scale.

  16. Interfacial Instability during Granular Erosion.

    PubMed

    Lefebvre, Gautier; Merceron, Aymeric; Jop, Pierre

    2016-02-12

    The complex interplay between the topography and the erosion and deposition phenomena is a key feature to model granular flows such as landslides. Here, we investigated the instability that develops during the erosion of a wet granular pile by a dry dense granular flow. The morphology and the propagation of the generated steps are analyzed in relation to the specific erosion mechanism. The selected flowing angle of the confined flow on a dry heap appears to play an important role both in the final state of the experiment, and for the shape of the structures. We show that the development of the instability is governed by the inertia of the flow through the Froude number. We model this instability and predict growth rates that are in agreement with the experiment results.

  17. Simulations of granular gravitational collapse.

    PubMed

    Kachuck, Samuel B; Voth, Greg A

    2013-12-01

    A freely cooling granular gas in a gravitational field undergoes a collapse to a multicontact state in a finite time. Previous theoretical [D. Volfson et al., Phys. Rev. E 73, 061305 (2006)] and experimental work [R. Son et al., Phys. Rev. E 78, 041302 (2008)] have obtained contradictory results about the rate of energy loss before the gravitational collapse. Here we use a molecular dynamics simulation in an attempt to recreate the experimental and theoretical results to resolve the discrepancy. We are able to nearly match the experimental results, and find that to reproduce the power law predicted in the theory we need a nearly elastic system with a constant coefficient of restitution greater than 0.993. For the more realistic velocity-dependent coefficient of restitution, there does not appear to be a power-law decay and the transition from granular gas to granular solid is smooth, making it difficult to define a time of collapse.

  18. Initiation of immersed granular avalanches.

    PubMed

    Mutabaruka, Patrick; Delenne, Jean-Yves; Soga, Kenichi; Radjai, Farhang

    2014-05-01

    By means of coupled molecular dynamics-computational fluid dynamics simulations, we analyze the initiation of avalanches in a granular bed of spherical particles immersed in a viscous fluid and inclined above its angle of repose. In quantitative agreement with experiments, we find that the bed is unstable for a packing fraction below 0.59 but is stabilized above this packing fraction by negative excess pore pressure induced by the effect of dilatancy. From detailed numerical data, we explore the time evolution of shear strain, packing fraction, excess pore pressures, and granular microstructure in this creeplike pressure redistribution regime, and we show that they scale excellently with a characteristic time extracted from a model based on the balance of granular stresses in the presence of a negative excess pressure and its interplay with dilatancy. The cumulative shear strain at failure is found to be ≃ 0.2, in close agreement with the experiments, irrespective of the initial packing fraction and inclination angle. Remarkably, the avalanche is triggered when dilatancy vanishes instantly as a result of fluctuations while the average dilatancy is still positive (expanding bed) with a packing fraction that declines with the initial packing fraction. Another nontrivial feature of this creeplike regime is that, in contrast to dry granular materials, the internal friction angle of the bed at failure is independent of dilatancy but depends on the inclination angle, leading therefore to a nonlinear dependence of the excess pore pressure on the inclination angle. We show that this behavior may be described in terms of the contact network anisotropy, which increases with a nearly constant connectivity and levels off at a value (critical state) that increases with the inclination angle. These features suggest that the behavior of immersed granular materials is controlled not only directly by hydrodynamic forces acting on the particles but also by the influence of the

  19. Initiation of immersed granular avalanches

    NASA Astrophysics Data System (ADS)

    Mutabaruka, Patrick; Delenne, Jean-Yves; Soga, Kenichi; Radjai, Farhang

    2014-05-01

    By means of coupled molecular dynamics-computational fluid dynamics simulations, we analyze the initiation of avalanches in a granular bed of spherical particles immersed in a viscous fluid and inclined above its angle of repose. In quantitative agreement with experiments, we find that the bed is unstable for a packing fraction below 0.59 but is stabilized above this packing fraction by negative excess pore pressure induced by the effect of dilatancy. From detailed numerical data, we explore the time evolution of shear strain, packing fraction, excess pore pressures, and granular microstructure in this creeplike pressure redistribution regime, and we show that they scale excellently with a characteristic time extracted from a model based on the balance of granular stresses in the presence of a negative excess pressure and its interplay with dilatancy. The cumulative shear strain at failure is found to be ≃0.2, in close agreement with the experiments, irrespective of the initial packing fraction and inclination angle. Remarkably, the avalanche is triggered when dilatancy vanishes instantly as a result of fluctuations while the average dilatancy is still positive (expanding bed) with a packing fraction that declines with the initial packing fraction. Another nontrivial feature of this creeplike regime is that, in contrast to dry granular materials, the internal friction angle of the bed at failure is independent of dilatancy but depends on the inclination angle, leading therefore to a nonlinear dependence of the excess pore pressure on the inclination angle. We show that this behavior may be described in terms of the contact network anisotropy, which increases with a nearly constant connectivity and levels off at a value (critical state) that increases with the inclination angle. These features suggest that the behavior of immersed granular materials is controlled not only directly by hydrodynamic forces acting on the particles but also by the influence of the

  20. Jets in black-hole binaries

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej

    2016-07-01

    I will review selected aspects of observations and theory of jets in black-hole binaries. The radio and gamma-ray emission of jets differs significantly between the low and high-mass X-ray binaries, which appears to be due jet-wind interaction (in particular, formation of recollimation shocks) in the latter. Also, both radio and X-ray emission of the jets can be significantly absorbed in the stellar wind of the donors in high-mass binaries. I will also review the theory of radiative processes in jets, their contributions to broad-band spectra, estimates of the jet power, the role of black-hole spin in powering jets, and the possibility that the base of the jet is the main source of X-ray emission (the lamppost model).

  1. Geometric morphology of granular materials

    NASA Astrophysics Data System (ADS)

    Schlei, Bernd R.; Prasad, Lakshman; Skourikhine, Alexei N.

    2000-10-01

    We present a new method to transform the spectral pixel information of a micrograph into an affine geometric description, which allows us to analyze the morphology of granular materials. We use spectral and pulse-coupled neural network based segmentation techniques to generate blobs, and a newly developed algorithm to extract dilated contours. A constrained Delaunay tessellation of the contour points results in a triangular mesh. This mesh is the basic ingredient of the Chodal Axis Transform, which provides a morphological decomposition of shapes. Such decomposition allows for grain separation and the efficient computation of the statistical features of granular materials.

  2. Density waves in granular flow

    NASA Astrophysics Data System (ADS)

    Herrmann, H. J.; Flekkøy, E.; Nagel, K.; Peng, G.; Ristow, G.

    Ample experimental evidence has shown the existence of spontaneous density waves in granular material flowing through pipes or hoppers. Using Molecular Dynamics Simulations we show that several types of waves exist and find that these density fluctuations follow a 1/f spectrum. We compare this behaviour to deterministic one-dimensional traffic models. If positions and velocities are continuous variables the model shows self-organized criticality driven by the slowest car. We also present Lattice Gas and Boltzmann Lattice Models which reproduce the experimentally observed effects. Density waves are spontaneously generated when the viscosity has a nonlinear dependence on density which characterizes granular flow.

  3. Unifying suspension and granular rheology.

    PubMed

    Boyer, François; Guazzelli, Élisabeth; Pouliquen, Olivier

    2011-10-28

    Using an original pressure-imposed shear cell, we study the rheology of dense suspensions. We show that they exhibit a viscoplastic behavior similarly to granular media successfully described by a frictional rheology and fully characterized by the evolution of the friction coefficient μ and the volume fraction ϕ with a dimensionless viscous number I(v). Dense suspension and granular media are thus unified under a common framework. These results are shown to be compatible with classical empirical models of suspension rheology and provide a clear determination of constitutive laws close to the jamming transition.

  4. DUNE - a granular flow code

    SciTech Connect

    Slone, D M; Cottom, T L; Bateson, W B

    2004-11-23

    DUNE was designed to accurately model the spectrum of granular. Granular flow encompasses the motions of discrete particles. The particles are macroscopic in that there is no Brownian motion. The flow can be thought of as a dispersed phase (the particles) interacting with a fluid phase (air or water). Validation of the physical models proceeds in tandem with simple experimental confirmation. The current development team is working toward the goal of building a flexible architecture where existing technologies can easily be integrated to further the capability of the simulation. We describe the DUNE architecture in some detail using physics models appropriate for an imploding liner experiment.

  5. Business Jet

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Citation Jet, developed by Cessna Aircraft Company, Wichita, KS, is the first business jet to employ Langley Research Center's natural laminar flow (NLF) technology. NLF reduces drag and therefore saves fuel by using only the shape of the wing to keep the airflow smooth, or laminar. This reduces friction between the air and wing, and therefore, reduces drag. NASA's Central Industrial Applications Center, Rural Enterprises, Inc., Durant, OK, its Kansas affiliate, and Wichita State University assisted in the technology transfer.

  6. Emerging jets

    NASA Astrophysics Data System (ADS)

    Schwaller, Pedro; Stolarski, Daniel; Weiler, Andreas

    2015-05-01

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

  7. Avalanche Dynamics and Stability in Wet Granular Media

    NASA Astrophysics Data System (ADS)

    Schiffer, Peter; Tegzes, Pal; Vicsek, Tamas

    2002-11-01

    In our previous work, we identified three fundamental regimes for the repose angle of wet granular materials as a function of the liquid content. The granular regime at very low liquid contents is dominated by the motion of individual grains; in the correlated regime corresponding to intermediate liquid contents, a rough surface is formed by the flow of separated clumps; and the repose angle of very wet samples results from cohesive flow with viscoplastic properties. Here we report investigations of the avalanche dynamics and flow properties of wet granular materials, employing a rotating drum apparatus (a cylindrical chamber partly filled with a granular medium and rotated around a horizontal axis). At low rotation rates, the medium remains at rest relative to the drum while its surface angle is slowly increased by rotation, up to a critical angle thetamax where an avalanche occurs, thus decreasing the surface angle to the repose angle thetar The flow becomes continuous at high rotation rates, but the transition between avalanching and continuous flow is hysteretic in rotation rate in dry media. Previous studies of cohesive granular media in a rotating drum have focused on the surface angles of the medium before and after avalanches. In our measurements, we focus instead on characterizing the dynamics of cohesive flow. We quantitatively investigate the flow dynamics during avalanches at different liquid contents by analyzing the time evolution of the averaged surface profile obtained from hundreds of avalanche events, and we also measure surface velocities during continuous flow. In particular, we explore the nature of the viscoplastic flow, (observed at the highest liquid contents) in which there are lasting contacts during flow, leading to coherence across the entire sample. This coherence leads to a velocity independent flow depth at high rotation rates and novel robust pattern formation in the granular surface. Additional information is included in the

  8. Granular physics in low-gravity enviroments

    NASA Astrophysics Data System (ADS)

    Tancredi, G.; Maciel, A.; Heredia, L.; Richeri, P.; Nesmachnow, S.

    2011-10-01

    The granular media are formed by a set of macroscopic objects (named grains) which interact through temporal or permanent contacts. Several processes has been identified which require a full understanding, like: grain blocking, formation of arcs, size segregation, response to shakes and impacts, etc. These processes has been studied experimentally in the laboratory, and, in the last decades, numerically. The Discrete Element Method (DEM) simulate the mechanical behavior in a media formed by a set of particles which interact through their contact points. We describe the implementation of DEM for the study of several relevant processes in minor bodies of the Solar System. We present the results of simulations of the process of size segregation in low-gravity environments, the so-called Brazil nut effect, in the cases of Eros and Itokawa. The segregation of particles with different densities is also analyzed, with the application to the case of P/Hartley 2. The surface shaking in these different gravity environments could produce the ejection of particles from the surface at very low relative velocities. The shaking that cause the above processes is due to impacts or explosions like the release of energy by the liberation of internal stresses or the reaccommodation of material. We run simulations of the passage of seismic wave produced at impact through a granular media.

  9. Secondary flows in slow granular flows

    NASA Astrophysics Data System (ADS)

    Dsouza, Peter Varun; Krishnaraj, K. P.; Nott, Prabhu R.

    2017-06-01

    Recent findings by Krishnaraj and Nott [1] show that a granular material sheared in a cylindrical Couette cell at low shear rates forms a single secondary vortex. The vortex spans the entire width of the Couette cell and has a sense opposite to the centrifugally driven Taylor-Couette vortex in a Newtonian fluid - it is in fact shown to be driven by shear-induced dilation. Krishnaraj and Nott [1] show that the vortex also explains a Theological anomaly observed earlier [2], wherein all components of the stress on the outer cylinder increase nearly exponentially with depth from the free surface. In this study, we test the robustness of this vortex by varying the parameters of the grain contact model. We show that the presence of a free surface is not essential for the formation of the secondary vortex. The vortex forms even when a rigid plate of finite weight confines the granular column at the top. We find that as the shear rate is increased, an additional centrifugally-driven vortex appears. This new vortex keeps growing until, at Savage number close to one, the dilation-driven vortex disappears. We also present the variation of the wall stresses at the inner cylinder with depth. Finally, we argue that the secondary flow can also help to understand the rheological behaviour observed in geometries such as the split-bottom Couette device [3].

  10. Fingering and fracturing in granular media

    NASA Astrophysics Data System (ADS)

    Juanes, R.; Holtzman, R.; Szulczewski, M.

    2012-12-01

    Here, we describe the phenomenon of capillary fracturing in granular media. We study the displacement of immiscible fluids in deformable, non-cohesive granular media. Experimentally, we inject air into a thin bed of water-saturated glass beads and observe the invasion morphology. The control parameters are the injection rate, the bead size, and the confining stress. We identify three invasion regimes: capillary fingering, viscous fingering, and "capillary fracturing", where capillary forces overcome frictional resistance and induce the opening of conduits. We derive two dimensionless numbers that govern the transition among the different regimes: a modified capillary number and a fracturing number. The experiments and analysis predict the emergence of fracturing in fine-grained media under low confining stress, a phenomenon that likely plays a fundamental role in many natural processes such as primary oil migration, methane venting from lake sediments, and the formation of desiccation cracks.Examples of experimentally observed patterns. We classify these patterns into three regimes: viscous fingering, capillary fingering, and fracturing.

  11. Controlling cohesive forces in granular media

    NASA Astrophysics Data System (ADS)

    G"Ogelein, Christoph; Schr"Oter, Matthias; Brinkmann, Martin; Herminghaus, Stephan

    2009-11-01

    When adding a small amount of water to a pile of granular matter, e.g., sand heap, close-by grains can be connected by liquid bridges [1]. Thus, the material becomes plastically and can sustain a larger stress as compared to dry sand. Our general aim is to compare the mechanical properties of wet and dry granular media. For this purpose, we use a suspension of micrometer large glass or Latex spheres dispersed in a binary liquid mixture. The suspending water-lutidine(oil) mixture exhibits a lower critical solution temperature leading to a water-oil-like phase separation slightly above ambient temperature. Close to this demixing region, the oil-like phase undergoes a pre-wetting transition on the particle glass surface inducing liquid bridges [2]. Thus, by varying the temperature we can switch the liquid bridges on and off. We will report on our attempts to directly visualize the formation and control of liquid bridges using confocal and non- confocal microscopy. [4pt] [1] M. Scheel, et al., Nature Materials 7, 174 (2008)[0pt] [2] D. Beysens, and D. Esteve, Phys. Rev. Lett. 54, 2123 (1985)

  12. Size segregation in a granular bore

    NASA Astrophysics Data System (ADS)

    Edwards, A. N.; Vriend, N. M.

    2016-10-01

    We investigate the effect of particle-size segregation in an upslope propagating granular bore. A bidisperse mixture of particles, initially normally graded, flows down an inclined chute and impacts with a closed end. This impact causes the formation of a shock in flow thickness, known as a granular bore, to travel upslope, leaving behind a thick deposit. This deposit imprints the local segregated state featuring both pure and mixed regions of particles as a function of downstream position. The particle-size distribution through the depth is characterized by a thin purely small-particle layer at the base, a significant linear transition region, and a thick constant mixed-particle layer below the surface, in contrast to previously observed S-shaped steady-state concentration profiles. The experimental observations agree with recent progress that upward and downward segregation of large and small particles respectively is asymmetric. We incorporate the three-layer, experimentally observed, size-distribution profile into a depth-averaged segregation model to modify it accordingly. Numerical solutions of this model are able to match our experimental results and therefore motivate the use of a more general particle-size distribution profile.

  13. Radio Jet Feedback and Star Formation in Heavily Obscured, Hyperluminous Quasars at Redshifts ˜ 0.5-3. I. ALMA Observations

    NASA Astrophysics Data System (ADS)

    Lonsdale, Carol J.; Lacy, M.; Kimball, A. E.; Blain, A.; Whittle, M.; Wilkes, B.; Stern, D.; Condon, J.; Kim, M.; Assef, R. J.; Tsai, C.-W.; Efstathiou, A.; Jones, S.; Eisenhardt, P.; Bridge, C.; Wu, J.; Lonsdale, Colin J.; Jones, K.; Jarrett, T.; Smith, R.

    2015-11-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) 870 μm (345 GHz) data for 49 high-redshift (0.47 < z < 2.85), luminous (11.7\\lt {log}({L}{{bol}}/{L}⊙ )\\lt 14.2) radio-powerful active galactic nuclei (AGNs), obtained to constrain cool dust emission from starbursts concurrent with highly obscured radiative-mode black hole (BH) accretion in massive galaxies that possess a small radio jet. The sample was selected from the Wide-field Infrared Survey Explorer with extremely steep (red) mid-infrared colors and with compact radio emission from NVSS/FIRST. Twenty-six sources are detected at 870 μm, and we find that the sample has large mid- to far-infrared luminosity ratios, consistent with a dominant and highly obscured quasar. The rest-frame 3 GHz radio powers are 24.7\\lt {log}({P}\\text{3.0 GHz}/{{{W}} {Hz}}-1)\\lt 27.3, and all sources are radio-intermediate or radio-loud. BH mass estimates are 7.7 < log(MBH/M⊙) < 10.2. The rest-frame 1-5 μm spectral energy distributions are very similar to the “Hot DOGs” (hot dust-obscured galaxies), and steeper (redder) than almost any other known extragalactic sources. ISM masses estimated for the ALMA-detected sources are 9.9 < log (MISM/M⊙) < 11.75 assuming a dust temperature of 30 K. The cool dust emission is consistent with star formation rates reaching several thousand M⊙ yr-1, depending on the assumed dust temperature, but we cannot rule out the alternative that the AGN powers all the emission in some cases. Our best constrained source has radiative transfer solutions with approximately equal contributions from an obscured AGN and a young (10-15 Myr) compact starburst.

  14. Deflection of jets induced by jet-cloud and jet-galaxy interactions

    NASA Astrophysics Data System (ADS)

    Mendoza, S.; Longair, M. S.

    2001-06-01

    The model first introduced by Raga & Cantó in which astrophysical jets are deflected on passing through an isothermal high-density region is generalized by taking into account gravitational effects on the motion of the jet as it crosses the high-density cloud. The problem is also generalized for relativistic jets in which gravitational effects induced by the cloud are neglected. Two further cases, classical and relativistic, are discussed for the cases in which the jet is deflected on passing through the interstellar gas of a galaxy in which a dark matter halo dominates the gravitational potential. The criteria for the stability of jets due to the formation of internal shocks are also discussed.

  15. An inkjet vision measurement technique for high-frequency jetting

    SciTech Connect

    Kwon, Kye-Si Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  16. An inkjet vision measurement technique for high-frequency jetting.

    PubMed

    Kwon, Kye-Si; Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-06-01

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  17. Geophysical granular and particle-laden flows: review of the field.

    PubMed

    Hutter, Kolumban

    2005-07-15

    An introduction is given to the title theme, in general, and the specific topics treated in detail in the articles of this theme issue of the Philosophical Transactions. They fit into the following broader subjects: (i) dense, dry and wet granular flows as avalanche and debris flow events, (ii) air-borne particle-laden turbulent flows in air over a granular base as exemplified in gravity currents, aeolian transport of sand, dust and snow and (iii) transport of a granular mass on a two-dimensional surface in ripple formations of estuaries and rivers and the motion of sea ice.

  18. An infrequent histopathological subtype of ameloblastoma: Adenoid granular cell ameloblastoma with dentinoid

    PubMed Central

    Salehinejad, Jahanshah; Gholami, Mahdi; Eshghpour, Majid; Mehri, Tahere

    2016-01-01

    Adenoid ameloblastoma with dentinoid is a rare odontogenic tumor. Granular cell ameloblastoma also is a less common histological subtype of ameloblastoma. In this report, the patient was a 31-year-old male. The lesion was located in the right mandible and was unicystic with well-defined borders. The tumor tissue was showing a combination of follicular, plexiform, and desmoplastic patterns of ameloblastoma with wide areas of granular cells, fibrous stroma, glandular pattern, and dentinoid calcified. Very few cases of distinct forms of ameloblastoma that show the formation of dentinoid has been reported. However, there are no cases of adenoid granular cell ameloblastoma with dentinoid reported. PMID:27605998

  19. Dynamic granularity of imaging systems

    SciTech Connect

    Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; Porter, John L.

    2015-11-04

    Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the “dynamic granularity” Gdyn as a standardized, objective relation between a detector’s spatial resolution (granularity) and dynamic range for complex imaging systems in a given environment rather than the widely found characterization of detectors such as cameras or films by themselves. We found that this relation can partly be explained through consideration of the signal’s photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system’s performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. Our article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia’s Z-Backlighter facility.

  20. Dynamic granularity of imaging systems

    DOE PAGES

    Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; ...

    2015-11-04

    Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the “dynamic granularity” Gdyn as a standardized, objective relation between a detector’s spatial resolution (granularity) and dynamic range for complex imaging systems in a given environment rathermore » than the widely found characterization of detectors such as cameras or films by themselves. We found that this relation can partly be explained through consideration of the signal’s photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system’s performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. Our article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia’s Z-Backlighter facility.« less

  1. Mechanics of Granular Materials (MGM)

    NASA Technical Reports Server (NTRS)

    Alshibli, Khalid A.; Costes, Nicholas C.; Porter, Ronald F.

    1996-01-01

    The constitutive behavior of uncemented granular materials such as strength, stiffness, and localization of deformations are to a large extend derived from interparticle friction transmitted between solid particles and particle groups. Interparticle forces are highly dependent on gravitational body forces. At very low effective confining pressures, the true nature of the Mohr envelope, which defines the Mohr-Coulomb failure criterion for soils, as well as the relative contribution of each of non-frictional components to soil's shear strength cannot be evaluated in terrestrial laboratories. Because of the impossibility of eliminating gravitational body forces on earth, the weight of soil grains develops interparticle compressive stresses which mask true soil constitutive behavior even in the smallest samples of models. Therefore the microgravity environment induced by near-earth orbits of spacecraft provides unique experimental opportunities for testing theories related to the mechanical behavior of terrestrial granular materials. Such materials may include cohesionless soils, industrial powders, crushed coal, etc. This paper will describe the microgravity experiment, 'Mechanics of Granular Materials (MGM)', scheduled to be flown on Space Shuttle-MIR missions. The paper will describe the experiment's hardware, instrumentation, specimen preparation procedures, testing procedures in flight, as well as a brief summary of the post-mission analysis. It is expected that the experimental results will significantly improve the understanding of the behavior of granular materials under very low effective stress levels.

  2. Particle deposition in granular media: Progress report

    SciTech Connect

    Tien, Chi

    1987-01-01

    This paper discusses topics on particle deposition in granular media. The six topics discussed are: experimental determination of initial collection efficiency in granular beds - an assessment of the effect of instrument sensitivity and the extent of particle bounce-off; deposition of polydispersed aerosols in granular media; in situ observation of aerosol deposition in a two-dimensional model filter; solid velocity in cross-flow granular moving bed; aerosol deposition in granular moving bed; and aerosol deposition in a magnetically stabilized fluidized bed. (LSP)

  3. Capillary oscillations on liquid jets

    NASA Astrophysics Data System (ADS)

    Wetsel, Grover C.

    1980-07-01

    Capillary oscillations on modulated liquid jets have been investigated using laser illumination and electronic detection of the magnified jet shadow. The amplitudes of several wave harmonics of a growing spatial instability were measured as a function of distance from the orifice for a range of jet velocities and initial-disturbance amplitudes. The experimentally determined growth rates at the fundamental frequency are compared with theories of capillary-wave propagation. An empirically derived explanation of the suppression of satellite formation is given. Experimental evidence for infinite-wavelength capillary oscillations is reported; a description of these oscillations in terms of the Rayleigh theory is presented.

  4. Modeling Coronal Jets with FLUX

    NASA Astrophysics Data System (ADS)

    Rachmeler, L. A.; Pariat, E.; Antiochos, S. K.; Deforest, C. E.

    2008-05-01

    We report on a comparative study of coronal jet formation with and without reconnection using two different simulation strategies. Coronal jets are features on the solar surface that appear to have some properties in common with coronal mass ejections, but are less energetic, massive, and broad. Magnetic free energy is built up over time and then suddenly released, which accelerates plasma outward in the form of a coronal jet. We compare results from the ARMS adaptive mesh and FLUX reconnection-less codes to study the role of reconnection in this system. This is the first direct comparison between FLUX and a numerical model with a 3D spatial grid.

  5. Microscopic evidence of grain boundary moisture during granular salt reconsolidation

    NASA Astrophysics Data System (ADS)

    Mills, M. M.; Hansen, F.; Bauer, S. J.; Stormont, J.

    2015-12-01

    Very low permeability is a principal reason salt formations are considered viable hosts for disposal of nuclear waste and spent nuclear fuel. Granular salt is likely to be used as back-fill material and a seal system component. Salt formation pressures will promote reconsolidation of granular salt, eventually resulting in low permeabilities, comparable to native salt. Understanding the consolidation processes, dependent on the stress state, moisture availability and temperature, is important for demonstrating sealing functions and long-term repository performance. As granular salt consolidates, initial void reduction is achieved by brittle processes of grain rearrangement and cataclastic flow. At porosities less than 10%, grain boundary processes and crystal-plastic mechanisms govern further porosity reduction. When present, fluid assists in grain boundary processes and recrystallization. Fluid inclusions are typically found in abundance within bedded salt crystal structure and along grain boundaries, but are rarely observed internal to domal salt grains. We have observed fluid canals and evidence of moisture along grain boundaries in domal salt. In this research, we investigate grain boundary moisture in granular salt that has been reconsolidated under high temperatures to relatively low porosity. Mine-run salt from the Waste Isolation Pilot Plant and Avery Island was used to create cylindrical samples, vented and unvented, which were reconsolidated at 250°C and stresses to 20 MPa. Unvented reconsolidation retains essentially all the grain boundary moisture as found ubiquitously on scanning electron photomicrographs of consolidated samples which revealed an inhomogeneous distribution of canals from residual moisture. This contrasts significantly with the vented samples, which had virtually no grain boundary moisture after consolidation. Microstructural techniques include scanning electron, stereo-dynascopic, and optical microscopy. The observations will be used

  6. NASA Jet Noise Research

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda

    2016-01-01

    The presentation highlights NASA's jet noise research for 2016. Jet-noise modeling efforts, jet-surface interactions results, acoustic characteristics of multi-stream jets, and N+2 Supersonic Aircraft system studies are presented.

  7. Granular segregation driven by particle interactions.

    PubMed

    Lozano, C; Zuriguel, I; Garcimartín, A; Mullin, T

    2015-05-01

    We report the results of an experimental study of particle-particle interactions in a horizontally shaken granular layer that undergoes a second order phase transition from a binary gas to a segregation liquid as the packing fraction C is increased. By focusing on the behavior of individual particles, the effect of C is studied on (1) the process of cluster formation, (2) cluster dynamics, and (3) cluster destruction. The outcomes indicate that the segregation is driven by two mechanisms: attraction between particles with the same properties and random motion with a characteristic length that is inversely proportional to C. All clusters investigated are found to be transient and the probability distribution functions of the separation times display a power law tail, indicating that the splitting probability decreases with time.

  8. Nano-granular texture of cement hydrates

    NASA Astrophysics Data System (ADS)

    Ioannidou, Katerina; Ulm, Franz-Josef; Levitz, Pierre; Del Gado, Emanuela; Pellenq, Roland J.-M.

    2017-06-01

    Mechanical behavior of concrete crucially depends on cement hydrates, the "glue" of cement. The design of high performance and more environmentally friendly cements demands a deeper understanding of the formation of the multiscale structure of cement hydrates, when they precipitate and densify. We investigate the precipitation and setting of nano-grains of cement hydrates using a combination of Monte Carlo and Molecular Dynamics numerical simulations and study their texture from nano up to the micron scale. We characterize the texture of cement hydrates using the local volume fraction distribution, the pore size distribution, the scattering intensity and the chord length distribution and we compare them with experiments. Our nano-granular model provides cement structure with realistic texture and mechanics and can be further used to investigate degradation mechanisms.

  9. Methods of similitude in granular avalanche flows

    NASA Astrophysics Data System (ADS)

    Tai, Yih-Chin; Wang, Yongqi; Gray, J. M. N. T.; Hutter, Kolumban

    Snow avalanches are relatively dry and dense granular flows for which the Savage-Hutter (SH) equations have been demonstrated to be an adequate mathematical model. We review these equations and point out for which cases the equations have been tested against laboratory experiments. Since the equations are scale invariant and because agreement with experiments is good, laboratory experiments can be used to test realistic flows. This is detailed in this paper. We demonstrate how shocks are formed when dilatational flow states merge into compacting states and show that shock formation is an essential mechanism in flows against obstructions. We finally apply the theory of similitude to the design of a projected avalanche protection structure of the Schneefernerhaus at the Zugspitze.

  10. [Jet lag].

    PubMed

    Lagarde, D; Doireau, P

    1997-01-01

    Desynchronization of circadian rhythmicity resulting from rapid travel through at least four time zones leads to symptoms known in everyday English as jet-lag. The most detrimental effect of jet-lag is fatigue with poor alertness and psychomotor performance. Severity is subject to individual variation in susceptibility (morning/evening typology, age,...) and environmental factors (direction of travel, number of time zones crossed, psychosocial environment...). Many measures used to prevent or reduce jet lag are inappropriate or ineffective and some may even be dangerous, such as use of melatonin. One of the most reliable preventive techniques consists of reinforcing social synchronizers by maintaining exposure to sunlight and social activity. Only two drugs currently available on the market can be recommended, i.e. non-benzodiazepinic hypnotics which induce high quality sleep to allow quick recovery and a new time-release caffeine agent which has been shown to prolong psychomotor performance.

  11. ELLERMAN BOMBS WITH JETS: CAUSE AND EFFECT

    SciTech Connect

    Reid, A.; Mathioudakis, M.; Scullion, E.; Gallagher, P.; Doyle, J. G.; Shelyag, S.

    2015-05-20

    Ellerman Bombs (EBs) are thought to arise as a result of photospheric magnetic reconnection. We use data from the Swedish 1 m Solar Telescope to study EB events on the solar disk and at the limb. Both data sets show that EBs are connected to the foot points of forming chromospheric jets. The limb observations show that a bright structure in the Hα blue wing connects to the EB initially fueling it, leading to the ejection of material upwards. The material moves along a loop structure where a newly formed jet is subsequently observed in the red wing of Hα. In the disk data set, an EB initiates a jet which propagates away from the apparent reconnection site within the EB flame. The EB then splits into two, with associated brightenings in the inter-granular lanes. Micro-jets are then observed, extending to 500 km with a lifetime of a few minutes. Observed velocities of the micro-jets are approximately 5–10 km s{sup −1}, while their chromospheric counterparts range from 50 to 80 km s{sup −1}. MURaM simulations of quiet Sun reconnection show that micro-jets with properties similar to those of the observations follow the line of reconnection in the photosphere, with associated Hα brightening at the location of increased temperature.

  12. HYPERELASTIC MODELS FOR GRANULAR MATERIALS

    SciTech Connect

    Humrickhouse, Paul W; Corradini, Michael L

    2009-01-29

    A continuum framework for modeling of dust mobilization and transport, and the behavior of granular systems in general, has been reviewed, developed and evaluated for reactor design applications. The large quantities of micron-sized particles expected in the international fusion reactor design, ITER, will accumulate into piles and layers on surfaces, which are large relative to the individual particle size; thus, particle-particle, rather than particle-surface, interactions will determine the behavior of the material in bulk, and a continuum approach is necessary and justified in treating the phenomena of interest; e.g., particle resuspension and transport. The various constitutive relations that characterize these solid particle interactions in dense granular flows have been discussed previously, but prior to mobilization their behavior is not even fluid. Even in the absence of adhesive forces between particles, dust or sand piles can exist in static equilibrium under gravity and other forces, e.g., fluid shear. Their behavior is understood to be elastic, though not linear. The recent “granular elasticity” theory proposes a non-linear elastic model based on “Hertz contacts” between particles; the theory identifies the Coulomb yield condition as a requirement for thermodynamic stability, and has successfully reproduced experimental results for stress distributions in sand piles. The granular elasticity theory is developed and implemented in a stand- alone model and then implemented as part of a finite element model, ABAQUS, to determine the stress distributions in dust piles subjected to shear by a fluid flow. We identify yield with the onset of mobilization, and establish, for a given dust pile and flow geometry, the threshold pressure (force) conditions on the surface due to flow required to initiate it. While the granular elasticity theory applies strictly to cohesionless granular materials, attractive forces are clearly important in the interaction of

  13. Free cooling of the one-dimensional wet granular gas.

    PubMed

    Zaburdaev, V Yu; Brinkmann, M; Herminghaus, S

    2006-07-07

    The free cooling behavior of a wet granular gas is studied in one dimension. We employ a particularly simple model system in which the interaction of wet grains is characterized by a fixed energy loss assigned to each collision. Macroscopic laws of energy dissipation and cluster formation are studied on the basis of numerical simulations and mean-field analytical calculations. We find a number of remarkable scaling properties which may shed light on earlier unexplained results for related systems.

  14. Studies of elasticity, sound propagation and attenuation of acoustic modes in granular media: final report

    SciTech Connect

    Makse, Hernan A.; Johnson, David L.

    2014-09-03

    This is the final report describing the results of DOE Grant # DE-FG02-03ER15458 with original termination date of April 31, 2013, which has been extended to April 31, 2014. The goal of this project is to develop a theoretical and experimental understanding of sound propagation, elasticity and dissipation in granular materials. The topic is relevant for the efficient production of hydrocarbon and for identifying and characterizing the underground formation for storage of either CO2 or nuclear waste material. Furthermore, understanding the basic properties of acoustic propagation in granular media is of importance not only to the energy industry, but also to the pharmaceutical, chemical and agricultural industries. We employ a set of experimental, theoretical and computational tools to develop a study of acoustics and dissipation in granular media. These include the concept effective mass of granular media, normal modes analysis, statistical mechanics frameworks and numerical simulations based on Discrete Element Methods. Effective mass measurements allow us to study the mechanisms of the elastic response and attenuation of acoustic modes in granular media. We perform experiments and simulations under varying conditions, including humidity and vacuum, and different interparticle force-laws to develop a fundamental understanding of the mechanisms of damping and acoustic propagation in granular media. A theoretical statistical approach studies the necessary phase space of configurations in pressure, volume fraction to classify granular materials.

  15. Gas Jets

    NASA Technical Reports Server (NTRS)

    Chaplygin, S.

    1944-01-01

    A brief summary of the contents of this paper is presented here. In part I the differential equations of the problem of a gas flow in two dimensions is derived and the particular integrals by which the problem on jets is solved are given. Use is made of the same independent variables as Molenbroek used, but it is found to be more suitable to consider other functions. The stream function and velocity potential corresponding to the problem are given in the form of series. The investigation on the convergence of these series in connection with certain properties of the functions entering them forms the subject of part II. In part III the problem of the outflow of a gas from an infinite vessel with plane walls is solved. In part IV the impact of a gas jet on a plate is considered and the limiting case where the jet expands to infinity changing into a gas flow is taken up in more detail. This also solved the equivalent problem of the resistance of a gaseous medium to the motion of a plate. Finally, in part V, an approximate method is presented that permits a simpler solution of the problem of jet flows in the case where the velocities of the gas (velocities of the particles in the gas) are not very large.

  16. Stress Response of Granular Systems

    NASA Astrophysics Data System (ADS)

    Ramola, Kabir; Chakraborty, Bulbul

    2017-10-01

    We develop a framework for stress response in two dimensional granular media, with and without friction, that respects vector force balance at the microscopic level. We introduce local gauge degrees of freedom that determine the response of contact forces between constituent grains on a given, disordered, contact network, to external perturbations. By mapping this response to the spectral properties of the graph Laplacian corresponding to the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for localization using exact diagonalization studies of network Laplacians of soft disk packings. Finally, we discuss the role of other constraints, such as torque balance, in determining the stability of a granular packing to external perturbations.

  17. Conductivity of granular metallic films

    SciTech Connect

    Ovchinnikov, Yu. N.

    2007-04-15

    The electrical resistivity of granular metallic films with a granule size R {approx} 10-50 A decomposes into two factors. One of them depends only on the ratio (T{sub 0}(x)/T) and varies in a range of six to seven orders of magnitude. The second factor depends on the volume concentration of metallic granules x and the concentration of the solution of isolated metal atoms in their oxide and varies in a range of five to six orders of magnitude. Expressions for both factors have been obtained. The conductivity of the granular films is related to tunneling between neighboring granules. The tunneling probability depends substantially on the concentration of the solution of isolated metal atoms in the oxide.

  18. Rheology of vibrated granular suspensions

    NASA Astrophysics Data System (ADS)

    Kiesgen de Richter, Sebastien; Hanotin, Caroline; Gaudel, Naima; Louvet, Nicolas; Marchal, Philippe; Jenny, Mathieu

    2017-06-01

    In this work we investigate in details the flow behaviour of dense vibrated gravitational suspensions. We study the rheology in the stationary state by using a stress imposed rheometer (spectroscopy mechanics) coupled with a vibration cell, we show that applying well-controlled mechanical vibrations allows the control of the suspension viscosity by suppressing the apparent yield stress which is largely the cause of flow jamming. We show that the rheology in the stationary state is controlled by the competition between the reorganization time induced by the flow and the internal reorganization time induced by vibrations. We discuss the influence of particles size, suspending fluid viscosity and vibration parameters and demonstrate that the grains dynamics is controlled by the ratio between the lubrication stress and the granular pressure. This work evidences the major role played by the vibration induced lubrication stress on the liquefaction of vibrated granular suspensions.

  19. Stress Response of Granular Systems

    NASA Astrophysics Data System (ADS)

    Ramola, Kabir; Chakraborty, Bulbul

    2017-08-01

    We develop a framework for stress response in two dimensional granular media, with and without friction, that respects vector force balance at the microscopic level. We introduce local gauge degrees of freedom that determine the response of contact forces between constituent grains on a given, disordered, contact network, to external perturbations. By mapping this response to the spectral properties of the graph Laplacian corresponding to the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for localization using exact diagonalization studies of network Laplacians of soft disk packings. Finally, we discuss the role of other constraints, such as torque balance, in determining the stability of a granular packing to external perturbations.

  20. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Dynamics of formation of the liquid-drop phase of laser erosion jets near the surfaces of metal targets

    NASA Astrophysics Data System (ADS)

    Goncharov, V. K.; Kontsevoi, V. L.; Puzyrev, M. V.

    1995-03-01

    An investigation was made of laser erosion jets formed at 0.1-1.5 mm above the surfaces of Pb, Co, Ni, Sn, and Zn targets. A neodymium laser emitting rectangular pulses of 400 μs duration and of energy up to 400 J was used. The diameters, as well as the number density and volume fraction of the metal particles present in the jet, were measured. An analysis of the results showed that the metal liquid drops broke up near the surface and experienced additional evaporation because of their motion opposite to the laser beam.

  1. Characterizing Three Dimensional Granular Materials

    NASA Astrophysics Data System (ADS)

    Chen, David; Bares, Jonathan; Zheng, Hu; Bester, Casey; Behringer, Robert

    2016-11-01

    We use systems of hydrogel particles to determine the microscopic response of 3D granular systems to deformations near jamming. We visualize the particles using a laser scan technique, and we determine the motion of the particles along with their inter-particle forces and contacts from the reconstructed scans. We focus on their response to shear with low friction. NSF-DMF-1206351, NASA NNX15AD38G.

  2. Dynamic compaction of granular materials

    PubMed Central

    Favrie, N.; Gavrilyuk, S.

    2013-01-01

    An Eulerian hyperbolic multiphase flow model for dynamic and irreversible compaction of granular materials is constructed. The reversible model is first constructed on the basis of the classical Hertz theory. The irreversible model is then derived in accordance with the following two basic principles. First, the entropy inequality is satisfied by the model. Second, the corresponding ‘intergranular stress’ coming from elastic energy owing to contact between grains decreases in time (the granular media behave as Maxwell-type materials). The irreversible model admits an equilibrium state corresponding to von Mises-type yield limit. The yield limit depends on the volume fraction of the solid. The sound velocity at the yield surface is smaller than that in the reversible model. The last one is smaller than the sound velocity in the irreversible model. Such an embedded model structure assures a thermodynamically correct formulation of the model of granular materials. The model is validated on quasi-static experiments on loading–unloading cycles. The experimentally observed hysteresis phenomena were numerically confirmed with a good accuracy by the proposed model. PMID:24353466

  3. Bipedal locomotion in granular media

    NASA Astrophysics Data System (ADS)

    Kingsbury, Mark; Zhang, Tingnan; Goldman, Daniel

    Bipedal walking, locomotion characterized by alternating swing and double support phase, is well studied on ground where feet do not penetrate the substrate. On granular media like sand however, intrusion and extrusion phases also occur. In these phases, relative motion of the two feet requires that one or both feet slip through the material, degrading performance. To study walking in these phases, we designed and studied a planarized bipedal robot (1.6 kg, 42 cm) that walked in a fluidized bed of poppy seeds. We also simulated the robot in a multibody software environment (Chrono) using granular resistive force theory (RFT) to calculate foot forces. In experiment and simulation, the robot experienced slip during the intrusion phase, with the experiment presenting additional slip due to motor control error during the double support phase. This exaggerated slip gave insight (through analysis of ground reaction forces in simulation) into how slip occurs when relative motion exists between the two feet in the granular media, where the foot with higher relative drag forces (from its instantaneous orientation, rotation, relative direction of motion, and depth) remains stationary. With this relationship, we generated walking gaits for the robot to walk with minimal slip.

  4. Detailed Jet Dynamics in a Collapsing Bubble

    NASA Astrophysics Data System (ADS)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Farhat, Mohamed

    2015-12-01

    We present detailed visualizations of the micro-jet forming inside an aspherically collapsing cavitation bubble near a free surface. The high-quality visualizations of large and strongly deformed bubbles disclose so far unseen features of the dynamics inside the bubble, such as a mushroom-like flattened jet-tip, crown formation and micro-droplets. We also find that jetting near a free surface reduces the collapse time relative to the Rayleigh time.

  5. Stick-Slip Dynamics in Sheared Granular Material

    NASA Astrophysics Data System (ADS)

    Mair, K.

    2002-12-01

    dynamic failure. I suggest the stick-slip instabilities in these sheared granular layers reflect the formation and collapse of fragile networks of stress chains. Furthermore, observations of dilation during premonitory slip support ideas that the transition of a granular material to a fluidised state may trigger the breakdown of stress chains and hence dynamic failure.

  6. Modelling of the material transport and layer formation in the divertor of JET: Comparison of ITER-like wall with full carbon wall conditions

    NASA Astrophysics Data System (ADS)

    Kirschner, A.; Matveev, D.; Borodin, D.; Airila, M.; Brezinsek, S.; Groth, M.; Wiesen, S.; Widdowson, A.; Beal, J.; Esser, H. G.; Likonen, J.; Bekris, N.; Ding, R.

    2015-08-01

    Impurity transport within the inner JET divertor has been modelled with ERO to estimate the transport to and the resulting deposition at remote areas. Various parametric studies involving divertor plasma conditions and strike point position have been performed. In JET-ILW (beryllium main chamber and tungsten divertor) beryllium, flowing from the main chamber into the divertor and then effectively reflected at the tungsten divertor tiles, is transported to remote areas. The tungsten flux to remote areas in L-Mode is in comparison to the beryllium flux negligible due to small sputtering. However, tungsten is sputtered during ELMs in H-Mode conditions. Nevertheless, depending on the plasma conditions, strike point position and the location of the remote area, the maximum resulting tungsten flux to remote areas is at least ∼3 times lower than the corresponding beryllium flux. Modelled beryllium and tungsten deposition on a rotating collector probe located below tile 5 is in good agreement with measurements if the beryllium influx into the inner divertor is assumed to be in the range of 0.1% relative to the deuterium ion flux and erosion due to fast charge exchange neutrals is considered. Comparison between JET-ILW and JET-C is presented.

  7. Granular packing as model glass formers

    NASA Astrophysics Data System (ADS)

    Wang, Yujie

    2017-01-01

    Static granular packings are model hard-sphere glass formers. The nature of glass transition has remained a hotly debated issue. We review recent experimental progresses in using granular materials to study glass transitions. We focus on the growth of glass order with five-fold symmetry in granular packings and relate the findings to both geometric frustration and random first-order phase transition theories.

  8. Viscorotational shear instability of Keplerian granular flows

    NASA Astrophysics Data System (ADS)

    Poniatowski, Luka G.; Tevzadze, Alexander G.

    2017-07-01

    The linear stability of viscous Keplerian flow around a gravitating center is studied using the rheological granular fluid model. The linear rheological instability triggered by the interplay of the shear rheology and Keplerian differential rotation of incompressible dense granular fluids is found. Instability sets in in granular fluids, where the viscosity parameter grows faster than the square of the local shear rate (strain rate) at constant pressure. Found instability can play a crucial role in the dynamics of dense planetary rings and granular flows in protoplanetary disks.

  9. Jet lag.

    PubMed

    Herxheimer, Andrew

    2008-12-04

    Jet lag affects most air travellers crossing five or more time zones; it tends to be worse on eastward than on westward flights. We conducted a systematic review and aimed to answer the following clinical question: What are the effects of interventions to prevent or minimise jet lag? We searched: Medline, Embase, The Cochrane Library, and other important databases up to June 2008 (Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). We found five systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. In this systematic review we present information relating to the effectiveness and safety of the following interventions: hypnotics, melatonin, and lifestyle and environmental adaptations.

  10. Computational Study of Air Entrainment by Plunging Jets-Influence of Jet Inclination

    NASA Astrophysics Data System (ADS)

    Deshpande, Suraj; Trujillo, Mario

    2012-11-01

    The process of air entrainment by a continuous liquid jet plunging into a quiescent liquid pool is studied computationally. Our earlier study [APS2011] focused on shallow impacts and the discernible periodicity of air cavity formation. Here, we consider the effect of jet angle. For steep impacts, we see a chaotic formation of small cavities, in agreement with the literature. To explain the difference, we track evolution of the flow from initial impact to quasi-stationary state, for different jet inclinations. The initial impact always yields a large air cavity, regardless of jet angle. Difference emerges in the quasi-stationary state where shallow jets demonstrate the periodicity but the steep jets do not. We show that this is a manifestation of the air entrainment being a function of flow disturbance. For shallow jets, the disturbance originates from strong wavelike motion of the cavity which results in a total disruption of the jet. Thus, the resulting cavities are large and occur periodically. For the steep jets, entrainment happens by collapse of a thin gas film uniformly enshrouding the submerged jet. Such a thin film is very sensitive to the local flow disturbances. Thus, its collapse occurs stochastically all around the jet causing chaotic entrainment of small air pocket.

  11. Sealing of boreholes using natural, compatible materials: Granular salt

    SciTech Connect

    Finley, R.E.; Zeuch, D.H.; Stormont, J.C.; Daemen, J.J.K.

    1994-05-01

    Granular salt can be used to construct high performance permanent seals in boreholes which penetrate rock salt formations. These seals are described as seal systems comprised of the host rock, the seal material, and the seal rock interface. The performance of these seal systems is defined by the complex interactions between these seal system components through time. The interactions are largely driven by the creep of the host formation applying boundary stress on the seal forcing host rock permeability with time. The immediate permeability of these seals is dependent on the emplaced density. Laboratory test results suggest that careful emplacement techniques could results in immediate seal system permeability on the order of 10{sup {minus}16} m{sup 2} to 10{sup {minus}18} m{sup 2} (10{sup {minus}4} darcy to 10{sup {minus}6}). The visco-plastic behavior of the host rock coupled with the granular salts ability to ``heal`` or consolidate make granular salt an ideal sealing material for boreholes whose permanent sealing is required.

  12. Mixing and segregation dynamics of granular mixtures in rotating tumblers

    NASA Astrophysics Data System (ADS)

    Juarez, Gabriel

    This thesis presents studies focused on a better understanding mixing and segregation of granular flows in rotating tumblers. Axial segregation of size varying bidisperse granular mixtures in long cylindrical tumblers was studied to understand the dependence of band formation and evolution on the relative concentration of small and large particles and the rotation rate. In attempt to shed new light on the phenomenon, two new approaches to analyze size-varying band forming systems were proposed. One is an analogy between the phase diagram of a granular system and that of a binary chemical system in which band formation is shown to have "phase transitions" analogous to spinodal decomposition and nucleation. The other, a dynamic scaling approach, was applied to coarsening granular patterns similar to that previously used for reacting lamellae in fluid cavity flows. The scaling indicates a universality of band thickness distributions. The critical speed for centrifuging of monodisperse granular materials in rotating tumblers was investigated through experiments in a quasi-2D tumbler. The commonly used dimensionless number is the Froude number, Fr = o 2R/g, which is the measure of the ratio of inertial forces to gravitational forces. The generally accepted value for centrifuging of Fr> 1 is not accurate. Preliminary results show that centrifuging depends on more than just Fr. Important factors include the tumbler fill fraction and particle interactions due to friction, but particle size plays only a minor role. Finally, a mixing mechanism without stretching and folding, referred to as "cutting and shuffling," is introduced. The mechanism has theoretical foundations in a relatively new area of mathematics called piecewise isometries (PWI). Mixing of granular materials is considered in a half-full three-dimensional spherical tumbler undergoing a protocol of repeated brief rotations about two different horizontal axes. Experiments for monodisperse particles over several

  13. Dichotomy of Solar Coronal Jets: Standard Jets and Blowout Jets

    NASA Astrophysics Data System (ADS)

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.; Falconer, David A.

    2010-09-01

    By examining many X-ray jets in Hinode/X-Ray Telescope coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop Hα macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major coronal mass ejections. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 Å snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T ~ 104 - 105 K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  14. DICHOTOMY OF SOLAR CORONAL JETS: STANDARD JETS AND BLOWOUT JETS

    SciTech Connect

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.; Falconer, David A.

    2010-09-01

    By examining many X-ray jets in Hinode/X-Ray Telescope coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H{alpha} macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major coronal mass ejections. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 A snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T {approx} 10{sup 4} - 10{sup 5} K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  15. Dichotomy of Solar Coronal Jets: Standard Jets and Blowout Jets

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Cirtain, J. W.; Sterling, A. C.; Falconer, D. A.

    2010-01-01

    By examining many X-ray jets in Hinode/XRT coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H alpha macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major CMEs. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 Angstrom snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T 10(exp 4) - 10(exp 5) K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  16. Shock Instability and Pattern Emergence in Oscillated Granular Media

    NASA Astrophysics Data System (ADS)

    Stuck, Justin; Anderson, Sarah; Skrzypek, Barbara; Bougie, Jon

    2016-11-01

    We study shocks formed in vertically oscillated layers of granular media and how shock instability relates to resultant pattern formation. Layers of granular media oscillated vertically on a plate at accelerational amplitudes greater than gravity are tossed off the plate, and shocks are formed upon the layers' return to the plate. Previous studies have shown that the emergence of standing-wave patterns is dependent on the plate's accelerational amplitude and oscillation frequency. We numerically solve continuum equations to Navier-Stokes order using forward-time, centered space (FTCS) differencing on a three-dimensional spatial grid. We employ variable timesteps and parallelization for efficiency. These simulations demonstrate shock instability before and after the onset of patterns. We use data from these simulations to investigate the connection between shock instability and pattern emergence. This research is supported by the Loyola Undergraduate Research Opportunities Program.

  17. Dynamic shear jamming in dense granular suspensions under extension

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayantan; Peters, Ivo R.; Han, Endao; Jaeger, Heinrich M.

    2017-01-01

    Unlike dry granular materials, a dense granular suspension like cornstarch in water can strongly resist extensional flows. At low extension rates, such a suspension behaves like a viscous fluid, but rapid extension results in a response where stresses far exceed the predictions of lubrication hydrodynamics and capillarity. To understand this remarkable mechanical response, we experimentally measure the normal force imparted by a large bulk of the suspension on a plate moving vertically upward at a controlled velocity. We observe that, above a velocity threshold, the peak force increases by orders of magnitude. Using fast ultrasound imaging we map out the local velocity profiles inside the suspension, which reveal the formation of a growing jammed region under rapid extension. This region interacts with the rigid boundaries of the container through strong velocity gradients, suggesting a direct connection to the recently proposed shear-jamming mechanism.

  18. Patterns in flowing sand: understanding the physics of granular flow.

    PubMed

    Börzsönyi, Tamás; Ecke, Robert E; McElwaine, Jim N

    2009-10-23

    Dense granular flows are often unstable and form inhomogeneous structures. Although significant advances have been recently made in understanding simple flows, instabilities of such flows are often not understood. We present experimental and numerical results that show the formation of longitudinal stripes that arise from instability of the uniform flowing state of granular media on a rough inclined plane. The form of the stripes depends critically on the mean density of the flow with a robust form of stripes at high density that consists of fast sliding pluglike regions (stripes) on top of highly agitated boiling material--a configuration reminiscent of the Leidenfrost effect when a droplet of liquid lifted by its vapor is hovering above a hot surface.

  19. Jammed Clusters and Non-locality in Dense Granular Flows

    NASA Astrophysics Data System (ADS)

    Kharel, Prashidha; Rognon, Pierre

    We investigate the micro-mechanisms underpinning dense granular flow behaviour from a series of DEM simulations of pure shear flows of dry grains. We observe the development of transient clusters of jammed particles within the flow. Typical size of such clusters is found to scale with the inertial number with a power law that is similar to the scaling of shear-rate profile relaxation lengths observed previously. Based on the simple argument that transient clusters of size l exist in the dense flow regime, the formulation of steady state condition for non-homogeneous shear flow results in a general non-local relation, which is similar in form to the non-local relation conjectured for soft glassy flows. These findings suggest the formation of jammed clusters to be the key micro-mechanism underpinning non-local behaviour in dense granular flows. Particles and Grains Laboratory, School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia.

  20. Experimental study of cake formation on heat treated and membrane coated needle felts in a pilot scale pulse jet bag filter using optical in-situ cake height measurement.

    PubMed

    Saleem, Mahmood; Khan, Rafi Ullah; Tahir, M Suleman; Krammer, Gernot

    2011-12-25

    Pulse-jet bag filters are frequently employed for particle removal from off gases. Separated solids form a layer on the permeable filter media called filter cake. The cake is responsible for increasing pressure drop. Therefore, the cake has to be detached at a predefined upper pressure drop limit or at predefined time intervals. Thus the process is intrinsically semi-continuous. The cake formation and cake detachment are interdependent and may influence the performance of the filter. Therefore, understanding formation and detachment of filter cake is important. In this regard, the filter media is the key component in the system. Needle felts are the most commonly used media in bag filters. Cake formation studies with heat treated and membrane coated needle felts in pilot scale pulse jet bag filter were carried out. The data is processed according to the procedures that were published already [Powder Technology, Volume 173, Issue 2, 19 April 2007, Pages 93-106]. Pressure drop evolution, cake height distribution evolution, cake patches area distribution and their characterization using fractal analysis on different needle felts are presented here. It is observed that concavity of pressure drop curve for membrane coated needle felt is principally caused by presence of inhomogeneous cake area load whereas it is inherent for heat treated media. Presence of residual cake enhances the concavity of pressure drop at the start of filtration cycle. Patchy cleaning is observed only when jet pulse pressure is too low and unable to provide the necessary force to detach the cake. The border line is very sharp. Based on experiments with limestone dust and three types of needle felts, for the jet pulse pressure above 4 bar and filtration velocity below 50 mm/s, cake is detached completely except a thin residual layer (100-200 μm). Uniformity and smoothness of residual cake depends on the surface characteristics of the filter media. Cake height distribution of residual cake and

  1. Pneumatic fractures in Confined Granular Media

    NASA Astrophysics Data System (ADS)

    Eriksen, Fredrik K.; Toussaint, Renaud; Jørgen Måløy, Knut; Grude Flekkøy, Eirik; Turkaya, Semih

    2016-04-01

    We will present our ongoing study of the patterns formed when air flows into a dry, non-cohesive porous medium confined in a horizontal Hele-Shaw cell. This is an optically transparent system consisting of two glass plates separated by 0.5 to 1 mm, containing a packing of dry 80 micron beads in between. The cell is rectangular and has an air-permeable boundary (blocking beads) at one short edge, while the other three edges are completely sealed. The granular medium is loosely packed against the semi-permeable boundary and fills about 80 % of the cell volume. This leaves an empty region at the sealed side, where an inlet allows us to set and maintain the air at a constant overpressure (0.1 - 2 bar). For the air trapped inside the cell to relax its overpressure it has to move through the deformable granular medium. Depending on the applied overpressure and initial density of the medium, we observe a range of different behaviors such as seepage through the pore-network with or without an initial compaction of the solid, formation of low density bubbles with rearrangement of particles, granular fingering/fracturing, and erosion inside formed channels/fractures. The experiments are recorded with a high-speed camera at a framerate of 1000 images/s and a resolution of 1024x1024 pixels. We use various image processing techniques to characterize the evolution of the air invasion patterns and the deformations in the surrounding material. The experiments are similar to deformation processes in porous media which are driven by pore fluid overpressure, such as mud volcanoes and hydraulic or pneumatic (gas-induced) fracturing, and the motivation is to increase the understanding of such processes by optical observations. In addition, this setup is an experimental version of the numerical models analyzed by Niebling et al. [1,2], and is useful for comparison with their results. In a directly related project [3], acoustic emissions from the cell plate are recorded during

  2. WHERE THE GRANULAR FLOWS BEND

    SciTech Connect

    Khomenko, E.; Martinez Pillet, V.; Bonet, J. A.; Del Toro Iniesta, J. C.; Domingo, V.; Schmidt, W.; Knoelker, M.

    2010-11-10

    Based on IMaX/SUNRISE data, we report on a previously undetected phenomenon in solar granulation. We show that in a very narrow region separating granules and intergranular lanes, the spectral line width of the Fe I 5250.2 A line becomes extremely small. We offer an explanation of this observation with the help of magneto-convection simulations. These regions with extremely small line widths correspond to the places where the granular flows bend from upflow in granules to downflow in intergranular lanes. We show that the resolution and image stability achieved by IMaX/SUNRISE are important requisites to detect this interesting phenomenon.

  3. Quantum percolation in granular metals.

    PubMed

    Feigel'man, M V; Ioselevich, A S; Skvortsov, M A

    2004-09-24

    Theory of quantum corrections to conductivity of granular metal films is developed for the realistic case of large randomly distributed tunnel conductances. Quantum fluctuations of intergrain voltages (at energies E much below the bare charging energy scale E(C)) suppress the mean conductance g (E) much more strongly than its standard deviation sigma(E). At sufficiently low energies E(*) any distribution becomes broad, with sigma(E(*)) approximately g (E(*)), leading to strong local fluctuations of the tunneling density of states. The percolative nature of the metal-insulator transition is established by a combination of analytic and numerical analysis of the matrix renormalization group equations.

  4. Weak and Compact Radio Emission in Early Massive Star Formation Regions: An Ionized Jet toward G11.11-0.12P1

    NASA Astrophysics Data System (ADS)

    Rosero, V.; Hofner, P.; McCoy, M.; Kurtz, S.; Menten, K. M.; Wyrowski, F.; Araya, E. D.; Loinard, L.; Carrasco-González, C.; Rodríguez, L. F.; Cesaroni, R.; Ellingsen, S. P.

    2014-12-01

    We report 1.3 cm and 6 cm continuum observations toward the massive proto-stellar candidate G11.11-0.12P1 using the Karl G. Jansky Very Large Array. We detect a string of four unresolved radio continuum sources coincident with the mid-infrared source in G11P1. The continuum sources have positive spectral indices consistent with a thermal (free-free) ionized jet. The most likely origins of the ionized gas are shocks due to the interaction of a stellar wind with the surrounding high-density material. We also present NIR United Kingdom Infrared Telescope (UKIRT) archival data that show an extended structure detected only at K band (2.2 μm), which is oriented perpendicular to the jet, and that may be scattered light from a circumstellar disk around the massive protostar. Our observations plus the UKIRT archival data thus provide new evidence that a disk/jet system is present in the massive proto-stellar candidate located in the G11.11-0.12P1 core.

  5. Weak and compact radio emission in early massive star formation regions: an ionized jet toward G11.11–0.12P1

    SciTech Connect

    Rosero, V.; Hofner, P.; McCoy, M.; Kurtz, S.; Loinard, L.; Carrasco-González, C.; Rodríguez, L. F.; Menten, K. M.; Wyrowski, F.; Araya, E. D.; Cesaroni, R.; Ellingsen, S. P.

    2014-12-01

    We report 1.3 cm and 6 cm continuum observations toward the massive proto-stellar candidate G11.11–0.12P1 using the Karl G. Jansky Very Large Array. We detect a string of four unresolved radio continuum sources coincident with the mid-infrared source in G11P1. The continuum sources have positive spectral indices consistent with a thermal (free-free) ionized jet. The most likely origins of the ionized gas are shocks due to the interaction of a stellar wind with the surrounding high-density material. We also present NIR United Kingdom Infrared Telescope (UKIRT) archival data that show an extended structure detected only at K band (2.2 μm), which is oriented perpendicular to the jet, and that may be scattered light from a circumstellar disk around the massive protostar. Our observations plus the UKIRT archival data thus provide new evidence that a disk/jet system is present in the massive proto-stellar candidate located in the G11.11–0.12P1 core.

  6. NIAC Phase II Orbiting Rainbows Granular Imager

    NASA Technical Reports Server (NTRS)

    Basinger, Scott A.; Palacios, David; Quadrelli, Marco B.; Swartzlander, Grover A., Jr.; Peng, XiaoPeng; Artusio, Alexandra; Arumugam, Darmin D.

    2015-01-01

    In this paper, we present some ideas regarding the optics and imaging aspects of granular spacecraft. Granular spacecraft are complex systems composed of a spatially disordered distribution of a large number of elements, for instance a cloud of grains in orbit. An example of application is a spaceborne observatory for exoplanet imaging, where the primary aperture is a cloud instead of a monolithic aperture.

  7. Granular materials: constitutive equations and strain localization

    NASA Astrophysics Data System (ADS)

    Anand, L.; Gu, C.

    2000-08-01

    Strain localization into shear bands is commonly observed in natural soil masses, as well as in human-built embankments, footings, retaining walls and other geotechnical structures. Numerical predictions for the process of shear band formation are critically dependent on the constitutive equations employed. In this paper, the plane strain "double-shearing" constitutive model (e.g., Spencer, A.J.M., 1964. A theory of the kinematics of ideal soils under plane strain conditions. Journal of the Mechanics and Physics of Solids 12, 337-351; Spencer, A.J.M., 1982, Deformation of ideal granular materials. In: Hopkins, H.G., Sewell, M.J. (Eds.), Mechanics of Solids. Pergamon Press, Oxford and New York, pp. 607-652; Mehrabadi, M.M., Cowin, S.C., 1978. Initial planar deformation of dilatant granular materials. Journal of the Mechanics and Physics of Solids 26, 269-284; Nemat-Nasser, S., Mehrabadi, M.M., Iwakuma, T. 1981. On certain macroscopic and microscopic aspects of plastic flow of ductile materials. In: Nemat-Nasser, S. (Ed.), Three-dimensional Constitutive Relations and Ductile Fracture. North-Holland, Amsterdam, pp. 157-172; Anand, L., 1983. Plane deformations of ideal granular materials. Journal of the Mechanics and Physics of Solids 31, 105-122) is generalized to three dimensions including the effects of elastic deformation and pre-peak behavior. The constitutive model is implemented in a finite element program and is used to predict the formation of shear bands in plane strain compression, and plane strain cylindrical cavity expansion. The predictions from the model are shown to be in good quantitative agreement with the recent experiments of Han, C., Drescher, A., (1993. Shear bands in biaxial tests on dry coarse sand. Soils and Foundations 33, 118-132) and Alsiny, H., Vardoulakis, I., Drescher, A., (1992. Deformation localization in cavity inflation experiments on dry sand. Geotechnique 42, 395-410) on a dry sand. The constitutive model is also used to predict the

  8. Very viscous electrically forced jets

    NASA Astrophysics Data System (ADS)

    Higuera, F. J.

    2005-11-01

    The dynamics of an axisymmetric jet of a very viscous liquid issuing into a region of uniform electric field, which is of interest for electrospinning, is described numerically using the leaky dielectric model. The jet is continuously strained by surface electric stresses. The flow depends on a capillary number Ca based on the liquid flow rate; an electric Bond number that measures the ratio of electric to surface tension stresses; the dielectric constant of the liquid; and the ratio T of a mechanical (viscous-capillary) time to the electric relaxation time required for the charge that is brought to the surface by the electric field to screen the liquid from the field. The electric current and the radius of the jet increase with Ca and tend to well defined limits for large values of this parameter, whereas a stationary jet ceases to exist when Ca decreases below a certain minimum. The radius of the jet decreases when the electric Bond number increases, due to the increased straining, and also when the time ratio T increases, which suggests that charge relaxation effects are always important in the formation of the jet.

  9. PRN 2001-2: Acute Toxicity Data Requirements For Granular Pesticide Products, Including Those With Granular Fertilizers in the Product.

    EPA Pesticide Factsheets

    This PR Notice announces guidance intended to streamline the acute toxicity review and classification process for certain granular pesticide products, including those products that contain granular fertilizers.

  10. Plasma jets merging simulation

    NASA Astrophysics Data System (ADS)

    Galkin, S. A.; Bogatu, I. N.; Kim, J. S.; Witherspoon, F. D.; Phillips, M. W.; Hughes, T. P.; Welch, D. R.; Golovkin, I.; Macfarlane, J.

    2007-11-01

    The progress on numerical 3D simulations of high density high Mach number plasma jets merging is presented. The modeling was conducted with the particle-in-cell LSP code [1]. A few hypersonic plasma jets (Mach number between 5 and 50) with high density (within the range of 10^15-10^17 cm-3) were injected for merging in a low density low temperature neutral background gas ( 10^13 cm-3). The dynamics of the merging was studied. Onset of a strong instability, which was observed in the modeling of two, three and five plasma merging jets [2], can essentially affect the front formation and finally can lead to a high turbulent flow. The nature of the instability is discussed. The progress on HyperV plasma accelerator experiment simulation and comparison with a recent experimental data is also reported. [1] T. P. Hughes, S. S. Yu, and R. E. Clark, Phys. Rev. ST Accel. Beams 2, 110401, 1999. [2] S. A. Galkin, I. N. Bogatu, J. S. Kim, to be published in PPPS/ICOP 2007 Conference Proceedings. Work is supported by the US DOE SBIR grant and by US DOE Office of Fusion Energy Sciences.

  11. Granular media in transformation: dynamics and structure

    NASA Astrophysics Data System (ADS)

    Merceron, Aymeric; Jop, Pierre; Sauret, Alban; SVI, CNRS/Saint-Gobain Team

    2015-11-01

    Sintering, glass melting and other industrially relevant processes turn batches of grains into continuous end products. Such processes involve complex and mostly misunderstood chemical and physical transformations of the granular packing. Affecting the contact network, physicochemical reactions entail mechanical rearrangements. But such reorganizations may also trigger new potential reactions. Granular reactive systems are strongly coupled and need investigations for achieving industrial optimizations. This study is focused on how transformations appearing on its components affect the response of the granular packing. Inert brass disks and grains undergoing well-known transformations like volume decrease are mixed and then confined in a vertical 2D cell. While the system reacts, the granular packing is regularly photographed with a high-resolution camera. Events largely distributed both spatially and temporally occur around reactive grains. Thanks to image processing, this reorganization process is then analyzed. Spatial and temporal amplitudes of events are quantified as well as their local and global impacts on the granular structure.

  12. Numerical Calculation of Granular Entropy

    NASA Astrophysics Data System (ADS)

    Asenjo, Daniel; Paillusson, Fabien; Frenkel, Daan

    2014-03-01

    We present numerical simulations that allow us to compute the number of ways in which N particles can pack into a given volume V. Our technique modifies the method of Xu, Frenkel, and Liu [Phys. Rev. Lett. 106, 245502 (2011)] and outperforms existing direct enumeration methods by more than 200 orders of magnitude. We use our approach to study the system size dependence of the number of distinct packings of a system of up to 128 polydisperse soft disks. We show that, even though granular particles are distinguishable, we have to include a factor 1/N! to ensure that the entropy does not change when exchanging particles between systems in the same macroscopic state. Our simulations provide strong evidence that the packing entropy, when properly defined, is extensive. As different packings are created with unequal probabilities, it is natural to express the packing entropy as S=-∑ipilnpi-lnN!, where pi denotes the probability to generate the ith packing. We can compute this quantity reliably and it is also extensive. The granular entropy thus (re)defined, while distinct from the one proposed by Edwards [J. Phys. Condens. Matter 2, SA63 (1990)], does have all the properties Edwards assumed.

  13. Modeling Size Polydisperse Granular Flows

    NASA Astrophysics Data System (ADS)

    Lueptow, Richard M.; Schlick, Conor P.; Isner, Austin B.; Umbanhowar, Paul B.; Ottino, Julio M.

    2014-11-01

    Modeling size segregation of granular materials has important applications in many industrial processes and geophysical phenomena. We have developed a continuum model for granular multi- and polydisperse size segregation based on flow kinematics, which we obtain from discrete element method (DEM) simulations. The segregation depends on dimensionless control parameters that are functions of flow rate, particle sizes, collisional diffusion coefficient, shear rate, and flowing layer depth. To test the theoretical approach, we model segregation in tri-disperse quasi-2D heap flow and log-normally distributed polydisperse quasi-2D chute flow. In both cases, the segregated particle size distributions match results from full-scale DEM simulations and experiments. While the theory was applied to size segregation in steady quasi-2D flows here, the approach can be readily generalized to include additional drivers of segregation such as density and shape as well as other geometries where the flow field can be characterized including rotating tumbler flow and three-dimensional bounded heap flow. Funded by The Dow Chemical Company and NSF Grant CMMI-1000469.

  14. Extensional Rheology of Granular Staples

    NASA Astrophysics Data System (ADS)

    Franklin, Scott

    2013-03-01

    Collections of U-shaped granular materials (e.g. staples) show a surprising resistance to being pulled apart. We conduct extensional stress-strain experiments on staple piles with vary arm/spine (barb) ratio. The elongation is not smooth, with the pile growing in bursts, reminiscent of intruder motion through ordinary and rod-like granular materials. The force-distance curve shows a power-law scaling, consistent with previous intruder experiments. Surprisingly, there is significant plastic creep of the pile as particles rearrange slightly in response to the increasing force. There is a broad distribution of yield forces that does not seem to evolve as the pile lengthens, suggesting that each yield event is independent of the pile's history. The distribution of yield forces can be interpreted in the context of a Weibullian weakest-link theory that predicts the maximum pile strength to decrease sharply with increasing pile length. From this interpretation arise length and force scales that may be used to characterize the sample. This research supported in part by the NSF (CBET-#1133722) and ACS-PRF (#51438-UR10).

  15. Numerical calculation of granular entropy.

    PubMed

    Asenjo, Daniel; Paillusson, Fabien; Frenkel, Daan

    2014-03-07

    We present numerical simulations that allow us to compute the number of ways in which N particles can pack into a given volume V. Our technique modifies the method of Xu, Frenkel, and Liu [Phys. Rev. Lett. 106, 245502 (2011)] and outperforms existing direct enumeration methods by more than 200 orders of magnitude. We use our approach to study the system size dependence of the number of distinct packings of a system of up to 128 polydisperse soft disks. We show that, even though granular particles are distinguishable, we have to include a factor 1=N! to ensure that the entropy does not change when exchanging particles between systems in the same macroscopic state. Our simulations provide strong evidence that the packing entropy, when properly defined, is extensive. As different packings are created with unequal probabilities, it is natural to express the packing entropy as S = − Σ(i)p(i) ln pi − lnN!, where pi denotes the probability to generate the ith packing. We can compute this quantity reliably and it is also extensive. The granular entropy thus (re)defined, while distinct from the one proposed by Edwards [J. Phys. Condens. Matter 2, SA63 (1990)], does have all the properties Edwards assumed.

  16. Jet-regulated cooling catastrophe

    NASA Astrophysics Data System (ADS)

    Dubois, Yohan; Devriendt, Julien; Slyz, Adrianne; Teyssier, Romain

    2010-12-01

    We present the first implementation of active galactic nuclei (AGN) feedback in the form of momentum-driven jets in an adaptive mesh refinement (AMR) cosmological resimulation of a galaxy cluster. The jets are powered by gas accretion on to supermassive black holes (SMBHs) which also grow by mergers. Throughout its formation, the cluster experiences different dynamical states: both a morphologically perturbed epoch at early times and a relaxed state at late times allowing us to study the different modes of black hole (BH) growth and associated AGN jet feedback. BHs accrete gas efficiently at high redshift (z > 2), significantly pre-heating proto-cluster haloes. Gas-rich mergers at high redshift also fuel strong, episodic jet activity, which transports gas from the proto-cluster core to its outer regions. At later times, while the cluster relaxes, the supply of cold gas on to the BHs is reduced leading to lower jet activity. Although the cluster is still heated by this activity as sound waves propagate from the core to the virial radius, the jets inefficiently redistribute gas outwards and a small cooling flow develops, along with low-pressure cavities similar to those detected in X-ray observations. Overall, our jet implementation of AGN feedback quenches star formation quite efficiently, reducing the stellar content of the central cluster galaxy by a factor of 3 compared to the no-AGN case. It also dramatically alters the shape of the gas density profile, bringing it in close agreement with the β model favoured by observations, producing quite an isothermal galaxy cluster for gigayears in the process. However, it still falls short in matching the lower than universal baryon fractions which seem to be commonplace in observed galaxy clusters.

  17. The effect of the reinforcing carbon on the microstructure of pitch-based granular composites.

    PubMed

    Méndez, A; Santamaría, R; Granda, M; Menéndez, R

    2003-02-01

    Carbon composites were prepared with four pitches (a commercial impregnating coal-tar pitch, two thermally treated pitches and an air-blown pitch) and four granular carbons (anthracite, graphite, green petroleum coke and foundry coke). Granular carbon/pitch proportions were optimized for each composite and differed in the characteristics of the single components. Interactions of the pitch with the granular carbons during pyrolysis and their subsequent effects on the microstructure of the final composite were monitored by light microscopy. The results show that the light texture of the matrix and the porosity of the composite depend not only on the chemical composition of the pitch but also on the specific granular carbon used as reinforcing material. The same pitch may generate different light textures depending on the characteristics of the carbon. Composites from thermally treated pitches and graphite show highly ordered matrices orientated in the direction of graphite planes. Graphite particles seem to exert a huge influence on mesophase development during the pyrolysis of the treated pitches, affecting not only the orientation of the mesophase, but also reducing the rate of mesophase formation. On the other hand, when green petroleum coke is used with the thermally treated pitches, matrices show a small size light texture, due to the high reactivity of the pitch in the presence of this granular carbon. The porosity of the composites is controlled by both the pitch and the granular carbon.

  18. ASCA observations of galactic jet systems

    NASA Astrophysics Data System (ADS)

    Kotani, T.; Kawai, N.; Matsuoka, M.; Dotani, T.; Inoue, H.; Nagase, F.; Tanaka, Y.; Ueda, Y.; Yamaoka, K.; Brinkmann, W.; Ebisawa, K.; Takeshima, T.; White, N. E.; Harmon, A.; Robinson, C. R.; Zhang, S. N.; Tavani, M.; Foster, R.

    1997-05-01

    Recent studies with ASCA have shown very complicated, strange iron K features in the spectra of galactic jet systems. SS 433, the ``classic'' jet, was found to have pairs of Doppler-shifted lines, contrary to the previous belief that the receding X-ray jet is short and hidden behind the accretion disk. The transient jets, GRS 1915+105 and GRO J1655-40, show spectral dips, which have never been observed in any other source and are interpreted as absorption lines or Doppler-shifted absorption edges. If they are resonant absorption lines of helium-like iron, they would be the evidence of highly ionized, anisotropically distributed plasma near the jet engine. These features peculiar to galactic jet systems are expected to be explained in terms of the nature of the sources and the jet-formation mechanisms. Since ASCA was proved to be an excellent tool for diagnostics of jets, observation campaigns of the jet systems were planned and performed. SS 433 was observed about thirty times in the three years of the campaign, covering the phase space of the 162.5-day precession and the 13-day orbital motion. The extracted physics of the system, such as X-ray-jet length ten times longer than previous estimations, jet kinetic luminosity exceeding 1040 erg s-1, etc., draw a highly energetic and stormy, new picture of SS 433. The transient jets, GRS 1915+105 and GRO J1655-40, were also observed several times. GRS 1915+105 was found to be active in ASCA band even months after onsets of outburst. Violent variations were not seen. GRO J1655-40 was observed to be transit between high and low states, and the low state is consistent to occultation of a component. We review ASCA Observations of galactic jet systems and present some topics from recent progresses.

  19. Advanced Thermally Stable Jet Fuels

    SciTech Connect

    A. Boehman; C. Song; H. H. Schobert; M. M. Coleman; P. G. Hatcher; S. Eser

    1998-01-01

    The Penn State program in advanced thermally stable jet fuels has five components: 1) development of mechanisms of degradation and solids formation; 2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles during thermal stressing; 3) characterization of carbonaceous deposits by various instrumental and microscopic methods; 4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and 5) assessment of the potential of producing high yields of cycloalkanes and hydroaromatics from coal.

  20. Jet lag

    PubMed Central

    2008-01-01

    Introduction Jet lag is a syndrome caused by disruption of the "body clock", and affects most air travellers crossing five or more time zones; it tends to be worse on eastward than on westward flights. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical question: What are the effects of interventions to prevent or minimise jet lag? We searched: Medline, Embase, The Cochrane Library, and other important databases up to June 2008 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found five systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: hypnotics, lifestyle and environmental adaptations, and melatonin. PMID:19445780