Science.gov

Sample records for granule cell axon

  1. PTEN deletion from adult-generated dentate granule cells disrupts granule cell mossy fiber axon structure.

    PubMed

    LaSarge, Candi L; Santos, Victor R; Danzer, Steve C

    2015-03-01

    Dysregulation of the mTOR-signaling pathway is implicated in the development of temporal lobe epilepsy. In mice, deletion of PTEN from hippocampal dentate granule cells leads to mTOR hyperactivation and promotes the rapid onset of spontaneous seizures. The mechanism by which these abnormal cells initiate epileptogenesis, however, is unclear. PTEN-knockout granule cells develop abnormally, exhibiting morphological features indicative of increased excitatory input. If these cells are directly responsible for seizure genesis, it follows that they should also possess increased output. To test this prediction, dentate granule cell axon morphology was quantified in control and PTEN-knockout mice. Unexpectedly, PTEN deletion increased giant mossy fiber bouton spacing along the axon length, suggesting reduced innervation of CA3. Increased width of the mossy fiber axon pathway in stratum lucidum, however, which likely reflects an unusual increase in mossy fiber axon collateralization in this region, offsets the reduction in boutons per axon length. These morphological changes predict a net increase in granule cell innervation of CA3. Increased diameter of axons from PTEN-knockout cells would further enhance granule cell communication with CA3. Altogether, these findings suggest that amplified information flow through the hippocampal circuit contributes to seizure occurrence in the PTEN-knockout mouse model of temporal lobe epilepsy. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. PTEN deletion from adult-generated dentate granule cells disrupts granule cell mossy fiber axon structure

    PubMed Central

    LaSarge, Candi L.; Santos, Victor R; Danzer, Steve C.

    2015-01-01

    Dysregulation of the mTOR-signaling pathway is implicated in the development of temporal lobe epilepsy. In mice, deletion of PTEN from hippocampal dentate granule cells leads to mTOR hyperactivation and promotes the rapid onset of spontaneous seizures. The mechanism by which these abnormal cells initiate epileptogenesis, however, is unclear. PTEN-knockout granule cells develop abnormally, exhibiting morphological features indicative of increased excitatory input. If these cells are directly responsible for seizure genesis, it follows that they should also possess increased output. To test this prediction, dentate granule cell axon morphology was quantified in control and PTEN-knockout mice. Unexpectedly, PTEN deletion increased giant mossy fiber bouton spacing along the axon length, suggesting reduced innervation of CA3. Increased width of the mossy fiber axon pathway in stratum lucidum, however, which likely reflects an unusual increase in mossy fiber axon collateralization in this region, offset the reduction in boutons per axon length. These morphological changes predicts a net increase in granule cell >> CA3 innervation. Increased diameter of axons from PTEN-knockout cells would further enhance granule cell >> CA3 communication. Altogether, these findings suggest that amplified information flow through the hippocampal circuit contributes to seizure occurrence in the PTEN-knockout mouse model of temporal lobe epilepsy. PMID:25600212

  3. Quantitative analysis of granule cell axons and climbing fiber afferents in the turtle cerebellar cortex.

    PubMed

    Tolbert, D L; Conoyer, B; Ariel, M

    2004-11-01

    The turtle cerebellar cortex is a single flat sheet of gray matter that greatly facilitates quantitative analysis of biotylinated dextran amine labeled granule cell and olivocerebellar axons and Nissl-stained granule and Purkinje neurons. On average, ascending granule cell axons are relatively thicker than their parallel fiber branches (mean +/- SD: 0.84 +/- 0.17 vs 0.64 +/- 0.12 microm, respectively). Numerous en passant swellings, the site of presynaptic contact, were present on both ascending and parallel fiber granule cell axons. The swellings on ascending axons (1.82 +/- 0.34 microm, n = 52) were slightly larger than on parallel fibers (1.43 +/- 0.24 microm, n = 430). In addition, per unit length (100 microm) there were more swellings on ascending axons (11.2 +/- 4.2) than on parallel fibers (9.7 +/- 4.2). Each parallel fiber branch from an ascending axon is approximately 1.5 mm long. Olivocerebellar climbing fiber axons followed the highly tortuous dendrites of Purkinje cells in the inner most 15-20% of the molecular layer. Climbing fibers displayed relatively fewer en passant swellings. The spatial perimeter of climbing fiber arbors (area) increased 72% from anteriorly (1797 microm2) to posteriorly (3090 microm2) and 104% from medially (1690 microm2) to laterally (3450 microm2). Differences in the size and spacing of en passant swellings on granule cell axons suggest that ascending axons may have a functionally more significant impact on the excitability of a limited number of radially overlying Purkinje cells than the single contacts by parallel fiber with multiple orthogonally aligned Purkinje cell dendrites. The spatially restricted distribution of climbing fibers to the inner most molecular layer, the paucity of en passant swellings, and different terminal arbor areas are enigmatic. Nevertheless, these finding provide important anatomical information for future optical imaging and electrophysiological experiments.

  4. FHF-independent conduction of action potentials along the leak-resistant cerebellar granule cell axon

    PubMed Central

    Dover, Katarzyna; Marra, Christopher; Solinas, Sergio; Popovic, Marko; Subramaniyam, Sathyaa; Zecevic, Dejan; D'Angelo, Egidio; Goldfarb, Mitchell

    2016-01-01

    Neurons in vertebrate central nervous systems initiate and conduct sodium action potentials in distinct subcellular compartments that differ architecturally and electrically. Here, we report several unanticipated passive and active properties of the cerebellar granule cell's unmyelinated axon. Whereas spike initiation at the axon initial segment relies on sodium channel (Nav)-associated fibroblast growth factor homologous factor (FHF) proteins to delay Nav inactivation, distal axonal Navs show little FHF association or FHF requirement for high-frequency transmission, velocity and waveforms of conducting action potentials. In addition, leak conductance density along the distal axon is estimated as <1% that of somatodendritic membrane. The faster inactivation rate of FHF-free Navs together with very low axonal leak conductance serves to minimize ionic fluxes and energetic demand during repetitive spike conduction and at rest. The absence of FHFs from Navs at nodes of Ranvier in the central nervous system suggests a similar mechanism of current flux minimization along myelinated axons. PMID:27666389

  5. Influence of brain-derived neurotrophic factor on pathfinding of dentate granule cell axons, the hippocampal mossy fibers.

    PubMed

    Tamura, Makoto; Tamura, Naohiro; Ikeda, Takamitsu; Koyama, Ryuta; Ikegaya, Yuji; Matsuki, Norio; Yamada, Maki K

    2009-01-31

    Mossy fibers, the dentate granule cell axons, are generated throughout an animal's lifetime. Mossy fiber paths and synapses are primarily restricted to the stratum lucidum within the CA3 region. Brain-derived neurotrophic factor (BDNF), a neurotrophin family protein that activates Trk neurotrophin receptors, is highly expressed in the stratum lucidum in an activity-dependent manner. The addition of a Trk neurotrophin receptor inhibitor, K252a, to cultured hippocampal slices induced aberrant extension of mossy fibers into ectopic regions. BDNF overexpression in granule cells ameliorated the mossy fiber pathway abnormalities caused by a submaximal dose of K252a. A similar rescue was observed when BDNF was expressed in CA3 pyramidal cells, most notably in mossy fibers distal to the expression site. These findings are the first to clarify the role of BDNF in mossy fiber pathfinding, not as an attractant cue but as a regulator, possibly acting in a paracrine manner. This effect of BDNF may be as a signal for new fibers to fasciculate and extend further to form synapses with neurons that are far from active BDNF-expressing synapses. This mechanism would ensure the emergence of new independent dentate gyrus-CA3 circuits by the axons of new-born granule cells.

  6. AXONAL PLASTICITY OF AGE-DEFINED DENTATE GRANULE CELLS IN A RAT MODEL OF MESIAL TEMPORAL LOBE EPILEPSY

    PubMed Central

    Althaus, AL; Zhang, H; Parent, JM

    2016-01-01

    Dentate granule cell (DGC) mossy fiber sprouting (MFS) in mesial temporal lobe epilepsy (mTLE) is thought to underlie the creation of aberrant circuitry which promotes the generation or spread of spontaneous seizure activity. Understanding the extent to which populations of DGCs participate in this circuitry could help determine how it develops and potentially identify therapeutic targets for regulating aberrant network activity. In this study, we investigated how DGC birthdate influences participation in MFS and other aspects of axonal plasticity using the rat pilocarpine-induced status epilepticus (SE) model of mTLE. We injected a retrovirus (RV) carrying a synaptophysin-yellow fluorescent protein (syp-YFP) fusion construct to birthdate DGCs and brightly label their axon terminals, and compared DGCs born during the neonatal period with those generated in adulthood. We found that both neonatal and adult-born DGC populations participate, to a similar extent, in SE-induced MFS within the dentate gyrus inner molecular layer (IML). SE did not alter hilar MF bouton density compared to sham-treated controls, but adult-born DGC bouton density was greater in the IML than in the hilus after SE. Interestingly, we also observed MF axonal reorganization in area CA2 in epileptic rats, and these changes arose from DGCs generated both neonatally and in adulthood. These data indicate that both neonatal and adult-generated DGCs contribute to axonal reorganization in the rat pilocarpine mTLE model, and indicate a more complex relationship between DGC age and participation in seizure-related plasticity than was previously thought. PMID:26644085

  7. Axonal plasticity of age-defined dentate granule cells in a rat model of mesial temporal lobe epilepsy.

    PubMed

    Althaus, A L; Zhang, H; Parent, J M

    2016-02-01

    Dentate granule cell (DGC) mossy fiber sprouting (MFS) in mesial temporal lobe epilepsy (mTLE) is thought to underlie the creation of aberrant circuitry which promotes the generation or spread of spontaneous seizure activity. Understanding the extent to which populations of DGCs participate in this circuitry could help determine how it develops and potentially identify therapeutic targets for regulating aberrant network activity. In this study, we investigated how DGC birthdate influences participation in MFS and other aspects of axonal plasticity using the rat pilocarpine-induced status epilepticus (SE) model of mTLE. We injected a retrovirus (RV) carrying a synaptophysin-yellow fluorescent protein (syp-YFP) fusion construct to birthdate DGCs and brightly label their axon terminals, and compared DGCs born during the neonatal period with those generated in adulthood. We found that both neonatal and adult-born DGC populations participate, to a similar extent, in SE-induced MFS within the dentate gyrus inner molecular layer (IML). SE did not alter hilar MF bouton density compared to sham-treated controls, but adult-born DGC bouton density was greater in the IML than in the hilus after SE. Interestingly, we also observed MF axonal reorganization in area CA2 in epileptic rats, and these changes arose from DGCs generated both neonatally and in adulthood. These data indicate that both neonatal and adult-generated DGCs contribute to axonal reorganization in the rat pilocarpine mTLE model, and indicate a more complex relationship between DGC age and participation in seizure-related plasticity than was previously thought.

  8. Granule cell ascending axon excitatory synapses onto Golgi cells implement a potent feedback circuit in the cerebellar granular layer.

    PubMed

    Cesana, Elisabetta; Pietrajtis, Katarzyna; Bidoret, Céline; Isope, Philippe; D'Angelo, Egidio; Dieudonné, Stéphane; Forti, Lia

    2013-07-24

    The function of inhibitory interneurons within brain microcircuits depends critically on the nature and properties of their excitatory synaptic drive. Golgi cells (GoCs) of the cerebellum inhibit cerebellar granule cells (GrCs) and are driven both by feedforward mossy fiber (mf) and feedback GrC excitation. Here, we have characterized GrC inputs to GoCs in rats and mice. We show that, during sustained mf discharge, synapses from local GrCs contribute equivalent charge to GoCs as mf synapses, arguing for the importance of the feedback inhibition. Previous studies predicted that GrC-GoC synapses occur predominantly between parallel fibers (pfs) and apical GoC dendrites in the molecular layer (ML). By combining EM and Ca(2+) imaging, we now demonstrate the presence of functional synaptic contacts between ascending axons (aa) of GrCs and basolateral dendrites of GoCs in the granular layer (GL). Immunohistochemical quantification estimates these contacts to be ∼400 per GoC. Using Ca(2+) imaging to identify synaptic inputs, we show that EPSCs from aa and mf contacts in basolateral dendrites display similarly fast kinetics, whereas pf inputs in the ML exhibit markedly slower kinetics as they undergo strong filtering by apical dendrites. We estimate that approximately half of the local GrC contacts generate fast EPSCs, indicating their basolateral location in the GL. We conclude that GrCs, through their aa contacts onto proximal GoC dendrites, define a powerful feedback inhibitory circuit in the GL.

  9. Inhibition of the mammalian target of rapamycin signaling pathway suppresses dentate granule cell axon sprouting in a rodent model of temporal lobe epilepsy.

    PubMed

    Buckmaster, Paul S; Ingram, Elizabeth A; Wen, Xiling

    2009-06-24

    Dentate granule cell axon (mossy fiber) sprouting is a common abnormality in patients with temporal lobe epilepsy. Mossy fiber sprouting creates an aberrant positive-feedback network among granule cells that does not normally exist. Its role in epileptogenesis is unclear and controversial. If it were possible to block mossy fiber sprouting from developing after epileptogenic treatments, its potential role in the pathogenesis of epilepsy could be tested. Previous attempts to block mossy fiber sprouting have been unsuccessful. The present study targeted the mammalian target of rapamycin (mTOR) signaling pathway, which regulates cell growth and is blocked by rapamycin. Rapamycin was focally, continuously, and unilaterally infused into the dorsal hippocampus for prolonged periods beginning within hours after rats sustained pilocarpine-induced status epilepticus. Infusion for 1 month reduced aberrant Timm staining (a marker of mossy fibers) in the granule cell layer and molecular layer. Infusion for 2 months inhibited mossy fiber sprouting more. However, after rapamycin infusion ceased, aberrant Timm staining developed and approached untreated levels. When onset of infusion began after mossy fiber sprouting had developed for 2 months, rapamycin did not reverse aberrant Timm staining. These findings suggest that inhibition of the mTOR signaling pathway suppressed development of mossy fiber sprouting. However, suppression required continual treatment, and rapamycin treatment did not reverse already established axon reorganization.

  10. Axonal sodium channel distribution shapes the depolarized action potential threshold of dentate granule neurons

    PubMed Central

    Kress, Geraldine J.; Dowling, Margaret; Eisenman, Lawrence N.; Mennerick, Steven

    2010-01-01

    Intrinsic excitability is a key feature dictating neuronal response to synaptic input. Here we investigate the recent observation that dentate granule neurons exhibit a more depolarized voltage threshold for action potential initiation than CA3 pyramidal neurons. We find no evidence that tonic GABA currents, leak or voltage-gated potassium conductances, or the expression of sodium channel isoform differences can explain this depolarized threshold. Axonal initial segment voltage-gated sodium channels, which are dominated by the NaV1.6 isoform in both cell types, distribute more proximally and exhibit lower overall density in granule neurons than in CA3 neurons. To test possible contributions of sodium channel distributions to voltage threshold and to test whether morphological differences participate, we performed simulations of dentate granule neurons and of CA3 pyramidal neurons. These simulations revealed that cell morphology and sodium channel distribution combine to yield the characteristic granule neuron action potential upswing and voltage threshold. Proximal axon sodium channel distribution strongly contributes to the higher voltage threshold of dentate granule neurons for two reasons. First, action potential initiation closer to the somatodendritic current sink causes the threshold of the initiating axon compartment to rise. Second, the proximity of the action potential initiation site to the recording site causes somatic recordings to more faithfully reflect the depolarized threshold of the axon than in cells like CA3 neurons, with distally initiating action potentials. Our results suggest that the proximal location of axon sodium channel in dentate granule neurons contributes to the intrinsic excitability differences between DG and CA3 neurons and may participate in the low-pass filtering function of dentate granule neurons. PMID:19603521

  11. Tau mRNA is present in axonal RNA granules and is associated with elongation factor 1A.

    PubMed

    Malmqvist, Tony; Anthony, Karen; Gallo, Jean-Marc

    2014-10-10

    The microtubule-associated protein tau is predominantly localized in the axonal compartment over the entire length of the axon in neurons. The mechanisms responsible for the localization of tau in axons at long distance from the cell body are not properly understood. Using fluorescence in situ hybridization, we show that tau mRNA is present in the central and distal parts of the axons of cultured rat cortical neurons. Axonal tau mRNA is associated with granules which are distributed throughout the entire length of the axon, including the growth cone. We also show that tau mRNA-containing axonal particles are associated with elongation factor 1A, a component of the protein translation machinery. The presence of tau mRNA in axons might be at least part of the process by which tau is localized to distal axons.

  12. Ectopic Granule Cells of the Rat Dentate Gyrus

    PubMed Central

    Scharfman, Helen; Goodman, Jeffrey; McCloskey, Daniel

    2007-01-01

    Granule cells of the mammalian dentate gyrus normally form a discrete layer, and virtually all granule cells migrate to this location. Exceptional granule cells that are positioned incorrectly, in ‘ectopic’ locations, are rare. Although the characteristics of such ectopic granule cells appear similar in many respects to granule cells located in the granule cell layer, their rare occurrence has limited a full evaluation of their structure and function. More information about ectopic granule cells has been obtained by studying those that develop after experimental manipulations that increase their number. For example, after severe seizures, the number of ectopic granule cells located in the hilus increases dramatically. These experimentally induced ectopic granule cells may not be equivalent to normal ectopic granule cells necessarily, but the vastly increased numbers have allowed much more information to be obtained. Remarkably, the granule cells that are positioned ectopically develop intrinsic properties and an axonal projection that are similar to granule cells that are located normally, i.e., in the granule cell layer. However, dendritic structure and synaptic structure/function appear to differ. These studies have provided new insight into a rare type of granule cell in the dentate gyrus, and the plastic characteristics of dentate granule cells that appear to depend on the location of the cell body. PMID:17148946

  13. RNA Granules in Germ Cells

    PubMed Central

    Voronina, Ekaterina; Seydoux, Geraldine; Sassone-Corsi, Paolo; Nagamori, Ippei

    2011-01-01

    “Germ granules” are cytoplasmic, nonmembrane-bound organelles unique to germline. Germ granules share components with the P bodies and stress granules of somatic cells, but also contain proteins and RNAs uniquely required for germ cell development. In this review, we focus on recent advances in our understanding of germ granule assembly, dynamics, and function. One hypothesis is that germ granules operate as hubs for the posttranscriptional control of gene expression, a function at the core of the germ cell differentiation program. PMID:21768607

  14. Schwann Cell Glycogen Selectively Supports Myelinated Axon Function

    PubMed Central

    Brown, Angus M; Evans, Richard D; Black, Joel; Ransom, Bruce R

    2012-01-01

    Objectives Interruption of energy supply to peripheral axons is a cause of axon loss. We determined if glycogen was present in mammalian peripheral nerve, and if it supported axon conduction during aglycemia. Methods We used biochemical assay and electron microscopy to determine the presence of glycogen, and electrophysiology to monitor axon function. Results Glycogen was present in sciatic nerve, its concentration varying directly with ambient [glucose]. Electron microscopy detected glycogen granules primarily in myelinating Schwann cell cytoplasm and these diminished after exposure to aglycemia. During aglycemia, conduction failure in large myelinated axons (A fibers) mirrored the time-course of glycogen loss. Latency to CAP failure was directly related to nerve glycogen content at aglycemia onset. Glycogen did not benefit the function of slow-conducting, small diameter unmyelinated axons (C fibers) during aglycemia. Blocking glycogen breakdown pharmacologically accelerated CAP failure during aglycemia in A fibers, but not in C fibers. Lactate was as effective as glucose in supporting sciatic nerve function, and was continuously released into the extracellular space in the presence of glucose and fell rapidly during aglycemia. Interpretation Our findings indicated that glycogen is present in peripheral nerve, primarily in myelinating Schwann cells, and exclusively supports large diameter, myelinated axon conduction during aglycemia. Available evidence suggests that peripheral nerve glycogen breaks down during aglycemia and is passed, probably as lactate, to myelinated axons to support function. Unmyelinated axons are not protected by glycogen and are more vulnerable to dysfunction during periods of hypoglycemia. PMID:23034913

  15. Rapid Feedforward Inhibition and Asynchronous Excitation Regulate Granule Cell Activity in the Mammalian Main Olfactory Bulb

    PubMed Central

    Burton, Shawn D.

    2015-01-01

    Granule cell-mediated inhibition is critical to patterning principal neuron activity in the olfactory bulb, and perturbation of synaptic input to granule cells significantly alters olfactory-guided behavior. Despite the critical role of granule cells in olfaction, little is known about how sensory input recruits granule cells. Here, we combined whole-cell patch-clamp electrophysiology in acute mouse olfactory bulb slices with biophysical multicompartmental modeling to investigate the synaptic basis of granule cell recruitment. Physiological activation of sensory afferents within single glomeruli evoked diverse modes of granule cell activity, including subthreshold depolarization, spikelets, and suprathreshold responses with widely distributed spike latencies. The generation of these diverse activity modes depended, in part, on the asynchronous time course of synaptic excitation onto granule cells, which lasted several hundred milliseconds. In addition to asynchronous excitation, each granule cell also received synchronous feedforward inhibition. This inhibition targeted both proximal somatodendritic and distal apical dendritic domains of granule cells, was reliably recruited across sniff rhythms, and scaled in strength with excitation as more glomeruli were activated. Feedforward inhibition onto granule cells originated from deep short-axon cells, which responded to glomerular activation with highly reliable, short-latency firing consistent with tufted cell-mediated excitation. Simulations showed that feedforward inhibition interacts with asynchronous excitation to broaden granule cell spike latency distributions and significantly attenuates granule cell depolarization within local subcellular compartments. Collectively, our results thus identify feedforward inhibition onto granule cells as a core feature of olfactory bulb circuitry and establish asynchronous excitation and feedforward inhibition as critical regulators of granule cell activity. SIGNIFICANCE

  16. Cell intrinsic control of axon regeneration

    PubMed Central

    Mar, Fernando M; Bonni, Azad; Sousa, Mónica M

    2014-01-01

    Although neurons execute a cell intrinsic program of axonal growth during development, following the establishment of connections, the developmental growth capacity declines. Besides environmental challenges, this switch largely accounts for the failure of adult central nervous system (CNS) axons to regenerate. Here, we discuss the cell intrinsic control of axon regeneration, including not only the regulation of transcriptional and epigenetic mechanisms, but also the modulation of local protein translation, retrograde and anterograde axonal transport, and microtubule dynamics. We further explore the causes underlying the failure of CNS neurons to mount a vigorous regenerative response, and the paradigms demonstrating the activation of cell intrinsic axon growth programs. Finally, we present potential mechanisms to support axon regeneration, as these may represent future therapeutic approaches to promote recovery following CNS injury and disease. PMID:24531721

  17. Preservation of perisomatic inhibitory input of granule cells in the epileptic human dentate gyrus.

    PubMed

    Wittner, L; Maglóczky, Z; Borhegyi, Z; Halász, P; Tóth, S; Eross, L; Szabó, Z; Freund, T F

    2001-01-01

    Temporal lobe epilepsy is known to be associated with hyperactivity that is likely to be generated or amplified in the hippocampal formation. The majority of granule cells, the principal cells of the dentate gyrus, are found to be resistant to damage in epilepsy, and may serve as generators of seizures if their inhibition is impaired. Therefore, the parvalbumin-containing subset of interneurons, known to provide the most powerful inhibitory input to granule cell somata and axon initial segments, were examined in human control and epileptic dentate gyrus. A strong reduction in the number of parvalbumin-containing cells was found in the epileptic samples especially in the hilar region, although in some patches of the granule cell layer parvalbumin-positive terminals that form vertical clusters characteristic of axo-axonic cells were more numerous than in controls. Analysis of the postsynaptic target elements of parvalbumin-positive axon terminals showed that they form symmetric synapses with somata, dendrites, axon initial segments and spines as in the control, but the ratio of axon initial segment synapses was increased in the epileptic tissue (control: 15.9%, epileptic: 31.3%). Furthermore, the synaptic coverage of granule cell axon initial segments increased more than three times (control: 0.52, epileptic: 2.10 microm synaptic length/100 microm axon initial segment membrane) in the epileptic samples, whereas the amount of somatic symmetric synapses did not change significantly. Although the number of parvalbumin-positive interneurons is decreased, the perisomatic inhibitory input of dentate granule cells is preserved in temporal lobe epilepsy. Basket and axo-axonic cell terminals - whether positive or negative for parvalbumin - are present, moreover, the axon collaterals targeting axon initial segments sprout in the epileptic dentate gyrus. We suggest that perisomatic inhibitory interneurons survive in epilepsy, but their somadendritic compartment and partly the

  18. Hippocampal granule cells opt for early retirement.

    PubMed

    Alme, C B; Buzzetti, R A; Marrone, D F; Leutgeb, J K; Chawla, M K; Schaner, M J; Bohanick, J D; Khoboko, T; Leutgeb, S; Moser, E I; Moser, M-B; McNaughton, B L; Barnes, C A

    2010-10-01

    Increased excitability and plasticity of adult-generated hippocampal granule cells during a critical period suggests that they may "orthogonalize" memories according to time. One version of this "temporal tag" hypothesis suggests that young granule cells are particularly responsive during a specific time period after their genesis, allowing them to play a significant role in sculpting CA3 representations, after which they become much less responsive to any input. An alternative possibility is that the granule cells active during their window of increased plasticity, and excitability become selectively tuned to events that occurred during that time and participate in later reinstatement of those experiences, to the exclusion of other cells. To discriminate between these possibilities, rats were exposed to different environments at different times over many weeks, and cell activation was subsequently assessed during a single session in which all environments were revisited. Dispersing the initial experiences in time did not lead to the increase in total recruitment at reinstatement time predicted by the selective tuning hypothesis. The data indicate that, during a given time frame, only a very small number of granule cells participate in many experiences, with most not participating significantly in any. Based on these and previous data, the small excitable population of granule cells probably correspond to the most recently generated cells. It appears that, rather than contributing to the recollection of long past events, most granule cells, possibly 90-95%, are effectively "retired." If granule cells indeed sculpt CA3 representations (which remains to be shown), then a possible consequence of having a new set of granule cells participate when old memories are reinstated is that new representations of these experiences might be generated in CA3. Whatever the case, the present data may be interpreted to undermine the standard "orthogonalizer" theory of the role of

  19. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo

    PubMed Central

    McDole, Brittnee; Isgor, Ceylan; Pare, Christopher; Guthrie, Kathleen

    2015-01-01

    Olfactory bulb granule cells are axon-less, inhibitory interneurons that regulate the activity of the excitatory output neurons, the mitral and tufted cells, through reciprocal dendrodendritic synapses located on granule cell spines. These contacts are established in the distal apical dendritic compartment, while granule cell basal dendrites and more proximal apical segments bear spines that receive glutamatergic inputs from the olfactory cortices. This synaptic connectivity is vital to olfactory circuit function and is remodeled during development, and in response to changes in sensory activity and lifelong granule cell neurogenesis. Manipulations that alter levels of the neurotrophin brain-derived neurotrophic factor (BDNF) in vivo have significant effects on dendritic spine morphology, maintenance and activity-dependent plasticity for a variety of CNS neurons, yet little is known regarding BDNF effects on bulb granule cell spine maturation or maintenance. Here we show that, in vivo, sustained bulbar over-expression of BDNF produces a marked increase in granule cell spine density that includes an increase in mature spines on their apical dendrites. Morphometric analysis demonstrated that changes in spine density were most notable in the distal and proximal apical domains, indicating that multiple excitatory inputs are potentially modified by BDNF. Our results indicate that increased levels of endogenous BDNF can promote the maturation and/or maintenance of dendritic spines on granule cells, suggesting a role for this factor in modulating granule cell functional connectivity within adult olfactory circuitry. PMID:26211445

  20. How Schwann Cells Sort Axons: New Concepts.

    PubMed

    Feltri, M Laura; Poitelon, Yannick; Previtali, Stefano Carlo

    2016-06-01

    Peripheral nerves contain large myelinated and small unmyelinated (Remak) fibers that perform different functions. The choice to myelinate or not is dictated to Schwann cells by the axon itself, based on the amount of neuregulin I-type III exposed on its membrane. Peripheral axons are more important in determining the final myelination fate than central axons, and the implications for this difference in Schwann cells and oligodendrocytes are discussed. Interestingly, this choice is reversible during pathology, accounting for the remarkable plasticity of Schwann cells, and contributing to the regenerative potential of the peripheral nervous system. Radial sorting is the process by which Schwann cells choose larger axons to myelinate during development. This crucial morphogenetic step is a prerequisite for myelination and for differentiation of Remak fibers, and is arrested in human diseases due to mutations in genes coding for extracellular matrix and linkage molecules. In this review we will summarize progresses made in the last years by a flurry of reverse genetic experiments in mice and fish. This work revealed novel molecules that control radial sorting, and contributed unexpected ideas to our understanding of the cellular and molecular mechanisms that control radial sorting of axons.

  1. Axon contact-driven Schwann cell dedifferentiation.

    PubMed

    Soto, Jennifer; Monje, Paula V

    2017-02-24

    Mature Schwann cells (SCs) retain dedifferentiation potential throughout adulthood. Still, how dedifferentiation occurs remains uncertain. Results from a variety of cell-based assays using in vitro cultured cAMP-differentiated and myelinating SCs revealed the existence of a novel dedifferentiating activity expressed on the surface of dorsal root ganglion (DRG) axons. This activity had the capacity to prevent SC differentiation and elicit dedifferentiation through direct SC-axon contact. Evidence is provided showing that a rapid loss of myelinating SC markers concomitant to proliferation occurred even in the presence of elevated cAMP, a signal that is required to drive and maintain a differentiated state. The dedifferentiating activity was a membrane-bound protein found exclusively in DRG neurons, as judged by its subcellular partitioning, sensitivity to proteolytic degradation and cell-type specificity, and remained active even after disruption of cellular organization. It differed from the membrane-anchored neuregulin-1 isoforms that are responsible for axon contact-induced SC proliferation and exerted its action independently of mitogenic signaling emanating from receptor tyrosine kinases and mitogen-activated protein kinases such as ERK and JNK. Interestingly, dedifferentiation occurred without concomitant changes in the expression of Krox-20, a transcriptional enhancer of myelination, and c-Jun, an inhibitor of myelination. In sum, our data indicated the existence of cell surface axon-derived signals that override pro-differentiating cues, drive dedifferentiation and allow SCs to proliferate in response to axonal mitogens. This axonal signal may negatively regulate myelination at the onset or reversal of the differentiated state.

  2. Functional alpha7 nicotinic receptors are expressed on immature granule cells of the postnatal dentate gyrus

    PubMed Central

    John, Danielle; Shelukhina, Irina; Yanagawa, Yuchio; Deuchars, Jim; Henderson, Zaineb

    2015-01-01

    Neurogenesis occurs throughout life in the subgranular zone of the dentate gyrus, and postnatal-born granule cells migrate into the granule cell layer and extend axons to their target areas. The α7⁎nicotinic receptor has been implicated in neuronal maturation during development of the brain and is abundant in interneurons of the hippocampal formation of the adult brain. Signalling through these same receptors is believed also to promote maturation and integration of adult-born granule cells in the hippocampal formation. We therefore aimed to determine whether functional α7⁎nicotinic receptors are expressed in developing granule cells of the postnatal dentate gyrus. For these experiments we used 2–3 week-old Wistar rats, and 2–9 week old transgenic mice in which GABAergic interneurons were marked by expression of green fluorescent protein. Immunohistochemistry indicated the presence of α7⁎nicotinic receptor subunits around granule cells close around the subgranular zone which correlated with the distribution of developmental markers for immature granule cells. Whole-cell patch clamp recording showed that a proportion of granule cells responded to puffed ACh in the presence of atropine, and that these cells possessed electrophysiological properties found in immature granule cells. The nicotinic responses were potentiated by an allosteric α7⁎nicotinic receptor modulator, which were blocked by a specific α7⁎nicotinic receptor antagonist and were not affected by ionotropic glutamate or GABA receptor antagonists. These results suggest the presence of functional somato-dendritic α7⁎nicotinic receptors on immature granule cells of the postnatal dentate gyrus, consistent with studies implicating α7⁎nicotinic receptors in dendritic maturation of dentate gyrus neurons in adult brain. PMID:25553616

  3. Functional alpha7 nicotinic receptors are expressed on immature granule cells of the postnatal dentate gyrus.

    PubMed

    John, Danielle; Shelukhina, Irina; Yanagawa, Yuchio; Deuchars, Jim; Henderson, Zaineb

    2015-03-19

    Neurogenesis occurs throughout life in the subgranular zone of the dentate gyrus, and postnatal-born granule cells migrate into the granule cell layer and extend axons to their target areas. The α7*nicotinic receptor has been implicated in neuronal maturation during development of the brain and is abundant in interneurons of the hippocampal formation of the adult brain. Signalling through these same receptors is believed also to promote maturation and integration of adult-born granule cells in the hippocampal formation. We therefore aimed to determine whether functional α7*nicotinic receptors are expressed in developing granule cells of the postnatal dentate gyrus. For these experiments we used 2-3 week-old Wistar rats, and 2-9 week old transgenic mice in which GABAergic interneurons were marked by expression of green fluorescent protein. Immunohistochemistry indicated the presence of α7*nicotinic receptor subunits around granule cells close around the subgranular zone which correlated with the distribution of developmental markers for immature granule cells. Whole-cell patch clamp recording showed that a proportion of granule cells responded to puffed ACh in the presence of atropine, and that these cells possessed electrophysiological properties found in immature granule cells. The nicotinic responses were potentiated by an allosteric α7*nicotinic receptor modulator, which were blocked by a specific α7*nicotinic receptor antagonist and were not affected by ionotropic glutamate or GABA receptor antagonists. These results suggest the presence of functional somato-dendritic α7*nicotinic receptors on immature granule cells of the postnatal dentate gyrus, consistent with studies implicating α7*nicotinic receptors in dendritic maturation of dentate gyrus neurons in adult brain.

  4. Vaccine adjuvants: Tailor-made mast-cell granules

    NASA Astrophysics Data System (ADS)

    Gunzer, Matthias

    2012-03-01

    Mast cells induce protective immune responses through secretion of stimulatory granules. Microparticles modelled after mast-cell granules are now shown to replicate and enhance the functions of their natural counterparts and to direct the character of the resulting immunity.

  5. Hippocampal granule cell pathology in epilepsy - a possible structural basis for comorbidities of epilepsy?

    PubMed

    Hester, Michael S; Danzer, Steve C

    2014-09-01

    Temporal lobe epilepsy in both animals and humans is characterized by abnormally integrated hippocampal dentate granule cells. Among other abnormalities, these cells make axonal connections with inappropriate targets, grow dendrites in the wrong direction, and migrate to ectopic locations. These changes promote the formation of recurrent excitatory circuits, leading to the appealing hypothesis that these abnormal cells may by epileptogenic. While this hypothesis has been the subject of intense study, less attention has been paid to the possibility that abnormal granule cells in the epileptic brain may also contribute to comorbidities associated with the disease. Epilepsy is associated with a variety of general findings, such as memory disturbances and cognitive dysfunction, and is often comorbid with a number of other conditions, including schizophrenia and autism. Interestingly, recent studies implicate disruption of common genes and gene pathways in all three diseases. Moreover, while neuropsychiatric conditions are associated with changes in a variety of brain regions, granule cell abnormalities in temporal lobe epilepsy appear to be phenocopies of granule cell deficits produced by genetic mouse models of autism and schizophrenia, suggesting that granule cell dysmorphogenesis may be a common factor uniting these seemingly diverse diseases. Disruption of common signaling pathways regulating granule cell neurogenesis may begin to provide mechanistic insight into the cooccurrence of temporal lobe epilepsy and cognitive and behavioral disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Altered morphology of hippocampal dentate granule cell presynaptic and postsynaptic terminals following conditional deletion of TrkB.

    PubMed

    Danzer, Steve C; Kotloski, Robert J; Walter, Cynthia; Hughes, Maya; McNamara, James O

    2008-01-01

    Dentate granule cells play a critical role in the function of the entorhinal-hippocampal circuitry in health and disease. Dentate granule cells are situated to regulate the flow of information into the hippocampus, a structure required for normal learning and memory. Correspondingly, impaired granule cell function leads to memory deficits, and, interestingly, altered granule cell connectivity may contribute to the hyperexcitability of limbic epilepsy. It is important, therefore, to understand the molecular determinants of synaptic connectivity of these neurons. Brain-derived neurotrophic factor and its receptor TrkB are expressed at high levels in the dentate gyrus (DG) of the hippocampus, and are implicated in regulating neuronal development, neuronal plasticity, learning, and the development of epilepsy. Whether and how TrkB regulates granule cell structure, however, is incompletely understood. To begin to elucidate the role of TrkB in regulating granule cell morphology, here we examine conditional TrkB knockout mice crossed to mice expressing green fluorescent protein in subsets of dentate granule cells. In stratum lucidum, where granule cell mossy fiber axons project, the density of giant mossy fiber boutons was unchanged, suggesting similar output to CA3 pyramidal cell targets. However, filopodial extensions of giant boutons, which contact inhibitory interneurons, were increased in number in TrkB knockout mice relative to wildtype controls, predicting enhanced feedforward inhibition of CA3 pyramidal cells. In knockout animals, dentate granule cells possessed fewer primary dendrites and enlarged dendritic spines, indicative of disrupted excitatory synaptic input to the granule cells. Together, these findings demonstrate that TrkB is required for development and/or maintenance of normal synaptic connectivity of the granule cells, thereby implying an important role for TrkB in the function of the granule cells and hippocampal circuitry.

  7. Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy.

    PubMed

    Kobayashi, Masayuki; Buckmaster, Paul S

    2003-03-15

    Patients and models of temporal lobe epilepsy have fewer inhibitory interneurons in the dentate gyrus than controls, but it is unclear whether granule cell inhibition is reduced. We report the loss of GABAergic inhibition of granule cells in the temporal dentate gyrus of pilocarpine-induced epileptic rats. In situ hybridization for GAD65 mRNA and immunocytochemistry for parvalbumin and somatostatin confirmed the loss of inhibitory interneurons. In epileptic rats, granule cells had prolonged EPSPs, and they discharged more action potentials than controls. Although the conductances of evoked IPSPs recorded in normal ACSF were not significantly reduced and paired-pulse responses showed enhanced inhibition of granule cells from epileptic rats, more direct measures of granule cell inhibition revealed significant deficiencies. In granule cells from epileptic rats, evoked monosynaptic IPSP conductances were <40% of controls, and the frequency of GABA(A) receptor-mediated spontaneous and miniature IPSCs (mIPSCs) was <50% of controls. Within 3-7 d after pilocarpine-induced status epilepticus, miniature IPSC frequency had decreased, and it remained low, without functional evidence of compensatory synaptogenesis by GABAergic axons in chronically epileptic rats. Both parvalbumin- and somatostatin-immunoreactive interneuron numbers and the frequency of both fast- and slow-rising GABA(A) receptor-mediated mIPSCs were reduced, suggesting that loss of inhibitory synaptic input to granule cells occurred at both proximal/somatic and distal/dendritic sites. Reduced granule cell inhibition in the temporal dentate gyrus preceded the onset of spontaneous recurrent seizures by days to weeks, so it may contribute, but is insufficient, to cause epilepsy.

  8. Single Granule Cells Excite Golgi Cells and Evoke Feedback Inhibition in the Cochlear Nucleus

    PubMed Central

    Yaeger, Daniel B.

    2015-01-01

    In cerebellum-like circuits, synapses from thousands of granule cells converge onto principal cells. This fact, combined with theoretical considerations, has led to the concept that granule cells encode afferent input as a population and that spiking in individual granule cells is relatively unimportant. However, granule cells also provide excitatory input to Golgi cells, each of which provide inhibition to hundreds of granule cells. We investigated whether spiking in individual granule cells could recruit Golgi cells and thereby trigger widespread inhibition in slices of mouse cochlear nucleus. Using paired whole-cell patch-clamp recordings, trains of action potentials at 100 Hz in single granule cells was sufficient to evoke spikes in Golgi cells in ∼40% of paired granule-to-Golgi cell recordings. High-frequency spiking in single granule cells evoked IPSCs in ∼5% of neighboring granule cells, indicating that bursts of activity in single granule cells can recruit feedback inhibition from Golgi cells. Moreover, IPSPs mediated by single Golgi cell action potentials paused granule cell firing, suggesting that inhibitory events recruited by activity in single granule cells were able to control granule cell firing. These results suggest a previously unappreciated relationship between population coding and bursting in single granule cells by which spiking in a small number of granule cells may have an impact on the activity of a much larger number of granule cells. PMID:25788690

  9. Neural Progenitor Cells Promote Axonal Growth and Alter Axonal mRNA Localization in Adult Neurons

    PubMed Central

    Merianda, Tanuja T.; Jin, Ying

    2017-01-01

    Abstract The inhibitory environment of the spinal cord and the intrinsic properties of neurons prevent regeneration of axons following CNS injury. However, both ascending and descending axons of the injured spinal cord have been shown to regenerate into grafts of embryonic neural progenitor cells (NPCs). Previous studies have shown that grafts composed of glial-restricted progenitors (GRPs) and neural-restricted progenitors (NRPs) can provide a permissive microenvironment for axon growth. We have used cocultures of adult rat dorsal root ganglion (DRG) neurons together with NPCs, which have shown significant enhancement of axon growth by embryonic rat GRP and GRPs/NRPs, both in coculture conditions and when DRGs are exposed to conditioned medium from the NPC cultures. This growth-promoting effect of NPC-conditioned medium was also seen in injury-conditioned neurons. DRGs cocultured with GRPs/NRPs showed altered expression of regeneration-associated genes at transcriptional and post-transcriptional levels. We found that levels of GAP-43 mRNA increased in DRG cell bodies and axons. However, hepcidin antimicrobial peptide (HAMP) mRNA decreased in the cell bodies of DRGs cocultured with GRPs/NRPs, which is distinct from the increase in cell body HAMP mRNA levels seen in DRGs after injury conditioning. Endogenous GAP-43 and β-actin mRNAs as well as reporter RNAs carrying axonally localizing 3'UTRs of these transcripts showed significantly increased levels in distal axons in the DRGs cocultured with GRPs/NRPs. These results indicate that axon growth promoted by NPCs is associated not only with enhanced transcription of growth-associated genes but also can increase localization of some mRNAs into growing axons. PMID:28197547

  10. Neural Progenitor Cells Promote Axonal Growth and Alter Axonal mRNA Localization in Adult Neurons.

    PubMed

    Merianda, Tanuja T; Jin, Ying; Kalinski, Ashley L; Sahoo, Pabitra K; Fischer, Itzhak; Twiss, Jeffery L

    2017-01-01

    The inhibitory environment of the spinal cord and the intrinsic properties of neurons prevent regeneration of axons following CNS injury. However, both ascending and descending axons of the injured spinal cord have been shown to regenerate into grafts of embryonic neural progenitor cells (NPCs). Previous studies have shown that grafts composed of glial-restricted progenitors (GRPs) and neural-restricted progenitors (NRPs) can provide a permissive microenvironment for axon growth. We have used cocultures of adult rat dorsal root ganglion (DRG) neurons together with NPCs, which have shown significant enhancement of axon growth by embryonic rat GRP and GRPs/NRPs, both in coculture conditions and when DRGs are exposed to conditioned medium from the NPC cultures. This growth-promoting effect of NPC-conditioned medium was also seen in injury-conditioned neurons. DRGs cocultured with GRPs/NRPs showed altered expression of regeneration-associated genes at transcriptional and post-transcriptional levels. We found that levels of GAP-43 mRNA increased in DRG cell bodies and axons. However, hepcidin antimicrobial peptide (HAMP) mRNA decreased in the cell bodies of DRGs cocultured with GRPs/NRPs, which is distinct from the increase in cell body HAMP mRNA levels seen in DRGs after injury conditioning. Endogenous GAP-43 and β-actin mRNAs as well as reporter RNAs carrying axonally localizing 3'UTRs of these transcripts showed significantly increased levels in distal axons in the DRGs cocultured with GRPs/NRPs. These results indicate that axon growth promoted by NPCs is associated not only with enhanced transcription of growth-associated genes but also can increase localization of some mRNAs into growing axons.

  11. Biology of peripheral inherited neuropathies: Schwann cell axonal interactions.

    PubMed

    Shy, Michael E

    2009-01-01

    Development and maintenance of PNS myelin depends on continual signaling from axons ensheathed by myelin. Recent advances have demonstrated the roles of neuregulin 1 type III, Erb2/3 and intracellular signal transduction pathways in inducing Schwann cell myelination. Alternatively, maintenance of myelinated axons depends on healthy myelinating Schwann cells. Axonal degeneration is a feature of virtually all inherited demyelinating neuropathies and in many cases is more responsible for clinical impairment than the primary demyelination. Signaling mechanisms through which demyelinating Schwann cells damage axons are not well understood. In this review several examples of potential mechanisms by which demyelinating neuropathies damage axons will be presented. Understanding the molecular basis of Schwann cell-axonal interactions will not only increase the understanding of PNS biology but also identify therapeutic targets for inherited neuropathies.

  12. Cerebellar granule cells are predominantly generated by terminal symmetric divisions of granule cell precursors.

    PubMed

    Nakashima, Kie; Umeshima, Hiroki; Kengaku, Mineko

    2015-06-01

    Neurons in the central nervous system (CNS) are generated by symmetric and asymmetric cell division of neural stem cells and their derivative progenitor cells. Cerebellar granule cells are the most abundant neurons in the CNS, and are generated by intensive cell division of granule cell precursors (GCPs) during postnatal development. Dysregulation of GCP cell cycle is causal for some subtypes of medulloblastoma. However, the details and mechanisms underlying neurogenesis from GCPs are not well understood. Using long-term live-cell imaging of proliferating GCPs transfected with a fluorescent newborn-granule cell marker, we found that GCPs underwent predominantly symmetric divisions, generating two GCPs or two neurons, while asymmetric divisions generating a GCP and a neuron were only occasionally observed, in both dissociated culture and within tissues of isolated cerebellar lobules. We found no significant difference in cell cycle length between proliferative and neurogenic divisions, or any consistent changes in cell cycle length during repeated proliferative division. Unlike neural stem cells in the cerebral cortex and spinal cord, which generate many neurons by repeated asymmetric division, cerebellar GCPs produce neurons predominantly by terminal symmetric division. These results indicate diverse mechanisms of neurogenesis in the mammalian brain. © 2015 Wiley Periodicals, Inc.

  13. Morphological changes among hippocampal dentate granule cells exposed to early kindling-epileptogenesis

    PubMed Central

    Singh, Shatrunjai P.; He, Xiaoping; McNamara, James O.; Danzer, Steve C.

    2013-01-01

    Temporal lobe epilepsy is associated with changes in the morphology of hippocampal dentate granule cells. These changes are evident in numerous models that are associated with substantial neuron loss and spontaneous recurrent seizures. By contrast, previous studies have shown that in the kindling model, it is possible to administer a limited number of stimulations sufficient to produce a lifelong enhanced sensitivity to stimulus evoked seizures without associated spontaneous seizures and minimal neuronal loss. Here we examined whether stimulation of the amygdala sufficient to evoke five convulsive seizures (class IV or greater on Racine’s scale) produce morphological changes similar to those observed in models of epilepsy associated with substantial cell loss. The morphology of GFP-expressing granule cells from Thy-1 GFP mice was examined either one day or one month after the last evoked seizure. Interestingly, significant reductions in dendritic spine density were evident one day after the last seizure, the magnitude of which had diminished by one month. Further, there was an increase in the thickness of the granule cell layer one day after the last evoked seizure, which was absent a month later. We also observed an increase in the area of the proximal axon, which again returned to control levels a month later. No differences in the number of basal dendrites were detected at either time point. These findings demonstrate that the early stages of kindling epileptogenesis produce transient changes in the granule cell body layer thickness, molecular layer spine density and axon proximal area, but do not produce striking rearrangements of granule cell structure. PMID:23893783

  14. Cerebellar granule cells encode the expectation of reward

    PubMed Central

    Wagner, Mark J; Kim, Tony Hyun; Savall, Joan; Schnitzer, Mark J; Luo, Liqun

    2017-01-01

    The human brain contains ~60 billion cerebellar granule cells1, which outnumber all other neurons combined. Classical theories posit that a large, diverse population of granule cells allows for highly detailed representations of sensorimotor context, enabling downstream Purkinje cells to sense fine contextual changes2–6. Although evidence suggests a role for cerebellum in cognition7–10, granule cells are known to encode only sensory11–13 and motor14 context. Using two-photon calcium imaging in behaving mice, here we show that granule cells convey information about the expectation of reward. Mice initiated voluntary forelimb movements for delayed water reward. Some granule cells responded preferentially to reward or reward omission, whereas others selectively encoded reward anticipation. Reward responses were not restricted to forelimb movement, as a Pavlovian task evoked similar responses. Compared to predictable rewards, unexpected rewards elicited markedly different granule cell activity despite identical stimuli and licking responses. In both tasks, reward signals were widespread throughout multiple cerebellar lobules. Tracking the same granule cells over several days of learning revealed that cells with reward-anticipating responses emerged from those that responded at the start of learning to reward delivery, whereas reward omission responses grew stronger as learning progressed. The discovery of predictive, non-sensorimotor encoding in granule cells is a major departure from current understanding of these neurons and dramatically enriches contextual information available to postsynaptic Purkinje cells, with important implications for cognitive processing in the cerebellum. PMID:28321129

  15. Decrease in tonic inhibition contributes to increase in dentate semilunar granule cell excitability after brain injury.

    PubMed

    Gupta, Akshay; Elgammal, Fatima S; Proddutur, Archana; Shah, Samik; Santhakumar, Vijayalakshmi

    2012-02-15

    Brain injury is an etiological factor for temporal lobe epilepsy and can lead to memory and cognitive impairments. A recently characterized excitatory neuronal class in the dentate molecular layer, semilunar granule cell (SGC), has been proposed to regulate dentate network activity patterns and working memory formation. Although SGCs, like granule cells, project to CA3, their typical sustained firing and associational axon collaterals suggest that they are functionally distinct from granule cells. We find that brain injury results in an enhancement of SGC excitability associated with an increase in input resistance 1 week after trauma. In addition to prolonging miniature and spontaneous IPSC interevent intervals, brain injury significantly reduces the amplitude of tonic GABA currents in SGCs. The postinjury decrease in SGC tonic GABA currents is in direct contrast to the increase observed in granule cells after trauma. Although our observation that SGCs express Prox1 indicates a shared lineage with granule cells, data from control rats show that SGC tonic GABA currents are larger and sIPSC interevent intervals shorter than in granule cells, demonstrating inherent differences in inhibition between these cell types. GABA(A) receptor antagonists selectively augmented SGC input resistance in controls but not in head-injured rats. Moreover, post-traumatic differences in SGC firing were abolished in GABA(A) receptor blockers. Our data show that cell-type-specific post-traumatic decreases in tonic GABA currents boost SGC excitability after brain injury. Hyperexcitable SGCs could augment dentate throughput to CA3 and contribute substantively to the enhanced risk for epilepsy and memory dysfunction after traumatic brain injury.

  16. Excitability changes within transverse lamellae of dentate granule cells and their longitudinal spread following orthodromic or antidromic activation.

    PubMed

    Lømo, Terje

    2009-07-01

    The functional organization of the perforant path input to the dentate gyrus of the exposed hippocampus was studied in adult rabbits anesthetized with urethane and chloralose. Electrical stimulation of perforant path fibers caused excitation of granule cells along narrow, nearly transverse strips (lamellae) of tissue. Stimulation of granule cell axons (mossy fibers) in CA3 caused antidromic activation of granule cells along similar strips. Paired-pulse stimulation revealed marked changes in granule cell excitability both within a lamella (on-line) and for several mm off-line along the septo-temporal axis of the dentate gyrus. After the first pulse, granule cells were inhibited for up to about 100 ms and then facilitated for up to hundreds of ms. Feedback activity along mossy fiber collaterals exciting local inhibitory and excitatory neurons appeared to dominate in producing on- and off-line inhibition and facilitation. Neurons mediating these effects could be inhibitory basket cells and other inhibitory interneurons targeting granule cells on- and off-line. In addition, excitatory mossy cells with far reaching, longitudinally running axons could affect off-line granule cells by exciting them directly or inhibit them indirectly by exciting local inhibitory interneurons. A scheme for dentate gyrus function is proposed whereby information to the dentate gyrus becomes split into interacting transverse strips of neuronal assemblies along which temporal processing occurs. A matrix of neuronal assemblies thus arises within which fragments of events and experiences is stored through the plasticity of synapses within and between the assemblies. Similar fragments may then be recognized at later times allowing memories of the whole to be created by pattern completion at subsequent computational stages in the hippocampus.

  17. Diversity and complexity of roles of granule cells in the cerebellar cortex. Editorial.

    PubMed

    Manto, Mario; De Zeeuw, Chris I

    2012-03-01

    The cerebellar granule cell, the most numerous neurons in the brain, forms the main excitatory neuron of the cerebellar cortical circuitry. Granule cells are synaptically connected with both mossy fibers and Golgi cells inside specialized structures called glomeruli, and thereby, they are subject to both feed-forward and feed-back inhibition. Their unique architecture with about four dendrites and a single axon ascending in the cerebellar cortex to bifurcate into two parallel fibers making synapses with Purkinje neurons has attracted numerous scientists. Recent advances show that they are much more than just relays of mossy fibers. They perform diverse and complex transformations in the spatiotemporal domain. This special issue highlights novel avenues in our understanding of the roles of this key neuronal population of the cerebellar cortex, ranging from developmental up to physiological and pathological points of view.

  18. Blockade of excitatory synaptogenesis with proximal dendrites of dentate granule cells following rapamycin treatment in a mouse model of temporal lobe epilepsy

    PubMed Central

    Yamawaki, Ruth; Thind, Khushdev; Buckmaster, Paul S.

    2014-01-01

    Inhibiting the mTOR signaling pathway with rapamycin blocks granule cell axon (mossy fiber) sprouting after epileptogenic injuries, including pilocarpine-induced status epilepticus. However, it remains unclear whether axons from other types of neurons sprout into the inner molecular layer and synapse with granule cell dendrites despite rapamycin treatment. If so, other aberrant positive-feedback networks might develop. To test this possibility stereological electron microscopy was used to estimate numbers of excitatory synapses in the inner molecular layer per hippocampus in pilocarpine-treated control mice, in mice 5 d after pilocarpine-induced status epilepticus, and after status epilepticus and daily treatment beginning 24 h later with rapamycin or vehicle for 2 months. The optical fractionator method was used to estimate numbers of granule cells in Nissl-stained sections so that numbers of excitatory synapses in the inner molecular layer per granule cell could be calculated. Control mice had an average of 2280 asymmetric synapses in the inner molecular layer per granule cell, which was reduced to 63% of controls 5 d after status epilepticus, recovered to 93% of controls in vehicle-treated mice 2 months after status epilepticus, but remained at only 63% of controls in rapamycin-treated mice. These findings reveal that rapamycin prevented excitatory axons from synapsing with proximal dendrites of granule cells and raise questions about the recurrent excitation hypothesis of temporal lobe epilepsy. PMID:25234294

  19. Type IV Collagen Controls the Axogenesis of Cerebellar Granule Cells by Regulating Basement Membrane Integrity in Zebrafish

    PubMed Central

    Takeuchi, Miki; Yamaguchi, Shingo; Yonemura, Shigenobu; Kakiguchi, Kisa; Sato, Yoshikatsu; Higashiyama, Tetsuya; Shimizu, Takashi; Hibi, Masahiko

    2015-01-01

    Granule cells (GCs) are the major glutamatergic neurons in the cerebellum, and GC axon formation is an initial step in establishing functional cerebellar circuits. In the zebrafish cerebellum, GCs can be classified into rostromedial and caudolateral groups, according to the locations of their somata in the corresponding cerebellar lobes. The axons of the GCs in the caudolateral lobes terminate on crest cells in the dorsal hindbrain, as well as forming en passant synapses with Purkinje cells in the cerebellum. In the zebrafish mutant shiomaneki, the caudolateral GCs extend aberrant axons. Positional cloning revealed that the shiomaneki (sio) gene locus encodes Col4a6, a subunit of type IV collagen, which, in a complex with Col4a5, is a basement membrane (BM) component. Both col4a5 and col4a6 mutants displayed similar abnormalities in the axogenesis of GCs and retinal ganglion cells (RGCs). Although type IV collagen is reported to control axon targeting by regulating the concentration gradient of an axonal guidance molecule Slit, Slit overexpression did not affect the GC axons. The structure of the BM surrounding the tectum and dorsal hindbrain was disorganized in the col4a5 and col4a6 mutants. Moreover, the abnormal axogenesis of the caudolateral GCs and the RGCs was coupled with aberrant BM structures in the type IV collagen mutants. The regrowth of GC axons after experimental ablation revealed that the original and newly formed axons displayed similar branching and extension abnormalities in the col4a6 mutants. These results collectively suggest that type IV collagen controls GC axon formation by regulating the integrity of the BM, which provides axons with the correct path to their targets. PMID:26451951

  20. Type IV Collagen Controls the Axogenesis of Cerebellar Granule Cells by Regulating Basement Membrane Integrity in Zebrafish.

    PubMed

    Takeuchi, Miki; Yamaguchi, Shingo; Yonemura, Shigenobu; Kakiguchi, Kisa; Sato, Yoshikatsu; Higashiyama, Tetsuya; Shimizu, Takashi; Hibi, Masahiko

    2015-10-01

    Granule cells (GCs) are the major glutamatergic neurons in the cerebellum, and GC axon formation is an initial step in establishing functional cerebellar circuits. In the zebrafish cerebellum, GCs can be classified into rostromedial and caudolateral groups, according to the locations of their somata in the corresponding cerebellar lobes. The axons of the GCs in the caudolateral lobes terminate on crest cells in the dorsal hindbrain, as well as forming en passant synapses with Purkinje cells in the cerebellum. In the zebrafish mutant shiomaneki, the caudolateral GCs extend aberrant axons. Positional cloning revealed that the shiomaneki (sio) gene locus encodes Col4a6, a subunit of type IV collagen, which, in a complex with Col4a5, is a basement membrane (BM) component. Both col4a5 and col4a6 mutants displayed similar abnormalities in the axogenesis of GCs and retinal ganglion cells (RGCs). Although type IV collagen is reported to control axon targeting by regulating the concentration gradient of an axonal guidance molecule Slit, Slit overexpression did not affect the GC axons. The structure of the BM surrounding the tectum and dorsal hindbrain was disorganized in the col4a5 and col4a6 mutants. Moreover, the abnormal axogenesis of the caudolateral GCs and the RGCs was coupled with aberrant BM structures in the type IV collagen mutants. The regrowth of GC axons after experimental ablation revealed that the original and newly formed axons displayed similar branching and extension abnormalities in the col4a6 mutants. These results collectively suggest that type IV collagen controls GC axon formation by regulating the integrity of the BM, which provides axons with the correct path to their targets.

  1. Critical role of axonal A-type K+ channels and axonal geometry in the gating of action potential propagation along CA3 pyramidal cell axons: a simulation study.

    PubMed

    Kopysova, I L; Debanne, D

    1998-09-15

    A model of CA3 pyramidal cell axons was used to study a new mode of gating of action potential (AP) propagation along the axon that depends on the activation of A-type K+ current (Debanne et al., 1997). The axonal membrane contained voltage-dependent Na+ channels, K+ channels, and A-type K+ channels. The density of axonal A-channels was first determined so that (1) at the resting membrane potential an AP elicited by a somatic depolarization was propagated into all axon collaterals and (2) propagation failures occurred when a brief somatic hyperpolarization preceded the AP induction. Both conditions were fulfilled only when A-channels were distributed in clusters but not when they were homogeneously distributed along the axon. Failure occurs in the proximal part of the axon. Conduction failure could be determined by a single cluster of A-channels, local decrease of axon diameter, or axonal elongation. We estimated the amplitude and temporal parameters of the hyperpolarization required for induction of a conduction block. Transient and small somatic hyperpolarizations, such as simulated GABAA inhibitory postsynaptic potentials, were able to block the AP propagation. It was shown that AP induction had to occur with a short delay (<30 msec) after the hyperpolarization. We discuss the possible conditions in which such local variations of the axon geometry and A-channel density may occur and the incidence of AP propagation failures on hippocampal network properties.

  2. Increased excitatory synaptic input to granule cells from hilar and CA3 regions in a rat model of temporal lobe epilepsy

    PubMed Central

    Zhang, Wei; Huguenard, John R.; Buckmaster, Paul S.

    2012-01-01

    One potential mechanism of temporal lobe epilepsy is recurrent excitation of dentate granule cells through aberrant sprouting of their axons (mossy fibers), which is found in many patients and animal models. However, correlations between the extent of mossy fiber sprouting and seizure frequency are weak. Additional potential sources of granule cell recurrent excitation that would not have been detected by markers of mossy fiber sprouting in previous studies include surviving mossy cells and proximal CA3 pyramidal cells. To test those possibilities in hippocampal slices from epileptic pilocarpine-treated rats, laser scanning glutamate uncaging was used to randomly and focally activate neurons in the granule cell layer, hilus, and proximal CA3 pyramidal cell layer while measuring evoked excitatory postsynaptic currents (EPSCs) in normotopic granule cells. Consistent with mossy fiber sprouting, a higher proportion of glutamate-uncaging spots in the granule cell layer evoked EPSCs in epileptic rats compared to controls. In addition, stimulation spots in the hilus and proximal CA3 pyramidal cell layer were more likely to evoke EPSCs in epileptic rats, despite significant neuron loss in those regions. Furthermore, synaptic strength of recurrent excitatory inputs to granule cells from CA3 pyramidal cells and other granule cells was increased in epileptic rats. These findings reveal substantial levels of excessive, recurrent, excitatory synaptic input to granule cells from neurons in the hilus and proximal CA3 field. The aberrant development of these additional positive-feedback circuits might contribute to epileptogenesis in temporal lobe epilepsy. PMID:22279204

  3. Extent of mossy fiber sprouting in patients with mesiotemporal lobe epilepsy correlates with neuronal cell loss and granule cell dispersion.

    PubMed

    Schmeiser, Barbara; Zentner, Josef; Prinz, Marco; Brandt, Armin; Freiman, Thomas M

    2017-01-01

    The most frequent finding in temporal lobe epilepsy is hippocampal sclerosis, characterized by selective cell loss of hippocampal subregions CA1 and CA4 as well as mossy fiber sprouting (MFS) towards the supragranular region and granule cell dispersion. Although selective cell loss is well described, its impact on mossy fiber sprouting and granule cell dispersion remains unclear. In a single center series, we examined 319 human hippocampal specimens, collected in a 15-years period. Hippocampal specimens were stained for neuronal loss, granule cell dispersion (Wyler scale I-IV, Neu-N, HE) and mossy fiber sprouting (synaptoporin-immunohistochemistry). For seizure outcome Engel score I-IV was applied. In Wyler I and II specimens, mossy fibers were found along their natural projection exclusively in CA4 and CA3. In Wyler III and IV, sprouting of mossy fibers into the molecular layer and a decrease of mossy fibers in CA4 and CA3 was detected. Mean granule cell dispersion was extended from 121μm to 185μm and correlated with Wyler III-IV as well as mossy fiber sprouting into the molecular layer. Wyler grade, mossy fiber sprouting and granule cell dispersion correlated with longer epilepsy duration, late surgery and higher preoperative seizure frequency. Parameters analyzed above did not correlate with postoperative seizure outcome. Mossy fiber sprouting might be a compensatory phenomenon of cell death of the target neurons in CA4 and CA3 in Wyler III-IV. Axonal reorganization of granule cells is accompanied by their migration and is correlated with the severity of cell loss and epilepsy duration. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Determinants of action potential propagation in cerebellar Purkinje cell axons.

    PubMed

    Monsivais, Pablo; Clark, Beverley A; Roth, Arnd; Häusser, Michael

    2005-01-12

    Axons have traditionally been viewed as highly faithful transmitters of action potentials. Recently, however, experimental evidence has accumulated to support the idea that under some circumstances axonal propagation may fail. Cerebellar Purkinje neurons fire highfrequency simple spikes, as well as bursts of spikes in response to climbing fiber activation (the "complex spike"). Here we have visualized the axon of individual Purkinje cells to directly investigate the relationship between somatic spikes and axonal spikes using simultaneous somatic whole-cell and cell-attached axonal patch-clamp recordings at 200-800 microm from the soma. We demonstrate that sodium action potentials propagate at frequencies up to approximately 260 Hz, higher than simple spike rates normally observed in vivo. Complex spikes, however, did not propagate reliably, with usually only the first and last spikes in the complex spike waveform being propagated. On average, only 1.7 +/- 0.2 spikes in the complex spike were propagated during resting firing, with propagation limited to interspike intervals above approximately 4 msec. Hyperpolarization improved propagation efficacy without affecting total axonal spike number, whereas strong depolarization could abolish propagation of the complex spike. These findings indicate that the complex spike waveform is not faithfully transmitted to downstream synapses and that propagation of the climbing fiber response may be modulated by background activity.

  5. Action Potential Dynamics in Fine Axons Probed with an Axonally Targeted Optical Voltage Sensor.

    PubMed

    Ma, Yihe; Bayguinov, Peter O; Jackson, Meyer B

    2017-01-01

    The complex and malleable conduction properties of axons determine how action potentials propagate through extensive axonal arbors to reach synaptic terminals. The excitability of axonal membranes plays a major role in neural circuit function, but because most axons are too thin for conventional electrical recording, their properties remain largely unexplored. To overcome this obstacle, we used a genetically encoded hybrid voltage sensor (hVOS) harboring an axonal targeting motif. Expressing this probe in transgenic mice enabled us to monitor voltage changes optically in two populations of axons in hippocampal slices, the large axons of dentate granule cells (mossy fibers) in the stratum lucidum of the CA3 region and the much finer axons of hilar mossy cells in the inner molecular layer of the dentate gyrus. Action potentials propagated with distinct velocities in each type of axon. Repetitive firing broadened action potentials in both populations, but at an intermediate frequency the degree of broadening differed. Repetitive firing also attenuated action potential amplitudes in both mossy cell and granule cell axons. These results indicate that the features of use-dependent action potential broadening, and possible failure, observed previously in large nerve terminals also appear in much finer unmyelinated axons. Subtle differences in the frequency dependences could influence the propagation of activity through different pathways to excite different populations of neurons. The axonally targeted hVOS probe used here opens up the diverse repertoire of neuronal processes to detailed biophysical study.

  6. Recruitment of an inhibitory hippocampal network after bursting in a single granule cell.

    PubMed

    Mori, Masahiro; Gähwiler, Beat H; Gerber, Urs

    2007-05-01

    The hippocampal CA3 area, an associational network implicated in memory function, receives monosynaptic excitatory as well as disynaptic inhibitory input through the mossy-fiber axons of the dentate granule cells. Synapses made by mossy fibers exhibit low release probability, resulting in high failure rates at resting discharge frequencies of 0.1 Hz. In recordings from functionally connected pairs of neurons, burst firing of a granule cell increased the probability of glutamate release onto both CA3 pyramidal cells and inhibitory interneurons, such that subsequent low-frequency stimulation evoked biphasic excitatory/inhibitory responses in a CA3 pyramidal cell, an effect lasting for minutes. Analysis of the unitary connections in the circuit revealed that granule cell bursting caused powerful activation of an inhibitory network, thereby transiently suppressing excitatory input to CA3 pyramidal cells. This phenomenon reflects the high incidence of spike-to-spike transmission at granule cell to interneuron synapses, the numerically much greater targeting by mossy fibers of inhibitory interneurons versus principal cells, and the extensively divergent output of interneurons targeting CA3 pyramidal cells. Thus, mossy-fiber input to CA3 pyramidal cells appears to function in three distinct modes: a resting mode, in which synaptic transmission is ineffectual because of high failure rates; a bursting mode, in which excitation predominates; and a postbursting mode, in which inhibitory input to the CA3 pyramidal cells is greatly enhanced. A mechanism allowing the transient recruitment of inhibitory input may be important for controlling network activity in the highly interconnected CA3 pyramidal cell region.

  7. Organization of spinocerebellar projection map in three types of agranular cerebellum: Purkinje cells vs. granule cells as organizer element

    SciTech Connect

    Arsenio Nunes, M.L.; Sotelo, C.; Wehrle, R.

    1988-07-01

    The organization of the spinocerebellar projection was analysed by the anterograde axonal WGA-HRP (horseradish peroxidase-wheat germ agglutinin conjugate) tracing method in three different types of agranular cerebellar cortex either induced experimentally by X-irradiation or occurring spontaneously in weaver (wv/wv) and staggerer (sg/sg) mutant mice. The results of this study show that in the X-irradiated rat and weaver mouse, in both of which the granule cells are directly affected and die early in development, the spinal axons reproduce, with few differences, the normal spinocerebellar pattern. Conversely, in staggerer mouse, in which the Purkinje cells are intrinsically affected and granule neurons do not seem to be primarily perturbed by the staggerer gene action, the spinocerebellar organization is severely modified. These findings appear somewhat paradoxical because if granule cells, the synaptic targets of mossy spinocerebellar fibers, were necessary for the organization of spinocerebellar projection, the staggerer cerebellum would exhibit a much more normal projectional map than the weaver and the X-irradiated cerebella. It is, therefore, obvious that granule cells, and even specific synaptogenesis, are not essential for the establishment of the normal spinocerebellar topography. On the other hand, the fact that the Purkinje cells are primarily affected in the unique agranular cortex in which the spinocerebellar organization is severely modified suggests that these neurons could be the main element in the organization of the spinocerebellar projection map. This hypothesis is discussed in correlation with already-reported findings on the zonation of the cerebellar cortex by biochemically different clusters of Purkinje cells.

  8. Targeted deletion of AKAP7 in dentate granule cells impairs spatial discrimination

    PubMed Central

    Weisenhaus, Michael; Sanford, Christina A; Slack, Margaret C; Chin, Jenesa; Nachmanson, Daniela; McKennon, Alex; Castillo, Pablo E; McKnight, G Stanley

    2016-01-01

    Protein Kinase A (PKA) mediates synaptic plasticity and is widely implicated in learning and memory. The hippocampal dentate gyrus (DG) is thought to be responsible for processing and encoding distinct contextual associations in response to highly similar inputs. The mossy fiber (MF) axons of the dentate granule cells convey strong excitatory drive to CA3 pyramidal neurons and express presynaptic, PKA-dependent forms of plasticity. Here, we demonstrate an essential role for the PKA anchoring protein, AKAP7, in mouse MF axons and terminals. Genetic ablation of AKAP7 specifically from dentate granule cells results in disruption of MF-CA3 LTP directly initiated by cAMP, and the AKAP7 mutant mice are selectively deficient in pattern separation behaviors. Our results suggest that the AKAP7/PKA complex in the MF projections plays an essential role in synaptic plasticity and contextual memory formation. DOI: http://dx.doi.org/10.7554/eLife.20695.001 PMID:27911261

  9. Conditional induction of Math1 specifies embryonic stem cells to cerebellar granule neuron lineage and promotes differentiation into mature granule neurons.

    PubMed

    Srivastava, Rupali; Kumar, Manoj; Peineau, Stéphane; Csaba, Zsolt; Mani, Shyamala; Gressens, Pierre; El Ghouzzi, Vincent

    2013-04-01

    Directing differentiation of embryonic stem cells (ESCs) to specific neuronal subtype is critical for modeling disease pathology in vitro. An attractive means of action would be to combine regulatory differentiation factors and extrinsic inductive signals added to the culture medium. In this study, we have generated mature cerebellar granule neurons by combining a temporally controlled transient expression of Math1, a master gene in granule neuron differentiation, with inductive extrinsic factors involved in cerebellar development. Using a Tetracyclin-On transactivation system, we overexpressed Math1 at various stages of ESCs differentiation and found that the yield of progenitors was considerably increased when Math1 was induced during embryonic body stage. Math1 triggered expression of Mbh1 and Mbh2, two target genes directly involved in granule neuron precursor formation and strong expression of early cerebellar territory markers En1 and NeuroD1. Three weeks after induction, we observed a decrease in the number of glial cells and an increase in that of neurons albeit still immature. Combining Math1 induction with extrinsic factors specifically increased the number of neurons that expressed Pde1c, Zic1, and GABAα6R characteristic of mature granule neurons, formed "T-shaped" axons typical of granule neurons, and generated synaptic contacts and action potentials in vitro. Finally, in vivo implantation of Math1-induced progenitors into young adult mice resulted in cell migration and settling of newly generated neurons in the cerebellum. These results show that conditional induction of Math1 drives ESCs toward the cerebellar fate and indicate that acting on both intrinsic and extrinsic factors is a powerful means to modulate ESCs differentiation and maturation into a specific neuronal lineage.

  10. Event-driven simulation of cerebellar granule cells.

    PubMed

    Carrillo, Richard R; Ros, Eduardo; Tolu, Silvia; Nieus, Thierry; D'Angelo, Egidio

    2008-01-01

    Around half of the neurons of a human brain are granule cells (approximately 10(11)granule neurons) [Kandel, E.R., Schwartz, J.H., Jessell, T.M., 2000. Principles of Neural Science. McGraw-Hill Professional Publishing, New York]. In order to study in detail the functional role of the intrinsic features of this cell we have developed a pre-compiled behavioural model based on the simplified granule-cell model of Bezzi et al. [Bezzi, M., Nieus, T., Arleo, A., D'Angelo, E., Coenen, O.J.-M.D., 2004. Information transfer at the mossy fiber-granule cell synapse of the cerebellum. 34th Annual Meeting. Society for Neuroscience, San Diego, CA, USA]. We can use an efficient event-driven simulation scheme based on lookup tables (EDLUT) [Ros, E., Carrillo, R.R., Ortigosa, E.M., Barbour, B., Ags, R., 2006. Event-driven simulation scheme for spiking neural networks using lookup tables to characterize neuronal dynamics. Neural Computation 18 (12), 2959-2993]. For this purpose it is necessary to compile into tables the data obtained through a massive numerical calculation of the simplified cell model. This allows network simulations requiring minimal numerical calculation. There are three major features that are considered functionally relevant in the simplified granule cell model: bursting, subthreshold oscillations and resonance. In this work we describe how the cell model is compiled into tables keeping these key properties of the neuron model.

  11. Integration of quanta in cerebellar granule cells during sensory processing.

    PubMed

    Chadderton, Paul; Margrie, Troy W; Häusser, Michael

    2004-04-22

    To understand the computations performed by the input layers of cortical structures, it is essential to determine the relationship between sensory-evoked synaptic input and the resulting pattern of output spikes. In the cerebellum, granule cells constitute the input layer, translating mossy fibre signals into parallel fibre input to Purkinje cells. Until now, their small size and dense packing have precluded recordings from individual granule cells in vivo. Here we use whole-cell patch-clamp recordings to show the relationship between mossy fibre synaptic currents evoked by somatosensory stimulation and the resulting granule cell output patterns. Granule cells exhibited a low ongoing firing rate, due in part to dampening of excitability by a tonic inhibitory conductance mediated by GABA(A) (gamma-aminobutyric acid type A) receptors. Sensory stimulation produced bursts of mossy fibre excitatory postsynaptic currents (EPSCs) that summate to trigger bursts of spikes. Notably, these spike bursts were evoked by only a few quantal EPSCs, and yet spontaneous mossy fibre inputs triggered spikes only when inhibition was reduced. Our results reveal that the input layer of the cerebellum balances exquisite sensitivity with a high signal-to-noise ratio. Granule cell bursts are optimally suited to trigger glutamate receptor activation and plasticity at parallel fibre synapses, providing a link between input representation and memory storage in the cerebellum.

  12. Platelet Granule Exocytosis: A Comparison with Chromaffin Cells

    PubMed Central

    Fitch-Tewfik, Jennifer L.; Flaumenhaft, Robert

    2013-01-01

    The rapid secretion of bioactive amines from chromaffin cells constitutes an important component of the fight or flight response of mammals to stress. Platelets respond to stresses within the vasculature by rapidly secreting cargo at sites of injury, inflammation, or infection. Although chromaffin cells derive from the neural crest and platelets from bone marrow megakaryocytes, both have evolved a heterogeneous assemblage of granule types and a mechanism for efficient release. This article will provide an overview of granule formation and exocytosis in platelets with an emphasis on areas in which the study of chromaffin cells has influenced that of platelets and on similarities between the two secretory systems. Commonalities include the use of transporters to concentrate bioactive amines and other cargos into granules, the role of cytoskeletal remodeling in granule exocytosis, and the use of granules to provide membrane for cytoplasmic projections. The SNAREs and SNARE accessory proteins used by each cell type will also be considered. Finally, we will discuss the newly appreciated role of dynamin family proteins in regulated fusion pore formation. This evaluation of the comparative cell biology of regulated exocytosis in platelets and chromaffin cells demonstrates a convergence of mechanisms between two disparate cell types both tasked with responding rapidly to physiological stimuli. PMID:23805129

  13. Cell biology in neuroscience: Cellular and molecular mechanisms underlying axon formation, growth, and branching.

    PubMed

    Lewis, Tommy L; Courchet, Julien; Polleux, Franck

    2013-09-16

    Proper brain wiring during development is pivotal for adult brain function. Neurons display a high degree of polarization both morphologically and functionally, and this polarization requires the segregation of mRNA, proteins, and lipids into the axonal or somatodendritic domains. Recent discoveries have provided insight into many aspects of the cell biology of axonal development including axon specification during neuronal polarization, axon growth, and terminal axon branching during synaptogenesis.

  14. Massively augmented hippocampal dentate granule cell activation accompanies epilepsy development.

    PubMed

    Dengler, Christopher G; Yue, Cuiyong; Takano, Hajime; Coulter, Douglas A

    2017-02-20

    In a mouse model of temporal lobe epilepsy, multicellular calcium imaging revealed that disease emergence was accompanied by massive amplification in the normally sparse, afferent stimulation-induced activation of hippocampal dentate granule cells. Patch recordings demonstrated reductions in local inhibitory function within the dentate gyrus at time points where sparse activation was compromised. Mimicking changes in inhibitory synaptic function and transmembrane chloride regulation was sufficient to elicit the dentate gyrus circuit collapse evident during epilepsy development. Pharmacological blockade of outward chloride transport had no effect during epilepsy development, and significantly increased granule cell activation in both control and chronically epileptic animals. This apparent occlusion effect implicates reduction in chloride extrusion as a mechanism contributing to granule cell hyperactivation specifically during early epilepsy development. Glutamine plays a significant role in local synthesis of GABA in synapses. In epileptic mice, sparse granule cell activation could be restored by glutamine application, implicating compromised GABA synthesis. Glutamine had no effect on granule cell activation earlier, during epilepsy development. We conclude that compromised feedforward inhibition within the local circuit generates the massive dentate gyrus circuit hyperactivation evident in animals during and following epilepsy development. However, the mechanisms underlying this disinhibition diverge significantly as epilepsy progresses.

  15. Massively augmented hippocampal dentate granule cell activation accompanies epilepsy development

    PubMed Central

    Dengler, Christopher G.; Yue, Cuiyong; Takano, Hajime; Coulter, Douglas A.

    2017-01-01

    In a mouse model of temporal lobe epilepsy, multicellular calcium imaging revealed that disease emergence was accompanied by massive amplification in the normally sparse, afferent stimulation-induced activation of hippocampal dentate granule cells. Patch recordings demonstrated reductions in local inhibitory function within the dentate gyrus at time points where sparse activation was compromised. Mimicking changes in inhibitory synaptic function and transmembrane chloride regulation was sufficient to elicit the dentate gyrus circuit collapse evident during epilepsy development. Pharmacological blockade of outward chloride transport had no effect during epilepsy development, and significantly increased granule cell activation in both control and chronically epileptic animals. This apparent occlusion effect implicates reduction in chloride extrusion as a mechanism contributing to granule cell hyperactivation specifically during early epilepsy development. Glutamine plays a significant role in local synthesis of GABA in synapses. In epileptic mice, sparse granule cell activation could be restored by glutamine application, implicating compromised GABA synthesis. Glutamine had no effect on granule cell activation earlier, during epilepsy development. We conclude that compromised feedforward inhibition within the local circuit generates the massive dentate gyrus circuit hyperactivation evident in animals during and following epilepsy development. However, the mechanisms underlying this disinhibition diverge significantly as epilepsy progresses. PMID:28218241

  16. Characterization of mast cell secretory granules and their cell biology.

    PubMed

    Azouz, Nurit Pereg; Hammel, Ilan; Sagi-Eisenberg, Ronit

    2014-10-01

    Exocytosis and secretion of secretory granule (SG) contained inflammatory mediators is the primary mechanism by which mast cells exert their protective immune responses in host defense, as well as their pathological functions in allergic reactions and anaphylaxis. Despite their central role in mast cell function, the molecular mechanisms underlying the biogenesis and secretion of mast cell SGs remain largely unresolved. Early studies have established the lysosomal nature of the mast cell SGs and implicated SG homotypic fusion as an important step occurring during both their biogenesis and compound secretion. However, the molecular mechanisms that account for key features of this process largely remain to be defined. A novel high-resolution imaging based methodology allowed us to screen Rab GTPases for their phenotypic and functional impact and identify Rab networks that regulate mast cell secretion. This screen has identified Rab5 as a novel regulator of homotypic fusion of the mast cell SGs that thereby regulates their size and cargo composition.

  17. Schwann cell interactions with axons and microvessels in diabetic neuropathy.

    PubMed

    Gonçalves, Nádia P; Vægter, Christian B; Andersen, Henning; Østergaard, Leif; Calcutt, Nigel A; Jensen, Troels S

    2017-03-01

    The prevalence of diabetes worldwide is at pandemic levels, with the number of patients increasing by 5% annually. The most common complication of diabetes is peripheral neuropathy, which has a prevalence as high as 50% and is characterized by damage to neurons, Schwann cells and blood vessels within the nerve. The pathogenic mechanisms of diabetic neuropathy remain poorly understood, impeding the development of targeted therapies to treat nerve degeneration and its most disruptive consequences of sensory loss and neuropathic pain. Involvement of Schwann cells has long been proposed, and new research techniques are beginning to unravel a complex interplay between these cells, axons and microvessels that is compromised during the development of diabetic neuropathy. In this Review, we discuss the evolving concept of Schwannopathy as an integral factor in the pathogenesis of diabetic neuropathy, and how disruption of the interactions between Schwann cells, axons and microvessels contribute to the disease.

  18. Ontogeny of calbindin immunoreactivity in the human hippocampal formation with a special emphasis on granule cells of the dentate gyrus.

    PubMed

    Abrahám, Hajnalka; Veszprémi, Béla; Kravják, András; Kovács, Krisztina; Gömöri, Eva; Seress, László

    2009-04-01

    Calbindin (CB) is a calcium-binding protein that is present in principal cells as well as in interneurons of the hippocampal formation of various species including humans. Studies with transgenic mice revealed that CB is essential for long-term potentiation and synaptic plasticity which are the cellular basis of learning and memory. In a previous study we have shown that CB expression in granule cells of the dentate gyrus correlates with the functional maturation of the hippocampal formation in the rat. In the present study we examined the ontogeny of CB using immunohistochemistry in the human hippocampal formation paying special attention to the granule cells of the dentate gyrus. As early as the 14(th) week of gestation (GW), CB was being expressed by pyramidal cells of CA1-3 regions in the deepest cell rows of the pyramidal layer towards the ventricular zone. Later, CB sequentially appears in more superficial cell rows. After midgestation, CB disappears from CA3 pyramidal neurons. Expression of CB by granule cells starts at the 22(nd)-23(rd) GW, first by the most superficial neurons of the ectal end of the dorsal blade. At the 24(th) GW, CB is expressed by granule cells of the crest and medial portion of the ventral blade whereas later the entire ventral blade revealed CB immunoreactivity. At term, and in the first few postnatal months, CB-immunoreaction is detected in granule cells of both blades except for those neurons in the deepest cell rows at the hilar border. At around 2-3 years of age, all granule cells of the entire cell layer are CB-immunoreactive. Axons of granule cells, the mossy fibers, start to express CB around the 30(th) GW in stratum lucidum of CA3a. With further development, CB is expressed in CA3b and c, as well as in the hilus. An adult-like pattern of CB-immunoreactivity could be observed at 11 years of age. Our results indicate that (i) CB is expressed by hippocampal pyramidal cells a few weeks before midgestation; (ii) similarly to

  19. Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system.

    PubMed

    Lopez-Verrilli, María Alejandra; Picou, Frederic; Court, Felipe A

    2013-11-01

    Axonal regeneration in the peripheral nervous system is greatly supported by Schwann cells (SCs). After nerve injury, SCs dedifferentiate to a progenitor-like state and efficiently guide axons to their original target tissues. Contact and soluble factors participate in the crosstalk between SCs and axons during axonal regeneration. Here we show that dedifferentiated SCs secrete nano-vesicles known as exosomes which are specifically internalized by axons. Surprisingly, SC-derived exosomes markedly increase axonal regeneration in vitro and enhance regeneration after sciatic nerve injury in vivo. Exosomes shift the growth cone morphology to a pro-regenerating phenotype and decrease the activity of the GTPase RhoA, involved in growth cone collapse and axon retraction. Altogether, our work identifies a novel mechanism by which SCs communicate with neighboring axons during regenerative processes. We propose that SC exosomes represent an important mechanism by which these cells locally support axonal maintenance and regeneration after nerve damage.

  20. Axonal control of the adult neural stem cell niche.

    PubMed

    Tong, Cheuk Ka; Chen, Jiadong; Cebrián-Silla, Arantxa; Mirzadeh, Zaman; Obernier, Kirsten; Guinto, Cristina D; Tecott, Laurence H; García-Verdugo, Jose Manuel; Kriegstein, Arnold; Alvarez-Buylla, Arturo

    2014-04-03

    The ventricular-subventricular zone (V-SVZ) is an extensive germinal niche containing neural stem cells (NSCs) in the walls of the lateral ventricles of the adult brain. How the adult brain's neural activity influences the behavior of adult NSCs remains largely unknown. We show that serotonergic (5HT) axons originating from a small group of neurons in the raphe form an extensive plexus on most of the ventricular walls. Electron microscopy revealed intimate contacts between 5HT axons and NSCs (B1) or ependymal cells (E1) and these cells were labeled by a transsynaptic viral tracer injected into the raphe. B1 cells express the 5HT receptors 2C and 5A. Electrophysiology showed that activation of these receptors in B1 cells induced small inward currents. Intraventricular infusion of 5HT2C agonist or antagonist increased or decreased V-SVZ proliferation, respectively. These results indicate that supraependymal 5HT axons directly interact with NSCs to regulate neurogenesis via 5HT2C. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Axonal Control of the Adult Neural Stem Cell Niche

    PubMed Central

    Tong, Cheuk Ka; Chen, Jiadong; Cebrián-Silla, Arantxa; Mirzadeh, Zaman; Obernier, Kirsten; Guinto, Cristina D.; Tecott, Laurence H.; García-Verdugo, Jose Manuel; Kriegstein, Arnold; Alvarez-Buylla, Arturo

    2014-01-01

    SUMMARY The ventricular-subventricular zone (V-SVZ) is an extensive germinal niche containing neural stem cells (NSC) in the walls of the lateral ventricles of the adult brain. How the adult brain’s neural activity influences the behavior of adult NSCs remains largely unknown. We show that serotonergic (5HT) axons originating from a small group of neurons in the raphe form an extensive plexus on most of the ventricular walls. Electron microscopy revealed intimate contacts between 5HT axons and NSCs (B1) or ependymal cells (E1) and these cells were labeled by a transsynaptic viral tracer injected into the raphe. B1 cells express the 5HT receptors 2C and 5A. Electrophysiology showed that activation of these receptors in B1 cells induced small inward currents. Intraventricular infusion of 5HT2C agonist or antagonist increased or decreased V-SVZ proliferation, respectively. These results indicate that supraependymal 5HT axons directly interact with NSCs to regulate neurogenesis via 5HT2C. PMID:24561083

  2. Differential dendritic Ca2+ signalling in young and mature hippocampal granule cells

    PubMed Central

    Stocca, Gabriella; Schmidt-Hieber, Christoph; Bischofberger, Josef

    2008-01-01

    Neuronal activity is critically important for development and plasticity of dendrites, axons and synaptic connections. Although Ca2+ is an important signal molecule for these processes, not much is known about the regulation of the dendritic Ca2+ concentration in developing neurons. Here we used confocal Ca2+ imaging to investigate dendritic Ca2+ signalling in young and mature hippocampal granule cells, identified by the expression of the immature neuronal marker polysialated neural cell adhesion molecule (PSA-NCAM). Using the Ca2+-sensitive fluorescent dye OGB-5N, we found that both young and mature granule cells showed large action-potential evoked dendritic Ca2+ transients with similar amplitude of ∼200 nm, indicating active backpropagation of action potentials. However, the decay of the dendritic Ca2+ concentration back to baseline values was substantially different with a decay time constant of 550 ms in young versus 130 ms in mature cells, leading to a more efficient temporal summation of Ca2+ signals during theta-frequency stimulation in the young neurons. Comparison of the peak Ca2+ concentration and the decay measured with different Ca2+ indicators (OGB-5N, OGB-1) in the two populations of neurons revealed that the young cells had an ∼3 times smaller endogenous Ca2+-binding ratio (∼75 versus∼220) and an ∼10 times slower Ca2+ extrusion rate (∼170 s−1versus∼1800 s−1). These data suggest that the large dendritic Ca2+ signals due to low buffer capacity and slow extrusion rates in young granule cells may contribute to the activity-dependent growth and plasticity of dendrites and new synaptic connections. This will finally support differentiation and integration of young neurons into the hippocampal network. PMID:18591186

  3. Morphological evidence for a transport of ribosomes from Schwann cells to regenerating axons.

    PubMed

    Court, Felipe A; Midha, Rajiv; Cisterna, Bruno A; Grochmal, Joey; Shakhbazau, Antos; Hendriks, William T; Van Minnen, Jan

    2011-10-01

    Recently, we showed that Schwann cells transfer ribosomes to injured axons. Here, we demonstrate that Schwann cells transfer ribosomes to regenerating axons in vivo. For this, we used lentiviral vector-mediated expression of ribosomal protein L4 and eGFP to label ribosomes in Schwann cells. Two approaches were followed. First, we transduced Schwann cells in vivo in the distal trunk of the sciatic nerve after a nerve crush. Seven days after the crush, 12% of regenerating axons contained fluorescent ribosomes. Second, we transduced Schwann cells in vitro that were subsequently injected into an acellular nerve graft that was inserted into the sciatic nerve. Fluorescent ribosomes were detected in regenerating axons up to 8 weeks after graft insertion. Together, these data indicate that regenerating axons receive ribosomes from Schwann cells and, furthermore, that Schwann cells may support local axonal protein synthesis by transferring protein synthetic machinery and mRNAs to these axons.

  4. Isolating stromal stem cells from periodontal granulation tissues.

    PubMed

    Hung, Tzu-Yuan; Lin, Hsiang-Chun; Chan, Ying-Jen; Yuan, Kuo

    2012-08-01

    Stem cell therapy is a promising area in regenerative medicine. Periodontal granulation tissues are often discarded during conventional surgery. If stromal stem cells can be isolated from these tissues, they can be used for subsequent surgery on the same patient. Fifteen human periodontal granulation tissue samples were obtained from intrabony defects during surgery. Immunohistochemistry (IHC) was carried out on five of the samples to identify STRO-1, a marker of mesenchymal stem cells. Five samples underwent flow cytometry analysis for the same marker. The remaining five samples were characterized by "colony formation unit-fibroblast" (CFU-f) assay and selected for proliferation assay, flow cytometry of stem cell markers, immunocytochemistry (ICC), multipotent differentiation assays, and repairing critical-size defects in mice. The ratio of STRO-1(+) cells detected by IHC was 5.91 ± 1.50%. The analysis of flow cytometry for STRO-1 was 6.70 ± 0.81%. Approximately two thirds of the CFU-f colonies had a strong reaction to STRO-1 in ICC staining. The cells were multipotent both in vitro and in vivo. Mice given bone grafts and stem cells showed significantly better bone healing than those without stem cells. Multipotent stromal stem cells can be isolated from human periodontal granulation tissues. These cells improve new bone formation when transplanted in mouse calvarial defects. Isolating stem cells from relatively accessible sites without extra procedures is clinically advantageous. This study demonstrated that human periodontal granulation tissues contain isolatable multipotent stem cells. The cells may be a good source for autotransplantation in subsequent treatment.

  5. Dynamic functions of GABA signaling during granule cell maturation

    PubMed Central

    Dieni, Cristina V.; Chancey, Jessica H.; Overstreet-Wadiche, Linda S.

    2013-01-01

    The dentate gyrus is one of the few areas of the brain where new neurons are generated throughout life. Neural activity influences multiple stages of neurogenesis, thereby allowing experience to regulate the production of new neurons. It is now well established that GABAA receptor-mediated signaling plays a pivotal role in mediating activity-dependent regulation of adult neurogenesis. GABA first acts as a trophic signal that depolarizes progenitors and early post mitotic granule cells, enabling network activity to control molecular cascades essential for proliferation, survival and growth. Following the development of glutamatergic synaptic inputs, GABA signaling switches from excitatory to inhibitory. Thereafter robust synaptic inhibition enforces low spiking probability of granule cells in response to cortical excitatory inputs and maintains the sparse activity patterns characteristic of this brain region. Here we review these dynamic functions of GABA across granule cell maturation, focusing on the potential role of specific interneuron circuits at progressive developmental stages. We further highlight questions that remain unanswered about GABA signaling in granule cell development and excitability. PMID:23316139

  6. Changes in axonally transported proteins during axon regeneration in toad retinal ganglion cells

    PubMed Central

    1981-01-01

    In an effort to understand the regulation of the transition of a mature neuron to the growth, or regenerating, state we have analyzed the composition of the axonally transported proteins in the retinal ganglion cells of the toad Bufo marinus after inducing axon regeneration by crushing the optic nerve. At increasing intervals after axotomy, we labeled the retinal ganglion cells with [35S]methionine and subsequently analyzed the labeled transported polypeptides in the crushed optic nerve by means of one- and two-dimensional electrophoretic techniques. The most significant conclusion from these experiments is that, while the transition from the mature to the regenerating state does not require a gross qualitative alteration in the composition of axonally transported proteins, the relative labeling of a small subset of rapidly transported proteins is altered dramatically (changes of more than 20-fold) and reproducibly (more than 30 animals) by axotomy. One of these growth-associated proteins (GAPs) was soluble in an aqueous buffer, while three were associated with a crude membrane fraction. The labeling of all three of the membrane- associated GAPs increased during the first 8 d after axotomy, and they continued to be labeled for at least 4 wk. The modulation of these proteins after axotomy is consistent with the possibility that they are involve in growth-specific functions and that the altered expression of a small number of genes is a crucial regulatory event in the transition of a mature neuron to a growth state. In addition to these selective changes in rapidly transported proteins, we observed the following more general metabolic correlates of the regeneration process: The total radioactive label associated with the most rapidly transported proteins (groups I and II) increased three to fourfold during the first 8 d after the nerve was crushed, while the total label associated with more slowly moving proteins (group IV) increased about 10-fold during this same

  7. Axonal transport of TDP-43 mRNA granules in neurons is impaired by ALS-causing mutations

    PubMed Central

    Carrasco, Monica A.; Williams, Luis A.; Winborn, Christina S.; Han, Steve S. W.; Kiskinis, Evangelos; Winborn, Brett; Freibaum, Brian D.; Kanagaraj, Anderson; Clare, Alison J.; Badders, Nisha M.; Bilican, Bilada; Chaum, Edward; Chandran, Siddharthan; Shaw, Christopher E.; Eggan, Kevin C.; Maniatis, Tom; Taylor, J. Paul

    2014-01-01

    Summary The RNA binding protein TDP-43 regulates RNA metabolism at multiple levels, including transcription, RNA splicing, and mRNA stability. TDP-43 is a major component of the cytoplasmic inclusions characteristic of amyotrophic lateral sclerosis and some types of frontotemporal lobar degeneration. The importance of TDP-43 in disease is underscored by the fact that dominant missense mutations are sufficient to cause disease, although the role of TDP-43 in pathogenesis is unknown. Here we show that TDP-43 forms cytoplasmic mRNP granules that undergo bidirectional, microtubule-dependent transport in neurons in vitro and in vivo and facilitate delivery of target mRNA to distal neuronal compartments. TDP-43 mutations impair this mRNA transport function in vivo and in vitro, including in stem cell-derived motor neurons from ALS patients bearing any one of three different TDP-43 ALS-causing mutations. Thus, TDP43 mutations that cause ALS lead to partial loss of a novel cytoplasmic function of TDP-43. PMID:24507191

  8. Granule-Dependent Natural Killer Cell Cytotoxicity to Fungal Pathogens

    PubMed Central

    Ogbomo, Henry; Mody, Christopher H.

    2017-01-01

    Natural killer (NK) cells kill or inhibit the growth of a number of fungi including Cryptococcus, Candida, Aspergillus, Rhizopus, and Paracoccidioides. Although many fungi are not dangerous, invasive fungal pathogens, such as Cryptococcus neoformans, cause life-threatening disease in individuals with impaired cell-mediated immunity. While there are similarities to cell-mediated killing of tumor cells, there are also important differences. Similar to tumor killing, NK cells directly kill fungi in a receptor-mediated and cytotoxic granule-dependent manner. Unlike tumor cell killing where multiple NK cell-activating receptors cooperate and signal events that mediate cytotoxicity, only the NKp30 receptor has been described to mediate signaling events that trigger the NK cell to mobilize its cytolytic payload to the site of interaction with C. neoformans and Candida albicans, subsequently leading to granule exocytosis and fungal killing. More recently, the NKp46 receptor was reported to bind Candida glabrata adhesins Epa1, 6, and 7 and directly mediate fungal clearance. A number of unanswered questions remain. For example, is only one NK cell-activating receptor sufficient for signaling leading to fungal killing? Are the signaling pathways activated by fungi similar to those activated by tumor cells during NK cell killing? How do the cytolytic granules traffic to the site of interaction with fungi, and how does this process compare with tumor killing? Recent insights into receptor use, intracellular signaling and cytolytic granule trafficking during NK cell-mediated fungal killing will be compared to tumor killing, and the implications for therapeutic approaches will be discussed. PMID:28123389

  9. Brefeldin A sensitive mechanisms contribute to endocytotic membrane retrieval and vesicle recycling in cerebellar granule cells.

    PubMed

    Rampérez, Alberto; Sánchez-Prieto, José; Torres, Magdalena

    2017-03-11

    The recycling of synaptic vesicle (SV) proteins and transmitter release both occur at multiple sites along the axon. These processes are sensitive to inhibition of the small GTP binding protein ARF1, which regulates the AP-1/AP-3 complex. As the axon matures, SV recycling becomes restricted to the presynaptic bouton, and its machinery undergoes a complex process of maturation. We used the styryl dye FM1-43 to highlight differences in the efficiency of membrane recycling at different sites in cerebellar granule cells cultured for 7 days in vitro. We used Brefeldin A (BFA) to inhibit AP-1/AP-3-mediated recycling and to test the contribution of this pathway to the heterogeneity of the responses when these cells are strongly stimulated. Combining imaging techniques and ultrastructural analyses, we found a significant decrease in the density of functional boutons and an increase in the presence of endosome-like structures within the boutons of cells incubated with BFA prior to FM1-43 loading. Such effects were not observed when BFA was added 5 minutes after the end of the loading step, when endocytosis was almost fully completed. In this situation, vesicles were found closer to the active zone (AZ) in boutons exposed to BFA. Together, these data suggest that the AP-1/AP-3 pathway contributes to SV recycling, affecting different steps in all boutons but not equally, and thus being partly responsible for the heterogeneity of the different recycling efficiencies. This article is protected by copyright. All rights reserved.

  10. RNA-binding protein Hermes/RBPMS inversely affects synapse density and axon arbor formation in retinal ganglion cells in vivo

    PubMed Central

    Hörnberg, Hanna; Horck, Francis Wollerton-van; Maurus, Daniel; Zwart, Maarten; Svoboda, Hanno; Harris, William A.; Holt, Christine E.

    2015-01-01

    The RNA-binding protein, Hermes (RBPMS), is expressed exclusively in retinal ganglion cells (RGCs) in the CNS, but its function in these cells is not known. Here we show that Hermes protein translocates in granules from RGC bodies down the growing axons. Hermes loss-of-function in both Xenopus laevis and zebrafish embryos leads to a significant reduction in retinal axon arbor complexity in the optic tectum, and expression of a dominant acting mutant Hermes protein, defective in RNA-granule localisation, causes similar defects in arborisation. Time-lapse analysis of branch dynamics reveals that the decrease in arbor complexity is caused by a reduction in new branches rather than a decrease in branch stability. Surprisingly, Hermes depletion also leads to enhanced early visual behaviour and an increase in the density of pre-synaptic puncta suggesting that reduced arborisation is accompanied by increased synaptogenesis to maintain synapse number. PMID:23785151

  11. Interactions between Inhibitory Interneurons and Excitatory Associational Circuitry in Determining Spatio-Temporal Dynamics of Hippocampal Dentate Granule Cells: A Large-Scale Computational Study

    PubMed Central

    Hendrickson, Phillip J.; Yu, Gene J.; Song, Dong; Berger, Theodore W.

    2015-01-01

    This paper reports on findings from a million-cell granule cell model of the rat dentate gyrus that was used to explore the contributions of local interneuronal and associational circuits to network-level activity. The model contains experimentally derived morphological parameters for granule cells, which each contain approximately 200 compartments, and biophysical parameters for granule cells, basket cells, and mossy cells that were based both on electrophysiological data and previously published models. Synaptic input to cells in the model consisted of glutamatergic AMPA-like EPSPs and GABAergic-like IPSPs from excitatory and inhibitory neurons, respectively. The main source of input to the model was from layer II entorhinal cortical neurons. Network connectivity was constrained by the topography of the system, and was derived from axonal transport studies, which provided details about the spatial spread of axonal terminal fields, as well as how subregions of the medial and lateral entorhinal cortices project to subregions of the dentate gyrus. Results of this study show that strong feedback inhibition from the basket cell population can cause high-frequency rhythmicity in granule cells, while the strength of feedforward inhibition serves to scale the total amount of granule cell activity. Results furthermore show that the topography of local interneuronal circuits can have just as strong an impact on the development of spatio-temporal clusters in the granule cell population as the perforant path topography does, both sharpening existing clusters and introducing new ones with a greater spatial extent. Finally, results show that the interactions between the inhibitory and associational loops can cause high frequency oscillations that are modulated by a low-frequency oscillatory signal. These results serve to further illustrate the importance of topographical constraints on a global signal processing feature of a neural network, while also illustrating how rich

  12. Abnormal ion content, hydration and granule expansion of the secretory granules from cystic fibrosis airway glandular cells

    SciTech Connect

    Baconnais, S.; Delavoie, F. |; Zahm, J.M.; Milliot, M.; Castillon, N.; Terryn, C.; Banchet, V.; Michel, J.; Danos, O.; Merten, M.; Chinet, T.; Zierold, K.; Bonnet, N.; Puchelle, E. , E-Mail: edith.puchelle@univ-reims.fr; Balossier, G.

    2005-10-01

    The absence or decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) induces increased Na{sup +} absorption and hyperabsorption of the airway surface liquid (ASL) resulting in a dehydrated and hyperviscous ASL. Although the implication of abnormal airway submucosal gland function has been suggested, the ion and water content in the Cystic Fibrosis (CF) glandular secretory granules, before exocytosis, is unknown. We analyzed, in non-CF and CF human airway glandular cell lines (MM-39 and KM4, respectively), the ion content in the secretory granules by electron probe X-ray microanalysis and the water content by quantitative dark field imaging on freeze-dried cryosections. We demonstrated that the ion content (Na{sup +}, Mg{sup 2+}, P, S and Cl{sup -}) is significantly higher and the water content significantly lower in secretory granules from the CF cell line compared to the non-CF cell line. Using videomicroscopy, we observed that the secretory granule expansion was deficient in CF glandular cells. Transfection of CF cells with CFTR cDNA or inhibition of non-CF cells with CFTR{sub inh}-172, respectively restored or decreased the water content and granule expansion, in parallel with changes in ion content. We hypothesize that the decreased water and increased ion content in glandular secretory granules may contribute to the dehydration and increased viscosity of the ASL in CF.

  13. Segmental identity and cerebellar granule cell induction in rhombomere 1

    PubMed Central

    Eddison, Mark; Toole, Leah; Bell, Esther; Wingate, Richard JT

    2004-01-01

    Background Cerebellar granule cell precursors are specifically generated within the hindbrain segment, rhombomere 1, which is bounded rostrally by the midbrain/hindbrain isthmus and caudally by the boundary of the Hoxa2 expression domain. While graded signals from the isthmus have a demonstrable patterning role within this region, the significance of segmental identity for neuronal specification within rhombomere 1 is unexplored. We examined the response of granule cell precursors to the overexpression of Hoxa2, which normally determines patterns of development specific to the hindbrain. How much does the development of the cerebellum, a midbrain/hindbrain structure, reflect its neuromeric origin as a hindbrain segment? Results We show that a Gbx2-positive, Otx2-/Hoxa2-negative territory corresponding to rhombomere 1 forms prior to an identifiable isthmic organiser. Early global overexpression of Hoxa2 at embryonic day 0 has no effect on the expression of isthmic signalling molecules or the allocation of rhombomere 1 territory, but selectively results in the loss of granule cell markers at embryonic day 6 and the depletion of cell bodies from the external granule cell layer. By comparison the trochlear nucleus and locus coeruleus form normally in ventral rhombomere 1 under these conditions. Microsurgery, coupled with electroporation, to target Hoxa2 overexpression to rhombic lip precursors, reveals a profound, autonomous respecification of migration. Rhombic lip derivatives, normally destined to occupy the external granule cell layer, violate the cerebellar boundary to form a ventrolateral nucleus in a position comparable to that occupied by rhombic lip derived neurons in rhombomere 2. Conclusions Different overexpression strategies reveal that the recognition of migration cues by granule cell precursors is dependent on their identity as rhombomere 1 derivatives. Segmental patterning cues operate autonomously within the rhombic lip precursor pool. By contrast, a

  14. Synaptotagmin isoforms confer distinct activation kinetics and dynamics to chromaffin cell granules.

    PubMed

    Rao, Tejeshwar C; Santana Rodriguez, Zuleirys; Bradberry, Mazdak M; Ranski, Alexandra H; Dahl, Peter J; Schmidtke, Michael W; Jenkins, Paul M; Axelrod, Daniel; Chapman, Edwin R; Giovannucci, David R; Anantharam, Arun

    2017-08-07

    Adrenomedullary chromaffin cells respond to sympathetic nervous system activation by secreting a cocktail of potent neuropeptides and hormones into the circulation. The distinct phases of the chromaffin cell secretory response have been attributed to the progressive fusion of distinct populations of dense core granules with different activation kinetics. However, it has been difficult to define what distinguishes these populations at the molecular level. Functional segregation of granule pools may depend on selective sorting of synaptotagmin-1 (Syt-1) and synaptotagmin-7 (Syt-7), which our previous work showed are rarely cosorted to the same granule. Here we assess the consequences of selective sorting of Syt isoforms in chromaffin cells, particularly with respect to granule dynamics and activation kinetics. Upon depolarization of cells expressing fluorescent Syt isoforms using elevated K(+), we find that Syt-7 granules fuse with faster kinetics than Syt-1 granules, irrespective of stimulation strength. Pharmacological blockade of Ca(2+) channels reveals differential dependence of Syt-1 versus Syt-7 granule exocytosis on Ca(2+) channel subtypes. Syt-7 granules also show a greater tendency to fuse in clusters than Syt-1 granules, and granules harboring Syt-1 travel a greater distance before fusion than those with Syt-7, suggesting that there is spatial and fusion-site heterogeneity among the two granule populations. However, the greatest functional difference between granule populations is their responsiveness to Ca(2+) Upon introduction of Ca(2+) into permeabilized cells, Syt-7 granules fuse with fast kinetics and high efficacy, even at low Ca(2+) levels (e.g., when cells are weakly stimulated). Conversely, Syt-1 granules require a comparatively larger increase in intracellular Ca(2+) for activation. At Ca(2+) concentrations above 30 µM, activation kinetics are faster for Syt-1 granules than for Syt-7 granules. Our study provides evidence for functional

  15. Corticothalamic Axons Are Essential for Retinal Ganglion Cell Axon Targeting to the Mouse Dorsal Lateral Geniculate Nucleus

    PubMed Central

    Shanks, James A.; Ito, Shinya; Schaevitz, Laura; Yamada, Jena; Chen, Bin; Litke, Alan

    2016-01-01

    Retinal ganglion cells (RGCs) relay information about the outside world to multiple subcortical targets within the brain. This information is either used to dictate reflexive behaviors or relayed to the visual cortex for further processing. Many subcortical visual nuclei also receive descending inputs from projection neurons in the visual cortex. Most areas receive inputs from layer 5 cortical neurons in the visual cortex but one exception is the dorsal lateral geniculate nucleus (dLGN), which receives layer 6 inputs and is also the only RGC target that sends direct projections to the cortex. Here we ask how visual system development and function changes in mice that develop without a cortex. We find that the development of a cortex is essential for RGC axons to terminate in the dLGN, but is not required for targeting RGC axons to other subcortical nuclei. RGC axons also fail to target to the dLGN in mice that specifically lack cortical layer 6 projections to the dLGN. Finally, we show that when mice develop without a cortex they can still perform a number of vision-dependent tasks. SIGNIFICANCE STATEMENT The dorsal lateral geniculate nucleus (dLGN) is a sensory thalamic relay area that receives feedforward inputs from retinal ganglion cells (RGCs) in the retina, and feed back inputs from layer 6 neurons in the visual cortex. In this study we examined genetically manipulated mice that develop without a cortex or without cortical layer 6 axonal projections, and find that RGC axons fail to project to the dLGN. Other RGC recipient areas, such as the superior colliculus and suprachiasmatic nucleus, are targeted normally. These results provide support for a new mechanism of target selection that may be specific to the thalamus, whereby descending cortical axons provide an activity that promotes feedforward targeting of RGC axons to the dLGN. PMID:27170123

  16. Newborn granule cells in the ageing dentate gyrus

    PubMed Central

    Morgenstern, Nicolás A; Lombardi, Gabriela; Schinder, Alejandro F

    2008-01-01

    The dentate gyrus of the hippocampus generates neurons throughout life, but adult neurogenesis exhibits a marked age-dependent decline. Although the decrease in the rate of neurogenesis has been extensively documented in the ageing hippocampus, the specific characteristics of dentate granule cells born in such a continuously changing environment have received little attention. We have used retroviral labelling of neural progenitor cells of the adult mouse dentate gyrus to study morphological properties of neurons born at different ages. Dendritic spine density was measured to estimate glutamatergic afferent connectivity. Fully mature neurons born at the age of 2 months display ∼2.3 spines μm−1 and maintain their overall morphology and spine density in 1-year-old mice. Surprisingly, granule cells born in 10-month-old mice, at which time the rate of neurogenesis has decreased by ∼40-fold, reach a density of dendritic spines similar to that of neurons born in young adulthood. Therefore, in spite of the sharp decline in cell proliferation, differentiation and overall neuronal number, the ageing hippocampus presents a suitable environment for new surviving neurons to reach a high level of complexity, comparable to that of all other dentate granule cells. PMID:18565998

  17. Neuroligin-1 Overexpression in Newborn Granule Cells In Vivo

    PubMed Central

    Schnell, Eric; Bensen, AeSoon L.; Washburn, Eric K.; Westbrook, Gary L.

    2012-01-01

    Adult-born dentate granule cells integrate into the hippocampal network, extend neurites and form synapses in otherwise mature tissue. Excitatory and inhibitory inputs innervate these new granule cells in a stereotyped, temporally segregated manner, which presents a unique opportunity to study synapse development in the adult brain. To examine the role of neuroligins as synapse-inducing molecules in vivo, we infected dividing neural precursors in adult mice with a retroviral construct that increased neuroligin-1 levels during granule cell differentiation. By 21 days post-mitosis, exogenous neuroligin-1 was expressed at the tips of dendritic spines and increased the number of dendritic spines. Neuroligin-1-overexpressing cells showed a selective increase in functional excitatory synapses and connection multiplicity by single afferent fibers, as well as an increase in the synaptic AMPA/NMDA receptor ratio. In contrast to its synapse-inducing ability in vitro, neuroligin-1 overexpression did not induce precocious synapse formation in adult-born neurons. However, the dendrites of neuroligin-1-overexpressing cells did have more thin protrusions during an early period of dendritic outgrowth, suggesting enhanced filopodium formation or stabilization. Our results indicate that neuroligin-1 expression selectively increases the degree, but not the onset, of excitatory synapse formation in adult-born neurons. PMID:23110172

  18. FIB/SEM cell sectioning for intracellular metal granules characterization

    NASA Astrophysics Data System (ADS)

    Milani, Marziale; Brundu, Claudia; Santisi, Grazia; Savoia, Claudio; Tatti, Francesco

    2009-05-01

    Focused Ion Beams (FIBs) provide a cross-sectioning tool for submicron dissection of cells and subcellular structures. In combination with Scanning Electron Microscope (SEM), FIB provides complementary morphological information, that can be further completed by EDX (Energy Dispersive X-ray Spectroscopy). This study focus onto intracellular microstructures, particularly onto metal granules (typically Zn, Cu and Fe) and on the possibility of sectioning digestive gland cells of the terrestrial isopod P. scaber making the granules available for a compositional analysis with EDX. Qualitative and quantitative analysis of metal granules size, amount and distribution are performed. Information is made available of the cellular storing pattern and, indirectly, metal metabolism. The extension to human level is of utmost interest since some pathologies of relevance are metal related. Apart from the common metal-overload-diseases (hereditary hemochromatosis, Wilson's and Menkes disease) it has been demonstrated that metal in excess can influence carcinogenesis in liver, kidney and breast. Therefore protocols will be established for the observation of mammal cells to improve our knowledge about the intracellular metal amount and distribution both in healthy cells and in those affected by primary or secondary metal overload or depletion.

  19. Control of cerebellar granule cell output by sensory-evoked Golgi cell inhibition

    PubMed Central

    Duguid, Ian; Branco, Tiago; Chadderton, Paul; Arlt, Charlotte; Powell, Kate; Häusser, Michael

    2015-01-01

    Classical feed-forward inhibition involves an excitation–inhibition sequence that enhances the temporal precision of neuronal responses by narrowing the window for synaptic integration. In the input layer of the cerebellum, feed-forward inhibition is thought to preserve the temporal fidelity of granule cell spikes during mossy fiber stimulation. Although this classical feed-forward inhibitory circuit has been demonstrated in vitro, the extent to which inhibition shapes granule cell sensory responses in vivo remains unresolved. Here we combined whole-cell patch-clamp recordings in vivo and dynamic clamp recordings in vitro to directly assess the impact of Golgi cell inhibition on sensory information transmission in the granule cell layer of the cerebellum. We show that the majority of granule cells in Crus II of the cerebrocerebellum receive sensory-evoked phasic and spillover inhibition prior to mossy fiber excitation. This preceding inhibition reduces granule cell excitability and sensory-evoked spike precision, but enhances sensory response reproducibility across the granule cell population. Our findings suggest that neighboring granule cells and Golgi cells can receive segregated and functionally distinct mossy fiber inputs, enabling Golgi cells to regulate the size and reproducibility of sensory responses. PMID:26432880

  20. Calcium dynamics in bovine adrenal medulla chromaffin cell secretory granules.

    PubMed

    Santodomingo, Jaime; Vay, Laura; Camacho, Marcial; Hernández-Sanmiguel, Esther; Fonteriz, Rosalba I; Lobatón, Carmen D; Montero, Mayte; Moreno, Alfredo; Alvarez, Javier

    2008-10-01

    The secretory granules constitute one of the less well-known compartments in terms of Ca2+ dynamics. They contain large amounts of total Ca2+, but the free intragranular [Ca2+] ([Ca2+]SG), the mechanisms for Ca2+ uptake and release from the granules and their physiological significance regarding exocytosis are still matters of debate. We used in the present work an aequorin chimera targeted to the granules to investigate [Ca2+]SG homeostasis in bovine adrenal chromaffin cells. We found that most of the intracellular aequorin chimera is present in a compartment with 50-100 microM Ca2+. Ca2+ accumulation into this compartment takes place mainly through an ATP-dependent mechanism, namely, a thapsigargin-sensitive Ca2+-ATPase. In addition, fast Ca2+ release was observed in permeabilized cells after addition of inositol 1,4,5-trisphosphate (InsP3) or caffeine, suggesting the presence of InsP3 and ryanodine receptors in the vesicular membrane. Stimulation of intact cells with the InsP3-producing agonist histamine or with caffeine also induced Ca2+ release from the vesicles, whereas acetylcholine or high-[K+] depolarization induced biphasic changes in vesicular[Ca2+], suggesting heterogeneous responses of different vesicle populations, some of them releasing and some taking up Ca2+during stimulation. In conclusion, our data show that chromaffin cell secretory granules have the machinery required for rapid uptake and release of Ca2+, and this strongly supports the hypothesis that granular Ca2+ may contribute to its own secretion.

  1. Sodium currents in axon-associated Schwann cells from adult rabbits.

    PubMed

    Chiu, S Y

    1987-05-01

    1. Patch-clamp and electron-microscopic studies were carried out on individual axon-Schwann-cell complexes 2-6 h after they were isolated from the sciatic nerves of rabbits 5, 10 and 20 weeks old. 2. Under Hoffman modulation contrast optics Schwann cells associated with both myelinated and non-myelinated axons could be seen. Frequently, fine cable-like structures about 1 micron in diameter, which are presumably axons, could be seen in isolation from a Schwann cell. 3. Cross-sectional electron-microscopic studies directly demonstrated the presence of axons engulfed by Schwann cells. For Schwann cells associated with non-myelinated axons, multiple fine axons (approximately 1 micron) could be seen enclosed by one or few turns of spiralling tongues of Schwann cells. Schwann cells associated with a single large myelinated axon showed characteristic compact myelin wrappings. No membrane fusion between Schwann cells and the axons could be detected. 4. Giga-seals could readily be formed when a patch pipette was pressed against the body region of a Schwann cell associated with either non-myelinated or myelinated axons. In contrast, giga-seals were only infrequently obtained on fine cable-like structures (1 micron) visually identified to be separated from the Schwann cell body. 5. Whole-cell recordings made from the body region of a Schwann cell revealed a TTX-sensitive fast inward current. Intriguingly, the expression of this current appeared to be dependent on the type of associated axon; this current was detectable in virtually all recordings made at the body region of Schwann cells associated with small non-myelinated axons, but not from those associated with large myelinated axons. 6. The inward current was like a neuronal sodium current; it had voltage-gated kinetics similar to the Hodgkin-Huxley sodium current, and exhibited a reversal potential close to the expected Nernstian potential for sodium ions. 7. From the observed size of the whole-cell membrane capacity and

  2. Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo.

    PubMed

    Henze, Darrell A; Wittner, Lucia; Buzsáki, György

    2002-08-01

    Processing of neuronal information depends on interactions between the anatomical connectivity and cellular properties of single cells. We examined how these computational building blocks work together in the intact rat hippocampus. Single spikes in dentate granule cells, controlled intracellularly, generally failed to discharge either interneurons or CA3 pyramidal cells. In contrast, trains of spikes effectively discharged both CA3 cell types. Increasing the discharge rate of the granule cell increased the discharge probability of its target neuron and decreased the delay between the onset of a granule cell train and evoked firing in postsynaptic targets. Thus, we conclude that the granule cell to CA3 synapses are 'conditional detonators,' dependent on granule cell firing pattern. In addition, we suggest that information in single granule cells is converted into a temporal delay code in target CA3 pyramidal cells and interneurons. These data demonstrate how a neural circuit of the CNS may process information.

  3. Axonal Degeneration in Retinal Ganglion Cells Is Associated with a Membrane Polarity-Sensitive Redox Process

    PubMed Central

    Catrinescu, Maria-Magdalena; Binan, Loïc; Costantino, Santiago

    2017-01-01

    Axonal degeneration is a pathophysiological mechanism common to several neurodegenerative diseases. The slow Wallerian degeneration (WldS) mutation, which results in reduced axonal degeneration in the central and peripheral nervous systems, has provided insight into a redox-dependent mechanism by which axons undergo self-destruction. We studied early molecular events in axonal degeneration with single-axon laser axotomy and time-lapse imaging, monitoring the initial changes in transected axons of purified retinal ganglion cells (RGCs) from wild-type and WldS rat retinas using a polarity-sensitive annexin-based biosensor (annexin B12-Cys101,Cys260-N,N′-dimethyl-N-(iodoacetyl)-N′-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) ethylenediamine). Transected axons demonstrated a rapid and progressive change in membrane phospholipid polarity, manifested as phosphatidylserine externalization, which was significantly delayed and propagated more slowly in axotomized WldS RGCs compared with wild-type axons. Delivery of bis(3-propionic acid methyl ester)phenylphosphine borane complex, a cell-permeable intracellular disulfide-reducing drug, slowed the onset and velocity of phosphatidylserine externalization in wild-type axons significantly, replicating the WldS phenotype, whereas extracellular redox modulation reversed the WldS phenotype. These findings are consistent with an intra-axonal redox mechanism for axonal degeneration associated with the initiation and propagation of phosphatidylserine externalization after axotomy. SIGNIFICANCE STATEMENT Axonal degeneration is a neuronal process independent of somal apoptosis, the propagation of which is unclear. We combined single-cell laser axotomy with time-lapse imaging to study the dynamics of phosphatidylserine externalization immediately after axonal injury in purified retinal ganglion cells. The extension of phosphatidylserine externalization was slowed and delayed in Wallerian degeneration slow (WldS) axons and this phenotype could

  4. Cyclic AMP and the regeneration of retinal ganglion cell axons.

    PubMed

    Hellström, Mats; Harvey, Alan R

    2014-11-01

    In this paper we present a brief review of studies that have reported therapeutic benefits of elevated cAMP on plasticity and regeneration after injury to the central nervous system (CNS). We also provide new data on the cellular mechanisms by which elevation of cyclic adenosine monophosphate (cAMP) promotes cytokine driven regeneration of adult CNS axons, using the visual system as the experimental model. cAMP is a second messenger for many intracellular signalling pathways. Elevation of cAMP in the eye by intravitreal injection of the cell permeant analogue (8-(4-chlorophenylthio)-adenosine-3',5'-cyclic monophosphate; CPT-cAMP), when added to recombinant ciliary neurotrophic factor (rCNTF), significantly enhances rCNTF-induced regeneration of adult rat retinal ganglion cell (RGC) axons into peripheral nerve (PN) grafted onto transected optic nerve. This effect is mediated to some extent by protein kinase A (PKA) signalling, but CPT-cAMP also acts via PI3K/Akt signalling to reduce suppressor of cytokine signalling protein 3 (SOCS3) activity in RGCs. Another target for cAMP is the exchange protein activated by cAMP (Epac), which can also mediate cAMP-induced axonal growth. Here we describe some novel results and discuss to what extent the pro-regenerative effects of CPT-cAMP on adult RGCs are mediated via Epac as well as via PKA-dependent pathways. We used the established PN-optic nerve graft model and quantified the survival and regenerative growth of adult rat RGCs after intravitreal injection of rCNTF in combination with a selective activator of PKA and/or a specific activator of Epac. Viable RGCs were identified by βIII-tubulin immunohistochemistry and regenerating RGCs retrogradely labelled and quantified after an injection of fluorogold into the distal end of the PN grafts, 4 weeks post-transplantation. The specific agonists of either PKA or Epac were both effective in enhancing the effects of rCNTF on RGC axonal regeneration, but interestingly, injections

  5. [Neurogenesis of dentate granule cells following kainic acid induced seizures in immature rats].

    PubMed

    Wang, Yan-Ling; Sun, Ruo-Peng; Lei, Ge-Fei; Wang, Ji-Wen; Guo, Shu-Hua

    2004-08-01

    Data accumulated over the past years have led to widespread recognition that neurogenesis, the emergence of new neurons, persists in the hippocampal dentate gyrus of the adult mammalian brain, and can be increased by seizures in multiple models. Also, aberrant reorganization of dentate granule cell axons, the mossy fiber sprouting, occurs in human temporal lobe epilepsy and rodent epilepsy models. However a number of studies suggest that the immature brain is less vulnerable to the morphologic alteration of hippocampus after seizures. The goal of this study was to determine whether the seizures can induce dentate granule cell neurogenesis and mossy fiber sprouting in the immature rat. Seizures was elicited by unilateral microinfusion of kainic acid (KA, 1 micro g) into the amygdula at postnatal day 15 (P15). Rat pups were given bromodeoxyuridine (BrdU) intraperitoneally on day 5 after KA administration and killed 7 d or 21 d later. The brains were processed for BrdU mitotic labeling combined with double-label immunohistochemistry using neuron-specific, early differentiation marker TuJ1 (betaIII tubulin) or granule-specific marker CaBP (calcium-binding protein calbindin D28k) as well as glia-specific marker GFAP (glial fibrillary acidic protein). Mossy fiber sprouting in intermolecular layer and CA3 subfield was assessed in Timm-stained sections both 1 month and 3 months after KA administration by using a rating scale and density measurement. The dentate BrdU-immunoreactive cells of the KA-treated rats increased significantly compared with those of control rats on day 7 and 21 after BrdU administration (7 d: 244 +/- 15 vs. 190 +/- 10; 21 d: 218 +/- 19 vs. 133 +/- 12, P < 0.05). Approximately 80.2% and 78.7% of BrdU-labeled cells coexpressed TuJ1 in KA-treated rats and control rats on day 7 after BrdU respectively (P > 0.05). On 21 d after BrdU, 60.2% and 58.2% of dentate BrdU-labeled cells coexpressed GaBP in KA-treated rats and control rats respectively (P > 0

  6. Rapid integration of young newborn dentate gyrus granule cells in the adult hippocampal circuitry.

    PubMed

    Ide, Yoko; Fujiyama, Fumino; Okamoto-Furuta, Keiko; Tamamaki, Nobuaki; Kaneko, Takeshi; Hisatsune, Tatsuhiro

    2008-12-01

    Newborn dentate gyrus granule cells (DGCs) are integrated into the hippocampal circuitry and contribute to the cognitive functions of learning and memory. The dendritic maturation of newborn DGCs in adult mice occurs by the first 3-4 weeks, but DGCs seem to receive a variety of neural inputs at both their dendrites and soma even shortly after their birth. However, few studies on the axonal maturation of newborn DGCs have focused on synaptic structure. Here, we investigated the potentiality of output and input in newborn DGCs, especially in the early period after terminal mitosis. We labeled nestin-positive progenitor cells by injecting GFP Cre-reporter adenovirus into Nestin-Cre mice, enabling us to trace the development of progenitor cells by their GFP expression. In addition to GABAergic input from interneurons, we observed that the young DGCs received axosomatic input from the medial septum as early as postinfection day 7 (PID 7). To evaluate the axonal maturation of the newborn DGCs compared with mature DCGs, we performed confocal and electron microscopic analyses. We observed that newborn DGCs projected their mossy fibers to the CA3 region, forming small terminals on hilar or CA3 interneurons and large boutons on CA3 pyramidal cells. These terminals expressed vesicular glutamate transporter 1, indicating they were glutamatergic terminals. Intriguingly, the terminals at PID 7 had already formed asymmetric synapses, similar to those of mature DGCs. Together, our findings suggest that newborn DGCs may form excitatory synapses on both interneurons and CA3 pyramidal cells within 7 days of their terminal mitosis.

  7. Towing of sensory axons by their migrating target cells in vivo.

    PubMed

    Gilmour, Darren; Knaut, Holger; Maischein, Hans-Martin; Nüsslein-Volhard, Christiane

    2004-05-01

    Many pathfinding axons must locate target fields that are themselves positioned by active migration. A hypothetical method for ensuring that these migrations are coordinated is towing, whereby the extension of axons is entirely dependent on the migration of their target cells. Here we combine genetics and time-lapse imaging in the zebrafish to show that towing by migrating cells is a bona fide mechanism for guiding pathfinding axons in vivo.

  8. Complementary Postsynaptic Activity Patterns Elicited in Olfactory Bulb by Stimulation of Mitral/Tufted and Centrifugal Fiber Inputs to Granule Cells

    PubMed Central

    Laaris, Nora; Puche, Adam; Ennis, Matthew

    2009-01-01

    Main olfactory bulb (MOB) granule cells receive spatially segregated glutamatergic synaptic inputs from the dendrites of mitral/tufted cells as well as from the axons of centrifugal fibers (CFFs) originating in olfactory cortical areas. Dendrodendritic synapses from mitral/tufted cells occur on granule cell distal dendrites in the external plexiform layer (EPL), whereas CFFs preferentially target the somata/proximal dendrites of granule cells in the granule cell layer (GCL). In the present study, tract tracing, and recordings of field potentials and voltage-sensitive dye optical signals were used to map activity patterns elicited by activation of these two inputs to granule cells in mouse olfactory bulb slices. Stimulation of the lateral olfactory tract (LOT) produced a negative field potential in the EPL and a positivity in the GCL. CFF stimulation produced field potentials of opposite polarity in the EPL and GCL to those elicited by LOT. LOT-evoked optical signals appeared in the EPL and spread subsequently to deeper layers, whereas CFF-evoked responses appeared in the GCL and then spread superficially. Evoked responses were reduced by N-methyl-d-aspartate (NMDA) receptor antagonists and completely suppressed by AMPA receptor antagonists. Reduction of extracellular Mg2+ enhanced the strength and spatiotemporal extent of the evoked responses. These and additional findings indicate that LOT- and CFF-evoked field potentials and optical signals reflect postsynaptic activity in granule cells, with moderate NMDA and dominant AMPA receptor components. Taken together, these results demonstrate that LOT and CFF stimulation in MOB slices selectively activate glutamatergic inputs to the distal dendrites versus somata/proximal dendrites of granule cells. PMID:17035366

  9. Cerebellar granule cells acquire a widespread predictive feedback signal during motor learning.

    PubMed

    Giovannucci, Andrea; Badura, Aleksandra; Deverett, Ben; Najafi, Farzaneh; Pereira, Talmo D; Gao, Zhenyu; Ozden, Ilker; Kloth, Alexander D; Pnevmatikakis, Eftychios; Paninski, Liam; De Zeeuw, Chris I; Medina, Javier F; Wang, Samuel S-H

    2017-03-20

    Cerebellar granule cells, which constitute half the brain's neurons, supply Purkinje cells with contextual information necessary for motor learning, but how they encode this information is unknown. Here we show, using two-photon microscopy to track neural activity over multiple days of cerebellum-dependent eyeblink conditioning in mice, that granule cell populations acquire a dense representation of the anticipatory eyelid movement. Initially, granule cells responded to neutral visual and somatosensory stimuli as well as periorbital airpuffs used for training. As learning progressed, two-thirds of monitored granule cells acquired a conditional response whose timing matched or preceded the learned eyelid movements. Granule cell activity covaried trial by trial to form a redundant code. Many granule cells were also active during movements of nearby body structures. Thus, a predictive signal about the upcoming movement is widely available at the input stage of the cerebellar cortex, as required by forward models of cerebellar control.

  10. Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development

    PubMed Central

    Strasser, Markus J; Mackenzie, Natalia C; Dumstrei, Karin; Nakkrasae, La-Iad; Stebler, Jürg; Raz, Erez

    2008-01-01

    Background Zebrafish germ cells contain granular-like structures, organized around the cell nucleus. These structures share common features with polar granules in Drosophila, germinal granules in Xenopus and chromatoid bodies in mice germ cells, such as the localization of the zebrafish Vasa, Piwi and Nanos proteins, among others. Little is known about the structure of these granules as well as their segregation in mitosis during early germ-cell development. Results Using transgenic fish expressing a fluorescently labeled novel component of Zebrafish germ cell granules termed Granulito, we followed the morphology and distribution of the granules. We show that whereas these granules initially exhibit a wide size variation, by the end of the first day of development they become a homogeneous population of medium size granules. We investigated this resizing event and demonstrated the role of microtubules and the minus-end microtubule dependent motor protein Dynein in the process. Last, we show that the function of the germ cell granule resident protein the Tudor domain containing protein-7 (Tdrd7) is required for determination of granule morphology and number. Conclusion Our results suggest that Zebrafish germ cell granules undergo a transformation process, which involves germ cell specific proteins as well as the microtubular network. PMID:18507824

  11. Structure of Cytoskeletal Supramolecular Assemblies in the Nerve Cell Axon

    NASA Astrophysics Data System (ADS)

    Ojeda-López, Miguel A.; Case, Ryan; Miller, Herb P.; Wilson, Leslie; Safinya, Cyrus R.

    2001-03-01

    The cytoskeleton of eucaryotic cells is an intricate network of supramolecular assemblies of protein filaments, e.g., actin, intermediate filaments (IFs), tubulin, and a multi-associated family of cross-linking proteins. Most of its multiple functions rely on its structural stability, which depends on a variety of specific interactions of the subunit proteins and its local physico-chemical environment. In neurodegenerative diseases the cytoskeletal supramolecular structure is almost universally altered. Preliminary results on the supramolecular structure of cytoskeletal filaments in isolated axons from bovine white matter will be presented as obtained using synchrotron small angle x-ray diffraction. These results will be compared to our ongoing cell-free studies on the structures formed by neurofilaments in vitro. Supported by NIH GM59288, NSF-DMR-9972246, and University of California Biotechnology Grant 99-14 & UC.

  12. Stochastic differential equation model for cerebellar granule cell excitability.

    PubMed

    Saarinen, Antti; Linne, Marja-Leena; Yli-Harja, Olli

    2008-02-29

    Neurons in the brain express intrinsic dynamic behavior which is known to be stochastic in nature. A crucial question in building models of neuronal excitability is how to be able to mimic the dynamic behavior of the biological counterpart accurately and how to perform simulations in the fastest possible way. The well-established Hodgkin-Huxley formalism has formed to a large extent the basis for building biophysically and anatomically detailed models of neurons. However, the deterministic Hodgkin-Huxley formalism does not take into account the stochastic behavior of voltage-dependent ion channels. Ion channel stochasticity is shown to be important in adjusting the transmembrane voltage dynamics at or close to the threshold of action potential firing, at the very least in small neurons. In order to achieve a better understanding of the dynamic behavior of a neuron, a new modeling and simulation approach based on stochastic differential equations and Brownian motion is developed. The basis of the work is a deterministic one-compartmental multi-conductance model of the cerebellar granule cell. This model includes six different types of voltage-dependent conductances described by Hodgkin-Huxley formalism and simple calcium dynamics. A new model for the granule cell is developed by incorporating stochasticity inherently present in the ion channel function into the gating variables of conductances. With the new stochastic model, the irregular electrophysiological activity of an in vitro granule cell is reproduced accurately, with the same parameter values for which the membrane potential of the original deterministic model exhibits regular behavior. The irregular electrophysiological activity includes experimentally observed random subthreshold oscillations, occasional spontaneous spikes, and clusters of action potentials. As a conclusion, the new stochastic differential equation model of the cerebellar granule cell excitability is found to expand the range of dynamics

  13. LKB1 Regulates Cerebellar Development by Controlling Sonic Hedgehog-mediated Granule Cell Precursor Proliferation and Granule Cell Migration

    PubMed Central

    Men, Yuqin; Zhang, Aizhen; Li, Haixiang; Jin, Yecheng; Sun, Xiaoyang; Li, Huashun; Gao, Jiangang

    2015-01-01

    The Liver Kinase B1 (LKB1) gene plays crucial roles in cell differentiation, proliferation and the establishment of cell polarity. We created LKB1 conditional knockout mice (LKB1Atoh1 CKO) to investigate the function of LKB1 in cerebellar development. The LKB1Atoh1 CKO mice displayed motor dysfunction. In the LKB1Atoh1 CKO cerebellum, the overall structure had a larger volume and morelobules. LKB1 inactivationled to an increased proliferation of granule cell precursors (GCPs), aberrant granule cell migration and overproduction of unipolar brush cells. To investigate the mechanism underlying the abnormal foliation, we examined sonic hedgehog signalling (Shh) by testing its transcriptional mediators, the Gli proteins, which regulate the GCPs proliferation and cerebellar foliation during cerebellar development. The expression levels of Gli genes were significantly increased in the mutant cerebellum. In vitro assays showed that the proliferation of cultured GCPs from mutant cerebellum significantly increased, whereas the proliferation of mutant GCPs significantly decreased in the presence of a Shh inhibitor GDC-0049. Thus, LKB1 deficiency in the LKB1Atoh1 CKO mice enhanced Shh signalling, leading to the excessive GCP proliferation and the formation of extra lobules. We proposed that LKB1 regulates cerebellar development by controlling GCPs proliferation through Shh signalling during cerebellar development. PMID:26549569

  14. Effect of Cell Adhesion Molecule 1 Expression on Intracellular Granule Movement in Pancreatic α Cells.

    PubMed

    Yokawa, Satoru; Furuno, Tadahide; Suzuki, Takahiro; Inoh, Yoshikazu; Suzuki, Ryo; Hirashima, Naohide

    2016-09-01

    Although glucagon secreted from pancreatic α cells plays a role in increasing glucose concentrations in serum, the mechanism regulating glucagon secretion from α cells remains unclear. Cell adhesion molecule 1 (CADM1), identified as an adhesion molecule in α cells, has been reported not only to communicate among α cells and between nerve fibers, but also to prevent excessive glucagon secretion from α cells. Here, we investigated the effect of CADM1 expression on the movement of intracellular secretory granules in α cells because the granule transport is an important step in secretion. Spinning disk microscopic analysis showed that granules moved at a mean velocity of 0.236 ± 0.010 μm/s in the mouse α cell line αTC6 that expressed CADM1 endogenously. The mean velocity was significantly decreased in CADM1-knockdown (KD) cells (mean velocity: 0.190 ± 0.016 μm/s). The velocity of granule movement decreased greatly in αTC6 cells treated with the microtubule-depolymerizing reagent nocodazole, but not in αTC6 cells treated with the actin-depolymerizing reagent cytochalasin D. No difference in the mean velocity was observed between αTC6 and CADM1-KD cells treated with nocodazole. These results suggest that intracellular granules in pancreatic α cells move along the microtubule network, and that CADM1 influences their velocity.

  15. Roundabout signalling, cell contact and trophic support confine longitudinal glia and axons in the Drosophila CNS.

    PubMed

    Kinrade, E F; Brates, T; Tear, G; Hidalgo, A

    2001-01-01

    Contrary to our knowledge of the genetic control of midline crossing, the mechanisms that generate and maintain the longitudinal axon pathways of the Drosophila CNS are largely unknown. The longitudinal pathways are formed by ipsilateral pioneer axons and the longitudinal glia. The longitudinal glia dictate these axonal trajectories and provide trophic support to later projecting follower neurons. Follower interneuron axons cross the midline once and join these pathways to form the longitudinal connectives. Once on the contralateral side, longitudinal axons are repelled from recrossing the midline by the midline repulsive signal Slit and its axonal receptor Roundabout. We show that longitudinal glia also transiently express roundabout, which halts their ventral migration short of the midline. Once in contact with axons, glia cease to express roundabout and become dependent on neurons for their survival. Trophic support and cell-cell contact restrict glial movement and axonal trajectories. The significance of this relationship is revealed when neuron-glia interactions are disrupted by neuronal ablation or mutation in the glial cells missing gene, which eliminates glia, when axons and glia cross the midline despite continued midline repellent signalling.

  16. Automated insulin granule segmentation from electron photomicrographs of rat pancreatic β-cells

    NASA Astrophysics Data System (ADS)

    McClanahan, Timothy P.; Straub, Susanne G.; Sharp, Geoffrey W. G.; Loew, Murray

    2005-04-01

    Increased blood glucose stimulates pancreatic β-cells and induces an exocytotic release of insulin. The β-cell, which contains ~10^4 insulin-containing granules, releases only a few percent of the granules during a given stimulus such as a meal. The temporal response function to a square wave increase in the concentration of glucose is characteristically biphasic. It is not known whether the granules exhibit random or directed migration patterns as a function of phase. Directed migration would suggest the development of an intracellular gradient directing the path and velocity of insulin granule movement. Our ongoing research investigates this process using manual morphometric analysis of electron micrographs of rat pancreatic β-cells. This is a tedious and time-consuming stereological process. Consequently, we have developed an automated algorithm for accurately segmenting and deriving granule counts, areas, and measuring distance to the plasma membrane. The method is a data-driven image processing approach that implements Mahalanobis classifiers to hierarchically classify pixel candidates and subsequently pixel aggregates as insulin granules. Granule cores and halos are classified independently and fused by intersecting the convex difference of granule halos with core candidates. Once fused, total and individual granule areas and distance metrics to the β-cell plasma membrane are obtained. This algorithm provides a rapid and accurate method for the determination of granule numbers, location, and potential gradients in the pancreatic β-cell under different experimental conditions.

  17. Depending on Its Nano-Spacing, ALCAM Promotes Cell Attachment and Axon Growth

    PubMed Central

    Thelen, Karsten; Jaehrling, Steffen; Spatz, Joachim P.; Pollerberg, G. Elisabeth

    2012-01-01

    ALCAM is a member of the cell adhesion molecule (CAM) family which plays an important role during nervous system formation. We here show that the two neuron populations of developing dorsal root ganglia (DRG) display ALCAM transiently on centrally and peripherally projecting axons during the two phases of axon outgrowth. To analyze the impact of ALCAM on cell adhesion and axon growth, DRG single cells were cultured on ALCAM-coated coverslips or on nanopatterns where ALCAM is presented in physiological amino-carboxyl terminal orientation at highly defined distances (29, 54, 70, 86, and 137 nm) and where the interspaces are passivated to prevent unspecific protein deposition. Some axonal features (branching, lateral deviation) showed density dependence whereas others (number of axons per neuron, various axon growth parameters) turned out to be an all-or-nothing reaction. Time-lapse analyses revealed that ALCAM density has an impact on axon velocity and advance efficiency. The behavior of the sensory axon tip, the growth cone, partially depended on ALCAM density in a dose-response fashion (shape, dynamics, detachment) while other features did not (size, complexity). Whereas axon growth was equally promoted whether ALCAM was presented at high (29 nm) or low densities (86 nm), the attachment of non-neuronal cells depended on high ALCAM densities. The attachment of non-neuronal cells to the rather unspecific standard proteins presented by conventional implants designed to enhance axonal regeneration is a severe problem. Our findings point to ALCAM, presented as 86 nm pattern, for a promising candidate for the improvement of such implants since this pattern drives axon growth to its full extent while at the same time non-neuronal cell attachment is clearly reduced. PMID:23251325

  18. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures.

    PubMed

    Wu, You Kure; Fujishima, Kazuto; Kengaku, Mineko

    2015-01-01

    Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s) from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.

  19. Ketorolac Administration Attenuates Retinal Ganglion Cell Death After Axonal Injury.

    PubMed

    Nadal-Nicolás, Francisco M; Rodriguez-Villagra, Esther; Bravo-Osuna, Irene; Sobrado-Calvo, Paloma; Molina-Martínez, Irene; Villegas-Pérez, Maria Paz; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta; Herrero-Vanrell, Rocío

    2016-03-01

    To assess the neuroprotective effects of ketorolac administration, in solution or delivered from biodegradable microspheres, on the survival of axotomized retinal ganglion cells (RGCs). Retinas were treated intravitreally with a single injection of tromethamine ketorolac solution and/or with ketorolac-loaded poly(D,L-lactide-co-glycolide) (PLGA) microspheres. Ketorolac treatments were administered either 1 week before optic nerve crush (pre-ONC) or right after the ONC (simultaneous). In all cases, animals were euthanized 7 days after the ONC. As control, nonloaded microspheres or vehicle (balanced salt solution, BSS) were administered in parallel groups. All retinas were dissected as flat mounts; RGCs were immunodetected with brain-specific homeobox/POU domain protein 3A (Brn3a), and their number was automatically quantified. The percentage of Brn3a+RGCs was 36% to 41% in all control groups (ONC with or without BSS or nonloaded microparticles). Ketorolac solution administered pre-ONC resulted in 63% survival of RGCs, while simultaneous administration promoted a 53% survival. Ketorolac-loaded microspheres were not as efficient as ketorolac solution (43% and 42% of RGC survival pre-ONC or simultaneous, respectively). The combination of ketorolac solution and ketorolac-loaded microspheres did not have an additive effect (54% and 55% survival pre-ONC and simultaneous delivery, respectively). Treatment with the nonsteroidal anti-inflammatory drug ketorolac delays RGC death triggered by a traumatic axonal insult. Pretreatment seems to elicit a better output than simultaneous administration of ketorolac solution. This may be taken into account when performing procedures resulting in RGC axonal injury.

  20. New insights into the role of hilar ectopic granule cells in the dentate gyrus based on quantitative anatomic analysis and three-dimensional reconstruction

    PubMed Central

    Scharfman, Helen E.; Pierce, Joseph P.

    2014-01-01

    SUMMARY The dentate gyrus is one of two main areas of the mammalian brain where neurons are born throughout adulthood, a phenomenon called postnatal neurogenesis. Most of the neurons that are generated are granule cells (GCs), the major principal cell type in the dentate gyrus. Some adult-born granule cells develop in ectopic locations, such as the dentate hilus. The generation of hilar ectopic granule cells (HEGCs) is greatly increased in several animal models of epilepsy and has also been demonstrated in surgical specimens from patients with intractable temporal lobe epilepsy (TLE). Herein we review the results of our quantitative neuroanatomic analysis of HEGCs that were filled with Neurobiotin following electrophysiologic characterization in hippocampal slices. The data suggest that two types of HEGCs exist, based on a proximal or distal location of the cell body relative to the granule cell layer, and based on the location of most of the dendrites, in the molecular layer or hilus. Three-dimensional reconstruction revealed that the dendrites of distal HEGCs can extend along the transverse and longitudinal axis of the hippocampus. Analysis of axons demonstrated that HEGCs have projections that contribute to the normal mossy fiber innervation of CA3 as well as the abnormal sprouted fibers in the inner molecular layer of epileptic rodents (mossy fiber sprouting). These data support the idea that HEGCs could function as a “hub” cell in the dentate gyrus and play a critical role in network excitability. PMID:22612815

  1. Thrombopoietin-induced Dami cells as a model for alpha-granule biogenesis.

    PubMed

    Briquet-Laugier, Véronique; El Golli, Nargès; Nurden, Paquita; Lavenu-Bombled, Cécile; Dubart-Kupperschmitt, Anne; Nurden, Alan; Rosa, Jean-Philippe

    2004-09-01

    Megakaryocytic alpha-granules contain secretory proteins relevant to megakaryocyte and platelet functions. Understanding alpha-granule biogenesis is hampered because human primary megakaryocytes are difficult to manipulate. Existing promegakaryocytic cell lines do not spontaneously exhibit mature alpha-granules. Dami cells, transfected with the megakaryocytic platelet factor 4, fused to GFP (PF4-GFP), were induced in the presence of thrombopoietin (TPO), a megakaryocyte cytokine and PMA. Using confocal microscopy, PF4-GFP colocalized with von Willebrand Factor (vWF) in newly formed storage granules. Immunoelectron microscopy demonstrated alpha-granule-like features, including a dense core or parallel tubules and colocalization of PF4-GFP and vWF. Hence, TPO-treated Dami cells are a suitable model to study alpha-granules and their biogenesis.

  2. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo.

    PubMed

    McDole, B; Isgor, C; Pare, C; Guthrie, K

    2015-09-24

    Olfactory bulb granule cells (GCs) are axon-less, inhibitory interneurons that regulate the activity of the excitatory output neurons, the mitral and tufted cells, through reciprocal dendrodendritic synapses located on GC spines. These contacts are established in the distal apical dendritic compartment, while GC basal dendrites and more proximal apical segments bear spines that receive glutamatergic inputs from the olfactory cortices. This synaptic connectivity is vital to olfactory circuit function and is remodeled during development, and in response to changes in sensory activity and lifelong GC neurogenesis. Manipulations that alter levels of the neurotrophin brain-derived neurotrophic factor (BDNF) in vivo have significant effects on dendritic spine morphology, maintenance and activity-dependent plasticity for a variety of CNS neurons, yet little is known regarding BDNF effects on bulb GC spine maturation or maintenance. Here we show that, in vivo, sustained bulbar over-expression of BDNF in transgenic mice produces a marked increase in GC spine density that includes an increase in mature spines on their apical dendrites. Morphometric analysis demonstrated that changes in spine density were most notable in the distal and proximal apical domains, indicating that multiple excitatory inputs are potentially modified by BDNF. Our results indicate that increased levels of endogenous BDNF can promote the maturation and/or maintenance of dendritic spines on GCs, suggesting a role for this factor in modulating GC functional connectivity within adult olfactory circuitry.

  3. Electrophysiological characterization of granule cells in the dentate gyrus immediately after birth

    PubMed Central

    Pedroni, Andrea; Minh, Do Duc; Mallamaci, Antonello; Cherubini, Enrico

    2014-01-01

    Granule cells (GCs) in the dentate gyrus are generated mainly postnatally. Between embryonic day 10 and 14, neural precursors migrate from the primary dentate matrix to the dentate gyrus where they differentiate into neurons. Neurogenesis reaches a peak at the end of the first postnatal week and it is completed at the end of the first postnatal month. This process continues at a reduced rate throughout life. Interestingly, immediately after birth, GCs exhibit a clear GABAergic phenotype. Only later they integrate the classical glutamatergic trisynaptic hippocampal circuit. Here, whole cell patch clamp recordings, in current clamp mode, were performed from immature GCs, intracellularly loaded with biocytin (in hippocampal slices from P0 to P3 old rats) in order to compare their morphological characteristics with their electrophysiological properties. The vast majority of GCs were very immature with small somata, few dendritic branches terminating with small varicosities and growth cones. In spite of their immaturity their axons reached often the cornu ammonis 3 area. Immature GCs generated, upon membrane depolarization, either rudimentary sodium spikes or more clear overshooting action potentials that fired repetitively. They exhibited also low threshold calcium spikes. In addition, most spiking neurons showed spontaneous synchronized network activity, reminiscent of giant depolarizing potentials (GDPs) generated in the hippocampus by the synergistic action of glutamate and GABA, both depolarizing and excitatory. This early synchronized activity, absent during adult neurogenesis, may play a crucial role in the refinement of local neuronal circuits within the developing dentate gyrus. PMID:24592213

  4. Structural Study of Purkinje Cell Axonal Torpedoes in Essential Tremor

    PubMed Central

    Louis, Elan D.; Yi, Hong; Erickson-Davis, Cordelia; Vonsattel, Jean-Paul G.; Faust, Phyllis L.

    2009-01-01

    Background Essential tremor (ET) is one of the most common neurological diseases. A basic understanding of its neuropathology is now emerging. Aside from Purkinje cell loss, a prominent finding is an abundance of torpedoes (rounded swellings of Purkinje cell axons). Such swellings often result from the mis-accumulation of cell constituents. Identifying the basic nature of these accumulations is an important step in understanding the underlying disease process. Torpedoes, only recently identified in ET, have not yet been characterized ultrastructurally. Objectives Light and electron microscopy were used to characterize the structural constituents of torpedoes in ET. Methods Formalin-fixed cerebellar cortical tissue from 4 prospectively-collected ET brains was sectioned and immunostained with a monoclonal phosphorylated neurofilament antibody (SMI-31, Covance, Emeryville, CA). Using additional sections from 3 ET brains, torpedoes were assessed using electron microscopy. Results Immunoreactivity for phosphorylated neurofilament protein revealed clear labeling of torpedoes in each case. Torpedoes were strongly immunoreactive; in many instances, two or more torpedoes were noted in close proximity to one another. On electron microscopy, torpedoes were packed with randomly arranged 10–12 nm neurofilaments. Mitochondria and smooth endoplasmic reticulum were abundant as well, particularly at the periphery of the torpedo. Conclusions We demonstrated that the torpedoes in ET represent the mis-accumulation of disorganized neurofilaments and other organelles. It is not known where in the pathogenic cascade these accumulations occur (i.e., whether these accumulations are the primary event or a secondary/downstream event) and this deserves further study. PMID:19047012

  5. Permissive Schwann cell graft/spinal cord interfaces for axon regeneration.

    PubMed

    Williams, Ryan R; Henao, Martha; Pearse, Damien D; Bunge, Mary Bartlett

    2015-01-01

    The transplantation of autologous Schwann cells (SCs) to repair the injured spinal cord is currently being evaluated in a clinical trial. In support, this study determined properties of spinal cord/SC bridge interfaces that enabled regenerated brainstem axons to cross them, possibly leading to improvement in rat hindlimb movement. Fluid bridges of SCs and Matrigel were placed in complete spinal cord transections. Compared to pregelled bridges of SCs and Matrigel, they improved regeneration of brainstem axons across the rostral interface. The regenerating brainstem axons formed synaptophysin(+) bouton-like terminals and contacted MAP2A(+) dendrites at the caudal interface. Brainstem axon regeneration was directly associated with glial fibrillary acidic protein (GFAP(+)) astrocyte processes that elongated into the SC bridge. Electron microscopy revealed that axons, SCs, and astrocytes were enclosed together within tunnels bounded by a continuous basal lamina. Neuroglycan (NG2) expression was associated with these tunnels. One week after injury, the GFAP(+) processes coexpressed nestin and brain lipid-binding protein, and the tips of GFAP(+)/NG2(+) processes extended into the bridges together with the regenerating brainstem axons. Both brainstem axon regeneration and number of GFAP(+) processes in the bridges correlated with improvement in hindlimb locomotion. Following SCI, astrocytes may enter a reactive state that prohibits axon regeneration. Elongation of astrocyte processes into SC bridges, however, and formation of NG2(+) tunnels enable brainstem axon regeneration and improvement in function. It is important for spinal cord repair to define conditions that favor elongation of astrocytes into lesions/transplants.

  6. Selective expression of ligand-gated ion channels in L5 pyramidal cell axons

    PubMed Central

    Christie, Jason M.; Jahr, Craig E.

    2009-01-01

    NMDA receptor (NMDAR)-dependent strengthening of neurotransmitter release has been widely observed, including in layer 5 (L5) pyramidal cells of the visual cortex, and is attributed to the axonal expression of NMDARs. However, we failed to detect NMDAR-mediated depolarizations or Ca2+ entry in L5 pyramidal cell axons when focally stimulated with NMDAR agonists. This suggests that NMDARs are excluded from the axon. In contrast, local GABAAR activation alters axonal excitability indicating that exclusion of ligand-gated ion channels from the axon is not absolute. Because NMDARs are restricted to the dendrite, NMDARs must signal to the axon by an indirect mechanism to alter release. Although subthreshold somatic depolarizations were found to spread electrotonically hundreds of micrometers through the axon, the resulting axonal potential was insufficient to open voltage-sensitive Ca2+ channels (VSCCs). Therefore, if NMDAR-mediated facilitation of release is cell-autonomous, it may depend on voltage signaling but apparently is independent of changes in basal Ca2+. Alternatively, this facilitation may be even less direct, requiring a cascade of events that are merely triggered by NMDAR activation. PMID:19759293

  7. Biochemical and microscopic evidence for the internalization and degradation of heparin-containing mast cell granules by bovine endothelial cells

    SciTech Connect

    Atkins, F.M.; Friedman, M.M.; Metcalfe, D.D.

    1985-03-01

    Incubation of (/sup 35/S)heparin-containing mast cell granules with cultured bovine endothelial cells was followed by the appearance of /sup 35/S-granule-associated radioactivity within the endothelial cells and a decrease in radioactivity in the extracellular fluid. These changes occurred during the first 24 hours of incubation and suggested ingestion of the mast cell granules by the endothelial cells. Periodic electron microscopic examination of the monolayers confirmed this hypothesis by demonstrating apposition of the granules to the plasmalemma of endothelial cells, which was followed by the engulfment of the granules by cytoplasmic projections. Under light microscopic examination, mast cell granules within endothelial cells then appeared to undergo degradation. The degradation of (/sup 35/S)heparin in mast cell granules was demonstrated by a decrease in the amount of intracellular (/sup 35/S)heparin proteoglycan after 24 hours and the appearance of free (/sup 35/S)sulfate in the extracellular compartment. Intact endothelial cells were more efficient at degrading (/sup 35/S)heparin than were cell lysates or cell supernatants. These data provide evidence of the ability of endothelial cells to ingest mast cell granules and degrade native heparin that is presented as a part of the mast cell granule.

  8. Three-Dimensional Tracking of Single Granules in Living PC-12 Cells Employing TIRFM and WFFM.

    PubMed

    Xiong, Jun; Li, Dongdong; Zhu, Dan; Qu, Anlian

    2005-01-01

    A comparative study was carried out on evaluating the performance of total internal reflection fluorescence microscopy (TIRFM) and deconvolution wide-field fluorescence microscopy (WFFM) in tracking single secretory granules. Both techniques have been applied to follow the three-dimensional mobility of single secretory granules in living neuroendocrine PC-12 cells. Both techniques return the similar result that most acridine orange-labeled granules were found to travel in random and caged diffusion, and only a small fraction of granules traveled in directed diffusion. Furthermore, the size and 3-D diffusion coefficient of secretory granules, obtained by these two imaging techniques, yield the same value. Together, our results demonstrate the potential of the combination TIRFM and WFFM in tracking long-termed motion of granules throughout live whole cells.

  9. Enhanced CREB phosphorylation in immature dentate gyrus granule cells precedes neurotrophin expression and indicates a specific role of CREB in granule cell differentiation

    PubMed Central

    Bender, R. A.; Lauterborn, J. C.; Gall, C. M.; Cariaga, W.; Baram, T. Z.

    2011-01-01

    Differentiation and maturation of dentate gyrus granule cells requires coordinated interactions of numerous processes. These must be regulated by protein factors capable of integrating signals mediated through diverse signalling pathways. Such integrators of inter and intracellular physiological stimuli include the cAMP-response element binding protein (CREB), a leucine-zipper class transcription factor that is activated through phosphorylation. Neuronal activity and neurotrophic factors, known to be involved in granule cell differentiation, are major physiologic regulators of CREB function. To examine whether CREB may play a role in governing coordinated gene transcription during granule cell differentiation, we determined the spatial and temporal profiles of phosphorylated (activated) CREB throughout postnatal development in immature rat hippocampus. We demonstrate that CREB activation is confined to discrete, early stages of granule cell differentiation. In addition, CREB phosphorylation occurs prior to expression of the neurotrophins BDNF and NT-3. These data indicate that in a signal transduction cascade connecting CREB and neurotrophins in the process of granule cell maturation, CREB is located upstream of neurotrophins. Importantly, CREB may be a critical component of the machinery regulating the coordinated transcription of genes contributing to the differentiation of granule cells and their integration into the dentate gyrus network. PMID:11207803

  10. ON Cone Bipolar Cell Axonal Synapses in the OFF Inner Plexiform Layer of the Rabbit Retina

    PubMed Central

    Lauritzen, J. Scott; Anderson, James R.; Jones, Bryan W.; Watt, Carl B.; Mohammed, Shoeb; Hoang, John V.; Marc, Robert E.

    2012-01-01

    Analysis of the rabbit retinal connectome RC1 reveals that the division between the ON and OFF inner plexiform layer (IPL) is not structurally absolute. ON cone bipolar cells make non-canonical axonal synapses onto specific targets and receive amacrine cell synapses in the nominal OFF layer, creating novel motifs, including inhibitory crossover networks. Automated transmission electron microscope (ATEM) imaging, molecular tagging, tracing, and rendering of ≈ 400 bipolar cells reveals axonal ribbons in 36% of ON cone bipolar cells, throughout the OFF IPL. The targets include GABA-positive amacrine cells (γACs), glycine-positive amacrine cells (GACs) and ganglion cells. Most ON cone bipolar cell axonal contacts target GACs driven by OFF cone bipolar cells, forming new architectures for generating ON-OFF amacrine cells. Many of these ON-OFF GACs target ON cone bipolar cell axons, ON γACs and/or ON-OFF ganglion cells, representing widespread mechanisms for OFF to ON crossover inhibition. Other targets include OFF γACs presynaptic to OFF bipolar cells, forming γAC-mediated crossover motifs. ON cone bipolar cell axonal ribbons drive bistratified ON-OFF ganglion cells in the OFF layer and provide ON drive to polarity-appropriate targets such as bistratified diving ganglion cells (bsdGCs). The targeting precision of ON cone bipolar cell axonal synapses shows that this drive incidence is necessarily a joint distribution of cone bipolar cell axonal frequency and target cell trajectories through a given volume of the OFF layer. Such joint distribution sampling is likely common when targets are sparser than sources and when sources are coupled, as are ON cone bipolar cells. PMID:23042441

  11. Molecular mechanisms of retinal ganglion cell degeneration in glaucoma and future prospects for cell body and axonal protection

    PubMed Central

    Munemasa, Yasunari; Kitaoka, Yasushi

    2013-01-01

    Glaucoma, which affects more than 70 million people worldwide, is a heterogeneous group of disorders with a resultant common denominator; optic neuropathy, eventually leading to irreversible blindness. The clinical manifestations of primary open-angle glaucoma (POAG), the most common subtype of glaucoma, include excavation of the optic disc and progressive loss of visual field. Axonal degeneration of retinal ganglion cells (RGCs) and apoptotic death of their cell bodies are observed in glaucoma, in which the reduction of intraocular pressure (IOP) is known to slow progression of the disease. A pattern of localized retinal nerve fiber layer (RNFL) defects in glaucoma patients indicates that axonal degeneration may precede RGC body death in this condition. The mechanisms of degeneration of neuronal cell bodies and their axons may differ. In this review, we addressed the molecular mechanisms of cell body death and axonal degeneration in glaucoma and proposed axonal protection in addition to cell body protection. The concept of axonal protection may become a new therapeutic strategy to prevent further axonal degeneration or revive dying axons in patients with preperimetric glaucoma. Further study will be needed to clarify whether the combination therapy of axonal protection and cell body protection will have greater protective effects in early or progressive glaucomatous optic neuropathy (GON). PMID:23316132

  12. Axons take a dive: Specialized contacts of serotonergic axons with cells in the walls of the lateral ventricles in mice and humans.

    PubMed

    Tong, Cheuk Ka; Cebrián-Silla, Arantxa; Paredes, Mercedes F; Huang, Eric J; García-Verdugo, Jose Manuel; Alvarez-Buylla, Arturo

    2014-01-01

    In the walls of the lateral ventricles of the adult mammalian brain, neural stem cells (NSCs) and ependymal (E1) cells share the apical surface of the ventricular-subventricular zone (V-SVZ). In a recent article, we show that supraependymal serotonergic (5HT) axons originating from the raphe nuclei in mice form an extensive plexus on the walls of the lateral ventricles where they contact E1 cells and NSCs. Here we further characterize the contacts between 5HT supraependymal axons and E1 cells in mice, and show that suprependymal axons tightly associated to E1 cells are also present in the walls of the human lateral ventricles. These observations raise interesting questions about the function of supraependymal axons in the regulation of E1 cells.

  13. Synthesis of Prostaglandins and Eicosanoids by the Mast Cell Secretory Granule

    DTIC Science & Technology

    1988-01-01

    various lipid-derived mediators during exocytosis. MATERIALS AND METHODS The procedure for granule preparation is similar to that which has been described...Press, Inc. Printed in U.S.A. SYNTHESIS OF PROSTACLANDINS AND KICOSANOIDS BY THE M&ST CELL SECRETORY GRANULE Stephen P. Chock and Elsa A. Schmauder-Chock...SCISNTIFIC XeiOT Received September 30, 1988 SR88-32 The identification of a non-bilayer phospholipid storage in the secretory granule and the linking of

  14. NF-Protocadherin Regulates Retinal Ganglion Cell Axon Behaviour in the Developing Visual System

    PubMed Central

    Leung, Louis C.; Harris, William A.; Holt, Christine E.; Piper, Michael

    2015-01-01

    Cell adhesion molecules play a central role in mediating axonal tract development within the nascent nervous system. NF-protocadherin (NFPC), a member of the non-clustered protocadherin family, has been shown to regulate retinal ganglion cell (RGC) axon and dendrite initiation, as well as influencing axonal navigation within the mid-optic tract. However, whether NFPC mediates RGC axonal behaviour at other positions within the optic pathway remains unclear. Here we report that NFPC plays an important role in RGC axonogenesis, but not in intraretinal guidance. Moreover, axons with reduced NFPC levels exhibit insensitivity to Netrin-1, an attractive guidance cue expressed at the optic nerve head. Netrin-1 induces rapid turnover of NFPC localized to RGC growth cones, suggesting that the regulation of NFPC protein levels may underlie Netrin-1-mediated entry of RGC axons into the optic nerve head. At the tectum, we further reveal a function for NFPC in controlling RGC axonal entry into the final target area. Collectively, our results expand our understanding of the role of NFPC in RGC guidance and illustrate that this adhesion molecule contributes to axon behaviour at multiple points in the optic pathway. PMID:26489017

  15. Nanoimaging granule dynamics and subcellular structures in activated mast cells using soft X-ray tomography

    PubMed Central

    Chen, Huan-Yuan; Chiang, Dapi Meng-Lin; Lin, Zi-Jing; Hsieh, Chia-Chun; Yin, Gung-Chian; Weng, I.-Chun; Guttermann, Peter; Werner, Stephan; Henzler, Katja; Schneider, Gerd; Lai, Lee-Jene; Liu, Fu-Tong

    2016-01-01

    Mast cells play an important role in allergic responses. During activation, these cells undergo degranulation, a process by which various kinds of mediators stored in the granules are released. Granule homeostasis in mast cells has mainly been studied by electron microscopy (EM), where the fine structures of subcellular organelles are partially destroyed during sample preparation. Migration and fusion of granules have not been studied in detail in three dimensions (3D) in unmodified samples. Here, we utilized soft X-ray tomography (SXT) coupled with fluorescence microscopy to study the detailed structures of organelles during mast cell activation. We observed granule fission, granule fusion to plasma membranes, and small vesicles budding from granules. We also detected lipid droplets, which became larger and more numerous as mast cells were activated. We observed dramatic morphological changes of mitochondria in activated mast cells and 3D-reconstruction revealed the highly folded cristae inner membrane, features of functionally active mitochondria. We also observed giant vesicles containing granules, mitochondria, and lipid droplets, which we designated as granule-containing vesicles (GCVs) and verified their presence by EM in samples prepared by cryo-substitution, albeit with a less clear morphology. Thus, our studies using SXT provide significant insights into mast cell activation at the organelle level. PMID:27748356

  16. Distorted secretory granule composition in mast cells with multiple protease deficiency.

    PubMed

    Grujic, Mirjana; Calounova, Gabriela; Eriksson, Inger; Feyerabend, Thorsten; Rodewald, Hans-Reimer; Tchougounova, Elena; Kjellén, Lena; Pejler, Gunnar

    2013-10-01

    Mast cells are characterized by an abundance of secretory granules densely packed with inflammatory mediators such as bioactive amines, cytokines, serglycin proteoglycans with negatively charged glycosaminoglycan side chains of either heparin or chondroitin sulfate type, and large amounts of positively charged proteases. Despite the large biological impact of mast cell granules and their contents on various pathologies, the mechanisms that regulate granule composition are incompletely understood. In this study, we hypothesized that granule composition is dependent on a dynamic electrostatic interrelationship between different granule compounds. As a tool to evaluate this possibility, we generated mice in which mast cells are multideficient in a panel of positively charged proteases: the chymase mouse mast cell protease-4, the tryptase mouse mast cell protease-6, and carboxypeptidase A3. Through a posttranslational effect, mast cells from these mice additionally lack mouse mast cell protease-5 protein. Mast cells from mice deficient in individual proteases showed normal morphology. In contrast, mast cells with combined protease deficiency displayed a profound distortion of granule integrity, as seen both by conventional morphological criteria and by transmission electron microscopy. An assessment of granule content revealed that the distorted granule integrity in multiprotease-deficient mast cells was associated with a profound reduction of highly negatively charged heparin, whereas no reduction in chondroitin sulfate storage was observed. Taken together with previous findings showing that the storage of basic proteases conversely is regulated by anionic proteoglycans, these data suggest that secretory granule composition in mast cells is dependent on a dynamic interrelationship between granule compounds of opposite electrical charge.

  17. Sparse activity of identified dentate granule cells during spatial exploration

    PubMed Central

    Diamantaki, Maria; Frey, Markus; Berens, Philipp; Preston-Ferrer, Patricia; Burgalossi, Andrea

    2016-01-01

    In the dentate gyrus – a key component of spatial memory circuits – granule cells (GCs) are known to be morphologically diverse and to display heterogeneous activity profiles during behavior. To resolve structure–function relationships, we juxtacellularly recorded and labeled single GCs in freely moving rats. We found that the vast majority of neurons were silent during exploration. Most active GCs displayed a characteristic spike waveform, fired at low rates and showed spatial activity. Primary dendritic parameters were sufficient for classifying neurons as active or silent with high accuracy. Our data thus support a sparse coding scheme in the dentate gyrus and provide a possible link between structural and functional heterogeneity among the GC population. DOI: http://dx.doi.org/10.7554/eLife.20252.001 PMID:27692065

  18. Exploring the significance of morphological diversity for cerebellar granule cell excitability

    PubMed Central

    Houston, Catriona M.; Diamanti, Efthymia; Diamantaki, Maria; Kutsarova, Elena; Cook, Anna; Sultan, Fahad; Brickley, Stephen G.

    2017-01-01

    The relatively simple and compact morphology of cerebellar granule cells (CGCs) has led to the view that heterogeneity in CGC shape has negligible impact upon the integration of mossy fibre (MF) information. Following electrophysiological recording, 3D models were constructed from high-resolution imaging data to identify morphological features that could influence the coding of MF input patterns by adult CGCs. Quantification of MF and CGC morphology provided evidence that CGCs could be connected to the multiple rosettes that arise from a single MF input. Predictions from our computational models propose that MF inputs could be more densely encoded within the CGC layer than previous models suggest. Moreover, those MF signals arriving onto the dendrite closest to the axon will generate greater CGC excitation. However, the impact of this morphological variability on MF input selectivity will be attenuated by high levels of CGC inhibition providing further flexibility to the MF → CGC pathway. These features could be particularly important when considering the integration of multimodal MF sensory input by individual CGCs. PMID:28406156

  19. CHP1-mediated NHE1 biosynthetic maturation is required for Purkinje cell axon homeostasis.

    PubMed

    Liu, Ye; Zaun, Hans C; Orlowski, John; Ackerman, Susan L

    2013-07-31

    Axon degeneration is a critical pathological feature of many neurodegenerative diseases. Misregulation of local axonal ion homeostasis has been recognized as an important yet understudied mechanism for axon degeneration. Here we report a chemically induced, recessive mouse mutation, vacillator (vac), which causes ataxia and concomitant axon degeneration of cerebellar Purkinje cells. By positional cloning, we identified vac as a point mutation in the calcineurin-like EF hand protein 1 (Chp1) gene that resulted in the production of mutant CHP1 isoforms with an amino acid substitution in a functional EF-hand domain or a truncation of this motif by aberrant splicing and significantly reduced protein levels. CHP1 has been previously shown to interact with the sodium hydrogen exchanger 1 (NHE1), a major regulator of intracellular pH. We demonstrated that CHP1 assists in the full glycosylation of NHE1 that is necessary for the membrane localization of this transporter and that truncated isoforms of CHP1 were defective in stimulating NHE1 biosynthetic maturation. Consistent with this, membrane localization of NHE1 at axon terminals was greatly reduced in Chp1-deficient Purkinje cells before axon degeneration. Furthermore, genetic ablation of Nhe1 also resulted in Purkinje cell axon degeneration, pinpointing the functional convergence of the two proteins. Our findings clearly demonstrate that the polarized presynaptic localization of NHE/CHP1 is an important feature of neuronal axons and that selective disruption of NHE1-mediated proton homeostasis in axons can lead to degeneration, suggesting that local regulation of pH is pivotal for axon survival.

  20. Delayed release of neurotransmitter from cerebellar granule cells.

    PubMed

    Atluri, P P; Regehr, W G

    1998-10-15

    At fast chemical synapses the rapid release of neurotransmitter that occurs within a few milliseconds of an action potential is followed by a more sustained elevation of release probability, known as delayed release. Here we characterize the role of calcium in delayed release and test the hypothesis that facilitation and delayed release share a common mechanism. Synapses between cerebellar granule cells and their postsynaptic targets, stellate cells and Purkinje cells, were studied in rat brain slices. Presynaptic calcium transients were measured with calcium-sensitive fluorophores, and delayed release was detected with whole-cell recordings. Calcium influx, presynaptic calcium dynamics, and the number of stimulus pulses were altered to assess their effect on delayed release and facilitation. Following single stimuli, delayed release can be separated into two components: one lasting for tens of milliseconds that is steeply calcium-dependent, the other lasting for hundreds of milliseconds that is driven by low levels of calcium with a nearly linear calcium dependence. The amplitude, calcium dependence, and magnitude of delayed release do not correspond to those of facilitation, indicating that these processes are not simple reflections of a shared mechanism. The steep calcium dependence of delayed release, combined with the large calcium transients observed in these presynaptic terminals, suggests that for physiological conditions delayed release provides a way for cells to influence their postsynaptic targets long after their own action potential activity has subsided.

  1. The atypical cadherin Flamingo is required for sensory axon advance beyond intermediate target cells.

    PubMed

    Steinel, Martin C; Whitington, Paul M

    2009-03-15

    The Drosophila atypical cadherin Flamingo plays key roles in a number of developmental processes. We have used the sensory nervous system of the Drosophila embryo to shed light on the mechanism by which Flamingo regulates axon growth. flamingo loss of function mutants display a highly penetrant sensory axon stall phenotype. The location of these axon stalls is stereotypic and corresponds to the position of intermediate target cells, with which sensory axons associate during normal development. This suggests that Flamingo mediates an interaction between the sensory neuron growth cones and these intermediate targets, which is required for continued axon advance. Mutant rescue experiments show that Flamingo expression is required only in sensory neurons for normal axon growth. The flamingo mutant phenotype can be partially rescued by expressing a Flamingo construct lacking most of the extracellular domain, suggesting that regulation of sensory axon advance by Flamingo does not absolutely depend upon a homophilic Flamingo-Flamingo interaction or its ability to mediate cell-cell adhesion. Loss of function mutants for a number of key genes that act together with Flamingo in the planar cell polarity pathway do not display the highly penetrant stalling phenotype seen in flamingo mutants.

  2. Electromagnetic induction between axons and their schwann cell myelin-protein sheaths.

    PubMed

    Goodman, G; Bercovich, D

    2013-12-01

    Two concepts have long dominated vertebrate nerve electrophysiology: (a) Schwann cell-formed myelin sheaths separated by minute non-myelinated nodal gaps and spiraling around axons of peripheral motor nerves reduce current leakage during propagation of trains of axon action potentials; (b) "jumping" by action potentials between successive nodes greatly increases signal conduction velocity. Long-held and more recent assumptions and issues underlying those concepts have been obscured by research emphasis on axon-sheath biochemical symbiosis and nerve regeneration. We hypothesize: mutual electromagnetic induction in the axon-glial sheath association, is fundamental in signal conduction in peripheral and central myelinated axons, explains the g-ratio and is relevant to animal navigation.

  3. Localization of brain-derived neurotrophic factor to distinct terminals of mossy fiber axons implies regulation of both excitation and feedforward inhibition of CA3 pyramidal cells.

    PubMed

    Danzer, Steve C; McNamara, James O

    2004-12-15

    Hippocampal dentate granule cells directly excite and indirectly inhibit CA3 pyramidal cells via distinct presynaptic terminal specializations of their mossy fiber axons. This mossy fiber pathway contains the highest concentration of brain-derived neurotrophic factor (BDNF) in the CNS, yet whether BDNF is positioned to regulate the excitatory and/or inhibitory pathways is unknown. To localize BDNF, confocal microscopy of green fluorescent protein transgenic mice was combined with BDNF immunohistochemistry. Approximately half of presynaptic granule cell-CA3 pyramidal cell contacts were found to contain BDNF. Moreover, enhanced neuronal activity virtually doubled the percentage of BDNF-immunoreactive terminals contacting CA3 pyramidal cells. To our surprise, BDNF was also found in mossy fiber terminals contacting inhibitory neurons. These studies demonstrate that mossy fiber BDNF is poised to regulate both direct excitatory and indirect feedforward inhibitory inputs to CA3 pyramdal cells and reveal that seizure activity increases the pool of BDNF-expressing granule cell presynaptic terminals contacting CA3 pyramidal cells.

  4. Giant cytoplasmic granules in Langerhans cells of Chediak-Higashi syndrome.

    PubMed

    Carrillo-Farga, J; Gutiérrez-Palomera, G; Ruiz-Maldonado, R; Rondán, A; Antuna, S

    1990-02-01

    Giant membrane-bound cytoplasmic granules were found in the epidermal Langerhans cells of a patient with the Chediak-Higashi syndrome. These cells also contained normal-appearing Birbeck granules. The giant granules had a granular or sometimes globular internal structure; they are believed to derive from fusion of lysosomes or some portion of Birbeck granules. It is unclear whether this morphologic change in Langerhans cell interferes with their antigen-presenting function; it may be, in part, responsible for the frequent infections seen in patients with Chediak-Higashi syndrome that are otherwise more clearly related to the abnormalities in neutrophils and lymphocytes. The Langerhans cell is another cellular type in Chediak-Higashi syndrome in which giant cytoplasmic granules are found.

  5. Loss of modifier of cell adhesion reveals a pathway leading to axonal degeneration.

    PubMed

    Chen, Qi; Peto, Charles A; Shelton, G Diane; Mizisin, Andrew; Sawchenko, Paul E; Schubert, David

    2009-01-07

    Axonal dysfunction is the major phenotypic change in many neurodegenerative diseases, but the processes underlying this impairment are not clear. Modifier of cell adhesion (MOCA) is a presenilin binding protein that functions as a guanine nucleotide exchange factor for Rac1. The loss of MOCA in mice leads to axonal degeneration and causes sensorimotor impairments by decreasing cofilin phosphorylation and altering its upstream signaling partners LIM kinase and p21-activated kinase, an enzyme directly downstream of Rac1. The dystrophic axons found in MOCA-deficient mice are associated with abnormal aggregates of neurofilament protein, the disorganization of the axonal cytoskeleton, and the accumulation of autophagic vacuoles and polyubiquitinated proteins. Furthermore, MOCA deficiency causes an alteration in the actin cytoskeleton and the formation of cofilin-containing rod-like structures. The dystrophic axons show functional abnormalities, including impaired axonal transport. These findings demonstrate that MOCA is required for maintaining the functional integrity of axons and define a model for the steps leading to axonal degeneration.

  6. Differentiated cytoplasmic granule formation in quiescent and non-quiescent cells upon chronological aging

    PubMed Central

    Lee, Hsin-Yi; Cheng, Kuo-Yu; Chao, Jung-Chi; Leu, Jun-Yi

    2016-01-01

    Stationary phase cultures represent a complicated cell population comprising at least two different cell types, quiescent (Q) and non-quiescent (NQ) cells. Q and NQ cells have different lifespans and cell physiologies. However, less is known about the organization of cytosolic protein structures in these two cell types. In this study, we examined Q and NQ cells for the formation of several stationary phase-prevalent granule structures including actin bodies, proteasome storage granules, stress granules, P-bodies, the compartment for unconventional protein secretion (CUPS), and Hsp42-associated stationary phase granules (Hsp42-SPGs). Most of these structures preferentially form in NQ cells, except for Hsp42-SPGs, which are enriched in Q cells. When nutrients are provided, NQ cells enter mitosis less efficiently than Q cells, likely due to the time requirement for reorganizing some granule structures. We observed that heat shock-induced misfolded proteins often colocalize to Hsp42-SPGs, and Q cells clear these protein aggregates more efficiently, suggesting that Hsp42-SPGs may play an important role in the stress resistance of Q cells. Finally, we show that the cell fate of NQ cells is largely irreversible even if they are allowed to reenter mitosis. Our results reveal that the formation of different granule structures may represent the early stage of cell type differentiation in yeast stationary phase cultures. PMID:28357341

  7. The stealthy nano-machine behind mast cell granule size distribution.

    PubMed

    Hammel, Ilan; Meilijson, Isaac

    2015-01-01

    The classical model of mast cell secretory granule formation suggests that newly synthesized secretory mediators, transported from the rough endoplasmic reticulum to the Golgi complex, undergo post-transitional modification and are packaged for secretion by condensation within membrane-bound granules of unit size. These unit granules may fuse with other granules to form larger granules that reside in the cytoplasm until secreted. A novel stochastic model for mast cell granule growth and elimination (G&E) as well as inventory management is presented. Resorting to a statistical mechanics approach in which SNAP (Soluble NSF Attachment Protein) REceptor (SNARE) components are viewed as interacting particles, the G&E model provides a simple 'nano-machine' of SNARE self-aggregation that can perform granule growth and secretion. Granule stock is maintained as a buffer to meet uncertainty in demand by the extracellular environment and to serve as source of supply during the lead time to produce granules of adaptive content. Experimental work, mathematical calculations, statistical modeling and a rationale for the emergence of nearly last-in, first out inventory management, are discussed.

  8. Firm structural associations between migratory pigment granules and microtubules in crayfish retinula cells

    PubMed Central

    1983-01-01

    The morphology of associations between mobile pigment granules and microtubules of the crayfish retinula cells was examined with transmission electron microscopy. Many pigment granules were found associated with microtubules through linkages of fuzzy appearance in thin sections. The linkages were revealed as discrete strands of variable shape in rotary-shadowed replicas of freeze-fractured and deep- etched specimens. The only feature of constant morphology among these connections consisted of 2-4-nm filaments projecting laterally from the microtubules. The firmness of the pigment granule-microtubule associations was judged by their ability to hold up during cell disruption procedures of increasing disaggregation effects in a low- Ca++ stabilization buffer. The results of these tests were inspected with scanning electron microscopy and with transmission electron microscopy of negatively stained preparations. Numerous pigment granules remained associated with a stable microtubule framework after the plasma membrane had been stripped away. Moreover, granule- microtubule attachments survived breakdown of this framework into free fascicles of microtubules. The pigment granules were associated with the free microtubules either individually or as clusters entangled in a fibrous material interwoven with 10-nm filaments. These findings attest that many pigment granules are bound to microtubules through linkages that constitute effective attachments. Further, it is demonstrated that a highly cohesive substance associates the pigment granules with one another. These conclusions are discussed in terms of a pigment transport mechanism in which a network of interconnected granules would establish firm transient interactions with a supporting skeleton of microtubules. PMID:6841448

  9. Axonal Growth Arrests After an Increased Accumulation of Schwann Cells Expressing Senescence Markers and Stromal Cells in Acellular Nerve Allografts.

    PubMed

    Poppler, Louis H; Ee, Xueping; Schellhardt, Lauren; Hoben, Gwendolyn M; Pan, Deng; Hunter, Daniel A; Yan, Ying; Moore, Amy M; Snyder-Warwick, Alison K; Stewart, Sheila A; Mackinnon, Susan E; Wood, Matthew D

    2016-07-01

    Acellular nerve allografts (ANAs) and other nerve constructs do not reliably facilitate axonal regeneration across long defects (>3 cm). Causes for this deficiency are poorly understood. In this study, we determined what cells are present within ANAs before axonal growth arrest in nerve constructs and if these cells express markers of cellular stress and senescence. Using the Thy1-GFP rat and serial imaging, we identified the time and location of axonal growth arrest in long (6 cm) ANAs. Axonal growth halted within long ANAs by 4 weeks, while axons successfully regenerated across short (3 cm) ANAs. Cellular populations and markers of senescence were determined using immunohistochemistry, histology, and senescence-associated β-galactosidase staining. Both short and long ANAs were robustly repopulated with Schwann cells (SCs) and stromal cells by 2 weeks. Schwann cells (S100β(+)) represented the majority of cells repopulating both ANAs. Overall, both ANAs demonstrated similar cellular populations with the exception of increased stromal cells (fibronectin(+)/S100β(-)/CD68(-) cells) in long ANAs. Characterization of ANAs for markers of cellular senescence revealed that long ANAs accumulated much greater levels of senescence markers and a greater percentage of Schwann cells expressing the senescence marker p16 compared to short ANAs. To establish the impact of the long ANA environment on axonal regeneration, short ANAs (2 cm) that would normally support axonal regeneration were generated from long ANAs near the time of axonal growth arrest ("stressed" ANAs). These stressed ANAs contained mainly S100β(+)/p16(+) cells and markedly reduced axonal regeneration. In additional experiments, removal of the distal portion (4 cm) of long ANAs near the time of axonal growth arrest and replacement with long isografts (4 cm) rescued axonal regeneration across the defect. Neuronal culture derived from nerve following axonal growth arrest in long ANAs revealed no

  10. Axonal Growth Arrests After an Increased Accumulation of Schwann Cells Expressing Senescence Markers and Stromal Cells in Acellular Nerve Allografts

    PubMed Central

    Poppler, Louis H.; Ee, Xueping; Schellhardt, Lauren; Hoben, Gwendolyn M.; Pan, Deng; Hunter, Daniel A.; Yan, Ying; Moore, Amy M.; Snyder-Warwick, Alison K.; Stewart, Sheila A.; Mackinnon, Susan E.

    2016-01-01

    Acellular nerve allografts (ANAs) and other nerve constructs do not reliably facilitate axonal regeneration across long defects (>3 cm). Causes for this deficiency are poorly understood. In this study, we determined what cells are present within ANAs before axonal growth arrest in nerve constructs and if these cells express markers of cellular stress and senescence. Using the Thy1-GFP rat and serial imaging, we identified the time and location of axonal growth arrest in long (6 cm) ANAs. Axonal growth halted within long ANAs by 4 weeks, while axons successfully regenerated across short (3 cm) ANAs. Cellular populations and markers of senescence were determined using immunohistochemistry, histology, and senescence-associated β-galactosidase staining. Both short and long ANAs were robustly repopulated with Schwann cells (SCs) and stromal cells by 2 weeks. Schwann cells (S100β+) represented the majority of cells repopulating both ANAs. Overall, both ANAs demonstrated similar cellular populations with the exception of increased stromal cells (fibronectin+/S100β−/CD68− cells) in long ANAs. Characterization of ANAs for markers of cellular senescence revealed that long ANAs accumulated much greater levels of senescence markers and a greater percentage of Schwann cells expressing the senescence marker p16 compared to short ANAs. To establish the impact of the long ANA environment on axonal regeneration, short ANAs (2 cm) that would normally support axonal regeneration were generated from long ANAs near the time of axonal growth arrest (“stressed” ANAs). These stressed ANAs contained mainly S100β+/p16+ cells and markedly reduced axonal regeneration. In additional experiments, removal of the distal portion (4 cm) of long ANAs near the time of axonal growth arrest and replacement with long isografts (4 cm) rescued axonal regeneration across the defect. Neuronal culture derived from nerve following axonal growth arrest in long ANAs revealed no deficits

  11. Analysis of Spine Motility of Newborn Granule Cells in Acute Brain Slices.

    PubMed

    Tashiro, Ayumu; Zhao, Chunmei; Suh, Hoonkyo; Gage, Fred H

    2015-10-01

    In this protocol, acute brain slices are prepared from mice in which newborn granule cells have been labeled using retroviral vector technology. Using a live-cell imaging stage and confocal microscopy coupled to imaging software, dendritic spines are analyzed.

  12. c-Jun activation in Schwann cells protects against loss of sensory axons in inherited neuropathy

    PubMed Central

    Hantke, Janina; Carty, Lucy; Wagstaff, Laura J.; Turmaine, Mark; Wilton, Daniel K.; Quintes, Susanne; Koltzenburg, Martin; Baas, Frank; Mirsky, Rhona

    2014-01-01

    Charcot–Marie–Tooth disease type 1A is the most frequent inherited peripheral neuropathy. It is generally due to heterozygous inheritance of a partial chromosomal duplication resulting in over-expression of PMP22. A key feature of Charcot–Marie–Tooth disease type 1A is secondary death of axons. Prevention of axonal loss is therefore an important target of clinical intervention. We have previously identified a signalling mechanism that promotes axon survival and prevents neuron death in mechanically injured peripheral nerves. This work suggested that Schwann cells respond to injury by activating/enhancing trophic support for axons through a mechanism that depends on upregulation of the transcription factor c-Jun in Schwann cells, resulting in the sparing of axons that would otherwise die. As c-Jun orchestrates Schwann cell support for distressed neurons after mechanical injury, we have now asked: do Schwann cells also activate a c-Jun dependent neuron-supportive programme in inherited demyelinating disease? We tested this by using the C3 mouse model of Charcot–Marie–Tooth disease type 1A. In line with our previous findings in humans with Charcot–Marie–Tooth disease type 1A, we found that Schwann cell c-Jun was elevated in (uninjured) nerves of C3 mice. We determined the impact of this c-Jun activation by comparing C3 mice with double mutant mice, namely C3 mice in which c-Jun had been conditionally inactivated in Schwann cells (C3/Schwann cell-c-Jun−/− mice), using sensory-motor tests and electrophysiological measurements, and by counting axons in proximal and distal nerves. The results indicate that c-Jun elevation in the Schwann cells of C3 nerves serves to prevent loss of myelinated sensory axons, particularly in distal nerves, improve behavioural symptoms, and preserve F-wave persistence. This suggests that Schwann cells have two contrasting functions in Charcot–Marie–Tooth disease type 1A: on the one hand they are the genetic source of

  13. Studies on the pH gradient and histamine uptake of isolated mast cell granules

    SciTech Connect

    De Young, M.B.; Nemeth, E.F.; Scarpa, A.

    1986-05-01

    A purified preparation of mast cell granules with intact perigranular membranes was obtained using a method involving probe sonication of rat serosal mast cells followed by differential centrifugation and Percoll gradient separation of the granules. Purification was assessed with histamine and mast cell granule protease assays. Granule integrity was demonstrated by light and electron microscopy and quantitated with a ruthenium red binding assay. The low yield of granules (20 ..mu..g protein/4 rats) necessitated the development of two microanalytical techniques to demonstrate the existence of a pH gradient across the membrane: 9-aminoacridine fluorescence studies in a cuvet with 50 ..mu..l capacity and /sup 14/C-methylamine distribution studies on microgram quantities of granule protein. Quantitation of results from isotope studies were confounded by the presence of oil used for separating granules from the aqueous phase. Nonetheless, an extrapolation procedure calibrated by external pH yielded an internal pH value of 5.46 +/- .03 (n = 4), consistent with values observed in granules obtained from other secretory cells. Collapse of the pH gradient by NH/sub 4//sup +/ or nigericin/KCl was demonstrated using either technique. Addition of histamine depressed intragranular pH, suggesting that histamine transport may utilize the ..delta..pH as a driving force.

  14. Transfer of Vesicles From Schwann Cells to Axons: a Novel Mechanism of Communication in the Peripheral Nervous System

    PubMed Central

    Lopez-Verrilli, M. Alejandra; Court, Felipe A.

    2012-01-01

    Schwann cells (SCs) are the glial component of the peripheral nervous system, with essential roles during development and maintenance of axons, as well as during regenerative processes after nerve injury. SCs increase conduction velocities by myelinating axons, regulate synaptic activity at presynaptic nerve terminals and are a source of trophic factors to neurons. Thus, development and maintenance of peripheral nerves are crucially dependent on local signaling between SCs and axons. In addition to the classic mechanisms of intercellular signaling, the possibility of communication through secreted vesicles has been poorly explored to date. Interesting recent findings suggest the occurrence of lateral transfer mediated by vesicles from glial cells to axons that could have important roles in axonal growth and axonal regeneration. Here, we review the role of vesicular transfer from SCs to axons and propose the advantages of this means in supporting neuronal and axonal maintenance and regeneration after nerve damage. PMID:22707941

  15. Long-Distance Axonal Growth from Human Induced Pluripotent Stem Cells After Spinal Cord Injury

    PubMed Central

    Lu, Paul; Woodruff, Grace; Wang, Yaozhi; Graham, Lori; Hunt, Matt; Wu, Di; Boehle, Eileen; Ahmad, Ruhel; Poplawski, Gunnar; Brock, John; Goldstein, Lawrence S. B.; Tuszynski, Mark H.

    2014-01-01

    Human induced pluripotent stem cells (iPSCs) from a healthy 86 year-old male were differentiated into neural stem cells and grafted into adult immunodeficient rats after spinal cord injury. Three months after C5 lateral hemisections, iPSCs survived and differentiated into neurons and glia, and extended tens of thousands of axons from the lesion site over virtually the entire length of the rat central nervous system. These iPSC-derived axons extended through adult white matter of the injured spinal cord, frequently penetrating gray matter and forming synapses with rat neurons. In turn, host supraspinal motor axons penetrated human iPSC grafts and formed synapses. These findings indicate that intrinsic neuronal mechanisms readily overcome the inhibitory milieu of the adult injured spinal cord to extend many axons over very long distances; these capabilities persist even in neurons reprogrammed from very aged human cells. PMID:25123310

  16. Mesenchymal Stromal Cells Promote Axonal Outgrowth Alone and Synergistically with Astrocytes via tPA

    PubMed Central

    Qian, Jian-Yong; Chopp, Michael

    2016-01-01

    We reported that mesenchymal stromal cells (MSCs) enhance neurological recovery from experimental stroke and increase tissue plasminogen activator (tPA) expression in astrocytes. Here, we investigate mechanisms by which tPA mediates MSC enhanced axonal outgrowth. Primary murine neurons and astrocytes were isolated from wild-type (WT) and tPA-knockout (KO) cortices of embryos. Mouse MSCs (WT) were purchased from Cognate Inc. Neurons (WT or KO) were seeded in soma side of Xona microfluidic chambers, and astrocytes (WT or KO) and/or MSCs in axon side. The chambers were cultured as usual (normoxia) or subjected to oxygen deprivation. Primary neurons (seeded in plates) were co-cultured with astrocytes and/or MSCs (in inserts) for Western blot. In chambers, WT axons grew significantly longer than KO axons and exogenous tPA enhanced axonal outgrowth. MSCs increased WT axonal outgrowth alone and synergistically with WT astrocytes at both normoxia and oxygen deprivation conditions. The synergistic effect was inhibited by U0126, an ERK inhibitor, and receptor associated protein (RAP), a low density lipoprotein receptor related protein 1 (LRP1) ligand antagonist. However, MSCs exerted neither individual nor synergistic effects on KO axonal outgrowth. Western blot showed that MSCs promoted astrocytic tPA expression and increased neuronal tPA alone and synergistically with astrocytes. Also, MSCs activated neuronal ERK alone and synergistically with astrocytes, which was inhibited by RAP. We conclude: (1) MSCs promote axonal outgrowth via neuronal tPA and synergistically with astrocytic tPA; (2) neuronal tPA is critical to observe the synergistic effect of MSC and astrocytes on axonal outgrowth; and (3) tPA mediates MSC treatment-induced axonal outgrowth through the LRP1 receptor and ERK. PMID:27959956

  17. Schwann cell transplantation improves reticulospinal axon growth and forelimb strength after severe cervical spinal cord contusion.

    PubMed

    Schaal, S M; Kitay, B M; Cho, K S; Lo, T P; Barakat, D J; Marcillo, A E; Sanchez, A R; Andrade, C M; Pearse, D D

    2007-01-01

    Schwann cell (SC) implantation alone has been shown to promote the growth of propriospinal and sensory axons, but not long-tract descending axons, after thoracic spinal cord injury (SCI). In the current study, we examined if an axotomy close to the cell body of origin (so as to enhance the intrinsic growth response) could permit supraspinal axons to grow onto SC grafts. Adult female Fischer rats received a severe (C5) cervical contusion (1.1 mm displacement, 3 KDyn). At 1 week postinjury, 2 million SCs ex vivo transduced with lentiviral vector encoding enhanced green fluorescent protein (EGFP) were implanted within media into the injury epicenter; injury-only animals served as controls. Animals were tested weekly using the BBB score for 7 weeks postimplantation and received at end point tests for upper body strength: self-supported forelimb hanging, forearm grip force, and the incline plane. Following behavioral assessment, animals were anterogradely traced bilaterally from the reticular formation using BDA-Texas Red. Stereological quantification revealed a twofold increase in the numbers of preserved NeuN+ neurons rostral and caudal to the injury/graft site in SC implanted animals, corroborating previous reports of their neuroprotective efficacy. Examination of labeled reticulospinal axon growth revealed that while rarely an axon was present within the lesion site of injury-only controls, numerous reticulospinal axons had penetrated the SC implant/lesion milieu. This has not been observed following implantation of SCs alone into the injured thoracic spinal cord. Significant behavioral improvements over injury-only controls in upper limb strength, including an enhanced grip strength (a 296% increase) and an increased self-supported forelimb hanging, accompanied SC-mediated neuroprotection and reticulospinal axon growth. The current study further supports the neuroprotective efficacy of SC implants after SCI and demonstrates that SCs alone are capable of supporting

  18. Internalized Tau sensitizes cells to stress by promoting formation and stability of stress granules

    PubMed Central

    Brunello, Cecilia A.; Yan, Xu; Huttunen, Henri J.

    2016-01-01

    Stress granules are membrane-less RNA- and RNA-binding protein-containing complexes that are transiently assembled in stressful conditions to promote cell survival. Several stress granule-associated RNA-binding proteins have been associated with neurodegenerative diseases. In addition, a close link was recently identified between the stress granule core-nucleating protein TIA-1 and Tau. Tau is a central pathological protein in Alzheimer’s disease and other tauopathies, and misfolded, aggregated Tau is capable of propagating pathology via cell-to-cell transmission. Here we show that following internalization hyperphosphorylated extracellular Tau associates with stress granules in a TIA-1 dependent manner. Cytosolic Tau normally only weakly interacts with TIA-1 but mutations mimicking abnormal phosphorylation promote this interaction. We show that internalized Tau significantly delays normal clearance of stress granules in the recipient cells sensitizing them to secondary stress. These results suggest that secreted Tau species may have properties, likely related to its hyperphosphorylation and oligomerization, which promote pathological association of internalized Tau with stress granules altering their dynamics and reducing cell viability. We suggest that stress granules and TIA-1 play a central role in the cell-to-cell transmission of Tau pathology. PMID:27460788

  19. Three-dimensional tracking of single secretory granules in live PC12 cells.

    PubMed

    Li, Dongdong; Xiong, Jun; Qu, Anlian; Xu, Tao

    2004-09-01

    Deconvolution wide-field fluorescence microscopy and single-particle tracking were used to study the three-dimensional mobility of single secretory granules in live PC12 cells. Acridine orange-labeled granules were found to travel primarily in random and caged diffusion, whereas only a small fraction of granules traveled in directed fashion. High K(+) stimulation increased significantly the percentage of granules traveling in directed fashion. By dividing granules into the near-membrane group (within 1 microm from the plasma membrane) and cytosolic group, we have revealed significant differences between these two groups of granules in their mobility. The mobility of these two groups of granules is also differentially affected by disruption of F-actin, suggesting different mechanisms are involved in the motion of the two groups of granules. Our results demonstrate that combined deconvolution and single-particle tracking may find its application in three-dimensional tracking of long-term motion of granules and elucidating the underlying mechanisms.

  20. Corruption of the dentate gyrus by "dominant" granule cells: Implications for dentate gyrus function in health and disease.

    PubMed

    Scharfman, Helen E; Myers, Catherine E

    2016-03-01

    The dentate gyrus (DG) and area CA3 of the hippocampus are highly organized lamellar structures which have been implicated in specific cognitive functions such as pattern separation and pattern completion. Here we describe how the anatomical organization and physiology of the DG and CA3 are consistent with structures that perform pattern separation and completion. We then raise a new idea related to the complex circuitry of the DG and CA3 where CA3 pyramidal cell 'backprojections' play a potentially important role in the sparse firing of granule cells (GCs), considered important in pattern separation. We also propose that GC axons, the mossy fibers, already known for their highly specialized structure, have a dynamic function that imparts variance--'mossy fiber variance'--which is important to pattern separation and completion. Computational modeling is used to show that when a subset of GCs become 'dominant,' one consequence is loss of variance in the activity of mossy fiber axons and a reduction in pattern separation and completion in the model. Empirical data are then provided using an example of 'dominant' GCs--subsets of GCs that develop abnormally and have increased excitability. Notably, these abnormal GCs have been identified in animal models of disease where DG-dependent behaviors are impaired. Together these data provide insight into pattern separation and completion, and suggest that behavioral impairment could arise from dominance of a subset of GCs in the DG-CA3 network.

  1. Corruption of the Dentate Gyrus by “Dominant” Granule cells: Implications for Dentate Gyrus Function in Health and Disease

    PubMed Central

    Scharfman, Helen E.; Myers, Catherine E.

    2015-01-01

    The dentate gyrus (DG) and area CA3 of the hippocampus are highly organized lamellar structures which have been implicated in specific cognitive functions such as pattern separation and pattern completion. Here we describe how the anatomical organization and physiology of the DG and CA3 are consistent with structures that perform pattern separation and completion. We then raise a new idea related to the complex circuitry of the DG and CA3 where CA3 pyramidal cell ‘backprojections’ play a potentially important role in the sparse firing of granule cells (GCs), considered important in pattern separation. We also propose that GC axons, the mossy fibers, already known for their highly specialized structure, have a dynamic function that imparts variance – ‘mossy fiber variance’ – which is important to pattern separation and completion. Computational modeling is used to show that when a subset of GCs become ‘dominant,’ one consequence is loss of variance in the activity of mossy fiber axons and a reduction in pattern separation and completion in the model. Empirical data are then provided using an example of ‘dominant’ GCs – subsets of GCs that develop abnormally and have increased excitability. Notably, these abnormal GCs have been identified in animal models of disease where DG-dependent behaviors are impaired. Together these data provide insight into pattern separation and completion, and suggest that behavioral impairment could arise from dominance of a subset of GCs in the DG-CA3 network. PMID:26391451

  2. Syntaxin clusters assemble reversibly at sites of secretory granules in live cells.

    PubMed

    Barg, S; Knowles, M K; Chen, X; Midorikawa, M; Almers, Wolfhard

    2010-11-30

    Syntaxin resides in the plasma membrane, where it helps to catalyze membrane fusion during exocytosis. The protein also forms clusters in cell-free and granule-free plasma-membrane sheets. We imaged the interaction between syntaxin and single secretory granules by two-color total internal reflection microscopy in PC12 cells. Syntaxin-GFP assembled in clusters at sites where single granules had docked at the plasma membrane. Clusters were intermittently present at granule sites, as syntaxin molecules assembled and disassembled in a coordinated fashion. Recruitment to granules required the N-terminal domain of syntaxin, but not the entry of syntaxin into SNARE complexes. Clusters facilitated exocytosis and disassembled once exocytosis was complete. Syntaxin cluster formation defines an intermediate step in exocytosis.

  3. Fish E587 glycoprotein, a member of the L1 family of cell adhesion molecules, participates in axonal fasciculation and the age-related order of ganglion cell axons in the goldfish retina

    PubMed Central

    1995-01-01

    Axons derived from young ganglion cells in the periphery of the retinae of larval and adult goldfish are known to fasciculate with one another and their immediate forerunners, creating the typical age-related order in the retinotectal pathway. Young axons express the E587 antigen, a member of the L1 family of cell adhesion molecules. Repeated injections of Fab fragments from a polyclonal E587 antiserum (E587 Fabs) into the eye of 3.4 cm goldfish disrupted the orderly fascicle pattern of RGC axons in the retina which was preserved in controls. Instead of bundling tightly, RGC axons crossed one another, grew between fascicles and arrived at the optic disk in a broadened front. When added to RGC axons growing in vitro, E587 Fabs neutralized the preference of growth cones to elongate on lanes of E587 protein, caused defasciculation of axons which normally prefer to grow along each other when explanted on polylysine, and prevented clustering of E587 antigen at axon-axon contact sites. Monoclonal E587 antibody disturbed axonal fasciculation moderately but led to a 30% reduction in growth velocities when axons tracked other axons. Therefore we conclude that E587 antigen mediates axonal recognition, selective fasciculation and the creation of the age- related order in the fish retina. PMID:7642712

  4. Olfactory Bulb Deep Short-Axon Cells Mediate Widespread Inhibition of Tufted Cell Apical Dendrites.

    PubMed

    Burton, Shawn D; LaRocca, Greg; Liu, Annie; Cheetham, Claire E J; Urban, Nathaniel N

    2017-02-01

    In the main olfactory bulb (MOB), the first station of sensory processing in the olfactory system, GABAergic interneuron signaling shapes principal neuron activity to regulate olfaction. However, a lack of known selective markers for MOB interneurons has strongly impeded cell-type-selective investigation of interneuron function. Here, we identify the first selective marker of glomerular layer-projecting deep short-axon cells (GL-dSACs) and investigate systematically the structure, abundance, intrinsic physiology, feedforward sensory input, neuromodulation, synaptic output, and functional role of GL-dSACs in the mouse MOB circuit. GL-dSACs are located in the internal plexiform layer, where they integrate centrifugal cholinergic input with highly convergent feedforward sensory input. GL-dSAC axons arborize extensively across the glomerular layer to provide highly divergent yet selective output onto interneurons and principal tufted cells. GL-dSACs are thus capable of shifting the balance of principal tufted versus mitral cell activity across large expanses of the MOB in response to diverse sensory and top-down neuromodulatory input. The identification of cell-type-selective molecular markers has fostered tremendous insight into how distinct interneurons shape sensory processing and behavior. In the main olfactory bulb (MOB), inhibitory circuits regulate the activity of principal cells precisely to drive olfactory-guided behavior. However, selective markers for MOB interneurons remain largely unknown, limiting mechanistic understanding of olfaction. Here, we identify the first selective marker of a novel population of deep short-axon cell interneurons with superficial axonal projections to the sensory input layer of the MOB. Using this marker, together with immunohistochemistry, acute slice electrophysiology, and optogenetic circuit mapping, we reveal that this novel interneuron population integrates centrifugal cholinergic input with broadly tuned feedforward sensory

  5. Zinc sulfide in intestinal cell granules of Ancylostoma caninum adults

    SciTech Connect

    Gianotti, A.J.; Clark, D.T.; Dash, J. )

    1991-04-01

    A source of confusion has existed since the turn of the century about the reddish brown, weakly birefringent 'sphaerocrystals' located in the intestines of strongyle nematodes, Strongylus and Ancylostoma. X-ray diffraction and energy dispersive spectrometric analyses were used for accurate determination of the crystalline order and elemental composition of the granules in the canine hookworm Ancylostoma caninum. The composition of the intestinal pigmented granules was identified unequivocally as zinc sulfide. It seems most probable that the granules serve to detoxify high levels of metallic ions (specifically zinc) present due to the large intake of host blood.

  6. Somatic translocation: a novel mechanism of granule cell dendritic dysmorphogenesis and dispersion

    PubMed Central

    Murphy, Brian L.; Danzer, Steve C.

    2011-01-01

    Pronounced neuronal remodeling is a hallmark of temporal lobe epilepsy. Here, we use real-time confocal imaging of tissue from mouse brain to demonstrate that remodeling can involve fully-differentiated granule cells following translocation of the soma into an existing apical dendrite. Somatic translocation converts dendritic branches into primary dendrites and shifts adjacent apical dendrites to the basal pole of the cell. Moreover, somatic translocation contributes to the dispersion of the granule cell body layer in vitro, and when granule cell dispersion is induced in vivo, the dispersed cells exhibit virtually identical derangements of their dendritic structures. Together, these findings identify novel forms of neuronal plasticity which contribute to granule cell dysmorphogenesis in the epileptic brain. PMID:21414917

  7. Potassium currents in acutely isolated human hippocampal dentate granule cells.

    PubMed Central

    Beck, H; Clusmann, H; Kral, T; Schramm, J; Heinemann, U; Elger, C E

    1997-01-01

    1. Properties of voltage- and Ca(2+)-dependent K+ currents were investigated in thirty-four dentate granule cells acutely isolated from the resected hippocampus of eleven patients with therapy-refractory temporal lobe epilepsy (TLE). 2. When intracellular Ca2+ was strongly buffered with 11.5 mM EGTA-1 mM Ca2+ in the recording pipette, K+ currents (IK) with a slow activation and biexponential time-dependent decay could be elicited, which showed a threshold for activation around -30 mV. 3. A contribution of Ca(2+)-dependent K+ currents became apparent with intracellular solution containing 1 mM BAPTA-0.1 mM Ca2+. Superfusion of low-Ca2+ extracellular solution blocked 43% of outward currents in this recording configuration. Outward current components could also be blocked by substituting 5 mM Ba2+ for extracellular Ca2+ (78%), or by application of 100 microM Cd2+ (25%). 4. The Ca(2+)-dependent K+ currents could be pharmacologically subdivided into two components. One component was sensitive to 500 microM tetraethylammmonium (TEA; 41%) and 10 nM charybdotoxin (CTX; 47.2%). The blocking effects of 10 nM CTX and 500 microM TEA were not additive, suggesting that both agents block the same conductance. A second, smaller outward current component was blocked by 50 nM apamin (13%). 5. A transient A-type K+ current could be observed in six neurones and showed a fast monoexponential time-dependent inactivation with a steady-state voltage dependence that was distinct from that of IK. The A-type current was blocked by 4-aminopyridine (4-AP) but not by TEA or low-Ca2+ solution. 6. We conclude that outward currents in human hippocampal dentate granule cells can be separated into at least four types by their kinetic and pharmacological properties. These include at least one voltage-dependent current similar to those observed in mammalian hippocampal neurones, and two Ca(2+)-dependent K+ currents that most probably correspond to SK- and BK-type currents. A classical A-type current

  8. Human bone marrow mesenchymal stem cell transplantation attenuates axonal injury in stroke rats

    PubMed Central

    Xu, Yi; Du, Shiwei; Yu, Xinguang; Han, Xiao; Hou, Jincai; Guo, Hao

    2014-01-01

    Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that intravenous transplantation of human bone marrow mesenchymal stem cells through the femoral vein could exert neuroprotective effects against cerebral ischemia via a mechanism associated with the ability to attenuate axonal injury. The results of behavioral tests, infarction volume analysis and immunohistochemistry showed that cerebral ischemia caused severe damage to the myelin sheath and axons. After rats were intravenously transplanted with human bone marrow mesenchymal stem cells, the levels of axon and myelin sheath-related proteins, including microtubule-associated protein 2, myelin basic protein, and growth-associated protein 43, were elevated, infarct volume was decreased and neural function was improved in cerebral ischemic rats. These findings suggest that intravenously transplanted human bone marrow mesenchymal stem cells promote neural function. Possible mechanisms underlying these beneficial effects include resistance to demyelination after cerebral ischemia, prevention of axonal degeneration, and promotion of axonal regeneration. PMID:25657721

  9. Different effects of astrocytes and Schwann cells on regenerating retinal axons.

    PubMed

    Campbell, Gregor; Kitching, Juliet; Anderson, Patrick N; Lieberman, A Robert

    2003-11-14

    Following a crush injury of the optic nerve in adult rats, the axons of retinal ganglion cells, stimulated to regenerate by a lens injury and growing within the optic nerve, are associated predominantly with astrocytes: they remain of small diameter (0.1-0.5 microm) and unmyelinated for > or = 2 months after the operation. In contrast, when the optic nerve is cut and a segment of a peripheral nerve is grafted to the ocular stump of the optic nerve, the regenerating retinal axons are associated predominantly with Schwann cells: they are of larger diameter than in the previous experiment and include unmyelinated axons (0.2-2.5 microm) and myelinated axons (mean diameter 2.3 microm). Thus, the grafted peripheral nerve, and presumably its Schwann cells, stimulate enlargement of the regenerating retinal axons leading to partial myelination, whereas the injured optic nerve itself, and presumably its astrocytes, does not. The result points to a marked difference of peripheral (Schwann cells) and central (astrocytes) glia in their effect on regenerating retinal axons.

  10. Emerging Roles of Granule Recycling in Mast Cell Plasticity and Homeostasis.

    PubMed

    Flores, Juan A; Balseiro-Gómez, Santiago; Ales, Eva

    2016-01-01

    Secretory granules (SGs) of mast cells (MCs) release their contents to mediate many biological events and a variety of inflammatory diseases and have important protective roles in innate host defense and pathological functions in allergic reactions and anaphylaxis. There are two modes of MC degranulation during the release of granule contents to the extracellular environment. Anaphylactic degranulation (AND) after IgE-mediated activation is characterized by a rapid swelling and fusion of MC granules as well as abrupt mediators release. Piecemeal degranulation (PMD) is a slow and selective secretion of distinct granule mediators by vesicles shuttling from the granule compartment to the plasma membrane, and it is associated with several chronic diseases. Following degranulation, endocytosis is a fundamental biological event that is necessary to recycle granules and maintain the secretory response during repetitive stimulation. Rapid endocytosis through transient fusion (kiss-and-run, cavicapture and compound exo-endocytosis) has been described in MCs and can also result in the selective release of granule contents. In summary, several possible exo-endocytic mechanisms control the kinetics and magnitude of transmitter release, and each mechanism is associated with a different impact on granule replenishment, cell recovery, and consequently MC function under both normal and pathological conditions.

  11. Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells

    PubMed Central

    Linster, Christiane

    2015-01-01

    Olfactory bulb granule cells are modulated by both acetylcholine (ACh) and norepinephrine (NE), but the effects of these neuromodulators have not been clearly distinguished. We used detailed biophysical simulations of granule cells, both alone and embedded in a microcircuit with mitral cells, to measure and distinguish the effects of ACh and NE on cellular and microcircuit function. Cholinergic and noradrenergic modulatory effects on granule cells were based on data obtained from slice experiments; specifically, ACh reduced the conductance densities of the potassium M current and the calcium-dependent potassium current, whereas NE nonmonotonically regulated the conductance density of an ohmic potassium current. We report that the effects of ACh and NE on granule cell physiology are distinct and functionally complementary to one another. ACh strongly regulates granule cell firing rates and afterpotentials, whereas NE bidirectionally regulates subthreshold membrane potentials. When combined, NE can regulate the ACh-induced expression of afterdepolarizing potentials and persistent firing. In a microcircuit simulation developed to investigate the effects of granule cell neuromodulation on mitral cell firing properties, ACh increased spike synchronization among mitral cells, whereas NE modulated the signal-to-noise ratio. Coapplication of ACh and NE both functionally improved the signal-to-noise ratio and enhanced spike synchronization among mitral cells. In summary, our computational results support distinct and complementary roles for ACh and NE in modulating olfactory bulb circuitry and suggest that NE may play a role in the regulation of cholinergic function. PMID:26334007

  12. Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells.

    PubMed

    Li, Guoshi; Linster, Christiane; Cleland, Thomas A

    2015-12-01

    Olfactory bulb granule cells are modulated by both acetylcholine (ACh) and norepinephrine (NE), but the effects of these neuromodulators have not been clearly distinguished. We used detailed biophysical simulations of granule cells, both alone and embedded in a microcircuit with mitral cells, to measure and distinguish the effects of ACh and NE on cellular and microcircuit function. Cholinergic and noradrenergic modulatory effects on granule cells were based on data obtained from slice experiments; specifically, ACh reduced the conductance densities of the potassium M current and the calcium-dependent potassium current, whereas NE nonmonotonically regulated the conductance density of an ohmic potassium current. We report that the effects of ACh and NE on granule cell physiology are distinct and functionally complementary to one another. ACh strongly regulates granule cell firing rates and afterpotentials, whereas NE bidirectionally regulates subthreshold membrane potentials. When combined, NE can regulate the ACh-induced expression of afterdepolarizing potentials and persistent firing. In a microcircuit simulation developed to investigate the effects of granule cell neuromodulation on mitral cell firing properties, ACh increased spike synchronization among mitral cells, whereas NE modulated the signal-to-noise ratio. Coapplication of ACh and NE both functionally improved the signal-to-noise ratio and enhanced spike synchronization among mitral cells. In summary, our computational results support distinct and complementary roles for ACh and NE in modulating olfactory bulb circuitry and suggest that NE may play a role in the regulation of cholinergic function.

  13. Granulated peripolar epithelial cells in the renal corpuscle of marine elasmobranch fish.

    PubMed

    Lacy, E R; Reale, E

    1989-07-01

    Granulated epithelial cells at the vascular pole of the renal corpuscle, peripolar cells, have been found in the kidneys of five species of elasmobranchs, the little skate (Raja erinacea), the smooth dogfish shark (Mustelus canis), the Atlantic sharpnose shark (Rhizoprionodon terraenovae), the scalloped hammerhead shark (Sphyrna lewini), and the cow-nosed ray (Rhinoptera bonasus). In a sixth elasmobranch, the spiny dogfish shark (Squalus acanthias), the peripolar cells could not be identified among numerous other granulated epithelial cells. The peripolar cells are located at the transition between the parietal epithelium of Bowman's capsule and the visceral epithelium (podocytes) of the glomerulus, thus forming a cuff-like arrangement surrounding the hilar vessels of the renal corpuscle. These cells may have granules and/or vacuoles. Electron microscopy shows that the granules are membrane-bounded, and contain either a homogeneous material or a paracrystalline structure with a repeating period of about 18 nm. The vacuoles are electron lucent or may contain remnants of a granule. These epithelial cells lie close to the granulated cells of the glomerular afferent arteriole. They correspond to the granular peripolar cells of the mammalian, avian and amphibian kidney. The present study is the first reported occurrence of peripolar cells in a marine organism or in either bony or cartilagenous fish.

  14. Metabolic regulator LKB1 plays a crucial role in Schwann cell-mediated axon maintenance

    PubMed Central

    Beirowski, Bogdan; Babetto, Elisabetta; Golden, Judith P.; Chen, Ying-Jr; Yang, Kui; Gross, Richard W.; Patti, Gary J; Milbrandt, Jeffrey

    2015-01-01

    Summary Schwann cells (SCs) promote axonal integrity independently of myelination by poorly understood mechanisms. Current models suggest that SC metabolism is critical for this support function and that SC metabolic deficits may lead to axonal demise. The LKB1-AMPK kinase pathway targets multiple downstream effectors including mTOR and is a key metabolic regulator implicated in metabolic diseases. We show through integrative molecular, structural, and behavioral characterization of SC-specific mutant mice that LKB1 activity is central to axon stability, whereas AMPK and mTOR in SCs are largely dispensable. The degeneration of axons in LKB1-mutants is most dramatic in unmyelinated small sensory fibers, whereas motor axons are relatively spared. LKB1 deletion in SCs leads to abnormalities in nerve energy and lipid homeostasis, and increased lactate release. The latter acts in a compensatory manner to support distressed axons. LKB1 signaling is essential for SC-mediated axon support, a function that may be dysregulated in diabetic neuropathy. PMID:25195104

  15. Axonal alignment and enhanced neuronal differentiation of neural stem cells on graphene-nanoparticle hybrid structures.

    PubMed

    Solanki, Aniruddh; Chueng, Sy-Tsong Dean; Yin, Perry T; Kappera, Rajesh; Chhowalla, Manish; Lee, Ki-Bum

    2013-10-11

    Human neural stem cells (hNSCs) cultured on graphene-nanoparticle hybrid structures show a unique behavior wherein the axons from the differentiating hNSCs show enhanced growth and alignment. We show that the axonal alignment is primarily due to the presence of graphene and the underlying nanoparticle monolayer causes enhanced neuronal differentiation of the hNSCs, thus having great implications of these hybrid-nanostructures for neuro-regenerative medicine.

  16. Formation of tRNA granules in the nucleus of heat-induced human cells

    SciTech Connect

    Miyagawa, Ryu; Mizuno, Rie; Watanabe, Kazunori; Ijiri, Kenichi

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer tRNAs are tranlocated into the nucleus in heat-induced HeLa cells. Black-Right-Pointing-Pointer tRNAs form the unique granules in the nucleus. Black-Right-Pointing-Pointer tRNA ganules overlap with nuclear stress granules. -- Abstract: The stress response, which can trigger various physiological phenomena, is important for living organisms. For instance, a number of stress-induced granules such as P-body and stress granule have been identified. These granules are formed in the cytoplasm under stress conditions and are associated with translational inhibition and mRNA decay. In the nucleus, there is a focus named nuclear stress body (nSB) that distinguishes these structures from cytoplasmic stress granules. Many splicing factors and long non-coding RNA species localize in nSBs as a result of stress. Indeed, tRNAs respond to several kinds of stress such as heat, oxidation or starvation. Although nuclear accumulation of tRNAs occurs in starved Saccharomyces cerevisiae, this phenomenon is not found in mammalian cells. We observed that initiator tRNA{sup Met} (Meti) is actively translocated into the nucleus of human cells under heat stress. During this study, we identified unique granules of Meti that overlapped with nSBs. Similarly, elongator tRNA{sup Met} was translocated into the nucleus and formed granules during heat stress. Formation of tRNA granules is closely related to the translocation ratio. Then, all tRNAs may form the specific granules.

  17. Transient Developmental Purkinje Cell Axonal Torpedoes in Healthy and Ataxic Mouse Cerebellum

    PubMed Central

    Ljungberg, Lovisa; Lang-Ouellette, Daneck; Yang, Angela; Jayabal, Sriram; Quilez, Sabrina; Watt, Alanna J.

    2016-01-01

    Information is carried out of the cerebellar cortical microcircuit via action potentials propagated along Purkinje cell axons. In several human neurodegenerative diseases, focal axonal swellings on Purkinje cells – known as torpedoes – have been associated with Purkinje cell loss. Interestingly, torpedoes are also reported to appear transiently during development in rat cerebellum. The function of Purkinje cell axonal torpedoes in health as well as in disease is poorly understood. We investigated the properties of developmental torpedoes in the postnatal mouse cerebellum of wild-type and transgenic mice. We found that Purkinje cell axonal torpedoes transiently appeared on axons of Purkinje neurons, with the largest number of torpedoes observed at postnatal day 11 (P11). This was after peak developmental apoptosis had occurred, when Purkinje cell counts in a lobule were static, suggesting that most developmental torpedoes appear on axons of neurons that persist into adulthood. We found that developmental torpedoes were not associated with a presynaptic GABAergic marker, indicating that they are not synapses. They were seldom found at axonal collateral branch points, and lacked microglia enrichment, suggesting that they are unlikely to be involved in axonal refinement. Interestingly, we found several differences between developmental torpedoes and disease-related torpedoes: developmental torpedoes occurred largely on myelinated axons, and were not associated with changes in basket cell innervation on their parent soma. Disease-related torpedoes are typically reported to contain neurofilament; while the majority of developmental torpedoes did as well, a fraction of smaller developmental torpedoes did not. These differences indicate that developmental torpedoes may not be functionally identical to disease-related torpedoes. To study this further, we used a mouse model of spinocerebellar ataxia type 6 (SCA6), and found elevated disease-related torpedo number at 2

  18. Regenerative Responses and Axon Pathfinding of Retinal Ganglion Cells in Chronically Injured Mice

    PubMed Central

    Yungher, Benjamin J.; Ribeiro, Márcio; Park, Kevin K.

    2017-01-01

    Purpose Enhanced regeneration of retinal ganglion cell (RGC) axons can be achieved by modification of numerous neuronal-intrinsic factors. However, axon growth initiation and the pathfinding behavior of these axons after traumatic injury remain poorly understood outside of acute injury paradigms, despite the clinical relevance of more chronic settings. We therefore examined RGC axon regeneration following therapeutic delivery that is postponed until 2 months after optic nerve crush injury. Methods Optic nerve regeneration was induced by virally mediated (adeno-associated virus) ciliary neurotrophic factor (AAV-CNTF) administered either immediately or 56 days after optic nerve crush in wild-type or Bax knockout (KO) mice. Retinal ganglion nerve axon regeneration was assessed 21 and 56 days after viral injection. Immunohistochemical analysis of RGC injury signals and extrinsic factors in the optic nerve were also examined at 5 and 56 days post crush. Results In addition to sustained expression of injury response proteins in surviving RGCs, we observe axon regrowth in wild-type and apoptosis-deficient Bax KO mice following AAV-CNTF treatment. Fewer instances of aberrant axon growth are seen, at least in the area near the lesion site, in animals given treatment 56 days after crush injury compared to the animals given treatment immediately after injury. We also find evidence of long distance growth into a visual target in Bax KO mice despite postponed initiation of this regenerative program. Conclusions These studies provide evidence against an intrinsic critical period for RGC axon regeneration or degradation of injury signals. Regeneration results from Bax KO mice imply highly sustained regenerative capacity in RGCs, highlighting the importance of long-lasting neuroprotective strategies as well as of RGC axon guidance research in chronically injured animals. PMID:28324115

  19. BDNF production by olfactory ensheathing cells contributes to axonal regeneration of cultured adult CNS neurons.

    PubMed

    Pastrana, Erika; Moreno-Flores, Maria Teresa; Avila, Jesus; Wandosell, Francisco; Minichiello, Liliana; Diaz-Nido, Javier

    2007-02-01

    Olfactory ensheathing cells (OECs) are the main glial cell type that populates mammalian olfactory nerves. These cells have a great capacity to promote the regeneration of axons when transplanted into the injured adult mammalian CNS. However, little is still known about the molecular mechanisms they employ in mediating such a task. Brain-derived neurotrophic factor (BDNF) was identified as a candidate molecule in a genomic study that compared three functionally different OEC populations: Early passage OECs (OEC Ep), Late passage OECs (OEC Lp) and the OEC cell line TEG3 [Pastrana, E., Moreno-Flores, M.T., Gurzov, E.N., Avila, J., Wandosell, F., Diaz-Nido, J., 2006. Genes associated with adult axon regeneration promoted by olfactory ensheathing cells: a new role for matrix metalloproteinase 2. J. Neurosci. 26, 5347-5359]. We have here set out to determine the role played by BDNF in the stimulation of axon outgrowth by OECs. We compared the extracellular BDNF levels in the three OEC populations and show that it is produced in significant amounts by the OECs that can stimulate axon regeneration in adult retinal neurons (OEC Ep and TEG3) but it is absent from the extracellular medium of OEC Lp cells which lack this capacity. Blocking BDNF signalling impaired axonal regeneration of adult retinal neurons co-cultured with TEG3 cells and adding BDNF increased the proportion of adult neurons that regenerate their axons on OEC Lp monolayers. Combining BDNF with other extracellular proteins such as Matrix Metalloproteinase 2 (MMP2) further augmented this effect. This study shows that BDNF production by OECs plays a direct role in the promotion of axon regeneration of adult CNS neurons.

  20. Passive immunization with myelin basic protein activated T cells suppresses axonal dieback but does not promote axonal regeneration following spinal cord hemisection in adult rats.

    PubMed

    Wang, Hong-Ju; Hu, Jian-Guo; Shen, Lin; Wang, Rui; Wang, Qi-Yi; Zhang, Chen; Xi, Jin; Zhou, Jian-Sheng; Lü, He-Zuo

    2012-08-01

    The previous studies suggested that some subpopulations of T lymphocytes against central nervous system (CNS) antigens, such as myelin basic protein (MBP), are neuroprotective. But there were few reports about the effect of these T cells on axon regeneration. In this study, the neonatally thymectomied (Tx) adult rats which contain few T lymphocytes were subjected to spinal cord hemisection and then passively immunized with MBP-activated T cells (MBP-T). The regeneration and dieback of transected axons of cortico-spinal tract (CST) were detected by biotin dextran amine (BDA) tracing. The behavioral assessments were performed using the Basso, Beattie, and Bresnahan locomotor rating scale. We found that passive transferring of MBP-T could attenuate axonal dieback. However, no significant axon regeneration and behavioral differences were observed among the normal, Tx and sham-Tx (sTx) rats with or without MBP-T passive immunization. These results indicate that passive transferring of MBP-T cells can attenuate axonal dieback and promote neuroprotection following spinal cord injury (SCI), but may not promote axon regeneration.

  1. Prox1 postmitotically defines dentate gyrus cells by specifying granule cell identity over CA3 pyramidal cell fate in the hippocampus.

    PubMed

    Iwano, Tomohiko; Masuda, Aki; Kiyonari, Hiroshi; Enomoto, Hideki; Matsuzaki, Fumio

    2012-08-01

    The brain is composed of diverse types of neurons that fulfill distinct roles in neuronal circuits, as manifested by the hippocampus, where pyramidal neurons and granule cells constitute functionally distinct domains: cornu ammonis (CA) and dentate gyrus (DG), respectively. Little is known about how these two types of neuron differentiate during hippocampal development, although a set of transcription factors that is expressed in progenitor cells is known to be required for the survival of granule cells. Here, we demonstrate in mice that Prox1, a transcription factor constitutively expressed in the granule cell lineage, postmitotically functions to specify DG granule cell identity. Postmitotic elimination of Prox1 caused immature DG neurons to lose the granule cell identity and in turn terminally differentiate into the pyramidal cell type manifesting CA3 neuronal identity. By contrast, Prox1 overexpression caused opposing effects on presumptive hippocampal pyramidal cells. These results indicate that the immature DG cell has the potential to become a granule cell or a pyramidal cell, and Prox1 defines the granule cell identity. This bi-potency is lost in mature DG cells, although Prox1 is still required for correct gene expression in DG granule cells. Thus, our data indicate that Prox1 acts as a postmitotic cell fate determinant for DG granule cells over the CA3 pyramidal cell fate and is crucial for maintenance of the granule cell identity throughout the life.

  2. Engineered cell culture substrates for axon guidance studies: moving beyond proof of concept.

    PubMed

    Roy, Joannie; Kennedy, Timothy E; Costantino, Santiago

    2013-02-21

    Promoting axon regeneration following injury is one of the ultimate challenges of neuroscience, and understanding the mechanisms that regulate axon growth and guidance is essential to achieve this goal. During development axons are directed over relatively long distances by a precise extracellular distribution of chemical signals in the embryonic nervous system. Multiple guidance proteins, including netrins, slits, semaphorins, ephrins and neurotrophins have been identified as key players in this process. During the last decade, engineered cell culture substrates have been developed to investigate the cellular and molecular mechanisms underlying axon guidance. This review is focused on the biological insights that have been achieved using new techniques that attempt to mimic in vitro the spatial patterns of proteins that growth cones encounter in vivo.

  3. Bone marrow-derived endothelial progenitor cells protect postischemic axons after traumatic brain injury.

    PubMed

    Park, Katya J; Park, Eugene; Liu, Elaine; Baker, Andrew J

    2014-02-01

    White matter sparing after traumatic brain injury (TBI) is an important predictor of survival and outcome. Blood vessels and axons are intimately associated anatomically and developmentally. Neural input is required for appropriate vascular patterning, and vascular signaling is important for neuron development and axon growth. Owing to this codependence between endothelial cells and axons during development and the contribution of endothelial progenitor cells (EPCs) in ischemic injury, we hypothesized that EPCs are important in axonal survival after TBI. We examined the effects of allogenic-cultured EPCs on white matter protection and microvascular maintenance after midline fluid percussion injury in adult Sprague-Dawley rats. We used two in vitro models of injury, mechanical stretch and oxygen-glucose deprivation (OGD), to examine the effects of EPCs on the mechanical and ischemic components of brain trauma, respectively. Our results indicate that EPCs improve the white matter integrity and decrease capillary breakdown after injury. Cultured cortical neurons exposed to OGD had less axon degeneration when treated with EPC-conditioned media, whereas no effect was seen in axons injured by mechanical stretch. The results indicate that EPCs are important for the protection of the white matter after trauma and represent a potential avenue for therapy.

  4. Neuroligin-2 accelerates GABAergic synapse maturation in cerebellar granule cells

    PubMed Central

    Fu, Zhanyan; Vicini, Stefano

    2009-01-01

    Neuroligins (NLGs) are postsynaptic cell adhesion molecules that are thought to function in synaptogenesis. To investigate the role of NLGs on synaptic transmission once the synapse is formed, we transfected neuroligin-2(NLG2) in cultured mouse cerebellar granule cells (CGCs), and recorded GABAA (γ-aminobutyric acid) receptor mediated miniature postsynaptic currents (mISPCs). NLG2 transfected cells had mIPSCs with faster decay than matching GFP expressing controls at young culture ages (days in vitro, DIV 7-8). Down-regulation of NLG2 by the isoform specific shRNA-NLG2 resulted in an opposite effect. We and others have shown that the switch of α subunits of GABAA Rs from α2/3 to α1 underlies developmental speeding of the IPSC decay in various CNS regions, including the cerebellum. To assess whether the reduced decay time of mIPSCs by NLG2 is due to the recruitment of more α1 containing GABAARs at the synapses, we examined the prolongation of current decay by the zolpidem, which has been shown to preferentially enhance the activity of α1 subunit containing GABA channel. The application of zolpidem resulted in a significantly greater prolongation kinetics of synaptic currents in NLG2 over-expressing cells than control cells, suggesting that NLG2 over-expression accelerates synapse maturation by promoting incorporation of the α1 subunit-containing GABAARs at postsynaptic sites in immature cells. In addition, the effect of NLG2 on the speeding of decay time course of synaptic currents was abolished when we used CGC cultures from α1-/- mice. Lastly, to exclude the possibility that the fast decay of mIPSCs induced by NLG2 could be also due to the impacts of NLG2 on the GABA transient in synaptic cleft, we measured the sensitivity of mIPSCs to the fast-off competitive antagonists TPMPA. We found that TPMPA similarly inhibits mIPSCs in control and NLG2 over-expressing CGCs both at young age (DIV8) and old age (DIV14) of cultures. However, we confirm our previous

  5. Fluorescent Labeling of Newborn Dentate Granule Cells in GAD67-GFP Transgenic Mice: A Genetic Tool for the Study of Adult Neurogenesis

    PubMed Central

    Zhao, Shengli; Zhou, Yang; Gross, Jimmy; Miao, Pei; Qiu, Li; Wang, Dongqing; Chen, Qian; Feng, Guoping

    2010-01-01

    Neurogenesis in the adult hippocampus is an important form of structural plasticity in the brain. Here we report a line of BAC transgenic mice (GAD67-GFP mice) that selectively and transitorily express GFP in newborn dentate granule cells of the adult hippocampus. These GFP+ cells show a high degree of colocalization with BrdU-labeled nuclei one week after BrdU injection and express the newborn neuron marker doublecortin and PSA-NCAM. Compared to mature dentate granule cells, these newborn neurons show immature morphological features: dendritic beading, fewer dendritic branches and spines. These GFP+ newborn neurons also show immature electrophysiological properties: higher input resistance, more depolarized resting membrane potentials, small and non-typical action potentials. The bright labeling of newborn neurons with GFP makes it possible to visualize the details of dendrites, which reach the outer edge of the molecular layer, and their axon (mossy fiber) terminals, which project to the CA3 region where they form synaptic boutons. GFP expression covers the whole developmental stage of newborn neurons, beginning within the first week of cell division and disappearing as newborn neurons mature, about 4 weeks postmitotic. Thus, the GAD67-GFP transgenic mice provide a useful genetic tool for studying the development and regulation of newborn dentate granule cells. PMID:20824075

  6. Two modes of lytic granule fusion during degranulation by natural killer cells.

    PubMed

    Liu, Dongfang; Martina, Jose A; Wu, Xufeng S; Hammer, John A; Long, Eric O

    2011-08-01

    Lytic granules in cytotoxic lymphocytes, which include T cells and natural killer (NK) cells, are secretory lysosomes that release their content upon fusion with the plasma membrane (PM), a process known as degranulation. Although vesicle exocytosis has been extensively studied in endocrine and neuronal cells, much less is known about the fusion of lytic granules in cytotoxic lymphocytes. Here, we used total internal reflection fluorescence microscopy to examine lytic granules labeled with fluorescently tagged Fas ligand (FasL) in the NK cell line NKL stimulated with phorbol ester and ionomycin and in primary NK cells activated by physiological receptor-ligand interactions. Two fusion modes were observed: complete fusion, characterized by loss of granule content and rapid diffusion of FasL at the PM; and incomplete fusion, characterized by transient fusion pore opening and retention of FasL at the fusion site. The pH-sensitive green fluorescence protein (pHluorin) fused to the lumenal domain of FasL was used to visualize fusion pore opening with a time resolution of 30 ms. Upon incomplete fusion, pHluorin emission lasted several seconds in the absence of noticeable diffusion. Thus, we conclude that lytic granules in NK cells undergo both complete and incomplete fusion with the PM, and propose that incomplete fusion may promote efficient recycling of lytic granule membrane after the release of cytotoxic effector molecules.

  7. Pax3 overexpression induces cell aggregation and perturbs commissural axon projection during embryonic spinal cord development.

    PubMed

    Lin, Juntang; Fu, Sulei; Yang, Ciqing; Redies, Christoph

    2017-05-01

    Pax3 is a transcription factor that belongs to the paired box family. In the developing spinal cord it is expressed in the dorsal commissural neurons, which project ascending axons contralaterally to form proper spinal cord-brain circuitry. While it has been shown that Pax3 induces cell aggregation in vitro, little is known about the role of Pax3 in cell aggregation and spinal circuit formation in vivo. We have reported that Pax3 is involved in neuron differentiation and that its overexpression induces ectopic cadherin-7 expression. In this study we report that Pax3 overexpression also induces cell aggregation in vivo. Tissue sections and open book preparations revealed that Pax3 overexpression prevents commissural axons from projecting to the contralateral side of the spinal cord. Cells overexpressing Pax3 aggregated in cell clusters that contained shortened neurites with perturbed axon growth and elongation. Pax3-specific shRNA partially rescued the morphological change induced by Pax3 overexpression in vivo. Our results indicate that the normal expression of Pax3 is necessary for proper axonal pathway finding and commissural axon projection. In conclusion, Pax3 regulates neural circuit formation during embryonic development. J. Comp. Neurol. 525:1618-1632, 2017. © 2016 Wiley Periodicals, Inc.

  8. Pathogenesis of ganglion "cell death" in glaucoma and neuroprotection: focus on ganglion cell axonal mitochondria.

    PubMed

    Osborne, Neville N

    2008-01-01

    Retinal ganglion cell axons within the globe are functionally specialized being richly provided with many mitochondria. The mitochondria produce the high energy requirement for nerve conduction in the unmyelinated part of the ganglion cell axons. We have proposed that in the initiation of glaucoma, an alteration in the quality of blood flow dynamics in the optic nerve head causes a compromise in the retinal ganglion cell axon energy requirement, rendering the ganglion cells susceptible to additional insults. One secondary insult might be light entering the eye to further affect ganglion cell axon mitochondrial function. Other insults to the ganglion cells might be substances (e.g., glutamate, nitric oxide, TNF-alpha) released from astrocytes. These effects ultimately cause ganglion cell death because of the inability of mitochondria to maintain normal function. We therefore suggest that ganglion cell apoptosis in glaucoma is both receptor and mitochondrial mediated. Agents targeted specifically at enhancing ganglion cell mitochondrial energy production should therefore be beneficial in a disease like glaucoma. Ganglion cell death in glaucoma might therefore, in principle, not be unlike the pathophysiology of numerous neurological disorders involving energy dysregulation and oxidative stress. The trigger(s) for ganglion cell apoptosis in glaucoma is/are likely to be multifactorial, and the rationale for targeting impaired energy production as a possibility of improving a patient's quality of life is based on logic derived from laboratory studies where neuronal apoptosis is shown to occur via different mechanisms. Light-induced neuronal apoptosis is likely to be more relevant to ganglion cell death in glaucoma than, for example, neuronal apoptosis associated with Parkinson's disease. Logic suggests that enhancing mitochondrial function generally will slow down ganglion cell apoptosis and therefore benefit glaucoma patients. On the basis of our laboratory studies, we

  9. Cell-to-cell transfer of glial proteins to the squid giant axon: The glia- neuron protein transfer hypothesis

    PubMed Central

    Lasek, RJ; Gainer, H; Barker, JL

    1977-01-01

    The hypothesis that glial cells synthesize proteins which are transferred to adjacent neurons was evaluated in the giant fiber of the squid (Loligo pealei). When giant fibers are separated from their neuron cell bodies and incubated in the presence of radioactive amino acids, labeled proteins appear in the glial cells and axoplasm. Labeled axonal proteins were detected by three methods: extrusion of the axoplasm from the giant fiber, autoradiography, and perfusion of the giant fiber. This protein synthesis is completely inhibited by puromycin but is not affected by chloramphenicol. The following evidence indicates that the labeled axonal proteins are not synthesized within the axon itself. (a) The axon does not contain a significant amount of ribosomes or ribosomal RNA. (b) Isolated axoplasm did not incorporate [(3)H]leucine into proteins. (c) Injection of Rnase into the giant axon did not reduce the appearance of newly synthesized proteins in the axoplasm of the giant fiber. These findings, coupled with other evidence, have led us to conclude that the adaxonal glial cells synthesize a class of proteins which are transferred to the giant axon. Analysis of the kinetics of this phenomenon indicates that some proteins are transferred to the axon within minutes of their synthesis in the glial cells. One or more of the steps in the transfer process appear to involve Ca++, since replacement of extracellular Ca++ by either Mg++ or Co++ significantly reduces the appearance of labeled proteins in the axon. A substantial fraction of newly synthesized glial proteins, possibly as much as 40 percent, are transferred to the giant axon. These proteins are heterogeneous and range in size from 12,000 to greater than 200,000 daltons. Comparisons of the amount of amino acid incorporation in glia cells and neuron cell bodies raise the possibility that the adaxonal glial cells may provide an important source of axonal proteins which is supplemental to that provided by axonal transport

  10. Secretory granules of mast cells accumulate mature and immature MHC class II molecules.

    PubMed

    Vincent-Schneider, H; Théry, C; Mazzeo, D; Tenza, D; Raposo, G; Bonnerot, C

    2001-01-01

    Bone marrow-derived mast cells as well as dendritic cells, macrophages and B lymphocytes express major histocompatibility complex (MHC) class II molecules. In mast cells, the majority of MHC class II molecules reside in intracellular cell type-specific compartments, secretory granules. To understand the molecular basis for the localisation of MHC class II molecules in secretory granules, MHC class II molecules were expressed, together with the invariant chain, in the mast cell line, RBL-2H3. Using electron and confocal microscopy, we observed that in RBL-2H3 cells, mature and immature class II molecules accumulate in secretory granules. Two particular features of class II transport accounted for this intracellular localization: first, a large fraction of newly synthesized MHC class II molecules remained associated with invariant chain fragments. This defect, resulting in a slower rate of MHC class II maturation, was ascribed to a low cathepsin S activity. Second, although a small fraction of class II dimers matured (i.e. became free of invariant chain), allowing their association with antigenic peptides, they were retained in secretory granules. As a consequence of this intracellular localization, cell surface expression of class II molecules was strongly increased by cell activation stimuli which induced the release of the contents of secretory granules. Our results suggest that antigen presentation, and thereby antigen specific T cell stimulation, are regulated in mast cells by stimuli which induce mast cell activation.

  11. Axon-Schwann cell interactions during peripheral nerve regeneration in zebrafish larvae

    PubMed Central

    2014-01-01

    Background Peripheral nerve injuries can severely affect the way that animals perceive signals from the surrounding environment. While damage to peripheral axons generally has a better outcome than injuries to central nervous system axons, it is currently unknown how neurons re-establish their target innervations to recover function after injury, and how accessory cells contribute to this task. Here we use a simple technique to create reproducible and localized injury in the posterior lateral line (pLL) nerve of zebrafish and follow the fate of both neurons and Schwann cells. Results Using pLL single axon labeling by transient transgene expression, as well as transplantation of glial precursor cells in zebrafish larvae, we individualize different components in this system and characterize their cellular behaviors during the regenerative process. Neurectomy is followed by loss of Schwann cell differentiation markers that is reverted after nerve regrowth. We show that reinnervation of lateral line hair cells in neuromasts during pLL nerve regeneration is a highly dynamic process with promiscuous yet non-random target recognition. Furthermore, Schwann cells are required for directional extension and fasciculation of the regenerating nerve. We provide evidence that these cells and regrowing axons are mutually dependant during early stages of nerve regeneration in the pLL. The role of ErbB signaling in this context is also explored. Conclusion The accessibility of the pLL nerve and the availability of transgenic lines that label this structure and their synaptic targets provides an outstanding in vivo model to study the different events associated with axonal extension, target reinnervation, and the complex cellular interactions between glial cells and injured axons during nerve regeneration. PMID:25326036

  12. Functional polarity of dendrites and axons of primate A1 amacrine cells

    PubMed Central

    Davenport, Christopher M.; Detwiler, Peter B.; Dacey, Dennis M.

    2011-01-01

    The A1 cell is an axon-bearing amacrine cell of the primate retina with a diffusely stratified, moderately branched dendritic tree (~400 µm diameter). Axons arise from proximal dendrites forming a second concentric, larger arborization (>4 mm diameter) of thin processes with bouton-like swellings along their length. A1 cells are ON-OFF transient cells that fire a brief high frequency burst of action potentials in response to light (Stafford & Dacey, 1997). It has been hypothesized that A1 cells receive local input to their dendrites, with action potentials propagating output via the axons across the retina, serving a global inhibitory function. To explore this hypothesis we recorded intracellularly from A1 cells in an in vitro macaque monkey retina preparation. A1 cells have an antagonistic center-surround receptive field structure for the ON and OFF components of the light response. Blocking the ON pathway with L-AP4 eliminated ON center responses but not OFF center responses or ON or OFF surround responses. Blocking GABAergic inhibition with picrotoxin increased response amplitudes without affecting receptive field structure. TTX abolished action potentials, with little effect on the sub-threshold light response or basic receptive field structure. We also used multi-photon laser scanning microscopy to record light-induced calcium transients in morphologically identified dendrites and axons of A1 cells. TTX completely abolished such calcium transients in the axons but not in the dendrites. Together these results support the current model of A1 function, whereby the dendritic tree receives synaptic input that determines the center-surround receptive field; and action potentials arise in the axons, which propagate away from the dendritic field across the retina. PMID:17550636

  13. Retrograde plasticity and differential competition of bipolar cell dendrites and axons in the developing retina.

    PubMed

    Johnson, Robert E; Kerschensteiner, Daniel

    2014-10-06

    Most neurons function in the context of pathways that process and propagate information through a series of stages, e.g., from the sensory periphery to cerebral cortex. Because activity at each stage of a neural pathway depends on connectivity at the preceding one, we hypothesized that during development, axonal output of a neuron may regulate synaptic development of its dendrites (i.e., retrograde plasticity). Within pathways, neurons often receive input from multiple partners and provide output to targets shared with other neurons (i.e., convergence). Converging axons can intermingle or occupy separate territories on target dendrites. Activity-dependent competition has been shown to bias target innervation by overlapping axons in several systems. By contrast, whether territorial axons or dendrites compete for targets and inputs, respectively, has not been tested. Here, we generate transgenic mice in which glutamate release from specific sets of retinal bipolar cells (BCs) is suppressed. We find that dendrites of silenced BCs recruit fewer inputs when their neighbors are active and that dendrites of active BCs recruit more inputs when their neighbors are silenced than either active or silenced BCs with equal neighbors. By contrast, axons of silenced BCs form fewer synapses with their targets, irrespective of the activity of their neighbors. These findings reveal that retrograde plasticity guides BC dendritic development in vivo and demonstrate that dendrites, but not territorial axons, in a convergent neural pathway engage in activity-dependent competition. We propose that at a population level, retrograde plasticity serves to maximize functional representation of inputs.

  14. Rescuing axons from degeneration does not affect retinal ganglion cell death

    PubMed Central

    de Lima, S.; Mietto, B.S.; Paula, C.; Muniz, T.; Martinez, A.M.B.; Gardino, P.F.

    2016-01-01

    After a traumatic injury to the central nervous system, the distal stumps of axons undergo Wallerian degeneration (WD), an event that comprises cytoskeleton and myelin breakdown, astrocytic gliosis, and overexpression of proteins that inhibit axonal regrowth. By contrast, injured neuronal cell bodies show features characteristic of attempts to initiate the regenerative process of elongating their axons. The main molecular event that leads to WD is an increase in the intracellular calcium concentration, which activates calpains, calcium-dependent proteases that degrade cytoskeleton proteins. The aim of our study was to investigate whether preventing axonal degeneration would impact the survival of retinal ganglion cells (RGCs) after crushing the optic nerve. We observed that male Wistar rats (weighing 200-400 g; n=18) treated with an exogenous calpain inhibitor (20 mM) administered via direct application of the inhibitor embedded within the copolymer resin Evlax immediately following optic nerve crush showed a delay in the onset of WD. This delayed onset was characterized by a decrease in the number of degenerated fibers (P<0.05) and an increase in the number of preserved fibers (P<0.05) 4 days after injury. Additionally, most preserved fibers showed a normal G-ratio. These results indicated that calpain inhibition prevented the degeneration of optic nerve fibers, rescuing axons from the process of axonal degeneration. However, analysis of retinal ganglion cell survival demonstrated no difference between the calpain inhibitor- and vehicle-treated groups, suggesting that although the calpain inhibitor prevented axonal degeneration, it had no effect on RGC survival after optic nerve damage. PMID:27007653

  15. Cobalt inhibits motility of axonal mitochondria and induces axonal degeneration in cultured dorsal root ganglion cells of rat.

    PubMed

    Kikuchi, Shin; Ninomiya, Takafumi; Kohno, Takayuki; Kojima, Takashi; Tatsumi, Haruyuki

    2017-06-27

    Cobalt is a trace element that localizes in the human body as cobalamin, also known as vitamin B12. Excessive cobalt exposure induces a peripheral neuropathy, the mechanisms of which are yet to be elucidated. We investigated how cobalt may affect mitochondrial motility in primary cultures of rat dorsal root ganglion (DRG). We observed mitochondrial motility by time-lapse imaging after DsRed2 tagging via lentivirus, mitochondrial structure using transmission electron microscopy (TEM), and axonal swelling using immunocytochemical staining. The concentration of cobaltous ion (Co(2+)) required to significantly suppress mitochondrial motility is lower than that required to induce axonal swelling following a 24-h treatment. Exposure to relatively low concentrations of Co(2+) for 48 h suppressed mitochondrial motility without leading to axonal swelling. TEM images indicated that Co(2+) induces mitochondrial destruction. Our results show that destruction of the axonal mitochondria precedes the axonal degeneration induced by Co(2+) exposure.

  16. Ablation of Newly Generated Hippocampal Granule Cells Has Disease-Modifying Effects in Epilepsy

    PubMed Central

    Hosford, Bethany E.; Liska, John P.

    2016-01-01

    Hippocampal granule cells generated in the weeks before and after an epileptogenic brain injury can integrate abnormally into the dentate gyrus, potentially mediating temporal lobe epileptogenesis. Previous studies have demonstrated that inhibiting granule cell production before an epileptogenic brain insult can mitigate epileptogenesis. Here, we extend upon these findings by ablating newly generated cells after the epileptogenic insult using a conditional, inducible diphtheria-toxin receptor expression strategy in mice. Diphtheria-toxin receptor expression was induced among granule cells born up to 5 weeks before pilocarpine-induced status epilepticus and these cells were then eliminated beginning 3 d after the epileptogenic injury. This treatment produced a 50% reduction in seizure frequency, but also a 20% increase in seizure duration, when the animals were examined 2 months later. These findings provide the first proof-of-concept data demonstrating that granule cell ablation therapy applied at a clinically relevant time point after injury can have disease-modifying effects in epilepsy. SIGNIFICANCE STATEMENT These findings support the long-standing hypothesis that newly generated dentate granule cells are pro-epileptogenic and contribute to the occurrence of seizures. This work also provides the first evidence that ablation of newly generated granule cells can be an effective therapy when begun at a clinically relevant time point after an epileptogenic insult. The present study also demonstrates that granule cell ablation, while reducing seizure frequency, paradoxically increases seizure duration. This paradoxical effect may reflect a disruption of homeostatic mechanisms that normally act to reduce seizure duration, but only when seizures occur frequently. PMID:27798182

  17. Ablation of Newly Generated Hippocampal Granule Cells Has Disease-Modifying Effects in Epilepsy.

    PubMed

    Hosford, Bethany E; Liska, John P; Danzer, Steve C

    2016-10-26

    Hippocampal granule cells generated in the weeks before and after an epileptogenic brain injury can integrate abnormally into the dentate gyrus, potentially mediating temporal lobe epileptogenesis. Previous studies have demonstrated that inhibiting granule cell production before an epileptogenic brain insult can mitigate epileptogenesis. Here, we extend upon these findings by ablating newly generated cells after the epileptogenic insult using a conditional, inducible diphtheria-toxin receptor expression strategy in mice. Diphtheria-toxin receptor expression was induced among granule cells born up to 5 weeks before pilocarpine-induced status epilepticus and these cells were then eliminated beginning 3 d after the epileptogenic injury. This treatment produced a 50% reduction in seizure frequency, but also a 20% increase in seizure duration, when the animals were examined 2 months later. These findings provide the first proof-of-concept data demonstrating that granule cell ablation therapy applied at a clinically relevant time point after injury can have disease-modifying effects in epilepsy. These findings support the long-standing hypothesis that newly generated dentate granule cells are pro-epileptogenic and contribute to the occurrence of seizures. This work also provides the first evidence that ablation of newly generated granule cells can be an effective therapy when begun at a clinically relevant time point after an epileptogenic insult. The present study also demonstrates that granule cell ablation, while reducing seizure frequency, paradoxically increases seizure duration. This paradoxical effect may reflect a disruption of homeostatic mechanisms that normally act to reduce seizure duration, but only when seizures occur frequently. Copyright © 2016 the authors 0270-6474/16/3611013-11$15.00/0.

  18. Calsyntenins are secretory granule proteins in anterior pituitary gland and pancreatic islet alpha cells.

    PubMed

    Rindler, Michael J; Xu, Chong-Feng; Gumper, Iwona; Cen, Chuan; Sonderegger, Peter; Neubert, Thomas A

    2008-04-01

    Calsyntenins are members of the cadherin superfamily of cell adhesion molecules. They are present in postsynaptic membranes of excitatory neurons and in vesicles in transit to neuronal growth cones. In the current study, calsyntenin-1 (CST-1) and calsyntenin-3 (CST-3) were identified by mass spectrometric analysis (LC-MS/MS) of integral membrane proteins from highly enriched secretory granule preparations from bovine anterior pituitary gland. Immunofluorescence microscopy on thin frozen sections of rat pituitary revealed that CST-1 was present only in gonadotropes where it colocalized with follicle-stimulating hormone in secretory granules. In contrast, CST-3 was present not only in gonadotrope secretory granules but also in those of somatotropes and thyrotropes. Neither protein was detected in mammatropes. In addition, CST-1 was also localized to the glucagon-containing secretory granules of alpha cells in the pancreatic islets of Langerhans. Results indicate that calsyntenins function outside the nervous system and potentially are modulators of endocrine function.

  19. Measurement of the internal pH of mast cell granules using microvolumetric fluorescence and isotopic techniques

    SciTech Connect

    De Young, M.B.; Nemeth, E.F.; Scarpa, A.

    1987-04-01

    The intragranular pH of isolated mast cell granules was measured. Because of the minute amounts of isolated granules available, two techniques were developed by modifying aminoacridine fluorescence and (/sup 14/C)methylamine accumulation techniques to permit measurements with microliter sample volumes. Granule purity was demonstrated by electron microscopy, ruthenium red exclusion, and biochemical (histamine, mast cell granule protease) analysis. The internal pH was determined to be 5.55 +/- 0.06, indicating that the pH environment within mast cell granules is not significantly different from that of previously studied granule types (i.e., chromaffin, platelet, pancreatic islet, and pituitary granules). Collapse of the pH gradient by NH+4 was demonstrated with both techniques. No evidence of Cl-/OH- or specific cation/H+ transport was found, and major chloride permeability could not be unequivocably demonstrated. Ca/sup 2 +/ and Cl- at concentrations normally present extracellularly destabilized granules in the presence of NH+4, but this phenomenon does not necessarily indicate a role for these ions in the exocytotic release of granule contents from intact cells. The pH measurement techniques developed for investigating the properties of granules in mast cells may be useful for studying other granules that can be obtained only in limited quantities.

  20. The structure of the terminal arborizations of physiologically identified retinal ganglion cell Y axons in the kitten.

    PubMed Central

    Friedlander, M J; Martin, K A; Vahle-Hinz, C

    1985-01-01

    Retinal ganglion cell (r.g.c.) axons (n = 17) in the optic tract of 4-5 week-old kittens and adult cats (n = 4, this study, n = 27 from other reports) were studied both physiologically and morphologically. Axons were initially classified during extracellular recording with a battery of physiological tests that included Fourier analysis of the response to a sinusoidally counterphased sine-wave grating. Y axons had a significant second harmonic response component (greater than twice the fundamental) present independent of the spatial phase position of the grating. These axons were then recorded from intracellularly and subsequently filled ionophoretically with horseradish peroxidase (HRP). The HRP filled the axons' terminal arborizations in the dorsal lateral geniculate nucleus (l.g.n.). The innervation pattern and and structure of the terminal arborizations of the kitten r.g.c. Y axons were compared to those of the adult. The kitten Y axons innervated the l.g.n. in a pattern similar to that of the adult (individual branches from a single axon always innervated lamina A or A1 and may also have innervated lamina C, the medial interlaminar nucleus (m.i.n.) and/or sent branches that coursed medial to the l.g.n.). Fourteen of seventeen of these Y axons in the kitten innervated either of the A-laminae heavily (greater than 200 terminal boutons per axon). The remaining three r.g.c. Y axons in the kitten had only small arborizations within lamina A (less than fifty terminal boutons per axon) but heavily innervated lamina C. The structure of the terminal boutons on the kitten r.g.c. Y axons was highly variable when compared to axons of adult cats. Some of the boutons were spherical or crenulated as in the adult. Many others had filopodia and growth cone-like terminals with fine extensions. This variable maturation of terminal boutons was seen both between axons and on individual axons. The number of boutons on the kitten r.g.c. Y axons in the A-laminae was significantly less

  1. Molecular identity of axonal sodium channels in human cortical pyramidal cells

    PubMed Central

    Tian, Cuiping; Wang, Kaiyan; Ke, Wei; Guo, Hui; Shu, Yousheng

    2014-01-01

    Studies in rodents revealed that selective accumulation of Na+ channel subtypes at the axon initial segment (AIS) determines action potential (AP) initiation and backpropagation in cortical pyramidal cells (PCs); however, in human cortex, the molecular identity of Na+ channels distributed at PC axons, including the AIS and the nodes of Ranvier, remains unclear. We performed immunostaining experiments in human cortical tissues removed surgically to cure brain diseases. We found strong immunosignals of Na+ channels and two channel subtypes, NaV1.2 and NaV1.6, at the AIS of human cortical PCs. Although both channel subtypes were expressed along the entire AIS, the peak immunosignals of NaV1.2 and NaV1.6 were found at proximal and distal AIS regions, respectively. Surprisingly, in addition to the presence of NaV1.6 at the nodes of Ranvier, NaV1.2 was also found in a subpopulation of nodes in the adult human cortex, different from the absence of NaV1.2 in myelinated axons in rodents. NaV1.1 immunosignals were not detected at either the AIS or the nodes of Ranvier of PCs; however, they were expressed at interneuron axons with different distribution patterns. Further experiments revealed that parvalbumin-positive GABAergic axon cartridges selectively innervated distal AIS regions with relatively high immunosignals of NaV1.6 but not the proximal NaV1.2-enriched compartments, suggesting an important role of axo-axonic cells in regulating AP initiation in human PCs. Together, our results show that both NaV1.2 and NaV1.6 (but not NaV1.1) channel subtypes are expressed at the AIS and the nodes of Ranvier in adult human cortical PCs, suggesting that these channel subtypes control neuronal excitability and signal conduction in PC axons. PMID:25294986

  2. Intracisternal granules in the adipokinetic cells of locusts are not degraded and apparently function as supplementary stores of secretory material.

    PubMed

    Harthoorn, L F; Diederen, J H; Oudejans, R C; Verstegen, M M; Vullings, H G; Van der Horst, D J

    2000-01-01

    The intracisternal granules in locust adipokinetic cells appear to represent accumulations of secretory material within cisternae of the rough endoplasmic reticulum. An important question is whether these granules are destined for degradation or represent stores of (pro)hormones. Two strategies were used to answer this question. First, cytochemistry was applied to elucidate the properties of intracisternal granules. The endocytic tracers horseradish peroxidase and wheat-germ agglutinin-conjugated horseradish peroxidase were used to facilitate the identification of endocytic, autophagic, and lysosomal organelles, which may be involved in the degradation of intracisternal granules. No intracisternal granules could be found within autophagosomes, and granules fused with endocytic and lysosomal organelles were not observed, nor could tracer be found within the granules. The lysosomal enzyme acid phosphatase was absent from the granules. Second, biochemical analysis of the content of intracisternal granules revealed that these granules contain prohormones as well as hormones. Prohormones were present in relatively higher amounts compared with ordinary secretory granules. Since the intracisternal granules in locust adipokinetic cells are not degraded and contain intact (pro)hormones it is concluded that they function as supplementary stores of secretory material.

  3. Rapamycin suppresses axon sprouting by somatostatin interneurons in a mouse model of temporal lobe epilepsy.

    PubMed

    Buckmaster, Paul S; Wen, Xiling

    2011-11-01

    In temporal lobe epilepsy many somatostatin interneurons in the dentate gyrus die. However, some survive and sprout axon collaterals that form new synapses with granule cells. The functional consequences of γ-aminobutyric acid (GABA)ergic synaptic reorganization are unclear. Development of new methods to suppress epilepsy-related interneuron axon sprouting might be useful experimentally. Status epilepticus was induced by systemic pilocarpine treatment in green fluorescent protein (GFP)-expressing inhibitory nerurons (GIN) mice in which a subset of somatostatin interneurons expresses GFP. Beginning 24 h later, mice were treated with vehicle or rapamycin (3 mg/kg intraperitoneally) every day for 2 months. Stereologic methods were then used to estimate numbers of GFP-positive hilar neurons per dentate gyrus and total length of GFP-positive axon in the molecular layer plus granule cell layer. GFP-positive axon density was calculated. The number of GFP-positive axon crossings of the granule cell layer was measured. Regression analyses were performed to test for correlations between GFP-positive axon length versus number of granule cells and dentate gyrus volume. After pilocarpine-induced status epilepticus, rapamycin- and vehicle-treated mice had approximately half as many GFP-positive hilar neurons as did control animals. Despite neuron loss, vehicle-treated mice had over twice the GFP-positive axon length per dentate gyrus as controls, consistent with GABAergic axon sprouting. In contrast, total GFP-positive axon length was similar in rapamycin-treated mice and controls. GFP-positive axon length correlated most closely with dentate gyrus volume. These findings suggest that rapamycin suppressed axon sprouting by surviving somatostatin/GFP-positive interneurons after pilocarpine-induced status epilepticus in GIN mice. It is unclear whether the effect of rapamycin on axon length was on interneurons directly or secondary, for example, by suppressing growth of granule

  4. Murine granulated metrial gland cells are susceptible to Chlamydia psittaci infection in vivo.

    PubMed Central

    Sánchez, J; Buendía, A J; Salinas, J; Bernabé, A; Rodolakis, A; Stewart, I J

    1996-01-01

    Granulated metrial gland (GMG) cells are the most numerous lymphoid cells in the uteroplacental unit in rodent pregnancy. In an experimental murine model of abortion-causing infection, we have studied the responses of GMG cells to Chlamydia psittaci. Chlamydial inclusions have been found within GMG cells, both in apparently healthy cells and in cells with degenerative changes. Establishing the existence of GMG cells infected by C. psittaci opens a new and interesting chapter in the study of these cells. PMID:8751945

  5. Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb.

    PubMed

    Bhalla, U S; Bower, J M

    1993-06-01

    fit the data. This region of parameter space was also very robust to parameter variations. Specifically, optimum performance was obtained when calcium and slow K channels were concentrated in the glomeruli, with a lower density in the soma and proximal secondary dendrites. The distribution of sodium and fast potassium channels, on the other hand, was highest at the soma and axon, with a much lighter distribution throughout the secondary dendrites. The KA and KCa channels were also concentrated near the soma. 6. The parameter search of the granule cell model was much less restrained by experimental data. Several parameter regimes were found that gave a good match to the data.(ABSTRACT TRUNCATED AT 400 WORDS)

  6. Disrupted Dentate Granule Cell Chloride Regulation Enhances Synaptic Excitability during Development of Temporal Lobe Epilepsy

    PubMed Central

    Pathak, Hemal R.; Weissinger, Florian; Terunuma, Miho; Carlson, Gregory C.; Hsu, Fu-Chun; Moss, Stephen J.; Coulter, Douglas A.

    2008-01-01

    GABAA receptor-mediated inhibition depends on the maintenance of intracellular Cl− concentration ([Cl−]in ) at low levels. In neurons in the developing CNS, [Cl−]in is elevated, EGABA is depolarizing, and GABA consequently is excitatory. Depolarizing GABAergic synaptic responses may be recapitulated in various neuropathological conditions, including epilepsy. In the present study, rat hippocampal dentate granule cells were recorded using gramicidin perforated patch techniques at varying times (1–60 d) after an epileptogenic injury, pilocarpine-induced status epilepticus (STEP). In normal, non-epileptic animals, these strongly inhibited dentate granule cells act as a gate, regulating hippocampal excitation, controlling seizure initiation and/or propagation. For 2 weeks after STEP, we found that EGABA was positively shifted in granule cells. This shift in EGABA altered synaptic integration, increased granule cell excitability, and resulted in compromised “gate” function of the dentate gyrus. EGABA recovered to control values at longer latencies post-STEP (2–8 weeks), when animals had developed epilepsy. During this period of shifted EGABA, expression of the Cl− extruding K+/Cl− cotransporter, KCC2 was decreased. Application of the KCC2 blocker, furosemide, to control neurons mimicked EGABA shifts evident in granule cells post-STEP. Furthermore, post-STEP and furosemide effects interacted occlusively, both on EGABA in granule cells, and on gatekeeper function of the dentate gyrus. This suggests a shared mechanism, reduced KCC2 function. These findings demonstrate that decreased expression of KCC2 persists for weeks after an epileptogenic injury, reducing inhibitory efficacy and enhancing dentate granule cell excitability. This pathophysiological process may constitute a significant mechanism linking injury to the subsequent development of epilepsy. PMID:18094240

  7. Critical role of integrin-linked kinase in granule cell precursor proliferation and cerebellar development.

    PubMed

    Mills, Julia; Niewmierzycka, Agnieszka; Oloumi, Arusha; Rico, Beatriz; St-Arnaud, Rene; Mackenzie, Ian R; Mawji, Nasrin M; Wilson, Jason; Reichardt, Louis F; Dedhar, Shoukat

    2006-01-18

    Integrin-linked kinase (ILK) is a serine/threonine protein kinase that plays an important role in integrin signaling and cell proliferation. We used Cre recombinase (Cre)-loxP technology to study CNS restricted knock-out of the ilk gene by either Nestin-driven or gfap-driven Cre-mediated recombination. Developmental changes in ilk-excised brain regions are similar to those observed in mice lacking the integrin beta1 subunit in the CNS, including defective laminin deposition, abnormal glial morphology, and alterations in granule cell migration. Decreases in 6-bromodeoxyuridine (BrdU) pulse labeling and proliferating cell nuclear antigen expression in the external granule cell layer of the cerebellum demonstrated that proliferation is disrupted in granule cells lacking ILK. Previous studies have shown that laminin-sonic hedgehog (Shh)-induced granule cell precursor (GCP) proliferation is dependent on beta1 integrins, several of which bind laminin and interact with ILK through the beta1 cytoplasmic domain. Both ex vivo deletion of ilk and a small molecule inhibitor of ILK kinase activity decreased laminin-Shh-induced BrdU labeling in cultured GCPs. Together, these results implicate ILK as a critical effector in a signaling pathway necessary for granule cell proliferation and cerebellar development.

  8. Critical Role of Integrin-Linked Kinase in Granule Cell Precursor Proliferation and Cerebellar Development

    PubMed Central

    Mills, Julia; Niewmierzycka, Agnieszka; Oloumi, Arusha; Rico, Beatriz; St-Arnaud, Rene; Mackenzie, Ian R.; Mawji, Nasrin M.; Wilson, Jason; Reichardt, Louis F.; Dedhar, Shoukat

    2009-01-01

    Integrin-linked kinase (ILK) is a serine/threonine protein kinase that plays an important role in integrin signaling and cell proliferation. We used Cre recombinase (Cre)-loxP technology to study CNS restricted knock-out of the ilk gene by either Nestin-driven or gfap-driven Cre-mediated recombination. Developmental changes in ilk-excised brain regions are similar to those observed in mice lacking the integrin β1 subunit in the CNS, including defective laminin deposition, abnormal glial morphology, and alterations in granule cell migration. Decreases in 6-bromodeoxyuridine (BrdU) pulse labeling and proliferating cell nuclear antigen expression in the external granule cell layer of the cerebellum demonstrated that proliferation is disrupted in granule cells lacking ILK. Previous studies have shown that laminin-sonic hedgehog (Shh)-induced granule cell precursor (GCP) proliferation is dependent on β1 integrins, several of which bind laminin and interact with ILK through the β1 cytoplasmic domain. Both ex vivo deletion of ilk and a small molecule inhibitor of ILK kinase activity decreased laminin-Shh-induced BrdU labeling in cultured GCPs. Together, these results implicate ILK as a critical effector in a signaling pathway necessary for granule cell proliferation and cerebellar development. PMID:16421303

  9. Distinct kainate receptor phenotypes in immature and mature mouse cerebellar granule cells

    PubMed Central

    Smith, T Caitlin; Wang, Lu-Yang; Howe, James R

    1999-01-01

    Although glutamate receptors have been shown to be involved in neuronal maturation, a developmental role for kainate-type receptors has not been described. In addition, the single-channel properties of native kainate receptors have not been studied in situ. We have characterized the electrophysiological properties of native kainate receptors of granule cell neurons at two distinct stages in postnatal development, using whole-cell and outside-out patch-clamp recordings in acute cerebellar slices. Kainate-type currents were detected in both immature and mature granule cells. However, noise analysis showed that the apparent unitary conductance of kainate-type channels is significantly higher in proliferating than post-migratory granule cells. The conductance and rectification behaviour of the channels in immature granule cells indicate that they contain unedited GluR5 and GluR6 subunits and are likely to be calcium permeable. Single-channel kainate-type currents were observed in outside-out patches from proliferating granule cells in the external germinal layer. The kinetic behaviour of kainate receptors in immature cells was complex. Openings to multiple conductance levels were observed, although our analysis indicates that the channels spend most of their open time in a 4 pS state. PMID:10226148

  10. Depletion of primary cilia from mature dentate granule cells impairs hippocampus-dependent contextual memory

    PubMed Central

    Rhee, Soyoung; Kirschen, Gregory W.; Gu, Yan; Ge, Shaoyu

    2016-01-01

    The primary cilium, a sensory organelle, regulates cell proliferation and neuronal development of dentate granule cells in the hippocampus. However, its role in the function of mature dentate granule cells remains unknown. Here we specifically depleted and disrupted ciliary proteins IFT20 and Kif3A (respectively) in mature dentate granule cells and investigated hippocampus-dependent contextual memory and long-term plasticity at mossy fiber synapses. We found that depletion of IFT20 in these cells significantly impaired context-dependent fear-related memory. Furthermore, we tested synaptic plasticity of mossy fiber synapses in area CA3 and found increased long-term potentiation upon depletion of IFT20 or disruption of Kif3A. Our findings suggest a role of primary cilia in the memory function of mature dentate granule cells, which may result from abnormal mossy fiber synaptic plasticity. A direct link between the primary cilia of mature dentate granule cells and behavior will require further investigation using independent approaches to manipulate primary cilia. PMID:27678193

  11. Two-Photon Na(+) Imaging Reports Somatically Evoked Action Potentials in Rat Olfactory Bulb Mitral and Granule Cell Neurites.

    PubMed

    Ona-Jodar, Tiffany; Gerkau, Niklas J; Sara Aghvami, S; Rose, Christine R; Egger, Veronica

    2017-01-01

    Dendrodendritic synaptic interactions are a hallmark of neuronal processing in the vertebrate olfactory bulb. Many classes of olfactory bulb neurons including the principal mitral cells (MCs) and the axonless granule cells (GCs) dispose of highly efficient propagation of action potentials (AP) within their dendrites, from where they can release transmitter onto each other. So far, backpropagation in GC dendrites has been investigated indirectly via Ca(2+) imaging. Here, we used two-photon Na(+) imaging to directly report opening of voltage-gated sodium channels due to AP propagation in both cell types. To this end, neurons in acute slices from juvenile rat bulbs were filled with 1 mM SBFI via whole-cell patch-clamp. Calibration of SBFI signals revealed that a change in fluorescence ΔF/F by 10% corresponded to a Δ[Na(+)]i of ∼22 mM. We then imaged proximal axon segments of MCs during somatically evoked APs (sAP). While single sAPs were detectable in ∼50% of axons, trains of 20 sAPs at 50 Hz always resulted in substantial ΔF/F of ∼15% (∼33 mM Δ[Na(+)]i). ΔF/F was significantly larger for 80 Hz vs. 50 Hz trains, and decayed with half-durations τ1/2 ∼0.6 s for both frequencies. In MC lateral dendrites, AP trains yielded small ΔF/F of ∼3% (∼7 mM Δ[Na(+)]i). In GC apical dendrites and adjacent spines, single sAPs were not detectable. Trains resulted in an average dendritic ΔF/F of 7% (16 mM Δ[Na(+)]i) with τ1/2 ∼1 s, similar for 50 and 80 Hz. Na(+) transients were indistinguishable between large GC spines and their adjacent dendrites. Cell-wise analysis revealed two classes of GCs with the first showing a decrease in ΔF/F along the dendrite with distance from the soma and the second an increase. These classes clustered with morphological parameters. Simulations of Δ[Na(+)]i replicated these behaviors via negative and positive gradients in Na(+) current density, assuming faithful AP backpropagation. Such specializations of dendritic

  12. Two-Photon Na+ Imaging Reports Somatically Evoked Action Potentials in Rat Olfactory Bulb Mitral and Granule Cell Neurites

    PubMed Central

    Ona-Jodar, Tiffany; Gerkau, Niklas J.; Sara Aghvami, S.; Rose, Christine R.; Egger, Veronica

    2017-01-01

    Dendrodendritic synaptic interactions are a hallmark of neuronal processing in the vertebrate olfactory bulb. Many classes of olfactory bulb neurons including the principal mitral cells (MCs) and the axonless granule cells (GCs) dispose of highly efficient propagation of action potentials (AP) within their dendrites, from where they can release transmitter onto each other. So far, backpropagation in GC dendrites has been investigated indirectly via Ca2+ imaging. Here, we used two-photon Na+ imaging to directly report opening of voltage-gated sodium channels due to AP propagation in both cell types. To this end, neurons in acute slices from juvenile rat bulbs were filled with 1 mM SBFI via whole-cell patch-clamp. Calibration of SBFI signals revealed that a change in fluorescence ΔF/F by 10% corresponded to a Δ[Na+]i of ∼22 mM. We then imaged proximal axon segments of MCs during somatically evoked APs (sAP). While single sAPs were detectable in ∼50% of axons, trains of 20 sAPs at 50 Hz always resulted in substantial ΔF/F of ∼15% (∼33 mM Δ[Na+]i). ΔF/F was significantly larger for 80 Hz vs. 50 Hz trains, and decayed with half-durations τ1/2 ∼0.6 s for both frequencies. In MC lateral dendrites, AP trains yielded small ΔF/F of ∼3% (∼7 mM Δ[Na+]i). In GC apical dendrites and adjacent spines, single sAPs were not detectable. Trains resulted in an average dendritic ΔF/F of 7% (16 mM Δ[Na+]i) with τ1/2 ∼1 s, similar for 50 and 80 Hz. Na+ transients were indistinguishable between large GC spines and their adjacent dendrites. Cell-wise analysis revealed two classes of GCs with the first showing a decrease in ΔF/F along the dendrite with distance from the soma and the second an increase. These classes clustered with morphological parameters. Simulations of Δ[Na+]i replicated these behaviors via negative and positive gradients in Na+ current density, assuming faithful AP backpropagation. Such specializations of dendritic excitability might confer

  13. Geometric effect of cell adhesive polygonal micropatterns on neuritogenesis and axon guidance

    NASA Astrophysics Data System (ADS)

    Jang, Min Jee; Nam, Yoonkey

    2012-08-01

    Recent advances in nano- and micro-technology have made it possible to deliver surface-bound extracellular signaling cues to cultured neurons. In this study, we investigated the formation of neurites and axonal outgrowth using various types of polygonal micropatterns (‘micropolygon arrays’) on cell culture substrates and suggested a novel design principle of in vitro axon guidance. Ten different types of micropolygons (circle, triangle, square, pentagon, hexagon, stars and isosceles triangles) were printed on a culture substrate using micro-contact printing with a mixture of poly-l-lysine and laminin A chain synthetic peptide. E18 rat hippocampal neurons were cultured on the patterned substrates, and the relation between micropatterns and neurite outgrowth was analyzed. Micropolygon arrays had effects on the soma shape and neurite initiation. In the case of regular triangle patterns, neurons showed vertex preference in terms of neurite initiation: neurites were more frequently generated from the vertex region. In the case of isosceles triangles, a major neurite was formed from the sharpest vertex and axons were developed from the sharpest vertex. Thus, the direction of axon growth could be controlled by the orientation of the sharpest vertex in the isosceles triangles. This work suggests that the geometry of cell adhesive regions influences the development of a cultured neuron, and the structure of neural circuits can be designed by controlling axonal outgrowth with individual micropolygons.

  14. Multiple extra-synaptic spillover mechanisms regulate prolonged activity in cerebellar Golgi cell–granule cell loops

    PubMed Central

    Holtzman, Tahl; Sivam, Vanessa; Zhao, Tian; Frey, Oivier; van der Wal, Peter Dow; de Rooij, Nico F; Dalley, Jeffrey W; Edgley, Steve A

    2011-01-01

    Abstract Despite a wealth of in vitro and modelling studies it remains unclear how neuronal populations in the cerebellum interact in vivo. We address the issue of how the cerebellar input layer processes sensory information, with particular focus on the granule cells (input relays) and their counterpart inhibitory interneurones, Golgi cells. Based on the textbook view, granule cells excite Golgi cells via glutamate forming a negative feedback loop. However, Golgi cells express inhibitory mGluR2 receptors suggesting an inhibitory role for glutamate. We set out to test this glutamatergic paradox in Golgi cells. Here we show that granule cells and Golgi cells interact through extra-synaptic signalling mechanisms during sensory information processing, as well as synaptic mechanisms. We demonstrate that such interactions depend on granule cell-derived glutamate acting via inhibitory mGluR2 receptors leading causally to the suppression of Golgi cell activity for several hundreds of milliseconds. We further show that granule cell-derived inhibition of Golgi cell activity is regulated by GABA-dependent extra-synaptic Golgi cell inhibition of granule cells, identifying a regulatory loop in which glutamate and GABA may be critical regulators of Golgi cell–granule cell functional activity. Thus, granule cells may promote their own prolonged activity via paradoxical feed-forward inhibition of Golgi cells, thereby enabling information processing over long timescales. PMID:21669981

  15. An LRRTM4-HSPG complex mediates excitatory synapse development on dentate gyrus granule cells.

    PubMed

    Siddiqui, Tabrez J; Tari, Parisa Karimi; Connor, Steven A; Zhang, Peng; Dobie, Frederick A; She, Kevin; Kawabe, Hiroshi; Wang, Yu Tian; Brose, Nils; Craig, Ann Marie

    2013-08-21

    Selective synapse development determines how complex neuronal networks in the brain are formed. Complexes of postsynaptic neuroligins and LRRTMs with presynaptic neurexins contribute widely to excitatory synapse development, and mutations in these gene families increase the risk of developing psychiatric disorders. We find that LRRTM4 has distinct presynaptic binding partners, heparan sulfate proteoglycans (HSPGs). HSPGs are required to mediate the synaptogenic activity of LRRTM4. LRRTM4 shows highly selective expression in the brain. Within the hippocampus, we detected LRRTM4 specifically at excitatory postsynaptic sites on dentate gyrus granule cells. LRRTM4(-/-) dentate gyrus granule cells, but not CA1 pyramidal cells, exhibit reductions in excitatory synapse density and function. Furthermore, LRRTM4(-/-) dentate gyrus granule cells show impaired activity-regulated AMPA receptor trafficking. These results identifying cell-type-specific functions and multiple presynaptic binding partners for different LRRTM family members reveal an unexpected complexity in the design and function of synapse-organizing proteins.

  16. Olfactory experiences dynamically regulate plasticity of dendritic spines in granule cells of Xenopus tadpoles in vivo

    PubMed Central

    Zhang, Li; Huang, Yubin; Hu, Bing

    2016-01-01

    Granule cells, rich in dendrites with densely punctated dendritic spines, are the most abundant inhibitory interneurons in the olfactory bulb. The dendritic spines of granule cells undergo remodeling during the development of the nervous system. The morphological plasticity of the spines’ response to different olfactory experiences in vivo is not fully known. In initial studies, a single granule cell in Xenopus tadpoles was labeled with GFP plasmids via cell electroporation; then, morphologic changes of the granule cell spines were visualized by in vivo confocal time-lapse imaging. With the help of long-term imaging, the total spine density, dynamics, and stability of four types of dendritic spines (mushroom, stubby, thin and filopodia) were obtained. Morphological analysis demonstrated that odor enrichment produced a remarkable increase in the spine density and stability of large mushroom spine. Then, with the help of short-term imaging, we analyzed the morphological transitions among different spines. We found that transitions between small spines (thin and filopodia) were more easily influenced by odor stimulation or olfactory deprivation. These results indicate that different olfactory experiences can regulate the morphological plasticity of different dendritic spines in the granule cell. PMID:27713557

  17. Perinuclear P granules are the principal sites of mRNA export in adult C. elegans germ cells

    PubMed Central

    Sheth, Ujwal; Pitt, Jason; Dennis, Shannon; Priess, James R.

    2010-01-01

    Germline-specific granules of unknown function are found in a wide variety of organisms, including C. elegans, where they are called P granules. P granules are cytoplasmic bodies in oocytes and early embryos. Throughout most of the C. elegans life cycle, however, P granules are associated with clusters of nuclear pore complexes (NPCs) on germ cell nuclei. We show that perinuclear P granules differ from cytoplasmic P granules in many respects, including structure, stability and response to metabolic changes. Our results suggest that nuclear-associated P granules provide a perinuclear compartment where newly exported mRNAs are collected prior to their release to the general cytoplasm. First, we show that mRNA export factors are highly enriched at the NPCs associated with P granules. Second, we discovered that the expression of high-copy transgenes could be induced in a subset of germ cells, and used this system to demonstrate that nascent mRNA traffics directly to P granules. P granules appear to sequester large amounts of mRNA in quiescent germ cells, presumably preventing translation of that mRNA. However, we did not find evidence that P granules normally sequester aberrant mRNAs, or mRNAs targeted for destruction by the RNAi pathway. PMID:20223759

  18. Cortical granule exocytosis in C. elegans is regulated by cell cycle components including separase.

    PubMed

    Bembenek, Joshua N; Richie, Christopher T; Squirrell, Jayne M; Campbell, Jay M; Eliceiri, Kevin W; Poteryaev, Dmitry; Spang, Anne; Golden, Andy; White, John G

    2007-11-01

    In many organisms, cortical granules undergo exocytosis following fertilization, releasing cargo proteins that modify the extracellular covering of the zygote. We identified cortical granules in Caenorhabditis elegans and have found that degranulation occurs in a wave that initiates in the vicinity of the meiotic spindle during anaphase I. Previous studies identified genes that confer an embryonic osmotic sensitivity phenotype, thought to result from abnormal eggshell formation. Many of these genes are components of the cell cycle machinery. When we suppressed expression of several of these genes by RNAi, we observed that cortical granule trafficking was disrupted and the eggshell did not form properly. We conclude that osmotic sensitivity phenotypes occur because of defects in trafficking of cortical granules and the subsequent formation of an impermeable eggshell. We identified separase as a key cell cycle component that is required for degranulation. Separase localized to cortically located filamentous structures in prometaphase I upon oocyte maturation. After fertilization, separase disappeared from these structures and appeared on cortical granules by anaphase I. RNAi of sep-1 inhibited degranulation in addition to causing extensive chromosomal segregation failures. Although the temperature-sensitive sep-1(e2406) allele exhibited similar inhibition of degranulation, it had minimal effects on chromosome segregation. These observations lead us to speculate that SEP-1 has two separable yet coordinated functions: to regulate cortical granule exocytosis and to mediate chromosome separation.

  19. c-Jun activation in Schwann cells protects against loss of sensory axons in inherited neuropathy.

    PubMed

    Hantke, Janina; Carty, Lucy; Wagstaff, Laura J; Turmaine, Mark; Wilton, Daniel K; Quintes, Susanne; Koltzenburg, Martin; Baas, Frank; Mirsky, Rhona; Jessen, Kristján R

    2014-11-01

    Charcot-Marie-Tooth disease type 1A is the most frequent inherited peripheral neuropathy. It is generally due to heterozygous inheritance of a partial chromosomal duplication resulting in over-expression of PMP22. A key feature of Charcot-Marie-Tooth disease type 1A is secondary death of axons. Prevention of axonal loss is therefore an important target of clinical intervention. We have previously identified a signalling mechanism that promotes axon survival and prevents neuron death in mechanically injured peripheral nerves. This work suggested that Schwann cells respond to injury by activating/enhancing trophic support for axons through a mechanism that depends on upregulation of the transcription factor c-Jun in Schwann cells, resulting in the sparing of axons that would otherwise die. As c-Jun orchestrates Schwann cell support for distressed neurons after mechanical injury, we have now asked: do Schwann cells also activate a c-Jun dependent neuron-supportive programme in inherited demyelinating disease? We tested this by using the C3 mouse model of Charcot-Marie-Tooth disease type 1A. In line with our previous findings in humans with Charcot-Marie-Tooth disease type 1A, we found that Schwann cell c-Jun was elevated in (uninjured) nerves of C3 mice. We determined the impact of this c-Jun activation by comparing C3 mice with double mutant mice, namely C3 mice in which c-Jun had been conditionally inactivated in Schwann cells (C3/Schwann cell-c-Jun(-/-) mice), using sensory-motor tests and electrophysiological measurements, and by counting axons in proximal and distal nerves. The results indicate that c-Jun elevation in the Schwann cells of C3 nerves serves to prevent loss of myelinated sensory axons, particularly in distal nerves, improve behavioural symptoms, and preserve F-wave persistence. This suggests that Schwann cells have two contrasting functions in Charcot-Marie-Tooth disease type 1A: on the one hand they are the genetic source of the disease, on the

  20. Neurogenetics of slow axonal transport: from cells to animals.

    PubMed

    Sadananda, Aparna; Ray, Krishanu

    2012-09-01

    Slow axonal transport is a multivariate phenomenon implicated in several neurodegenerative disorders. Recent reports have unraveled the molecular basis of the transport of certain slow component proteins, such as the neurofilament subunits, tubulin, and certain soluble enzymes such as Ca(2+)/calmodulin-dependent protein kinase IIa (CaM kinase IIa), etc., in tissue cultured neurons. In addition, genetic analyses also implicate microtubule-dependent motors and other housekeeping proteins in this process. However, the biological relevance of this phenomenon is not so well understood. Here, the authors have discussed the possibility of adopting neurogenetic analyses in multiple model organisms to correlate molecular level measurements of the slow transport phenomenon to animal behavior, thus facilitating the investigation of its biological efficacy.

  1. Role of LAT in the Granule-Mediated Cytotoxicity of CD8 T Cells

    PubMed Central

    Ou-Yang, Chih-wen; Zhu, Minghua; Fuller, Deirdre M.; Sullivan, Sarah A.; Chuck, Mariana I.; Ogden, Sarah

    2012-01-01

    Linker for activation of T cells (LAT) is a transmembrane adaptor protein that is essential to bridge T cell receptor (TCR) engagement to downstream signaling events. The indispensable role of LAT in thymocyte development and T cell activation has been well characterized; however, the function of LAT in cytotoxic-T-lymphocyte (CTL) cytotoxicity remains unknown. We show here that LAT-deficient CTLs failed to upregulate FasL and produce gamma interferon after engagement with target cells and had impaired granule-mediated killing. We further dissected the effect of the LAT deletion on each step of granule exocytosis. LAT deficiency led to altered synapse formation, subsequently causing unstable T cell–antigen-presenting cell (APC) conjugates. Microtubule organizing center polarization and granule reorientation were also impaired by LAT deficiency, leading to reduced granule delivery. Despite these defects, granule release was still observed in LAT-deficient CTLs due to residual calcium flux and phospholipase C (PLC) activity. Our data demonstrated that LAT-mediated signaling intricately regulates CTL cytotoxicity at multiple steps. PMID:22566687

  2. MicroRNAs Promote Granule Cell Expansion in the Cerebellum Through Gli2.

    PubMed

    Constantin, Lena; Wainwright, Brandon J

    2015-12-01

    MicroRNAs (miRNAs) are important regulators of cerebellar function and homeostasis. Their deregulation results in cerebellar neuronal degeneration and spinocerebellar ataxia type 1 and contributes to medulloblastoma. Canonical miRNA processing involves Dicer, which cleaves precursor miRNAs into mature double-stranded RNA duplexes. In order to address the role of miRNAs in cerebellar granule cell precursor development, loxP-flanked exons of Dicer1 were conditionally inactivated using the granule cell precursor-specific Atoh1-Cre recombinase. A reduction of 87% in Dicer1 transcript was achieved in this conditional Dicer knockdown model. Although knockdown resulted in normal survival, mice had disruptions to the cortical layering of the anterior cerebellum, which resulted from the premature differentiation of granule cell precursors in this region during neonatal development. This defect manifested as a thinner external granular layer with ectopic mature granule cells, and a depleted internal granular layer. We found that expression of the activator components of the Hedgehog-Patched pathway, the Gli family of transcription factors, was perturbed in conditional Dicer knockdown mice. We propose that loss of Gli2 mRNA mediated the anterior-restricted defect in conditional Dicer knockdown mice and, as proof of principle, were able to show that miR-106b positively regulated Gli2 mRNA expression. These findings confirm the importance of miRNAs as positive mediators of Hedgehog-Patched signalling during granule cell precursor development.

  3. Engineered expression of polysialic acid enhances Purkinje cell axonal regeneration in L1/GAP-43 double transgenic mice.

    PubMed

    Zhang, Yi; Zhang, Xinyu; Yeh, John; Richardson, Peter; Bo, Xuenong

    2007-01-01

    Purkinje axons in adult mammals are generally unable to regenerate after axotomy. Our recent work has shown that over-expression of growth related genes, GAP-43 and L1, in Purkinje cells increased their axonal outgrowth into a predegenerated peripheral nerve graft, but not into a fresh graft [Zhang et al., (2005) Proc. Natl Acad. Sci. USA, 102, 14883-14888]. In the current study we investigated whether engineered expression of growth permissive molecule polysialic acid (PSA) in the glial scar or on transplanted Schwann cells could overcome the inhibitory environment and promote Purkinje axonal regeneration. A stab wound was introduced in the cerebellum of the L1/GAP-43 transgenic mice and a lentiviral vector (LV) carrying the polysialyltransferase (PST) cDNA (LV/PST) was injected into the lesion site to transduce the cells in the glial scar. Regenerating Purkinje axons were examined by calbindin immunostaining. There was increased Purkinje axonal sprouting in the area expressing high-level PSA. However, Purkinje axons were unable to grow into the lesion cavity. In the second set of experiments when LV/PST transduced Schwann cells were transplanted into the lesion site, the number of Purkinje axons growing into the transplant was nine times more than that growing into Schwann cell transplant expressing GFP two months post operation. Our result suggests that transplanted Schwann cells engineered to express PSA support axonal regeneration better than naïve Schwann cells.

  4. Culturing of cerebellar granule cells to study neuronal migration: gradient and local perfusion assays.

    PubMed

    Guijarro, Patricia; Jiang, Jian; Yuan, Xiao-bing

    2012-07-01

    Cultures of cerebellar granule cells are a suitable model to analyze the mechanisms governing neuronal migration. In this unit, we describe a protocol to obtain cultures of dissociated granule cells at a low density, where individual cells can be easily observed. In addition, we include a protocol for studying neuronal migration in these cultures, using single, actively migrating cerebellar granule cells. Following this protocol, a factor of interest can be applied either in a gradient concentration by means of a micropipet located near the neuron, or in a homogeneous concentration by locally perfusing a certain region of the neuron. Time-lapse images are taken to analyze changes in the speed and/or directionality of the observed neuron. Overall, the two protocols take more or less a day and a half to perform, and are a useful way to evaluate a certain factor/drug for its chemotactic activity or its capacity to alter migration speed.

  5. Dendritic differentiation of cerebellar Purkinje cells is promoted by ryanodine receptors expressed by Purkinje and granule cells.

    PubMed

    Ohashi, Ryo; Sakata, Shin-ichi; Naito, Asami; Hirashima, Naohide; Tanaka, Masahiko

    2014-04-01

    Cerebellar Purkinje cells have the most elaborate dendritic trees among neurons in the brain. We examined the roles of ryanodine receptor (RyR), an intracellular Ca(2+) release channel, in the dendrite formation of Purkinje cells using cerebellar cell cultures. In the cerebellum, Purkinje cells express RyR1 and RyR2, whereas granule cells express RyR2. When ryanodine (10 µM), a blocker of RyR, was added to the culture medium, the elongation and branching of Purkinje cell dendrites were markedly inhibited. When we transferred small interfering RNA (siRNA) against RyR1 into Purkinje cells using single-cell electroporation, dendritic branching but not elongation of the electroporated Purkinje cells was inhibited. On the other hand, transfection of RyR2 siRNA into granule cells also inhibited dendritic branching of Purkinje cells. Furthermore, ryanodine reduced the levels of brain-derived neurotrophic factor (BDNF) in the culture medium. The ryanodine-induced inhibition of dendritic differentiation was partially rescued when BDNF was exogenously added to the culture medium in addition to ryanodine. Overall, these results suggest that RyRs expressed by both Purkinje and granule cells play important roles in promoting the dendritic differentiation of Purkinje cells and that RyR2 expressed by granule cells is involved in the secretion of BDNF from granule cells.

  6. Protein kinases are associated with multiple, distinct cytoplasmic granules in quiescent yeast cells.

    PubMed

    Shah, Khyati H; Nostramo, Regina; Zhang, Bo; Varia, Sapna N; Klett, Bethany M; Herman, Paul K

    2014-12-01

    The cytoplasm of the eukaryotic cell is subdivided into distinct functional domains by the presence of a variety of membrane-bound organelles. The remaining aqueous space may be further partitioned by the regulated assembly of discrete ribonucleoprotein (RNP) complexes that contain particular proteins and messenger RNAs. These RNP granules are conserved structures whose importance is highlighted by studies linking them to human disorders like amyotrophic lateral sclerosis. However, relatively little is known about the diversity, composition, and physiological roles of these cytoplasmic structures. To begin to address these issues, we examined the cytoplasmic granules formed by a key set of signaling molecules, the protein kinases of the budding yeast Saccharomyces cerevisiae. Interestingly, a significant fraction of these proteins, almost 20%, was recruited to cytoplasmic foci specifically as cells entered into the G0-like quiescent state, stationary phase. Colocalization studies demonstrated that these foci corresponded to eight different granules, including four that had not been reported previously. All of these granules were found to rapidly disassemble upon the resumption of growth, and the presence of each was correlated with cell viability in the quiescent cultures. Finally, this work also identified new constituents of known RNP granules, including the well-characterized processing body and stress granule. The composition of these latter structures is therefore more varied than previously thought and could be an indicator of additional biological activities being associated with these complexes. Altogether, these observations indicate that quiescent yeast cells contain multiple distinct cytoplasmic granules that may make important contributions to their long-term survival. Copyright © 2014 by the Genetics Society of America.

  7. Cocultures of GFP(+) -granule cells with GFP(-) -pyramidal cells and interneurons for the study of mossy fiber neurotransmission with paired recordings.

    PubMed

    Osorio, Beatriz; León, Uriel; Galván, Emilio J; Gutiérrez, Rafael

    2013-04-01

    Synaptic transmission of the granule cells (GCs) via their axons, the mossy fibers (MFs), is traditionally studied on acutely prepared or cultured slices. Usually, extracellular, bulk or minimal stimulation is used to evoke transmitter release from MF terminals, while recording from their postsynaptic target cells, the pyramidal cells and interneurons of CA3. However, the ideal method to assess MF neurotransmission, the simultaneous recording of a presynaptic GC and one of its target cells, is extremely difficult to achieve using slices. Alternatively, cultures of GCs establishing autapses have been developed, but in these, GCs do not contact their natural targets. We developed cocultures of GCs, dissociated from transgenic GFP(+) rats, with pyramidal cells and interneurons of CA3, dissociated from wild-type rats, and confirmed the expression of cell-specific markers by immunofluorescence. We conducted recordings of GFP(+) -GCs synaptically connected with their GFP(-) -target cells, and demonstrate that synaptic transmission and its plasticity have the signature of transmission of MF. Besides being strongly depressed by activation of mGluRs, high frequency activation of GC-to-pyramidal cells synapses undergo LTP, while GC-to-interneuron synapses undergo LTD. This coculture method allows a high reproducibility of recording connected pairs of identified cells, constituting a valuable tool to study MF transmission, as well as different combinations of identifiable pre- and postsynaptic cells.

  8. Identification of miRNAs differentially expressed in human epilepsy with or without granule cell pathology.

    PubMed

    Zucchini, Silvia; Marucci, Gianluca; Paradiso, Beatrice; Lanza, Giovanni; Roncon, Paolo; Cifelli, Pierangelo; Ferracin, Manuela; Giulioni, Marco; Michelucci, Roberto; Rubboli, Guido; Simonato, Michele

    2014-01-01

    The microRNAs (miRNAs) are small size non-coding RNAs that regulate expression of target mRNAs at post-transcriptional level. miRNAs differentially expressed under pathological conditions may help identifying mechanisms underlying the disease and may represent biomarkers with prognostic value. However, this kind of studies are difficult in the brain because of the cellular heterogeneity of the tissue and of the limited access to fresh tissue. Here, we focused on a pathology affecting specific cells in a subpopulation of epileptic brains (hippocampal granule cells), an approach that bypasses the above problems. All patients underwent surgery for intractable temporal lobe epilepsy and had hippocampal sclerosis associated with no granule cell pathology in half of the cases and with type-2 granule cell pathology (granule cell layer dispersion or bilamination) in the other half. The expression of more than 1000 miRNAs was examined in the laser-microdissected dentate granule cell layer. Twelve miRNAs were differentially expressed in the two groups. One of these, miR487a, was confirmed to be expressed at highly differential levels in an extended cohort of patients, using RT-qPCR. Bioinformatics searches and RT-qPCR verification identified ANTXR1 as a possible target of miR487a. ANTXR1 may be directly implicated in granule cell dispersion because it is an adhesion molecule that favors cell spreading. Thus, miR487a could be the first identified element of a miRNA signature that may be useful for prognostic evaluation of post-surgical epilepsy and may drive mechanistic studies leading to the identification of therapeutic targets.

  9. Identification of miRNAs Differentially Expressed in Human Epilepsy with or without Granule Cell Pathology

    PubMed Central

    Paradiso, Beatrice; Lanza, Giovanni; Roncon, Paolo; Cifelli, Pierangelo; Ferracin, Manuela; Giulioni, Marco; Michelucci, Roberto; Simonato, Michele

    2014-01-01

    The microRNAs (miRNAs) are small size non-coding RNAs that regulate expression of target mRNAs at post-transcriptional level. miRNAs differentially expressed under pathological conditions may help identifying mechanisms underlying the disease and may represent biomarkers with prognostic value. However, this kind of studies are difficult in the brain because of the cellular heterogeneity of the tissue and of the limited access to fresh tissue. Here, we focused on a pathology affecting specific cells in a subpopulation of epileptic brains (hippocampal granule cells), an approach that bypasses the above problems. All patients underwent surgery for intractable temporal lobe epilepsy and had hippocampal sclerosis associated with no granule cell pathology in half of the cases and with type-2 granule cell pathology (granule cell layer dispersion or bilamination) in the other half. The expression of more than 1000 miRNAs was examined in the laser-microdissected dentate granule cell layer. Twelve miRNAs were differentially expressed in the two groups. One of these, miR487a, was confirmed to be expressed at highly differential levels in an extended cohort of patients, using RT-qPCR. Bioinformatics searches and RT-qPCR verification identified ANTXR1 as a possible target of miR487a. ANTXR1 may be directly implicated in granule cell dispersion because it is an adhesion molecule that favors cell spreading. Thus, miR487a could be the first identified element of a miRNA signature that may be useful for prognostic evaluation of post-surgical epilepsy and may drive mechanistic studies leading to the identification of therapeutic targets. PMID:25148080

  10. The plastic neurotransmitter phenotype of the hippocampal granule cells and of the moss in their messy fibers.

    PubMed

    Gutiérrez, Rafael

    2016-04-01

    The granule cells (GCs) and their axons, the mossy fibers (MFs), make synapses with interneurons in the hilus and CA3 area of the hippocampus and with pyramidal cells of CA3, each with distinct anatomical and functional characteristics. Many features of synaptic communication observed at the MF synapses are not usually observed in most cortical synapses, and thus have drawn the attention of many groups studying different aspects of the transmission of information. One particular aspect of the GCs, that makes their study unique, is that they express a dual glutamatergic-GABAergic phenotype and several groups have contributed to the understanding of how two neurotransmitters of opposing actions can act on a single target when simultaneously released. Indeed, the GCs somata and their mossy fibers express in a regulated manner glutamate and GABA, GAD, VGlut and VGAT, all markers of both phenotypes. Finally, their activation provokes both glutamate-R-mediated and GABA-R-mediated synaptic responses in the postsynaptic cell targets and even in the MFs themselves. The developmental and activity-dependent expression of these phenotypes seems to follow a "logical" way to maintain an excitation-inhibition balance of the dentate gyrus-to-CA3 communication.

  11. Assessment of retinal ganglion cell damage in glaucomatous optic neuropathy: Axon transport, injury and soma loss.

    PubMed

    Nuschke, Andrea C; Farrell, Spring R; Levesque, Julie M; Chauhan, Balwantray C

    2015-12-01

    Glaucoma is a disease characterized by progressive axonal pathology and death of retinal ganglion cells (RGCs), which causes structural changes in the optic nerve head and irreversible vision loss. Several experimental models of glaucomatous optic neuropathy (GON) have been developed, primarily in non-human primates and, more recently and commonly, in rodents. These models provide important research tools to study the mechanisms underlying glaucomatous damage. Moreover, experimental GON provides the ability to quantify and monitor risk factors leading to RGC loss such as the level of intraocular pressure, axonal health and the RGC population. Using these experimental models we are able to gain a better understanding of GON, which allows for the development of potential neuroprotective strategies. Here we review the advantages and disadvantages of the relevant and most often utilized methods for evaluating axonal degeneration and RGC loss in GON. Axonal pathology in GON includes functional disruption of axonal transport (AT) and structural degeneration. Horseradish peroxidase (HRP), rhodamine-B-isothiocyanate (RITC) and cholera toxin-B (CTB) fluorescent conjugates have proven to be effective reporters of AT. Also, immunohistochemistry (IHC) for endogenous AT-associated proteins is often used as an indicator of AT function. Similarly, structural degeneration of axons in GON can be investigated via changes in the activity and expression of key axonal enzymes and structural proteins. Assessment of axonal degeneration can be measured by direct quantification of axons, qualitative grading, or a combination of both methods. RGC loss is the most frequently quantified variable in studies of experimental GON. Retrograde tracers can be used to quantify RGC populations in rodents via application to the superior colliculus (SC). In addition, in situ IHC for RGC-specific proteins is a common method of RGC quantification used in many studies. Recently, transgenic mouse models

  12. Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors.

    PubMed Central

    D'Angelo, E; De Filippi, G; Rossi, P; Taglietti, V

    1995-01-01

    1. Current-clamp recordings were made in whole-cell patch-clamp configuration from ninety-one granule cells in parasagittal cerebellar slices obtained from 21- to 31-day-old rats. Recordings were performed at 30 degrees C. 2. Resting membrane potential was -58 +/- 6 mV (n = 43). The membrane voltage response to step current injection showed inward rectification consistent with increasing input resistance during membrane depolarization. Over -35 +/- 7 mV (n = 14) repetitive firing with little or no adaptation was activated. Spike frequency increased nearly linearly with injected current. 3. Unitary EPSPs obtained by stimulating the mossy fibre bundle had an amplitude of 11.4 +/- 2.1 mV (n = 22, holding potential = -75 mV). Synchronous activation of greater than one to two mossy fibres was needed to elicit action potentials. Antidromic stimulation elicited antidromic spikes and also EPSPs, presumably through a mossy fibre 'axon reflex'. 4. EPSPs were brought about by NMDA and non-NMDA receptor activation, accounting for about 70 and 30%, respectively, of peak amplitude at the holding potential of -70 mV. The EPSP decay conformed to passive membrane discharge after blocking the NMDA receptors. 5. No appreciable correlation was found between the time-to-peak and decay time constant of the EPSPs, consistent with the compact electrotonic structure of these neurons. 6. During membrane depolarization EPSP amplitude increased transiently, due to both a voltage-dependent increase of the NMDA component and inward rectification. In addition, EPSPs slowed down due to a slowdown of the NMDA component. 7. Temporal summation during high-frequency stimulation was sustained by NMDA receptors, whose contribution to depolarization tended to prevail over that of non-NMDA receptors during the trains. A block of the NMDA receptors resulted in reduced depolarization and output spike frequency. 8. This study, as well as extending previous knowledge to the intracellular level in vivo

  13. A morphologically distinct granule cell type in the dentate gyrus of the red fox correlates with adult hippocampal neurogenesis.

    PubMed

    Amrein, Irmgard; Slomianka, Lutz

    2010-04-30

    Wild red foxes, proverbially cunning carnivores, are investigated for adult hippocampal neurogenesis and morphological characteristics of the dentate gyrus. Adult red foxes harbor almost 15-times more young, doublecortin-positive neurons in their dentate gyrus than domesticated dogs. The number of doublecortin-positive cells corresponds to 4.4% of the total granule cell number, whereas dividing cells amount to only 0.06%. Compared to laboratory mice, proliferating (Ki67-positive) and dying cells are rare, but the percentage of new neurons is quite similar. The numbers of proliferating cells, young cells of neuronal lineage and dying cells correlate. Resident granule cells can be divided into two types with strikingly different morphologies, staining patterns and distinct septotemporal distributions. Small sized granule cells with a nuclear diameter of 7.3 microm account for approximately 83% of all granule cells. The remaining granule cells are significantly larger with a nuclear diameter of 9.4 microm diameter and stain heavily for NeuN. Septally and mid-septotemporally, densely packed small cells dominate. Here, only few large granule cells are scattered throughout the layer. Temporally, granule cells become more loosely packed and most of the cells are of the large type. High rates of neurogenesis are observed in foxes with high numbers of large granule cells, whereas the number of small granule cells does not correlate with any of the neurogenesis-related cell counts. Staining for parvalbumin, glutamate receptor 2/3, GAP-43 and dynorphin shows an anatomical context that is a composite of features common also to other mammalian species. In summary, we report a morphologically distinct granule cell type which correlates with adult hippocampal neurogenesis in the fox. Furthermore, the maturation phase of the young neurons may be prolonged as in other long living species such as primates. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Development of microarray device for functional evaluation of PC12D cell axonal extension ability

    NASA Astrophysics Data System (ADS)

    Nakamachi, Eiji; Yanagimoto, Junpei; Murakami, Shinya; Morita, Yusuke

    2014-04-01

    In this study, we developed a microarray bio-MEMS device that could trap PC12D (rat pheochromocytoma cells) cells to examine the intercellular interaction effect on the cell activation and the axonal extension ability. This is needed to assign particular patterns of PC12D cells to establish a cell functional evaluation technique. This experimental observation-based technique can be used for design of the cell sheet and scaffold for peripheral and central nerve regeneration. We have fabricated a micropillar-array bio-MEMS device, whose diameter was approximately 10 μm, by using thick photoresist SU-8 on the glass slide substrate. A maximum trapped PC12D cell ratio, 48.5%, was achieved. Through experimental observation of patterned PC12D "bi-cells" activation, we obtained the following results. Most of the PC12D "bi-cells" which had distances between 40 and 100 μm were connected after 24 h with a high probability. On the other hand, "bi-cells" which had distances between 110 and 200 μm were not connected. In addition, we measured axonal extension velocities in cases where the intercellular distance was between 40 and 100 μm. A maximum axonal extension velocity, 86.4 μm/h, was obtained at the intercellular distance of 40 μm.

  15. Ex Vivo Imaging of Postnatal Cerebellar Granule Cell Migration Using Confocal Macroscopy

    PubMed Central

    Bénard, Magalie; Lebon, Alexis; Komuro, Hitoshi; Vaudry, David; Galas, Ludovic

    2015-01-01

    During postnatal development, immature granule cells (excitatory interneurons) exhibit tangential migration in the external granular layer, and then radial migration in the molecular layer and the Purkinje cell layer to reach the internal granular layer of the cerebellar cortex. Default in migratory processes induces either cell death or misplacement of the neurons, leading to deficits in diverse cerebellar functions. Centripetal granule cell migration involves several mechanisms, such as chemotaxis and extracellular matrix degradation, to guide the cells towards their final position, but the factors that regulate cell migration in each cortical layer are only partially known. In our method, acute cerebellar slices are prepared from P10 rats, granule cells are labeled with a fluorescent cytoplasmic marker and tissues are cultured on membrane inserts from 4 to 10 hr before starting real-time monitoring of cell migration by confocal macroscopy at 37 °C in the presence of CO2. During their migration in the different cortical layers of the cerebellum, granule cells can be exposed to neuropeptide agonists or antagonists, protease inhibitors, blockers of intracellular effectors or even toxic substances such as alcohol or methylmercury to investigate their possible role in the regulation of neuronal migration. PMID:25992599

  16. Myelin-axon relationships established by rat vagal Schwann cells deep to the brainstem surface.

    PubMed

    Fraher, J P; Rossiter, J P

    1991-02-08

    The central-peripheral transitional zones of rat dorsolateral vagal rootlets are highly complex. Peripheral nervous tissue extends centrally for up to several hundred micrometers deep to the brainstem surface along these rootlets. In some instances this peripheral nervous tissue lacks continuity with the peripheral nervous system (PNS) and so forms an island within the central nervous system (CNS). In conformity with the resulting complexity of the CNS-PNS interface, segments of vagal axons lying deep to the brainstem surface are myelinated by one or more intercalated Schwann cells, contained in peripheral tissue insertions or islands, at either end of which they traverse an astroglial barrier. Intercalated Schwann cells are thus isolated from contact or contiguity with the Schwann cells of the PNS generally. They are short, having a mean internodal length of around 60% of that of the most proximal Schwann cells of the PNS proper, which lie immediately distal to the CNS-PNS interface and which are termed transitional Schwann cells. The thickness of the myelin sheaths produced by intercalated Schwann cells is intermediate between that of transitional Schwann cells and that of oligodendrocytes myelinating vagal axons of the same calibre distribution. This is not due to limited blood supply or to insufficient numbers of intercalated Schwann cells, the density of which is greater than that of transitional Schwann cells. These factors are unlikely to restrict expression of their myelinogenic potential. Nevertheless, the regression data show that the setting of the myelin-axon relationship differs significantly between the two categories of Schwann cell. Thus, the myelinogenic response of Schwann cells to stimuli emanating from the same axons may differ between levels along one and the same nerve bundle. Mean myelin periodicity was found to differ between sheaths produced by intercalated and by transitional Schwann cells.

  17. Connexin50 couples axon terminals of mouse horizontal cells by homotypic gap junctions.

    PubMed

    Dorgau, Birthe; Herrling, Regina; Schultz, Konrad; Greb, Helena; Segelken, Jasmin; Ströh, Sebastian; Bolte, Petra; Weiler, Reto; Dedek, Karin; Janssen-Bienhold, Ulrike

    2015-10-01

    Horizontal cells in the mouse retina are of the axon-bearing B-type and contribute to the gain control of photoreceptors and to the center-surround organization of bipolar cells by providing feedback and feedforward signals to photoreceptors and bipolar cells, respectively. Horizontal cells form two independent networks, coupled by dendro-dendritic and axo-axonal gap junctions composed of connexin57 (Cx57). In Cx57-deficient mice, occasionally the residual tracer coupling of horizontal cell somata was observed. Also, negative feedback from horizontal cells to photoreceptors, potentially mediated by connexin hemichannels, appeared unaffected. These results point to the expression of a second connexin in mouse horizontal cells. We investigated the expression of Cx50, which was recently identified in axonless A-type horizontal cells of the rabbit retina. In the mouse retina, Cx50-immunoreactive puncta were predominantly localized on large axon terminals of horizontal cells. Electron microscopy did not reveal any Cx50-immunolabeling at the membrane of horizontal cell tips invaginating photoreceptor terminals, ruling out the involvement of Cx50 in negative feedback. Moreover, Cx50 colocalized only rarely with Cx57 on horizontal cell processes, indicating that both connexins form homotypic rather than heterotypic or heteromeric gap junctions. To check whether the expression of Cx50 is changed when Cx57 is lacking, we compared the Cx50 expression in wildtype and Cx57-deficient mice. However, Cx50 expression was unaffected in Cx57-deficient mice. In summary, our results indicate that horizontal cell axon terminals form two independent sets of homotypic gap junctions, a feature which might be important for light adaptation in the retina. © 2015 Wiley Periodicals, Inc.

  18. Seizure-Induced Motility of Differentiated Dentate Granule Cells Is Prevented by the Central Reelin Fragment

    PubMed Central

    Orcinha, Catarina; Münzner, Gert; Gerlach, Johannes; Kilias, Antje; Follo, Marie; Egert, Ulrich; Haas, Carola A.

    2016-01-01

    Granule cell dispersion (GCD) represents a pathological widening of the granule cell layer in the dentate gyrus and it is frequently observed in patients with mesial temporal lobe epilepsy (MTLE). Recent studies in human MTLE specimens and in animal epilepsy models have shown that a decreased expression and functional inactivation of the extracellular matrix protein Reelin correlates with GCD formation, but causal evidence is still lacking. Here, we used unilateral kainate (KA) injection into the mouse hippocampus, an established MTLE animal model, to precisely map the loss of reelin mRNA-synthesizing neurons in relation to GCD along the septotemporal axis of the epileptic hippocampus. We show that reelin mRNA-producing neurons are mainly lost in the hilus and that this loss precisely correlates with the occurrence of GCD. To monitor GCD formation in real time, we used organotypic hippocampal slice cultures (OHSCs) prepared from mice which express enhanced green fluorescent protein (eGFP) primarily in differentiated dentate granule cells. Using life cell microscopy we observed that increasing doses of KA resulted in an enhanced motility of eGFP-positive granule cells. Moreover, KA treatment of OHSC resulted in a rapid loss of Reelin-producing interneurons mainly in the hilus, as observed in vivo. A detailed analysis of the migration behavior of individual eGFP-positive granule cells revealed that the majority of these neurons actively migrate toward the hilar region, where Reelin-producing neurons are lost. Treatment with KA and subsequent addition of the recombinant R3–6 Reelin fragment significantly prevented the movement of eGFP-positive granule cells. Together, these findings suggest that GCD formation is indeed triggered by a loss of Reelin in hilar interneurons. PMID:27516734

  19. Seamless Reconstruction of Intact Adult-Born Neurons by Serial End-Block Imaging Reveals Complex Axonal Guidance and Development in the Adult Hippocampus

    PubMed Central

    Sun, Gerald J.; Sailor, Kurt A.; Mahmood, Qasim A.; Chavali, Nikhil; Christian, Kimberly M.; Song, Hongjun

    2013-01-01

    In the adult mammalian hippocampus, newborn dentate granule cells are continuously integrated into the existing circuitry and contribute to specific brain functions. Little is known about the axonal development of these newborn neurons in the adult brain due to technological challenges that have prohibited large-scale reconstruction of long, thin, and complex axonal processes within the mature nervous system. Here, using a new serial end-block imaging (SEBI) technique, we seamlessly reconstructed axonal and dendritic processes of intact individual retrovirus-labeled newborn granule cells at different developmental stages in the young adult mouse hippocampus. We found that adult-born dentate granule cells exhibit tortuous, yet highly stereotyped, axonal projections to CA3 hippocampal subregions. Primary axonal projections of cohorts of new neurons born around the same time organize into laminar patterns with staggered terminations that stack along the septo-temporal hippocampal axis. Analysis of individual newborn neuron development further defined an initial phase of rapid axonal and dendritic growth within 21 d after newborn neuron birth, followed by minimal growth of primary axonal and whole dendritic processes through the last time point examined at 77 d. Our results suggest that axonal development and targeting is a highly orchestrated, precise process in the adult brain. These findings demonstrate a striking regenerative capacity of the mature CNS to support long-distance growth and guidance of neuronal axons. Our SEBI approach can be broadly applied for analysis of intact, complex neuronal projections in limitless tissue volume. PMID:23843512

  20. Seamless reconstruction of intact adult-born neurons by serial end-block imaging reveals complex axonal guidance and development in the adult hippocampus.

    PubMed

    Sun, Gerald J; Sailor, Kurt A; Mahmood, Qasim A; Chavali, Nikhil; Christian, Kimberly M; Song, Hongjun; Ming, Guo-li

    2013-07-10

    In the adult mammalian hippocampus, newborn dentate granule cells are continuously integrated into the existing circuitry and contribute to specific brain functions. Little is known about the axonal development of these newborn neurons in the adult brain due to technological challenges that have prohibited large-scale reconstruction of long, thin, and complex axonal processes within the mature nervous system. Here, using a new serial end-block imaging (SEBI) technique, we seamlessly reconstructed axonal and dendritic processes of intact individual retrovirus-labeled newborn granule cells at different developmental stages in the young adult mouse hippocampus. We found that adult-born dentate granule cells exhibit tortuous, yet highly stereotyped, axonal projections to CA3 hippocampal subregions. Primary axonal projections of cohorts of new neurons born around the same time organize into laminar patterns with staggered terminations that stack along the septo-temporal hippocampal axis. Analysis of individual newborn neuron development further defined an initial phase of rapid axonal and dendritic growth within 21 d after newborn neuron birth, followed by minimal growth of primary axonal and whole dendritic processes through the last time point examined at 77 d. Our results suggest that axonal development and targeting is a highly orchestrated, precise process in the adult brain. These findings demonstrate a striking regenerative capacity of the mature CNS to support long-distance growth and guidance of neuronal axons. Our SEBI approach can be broadly applied for analysis of intact, complex neuronal projections in limitless tissue volume.

  1. Functional and molecular analysis of transient voltage-dependent K+ currents in rat hippocampal granule cells

    PubMed Central

    Riazanski, Vladimir; Becker, Albert; Chen, Jian; Sochivko, Dmitry; Lie, Ailing; Wiestler, Otmar D; Elger, Christian E; Beck, Heinz

    2001-01-01

    We have investigated voltage-dependent outward K+ currents of dentate granule cells (DGCs) in acute brain slices from young and adult rats using nucleated and outside-out patch recordings. In adult DGCs, the outward current pattern was dominated by a transient K+ current component. One portion of this current (∼60 %) was blocked by micromolar concentrations of tetraethylammonium (TEA; IC50 42 μm) and BDS-I, a specific blocker of Kv3.4 subunits (2.5 μm). A second component was insensitive to tetraethylammonium (10 mm) and BDS-I. The transient outward current could be completely blocked by 4-aminopyridine (IC50 296 μm). The TEA- and BDS-I-sensitive and the TEA-resistant current components were isolated pharmacologically. The current component that was blocked by BDS-I and TEA showed a depolarized threshold of activation (∼-30 mV) reminiscent of Kv3.4 subunits, while the current component resistant to TEA activated at more hyperpolarized potentials (∼-60 mV). In nucleated patches obtained by placing the patch pipette adjacent to the apical dendrite, only small Na+ currents and small BDS-I-sensitive transient currents were detected. Nucleated patches obtained from either the cell soma (see above) or the axon hillock showed significantly larger amplitude Na+ currents as well as larger BDS-I-sensitive currents, indicating that this current was predominantly localized within the axosomatic compartment. This result was in good agreement with the distribution of Kv3.4 protein as determined by immunohistochemistry. Current-clamp as well as mock action potential-clamp experiments revealed that the BDS-sensitive current component contributes to action potential repolarization. A comparison of the two age groups (4-10 days and 60-100 days) revealed a marked developmental up-regulation of the BDS-I-sensitive component. These functional changes are paralleled by a developmental increase in Kv3.4 mRNA expression determined by quantitative real-time RT-PCR, as well as a

  2. Berberine Attenuates Axonal Transport Impairment and Axonopathy Induced by Calyculin A in N2a Cells

    PubMed Central

    Abid, Morad Dirhem Naji; Yan, Huanhuan; Huang, Hao; Wan, Limin; Feng, Zuohua; Chen, Juan

    2014-01-01

    Berberine is a primary component of the most functional extracts of Coptidis rhizome used in traditional Chinese medicine for centuries. Recent reports indicate that Berberine has the potential to prevent and treat Alzheimer's disease (AD). The previous studies reported that Calyculin A (CA) impaired the axonal transport in neuroblastoma-2a (N2a) cells. Berberine attenuated tau hyperphosphorylation and cytotoxicity induced by CA. Our study aimed at investigating the effects of Berberine on the axonal transport impairment induced by CA in N2a cells. The results showed that Berberine could protect the cell from CA -induced toxicity in metabolism and viability, as well as hyperphosphorylation of tau and neurofilaments (NFs). Furthermore, Berberine could reverse CA-induced axonal transport impairment significantly. Berberine also partially reversed the phosphorylation of the catalytic subunit of PP-2A at Tyrosine 307, a crucial site negatively regulating the activity of PP-2A, and reduced the levels of malondialdehyde and the activity of superoxide dismutase, markers of oxidative stress, induced by CA. The present work for the first time demonstrates that Berberine may play a role in protecting against CA-induced axonal transport impairment by modulating the activity of PP-2A and oxidative stress. Our findings also suggest that Berberine may be a potential therapeutic drug for AD. PMID:24713870

  3. Anatomy of the Hesse photoreceptor cell axonal system in the central nervous system of amphioxus.

    PubMed

    Castro, Antonio; Becerra, Manuela; Manso, María Jesús; Sherwood, Nancy M; Anadón, Ramón

    2006-01-01

    The present study reports the organization of the Hesse cell axonal system in the central nervous system of the amphioxus, with the use of a polyclonal antiserum raised against lamprey gonadotropin-releasing hormone-I (GnRH-I). In the spinal cord, the rhabdomeric photoreceptor cells of the bicellular organs were well labeled with this antibody. These cells sent smooth, straight, lateral processes that bent and became beaded as they passed ventrally and crossed to the contralateral side of the cord. There, the processes of several cells aggregated to give rise to a longitudinal fiber bundle. Beaded collaterals of these processes were directed to ventral neuropil and did not appear to contact giant Rohde cell axons. The crossed projections of the Hesse photoreceptors are compared with those of vertebrate retinal ganglion cells. Other antisera raised against GnRH weakly labeled rhabdomeric photoreceptors located dorsally in the brain, the Joseph cells. The finding that GnRH antibodies label amphioxus photoreceptor cells and axons is not definitive proof that the photoreceptors contain GnRH. Regardless of whether the antibody recognizes amphioxus GnRH, which has not yet been identified by structure, the antibody has revealed the processes of the Hesse photoreceptor cells.

  4. The econobiology of pancreatic acinar cells granule inventory and the stealthy nano-machine behind it.

    PubMed

    Hammel, Ilan; Meilijson, Isaac

    2016-03-01

    The pancreatic gland secretes most of the enzymes and many other macromolecules needed for food digestion in the gastrointestinal tract. These molecules play an important role in digestion, host defense and lubrication. The secretion of pancreatic proteins ensures the availability of the correct mix of proteins when needed. This review describes model systems available for the study of the econobiology of secretory granule content. The secretory pancreatic molecules are stored in large dense-core secretory granules that may undergo either constitutive or evoked secretion, and constitute the granule inventory of the cell. It is proposed that the Golgi complex functions as a distribution center for secretory proteins in pancreatic acinar cells, packing the newly formed secretory molecules into maturing secretory granules, also known functionally as condensing vacuoles. Mathematical modelling brings forward a process underlying granule inventory maintenance at various physiological states of condensation and aggregation by homotypic fusion. These models suggest unique but simple mechanisms accountable for inventory buildup and size, as well as for the distribution of secretory molecules into different secretory pathways in pancreatic acinar cells.

  5. Ex Vivo Culture of Chick Cerebellar Slices and Spatially Targeted Electroporation of Granule Cell Precursors.

    PubMed

    Hanzel, Michalina; Wingate, Richard J T; Butts, Thomas

    2015-12-14

    The cerebellar external granule layer (EGL) is the site of the largest transit amplification in the developing brain, and an excellent model for studying neuronal proliferation and differentiation. In addition, evolutionary modifications of its proliferative capability have been responsible for the dramatic expansion of cerebellar size in the amniotes, making the cerebellum an excellent model for evo-devo studies of the vertebrate brain. The constituent cells of the EGL, cerebellar granule progenitors, also represent a significant cell of origin for medulloblastoma, the most prevalent paediatric neuronal tumour. Following transit amplification, granule precursors migrate radially into the internal granular layer of the cerebellum where they represent the largest neuronal population in the mature mammalian brain. In chick, the peak of EGL proliferation occurs towards the end of the second week of gestation. In order to target genetic modification to this layer at the peak of proliferation, we have developed a method for genetic manipulation through ex vivo electroporation of cerebellum slices from embryonic Day 14 chick embryos. This method recapitulates several important aspects of in vivo granule neuron development and will be useful in generating a thorough understanding of cerebellar granule cell proliferation and differentiation, and thus of cerebellum development, evolution and disease.

  6. Avian minor salivary glands: an ultrastructural study of the secretory granules in mucous and seromucous cells.

    PubMed

    Olmedo, L A; Samar, M E; Avila, R E; de Crosa, M G; Dettin, L

    2000-01-01

    Ultrastructural descriptions in birds are scarce thus, in this study we have characterized the secretory granules of mucous and seromucous cells from the palatine and lingual salivary glands of birds with different diets. The samples were taken from the tongue and palatine mucosa of chicken (Gallus gallus), quail (Coturnix coturnix), chimango (Milvago chimango) and white heron (Egretta thula). The samples were processed for observation by transmission electron microscopy (TEM) employing 4% Karnovsky solution for fixation. The most noteworthy finding was the heterogeneous ultrastructural appearance of the secretory granules. Differences in substructure were found between the four species, between the palatine and lingual glands in the same species and even within the same acinus and the same cell. At variance with other authors, these differences cannot be attributed to the type of fixative solution used taking into account that all the samples were processed in the same way. Previous histochemical studies have shown the presence of sulfated and non sulfated glycoconjugates in these glands which can be associated to the maturation of the granules. These granules are probably representative of peculiar storage of the secretory products that would give rise to a heterogeneous and complex ultrastructural pattern of granules in the mucosa and seromucosa cells of these avian species.

  7. Stimulation of mast cells leads to cholesterol accumulation in macrophages in vitro by a mast cell granule-mediated uptake of low density lipoprotein

    SciTech Connect

    Kokkonen, J.O.; Kovanen, P.T.

    1987-04-01

    The uptake of low density lipoprotein (LDL) by cultured mouse macrophages was markedly promoted by isolated rat mast cell granules present in the culture medium. The granule-mediated uptake of /sup 125/I-LDL enhanced the rate of cholesteryl ester synthesis in the macrophages, the result being accumulation of cholesteryl esters in these cells. Binding of LDL to the granules was essential for the granule-mediated uptake of LDL by macrophages, for the uptake process was prevented by treating the granules with avidin or protamine chloride or by treating LDL with 1,2-cyclohexanedione, all of which inhibit the binding of LDL to the granules. Inhibition of granule phagocytosis by the macrophages with cytochalasin B also abolished the granule-mediated uptake of LDL. Finally, mouse macrophage monolayers and LDL were incubated in the presence of isolated rat serosal mast cells. Stimulation of the mast cells with compound 48/80, a degranulating agent, resulted in dose-dependent release of secretory granules from the mast cells and a parallel increase in /sup 14/C cholesteryl ester synthesis in the macrophages. The results show that, in this in vitro model, the sequence of events leading to accumulation of cholesteryl esters in macrophages involves initial stimulation of mast cells, subsequent release of their secretory granules, binding of LDL to the exocytosed granules, and, finally, phagocytosis of the LDL-containing granules by macrophages.

  8. Identification of axon-enriched microRNAs localized to growth cones of cortical neurons.

    PubMed

    Sasaki, Yukio; Gross, Christina; Xing, Lei; Goshima, Yoshio; Bassell, Gary J

    2014-03-01

    There is increasing evidence that localized mRNAs in axons and growth cones play an important role in axon extension and pathfinding via local translation. A few studies have revealed the presence of microRNAs (miRNAs) in axons, which may control local protein synthesis during axon development. However, so far, there has been no attempt to screen for axon-enriched miRNAs and to validate their possible localization to growth cones of developing axons from neurons of the central nervous system. In this study, the localization of miRNAs in axons and growth cones in cortical neurons was examined using a "neuron ball" culture method that is suitable to prepare axonal miRNAs with high yield and purity. Axonal miRNAs prepared from the neuron ball cultures of mouse cortical neurons were analyzed by quantitative real-time RT-PCR. Among 375 miRNAs that were analyzed, 105 miRNAs were detected in axons, and six miRNAs were significantly enriched in axonal fractions when compared with cell body fractions. Fluorescence in situ hybridization revealed that two axon-enriched miRNAs, miR-181a-1* and miR-532, localized as distinct granules in distal axons and growth cones. The association of these miRNAs with the RNA-induced silencing complex further supported their function to regulate mRNA levels or translation in the brain. These results suggest a mechanism to localize specific miRNAs to distal axons and growth cones, where they could be involved in local mRNA regulation. These findings provide new insight into the presence of axonal miRNAs and motivate further analysis of their function in local protein synthesis underlying axon guidance.

  9. Mast cell differentiation depends on T cells and granule synthesis on fibroblasts.

    PubMed Central

    Davidson, S; Mansour, A; Gallily, R; Smolarski, M; Rofolovitch, M; Ginsburg, H

    1983-01-01

    Mast cell differentiation was generated in the following three experimental situations: (i) infection of mice with Schistosoma Mansoni or with Nippostrongylus brasiliensis and growth of the lymph node cells in the presence of the corresponding helminth antigen; (ii) immunization with horse serum and growth of blood and lymph node cells in the presence of the horse serum; (iii) exposure of T-cell-depleted suspensions of lymph node cells from unimmunized mice to T-cell factor (TCF) released into medium of the young cultures of (i) and (ii). This differentiation was also obtained when lymph node cells from athymic nude mice were exposed to TCF. The cell suspensions were plated on X-irradiated fibroblast monolayers prepared from embryonic mouse skin. Screening of the suspensions before plating on the fibroblasts in culture revealed no young forms of mast cells, and none were present in culture of nude mice lymph node cells maintained without TCF. Primordial appearance of metachromatic granules generally in the golgi zone was first seen in many 'large lymphoid cells' as early as 18 hr after plating. This was followed by increase in the cytoplasm volume, increase in granule number and mitosis, ending at 10-18 days with homogeneous populations of mature mast cells. When the mesenteric lymph node cells from mice infected with the helminths were grown in the absence of fibroblasts but in the presence of the antigen, homogeneous populations of cells with extended cytoplasm, filled with unstained vacuoles developed during days 7-13. These cells did not contain histamine (or at most 0.2 microgram per 10(6) vacuolated cells). When these cells were plated on fibroblast monolayers clear granule formation in all the vacuoles was seen 2 days later. It increased progressively in size and staining intensity, until the vacuoles transformed into typical mast cell granules. By the fourth day the vacuolated cells attained the typical mast cell morphology and the histamine content greatly

  10. [Basic proteins in the granules of mast cells. Demonstration of masked proteins, acidophilic staining of the granules].

    PubMed

    Anikó, K; Lajos, K

    1976-07-01

    Basic proteins of the granules of mast cells in nativ, formalin-, alcohol- and aceton fixed preparations without any preliminary treatment, when stained with acidic dye at the pH 9 cytochemically seem to be masked. After various preliminary treatment (treatment with acid, with cetylpiridinumchlorid, CPC) mast-cell granula stained with acidic-dye at pH 9 appear intensively acidophile. This phenomenon can be explained by the presence of basic proteins in the mast cell granula. Preliminary treatment with CPC inhibits acid radicals of the heparin. This may lead to the disintegration of the linkage between proteins of the heparin, thus amino-group of the basic proteins become reactivated and can be identified by acidic dyes. It can not be excluded as well, that CPC linked to the heparin with free positive radicals reveals acidic-dye-binding capacity. In cases of preliminary treatment with various acids this mechanism does not seem possible to lay on the base of changing of the dye binding capacity.

  11. Ocular hypertension impairs optic nerve axonal transport leading to progressive retinal ganglion cell degeneration.

    PubMed

    Salinas-Navarro, Manuel; Alarcón-Martínez, Luis; Valiente-Soriano, Francisco J; Jiménez-López, Manuel; Mayor-Torroglosa, Sergio; Avilés-Trigueros, Marcelino; Villegas-Pérez, María Paz; Vidal-Sanz, Manuel

    2010-01-01

    Ocular hypertension (OHT) is the main risk factor of glaucoma, a neuropathy leading to blindness. Here we have investigated the effects of laser photocoagulation (LP)-induced OHT, on the survival and retrograde axonal transport (RAT) of adult rat retinal ganglion cells (RGC) from 1 to 12 wks. Active RAT was examined with fluorogold (FG) applied to both superior colliculi (SCi) 1 wk before processing and passive axonal diffusion with dextran tetramethylrhodamine (DTMR) applied to the optic nerve (ON) 2 d prior to sacrifice. Surviving RGCs were identified with FG applied 1 wk pre-LP or by Brn3a immunodetection. The ON and retinal nerve fiber layer were examined by RT97-neurofibrillar staining. RGCs were counted automatically and color-coded density maps were generated. OHT retinas showed absence of FG+ or DTMR+RGCs in focal, pie-shaped and diffuse regions of the retina which, by two weeks, amounted to, approximately, an 80% of RGC loss without further increase. At this time, there was a discrepancy between the total number of surviving FG-prelabelled RGCs and of DMTR+RGCs, suggesting that a large proportion of RGCs had their RAT impaired. This was further confirmed identifying surviving RGCs by their Brn3a expression. From 3 weeks onwards, there was a close correspondence of DTMR+RGCs and FG+RGCs in the same retinal regions, suggesting axonal constriction at the ON head. Neurofibrillar staining revealed, in ONs, focal degeneration of axonal bundles and, in the retinal areas lacking backlabeled RGCs, aberrant staining of RT97 characteristic of axotomy. LP-induced OHT results in a crush-like injury to ON axons leading to the anterograde and protracted retrograde degeneration of the intraocular axons and RGCs.

  12. Effects of p-xylene inhalation on axonal transport in the rat retinal ganglion cells

    SciTech Connect

    Padilla, S.S.; Lyerly, D.P. )

    1989-12-01

    Although the solvent xylene is suspected of producing nervous system dysfunction in animals and humans, little is known regarding the neurochemical consequences of xylene inhalation. The intent of this study was to determine the effect of intermittent, acute, and subchronic p-xylene exposure on the axonal transport of proteins and glycoproteins within the rat retinofugal tract. A number of different exposure regimens were tested ranging from 50 ppm for a single 6-hr exposure to 1600 ppm 6 hr/day, 5 days/week, for a total of 8 exposure days. Immediately following removal from the inhalation chambers rats were injected intraocularly with (35S)methionine and (3H)fucose (to label retinal proteins and glycoproteins, respectively) and the axonal transport of labeled macromolecules to axons (optic nerve and optic tract) and nerve endings (lateral geniculate body and superior colliculus) was examined 20 hr after precursor injection. Only relatively severe exposure regimens (i.e., 800 or 1600 ppm 6 hr/day, 5 days/week, for 1.5 weeks) produced significant reductions in axonal transport; there was a moderate reduction in the axonal transport of 35S-labeled proteins in the 800-ppm-treated group which was more widespread in the 1600 ppm-treated group. Transport of 3H-labeled glycoproteins was less affected. Assessment of retinal metabolism immediately after isotope injection indicated that the rate of precursor uptake was not reduced in either treatment group. Furthermore, rapid transport was still substantially reduced in animals exposed to 1600 ppm p-xylene and allowed a 13-day withdrawal period. These data indicate that p-xylene inhalation decreases rapid axonal transport supplied to the projections of the rat retinal ganglion cells immediately after cessation of inhalation exposure and that this decreased transport is still apparent 13 days after the last exposure.

  13. Motor Axon Synapses on Renshaw Cells Contain Higher Levels of Aspartate than Glutamate

    PubMed Central

    Richards, Dannette S.; Griffith, Ronald W.; Romer, Shannon H.; Alvarez, Francisco J.

    2014-01-01

    Motoneuron synapses on spinal cord interneurons known as Renshaw cells activate nicotinic, AMPA and NMDA receptors consistent with co-release of acetylcholine and excitatory amino acids (EAA). However, whether these synapses express vesicular glutamate transporters (VGLUTs) capable of accumulating glutamate into synaptic vesicles is controversial. An alternative possibility is that these synapses release other EAAs, like aspartate, not dependent on VGLUTs. To clarify the exact EAA concentrated at motor axon synapses we performed a quantitative postembedding colloidal gold immunoelectron analysis for aspartate and glutamate on motor axon synapses (identified by immunoreactivity to the vesicular acetylcholine transporter; VAChT) contacting calbindin-immunoreactive (-IR) Renshaw cell dendrites. The results show that 71% to 80% of motor axon synaptic boutons on Renshaw cells contained aspartate immunolabeling two standard deviations above average neuropil labeling. Moreover, VAChT-IR synapses on Renshaw cells contained, on average, aspartate immunolabeling at 2.5 to 2.8 times above the average neuropil level. In contrast, glutamate enrichment was lower; 21% to 44% of VAChT-IR synapses showed glutamate-IR two standard deviations above average neuropil labeling and average glutamate immunogold density was 1.7 to 2.0 times the neuropil level. The results were not influenced by antibody affinities because glutamate antibodies detected glutamate-enriched brain homogenates more efficiently than aspartate antibodies detecting aspartate-enriched brain homogenates. Furthermore, synaptic boutons with ultrastructural features of Type I excitatory synapses were always labeled by glutamate antibodies at higher density than motor axon synapses. We conclude that motor axon synapses co-express aspartate and glutamate, but aspartate is concentrated at higher levels than glutamate. PMID:24816812

  14. Motor axon synapses on renshaw cells contain higher levels of aspartate than glutamate.

    PubMed

    Richards, Dannette S; Griffith, Ronald W; Romer, Shannon H; Alvarez, Francisco J

    2014-01-01

    Motoneuron synapses on spinal cord interneurons known as Renshaw cells activate nicotinic, AMPA and NMDA receptors consistent with co-release of acetylcholine and excitatory amino acids (EAA). However, whether these synapses express vesicular glutamate transporters (VGLUTs) capable of accumulating glutamate into synaptic vesicles is controversial. An alternative possibility is that these synapses release other EAAs, like aspartate, not dependent on VGLUTs. To clarify the exact EAA concentrated at motor axon synapses we performed a quantitative postembedding colloidal gold immunoelectron analysis for aspartate and glutamate on motor axon synapses (identified by immunoreactivity to the vesicular acetylcholine transporter; VAChT) contacting calbindin-immunoreactive (-IR) Renshaw cell dendrites. The results show that 71% to 80% of motor axon synaptic boutons on Renshaw cells contained aspartate immunolabeling two standard deviations above average neuropil labeling. Moreover, VAChT-IR synapses on Renshaw cells contained, on average, aspartate immunolabeling at 2.5 to 2.8 times above the average neuropil level. In contrast, glutamate enrichment was lower; 21% to 44% of VAChT-IR synapses showed glutamate-IR two standard deviations above average neuropil labeling and average glutamate immunogold density was 1.7 to 2.0 times the neuropil level. The results were not influenced by antibody affinities because glutamate antibodies detected glutamate-enriched brain homogenates more efficiently than aspartate antibodies detecting aspartate-enriched brain homogenates. Furthermore, synaptic boutons with ultrastructural features of Type I excitatory synapses were always labeled by glutamate antibodies at higher density than motor axon synapses. We conclude that motor axon synapses co-express aspartate and glutamate, but aspartate is concentrated at higher levels than glutamate.

  15. Maternal exposure to 3,3'-iminodipropionitrile targets late-stage differentiation of hippocampal granule cell lineages to affect brain-derived neurotrophic factor signaling and interneuron subpopulations in rat offspring.

    PubMed

    Itahashi, Megu; Abe, Hajime; Tanaka, Takeshi; Mizukami, Sayaka; Kikuchihara, Yoh; Yoshida, Toshinori; Shibutani, Makoto

    2015-08-01

    3,3'-Iminodipropionitrile (IDPN) causes neurofilament (NF)-filled swellings in the proximal segments of many large-caliber myelinated axons. This study investigated the effect of maternal exposure to IDPN on hippocampal neurogenesis in rat offspring using pregnant rats supplemented with 0 (controls), 67 or 200 ppm IDPN in drinking water from gestational day 6 to day 21 after delivery. On postnatal day (PND) 21, female offspring subjected to analysis had decreased parvalbumin(+), reelin(+) and phospho-TrkB(+) interneurons in the dentate hilus at 200 ppm and increased granule cell populations expressing immediate-early gene products, Arc or c-Fos, at ≥  67 ppm. mRNA expression in the dentate gyrus examined at 200 ppm decreased with brain-derived neurotrophic factor (Bdnf) and very low density lipoprotein receptor. Immunoreactivity for phosphorylated NF heavy polypeptide decreased in the molecular layer of the dentate gyrus and the stratum radiatum of the cornu ammonis (CA) 3, portions showing axonal projections from mossy cells and pyramidal neurons, at 200 ppm on PND 21, whereas immunoreactivity for synaptophysin was unchanged in the dentate gyrus. Observed changes all disappeared on PND 77. There were no fluctuations in the numbers of apoptotic cells, proliferating cells and subpopulations of granule cell lineage in the subgranular zone on PND 21 and PND 77. Thus, maternal IDPN exposure may reversibly affect late-stage differentiation of granule cell lineages involving neuronal plasticity as evident by immediate-early gene responses to cause BDNF downregulation resulting in a reduction in parvalbumin(+) or reelin(+) interneurons and suppression of axonal plasticity in the mossy cells and CA3 pyramidal neurons. Copyright © 2014 John Wiley & Sons, Ltd.

  16. The origin and role of autophagy in the formation of cytoplasmic granules in canine lingual granular cell tumors.

    PubMed

    Suzuki, S; Uchida, K; Harada, T; Nibe, K; Yamashita, M; Ono, K; Nakayama, H

    2015-05-01

    Granular cell tumors (GCTs) are histologically characterized by polygonal neoplastic cells with abundant eosinophilic cytoplasmic granules. In humans, these cells are considered to be derived from Schwann cells, and the cytoplasmic granules are assumed to be autophagosomes or autophagolysosomes. However, the origin and nature of the cytoplasmic granules in canine GCTs have not been well characterized. The present study examined 9 canine lingual GCTs using immunohistochemistry, transmission electron microscopy (TEM), and cell culture and xenotransplantation experiments. In some cases, the tumor cells expressed S100, CD133, and desmin. The cytoplasmic granules were positive for LC3, p62, NBR1, and ubiquitin. TEM revealed autophagosome-like structures in the cytoplasm of the granule-containing cells. The cultured GCT cells were round to spindle shaped and expressed S100, nestin, Melan-A, CD133, LC3, p62, NBR1, and ubiquitin, suggesting that they were of neural crest origin, redifferentiated into melanocytes, and exhibited upregulated autophagy. The xenotransplanted tumors consisted of spindle to polygonal cells. Only a few cells contained cytoplasmic granules, and some had melanin pigments in their cytoplasm. The xenotransplanted cells expressed S100, nestin, Melan-A, and CD133. P62 and ubiquitin were detected, regardless of the presence or absence of cytoplasmic granules, while LC3 and NBR1 were detected only in the neoplastic cells containing cytoplasmic granules. These findings suggest that some xenotransplanted cells redifferentiated into melanocytes and that autophagy was upregulated in the cytoplasmic granule-containing cells. In conclusion, canine lingual GCTs originate from the neural crest and develop cytoplasmic granules via autophagy. In addition, the microenvironment of GCT cells affects their morphology. © The Author(s) 2014.

  17. Secretory granules in inositol 1,4,5-trisphosphate-dependent Ca2+ signaling in the cytoplasm of neuroendocrine cells

    PubMed Central

    Yoo, Seung Hyun

    2010-01-01

    Of all the intracellular organelles, secretory granules contain by far the highest calcium concentration; secretory granules of typical neuroendocrine chromaffin cells contain ∼40 mM Ca2+ and occupy ∼20% cell volume, accounting for >60% of total cellular calcium. They also contain the majority of cellular inositol 1,4,5-trisphosphate receptors (IP3Rs) in addition to the presence of >2 mM of chromogranins A and B that function as high-capacity, low-affinity Ca2+ storage proteins. Chromogranins A and B also interact with the IP3Rs and activate the IP3R/Ca2+ channels. In experiments with both neuroendocrine PC12 and nonneuroendocrine NIH3T3 cells, in which the number of secretory granules present was changed by either suppression or induction of secretory granule formation, secretory granules were demonstrated to account for >70% of the IP3-induced Ca2+ releases in the cytoplasm. Moreover, the IP3 sensitivity of secretory granule IP3R/Ca2+ channels is at least ∼6- to 7-fold more sensitive than those of the endoplasmic reticulum, thus enabling secretory granules to release Ca2+ ahead of the endoplasmic reticulum. Further, there is a direct correlation between the number of secretory granules and the IP3 sensitivity of cytoplasmic IP3R/Ca2+ channels and the increased ratio of IP3-induced cytoplasmic Ca2+ release, highlighting the importance of secretory granules in the IP3-dependent Ca2+ signaling. Given that secretory granules are present in all secretory cells, these results presage critical roles of secretory granules in the control of cytoplasmic Ca2+ concentrations in other secretory cells.—Yoo, S. H. Secretory granules in inositol 1,4,5-trisphosphate-dependent Ca2+ signaling in the cytoplasm of neuroendocrine cells. PMID:19837865

  18. Retinal ganglion cell survival and axon regeneration after optic nerve injury in naked mole-rats.

    PubMed

    Park, Kevin K; Luo, Xueting; Mooney, Skyler J; Yungher, Benjamin J; Belin, Stephane; Wang, Chen; Holmes, Melissa M; He, Zhigang

    2017-02-01

    In the adult mammalian central nervous system (CNS), axonal damage often triggers neuronal cell death and glial activation, with very limited spontaneous axon regeneration. In this study, we performed optic nerve injury in adult naked mole-rats, the longest living rodent, with a maximum life span exceeding 30 years, and found that injury responses in this species are quite distinct from those in other mammalian species. In contrast to what is seen in other mammals, the majority of injured retinal ganglion cells (RGCs) survive with relatively high spontaneous axon regeneration. Furthermore, injured RGCs display activated signal transducer and activator of transcription-3 (STAT3), whereas astrocytes in the optic nerve robustly occupy and fill the lesion area days after injury. These neuron-intrinsic and -extrinsic injury responses are reminiscent of those in "cold-blooded" animals, such as fish and amphibians, suggesting that the naked mole-rat is a powerful model for exploring the mechanisms of neuronal injury responses and axon regeneration in mammals. J. Comp. Neurol. 525:380-388, 2017. © 2016 Wiley Periodicals, Inc.

  19. Role of actin cortex in the subplasmalemmal transport of secretory granules in PC-12 cells.

    PubMed Central

    Lang, T; Wacker, I; Wunderlich, I; Rohrbach, A; Giese, G; Soldati, T; Almers, W

    2000-01-01

    In neuroendocrine PC-12 cells, evanescent-field fluorescence microscopy was used to track motions of green fluorescent protein (GFP)-labeled actin or GFP-labeled secretory granules in a thin layer of cytoplasm where cells adhered to glass. The layer contained abundant filamentous actin (F-actin) locally condensed into stress fibers. More than 90% of the granules imaged lay within the F-actin layer. One-third of the granules did not move detectably, while two-thirds moved randomly; the average diffusion coefficient was 23 x 10(-4) microm(2)/s. A small minority (<3%) moved rapidly and in a directed fashion over distances more than a micron. Staining of F-actin suggests that such movement occurred along actin bundles. The seemingly random movement of most other granules was not due to diffusion since it was diminished by the myosin inhibitor butanedione monoxime, and blocked by chelating intracellular Mg(2+) and replacing ATP with AMP-PNP. Mobility was blocked also when F-actin was stabilized with phalloidin, and was diminished when the actin cortex was degraded with latrunculin B. We conclude that the movement of granules requires metabolic energy, and that it is mediated as well as limited by the actin cortex. Opposing actions of the actin cortex on mobility may explain why its degradation has variable effects on secretion. PMID:10827968

  20. Status epilepticus increases mature granule cells in the molecular layer of the dentate gyrus in rats★

    PubMed Central

    Liang, Zhaoliang; Gao, Fei; Wang, Fajun; Wang, Xiaochen; Song, Xinyu; Liu, Kejing; Zhan, Ren-Zhi

    2013-01-01

    Enhanced neurogenesis in the dentate gyrus of the hippocampus following seizure activity, especially status epilepticus, is associated with ectopic residence and aberrant integration of newborn granule cells. Hilar ectopic granule cells may be detrimental to the stability of dentate circuitry by means of their electrophysiological properties and synaptic connectivity. We hypothesized that status epilepticus also increases ectopic granule cells in the molecular layer. Status epilepticus was induced in male Sprague-Dawley rats by intraperitoneal injection of pilocarpine. Immunostaining showed that many doublecortin-positive cells were present in the molecular layer and the hilus 7 days after the induction of status epilepticus. At least 10 weeks after status epilepticus, the estimated number of cells positive for both prospero homeobox protein 1 and neuron-specific nuclear protein in the hilus was significantly increased. A similar trend was also found in the molecular layer. These findings indicate that status epilepticus can increase the numbers of mature and ectopic newborn granule cells in the molecular layer. PMID:25206705

  1. Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells

    PubMed Central

    Huang, Cheng-Chiu; Sugino, Ken; Shima, Yasuyuki; Guo, Caiying; Bai, Suxia; Mensh, Brett D; Nelson, Sacha B; Hantman, Adam W

    2013-01-01

    Cerebellar granule cells constitute the majority of neurons in the brain and are the primary conveyors of sensory and motor-related mossy fiber information to Purkinje cells. The functional capability of the cerebellum hinges on whether individual granule cells receive mossy fiber inputs from multiple precerebellar nuclei or are instead unimodal; this distinction is unresolved. Using cell-type-specific projection mapping with synaptic resolution, we observed the convergence of separate sensory (upper body proprioceptive) and basilar pontine pathways onto individual granule cells and mapped this convergence across cerebellar cortex. These findings inform the long-standing debate about the multimodality of mammalian granule cells and substantiate their associative capacity predicted in the Marr-Albus theory of cerebellar function. We also provide evidence that the convergent basilar pontine pathways carry corollary discharges from upper body motor cortical areas. Such merging of related corollary and sensory streams is a critical component of circuit models of predictive motor control. DOI: http://dx.doi.org/10.7554/eLife.00400.001 PMID:23467508

  2. Mechanisms of granule membrane recapture following exocytosis in intact mast cells.

    PubMed

    Cabeza, Jose M; Acosta, Jorge; Alés, Eva

    2013-07-12

    In secretory cells, several exocytosis-coupled forms of endocytosis have been proposed including clathrin-mediated endocytosis, kiss-and-run endocytosis, cavicapture, and bulk endocytosis. These forms of endocytosis can be induced under different conditions, but their detailed molecular mechanisms and functions are largely unknown. We studied exocytosis and endocytosis in mast cells with both perforated-patch and whole-cell configurations of the patch clamp technique using cell capacitance measurements in combination with amperometric serotonin detection. We found that intact mast cells exhibit an early endocytosis that follows exocytosis induced by compound 48/80. Direct observation of individual exocytic and endocytic events showed a higher percentage of capacitance flickers (27.3%) and off-steps (11.4%) in intact mast cells than in dialyzed cells (5.4% and 2.9%, respectively). Moreover, we observed a type of endocytosis of large pieces of membrane that were likely formed by cumulative fusion of several secretory granules with the cell membrane. We also identified "large-capacitance flickers" that occur after large endocytosis events. Pore conductance analysis indicated that these transient events may represent "compound cavicapture," most likely due to the flickering of a dilated fusion pore. Using fluorescence imaging of individual exocytic and endocytic events we observed that granules can fuse to granules already fused with the plasma membrane, and then the membranes and dense cores of fused granules are internalized. Altogether, our results suggest that stimulated exocytosis in intact mast cells is followed by several forms of compensatory endocytosis, including kiss-and-run endocytosis and a mechanism for efficient retrieval of the compound membrane of several secretory granules through a single membrane fission event.

  3. Mechanisms of Granule Membrane Recapture following Exocytosis in Intact Mast Cells*

    PubMed Central

    Cabeza, Jose M.; Acosta, Jorge; Alés, Eva

    2013-01-01

    In secretory cells, several exocytosis-coupled forms of endocytosis have been proposed including clathrin-mediated endocytosis, kiss-and-run endocytosis, cavicapture, and bulk endocytosis. These forms of endocytosis can be induced under different conditions, but their detailed molecular mechanisms and functions are largely unknown. We studied exocytosis and endocytosis in mast cells with both perforated-patch and whole-cell configurations of the patch clamp technique using cell capacitance measurements in combination with amperometric serotonin detection. We found that intact mast cells exhibit an early endocytosis that follows exocytosis induced by compound 48/80. Direct observation of individual exocytic and endocytic events showed a higher percentage of capacitance flickers (27.3%) and off-steps (11.4%) in intact mast cells than in dialyzed cells (5.4% and 2.9%, respectively). Moreover, we observed a type of endocytosis of large pieces of membrane that were likely formed by cumulative fusion of several secretory granules with the cell membrane. We also identified “large-capacitance flickers” that occur after large endocytosis events. Pore conductance analysis indicated that these transient events may represent “compound cavicapture,” most likely due to the flickering of a dilated fusion pore. Using fluorescence imaging of individual exocytic and endocytic events we observed that granules can fuse to granules already fused with the plasma membrane, and then the membranes and dense cores of fused granules are internalized. Altogether, our results suggest that stimulated exocytosis in intact mast cells is followed by several forms of compensatory endocytosis, including kiss-and-run endocytosis and a mechanism for efficient retrieval of the compound membrane of several secretory granules through a single membrane fission event. PMID:23709219

  4. Effects of amyloid-β plaque proximity on the axon initial segment of pyramidal cells.

    PubMed

    León-Espinosa, Gonzalo; DeFelipe, Javier; Muñoz, Alberto

    2012-01-01

    The output of cortical pyramidal cells reflects the balance between excitatory inputs of cortical and subcortical origin, and inhibitory inputs from distinct populations of cortical GABAergic interneurons, each of which selectively innervate different domains of neuronal pyramidal cells (i.e., dendrites, soma and axon initial segment [AIS]). In Alzheimer's disease (AD), the presence of amyloid-β (Aβ) plaques alters the synaptic input to pyramidal cells in a number of ways. However, the effects of Aβ plaques on the AIS have still not been investigated to date. This neuronal domain is involved in input integration, as well as action potential initiation and propagation, and it exhibits Ca2+- and activity-dependent structural plasticity. The AIS is innervated by GABAergic axon terminals from chandelier cells, which are thought to exert a strong influence on pyramidal cell output. In the AβPP/PS1 transgenic mouse model of AD, we have investigated the effects of Aβ plaques on the morphological and neurochemical features of the AIS, including the cisternal organelle, using immunocytochemistry and confocal microscopy, as well as studying the innervation of the AIS by chandelier cell axon terminals. There is a strong reduction in GABAergic terminals that appose AIS membrane surfaces that are in contact with Aβ plaques, indicating altered inhibitory synapsis at the AIS. Thus, despite a lack of gross structural alterations in the AIS, this decrease in GABAergic innervation may deregulate AIS activity and contribute to the hyperactivity of neurons in contact with Aβ plaques.

  5. PHBV microspheres as neural tissue engineering scaffold support neuronal cell growth and axon-dendrite polarization.

    PubMed

    Chen, Wenhui; Tong, Yen Wah

    2012-02-01

    Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microspheres, with properties such as slower degradation and more efficient drug delivery properties, have important benefits for neural tissue engineering. Our previous studies have shown PHBV microspheres to improve cell growth and differentiation. This study aimed to investigate if PHBV microspheres would support neurons to extend these benefits to neural tissue engineering. PHBV microspheres' suitability as neural tissue engineering scaffolds was investigated using PC12 cells, cortical neurons (CNs), and neural progenitor cells (NPCs) to cover a variety of neuronal types for different applications. Microspheres were fabricated using an emulsion-solvent-evaporation technique. DNA quantification, cell viability assays, and immunofluorescent staining were carried out. PC12 cultures on PHBV microspheres showed growth trends comparable to two-dimensional controls. This was further verified by staining for cell spreading. Also, CNs expressed components of the signaling pathway on PHBV microspheres, and had greater axon-dendrite segregation (4.1 times for axon stains and 2.3 times for dendrite stains) than on coverslips. NPCs were also found to differentiate into neurons on the microspheres. Overall, the results indicate that PHBV microspheres, as scaffolds for neural tissue engineering, supported a variety of neuronal cell types and promoted greater axon-dendrite segregation.

  6. Role of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells.

    PubMed

    Siembab, Valerie C; Gomez-Perez, Laura; Rotterman, Travis M; Shneider, Neil A; Alvarez, Francisco J

    2016-06-15

    Motor function in mammalian species depends on the maturation of spinal circuits formed by a large variety of interneurons that regulate motoneuron firing and motor output. Interneuron activity is in turn modulated by the organization of their synaptic inputs, but the principles governing the development of specific synaptic architectures unique to each premotor interneuron are unknown. For example, Renshaw cells receive, at least in the neonate, convergent inputs from sensory afferents (likely Ia) and motor axons, raising the question of whether they interact during Renshaw cell development. In other well-studied neurons, such as Purkinje cells, heterosynaptic competition between inputs from different sources shapes synaptic organization. To examine the possibility that sensory afferents modulate synaptic maturation on developing Renshaw cells, we used three animal models in which afferent inputs in the ventral horn are dramatically reduced (ER81(-/-) knockout), weakened (Egr3(-/-) knockout), or strengthened (mlcNT3(+/-) transgenic). We demonstrate that increasing the strength of sensory inputs on Renshaw cells prevents their deselection and reduces motor axon synaptic density, and, in contrast, absent or diminished sensory afferent inputs correlate with increased densities of motor axons synapses. No effects were observed on other glutamatergic inputs. We conclude that the early strength of Ia synapses influences their maintenance or weakening during later development and that heterosynaptic influences from sensory synapses during early development regulates the density and organization of motor inputs on mature Renshaw cells.

  7. Role of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells

    PubMed Central

    Siembab, Valerie C.; Gomez-Perez, Laura; Rotterman, Travis M.; Shneider, Neil A.; Alvarez, Francisco J.

    2015-01-01

    Motor function in mammalian species depends on the maturation of spinal circuits formed by a large variety of interneurons that regulate motoneuron firing and motor output. Interneuron activity is in turn modulated by the organization of their synaptic inputs, but the principles governing the development of specific synaptic architectures unique to each premotor interneuron are unknown. For example, Renshaw cells receive, at least in the neonate, convergent inputs from sensory afferents (likely Ia) and motor axons raising the question of whether they interact during Renshaw cell development. In other well-studied neurons, like Purkinje cells, heterosynaptic competition between inputs from different sources shapes synaptic organization. To examine the possibility that sensory afferents modulate synaptic maturation on developing Renshaw cells, we used three animal models in which afferent inputs in the ventral horn are dramatically reduced (Er81(−/−) knockout), weakened (Egr3(−/−) knockout) or strengthened (mlcNT3(+/−) transgenic). We demonstrate that increasing the strength of sensory inputs on Renshaw cells prevents their de-selection and reduces motor axon synaptic density and, in contrast, absent or diminished sensory afferent inputs correlate with increased densities of motor axons synapses. No effects were observed on other glutamatergic inputs. We conclude that the early strength of Ia synapses influences their maintenance or weakening during later development and that heterosynaptic influences from sensory synapses during early development regulates the density and organization of motor inputs on mature Renshaw cells. PMID:26660356

  8. Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo.

    PubMed

    Viney, Tim J; Lasztoczi, Balint; Katona, Linda; Crump, Michael G; Tukker, John J; Klausberger, Thomas; Somogyi, Peter

    2013-12-01

    Hippocampal sharp waves are population discharges initiated by an unknown mechanism in pyramidal cell networks of CA3. Axo-axonic cells (AACs) regulate action potential generation through GABAergic synapses on the axon initial segment. We found that CA3 AACs in anesthetized rats and AACs in freely moving rats stopped firing during sharp waves, when pyramidal cells fire most. AACs fired strongly and rhythmically around the peak of theta oscillations, when pyramidal cells fire at low probability. Distinguishing AACs from other parvalbumin-expressing interneurons by their lack of detectable SATB1 transcription factor immunoreactivity, we discovered a somatic GABAergic input originating from the medial septum that preferentially targets AACs. We recorded septo-hippocampal GABAergic cells that were activated during hippocampal sharp waves and projected to CA3. We hypothesize that inhibition of AACs, and the resulting subcellular redistribution of inhibition from the axon initial segment to other pyramidal cell domains, is a necessary condition for the emergence of sharp waves promoting memory consolidation.

  9. Mouse granulated metrial gland cells require contact with stromal cells to maintain viability

    PubMed Central

    STEWART, I. J.

    2000-01-01

    Granulated metrial gland (GMG) cells differentiate in the uterine wall in pregnancy in mice but the mechanisms which control their differentiation and maintenance are unknown. In vivo, GMG cells share an intimate association with fibroblast-like stromal cells. The importance of this association has been assessed by examining the effects of withdrawal of stromal cell contact on GMG cell maintenance in vitro. When single cell suspensions of cells were prepared from mouse metrial glands there was a steady decline in numbers with days of culture but usually some remained at 7 d of culture. The ability of metrial gland cells to kill Wehi 164 target cells in 51Cr-release cytotoxicity assays was retained by cells cultured for at least 3 d. When explants of metrial gland were maintained in culture to allow GMG cell migration onto the culture flask, the attached GMG cells were lost by 1 d later. Overall, these results suggest that a juxtacrine regulatory mechanism maintains GMG cells. The rapid loss of unsupported GMG cells in culture has major implications in the design of assays to examine GMG cell function. PMID:11117633

  10. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury.

    PubMed

    Pearse, Damien D; Pereira, Francisco C; Marcillo, Alexander E; Bates, Margaret L; Berrocal, Yerko A; Filbin, Marie T; Bunge, Mary Bartlett

    2004-06-01

    Central neurons regenerate axons if a permissive environment is provided; after spinal cord injury, however, inhibitory molecules are present that make the local environment nonpermissive. A promising new strategy for inducing neurons to overcome inhibitory signals is to activate cAMP signaling. Here we show that cAMP levels fall in the rostral spinal cord, sensorimotor cortex and brainstem after spinal cord contusion. Inhibition of cAMP hydrolysis by the phosphodiesterase IV inhibitor rolipram prevents this decrease and when combined with Schwann cell grafts promotes significant supraspinal and proprioceptive axon sparing and myelination. Furthermore, combining rolipram with an injection of db-cAMP near the graft not only prevents the drop in cAMP levels but increases them above those in uninjured controls. This further enhances axonal sparing and myelination, promotes growth of serotonergic fibers into and beyond grafts, and significantly improves locomotion. These findings show that cAMP levels are key for protection, growth and myelination of injured CNS axons in vivo and recovery of function.

  11. Three axonal projection routes of individual pyramidal cells in the ventral CA1 hippocampus

    PubMed Central

    Arszovszki, Antónia; Borhegyi, Zsolt; Klausberger, Thomas

    2014-01-01

    Pyramidal cells of the ventral hippocampal CA1 area have numerous and diverse distant projections to other brain regions including the temporal and parietal association areas, visual, auditory, olfactory, somatosensory, gustatory, and visceral areas, and inputs to the amygdalar and prefrontal-orbital-agranular insular region. In addition, their differential expression of proteins like calbindin provides further indications for cellular diversity. This raises the possibility that the pyramidal cells may form subpopulations participating in different brain circuitries. To address this hypothesis we applied the juxtacellular labeling technique to fill individual pyramidal cells in the ventral hippocampus with neurobiotin in urethane anesthetized rats. For each labeled pyramidal cell we determined soma location, dendritic arborizations and selective expression of calbindin and norbin. Reconstruction and mapping of long-range axonal projections were made with the Neurolucida system. We found three major routes of ventral CA1 pyramidal cell projections. The classical pathway run caudo-ventrally across and innervating the subiculum, further to the parahippocampal regions and then to the deep and superficial layers of entorhinal cortex. The other two pathways avoided subiculum by branching from the main axon close to the soma and either traveled antero- and caudo-ventrally to amygdaloid complex, amygdalopiriform-transition area and parahippocampal regions or run antero-dorsally through the fimbria-fornix to the septum, hypothalamus, ventral striatum and olfactory regions. We found that most pyramidal cells investigated used all three major routes to send projecting axons to other brain areas. Our results suggest that the information flow through the ventral hippocampus is distributed by wide axonal projections from the CA1 area. PMID:25009471

  12. Birbeck Granules Are Subdomains of Endosomal Recycling Compartment in Human Epidermal Langerhans Cells, Which Form Where Langerin Accumulates

    PubMed Central

    Mc Dermott, Ray; Ziylan, Umit; Spehner, Danièle; Bausinger, Huguette; Lipsker, Dan; Mommaas, Mieke; Cazenave, Jean-Pierre; Raposo, Graça; Goud, Bruno; de la Salle, Henri; Salamero, Jean; Hanau, Daniel

    2002-01-01

    Birbeck granules are unusual rod-shaped structures specific to epidermal Langerhans cells, whose origin and function remain undetermined. We investigated the intracellular location and fate of Langerin, a protein implicated in Birbeck granule biogenesis, in human epidermal Langerhans cells. In the steady state, Langerin is predominantly found in the endosomal recycling compartment and in Birbeck granules. Langerin internalizes by classical receptor-mediated endocytosis and the first Birbeck granules accessible to endocytosed Langerin are those connected to recycling endosomes in the pericentriolar area, where Langerin accumulates. Drug-induced inhibition of endocytosis results in the appearance of abundant open-ended Birbeck granule-like structures appended to the plasma membrane, whereas inhibition of recycling induces Birbeck granules to merge with a tubular endosomal network. In mature Langerhans cells, Langerin traffic is abolished and the loss of internal Langerin is associated with a concomitant depletion of Birbeck granules. Our results demonstrate an exchange of Langerin between early endosomal compartments and the plasma membrane, with dynamic retention in the endosomal recycling compartment. They show that Birbeck granules are not endocytotic structures, rather they are subdomains of the endosomal recycling compartment that form where Langerin accumulates. Finally, our results implicate ADP-ribosylation factor proteins in Langerin trafficking and the exchange between Birbeck granules and other endosomal membranes. PMID:11809842

  13. Nanogrooved surface-patterns induce cellular organization and axonal outgrowth in neuron-like PC12-cells.

    PubMed

    Klymov, Alexey; Rodrigues Neves, Charlotte T; te Riet, Joost; Agterberg, Martijn J H; Mylanus, Emmanuel A M; Snik, Ad F M; Jansen, John A; Walboomers, X Frank

    2015-02-01

    Modulation of a materials surface topography can be used to steer various aspects of adherent cell behaviour, such as cell directional organization. Especially nanometric sized topographies, featuring sizes similar to for instance the axons of the spiral ganglion cells, are interesting for such purpose. Here, we utilized nanosized grooves in the range of 75-500 nm, depth of 30-150 nm, and pitches between 150 nm and 1000 nm for cell culture of neuron-like PC12 cells. The organizational behaviour was evaluated after 7 days of culture by bright field and scanning electron microscopy. Nanotopographies were shown to induce aligned cell-body/axon orientation and an increased axonal outgrowth. Our findings suggest that a threshold for cell body alignment of neuronal cells exists on grooved topographies with a groove width of 130 nm, depth of 70 nm and pitch of 300 nm, while axon alignment can already be induced by grooves with 135 nm width, 52 nm depth and 200 nm pitch. However, no threshold has been found for axonal outgrowth, as all of the used patterns increased outgrowth of PC12-axons. In conclusion, surface nanopatterns have the potential to be utilized as an electrode modification for a stronger separation of cells, and can be used to direct cells towards the electrode contacts of cochlear implants.

  14. Laminar disorganisation of mitral cells in the olfactory bulb does not affect topographic targeting of primary olfactory axons.

    PubMed

    Royal, S J; Gambello, M J; Wynshaw-Boris, A; Key, B; Clarris, H J

    2002-04-05

    Primary olfactory neurons expressing the same odorant receptor protein typically project to topographically fixed olfactory bulb sites. While cell adhesion molecules and odorant receptors have been implicated in guidance of primary olfactory axons, the postsynaptic mitral cells may also have a role in final target selection. We have examined the effect of disorganisation of the mitral cell soma layer in mutant mice heterozygous for the beta-subunit of platelet activating factor acetylhydrolase (Lis1(-/+)) on the targeting of primary olfactory axons. Lis1(-/+) mice display abnormal lamination of neurons in the olfactory bulb. Lis1(-/+) mice were crossed with the P2-IRES-tau:LacZ line of transgenic mice that selectively expresses beta-galactosidase in primary olfactory neurons expressing the P2 odorant receptor. LacZ histochemistry revealed blue-stained P2 axons that targeted topographically fixed glomeruli in these mice in a manner similar to that observed in the parent P2-IRES-tau:LacZ line. Thus, despite the aberrant organisation of postsynaptic mitral cells in Lis1(-/+) mice, primary olfactory axons continued to converge and form glomeruli at correct sites in the olfactory bulb. Next we examined whether challenging primary olfactory axons in adult Lis(-/+) mice with regeneration would affect their ability to converge and form glomeruli. Following partial chemical ablation of the olfactory neuroepithelium with dichlobenil, primary olfactory neurons die and are replaced by newly differentiating neurons that project axons to the olfactory bulb where they converge and form glomeruli. Despite the aberrant mitral cell layer in Lis(-/+) mice, primary olfactory axons continued to converge and form glomeruli during regeneration. Together these results demonstrate that the convergence of primary olfactory axons during development and regeneration is not affected by gross perturbations to the lamination of the mitral cell layer. Thus, these results support evidence from

  15. Linking local circuit inhibition to olfactory behavior: a critical role for granule cells in olfactory discrimination.

    PubMed

    Strowbridge, Ben W

    2010-02-11

    In this issue of Neuron, Abraham et al. report a direct connection between inhibitory function and olfactory behavior. Using molecular methods to alter glutamate receptor subunit composition in olfactory bulb granule cells, the authors found a selective modulation in the time required for difficult, but not simple, olfactory discrimination tasks.

  16. Synaptic action of ethanol on cerebellar auditory granule cells reveals acute tolerance

    SciTech Connect

    Huang, C.M.; Liu, G.; Huang, R.H. )

    1991-03-11

    The cerebellum is very sensitive to acute intoxication by ethanol. The authors have recorded electrophysiological responses of granule cells to auditory stimulation from the posterior cerebellar vermis of cats before and after a relatively low dose of ethanol. Auditory responses of granule cells were severely inhibited by ethanol at a transient, peak ethanol concentration of 15-18 mM in the cerebrospinal fluid (CSF). Thereafter, the clearance of ethanol from CSF followed an exponential time course, with 50% of the CSF ethanol being cleared with every passing hour. Auditory responses of granule cells returned to control levels within 60-90 minutes, despite the presence of a DSF ethanol concentration at 8-10mM, indicating acute tolerance. Moreover, a second, identical dose of ethanol, delivered two hours after the first dose produced an attenuated inhibition in the auditory response of cerebellar granule cells. The inhibition took a longer time to be evident but a shorter time to recover than that followed by the first dose of ethanol.

  17. Radioresistance of granulation tissue-derived cells from skin wounds combined with total body irradiation.

    PubMed

    Dai, Tingyu; Chen, Zelin; Tan, Li; Shi, Chunmeng

    2016-04-01

    Combined radiation and wound injury (CRWI) occurs following nuclear explosions and accidents, radiological or nuclear terrorism, and radiation therapy combined with surgery. CRWI is complicated and more difficult to heal than single injuries. Stem cell‑based therapy is a promising treatment strategy for CRWI, however, sourcing stem cells remains a challenge. In the present study, the granulation tissue-derived cells (GTCs) from the skin wounds (SWs) of CRWI mice (C‑GTCs) demonstrated a higher radioresistance to the damage caused by combined injury, and were easier to isolate and harvest when compared with bone marrow‑derived mesenchymal stromal cells (BMSCs). Furthermore, the C-GTCs exhibited similar stem cell-associated properties, such as self-renewal and multilineage differentiation capacity, when compared with neonatal dermal stromal cells (DSCs) and GTCs from unirradiated SWs. Granulation tissue, which is easy to access, may present as an optimal autologous source of stem/progenitor cells for therapeutic applications in CRWI.

  18. Non-Cell-Autonomous Regulation of Retrograde Motoneuronal Axonal Transport in an SBMA Mouse Model

    PubMed Central

    Halievski, Katherine; Kemp, Michael Q.; Breedlove, S. Marc; Miller, Kyle E.

    2016-01-01

    Abstract Defects in axonal transport are seen in motoneuronal diseases, but how that impairment comes about is not well understood. In spinal bulbar muscular atrophy (SBMA), a disorder linked to a CAG/polyglutamine repeat expansion in the androgen receptor (AR) gene, the disease-causing AR disrupts axonal transport by acting in both a cell-autonomous fashion in the motoneurons themselves, and in a non-cell-autonomous fashion in muscle. The non-cell-autonomous mechanism is suggested by data from a unique “myogenic” transgenic (TG) mouse model in which an AR transgene expressed exclusively in skeletal muscle fibers triggers an androgen-dependent SBMA phenotype, including defects in retrograde transport. However, motoneurons in this TG model retain the endogenous AR gene, leaving open the possibility that impairments in transport in this model also depend on ARs in the motoneurons themselves. To test whether non-cell-autonomous mechanisms alone can perturb retrograde transport, we generated male TG mice in which the endogenous AR allele has the testicular feminization mutation (Tfm) and, consequently, is nonfunctional. Males carrying the Tfm allele alone show no deficits in motor function or axonal transport, with or without testosterone treatment. However, when Tfm males carrying the myogenic transgene (Tfm/TG) are treated with testosterone, they develop impaired motor function and defects in retrograde transport, having fewer retrogradely labeled motoneurons and deficits in endosomal flux based on time-lapse video microscopy of living axons. These findings demonstrate that non-cell-autonomous disease mechanisms originating in muscle are sufficient to induce defects in retrograde transport in motoneurons. PMID:27517091

  19. Non-Cell-Autonomous Regulation of Retrograde Motoneuronal Axonal Transport in an SBMA Mouse Model.

    PubMed

    Halievski, Katherine; Kemp, Michael Q; Breedlove, S Marc; Miller, Kyle E; Jordan, Cynthia L

    2016-01-01

    Defects in axonal transport are seen in motoneuronal diseases, but how that impairment comes about is not well understood. In spinal bulbar muscular atrophy (SBMA), a disorder linked to a CAG/polyglutamine repeat expansion in the androgen receptor (AR) gene, the disease-causing AR disrupts axonal transport by acting in both a cell-autonomous fashion in the motoneurons themselves, and in a non-cell-autonomous fashion in muscle. The non-cell-autonomous mechanism is suggested by data from a unique "myogenic" transgenic (TG) mouse model in which an AR transgene expressed exclusively in skeletal muscle fibers triggers an androgen-dependent SBMA phenotype, including defects in retrograde transport. However, motoneurons in this TG model retain the endogenous AR gene, leaving open the possibility that impairments in transport in this model also depend on ARs in the motoneurons themselves. To test whether non-cell-autonomous mechanisms alone can perturb retrograde transport, we generated male TG mice in which the endogenous AR allele has the testicular feminization mutation (Tfm) and, consequently, is nonfunctional. Males carrying the Tfm allele alone show no deficits in motor function or axonal transport, with or without testosterone treatment. However, when Tfm males carrying the myogenic transgene (Tfm/TG) are treated with testosterone, they develop impaired motor function and defects in retrograde transport, having fewer retrogradely labeled motoneurons and deficits in endosomal flux based on time-lapse video microscopy of living axons. These findings demonstrate that non-cell-autonomous disease mechanisms originating in muscle are sufficient to induce defects in retrograde transport in motoneurons.

  20. Fast Inactivation of Delayed Rectifier K Conductance in Squid Giant Axon and Its Cell Bodies

    PubMed Central

    Mathes, Chris; Rosenthal, Joshua J.C.; Armstrong, Clay M.; Gilly, William F.

    1997-01-01

    Inactivation of delayed rectifier K conductance (gK) was studied in squid giant axons and in the somata of giant fiber lobe (GFL) neurons. Axon measurements were made with an axial wire voltage clamp by pulsing to VK (∼−10 mV in 50–70 mM external K) for a variable time and then assaying available gK with a strong, brief test pulse. GFL cells were studied with whole-cell patch clamp using the same prepulse procedure as well as with long depolarizations. Under our experimental conditions (12–18°C, 4 mM internal MgATP) a large fraction of gK inactivates within 250 ms at −10 mV in both cell bodies and axons, although inactivation tends to be more complete in cell bodies. Inactivation in both preparations shows two kinetic components. The faster component is more temperature-sensitive and becomes very prominent above 12°C. Contribution of the fast component to inactivation shows a similar voltage dependence to that of gK, suggesting a strong coupling of this inactivation path to the open state. Omission of internal MgATP or application of internal protease reduces the amount of fast inactivation. High external K decreases the amount of rapidly inactivating IK but does not greatly alter inactivation kinetics. Neither external nor internal tetraethylammonium has a marked effect on inactivation kinetics. Squid delayed rectifier K channels in GFL cell bodies and giant axons thus share complex fast inactivation properties that do not closely resemble those associated with either C-type or N-type inactivation of cloned Kv1 channels studied in heterologous expression systems. PMID:9101403

  1. Neuronal activity in the hub of extrasynaptic Schwann cell-axon interactions

    PubMed Central

    Samara, Chrysanthi; Poirot, Olivier; Domènech-Estévez, Enric; Chrast, Roman

    2013-01-01

    The integrity and function of neurons depend on their continuous interactions with glial cells. In the peripheral nervous system glial functions are exerted by Schwann cells (SCs). SCs sense synaptic and extrasynaptic manifestations of action potential propagation and adapt their physiology to support neuronal activity. We review here existing literature data on extrasynaptic bidirectional axon-SC communication, focusing particularly on neuronal activity implications. To shed light on underlying mechanisms, we conduct a thorough analysis of microarray data from SC-rich mouse sciatic nerve at different developmental stages and in neuropathic models. We identify molecules that are potentially involved in SC detection of neuronal activity signals inducing subsequent glial responses. We further suggest that alterations in the activity-dependent axon-SC crosstalk impact on peripheral neuropathies. Together with previously reported data, these observations open new perspectives for deciphering glial mechanisms of neuronal function support. PMID:24324401

  2. Cloning and expression of three zebrafish roundabout homologs suggest roles in axon guidance and cell migration.

    PubMed

    Lee, J S; Ray, R; Chien, C B

    2001-06-01

    We report the cloning and expression patterns of three novel zebrafish Roundabout homologs. The Roundabout (robo) gene encodes a transmembrane receptor that is essential for axon guidance in Drosophila and Robo family members have been implicated in cell migration. Analysis of extracellular domains and conserved cytoplasmic motifs shows that zebrafish Robo1 and Robo2 are orthologs of mammalian Robo1 and Robo2, respectively, while zebrafish Robo3 is likely to be an ortholog of mouse Rig-1. The three zebrafish robos are expressed in distinct but overlapping patterns during embryogenesis. They are highly expressed in the developing nervous system, including the olfactory system, visual system, hindbrain, cranial ganglia, spinal cord, and posterior lateral line primordium. They are also expressed in several nonneuronal tissues, including somites and fin buds. The timing and patterns of expression suggest roles for zebrafish robos in axon guidance and cell migration. Wiley-Liss, Inc.

  3. Long-distance axonal regeneration in the filum terminale of adult rats is regulated by ependymal cells.

    PubMed

    Kwiecien, Jacek M; Avram, Ronen

    2008-03-01

    Studies of regeneration of transected adult central nervous system (CNS) axons are difficult due to lack of appropriate in vivo models. In adult rats, we described filum terminale (FT), a caudal slender extension of the sacral spinal cord and an integral part of the central nervous system (CNS), to use it as a model of spinal cord injury. FT is more than 3 cm long, encompasses a central canal lined with ependymal cells surrounded by a narrow band of axons interspersed with oligodendrocytes and astrocytes but not neurons. Two weeks after the crush of FT, histological, ultrastructural, and axonal tracing studies revealed long distance descending axonal regeneration uniquely in close proximity of the ependymal cells of the central canal. Ependymal cells extended basal processes to form channels encompassing axons apparently regenerating at a rate of more than 2 mm a day. Remarkable increase of axonal sprouting was observed in the sacral spinal cord of Long Evans Shaker (LES) rats with crushed FT. FT offers an excellent model to study mechanisms of axonal regeneration regulated by ependymal cells in the adult CNS.

  4. Neuronal Cell Bodies Remotely Regulate Axonal Growth Response to Localized Netrin-1 Treatment via Second Messenger and DCC Dynamics

    PubMed Central

    Blasiak, Agata; Kilinc, Devrim; Lee, Gil U.

    2017-01-01

    Netrin-1 modulates axonal growth direction and speed. Its best characterized receptor, Deleted in Colorectal Cancer (DCC), is localized to growth cones, but also observed in the cell bodies. We hypothesized that cell bodies sense Netrin-1 and contribute to axon growth rate modulation, mediated by the second messenger system. We cultured mouse cortical neurons in microfluidic devices to isolate distal axon and cell body microenvironments. Compared to isolated axonal treatment, global Netrin-1 treatment decreased the axon elongation rate and affected the dynamics of total and membranous DCC, calcium, and cyclic nucleotides. Signals induced by locally applied Netrin-1 propagated in both anterograde and retrograde directions, demonstrated by the long-range increase in DCC and by the increased frequency of calcium transients in cell bodies, evoked by axonal Netrin-1. Blocking the calcium efflux from endoplasmic reticulum suppressed the membranous DCC response. Our findings support the notion that neurons sense Netrin-1 along their entire lengths in making axonal growth decisions. PMID:28105005

  5. Nuclear factor-kappaB activation in axons and Schwann cells in experimental sciatic nerve injury and its role in modulating axon regeneration: studies with etanercept.

    PubMed

    Smith, Darrell; Tweed, Christopher; Fernyhough, Paul; Glazner, Gordon W

    2009-06-01

    Early inflammatory events may inhibit functional recovery after injury in both the peripheral and central nervous systems. We investigated the role of the inflammatory tumor necrosis factor/nuclear factor-kappaB (NF-kappaB) axis on events subsequent to sciatic nerve crush injury in adult rats. Electrophoretic mobility shift assays revealed that within 6 hours after crush, NF-kappaB DNA-binding activity increased significantly in a 1-cm section around the crush site. By immunofluorescence staining, there was increased nuclear localization of the NF-kappaB subunits p50 but not p65 or c-Rel in Schwann cells but no obvious inflammatory cell infiltration. In rats injected subcutaneously with etanercept, a tumor necrosis factor receptor chimera that binds free cytokine, the injury-induced rise in NF-kappaB DNA-binding activity was inhibited, and nuclear localization of p50 in Schwann cells was lowered after the injury. Axonal growth 3 days after nerve crush assessed with immunofluorescence for GAP43 demonstrated that the regeneration distance of leading axons from the site of nerve crush was greater in etanercept-treated animals than in saline-treated controls. These data indicate that tumor necrosis factor mediates rapid activation of injury-induced NF-kappaB DNA binding in Schwann cells and that these events are associated with inhibition of postinjury axonal sprouting.

  6. Ca2+-dependent dephosphorylation of kinesin heavy chain on beta-granules in pancreatic beta-cells. Implications for regulated beta-granule transport and insulin exocytosis

    NASA Technical Reports Server (NTRS)

    Donelan, Matthew J.; Morfini, Gerardo; Julyan, Richard; Sommers, Scott; Hays, Lori; Kajio, Hiroshi; Briaud, Isabelle; Easom, Richard A.; Molkentin, Jeffery D.; Brady, Scott T.; hide

    2002-01-01

    The specific biochemical steps required for glucose-regulated insulin exocytosis from beta-cells are not well defined. Elevation of glucose leads to increases in cytosolic [Ca2+]i and biphasic release of insulin from both a readily releasable and a storage pool of beta-granules. The effect of elevated [Ca2+]i on phosphorylation of isolated beta-granule membrane proteins was evaluated, and the phosphorylation of four proteins was found to be altered by [Ca2+]i. One (a 18/20-kDa doublet) was a Ca2+-dependent increase in phosphorylation, and, surprisingly, three others (138, 42, and 36 kDa) were Ca2+-dependent dephosphorylations. The 138-kDa beta-granule phosphoprotein was found to be kinesin heavy chain (KHC). At low levels of [Ca2+]i KHC was phosphorylated by casein kinase 2, but KHC was rapidly dephosphorylated by protein phosphatase 2B beta (PP2Bbeta) as [Ca2+]i increased. Inhibitors of PP2B specifically reduced the second, microtubule-dependent, phase of insulin secretion, suggesting that dephosphorylation of KHC was required for transport of beta-granules from the storage pool to replenish the readily releasable pool of beta-granules. This is distinct from synaptic vesicle exocytosis, because neurotransmitter release from synaptosomes did not require a Ca2+-dependent KHC dephosphorylation. These results suggest a novel mechanism for regulating KHC function and beta-granule transport in beta-cells that is mediated by casein kinase 2 and PP2B. They also implicate a novel regulatory role for PP2B/calcineurin in the control of insulin secretion downstream of a rise in [Ca2+]i.

  7. Ca2+-dependent dephosphorylation of kinesin heavy chain on beta-granules in pancreatic beta-cells. Implications for regulated beta-granule transport and insulin exocytosis

    NASA Technical Reports Server (NTRS)

    Donelan, Matthew J.; Morfini, Gerardo; Julyan, Richard; Sommers, Scott; Hays, Lori; Kajio, Hiroshi; Briaud, Isabelle; Easom, Richard A.; Molkentin, Jeffery D.; Brady, Scott T.; Rhodes, Christopher J.

    2002-01-01

    The specific biochemical steps required for glucose-regulated insulin exocytosis from beta-cells are not well defined. Elevation of glucose leads to increases in cytosolic [Ca2+]i and biphasic release of insulin from both a readily releasable and a storage pool of beta-granules. The effect of elevated [Ca2+]i on phosphorylation of isolated beta-granule membrane proteins was evaluated, and the phosphorylation of four proteins was found to be altered by [Ca2+]i. One (a 18/20-kDa doublet) was a Ca2+-dependent increase in phosphorylation, and, surprisingly, three others (138, 42, and 36 kDa) were Ca2+-dependent dephosphorylations. The 138-kDa beta-granule phosphoprotein was found to be kinesin heavy chain (KHC). At low levels of [Ca2+]i KHC was phosphorylated by casein kinase 2, but KHC was rapidly dephosphorylated by protein phosphatase 2B beta (PP2Bbeta) as [Ca2+]i increased. Inhibitors of PP2B specifically reduced the second, microtubule-dependent, phase of insulin secretion, suggesting that dephosphorylation of KHC was required for transport of beta-granules from the storage pool to replenish the readily releasable pool of beta-granules. This is distinct from synaptic vesicle exocytosis, because neurotransmitter release from synaptosomes did not require a Ca2+-dependent KHC dephosphorylation. These results suggest a novel mechanism for regulating KHC function and beta-granule transport in beta-cells that is mediated by casein kinase 2 and PP2B. They also implicate a novel regulatory role for PP2B/calcineurin in the control of insulin secretion downstream of a rise in [Ca2+]i.

  8. Ca2+-dependent dephosphorylation of kinesin heavy chain on beta-granules in pancreatic beta-cells. Implications for regulated beta-granule transport and insulin exocytosis.

    PubMed

    Donelan, Matthew J; Morfini, Gerardo; Julyan, Richard; Sommers, Scott; Hays, Lori; Kajio, Hiroshi; Briaud, Isabelle; Easom, Richard A; Molkentin, Jeffery D; Brady, Scott T; Rhodes, Christopher J

    2002-07-05

    The specific biochemical steps required for glucose-regulated insulin exocytosis from beta-cells are not well defined. Elevation of glucose leads to increases in cytosolic [Ca2+]i and biphasic release of insulin from both a readily releasable and a storage pool of beta-granules. The effect of elevated [Ca2+]i on phosphorylation of isolated beta-granule membrane proteins was evaluated, and the phosphorylation of four proteins was found to be altered by [Ca2+]i. One (a 18/20-kDa doublet) was a Ca2+-dependent increase in phosphorylation, and, surprisingly, three others (138, 42, and 36 kDa) were Ca2+-dependent dephosphorylations. The 138-kDa beta-granule phosphoprotein was found to be kinesin heavy chain (KHC). At low levels of [Ca2+]i KHC was phosphorylated by casein kinase 2, but KHC was rapidly dephosphorylated by protein phosphatase 2B beta (PP2Bbeta) as [Ca2+]i increased. Inhibitors of PP2B specifically reduced the second, microtubule-dependent, phase of insulin secretion, suggesting that dephosphorylation of KHC was required for transport of beta-granules from the storage pool to replenish the readily releasable pool of beta-granules. This is distinct from synaptic vesicle exocytosis, because neurotransmitter release from synaptosomes did not require a Ca2+-dependent KHC dephosphorylation. These results suggest a novel mechanism for regulating KHC function and beta-granule transport in beta-cells that is mediated by casein kinase 2 and PP2B. They also implicate a novel regulatory role for PP2B/calcineurin in the control of insulin secretion downstream of a rise in [Ca2+]i.

  9. Model cerebellar granule cells can faithfully transmit modulated firing rate signals

    PubMed Central

    Rössert, Christian; Solinas, Sergio; D'Angelo, Egidio; Dean, Paul; Porrill, John

    2014-01-01

    A crucial assumption of many high-level system models of the cerebellum is that information in the granular layer is encoded in a linear manner. However, granule cells are known for their non-linear and resonant synaptic and intrinsic properties that could potentially impede linear signal transmission. In this modeling study we analyse how electrophysiological granule cell properties and spike sampling influence information coded by firing rate modulation, assuming no signal-related, i.e., uncorrelated inhibitory feedback (open-loop mode). A detailed one-compartment granule cell model was excited in simulation by either direct current or mossy-fiber synaptic inputs. Vestibular signals were represented as tonic inputs to the flocculus modulated at frequencies up to 20 Hz (approximate upper frequency limit of vestibular-ocular reflex, VOR). Model outputs were assessed using estimates of both the transfer function, and the fidelity of input-signal reconstruction measured as variance-accounted-for. The detailed granule cell model with realistic mossy-fiber synaptic inputs could transmit information faithfully and linearly in the frequency range of the vestibular-ocular reflex. This was achieved most simply if the model neurons had a firing rate at least twice the highest required frequency of modulation, but lower rates were also adequate provided a population of neurons was utilized, especially in combination with push-pull coding. The exact number of neurons required for faithful transmission depended on the precise values of firing rate and noise. The model neurons were also able to combine excitatory and inhibitory signals linearly, and could be replaced by a simpler (modified) integrate-and-fire neuron in the case of high tonic firing rates. These findings suggest that granule cells can in principle code modulated firing-rate inputs in a linear manner, and are thus consistent with the high-level adaptive-filter model of the cerebellar microcircuit. PMID:25352777

  10. Hedgehog antagonist REN(KCTD11) regulates proliferation and apoptosis of developing granule cell progenitors.

    PubMed

    Argenti, Beatrice; Gallo, Rita; Di Marcotullio, Lucia; Ferretti, Elisabetta; Napolitano, Maddalena; Canterini, Sonia; De Smaele, Enrico; Greco, Azzura; Fiorenza, Maria Teresa; Maroder, Marella; Screpanti, Isabella; Alesse, Edoardo; Gulino, Alberto

    2005-09-07

    During the early development of the cerebellum, a burst of granule cell progenitor (GCP) proliferation occurs in the outer external granule layer (EGL), which is sustained mainly by Purkinje cell-derived Sonic Hedgehog (Shh). Shh response is interrupted once GCPs move into the inner EGL, where granule progenitors withdraw proliferation and start differentiating and migrating toward the internal granule layer (IGL). Failure to interrupt Shh signals results in uncoordinated proliferation and differentiation of GCPs and eventually leads to malignancy (i.e., medulloblastoma). The Shh inhibitory mechanisms that are responsible for GCP growth arrest and differentiation remain unclear. Here we report that REN, a putative tumor suppressor frequently deleted in human medulloblastoma, is expressed to a higher extent in nonproliferating inner EGL and IGL granule cells than in highly proliferating outer EGL cells. Accordingly, upregulated REN expression occurs along GCP differentiation in vitro, and, in turn, REN overexpression promotes growth arrest and increases the proportion of p27/Kip1+ GCPs. REN also impairs both Gli2-dependent gene transcription and Shh-enhanced expression of the target Gli1 mRNA, thus antagonizing the Shh-induced effects on the proliferation and differentiation of cultured GCPs. Conversely, REN functional knock-down impairs Hedgehog antagonism and differentiation and sustains the proliferation of GCPs. Finally, REN enhances caspase-3 activation and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling apoptotic GCP numbers; therefore, the pattern of REN expression, its activity, and its antagonism on the Hedgehog pathway suggest that this gene may represent a restraint of Shh signaling at the outer to inner EGL GCP transitions. Medulloblastoma-associated REN loss of function might withdraw such a limiting signal for immature cell expansion, thus favoring tumorigenesis.

  11. Regulation of output spike patterns by phasic inhibition in cerebellar granule cells

    PubMed Central

    Nieus, Thierry R.; Mapelli, Lisa; D'Angelo, Egidio

    2014-01-01

    The complex interplay of multiple molecular mechanisms taking part to synaptic integration is hard to disentangle experimentally. Therefore, we developed a biologically realistic computational model based on the rich set of data characterizing the cerebellar glomerulus microcircuit. A specific issue was to determine the relative role of phasic and tonic inhibition in dynamically regulating granule cell firing, which has not been clarified yet. The model comprised the excitatory mossy fiber—granule cell and the inhibitory Golgi cell—granule cell synapses and accounted for vesicular release processes, neurotransmitter diffusion and activation of different receptor subtypes. Phasic inhibition was based on stochastic GABA release and spillover causing activation of two major classes of postsynaptic receptors, α1 and α6, while tonic inhibition was based on steady regulation of a Cl− leakage. The glomerular microcircuit model was validated against experimental responses to mossy fiber bursts while metabotropic receptors were blocked. Simulations showed that phasic inhibition controlled the number of spikes during burst transmission but predicted that it specifically controlled time-related parameters (firing initiation and conclusion and first spike precision) when the relative phase of excitation and inhibition was changed. In all conditions, the overall impact of α6 was larger than that of α1 subunit-containing receptors. However, α1 receptors controlled granule cell responses in a narrow ±10 ms band while α6 receptors showed broader ±50 ms tuning. Tonic inhibition biased these effects without changing their nature substantially. These simulations imply that phasic inhibitory mechanisms can dynamically regulate output spike patterns, as well as calcium influx and NMDA currents, at the mossy fiber—granule cell relay of cerebellum without the intervention of tonic inhibition. PMID:25202237

  12. The astrocyte/meningeal cell interface is a barrier to neurite outgrowth which can be overcome by manipulation of inhibitory molecules or axonal signalling pathways.

    PubMed

    Shearer, Morven C; Niclou, Simone P; Brown, David; Asher, Richard A; Holtmaat, Anthony J G D; Levine, Joel M; Verhaagen, Joost; Fawcett, James W

    2003-12-01

    Invading meningeal cells form a barrier to axon regeneration after damage to the spinal cord and other parts of the CNS, axons stopping at the interface between meningeal cells and astrocytes. Axon behavior was examined using an in vitro model of astrocyte/meningeal cell interfaces, created by plating aggregates of astrocytes and meningeal cells onto coverslips. At these interfaces growth of dorsal root ganglion axons attempting to grow from astrocytes to meningeal cells was blocked, but axons grew rapidly from meningeal cells onto astrocytes. Meningeal cells were examined for expression of axon growth inhibitory molecules, and found to express NG2, versican, and semaphorins 3A and 3C. Astrocytes express growth promoting molecules, including N-Cadherin, laminin, fibronectin, and tenascin-C. We treated cultures in various ways to attempt to promote axon growth across the inhibitory boundaries. Blockade of NG2 with antibody and blockade of neuropilin 2 but not neuropilin 1 both promoted axon growth from astrocytes to meningeal cells. Blockade of permissive molecules on astrocytes with N-Cadherin blocking peptide or anti beta-1 integrin had no effect. Manipulation of axonal signalling pathways also increased axon growth from astrocytes to meningeal cells. Increasing cAMP levels and inactivation of rho were both effective when the cultures were fixed in paraformaldehyde, demonstrating that their effect is on axons and not via effects on the glial cells.

  13. Long-term survival of decentralized axons and incorporation of satellite cells in motor neurons of rock lobsters.

    PubMed

    Atwood, H L; Dudel, J; Feinstein, N; Parnas, I

    1989-06-19

    Previous electrophysiological experiments have shown that in the abdominal extensor muscles of rock lobsters, axons which were cut in surviving animals do not degenerate peripherally for several months, but conduct action potentials and release transmitter quanta on stimulation closely distal to the scar. Electron micrographs from the axon distal to the scar (in a reliably conducting region) show invasion of the axoplasmic space by nucleated cells, probably glia. After several months, the cell membranes of the invaders have vanished and apparently functional multiple nuclei remain. We suggest that decentralized axons may survive for months with the help of 'donated' nuclei.

  14. Neural cell adhesion molecule, NCAM, regulates thalamocortical axon pathfinding and the organization of the cortical somatosensory representation in mouse

    PubMed Central

    Enriquez-Barreto, Lilian; Palazzetti, Cecilia; Brennaman, Leann H.; Maness, Patricia F.; Fairén, Alfonso

    2012-01-01

    To study the potential role of neural cell adhesion molecule (NCAM) in the development of thalamocortical (TC) axon topography, wild type, and NCAM null mutant mice were analyzed for NCAM expression, projection, and targeting of TC afferents within the somatosensory area of the neocortex. Here we report that NCAM and its α-2,8-linked polysialic acid (PSA) are expressed in developing TC axons during projection to the neocortex. Pathfinding of TC axons in wild type and null mutant mice was mapped using anterograde DiI labeling. At embryonic day E16.5, null mutant mice displayed misguided TC axons in the dorsal telencephalon, but not in the ventral telencephalon, an intermediate target that initially sorts TC axons toward correct neocortical areas. During the early postnatal period, rostrolateral TC axons within the internal capsule along the ventral telencephalon adopted distorted trajectories in the ventral telencephalon and failed to reach the neocortex in NCAM null mutant animals. NCAM null mutants showed abnormal segregation of layer IV barrels in a restricted portion of the somatosensory cortex. As shown by Nissl and cytochrome oxidase staining, barrels of the anterolateral barrel subfield (ALBSF) and the most distal barrels of the posteromedial barrel subfield (PMBSF) did not segregate properly in null mutant mice. These results indicate a novel role for NCAM in axonal pathfinding and topographic sorting of TC axons, which may be important for the function of specific territories of sensory representation in the somatosensory cortex. PMID:22723769

  15. Transplantation of human oligodendrocyte progenitor cells in an animal model of diffuse traumatic axonal injury: survival and differentiation.

    PubMed

    Xu, Leyan; Ryu, Jiwon; Hiel, Hakim; Menon, Adarsh; Aggarwal, Ayushi; Rha, Elizabeth; Mahairaki, Vasiliki; Cummings, Brian J; Koliatsos, Vassilis E

    2015-05-14

    Diffuse axonal injury is an extremely common type of traumatic brain injury encountered in motor vehicle crashes, sports injuries, and in combat. Although many cases of diffuse axonal injury result in chronic disability, there are no current treatments for this condition. Its basic lesion, traumatic axonal injury, has been aggressively modeled in primate and rodent animal models. The inexorable axonal and perikaryal degeneration and dysmyelination often encountered in traumatic axonal injury calls for regenerative therapies, including therapies based on stem cells and precursors. Here we explore the proof of concept that treatments based on transplants of human oligodendrocyte progenitor cells can replace or remodel myelin and, eventually, contribute to axonal regeneration in traumatic axonal injury. We derived human oligodendrocyte progenitor cells from the human embryonic stem cell line H9, purified and characterized them. We then transplanted these human oligodendrocyte progenitor cells into the deep sensorimotor cortex next to the corpus callosum of nude rats subjected to traumatic axonal injury based on the impact acceleration model of Marmarou. We explored the time course and spatial distribution of differentiation and structural integration of these cells in rat forebrain. At the time of transplantation, over 90 % of human oligodendrocyte progenitor cells expressed A2B5, PDGFR, NG2, O4, Olig2 and Sox10, a profile consistent with their progenitor or early oligodendrocyte status. After transplantation, these cells survived well and migrated massively via the corpus callosum in both injured and uninjured brains. Human oligodendrocyte progenitor cells displayed a striking preference for white matter tracts and were contained almost exclusively in the corpus callosum and external capsule, the striatopallidal striae, and cortical layer 6. Over 3 months, human oligodendrocyte progenitor cells progressively matured into myelin basic protein(+) and adenomatous

  16. Immobilized nerve growth factor and microtopography have distinct effects on polarization versus axon elongation in hippocampal cells in culture.

    PubMed

    Gomez, Natalia; Lu, Yi; Chen, Shaochen; Schmidt, Christine E

    2007-01-01

    Cell interfacing with biomaterial surfaces dictates important aspects of cell behavior. In particular, axon extension in neurons is effectively influenced by surface properties, both for the initial formation of an axon as well as for the maintenance of axon growth. Here, we investigated how neurons behaved on poly(dimethyl siloxane) (PDMS) surfaces decorated with biochemical and physical cues presented individually or in combination. In particular, nerve growth factor (NGF) was covalently tethered to PDMS to create a bioactive surface, and microtopography was introduced to the material in the form of microchannels. Embryonic hippocampal neurons were used to investigate the impact of these surface cues on polarization (i.e., axon initiation or axogenesis) and overall axon length. We found that topography had a more pronounced effect on polarization (68% increase over controls) compared to immobilized NGF (0.1 ng/mm(2)) (27% increase). However, the effect of NGF was negligible when both types of stimuli were simultaneously presented on the biomaterial surface. In addition to axon formation, chemical and physical cues are also involved in axon growth following the initiation process. Interestingly, for the same studies described above, the effects of microchannels and NGF were opposite from the effects on polarization; the most evident effect was for the immobilized growth factor (10% increase in axon length with respect to controls) whereas there was no effect in general for the microtopography. More importantly, when the two surface stimuli were presented in combination, a synergistic increase in axon length was detected (25% increase with respect to controls), which could be a result of faster polarization triggered by topography plus enhanced growth from NGF. Additionally, axon orientation was also analyzed and we found the well-known tendency of perpendicular or parallel axonal alignment to be dependent on the width and depth of the channels. This investigation

  17. Active dentate granule cells encode experience to promote the addition of adult-born hippocampal neurons.

    PubMed

    Kirschen, Gregory W; Shen, Jia; Tian, Mu; Schroeder, Bryce; Wang, Jia; Man, Guoming; Wu, Song; Ge, Shaoyu

    2017-04-03

    The continuous addition of new dentate granule cells, exquisitely regulated by brain activity, renders the hippocampus plastic. However, how neural circuits encode experiences to impact the addition of adult-born neurons remains unknown. Here, we used endoscopic Ca(2+) imaging to track the real-time activity of individual dentate granule cells in freely-behaving mice. For the first time, we found that active dentate granule cells responded to a novel experience by preferentially increasing their Ca(2+) event frequency. This elevated activity, which we found to be associated with object exploration, returned to baseline by one hour in the same environment, but could be dishabituated via introduction to a novel environment. To seamlessly transition between environments, we next established a freely-controllable virtual reality system for unrestrained mice. We again observed increased firing of active neurons in a virtual enriched environment. Interestingly, multiple novel virtual experiences accumulatively increased the number of newborn neurons when compared to a single experience. Finally, optogenetic silencing of existing dentate granule cells during novel environmental exploration perturbed experience-induced neuronal addition. Together, our study shows that the adult brain conveys novel, enriched experiences to increase the addition of adult-born hippocampal neurons by increasing the firing of active dentate granule cells.SIGNIFICANCE STATEMENTAdult brains are constantly reshaping themselves from synapses to circuits as we encounter novel experiences from moment to moment. Importantly, this reshaping includes the addition of newborn hippocampal neurons. However, it remains largely unknown how our circuits encode experience-induced brain activity to govern the addition of new hippocampal neurons. By coupling in vivo Ca(2+) imaging of dentate granule neurons with a novel unrestrained virtual reality system for rodents, we discovered that a new experience rapidly

  18. Modulation by K+ channels of action potential-evoked intracellular Ca2+ concentration rises in rat cerebellar basket cell axons

    PubMed Central

    Tan, Y P; Llano, I

    1999-01-01

    Action potential-evoked [Ca2+]i rises in basket cell axons of rat cerebellar slices were studied using two-photon laser scanning microscopy and whole-cell recording, to identify the K+ channels controlling the shape of the axonal action potential. Whole-cell recordings of Purkinje cell IPSCs were used to screen K+ channel subtypes which could contribute to axonal repolarization. α-Dendrotoxin, 4-aminopyridine, charybdotoxin and tetraethylammonium chloride increased IPSC rate and/or amplitude, whereas iberiotoxin and apamin failed to affect the IPSCs. The effects of those K+ channel blockers that enhanced transmitter release on the [Ca2+]i rises elicited in basket cell axons by action potentials fell into three groups: 4-aminopyridine strongly increased action potential-evoked [Ca2+]i; tetraethylammonium and charybdotoxin were ineffective alone but augmented the effects of 4-aminopyridine; α-dendrotoxin had no effect. We conclude that cerebellar basket cells contain at least three pharmacologically distinct K+ channels, which regulate transmitter release through different mechanisms. 4-Aminopyridine-sensitive, α-dendrotoxin-insensitive K+ channels are mainly responsible for repolarization in basket cell presynaptic terminals. K+ channels blocked by charybdotoxin and tetraethylammonium have a minor role in repolarization. α-Dendrotoxin-sensitive channels are not involved in shaping the axonal action potential waveform. The two last types of channels must therefore exert control of synaptic activity through a pathway unrelated to axonal action potential broadening. PMID:10517801

  19. Modulation by K+ channels of action potential-evoked intracellular Ca2+ concentration rises in rat cerebellar basket cell axons.

    PubMed

    Tan, Y P; Llano, I

    1999-10-01

    1. Action potential-evoked [Ca2+]i rises in basket cell axons of rat cerebellar slices were studied using two-photon laser scanning microscopy and whole-cell recording, to identify the K+ channels controlling the shape of the axonal action potential. 2. Whole-cell recordings of Purkinje cell IPSCs were used to screen K+ channel subtypes which could contribute to axonal repolarization. alpha-Dendrotoxin, 4-aminopyridine, charybdotoxin and tetraethylammonium chloride increased IPSC rate and/or amplitude, whereas iberiotoxin and apamin failed to affect the IPSCs. 3. The effects of those K+ channel blockers that enhanced transmitter release on the [Ca2+]i rises elicited in basket cell axons by action potentials fell into three groups: 4-aminopyridine strongly increased action potential-evoked [Ca2+]i; tetraethylammonium and charybdotoxin were ineffective alone but augmented the effects of 4-aminopyridine; alpha-dendrotoxin had no effect. 4. We conclude that cerebellar basket cells contain at least three pharmacologically distinct K+ channels, which regulate transmitter release through different mechanisms. 4-Aminopyridine-sensitive, alpha-dendrotoxin-insensitive K+ channels are mainly responsible for repolarization in basket cell presynaptic terminals. K+ channels blocked by charybdotoxin and tetraethylammonium have a minor role in repolarization. alpha-Dendrotoxin-sensitive channels are not involved in shaping the axonal action potential waveform. The two last types of channels must therefore exert control of synaptic activity through a pathway unrelated to axonal action potential broadening.

  20. Localization of anionic constituents in mast cell granules of brachymorphic (bm/bm) mice by using avidin-conjugated colloidal gold.

    PubMed

    Hammel, Ilan; Shoichetman, Tanya; Amihai, Dina; Galli, Stephen J; Skutelsky, Ehud

    2010-03-01

    We used the egg avidin gold complex as a polycationic probe for the localization of negatively charged sites in the secretory granules of mouse mast cells. We compared the binding of this reagent to mast cell granules in wild-type mice and in congenic brachymorphic mice in which mast cell secretory granules contained undersulfated proteoglycans. We localized anionic sites by post-embedding labeling of thin sections of mouse skin and tongue tissues fixed in Karnovsky's fixative and OsO(4) and embedded in Araldite. Transmission electron microscopy revealed that the mast cell granules of bm/bm mice had a lower optical density than those of wild-type mice (P<0.001) and a lower avidin gold binding density (by approximately 50%, P<0.001). The latter result provided additional evidence that the contents of mast cell granules in bm/bm mice were less highly sulfated than in those of wild-type mice. In both wild-type and bm/bm mast cells, the distribution of granule equivalent volumes was multimodal, but the unit granule volume was approximately 19% lower in bm/bm cells than in wild-type cells (P<0.05). Thus, bm/bm mast cells develop secretory granules that differ from those of wild-type mice in exhibiting a lower optical density and slightly smaller unit granules, however the processes that contribute to granule maturation and granule-granule fusion in mast cells are operative in bm/bm cells.

  1. Localization of anionic constituents in mast cell granules of brachymorphic (bm/bm) mice by using avidin-conjugated colloidal gold

    PubMed Central

    Hammel, Ilan; Shoichetman, Tanya; Amihai, Dina; Galli, Stephen J.; Skutelsky, Ehud

    2013-01-01

    We used the egg avidin gold complex as a polycationic probe for the localization of negatively charged sites in the secretory granules of mouse mast cells. We compared the binding of this reagent to mast cell granules in wild-type mice and in congenic brachymorphic mice in which mast cell secretory granules contained undersulfated proteoglycans. We localized anionic sites by post-embedding labeling of thin sections of mouse skin and tongue tissues fixed in Karnovsky's fixative and OsO4 and embedded in Araldite. Transmission electron microscopy revealed that the mast cell granules of bm/bm mice had a lower optical density than those of wild-type mice (P<0.001) and a lower adivin gold binding density (by approximately 50%, P<0.001). The latter result provides additional evidence that the contents of mast cell granules in bm/bm mice were less highly sulfated than in those of wild type mice. In both wild type and bm/bm mast cells, the distribution of granule equivalent volumes was multimodal, but the unit granule volume was approximately 19% lower in bm/bm cells than in wild type cells (P < 0.05). Thus, bm/bm mast cells develop secretory granules that differ from those of wild type mice in exhibiting a lower optical density and slightly smaller unit granules, however the processes that contribute to granule maturation and granule-granule fusion in mast cells are operative in the bm/bm cells. PMID:20127366

  2. beta-adrenergic receptors primarily are located on the dendrites of granule cells and interneurons but also are found on astrocytes and a few presynaptic profiles in the rat dentate gyrus.

    PubMed

    Milner, T A; Shah, P; Pierce, J P

    2000-06-01

    In the rat dentate gyrus, beta-adrenergic receptor (beta-AR) activation is thought to be important in mediating the effects of norepinephrine (NE). beta-AR-immunoreactivity (beta-AR-I) was localized in this study by light and electron microscopy in the rat dentate gyrus by using two previously characterized antibodies to the beta-AR. By light microscopy, dense beta-AR-I was observed in the somata of granule cells and a few hilar interneurons. Diffuse and slightly granular beta-AR-I was found in all laminae, although it was most noticeable in the molecular layer. Ultrastructurally, the cytoplasm of granule cell and interneuronal perikarya (some of which contained parvalbumin immunoreactivity) contained beta-AR-I. beta-AR-I was associated primarily with the endoplasmic reticula; however, a few patches were observed near the plasmalemma. Quantitative analysis revealed that the greatest proportion of beta-AR-labeled profiles was found in the molecular layer. The majority of beta-AR-labeled profiles were either dendritic or astrocytic. In dendritic profiles, beta-AR-I was prominent near postsynaptic densities in large dendrites, many of which originated from granule cell somata. Moreover, some beta-AR-I was found in dendritic spines, sometimes affiliated with the spine apparati. Astrocytic profiles with beta-AR-I were commonly found next to unlabeled terminals which formed asymmetric (excitatory-type) synapses with dendritic spines. Additionally, beta-AR-I was observed in a few unmyelinated axons and axon terminals, many of which formed synapses with dendritic spines. Dual-labeling studies revealed that axons and axon terminals containing tyrosine hydroxylase (TH), the catecholamine synthesizing enzyme, often were near both neuronal and glial profiles containing beta-AR-I. These studies demonstrate that hippocampal beta-AR-I is localized: 1) principally in postsynaptic sites on granule cells and a few interneurons (some of which were basket cells); and 2) in glial

  3. The Core Molecular Machinery Used for Engulfment of Apoptotic Cells Regulates the JNK Pathway Mediating Axon Regeneration in Caenorhabditis elegans.

    PubMed

    Pastuhov, Strahil Iv; Fujiki, Kota; Tsuge, Anna; Asai, Kazuma; Ishikawa, Sho; Hirose, Kazuya; Matsumoto, Kunihiro; Hisamoto, Naoki

    2016-09-14

    The mechanisms that govern the ability of specific neurons to regenerate their axons after injury are not well understood. In Caenorhabditis elegans, the initiation of axon regeneration is positively regulated by the JNK-MAPK pathway. In this study, we identify two components functioning upstream of the JNK pathway: the Ste20-related protein kinase MAX-2 and the Rac-type GTPase CED-10. CED-10, when bound by GTP, interacts with MAX-2 and functions as its upstream regulator in axon regeneration. CED-10, in turn, is activated by axon injury via signals initiated from the integrin α-subunit INA-1 and the nonreceptor tyrosine kinase SRC-1 and transmitted via the signaling module CED-2/CrkII-CED-5/Dock180-CED-12/ELMO. This module is also known to regulate the engulfment of apoptotic cells during development. Our findings thus reveal that the molecular machinery used for engulfment of apoptotic cells also promotes axon regeneration through activation of the JNK pathway. The molecular mechanisms of axon regeneration after injury remain poorly understood. In Caenorhabditis elegans, the initiation of axon regeneration is positively regulated by the JNK-MAPK pathway. In this study, we show that integrin, Rac-GTPase, and several other molecules, all of which are known to regulate engulfment of apoptotic cells during development, also regulate axon regeneration. This signaling module activates the JNK-MAPK cascade via MAX-2, a PAK-like protein kinase that binds Rac. Our findings thus reveal that the molecular machinery used for engulfment of apoptotic cells also promotes axon regeneration through activation of the JNK pathway. Copyright © 2016 the authors 0270-6474/16/369710-12$15.00/0.

  4. Mechanisms and benefits of granule cell latency coding in the mouse olfactory bulb

    PubMed Central

    Giridhar, Sonya; Urban, Nathaniel N.

    2012-01-01

    Inhibitory circuits are critical for shaping odor representations in the olfactory bulb. There, individual granule cells can respond to brief stimulation with extremely long (up to 1000 ms), input-specific latencies that are highly reliable. However, the mechanism and function of this long timescale activity remain unknown. We sought to elucidate the mechanism responsible for long-latency activity, and to understand the impact of widely distributed interneuron latencies on olfactory coding. We used a combination of electrophysiological, optical, and pharmacological techniques to show that long-latency inhibition is driven by late onset synaptic excitation to granule cells. This late excitation originates from tufted cells, which have intrinsic properties that favor longer latency spiking than mitral cells. Using computational modeling, we show that widely distributed interneuron latency increases the discriminability of similar stimuli. Thus, long-latency inhibition in the olfactory bulb requires a combination of circuit- and cellular-level mechanisms that function to improve stimulus representations. PMID:22754503

  5. Homotypic Fusion of Immature Secretory Granules during Maturation in a Cell-free Assay

    PubMed Central

    Urbé, Sylvie; Page, Lesley J.; Tooze, Sharon A.

    1998-01-01

    The biogenesis of secretory granules embodies several morphological and biochemical changes. In particular, in neuroendocrine cells maturation of secretory granules is characterized by an increase in size which has been proposed to reflect homotypic fusion of immature secretory granules (ISGs). Here we describe an assay that provides the first biochemical evidence for such a fusion event and allows us to analyze its regulation. The assay reconstitutes homotypic fusion between one population of ISGs containing a [35S]sulfate-labeled substrate, secretogranin II (SgII), and a second population containing the prohormone convertase PC2. Both substrate and enzyme are targeted exclusively to ISGs. Fusion is measured by quantification of a cleavage product of SgII produced by PC2. With this assay we show that fusion only occurs between ISGs and not between ISGs and MSGs, is temperature dependent, and requires ATP and GTP and cytosolic proteins. NSF (N-ethylmaleimide–sensitive fusion protein) is amongst the cytosolic proteins required, whereas we could not detect a requirement for p97. The ability to reconstitute ISG fusion in a cell-free assay is an important advance towards the identification of molecules involved in the maturation of secretory granules and will increase our understanding of this process. PMID:9864358

  6. Recurrent mossy fibers preferentially innervate parvalbumin-immunoreactive interneurons in the granule cell layer of the rat dentate gyrus.

    PubMed

    Blasco-Ibáñez, J M; Martínez-Guijarro, F J; Freund, T F

    2000-09-28

    Detection of vesicular zinc and immunohistochemistry against markers for different interneuron subsets were combined to study the postsynaptic target selection of zinc-containing recurrent mossy fiber collaterals in the dentate gyrus. Mossy fiber collaterals in the granule cell layer selectively innervated parvalbumin-containing cells, with numerous contacts per cell, whereas the granule cells were avoided. Under the electron microscope, those boutons made asymmetrical contacts on dendrites and somata. These findings suggest that, in addition to the hilar perforant path-associated (HIPP) interneurons, the basket and chandelier cells also receive a powerful feed-back drive from the granule cells, and thereby are able to control population synchrony in the dentate gyrus. On the other hand, the amount of monosynaptic excitatory feed-back among granule cells is shown to be negligible.

  7. Doublecortin-positive newly born granule cells of hippocampus have abnormal apical dendritic morphology in the pilocarpine model of temporal lobe epilepsy.

    PubMed

    Arisi, Gabriel Maisonnave; Garcia-Cairasco, Norberto

    2007-08-24

    Here, we describe dentate gyrus newly born granule cells morphology in rats' temporal lobe epilepsy pilocarpine model. Digital reconstruction of doublecortin-positive neurons revealed that apical dendrites had the same total length and number of nodes in epileptic and control animals. Nonetheless, concentric spheres analyses revealed that apical dendrites spatial distribution was radically altered in epileptic animals. The apical dendrites had more bifurcations inside the granular cell layer and more terminations in the inner molecular layer of epileptic dentate gyrus. Branch order analyses showed that second- and third-order dendrites were shorter in epileptic animals. Apical dendrites were concentrated in regions like the inner molecular layer where granular neuron axons, named mossy fibers, sprout in epileptic animals. The combination of altered dendritic morphology and number enhancement of the new granular neurons suggests a deleterious role of hippocampal neurogenesis in epileptogenesis. Being more numerous and with dendrites concentrated in regions where aberrant axon terminals sprout, the new granular neurons could contribute to the slow epileptogenesis at hippocampal circuits commonly observed in temporal lobe epilepsy.

  8. Dendritic and synaptic protection: is it enough to save the retinal ganglion cell body and axon?

    PubMed

    Morquette, Junie Barbara; Di Polo, Adriana

    2008-06-01

    Glaucoma and other optic neuropathies have been traditionally viewed as diseases of the optic nerve that lead to retinal ganglion cell (RGC) degeneration. Accordingly, the primary aim of neuroprotective strategies has been to preserve RGC axons and soma. RGCs are complex and highly polarized central neurons, and their pathologic response in disease is likely to be an integration of signals from all cellular compartments-axons, soma, dendrites, and synaptic contacts. We focus on the role of dendrites and dendritic spines in normal neuronal function, neurologic disorders, and glaucoma. The need to understand the mechanisms underlying RGC dendrite and synapse degeneration in glaucoma and other optic neuropathies is compelling, as it may provide insight into novel therapeutic strategies to prevent vision loss.

  9. Aberrant Schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy.

    PubMed

    Viader, Andreu; Sasaki, Yo; Kim, Sungsu; Strickland, Amy; Workman, Cayce S; Yang, Kui; Gross, Richard W; Milbrandt, Jeffrey

    2013-03-06

    Mitochondrial dysfunction is a common cause of peripheral neuropathy. Much effort has been devoted to examining the role played by neuronal/axonal mitochondria, but how mitochondrial deficits in peripheral nerve glia (Schwann cells [SCs]) contribute to peripheral nerve diseases remains unclear. Here, we investigate a mouse model of peripheral neuropathy secondary to SC mitochondrial dysfunction (Tfam-SCKOs). We show that disruption of SC mitochondria activates a maladaptive integrated stress response (ISR) through the actions of heme-regulated inhibitor (HRI) kinase, and causes a shift in lipid metabolism away from fatty acid synthesis toward oxidation. These alterations in SC lipid metabolism result in depletion of important myelin lipid components as well as in accumulation of acylcarnitines (ACs), an intermediate of fatty acid β-oxidation. Importantly, we show that ACs are released from SCs and induce axonal degeneration. A maladaptive ISR as well as altered SC lipid metabolism are thus underlying pathological mechanisms in mitochondria-related peripheral neuropathies.

  10. Ephrin-B2 elicits differential growth cone collapse and axon retraction in retinal ganglion cells from distinct retinal regions

    PubMed Central

    Petros, Timothy J.; Bryson, J. Barney; Mason, Carol

    2010-01-01

    The circuit for binocular vision and stereopsis is established at the optic chiasm, where retinal ganglion cell (RGC) axons diverge into the ipsilateral and contralateral optic tracts. In the mouse retina, ventrotemporal (VT) RGCs express the guidance receptor EphB1, which interacts with the repulsive guidance cue ephrin-B2 on radial glia at the optic chiasm to direct VT RGC axons ipsilaterally. RGCs in the ventral retina also express EphB2, which interacts with ephrin-B2, whereas dorsal RGCs express low levels of EphB receptors. To investigate how growth cones of RGCs from different retinal regions respond upon initial contact with ephrin-B2, we utilized time-lapse imaging to characterize the effects of ephrin-B2 on growth cone collapse and axon retraction in real time. We demonstrate that bath application of ephrin-B2 induces rapid and sustained growth cone collapse and axon retraction in VT RGC axons, whereas contralaterally-projecting dorsotemporal RGCs display moderate growth cone collapse and little axon retraction. Dose response curves reveal that contralaterally-projecting ventronasal axons are less sensitive to ephrin-B2 treatment compared to VT axons. Additionally, we uncovered a specific role for Rho kinase signaling in the retraction of VT RGC axons but not in growth cone collapse. The detailed characterization of growth cone behavior in this study comprises an assay for the study of Eph signaling in RGCs, and provides insight into the phenomena of growth cone collapse and axon retraction in general. PMID:20629048

  11. Axonal degeneration, regeneration and ganglion cell death in a rodent model of anterior ischemic optic neuropathy (rAION)

    PubMed Central

    Zhang, Cheng; Guo, Yan; Slater, Bernard J; Miller, Neil R.; Bernstein, Steven L.

    2010-01-01

    Using laser-induced photoactivation of intravenously administered rose Bengal in rats, we generated an ischemic infarction of the intrascleral portion of the optic nerve (ON) comparable to that which occurs in humans to investigate optic nerve axon degenerative events following optic nerve infarct and the potential for axon re-growth. Animals were euthanized at different times post infarct. Axon degeneration was evaluated with SMI312 immunolabeling, and GAP-43 immunostaining was used to identify axon regeneration. Terminal dUTP nick end labeling (TUNEL) was used to evaluate retinal ganglion cell (RGC) death. There was significant axon structural disruptinot ion at the anterior intrascleral portion of the ON by 3d post-infarct, extending to the posterior ON by 7d post-stroke. Destruction of normal axon structure and massive loss of axon fibers occurred by 2 weeks. GAP-43 immunoreactivity occurred in the anterior ON by 7d post-infarct, lasting 3-4 weeks, without extension past the primary ischemic lesion. TUNEL-positive cells in the RGC layer appeared by 7d post-insult. These results indicate that following induction of ischemic optic neuropathy, significant axon damage occurs by 3d post-infarct, with later neuronal death. Post-stroke adult rat retinal ganglion cells attempt to regenerate their axons, but this effort is restricted to the unmyelinated region of the anterior ON. These responses are important in understanding pathologic process that underlies human non-arteritic anterior ischemic optic neuropathy (NAION) and may guide both the appropriate treatment of NAION and the window of opportunity for such treatment. PMID:20621651

  12. On the origins of the universal dynamics of endogenous granules in mammalian cells.

    PubMed

    Vanapalli, Siva A; Li, Yixuan; Mugele, Frieder; Duits, Michel H G

    2009-12-01

    Endogenous granules (EGs) that consist of lipid droplets and mitochondria have been commonly used to assess intracellular mechanical properties via multiple particle tracking microrheology (MPTM). Despite their widespread use, the nature of interaction of EGs with the cytoskeletal network and the type of forces driving their dynamics--both of which are crucial for the interpretation of the results from MPTM technique--are yet to be resolved. In this report, we study the dynamics of endogenous granules in mammalian cells using particle tracking methods. We find that the ensemble dynamics of EGs is diffusive in three types of mammalian cells (endothelial cells, smooth muscle cells and fibroblasts), thereby suggesting an apparent universality in their dynamical behavior. Moreover, in a given cell, the amplitude of the mean-squared displacement for EGs is an order of magnitude larger than that of injected particles. This observation along with results from ATP depletion and temperature intervention studies suggests that cytoskeletal active forces drive the dynamics of EGs. To elucidate the dynamical origin of the diffusive-like nonthermal motion, we consider three active force generation mechanisms--molecular motor transport, actomyosin contractility and microtubule polymerization forces. We test these mechanisms using pharmacological interventions. Experimental evidence and model calculations suggest that EGs are intimately linked to microtubules and that microtubule polymerization forces drive their dynamics. Thus, endogenous granules could serve as non-invasive probes for microtubule network dynamics in mammalian cells.

  13. Proteolytic histone modification by mast cell tryptase, a serglycin proteoglycan-dependent secretory granule protease.

    PubMed

    Melo, Fabio R; Vita, Francesca; Berent-Maoz, Beata; Levi-Schaffer, Francesca; Zabucchi, Giuliano; Pejler, Gunnar

    2014-03-14

    A hallmark feature of mast cells is their high content of cytoplasmic secretory granules filled with various preformed compounds, including proteases of tryptase-, chymase-, and carboxypeptidase A3 type that are electrostatically bound to serglycin proteoglycan. Apart from participating in extracellular processes, serglycin proteoglycan and one of its associated proteases, tryptase, are known to regulate cell death by promoting apoptosis over necrosis. Here we sought to outline the underlying mechanism and identify core histones as primary proteolytic targets for the serglycin-tryptase axis. During the cell death process, tryptase was found to relocalize from granules into the cytosol and nucleus, and it was found that the absence of tryptase was associated with a pronounced accumulation of core histones both in the cytosol and in the nucleus. Intriguingly, tryptase deficiency resulted in defective proteolytic modification of core histones even at baseline conditions, i.e. in the absence of cytotoxic agent, suggesting that tryptase has a homeostatic impact on nuclear events. Indeed, tryptase was found in the nucleus of viable cells and was shown to cleave core histones in their N-terminal tail. Moreover, it was shown that the absence of the serglycin-tryptase axis resulted in altered chromatin composition. Together, these findings implicate histone proteolysis through a secretory granule-derived serglycin-tryptase axis as a novel principle for histone modification, during both cell homeostasis and cell death.

  14. Pasteurella multocida toxin: Targeting mast cell secretory granules during kiss-and-run secretion.

    PubMed

    Danielsen, Elisabeth M; Christiansen, Nina; Danielsen, E Michael

    2016-02-01

    Pasteurella multocida toxin (PMT), a virulence factor of the pathogenic Gram-negative bacterium P. multocida, is a 146 kDa protein belonging to the A-B class of toxins. Once inside a target cell, the A domain deamidates the α-subunit of heterotrimeric G-proteins, thereby activating downstream signaling cascades. However, little is known about how PMT selects and enters its cellular targets. We therefore studied PMT binding and uptake in porcine cultured intestinal mucosal explants to identify susceptible cells in the epithelium and underlying lamina propria. In comparison with Vibrio cholera B-subunit, a well-known enterotoxin taken up by receptor-mediated endocytosis, PMT binding to the epithelial brush border was scarce, and no uptake into enterocytes was detected by 2h, implying that none of the glycolipids in the brush border are a functional receptor for PMT. However, in the lamina propria, PMT distinctly accumulated in the secretory granules of mast cells. This also occurred at 4 °C, ruling out endocytosis, but suggestive of uptake via pores that connect the granules to the cell surface. Mast cell granules are known to secrete their contents by a "kiss-and-run" mechanism, and we propose that PMT may exploit this secretory mechanism to gain entry into this particular cell type.

  15. DAG-sensitive and Ca2+ permeable TRPC6 channels are expressed in dentate granule cells and interneurons in the hippocampal formation

    PubMed Central

    Nagy, Gergő A.; Botond, Gergő; Borhegyi, Zsolt; Plummer, Nicholas W.; Freund, Tamás F.; Hájos, Norbert

    2012-01-01

    Members of the transient receptor potential (TRP) cation channel family play important roles in several neuronal functions. To understand the precise role of these channels in information processing, their presence on neuronal elements must be revealed. In this study we investigated the localization of TRPC6 channels in the adult hippocampal formation. Immunostainings with a specific antibody, which was validated in Trpc6 knockout mice, showed that in the dentate gyrus, TRPC6 channels are strongly expressed in granule cells. Immunogold staining revealing the subcellular localization of TRPC6 channels clarified that these proteins were predominantly present on the membrane surface of the dendritic shafts of dentate granule cells, and also in their axons, often associated with intracellular membrane cisternae. In addition, TRPC6 channels could be observed in the dendrites of some interneurons. Double immunofluorescent staining showed that TRPC6 channels were present in the dendrites of hilar interneurons and hippocampal interneurons with horizontal dendrites in the stratum oriens expressing mGlu1a receptors, whereas parvalbumin immunoreactivity was revealed in TRPC6-expressing dendrites with radial appearance in the stratum radiatum. Electron microscopy showed that the immunogold particles depicting TRPC6 channels were located on the surface membranes of the interneuron dendrites. Our results suggest that TRPC6 channels are in a key position to alter the information entry into the trisynaptic loop of the hippocampal formation from the entorhinal cortex, and to control the function of both feed-forward and feed-back inhibitory circuits in this brain region. PMID:23193081

  16. Dendritic morphology, synaptic transmission, and activity of mature granule cells born following pilocarpine-induced status epilepticus in the rat

    PubMed Central

    Gao, Fei; Song, Xueying; Zhu, Dexiao; Wang, Xiaochen; Hao, Aijun; Nadler, J. Victor; Zhan, Ren-Zhi

    2015-01-01

    To understand the potential role of enhanced hippocampal neurogenesis after pilocarpine-induced status epilepticus (SE) in the development of epilepsy, we quantitatively analyzed the geometry of apical dendrites, synaptic transmission, and activation levels of normotopically distributed mature newborn granule cells in the rat. SE in male Sprague-Dawley rats (between 6 and 7 weeks old) lasting for more than 2 h was induced by an intraperitoneal injection of pilocarpine. The complexity, spine density, miniature post-synaptic currents, and activity-regulated cytoskeleton-associated protein (Arc) expression of granule cells born 5 days after SE were studied between 10 and 17 weeks after CAG-GFP retroviral vector-mediated labeling. Mature granule cells born after SE had dendritic complexity similar to that of granule cells born naturally, but with denser mushroom-like spines in dendritic segments located in the outer molecular layer. Miniature inhibitory post-synaptic currents (mIPSCs) were similar between the controls and rats subjected to SE; however, smaller miniature excitatory post-synaptic current (mEPSC) amplitude with a trend toward less frequent was found in mature granule cells born after SE. After maturation, granule cells born after SE did not show denser Arc expression in the resting condition or 2 h after being activated by pentylenetetrazol-induced transient seizure activity than vicinal GFP-unlabeled granule cells. Thus our results suggest that normotopic granule cells born after pilocarpine-induced SE are no more active when mature than age-matched, naturally born granule cells. PMID:26500490

  17. Critical role of calpain in axonal damage-induced retinal ganglion cell death.

    PubMed

    Ryu, Morin; Yasuda, Masayuki; Shi, Dong; Shanab, Ahmed Y; Watanabe, Ryo; Himori, Noriko; Omodaka, Kazuko; Yokoyama, Yu; Takano, Jiro; Saido, Takaomi; Nakazawa, Toru

    2012-04-01

    Calpain, an intracellular cysteine protease, has been widely reported to be involved in neuronal cell death. The purpose of this study is to investigate the role of calpain activation in axonal damage-induced retinal ganglion cell (RGC) death. Twelve-week-old male calpstatin (an endogenous calpain inhibitor) knockout mice (CAST KO) and wild-type (WT) mice were used in this study. Axonal damage was induced by optic nerve crush (NC) or tubulin destruction induced by leaving a gelatin sponge soaked with vinblastine (VB), a microtubule disassembly chemical, around the optic nerve. Calpain activation was assessed by immunoblot analysis, which indirectly quantified the cleaved α-fodrin, a substrate of calpain. RGCs were retrogradely labeled by injecting a fluorescent tracer, Fluoro-Gold (FG), and the retinas were harvested and flat-mounted retinas prepared. The densities of FG-labeled RGCs harvested from the WT and CAST KO groups were assessed and compared. Additionally, a calpain inhibitor (SNJ-1945, 100 mg/kg/day) was administered orally, and the density of surviving RGCs was compared with that of the vehicle control group. The mean density of surviving RGCs in the CAST KO group was significantly lower than that observed in the WT group, both in NC and in VB. The mean density of surviving RGCs in the SNJ-1945-treated group was significantly higher than that of the control group. The calpain inhibitor SNJ-1945 has a neuroprotective effect against axonal damage-induced RGC death. This pathway may be an important therapeutic target for preventing this axonal damage-induced RGC death, including glaucoma and diabetic optic neuropathy and other CNS diseases that share a common etiology. Copyright © 2011 Wiley Periodicals, Inc.

  18. Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts

    PubMed Central

    2011-01-01

    Background Newts have the remarkable ability to regenerate their spinal cords as adults. Their spinal cords regenerate with the regenerating tail after tail amputation, as well as after a gap-inducing spinal cord injury (SCI), such as a complete transection. While most studies on newt spinal cord regeneration have focused on events occurring after tail amputation, less attention has been given to events occurring after an SCI, a context that is more relevant to human SCI. Our goal was to use modern labeling and imaging techniques to observe axons regenerating across a complete transection injury and determine how cells and the extracellular matrix in the injury site might contribute to the regenerative process. Results We identify stages of axon regeneration following a spinal cord transection and find that axon regrowth across the lesion appears to be enabled, in part, because meningeal cells and glia form a permissive environment for axon regeneration. Meningeal and endothelial cells regenerate into the lesion first and are associated with a loose extracellular matrix that allows axon growth cone migration. This matrix, paradoxically, consists of both permissive and inhibitory proteins. Axons grow into the injury site next and are closely associated with meningeal cells and glial processes extending from cell bodies surrounding the central canal. Later, ependymal tubes lined with glia extend into the lesion as well. Finally, the meningeal cells, axons, and glia move as a unit to close the gap in the spinal cord. After crossing the injury site, axons travel through white matter to reach synaptic targets, and though ascending axons regenerate, sensory axons do not appear to be among them. This entire regenerative process occurs even in the presence of an inflammatory response. Conclusions These data reveal, in detail, the cellular and extracellular events that occur during newt spinal cord regeneration after a transection injury and uncover an important role for

  19. BK Channels Localize to the Paranodal Junction and Regulate Action Potentials in Myelinated Axons of Cerebellar Purkinje Cells

    PubMed Central

    Hirono, Moritoshi; Ogawa, Yasuhiro; Misono, Kaori; Zollinger, Daniel R.; Trimmer, James S.

    2015-01-01

    In myelinated axons, K+ channels are clustered in distinct membrane domains to regulate action potentials (APs). At nodes of Ranvier, Kv7 channels are expressed with Na+ channels, whereas Kv1 channels flank nodes at juxtaparanodes. Regulation of axonal APs by K+ channels would be particularly important in fast-spiking projection neurons such as cerebellar Purkinje cells. Here, we show that BK/Slo1 channels are clustered at the paranodal junctions of myelinated Purkinje cell axons of rat and mouse. The paranodal junction is formed by a set of cell-adhesion molecules, including Caspr, between the node and juxtaparanodes in which it separates nodal from internodal membrane domains. Remarkably, only Purkinje cell axons have detectable paranodal BK channels, whose clustering requires the formation of the paranodal junction via Caspr. Thus, BK channels occupy this unique domain in Purkinje cell axons along with the other K+ channel complexes at nodes and juxtaparanodes. To investigate the physiological role of novel paranodal BK channels, we examined the effect of BK channel blockers on antidromic AP conduction. We found that local application of blockers to the axon resulted in a significant increase in antidromic AP failure at frequencies above 100 Hz. We also found that Ni2+ elicited a similar effect on APs, indicating the involvement of Ni2+-sensitive Ca2+ channels. Furthermore, axonal application of BK channel blockers decreased the inhibitory synaptic response in the deep cerebellar nuclei. Thus, paranodal BK channels uniquely support high-fidelity firing of APs in myelinated Purkinje cell axons, thereby underpinning the output of the cerebellar cortex. PMID:25948259

  20. Wnt-Planar Cell Polarity signaling controls the anterior-posterior organization of monoaminergic axons in the brainstem

    PubMed Central

    Fenstermaker, Ali G.; Prasad, Asheeta A.; Bechara, Ahmad; Adolfs, Youri; Tissir, Fadel; Goffinet, Andre; Zou, Yimin; Pasterkamp, R. Jeroen

    2010-01-01

    Monoaminergic neurons (serotonergic (5HT) and dopaminergic (mdDA)) in the brainstem project axons along the anterior-posterior axis. Despite their important physiological functions and implication in disease, the molecular mechanisms that dictate the formation of these projections along the anterior-posterior axis remain unknown. Here we reveal a novel requirement for Wnt/planar cell polarity signaling in the anterior-posterior organization of the monoaminergic system. We find that 5HT and mdDA axons express the core planar cell polarity components Frizzled3, Celsr3 and Vangl2. In addition, monoaminergic projections show anterior-posterior guidance defects in Frizzled3, Celsr3 and Vangl2 mutant mice. The only known ligands for planar cell polarity signaling are Wnt proteins. In culture, Wnt5a attracts 5HT but repels mdDA axons and Wnt7b attracts mdDA axons. However, mdDA axons from Frizzled3 mutant mice are unresponsive to Wnt5a and Wnt7b. Both Wnts are expressed in gradients along the anterior-posterior axis, consistent with their role as directional cues. Finally, Wnt5a mutants show transient anterior-posterior guidance defects in mdDA projections. Furthermore, we observe that the cell bodies of migrating descending 5HT neurons eventually re-orient along the direction of their axons. In Frizzled3 mutants, many 5HT and mdDA neuron cell bodies are oriented abnormally along the direction of their aberrant axon projections. Overall, our data suggest that Wnt/planar cell polarity signaling may be a global anterior-posterior guidance mechanism that controls axonal and cellular organization beyond the spinal cord. PMID:21106844

  1. Target cell-specific modulation of transmitter release at terminals from a single axon.

    PubMed

    Scanziani, M; Gähwiler, B H; Charpak, S

    1998-09-29

    In the hippocampus, a CA3 pyramidal cell forms excitatory synapses with thousands of other pyramidal cells and inhibitory interneurons. By using sequential paired recordings from three connected cells, we show that the presynaptic properties of CA3 pyramidal cell terminals, belonging to the same axon, differ according to the type of target cell. Activation of presynaptic group III metabotropic glutamate receptors decreases transmitter release only at terminals contacting CA1 interneurons but not CA1 pyramidal cells. Furthermore, terminals contacting distinct target cells show different frequency facilitation. On the basis of these results, we conclude that the pharmacological and physiological properties of presynaptic terminals are determined, at least in part, by the target cells.

  2. Target Cell-Specific Modulation of Transmitter Release at Terminals from a Single Axon

    NASA Astrophysics Data System (ADS)

    Scanziani, Massimo; Gahwiler, Beat H.; Charpak, Serge

    1998-09-01

    In the hippocampus, a CA3 pyramidal cell forms excitatory synapses with thousands of other pyramidal cells and inhibitory interneurons. By using sequential paired recordings from three connected cells, we show that the presynaptic properties of CA3 pyramidal cell terminals, belonging to the same axon, differ according to the type of target cell. Activation of presynaptic group III metabotropic glutamate receptors decreases transmitter release only at terminals contacting CA1 interneurons but not CA1 pyramidal cells. Furthermore, terminals contacting distinct target cells show different frequency facilitation. On the basis of these results, we conclude that the pharmacological and physiological properties of presynaptic terminals are determined, at least in part, by the target cells.

  3. Rapid erasure of hippocampal memory following inhibition of dentate gyrus granule cells

    PubMed Central

    Madroñal, Noelia; Delgado-García, José M.; Fernández-Guizán, Azahara; Chatterjee, Jayanta; Köhn, Maja; Mattucci, Camilla; Jain, Apar; Tsetsenis, Theodoros; Illarionova, Anna; Grinevich, Valery; Gross, Cornelius T.; Gruart, Agnès

    2016-01-01

    The hippocampus is critical for the acquisition and retrieval of episodic and contextual memories. Lesions of the dentate gyrus, a principal input of the hippocampus, block memory acquisition, but it remains unclear whether this region also plays a role in memory retrieval. Here we combine cell-type specific neural inhibition with electrophysiological measurements of learning-associated plasticity in behaving mice to demonstrate that dentate gyrus granule cells are not required for memory retrieval, but instead have an unexpected role in memory maintenance. Furthermore, we demonstrate the translational potential of our findings by showing that pharmacological activation of an endogenous inhibitory receptor expressed selectively in dentate gyrus granule cells can induce a rapid loss of hippocampal memory. These findings open a new avenue for the targeted erasure of episodic and contextual memories. PMID:26988806

  4. N-cadherin is dispensable for pancreas development but required for β-cell granule turnover

    PubMed Central

    Johansson, Jenny K; Voss, Ulrikke; Kesavan, Gokul; Kostetskii, Igor; Wierup, Nils; Radice, Glenn L.; Semb, Henrik

    2010-01-01

    Summary The cadherin family of cell adhesion molecules mediates adhesive interactions that are required for the formation and maintenance of tissues. Previously, we demonstrated that N-cadherin, which is required for numerous morphogenetic processes, is expressed in the pancreatic epithelium at E9.5, but later becomes restricted to endocrine aggregates in mice. To study the role of N-cadherin during pancreas formation and function we generated a tissue specific knockout of N-cadherin in the early pancreatic epithelium by inter-crossing N-cadherin-floxed mice with Pdx1Cre mice. Analysis of pancreas-specific ablation of N-cadherin demonstrates that N-cadherin is dispensable for pancreatic development, but required for β-cell granule turnover. The number of insulin secretory granules is significantly reduced in N-cadherin-deficient β-cells, and as a consequence insulin secretion is decreased. PMID:20533404

  5. Cerebellar cortical degeneration with selective granule cell loss in Bavarian mountain dogs.

    PubMed

    Flegel, T; Matiasek, K; Henke, D; Grevel, V

    2007-08-01

    Three Bavarian mountain dogs aged between 18 and 20 months, not related to each other, were presented with chronic signs of cerebellar dysfunction. On sagittal T2-weighted magnetic resonance imaging brain images, the tentative diagnosis of cerebellar hypoplasia was established based on an enlarged cerebrospinal fluid space around the cerebellum and an increased cerebrospinal fluid signal between the folia. Post-mortem examination was performed in one dog and did show an overall reduction of cerebellar size. On histopathologic examination, a selective loss of cerebellar granule cells with sparing of Purkinje cells was evident. Therefore, the Bavarian mountain dog is a breed where cerebellar cortical degeneration caused by the rather exceptional selective granule cell loss can be seen as cause of chronic, slowly progressive cerebellar dysfunction starting at an age of several months.

  6. Distinct integrin-dependent signals define requirements for lytic granule convergence and polarization in natural killer cells.

    PubMed

    Hsu, Hsiang-Ting; Orange, Jordan S

    2014-10-07

    Lytic granules in natural killer (NK) cells represent a dangerous cargo that is targeted for secretion to destroy diseased cells. The appropriate management of these organelles enables the mounting of a precise and valuable host defense. The process of NK cell adhesion to a target cell through engagement of the integrin LFA-1 (lymphocyte function-associated antigen 1) promotes lytic granule organization through complex cellular mechanics and a signaling pathway characterized by Zhang et al. in this issue of Science Signaling. A set of signaling molecules was defined for their ability to promote the polarization of NK cell lytic granules and the microtubule organizing center (MTOC) toward the interface with a target cell. A subset of these signaling molecules was also required for the convergence of lytic granules on the MTOC. Copyright © 2014, American Association for the Advancement of Science.

  7. Long-range projection neurons of the mouse ventral tegmental area: a single-cell axon tracing analysis

    PubMed Central

    Aransay, Ana; Rodríguez-López, Claudia; García-Amado, María; Clascá, Francisco; Prensa, Lucía

    2015-01-01

    Pathways arising from the ventral tegmental area (VTA) release dopamine and other neurotransmitters during the expectation and achievement of reward, and are regarded as central links of the brain networks that create drive, pleasure, and addiction. While the global pattern of VTA projections is well-known, the actual axonal wiring of individual VTA neurons had never been investigated. Here, we labeled and analyzed the axons of 30 VTA single neurons by means of single-cell transfection with the Sindbis-pal-eGFP vector in mice. These observations were complemented with those obtained by labeling the axons of small populations of VTA cells with iontophoretic microdeposits of biotinylated dextran amine. In the single-cell labeling experiments, each entire axonal tree was reconstructed from serial sections, the length of terminal axonal arbors was estimated by stereology, and the dopaminergic phenotype was tested by double-labeling for tyrosine hydroxylase immunofluorescence. We observed two main, markedly different VTA cell morphologies: neurons with a single main axon targeting only forebrain structures (FPN cells), and neurons with multibranched axons targeting both the forebrain and the brainstem (F + BSPN cells). Dopaminergic phenotype was observed in FPN cells. Moreover, four “subtypes” could be distinguished among the FPN cells based on their projection targets: (1) “Mesocorticolimbic” FPN projecting to both neocortex and basal forebrain; (2) “Mesocortical” FPN innervating the neocortex almost exclusively; (3) “Mesolimbic” FPN projecting to the basal forebrain, accumbens and caudateputamen; and (4) “Mesostriatal” FPN targeting only the caudateputamen. While the F + BSPN cells were scattered within VTA, the mesolimbic neurons were abundant in the paranigral nucleus. The observed diversity in wiring architectures is consistent with the notion that different VTA cell subpopulations modulate the activity of specific sets of prosencephalic and

  8. Nectin-3 modulates the structural plasticity of dentate granule cells and long-term memory.

    PubMed

    Wang, X-X; Li, J-T; Xie, X-M; Gu, Y; Si, T-M; Schmidt, M V; Wang, X-D

    2017-09-05

    Nectin-3, a cell adhesion molecule enriched in hippocampal neurons, has been implicated in stress-related cognitive disorders. Nectin-3 is expressed by granule cells in the dentate gyrus (DG), but it remains unclear whether nectin-3 in DG modulates the structural plasticity of dentate granule cells and hippocampus-dependent memory. In this study, we found that DG nectin-3 expression levels were developmentally regulated and reduced by early postnatal stress exposure in adult mice. Most importantly, knockdown of nectin-3 levels in all DG neuron populations by adeno-associated virus (AAV) mimicked the cognitive effects of early-life stress, and impaired long-term spatial memory and temporal order memory. Moreover, AAV-mediated DG nectin-3 knockdown increased the density of doublecortin-immunoreactive differentiating cells under proliferation and calretinin-immunoreactive immature neurons, but markedly decreased calbindin immunoreactivity, indicating that nectin-3 modulates the differentiation and maturation of adult-born DG granule cells. Using retrovirus to target newly generated DG neurons, we found that selective nectin-3 knockdown in new DG neurons also impaired long-term spatial memory. In addition, suppressing nectin-3 expression in new DG neurons evoked a reduction of dendritic spines, especially thin spines. Our data indicate that nectin-3 expressed in DG neurons may modulate adult neurogenesis, dendritic spine plasticity and the cognitive effects of early-life stress.

  9. Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology

    PubMed Central

    Elston, Guy N.; Fujita, Ichiro

    2014-01-01

    Here we review recent findings related to postnatal spinogenesis, dendritic and axon growth, pruning and electrophysiology of neocortical pyramidal cells in the developing primate brain. Pyramidal cells in sensory, association and executive cortex grow dendrites, spines and axons at different rates, and vary in the degree of pruning. Of particular note is the fact that pyramidal cells in primary visual area (V1) prune more spines than they grow during postnatal development, whereas those in inferotemporal (TEO and TE) and granular prefrontal cortex (gPFC; Brodmann's area 12) grow more than they prune. Moreover, pyramidal cells in TEO, TE and the gPFC continue to grow larger dendritic territories from birth into adulthood, replete with spines, whereas those in V1 become smaller during this time. The developmental profile of intrinsic axons also varies between cortical areas: those in V1, for example, undergo an early proliferation followed by pruning and local consolidation into adulthood, whereas those in area TE tend to establish their territory and consolidate it into adulthood with little pruning. We correlate the anatomical findings with the electrophysiological properties of cells in the different cortical areas, including membrane time constant, depolarizing sag, duration of individual action potentials, and spike-frequency adaptation. All of the electrophysiological variables ramped up before 7 months of age in V1, but continued to ramp up over a protracted period of time in area TE. These data suggest that the anatomical and electrophysiological profiles of pyramidal cells vary among cortical areas at birth, and continue to diverge into adulthood. Moreover, the data reveal that the “use it or lose it” notion of synaptic reinforcement may speak to only part of the story, “use it but you still might lose it” may be just as prevalent in the cerebral cortex. PMID:25161611

  10. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans

    PubMed Central

    Ueki, Shigeharu; Melo, Rossana C. N.; Ghiran, Ionita; Spencer, Lisa A.; Dvorak, Ann M.; Weller, Peter F.

    2013-01-01

    Eosinophils release their granule proteins extracellularly through exocytosis, piecemeal degranulation, or cytolytic degranulation. Findings in diverse human eosinophilic diseases of intact extracellular eosinophil granules, either free or clustered, indicate that eosinophil cytolysis occurs in vivo, but the mechanisms and consequences of lytic eosinophil degranulation are poorly understood. We demonstrate that activated human eosinophils can undergo extracellular DNA trap cell death (ETosis) that cytolytically releases free eosinophil granules. Eosinophil ETosis (EETosis), in response to immobilized immunoglobulins (IgG, IgA), cytokines with platelet activating factor, calcium ionophore, or phorbol myristate acetate, develops within 120 minutes in a reduced NADP (NADPH) oxidase-dependent manner. Initially, nuclear lobular formation is lost and some granules are released by budding off from the cell as plasma membrane–enveloped clusters. Following nuclear chromatolysis, plasma membrane lysis liberates DNA that forms weblike extracellular DNA nets and releases free intact granules. EETosis-released eosinophil granules, still retaining eosinophil cationic granule proteins, can be activated to secrete when stimulated with CC chemokine ligand 11 (eotaxin-1). Our results indicate that an active NADPH oxidase-dependent mechanism of cytolytic, nonapoptotic eosinophil death initiates nuclear chromatolysis that eventuates in the release of intact secretion-competent granules and the formation of extracellular DNA nets. PMID:23303825

  11. Herpes simplex virus gE/gI extracellular domains promote axonal transport and spread from neurons to epithelial cells.

    PubMed

    Howard, Paul W; Wright, Catherine C; Howard, Tiffani; Johnson, David C

    2014-10-01

    Following reactivation from latency, there are two distinct steps in the spread of herpes simplex virus (HSV) from infected neurons to epithelial cells: (i) anterograde axonal transport of virus particles from neuron bodies to axon tips and (ii) exocytosis and spread of extracellular virions across cell junctions into adjacent epithelial cells. The HSV heterodimeric glycoprotein gE/gI is important for anterograde axonal transport, and gE/gI cytoplasmic domains play important roles in sorting of virus particles into axons. However, the roles of the large (∼400-residue) gE/gI extracellular (ET) domains in both axonal transport and neuron-to-epithelial cell spread have not been characterized. Two gE mutants, gE-277 and gE-348, contain small insertions in the gE ET domain, fold normally, form gE/gI heterodimers, and are incorporated into virions. Both gE-277 and gE-348 did not function in anterograde axonal transport; there were markedly reduced numbers of viral capsids and glycoproteins compared with wild-type HSV. The defects in axonal transport were manifest in neuronal cell bodies, involving missorting of HSV capsids before entry into proximal axons. Although there were diminished numbers of mutant gE-348 capsids and glycoproteins in distal axons, there was efficient spread to adjacent epithelial cells, similar to wild-type HSV. In contrast, virus particles produced by HSV gE-277 spread poorly to epithelial cells, despite numbers of virus particles similar to those for HSV gE-348. These results genetically separate the two steps in HSV spread from neurons to epithelial cells and demonstrate that the gE/gI ET domains function in both processes. An essential phase of the life cycle of herpes simplex virus (HSV) and other alphaherpesviruses is the capacity to reactivate from latency and then spread from infected neurons to epithelial tissues. This spread involves at least two steps: (i) anterograde transport to axon tips followed by (ii) exocytosis and extracellular

  12. Localization of axonally transported 125I-wheat germ agglutinin beneath the plasma membrane of chick retinal ganglion cells

    PubMed Central

    1983-01-01

    The distribution of 125I-wheat germ agglutinin (WGA) transported by axons of chick retinal ganglion cells to layer d of the optic tectum was studied by electron microscopic autoradiography. We found that 52% of the radioactivity was located in axons and axon terminals in the contralateral optic tectum 22 h after intravitreal injection of affinity-purified 125I-WGA. Axons comprised 43% of the volume of layer d. Dendrites, glial cells, and neuron cell bodies contained 20%, 17%, and 3% of the label, whereas these structures comprised 24%, 21%, and 2% of the tissue volume, respectively. We also measured the distances between the autoradiographic silver grains and the plasma membranes of these profiles, and compared observed distributions of grains to theoretical distributions computed for band-shaped sources at various distances from the plasma membranes. This analysis revealed that the radioactive source within axons was distributed in a band of cytoplasm extending in from the plasma membrane a distance of 63 nm. Because WGA is known to bind to specific membrane glycoconjugates, we infer that at least some glycoconjugates may be concentrated within an annular region of cytoplasm just beneath the axonal plasma membrane after axoplasmic transport from the neuron cell body. PMID:6187749

  13. Axon Guidance of Sympathetic Neurons to Cardiomyocytes by Glial Cell Line-Derived Neurotrophic Factor (GDNF)

    PubMed Central

    Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Hirabayashi, Masumi; Watabe, Kazuhiko; Jimbo, Yasuhiko; Kodama, Itsuo; Komuro, Issei

    2013-01-01

    Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF) promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs) and sympathetic neurons (SNs) isolated from neonatal rat ventricles and superior cervical ganglia were cultured at a close distance. Then, morphological and functional coupling between SNs and VMs was assessed in response to GDNF (10 ng/ml) or nerve growth factor (50 ng/ml). As a result, fractions of neurofilament-M-positive axons and synapsin-I-positive area over the surface of VMs were markedly increased with GDNF by 9-fold and 25-fold, respectively, compared to control without neurotrophic factors. Pre- and post-synaptic stimulation of β1-adrenergic receptors (BAR) with nicotine and noradrenaline, respectively, resulted in an increase of the spontaneous beating rate of VMs co-cultured with SNs in the presence of GDNF. GDNF overexpressing VMs by adenovirus vector (AdGDNF-VMs) attracted more axons from SNs compared with mock-transfected VMs. In vivo, axon outgrowth toward the denervated myocardium in adult rat hearts after cryoinjury was also enhanced significantly by adenovirus-mediated GDNF overexpression. GDNF acts as a potent chemoattractant for sympathetic innervation of ventricular myocytes, and is a promising molecular target for regulation of cardiac function in diseased hearts. PMID:23843937

  14. Schwann cell mitochondria as key regulators in the development and maintenance of peripheral nerve axons.

    PubMed

    Ino, Daisuke; Iino, Masamitsu

    2017-03-01

    Formation of myelin sheaths by Schwann cells (SCs) enables rapid and efficient transmission of action potentials in peripheral axons, and disruption of myelination results in disorders that involve decreased sensory and motor functions. Given that construction of SC myelin requires high levels of lipid and protein synthesis, mitochondria, which are pivotal in cellular metabolism, may be potential regulators of the formation and maintenance of SC myelin. Supporting this notion, abnormal mitochondria are found in SCs of neuropathic peripheral nerves in both human patients and the relevant animal models. However, evidence for the importance of SC mitochondria in myelination has been limited, until recently. Several studies have recently used genetic approaches that allow SC-specific ablation of mitochondrial metabolic activity in living animals to show the critical roles of SC mitochondria in the development and maintenance of peripheral nerve axons. Here, we review current knowledge about the involvement of SC mitochondria in the formation and dysfunction of myelinated axons in the peripheral nervous system.

  15. Collagen nerve conduits promote enhanced axonal regeneration, schwann cell association, and neovascularization compared to silicone conduits.

    PubMed

    Kemp, Stephen W P; Syed, Shahbaz; Walsh, Walsh; Zochodne, Douglas W; Midha, Rajiv

    2009-08-01

    Peripheral nerve regeneration within guidance conduits involves a critical association between regenerating axons, Schwann cells (SCs), and neovascularization. However, it is currently unknown if there is a greater association between these factors in nonpermeable versus semipermeable nerve guide conduits. We therefore examined this collaboration in both silicone- and collagen-based nerve conduits in both 5- and 10-mm-injury gaps in rat sciatic nerves. Results indicate that collagen conduits promoted enhanced axonal and SC regeneration and association when compared to silicone conduits in the shorter 5-mm-gap model. In addition, collagen tubes displayed enhanced neovascularization over silicone conduits, suggesting that these three factors are intimately related in successful peripheral nerve regeneration. At later time points (1- and 2-month analysis) in a 10-mm-gap model, collagen tubes displayed enhanced axonal regeneration, myelination, and vascularization when compared to silicone-based conduits. Results from these studies suggest that regenerating cables within collagen-based conduits are revascularized earlier and more completely, which in turn enhances peripheral nerve regeneration through these nerve guides as compared to silicone conduits.

  16. Targeting cell surface receptors for axon regeneration in the central nervous system

    PubMed Central

    Cheah, Menghon; Andrews, Melissa R.

    2016-01-01

    Axon regeneration in the CNS is largely unsuccessful due to excess inhibitory extrinsic factors within lesion sites together with an intrinsic inability of neurons to regrow following injury. Recent work demonstrates that forced expression of certain neuronal transmembrane receptors can recapitulate neuronal growth resulting in successful growth within and through inhibitory lesion environments. More specifically, neuronal expression of integrin receptors such as alpha9beta1 integrin which binds the extracellular matrix glycoprotein tenascin-C, trk receptors such as trkB which binds the neurotrophic factor BDNF, and receptor PTPσ which binds chondroitin sulphate proteoglycans, have all been show to significantly enhance regeneration of injured axons. We discuss how reintroduction of these receptors in damaged neurons facilitates signalling from the internal environment of the cell with the external environment of the lesion milieu, effectively resulting in growth and repair following injury. In summary, we suggest an appropriate balance of intrinsic and extrinsic factors are required to obtain substantial axon regeneration. PMID:28197173

  17. Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization

    PubMed Central

    Masoli, Stefano; Solinas, Sergio; D'Angelo, Egidio

    2015-01-01

    The Purkinje cell (PC) is among the most complex neurons in the brain and plays a critical role for cerebellar functioning. PCs operate as fast pacemakers modulated by synaptic inputs but can switch from simple spikes to complex bursts and, in some conditions, show bistability. In contrast to original works emphasizing dendritic Ca-dependent mechanisms, recent experiments have supported a primary role for axonal Na-dependent processing, which could effectively regulate spike generation and transmission to deep cerebellar nuclei (DCN). In order to account for the numerous ionic mechanisms involved (at present including Nav1.6, Cav2.1, Cav3.1, Cav3.2, Cav3.3, Kv1.1, Kv1.5, Kv3.3, Kv3.4, Kv4.3, KCa1.1, KCa2.2, KCa3.1, Kir2.x, HCN1), we have elaborated a multicompartmental model incorporating available knowledge on localization and gating of PC ionic channels. The axon, including initial segment (AIS) and Ranvier nodes (RNs), proved critical to obtain appropriate pacemaking and firing frequency modulation. Simple spikes initiated in the AIS and protracted discharges were stabilized in the soma through Na-dependent mechanisms, while somato-dendritic Ca channels contributed to sustain pacemaking and to generate complex bursting at high discharge regimes. Bistability occurred only following Na and Ca channel down-regulation. In addition, specific properties in RNs K currents were required to limit spike transmission frequency along the axon. The model showed how organized electroresponsive functions could emerge from the molecular complexity of PCs and showed that the axon is fundamental to complement ionic channel compartmentalization enabling action potential processing and transmission of specific spike patterns to DCN. PMID:25759640

  18. The influence of electrospun fibre size on Schwann cell behaviour and axonal outgrowth.

    PubMed

    Gnavi, S; Fornasari, B E; Tonda-Turo, C; Ciardelli, G; Zanetti, M; Geuna, S; Perroteau, I

    2015-03-01

    Fibrous substrates functioning as temporary extracellular matrices can be prepared easily by electrospinning, yielding fibrous matrices suitable as internal fillers for nerve guidance channels. In this study, gelatin micro- or nano-fibres were prepared by electrospinning by tuning the gelatin concentration and solution flow rate. The effect of gelatin fibre diameter on cell adhesion and proliferation was tested in vitro using explant cultures of Schwann cells (SC) and dorsal root ganglia (DRG). Cell adhesion was assessed by quantifying the cell spreading area, actin cytoskeleton organization and focal adhesion complex formation. Nano-fibres promoted cell spreading and actin cytoskeleton organization, increasing cellular adhesion and the proliferation rate. However, both migration rate and motility, quantified by transwell and time lapse assays respectively, were greater in cells cultured on micro-fibres. Finally, there was more DRG axon outgrowth on micro-fibres. These data suggest that the topography of electrospun gelatin fibres can be adjusted to modulate SC and axon organization and that both nano- and micro-fibres are promising fillers for the design of devices for peripheral nerve repair.

  19. Radial Glial Cell-Neuron Interaction Directs Axon Formation at the Opposite Side of the Neuron from the Contact Site.

    PubMed

    Xu, Chundi; Funahashi, Yasuhiro; Watanabe, Takashi; Takano, Tetsuya; Nakamuta, Shinichi; Namba, Takashi; Kaibuchi, Kozo

    2015-10-28

    How extracellular cues direct axon-dendrite polarization in mouse developing neurons is not fully understood. Here, we report that the radial glial cell (RGC)-cortical neuron interaction directs axon formation at the opposite side of the neuron from the contact site. N-cadherin accumulates at the contact site between the RGC and cortical neuron. Inhibition of the N-cadherin-mediated adhesion decreases this oriented axon formation in vitro, and disrupts the axon-dendrite polarization in vivo. Furthermore, the RGC-neuron interaction induces the polarized distribution of active RhoA at the contacting neurite and active Rac1 at the opposite neurite. Inhibition of Rho-Rho-kinase signaling in a neuron impairs the oriented axon formation in vitro, and prevents axon-dendrite polarization in vivo. Collectively, these results suggest that the N-cadherin-mediated radial glia-neuron interaction determines the contacting neurite as the leading process for radial glia-guided neuronal migration and directs axon formation to the opposite side acting through the Rho family GTPases.

  20. Granule cargo release from bone marrow-derived cells sustains cardiac hypertrophy.

    PubMed

    Yang, Fanmuyi; Dong, Anping; Ahamed, Jasimuddin; Sunkara, Manjula; Smyth, Susan S

    2014-11-15

    Bone marrow-derived inflammatory cells, including platelets, may contribute to the progression of pressure overload-induced left ventricular hypertrophy (LVH). However, the underlying mechanisms for this are still unclear. One potential mechanism is through release of granule cargo. Unc13-d(Jinx) (Jinx) mice, which lack Munc13-4, a limiting factor in vesicular priming and fusion, have granule secretion defects in a variety of hematopoietic cells, including platelets. In the current study, we investigated the role of granule secretion in the development of LVH and cardiac remodeling using chimeric mice specifically lacking Munc13-4 in marrow-derived cells. Pressure overload was elicited by transverse aortic constriction (TAC). Chimeric mice were created by bone marrow transplantation. Echocardiography, histology staining, immunohistochemistry, real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and mass spectrometry were used to study LVH progression and inflammatory responses. Wild-type (WT) mice that were transplanted with WT bone marrow (WT→WT) and WT mice that received Jinx bone marrow (Jinx→WT) developed LVH and a classic fetal reprogramming response early (7 days) after TAC. However, at late times (5 wk), mice lacking Munc13-4 in bone marrow-derived cells (Jinx→WT) failed to sustain the cardiac hypertrophy observed in WT chimeric mice. No difference in cardiac fibrosis was observed at early or late time points. Reinjection of WT platelets or platelet releasate partially restored cardiac hypertrophy in Jinx chimeric mice. These results suggest that sustained LVH in the setting of pressure overload depends on one or more factors secreted from bone marrow-derived cells, possibly from platelets. Inhibiting granule cargo release may represent a novel target for preventing sustained LVH.

  1. Immunoglobulins stimulate cultured Schwann cell maturation and promote their potential to induce axonal outgrowth.

    PubMed

    Tzekova, Nevena; Heinen, André; Bunk, Sebastian; Hermann, Corinna; Hartung, Hans-Peter; Reipert, Birgit; Küry, Patrick

    2015-05-29

    Schwann cells are the myelinating glial cells of the peripheral nervous system and exert important regenerative functions revealing them as central repair components of many peripheral nerve pathologies. Intravenous immunoglobulins (IVIG) are widely used to treat autoimmune and inflammatory diseases including immune-mediated neuropathies. Nevertheless, promotion of peripheral nerve regeneration is currently an unmet therapeutical goal. We therefore examined whether immunoglobulins affect glial cell homeostasis, differentiation, and Schwann cell dependent nerve regenerative processes. The responses of different primary Schwann cell culture models to IVIG were investigated: immature or differentiation competent Schwann cells, myelinating neuron/glial cocultures, and dorsal root ganglion explants. Immature or differentiating Schwann cells were used to study cellular proliferation, morphology, and gene/protein expression. Myelination rates were determined using myelinating neuron/glia cocultures, whereas axonal outgrowth was assessed using non-myelinating dorsal root ganglion explants. We found that IVIG specifically bind to Schwann cells and detected CD64 Fc receptor expression on their surface. In response to IVIG binding, Schwann cells reduced proliferation rates and accelerated growth of cellular protrusions. Furthermore, we observed that IVIG treatment transiently boosts myelin gene expression and myelination-related signaling pathways of immature cells, whereas in differentiating Schwann cells, myelin expression is enhanced on a long-term scale. Importantly, myelin gene upregulation was not detected upon application of IgG1 control antibodies. In addition, we demonstrate for the first time that Schwann cells secrete interleukin-18 upon IVIG stimulation and that this cytokine instructs these cells to promote axonal growth. We conclude that IVIG can positively influence the Schwann cell differentiation process and that it enhances their regenerative potential.

  2. Elemental levels in mast cell granules differ in sections from normal and diabetic rats: an X-ray microanalysis study

    SciTech Connect

    Kendall, M.D.

    1988-03-01

    Mast cells around the thymus of rats stain red with alcian blue and safranin indicating that the mast cells are probably of the peritoneal (connective tissue) type. After the onset of streptozotocin induced diabetes some cells contain both red and blue granules and blue staining cells may appear. X-ray microanalysis of frozen freeze-dried sections from diabetic male CSE Wistar rats showed electron dense granules to have similar amounts of S to normal rat mast cell granules but reduced levels of Na, Mg, P, Cl and K. Two cells also had electron lucent granules with very high levels of Na, Cl, K and Ca and reduced concentrations of S. The differences in elemental composition suggest that the mast cells from diabetic rats are not immature, but are related to the condition of induced diabetes, and that granules of very different composition can occur within a single cell. X-ray microanalysis has given an insight into mast cell granule elemental content which was not possible by conventional biochemical methods.

  3. Induction of stress granule-like structures in vesicular stomatitis virus-infected cells.

    PubMed

    Dinh, Phat X; Beura, Lalit K; Das, Phani B; Panda, Debasis; Das, Anshuman; Pattnaik, Asit K

    2013-01-01

    Previous studies from our laboratory revealed that cellular poly(C) binding protein 2 (PCBP2) downregulates vesicular stomatitis virus (VSV) gene expression. We show here that VSV infection induces the formation of granular structures in the cytoplasm containing cellular RNA-binding proteins, including PCBP2, T-cell-restricted intracellular antigen 1 (TIA1), and TIA1-related protein (TIAR). Depletion of TIA1 via small interfering RNAs (siRNAs), but not depletion of TIAR, results in enhanced VSV growth and gene expression. The VSV-induced granules appear to be similar to the stress granules (SGs) generated in cells triggered by heat shock or oxidative stress but do not contain some of the bona fide SG markers, such as eukaryotic initiation factor 3 (eIF3) or eIF4A, or the processing body (PB) markers, such as mRNA-decapping enzyme 1A (DCP1a), and thus may not represent canonical SGs or PBs. Our results revealed that the VSV-induced granules, called SG-like structures here, contain the viral replicative proteins and RNAs. The formation and maintenance of the SG-like structures required viral replication and ongoing protein synthesis, but an intact cytoskeletal network was not necessary. These results suggest that cells respond to VSV infection by aggregating the antiviral proteins, such as PCBP2 and TIA1, to form SG-like structures. The functional significance of these SG-like structures in VSV-infected cells is currently under investigation.

  4. Structural Plasticity of Dentate Granule Cell Mossy Fibers During the Development of Limbic Epilepsy

    PubMed Central

    Danzer, Steve C.; He, Xiaoping; Loepke, Andreas W.; McNamara, James O.

    2009-01-01

    Altered granule cell≫CA3 pyramidal cell synaptic connectivity may contribute to the development of limbic epilepsy. To explore this possibility, granule cell giant mossy fiber bouton plasticity was examined in the kindling and pilocarpine models of epilepsy using green fluorescent protein-expressing transgenic mice. These studies revealed significant increases in the frequency of giant boutons with satellite boutons 2 days and 1 month after pilocarpine status epilepticus, and increases in giant bouton area at 1 month. Similar increases in giant bouton area were observed shortly after kindling. Finally, both models exhibited plasticity of mossy fiber giant bouton filopodia, which contact GABAergic interneurons mediating feedforward inhibition of CA3 pyramids. In the kindling model, however, all changes were fleeting, having resolved by 1 month after the last evoked seizure. Together, these findings demonstrate striking structural plasticity of granule cell mossy fiber synaptic terminal structure in two distinct models of adult limbic epileptogenesis. We suggest that these plasticities modify local connectivities between individual mossy fiber terminals and their targets, inhibitory interneurons, and CA3 pyramidal cells potentially altering the balance of excitation and inhibition during the development of epilepsy. PMID:19294647

  5. Secretory granule biogenesis and neuropeptide sorting to the regulated secretory pathway in neuroendocrine cells.

    PubMed

    Loh, Y Peng; Kim, Taeyoon; Rodriguez, Yazmin M; Cawley, Niamh X

    2004-01-01

    Neuropeptide precursors synthesized at the rough endoplasmic reticulum are transported and sorted at the trans-Golgi network (TGN) to the granules of the regulated secretory pathway (RSP) of neuroendocrine cells. They are then processed into active peptides and stored in large dense-core granules (LDCGs) until secreted upon stimulation. We have studied the regulation of biogenesis of the LDCGs and the mechanism by which neuropeptide precursors, such as pro-opiomelanocortin (POMC), are sorted into these LDCGs of the RSP in neuroendocrine and endocrine cells. We provide evidence that chromogranin A (CgA), one of the most abundant acidic glycoproteins ubiquitously present in neuroendocrine/endocrine cells, plays an important role in the regulation of LDCG biogenesis. Specific depletion of CgA expression by antisense RNAs in PC12 cells led to a profound loss of secretory granule formation. Exogenously expressed POMC was neither stored nor secreted in a regulated manner in these CgA-deficient PC12 cells. Overexpression of CgA in a CgA- and LDCG-deficient endocrine cell line, 6T3, restored regulated secretion of transfected POMC and the presence of immunoreactive CgA at the tips of the processes of these cells. Unlike CgA, CgB, another granin protein, could not substitute for the role of CgA in regulating LDCG biogenesis. Thus, we conclude that CgA is a key player in the regulation of the biogenesis of LDCGs in neuroendocrine cells. To examine the mechanism of sorting POMC to the LDCGs, we carried out site-directed mutagenesis, transfected the POMC mutants into PC12 cells, and assayed for regulated secretion. Our previous molecular modeling studies predicted a three-dimensional sorting motif in POMC that can bind to a sorting receptor, membrane carboxypeptidase E (CPE). The sorting signal consists of four conserved residues at the N-terminal loop structure of POMC: two acidic residues and two hydrophobic residues. The two acidic residues were predicted to bind to a

  6. In vivo calcium imaging from dentate granule cells with wide-field fluorescence microscopy

    PubMed Central

    Yawata, Satoshi; Funabiki, Kazuo; Hikida, Takatoshi

    2017-01-01

    A combination of genetically-encoded calcium indicators and micro-optics has enabled monitoring of large-scale dynamics of neuronal activity from behaving animals. In these studies, wide-field microscopy is often used to visualize neural activity. However, this method lacks optical sectioning capability, and therefore its axial resolution is generally poor. At present, it is unclear whether wide-field microscopy can visualize activity of densely packed small neurons at cellular resolution. To examine the applicability of wide-field microscopy for small-sized neurons, we recorded calcium activity of dentate granule cells having a small soma diameter of approximately 10 micrometers. Using a combination of high numerical aperture (0.8) objective lens and independent component analysis-based image segmentation technique, activity of putative single granule cell activity was separated from wide-field calcium imaging data. The result encourages wider application of wide-field microscopy in in vivo neurophysiology. PMID:28700611

  7. In vivo calcium imaging from dentate granule cells with wide-field fluorescence microscopy.

    PubMed

    Hayashi, Yuichiro; Yawata, Satoshi; Funabiki, Kazuo; Hikida, Takatoshi

    2017-01-01

    A combination of genetically-encoded calcium indicators and micro-optics has enabled monitoring of large-scale dynamics of neuronal activity from behaving animals. In these studies, wide-field microscopy is often used to visualize neural activity. However, this method lacks optical sectioning capability, and therefore its axial resolution is generally poor. At present, it is unclear whether wide-field microscopy can visualize activity of densely packed small neurons at cellular resolution. To examine the applicability of wide-field microscopy for small-sized neurons, we recorded calcium activity of dentate granule cells having a small soma diameter of approximately 10 micrometers. Using a combination of high numerical aperture (0.8) objective lens and independent component analysis-based image segmentation technique, activity of putative single granule cell activity was separated from wide-field calcium imaging data. The result encourages wider application of wide-field microscopy in in vivo neurophysiology.

  8. Activation of basophil and mast cell histamine release by eosinophil granule major basic protein

    PubMed Central

    1983-01-01

    Major basic protein (MBP) is a primary constituent of eosinophil granules. In this report, we demonstrate that MBP from human eosinophil granules initiates a nonlytic histamine release from human leukocytes. A direct effect of MBP on basophils was confirmed using purified human basophils. The kinetics of release were similar to those reported for poly-L-arginine, although MBP was less potent than poly-L-arginine of similar molecular weight. Reduction and alkylation of MBP diminished both the potency and efficacy of the molecule. Native MBP also stimulated histamine secretion from purified rat peritoneal mast cells in a manner characteristic of other polycations. These results emphasize the bidirectional nature of the basophil/mast cell-eosinophil regulatory axis. PMID:6854212

  9. Top-down inputs from the olfactory cortex in the postprandial period promote elimination of granule cells in the olfactory bulb.

    PubMed

    Komano-Inoue, Sayaka; Manabe, Hiroyuki; Ota, Mizuho; Kusumoto-Yoshida, Ikue; Yokoyama, Takeshi K; Mori, Kensaku; Yamaguchi, Masahiro

    2014-09-01

    Elimination of granule cells (GCs) in the olfactory bulb (OB) is not a continual event but is promoted during a short time window in the postprandial period, typically with postprandial sleep. However, the neuronal mechanisms for the enhanced GC elimination during the postprandial period are not understood. Here, we addressed the question of whether top-down inputs of centrifugal axons from the olfactory cortex (OC) during the postprandial period are involved in the enhanced GC elimination in the OB. Electrical stimulation of centrifugal axons from the OC of anesthetized mice increased GC apoptosis. Furthermore, pharmacological suppression of top-down inputs from the OC to the OB during the postprandial period of freely behaving mice by γ-aminobutyric acid (GABA)A receptor agonist injection in the OC significantly decreased GC apoptosis. Remarkable apoptotic GC elimination in the sensory-deprived OB was also suppressed by pharmacological blockade of top-down inputs. These results indicate that top-down inputs from the OC to the OB during the postprandial period are the crucial signal promoting GC elimination, and suggest that the life and death decision of GCs in the OB is determined by the interplay between bottom-up sensory inputs from the external world and top-down inputs from the OC. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. The Influence of Ectopic Migration of Granule Cells into the Hilus on Dentate Gyrus-CA3 Function

    PubMed Central

    Myers, Catherine E.; Bermudez-Hernandez, Keria; Scharfman, Helen E.

    2013-01-01

    Postnatal neurogenesis of granule cells (GCs) in the dentate gyrus (DG) produces GCs that normally migrate from the subgranular zone to the GC layer. However, GCs can mismigrate into the hilus, the opposite direction. Previous descriptions of these hilar ectopic GCs (hEGCs) suggest that they are rare unless there are severe seizures. However, it is not clear if severe seizures are required, and it also is unclear if severe seizures are responsible for the abnormalities of hEGCs, which include atypical dendrites and electrophysiological properties. Here we show that large numbers of hEGCs develop in a transgenic mouse without severe seizures. The mice have a deletion of BAX, which normally regulates apoptosis. Surprisingly, we show that hEGCs in the BAX-/- mouse have similar abnormalities as hEGCs that arise after severe seizures. We next asked if there are selective effects of hEGCs, i.e., whether a robust population of hEGCs would have any effect on the DG if they were induced without severe seizures. Indeed, this appears to be true, because it has been reported that BAX-/- mice have defects in a behavior that tests pattern separation, which depends on the DG. However, inferring functional effects of hEGCs is difficult in mice with a constitutive BAX deletion because there is decreased apoptosis in and outside the DG. Therefore, a computational model of the normal DG and hippocampal subfield CA3 was used. Adding a small population of hEGCs (5% of all GCs), with characteristics defined empirically, was sufficient to disrupt a simulation of pattern separation and completion. Modeling results also showed that effects of hEGCs were due primarily to “backprojections” of CA3 pyramidal cell axons to the hilus. The results suggest that hEGCs can develop for diverse reasons, do not depend on severe seizures, and a small population of hEGCs may impair DG-dependent function. PMID:23840835

  11. Extensive cell migration, axon regeneration and improved function with polysialic acid-modified Schwann cells after spinal cord injury

    PubMed Central

    Ghosh, Mousumi; Tuesta, Luis M.; Puentes, Rocio; Patel, Samik; Melendez, Kiara; Maarouf, Abderrahman El; Rutishauser, Urs; Pearse, Damien Daniel

    2015-01-01

    Schwann cells (SC) implantation after spinal cord injury (SCI) promotes axonal regeneration, remyelination repair and functional recovery. Reparative efficacy, however, may be limited due to the inability of SCs to migrate outward from the lesion-implant site. Altering SC cell surface properties by over-expressing polysialic acid (PSA) has been shown to promote SC migration. In the current study, a SCI contusion was used to evaluate the migration, supraspinal axon growth support and functional recovery associated with polysialyltransferase (PST)-over-expressing SCs (PST-GFP SCs) or controls (GFP SCs). Compared to GFP SCs, which remained confined to the injection site at the injury center, PST-GFP SCs migrated across the lesion:host cord interface for distances of up to 4.4 mm within adjacent host tissue. In addition, with PST-GFP SCs, there was extensive serotonergic and corticospinal axon in-growth within the implants that was limited in the GFP SC controls. The enhanced migration of PST-GFP SCs was accompanied by significant growth of these axons caudal to lesion. Animals receiving PST-GFP SCs exhibited improved functional outcome, both in the open-field and on the gridwalk test, over modest improvements provided by GFP SC controls. The current study for the first time demonstrates that a lack of migration by SC may hinder their reparative benefits and that cell surface overexpression of PSA enhances the ability of implanted SCs to associate with and support the growth of corticospinal axons. These results provide further promise that PSA modified SCs will be a potent reparative approach for SCI. PMID:22460918

  12. Recording axonal conduction to evaluate the integration of pluripotent cell-derived neurons into a neuronal network.

    PubMed

    Shimba, Kenta; Sakai, Koji; Takayama, Yuzo; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2015-10-01

    Stem cell transplantation is a promising therapy to treat neurodegenerative disorders, and a number of in vitro models have been developed for studying interactions between grafted neurons and the host neuronal network to promote drug discovery. However, methods capable of evaluating the process by which stem cells integrate into the host neuronal network are lacking. In this study, we applied an axonal conduction-based analysis to a co-culture study of primary and differentiated neurons. Mouse cortical neurons and neuronal cells differentiated from P19 embryonal carcinoma cells, a model for early neural differentiation of pluripotent stem cells, were co-cultured in a microfabricated device. The somata of these cells were separated by the co-culture device, but their axons were able to elongate through microtunnels and then form synaptic contacts. Propagating action potentials were recorded from these axons by microelectrodes embedded at the bottom of the microtunnels and sorted into clusters representing individual axons. While the number of axons of cortical neurons increased until 14 days in vitro and then decreased, those of P19 neurons increased throughout the culture period. Network burst analysis showed that P19 neurons participated in approximately 80% of the bursting activity after 14 days in vitro. Interestingly, the axonal conduction delay of P19 neurons was significantly greater than that of cortical neurons, suggesting that there are some physiological differences in their axons. These results suggest that our method is feasible to evaluate the process by which stem cell-derived neurons integrate into a host neuronal network.

  13. Differential Calcium Signaling Mediated by Voltage-Gated Calcium Channels in Rat Retinal Ganglion Cells and Their Unmyelinated Axons

    PubMed Central

    Sargoy, Allison; Sun, Xiaoping

    2014-01-01

    Aberrant calcium regulation has been implicated as a causative factor in the degeneration of retinal ganglion cells (RGCs) in numerous injury models of optic neuropathy. Since calcium has dual roles in maintaining homeostasis and triggering apoptotic pathways in healthy and injured cells, respectively, investigation of voltage-gated Ca channel (VGCC) regulation as a potential strategy to reduce the loss of RGCs is warranted. The accessibility and structure of the retina provide advantages for the investigation of the mechanisms of calcium signalling in both the somata of ganglion cells as well as their unmyelinated axons. The goal of the present study was to determine the distribution of VGCC subtypes in the cell bodies and axons of ganglion cells in the normal retina and to define their contribution to calcium signals in these cellular compartments. We report L-type Ca channel α1C and α1D subunit immunoreactivity in rat RGC somata and axons. The N-type Ca channel α1B subunit was in RGC somata and axons, while the P/Q-type Ca channel α1A subunit was only in the RGC somata. We patch clamped isolated ganglion cells and biophysically identified T-type Ca channels. Calcium imaging studies of RGCs in wholemounted retinas showed that selective Ca channel antagonists reduced depolarization-evoked calcium signals mediated by L-, N-, P/Q- and T-type Ca channels in the cell bodies but only by L-type Ca channels in the axons. This differential contribution of VGCC subtypes to calcium signals in RGC somata and their axons may provide insight into the development of target-specific strategies to spare the loss of RGCs and their axons following injury. PMID:24416240

  14. Interaction between Axons and Specific Populations of Surrounding Cells Is Indispensable for Collateral Formation in the Mammillary System

    PubMed Central

    Çankaya, Murat; Stoykova, Anastassia; Zhou, Xunlei; Alvarez-Bolado, Gonzalo

    2011-01-01

    Background An essential phenomenon during brain development is the extension of long collateral branches by axons. How the local cellular environment contributes to the initial sprouting of these branches in specific points of an axonal shaft remains unclear. Methodology/Principal Findings The principal mammillary tract (pm) is a landmark axonal bundle connecting ventral diencephalon to brainstem (through the mammillotegmental tract, mtg). Late in development, the axons of the principal mammillary tract sprout collateral branches at a very specific point forming a large bundle whose target is the thalamus. Inspection of this model showed a number of distinct, identified cell populations originated in the dorsal and the ventral diencephalon and migrating during development to arrange themselves into several discrete groups around the branching point. Further analysis of this system in several mouse lines carrying mutant alleles of genes expressed in defined subpopulations (including Pax6, Foxb1, Lrp6 and Gbx2) together with the use of an unambiguous genetic marker of mammillary axons revealed: 1) a specific group of Pax6-expressing cells in close apposition with the prospective branching point is indispensable to elicit axonal branching in this system; and 2) cooperation of transcription factors Foxb1 and Pax6 to differentially regulate navigation and fasciculation of distinct branches of the principal mammillary tract. Conclusions/Significance Our results define for the first time a model system where interaction of the axonal shaft with a specific group of surrounding cells is essential to promote branching. Additionally, we provide insight on the cooperative transcriptional regulation necessary to promote and organize an intricate axonal tree. PMID:21625468

  15. Dentate granule cell modulation in freely moving rats: vigilance state effects.

    PubMed

    Bronzino, J D; Blaise, J H; Mokler, D J; Morgane, P J

    1999-04-12

    Dentate granule cell population responses to paired-pulse stimulation applied to the perforant pathway across a range of interpulse intervals (IPIs) were examined during different vigilance states-quiet waking (QW), slow-wave sleep (SWS), and rapid-eye movement (REM) sleep-in freely moving rats at 15, 30 and 90 days of age. Using these evoked field potentials, the paired-pulse index (PPI), a measure of the type and degree of modulation of dentate granule cell excitability, was computed and shown to be altered as a function of age. Animals, 15 days old, showed significantly lower levels of early inhibition (20-40 ms IPIs), i.e., greater PPI values, during all three vigilance states when compared to both the 30- and 90-day old animals. Adult, i.e, 90-day old animals, on the other hand, showed significantly greater levels of late inhibition (300-1000 ms IPIs), i.e., lower PPI values, than the younger animals (15- and 30-day old) during QW and SWS. These results indicate that as the dentate field of the hippocampal formation matures there are significant alterations in the modulation of dentate granule cell activity.

  16. Epithelial Cell Transforming 2 and Aurora Kinase B Modulate Formation of Stress Granule-Containing Transcripts from Diverse Cellular Pathways in Astrocytoma Cells.

    PubMed

    Weeks, Adrienne; Agnihotri, Sameer; Lymer, Jennifer; Chalil, Alan; Diaz, Roberto; Isik, Semra; Smith, Christian; Rutka, James T

    2016-06-01

    Stress granules are small RNA-protein granules that modify the translational landscape during cellular stress to promote survival. The RhoGTPase RhoA is implicated in the formation of RNA stress granules. Our data demonstrate that the cytokinetic proteins epithelial cell transforming 2 and Aurora kinase B (AurkB) are localized to stress granules in human astrocytoma cells. AurkB and its downstream target histone-3 are phosphorylated during arsenite-induced stress. Chemical (AZD1152-HQPA) and siRNA inhibition of AurkB results in fewer and smaller stress granules when analyzed using high-throughput fluorescent-based cellomics assays. RNA immunoprecipitation with the known stress granule aggregates TIAR and G3BP1 was performed on astrocytoma cells, and subsequent analysis revealed that astrocytoma stress granules harbor unique mRNAs for various cellular pathways, including cellular migration, metabolism, translation, and transcriptional regulation. Human astrocytoma cell stress granules contain mRNAs that are known to be involved in glioma signaling and the mammalian target of rapamycin pathway. These data provide evidence that RNA stress granules are a novel form of epigenetic regulation in astrocytoma cells, which may be targetable by chemical inhibitors and enhance astrocytoma susceptibility to conventional therapy, such as radiation and chemotherapy.

  17. Model of very fast (>75 Hz) network oscillations generated by electrical coupling between the proximal axons of cerebellar Purkinje cells

    PubMed Central

    Traub, Roger D; Middleton, Steven J; Knöpfel, Thomas; Whittington, Miles A

    2009-01-01

    Very fast oscillations (VFO, >75 Hz) occur transiently in vivo, in the cerebellum of mice genetically modified to model Angelman syndrome, and in a mouse model of fetal alcohol syndrome. We recently reported VFO in slices of mouse cerebellar cortex (Crus I and II of ansiform and paramedian lobules), either in association with gamma oscillations (~40 Hz, evoked by nicotine), or in isolation (evoked by nicotine in combination with GABAA receptor blockade). The experimental data suggest a role for electrical coupling between Purkinje cells (blockade of VFO by drugs reducing gap junction conductance, and spikelets in some Purkinje cells); and the data suggest the specific involvement of Purkinje cell axons (because of field oscillation maxima in the granular layer). We show here that a detailed network model (1,000 multicompartment Purkinje cells) replicates the experimental data, when gap junctions are located on the proximal axons of Purkinje cells, provided sufficient spontaneous firing is present. Unlike other VFO models, most somatic spikelets do not correspond to axonal spikes in the parent axon, but reflect spikes in electrically coupled axons. The model predicts gating of VFO frequency by gNa inactivation, and experiments prolonging this inactivation time constant, with β-pompilidotoxin, are consistent with this prediction. The model also predicts that cerebellar VFO can be explained as an electrically coupled system of axons which are not intrinsic oscillators: the electrically uncoupled cells do not individually oscillate (in the model), and axonal firing rates are much lower in the uncoupled state than in the coupled state. PMID:18973579

  18. DTI for assessing axonal integrity after contusive spinal cord injury and transplantation of oligodendrocyte progenitor cells.

    PubMed

    Bazley, Faith A; Pourmorteza, Amir; Gupta, Siddharth; Pashai, Nikta; Kerr, Candace; All, Angelo H

    2012-01-01

    We describe the feasibility of using diffusion tensor magnetic resonance imaging (DT-MRI) to study a contusive model of rat spinal cord injury following human stem cell transplantation at and around the site of injury. Rats receiving either a laminectomy or contusion injury were transplanted with oligodendrocyte precursor cells (OPCs). During the course of the study, bioluminescence imaging (BLI; up to 100 days) and somatosensory evoked potentials (SSEPs; up to 42 days) were used to evaluate cell survival and functional outcomes. Spinal cords were then analyzed ex vivo upon termination using diffusion tensor imaging (DTI). Improvements in fractional anisotropy (FA) at day 100 post-transplantation corresponded with cell survival and functional SSEP improvements. Thus, we illustrate the feasibility of DTI for evaluating axonal integrity in SCI after cell replacement therapies, and we provide examples utilizing OPC transplantations in a contusion rat model.

  19. Studies of dentate granule cell modulation: paired-pulse responses in freely moving rats at three ages.

    PubMed

    Bronzino, J D; Blaise, J H; Austin-LaFrance, R J; Morgane, P J

    1996-10-23

    Dentate granule cell population responses to paired-pulse stimulations applied to the perforant pathway across a range of interpulse intervals (IPI) were examined in freely moving rats at 15, 30, and 90 days of age. The profile of the paired-pulse index (PPI), a measure of the type and degree of modulation of dentate granule cell excitability, was shown to change significantly as a function of age.

  20. Proton sensitivity of rat cerebellar granule cell GABAA receptors: dependence on neuronal development

    PubMed Central

    Krishek, Belinda J; Smart, Trevor G

    2001-01-01

    The effect of GABAA receptor development in culture on the modulation of GABA-induced currents by external H+ was examined in cerebellar granule cells using whole-cell and single-channel recording. Equilibrium concentration-response curves revealed a lower potency for GABA between 11 and 12 days in vitro (DIV) resulting in a shift of the EC50 from 10.7 to 2.4 μM. For granule cells before 11 DIV, the peak GABA-activated current was inhibited at low external pH and enhanced at high pH with a pKa of 6.65. For the steady-state response, low pH was inhibitory with a pKa of 5.56. After 11 DIV, the peak GABA-activated current was largely pH insensitive; however, the steady-state current was potentiated at low pH with a pKa of 6.84. Single GABA-activated ion channels were recorded from outside-out patches of granule cell bodies. At pH 5.4-9.4, single GABA channels exhibited multiple conductance states occurring at 22-26, 16-17 and 12-14 pS. The conductance levels were not significantly altered over the time period of study, nor by changing the external H+ concentration. Two exponential functions were required to fit the open-time frequency histograms at both early (< 11 DIV) and late (> 11 DIV) development times at each H+ concentration. The short and long open time constants were unaffected either by the extracellular H+ concentration or by neuronal development. The distribution of all shut times was fitted by the sum of three exponentials designated as short, intermediate and long. At acidic pH, the long shut time constant decreased with development as did the relative contribution of these components to the overall distribution. This was concurrent with an increase in the mean probability of channel opening. In conclusion, this study demonstrates in cerebellar granule cells that external pH can either reduce, have no effect on, or enhance GABA-activated responses depending on the stage of development, possibly related to the subunit composition of the GABAA receptors

  1. Anaglyph of retinal stem cells and developing axons: selective volume enhancement in microscopy images.

    PubMed

    Carri, Néstor Gabriel; Bermúdez, Sebastián Noo; Fiore, Luciano; Di Napoli, Jennifer; Scicolone, Gabriel

    2014-04-01

    Retinal stem cell culture has become a powerful research tool, but it requires reliable methods to obtain high-quality images of living and fixed cells. This study describes a procedure for using phase contrast microscopy to obtain three-dimensional (3-D) images for the study of living cells by photographing a living cell in a culture dish from bottom to top, as well as a procedure to increase the quality of scanning electron micrographs and laser confocal images. The procedure may also be used to photograph clusters of neural stem cells, and retinal explants with vigorous axonal growth. In the case of scanning electron microscopy and laser confocal images, a Gaussian procedure is applied to the original images. The methodology allows for the creation of anaglyphs and video reconstructions, and provides high-quality images for characterizing living cells or tissues, fixed cells or tissues, or organs observed with scanning electron and laser confocal microscopy. Its greatest advantage is that it is easy to obtain good results without expensive equipment. The procedure is fast, precise, simple, and offers a strategic tool for obtaining 3-D reconstructions of cells and axons suitable for easily determining the orientation and polarity of a specimen. It also enables video reconstructions to be created, even of specimens parallel to the plastic base of a tissue culture dish, It is also helpful for studying the distribution and organization of living cells in a culture, as it provides the same powerful information as optical tomography, which most confocal microscopes cannot do on sterile living cells.

  2. High-frequency stimulation induces gradual immediate early gene expression in maturing adult-generated hippocampal granule cells.

    PubMed

    Jungenitz, Tassilo; Radic, Tijana; Jedlicka, Peter; Schwarzacher, Stephan W

    2014-07-01

    Increasing evidence shows that adult neurogenesis of hippocampal granule cells is advantageous for learning and memory. We examined at which stage of structural maturation and age new granule cells can be activated by strong synaptic stimulation. High-frequency stimulation of the perforant pathway in urethane-anesthetized rats elicited expression of the immediate early genes c-fos, Arc, zif268 and pCREB133 in almost 100% of mature, calbindin-positive granule cells. In contrast, it failed to induce immediate early gene expression in immature doublecortin-positive granule cells. Furthermore, doublecortin-positive neurons did not react with c-fos or Arc expression to mild theta-burst stimulation or novel environment exposure. Endogenous expression of pCREB133 was increasingly present in young cells with more elaborated dendrites, revealing a close correlation to structural maturation. Labeling with bromodeoxyuridine revealed cell age dependence of stimulation-induced c-fos, Arc and zif268 expression, with only a few cells reacting at 21 days, but with up to 75% of cells activated at 35-77 days of cell age. Our results indicate an increasing synaptic integration of maturing granule cells, starting at 21 days of cell age, but suggest a lack of ability to respond to activation with synaptic potentiation on the transcriptional level as long as immature cells express doublecortin.

  3. Effects of prenatal protein malnutrition on kindling-induced alterations in dentate granule cell excitability. II. Paired-pulse measures.

    PubMed

    Bronzino, J D; Austin-LaFrance, R J; Morgane, P J; Galler, J R

    1991-05-01

    The effects of prenatal protein malnutrition on kindling-induced changes in inhibitory modulation of dentate granule cell activity were examined by analysis of extracellular field potentials recorded from the granule cell layer of the dentate gyrus in response to paired-pulse stimulation of the perforant pathway in freely-moving rats. Since we have shown that kindling results in enhanced synaptic transmission at the level of the perforant path/granule cell synapse (see preceding paper), we sought to determine if the kindling process might induce changes in inhibitory modulation of granule cell excitability which could be involved in the slower acquisition of the kindled state we have previously reported in malnourished animals. Beginning at 120-150 days of age, the response of dentate granule cells to paired-pulse stimulation of the perforant path was examined at interpulse intervals (IPIs) ranging from 20-1000 ms. A paired-pulse index (PPI) was constructed based on the mean percent change in population spike amplitudes of the two responses resulting from application of the pulse pair. PPI measures obtained during the kindling process were compared with individual prekindling measures to determine the mean percent change in excitatory/inhibitory modulation of granule cell activity. Significant inhibition of the second population response was apparent at all IPIs tested for both diet groups following the first kindled afterdischarge.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Synthetic mast-cell granules as adjuvants to promote and polarize immunity in lymph nodes

    NASA Astrophysics Data System (ADS)

    St. John, Ashley L.; Chan, Cheryl Y.; Staats, Herman F.; Leong, Kam W.; Abraham, Soman N.

    2012-03-01

    Granules of mast cells (MCs) enhance adaptive immunity when, on activation, they are released as stable particles. Here we show that submicrometre particles modelled after MC granules augment immunity when used as adjuvants in vaccines. The synthetic particles, which consist of a carbohydrate backbone with encapsulated inflammatory mediators such as tumour necrosis factor, replicate attributes of MCs in vivo including the targeting of draining lymph nodes and the timed release of the encapsulated mediators. When used as an adjuvant during vaccination of mice with haemagglutinin from the influenza virus, the particles enhanced adaptive immune responses and increased survival of mice on lethal challenge. Furthermore, differential loading of the particles with the cytokine IL-12 directed the character of the response towards Th1 lymphocytes. The synthetic MC adjuvants replicate and enhance the functions of MCs during vaccination, and can be extended to polarize the resulting immunity.

  5. Study of Mast Cells and Granules from Primo Nodes Using Scanning Ionic Conductance Microscopy.

    PubMed

    Yoo, Yeong-Yung; Jung, Goo-Eun; Kwon, Hee-Min; Bae, Kyoung-Hee; Cho, Sang-Joon; Soh, Kwang-Sup

    2015-12-01

    Acupuncture points have a notable characteristic in that they have a higher density of mast cells (MCs) compared with nonacupoints in the skin, which is consistent with the augmentation of the immune function by acupuncture treatment. The primo vascular system, which was proposed as the anatomical structure of the acupuncture points and meridians, also has a high density of MCs. We isolated the primo nodes from the surfaces of internal abdominal organs, and the harvested primo nodes were stained with toluidine blue. The MCs were easily recognized by their stained color and their characteristic granules. The MCs were classified into four stages according to the degranulation of histamine granules in the MCs. Using conventional optical microscopes details of the degranulation state of MCs in each stage were not observable. However, we were able to investigate the distribution of the granules on the surfaces of the MCs in each stage, and to demonstrate the height profiles and three-dimensional structures of the MCs without disturbance of the cell membrane by using the scanning ion conductance microscopy.

  6. Use of granzyme B-based fluorescent protein reporters to monitor granzyme distribution and granule integrity in live cells.

    PubMed

    Bird, Catherina H; Rizzitelli, Alexandra; Harper, Ian; Prescott, Mark; Bird, Phillip I

    2010-08-01

    Reporter proteins comprising granzyme B (GrB) fused to eGFP, ecliptic pHluorin or mCherry, were generated and used to study granule (lysosome) distribution and properties in COS-1 cells and natural killer cells. The reporters resembled native GrB in biosynthesis and localization, and accumulated in granules. In live cells both the eGFP and pHluorin reporters were dark in lysosomes, but fluoresced when the granule integrity or pH was perturbed by Leu-Leu methyl ester, hydrogen peroxide, naphthazarin, or sphingosine treatment. By contrast, fluorescence of the mCherry reporter was not pH-dependent. The quenching of eGFP within granules indicates that this commonly-used fluorescent protein is not appropriate as a vital intra-lysosomal marker.

  7. Sorting of neutrophil-specific granule protein human cathelicidin, hCAP-18, when constitutively expressed in myeloid cells.

    PubMed

    Bülow, Elinor; Bengtsson, Niklas; Calafat, Jero; Gullberg, Urban; Olsson, Inge

    2002-07-01

    Neutrophil granulocytes carry storage organelles, e.g., azurophil and specific granules. Poorly understood are the mechanisms for retrieval from constitutive secretion followed by sorting for storage. Therefore, we asked whether the specific granule protein human cathelicidin (hCAP-18) could be sorted for storage in other granules when the biosynthetic window is widened to allow this. We observed that hCAP-18 was targeted for storage in lysosome-related organelles when expressed constitutively in the rat basophilic leukemia and the mouse promyelocytic (MPRO) cell lines. In addition, premature release of the antibiotic C-terminal peptide LL-37 was observed. Retention of hCAP-18 was diminished by induction of differentiation of MPRO cells. In conclusion, a specific granule protein with native conformation may be sorted for storage in lysosome-related organelles of myeloid cells and converted prematurely to a supposedly biologically active form.

  8. Independent control of reciprocal and lateral inhibition at the axon terminal of retinal bipolar cells

    PubMed Central

    Tanaka, Masashi; Tachibana, Masao

    2013-01-01

    Bipolar cells (BCs), the second order neurons in the vertebrate retina, receive two types of GABAergic feedback inhibition at their axon terminal: reciprocal and lateral inhibition. It has been suggested that two types of inhibition may be mediated by different pathways. However, how each inhibition is controlled by excitatory BC output remains to be clarified. Here, we applied single/dual whole cell recording techniques to the axon terminal of electrically coupled BCs in slice preparation of the goldfish retina, and found that each inhibition was regulated independently. Activation voltage of each inhibition was different: strong output from a single BC activated reciprocal inhibition, but could not activate lateral inhibition. Outputs from multiple BCs were essential for activation of lateral inhibition. Pharmacological examinations revealed that composition of transmitter receptors and localization of Na+ channels were different between two inhibitory pathways, suggesting that different amacrine cells may mediate each inhibition. Depending on visual inputs, each inhibition could be driven independently. Model simulation showed that reciprocal and lateral inhibition cooperatively reduced BC outputs as well as background noise, thereby preserving high signal-to-noise ratio. Therefore, we conclude that excitatory BC output is efficiently regulated by the dual operating mechanisms of feedback inhibition without deteriorating the quality of visual signals. PMID:23690563

  9. Transcriptional control of cholesterol biosynthesis in Schwann cells by axonal neuregulin 1.

    PubMed

    Pertusa, Maria; Morenilla-Palao, Cruz; Carteron, Christelle; Viana, Felix; Cabedo, Hugo

    2007-09-28

    A characteristic feature of many vertebrate axons is their wrapping by a lamellar stack of glially derived membranes known as the myelin sheath. Myelin is a cholesterol-rich membrane that allows for rapid saltatory nerve impulse conduction. Axonal neuregulins instruct glial cells on when and how much myelin they should produce. However, how neuregulin regulates myelin sheath development and thickness is unknown. Here we show that neuregulin receptors are activated by drops in plasma membrane cholesterol, suggesting that they can sense sterol levels. In Schwann cells neuregulin-1 increases the transcription of the 3-hydroxy-3-methylglutarylcoenzyme A reductase, the rate-limiting enzyme for cholesterol biosynthesis. Neuregulin activity is mediated by the phosphatidylinositol 3-kinase pathway and a cAMP-response element located on the reductase promoter. We propose that by activating neuregulin receptors, neurons exploit a cholesterol homeostatic mechanism forcing Schwann cells to produce new membranes for the myelin sheath. We also show that a strong phylogenetic correlation exists between myelination and cholesterol biosynthesis, and we propose that the absence of the sterol branch of the mevalonate pathway in invertebrates precluded the myelination of their nervous system.

  10. Vilse, a conserved Rac/Cdc42 GAP mediating Robo repulsion in tracheal cells and axons.

    PubMed

    Lundström, Annika; Gallio, Marco; Englund, Camilla; Steneberg, Pär; Hemphälä, Johanna; Aspenström, Pontus; Keleman, Krystyna; Falileeva, Ludmilla; Dickson, Barry J; Samakovlis, Christos

    2004-09-01

    Slit proteins steer the migration of many cell types through their binding to Robo receptors, but how Robo controls cell motility is not clear. We describe the functional analysis of vilse, a Drosophila gene required for Robo repulsion in epithelial cells and axons. Vilse defines a conserved family of RhoGAPs (Rho GTPase-activating proteins), with representatives in flies and vertebrates. The phenotypes of vilse mutants resemble the tracheal and axonal phenotypes of Slit and Robo mutants at the CNS midline. Dosage-sensitive genetic interactions between vilse, slit, and robo mutants suggest that vilse is a component of robo signaling. Moreover, overexpression of Vilse in the trachea of robo mutants ameliorates the phenotypes of robo, indicating that Vilse acts downstream of Robo to mediate midline repulsion. Vilse and its human homolog bind directly to the intracellular domains of the corresponding Robo receptors and promote the hydrolysis of RacGTP and, less efficiently, of Cdc42GTP. These results together with genetic interaction experiments with robo, vilse, and rac mutants suggest a mechanism whereby Robo repulsion is mediated by the localized inactivation of Rac through Vilse.

  11. Ultrafast laser-assisted spatially targeted optoporation into cortical axons and retinal cells in the eye

    NASA Astrophysics Data System (ADS)

    Batabyal, Subrata; Kim, Young-Tae; Mohanty, Samarendra

    2017-06-01

    Visualization and assessment of the cellular structure and function require localized delivery of the molecules into specific cells in restricted spatial regions of the tissue and may necessitate subcellular delivery and localization. Earlier, we have shown ultrafast near-infrared laser beam-assisted optoporation of actin-staining molecules into cortical neurons with single-cell resolution and high efficiency. However, diffusion of optoporated molecules in soma degrades toward the growth cone, leading to difficulties in visualization of the actin network in the growth cone in cases of long axons. Here, we demonstrate optoporation of impermeable molecules to functional cortical neurons by precise laser subaxotomy near the growth cone, leading to visualization of the actin network in the growth cone. Further, we demonstrate patterned delivery of impermeable molecules into targeted retinal cells in the rat eye. The development of optoporation as a minimally invasive approach to reliably deliver exogenous molecules into targeted axons and soma of retinal neurons in vivo will enable enhanced visualization of the structure and function of the retina.

  12. Chronic Fluoxetine Induces the Enlargement of Perforant Path-Granule Cell Synapses in the Mouse Dentate Gyrus.

    PubMed

    Kitahara, Yosuke; Ohta, Keisuke; Hasuo, Hiroshi; Shuto, Takahide; Kuroiwa, Mahomi; Sotogaku, Naoki; Togo, Akinobu; Nakamura, Kei-ichiro; Nishi, Akinori

    2016-01-01

    A selective serotonin reuptake inhibitor is the most commonly prescribed antidepressant for the treatment of major depression. However, the mechanisms underlying the actions of selective serotonin reuptake inhibitors are not fully understood. In the dentate gyrus, chronic fluoxetine treatment induces increased excitability of mature granule cells (GCs) as well as neurogenesis. The major input to the dentate gyrus is the perforant path axons (boutons) from the entorhinal cortex (layer II). Through voltage-sensitive dye imaging, we found that the excitatory neurotransmission of the perforant path synapse onto the GCs in the middle molecular layer of the mouse dentate gyrus (perforant path-GC synapse) is enhanced after chronic fluoxetine treatment (15 mg/kg/day, 14 days). Therefore, we further examined whether chronic fluoxetine treatment affects the morphology of the perforant path-GC synapse, using FIB/SEM (focused ion beam/scanning electron microscopy). A three-dimensional reconstruction of dendritic spines revealed the appearance of extremely large-sized spines after chronic fluoxetine treatment. The large-sized spines had a postsynaptic density with a large volume. However, chronic fluoxetine treatment did not affect spine density. The presynaptic boutons that were in contact with the large-sized spines were large in volume, and the volumes of the mitochondria and synaptic vesicles inside the boutons were correlated with the size of the boutons. Thus, the large-sized perforant path-GC synapse induced by chronic fluoxetine treatment contains synaptic components that correlate with the synapse size and that may be involved in enhanced glutamatergic neurotransmission.

  13. Chronic Fluoxetine Induces the Enlargement of Perforant Path-Granule Cell Synapses in the Mouse Dentate Gyrus

    PubMed Central

    Kitahara, Yosuke; Ohta, Keisuke; Hasuo, Hiroshi; Shuto, Takahide; Kuroiwa, Mahomi; Sotogaku, Naoki; Togo, Akinobu; Nakamura, Kei-ichiro; Nishi, Akinori

    2016-01-01

    A selective serotonin reuptake inhibitor is the most commonly prescribed antidepressant for the treatment of major depression. However, the mechanisms underlying the actions of selective serotonin reuptake inhibitors are not fully understood. In the dentate gyrus, chronic fluoxetine treatment induces increased excitability of mature granule cells (GCs) as well as neurogenesis. The major input to the dentate gyrus is the perforant path axons (boutons) from the entorhinal cortex (layer II). Through voltage-sensitive dye imaging, we found that the excitatory neurotransmission of the perforant path synapse onto the GCs in the middle molecular layer of the mouse dentate gyrus (perforant path-GC synapse) is enhanced after chronic fluoxetine treatment (15 mg/kg/day, 14 days). Therefore, we further examined whether chronic fluoxetine treatment affects the morphology of the perforant path-GC synapse, using FIB/SEM (focused ion beam/scanning electron microscopy). A three-dimensional reconstruction of dendritic spines revealed the appearance of extremely large-sized spines after chronic fluoxetine treatment. The large-sized spines had a postsynaptic density with a large volume. However, chronic fluoxetine treatment did not affect spine density. The presynaptic boutons that were in contact with the large-sized spines were large in volume, and the volumes of the mitochondria and synaptic vesicles inside the boutons were correlated with the size of the boutons. Thus, the large-sized perforant path-GC synapse induced by chronic fluoxetine treatment contains synaptic components that correlate with the synapse size and that may be involved in enhanced glutamatergic neurotransmission. PMID:26788851

  14. Dicer in Schwann cells is required for myelination and axonal integrity.

    PubMed

    Pereira, Jorge A; Baumann, Reto; Norrmén, Camilla; Somandin, Christian; Miehe, Michaela; Jacob, Claire; Lühmann, Tessa; Hall-Bozic, Heike; Mantei, Ned; Meijer, Dies; Suter, Ueli

    2010-05-12

    Dicer is responsible for the generation of mature micro-RNAs (miRNAs) and loading them into RNA-induced silencing complex (RISC). RISC functions as a probe that targets mRNAs leading to translational suppression and mRNA degradation. Schwann cells (SCs) in the peripheral nervous system undergo remarkable differentiation both in morphology and gene expression patterns throughout lineage progression to myelinating and nonmyelinating phenotypes. Gene expression in SCs is particularly tightly regulated and critical for the organism, as highlighted by the fact that a 50% decrease or an increase to 150% of normal gene expression of some myelin proteins, like PMP22, results in peripheral neuropathies. Here, we selectively deleted Dicer and consequently gene expression regulation by mature miRNAs from Mus musculus SCs. Our results show that in the absence of Dicer, most SCs arrest at the promyelinating stage and fail to start forming myelin. At the molecular level, the promyelinating transcription factor Krox20 and several myelin proteins [including myelin associated glycoprotein (MAG) and PMP22] were strongly reduced in mutant sciatic nerves. In contrast, the myelination inhibitors SOX2, Notch1, and Hes1 were increased, providing an additional potential basis for impaired myelination. A minor fraction of SCs, with some peculiar differences between sensory and motor fibers, overcame the myelination block and formed unusually thin myelin, in line with observed impaired neuregulin and AKT signaling. Surprisingly, we also found signs of axonal degeneration in Dicer mutant mice. Thus, our data indicate that miRNAs critically regulate Schwann cell gene expression that is required for myelination and to maintain axons via axon-glia interactions.

  15. The core planar cell polarity gene prickle interacts with flamingo to promote sensory axon advance in the Drosophila embryo.

    PubMed

    Mrkusich, Eli M; Flanagan, Dustin J; Whitington, Paul M

    2011-10-01

    The atypical cadherin Drosophila protein Flamingo and its vertebrate homologues play widespread roles in the regulation of both dendrite and axon growth. However, little is understood about the molecular mechanisms that underpin these functions. Whereas flamingo interacts with a well-defined group of genes in regulating planar cell polarity, previous studies have uncovered little evidence that the other core planar cell polarity genes are involved in regulation of neurite growth. We present data in this study showing that the planar cell polarity gene prickle interacts with flamingo in regulating sensory axon advance at a key choice point - the transition between the peripheral nervous system and the central nervous system. The cytoplasmic tail of the Flamingo protein is not required for this interaction. Overexpression of another core planar cell polarity gene dishevelled produces a similar phenotype to prickle mutants, suggesting that this gene may also play a role in regulation of sensory axon advance.

  16. Proneurotrophin-3 promotes cell cycle withdrawal of developing cerebellar granule cell progenitors via the p75 neurotrophin receptor.

    PubMed

    Zanin, Juan Pablo; Abercrombie, Elizabeth; Friedman, Wilma J

    2016-07-19

    Cerebellar granule cell progenitors (GCP) proliferate extensively in the external granule layer (EGL) of the developing cerebellum prior to differentiating and migrating. Mechanisms that regulate the appropriate timing of cell cycle withdrawal of these neuronal progenitors during brain development are not well defined. The p75 neurotrophin receptor (p75(NTR)) is highly expressed in the proliferating GCPs, but is downregulated once the cells leave the cell cycle. This receptor has primarily been characterized as a death receptor for its ability to induce neuronal apoptosis following injury. Here we demonstrate a novel function for p75(NTR) in regulating proper cell cycle exit of neuronal progenitors in the developing rat and mouse EGL, which is stimulated by proNT3. In the absence of p75(NTR), GCPs continue to proliferate beyond their normal period, resulting in a larger cerebellum that persists into adulthood, with consequent motor deficits.

  17. Imaging exocytosis of single glucagon-like peptide-1 containing granules in a murine enteroendocrine cell line with total internal reflection fluorescent microscopy

    SciTech Connect

    Ohara-Imaizumi, Mica; Aoyagi, Kyota; Akimoto, Yoshihiro; Nakamichi, Yoko; Nishiwaki, Chiyono; Kawakami, Hayato; Nagamatsu, Shinya

    2009-12-04

    To analyze the exocytosis of glucagon-like peptide-1 (GLP-1) granules, we imaged the motion of GLP-1 granules labeled with enhanced yellow fluorescent protein (Venus) fused to human growth hormone (hGH-Venus) in an enteroendocrine cell line, STC-1 cells, by total internal reflection fluorescent (TIRF) microscopy. We found glucose stimulation caused biphasic GLP-1 granule exocytosis: during the first phase, fusion events occurred from two types of granules (previously docked granules and newcomers), and thereafter continuous fusion was observed mostly from newcomers during the second phase. Closely similar to the insulin granule fusion from pancreatic {beta} cells, the regulated biphasic exocytosis from two types of granules may be a common mechanism in glucose-evoked hormone release from endocrine cells.

  18. Granule cell hyperexcitability in the early post-traumatic rat dentate gyrus: the 'irritable mossy cell' hypothesis.

    PubMed

    Santhakumar, V; Bender, R; Frotscher, M; Ross, S T; Hollrigel, G S; Toth, Z; Soltesz, I

    2000-04-01

    1. Cytochemical and in vitro whole-cell patch clamp techniques were used to investigate granule cell hyperexcitability in the dentate gyrus 1 week after fluid percussion head trauma. 2. The percentage decrease in the number of hilar interneurones labelled with either GAD67 or parvalbumin mRNA probes following trauma was not different from the decrease in the total population of hilar cells, indicating no preferential survival of interneurones with respect to the non-GABAergic hilar cells, i.e. the mossy cells. 3. Dentate granule cells following trauma showed enhanced action potential discharges, and longer-lasting depolarizations, in response to perforant path stimulation, in the presence of the GABAA receptor antagonist bicuculline. 4. There was no post-traumatic alteration in the perforant path-evoked monosynaptic excitatory postsynaptic currents (EPSCs), or in the intrinsic properties of granule cells. However, after trauma, the monosynaptic EPSC was followed by late, polysynaptic EPSCs, which were not present in controls. 5. The late EPSCs in granule cells from fluid percussion-injured rats were not blocked by the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV), but were eliminated by both the non-NMDA glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and the AMPA receptor antagonist GYKI 53655. 6. In addition, the late EPSCs were not present in low (0.5 mM) extracellular calcium, and they were also eliminated by the removal of the dentate hilus from the slice. 7. Mossy hilar cells in the traumatic dentate gyrus responded with significantly enhanced, prolonged trains of action potential discharges to perforant path stimulation. 8. These data indicate that surviving mossy cells play a crucial role in the hyperexcitable responses of the post-traumatic dentate gyrus.

  19. Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons.

    PubMed

    Cui, Qi; Yip, Henry K; Zhao, Robert C H; So, Kwok-Fai; Harvey, Alan R

    2003-01-01

    In vitro, cyclic AMP (cAMP) elevation alters neuronal responsiveness to diffusible growth factors and myelin-associated inhibitory molecules. Here we used an established in vivo model of adult central nervous system injury to investigate the effects of elevated cAMP on neuronal survival and axonal regeneration. We studied the effects of intraocular injections of neurotrophic factors and/or a cAMP analogue (CPT-cAMP) on the regeneration of axotomized rat retinal ganglion cell (RGC) axons into peripheral nerve autografts. Elevation of cAMP alone did not significantly increase RGC survival or the number of regenerating RGCs. Ciliary neurotrophic factor increased RGC viability and axonal regrowth, the latter effect substantially enhanced by coapplication with CPT-cAMP. Under these conditions over 60% of surviving RGCs regenerated their axons. Neurotrophin-4/5 injections also increased RGC viability, but there was reduced long-distance axonal regrowth into grafts, an effect partially ameliorated by cAMP elevation. Thus, cAMP can act cooperatively with appropriate neurotrophic factors to promote axonal regeneration in the injured adult mammalian central nervous system.

  20. A novel two-chain IGF-II-derived peptide from purified β-cell granules.

    PubMed

    Buchanan, Christina M; Phillips, Anthony R J; Cooper, Garth J S

    2010-10-01

    Insulin-like growth factor II (IGF-II) is a potent mitogen that regulates prenatal growth and development in both humans and rodents. Its role in post-natal life is less clear although immunohistochemical studies have observed IGF-II-like immunoreactivity (IGF-II-LI) associated with insulin-producing pancreatic β-cells. Here we isolated secretory granules from a β-cell line, βTC6-F7, and characterized the nature of the IGF-II-LI located therein. Secretory granules were isolated from cultured mouse βTC6-F7 cells by ultracentrifugation. Granule protein content was separated by reversed-phase HPLC, and assayed for IGF-II (radioimmunoassay) prior to identification by gas-phase NH(2)-terminal sequencing and MALDI-TOF MS. Effects of glucose incorporation into muscle glycogen were determined by incubating with isolated rat soleus muscle strips. βTC6-F7 cells contained 60 ± 8 pmol of IGF-II-LI per 10⁶ cells compared to 340 ± 44 pmol insulin-LI per 10⁶ cells. IGF-II immunoreactive fractions were found to contain an IGF-II-like molecule with a molecular mass of 6847.6 Da. The protein was found to be a two-chain insulin-like product of Igf2 that corresponds to mouse des(37-40)IGF-II, which we termed 'vesiculin'. This molecule was also detectable in βTC6-F7 cells by intact-cell mass spectrometry. Mouse vesiculin evoked concentration-dependent stimulation of muscle glycogen synthesis ex vivo with an EC(50) value of 131 nM ± 1.35. Vesiculin, des(37-40)IGF-II, is a novel two-chain insulin-like hormone and the major "IGF-II-like" peptide found in purified mouse βTC6-F7 secretory granules. It stimulated ex vivo muscle glycogen synthesis with an efficacy greater than or equal to the intrinsic potency of IGF-II when compared to insulin derived from the same species. Copyright © 2010 Growth Hormone Research Society. Published by Elsevier Ltd. All rights reserved.

  1. Rapid Signaling Actions of Environmental Estrogens in Developing Granule Cell Neurons Are Mediated by Estrogen Receptor β

    PubMed Central

    Le, Hoa H.; Belcher, Scott M.

    2010-01-01

    Estrogenic endocrine disrupting chemicals (EDCs) constitute a diverse group of man-made chemicals and natural compounds derived from plants and microbial metabolism. Estrogen-like actions are mediated via the nuclear hormone receptor activity of estrogen receptor (ER)α and ERβ and rapid regulation of intracellular signaling cascades. Previous study defined cerebellar granule cell neurons as estrogen responsive and that granule cell precursor viability was developmentally sensitive to estrogens. In this study experiments using Western blot analysis and pharmacological approaches have characterized the receptor and signaling modes of action of selective and nonselective estrogen ligands in developing cerebellar granule cells. Estrogen treatments were found to briefly increase ERK1/2-phosphorylation and then cause prolonged depression of ERK1/2 activity. The sensitivity of granule cell precursors to estrogen-induced cell death was found to require the integrated activation of membrane and intracellular ER signaling pathways. The sensitivity of granule cells to selective and nonselective ER agonists and a variety of estrogenic and nonestrogenic EDCs was also examined. The ERβ selective agonist DPN, but not the ERα selective agonist 4,4′,4′-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol or other ERα-specific ligands, stimulated cell death. Only EDCs with selective or nonselective ERβ activities like daidzein, equol, diethylstilbestrol, and bisphenol A were observed to induce E2-like neurotoxicity supporting the conclusion that estrogen sensitivity in granule cells is mediated via ERβ. The presented results also demonstrate the utility of estrogen sensitive developing granule cells as an in vitro assay for elucidating rapid estrogen-signaling mechanisms and to detect EDCs that act at ERβ to rapidly regulate intracellular signaling. PMID:20926581

  2. Transient fusion ensures granule replenishment to enable repeated release after IgE-mediated mast cell degranulation.

    PubMed

    Balseiro-Gomez, Santiago; Flores, Juan A; Acosta, Jorge; Ramirez-Ponce, M Pilar; Ales, Eva

    2016-11-01

    To ensure normal immune function, mast cells employ different pathways to release mediators. Here, we report a thus far unknown capacity of mast cells to recycle and reuse secretory granules after an antigen-evoked degranulation process under physiological conditions; this phenomenon involves the existence of a recycling secretory granule pool that is available for release in a short time scale. Rapid endocytic modes contributed to the recycling of ∼60% of the total secretory granule population, which involved kiss-and-run and cavicapture mechanisms, causing retention of the intragranular matrix. We found the presence of normal-size granules and giant actomyosin- and dynamin-dependent granules, which were characterized by large quantal content. These large structures allowed the recovered mast cells to release a large amount of 5-HT, compensating for the decrease in the number of exocytosed secretory granules. This work uncovers a new physiological role of the exo-endocytosis cycle in the immunological plasticity of mast cells and reveals a new property of their biological secretion. © 2016. Published by The Company of Biologists Ltd.

  3. Mefloquine, an anti-malaria agent, causes reactive oxygen species-dependent cell death in mast cells via a secretory granule-mediated pathway

    PubMed Central

    Paivandy, Aida; Calounova, Gabriela; Zarnegar, Behdad; Öhrvik, Helena; Melo, Fabio R; Pejler, Gunnar

    2014-01-01

    Mast cells are known to have a detrimental impact on a variety of pathological conditions. There is therefore an urgent need of developing strategies that limit their harmful effects. The aim of this study was to accomplish this by developing a means of inducing mast cell apoptosis. The strategy was to identify novel compounds that induce mast cell apoptosis by permeabilization of their secretory lysosomes (granules). As a candidate, we assessed mefloquine, an anti-malarial drug that has been proposed to have lysosome-permeabilizing activity. Mefloquine was added to mast cells and administered in vivo, followed by assessment of the extent and mechanisms of mast cell death. Mefloquine was cytotoxic to murine and human mast cells. Mefloquine induced apoptotic cell death of wild-type mast cells whereas cells lacking the granule compounds serglycin proteoglycan or tryptase were shown to undergo necrotic cell death, the latter finding indicating a role of the mast cell granules in mefloquine-induced cell death. In support of this, mefloquine was shown to cause compromised granule integrity and to induce leakage of granule components into the cytosol. Mefloquine-induced cell death was refractory to caspase inhibitors but was completely abrogated by reactive oxygen species inhibition. These findings identify mefloquine as a novel anti-mast cell agent, which induces mast cell death through a granule-mediated pathway. Mefloquine may thus become useful in therapy aiming at limiting harmful effects of mast cells. PMID:25505612

  4. 3D-reconstruction and functional properties of GFP-positive and GFP-negative granule cells in the fascia dentata of the Thy1-GFP mouse.

    PubMed

    Vuksic, Mario; Del Turco, Domenico; Bas Orth, Carlos; Burbach, Guido J; Feng, Guoping; Müller, Christian M; Schwarzacher, Stephan W; Deller, Thomas

    2008-01-01

    Granule cells of the mouse fascia dentata are widely used in studies on neuronal development and plasticity. In contrast to the rat, however, high-resolution morphometric data on these cells are scarce. Thus, we have analyzed granule cells in the fascia dentata of the adult Thy1-GFP mouse (C57BL/6 background). In this mouse line, single neurons in the granule cell layer are GFP-labeled, making them amenable to high-resolution 3D-reconstruction. First, calbindin or parvalbumin-immunofluorescence was used to identify GFP-positive cells as granule cells. Second, the dorsal-ventral distribution of GFP-positive granule cells was studied: In the dorsal part of the fascia dentata 11% and in the ventral part 15% of all granule cells were GFP-positive. Third, GFP-positive and GFP-negative granule cells were compared using intracellular dye-filling (fixed slice technique) and patch-clamp recordings; no differences were observed between the cells. Finally, GFP-positive granule cells (dorsal and ventral fascia dentata) were imaged at high resolution with a confocal microscope, 3D-reconstructed in their entirety and analyzed for soma size, total dendritic length, number of segments, total number of spines and spine density. Sholl analysis revealed that dendritic complexity of granule cells is maximal 150-200 mum from the soma. Granule cells located in the ventral part of the hippocampus revealed a greater degree of dendritic complexity compared to cells in the dorsal part. Taken together, this study provides morphometric data on granule cells of mice bred on a C57BL/6 background and establishes the Thy1-GFP mouse as a tool to study granule cell neurobiology. (c) 2008 Wiley-Liss, Inc.

  5. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans.

    PubMed

    Huelgas-Morales, Gabriela; Silva-García, Carlos Giovanni; Salinas, Laura S; Greenstein, David; Navarro, Rosa E

    2016-04-07

    In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline-the immortal cell lineage required for sexual reproduction-protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures.

  6. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans

    PubMed Central

    Huelgas-Morales, Gabriela; Silva-García, Carlos Giovanni; Salinas, Laura S.; Greenstein, David; Navarro, Rosa E.

    2016-01-01

    In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline—the immortal cell lineage required for sexual reproduction—protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures. PMID:26865701

  7. Ionotropic glutamate receptor antagonists inhibit the proliferation of granule cell precursors in the adult brain after seizures induced by pentylenetrazol.

    PubMed

    Jiang, Wen; Wolfe, Ken; Xiao, Lan; Zhang, Zhi-Jun; Huang, Yuan-Gui; Zhang, Xia

    2004-09-10

    Seizures have been shown to promote the proliferation of granule cell precursors in the adult brain, but the underlying mechanisms remain largely unknown. Using systemic bromodeoxyuridine (BrdU) to label dividing cells, we examined the effects of selective ionotropic glutamate receptor antagonists on granule cell precursor proliferation in adult rats after pentylenetrazol (PTZ)-induced generalized clonic seizures. We found that the NMDA receptor antagonist MK-801 significantly inhibited behavioral and EEG seizures and completely blocked seizure-induced increase in the number of BrdU-labeled cells in the dentate gyrus. Although the AMPA/KA receptor antagonist DNQX was not observed to affect seizures, it significantly suppressed the number of BrdU-labeled cells in the dentate gyrus. Double immunohistochemical staining showed that both the mature granule cells and the majority of BrdU-labeled, mitotically active cells expressed the NMDA receptor subunit NR1 and the AMPA/KA receptor subunit GluR2. Because accumulated evidence showed that mild seizures are sufficient to promote precursor cell proliferation, the present findings that MK-801 inhibited seizures and completely blocked seizure-induced increase in precursor cell proliferation suggest that the direct blockade action of MK-801 on NMDA receptors on the granule cell precursors may play an important role in blocking seizure-induced precursor cell proliferation. The suppression of seizure-induced proliferation of granule cell precursors by DNQX may be achieved by the direct action of DNQX on AMPA/KA receptors on the granule cell precursors. Thus, our findings indicate that seizures may promote cell proliferation in the adult rat dentate gyrus through glutamatergic mechanisms acting on both NMDA and AMPA/KA receptors.

  8. A role for serglycin proteoglycan in mast cell apoptosis induced by a secretory granule-mediated pathway.

    PubMed

    Melo, Fabio Rabelo; Waern, Ida; Rönnberg, Elin; Åbrink, Magnus; Lee, David M; Schlenner, Susan M; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Turk, Boris; Wernersson, Sara; Pejler, Gunnar

    2011-02-18

    Mast cell secretory granules (secretory lysosomes) contain large amounts of fully active proteases bound to serglycin proteoglycan. Damage to the granule membrane will thus lead to the release of serglycin and serglycin-bound proteases into the cytosol, which potentially could lead to proteolytic activation of cytosolic pro-apoptotic compounds. We therefore hypothesized that mast cells are susceptible to apoptosis induced by permeabilization of the granule membrane and that this process is serglycin-dependent. Indeed, we show that wild-type mast cells are highly sensitive to apoptosis induced by granule permeabilization, whereas serglycin-deficient cells are largely resistant. The reduced sensitivity of serglycin(-/-) cells to apoptosis was accompanied by reduced granule damage, reduced release of proteases into the cytosol, and defective caspase-3 activation. Mechanistically, the apoptosis-promoting effect of serglycin involved serglycin-dependent proteases, as indicated by reduced sensitivity to apoptosis and reduced caspase-3 activation in cells lacking individual mast cell-specific proteases. Together, these findings implicate serglycin proteoglycan as a novel player in mast cell apoptosis.

  9. Subcellular glucose exposure biases the spatial distribution of insulin granules in single pancreatic beta cells

    NASA Astrophysics Data System (ADS)

    Terao, Kyohei; Gel, Murat; Okonogi, Atsuhito; Fuke, Ariko; Okitsu, Teru; Tada, Takashi; Suzuki, Takaaki; Nagamatsu, Shinya; Washizu, Masao; Kotera, Hidetoshi

    2014-02-01

    In living tissues, a cell is exposed to chemical substances delivered partially to its surface. Such a heterogeneous chemical environment potentially induces cell polarity. To evaluate this effect, we developed a microfluidic device that realizes spatially confined delivery of chemical substances at subcellular resolution. Our microfluidic device allows simple setup and stable operation for over 4 h to deliver chemicals partially to a single cell. Using the device, we showed that subcellular glucose exposure triggers an intracellular [Ca2+] change in the β-cells. In addition, the imaging of a cell expressing GFP-tagged insulin showed that continuous subcellular exposure to glucose biased the spatial distribution of insulin granules toward the site where the glucose was delivered. Our approach illustrates an experimental technique that will be applicable to many biological experiments for imaging the response to subcellular chemical exposure and will also provide new insights about the development of polarity of β-cells.

  10. Essential role of axonal VGSC inactivation in time-dependent deceleration and unreliability of spike propagation at cerebellar Purkinje cells

    PubMed Central

    2014-01-01

    Background The output of the neuronal digital spikes is fulfilled by axonal propagation and synaptic transmission to influence postsynaptic cells. Similar to synaptic transmission, spike propagation on the axon is not secure, especially in cerebellar Purkinje cells whose spiking rate is high. The characteristics, mechanisms and physiological impacts of propagation deceleration and infidelity remain elusive. The spike propagation is presumably initiated by local currents that raise membrane potential to the threshold of activating voltage-gated sodium channels (VGSC). Results We have investigated the natures of spike propagation and the role of VGSCs in this process by recording spikes simultaneously on the somata and axonal terminals of Purkinje cells in cerebellar slices. The velocity and fidelity of spike propagation decreased during long-lasting spikes, to which the velocity change was more sensitive than fidelity change. These time-dependent deceleration and infidelity of spike propagation were improved by facilitating axonal VGSC reactivation, and worsen by intensifying VGSC inactivation. Conclusion Our studies indicate that the functional status of axonal VGSCs is essential to influencing the velocity and fidelity of spike propagation. PMID:24382121

  11. A double transgenic mouse used to track migrating Schwann cells and regenerating axons following engraftment of injured nerves

    PubMed Central

    Hayashi, Ayato; Koob, Jason W; Liu, Daniel Z; Tong, Alice Y; Hunter, Daniel A.; Parsadanian, Alexander; Mackinnon, Susan E.; Myckatyn, Terence M.

    2007-01-01

    We propose that double transgenic thy1-CFP(23)/S100-GFP mice whose Schwann cells constitutively express green fluorescent protein (GFP) and axons express cyan fluorescent protein (CFP) can be used to serially evaluate the temporal relationship between nerve regeneration and Schwann cell migration through acellular nerve grafts. Thy1-CFP(23)/S100-GFP and S100-GFP mice received non-fluorescing cold preserved nerve allografts from immunologically disparate donors. In vivo fluorescent imaging of these grafts was then performed at multiple points. The transected sciatic nerve was reconstructed with a 1 cm nerve allograft harvested from a Balb-C mouse and acellularized via 7 weeks of cold preservation prior to transplantation. The presence of regenerated axons and migrating Schwann cells was confirmed with confocal and electron microscopy on fixed tissue. Schwann cells migrated into the acellular graft (163 ± 15 intensity units) from both proximal and distal stumps, and bridged the whole graft within 10 days (388 ± 107 intensity units in the central 4-6 mm segment). Nerve regeneration lagged behind Schwann cell migration with 5 or 6 axons imaged traversing the proximal 4 mm of the graft under confocal microcopy within 10 days, and up to 21 labeled axons crossing the distal coaptation site by 15 days. Corroborative electron and light microscopy 5 mm into the graft demonstrated relatively narrow diameter myelinated (431±31) and unmyelinated (64±9) axons by 28 but not 10 days. Live imaging of the double-transgenic thy1-CFP(23)/S100-GFP murine line enabled serial assessment of Schwann cell-axonal relationships in traumatic nerve injuries reconstructed with acellular nerve allografts. PMID:17628544

  12. Staufen1 impairs stress granule formation in skeletal muscle cells from myotonic dystrophy type 1 patients

    PubMed Central

    Ravel-Chapuis, Aymeric; Klein Gunnewiek, Amanda; Bélanger, Guy; Crawford Parks, Tara E.; Côté, Jocelyn; Jasmin, Bernard J.

    2016-01-01

    Myotonic dystrophy (DM1) is caused by an expansion of CUG repeats (CUGexp) in the DMPK mRNA 3′UTR. CUGexp-containing mRNAs become toxic to cells by misregulating RNA-binding proteins. Here we investigated the consequence of this RNA toxicity on the cellular stress response. We report that cell stress efficiently triggers formation of stress granules (SGs) in proliferating, quiescent, and differentiated muscle cells, as shown by the appearance of distinct cytoplasmic TIA-1– and DDX3-containing foci. We show that Staufen1 is also dynamically recruited into these granules. Moreover, we discovered that DM1 myoblasts fail to properly form SGs in response to arsenite. This blockage was not observed in DM1 fibroblasts, demonstrating a cell type–specific defect. DM1 myoblasts display increased expression and sequestration of toxic CUGexp mRNAs compared with fibroblasts. Of importance, down-regulation of Staufen1 in DM1 myoblasts rescues SG formation. Together our data show that Staufen1 participates in the inhibition of SG formation in DM1 myoblasts. These results reveal that DM1 muscle cells fail to properly respond to stress, thereby likely contributing to the complex pathogenesis of DM1. PMID:27030674

  13. Serine proteinases of mast cell and leukocyte granules. A league of their own.

    PubMed

    Caughey, G H

    1994-12-01

    Serine proteinases are hydrolases that use serine's side chain hydroxyl group to attack and cleave internal peptide bonds in peptides and proteins. They reside in all mammalian tissues, including the lung and airway. As a group, they vary tremendously in form and target specificity and have a vast repertoire of functions, many of which are critical for life. A subset of these proteinases is expressed primarily in the cytosolic granules of leukocytes from bone marrow, including mast cells. Examples are elastase-related proteinases and cathepsin G of monocytes and neutrophils, the many "granzymes" of cytotoxic T lymphocytes and natural killer (NK) cells, and the tryptases and chymases of mast cells. The pace of discovery and characterization of these granule-associated serine proteinases, fueled by technical advances in molecular biology, has accelerated rapidly in the past few years. Progress has been made in assigning possible functions to individual proteinases. However, the burgeoning numbers of these enzymes; their cell, tissue and species-dependent differences in expression; and their variety of action in vitro (despite, in many cases, shared modes of activation and recent divergence in protein evolution) have vexed and challenged those of us who are anxious to establish their roles in mammalian biology. Certainly, much remains to be discovered and clarified. The purpose of this overview is to capture the state of the art in this field, stressing the similarities as well as the differences among individual granule-associated proteinases and focusing particularly on those enzymes likely to be important in the human lung and airways.

  14. Axon responses of embryonic stem cell-derived dopaminergic neurons to Semaphorins 3A and 3C

    PubMed Central

    Tamariz, Elisa; Díaz-Martínez, N. Emmanuel; Díaz, Néstor F.; García-Peña, Claudia M.; Velasco, Iván; Varela-Echavarría, Alfredo

    2010-01-01

    Class 3 Semaphorins are a subfamily of chemotropic molecules implicated in the projection of dopaminergic neurons from the ventral mesencephalon and in the formation of the nigrostriatal pathway (NSP) during embryonic development. In humans, loss of mesencephalic dopaminergic neurons leads to Parkinson’s disease (PD). Cell replacement therapy with dopaminergic neurons generated from embryonic stem cells (ES-TH+) is being actively explored in models of PD. Among several requisites for this approach to work are the adequate reconstruction of the NSP and the correct innervation of normal striatal targets by dopaminergic axons. In this work, we characterized the response of ES-TH+ neurons to Semaphorins 3A, 3C, and 3F, and compared it with that of tyrosine hidroxylase-positive neurons (TH+) obtained from embryonic ventral mesencephalon (VM-TH+). We observed that similar proportions of ES-TH+ and VM-TH+ neurons express Semaphorin receptors Neuropilin 1 and 2. Furthermore, the axons of both populations responded very similarly to Semaphorin exposure: Semaphorin 3A increased axon length, and Semaphorin 3C attracted axons and increased their length. These effects were mediated by Neuropilins, since addition of blocking antibodies against these proteins reduced the effects on axonal growth and attraction, and only TH+ axons expressing Neuropilins responded to the Semaphorins analyzed. The observations reported here show phenotypic similarities between VM-TH+ and ES-TH+ neurons, and suggest that Semaphorins 3A and 3C could be employed to guide axons of grafted ES-TH+ in therapeutic protocols for PD. PMID:19859963

  15. Axons take a dive

    PubMed Central

    Tong, Cheuk Ka; Cebrián-Silla, Arantxa; Paredes, Mercedes F; Huang, Eric J; García-Verdugo, Jose Manuel; Alvarez-Buylla, Arturo

    2015-01-01

    In the walls of the lateral ventricles of the adult mammalian brain, neural stem cells (NSCs) and ependymal (E1) cells share the apical surface of the ventricular–subventricular zone (V–SVZ). In a recent article, we show that supraependymal serotonergic (5HT) axons originating from the raphe nuclei in mice form an extensive plexus on the walls of the lateral ventricles where they contact E1 cells and NSCs. Here we further characterize the contacts between 5HT supraependymal axons and E1 cells in mice, and show that suprependymal axons tightly associated to E1 cells are also present in the walls of the human lateral ventricles. These observations raise interesting questions about the function of supraependymal axons in the regulation of E1 cells. PMID:26413556

  16. Loss of Melanin by Eye Retinal Pigment Epithelium Cells Is Associated with Its Oxidative Destruction in Melanolipofuscin Granules.

    PubMed

    Dontsov, A E; Sakina, N L; Ostrovsky, M A

    2017-08-01

    The effect of superoxide radicals on melanin destruction and degradation of melanosomes isolated from cells of retinal pigment epithelium (RPE) of the human eye was studied. We found that potassium superoxide causes destruction of melanin in melanosomes of human and bovine RPE, as well as destruction of melanin from the ink bag of squid, with the formation of fluorescent decay products having an emission maximum at 520-525 nm. The initial kinetics of the accumulation of the fluorescent decay products is linear. Superoxide radicals lead simultaneously to a decrease in the number of melanosomes and to a decrease in concentration of paramagnetic centers in them. Complete degradation of melanosomes leads to the formation of a transparent solution containing dissolved proteins and melanin degradation products that do not exhibit paramagnetic properties. To completely degrade one melanosome of human RPE, 650 ± 100 fmol of superoxide are sufficient. The concentration of paramagnetic centers in a melanolipofuscin granule of human RPE is on average 32.5 ± 10.4% (p < 0.05, 150 eyes) lower than in a melanosome, which indicates melanin undergoing a destruction process in these granules. RPE cells also contain intermediate granules that have an EPR signal with a lower intensity than that of melanolipofuscin granules, but higher than that of lipofuscin granules. This signal is due to the presence of residual melanin in these granules. Irradiation of a mixture of melanosomes with lipofuscin granules with blue light (450 nm), in contrast to irradiation of only melanosomes, results in the appearance of fluorescent melanin degradation products. We suggest that one of the main mechanisms of age-related decrease in melanin concentration in human RPE cells is its destruction in melanolipofuscin granules under the action of superoxide radicals formed during photoinduced oxygen reduction by lipofuscin fluorophores.

  17. Epigenetic Regulation of Axonal Growth of Drosophila Pacemaker Cells by Histone Acetyltransferase Tip60 Controls Sleep

    PubMed Central

    Pirooznia, Sheila K.; Chiu, Kellie; Chan, May T.; Zimmerman, John E.; Elefant, Felice

    2012-01-01

    Tip60 is a histone acetyltransferase (HAT) enzyme that epigenetically regulates genes enriched for neuronal functions through interaction with the amyloid precursor protein (APP) intracellular domain. However, whether Tip60-mediated epigenetic dysregulation affects specific neuronal processes in vivo and contributes to neurodegeneration remains unclear. Here, we show that Tip60 HAT activity mediates axonal growth of the Drosophila pacemaker cells, termed “small ventrolateral neurons” (sLNvs), and their production of the neuropeptide pigment-dispersing factor (PDF) that functions to stabilize Drosophila sleep–wake cycles. Using genetic approaches, we show that loss of Tip60 HAT activity in the presence of the Alzheimer’s disease-associated APP affects PDF expression and causes retraction of the sLNv synaptic arbor required for presynaptic release of PDF. Functional consequence of these effects is evidenced by disruption of the sleep–wake cycle in these flies. Notably, overexpression of Tip60 in conjunction with APP rescues these sleep–wake disturbances by inducing overelaboration of the sLNv synaptic terminals and increasing PDF levels, supporting a neuroprotective role for dTip60 in sLNv growth and function under APP-induced neurodegenerative conditions. Our findings reveal a novel mechanism for Tip60 mediated sleep–wake regulation via control of axonal growth and PDF levels within the sLNv-encompassing neural network and provide insight into epigenetic-based regulation of sleep disturbances observed in neurodegenerative diseases like Alzheimer’s disease. PMID:22982579

  18. Generation and Characterization of an Nse-CreERT2 Transgenic Line Suitable for Inducible Gene Manipulation in Cerebellar Granule Cells

    PubMed Central

    Pohlkamp, Theresa; Steller, Laura; May, Petra; Günther, Thomas; Schüle, Roland; Frotscher, Michael

    2014-01-01

    We created an Nse-CreERT2 mouse line expressing the tamoxifen-inducible CreERT2 recombinase under the control of the neuron-specific enolase (Nse) promoter. By using Cre reporter lines we could show that this Nse-CreERT2 line has recombination activity in the granule cells of all cerebellar lobules as well as in postmitotic granule cell precursors in the external granular layer of the developing cerebellum. A few hippocampal dentate gyrus granule cells showed Cre-mediated recombination as well. Cre activity could be induced in both the developing and adult mouse brain. The established mouse line constitutes a valuable tool to study the function of genes expressed by cerebellar granule cells in the developing and adult brain. In combination with reporter lines it is a useful model to analyze the development and maintenance of the cerebellar architecture including granule cell distribution, migration, and the extension of granule cell fibers in vivo. PMID:24950299

  19. Mitochondrial alarmins released by degenerating motor axon terminals activate perisynaptic Schwann cells

    PubMed Central

    Duregotti, Elisa; Negro, Samuele; Scorzeto, Michele; Zornetta, Irene; Dickinson, Bryan C.; Chang, Christopher J.; Montecucco, Cesare; Rigoni, Michela

    2015-01-01

    An acute and highly reproducible motor axon terminal degeneration followed by complete regeneration is induced by some animal presynaptic neurotoxins, representing an appropriate and controlled system to dissect the molecular mechanisms underlying degeneration and regeneration of peripheral nerve terminals. We have previously shown that nerve terminals exposed to spider or snake presynaptic neurotoxins degenerate as a result of calcium overload and mitochondrial failure. Here we show that toxin-treated primary neurons release signaling molecules derived from mitochondria: hydrogen peroxide, mitochondrial DNA, and cytochrome c. These molecules activate isolated primary Schwann cells, Schwann cells cocultured with neurons and at neuromuscular junction in vivo through the MAPK pathway. We propose that this inter- and intracellular signaling is involved in triggering the regeneration of peripheral nerve terminals affected by other forms of neurodegenerative diseases. PMID:25605902

  20. Diminished Schwann cell repair responses underlie age-associated impaired axonal regeneration

    PubMed Central

    Painter, Michio W.; Brosius Lutz, Amanda; Cheng, Yung-Chih; Latremoliere, Alban; Duong, Kelly; Miller, Christine M.; Posada, Sean; Cobos, Enrique J.; Zhang, Alice X.; Wagers, Amy J.; Havton, Leif A.; Barres, Ben; Omura, Takao

    2014-01-01

    SUMMARY The regenerative capacity of the peripheral nervous system declines with age. Why this occurs, however, is unknown. We demonstrate that 24-month old mice exhibit an impairment of functional recovery after nerve injury compared to 2-month old animals. We find no difference in the intrinsic growth capacity between aged and young sensory neurons in vitro nor in their ability to activate growth-associated transcriptional programs after injury. Instead, using age-mismatched nerve transplants in vivo, we show that the extent of functional recovery depends on the age of the nerve graft, and not the age of the host. Molecular interrogation of the sciatic nerve reveals that aged Schwann cells (SCs) fail to rapidly activate a transcriptional repair program after injury. Functionally, aged SCs exhibit impaired de-differentiation, myelin clearance and macrophage recruitment. These results suggest that the age-associated decline in axonal regeneration results from diminished Schwann cell plasticity, leading to slower myelin clearance. PMID:25033179

  1. Increased expression of BDNF and proliferation of dentate granule cells after bacterial meningitis.

    PubMed

    Tauber, Simone C; Stadelmann, Christine; Spreer, Annette; Brück, Wolfgang; Nau, Roland; Gerber, Joachim

    2005-09-01

    Proliferation and differentiation of neural progenitor cells is increased after bacterial meningitis. To identify endogenous factors involved in neurogenesis, expression of brain-derived neurotrophic factor (BDNF), TrkB, nerve growth factor (NGF), and glial cell line-derived neurotrophic factor (GDNF) was investigated. C57BL/6 mice were infected by intracerebral injection of Streptococcus pneumoniae. Mice were killed 30 hours later or treated with ceftriaxone and killed 4 days after infection. Hippocampal BDNF mRNA levels were increased 2.4-fold 4 days after infection (p = 0.026). Similarly, BDNF protein levels in the hippocampal formation were higher in infected mice than in control animals (p = 0.0003). This was accompanied by an elevated proliferation of dentate granule cells (p = 0.0002). BDNF protein was located predominantly in the hippocampal CA3/4 area and the hilus of the dentate gyrus. The density of dentate granule cells expressing the BDNF receptor TrkB as well as mRNA levels of TrkB in the hippocampal formation were increased 4 days after infection (p = 0.027 and 0.0048, respectively). Conversely, NGF mRNA levels at 30 hours after infection were reduced by approximately 50% (p = 0.004). No significant changes in GDNF expression were observed. In conclusion, increased synthesis of BDNF and TrkB suggests a contribution of this neurotrophic factor to neurogenesis after bacterial meningitis.

  2. Glucose Toxic Effects on Granulation Tissue Productive Cells: The Diabetics' Impaired Healing

    PubMed Central

    Berlanga-Acosta, Jorge; Schultz, Gregory S.; López-Mola, Ernesto; Guillen-Nieto, Gerardo; García-Siverio, Marianela; Herrera-Martínez, Luis

    2013-01-01

    Type 2 diabetes mellitus is a metabolic noncommunicable disease with an expanding pandemic magnitude. Diabetes predisposes to lower extremities ulceration and impairs the healing process leading to wound chronification. Diabetes also dismantles innate immunity favoring wound infection. Amputation is therefore acknowledged as one of the disease's complications. Hyperglycemia is the proximal detonator of systemic and local toxic effectors including proinflammation, acute-phase proteins elevation, and spillover of reactive oxygen and nitrogen species. Insulin axis deficiency weakens wounds' anabolism and predisposes to inflammation. The systemic accumulation of advanced glycation end-products irreversibly impairs the entire physiology from cells-to-organs. These factors in concert hamper fibroblasts and endothelial cells proliferation, migration, homing, secretion, and organization of a productive granulation tissue. Diabetic wound bed may turn chronically inflammed, procatabolic, and an additional source of circulating pro-inflammatory cytokines, establishing a self-perpetuating loop. Diabetic fibroblasts and endothelial cells may bear mitochondrial damages becoming prone to apoptosis, which impairs granulation tissue cellularity and perfusion. Endothelial progenitor cells recruitment and tubulogenesis are also impaired. Failure of wound reepithelialization remains a clinical challenge while it appears to be biologically multifactorial. Ulcer prevention by primary care surveillance, education, and attention programs is of outmost importance to reduce worldwide amputation figures. PMID:23484099

  3. Chromogranin A Promotes Peptide Hormone Sorting to Mobile Granules in Constitutively and Regulated Secreting Cells

    PubMed Central

    Montero-Hadjadje, Maité; Elias, Salah; Chevalier, Laurence; Benard, Magalie; Tanguy, Yannick; Turquier, Valérie; Galas, Ludovic; Yon, Laurent; Malagon, Maria M.; Driouich, Azeddine; Gasman, Stéphane; Anouar, Youssef

    2009-01-01

    Chromogranin A (CgA) has been proposed to play a major role in the formation of dense-core secretory granules (DCGs) in neuroendocrine cells. Here, we took advantage of unique features of the frog CgA (fCgA) to assess the role of this granin and its potential functional determinants in hormone sorting during DCG biogenesis. Expression of fCgA in the constitutively secreting COS-7 cells induced the formation of mobile vesicular structures, which contained cotransfected peptide hormones. The fCgA and the hormones coexpressed in the newly formed vesicles could be released in a regulated manner. The N- and C-terminal regions of fCgA, which exhibit remarkable sequence conservation with their mammalian counterparts were found to be essential for the formation of the mobile DCG-like structures in COS-7 cells. Expression of fCgA in the corticotrope AtT20 cells increased pro-opiomelanocortin levels in DCGs, whereas the expression of N- and C-terminal deletion mutants provoked retention of the hormone in the Golgi area. Furthermore, fCgA, but not its truncated forms, promoted pro-opiomelanocortin sorting to the regulated secretory pathway. These data demonstrate that CgA has the intrinsic capacity to induce the formation of mobile secretory granules and to promote the sorting and release of peptide hormones. The conserved terminal peptides are instrumental for these activities of CgA. PMID:19179339

  4. BACE2 is stored in secretory granules of mouse and rat pancreatic beta cells.

    PubMed

    Finzi, Giovanna; Franzi, Francesca; Placidi, Claudia; Acquati, Francesco; Palumbo, Elisa; Russo, Antonella; Taramelli, Roberto; Sessa, Fausto; La Rosa, Stefano

    2008-01-01

    BACE2 is a protease homologous to BACE1 protein, an enzyme involved in the amyloid formation of Alzheimer disease (AD). However, despite the high homology between these two proteins, the biological role of BACE2 is still controversial, even though a few studies have suggested a pathogenetic role in sporadic inclusion-body myositis and hereditary inclusion-body myopathy, which are characterized by vacuolization of muscular fibers with intracellular deposits of proteins similar to those found in the brain of AD patients. Although BACE2 has also been identified in the pancreas, its function remains unknown and its specific localization in different pancreatic cell types has not been definitively ascertained. For these reasons, the authors have investigated the cellular and subcellular localization of BACE2 in normal rodent pancreases. BACE2 immunoreactivity was found in secretory granules of beta cells, co-stored with insulin and IAPP, while it was lacking in the other endocrine and exocrine cell types. The presence of BACE2 in secretory granules of beta cells suggests that it may play a role in diabetes-associated amyloidogenesis.

  5. Procaspase-activating compound 1 induces a caspase-3-dependent cell death in cerebellar granule neurons

    SciTech Connect

    Aziz, Gulzeb; Akselsen, Oyvind W.; Hansen, Trond V.; Paulsen, Ragnhild E.

    2010-09-15

    Procaspase-activating compound 1, PAC-1, has been introduced as a direct activator of procaspase-3 and has been suggested as a therapeutic agent against cancer. Its activation of procaspase-3 is dependent on the chelation of zinc. We have tested PAC-1 and an analogue of PAC-1 as zinc chelators in vitro as well as their ability to activate caspase-3 and induce cell death in chicken cerebellar granule neuron cultures. These neurons are non-dividing, primary cells with normal caspase-3. The results reported herein show that PAC-1 chelates zinc, activates procaspase-3, and leads to caspase-3-dependent cell death in neurons, as the specific caspase-3-inhibitor Ac-DEVD-cmk inhibited both the caspase-3 activity and cell death. Thus, chicken cerebellar granule neurons is a suitable model to study mechanisms of interference with apoptosis of PAC-1 and similar compounds. Furthermore, the present study also raises concern about potential neurotoxicity of PAC-1 if used in cancer therapy.

  6. Lens injury stimulates adult mouse retinal ganglion cell axon regeneration via both macrophage- and lens-derived factors.

    PubMed

    Lorber, Barbara; Berry, Martin; Logan, Ann

    2005-04-01

    In the present study the effects of lens injury on retinal ganglion cell axon/neurite re-growth were investigated in adult mice. In vivo, lens injury promoted successful regeneration of retinal ganglion cell axons past the optic nerve lesion site, concomitant with the invasion of macrophages into the eye and the presence of activated retinal astrocytes/Muller cells. In vitro, retinal ganglion cells from lens-lesioned mice grew significantly longer neurites than those from intact mice, which correlated with the presence of enhanced numbers of activated retinal astrocytes/Muller cells. Co-culture of retinal ganglion cells from intact mice with macrophage-rich lesioned lens/vitreous body led to increased neurite lengths compared with co-culture with macrophage-free intact lens/vitreous body, pointing to a neurotrophic effect of macrophages. Furthermore, retinal ganglion cells from mice that had no lens injury but had received intravitreal Zymosan injections to stimulate macrophage invasion into the eye grew significantly longer neurites compared with controls, as did retinal ganglion cells from intact mice co-cultured with macrophage-rich vitreous body from Zymosan-treated mice. The intact lens, but not the intact vitreous body, exerted a neurotrophic effect on retinal ganglion cell neurite outgrowth, suggesting that lens-derived neurotrophic factor(s) conspire with those derived from macrophages in lens injury-stimulated axon regeneration. Together, these results show that lens injury promotes retinal ganglion cell axon regeneration/neurite outgrowth in adult mice, an observation with important implications for axon regeneration studies in transgenic mouse models.

  7. Frequency-dependent reliability of spike propagation is function of axonal voltage-gated sodium channels in cerebellar Purkinje cells.

    PubMed

    Yang, Zhilai; Wang, Jin-Hui

    2013-12-01

    The spike propagation on nerve axons, like synaptic transmission, is essential to ensure neuronal communication. The secure propagation of sequential spikes toward axonal terminals has been challenged in the neurons with a high firing rate, such as cerebellar Purkinje cells. The shortfall of spike propagation makes some digital spikes disappearing at axonal terminals, such that the elucidation of the mechanisms underlying spike propagation reliability is crucial to find the strategy of preventing loss of neuronal codes. As the spike propagation failure is influenced by the membrane potentials, this process is likely caused by altering the functional status of voltage-gated sodium channels (VGSC). We examined this hypothesis in Purkinje cells by using pair-recordings at their somata and axonal blebs in cerebellar slices. The reliability of spike propagation was deteriorated by elevating spike frequency. The frequency-dependent reliability of spike propagation was attenuated by inactivating VGSCs and improved by removing their inactivation. Thus, the functional status of axonal VGSCs influences the reliability of spike propagation.

  8. Regrowth of transected retinal ganglion cell axons despite persistent astrogliosis in the lizard (Gallotia galloti)

    PubMed Central

    del Mar Romero-Alemán, María; Monzón-Mayor, Maximina; Santos, Elena; Yanes, Carmen M

    2013-01-01

    We analysed the astroglia response that is concurrent with spontaneous axonal regrowth after optic nerve (ON) transection in the lizard Gallotia galloti. At different post-lesional time points (0.5, 1, 3, 6, 9 and 12 months) we used conventional electron microscopy and specific markers for astrocytes [glial fibrillary acidic protein (GFAP), vimentin (Vim), sex-determining region Y-box-9 (Sox9), paired box-2 (Pax2)¸ cluster differentiation-44 (CD44)] and for proliferating cells (PCNA). The experimental retina showed a limited glial response since the increase of gliofilaments was not significant when compared with controls, and proliferating cells were undetectable. Conversely, PCNA+ cells populated the regenerating ON, optic tract (OTr) and ventricular wall of both the hypothalamus and optic tectum (OT). Subpopulations of these PCNA+ cells were identified as GFAP+ and Vim+ reactive astrocytes and radial glia. Reactive astrocytes up-regulated Vim at 1 month post-lesion, and both Vim and GFAP at 12 months post-lesion in the ON-OTr, indicating long-term astrogliosis. They also expressed Pax2, Sox9 and CD44 in the ON, and Sox9 in the OTr. Concomitantly, persistent tissue cavities and disorganised regrowing fibre bundles reaching the OT were observed. Our ultrastructural data confirm abundant gliofilaments in reactive astrocytes joined by desmosomes. Remarkably, they also accumulated myelin debris and lipid droplets until late stages, indicating their participation in myelin removal. These data suggest that persistent mammalian-like astrogliosis in the adult lizard ON contributes to a permissive structural scaffold for long-term axonal regeneration and provides a useful model to study the molecular mechanisms involved in these beneficial neuron–glia interactions. PMID:23656528

  9. Regrowth of transected retinal ganglion cell axons despite persistent astrogliosis in the lizard (Gallotia galloti).

    PubMed

    Romero-Alemán, María del Mar; Monzón-Mayor, Maximina; Santos, Elena; Yanes, Carmen M

    2013-07-01

    We analysed the astroglia response that is concurrent with spontaneous axonal regrowth after optic nerve (ON) transection in the lizard Gallotia galloti. At different post-lesional time points (0.5, 1, 3, 6, 9 and 12 months) we used conventional electron microscopy and specific markers for astrocytes [glial fibrillary acidic protein (GFAP), vimentin (Vim), sex-determining region Y-box-9 (Sox9), paired box-2 (Pax2)¸ cluster differentiation-44 (CD44)] and for proliferating cells (PCNA). The experimental retina showed a limited glial response since the increase of gliofilaments was not significant when compared with controls, and proliferating cells were undetectable. Conversely, PCNA(+) cells populated the regenerating ON, optic tract (OTr) and ventricular wall of both the hypothalamus and optic tectum (OT). Subpopulations of these PCNA(+) cells were identified as GFAP(+) and Vim(+) reactive astrocytes and radial glia. Reactive astrocytes up-regulated Vim at 1 month post-lesion, and both Vim and GFAP at 12 months post-lesion in the ON-OTr, indicating long-term astrogliosis. They also expressed Pax2, Sox9 and CD44 in the ON, and Sox9 in the OTr. Concomitantly, persistent tissue cavities and disorganised regrowing fibre bundles reaching the OT were observed. Our ultrastructural data confirm abundant gliofilaments in reactive astrocytes joined by desmosomes. Remarkably, they also accumulated myelin debris and lipid droplets until late stages, indicating their participation in myelin removal. These data suggest that persistent mammalian-like astrogliosis in the adult lizard ON contributes to a permissive structural scaffold for long-term axonal regeneration and provides a useful model to study the molecular mechanisms involved in these beneficial neuron-glia interactions. © 2013 Anatomical Society.

  10. Altered patterning of dentate granule cell mossy fiber inputs onto CA3 pyramidal cells in limbic epilepsy

    PubMed Central

    McAuliffe, John J.; Bronson, Stefanie L.; Hester, Michael S.; Murphy, Brian L.; Dahlquist-Topalá, Renée; Richards, David A.; Danzer, Steve C.

    2009-01-01

    Impaired gating by hippocampal dentate granule cells may promote the development of limbic epilepsy by facilitating seizure spread through the hippocampal trisynaptic circuit. The second synapse in this circuit, the dentate granule cell≫CA3 pyramidal cell connection, may be of particular importance because pathological changes occurring within the dentate likely exert their principal effect on downstream CA3 pyramids. Here, we utilized GFP-expressing mice and immunolabeling for the zinc transporter ZnT-3 to reveal the pre- and postsynaptic components of granule cell≫CA3 pyramidal cell synapses following pilocarpine-epileptogenesis. Confocal analyses of these terminals revealed that while granule cell presynaptic giant boutons increased in size and complexity one month after status epilepticus, individual thorns making up the postsynaptic thorny excrescences of the CA3 pyramidal cells were reduced in number. This reduction, however, was transient, and three months after status, thorn density recovered. This recovery was accompanied by a significant change in the distribution of thorns along pyramidal cells dendrites. While thorns in control animals tended to be tightly clustered, thorns in epileptic animals were more evenly distributed. Computational modeling of thorn distributions predicted an increase in the number of boutons required to cover equivalent numbers of thorns in epileptic vs. control mice. Confirming this prediction, ZnT-3 labeling of presynaptic giant boutons apposed to GFP-expressing thorns revealed a near doubling in bouton density, while the number of individual thorns per bouton was reduced by half. Together, these data provide clear evidence of novel plastic changes occurring within the epileptic hippocampus. PMID:20014385

  11. High-pressure potato starch granule gelatinization: synchrotron radiation micro-SAXS/WAXS using a diamond anvil cell.

    PubMed

    Gebhardt, R; Hanfland, M; Mezouar, M; Riekel, C

    2007-07-01

    Potato starch granules have been examined by synchrotron radiation small- and wide-angle scattering in a diamond anvil cell (DAC) up to 750 MPa. Use of a 1 microm synchrotron radiation beam allowed the mapping of individual granules at several pressure levels. The data collected at 183 MPa show an increase in the a axis and lamellar period from the edge to the center of the granule, probably due to a gradient in water content of the crystalline and amorphous lamellae. The average granules radius increases up to the onset of gelatinization at about 500 MPa, but the a axis and the lamellar periodicity remain constant or even show a decrease, suggesting an initial hydration of amorphous growth rings. The onset of gelatinization is accompanied by (i) an increase in the average a axis and lamellar periodicity, (ii) the appearance of an equatorial SAXS streak, and (iii) additional short-range order peaks.

  12. Purkinje Cell Axon Collaterals Terminate on Cat-301+ Neurons in Macaca Monkey Cerebellum

    PubMed Central

    Crook, J.D.; Hendrickson, A.; Erickson, A.; Possin, D.; Robinson, F.R.

    2008-01-01

    The monoclonal antibody Cat-301 identifies perineuronal nets around specific neuronal types, including those in the cerebellum. This report finds in adult Macaca monkey that Basket cells in the deep molecular layer; granule cell layer (GCL) interneurons including Lugaro cells; large neurons in the foliar white matter (WM); and deep cerebellar nuclei (DCN) neurons contain subsets of Cat-301+ cells. Most Cat-301+ GCL interneurons are glycine+ and all are densely innervated by a meshwork of calbindin+/GAD+ Purkinje cell collaterals and their synapses. DCN and WM Cat-301+ neurons also receive a similar but less dense innervation. Due to the heavy labeling of adjacent Purkinje cell dendrites, the innervation of Cat-301+ Basket cells was less certain. These findings suggest that several complex feedback circuits from Purkinje cell to cerebellar interneurons exist in primate cerebellum whose function needs to be investigated. Cat-301 labeling begins postnatally in WM and DCN, but remains sparse until at least 3 months of age. Because the appearance of perineuronal nets is associated with maturation of synaptic circuits, this suggests that the Purkinje cell feedback circuits develop for some time after birth. PMID:17936513

  13. Entorhinal denervation induces homeostatic synaptic scaling of excitatory postsynapses of dentate granule cells in mouse organotypic slice cultures.

    PubMed

    Vlachos, Andreas; Becker, Denise; Jedlicka, Peter; Winkels, Raphael; Roeper, Jochen; Deller, Thomas

    2012-01-01

    Denervation-induced changes in excitatory synaptic strength were studied following entorhinal deafferentation of hippocampal granule cells in mature (≥ 3 weeks old) mouse organotypic entorhino-hippocampal slice cultures. Whole-cell patch-clamp recordings revealed an increase in excitatory synaptic strength in response to denervation during the first week after denervation. By the end of the second week synaptic strength had returned to baseline. Because these adaptations occurred in response to the loss of excitatory afferents, they appeared to be in line with a homeostatic adjustment of excitatory synaptic strength. To test whether denervation-induced changes in synaptic strength exploit similar mechanisms as homeostatic synaptic scaling following pharmacological activity blockade, we treated denervated cultures at 2 days post lesion for 2 days with tetrodotoxin. In these cultures, the effects of denervation and activity blockade were not additive, suggesting that similar mechanisms are involved. Finally, we investigated whether entorhinal denervation, which removes afferents from the distal dendrites of granule cells while leaving the associational afferents to the proximal dendrites of granule cells intact, results in a global or a local up-scaling of granule cell synapses. By using computational modeling and local electrical stimulations in Strontium (Sr(2+))-containing bath solution, we found evidence for a lamina-specific increase in excitatory synaptic strength in the denervated outer molecular layer at 3-4 days post lesion. Taken together, our data show that entorhinal denervation results in homeostatic functional changes of excitatory postsynapses of denervated dentate granule cells in vitro.

  14. The paired-pulse index: a measure of hippocampal dentate granule cell modulation.

    PubMed

    Bronzino, J D; Blaise, J H; Morgane, P J

    1997-01-01

    This study was undertaken to assess whether the paired-pulse index (PPI) is an effective measure of the modulation of dentate granule cell excitability during normal development. Paired-pulse stimulations of the perforant path were, therefore, used to construct a PPI for 15-, 30-, and 90-day old, freely moving male rats. Significant age-dependent differences in the PPI were obtained. Fifteen-day old rats showed significantly less inhibition at short interpulse intervals [interpulse interval (IPI): 20 to 30 msec), a lack of facilitation at intermediate IPIs (50 to 150 msec), and significantly less inhibition at longer IPIs (300 to 1,000 msec) than adults.

  15. Enhanced acoustic startle responding in rats with radiation-induced hippocampal granule cell hypoplasia

    SciTech Connect

    Mickley, G.A.; Ferguson, J.L.

    1989-01-01

    Irradiation of the neonatal rat hippocampus reduces the proliferation of granule cells in the dentate gyrus and results in locomotor hyperactivity, behavioral preservation, and deficits on some learned tasks. In order to address the role of changes in stimulus salience and behavioral inhibition in animals with this type of brain damage, irradiated and normal rats were compared in their startle reactions to an acoustic stimulus. Irradiated rats startled with a consistently higher amplitude than control and were more likely to exhibit startle responses. These animals with hippocampal damage also failed to habituate to the startle stimulus and, under certain circumstances, showed potentiated startle responses after many tone presentations.

  16. MMP-13 Regulates Growth of Wound Granulation Tissue and Modulates Gene Expression Signatures Involved in Inflammation, Proteolysis, and Cell Viability

    PubMed Central

    Toriseva, Mervi; Laato, Matti; Carpén, Olli; Ruohonen, Suvi T.; Savontaus, Eriika; Inada, Masaki; Krane, Stephen M.; Kähäri, Veli-Matti

    2012-01-01

    Proteinases play a pivotal role in wound healing by regulating cell-matrix interactions and availability of bioactive molecules. The role of matrix metalloproteinase-13 (MMP-13) in granulation tissue growth was studied in subcutaneously implanted viscose cellulose sponge in MMP-13 knockout (Mmp13−/−) and wild type (WT) mice. The tissue samples were harvested at time points day 7, 14 and 21 and subjected to histological analysis and gene expression profiling. Granulation tissue growth was significantly reduced (42%) at day 21 in Mmp13−/− mice. Granulation tissue in Mmp13−/− mice showed delayed organization of myofibroblasts, increased microvascular density at day 14, and virtual absence of large vessels at day 21. Gene expression profiling identified differentially expressed genes in Mmp13−/− mouse granulation tissue involved in biological functions including inflammatory response, angiogenesis, cellular movement, cellular growth and proliferation and proteolysis. Among genes linked to angiogenesis, Adamts4 and Npy were significantly upregulated in early granulation tissue in Mmp13−/− mice, and a set of genes involved in leukocyte motility including Il6 were systematically downregulated at day 14. The expression of Pdgfd was downregulated in Mmp13−/− granulation tissue in all time points. The expression of matrix metalloproteinases Mmp2, Mmp3, Mmp9 was also significantly downregulated in granulation tissue of Mmp13−/− mice compared to WT mice. Mmp13−/− mouse skin fibroblasts displayed altered cell morphology and impaired ability to contract collagen gel and decreased production of MMP-2. These results provide evidence for an important role for MMP-13 in wound healing by coordinating cellular activities important in the growth and maturation of granulation tissue, including myofibroblast function, inflammation, angiogenesis, and proteolysis. PMID:22880047

  17. Amyotrophic lateral sclerosis-linked mutations increase the viscosity of liquid-like TDP-43 RNP granules in neurons.

    PubMed

    Gopal, Pallavi P; Nirschl, Jeffrey J; Klinman, Eva; Holzbaur, Erika L F

    2017-03-21

    Ribonucleoprotein (RNP) granules are enriched in specific RNAs and RNA-binding proteins (RBPs) and mediate critical cellular processes. Purified RBPs form liquid droplets in vitro through liquid-liquid phase separation and liquid-like non-membrane-bound structures in cells. Mutations in the human RBPs TAR-DNA binding protein 43 (TDP-43) and RNA-binding protein FUS cause amyotrophic lateral sclerosis (ALS), but the biophysical properties of these proteins have not yet been studied in neurons. Here, we show that TDP-43 RNP granules in axons of rodent primary cortical neurons display liquid-like properties, including fusion with rapid relaxation to circular shape, shear stress-induced deformation, and rapid fluorescence recovery after photobleaching. RNP granules formed from wild-type TDP-43 show distinct biophysical properties depending on axonal location, suggesting maturation to a more stabilized structure is dependent on subcellular context, including local density and aging. Superresolution microscopy demonstrates that the stabilized population of TDP-43 RNP granules in the proximal axon is less circular and shows spiculated edges, whereas more distal granules are both more spherical and more dynamic. RNP granules formed by ALS-linked mutant TDP-43 are more viscous and exhibit disrupted transport dynamics. We propose these altered properties may confer toxic gain of function and reflect differential propensity for pathological transformation.

  18. Amyotrophic lateral sclerosis-linked mutations increase the viscosity of liquid-like TDP-43 RNP granules in neurons

    PubMed Central

    Gopal, Pallavi P.; Nirschl, Jeffrey J.; Holzbaur, Erika L. F.

    2017-01-01

    Ribonucleoprotein (RNP) granules are enriched in specific RNAs and RNA-binding proteins (RBPs) and mediate critical cellular processes. Purified RBPs form liquid droplets in vitro through liquid–liquid phase separation and liquid-like non–membrane-bound structures in cells. Mutations in the human RBPs TAR-DNA binding protein 43 (TDP-43) and RNA-binding protein FUS cause amyotrophic lateral sclerosis (ALS), but the biophysical properties of these proteins have not yet been studied in neurons. Here, we show that TDP-43 RNP granules in axons of rodent primary cortical neurons display liquid-like properties, including fusion with rapid relaxation to circular shape, shear stress-induced deformation, and rapid fluorescence recovery after photobleaching. RNP granules formed from wild-type TDP-43 show distinct biophysical properties depending on axonal location, suggesting maturation to a more stabilized structure is dependent on subcellular context, including local density and aging. Superresolution microscopy demonstrates that the stabilized population of TDP-43 RNP granules in the proximal axon is less circular and shows spiculated edges, whereas more distal granules are both more spherical and more dynamic. RNP granules formed by ALS-linked mutant TDP-43 are more viscous and exhibit disrupted transport dynamics. We propose these altered properties may confer toxic gain of function and reflect differential propensity for pathological transformation. PMID:28265061

  19. Prox1 is required for granule cell maturation and intermediate progenitor maintenance during brain neurogenesis.

    PubMed

    Lavado, Alfonso; Lagutin, Oleg V; Chow, Lionel M L; Baker, Suzanne J; Oliver, Guillermo

    2010-08-17

    The dentate gyrus has an important role in learning and memory, and adult neurogenesis in the subgranular zone of the dentate gyrus may play a role in the acquisition of new memories. The homeobox gene Prox1 is expressed in the dentate gyrus during embryonic development and adult neurogenesis. Here we show that Prox1 is necessary for the maturation of granule cells in the dentate gyrus during development and for the maintenance of intermediate progenitors during adult neurogenesis. We also demonstrate that Prox1-expressing intermediate progenitors are required for adult neural stem cell self-maintenance in the subgranular zone; thus, we have identified a previously unknown non-cell autonomous regulatory feedback mechanism that controls adult neurogenesis in this region of the mammalian brain. Finally, we show that the ectopic expression of Prox1 induces premature differentiation of neural stem cells.

  20. Novel Roles of the Chemorepellent Axon Guidance Molecule RGMa in Cell Migration and Adhesion

    PubMed Central

    Lah, Grace J.

    2012-01-01

    The repulsive guidance molecule A (RGMa) is a contact-mediated axon guidance molecule that has significant roles in central nervous system (CNS) development. Here we have examined whether RGMa has novel roles in cell migration and cell adhesion outside the nervous system. RGMa was found to stimulate cell migration from Xenopus animal cap explants in a neogenin-dependent and BMP-independent manner. RGMa also stimulated the adhesion of Xenopus animal cap cells, and this adhesion was dependent on neogenin and independent of calcium. To begin to functionally characterize the role of specific domains in RGMa, we assessed the migratory and adhesive activities of deletion mutants. RGMa lacking the partial von Willebrand factor type D (vWF) domain preferentially perturbed cell adhesion, while mutants lacking the RGD motif affected cell migration. We also revealed that manipulating the levels of RGMa in vivo caused major migration defects during Xenopus gastrulation. We have revealed here novel roles of RGMa in cell migration and adhesion and demonstrated that perturbations to the homeostasis of RGMa expression can severely disrupt major morphogenetic events. These results have implications for understanding the role of RGMa in both health and disease. PMID:22215618

  1. Metazoan Scc4 Homologs Link Sister Chromatid Cohesion to Cell and Axon Migration Guidance

    PubMed Central

    Seitan, Vlad C; Banks, Peter; Laval, Steve; Majid, Nazia A; Dorsett, Dale; Rana, Amer; Smith, Jim; Bateman, Alex; Krpic, Sanja; Hostert, Arnd; Rollins, Robert A; Erdjument-Bromage, Hediye; Tempst, Paul; Benard, Claire Y; Hekimi, Siegfried; Newbury, Sarah F

    2006-01-01

    Saccharomyces cerevisiae Scc2 binds Scc4 to form an essential complex that loads cohesin onto chromosomes. The prevalence of Scc2 orthologs in eukaryotes emphasizes a conserved role in regulating sister chromatid cohesion, but homologs of Scc4 have not hitherto been identified outside certain fungi. Some metazoan orthologs of Scc2 were initially identified as developmental gene regulators, such as Drosophila Nipped-B, a regulator of cut and Ultrabithorax, and delangin, a protein mutant in Cornelia de Lange syndrome. We show that delangin and Nipped-B bind previously unstudied human and fly orthologs of Caenorhabditis elegans MAU-2, a non-axis-specific guidance factor for migrating cells and axons. PSI-BLAST shows that Scc4 is evolutionarily related to metazoan MAU-2 sequences, with the greatest homology evident in a short N-terminal domain, and protein–protein interaction studies map the site of interaction between delangin and human MAU-2 to the N-terminal regions of both proteins. Short interfering RNA knockdown of human MAU-2 in HeLa cells resulted in precocious sister chromatid separation and in impaired loading of cohesin onto chromatin, indicating that it is functionally related to Scc4, and RNAi analyses show that MAU-2 regulates chromosome segregation in C. elegans embryos. Using antisense morpholino oligonucleotides to knock down Xenopus tropicalis delangin or MAU-2 in early embryos produced similar patterns of retarded growth and developmental defects. Our data show that sister chromatid cohesion in metazoans involves the formation of a complex similar to the Scc2-Scc4 interaction in the budding yeast. The very high degree of sequence conservation between Scc4 homologs in complex metazoans is consistent with increased selection pressure to conserve additional essential functions, such as regulation of cell and axon migration during development. PMID:16802858

  2. IL4I1 augments CNS remyelination and axonal protection by modulating T cell driven inflammation

    PubMed Central

    Psachoulia, Konstantina; Chamberlain, Kelly A.; Heo, Dongeun; Davis, Stephanie E.; Paskus, Jeremiah D.; Nanescu, Sonia E.; Dupree, Jeffrey L.; Wynn, Thomas A.

    2016-01-01

    See Pluchino and Peruzzotti-Jametti (doi:10.1093/aww266) for a scientific commentary on this article. Myelin regeneration (remyelination) is a spontaneous process that occurs following central nervous system demyelination. However, for reasons that remain poorly understood, remyelination fails in the progressive phase of multiple sclerosis. Emerging evidence indicates that alternatively activated macrophages in central nervous system lesions are required for oligodendrocyte progenitor differentiation into remyelinating oligodendrocytes. Here, we show that an alternatively activated macrophage secreted enzyme, interleukin-four induced one (IL4I1), is upregulated at the onset of inflammation resolution and remyelination in mouse central nervous system lesions after lysolecithin-induced focal demyelination. Focal demyelination in mice lacking IL4I1 or interleukin 4 receptor alpha (IL4Rα) results in increased proinflammatory macrophage density, remyelination impairment, and axonal injury in central nervous system lesions. Conversely, recombinant IL4I1 administration into central nervous system lesions reduces proinflammatory macrophage density, enhances remyelination, and rescues remyelination impairment in IL4Rα deficient mice. We find that IL4I1 does not directly affect oligodendrocyte differentiation, but modulates inflammation by reducing interferon gamma and IL17 expression in lesioned central nervous system tissues, and in activated T cells from splenocyte cultures. Remarkably, intravenous injection of IL4I1 into mice with experimental autoimmune encephalomyelitis at disease onset significantly reversed disease severity, resulting in recovery from hindlimb paralysis. Analysis of post-mortem tissues reveals reduced axonal dystrophy in spinal cord, and decreased CD4+ T cell populations in spinal cord and spleen tissues. These results indicate that IL4I1 modulates inflammation by regulating T cell expansion, thereby permitting the formation of a favourable

  3. Facilitation of granule cell epileptiform activity by mossy fiber-released zinc in the pilocarpine model of temporal lobe epilepsy.

    PubMed

    Timofeeva, Olga; Nadler, J Victor

    2006-03-17

    Recurrent mossy fiber synapses in the dentate gyrus of epileptic brain facilitate the synchronous firing of granule cells and may promote seizure propagation. Mossy fiber terminals contain and release zinc. Released zinc inhibits the activation of NMDA receptors and may therefore oppose the development of granule cell epileptiform activity. Hippocampal slices from rats that had experienced pilocarpine-induced status epilepticus and developed a recurrent mossy fiber pathway were used to investigate this possibility. Actions of released zinc were inferred from the effects of chelation with 1 mM calcium disodium EDTA (CaEDTA). When granule cell population bursts were evoked by mossy fiber stimulation in the presence of 6 mM K(+) and 30 microM bicuculline, CaEDTA slowed the rate at which evoked bursting developed, but did not change the magnitude of the bursts once they had developed fully. The effects of CaEDTA were then studied on the pharmacologically isolated NMDA receptor- and AMPA/kainate receptor-mediated components of the fully developed bursts. CaEDTA increased the magnitude of NMDA receptor-mediated bursts and reduced the magnitude of AMPA/kainate receptor-mediated bursts. CaEDTA did not affect the granule cell bursts evoked in slices from untreated rats by stimulating the perforant path in the presence of bicuculline and 6 mM K(+). These results suggest that zinc released from the recurrent mossy fibers serves