Liang, Zhaoliang; Gao, Fei; Wang, Fajun; Wang, Xiaochen; Song, Xinyu; Liu, Kejing; Zhan, Ren-Zhi
2013-01-01
Enhanced neurogenesis in the dentate gyrus of the hippocampus following seizure activity, especially status epilepticus, is associated with ectopic residence and aberrant integration of newborn granule cells. Hilar ectopic granule cells may be detrimental to the stability of dentate circuitry by means of their electrophysiological properties and synaptic connectivity. We hypothesized that status epilepticus also increases ectopic granule cells in the molecular layer. Status epilepticus was induced in male Sprague-Dawley rats by intraperitoneal injection of pilocarpine. Immunostaining showed that many doublecortin-positive cells were present in the molecular layer and the hilus 7 days after the induction of status epilepticus. At least 10 weeks after status epilepticus, the estimated number of cells positive for both prospero homeobox protein 1 and neuron-specific nuclear protein in the hilus was significantly increased. A similar trend was also found in the molecular layer. These findings indicate that status epilepticus can increase the numbers of mature and ectopic newborn granule cells in the molecular layer. PMID:25206705
Cameron, Michael C.; Zhan, Ren-Zhi; Nadler, J. Victor
2014-01-01
After pilocarpine-induced status epilepticus, many granule cells born into the postseizure environment migrate aberrantly into the dentate hilus. Hilar ectopic granule cells (HEGCs) are hyperexcitable and may therefore increase circuit excitability. This study determined the distribution of their axons and dendrites. HEGCs and normotopic granule cells were filled with biocytin during whole-cell patch clamp recording in hippocampal slices from pilocarpine-treated rats. The apical dendrite of 86% of the biocytin-labeled HEGCs extended to the outer edge of the dentate molecular layer. The total length and branching of HEGC apical dendrites that penetrated the molecular layer were significantly reduced compared with apical dendrites of normotopic granule cells. HEGCs were much more likely to have a hilar basal dendrite than normotopic granule cells. They were about as likely as normotopic granule cells to project to CA3 pyramidal cells within the slice, but were much more likely to send at least one recurrent mossy fiber into the molecular layer. HEGCs with burst capability had less well-branched apical dendrites than nonbursting HEGCs, their dendrites were more likely to be confined to the hilus, and some exhibited dendritic features similar to those of immature granule cells. HEGCs thus have many paths along which to receive synchronized activity from normotopic granule cells and to transmit their own hyperactivity to both normotopic granule cells and CA3 pyramidal cells. They may therefore contribute to the highly interconnected granule cell hubs that have been proposed as crucial to development of a hyperexcitable, potentially seizure-prone circuit. PMID:21455997
Long-term potentiation in hilar circuitry modulates gating by the dentate gyrus.
Wright, Brandon J; Jackson, Meyer B
2014-07-16
The dentate gyrus serves as a gateway to the hippocampus, filtering and processing sensory inputs as an animal explores its environment. The hilus occupies a strategic position within the dentate gyrus from which it can play a pivotal role in these functions. Inputs from dentate granule cells converge on the hilus, and excitatory hilar mossy cells redistribute these signals back to granule cells to transform a pattern of cortical input into a new pattern of output to the hippocampal CA3 region. Using voltage-sensitive dye to image electrical activity in rat hippocampal slices, we explored how long-term potentiation (LTP) of different excitatory synapses modifies the flow of information. Theta burst stimulation of the perforant path potentiated responses throughout the molecular layer, but left responses in the CA3 region unchanged. By contrast, theta burst stimulation of the granule cell layer potentiated responses throughout the molecular layer, as well as in the CA3 region. Theta burst stimulation of the granule cell layer potentiated CA3 responses not only to granule cell layer stimulation but also to perforant path stimulation. Potentiation of responses in the CA3 region reflected NMDA receptor-dependent LTP of upstream synapses between granule cells and mossy cells, with no detectable contribution from NMDA receptor-independent LTP of local CA3 mossy fiber synapses. Potentiation of transmission to the CA3 region required LTP in both granule cell→mossy cell and mossy cell→granule cell synapses. This bidirectional plasticity enables hilar circuitry to regulate the flow of information through the dentate gyrus and on to the hippocampus. Copyright © 2014 the authors 0270-6474/14/349743-11$15.00/0.
Control of cerebellar granule cell output by sensory-evoked Golgi cell inhibition
Duguid, Ian; Branco, Tiago; Chadderton, Paul; Arlt, Charlotte; Powell, Kate; Häusser, Michael
2015-01-01
Classical feed-forward inhibition involves an excitation–inhibition sequence that enhances the temporal precision of neuronal responses by narrowing the window for synaptic integration. In the input layer of the cerebellum, feed-forward inhibition is thought to preserve the temporal fidelity of granule cell spikes during mossy fiber stimulation. Although this classical feed-forward inhibitory circuit has been demonstrated in vitro, the extent to which inhibition shapes granule cell sensory responses in vivo remains unresolved. Here we combined whole-cell patch-clamp recordings in vivo and dynamic clamp recordings in vitro to directly assess the impact of Golgi cell inhibition on sensory information transmission in the granule cell layer of the cerebellum. We show that the majority of granule cells in Crus II of the cerebrocerebellum receive sensory-evoked phasic and spillover inhibition prior to mossy fiber excitation. This preceding inhibition reduces granule cell excitability and sensory-evoked spike precision, but enhances sensory response reproducibility across the granule cell population. Our findings suggest that neighboring granule cells and Golgi cells can receive segregated and functionally distinct mossy fiber inputs, enabling Golgi cells to regulate the size and reproducibility of sensory responses. PMID:26432880
Tanaka, Shigeru; Nagao, Soichi; Nishino, Tetsuro
2011-01-01
Information processing of the cerebellar granular layer composed of granule and Golgi cells is regarded as an important first step toward the cerebellar computation. Our previous theoretical studies have shown that granule cells can exhibit random alternation between burst and silent modes, which provides a basis of population representation of the passage-of-time (POT) from the onset of external input stimuli. On the other hand, another computational study has reported that granule cells can exhibit synchronized oscillation of activity, as consistent with observed oscillation in local field potential recorded from the granular layer while animals keep still. Here we have a question of whether an identical network model can explain these distinct dynamics. In the present study, we carried out computer simulations based on a spiking network model of the granular layer varying two parameters: the strength of a current injected to granule cells and the concentration of Mg2+ which controls the conductance of NMDA channels assumed on the Golgi cell dendrites. The simulations showed that cells in the granular layer can switch activity states between synchronized oscillation and random burst-silent alternation depending on the two parameters. For higher Mg2+ concentration and a weaker injected current, granule and Golgi cells elicited spikes synchronously (synchronized oscillation state). In contrast, for lower Mg2+ concentration and a stronger injected current, those cells showed the random burst-silent alternation (POT-representing state). It is suggested that NMDA channels on the Golgi cell dendrites play an important role for determining how the granular layer works in response to external input. PMID:21779155
Electrophysiological mapping of the accessory olfactory bulb of the rabbit (Oryctolagus cuniculus).
van Groen, T; Ruardy, L; da Silva, F H
1986-07-01
Field potentials elicited by electrical stimulation of the vomeronasal nerve were measured in the accessory olfactory bulb of the rabbit. Maps were made of the distribution of surface field potentials and of the corresponding depth profiles. The surface maps followed closely the contours of the accessory olfactory bulb: at the frontal border the field potential tended to zero and at the center of the structure the field potential attained a maximum. Depth profiles of the field potentials through the accessory olfactory bulb presented a surface-negative wave and, in depth, a positive wave. The polarity reversal occurred at the deep part of the granule cell layer. The zero equipotential line followed closely the curvature of the granule cell layer. Current source density analysis of the depth profiles revealed a main sink at the external plexiform and granule cell layers. This indicates that the main activity in the accessory olfactory bulb is generated by the synapses between the mitral cells and the granule cells as is found in the main olfactory bulb.
MicroRNAs Promote Granule Cell Expansion in the Cerebellum Through Gli2.
Constantin, Lena; Wainwright, Brandon J
2015-12-01
MicroRNAs (miRNAs) are important regulators of cerebellar function and homeostasis. Their deregulation results in cerebellar neuronal degeneration and spinocerebellar ataxia type 1 and contributes to medulloblastoma. Canonical miRNA processing involves Dicer, which cleaves precursor miRNAs into mature double-stranded RNA duplexes. In order to address the role of miRNAs in cerebellar granule cell precursor development, loxP-flanked exons of Dicer1 were conditionally inactivated using the granule cell precursor-specific Atoh1-Cre recombinase. A reduction of 87% in Dicer1 transcript was achieved in this conditional Dicer knockdown model. Although knockdown resulted in normal survival, mice had disruptions to the cortical layering of the anterior cerebellum, which resulted from the premature differentiation of granule cell precursors in this region during neonatal development. This defect manifested as a thinner external granular layer with ectopic mature granule cells, and a depleted internal granular layer. We found that expression of the activator components of the Hedgehog-Patched pathway, the Gli family of transcription factors, was perturbed in conditional Dicer knockdown mice. We propose that loss of Gli2 mRNA mediated the anterior-restricted defect in conditional Dicer knockdown mice and, as proof of principle, were able to show that miR-106b positively regulated Gli2 mRNA expression. These findings confirm the importance of miRNAs as positive mediators of Hedgehog-Patched signalling during granule cell precursor development.
Carrasco, Emilce; Blum, Mariann; Weickert, Cynthia Shannon; Casper, Diana
2003-01-10
It has been established that thyroid hormone and neurotrophic factors both orchestrate developmental events in the brain. However, it is not clear how these two influences are related. In this study, we investigated the effects of thyroid hormone on cerebellar development and the coincident expression of transforming growth factor-alpha (TGF-alpha), a ligand in the epidermal growth factor (EGF) family, and the epidermal growth factor receptor (EGFR). Profiles of thyroid hormone expression were measured in postnatal animals and were found to peak at postnatal day 15 (P15). These levels dropped below detectable levels when mice were made hypothyroid with propylthiouracil (PTU). TGF-alpha and EGFR expression, as determined by RNAse protection assay, was maximal at P6 in normal animals, but remained low in hypothyroid animals, suggesting that thyroid hormone was responsible for their induction. In situ hybridization and immunohistochemical analysis of EGFR expression revealed that this receptor was present on granule cells within the inner zone of the external granule cell layer (EGL), suggesting that EGFR-ligands were not inducing granule cell proliferation. The persistence of EGFR expression on migrating granule cells and subsequent down-regulation of expression in the internal granule cell layer (IGL) implicates a role for EGFR-ligands in differentiation and/or migration. In hypothyroid animals, we observed a delayed progression of granule cell migration, consistent with the persistence of EGFR labeling in the EGL, and in the 'pile-up' of labeled cells at the interface between the molecular layer and the Purkinje cell layer. Taken together, these results implicate thyroid hormone in the coordinated expression of TGF-alpha and EGFR, which are positioned to play a role in post-mitotic developmental events in the cerebellum.
Morphological Constraints on Cerebellar Granule Cell Combinatorial Diversity.
Gilmer, Jesse I; Person, Abigail L
2017-12-13
Combinatorial expansion by the cerebellar granule cell layer (GCL) is fundamental to theories of cerebellar contributions to motor control and learning. Granule cells (GrCs) sample approximately four mossy fiber inputs and are thought to form a combinatorial code useful for pattern separation and learning. We constructed a spatially realistic model of the cerebellar GCL and examined how GCL architecture contributes to GrC combinatorial diversity. We found that GrC combinatorial diversity saturates quickly as mossy fiber input diversity increases, and that this saturation is in part a consequence of short dendrites, which limit access to diverse inputs and favor dense sampling of local inputs. This local sampling also produced GrCs that were combinatorially redundant, even when input diversity was extremely high. In addition, we found that mossy fiber clustering, which is a common anatomical pattern, also led to increased redundancy of GrC input combinations. We related this redundancy to hypothesized roles of temporal expansion of GrC information encoding in service of learned timing, and we show that GCL architecture produces GrC populations that support both temporal and combinatorial expansion. Finally, we used novel anatomical measurements from mice of either sex to inform modeling of sparse and filopodia-bearing mossy fibers, finding that these circuit features uniquely contribute to enhancing GrC diversification and redundancy. Our results complement information theoretic studies of granule layer structure and provide insight into the contributions of granule layer anatomical features to afferent mixing. SIGNIFICANCE STATEMENT Cerebellar granule cells are among the simplest neurons, with tiny somata and, on average, just four dendrites. These characteristics, along with their dense organization, inspired influential theoretical work on the granule cell layer as a combinatorial expander, where each granule cell represents a unique combination of inputs. Despite the centrality of these theories to cerebellar physiology, the degree of expansion supported by anatomically realistic patterns of inputs is unknown. Using modeling and anatomy, we show that realistic input patterns constrain combinatorial diversity by producing redundant combinations, which nevertheless could support temporal diversification of like combinations, suitable for learned timing. Our study suggests a neural substrate for producing high levels of both combinatorial and temporal diversity in the granule cell layer. Copyright © 2017 the authors 0270-6474/17/3712153-14$15.00/0.
Linking macroscopic with microscopic neuroanatomy using synthetic neuronal populations.
Schneider, Calvin J; Cuntz, Hermann; Soltesz, Ivan
2014-10-01
Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models.
Linking Macroscopic with Microscopic Neuroanatomy Using Synthetic Neuronal Populations
Schneider, Calvin J.; Cuntz, Hermann; Soltesz, Ivan
2014-01-01
Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models. PMID:25340814
Olfactory and cortical projections to bulbar and hippocampal adult-born neurons
De La Rosa-Prieto, Carlos; De Moya-Pinilla, Miguel; Saiz-Sanchez, Daniel; Ubeda-banon, Isabel; Arzate, Dulce M.; Flores-Cuadrado, Alicia; Liberia, Teresa; Crespo, Carlos; Martinez-Marcos, Alino
2015-01-01
New neurons are continually generated in the subependymal layer of the lateral ventricles and the subgranular zone of dentate gyrus during adulthood. In the subventricular zone, neuroblasts migrate a long distance to the olfactory bulb where they differentiate into granule or periglomerular interneurons. In the hippocampus, neuroblasts migrate a short distance from the subgranular zone to the granule cell layer of the dentate gyrus to become granule neurons. In addition to the short-distance inputs, bulbar interneurons receive long-distance centrifugal afferents from olfactory-recipient structures. Similarly, dentate granule cells receive differential inputs from the medial and lateral entorhinal cortices through the perforant pathway. Little is known concerning these new inputs on the adult-born cells. In this work, we have characterized afferent inputs to 21-day old newly-born neurons. Mice were intraperitoneally injected with bromodeoxyuridine. Two weeks later, rhodamine-labeled dextran-amine was injected into the anterior olfactory nucleus, olfactory tubercle, piriform cortex and lateral and medial entorhinal cortices. One week later, animals were perfused and immunofluorescences were carried out. The data show that projection neurons from the mentioned structures, establish putative synaptic contacts onto 21-day-old neurons in the olfactory bulb and dentate gyrus, in some cases even before they start to express specific subpopulation proteins. Long-distance afferents reach middle and outer one-third portions of the molecular layer of the dentate gyrus and granule and, interestingly, periglomerular layers of the olfactory bulb. In the olfactory bulb, these fibers appear to establish presumptive axo-somatic contacts onto newly-born granule and periglomerular cells. PMID:25698936
The cerebellar Golgi cell and spatiotemporal organization of granular layer activity
D'Angelo, Egidio; Solinas, Sergio; Mapelli, Jonathan; Gandolfi, Daniela; Mapelli, Lisa; Prestori, Francesca
2013-01-01
The cerebellar granular layer has been suggested to perform a complex spatiotemporal reconfiguration of incoming mossy fiber signals. Central to this role is the inhibitory action exerted by Golgi cells over granule cells: Golgi cells inhibit granule cells through both feedforward and feedback inhibitory loops and generate a broad lateral inhibition that extends beyond the afferent synaptic field. This characteristic connectivity has recently been investigated in great detail and been correlated with specific functional properties of these neurons. These include theta-frequency pacemaking, network entrainment into coherent oscillations and phase resetting. Important advances have also been made in terms of determining the membrane and synaptic properties of the neuron, and clarifying the mechanisms of activation by input bursts. Moreover, voltage sensitive dye imaging and multi-electrode array (MEA) recordings, combined with mathematical simulations based on realistic computational models, have improved our understanding of the impact of Golgi cell activity on granular layer circuit computations. These investigations have highlighted the critical role of Golgi cells in: generating dense clusters of granule cell activity organized in center-surround structures, implementing combinatorial operations on multiple mossy fiber inputs, regulating transmission gain, and cut-off frequency, controlling spike timing and burst transmission, and determining the sign, intensity and duration of long-term synaptic plasticity at the mossy fiber-granule cell relay. This review considers recent advances in the field, highlighting the functional implications of Golgi cells for granular layer network computation and indicating new challenges for cerebellar research. PMID:23730271
Cleland, J P; Willis, E F; Bartlett, P F; Vukovic, J
2017-09-29
Activated neurons express immediate-early genes, such as Arc. Expression of Arc in the hippocampal granule cell layer, an area crucial for spatial learning and memory, is increased during acquisition of spatial learning; however, it is unclear whether this effect is related to the task-specific learning process or to nonspecific aspects of the testing procedure (e.g. exposure to the testing apparatus and exploration of the environment). Herein, we show that Arc-positive cells numbers are increased to the same extent in the granule cell layer after both acquisition of a single spatial learning event in the active place avoidance task and exploration of the testing environment, as compared to naïve (i.e. caged) mice. Repeated exposure the testing apparatus and environment did not reduce Arc expression. Furthermore, Arc expression did not correlate with performance in both adult and aged animals, suggesting that exploration of the testing environment, rather than the specific acquisition of the active place avoidance task, induces Arc expression in the dentate granule cell layer. These findings thus suggest that Arc is an experience-induced immediate-early gene.
Neonatal isolation impairs neurogenesis in the dentate gyrus of the guinea pig.
Rizzi, Simona; Bianchi, Patrizia; Guidi, Sandra; Ciani, Elisabetta; Bartesaghi, Renata
2007-01-01
In the current study we examined the effects of early isolation rearing on cell proliferation, survival and differentiation in the dentate gyrus of the guinea pig. Animals were assigned to either a standard (control) or an isolated environment a few days after birth (P5-P6), taking advantage of the precocious independence from maternal care of the guinea pig. On P14-P17 animals received one daily bromodeoxyuridine injection, to label dividing cells, and were sacrificed either on P18, to evaluate cell proliferation or on P45, to evaluate cell survival and differentiation. In P18 isolated animals we found a reduced cell proliferation (-35%) compared to controls and a lower expression of brain-derived neurotrophic factor (BDNF). Though in absolute terms P45 isolated animals had less surviving cells, they showed no differences in survival rate and phenotype percent distribution compared to controls. Looking at the location of the new neurons, we found that while in control animals 76% of them had migrated to the granule cell layer, in isolated animals only 55% of the new neurons had reached this layer. Examination of radial glia cells of P18 and P45 animals by vimentin immunohistochemistry showed that in isolated animals radial glia cells were reduced in density and had less and shorter processes. Granule cell count revealed that P45 isolated animals had less (-42%) granule cells than controls. Results show that isolation rearing reduces hippocampal cell proliferation, likely by reducing BDNF expression and hampers migration of the new neurons to the granule cell layer, likely by altering density/morphology of radial glia cells. The large reduction in granule cell number following isolation rearing emphasizes the role of environmental cues as relevant modulators of neurogenesis.
Wang, Shaobo; Brunne, Bianka; Zhao, Shanting; Chai, Xuejun; Li, Jiawei; Lau, Jeremie; Failla, Antonio Virgilio; Zobiak, Bernd; Sibbe, Mirjam; Westbrook, Gary L; Lutz, David; Frotscher, Michael
2018-01-03
Reelin controls neuronal migration and layer formation. Previous studies in reeler mice deficient in Reelin focused on the result of the developmental process in fixed tissue sections. It has remained unclear whether Reelin affects the migratory process, migration directionality, or migrating neurons guided by the radial glial scaffold. Moreover, Reelin has been regarded as an attractive signal because newly generated neurons migrate toward the Reelin-containing marginal zone. Conversely, Reelin might be a stop signal because migrating neurons in reeler , but not in wild-type mice, invade the marginal zone. Here, we monitored the migration of newly generated proopiomelanocortin-EGFP -expressing dentate granule cells in slice cultures from reeler , reeler -like mutants and wild-type mice of either sex using real-time microscopy. We discovered that not the actual migratory process and migratory speed, but migration directionality of the granule cells is controlled by Reelin. While wild-type granule cells migrated toward the marginal zone of the dentate gyrus, neurons in cultures from reeler and reeler -like mutants migrated randomly in all directions as revealed by vector analyses of migratory trajectories. Moreover, live imaging of granule cells in reeler slices cocultured to wild-type dentate gyrus showed that the reeler neurons changed their directions and migrated toward the Reelin-containing marginal zone of the wild-type culture, thus forming a compact granule cell layer. In contrast, directed migration was not observed when Reelin was ubiquitously present in the medium of reeler slices. These results indicate that topographically administered Reelin controls the formation of a granule cell layer. SIGNIFICANCE STATEMENT Neuronal migration and the various factors controlling its onset, speed, directionality, and arrest are poorly understood. Slice cultures offer a unique model to study the migration of individual neurons in an almost natural environment. In the present study, we took advantage of the expression of proopiomelanocortin-EGFP by newly generated, migrating granule cells to analyze their migratory trajectories in hippocampal slice cultures from wild-type mice and mutants deficient in Reelin signaling. We show that the compartmentalized presence of Reelin is essential for the directionality, but not the actual migratory process or speed, of migrating granule cells leading to their characteristic lamination in the dentate gyrus. Copyright © 2018 the authors 0270-6474/18/380137-12$15.00/0.
Matsuda, Saeka; Shoumura, Masahito; Osuga, Naoto; Tsujigiwa, Hidetsugu; Nakano, Keisuke; Okafuji, Norimasa; Ochiai, Takanaga; Hasegawa, Hiromasa; Kawakami, Toshiyuki
2016-01-01
Perforation of floor of the dental pulp is often encountered during root canal treatment in routine clinical practice of dental caries. If perforation were large, granulation tissue would grow to form periodontal polyp. Granulation tissue consists of proliferating cells however their origin is not clear. It was shown that the cells in granulation tissue are mainly from migration of undifferentiated mesenchymal cells of the bone marrow. Hence, this study utilized GFP bone marrow transplantation mouse model. The floor of the pulp chamber in maxillary first molar was perforated using ½ dental round bur. Morphological assessment was carried out by micro CT and microscopy and GFP cell mechanism was further assessed by immunohistochemistry using double fluorescent staining with GFP-S100A4; GFP-Runx2 and GFP-CD31. Results of micro CT revealed alveolar bone resorption and widening of periodontal ligament. Histopathological examination showed proliferation of fibroblasts with some round cells and blood vessels in the granulation tissue. At 2 weeks, the outermost layer of the granulation tissue was lined by squamous cells with distinct intercellular bridges. At 4 weeks, the granulation tissue became larger than the perforation and the outermost layer was lined by relatively typical stratified squamous epithelium. Double immunofluorescent staining of GFP and Runx2 revealed that both proteins were expressed in spindle-shaped cells. Double immunofluorescent staining of GFP and CD31 revealed that both proteins were expressed in vascular endothelial cells in morphologically distinct vessels. The results suggest that fibroblasts, periodontal ligament fibroblasts and blood vessels in granulation tissue were derived from transplanted-bone marrow cells. Thus, essential growth of granulation tissue in periodontal polyp was caused by the migration of undifferentiated mesenchymal cells derived from bone marrow, which differentiated into fibroblasts and later on differentiated into other cells in response to injury.
Gap Junction Modulation of Low-Frequency Oscillations in the Cerebellar Granule Cell Layer.
Robinson, Jennifer Claire; Chapman, C Andrew; Courtemanche, Richard
2017-08-01
Local field potential (LFP) oscillations in the granule cell layer (GCL) of the cerebellar cortex have been identified previously in the awake rat and monkey during immobility. These low-frequency oscillations are thought to be generated through local circuit interactions between Golgi cells and granule cells within the GCL. Golgi cells display rhythmic firing and pacemaking properties, and also are electrically coupled through gap junctions within the GCL. Here, we tested if gap junctions in the rat cerebellar cortex contribute to the generation of LFP oscillations in the GCL. We recorded LFP oscillations under urethane anesthesia, and examined the effects of local infusion of gap junction blockers on 5-15 Hz oscillations. Local infusion of the gap junction blockers carbenoxolone and mefloquine resulted in significant decreases in the power of oscillations over a 30-min period, but the power of oscillations was unchanged in control experiments following vehicle injections. In addition, infusion of gap junction blockers had no significant effect on multi-unit activity, suggesting that the attenuation of low-frequency oscillations was likely due to reductions in electrical coupling rather than a decreased excitability within the granule cell layer. Our results indicate that electrical coupling among the Golgi cell networks in the cerebellar cortex contributes to the local circuit mechanisms that promote the occurrence of GCL LFP slow oscillations in the anesthetized rat.
Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids.
Bresan, Stephanie; Sznajder, Anna; Hauf, Waldemar; Forchhammer, Karl; Pfeiffer, Daniel; Jendrossek, Dieter
2016-05-25
Polyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated. We addressed this topic by the expression of fusion proteins of DsRed2EC and other fluorescent proteins with the phospholipid-binding domain (LactC2) of lactadherin in three model organisms. The fusion proteins specifically localized at the cell membrane of Ralstonia eutropha but did not co-localize with PHB granules. The same result was obtained for Pseudomonas putida, a species that accumulates another type of polyhydroxyalkanoate (PHA) granules related to PHB. Notably, DsRed2EC-LactC2 expressed in Magnetospirillum gryphiswaldense was detected at the position of membrane-enclosed magnetosome chains and at the cytoplasmic membrane but not at PHB granules. In conclusion, the carbonosomes of representatives of α-proteobacteria, β-proteobacteria and γ-proteobacteria have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally are free of phospholipids and consist of proteins only.
Iskusnykh, Igor Y; Buddington, Randal K; Chizhikov, Victor V
2018-08-01
Preterm birth is a leading cause of long-term motor and cognitive deficits. Clinical studies suggest that some of these deficits result from disruption of cerebellar development, but the mechanisms that mediate cerebellar abnormalities in preterm infants are largely unknown. Furthermore, it remains unclear whether preterm birth and precocious exposure to the ex-utero environment directly disrupt cerebellar development or indirectly by increasing the probability of cerebellar injury, including that resulting from clinical interventions and protocols associated with the care of preterm infants. In this study, we analyzed the cerebellum of preterm pigs delivered via c-section at 91% term and raised for 10 days, until term-equivalent age. The pigs did not receive any treatments known or suspected to affect cerebellar development and had no evidence of brain damage. Term pigs sacrificed at birth were used as controls. Immunohistochemical analysis revealed that preterm birth did not affect either size or numbers of Purkinje cells or molecular layer interneurons at term-equivalent age. The number of granule cell precursors and Bergmann glial fibers, however, were reduced in preterm pigs. Preterm pigs had reduced proliferation but not differentiation of granule cells. qRT-PCR analysis of laser capture microdissected external granule cell layer showed that preterm pigs had a reduced expression of Ccnd1 (Cyclin D1), Ccnb1 (Cyclin B1), granule cell master regulatory transcription factor Atoh1, and signaling molecule Jag1. In vitro rescue experiments identified Jag1 as a central granule cell gene affected by preterm birth. Thus, preterm birth and precocious exposure to the ex-utero environment disrupt cerebellum by modulating expression of key cerebellar developmental genes, predominantly affecting development of granule precursors and Bergmann glia. Copyright © 2018 Elsevier Inc. All rights reserved.
Cavarretta, Francesco; Marasco, Addolorata; Hines, Michael L; Shepherd, Gordon M; Migliore, Michele
2016-01-01
The olfactory bulb processes inputs from olfactory receptor neurons (ORNs) through two levels: the glomerular layer at the site of input, and the granule cell level at the site of output to the olfactory cortex. The sequence of action of these two levels has not yet been examined. We analyze this issue using a novel computational framework that is scaled up, in three-dimensions (3D), with realistic representations of the interactions between layers, activated by simulated natural odors, and constrained by experimental and theoretical analyses. We suggest that the postulated functions of glomerular circuits have as their primary role transforming a complex and disorganized input into a contrast-enhanced and normalized representation, but cannot provide for synchronization of the distributed glomerular outputs. By contrast, at the granule cell layer, the dendrodendritic interactions mediate temporal decorrelation, which we show is dependent on the preceding contrast enhancement by the glomerular layer. The results provide the first insights into the successive operations in the olfactory bulb, and demonstrate the significance of the modular organization around glomeruli. This layered organization is especially important for natural odor inputs, because they activate many overlapping glomeruli.
Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids
Bresan, Stephanie; Sznajder, Anna; Hauf, Waldemar; Forchhammer, Karl; Pfeiffer, Daniel; Jendrossek, Dieter
2016-01-01
Polyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated. We addressed this topic by the expression of fusion proteins of DsRed2EC and other fluorescent proteins with the phospholipid-binding domain (LactC2) of lactadherin in three model organisms. The fusion proteins specifically localized at the cell membrane of Ralstonia eutropha but did not co-localize with PHB granules. The same result was obtained for Pseudomonas putida, a species that accumulates another type of polyhydroxyalkanoate (PHA) granules related to PHB. Notably, DsRed2EC-LactC2 expressed in Magnetospirillum gryphiswaldense was detected at the position of membrane-enclosed magnetosome chains and at the cytoplasmic membrane but not at PHB granules. In conclusion, the carbonosomes of representatives of α-proteobacteria, β-proteobacteria and γ-proteobacteria have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally are free of phospholipids and consist of proteins only. PMID:27222167
Intrauterine Growth Restriction Affects Cerebellar Granule Cells in the Developing Guinea Pig Brain.
Tolcos, Mary; McDougall, Annie; Shields, Amy; Chung, Yoonyoung; O'Dowd, Rachael; Turnley, Ann; Wallace, Megan; Rees, Sandra
2018-01-01
Intrauterine growth restriction (IUGR) can lead to adverse neurodevelopmental sequelae in postnatal life. However, the effects of IUGR on the cerebellum are still to be fully elucidated. A major determinant of growth and development of the cerebellum is proliferation and subsequent migration of cerebellar granule cells. Our objective was to determine whether IUGR, induced by chronic placental insufficiency (CPI) in guinea pigs, results in abnormal cerebellar development due to deficits suggestive of impaired granule cell proliferation and/or migration. CPI was induced by unilateral ligation of the uterine artery at mid-gestation, producing growth-restricted (GR) foetuses at 52 and 60 days of gestation (dg), and neonates at 1 week postnatal age (term approx. 67 dg). Controls were from sham-operated animals. In GR foetuses compared with controls at 52 dg, the external granular layer (EGL) width and internal granular layer (IGL) area were similar. In GR foetuses compared with controls at 60 dg: (a) the EGL width was greater (p < 0.005); (b) the IGL area was smaller (p < 0.005); (c) the density of Ki67-negative (postmitotic) granule cells in the EGL was greater (p < 0.01); (d) the somal area of Purkinje cells was reduced (p < 0.005), and (e) the linear density of Bergmann glia was similar. The EGL width in GR foetuses at 60 dg was comparable to that of 52 dg control and GR foetuses. The pattern of p27-immunoreactivity in the EGL was the inverse of Ki67-immunoreactivity at both foetal ages; there was no difference between control and GR foetuses at either age in the width of p27-immunoreactivity, or in the percentage of the EGL width that it occupied. In the molecular layer of GR neonates compared with controls there was an increase in the areal density of granule cells (p < 0.05) and in the percentage of migrating to total number of granule cells (p < 0.01) at 1 week but not at 60 dg (p > 0.05). Thus, we found no specific evidence that IUGR affects granule cell proliferation, but it alters the normal program of migration to the IGL and, in addition, the development of Purkinje cells. Such alterations will likely affect the development of appropriate circuitry and have implications for cerebellar function. © 2018 S. Karger AG, Basel.
Intracellular Zn(2+) signaling in the dentate gyrus is required for object recognition memory.
Takeda, Atsushi; Tamano, Haruna; Ogawa, Taisuke; Takada, Shunsuke; Nakamura, Masatoshi; Fujii, Hiroaki; Ando, Masaki
2014-11-01
The role of perforant pathway-dentate granule cell synapses in cognitive behavior was examined focusing on synaptic Zn(2+) signaling in the dentate gyrus. Object recognition memory was transiently impaired when extracellular Zn(2+) levels were decreased by injection of clioquinol and N,N,N',N'-tetrakis-(2-pyridylmethyl) ethylendediamine. To pursue the effect of the loss and/or blockade of Zn(2+) signaling in dentate granule cells, ZnAF-2DA (100 pmol, 0.1 mM/1 µl), an intracellular Zn(2+) chelator, was locally injected into the dentate molecular layer of rats. ZnAF-2DA injection, which was estimated to chelate intracellular Zn(2+) signaling only in the dentate gyrus, affected object recognition memory 1 h after training without affecting intracellular Ca(2+) signaling in the dentate molecular layer. In vivo dentate gyrus long-term potentiation (LTP) was affected under the local perfusion of the recording region (the dentate granule cell layer) with 0.1 mM ZnAF-2DA, but not with 1-10 mM CaEDTA, an extracellular Zn(2+) chelator, suggesting that the blockade of intracellular Zn(2+) signaling in dentate granule cells affects dentate gyrus LTP. The present study demonstrates that intracellular Zn(2+) signaling in the dentate gyrus is required for object recognition memory, probably via dentate gyrus LTP expression. Copyright © 2014 Wiley Periodicals, Inc.
Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu
2008-04-01
In the pharmaceutical preparation of a controlled release drug, it is very important and necessary to understand the release properties. In previous papers, a combination of the square-root time law and cube-root law equations was confirmed to be a useful equation for qualitative treatment. It was also confirmed that the combination equation could analyze the release properties of layered granules as well as matrix granules. The drug release property from layered granules is different from that of matrix granules. A time lag occurs before release, and the entire release property of layered granules was analyzed using the combination of the square-root time law and cube-root law equations. It is considered that the analysis method is very useful and efficient for both matrix and layered granules. Comparing the granulation methods, it is easier to control the manufacturing process by tumbling granulation (method B) than by tumbling-fluidized bed granulation (method C). Ethylcellulose (EC) layered granulation by a fluidized bed granulator might be convenient for the preparation of controlled release dosage forms as compared with a tumbling granulator, because the layered granules prepared by the fluidized bed granulator can granulate and dry at the same time. The time required for drying by the fluidized bed granulator is shorter than that by the tumbling granulator, so the fluidized bed granulator is convenient for preparation of granules in handling and shorter processing time than the tumbling granulator. It was also suggested that the EC layered granules prepared by the fluidized bed granulator were suitable for a controlled release system as well as the EC matrix granules.
Olfactory granule cell development in normal and hyperthyroid rats.
Brunjes, P C; Schwark, H D; Greenough, W T
1982-10-01
Dendritic development was examined in olfactory bulbs of both normal 7-, 14-, 21- and 60-day-old rats and littermates treated on postnatal days 1-4 with 1 microgram/g body weight of L-thyroxine sodium. Tissue was processed via the Golgi-Cox technique and subjected to quantitative analyses of mitral and internal layer granule cell development. These populations of granule cells were selected because their pattern of late proliferation suggested potentially greater susceptibility to postnatal hormonal alterations. Although neonatal hyperthyroidism induces widespread acceleration of maturation, including precocious chemosensitivity, granule cell development was unaffected relative to littermate controls. Both normal and hyperthyroid groups exhibited an inverted U-shaped pattern of cellular development, with rapid dendritic dendritic growth and expansion occurring during the earliest ages tested, but with loss of processes and dendritic field size occurring after day 21.
Ultrastructural identification of Langerhans cells in normal swine epidermis.
Romano, J; Balaguer, L
1991-01-01
Langerhans cells of the epidermis of 6-month-old white crossbred farm pigs were identified by electron microscopy. Ultrastructurally they were similar to those described in other mammals. They were present in basal and suprabasal layers and were characterised by a lobulated nucleus and an electrolucent cytoplasm with occasional dendritic processes, and the absence of tonofilaments and specialised unions with surrounding keratinocytes. They were specifically identified by the presence of characteristic rod or racquet-shaped intracytoplasmic granules. Intraepidermal clear cells without specific granules were present, although no melanocytes were observed. This is the first report of the presence of Birbeck granules in porcine Langerhans cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:1817140
Hunt, Robert F.; Scheff, Stephen W.; Smith, Bret N.
2011-01-01
Functional plasticity of synaptic networks in the dentate gyrus has been implicated in the development of posttraumatic epilepsy and in cognitive dysfunction after traumatic brain injury, but little is known about potentially pathogenic changes in inhibitory circuits. We examined synaptic inhibition of dentate granule cells and excitability of surviving GABAergic hilar interneurons 8–13 weeks after cortical contusion brain injury in transgenic mice that express enhanced green fluorescent protein in a subpopulation of inhibitory neurons. Whole-cell voltage-clamp recordings in granule cells revealed a reduction in spontaneous and miniature IPSC frequency after head injury; no concurrent change in paired-pulse ratio was found in granule cells after paired electrical stimulation of the hilus. Despite reduced inhibitory input to granule cells, action potential and EPSC frequencies were increased in hilar GABA neurons from slices ipsilateral to the injury, versus those from control or contralateral slices. Further, increased excitatory synaptic activity was detected in hilar GABA neurons ipsilateral to the injury after glutamate photostimulation of either the granule cell or CA3 pyramidal cell layers. Together, these findings suggest that excitatory drive to surviving hilar GABA neurons is enhanced by convergent input from both pyramidal and granule cells, but synaptic inhibition of granule cells is not fully restored after injury. This rewiring of circuitry regulating hilar inhibitory neurons may reflect an important compensatory mechanism, but it may also contribute to network destabilization by increasing the relative impact of surviving individual interneurons in controlling granule cell excitability in the posttraumatic dentate gyrus. PMID:21543618
Otsuka, T; Ishii, K; Osako, Y; Okutani, F; Taniguchi, M; Oka, T; Kaba, H
2001-05-01
When female mice are mated, they form a memory to the pheromonal signal of their male partner. The neural changes underlying this memory occur in the accessory olfactory bulb, depend upon vaginocervical stimulation at mating and involve changes at the reciprocal synapses between mitral and granule cells. However, the action of vaginocervical stimulation on the reciprocal interactions between mitral and granule cells remains to be elucidated. We have examined the effects of vaginocervical stimulation on paired-pulse depression of amygdala-evoked field potentials recorded in the external plexiform layer of the accessory olfactory bulb (AOB) and the single-unit activity of mitral cells antidromically stimulated from the amygdala in urethane-anaesthetized female mice. Artificial vaginocervical stimulation reduced paired-pulse depression (considered to be due to feedback inhibition of the mitral cell dendrites from the granule cells via reciprocal dendrodendritic synapses) recorded in the AOB external plexiform layer. As would be expected from this result, vaginocervical stimulation also enhanced the spontaneous activity of a proportion of the mitral cells tested. These results suggest that vaginocervical stimulation reduces dendrodendritic feedback inhibition to mitral cells and enhances their activity.
Functional properties of granule cells with hilar basal dendrites in the epileptic dentate gyrus.
Kelly, Tony; Beck, Heinz
2017-01-01
The maturation of adult-born granule cells and their functional integration into the network is thought to play a key role in the proper functioning of the dentate gyrus. In temporal lobe epilepsy, adult-born granule cells in the dentate gyrus develop abnormally and possess a hilar basal dendrite (HBD). Although morphological studies have shown that these HBDs have synapses, little is known about the functional properties of these HBDs or the intrinsic and network properties of the granule cells that possess these aberrant dendrites. We performed patch-clamp recordings of granule cells within the granule cell layer "normotopic" from sham-control and status epilepticus (SE) animals. Normotopic granule cells from SE animals possessed an HBD (SE + HBD + cells) or not (SE + HBD - cells). Apical and basal dendrites were stimulated using multiphoton uncaging of glutamate. Two-photon Ca 2+ imaging was used to measure Ca 2+ transients associated with back-propagating action potentials (bAPs). Near-synchronous synaptic input integrated linearly in apical dendrites from sham-control animals and was not significantly different in apical dendrites of SE + HBD - cells. The majority of HBDs integrated input linearly, similar to apical dendrites. However, 2 of 11 HBDs were capable of supralinear integration mediated by a dendritic spike. Furthermore, the bAP-evoked Ca 2+ transients were relatively well maintained along HBDs, compared with apical dendrites. This further suggests an enhanced electrogenesis in HBDs. In addition, the output of granule cells from epileptic tissue was enhanced, with both SE + HBD - and SE + HBD + cells displaying increased high-frequency (>100 Hz) burst-firing. Finally, both SE + HBD - and SE + HBD + cells received recurrent excitatory input that was capable of generating APs, especially in the absence of feedback inhibition. Taken together, these data suggest that the enhanced excitability of HBDs combined with the altered intrinsic and network properties of granule cells collude to promote excitability and synchrony in the epileptic dentate gyrus. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Buckmaster, Paul S.; Abrams, Emily; Wen, Xiling
2018-01-01
Epilepsy occurs in one of 26 people. Temporal lobe epilepsy is common and can be difficult to treat effectively. It can develop after brain injuries that damage the hippocampus. Multiple pathophysiological mechanisms involving the hippocampal dentate gyrus have been proposed. This study evaluated a mouse model of temporal lobe epilepsy to test which pathological changes in the dentate gyrus correlate with seizure frequency and help prioritize potential mechanisms for further study. FVB mice (n = 127) that had experienced status epilepticus after systemic treatment with pilocarpine 31–61 days earlier were video-monitored for spontaneous, convulsive seizures 9 hr/day every day for 24–36 days. Over 4,060 seizures were observed. Seizure frequency ranged from an average of one every 3.6 days to one every 2.1 hr. Hippocampal sections were processed for Nissl stain, Prox1-immunocytochemistry, GluR2-immunocytochemistry, Timm stain, glial fibrillary acidic protein-immunocytochemistry, glutamic acid decarboxylase in situ hybridization, and parvalbumin-immunocytochemistry. Stereological methods were used to measure hilar ectopic granule cells, mossy cells, mossy fiber sprouting, astrogliosis, and GABAergic interneurons. Seizure frequency was not significantly correlated with the generation of hilar ectopic granule cells, the number of mossy cells, the extent of mossy fiber sprouting, the extent of astrogliosis, or the number of GABAergic interneurons in the molecular layer or hilus. Seizure frequency significantly correlated with the loss of GABAergic interneurons in or adjacent to the granule cell layer, but not with the loss of parvalbumin-positive interneurons. These findings prioritize the loss of granule cell layer interneurons for further testing as a potential cause of temporal lobe epilepsy. PMID:28425097
Buckmaster, Paul S; Abrams, Emily; Wen, Xiling
2017-08-01
Epilepsy occurs in one of 26 people. Temporal lobe epilepsy is common and can be difficult to treat effectively. It can develop after brain injuries that damage the hippocampus. Multiple pathophysiological mechanisms involving the hippocampal dentate gyrus have been proposed. This study evaluated a mouse model of temporal lobe epilepsy to test which pathological changes in the dentate gyrus correlate with seizure frequency and help prioritize potential mechanisms for further study. FVB mice (n = 127) that had experienced status epilepticus after systemic treatment with pilocarpine 31-61 days earlier were video-monitored for spontaneous, convulsive seizures 9 hr/day every day for 24-36 days. Over 4,060 seizures were observed. Seizure frequency ranged from an average of one every 3.6 days to one every 2.1 hr. Hippocampal sections were processed for Nissl stain, Prox1-immunocytochemistry, GluR2-immunocytochemistry, Timm stain, glial fibrillary acidic protein-immunocytochemistry, glutamic acid decarboxylase in situ hybridization, and parvalbumin-immunocytochemistry. Stereological methods were used to measure hilar ectopic granule cells, mossy cells, mossy fiber sprouting, astrogliosis, and GABAergic interneurons. Seizure frequency was not significantly correlated with the generation of hilar ectopic granule cells, the number of mossy cells, the extent of mossy fiber sprouting, the extent of astrogliosis, or the number of GABAergic interneurons in the molecular layer or hilus. Seizure frequency significantly correlated with the loss of GABAergic interneurons in or adjacent to the granule cell layer, but not with the loss of parvalbumin-positive interneurons. These findings prioritize the loss of granule cell layer interneurons for further testing as a potential cause of temporal lobe epilepsy. © 2017 Wiley Periodicals, Inc.
Logan, Cairine; Millar, Cassie; Bharadia, Vinay; Rouleau, Katherine
2002-06-24
Recent studies have shown that the mammalian cerebellar cortex can be subdivided into a reproducible array of zones and stripes. In particular, discontinuous patterns of gene expression together with mutational analysis suggest that there are at least four distinct transverse zones along the rostrocaudal axis in mouse: the anterior zone (lobules I-V), the central zone (lobules VI and VII), the posterior zone (lobules VIII and IX), and the nodular zone (lobule X). Here we show that the divergent homeobox-containing transcription factor, Tlx- 3 (also known as Hox11L2 or Rnx) is transiently expressed in external granule cells in a distinct transverse domain of the developing chick cerebellar cortex. Expression is first detected at Hamburger and Hamilton (HH) stage 35. Interestingly, Tlx-3 mRNA expression is initially confined to, and coincident with, the morphological development of fissures. Slightly later, at HH stage 38, expression extends throughout the developing external granular layer (EGL) of lobules I-IXab. Notably, no Tlx-3 expression was detected in lobules IXc and X at any developmental time point examined. Expression is noticeably stronger in nonproliferating cells located in the deep layer of the EGL. Tlx-3 expression is downregulated as granule cells migrate inward to form the internal granule layer and is undetectable shortly after birth. These results suggest that Tlx-3 is expressed as granule cells become postmitotic and suggest that Tlx-3 may play a role in the differentiation of distinct neuronal populations in the cerebellum. Copyright 2002 Wiley-Liss, Inc.
Zanin, Juan Pablo; Abercrombie, Elizabeth; Friedman, Wilma J
2016-07-19
Cerebellar granule cell progenitors (GCP) proliferate extensively in the external granule layer (EGL) of the developing cerebellum prior to differentiating and migrating. Mechanisms that regulate the appropriate timing of cell cycle withdrawal of these neuronal progenitors during brain development are not well defined. The p75 neurotrophin receptor (p75(NTR)) is highly expressed in the proliferating GCPs, but is downregulated once the cells leave the cell cycle. This receptor has primarily been characterized as a death receptor for its ability to induce neuronal apoptosis following injury. Here we demonstrate a novel function for p75(NTR) in regulating proper cell cycle exit of neuronal progenitors in the developing rat and mouse EGL, which is stimulated by proNT3. In the absence of p75(NTR), GCPs continue to proliferate beyond their normal period, resulting in a larger cerebellum that persists into adulthood, with consequent motor deficits.
The effect of trichlorfon and methylazoxymethanol on the development of guinea pig cerebellum.
Mehl, Anna; Schanke, Tore M; Torvik, Ansgar; Fonnum, Frode
2007-03-01
The pesticide trichlorfon (125 mg/kg on days 42-44 in gestation) gives hypoplasia of the brain of the offspring without any significant reduction in their body weights. The hypoplasia may be caused by trichlorfon itself or by its metabolite dichlorvos. This period of development coincides with the growth spurt period of guinea pig brain. The largest changes occurred in the cerebellum. Electron microscopic examination of the cerebellar cortex showed increased apoptotic death of cells in the granule cell layer after trichlorfon treatment. A reduction in thickness of the external germinal layer of the cerebellar cortex and an elevated amount of pyknotic and karyorrhexic cells in the granule cell layer was found. There was a significant reduction in choline esterase, choline acetyltransferase and glutamate decarboxylase activities in the cerebellum. Methylazoxymethanol (15 mg/kg body weight, day 43) was examined for comparison and caused similar hypoplasia of the guinea pig cerebellum, but did also induce a reduction in body weight. Trichloroethanol, the main metabolite of trichlorfon, did not give brain hypoplasia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehl, Anna; Schanke, Tore M.; Torvik, Ansgar
The pesticide trichlorfon (125 mg/kg on days 42-44 in gestation) gives hypoplasia of Brain of the offspring without any significant reduction in their body weights. The hypoplasia may be caused by trichlorfon itself or by its metabolite dichlorvos. This period of development coincides with the growth spurt period of guinea pig brain. The largest changes occurred in the cerebellum. Electron microscopic examination of the cerebellar cortex showed increased apoptotic death of cells in the granule cell layer after trichlorfon treatment. A reduction in thickness of the external germinal layer of the cerebellar cortex and an elevated amount of pyknotic andmore » karyorrhexic cells in the granule cell layer was found. There was a significant reduction in choline esterase, choline acetyltransferase and glutamate decarboxylase activities in the cerebellum. Methylazoxymethanol (15 mg/kg body weight, day 43) was examined for comparison and caused similar hypoplasia of the guinea pig cerebellum, but did also induce a reduction in body weight. Trichloroethanol, the main metabolite of trichlorfon, did not give brain hypoplasia.« less
Texture Analysis of Poly-Adenylated mRNA Staining Following Global Brain Ischemia and Reperfusion
Szymanski, Jeffrey J.; Jamison, Jill T.; DeGracia, Donald J.
2011-01-01
Texture analysis provides a means to quantify complex changes in microscope images. We previously showed that cytoplasmic poly-adenylated mRNAs form mRNA granules in post-ischemic neurons and that these granules correlated with protein synthesis inhibition and hence cell death. Here we utilized the texture analysis software MaZda to quantify mRNA granules in photomicrographs of the pyramidal cell layer of rat hippocampal region CA3 around 1 hour of reperfusion after 10 min of normothermic global cerebral ischemia. At 1 hour reperfusion, we observed variations in the texture of mRNA granules amongst samples that were readily quantified by texture analysis. Individual sample variation was consistent with the interpretation that animal-to-animal variations in mRNA granules reflected the time-course of mRNA granule formation. We also used texture analysis to quantify the effect of cycloheximide, given either before or after brain ischemia, on mRNA granules. If administered before ischemia, cycloheximide inhibited mRNA granule formation, but if administered after ischemia did not prevent mRNA granulation, indicating mRNA granule formation is dependent on dissociation of polysomes. We conclude that texture analysis is an effective means for quantifying the complex morphological changes induced in neurons by brain ischemia and reperfusion. PMID:21477879
Yoneyama, Masanori; Iwamoto, Naoko; Nagashima, Reiko; Sugiyama, Chie; Kawada, Koichi; Kuramoto, Nobuyuki; Shuto, Makoto; Ogita, Kiyokazu
2008-10-01
The heat shock protein (Hsp) 110 family is composed of HSP105, APG-1, and APG-2. As the response of these proteins to neuronal damage is not yet fully understood, in the present study, we assessed their expression in mouse hippocampal neurons following trimethyltin chloride (TMT) treatment in vivo and in vitro. Although each of these three Hsps had a distinct regional distribution within the hippocampus, a low level of all of them was observed in the granule cell layer of the dentate gyrus in naïve animals. TMT was effective in markedly increasing the level of these Hsps in the granule cell layer, at least 16h to 4days after the treatment. In the dentate granule cell layer on day 2 after TMT treatment, HSP105 was expressed mainly in the perikarya of NeuN-positive cells (intact neurons); whereas APG-1 and APG-2 were predominantly found in NeuN-negative cells (damaged neurons as evidenced by signs of cell shrinkage and condensation of chromatin). Assessments using primary cultures of mouse hippocampal neurons exposed to TMT revealed that whereas HSP105 was observed in intact neurons rather than in damaged neurons, APG-1 and APG-2 were detected in both damaged neurons and intact neurons. Taken together, our data suggest that APG-1 and APG-2 may play different roles from HSP105 in neurons damaged by TMT.
NASA Technical Reports Server (NTRS)
Sekiguchi, M.; Abe, H.; Moriya, M.; Tanaka, O.; Nowakowski, R. S.
1998-01-01
The Snell dwarf mouse (Pit1dw-J homozygote) has a mutation in the Pit1 gene that prevents the normal formation of the anterior pituitary. In neonates and adults there is almost complete absence of growth hormone (GH), prolactin (PRL), thyroxin (T4), and thyroid-stimulating hormone (TSH). Since these hormones have been suggested to play a role in normal development of the central nervous system (CNS), we have investigated the effects of the Pit1dw-J mutation on the cerebellum and hippocampal formation. In the cerebellum, there were abnormalities of both foliation and lamination. The major foliation anomalies were 1) changes in the relative size of specific folia and also the proportional sizes of the anterior vs posterior cerebellum; and 2) the presence of between one and three microfolia per half cerebellum. The microfolia were all in the medial portion of the hemisphere in the caudal part of the cerebellum. Each microfolium was just rostral to a normal fissure and interposed between the fissure and a normal gyrus. Lamination abnormalities included an increase in the number of single ectopic granule cells in the molecular layer in both cerebellar vermis (86%) and hemisphere (40%) in comparison with the wild-type mouse. In the hippocampus of the Pit1dw-J homozygote mouse, the number of pyramidal cells was decreased, although the width of the pyramidal cell layer throughout areas CA1-CA3 appeared to be normal, but less densely populated than in the wild-type mouse. Moreover, the number of granule cells that form the granule cell layer was decreased from the wild-type mouse and some ectopic granule cells (occurring both as single cells and as small clusters) were observed in the innermost portion of the molecular layer. The abnormalities observed in the Pit1dw-J homozygote mouse seem to be caused by both direct and indirect effects of the deficiency of TSH (or T4), PRL, or GH rather than by a direct effect of the deletion of Pit1.
Cell-type-specific expression of NFIX in the developing and adult cerebellum.
Fraser, James; Essebier, Alexandra; Gronostajski, Richard M; Boden, Mikael; Wainwright, Brandon J; Harvey, Tracey J; Piper, Michael
2017-07-01
Transcription factors from the nuclear factor one (NFI) family have been shown to play a central role in regulating neural progenitor cell differentiation within the embryonic and post-natal brain. NFIA and NFIB, for instance, promote the differentiation and functional maturation of granule neurons within the cerebellum. Mice lacking Nfix exhibit delays in the development of neuronal and glial lineages within the cerebellum, but the cell-type-specific expression of this transcription factor remains undefined. Here, we examined the expression of NFIX, together with various cell-type-specific markers, within the developing and adult cerebellum using both chromogenic immunohistochemistry and co-immunofluorescence labelling and confocal microscopy. In embryos, NFIX was expressed by progenitor cells within the rhombic lip and ventricular zone. After birth, progenitor cells within the external granule layer, as well as migrating and mature granule neurons, expressed NFIX. Within the adult cerebellum, NFIX displayed a broad expression profile, and was evident within granule cells, Bergmann glia, and interneurons, but not within Purkinje neurons. Furthermore, transcriptomic profiling of cerebellar granule neuron progenitor cells showed that multiple splice variants of Nfix are expressed within this germinal zone of the post-natal brain. Collectively, these data suggest that NFIX plays a role in regulating progenitor cell biology within the embryonic and post-natal cerebellum, as well as an ongoing role within multiple neuronal and glial populations within the adult cerebellum.
Dendrodendritic Synapses in the Mouse Olfactory Bulb External Plexiform Layer
Bartel, Dianna L.; Rela, Lorena; Hsieh, Lawrence; Greer, Charles A.
2014-01-01
Odor information relayed by olfactory bulb projection neurons, mitral and tufted cells (M/T), is modulated by pairs of reciprocal dendrodendritic synaptic circuits in the external plexiform layer (EPL). Interneurons, which are accounted for largely by granule cells, receive depolarizing input from M/T dendrites and in turn inhibit current spread in M/T dendrites via hyperpolarizing reciprocal dendrodendritic synapses. Because the location of dendrodendritic synapses may significantly affect the cascade of odor information, we assessed synaptic properties and density within sublaminae of the EPL and along the length of M/T secondary dendrites. In electron micrographs the M/T to granule cell synapse appeared to predominate and were equivalent in both the outer and inner EPL. However, the dendrodendritic synapses from granule cell spines onto M/T dendrites, were more prevalent in the outer EPL. In contrast, individual gephyrin-IR puncta, a postsynaptic scaffolding protein at inhibitory synapses used here as a proxy for the granule to M/T dendritic synapse was equally distributed throughout the EPL. Of significance to the organization of intrabulbar circuits, gephyrin-IR synapses are not uniformly distributed along M/T secondary dendrites. Synaptic density, expressed as a function of surface area, increases distal to the cell body. Furthermore, the distributions of gephyrin-IR puncta are heterogeneous and appear as clusters along the length of the M/T dendrites. Consistent with computational models, our data suggest that temporal coding in M/T cells is achieved by precisely located inhibitory input and that distance from the soma is compensated with an increase in synaptic density. PMID:25420934
Uric Acid Spherulites in the Reflector Layer of Firefly Light Organ
Goh, King-Siang; Sheu, Hwo-Shuenn; Hua, Tzu-En; Kang, Mei-Hua; Li, Chia-Wei
2013-01-01
Background In firefly light organs, reflector layer is a specialized tissue which is believed to play a key role for increasing the bioluminescence intensity through reflection. However, the nature of this unique tissue remains elusive. In this report, we investigated the role, fine structure and nature of the reflector layer in the light organ of adult Luciola cerata. Principal Findings Our results indicated that the reflector layer is capable of reflecting bioluminescence, and contains abundant uric acid. Electron microscopy (EM) demonstrated that the cytosol of the reflector layer's cells is filled with densely packed spherical granules, which should be the uric acid granules. These granules are highly regular in size (∼700 nm in diameter), and exhibit a radial internal structure. X-ray diffraction (XRD) analyses revealed that an intense single peak pattern with a d-spacing value of 0.320 nm is specifically detected in the light organ, and is highly similar to the diffraction peak pattern and d-spacing value of needle-formed crystals of monosodium urate monohydrate. However, the molar ratio evaluation of uric acid to various cations (K+, Na+, Ca2+ and Mg2+) in the light organ deduced that only a few uric acid molecules were in the form of urate salts. Thus, non-salt uric acid should be the source of the diffraction signal detected in the light organ. Conclusions In the light organ, the intense single peak diffraction signal might come from a unique needle-like uric acid form, which is different from other known structures of non-salt uric acid form. The finding of a radial structure in the granules of reflector layer implies that the spherical uric acid granules might be formed by the radial arrangement of needle-formed packing matter. PMID:23441187
Alibardi, Lorenzo; Tschachler, Erwin; Eckhart, Leopold
2005-10-01
Caspase-14, a member of the caspase family of cysteine proteases, is almost exclusively expressed in the epidermis. Studies on human and mouse cells and tissues have implicated caspase-14 in terminal differentiation of epidermal keratinocytes and in the formation of the stratum corneum. Here we investigated evolutionary aspects of the role of caspase-14 by analyzing its distribution in the epidermis and hair follicles of representative species of placental mammals, marsupials, and monotremes. Immunocytochemical staining showed that caspase-14 is consistently expressed in the granular and corneous layer of the epidermis of all mammalian species investigated. Ultrastructural analysis using gold-labeled anticaspase-14 antibodies revealed that caspase-14 is associated preferentially with keratin bundles and amorphous material of keratohyalin granules, but is also present in nuclei of transitional cells of the granular layer and in corneocytes. In hair follicles, caspase-14 was diffusely present in cornifying cells of the outer root sheath, in the companion layer, and, most abundantly, in the inner root sheath of all mammalian species here analyzed. In Henle and Huxley layers of the inner root sheath, labeling was seen in nuclei and, more diffusely, among trichohyalin granules of cornifying cells. In summary, the tissue expression pattern and the intracellular localization of caspase-14 are highly conserved among diverse mammalian species, suggesting that this enzyme is involved in a molecular process that appeared early in the evolution of mammalian skin. The association of caspase-14 with keratohyalin and trichohyalin granules may indicate a specific role of caspase-14 in the maturation of these keratinocyte-specific structures.
Ultrastructure of the platypus and echidna mandibular glands.
Krause, W J
2011-10-01
The secretory units of the platypus and echidna mandibular glands consist of a single serous cell type. Secretory granules within the cells of the platypus mandibular gland stained intensely with the periodic acid-Schiff staining procedure but failed to stain with Alcian Blue, suggesting the granules contained neutral glycoproteins. Secretory granules within the mandibular glands of the echidna failed to stain with the methods used indicating little if any glycoprotein was associated with the secretory granules. Ultrastructurally, secretory granules of the platypus mandibular gland were electron dense with a central core of less electron-dense material and were membrane bound. In contrast, those of the echidna presented a lamellated appearance and also were limited by a membrane. These secretory granules appeared to form as a result of concentric layering of lamellae within cisternae of the Golgi membranes. The intralobular ductal system of the platypus was more extensively developed than that of the echidna. The striated ducts of both species were characterized by elaborate infoldings of the basolateral plasmalemma and an abundance of associated mitochondria. © 2011 Blackwell Verlag GmbH.
Zhang, Peter G Y; Yeung, Joanna; Gupta, Ishita; Ramirez, Miguel; Ha, Thomas; Swanson, Douglas J; Nagao-Sato, Sayaka; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Daub, Carsten O; Arner, Erik; de Hoon, Michiel; Carninci, Piero; Forrest, Alistair R R; Hayashizaki, Yoshihide; Goldowitz, Dan
2018-06-01
Laser-capture microdissection was used to isolate external germinal layer tissue from three developmental periods of mouse cerebellar development: embryonic days 13, 15, and 18. The cerebellar granule cell-enriched mRNA library was generated with next-generation sequencing using the Helicos technology. Our objective was to discover transcriptional regulators that could be important for the development of cerebellar granule cells-the most numerous neuron in the central nervous system. Through differential expression analysis, we have identified 82 differentially expressed transcription factors (TFs) from a total of 1311 differentially expressed genes. In addition, with TF-binding sequence analysis, we have identified 46 TF candidates that could be key regulators responsible for the variation in the granule cell transcriptome between developmental stages. Altogether, we identified 125 potential TFs (82 from differential expression analysis, 46 from motif analysis with 3 overlaps in the two sets). From this gene set, 37 TFs are considered novel due to the lack of previous knowledge about their roles in cerebellar development. The results from transcriptome-wide analyses were validated with existing online databases, qRT-PCR, and in situ hybridization. This study provides an initial insight into the TFs of cerebellar granule cells that might be important for development and provide valuable information for further functional studies on these transcriptional regulators.
Hendrickson, Phillip J.; Yu, Gene J.; Song, Dong; Berger, Theodore W.
2015-01-01
This paper reports on findings from a million-cell granule cell model of the rat dentate gyrus that was used to explore the contributions of local interneuronal and associational circuits to network-level activity. The model contains experimentally derived morphological parameters for granule cells, which each contain approximately 200 compartments, and biophysical parameters for granule cells, basket cells, and mossy cells that were based both on electrophysiological data and previously published models. Synaptic input to cells in the model consisted of glutamatergic AMPA-like EPSPs and GABAergic-like IPSPs from excitatory and inhibitory neurons, respectively. The main source of input to the model was from layer II entorhinal cortical neurons. Network connectivity was constrained by the topography of the system, and was derived from axonal transport studies, which provided details about the spatial spread of axonal terminal fields, as well as how subregions of the medial and lateral entorhinal cortices project to subregions of the dentate gyrus. Results of this study show that strong feedback inhibition from the basket cell population can cause high-frequency rhythmicity in granule cells, while the strength of feedforward inhibition serves to scale the total amount of granule cell activity. Results furthermore show that the topography of local interneuronal circuits can have just as strong an impact on the development of spatio-temporal clusters in the granule cell population as the perforant path topography does, both sharpening existing clusters and introducing new ones with a greater spatial extent. Finally, results show that the interactions between the inhibitory and associational loops can cause high frequency oscillations that are modulated by a low-frequency oscillatory signal. These results serve to further illustrate the importance of topographical constraints on a global signal processing feature of a neural network, while also illustrating how rich spatio-temporal and oscillatory dynamics can evolve from a relatively small number of interacting local circuits. PMID:26635545
Chang, Joshua C; Leung, Mark; Gokozan, Hamza Numan; Gygli, Patrick Edwin; Catacutan, Fay Patsy; Czeisler, Catherine; Otero, José Javier
2015-03-01
Late embryonic and postnatal cerebellar folial surface area expansion promotes cerebellar cortical cytoarchitectural lamination. We developed a streamlined sampling scheme to generate unbiased estimates of murine cerebellar surface area and volume using stereologic principles. We demonstrate that, during the proliferative phase of the external granular layer (EGL) and folial surface area expansion, EGL thickness does not change and thus is a topological proxy for progenitor self-renewal. The topological constraints indicate that, during proliferative phases, migration out of the EGL is balanced by self-renewal. Progenitor self-renewal must, therefore, include mitotic events yielding 2 cells in the same layer to increase surface area (β events) and mitotic events yielding 2 cells, with 1 cell in a superficial layer and 1 cell in a deeper layer (α events). As the cerebellum grows, therefore, β events lie upstream of α events. Using a mathematical model constrained by the measurements of volume and surface area, we could quantify intermitotic times for β events on a per-cell basis in postnatal mouse cerebellum. Furthermore, we found that loss of CCNA2, which decreases EGL proliferation and secondarily induces cerebellar cortical dyslamination, shows preserved α-type events. Thus, CCNA2-null cerebellar granule progenitor cells are capable of self-renewal of the EGL stem cell niche; this is concordant with prior findings of extensive apoptosis in CCNA2-null mice. Similar methodologies may provide another layer of depth to the interpretation of results from stereologic studies.
Vlachos, Andreas; Becker, Denise; Jedlicka, Peter; Winkels, Raphael; Roeper, Jochen; Deller, Thomas
2012-01-01
Denervation-induced changes in excitatory synaptic strength were studied following entorhinal deafferentation of hippocampal granule cells in mature (≥3 weeks old) mouse organotypic entorhino-hippocampal slice cultures. Whole-cell patch-clamp recordings revealed an increase in excitatory synaptic strength in response to denervation during the first week after denervation. By the end of the second week synaptic strength had returned to baseline. Because these adaptations occurred in response to the loss of excitatory afferents, they appeared to be in line with a homeostatic adjustment of excitatory synaptic strength. To test whether denervation-induced changes in synaptic strength exploit similar mechanisms as homeostatic synaptic scaling following pharmacological activity blockade, we treated denervated cultures at 2 days post lesion for 2 days with tetrodotoxin. In these cultures, the effects of denervation and activity blockade were not additive, suggesting that similar mechanisms are involved. Finally, we investigated whether entorhinal denervation, which removes afferents from the distal dendrites of granule cells while leaving the associational afferents to the proximal dendrites of granule cells intact, results in a global or a local up-scaling of granule cell synapses. By using computational modeling and local electrical stimulations in Strontium (Sr2+)-containing bath solution, we found evidence for a lamina-specific increase in excitatory synaptic strength in the denervated outer molecular layer at 3–4 days post lesion. Taken together, our data show that entorhinal denervation results in homeostatic functional changes of excitatory postsynapses of denervated dentate granule cells in vitro. PMID:22403720
Nicotinic receptor abnormalities in the cerebellar cortex in autism.
Lee, M; Martin-Ruiz, C; Graham, A; Court, J; Jaros, E; Perry, R; Iversen, P; Bauman, M; Perry, E
2002-07-01
Autism is a common developmental disorder associated with structural and inferred neurochemical abnormalities of the brain. Cerebellar abnormalities frequently have been identified, based on neuroimaging or neuropathology. Recently, the cholinergic neurotransmitter system has been implicated on the basis of nicotinic receptor loss in the cerebral cortex. Cerebellar cholinergic activities were therefore investigated in autopsy tissue from a series of autistic individuals. The presynaptic cholinergic enzyme, choline acetyltransferase, together with nicotinic and muscarinic receptor subtypes were compared in the cerebellum from age-matched mentally retarded autistic (eight), normal control (10) and non-autistic mentally retarded individuals (11). The nicotinic receptor binding the agonist epibatidine (the high affinity receptor subtype, consisting primarily of alpha3 and alpha4, together with beta2 receptor subunits) was significantly reduced by 40-50% in the granule cell, Purkinje and molecular layers in the autistic compared with the normal group (P < 0.05). There was an opposite increase (3-fold) in the nicotinic receptor binding alpha-bungarotoxin (to the alpha7 subunit) which reached significance in the granule cell layer (P < 0.05). These receptor changes were paralleled by a significant reduction (P < 0.05) and non-significant increase, respectively, of alpha4 and alpha7 receptor subunit immunoreactivity measured using western blotting. Immunohistochemically loss of alpha(4 )reactivity was apparent from Purkinje and the other cell layers, with increased alpha7 reactivity in the granule cell layer. There were no significant changes in choline acetyltransferase activity, or in muscarinic M1 and M2 receptor subtypes in autism. In the non-autistic mentally retarded group, the only significant abnormality was a reduction in epibatidine binding in the granule cell and Purkinje layers. In two autistic cases examined histologically, Purkinje cell loss was observed in multiple lobules throughout the vermis and hemispheres. This was more severe in one case with epilepsy, which also showed vermis folial malformation. The case with less severe Purkinje cell loss also showed cerebellar white matter thinning and demyelination. These findings indicate a loss of the cerebellar nicotinic alpha4 receptor subunit in autism which may relate to the loss of Purkinje cells, and a compensatory increase in the alpha7 subunit. It remains to be determined how these receptor abnormalities are involved in neurodevelopment in autism and what is the relationship to mental function. Since nicotinic receptor agonists enhance attentional function and also induce an elevation in the high affinity receptor, nicotinic therapy in autism may be worth considering.
Skieresz-Szewczyk, Kinga; Jackowiak, Hanna; Ratajczak, Marlena
2018-02-01
The lingual nail as the cornified layer of the orthokeratinized epithelium in birds is responsible for the collection of solid food by pecking. The aim of the present study is to determine the manner of orthokeratinized epithelium development and assess the degree of readiness of the epithelium to fulfill its mechanical function at hatching. Three developmental phases are distinguished, i.e. embryonic, transformation and pre-hatching stage. In the embryonic stage lasting until day 13 of incubation the epithelium is composed of several layers of undifferentiated cells. During the transformation stage, from day 14 to 20 of incubation, the epithelium becomes differentiated to form three layers. A characteristic feature is the formation of osmophilic granules in the superficial layer, referred to as periderm granules. Until the pre-hatching stage the fibrous cytoskeleton of epithelial cells and an impermeable epithelial barrier are gradually developed. In the pre-hatching stage, a cornified lingual nail is formed, while the periderm is exfoliated. At hatching the orthokeratinized epithelium and lingual nail are fully developed and ready to perform feeding activities. The presence of periderm, similarly as in the epidermis, indicates the ectodermal derivation of the oral cavity epithelium. Moreover, occurrence of osmophilic granules may be considered as evidence for the phylogenetic affinity of birds and reptiles. Copyright © 2018 Elsevier GmbH. All rights reserved.
Noguchi, Shuji; Kajihara, Ryusuke; Iwao, Yasunori; Fujinami, Yukari; Suzuki, Yoshio; Terada, Yasuko; Uesugi, Kentaro; Miura, Keiko; Itai, Shigeru
2013-03-10
Computed tomography (CT) using synchrotron X-ray radiation was evaluated as a non-destructive structural analysis method for fine granules. Two kinds of granules have been investigated: a bromhexine hydrochloride (BHX)-layered Celphere CP-102 granule coated with pH-sensitive polymer Kollicoat Smartseal 30-D, and a wax-matrix granule constructed from acetaminophen (APAP), dibasic calcium phosphate dehydrate, and aminoalkyl methacrylate copolymer E (AMCE) manufactured by melt granulation. The diameters of both granules were 200-300 μm. CT analysis of CP-102 granule could visualize the laminar structures of BHX and Kollicoat layers, and also visualize the high talc-content regions in the Kollicoat layer that could not be detected by scanning electron microscopy. Moreover, CT analysis using X-ray energies above the absorption edge of Br specifically enhanced the contrast in the BHX layer. As for granules manufactured by melt granulation, CT analysis revealed that they had a small inner void space due to a uniform distribution of APAP and other excipients. The distribution of AMCE revealed by CT analysis was also found to involve in the differences of drug dissolution from the granules as described previously. These observations demonstrate that CT analysis using synchrotron X-ray radiation is a powerful method for the detailed internal structure analysis of fine granules. Copyright © 2013 Elsevier B.V. All rights reserved.
Calderon-Garcidueñas, Ana Laura; Mathon, Bertrand; Lévy, Pierre; Bertrand, Anne; Mokhtari, Karima; Samson, Véronique; Thuriès, Valérie; Lambrecq, Virginie; Nguyen, Vi-Huong Michel; Dupont, Sophie; Adam, Claude; Baulac, Michel; Clémenceau, Stéphane; Duyckaerts, Charles; Navarro, Vincent; Bielle, Franck
2018-02-24
Mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) is a heterogeneous syndrome. Surgery results in seizure freedom for most pharmacoresistant patients, but the epileptic and cognitive prognosis remains variable. The 2013 International League Against Epilepsy (ILAE) histopathological classification of hippocampal sclerosis (HS) has fostered research to understand MTLE-HS heterogeneity. We investigated the associations between histopathological features (ILAE types, hypertrophic CA4 neurons, granule cell layer alterations, CD34 immunopositive cells) and clinical features (presurgical history, postsurgical outcome) in a monocentric series of 247 MTLE-HS patients treated by surgery. NeuN, GFAP and CD34 immunostainings and a double independent pathological examination were performed. 186 samples were type 1, 47 type 2, 7 type 3 and 7 samples were gliosis only but no neuronal loss (noHS). In the type 1, hypertrophic CA4 neurons were associated with a worse postsurgical outcome and granule cell layer duplication was associated with generalized seizures and episodes of status epilepticus. In the type 2, granule cell layer duplication was associated with generalized seizures. CD34+ stellate cells were more frequent in the type 2, type 3 and in noHS. These cells had a Nestin and SOX2 positive, immature neural immunophenotype. Patients with nodules of CD34+ cells had more frequent dysmnesic auras. CD34+ stellate cells in scarce pattern were associated with higher ratio of normal MRI and of stereo-electroencephalographic studies. CD34+ cells were associated with a trend for a better postsurgical outcome. Among CD34+ cases, we proposed a new entity of BRAF V600E positive HS and we described three hippocampal multinodular and vacuolating neuronal tumors. To conclude, our data identified new clinicopathological associations with ILAE types. They showed the prognostic value of CA4 hypertrophic neurons. They highlighted CD34+ stellate cells and BRAF V600E as biomarkers to further decipher MTLE-HS heterogeneity. © 2018 International Society of Neuropathology.
Chau, Y P; Lu, K S
1994-10-01
Cytochemical relationship between Golgi complex and dense-cored granules (DCGs) of small granule-containing (SGC) cells in rat superior cervical ganglia was examined in electron microscopy by zinc-iodide-osmium tetroxide (ZIO) method and by enzyme cytochemistry for thiamine pyrophosphatase (TPPase) and acid phosphatase (ACPase). After ZIO impregnation, all the saccules of Golgi apparatus and some of tubular rough endoplasmic reticulum (rER) were stained. DCGs in periphery of SGC cells were not stained, but varying degrees of dense deposits occurred in the DCGs in vicinity of Golgi trans-saccules. Both TPPase and ACPase activities were localized in one or two stacked layers of saccules on the trans side of the Golgi complex. No reaction products were demonstrated in the DCGs. From these results, we suggest that the DCGs of SGC cells in rat superior cervical ganglia are derived from the Golgi complex, and that lysosomal cleavage of protein contents in the DCGs may occur in the trans Golgi saccules.
Peng, Zechun; Zhang, Nianhui; Wei, Weizheng; Huang, Christine S.; Cetina, Yliana; Otis, Thomas S.
2013-01-01
Axonal sprouting of excitatory neurons is frequently observed in temporal lobe epilepsy, but the extent to which inhibitory interneurons undergo similar axonal reorganization remains unclear. The goal of this study was to determine whether somatostatin (SOM)-expressing neurons in stratum (s.) oriens of the hippocampus exhibit axonal sprouting beyond their normal territory and innervate granule cells of the dentate gyrus in a pilocarpine model of epilepsy. To obtain selective labeling of SOM-expressing neurons in s. oriens, a Cre recombinase-dependent construct for channelrhodopsin2 fused to enhanced yellow fluorescent protein (ChR2-eYFP) was virally delivered to this region in SOM-Cre mice. In control mice, labeled axons were restricted primarily to s. lacunosum-moleculare. However, in pilocarpine-treated animals, a rich plexus of ChR2-eYFP-labeled fibers and boutons extended into the dentate molecular layer. Electron microscopy with immunogold labeling demonstrated labeled axon terminals that formed symmetric synapses on dendritic profiles in this region, consistent with innervation of granule cells. Patterned illumination of ChR2-labeled fibers in s. lacunosum-moleculare of CA1 and the dentate molecular layer elicited GABAergic inhibitory responses in dentate granule cells in pilocarpine-treated mice but not in controls. Similar optical stimulation in the dentate hilus evoked no significant responses in granule cells of either group of mice. These findings indicate that under pathological conditions, SOM/GABAergic neurons can undergo substantial axonal reorganization beyond their normal territory and establish aberrant synaptic connections. Such reorganized circuitry could contribute to functional deficits in inhibition in epilepsy, despite the presence of numerous GABAergic terminals in the region. PMID:24005292
Kouamo, J.; Dawaye, S.M.; Zoli, A.P.; Bah, G.S.
2014-01-01
An abattoir study was conducted to evaluate the ovarian potential of 201 local zebu cattle from Ngaoundere, Adamawa region (Cameroon) for in vitro embryo production (IVEP). The ovaries were excised, submerged in normal saline solution (0.9%) and transported to the laboratory for a detailed evaluation. Follicles on each ovary were counted, their diameters (Φ) measured and were grouped into 3 categories: small (Φ < 3 mm), medium (3 ≥ Φ ≤ 8 mm) and large (Φ > 8 mm). Each ovary was then sliced into a petri dish; the oocytes were recovered in Dulbecco’s phosphate buffered saline, examined under a stereoscope (x10) and graded into four groups based on the morphology of cumulus oophorus cells and cytoplasmic changes of the oocytes. Grade I (GI): oocytes with more than 4 layers of bunch of compact cumulus cells mass with evenly granulated cytoplasm; grade II (GII): oocyte with at least 2-4 layers of compact cumulus cell mass with evenly granulated cytoplasm; grade III (GIII): oocyte with at least one layer of compact cumulus cell mass with evenly granulated cytoplasm; grade IV (GIV): denuded oocyte with no cumulus cells or incomplete layer of cumulus cell or expanded cells and having dark or unevenly granulated cytoplasm. The effects of both ovarian (ovarian localization, corpus luteum, size and weight of ovary) and non-ovarian factors (breed, age, body condition score (BCS) and pregnancy status of cow) on the follicular population and oocyte recovery rate were determined. There were an average of 16.75±0.83 follicles per ovary. The small, medium and large follicles were 8.39±0.60, 8.14±0.43 and 0.21±0.02 respectively. Oocyte recovery was 10.97±0.43 per ovary (65%). Oocytes graded I, II, III and IV were 3.53±0.19 (32.21%), 2.72±0.15 (24.82%), 2.24±0.15 (20.43%) and 2.47±0.20 (22.54%) respectively. The oocyte quality index was 2.26. Younger non pregnant cows having BCS of 3 and large ovaries presented higher number of follicles and oocyte quality (P < 0.05) compared with other animals. Oocytes with quality (grade I and II) acceptable for IVEP constituted 57.15% of the harvest. This study indicated that factors such as age, pregnancy status, BCS and ovarian size must be taken into account to increase the potential of the ovary for IVEP. PMID:26623353
Endothelial cells in the oral mucosa of Bufo marinus.
Loo, S K; Yeo, B C; Kovac, H
1980-01-01
The oral mucosa of the cane toad (Bufo marinus) is lined by a pseudostratified columnar ciliated epithelium containing an intraepithelial network of capillaries, which penetrates it to the bases of the distal layer of cells. The capillaries are lined by fenestrated endothelium lying on a complete basal lamina. A connective tissue sheath, approximately 1 micrometer thick, surrounds the capillaries and separates them from the surrounding epithelial cells. Endothelial cells resemble those in lymphatic capillaries in that they show microvillus-like processes or folds projecting into the lumen and also have extremely attenuated and fenestrated cytoplasm except in the nuclear region. Numerous pinocytotic vesicles, bundles of filaments and many electrondense granules occur in the cytoplasm. These granules are oval or round in shape and approximately 250-400 micrometer in diameter. Histochemical tests on the endothelial cells show that the granules do not contain pigment, as both the Schmorl and argentaffin reactions are negative. Both the Sudan black B and Luxol fast blue reactions are also negative showing the lack of stainable lipids. The formaldehyde-induced fluorescence, the argentaffin reactions and lead haematoxylin reactions are negative, indicating that they do not have the characteristics of endocrine cells. The acid phosphatase reaction gives a positive result, localized to the site of the granules by electron microscopy and suggesting that these granules in amphibian capillaries may have a lysosomal function. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 PMID:6773911
Wefers, Annika K; Lindner, Sven; Schulte, Johannes H; Schüller, Ulrich
2017-02-01
LIN28B is a homologue of the RNA-binding protein LIN28A and regulates gene expression during development and carcinogenesis. It is strongly upregulated in a variety of brain tumors, such as medulloblastoma, embryonal tumor with multilayered rosettes (ETMR), atypical teratoid/rhabdoid tumor (AT/RT), or glioblastoma, but the effect of an in vivo overexpression of LIN28B on the developing central nervous system is unknown. We generated transgenic mice that either overexpressed Lin28b in Math1-positive cerebellar granule neuron precursors or in a broad range of Nestin-positive neural precursors. Sections of the cerebellar vermis from adult Math1-Cre::lsl-Lin28b mice had an additional subfissure in lobule IV. Vermes from p0 and p7 Nestin-Cre::lsl-Lin28b mice appeared normal, but we found a pronounced vermal hypersublobulation at p15 and p21 in these mice. Also, the external granule cell layer (EGL) was thicker at p15 than in controls, contained more proliferating cells, and persisted up to p21. Consistently, some Pax6- and NeuN-positive cells were present in the EGL of Nestin-Cre::lsl-Lin28b mice even at p21, and we detected more NeuN-positive granule neuron precursors in the molecular layer (ML) as compared to control. Finally, we found some residual Pax2-positive precursors of inhibitory interneurons in the ML of Nestin-Cre::lsl-Lin28b mice at p21, which have already disappeared in controls. We conclude that while overexpression of LIN28B in Nestin-positive cells does not lead to tumor formation, it results in a protracted development of granule cells and inhibitory interneurons and leads to a hypersublobulation of the cerebellar vermis.
Yang, Chun; Wang, Limin
2016-01-01
The histology and morphology characteristics of the tongue in Scincella tsinlingensis were studied by light and electronic microscopy. Under light microscopy, the tongue consists of tip, lingual body and radix in sequence. Numerous lingual papillae widely distribute on the surface of the dorsal and ventral flanks in the tongue, in addition to some regions of the tip. The papillae's surface is covered with the epithelial layer. The lamina propria and dense connective tissue are distinct existing under the epithelial layer. There are many lingual glands spread over the lamina propria. Tongue muscle is developed and composed of distinct intrinsic muscle, hyoglossus and genioglossus. By scanning electron microscopy, at higher magnification, the epithelial cells of the dorsal surface in the divaricate tongue tips show numerous microvilli, micro-ridges and micro-pores. The surface of dorsal side of the papillae in lingual body is covered with abundant of micro-ridges and taste bud lacuna. On the surface of the papillae in radix, micro-facets and micro-ridges are compactly distributed, as well as scattered mucilage-pores. The lingual epithelium is divided into four layers observed by the transmission electron microscope. Cells of basal layer are irregularly elliptical in shape, with sparse organelles in the cytoplasm. The deep intermediate layer is not always distinct. Small numbers of organelles are scattered into the cytoplasm. The cells of the superficial intermediate layer gradually flatten, as do their nuclei. The cytoplasm contains many keratohyalin granules. Cell membranes are formed processes around cells and joined by abundant desmosomes to the cell membranes of adjacent cells. The cells located on the extreme free-surface side of the keratinized layer have fallen off. The basal lamina is intercalated between the basal layer and the lamina propria. The lamina propria of lingual body contains lingual gland. A large part of the cytoplasm is occupied by mucus granules which located in the distal part of the cell. The connective tissue contains myelinated nerve fibers, vessel and muscle cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
Guangming, Gan; Tao, Zhao; Chao, Li; Moyan, Zhao
2017-01-01
The black-spotted frog (Pelophylax nigromaculata) and Asiatic toad (Bufo gargarizans), two relatively distantly related species, live in different habitats with different adaptive dark patches. To explain the formation of dark patches, the distribution patterns of melanin granules were examined with light microscopy and transmission electron microscopy. Melanin granules were produced and gathered into the "cap" structures on top of the nuclei in most epidermal cells. The "cap" structures may play a role in forming the dorsal dark patches coupled with three-layer melanophores, which can give rise to three layers of interconnected melanin networks in the dorsal dermis in P. nigromaculata. Epidermal melanocytes are rare and do not have a definitive role in forming dorsal dark patches in either P. nigromaculata or B. gargarizans. In B. gargarizans, the dermal melanophores only give rise to a single-layered melanin network, which hardly results in dark patches in the dorsal skin. However, the dermal melanophores migrate twice and form into pseudostratified networks, leading to dark patch formation in the ventral skin in B. gargarizans. The melanin granules precisely coregulate dark patches in the dermis and/or epidermis in P. nigromaculata and B. gargarizans. The dark patch formation depends on melanin granules in the epidermis or/and dermis in P. nigromaculata and B. gargarizans.
Monteyne, Tinne; Heeze, Liza; Mortier, Severine Therese F C; Oldörp, Klaus; Cardinaels, Ruth; Nopens, Ingmar; Vervaet, Chris; Remon, Jean-Paul; De Beer, Thomas
2016-10-01
Twin screw hot melt granulation (TS HMG) is a valuable, but still unexplored alternative to continuous granulation of moisture sensitive drugs. However, knowledge of the material behavior during TS HMG is crucial to optimize the formulation, process and resulting granule properties. The aim of this study was to evaluate the agglomeration mechanism during TS HMG using a rheometer in combination with differential scanning calorimetry (DSC). An immiscible drug-binder formulation (caffeine-Soluplus(®)) was granulated via TS HMG in combination with thermal and rheological analysis (conventional and Rheoscope), granule characterization and Near Infrared chemical imaging (NIR-CI). A thin binder layer with restricted mobility was formed on the surface of the drug particles during granulation and is covered by a second layer with improved mobility when the Soluplus(®) concentration exceeded 15% (w/w). The formation of this second layer was facilitated at elevated granulation temperatures and resulted in smaller and more spherical granules. The combination of thermal and rheological analysis and NIR-CI images was advantageous to develop in-depth understanding of the agglomeration mechanism during continuous TS HMG and provided insight in the granule properties as function of process temperature and binder concentration.
Alibardi, Lorenzo
2002-02-01
The morphogenesis and ultrastructure of the epidermis of snake embryos were studied at progressive stages of development through hatching to determine the time and modality of differentiation of the shedding complex. Scales form as symmetric epidermal bumps that become slanted and eventually very overlapped. During the asymmetrization of the bumps, the basal cells of the forming outer surface of the scale become columnar, as in an epidermal placode, and accumulate glycogen. Small dermal condensations are sometimes seen and probably represent primordia of the axial dense dermis of the growing tip of scales. Deep, dense, and superficial loose dermal regions are formed when the epidermis is bilayered (periderm and basal epidermis) and undifferentiated. Glycogen and lipids decrease from basal cells to differentiating suprabasal cells. On the outer scale surface, beneath the peridermis, a layer containing dense granules and sparse 25-30-nm thick coarse filaments is formed. The underlying clear layer does not contain keratohyalin-like granules but has a rich cytoskeleton of intermediate filaments. Small denticles are formed and they interdigitate with the oberhautchen spinulae formed underneath. On the inner scale surface the clear layer contains dense granules, coarse filaments, and does not form denticles with the aspinulated oberhautchen. On the inner side surface the oberhautchen only forms occasional spinulae. The sloughing of the periderm and embryonic epidermis takes place in ovo 5-6 days before hatching. There follow beta-, mesos-, and alpha-layers, not yet mature before hatching. No resting period is present but a new generation is immediately produced so that at 6-10 h posthatching an inner generation and a new shedding complex are forming beneath the outer generation. The first shedding complex differentiates 10-11 days before hatching. In hatchlings 6-10 h old, tritiated histidine is taken up in the epidermis 4 h after injection and is found mainly in the shedding complex, especially in the apposed membranes of the clear layer and oberhautchen cells. This indicates that a histidine-rich protein is produced in preparation for shedding, as previously seen in lizard epidermis. The second shedding (first posthatching) takes place at 7-9 days posthatching. It is suggested that the shedding complex in lepidosaurian reptiles has evolved after the production of a histidine-rich protein and of a beta-keratin layer beneath the former alpha-layer. Copyright 2002 Wiley-Liss, Inc.
Sasahara, Tais Harumi de Castro; Leal, Leonardo Martins; Spillantini, Maria Grazia; Machado, Márcia Rita Fernandes
2015-04-01
The majority of neuroanatomical and chemical studies of the olfactory bulb have been performed in small rodents, such as rats and mice. Thus, this study aimed to describe the organisation and the chemical neuroanatomy of the main olfactory bulb (MOB) in paca, a large rodent belonging to the Hystricomorpha suborder and Caviomorpha infraorder. For this purpose, histological and immunohistochemical procedures were used to characterise the tyrosine hydroxylase (TH) and calretinin (CR) neuronal populations and their distribution. The paca MOB has eight layers: the olfactory nerve layer (ONL), the glomerular layer (GL), the external plexiform layer (EPL; subdivided into the inner and outer sublayers), the mitral cell layer (MCL), the internal plexiform layer (IPL), the granule cell layer (GCL), the periventricular layer and the ependymal layer. TH-ir neurons were found mostly in the GL, and moderate numbers of TH-ir neurons were scattered in the EPL. Numerous varicose fibres were distributed in the IPL and in the GCL. CR-ir neurons concentrated in the GL, around the base of the olfactory glomeruli. Most of the CR-ir neurons were located in the MCL, IPL and GCL. Some of the granule cells had an apical dendrite with a growth cone. The CR immunoreactivity was also observed in the ONL with olfactory nerves strongly immunostained. This study has shown that the MOB organisation in paca is consistent with the description in other mammals. The characterisation and distribution of the population of TH and CR in the MOB is not exclusively to this species. This large rodent shares common patterns to other caviomorph rodent, as guinea pig, and to the myomorph rodents, as mice, rats and hamsters.
Model cerebellar granule cells can faithfully transmit modulated firing rate signals
Rössert, Christian; Solinas, Sergio; D'Angelo, Egidio; Dean, Paul; Porrill, John
2014-01-01
A crucial assumption of many high-level system models of the cerebellum is that information in the granular layer is encoded in a linear manner. However, granule cells are known for their non-linear and resonant synaptic and intrinsic properties that could potentially impede linear signal transmission. In this modeling study we analyse how electrophysiological granule cell properties and spike sampling influence information coded by firing rate modulation, assuming no signal-related, i.e., uncorrelated inhibitory feedback (open-loop mode). A detailed one-compartment granule cell model was excited in simulation by either direct current or mossy-fiber synaptic inputs. Vestibular signals were represented as tonic inputs to the flocculus modulated at frequencies up to 20 Hz (approximate upper frequency limit of vestibular-ocular reflex, VOR). Model outputs were assessed using estimates of both the transfer function, and the fidelity of input-signal reconstruction measured as variance-accounted-for. The detailed granule cell model with realistic mossy-fiber synaptic inputs could transmit information faithfully and linearly in the frequency range of the vestibular-ocular reflex. This was achieved most simply if the model neurons had a firing rate at least twice the highest required frequency of modulation, but lower rates were also adequate provided a population of neurons was utilized, especially in combination with push-pull coding. The exact number of neurons required for faithful transmission depended on the precise values of firing rate and noise. The model neurons were also able to combine excitatory and inhibitory signals linearly, and could be replaced by a simpler (modified) integrate-and-fire neuron in the case of high tonic firing rates. These findings suggest that granule cells can in principle code modulated firing-rate inputs in a linear manner, and are thus consistent with the high-level adaptive-filter model of the cerebellar microcircuit. PMID:25352777
Antonini, Elena; Zara, Carolina; Valentini, Laura; Gobbi, Pietro; Menotta, Michele
2018-01-01
In this study, we applied Environmental Scanning Electron Microscopy-Energy Dispersive Spectroscopy (ESEM-EDS) and Atomic Force Microscopy (AFM) analysis to three different cereal caryopses: barley, oat and einkorn wheat. The morphological structures, chemical elemental composition and surface characteristics of the three cereals were described. Regarding the morphology, barley showed the thickest pericarp, providing a strong barrier to digestion and absorption of nutrients. The aleurone layer of each cereal type contained protein body globoids within its cells. Large type-A and small type-B starchy granules were revealed in the endosperm of barley and einkorn wheat, whereas irregular starchy granules were found in oats. The starchy granule elemental composition, detected by ESEM-EDS, was rather homogenous in the three cereals, whereas the pericarp and protein body globoids showed heterogeneity. In the protein body globoids, oats showed higher P and K concentrations than barley and einkorn wheat. Regarding the topographic profiles, detected by AFM, einkorn wheat starchy granules showed a surface profile that differed significantly from that of oats and barley, which were quite similar to one another. The present work provides insights into the morphological and chemical makeup of the three grains shedding light on the higher bio-accessibility of einkorn wheat nutrients compared to barley and oats, providing important suggestions for human nutrition and technological standpoints. PMID:29569870
Antonini, Elena; Zara, Carolina; Valentini, Laura; Gobbi, Pietro; Ninfali, Paolino; Menotta, Michele
2018-02-05
In this study, we applied Environmental Scanning Electron Microscopy-Energy Dispersive Spectroscopy (ESEM-EDS) and Atomic Force Microscopy (AFM) analysis to three different cereal caryopses: barley, oat and einkorn wheat. The morphological structures, chemical elemental composition and surface characteristics of the three cereals were described. Regarding the morphology, barley showed the thickest pericarp, providing a strong barrier digestion and absorption of nutrients. The aleurone layer of each cereal type contained protein body globoids within its cells. Large type-A and small type-B starchy granules were revealed in the endosperm of barley and einkorn wheat, whereas irregular starchy granules were found in oats. The starchy granule elemental composition, detected by ESEM-EDS, was rather homogenous in the three cereals, whereas the pericarp and protein body globoids showed heterogeneity. In the protein body globoids, oats showed higher P and K concentrations than barley and einkorn wheat. Regarding the topographic profiles, detected by AFM, einkorn wheat starchy granules showed a surface profile that differed significantly from that of oats and barley, which were quite similar to one another. The present work provides insights into the morphological and chemical makeup of the three grains shedding light on the higher bio-accessibility of einkorn wheat nutrients compared to barley and oats, providing important suggestions for human nutrition and technological standpoints.
Postnatal Migration of Cerebellar Interneurons
Galas, Ludovic; Bénard, Magalie; Lebon, Alexis; Komuro, Yutaro; Schapman, Damien; Vaudry, Hubert; Vaudry, David; Komuro, Hitoshi
2017-01-01
Due to its continuing development after birth, the cerebellum represents a unique model for studying the postnatal orchestration of interneuron migration. The combination of fluorescent labeling and ex/in vivo imaging revealed a cellular highway network within cerebellar cortical layers (the external granular layer, the molecular layer, the Purkinje cell layer, and the internal granular layer). During the first two postnatal weeks, saltatory movements, transient stop phases, cell-cell interaction/contact, and degradation of the extracellular matrix mark out the route of cerebellar interneurons, notably granule cells and basket/stellate cells, to their final location. In addition, cortical-layer specific regulatory factors such as neuropeptides (pituitary adenylate cyclase-activating polypeptide (PACAP), somatostatin) or proteins (tissue-type plasminogen activator (tPA), insulin growth factor-1 (IGF-1)) have been shown to inhibit or stimulate the migratory process of interneurons. These factors show further complexity because somatostatin, PACAP, or tPA have opposite or no effect on interneuron migration depending on which layer or cell type they act upon. External factors originating from environmental conditions (light stimuli, pollutants), nutrients or drug of abuse (alcohol) also alter normal cell migration, leading to cerebellar disorders. PMID:28587295
Burton, Shawn D.
2015-01-01
Granule cell-mediated inhibition is critical to patterning principal neuron activity in the olfactory bulb, and perturbation of synaptic input to granule cells significantly alters olfactory-guided behavior. Despite the critical role of granule cells in olfaction, little is known about how sensory input recruits granule cells. Here, we combined whole-cell patch-clamp electrophysiology in acute mouse olfactory bulb slices with biophysical multicompartmental modeling to investigate the synaptic basis of granule cell recruitment. Physiological activation of sensory afferents within single glomeruli evoked diverse modes of granule cell activity, including subthreshold depolarization, spikelets, and suprathreshold responses with widely distributed spike latencies. The generation of these diverse activity modes depended, in part, on the asynchronous time course of synaptic excitation onto granule cells, which lasted several hundred milliseconds. In addition to asynchronous excitation, each granule cell also received synchronous feedforward inhibition. This inhibition targeted both proximal somatodendritic and distal apical dendritic domains of granule cells, was reliably recruited across sniff rhythms, and scaled in strength with excitation as more glomeruli were activated. Feedforward inhibition onto granule cells originated from deep short-axon cells, which responded to glomerular activation with highly reliable, short-latency firing consistent with tufted cell-mediated excitation. Simulations showed that feedforward inhibition interacts with asynchronous excitation to broaden granule cell spike latency distributions and significantly attenuates granule cell depolarization within local subcellular compartments. Collectively, our results thus identify feedforward inhibition onto granule cells as a core feature of olfactory bulb circuitry and establish asynchronous excitation and feedforward inhibition as critical regulators of granule cell activity. SIGNIFICANCE STATEMENT Inhibitory granule cells are involved critically in shaping odor-evoked principal neuron activity in the mammalian olfactory bulb, yet little is known about how sensory input activates granule cells. Here, we show that sensory input to the olfactory bulb evokes a barrage of asynchronous synaptic excitation and highly reliable, short-latency synaptic inhibition onto granule cells via a disynaptic feedforward inhibitory circuit involving deep short-axon cells. Feedforward inhibition attenuates local depolarization within granule cell dendritic branches, interacts with asynchronous excitation to suppress granule cell spike-timing precision, and scales in strength with excitation across different levels of sensory input to normalize granule cell firing rates. PMID:26490853
Tvedten, Harold; Hillström, Anna
2013-06-01
A 6-year-old Wirehair Dachshund had a meningioma around the optic nerve that caused exophthalmos. A benign mesenchymal tumor was suspected based on the cytologic pattern of a fine-needle aspirate, and a meningioma was diagnosed by histopathologic examination. In addition to the meningioma cells, the cytologic smears included groups of cells from apparently 4 layers of normal retina. In particular, uniform rod-shaped structures in the cytologic sample could suggest rod-shaped bacteria, but these structures were identified as cylindrical outer segments of photoreceptor rod cells. Other retinal structures recognized included pigmented epithelial layer cells with their uniquely formed pigment granules, the characteristic bi-lobed, cleaved nuclei from the outer nuclear layer, and nerve tissue likely from the outer plexiform layer of the retina. © 2013 American Society for Veterinary Clinical Pathology.
Knogler, Laura D; Markov, Daniil A; Dragomir, Elena I; Štih, Vilim; Portugues, Ruben
2017-05-08
A fundamental question in neurobiology is how animals integrate external sensory information from their environment with self-generated motor and sensory signals in order to guide motor behavior and adaptation. The cerebellum is a vertebrate hindbrain region where all of these signals converge and that has been implicated in the acquisition, coordination, and calibration of motor activity. Theories of cerebellar function postulate that granule cells encode a variety of sensorimotor signals in the cerebellar input layer. These models suggest that representations should be high-dimensional, sparse, and temporally patterned. However, in vivo physiological recordings addressing these points have been limited and in particular have been unable to measure the spatiotemporal dynamics of population-wide activity. In this study, we use both calcium imaging and electrophysiology in the awake larval zebrafish to investigate how cerebellar granule cells encode three types of sensory stimuli as well as stimulus-evoked motor behaviors. We find that a large fraction of all granule cells are active in response to these stimuli, such that representations are not sparse at the population level. We find instead that most responses belong to only one of a small number of distinct activity profiles, which are temporally homogeneous and anatomically clustered. We furthermore identify granule cells that are active during swimming behaviors and others that are multimodal for sensory and motor variables. When we pharmacologically change the threshold of a stimulus-evoked behavior, we observe correlated changes in these representations. Finally, electrophysiological data show no evidence for temporal patterning in the coding of different stimulus durations. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Mechanism of the formation of hollow spherical granules using a high shear granulator.
Asada, Takumi; Nishikawa, Mitsunori; Ochiai, Yasushi; Noguchi, Shuji; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru
2018-05-30
Recently, we have developed a novel granulation technology to manufacture hollow spherical granules (HSGs) for controlled-release formulations; however, the mechanism of the granulation is still unclear. The aim of this study is to determine the mechanism of the formation of the HSGs using a high shear granulator. Samples of granulated material were collected at various times during granulation and were investigated using scanning electron microscope and X-ray computed tomography. It was observed that the granulation proceeded by drug layering to the polymer, followed by formation of a hollow in the granule. In addition, it was also found that generation of a crack in the adhered drug layer and air flow into the granules might be involved in forming the hollow in the structure. Observation of the granulation of formulations with different types of drugs and polymers indicated that negative pressure in the granules occurred and the granules caved in when the hollow was formed. The hollow-forming speed and the shell density of the hollow granules depended on the particular drug and polymer. Taken together, the granulation mechanism of HSGs was determined and this information will be valuable for HSGs technology development. Copyright © 2018 Elsevier B.V. All rights reserved.
Nakamura, E; Kadomatsu, K; Yuasa, S; Muramatsu, H; Mamiya, T; Nabeshima, T; Fan, Q W; Ishiguro, K; Igakura, T; Matsubara, S; Kaname, T; Horiba, M; Saito, H; Muramatsu, T
1998-12-01
Midkine (MK) is a growth factor implicated in the development and repair of various tissues, especially neural tissues. However, its in vivo function has not been clarified. Knockout mice lacking the MK gene (Mdk) showed no gross abnormalities. We closely analysed postnatal brain development in Mdk(-/-) mice using calcium binding proteins as markers to distinguish neuronal subpopulations. Intense and prolonged calretinin expression was found in the dentate gyrus granule cell layer of the hippocampus of infant Mdk(-/-) mice. In infant Mdk(+/+) mice, calretinin expression in the granule cell layer was weaker, and had disappeared by 4 weeks after birth, when calretinin expression still persisted in Mdk(-/-) mice. Furthermore, 4 weeks after birth, Mdk(-/-) mice showed a deficit in their working memory, as revealed by a Y-maze test, and had an increased anxiety, as demonstrated by the elevated plus-maze test. Midkine plays an important role in the regulation of postnatal development of the hippocampus.
Application of tumbling melt granulation (TMG) method to prepare controlled-release fine granules.
Maejima, T; Kubo, M; Osawa, T; Nakajima, K; Kobayashi, M
1998-03-01
The tumbling melt granulation (TMG) method was applied to prepare controlled-release fine granules of diltiazem hydrochloride (DH). The entire process, from the preparation of the cores by the adherence of DH to the sucrose crystal to the subsequent coating of the controlled-release layer, was performed without using any solvent. A mixture of meltable material, talc, and ethylcellulose was used for the controlled-release layer and controlled-release fine granules approximately 400 microns in diameter were obtained with excellent producibility. The dissolution rate of DH from these fine granules was similar to that of a once-a-day dosage form obtained in the market; further, the dependency of the dissolution profile on pH of the media was less. Thus, it was concluded that this TMG method was very useful for preparing not only controlled-release beads of granule size (usually 500 to 1400 microns) but also fine granules.
Chavda, H.V.; Patel, M.S.; Patel, C.N.
2012-01-01
The objective of the present study was to design an oral controlled drug delivery system for sparingly soluble diclofenac sodium (DCL) using guar gum as triple-layer matrix tablets. Matrix tablet granules containing 30% (D1), 40% (D2) or 50% (D3) of guar gum were prepared by the conventional wet granulation technique. Matrix tablets of diclofenac sodium were prepared by compressing three layers one by one. Centre layer of sandwich like structure was incorporated with matrix granules containing DCL which was covered on either side by guar gum granule layers containing either 70, 80 or 87% of guar gum as release retardant layers. The tablets were evaluated for hardness, thickness, drug content, and drug release studies. To ascertain the kinetics of drug release, the dissolution profiles were fitted to various mathematical models. The in vitro drug release from proposed system was best explained by the Hopfenberg model indicating that the release of drug from tablets displayed heterogeneous erosion. D3G3, containing 87% of guar gum in guar gum layers and 50% of guar gum in DCL matrix granule layer was found to provide the release rate for prolonged period of time. The results clearly indicate that guar gum could be a potential hydrophilic carrier in the development of oral controlled drug delivery systems. PMID:23181081
Wu, Chi-Cheng; Chawla, Faisal; Games, Dora; Rydel, Russell E; Freedman, Stephen; Schenk, Dale; Young, Warren G; Morrison, John H; Bloom, Floyd E
2004-05-04
Increasing evidence from mouse models of Alzheimer's disease shows that overexpression of a mutant form of the amyloid precursor protein (APP) and its product, beta-amyloid peptide, initiate pathological changes before amyloid deposition. To evaluate the cytological basis for one of these early changes, namely reduced volume of the dentate gyrus (DG), we have used high-throughput diOlistic cell loading and 3D neuronal reconstruction to investigate potential dendritic pathology of granule cells (GCs) in 90-day-old PDAPP mice. Labeled GCs from fixed hippocampal slices were selected randomly and imaged digitally by using confocal laser-scanning microscopy. The dendritic complexity of GCs was quantified according to subordinate morphological parameters, including soma position within the granule cell layer (superficial versus deep) and topographic location within the DG (dorsal versus ventral blade) along the anterior-posterior hippocampal axis. Initial analysis, which included all sampled GC types, revealed a 12% reduction of total dendritic length in PDAPP mice compared with littermate controls. Further analysis, performed with refined subgroups, found that superficially located GCs in the dorsal blade were profoundly altered, exhibiting a 23% loss in total dendritic length, whereas neurons in the ventral blade were unaffected. Superficial GCs were particularly vulnerable (a 32% reduction) in the posterior region of the DG. Furthermore, the dendritic reductions of this select group were uniformly localized within middle-to-outer portions of the dentate molecular layer. We conclude that substantial dendritic pathology is evident in 90-day-old PDAPP mice for a spatially defined subset of GCs well before amyloid accumulation occurs.
Wu, Chi-Cheng; Chawla, Faisal; Games, Dora; Rydel, Russell E.; Freedman, Stephen; Schenk, Dale; Young, Warren G.; Morrison, John H.; Bloom, Floyd E.
2004-01-01
Increasing evidence from mouse models of Alzheimer's disease shows that overexpression of a mutant form of the amyloid precursor protein (APP) and its product, β-amyloid peptide, initiate pathological changes before amyloid deposition. To evaluate the cytological basis for one of these early changes, namely reduced volume of the dentate gyrus (DG), we have used high-throughput diOlistic cell loading and 3D neuronal reconstruction to investigate potential dendritic pathology of granule cells (GCs) in 90-day-old PDAPP mice. Labeled GCs from fixed hippocampal slices were selected randomly and imaged digitally by using confocal laser-scanning microscopy. The dendritic complexity of GCs was quantified according to subordinate morphological parameters, including soma position within the granule cell layer (superficial versus deep) and topographic location within the DG (dorsal versus ventral blade) along the anterior-posterior hippocampal axis. Initial analysis, which included all sampled GC types, revealed a 12% reduction of total dendritic length in PDAPP mice compared with littermate controls. Further analysis, performed with refined subgroups, found that superficially located GCs in the dorsal blade were profoundly altered, exhibiting a 23% loss in total dendritic length, whereas neurons in the ventral blade were unaffected. Superficial GCs were particularly vulnerable (a 32% reduction) in the posterior region of the DG. Furthermore, the dendritic reductions of this select group were uniformly localized within middle-to-outer portions of the dentate molecular layer. We conclude that substantial dendritic pathology is evident in 90-day-old PDAPP mice for a spatially defined subset of GCs well before amyloid accumulation occurs. PMID:15118092
Iwasaki, S; Asami, T; Wanichanon, C
1996-04-01
Various species of turtles are adapted to different environments, such as freshwater, seawater, and terrestrial habitats. Comparisons of histological and ultrastructural features of the tongue of the juvenile Hawksbill turtle, Eretmochelys imbricata bissa, with those of freshwater turtles should reveal some aspects of the relationship between the structure of the lingual epithelium and the environment. The light microscope, scanning electron microscope and transmission electron microscope were used. Light microscopy revealed that the mucosal epithelium of the tongue was of the keratinized, stratified squamous type. Under the scanning electron microscope, no lingual papillae were visible on the dorsal surface of the tongue. Micropits and the thickening of cell margins were clearly seen on the surface of cells located on the outermost side. The transmission electron microscope revealed that the cells in the intermediate layer were gradually flattened from the basal side to the surface side, as were their nuclei. In the shallow intermediate layer, the cells were significantly flattened, and their nuclei were condensed or had disappeared. The cytoplasm contained keratohyalin granules, tonofibrils, free ribosomes, mitochondria, and rough endoplasmic reticulum. Numerous free ribosomes were attached to the surface of small keratohyalin granules. The cells of the keratinized layer were significantly flattened, and their nuclei had completely disappeared. Most of cytoplasm was filled with keratin fibers of high electron density. Keratin fibers of the shedding cells, which were located on the outermost side of the keratinized layer, appeared looser, and each fiber, which was somewhat thicker than the tonofibrils and tonofilaments, was clearly distinguishable. The lingual epithelium of the juvenile Hawksbill turtle differs significantly from that of the adult freshwater turtle, in spite of the similarity in gross morphology of the tongues of these species.
Ghanaati, Shahram; Schlee, Markus; Webber, Matthew J; Willershausen, Ines; Barbeck, Mike; Balic, Ela; Görlach, Christoph; Stupp, Samuel I; Sader, Robert A; Kirkpatrick, C James
2011-02-01
This study evaluates a new collagen matrix that is designed with a bilayered structure in order to promote guided tissue regeneration and integration within the host tissue. This material induced a mild tissue reaction when assessed in a murine model and was well integrated within the host tissue, persisting in the implantation bed throughout the in vivo study. A more porous layer was rapidly infiltrated by host mesenchymal cells, while a layer designed to be a barrier allowed cell attachment and host tissue integration, but at the same time remained impermeable to invading cells for the first 30 days of the study. The tissue reaction was favorable, and unlike a typical foreign body response, did not include the presence of multinucleated giant cells, lymphocytes, or granulation tissue. In the context of translation, we show preliminary results from the clinical use of this biomaterial applied to soft tissue regeneration in the treatment of gingival tissue recession and exposed roots of human teeth. Such a condition would greatly benefit from guided tissue regeneration strategies. Our findings demonstrate that this material successfully promoted the ingrowth of gingival tissue and reversed gingival tissue recession. Of particular importance is the fact that the histological evidence from these human studies corroborates our findings in the murine model, with the barrier layer preventing unspecific tissue ingrowth, as the scaffold becomes infiltrated by mesenchymal cells from adjacent tissue into the porous layer. Also in the clinical situation no multinucleated giant cells, no granulation tissue and no evidence of a marked inflammatory response were observed. In conclusion, this bilayered matrix elicits a favorable tissue reaction, demonstrates potential as a barrier for preferential tissue ingrowth, and achieves a desirable therapeutic result when applied in humans for soft tissue regeneration.
Conlee, J W; Shapiro, S M; Churn, S B
2000-04-01
The homozygous (jj) jaundiced Gunn rat model for hyperbilirubinemia displays pronounced cerebellar hypoplasia. To examine the cellular mechanisms involved in bilirubin toxicity, this study focused on the effect of hyperbilirubinemia on calcium/calmodulin-dependent kinase II (CaM kinase II). CaM kinase II is a neuronally enriched enzyme which performs several important functions. Immunohistochemical analysis of alternating serial sections were performed using monoclonal antibodies for the alpha and beta subunits of CaM kinase II. Measurements were made of the total numbers of stained cells in each of the deep cerebellar nuclei and of Purkinje and granule cell densities in cerebellar lobules II, VI, and IX. The beta subunit was present in Purkinje cells and deep cerebellar nuclei of both groups at all ages, but only granule cells which had migrated through the Purkinje cell layer showed staining for beta subunit; external granule cells were completely negative. Many Purkinje cells had degenerated in the older animals, and the percent of granule cells stained for beta subunit was significantly reduced. The alpha subunit was found exclusively in Purkinje cells, although its appearance was delayed in the jaundiced animals. Sulfadimethoxine was administered to some jj rats 24 h or 15 days prior to sacrifice to increase brain bilirubin concentration. Results showed that bilirubin exposure modulated both alpha and beta CaM kinase II subunit expression in selective neuronal populations, but sulfadimethoxine had no acute effect on enzyme immunoreactivity. Thus, developmental expression of the alpha and beta subunits of CaM kinase II was affected by chronic bilirubin exposure during early postnatal development of jaundiced Gunn rats.
Distribution of CaMKIIα expression in the brain in vivo, studied by CaMKIIα-GFP mice
Wang, Xinjun; Zhang, Chunzhao; Szábo, Gábor; Sun, Qian-Quan
2013-01-01
To facilitate the study of the CaMKIIα function in vivo, a CaMKIIα-GFP transgenic mouse line was generated. Here, our goal is to provide the first neuroanatomical characterization of GFP expression in the CNS of this line of mouse. Overall, CaMKIIα -GFP expression is strong and highly heterogeneous, with the dentate gyrus of the hippocampus as the most abundantly expressed region. In the hippocampus, around 70% of granule and pyramidal neurons expressed strong GFP. In the neocortex, presumed pyramidal neurons were GFP positive: around 32% of layer II/III and 35% of layer VI neurons expressed GFP, and a lower expression rate was found in other layers. In the thalamus and hypothalamus, strong GFP signals were detected in the neuropil. GFP-positive cells were also found in many other regions such as the spinal trigeminal nucleus, cerebellum and basal ganglia. We further compared the GFP expression with specific antibody staining for CaMKIIα and GABA. We found that GFP+ neurons were mostly positive for CaMKIIα-IR throughout the brain, with some exceptions throughout the brain, especially in the deeper layers of neocortex. GFP and GABA-IR marked distinct neuronal populations in most brain regions with the exception of granule cells in the olfactory bulb, purkinje cells in the cerebellar, and some layer I cells in neocortex. In conclusion, GFP expression in the CaMKIIα-GFP mice is similar to the endogenous expression of CaMKIIα protein, thus these mice can be used in in vivo and in vitro physiological studies in which visualization of CaMKIIα- neuronal populations is required. PMID:23632380
Layered growth with bottom-spray granulation for spray deposition of drug.
Er, Dawn Z L; Liew, Celine V; Heng, Paul W S
2009-07-30
The gap in scientific knowledge on bottom-spray fluidized bed granulation has emphasized the need for more studies in this area. This paper comparatively studied the applicability of a modified bottom-spray process and the conventional top-spray process for the spray deposition of a micronized drug during granulation. The differences in circulation pattern, mode of growth and resultant granule properties between the two processes were highlighted. The more ordered and consistent circulation pattern of particles in a bottom-spray fluidized bed was observed to give rise to layered granule growth. This resulted in better drug content uniformity among the granule batches and within a granule batch. The processes' sensitivities to wetting and feed material characteristics were also compared and found to differ markedly. Less robustness to differing process conditions was observed for the top-spray process. The resultant bottom-spray granules formed were observed to be less porous, more spherical and had good flow properties. The bottom-spray technique can thus be potentially applied for the spray deposition of drug during granulation and was observed to be a good alternative to the conventional technique for preparing granules.
Alibardi, Lorenzo
2004-02-01
The process of keratinization in apteric avian epidermis and in scutate scales of some avian species has been studied by autoradiography for histidine and immunohistochemistry for keratins and other epidermal proteins. Acidic or basic alpha-keratins are present in basal, spinosus, and transitional layers, but are not seen in the corneous layer. Keratinization-specific alpha-keratins (AE2-positive) are observed in the corneous layer of apteric epidermis but not in that of scutate scales, which contain mainly beta-keratin. Alpha-keratin bundles accumulate along the plasma membrane of transitional cells of apteric epidermis. In contrast to the situation in scutate scales, in the transitional layer and in the lowermost part of the corneous layer of apteric epidermis, filaggrin-like, loricrin-like, and transglutaminase immunoreactivities are present. The lack of isopeptide bond immunoreactivity suggests that undetectable isopeptide bonds are present in avian keratinocytes. Using immunogold ultrastructural immunocytochemistry a low but localized loricrin-like and, less, filaggrin-like labeling is seen over round-oval granules or vesicles among keratin bundles of upper spinosus and transitional keratinocytes of apteric epidermis. Filaggrin-and loricrin-labeling are absent in alpha-keratin bundles localized along the plasma membrane and in the corneous layer, formerly considered keratohyalin. Using ultrastructural autoradiography for tritiated histidine, occasional trace grains are seen among these alpha-keratin bundles. A different mechanism of redistribution of matrix and corneous cell envelope proteins probably operates in avian keratinocytes as compared to that of mammals. Keratin bundles are compacted around the lipid-core of apteric epidermis keratinocytes, which do not form complex chemico/mechanical-resistant corneous cell envelopes as in mammalian keratinocytes. These observations suggest that low amounts of matrix proteins are present among keratin bundles of avian keratinocytes and that keratohyalin granules are absent. Copyright 2003 Wiley-Liss, Inc.
Cell wall biogenesis in Oocystis: experimental alteration of microfibril assembly and orientation.
Montezinos, D; Brown, R M
1978-01-01
Cell wall biogenesis in the unicellular green alga Oocystis apiculata has been studied. Under normal growth conditions, a cell wall with ordered microfibrils is synthesized. In each layer there are rows of parallel microfibrils. Layers are nearly perpendicular to each other. Terminal linear synthesizing complexes are located in the plasma membrane, and they are capable of bidirectional synthesis of cellulose microfibrils. Granule bands associated with the inner leaflet of the plasma membrane appear to control the orientation of newly synthesized microfibrils. Subcortical microtubules also are present during wall synthesis. Patterns of cell wall synthesis were studied after treatment with EDTA and EGTA as well as divalent cations (MgSO4, CaSO4, Cacl2). 0.1 M EDTA treatment for 15 min results in the disassociation of the terminal complexes from the ends of microfibrils. EDTA-treated cells followed by 15 min treatment with MgSO4 results in reaggregation of the linear complexes into a paired state, remote from the original ends to which they were associated. After 90 min treatment with MgSO4, normal synthesis resumes. EGTA and calcium salts do not affect the linear complexes or microfibril orientation. Treatments with colchicine and vinblastine sulphate do not depolymerize the microtubles, but the wall microfibril orientation is altered. With colchicine or vinblastine, the change in orientation from layer to layer is inhibited. The process is reversible upon removal of the drugs. Lumicolchicine has no effect upon microfibril orientation, but granule bands are disorganized. Treatment with coumarin, a known inhibitor of cellulose synthesis, causes the loss of visualization of subunits of the terminal complexes. The possibility of the existence of a membrane-associated colchicine-sensitive orientation protein for cellulose microfibrils is discussed. Transmembrane modulation of microfibril synthesis and orientation is presented.
Vercruysse, J; Peeters, E; Fonteyne, M; Cappuyns, P; Delaet, U; Van Assche, I; De Beer, T; Remon, J P; Vervaet, C
2015-01-01
Since small scale is key for successful introduction of continuous techniques in the pharmaceutical industry to allow its use during formulation development and process optimization, it is essential to determine whether the product quality is similar when small quantities of materials are processed compared to the continuous processing of larger quantities. Therefore, the aim of this study was to investigate whether material processed in a single cell of the six-segmented fluid bed dryer of the ConsiGma™-25 system (a continuous twin screw granulation and drying system introduced by GEA Pharma Systems, Collette™, Wommelgem, Belgium) is predictive of granule and tablet quality during full-scale manufacturing when all drying cells are filled. Furthermore, the performance of the ConsiGma™-1 system (a mobile laboratory unit) was evaluated and compared to the ConsiGma™-25 system. A premix of two active ingredients, powdered cellulose, maize starch, pregelatinized starch and sodium starch glycolate was granulated with distilled water. After drying and milling (1000 μm, 800 rpm), granules were blended with magnesium stearate and compressed using a Modul™ P tablet press (tablet weight: 430 mg, main compression force: 12 kN). Single cell experiments using the ConsiGma™-25 system and ConsiGma™-1 system were performed in triplicate. Additionally, a 1h continuous run using the ConsiGma™-25 system was executed. Process outcomes (torque, barrel wall temperature, product temperature during drying) and granule (residual moisture content, particle size distribution, bulk and tapped density, hausner ratio, friability) as well as tablet (hardness, friability, disintegration time and dissolution) quality attributes were evaluated. By performing a 1h continuous run, it was detected that a stabilization period was needed for torque and barrel wall temperature due to initial layering of the screws and the screw chamber walls with material. Consequently, slightly deviating granule and tablet quality attributes were obtained during the start-up phase of the 1h run. For the single cell runs, granule and tablet properties were comparable with results obtained during the second part of the 1h run (after start-up). Although deviating granule quality (particle size distribution and Hausner ratio) was observed due to the divergent design of the ConsiGma™-1 unit and the ConsiGma™-25 system (horizontal set-up) used in this study, tablet quality produced from granules processed with the ConsiGma™-1 system was predictive for tablet quality obtained during continuous production using the ConsiGma™-25 system. Copyright © 2014 Elsevier B.V. All rights reserved.
Using a million cell simulation of the cerebellum: network scaling and task generality.
Li, Wen-Ke; Hausknecht, Matthew J; Stone, Peter; Mauk, Michael D
2013-11-01
Several factors combine to make it feasible to build computer simulations of the cerebellum and to test them in biologically realistic ways. These simulations can be used to help understand the computational contributions of various cerebellar components, including the relevance of the enormous number of neurons in the granule cell layer. In previous work we have used a simulation containing 12000 granule cells to develop new predictions and to account for various aspects of eyelid conditioning, a form of motor learning mediated by the cerebellum. Here we demonstrate the feasibility of scaling up this simulation to over one million granule cells using parallel graphics processing unit (GPU) technology. We observe that this increase in number of granule cells requires only twice the execution time of the smaller simulation on the GPU. We demonstrate that this simulation, like its smaller predecessor, can emulate certain basic features of conditioned eyelid responses, with a slight improvement in performance in one measure. We also use this simulation to examine the generality of the computation properties that we have derived from studying eyelid conditioning. We demonstrate that this scaled up simulation can learn a high level of performance in a classic machine learning task, the cart-pole balancing task. These results suggest that this parallel GPU technology can be used to build very large-scale simulations whose connectivity ratios match those of the real cerebellum and that these simulations can be used guide future studies on cerebellar mediated tasks and on machine learning problems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Acral peeling skin syndrome: report of two cases.
García, Elena García; Carreño, Rosario Granados; Martínez González, Miguel A; Reyes, José Jiménez
2005-01-01
Peeling skin syndrome is a rare dermatosis characterized by spontaneous and painless peeling of the skin. The authors report two patients with history of spontaneous, asymptomatic, and noninflammatory peeling skin of the acral surfaces after soaking in water. On light microscopy, blisters were located in the mid layers of the stratum corneum, above the granular layer. Ultrastructural examination revealed increased intercellular lipids and abnormal, "moth-eaten," keratohyalin granules, but the authors were unable to determine whether the separation initiated within the horny cells or between adjacent cells. These patients represented a localized variant of peeling skin syndrome.
Trace element distribution in the rat cerebellum
NASA Astrophysics Data System (ADS)
Kwiatek, W. M.; Long, G. J.; Pounds, J. G.; Reuhl, K. R.; Hanson, A. L.; Jones, K. W.
1990-04-01
Spatial distributions and concentrations of trace elements (TE) in the brain are important because TE perform catalytic and structural functions in enzymes which regulate brain function and development. We have investigated the distributions of TE in rat cerebellum. Structures were sectioned and analyzed by the Synchrotron Radiation Induced X-ray Emission (SRIXE) method using the NSLS X-26 white-light microprobe facility. Advantages important for TE analysis of biological specimens with X-ray microscopy include short time of measurement, high brightness and flux, good spatial resolution, multielemental detection, good sensitivity, and nondestructive irradiation. Trace elements were measured in thin rat brain sections of 20 μm thickness. The analyses were performed on sample volumes as small as 0.2 nl with Minimum Detectable Limits (MDL) of 50 ppb wet weight for Fe, 100 ppb wet weight for Cu, and Zn, and 1 ppm wet weight for Pb. The distribution of TE in the molecular cell layer, granule cell layer and fiber tract of rat cerebella was investigated. Both point analyses and two-dimensional semiquantitative mapping of the TE distribution in a section were used. All analyzed elements were observed in each structure of the cerebellum except mercury which was not observed in granule cell layer or fiber tract. This approach permits an exacting correlation of the TE distribution in complex structure with the diet, toxic elements, and functional status of the animal.
Richards, K S; Arme, C; Bridges, J F
1983-06-01
The microfibrillate component of the laminated layer of Echinococcus granulosus equinus contains, except for the zone adjacent to the germinal layer, aggregates of electron-dense bodies displaying a sub-structure of electron-lucent spheres. The tegumentary syncytial cytoplasm contains randomly distributed electron-dense granules, many occurring near the apical plasmalemma, although exocytosis was rarely seen. Granules, similar in size and sub-structure to the bodies of the aggregates, also occur in the internuncial connexions and tegumentary cytons, suggesting that they may be produced in the cytons and released into the laminated layer via the internuncial connexions and tegumentary cytoplasm. Cysts incubated for 0.5-2.5 h in serum- and non-serum-containing media showed differences from non-incubated cysts. The distal half of the syncytium contained a progressive increase in the number of granules (distal: proximal 1.9:1 at 2.5 h; cf. 1:1 in non-incubated cysts), and exocytosis of granules into the laminated layer adjacent to the cyst had occurred. This cannot be attributed wholly to serum proteins. Cysts incubated for 21 h appeared 'normal', suggesting re-establishment of an equilibrium. Since the matrix of the laminated layer is considered homologous to the glycocalyx of other cestodes, the possible protective role played by the granules/bodies, characteristic of Echinococcus spp., is discussed.
Surface Modification of Porous Titanium Granules for Improving Bioactivity.
Karaji, Zahra Gorgin; Houshmand, Behzad; Faghihi, Shahab
The highly porous titanium granules are currently being used as bone substitute material and for bone tissue augmentation. However, they suffer from weak bone bonding ability. The aim of this study was to create a nanostructured surface oxide layer on irregularly shaped titanium granules to improve their bioactivity. This could be achieved using optimized electrochemical anodic oxidation (anodizing) and heat treatment processes. The anodizing process was done in an ethylene glycol-based electrolyte at an optimized condition of 60 V for 3 hours. The anodized granules were subsequently annealed at 450°C for 1 hour. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD) were used to characterize the surface structure and morphology of the granules. The in vitro bioactivity of the samples was evaluated by immersion of specimens in simulated body fluid (SBF) for 1, 2, and 3 weeks. The human osteoblastic sarcoma cell line, MG63, was used to evaluate cell viability on the samples using dimethylthiazol-diphenyl tetrazolium bromide (MTT) assay. The results demonstrated the formation of amorphous nanostructured titanium oxide after anodizing, which transformed to crystalline anatase and rutile phases upon heat treatment. After immersion in SBF, spherical aggregates of amorphous calcium phosphate were formed on the surface of the anodized sample, which turned into crystalline hydroxyapatite on the surface of the anodized annealed sample. No cytotoxicity was detected among the samples. It is suggested that anodic oxidation followed by heat treatment could be used as an effective surface treatment procedure to improve bioactivity of titanium granules implemented for bone tissue repair and augmentation.
Membrane interactions between secretion granules and plasmalemma in three exocrine glands
Tanaka, Y; De Camilli, P; Meldolesi, J
1980-01-01
Three types of membrane interactions were studied in three exocrine systems (the acinar cells of the rat parotid, rat lacrimal gland, and guinea pig pancrease) by freeze- fracture and thin-section electron microscopy: exocytosis, induced in vivo by specific pharmacological stimulations; the mutual apposition of secretory granule membranes in the intact cell; membrane appositions induced in vitro by centrifugation of the isolated granules. In all three glandular cells, the distribution of intramembrane particles (IMP) on the fracture faces of the luminal plasmagranule membrane particles (IMP) on the fracture faces of the lumenal plasmalemma appeared random before stimulation. However, after injection of secretagogues, IMP were rapidly clearly from the areas of granule- plasmalemma apposition in the parotid cells and, especially, in lacrimocytes. In the latter, the cleared areas appeared as large bulges toward the lumen, whereas in the parotid they were less pronounced. Exocytotic openings were usually large and the fracture faces of their rims were covered with IMP. In contrast, in stimulated pancreatic acinar cells, the IMP distribution remained apparently random after stimulation. Exocytoses were established through the formation of narrown necks, and no images which might correspond to early stages of membrane fusion were revealed. Within the cytoplasm of parotid and lacrimal cells (but not in the pancreas), both at rest and after stimulation, secretion granules were often closely apposed by means of flat, circular areas, also devoid of IMP. In thin sections, the images corresponding to IMP-free areas were close granule-granule and granule-plasmalemma appositions, sometimes with focal merging of the membrane outer layers to yield pentalaminar structures. Isolated secretion granules were forced together in vitro by centrifugation. Under these conditions, increasing the centrifugal force from 1,600 to 50,000 g for 10 min resulted in a progressive, statistically significant increase of the frequency of IMP-free flat appositions between parotid granules. In contrast, no such areas were seen between freeze-fractured pancreatic granules, although some focal pentalaminar appositions appeared in section after centrifugation at 50 and 100,000 g for 10 min. On the basis of the observation that, in secretory cells, IMP clearing always develops in deformed membrane areas (bulges, depressions, flat areas), it is suggested that it might result from the forced mechanical apposition of the interacting membranes. This might be a preliminary process not sufficient to initiate fusion. In the pancreas, IMP clearing could occur over surface areas too small to be detected. In stimulated parotid and lacrimal glands they were exceptional. These structures were either attached at the sites of continuity between granule and plasma membranes, or free in the acinar lumen, with a preferential location within exocytotic pockets or in their proximity. Experiments designed to investigate the nature of these blisters and vesicles revealed that they probably arise artifactually during glutaraldehyde fixation. In fact, (a) they were large and numerous in poorly fixed samples but were never observed in thin sections of specimens fixed in one step with glutaraldehyde and OsO(4); and (b) no increase in concentration of phospholipids was observed in the parotid saliva and pancreatic juice after stimulation of protein discharge, as was to be expected if release of membrane material were occurring after exocytosis. PMID:7380885
Crivellato, Enrico; Belloni, Anna; Nico, Beatrice; Nussdorfer, Gastone G; Ribatti, Domenico
2004-03-01
Exocytosis is considered the main route of granule discharge in chromaffin cells. We recently provided ultrastructural evidence suggesting that piecemeal degranulation (PMD) occurs in mouse adrenal chromaffin cells. In the present study, we processed rat adrenal glands for transmission electron microscopy (TEM), and examined chromaffin cells for changes characteristic of PMD. Both adrenaline (A)- and noradrenaline (NA)-storing cells express ultrastructural features suggestive of a slow and particulate mode of granule discharge. In adrenaline-containing cells, some granules present enlarged dimensions accompanied by eroded or dissolved matrices. Likewise, a number of granules in NA-releasing cells show content reduction with variably expanded granule chambers. Dilated, empty granule containers are recognizable in the cytoplasm of both cell types. Characteristically, altered granules and empty containers are seen intermingled with normal, resting granules. In addition, chromaffin granules often show irregular profiles, with budding or tail-like projections of their limiting membranes. Thirty 150-nm-diameter membrane-bound vesicles with a moderately electron-dense or -lucent internal structure are observable in the cytoplasm of both cell types. These vesicles are seen among the granules and some of them are fused with the perigranule membranes in the process of attachment to or budding from the granules. These data add further support to the concept that PMD may be an alternative secretory pathway in adrenal chromaffin cells. Copyright 2004 Wiley-Liss, Inc.
Clark, Peter J.; Bhattacharya, Tushar K.; Miller, Daniel S.; Kohman, Rachel A.; DeYoung, Erin K.; Rhodes, Justin S.
2012-01-01
Running increases the formation of new neurons in the adult rodent hippocampus. However, the function of new neurons generated from running is currently unknown. One hypothesis is that new neurons from running contribute to enhanced cognitive function by increasing plasticity in the adult hippocampus. An alternative hypothesis is that new neurons generated from running incorporate into experience-specific hippocampal networks that only become active during running. The purpose of this experiment was to determine if new neurons generated from running are selectively activated by running, or can become recruited into granule cell activity occurring during performance on other behavioral tasks that engage the hippocampus. Therefore, the activation of new 5–6 week neurons was detected using BrdU, NeuN, and Zif268 triple-label immunohistochemistry in cohorts of female running and sedentary adult C57BL/6J mice following participation in one of three different tasks: the Morris water maze, novel environment exploration, or wheel running. Results showed that running and sedentary mice displayed a nearly equivalent proportion of new neurons that expressed Zif268 following each task. Since running approximately doubled the number of new neurons, the results demonstrated that running mice had a greater number of new neurons recruited into the Zif268 induction in the granule cell layer following each task than sedentary mice. The results suggest that new neurons incorporated into hippocampal circuitry from running are not just activated by wheel running itself, but rather become broadly recruited into granule cell layer activity during distinct behavioral experiences. PMID:22467337
Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu
2002-11-01
The release properties of phenylpropanolamine hydrochloride (PPA) from ethylcellulose (EC, ethylcellulose 10 cps (EC#10) and/or 100 cps (EC#100)) matrix granules prepared by the extrusion granulation method were examined. The release process could be divided into two parts, and was well analyzed by applying square-root time law and cube root law equations, respectively. The validity of the treatments was confirmed by the fitness of the simulation curve with the measured curve. At the initial stage, PPA was released from the gel layer of swollen EC in the matrix granules. At the second stage, the drug existing below the gel layer dissolved, and was released through the gel layer. Also, the time and release ratio at the connection point of the simulation curves was examined to determine the validity of the analysis. Comparing the release properties of PPA from the two types of EC matrix granules, EC#100 showed more effective sustained release than EC#10. On the other hand, changes in the release property of the EC#10 matrix granule were relatively more clear than that of the EC#100 matrix granule. Thus, it was supposed that EC#10 is more available for controlled and sustained release formulations than EC#100.
Effect of steroid hormones on Bufo arenarum oviduct. Ultrastructural study.
Medina, Marcela Fátima; Crespo, Claudia Alejandra; Ramos, Inés; Cisint, Susana Beatriz; Fernández, Silvia Nélida
2007-06-01
The endocrine regulation of the mucosa of the oviductal pars convoluta was analyzed by ultrastructural studies demonstrating that ovariectomy, together with a decrease in ovarian steroids circulating levels, caused a marked regression in this portion of Bufo arenarum oviduct. Twenty-five days after ovariectomy, a decrease in the depth of the epithelial and glandular layers was observed due to the notable loss of secretory cells, whose number was clearly smaller than in nonovariectomized females. The remaining secretory cells showed involution signs, with few secretory granules in their cytoplasm, little endoplasmic reticulum near poorly developed Golgi complexes and a large amount of lipid droplets. Cells in an advanced autolysis state were found in the lumen. These characteristics evidence a nonfunctional state of the pars convoluta. Treatment with 5alpha-dihydrotestosterone (DHT) completely reversed the ovariectomy effect, inducing pars convoluta growths and restoring the characteristics of epithelial and glandular secretory cells in the whole pars convoluta, with micrographs similar to the control. These same effects were observed after treatment with estradiol-17beta (E2), progesterone (P) o E(2)+P in the glandular layer of the whole pars convoluta, but only in the epithelial layer of the most anterior region of this duct. In the secretory cells of other segments these treatments induced the formation of granules of high electron density and homogeneous aspect. Each steroid had a particular effect on the pars convoluta. Although E2 and DHT induced the development of the organoids involved in the proteins biosynthesis, P and DHT acted as secretagogues. (c) 2007 Wiley-Liss, Inc.
Respiration Gates Sensory Input Responses in the Mitral Cell Layer of the Olfactory Bulb
Short, Shaina M.; Morse, Thomas M.; McTavish, Thomas S.; Shepherd, Gordon M.; Verhagen, Justus V.
2016-01-01
Respiration plays an essential role in odor processing. Even in the absence of odors, oscillating excitatory and inhibitory activity in the olfactory bulb synchronizes with respiration, commonly resulting in a burst of action potentials in mammalian mitral/tufted cells (MTCs) during the transition from inhalation to exhalation. This excitation is followed by inhibition that quiets MTC activity in both the glomerular and granule cell layers. Odor processing is hypothesized to be modulated by and may even rely on respiration-mediated activity, yet exactly how respiration influences sensory processing by MTCs is still not well understood. By using optogenetics to stimulate discrete sensory inputs in vivo, it was possible to temporally vary the stimulus to occur at unique phases of each respiration. Single unit recordings obtained from the mitral cell layer were used to map spatiotemporal patterns of glomerular evoked responses that were unique to stimulations occurring during periods of inhalation or exhalation. Sensory evoked activity in MTCs was gated to periods outside phasic respiratory mediated firing, causing net shifts in MTC activity across the cycle. In contrast, odor evoked inhibitory responses appear to be permitted throughout the respiratory cycle. Computational models were used to further explore mechanisms of inhibition that can be activated by respiratory activity and influence MTC responses. In silico results indicate that both periglomerular and granule cell inhibition can be activated by respiration to internally gate sensory responses in the olfactory bulb. Both the respiration rate and strength of lateral connectivity influenced inhibitory mechanisms that gate sensory evoked responses. PMID:28005923
Anuracpreeda, Panat; Phutong, Sumittra; Ngamniyom, Arin; Panyarachun, Busaba; Sobhon, Prasert
2015-03-01
Adult Carmyerius spatiosus or stomach fluke has an elongate, cylindrical-shaped, straight to slightly curved body, with conical anterior end and truncated posterior end. The worm measures about 8.7-11.2mm in body length and 2.3-3.0mm in body width across the mid-section. When observed by SEM, the tegumental surface in all part of the body appears highly corrugated with ridges and furrows, and having no spines. The ventral surface has more complex corrugation than those of the dorsal surface. Both anterior and posterior suckers have thick edges covered with transverse folds and appear spineless. The genital pore is located at the anterior part of the body. There are two types of sensory papillae on the surface: type 1 is bulbous in shape with nipple-like tips; type 2 has a similar shape with short cilia on the tip. The dorsal surface exhibits similar surface features, but papillae appear less numerous and are smaller. When observed by TEM, the tegument is divided into four layers. The first layer includes the ridges and furrows which are covered by a trilaminate membrane underlined by a dense lamina and coated externally with the glycocalyx. The second layer of the tegument is a narrow region of cytoplasm that contains high concentrations of ovoid electron lucent tegumental granules (TG1), and disc-shaped electron dense tegumental granules (TG2) as well as lysosomes. TG1 close to the surface invariably exocytose their content into bottoms of the ridges, while some TG2 are fused and have their membrane joined up with the surface membrane. The third layer is the widest middle area of the tegument which contains numerous and evenly distributed mitochondria. Both TG1 and TG2 granules are present but in much fewer number than in the first and second layers. The fourth layer is the innermost zone that rests on and couples with a thick basal lamina. The cytoplasm in this layer is loosely packed and contains numerous infoldings of the basal plasma membrane with closely associated mitochondria. It also contains fairly large numbers of TG1 and TG2 granules which are produced and transported to the tegument by one type of tegumental cells lying in rows underneath the muscular layers. Copyright © 2014 Elsevier B.V. All rights reserved.
Lin, Ximao; Wang, Yayi
2017-09-01
The anammox process represents a sustainable and cost-effective technique for nitrogen removal from wastewater, where granulation of anammox bacteria could be of great benefit to the system performance. However, knowledge of the specific properties of anammox granules is currently unsatisfactory. In this study, the organization of anammox granules was comprehensively studied from macro to micro scale with a range of microscale techniques. Scanning and transmission electron microscopy and multiple fluorescence labeling combined with confocal laser scanning microscopy were included. Simultaneously, the associated mechanical properties were studied in-depth by rheometry in combination with selective enzymatic hydrolysis. Anammox granules follow a tertiary organization regime, where interactions between individual anammox bacteria made up the primary base, then, the grouping of anammox bacterial cells encapsulated within a thin extracellular polymeric substance (EPS) layer comprised a second arrangement level, and, finally, the cementing of these groups together with other bacteria and polymers gave rise to compact aggregates. α-Polysaccharides and proteins were considered the backbones of anammox granules, contributing greatly to their excellent intensity. β-Polysaccharides concentrated at the outer rims of anammox granules and combined with other macromolecules to form a buffer zone or protective barrier, beneath which anammox bacteria proliferated. Divalent cationic bridging for EPS binding was prevalent and of great significance within the dense anammox granules, while there was also much weak monovalent ionic interaction. The specific organization and composition of anammox granules endows them with excellent intensity and integrity, which can be of importance for full-scale reactor operations where diverse shocks can be expected. Copyright © 2017 Elsevier Ltd. All rights reserved.
Distorted secretory granule composition in mast cells with multiple protease deficiency.
Grujic, Mirjana; Calounova, Gabriela; Eriksson, Inger; Feyerabend, Thorsten; Rodewald, Hans-Reimer; Tchougounova, Elena; Kjellén, Lena; Pejler, Gunnar
2013-10-01
Mast cells are characterized by an abundance of secretory granules densely packed with inflammatory mediators such as bioactive amines, cytokines, serglycin proteoglycans with negatively charged glycosaminoglycan side chains of either heparin or chondroitin sulfate type, and large amounts of positively charged proteases. Despite the large biological impact of mast cell granules and their contents on various pathologies, the mechanisms that regulate granule composition are incompletely understood. In this study, we hypothesized that granule composition is dependent on a dynamic electrostatic interrelationship between different granule compounds. As a tool to evaluate this possibility, we generated mice in which mast cells are multideficient in a panel of positively charged proteases: the chymase mouse mast cell protease-4, the tryptase mouse mast cell protease-6, and carboxypeptidase A3. Through a posttranslational effect, mast cells from these mice additionally lack mouse mast cell protease-5 protein. Mast cells from mice deficient in individual proteases showed normal morphology. In contrast, mast cells with combined protease deficiency displayed a profound distortion of granule integrity, as seen both by conventional morphological criteria and by transmission electron microscopy. An assessment of granule content revealed that the distorted granule integrity in multiprotease-deficient mast cells was associated with a profound reduction of highly negatively charged heparin, whereas no reduction in chondroitin sulfate storage was observed. Taken together with previous findings showing that the storage of basic proteases conversely is regulated by anionic proteoglycans, these data suggest that secretory granule composition in mast cells is dependent on a dynamic interrelationship between granule compounds of opposite electrical charge.
Huang, Junrong; Chen, Zhenghong; Xu, Yalun; Li, Hongliang; Liu, Shuxing; Yang, Daqing; Schols, Henk A
2014-02-15
To understand the contribution of granule inner portion to the pasting property of starch, waxy potato starch and two normal potato starches and their acetylated starch samples were subjected to chemical surface gelatinization by 3.8 mol/L CaCl2 to obtain remaining granules. Native and acetylated, original and remaining granules of waxy potato starch had similar rapid visco analyzer (RVA) pasting profiles, while those of two normal potato starches behaved obviously different from each other. All remaining granules had lower peak viscosity than the corresponding original granules. Contribution of waxy potato starch granule's inner portion to the peak viscosity was significant more than those of normal potato starches. The shell structure appearing on the remaining granule surface for waxy potato starch was smoother and thinner than that for normal potato starches as observed by scanning electron microscopy, indicating a more regular structure of shell and a more ordered packing of shell for waxy potato starch granules. The blocklet size of waxy potato starch was smaller and more uniform than those of normal potato starches as shown by atomic force microscopy images of original and remaining granules. In general, our results provided the evidence for the spatial structure diversity between waxy and normal potato starch granules: outer layer and inner portion of waxy potato starch granule had similar structure, while outer layer had notably different structure from inner portion for normal potato starch granule. Copyright © 2013 Elsevier Ltd. All rights reserved.
Canterini, Sonia; Bosco, Adriana; Carletti, Valentina; Fuso, Andrea; Curci, Armando; Mangia, Franco; Fiorenza, Maria Teresa
2012-03-01
We previously demonstrated that TSC22D4, a protein encoded by the TGF-β1-activated gene Tsc22d4 (Thg-1pit) and highly expressed in postnatal and adult mouse cerebellum with multiple post-translationally modified protein forms, moves to nucleus when in vitro differentiated cerebellum granule neurons (CGNs) are committed to apoptosis by hyperpolarizing KCl concentrations in the culture medium. We have now studied TSC22D4 cytoplasmic/nuclear localization in CGNs and Purkinje cells: (1) during CGN differentiation/maturation in vivo, (2) during CGN differentiation in vitro, and (3) by in vitro culturing ex vivo cerebellum slices under conditions favoring/inhibiting CGN/Purkinje cell differentiation. We show that TSC22D4 displays both nuclear and cytoplasmic localizations in undifferentiated, early postnatal cerebellum CGNs, irrespectively of CGN proliferation/migration from external to internal granule cell layer, and that it specifically accumulates in the somatodendritic and synaptic compartments when CGNs mature, as indicated by TSC22D4 abundance at the level of adult cerebellum glomeruli and apparent lack in CGN nuclei. These features were also observed in cerebellum slices cultured in vitro under conditions favoring/inhibiting CGN/Purkinje cell differentiation. In vitro TSC22D4 silencing with siRNAs blocked CGN differentiation and inhibited neurite elongation in N1E-115 neuroblastoma cells, pinpointing the relevance of this protein to CGN differentiation.
Ballester-Lurbe, Begoña; González-Granero, Susana; Mocholí, Enric; Poch, Enric; García-Manzanares, María; Dierssen, Mara; Pérez-Roger, Ignacio; García-Verdugo, José M; Guasch, Rosa M; Terrado, José
2015-11-01
The subventricular zone represents an important reservoir of progenitor cells in the adult brain. Cells from the subventricular zone migrate along the rostral migratory stream and reach the olfactory bulb, where they originate different types of interneurons. In this work, we have analyzed the role of the small GTPase RhoE/Rnd3 in subventricular zone cell development using mice-lacking RhoE expression. Our results show that RhoE null mice display a remarkable postnatal broadening of the subventricular zone and caudal rostral migratory stream. This broadening was caused by an increase in progenitor proliferation, observed in the second postnatal week but not before, and by an altered migration of the cells, which appeared in disorganized cell arrangements that impaired the appropriate contact between cells in the rostral migratory stream. In addition, the thickness of the granule cell layer in the olfactory bulb was reduced, although the density of granule cells did not differ between wild-type and RhoE null mice. Finally, the lack of RhoE expression affected the olfactory glomeruli inducing a severe reduction of calbindin-expressing interneurons in the periglomerular layer. This was already evident in the newborns and even more pronounced 15 days later when RhoE null mice displayed 89% less cells than control mice. Our results indicate that RhoE has pleiotropic functions on subventricular cells because of its role in proliferation and tangential migration, affecting mainly the development of calbindin-expressing cells in the olfactory bulb.
Huang, Wenli; Huang, Weiwei; Li, Huifang; Lei, Zhongfang; Zhang, Zhenya; Tay, Joo Hwa; Lee, Duu-Jong
2015-10-01
The species and distribution of phosphorus (P) in an enhanced biological phosphorus removal (EBPR)-aerobic granular sludge (AGS) were fractionated and further analyzed. Results showed that microbial cells, extracellular polymeric substances (EPS) and mineral precipitates contributed about 73.7%, 17.6% and 5.3-6.4% to the total P (TP) of EBPR-AGS, respectively. Inorganic P (IP) species were orthophosphate, pyrophosphate and polyphosphate among which polyphosphate was the major P species in the AGS, cells and EPS. Monoester and diester phosphates were identified as the organic P (OP) species in the AGS and cells. Hydroxyapatite (Ca5(PO4)3OH) and calcium phosphate (Ca2(PO4)3) were the dominant P minerals accumulated in the core of the granules. Cells along with polyphosphate were mainly in the outer layer of AGS while EPS were distributed in the whole granules. Based on the above results, the distribution of IP and OP species in AGS has been conceived. Copyright © 2015 Elsevier Ltd. All rights reserved.
Profilin1 activity in cerebellar granule neurons is required for radial migration in vivo
Kullmann, Jan A; Wickertsheim, Ines; Minnerup, Lara; Costell, Mercedes; Friauf, Eckhard; Rust, Marco B
2015-01-01
Neuron migration defects are an important aspect of human neuropathies. The underlying molecular mechanisms of such migration defects are largely unknown. Actin dynamics has been recognized as an important determinant of neuronal migration, and we recently found that the actin-binding protein profilin1 is relevant for radial migration of cerebellar granule neurons (CGN). As the exploited brain-specific mutants lacked profilin1 in both neurons and glial cells, it remained unknown whether profilin1 activity in CGN is relevant for CGN migration in vivo. To test this, we capitalized on a transgenic mouse line that expresses a tamoxifen-inducible Cre variant in CGN, but no other cerebellar cell type. In these profilin1 mutants, the cell density was elevated in the molecular layer, and ectopic CGN occurred. Moreover, 5-bromo-2′-deoxyuridine tracing experiments revealed impaired CGN radial migration. Hence, our data demonstrate the cell autonomous role of profilin1 activity in CGN for radial migration. PMID:25495756
Shi, Zhigang; Zhang, Yueping; Meek, Johannes; Qiao, Jiantian; Han, Victor Z.
2018-01-01
The distal valvula cerebelli is the most prominent part of the mormyrid cerebellum. It is organized in ridges of ganglionic and molecular layers, oriented perpendicular to the granular layer. We have combined intracellular recording and labelling techniques to reveal the cellular morphology of the valvula ridges in slice preparations. We have also locally ejected tracer in slices and in intact animals to examine its input fibers. The palisade dendrites and fine axon arbors of Purkinje cells are oriented in the horizontal plane of the ridge. The dendrites of basal efferent cells and large central cells are confined to the molecular layer, but are not planer. Basal efferent cell axons are thick, and join the basal bundle leaving the cerebellum. Large central cell axons are also thick, and traverse long distances in the transverse plane, with local collaterals in the ganglionic layer. Vertical cells and small central cells also have thick axons with local collaterals. The dendrites of Golgi cells are confined to the molecular layer, but their axon arbors are either confined to the granular layer or proliferate in both the granular and ganglionic layers. Dendrites of deep stellate cells are distributed in the molecular layer, with fine axon arbors in the ganglionic layer. Granule cell axons enter the molecular layer as parallel fibers without bifurcating. Climbing fibers run in the horizontal plane and terminate exclusively in the ganglionic layer. Our results confirm and extend previous studies and suggest a new concept of the circuitry of the mormyrid valvula cerebelli. PMID:18537139
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohara-Imaizumi, Mica; Aoyagi, Kyota; Akimoto, Yoshihiro
To analyze the exocytosis of glucagon-like peptide-1 (GLP-1) granules, we imaged the motion of GLP-1 granules labeled with enhanced yellow fluorescent protein (Venus) fused to human growth hormone (hGH-Venus) in an enteroendocrine cell line, STC-1 cells, by total internal reflection fluorescent (TIRF) microscopy. We found glucose stimulation caused biphasic GLP-1 granule exocytosis: during the first phase, fusion events occurred from two types of granules (previously docked granules and newcomers), and thereafter continuous fusion was observed mostly from newcomers during the second phase. Closely similar to the insulin granule fusion from pancreatic {beta} cells, the regulated biphasic exocytosis from two typesmore » of granules may be a common mechanism in glucose-evoked hormone release from endocrine cells.« less
It has long been heralded that the mature brain does not generate new neurons, it only loses them as a function of injury, disease and age. An exciting recent finding in neuroscience has been that the dentate granule cell layer of the hippocampus has the distinctive property of ...
Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu
2007-11-01
In the pharmaceutical preparation of a controlled release drug, it is very important and necessary to understand the release properties. The dissolution test is a very important and useful method for understanding and predicting drug-release properties. It was readily confirmed in the previous paper that the release process could be assessed quantitatively by a combination of the square-root time law and cube-root law equations for ethylcellulose (EC) matrix granules of phenylpropanolamine hydrochloride (PPA). In this paper EC layered granules were used in addition to EC matrix. The relationship between release property and the concentration of PPA in plasma after administration using beagle dogs were examined. Then it was confirmed that the correlativity for EC layered granules and EC matrix were similar each other. Therefore, it was considered that the dissolution test is useful for prediction of changes in concentration of PPA in the blood with time. And it was suggested that EC layered granules were suitable as a controlled release system as well as EC matrix.
GABAergic excitation after febrile seizures induces ectopic granule cells and adult epilepsy.
Koyama, Ryuta; Tao, Kentaro; Sasaki, Takuya; Ichikawa, Junya; Miyamoto, Daisuke; Muramatsu, Rieko; Matsuki, Norio; Ikegaya, Yuji
2012-08-01
Temporal lobe epilepsy (TLE) is accompanied by an abnormal location of granule cells in the dentate gyrus. Using a rat model of complex febrile seizures, which are thought to be a precipitating insult of TLE later in life, we report that aberrant migration of neonatal-generated granule cells results in granule cell ectopia that persists into adulthood. Febrile seizures induced an upregulation of GABA(A) receptors (GABA(A)-Rs) in neonatally generated granule cells, and hyperactivation of excitatory GABA(A)-Rs caused a reversal in the direction of granule cell migration. This abnormal migration was prevented by RNAi-mediated knockdown of the Na(+)K(+)2Cl(-) co-transporter (NKCC1), which regulates the excitatory action of GABA. NKCC1 inhibition with bumetanide after febrile seizures rescued the granule cell ectopia, susceptibility to limbic seizures and development of epilepsy. Thus, this work identifies a previously unknown pathogenic role of excitatory GABA(A)-R signaling and highlights NKCC1 as a potential therapeutic target for preventing granule cell ectopia and the development of epilepsy after febrile seizures.
Stimulation of microtubule-based transport by nucleation of microtubules on pigment granules
Semenova, Irina; Gupta, Dipika; Usui, Takeo; Hayakawa, Ichiro; Cowan, Ann; Rodionov, Vladimir
2017-01-01
Microtubule (MT)-based transport can be regulated through changes in organization of MT transport tracks, but the mechanisms that regulate these changes are poorly understood. In Xenopus melanophores, aggregation of pigment granules in the cell center involves their capture by the tips of MTs growing toward the cell periphery, and granule aggregation signals facilitate capture by increasing the number of growing MT tips. This increase could be explained by stimulation of MT nucleation either on the centrosome or on the aggregate of pigment granules that gradually forms in the cell center. We blocked movement of pigment granules to the cell center and compared the MT-nucleation activity of the centrosome in the same cells in two signaling states. We found that granule aggregation signals did not stimulate MT nucleation on the centrosome but did increase MT nucleation activity of pigment granules. Elevation of MT-nucleation activity correlated with the recruitment to pigment granules of a major component of MT-nucleation templates, γ-tubulin, and was suppressed by γ-tubulin inhibitors. We conclude that generation of new MT transport tracks by concentration of the leading pigment granules provides a positive feedback loop that enhances delivery of trailing granules to the cell center. PMID:28381426
The effects of exercise and stress on the survival and maturation of adult-generated granule cells
Snyder, Jason S.; Glover, Lucas R.; Sanzone, Kaitlin M.; Kamhi, J. Frances; Cameron, Heather A.
2009-01-01
Stress strongly inhibits proliferation of granule cell precursors in the dentate gyrus, while voluntary running has the opposite effect. Few studies, however, have examined the possible effects of these environmental manipulations on the maturation and survival of young granule cells. We examined number of surviving granule cells and the proportion of young neurons that were functionally mature, as defined by seizure-induced immediate-early gene expression, in 14 and 21 day-old granule cells in mice that were given access to a running wheel, restrained daily for 2 hours, or given no treatment during this period. Importantly, treatments began two days after BrdU injection, to isolate effects on survival from those on cell proliferation. We found a large increase in granule cell survival in running mice compared with controls at both time points. In addition, running increased the proportion of granule cells expressing the immediate-early gene Arc in response to seizures, suggesting that it speeds incorporation into circuits, i.e., functional maturation. Stressed mice showed no change in Arc expression, compared to control animals, but, surprisingly, showed a transient increase in survival of 14-day-old granule cells, which was gone 7 days later. Examination of cell proliferation, using the endogenous mitotic marker proliferating cell nuclear antigen (PCNA) showed an increase in cell proliferation after 12 days of running but not after 19 days of running. The number of proliferating cells was unchanged 24 hours after the 12th or 19th episode of daily restraint stress. These findings demonstrate that running has strong effects on survival and maturation of young granule cells as well as their birth and that stress can have positive but short-lived effects on granule cell survival. PMID:19156854
Pallas-Bazarra, Noemí; Kastanauskaite, Asta; Avila, Jesús; DeFelipe, Javier; Llorens-Martín, María
2017-01-01
The dentate gyrus (DG) plays a crucial role in hippocampal-related memory. The most abundant cellular type in the DG, namely granule neurons, are developmentally generated around postnatal day P6 in mice. Moreover, a unique feature of the DG is the occurrence of adult hippocampal neurogenesis, a process that gives rise to newborn granule neurons throughout life. Adult-born and developmentally generated granule neurons share some maturational aspects but differ in others, such as in their positioning within the granule cell layer. Adult hippocampal neurogenesis encompasses a series of plastic changes that modify the function of the hippocampal trisynaptic network. In this regard, it is known that glycogen synthase kinase 3β (GSK-3β) regulates both synaptic plasticity and memory. By using a transgenic mouse overexpressing GSK-3β in hippocampal neurons, we previously demonstrated that the overexpression of this kinase has deleterious effects on the maturation of newborn granule neurons. In the present study, we addressed the effects of GSK-3β overexpression on the morphology and number of dendritic spines of developmentally generated granule neurons. To this end, we performed intracellular injections of Lucifer Yellow in developmentally generated granule neurons of wild-type and GSK-3β-overexpressing mice and analyzed the number and morphologies of dendritic spines (namely, stubby, thin and mushroom). GSK-3β overexpression led to a general reduction in the number of dendritic spines. In addition, it caused a slight reduction in the percentage, head diameter and length of thin spines, whereas the head diameter of mushroom spines was increased.
Pallas-Bazarra, Noemí; Kastanauskaite, Asta; Avila, Jesús; DeFelipe, Javier; Llorens-Martín, María
2017-01-01
The dentate gyrus (DG) plays a crucial role in hippocampal-related memory. The most abundant cellular type in the DG, namely granule neurons, are developmentally generated around postnatal day P6 in mice. Moreover, a unique feature of the DG is the occurrence of adult hippocampal neurogenesis, a process that gives rise to newborn granule neurons throughout life. Adult-born and developmentally generated granule neurons share some maturational aspects but differ in others, such as in their positioning within the granule cell layer. Adult hippocampal neurogenesis encompasses a series of plastic changes that modify the function of the hippocampal trisynaptic network. In this regard, it is known that glycogen synthase kinase 3β (GSK-3β) regulates both synaptic plasticity and memory. By using a transgenic mouse overexpressing GSK-3β in hippocampal neurons, we previously demonstrated that the overexpression of this kinase has deleterious effects on the maturation of newborn granule neurons. In the present study, we addressed the effects of GSK-3β overexpression on the morphology and number of dendritic spines of developmentally generated granule neurons. To this end, we performed intracellular injections of Lucifer Yellow in developmentally generated granule neurons of wild-type and GSK-3β-overexpressing mice and analyzed the number and morphologies of dendritic spines (namely, stubby, thin and mushroom). GSK-3β overexpression led to a general reduction in the number of dendritic spines. In addition, it caused a slight reduction in the percentage, head diameter and length of thin spines, whereas the head diameter of mushroom spines was increased. PMID:28344548
Maffie, Jonathon; Blenkinsop, Timothy; Rudy, Bernardo
2009-01-16
The channels mediating most of the somatodendritic A-type K(+) current in neurons are thought to be ternary complexes of Kv4 pore-forming subunits and two types of auxiliary subunits, the K(+) channel interacting proteins (KChIPs) and dipeptidyl-peptidase-like (DPPL) proteins. The channels expressed in heterologous expression systems by mixtures of Kv4.2, KChIP1 and DPP6-S resemble in many properties the A-type current in hippocampal CA1 pyramidal neurons and cerebellar granule cells, neurons with prominent A-type K(+) currents. However, the native currents have faster kinetics. Moreover, the A-type currents in neurons in intermediary layers of the superior colliculus have even faster inactivating rates. We have characterized a new DPP6 spliced isoform, DPP6-E, that produces in heterologous cells ternary Kv4 channels with very fast kinetics. DPP6-E is selectively expressed in a few neuronal populations in brain including cerebellar granule neurons, hippocampal pyramidal cells and neurons in intermediary layers of the superior colliculus. The effects of DPP6-E explain past discrepancies between reconstituted and native Kv4 channels in some neurons, and contributes to the diversity of A-type K(+) currents in neurons.
Morphological and Structural Aspects of the Extremely Halophilic Archaeon Haloquadratum walsbyi
Sublimi Saponetti, Matilde; Bobba, Fabrizio; Salerno, Grazia; Scarfato, Alessandro; Corcelli, Angela; Cucolo, Annamaria
2011-01-01
Ultrathin square cell Haloquadratum walsbyi from the Archaea domain are the most abundant microorganisms in the hypersaline water of coastal salterns and continental salt lakes. In this work, we explore the cell surface of these microorganisms using amplitude-modulation atomic-force microscopy in nearly physiological conditions. We demonstrate the presence of a regular corrugation with a periodicity of 16–20 nm attributed to the surface layer (S-layer) protein lattice, striped domains asymmetrically distributed on the cell faces and peculiar bulges correlated with the presence of intracellular granules. Besides, subsequent images of cell evolution during the drying process indicate the presence of an external capsule that might correspond to the giant protein halomucin, predicted by the genome but never before observed by other microscopy studies. PMID:21559517
Morphological and structural aspects of the extremely halophilic archaeon Haloquadratum walsbyi.
Sublimi Saponetti, Matilde; Bobba, Fabrizio; Salerno, Grazia; Scarfato, Alessandro; Corcelli, Angela; Cucolo, Annamaria
2011-04-29
Ultrathin square cell Haloquadratum walsbyi from the Archaea domain are the most abundant microorganisms in the hypersaline water of coastal salterns and continental salt lakes. In this work, we explore the cell surface of these microorganisms using amplitude-modulation atomic-force microscopy in nearly physiological conditions. We demonstrate the presence of a regular corrugation with a periodicity of 16-20 nm attributed to the surface layer (S-layer) protein lattice, striped domains asymmetrically distributed on the cell faces and peculiar bulges correlated with the presence of intracellular granules. Besides, subsequent images of cell evolution during the drying process indicate the presence of an external capsule that might correspond to the giant protein halomucin, predicted by the genome but never before observed by other microscopy studies.
Singru, Praful S; Sakharkar, Amul J; Subhedar, Nishikant
2003-07-11
The aim of the present study is to explore the distribution of nitric oxide synthase in the olfactory system of an adult teleost, Oreochromis mossambicus using neuronal nitric oxide synthase (nNOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry methods. Intense nNOS immunoreactivity was noticed in several olfactory receptor neurons (ORNs), in their axonal extensions over the olfactory nerve and in some basal cells of the olfactory epithelium. nNOS containing fascicles of the ORNs enter the bulb from its rostral pole, spread in the olfactory nerve layer in the periphery of the bulb and display massive innervation of the olfactory glomeruli. Unilateral ablation of the olfactory organ resulted in dramatic loss of nNOS immunoreactivity in the olfactory nerve layer of the ipsilateral bulb. In the olfactory bulb of intact fish, some granule cells showed intense immunoreactivity; dendrites arising from the granule cells could be traced to the glomerular layer. Of particular interest is the occurrence of nNOS immunoreactivity in the ganglion cells of the nervus terminalis. nNOS containing fibers were also encountered in the medial olfactory tracts as they extend to the telencephalon. The NADPHd staining generally coincides with that of nNOS suggesting that it may serve as a marker for nNOS in the olfactory system of this fish. However, mismatch was encountered in the case of mitral cells, while all are nNOS-negative, few were NADPHd positive. The present study for the first time revealed the occurrence of nNOS immunoreactivity in the ORNs of an adult vertebrate and suggests a role for nitric oxide in the transduction of odor stimuli, regeneration of olfactory epithelium and processing of olfactory signals.
Cerebellar granule cells encode the expectation of reward
Wagner, Mark J; Kim, Tony Hyun; Savall, Joan; Schnitzer, Mark J; Luo, Liqun
2017-01-01
The human brain contains ~60 billion cerebellar granule cells1, which outnumber all other neurons combined. Classical theories posit that a large, diverse population of granule cells allows for highly detailed representations of sensorimotor context, enabling downstream Purkinje cells to sense fine contextual changes2–6. Although evidence suggests a role for cerebellum in cognition7–10, granule cells are known to encode only sensory11–13 and motor14 context. Using two-photon calcium imaging in behaving mice, here we show that granule cells convey information about the expectation of reward. Mice initiated voluntary forelimb movements for delayed water reward. Some granule cells responded preferentially to reward or reward omission, whereas others selectively encoded reward anticipation. Reward responses were not restricted to forelimb movement, as a Pavlovian task evoked similar responses. Compared to predictable rewards, unexpected rewards elicited markedly different granule cell activity despite identical stimuli and licking responses. In both tasks, reward signals were widespread throughout multiple cerebellar lobules. Tracking the same granule cells over several days of learning revealed that cells with reward-anticipating responses emerged from those that responded at the start of learning to reward delivery, whereas reward omission responses grew stronger as learning progressed. The discovery of predictive, non-sensorimotor encoding in granule cells is a major departure from current understanding of these neurons and dramatically enriches contextual information available to postsynaptic Purkinje cells, with important implications for cognitive processing in the cerebellum. PMID:28321129
GENE EXPRESSION CHANGES AFTER SEIZURE PRECONDITIONING IN THE THREE MAJOR HIPPOCAMPAL CELL LAYERS
Borges, Karin; Shaw, Renee; Dingledine, Raymond
2008-01-01
Rodents experience hippocampal damage after status epilepticus (SE) mainly in pyramidal cells while sparing the dentate granule cell layer (DGCL). Hippocampal damage was prevented in rats that had been preconditioned by brief seizures on two consecutive days before SE. To identify neuroprotective genes and biochemical pathways changed after preconditioning we compared the effect of preconditioning on gene expression in the CA1 and CA3 pyramidal and DGCLs, harvested by laser capture microscopy. In the DGCL the expression of 632 genes was altered, compared to only 151 and 58 genes in CA1 and CA3 pyramidal cell layers. Most of the differentially expressed genes regulate tissue structure and intra- and extracellular signaling, including neurotransmission. A selective upregulation of energy metabolism transcripts occurred in CA1 pyramidal cells relative to the DGCL. These results reveal a broad transcriptional response of the DGCL to preconditioning, and suggest several mechanisms underlying the neuroprotective effect of preconditioning seizures. PMID:17239605
Yau, Suk-Yu; Li, Ang; Tong, Jian-Bin; Bostrom, Crystal; Christie, Brian R; Lee, Tatia M C; So, Kwok-Fai
2016-09-21
Our previous work has shown that exposure to the stress hormone corticosterone (40 mg/kg CORT) for two weeks induces dendritic atrophy of pyramidal neurons in the hippocampal CA3 region and behavioral deficits. However, it is unclear whether this treatment also affects the dentate gyrus (DG), a subregion of the hippocampus comprising a heterogeneous population of young and mature neurons. We examined the effect of CORT treatment on the dendritic complexity of mature and young granule cells in the DG. We utilized a Golgi staining method to investigate the dendritic morphology and spine density of young neurons in the inner granular cell layer (GCL) and mature neurons in the outer GCL in response to CORT application. The expressions of glucocorticoid receptors during neuronal maturation were examined using Western blot analysis in a primary hippocampal neuronal culture. Sholl analysis revealed that CORT treatment decreased the number of intersections and shortened the dendritic length in mature, but not young, granule cells. However, the spine density of mature and young neurons was not affected. Western blot analysis showed a progressive increase in the protein levels of glucocorticoid receptors (GRs) in the cultured primary hippocampal neurons during neuronal maturation. These data suggest that mature neurons are likely more vulnerable to chronic exposure to CORT; this may be due to their higher expression of GRs when compared to younger DG neurons.
Isolation of Cytoplasmic Pituitary Granules with Gonadotropic Activity
Hartley, Marshall W.; McShan, W. H.; Ris, Hans
1960-01-01
A fraction isolated from the anterior pituitary glands of rats castrate for 8 weeks contained essentially a single cytoplasmic constituent with which the major portion of the gonadotropic hormone activity was associated. The glands were homogenized in an 0.25 M sucrose + 7.3 per cent polyvinylpyrrolidone (PVP) solution and fractionated by differential centrifugation to give a heterogeneous small granule fraction which contained almost all the gonadotropic hormone activity. The active supernatant containing this small granule fraction was separated into layers by isopycnic gradient centrifugation on a continuous 6 to 45 per cent sucrose + 17.5 per cent "diodrast" + 5 x 10-4 M "versene" gradient at 100,000 g for 2 hours. Three layers were obtained and the pellet from the active bottom layer was sectioned, examined with the electron microscope, and found to contain 200 mµ granules, mitochondria, ergastoplasm, and other cellular debris. This layer was fractionated further by isopycnic and differential centrifugation to obtain a pellet which contained the major portion of the gonadotropic hormone activity. Because of the heterogeneity of this fraction, due to the contamination of the 200 mµ granules with mitochondria and other cellular debris, the active layer and the resuspended active pellet, obtained by centrifuging this layer first at 17,000 g then diluting the supernatant and centrifuging at 30,000 g for 1 hour, were filtered through Millipore HA paper with a pore size of 0.45 µ. The cytoplasmic material containing the gonadotropic hormone activity passed through the filter paper and this activity was recovered in the pellets obtained by centrifuging at 100,000 g for 1 hour. These active pellets consisted almost entirely of 200 mµ granules with a minimum amount of contamination, and they contained the major portion of the gonadotropic hormone activity with practically none remaining in the supernatant fraction. These results are discussed in view of their importance to the cytology of the pituitary gland. PMID:14400127
Vadlja, Denis; Koller, Martin; Novak, Mario; Braunegg, Gerhart; Horvat, Predrag
2016-12-01
Statistical distribution of cell and poly[3-(R)-hydroxybutyrate] (PHB) granule size and number of granules per cell are investigated for PHB production in a five-stage cascade (5CSTR). Electron microscopic pictures of cells from individual cascade stages (R1-R5) were converted to binary pictures to visualize footprint areas for polyhydroxyalkanoate (PHA) and non-PHA biomass. Results for each stage were correlated to the corresponding experimentally determined kinetics (specific growth rate μ and specific productivity π). Log-normal distribution describes PHA granule size dissimilarity, whereas for R1 and R4, gamma distribution best reflects the situation. R1, devoted to balanced biomass synthesis, predominately contains cells with rather small granules, whereas with increasing residence time τ, maximum and average granule sizes by trend increase, approaching an upper limit determined by the cell's geometry. Generally, an increase of intracellular PHA content and ratio of granule to cell area slow down along the cascade. Further, the number of granules per cell decreases with increasing τ. Data for μ and π obtained by binary picture analysis correlate well with the experimental results. The work describes long-term continuous PHA production under balanced, transient, and nutrient-deficient conditions, as well as their reflection on the granules size, granule number, and cell structure on the microscopic level.
NK cells converge lytic granules to promote cytotoxicity and prevent bystander killing
Hsu, Hsiang-Ting; Viswanath, Dixita I.; Önfelt, Björn
2016-01-01
Natural killer (NK) cell activation triggers sequential cellular events leading to destruction of diseased cells. We previously identified lytic granule convergence, a dynein- and integrin signal–dependent movement of lysosome-related organelles to the microtubule-organizing center, as an early step in the cell biological process underlying NK cell cytotoxicity. Why lytic granules converge during NK cell cytotoxicity, however, remains unclear. We experimentally controlled the availability of human ligands to regulate NK cell signaling and promote granule convergence with either directed or nondirected degranulation. By the use of acoustic trap microscopy, we generated specific effector–target cell arrangements to define the impact of the two modes of degranulation. NK cells with converged granules had greater targeted and less nonspecific “bystander” killing. Additionally, NK cells in which dynein was inhibited or integrin blocked under physiological conditions demonstrated increased nondirected degranulation and bystander killing. Thus, NK cells converge lytic granules and thereby improve the efficiency of targeted killing and prevent collateral damage to neighboring healthy cells. PMID:27903610
Rathnayake, Rathnayake M L D; Oshiki, Mamoru; Ishii, Satoshi; Segawa, Takahiro; Satoh, Hisashi; Okabe, Satoshi
2015-12-01
The effects of dissolved oxygen (DO) and pH on nitrous oxide (N2O) production rates and pathways in autotrophic partial nitrification (PN) granules were investigated at the granular level. N2O was primarily produced by betaproteobacterial ammonia-oxidizing bacteria, mainly Nitrosomonas europaea, in the oxic surface layer (<200μm) of the autotrophic PN granules. N2O production increased with increasing bulk DO concentration owing to activation of the ammonia (i.e., hydroxylamine) oxidation in this layer. The highest N2O emissions were observed at pH 7.5, although the ammonia oxidation rate was unchanged between pH 6.5 and 8.5. Overall, the results of this study suggest that in situ analyses of PN granules are essential to gaining insight into N2O emission mechanisms in a granule. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wasinski, Frederick; Estrela, Gabriel R.; Arakaki, Aline M.; Bader, Michael; Alenina, Natalia; Klempin, Friederike; Araújo, Ronaldo C.
2016-01-01
Physical exercise positively affects the metabolism and induces proliferation of precursor cells in the adult brain. Maternal exercise likewise provokes adaptations early in the offspring. Using a high-intensity swimming protocol that comprises forced swim training before and during pregnancy, we determined the effect of maternal swimming on the mouse offspring's neurogenesis. Our data demonstrate decreased proliferation in sublayers of the postnatal dentate gyrus in offspring of swimming mother at postnatal day (P) 8 accompanied with decreased survival of newly generated cells 4 weeks later. The reduction in cell numbers was predominantly seen in the hilus and molecular layer. At P35, the reduced amount of cells was also reflected by a decrease in the population of newly generated immature and mature neurons of the granule cell layer. Our data suggest that forced maternal swimming at high-intensity has a negative effect on the neurogenic niche development in postnatal offspring. PMID:27621701
Gouras, Peter; Ivert, Lena; Neuringer, Martha; Mattison, Julie A
2010-07-01
To examine structural differences in the retinal pigmented epithelium (RPE) and Bruch's membrane of rhesus monkeys (Macaca mulatta) as a function of topography and age. The retinas of two old (24 and 26 years old) and two young (1 and 6 years old) female monkeys were examined by light fluorescence and electron microscopy at the macula, equator, and ora serrata. All monkeys lacked fluorescence and lipofuscin granules in the RPE at the ora serrata where photoreceptors are absent. The equator and macula showed intense fluorescence and many lipofuscin granules in the RPE of the old but not the young monkeys. At the ora, the RPE contained many dense round melanin granules throughout the cell. At the equator and macula, melanin granules were more apical, less frequent, and often elongated. Mitochondria were clustered at the basal side of the RPE cell near infolds of the plasma membrane. Both mitochondria and infolds tended to increase toward the macula. In all regions, the basal lamina of the RPE did not penetrate the extracellular space adjacent to infolds. The elastin layer of Bruch's membrane was wide at the ora and equator and thinner at the macula. In the old monkeys, drusen were found at all retinal regions between the basal lamina and the internal collagen layer of Bruch's membrane. The drusen were often membrane-bound with a basal lamina and contained material resembling structures in the RPE. Lack of fluorescence and lipofuscin in the RPE at the ora serrata, where photoreceptors are absent, confirms that RPE fluorescence occurs only where outer segments are phagocytized. Mitochondrial clustering indicates that the basal side of the RPE cell uses the most energy and this becomes maximal at the macula. The presence of age-related degenerative changes and drusen at all retinal locations in the older monkeys, even at the ora where RPE lipofuscin was absent, indicates that these processes are not dependent on local lipofuscin accumulation. Therefore lipofuscin toxicity may not be the sole cause of age-related RPE degeneration.
Ultrastructure of the filiform papillae on the tongue of the hamster.
Fernandez, B; Suarez, I; Zapata, A
1978-01-01
The fine structure of the filiform papillae on the hamster tongue is described level by level from the basal layer to the surface. We did not observe two distinct types of cells with different morphology or components which could be held responsible for the production of two different types of keratin as have been described in other animals, but rather a uniformity of cell structures in each layer and only the so-called "smooth" type of keratin. However, keratin granules were more abundant in the anterior part of the papilla. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:689988
Microtubules negatively regulate insulin secretion in pancreatic β cells
Zhu, Xiaodong; Hu, Ruiying; Brissova, Marcela; Stein, Roland W.; Powers, Alvin C.; Gu, Guoqiang; Kaverina, Irina
2015-01-01
Summary For glucose-stimulated insulin secretion (GSIS) insulin granules have to be localized close to the plasma membrane. The role of microtubule-dependent transport in granule positioning and GSIS has been debated. Here, we report that microtubules, counterintuitively, restrict granule availability for secretion. In β cells, microtubules originate at the Golgi and form a dense non-radial meshwork. Non-directional transport along these microtubules limits granule dwelling at the cell periphery, restricting granule availability for secretion. High glucose destabilizes microtubules, decreasing their density; such local microtubule depolymerization is necessary for GSIS, likely because granule withdrawal from the cell periphery becomes inefficient. Consistently, microtubule depolymerization by nocodazole blocks granule withdrawal, increases their concentration at exocytic sites, and dramatically enhances GSIS in vitro and in mice. Furthermore, glucose-driven MT destabilization is balanced by new microtubule formation, which likely prevents over-secretion. Importantly, microtubule density is greater in dysfunctional β cells of diabetic mice. PMID:26418295
Manzoor, N.F.; Chen, G.; Kaltenbach, J.A.
2013-01-01
Increased spontaneous firing (hyperactivity) is induced in fusiform cells of the dorsal cochlear nucleus (DCN) following intense sound exposure and is implicated as a possible neural correlate of noise-induced tinnitus. Previous studies have shown that in normal hearing animals, fusiform cell activity can be modulated by activation of parallel fibers, which represent the axons of granule cells. The modulation consists of a transient excitation followed by a more prolonged period of inhibition, presumably reflecting direct excitatory inputs to fusiform cells and an indirect inhibitory input to fusiform cells from the granule cell-cartwheel cell system. We hypothesized that since granule cells can be activated by cholinergic inputs, it might be possible to suppress tinnitus-related hyperactivity of fusiform cells using the cholinergic agonist, carbachol. To test this hypothesis, we recorded multiunit spontaneous activity in the fusiform soma layer (FSL) of the DCN in control and tone-exposed hamsters (10 kHz, 115 dB SPL, 4 h) before and after application of carbachol to the DCN surface. In both exposed and control animals, 100 µM carbachol had a transient excitatory effect on spontaneous activity followed by a rapid weakening of activity to near or below normal levels. In exposed animals, the weakening of activity was powerful enough to completely abolish the hyperactivity induced by intense sound exposure. This suppressive effect was partially reversed by application of atropine and was not associated with significant changes in neural best frequencies (BF) or BF thresholds. These findings demonstrate that noise-induced hyperactivity can be pharmacologically controlled and raise the possibility that attenuation of tinnitus may be achievable by using an agonist of the cholinergic system. PMID:23721928
Manzoor, N F; Chen, G; Kaltenbach, J A
2013-07-26
Increased spontaneous firing (hyperactivity) is induced in fusiform cells of the dorsal cochlear nucleus (DCN) following intense sound exposure and is implicated as a possible neural correlate of noise-induced tinnitus. Previous studies have shown that in normal hearing animals, fusiform cell activity can be modulated by activation of parallel fibers, which represent the axons of granule cells. The modulation consists of a transient excitation followed by a more prolonged period of inhibition, presumably reflecting direct excitatory inputs to fusiform cells and an indirect inhibitory input to fusiform cells from the granule cell-cartwheel cell system. We hypothesized that since granule cells can be activated by cholinergic inputs, it might be possible to suppress tinnitus-related hyperactivity of fusiform cells using the cholinergic agonist, carbachol. To test this hypothesis, we recorded multiunit spontaneous activity in the fusiform soma layer (FSL) of the DCN in control and tone-exposed hamsters (10 kHz, 115 dB SPL, 4h) before and after application of carbachol to the DCN surface. In both exposed and control animals, 100 μM carbachol had a transient excitatory effect on spontaneous activity followed by a rapid weakening of activity to near or below normal levels. In exposed animals, the weakening of activity was powerful enough to completely abolish the hyperactivity induced by intense sound exposure. This suppressive effect was partially reversed by application of atropine and was usually not associated with significant changes in neural best frequencies (BF) or BF thresholds. These findings demonstrate that noise-induced hyperactivity can be pharmacologically controlled and raise the possibility that attenuation of tinnitus may be achievable by using an agonist of the cholinergic system. Copyright © 2013 Elsevier B.V. All rights reserved.
Harden, Scott W.; Frazier, Charles J.
2016-01-01
Delivery of exogenous oxytocin (OXT) to central oxytocin receptors (OXT-Rs) is currently being investigated as a potential treatment for conditions such as post-traumatic stress disorder (PTSD), depression, social anxiety, and autism spectrum disorder (ASD). Despite significant research implicating central OXT signaling in modulation of mood, affect, social behavior, and stress response, relatively little is known about the cellular and synaptic mechanisms underlying these complex actions, particularly in brain regions which express the OXT-R but lie outside of the hypothalamus (where OXT-synthesizing neurons reside). We report that bath application of low concentrations of the selective OXT-R agonist Thr4,Gly7-OXT (TGOT) reliably and robustly drives GABA release in the dentate gyrus in an action potential dependent manner. Additional experiments led to identification of a small subset of small hilar interneurons that are directly depolarized by acute application of TGOT. From a physiological perspective, TGOT-responsive hilar interneurons have high input resistance, rapid repolarization velocity during an action potential, and a robust afterhyperpolarization. Further, they fire irregularly (or stutter) in response to moderate depolarization, and fire quickly with minimal spike frequency accommodation in response to large current injections. From an anatomical perspective, TGOT responsive hilar interneurons have dense axonal arborizations in the hilus that were found close proximity with mossy cell somata and/or proximal dendrites, and also invade the granule cell layer. Further, they have primary dendrites that always extend into the granule cell layer, and sometimes have clear arborizations in the molecular layer. Overall, these data reveal a novel site of action for OXT in an important limbic circuit, and represent a significant step towards better understanding how endogenous OXT may modulate flow of information in hippocampal networks. PMID:27068005
Docking is not a prerequisite but a temporal constraint for fusion of secretory granules.
Kasai, Kazuo; Fujita, Takuji; Gomi, Hiroshi; Izumi, Tetsuro
2008-07-01
We examined secretory granule dynamics using total internal reflection fluorescence microscopy in normal pancreatic beta cells and their mutants devoid of Rab27a and/or its effector, granuphilin, which play critical roles in the docking and recruitment of insulin granules to the plasma membrane. In the early phase of glucose stimulation in wild-type cells, we observed marked fusion of granules recruited from a relatively distant area, in parallel with that from granules located underneath the plasma membrane. Furthermore, despite a lack of granules directly attached to the plasma membrane, both spontaneous and evoked fusion was increased in granuphilin-null cells. In addition to these granuphilin-null phenotypes, Rab27a/granuphilin doubly deficient cells showed the decreases in granules located next to the docked area and in fusion from granules near the plasma membrane in the early phase of glucose-stimulated secretion, similar to Rab27a-mutated cells. Thus, the two proteins play nonoverlapping roles in insulin exocytosis: granuphilin acts on the granules underneath the plasma membrane, whereas Rab27a acts on those in a more distal area. These findings demonstrate that, in contrast to our conventional understanding, stable attachment of secretory granules to the plasma membrane is not prerequisite but temporally inhibitory for both spontaneous and evoked fusion.
THE FINE STRUCTURE OF THE NUCLEOLUS DURING MITOSIS IN THE GRASSHOPPER NEUROBLAST CELL
Stevens, Barbara J.
1965-01-01
The behavior of the nucleolus during mitosis was studied by electron microscopy in neuroblast cells of the grasshopper embryo, Chortophaga viridifasciata. Living neuroblast cells were observed in the light microscope, and their mitotic stages were identified and recorded. The cells were fixed and embedded; alternate thick and thin sections were made for light and electron microscopy. The interphase nucleolus consists of two fine structural components arranged in separate zones. Concentrations of 150 A granules form a dense peripheral zone, while the central regions are composed of a homogeneous background substance. Observations show that nucleolar dissolution in prophase occurs in two steps with a preliminary loss of the background substance followed by a dispersal of the granules. Nucleolar material reappears at anaphase as small clumps or layers at the chromosome surfaces. These later form into definite bodies, which disappear as the nucleolus grows in telophase. Evidence suggests both a collecting and a synthesizing role for the nucleolus-associated chromatin. The final, mature nucleolar form is produced by a rearrangement of the fine structural components and an increase in their mass. PMID:14326121
Yoshitomi, Munetake; Ohta, Keisuke; Kanazawa, Tomonoshin; Togo, Akinobu; Hirashima, Shingo; Uemura, Kei-Ichiro; Okayama, Satoko; Morioka, Motohiro; Nakamura, Kei-Ichiro
2016-10-31
Endocrine and endothelial cells of the anterior pituitary gland frequently make close appositions or contacts, and the secretory granules of each endocrine cell tend to accumulate at the perivascular regions, which is generally considered to facilitate secretory functions of these cells. However, three-dimensional relationships between the localization pattern of secretory granules and blood vessels are not fully understood. To define and characterize these spatial relationships, we used scanning electron microscopy (SEM) three-dimensional reconstruction method based on focused ion-beam slicing and scanning electron microscopy (FIB/SEM). Full three-dimensional cellular architectures of the anterior pituitary tissue at ultrastructural resolution revealed that about 70% of endocrine cells were in apposition to the endothelial cells, while almost 30% of endocrine cells were entirely isolated from perivascular space in the tissue. Our three-dimensional analyses also visualized the distribution pattern of secretory granules in individual endocrine cells, showing an accumulation of secretory granules in regions in close apposition to the blood vessels in many cases. However, secretory granules in cells isolated from the perivascular region tended to distribute uniformly in the cytoplasm of these cells. These data suggest that the cellular interactions between the endocrine and endothelial cells promote an uneven cytoplasmic distribution of the secretory granules.
Cytoplasmic RNA Granules in Somatic Maintenance.
Moujaber, Ossama; Stochaj, Ursula
2018-05-30
Cytoplasmic RNA granules represent subcellular compartments that are enriched in protein-bound RNA species. RNA granules are produced by evolutionary divergent eukaryotes, including yeast, mammals, and plants. The functions of cytoplasmic RNA granules differ widely. They are dictated by the cell type and physiological state, which in turn is determined by intrinsic cell properties and environmental factors. RNA granules provide diverse cellular functions. However, all of the granules contribute to aspects of RNA metabolism. This is exemplified by transcription, RNA storage, silencing, and degradation, as well as mRNP remodeling and regulated translation. Several forms of cytoplasmic mRNA granules are linked to normal physiological processes. For instance, they may coordinate protein synthesis and thereby serve as posttranscriptional "operons". RNA granules also participate in cytoplasmic mRNA trafficking, a process particularly well understood for neurons. Many forms of RNA granules support the preservation of somatic cell performance under normal and stress conditions. On the other hand, severe insults or disease can cause the formation and persistence of RNA granules that contribute to cellular dysfunction, especially in the nervous system. Neurodegeneration and many other diseases linked to RNA granules are associated with aging. Nevertheless, information related to the impact of aging on the various types of RNA granules is presently very limited. This review concentrates on cytoplasmic RNA granules and their role in somatic cell maintenance. We summarize the current knowledge on different types of RNA granules in the cytoplasm, their assembly and function under normal, stress, or disease conditions. Specifically, we discuss processing bodies, neuronal granules, stress granules, and other less characterized cytoplasmic RNA granules. Our focus is primarily on mammalian and yeast models, because they have been critical to unravel the physiological role of various RNA granules. RNA granules in plants and pathogens are briefly described. We conclude our viewpoint by summarizing the emerging concepts for RNA granule biology and the open questions that need to be addressed in future studies. © 2018 S. Karger AG, Basel.
Harthoorn, L F; Diederen, J H; Oudejans, R C; Verstegen, M M; Vullings, H G; Van der Horst, D J
2000-01-01
The intracisternal granules in locust adipokinetic cells appear to represent accumulations of secretory material within cisternae of the rough endoplasmic reticulum. An important question is whether these granules are destined for degradation or represent stores of (pro)hormones. Two strategies were used to answer this question. First, cytochemistry was applied to elucidate the properties of intracisternal granules. The endocytic tracers horseradish peroxidase and wheat-germ agglutinin-conjugated horseradish peroxidase were used to facilitate the identification of endocytic, autophagic, and lysosomal organelles, which may be involved in the degradation of intracisternal granules. No intracisternal granules could be found within autophagosomes, and granules fused with endocytic and lysosomal organelles were not observed, nor could tracer be found within the granules. The lysosomal enzyme acid phosphatase was absent from the granules. Second, biochemical analysis of the content of intracisternal granules revealed that these granules contain prohormones as well as hormones. Prohormones were present in relatively higher amounts compared with ordinary secretory granules. Since the intracisternal granules in locust adipokinetic cells are not degraded and contain intact (pro)hormones it is concluded that they function as supplementary stores of secretory material.
The Low-Threshold Calcium Channel Cav3.2 Mediates Burst Firing of Mature Dentate Granule Cells
Dumenieu, Mael; Senkov, Oleg; Mironov, Andrey; Bourinet, Emmanuel; Kreutz, Michael R; Dityatev, Alexander; Heine, Martin; Bikbaev, Arthur
2018-01-01
Abstract Mature granule cells are poorly excitable neurons that were recently shown to fire action potentials, preferentially in bursts. It is believed that the particularly pronounced short-term facilitation of mossy fiber synapses makes granule cell bursting a very effective means of properly transferring information to CA3. However, the mechanism underlying the unique bursting behavior of mature granule cells is currently unknown. Here, we show that Cav3.2 T-type channels at the axon initial segment are responsible for burst firing of mature granule cells in rats and mice. Accordingly, Cav3.2 knockout mice fire tonic spikes and exhibit impaired bursting, synaptic plasticity and dentate-to-CA3 communication. The data show that Cav3.2 channels are strong modulators of bursting and can be considered a critical molecular switch that enables effective information transfer from mature granule cells to the CA3 pyramids. PMID:29790938
Crystalline pteridines in the stromal pigment cells of the iris of the great horned owl.
Oliphant, L W
1981-01-01
The bright yellow color of the iris of the Great Horned Owl (Bubo virginianus) is due to unusual pigment cells in the iris stroma. These cells are spherical and contain numerous clear lipid droplets. Around the periphery of these cells are ovoid crystalline granules that are highly birefringent and vary in color from yellow to clear gray. Differential extraction of the lipid droplets and peripheral granules with lipid solvents and 2% KOH confirmed the localization of the yellow pigment in these granules. The color, solubility, fluorescence, chromatographic mobility and ultraviolet absorption of the extracted pigment suggest it is primarily xanthopterin. It is proposed that the peripheral granules are crystalline pterinosomes capable of reflecting light. Most of the cells contain yellow reflecting granules and can be considered reflecting xanthophores. Cells lying deeper in the stroma have colorless reflecting granules and can be considered pteridine containing leucophores.
A Role for Glutamate Transporters in the Regulation of Insulin Secretion
Gammelsaeter, Runhild; Coppola, Thierry; Marcaggi, Païkan; Storm-Mathisen, Jon; Chaudhry, Farrukh A.; Attwell, David; Regazzi, Romano; Gundersen, Vidar
2011-01-01
In the brain, glutamate is an extracellular transmitter that mediates cell-to-cell communication. Prior to synaptic release it is pumped into vesicles by vesicular glutamate transporters (VGLUTs). To inactivate glutamate receptor responses after release, glutamate is taken up into glial cells or neurons by excitatory amino acid transporters (EAATs). In the pancreatic islets of Langerhans, glutamate is proposed to act as an intracellular messenger, regulating insulin secretion from β-cells, but the mechanisms involved are unknown. By immunogold cytochemistry we show that insulin containing secretory granules express VGLUT3. Despite the fact that they have a VGLUT, the levels of glutamate in these granules are low, indicating the presence of a protein that can transport glutamate out of the granules. Surprisingly, in β-cells the glutamate transporter EAAT2 is located, not in the plasma membrane as it is in brain cells, but exclusively in insulin-containing secretory granules, together with VGLUT3. In EAAT2 knock out mice, the content of glutamate in secretory granules is higher than in wild type mice. These data imply a glutamate cycle in which glutamate is carried into the granules by VGLUT3 and carried out by EAAT2. Perturbing this cycle by knocking down EAAT2 expression with a small interfering RNA, or by over-expressing EAAT2 or a VGLUT in insulin granules, significantly reduced the rate of granule exocytosis. Simulations of granule energetics suggest that VGLUT3 and EAAT2 may regulate the pH and membrane potential of the granules and thereby regulate insulin secretion. These data suggest that insulin secretion from β-cells is modulated by the flux of glutamate through the secretory granules. PMID:21853059
Hippocampal subfield volume changes in subtypes of attention deficit hyperactivity disorder.
Al-Amin, Mamun; Zinchenko, Artyom; Geyer, Thomas
2018-04-15
Attention-deficit hyperactivity disorder (ADHD) is accompanied by reduction of total hippocampal volume. However, disorder-related fine-grained structural alterations of hippocampal subfields remain unclear. Here we compared hippocampal subfield volumes in a large sample of patients with ADHD and healthy controls. We used T1-weighted structural 3-Tesla MRI images of 880 individuals (7-21 years old) from the ADHD-200 database. The images were acquired from 553 healthy individuals and 327 children and adolescents with combined (N = 196) and inattentive (N = 131) ADHD subtypes. Hippocampal subfields were segmented into the cornu amonis regions (CA1, CA2/3, CA4), fimbria, hippocampal fissure, presubiculum, subiculum, hippocampal tail, parasubiculum, granule cell layers of the dentate gyrus, molecular layer within the subiculum and the CA fields, and the hippocampal-amygdala transition area using an automatic algorithm available in Freesurfer 6.0. We found a significant reduction of total hippocampal volume in the combined ADHD group compared to healthy controls. This reduction was due to the atrophy of CA1, CA4, molecular layer, granule cell layers of the dentate gyrus, presubiculum, subiculum, and hippocampal tail. These differences were exclusively driven by the corresponding brain volume reduction in the combined ADHD-subtype, while hippocampal volumes in inattentive ADHD showed no reliable differences relative to controls. Finally, there were negative correlations between the reduced hippocampal subfields and behavioral ADHD indices. The present results point to a clear dissociation between inattentive and combined subtypes of ADHD. Therefore, hippocampal subfields may contribute towards understanding the pathophysiology of ADHD. Copyright © 2018 Elsevier B.V. All rights reserved.
Vaccine adjuvants: Tailor-made mast-cell granules
NASA Astrophysics Data System (ADS)
Gunzer, Matthias
2012-03-01
Mast cells induce protective immune responses through secretion of stimulatory granules. Microparticles modelled after mast-cell granules are now shown to replicate and enhance the functions of their natural counterparts and to direct the character of the resulting immunity.
Multiple zebrafish atoh1 genes specify a diversity of neuronal types in the zebrafish cerebellum.
Kidwell, Chelsea U; Su, Chen-Ying; Hibi, Masahiko; Moens, Cecilia B
2018-06-01
A single Atoh1 basic-helix-loop-helix transcription factor specifies multiple neuron types in the mammalian cerebellum and anterior hindbrain. The zebrafish genome encodes three paralagous atoh1 genes whose functions in cerebellum and anterior hindbrain development we explore here. With use of a transgenic reporter, we report that zebrafish atoh1c-expressing cells are organized in two distinct domains that are separated both by space and developmental time. An early isthmic expression domain gives rise to an extracerebellar population in rhombomere 1 and an upper rhombic lip domain gives rise to granule cell progenitors that migrate to populate all four granule cell territories of the fish cerebellum. Using genetic mutants we find that of the three zebrafish atoh1 paralogs, atoh1c and atoh1a are required for the full complement of granule neurons. Surprisingly, the two genes are expressed in non-overlapping granule cell progenitor populations, indicating that fish use duplicate atoh1 genes to generate granule cell diversity that is not detected in mammals. Finally, live imaging of granule cell migration in wildtype and atoh1c mutant embryos reveals that while atoh1c is not required for granule cell specification per se, it is required for granule cells to delaminate and migrate away from the rhombic lip. Copyright © 2018 Elsevier Inc. All rights reserved.
Fábián, Attila; Jäger, Katalin; Rakszegi, Mariann; Barnabás, Beáta
2011-04-01
The aim of the present work was to reveal the histological alterations triggered in developing wheat kernels by soil drought stress during early seed development resulting in yield losses at harvest. For this purpose, observations were made on the effect of drought stress, applied in a controlled environment from the 5th to the 9th day after pollination, on the kernel morphology, starch content and grain yield of the drought-sensitive Cappelle Desprez and drought-tolerant Plainsman V winter wheat (Triticum aestivum L.) varieties. As a consequence of water withdrawal, there was a decrease in the size of the embryos and the number of A-type starch granules deposited in the endosperm, while the development of aleurone cells and the degradation of the cell layers surrounding the ovule were significantly accelerated in both genotypes. In addition, the number of B-type starch granules per cell was significantly reduced. Drought stress affected the rate of grain filling shortened the grain-filling and ripening period and severely reduced the yield. With respect to the recovery of vegetative tissues, seed set and yield, the drought-tolerant Plainsman V responded significantly better to drought stress than Cappelle Desprez. The reduction in the size of the mature embryos was significantly greater in the sensitive genotype. Compared to Plainsman V, the endosperm cells of Cappelle Desprez accumulated significantly fewer B-type starch granules. In stressed kernels of the tolerant genotype, the accumulation of protein bodies occurred significantly earlier than in the sensitive variety.
Melo, Fabio Rabelo; Waern, Ida; Rönnberg, Elin; Åbrink, Magnus; Lee, David M.; Schlenner, Susan M.; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Turk, Boris; Wernersson, Sara; Pejler, Gunnar
2011-01-01
Mast cell secretory granules (secretory lysosomes) contain large amounts of fully active proteases bound to serglycin proteoglycan. Damage to the granule membrane will thus lead to the release of serglycin and serglycin-bound proteases into the cytosol, which potentially could lead to proteolytic activation of cytosolic pro-apoptotic compounds. We therefore hypothesized that mast cells are susceptible to apoptosis induced by permeabilization of the granule membrane and that this process is serglycin-dependent. Indeed, we show that wild-type mast cells are highly sensitive to apoptosis induced by granule permeabilization, whereas serglycin-deficient cells are largely resistant. The reduced sensitivity of serglycin−/− cells to apoptosis was accompanied by reduced granule damage, reduced release of proteases into the cytosol, and defective caspase-3 activation. Mechanistically, the apoptosis-promoting effect of serglycin involved serglycin-dependent proteases, as indicated by reduced sensitivity to apoptosis and reduced caspase-3 activation in cells lacking individual mast cell-specific proteases. Together, these findings implicate serglycin proteoglycan as a novel player in mast cell apoptosis. PMID:21123167
Ito, Ikumi; Ito, Akihiko; Unezaki, Sakae
2017-01-01
We investigated the preparation of a gelling tablet that swells and forms a gel upon absorbing water, and hence would be easy for patients to swallow. We prepared naked tablets and compressed coated tablets by the direct tableting or wet granule-compression methods, using the commonly prescribed drug acetaminophen (AA) and sodium alginate (AG) as a thickening agent. The tablets quickly absorbed water, had favorable gelling properties, low adhesiveness, appropriate drug dissolution profile, and at the same time, were easy to swallow. In the case of naked tablets, water absorption increased upon granulation, but gelling of AG interfere when AA and AG were present together. There was no change in the adhesiveness, and more than 30 min were required to achieve a 25% dissolution ratio. Compressed coated tablets that were made with AA in the inner layer and granulated AG in the outer layer showed improved dissolution behavior, it was about 90% dissolution ratio in 30 min, owing to the water absorption property of AG, and decreased adhesiveness. In this case, there was a difference in the outer layer thickness. As the outer layer amount increased, dissolution slowed, but it did not depend on the compression pressure. Our gelling tablet can be prepared by using AA (main drug) in the inner layer and an appropriate thickness of granulated AG in the outer layer of compressed coated tablets.
Xie, Li; Zhu, Dan; Kang, Youhou; Liang, Tao; He, Yu; Gaisano, Herbert Y
2013-01-01
The exocyst complex subunit Sec5 is a downstream effector of RalA-GTPase which promotes RalA-exocyst interactions and exocyst assembly, serving to tether secretory granules to docking sites on the plasma membrane. We recently reported that RalA regulates biphasic insulin secretion in pancreatic islet β cells in part by tethering insulin secretory granules to Ca(2+) channels to assist excitosome assembly. Here, we assessed β cell exocytosis by patch clamp membrane capacitance measurement and total internal reflection fluorescence microscopy to investigate the role of Sec5 in regulating insulin secretion. Sec5 is present in human and rodent islet β cells, localized to insulin granules. Sec5 protein depletion in rat INS-1 cells inhibited depolarization-induced release of primed insulin granules from both readily-releasable pool and mobilization from the reserve pool. This reduction in insulin exocytosis was attributed mainly to reduction in recruitment and exocytosis of newcomer insulin granules that undergo minimal docking time at the plasma membrane, but which encompassed a larger portion of biphasic glucose stimulated insulin secretion. Sec5 protein knockdown had little effect on predocked granules, unless vigorously stimulated by KCl depolarization. Taken together, newcomer insulin granules in β cells are more sensitive than predocked granules to Sec5 regulation.
Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu
2004-03-01
The release properties of phenylpropanolamine hydrochloride (PPA) from ethylcellulose (EC) matrix granules prepared by an extrusion granulation method were examined. The release process could be divided into two parts; the first and second stages were analyzed by applying square-root time law and cube-root law equations, respectively. The validity of the treatments was confirmed by the fitness of a simulation curve with the measured curve. In the first stage, PPA was released from the gel layer of swollen EC in the matrix granules. In the second stage, the drug existing below the gel layer dissolved and was released through the gel layer. The effect of the binder solution on the release from EC matrix granules was also examined. The binder solutions were prepared from various EC and ethanol (EtOH) concentrations. The media changed from a good solvent to a poor solvent with decreasing EtOH concentration. The matrix structure changed from loose to compact with increasing EC concentration. The preferable EtOH concentration region was observed when the release process was easily predictable. The time and release ratio at the connection point of the simulation curves were also examined to determine the validity of the analysis.
Current source density correlates of cerebellar Golgi and Purkinje cell responses to tactile input
Tahon, Koen; Wijnants, Mike; De Schutter, Erik
2011-01-01
The overall circuitry of the cerebellar cortex has been known for over a century, but the function of many synaptic connections remains poorly characterized in vivo. We used a one-dimensional multielectrode probe to estimate the current source density (CSD) of Crus IIa in response to perioral tactile stimuli in anesthetized rats and to correlate current sinks and sources to changes in the spike rate of corecorded Golgi and Purkinje cells. The punctate stimuli evoked two distinct early waves of excitation (at <10 and ∼20 ms) associated with current sinks in the granular layer. The second wave was putatively of corticopontine origin, and its associated sink was located higher in the granular layer than the first trigeminal sink. The distinctive patterns of granular-layer sinks correlated with the spike responses of corecorded Golgi cells. In general, Golgi cell spike responses could be linearly reconstructed from the CSD profile. A dip in simple-spike activity of coregistered Purkinje cells correlated with a current source deep in the molecular layer, probably generated by basket cell synapses, interspersed between sparse early sinks presumably generated by synapses from granule cells. The late (>30 ms) enhancement of simple-spike activity in Purkinje cells was characterized by the absence of simultaneous sinks in the granular layer and by the suppression of corecorded Golgi cell activity, pointing at inhibition of Golgi cells by Purkinje axon collaterals as a likely mechanism of late Purkinje cell excitation. PMID:21228303
Functional morphology of femoral glands in the Tegu lizard, Tupinambis merianae.
Chamut, Silvia; Valdez, Valeria García; Manes, Mario E
2009-04-01
Several lizards have femoral glands, which have an influence in various reproductive behaviors. In this paper we describe the morphological organization of the femoral glands in the Tegu, Tupinambis merianae, by means of light and electron microscopy. Even though these glands are present in both genders, secretions during the reproductive period can only be found in males. The glandular parenchyma, which is organized in numerous secretory units, consists of keratinocyte-like cells and granular cells. The holocrine secretion is constituted from both cells, which lose their integrity and become a semi-amorphous material, reinforced by keratin sheets. The discharges of each unit merge together into a solid cylinder of secretion, surrounded by epithelial cells, that is extruded to the exterior. The keratin sheets and epithelial layers that surround both the complete and partial secretions form a sort of structural support suitable for the type of territorial demarcation characteristic of the species. The granular cells, supposedly the producers of pheromones, are characterized by the presence of electron-dense granules and multilaminar membranous bodies that show ultrastructural changes of unknown function. The free granules in the secretion cylinder may act as pheromone deposits.
Bresan, Stephanie
2017-01-01
ABSTRACT The formation and localization of polyhydroxybutyrate (PHB) granules in Ralstonia eutropha are controlled by PhaM, which interacts both with the PHB synthase (PhaC) and with the bacterial nucleoid. Here, we studied the importance of proline and lysine residues of two C-terminal PAKKA motifs in PhaM for their importance in attaching PHB granules to DNA by in vitro and in vivo methods. Substitution of the lysine residues but not of the proline residues resulted in detachment of formed PHB granules from the nucleoid. Instead, formation of PHB granule clusters at polar regions of the rod-shaped cells and an unequal distribution of PHB granules to daughter cells were observed. The formation of PHB granules was studied by the expression of chromosomally anchored gene fusions of fluorescent proteins with PhaM and PhaC in different backgrounds. PhaM and PhaC fusions showed a distinct colocalization at formed PHB granules in the nucleoid region of the wild type. In a ΔphaC background, PhaM and the catalytically inactive PhaCC319A protein were not able to form fluorescent foci, indicating that correct positioning requires the formation of PHB. Furthermore, time-lapse experiments revealed that PhaC and PhaM proteins detach from formed PHB granules at later stages, resulting in a nonhomogeneous population of PHB granules. This could explain why growth of individual PHB granules stops under PHB-permissive conditions at a certain size. IMPORTANCE PHB granules are storage compounds for carbon and energy in many prokaryotes. Equal distribution of accumulated PHB granules during cell division is therefore important for optimal fitness of the daughter cells. In R. eutropha, PhaM is responsible for maximal activity of PHB synthase, for initiation of PHB granule formation at discrete regions in the cells, and for association of formed PHB granules with the nucleoid. Here we found that four lysine residues of C-terminal PhaM sequence motifs are essential for association of PHB granules with the nucleoid. Furthermore, we followed PHB granule formation by time-lapse microscopy and provide evidence for aging of PHB granules that is manifested by detachment of previously PHB granule-associated PhaM and PHB synthase. PMID:28389545
Effects of Ethanol on the Cerebellum: Advances and Prospects.
Luo, Jia
2015-08-01
Alcohol abuse causes cerebellar dysfunction and cerebellar ataxia is a common feature in alcoholics. Alcohol exposure during development also impacts the cerebellum. Children with fetal alcohol spectrum disorder (FASD) show many symptoms associated specifically with cerebellar deficits. However, the cellular and molecular mechanisms are unclear. This special issue discusses the most recent advances in the study of mechanisms underlying alcoholinduced cerebellar deficits. The alteration in GABAA receptor-dependent neurotransmission is a potential mechanism for ethanol-induced cerebellar dysfunction. Recent advances indicate ethanol-induced increases in GABA release are not only in Purkinje cells (PCs), but also in molecular layer interneurons and granule cells. Ethanol is shown to disrupt the molecular events at the mossy fiber - granule cell - Golgi cell (MGG) synaptic site and granule cell parallel fibers - PCs (GPP) synaptic site, which may be responsible for ethanol-induced cerebellar ataxia. Aging and ethanol may affect the smooth endoplasmic reticulum (SER) of PC dendrites and cause dendritic regression. Ethanol withdrawal causes mitochondrial damage and aberrant gene modifications in the cerebellum. The interaction between these events may result in neuronal degeneration, thereby contributing to motoric deficit. Ethanol activates doublestranded RNA (dsRNA)-activated protein kinase (PKR) and PKR activation is involved ethanolinduced neuroinflammation and neurotoxicity in the developing cerebellum. Ethanol alters the development of cerebellar circuitry following the loss of PCs, which could result in modifications of the structure and function of other brain regions that receive cerebellar inputs. Lastly, choline, an essential nutrient is evaluated for its potential protection against ethanol-induced cerebellar damages. Choline is shown to ameliorate ethanol-induced cerebellar dysfunction when given before ethanol exposure.
Yoneyama, Masanori; Shiba, Tatsuo; Hasebe, Shigeru; Umeda, Kasumi; Yamaguchi, Taro; Ogita, Kiyokazu
2014-01-01
Lithium, a mood stabilizer, is known to ameliorate the stress-induced decrease in hippocampal neurogenesis seen in animal models of stress-related disorders. However, it is unclear whether lithium has beneficial effect on neuronal repair following neuronal damage in neuronal degenerative diseases. Here, we evaluated the effect of in vivo treatment with lithium on the hippocampal neuronal repair in a mouse model of trimethyltin (TMT)-induced neuronal loss/self-repair in the hippocampal dentate gyrus (such mice referred to as “impaired animals”) [Ogita et al. (2005) J Neurosci Res 82: 609–621]. The impaired animals had a dramatically increased number of 5-bromo-2′-deoxyuridine (BrdU)-incorporating cells in their dentate gyrus at the initial time window (days 3 to 5 post-TMT treatment) of the self-repair stage. A single treatment with lithium produced no significant change in the number of BrdU-incorporating cells in the dentate granule cell layer and subgranular zone on day 3 post-TMT treatment. On day 5 post-TMT treatment, however, BrdU-incorporating cells were significantly increased in number by lithium treatment for 3 days. Most interestingly, chronic treatment (15 days) with lithium increased the number of BrdU-incorporating cells positive for NeuN or doublecortin in the dentate granule cell layer of the impaired animals, but not in that of naïve animals. The results of a forced swimming test revealed that the chronic treatment with lithium improved the depression-like behavior seen in the impaired animals. Taken together, our data suggest that lithium had a beneficial effect on neuronal repair following neuronal loss in the dentate gyrus through promoted proliferation and survival/neuronal differentiation of neural stem/progenitor cells in the subgranular zone. PMID:24504050
Cell proliferation and apoptosis during histogenesis of the guinea pig and rabbit cerebellar cortex.
Lossi, Laura; Coli, Alessandra; Giannessi, Elisabetta; Stornelli, Maria Rita; Marroni, Paolo
2002-01-01
Cell proliferation and apoptosis are essential for development of the nervous system. In this study we have investigated the histogenesis of the cerebellar cortex in guinea pig (a precocial species) and rabbit (an altricial species) at different stages of pregnancy and postnatal life. Proliferating cells were identified after labeling with antibodies against the proliferating cell nuclear antigen (PCNA) and/or the Ki-67 antigen. Apoptotic cells were visualized in situ by the TUNEL method and by immunodetection of cleaved caspase 3 and 9. In guinea pigs, both proliferating and apoptotic cells were detected during pre-natal life (E0-E40). Conversely, cell proliferation and apoptosis in rabbits were temporally restricted to early postnatal weeks (P0-P20). In both species cell proliferation was mainly linked to differentiation and migration of the granule cells. In both species, the majority of cells undergoing programmed cell death likely corresponded to granule cells. They were mainly detected in the external granular layer, and were by far more common than previously reported in other locations of the postnatal brain. This study shows that apoptosis is a shared process of cell death during cerebellar development in both altricial and precocial animals, and that there is a direct spatial and temporal correlation between cell proliferation and death in two mammals with different time tables in cerebellar maturation.
PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha.
Wahl, Andreas; Schuth, Nora; Pfeiffer, Daniel; Nussberger, Stephan; Jendrossek, Dieter
2012-11-16
Poly(3-hydroxybutyrate) (PHB) granules are important storage compounds of carbon and energy in many prokaryotes which allow survival of the cells in the absence of suitable carbon sources. Formation and subcellular localization of PHB granules was previously assumed to occur randomly in the cytoplasm of PHB accumulating bacteria. However, contradictionary results on subcellular localization of PHB granules in Ralstonia eutropha were published, recently. Here, we provide evidence by transmission electron microscopy that PHB granules are localized in close contact to the nucleoid region in R. eutropha during growth on nutrient broth. Binding of PHB granules to the nucleoid is mediated by PhaM, a PHB granule associated protein with phasin-like properties that is also able to bind to DNA and to phasin PhaP5. Over-expression of PhaM resulted in formation of many small PHB granules that were always attached to the nucleoid region. In contrast, PHB granules of ∆phaM strains became very large and distribution of granules to daughter cells was impaired. Association of PHB granules to the nucleoid region was prevented by over-expression of PhaP5 and clusters of several PHB granules were mainly localized near the cell poles. Subcellular localization of PHB granules is controlled in R. eutropha and depends on the presence and concentrations of at least two PHB granule associated proteins, PhaM and PhaP5.
Burnet, George; Gokhale, Ashok J.
1990-07-10
A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste, and method for producing the same, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces.
Burnet, G.; Gokhale, A.J.
1990-07-10
A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste and method for producing the same are disclosed, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces. 3 figs.
A ketogenic diet rescues hippocampal memory defects in a mouse model of Kabuki syndrome.
Benjamin, Joel S; Pilarowski, Genay O; Carosso, Giovanni A; Zhang, Li; Huso, David L; Goff, Loyal A; Vernon, Hilary J; Hansen, Kasper D; Bjornsson, Hans T
2017-01-03
Kabuki syndrome is a Mendelian intellectual disability syndrome caused by mutations in either of two genes (KMT2D and KDM6A) involved in chromatin accessibility. We previously showed that an agent that promotes chromatin opening, the histone deacetylase inhibitor (HDACi) AR-42, ameliorates the deficiency of adult neurogenesis in the granule cell layer of the dentate gyrus and rescues hippocampal memory defects in a mouse model of Kabuki syndrome (Kmt2d +/βGeo ). Unlike a drug, a dietary intervention could be quickly transitioned to the clinic. Therefore, we have explored whether treatment with a ketogenic diet could lead to a similar rescue through increased amounts of beta-hydroxybutyrate, an endogenous HDACi. Here, we report that a ketogenic diet in Kmt2d +/βGeo mice modulates H3ac and H3K4me3 in the granule cell layer, with concomitant rescue of both the neurogenesis defect and hippocampal memory abnormalities seen in Kmt2d +/βGeo mice; similar effects on neurogenesis were observed on exogenous administration of beta-hydroxybutyrate. These data suggest that dietary modulation of epigenetic modifications through elevation of beta-hydroxybutyrate may provide a feasible strategy to treat the intellectual disability seen in Kabuki syndrome and related disorders.
Holland, L Z; Miller, R L
1994-03-01
The ovary of the salp Pegea socia (Bosc, 1802) is located at the end of an atrial diverticulum. The ovary consists of a single oocyte encased in a layer of follicle cells and is connected to the atrial epithelium by an oviduct. Transmission electron microscopy shows that the oocyte lacks a vitelline layer, cortical granules, and yolk granules and that the oviduct lacks a continuous lumen. What previous authors thought was a lumen is a line of dense intercellular junctions running down the center of the oviduct. The sperm nucleus in this species, as in other salps, is elongate. The tubular mitochondrion spirals about the sperm nucleus giving it a corkscrew-shape appearance. Sperm reach the ovary when the oocyte is still at the germinal vesicle stage. Many sperm swim up the atrial diverticulum and burrow through the cells of the atrial epithelium, oviduct, and follicular epithelium. Thus oviduct shortening, which occurs when the oocyte is in the meiotic divisions, is evidently unrelated to sperm moving up the oviduct. All previous authors, who argued either that a continuous lumen is necessary for sperm to move up the oviduct or that sperm bypass the oviduct, were incorrect. © 1994 Wiley-Liss, Inc. Copyright © 1994 Wiley-Liss, Inc.
LaSarge, Candi L.; McAuliffe, John J.
2015-01-01
Abstract Hippocampal dentate granule cells are among the few neuronal cell types generated throughout adult life in mammals. In the normal brain, new granule cells are generated from progenitors in the subgranular zone and integrate in a typical fashion. During the development of epilepsy, granule cell integration is profoundly altered. The new cells migrate to ectopic locations and develop misoriented “basal” dendrites. Although it has been established that these abnormal cells are newly generated, it is not known whether they arise ubiquitously throughout the progenitor cell pool or are derived from a smaller number of “bad actor” progenitors. To explore this question, we conducted a clonal analysis study in mice expressing the Brainbow fluorescent protein reporter construct in dentate granule cell progenitors. Mice were examined 2 months after pilocarpine-induced status epilepticus, a treatment that leads to the development of epilepsy. Brain sections were rendered translucent so that entire hippocampi could be reconstructed and all fluorescently labeled cells identified. Our findings reveal that a small number of progenitors produce the majority of ectopic cells following status epilepticus, indicating that either the affected progenitors or their local microenvironments have become pathological. By contrast, granule cells with “basal” dendrites were equally distributed among clonal groups. This indicates that these progenitors can produce normal cells and suggests that global factors sporadically disrupt the dendritic development of some new cells. Together, these findings strongly predict that distinct mechanisms regulate different aspects of granule cell pathology in epilepsy. PMID:26756038
Xue, Yanhong; Zhao, Wei; Du, Wen; Zhang, Xiang; Ji, Gang; Ying, Wang; Xu, Tao
2012-07-01
Insulin granule trafficking is a key step in the secretion of glucose-stimulated insulin from pancreatic β-cells. The main feature of type 2 diabetes (T2D) is the failure of pancreatic β-cells to secrete sufficient amounts of insulin to maintain normal blood glucose levels. In this work, we developed and applied tomography based on scanning transmission electron microscopy (STEM) to image intact insulin granules in the β-cells of mouse pancreatic islets. Using three-dimensional (3D) reconstruction, we found decreases in both the number and the grey level of insulin granules in db/db mouse pancreatic β-cells. Moreover, insulin granules were closer to the plasma membrane in diabetic β-cells than in control cells. Thus, 3D ultra-structural tomography may provide new insights into the pathology of insulin secretion in T2D.
Vigorous convection in a sunspot granular light bridge
NASA Astrophysics Data System (ADS)
Lagg, Andreas; Solanki, Sami K.; van Noort, Michiel; Danilovic, Sanja
2014-08-01
Context. Light bridges are the most prominent manifestation of convection in sunspots. The brightest representatives are granular light bridges composed of features that appear to be similar to granules. Aims: An in-depth study of the convective motions, temperature stratification, and magnetic field vector in and around light bridge granules is presented with the aim of identifying similarities and differences to typical quiet-Sun granules. Methods: Spectropolarimetric data from the Hinode Solar Optical Telescope were analyzed using a spatially coupled inversion technique to retrieve the stratified atmospheric parameters of light bridge and quiet-Sun granules. Results: Central hot upflows surrounded by cooler fast downflows reaching 10 km s-1 clearly establish the convective nature of the light bridge granules. The inner part of these granules in the near surface layers is field free and is covered by a cusp-like magnetic field configuration. We observe hints of field reversals at the location of the fast downflows. The quiet-Sun granules in the vicinity of the sunspot are covered by a low-lying canopy field extending radially outward from the spot. Conclusions: The similarities between quiet-Sun and light bridge granules point to the deep anchoring of granular light bridges in the underlying convection zone. The fast, supersonic downflows are most likely a result of a combination of invigorated convection in the light bridge granule due to radiative cooling into the neighboring umbra and the fact that we sample deeper layers, since the downflows are immediately adjacent to the slanted walls of the Wilson depression. The two movies are available in electronic form at http://www.aanda.org
Structure and chemical organization of the accessory olfactory bulb in the goat.
Mogi, Kazutaka; Sakurai, Katsuyasu; Ichimaru, Toru; Ohkura, Satoshi; Mori, Yuji; Okamura, Hiroaki
2007-03-01
The structure and chemical composition of the accessory olfactory bulb (AOB) were examined in male and female goats. Sections were subjected to either Nissl staining, Klüver-Barrera staining, lectin histochemistry, or immunohistochemistry for nitric oxide synthase (NOS), neuropeptide Y (NPY), tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), and glutamic acid decarboxylase (GAD). The goat AOB was divided into four layers: the vomeronasal nerve layer (VNL), glomerular layer (GL), mitral/tufted (M/T) cell layer (MTL), and granule cell layer (GRL). Quantitative and morphometric analyses indicated that a single AOB contained 5,000-8,000 putative M/T cells with no sex differences, whereas the AOB was slightly larger in males. Of the 21 lectins examined, 7 specifically bound to the VNL and GL, and 1 bound not only to the VNL, but also to the MTL and GRL. In either of these cases, no heterogeneity of lectin staining was observed in the rostrocaudal direction. NOS-, TH-, DBH-, and GAD-immunoreactivity (ir) were observed in the MTL and GRL, whereas NPY-ir was present only in the GRL. In the GL, periglomerular cells with GAD-ir were found in abundance, and a subset of periglomerular cells containing TH-ir was also found. Double-labeling immunohistochemistry revealed that virtually all periglomerular cells containing TH-ir were colocalized with GAD-ir.
Ferrari, Federica; Gorini, Antonella; Villa, Roberto Federico
2015-01-01
Functional proteomics was used to characterize age-related changes in energy metabolism of different neuronal pathways within the cerebellar cortex of Wistar rats aged 2, 6, 12, 18, and 24 months. The "large" synaptosomes, derived from the glutamatergic mossy fibre endings which make synaptic contact with the granule cells of the granular layer, and the "small" synaptosomes, derived from the pre-synaptic terminals of granule cells making synaptic contact with the dendrites of Purkinje cells, were isolated by a combined differential/gradient centrifugation technique. Because most brain disorders are associated with bioenergetic changes, the maximum rate (Vmax) of selected enzymes of glycolysis, Krebs' cycle, glutamate and amino acids metabolism, and acetylcholine catabolism were evaluated. The results show that "large" and "small" synaptosomes possess specific and independent metabolic features. This study represents a reliable model to study in vivo (1) the physiopathological molecular mechanisms of some brain diseases dependent on energy metabolism, (2) the responsiveness to noxious stimuli, and (3) the effects of drugs, discriminating their action sites at subcellular level on specific neuronal pathways.
Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer's disease.
Donovan, Michael H; Yazdani, Umar; Norris, Rebekah D; Games, Dora; German, Dwight C; Eisch, Amelia J
2006-03-01
Abnormal subgranular zone (SGZ) neurogenesis is proposed to contribute to Alzheimer's disease (AD)-related decreases in hippocampal function. Our goal was to examine hippocampal neurogenesis in the PDAPP mouse, a model of AD with age-dependent accumulation of amyloid-beta(42) (Abeta(42))-containing plaques that is well studied with regard to AD therapies. A secondary goal was to determine whether altered neurogenesis in the PDAPP mouse is associated with abnormal maturation or number of mature cells. A tertiary goal was to provide insight into why hippocampal neurogenesis appears to be increased in AD post-mortem tissue and decreased in most AD mouse models. We report an age-dependent decrease in SGZ proliferation in homozygous PDAPP mice. At 1 year of age, PDAPP mice also had new dentate gyrus granule neurons with abnormal maturation and fewer dying cells relative to control mice. In contrast to decreased SGZ cell birth, PDAPP mice had increased birth of immature neurons in the outer portion of the granule cell layer (oGCL), providing insight into why some studies link AD with increased neurogenesis. However, these ectopic oGCL cells were still rare compared with SGZ proliferating cells, emphasizing that the primary characteristic of PDAPP mice is decreased neurogenesis. The decrease in SGZ neurogenesis was not associated with an age-dependent loss of dentate granule neurons. The altered neurogenesis in the PDAPP mouse may contribute to the age-related cognitive deficits reported in this model of AD and may be a useful adjunct target for assessing the impact of AD therapies. J. Comp. Neurol. 495:70-83, 2006. (c) 2006 Wiley-Liss, Inc.
Parallel odor processing by mitral and middle tufted cells in the olfactory bulb.
Cavarretta, Francesco; Burton, Shawn D; Igarashi, Kei M; Shepherd, Gordon M; Hines, Michael L; Migliore, Michele
2018-05-16
The olfactory bulb (OB) transforms sensory input into spatially and temporally organized patterns of activity in principal mitral (MC) and middle tufted (mTC) cells. Thus far, the mechanisms underlying odor representations in the OB have been mainly investigated in MCs. However, experimental findings suggest that MC and mTC may encode parallel and complementary odor representations. We have analyzed the functional roles of these pathways by using a morphologically and physiologically realistic three-dimensional model to explore the MC and mTC microcircuits in the glomerular layer and deeper plexiform layer. The model makes several predictions. MCs and mTCs are controlled by similar computations in the glomerular layer but are differentially modulated in deeper layers. The intrinsic properties of mTCs promote their synchronization through a common granule cell input. Finally, the MC and mTC pathways can be coordinated through the deep short-axon cells in providing input to the olfactory cortex. The results suggest how these mechanisms can dynamically select the functional network connectivity to create the overall output of the OB and promote the dynamic synchronization of glomerular units for any given odor stimulus.
Phillips, A D; Brown, A; Hicks, S; Schüller, S; Murch, S H; Walker-Smith, J A; Swallow, D M
2004-01-01
Background: Microvillous atrophy, a disorder of intractable diarrhoea in infancy, is characterised by the intestinal epithelial cell abnormalities of abnormal accumulation of periodic acid-Schiff (PAS) positive secretory granules within the apical cytoplasm and the presence of microvillous inclusions. The identity of the PAS positive material is not known, and the aim of this paper was to further investigate its composition. Methods: Formaldehyde fixed sections were stained with alcian blue/PAS to identify the acidic or neutral nature of the material, phenylhydrazine blocking was employed to stain specifically for sialic acid, and saponification determined the presence of sialic acid acetylation. The specificity of sialic acid staining was tested by digestion with mild sulphuric acid. Expression of blood group related antigens was tested immunochemically. Results: Alcian blue/PAS staining identified a closely apposed layer of acidic material on the otherwise neutral (PAS positive) brush border in controls. In microvillous atrophy, a triple layer was seen with an outer acidic layer, an unstained brush border region, and accumulation within the epithelium of a neutral glycosubstance that contained acetylated sialic acid. Blood group antigens were detected on the brush border, in mucus, and within goblet cells in controls. In microvillous atrophy they were additionally expressed within the apical cytoplasm of epithelial cells mirroring the PAS abnormality. Immuno electron microscopy localised expression to secretory granules. Conclusions: A neutral, blood group antigen positive, glycosubstance that contains acetylated sialic acid accumulates in the epithelium in microvillous atrophy. Previous studies have demonstrated that the direct and indirect constitutive pathways are intact in this disorder and it is speculated that the abnormal staining pattern reflects accumulation of glycocalyx related material. PMID:15542511
Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic B-cells.
Olofsson, Charlotta S; Göpel, Sven O; Barg, Sebastian; Galvanovskis, Juris; Ma, Xiaosong; Salehi, Albert; Rorsman, Patrik; Eliasson, Lena
2002-05-01
A readily releasable pool (RRP) of granules has been proposed to underlie the first phase of insulin secretion. In the present study we combined electron microscopy, insulin secretion measurements and recordings of cell capacitance in an attempt to define this pool ultrastructurally. Mouse pancreatic B-cells contain approximately 9,000 granules, of which 7% are docked below the plasma membrane. The number of docked granules was reduced by 30% (200 granules) during 10 min stimulation with high K+. This stimulus depolarized the cell to -10 mV, elevated cytosolic [Ca2+] ([Ca2+](i)) from a basal concentration of 130 nM to a peak of 1.3 microM and released 0.5 ng insulin/islet, corresponding to 200-300 granules/cell. The Ca2+ transient decayed towards the prestimulatory concentration within approximately 200 s, presumably reflecting Ca2+ channel inactivation. Renewed stimulation with high K+ failed to stimulate insulin secretion when applied in the absence of glucose. The size of the RRP, derived from the insulin measurements, is similar to that estimated from the increase in cell capacitance elicited by photolytic release of caged Ca2+. We propose that the RRP represents a subset of the docked pool of granules and that replenishment of RRP can be accounted for largely by chemical modification of granules already in place or situated close to the plasma membrane.
Formation of tRNA granules in the nucleus of heat-induced human cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyagawa, Ryu; Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654; Mizuno, Rie
Highlights: Black-Right-Pointing-Pointer tRNAs are tranlocated into the nucleus in heat-induced HeLa cells. Black-Right-Pointing-Pointer tRNAs form the unique granules in the nucleus. Black-Right-Pointing-Pointer tRNA ganules overlap with nuclear stress granules. -- Abstract: The stress response, which can trigger various physiological phenomena, is important for living organisms. For instance, a number of stress-induced granules such as P-body and stress granule have been identified. These granules are formed in the cytoplasm under stress conditions and are associated with translational inhibition and mRNA decay. In the nucleus, there is a focus named nuclear stress body (nSB) that distinguishes these structures from cytoplasmic stress granules.more » Many splicing factors and long non-coding RNA species localize in nSBs as a result of stress. Indeed, tRNAs respond to several kinds of stress such as heat, oxidation or starvation. Although nuclear accumulation of tRNAs occurs in starved Saccharomyces cerevisiae, this phenomenon is not found in mammalian cells. We observed that initiator tRNA{sup Met} (Meti) is actively translocated into the nucleus of human cells under heat stress. During this study, we identified unique granules of Meti that overlapped with nSBs. Similarly, elongator tRNA{sup Met} was translocated into the nucleus and formed granules during heat stress. Formation of tRNA granules is closely related to the translocation ratio. Then, all tRNAs may form the specific granules.« less
PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha
2012-01-01
Background Poly(3-hydroxybutyrate) (PHB) granules are important storage compounds of carbon and energy in many prokaryotes which allow survival of the cells in the absence of suitable carbon sources. Formation and subcellular localization of PHB granules was previously assumed to occur randomly in the cytoplasm of PHB accumulating bacteria. However, contradictionary results on subcellular localization of PHB granules in Ralstonia eutropha were published, recently. Results Here, we provide evidence by transmission electron microscopy that PHB granules are localized in close contact to the nucleoid region in R. eutropha during growth on nutrient broth. Binding of PHB granules to the nucleoid is mediated by PhaM, a PHB granule associated protein with phasin-like properties that is also able to bind to DNA and to phasin PhaP5. Over-expression of PhaM resulted in formation of many small PHB granules that were always attached to the nucleoid region. In contrast, PHB granules of ∆phaM strains became very large and distribution of granules to daughter cells was impaired. Association of PHB granules to the nucleoid region was prevented by over-expression of PhaP5 and clusters of several PHB granules were mainly localized near the cell poles. Conclusion Subcellular localization of PHB granules is controlled in R. eutropha and depends on the presence and concentrations of at least two PHB granule associated proteins, PhaM and PhaP5. PMID:23157596
Slaninova, Eva; Sedlacek, Petr; Mravec, Filip; Mullerova, Lucie; Samek, Ota; Koller, Martin; Hesko, Ondrej; Kucera, Dan; Marova, Ivana; Obruca, Stanislav
2018-02-01
Numerous prokaryotes accumulate polyhydroxyalkanoates (PHA) in the form of intracellular granules. The primary function of PHA is the storage of carbon and energy. Nevertheless, there are numerous reports that the presence of PHA granules in microbial cells enhances their stress resistance and fitness when exposed to various stress factors. In this work, we studied the protective mechanism of PHA granules against UV irradiation employing Cupriavidus necator as a model bacterial strain. The PHA-accumulating wild type strain showed substantially higher UV radiation resistance than the PHA non-accumulating mutant. Furthermore, the differences in UV-Vis radiation interactions with both cell types were studied using various spectroscopic approaches (turbidimetry, absorption spectroscopy, and nephelometry). Our results clearly demonstrate that intracellular PHA granules efficiently scatter UV radiation, which provides a substantial UV-protective effect for bacterial cells and, moreover, decreases the intracellular level of reactive oxygen species in UV-challenged cells. The protective properties of the PHA granules are enhanced by the fact that granules specifically bind to DNA, which in turn provides shield-like protection of DNA as the most UV-sensitive molecule. To conclude, the UV-protective action of PHA granules adds considerable value to their primary storage function, which can be beneficial in numerous environments.
Changes in biochemical processes in cerebellar granule cells of mice exposed to methylmercury.
Bellum, Sairam; Bawa, Bhupinder; Thuett, Kerry A; Stoica, Gheorghe; Abbott, Louise C
2007-01-01
At postnatal day 34, male and female C57BL/6J mice were exposed orally once a day to a total of five doses totaling 1.0 or 5.0 mg/kg of methylmercuric chloride or sterile deionized water in moistened rodent chow. Eleven days after the last dose cerebellar granule cells were acutely isolated to measure reactive oxygen species (ROS) levels and mitochondrial membrane potential using CM-H(2)DCFDA and TMRM dyes, respectively. For visualizing intracellular calcium ion distribution using transmission electron microscopy, mice were perfused 11 days after the last dose of methylmercury (MeHg) using the oxalate-pyroantimonate method. Cytosolic and mitochondrial protein fractions from acutely isolated granule cells were analyzed for cytochrome c content using Western blot analysis. Histochemistry (Fluoro-Jade dye) and immunohistochemistry (activated caspase 3) was performed on frozen serial cerebellar sections to label granule cell death and activation of caspase 3, respectively. Granule cells isolated from MeHg-treated mice showed elevated ROS levels and decreased mitochondrial membrane potential when compared to granule cells from control mice. Electron photomicrographs of MeHg-treated granule cells showed altered intracellular calcium ion homeostasis ([Ca(2+)](i)) when compared to control granule cells. However, in spite of these subcellular changes and moderate relocalization of cytochrome c into the cytosol, the concentrations of MeHg used in this study did not produce significant neuronal cell death/apoptosis at the time point examined, as evidenced by Fluoro-Jade and activated caspase 3 immunostaining, respectively. These results demonstrate that short-term in vivo exposure to total doses of 1.0 and 5.0 mg/kg MeHg through the most common exposure route (oral) can result in significant subcellular changes that are not accompanied by overt neuronal cell death.
NMDA-receptor dependent synaptic activation of TRPC channels in olfactory bulb granule cells
Stroh, Olga; Freichel, Marc; Kretz, Oliver; Birnbaumer, Lutz; Hartmann, Jana; Egger, Veronica
2012-01-01
TRPC channels are widely expressed throughout the nervous system including the olfactory bulb where their function is largely unknown. Here we describe their contribution to central synaptic processing at the reciprocal mitral and tufted cell - granule cell microcircuit, the most abundant synapse of the mammalian olfactory bulb. Suprathreshold activation of the synapse causes sodium action potentials in mouse granule cells and a subsequent long-lasting depolarization (LLD) linked to a global dendritic postsynaptic calcium signal recorded with two-photon laser scanning microscopy. These signals are not observed after action potentials evoked by current injection in the same cells. The LLD persists in the presence of group I metabotropic glutamate receptor antagonists but is entirely absent from granule cells deficient for the NMDA receptor subunit NR1. Moreover, both depolarization and Ca2+ rise are sensitive to the blockade of NMDA receptors. The LLD and the accompanying Ca2+ rise are also absent in granule cells from mice deficient for both TRPC channel subtypes 1 and 4, whereas the deletion of either TRPC1 or TRPC4 results in only a partial reduction of the LLD. Recordings from mitral cells in the absence of both subunits reveal a reduction of asynchronous neurotransmitter release from the granule cells during recurrent inhibition. We conclude that TRPC1 and TRPC4 can be activated downstream of NMDA receptor activation and contribute to slow synaptic transmission in the olfactory bulb, including the calcium dynamics required for asynchronous release from the granule cell spine. PMID:22539836
Garcia, Isabella; Bhullar, Paramjit K; Tepe, Burak; Ortiz-Guzman, Joshua; Huang, Longwen; Herman, Alexander M; Chaboub, Lesley; Deneen, Benjamin; Justice, Nicholas J; Arenkiel, Benjamin R
2016-01-01
Neuropeptides play important physiological functions during distinct behaviors such as arousal, learning, memory, and reproduction. However, the role of local, extrahypothalamic neuropeptide signaling in shaping synapse formation and neuronal plasticity in the brain is not well understood. Here, we characterize the spatiotemporal expression profile of the neuropeptide corticotropin-releasing hormone (CRH) and its receptor CRHR1 in the mouse OB throughout development. We found that CRH-expressing interneurons are present in the external plexiform layer, that its cognate receptor is expressed by granule cells, and show that both CRH and CRHR1 expression enriches in the postnatal period when olfaction becomes important towards olfactory-related behaviors. Further, we provide electrophysiological evidence that CRHR1-expressing granule cells functionally respond to CRH ligand, and that the physiological circuitry of CRHR1 knockout mice is abnormal, leading to impaired olfactory behaviors. Together, these data suggest a physiologically relevant role for local CRH signaling towards shaping the neuronal circuitry within the mouse OB.
Recycled tire crumb rubber anodes for sustainable power production in microbial fuel cells
NASA Astrophysics Data System (ADS)
Wang, Heming; Davidson, Matthew; Zuo, Yi; Ren, Zhiyong
One of the greatest challenges facing microbial fuel cells (MFCs) in large scale applications is the high cost of electrode material. We demonstrate here that recycled tire crumb rubber coated with graphite paint can be used instead of fine carbon materials as the MFC anode. The tire particles showed satisfactory conductivity after 2-4 layers of coating. The specific surface area of the coated rubber was over an order of magnitude greater than similar sized graphite granules. Power production in single chamber tire-anode air-cathode MFCs reached a maximum power density of 421 mW m -2, with a coulombic efficiency (CE) of 25.1%. The control graphite granule MFC achieved higher power density (528 mW m -2) but lower CE (15.6%). The light weight of tire particle could reduce clogging and maintenance cost but posts challenges in conductive connection. The use of recycled material as the MFC anodes brings a new perspective to MFC design and application and carries significant economic and environmental benefit potentials.
Arden, Catherine; Harbottle, Andrew; Baltrusch, Simone; Tiedge, Markus; Agius, Loranne
2004-09-01
The association of glucokinase with insulin secretory granules has been shown by cell microscopy techniques. We used MIN6 insulin-secretory cells and organelle fractionation to determine the effects of glucose on the subcellular distribution of glucokinase. After permeabilization with digitonin, 50% of total glucokinase remained bound intracellularly, while 30% was associated with the 13,000g particulate fraction. After density gradient fractionation of the organelles, immunoreactive glucokinase was distributed approximately equally between dense insulin granules and low-density organelles that cofractionate with mitochondria. Although MIN6 cells show glucose-responsive insulin secretion, glucokinase association with the granules and low-density organelles was not affected by glucose. Subfractionation of the insulin granule components by hypotonic lysis followed by sucrose gradient centrifugation showed that glucokinase colocalized with the granule membrane marker phogrin and not with insulin. PFK2 (6-phosphofructo-2-kinase-2/fructose-2,6-bisphosphatase)/FDPase-2, a glucokinase-binding protein, and glyceraldehyde phosphate dehydrogenase, which has been implicated in granule fusion, also colocalized with glucokinase after hypotonic lysis or detergent extaction of the granules. The results suggest that glucokinase is an integral component of the granule and does not translocate during glucose stimulation.
Studying melanin and lipofuscin in RPE cell culture models
Boulton, Michael E
2014-01-01
The retinal pigment epithelium contains three major types of pigment granules; melanosomes, lipofuscin and melanolipofuscin. Melanosomes in the retinal pigment epithelium (RPE) are formed during embryogenesis and mature during early postnatal life while lipofuscin and melanolipofuscin granules accumulate as a function of age. The difficulty in studying the formation and consequences of melanosomes and lipofuscin granules in RPE cell culture is compounded by the fact that these pigment granules do not normally occur in established RPE cell lines and pigment granules are rapidly lost in adult human primary culture. This review will consider options available for overcoming these limitations and permitting the study of melanosomes and lipofuscin in cell culture and will briefly evaluate the advantages and disadvantages of the different protocols. PMID:25152361
Characterization of Pu-238 Heat Source Granule Containment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, Paul Dean II; Sanchez, Joey Leo; Wall, Angelique Dinorah
The Milliwatt Radioisotopic Themoelectric Generator (RTG) provides power for permissive-action links. Essentially these are nuclear batteries that convert thermal energy to electrical energy using a doped silicon-germanium thermopile. The thermal energy is provided by a heat source made of 238Pu, in the form of 238PuO 2 granules. The granules are contained by 3 layers of encapsulation. A thin T-111 liner surrounds the 238PuO 2 granules and protects the second layer (strength member) from exposure to the fuel granules. An outer layer of Hastalloy-C protects the T-111 from oxygen embrittlement. The T-111 strength member is considered the critical component in thismore » 238PuO 2 containment system. Any compromise in the strength member seen during destructive testing required by the RTG surveillance program is characterized. The T-111 strength member is characterized through Scanning Electron Microscopy (SEM), and Metallography. SEM is used in the Secondary Electron mode to reveal possible grain boundary deformation and/or cracking in the region of the strength member weld. Deformation and cracking uncovered by SEM are further characterized by Metallography. Metallography sections are mounted and polished, observed using optical microscopy, then documented in the form of microphotographs. SEM mat further be used to examine polished Metallography mounts to characterize elements using the SEM mode of Energy Dispersive X-ray spectroscopy (EDS).« less
Fushiki, S; Matsumoto, K; Nagata, A
1995-10-27
To assess the neurotrophic effects of a nootropic drug, aniracetam, we studied neurite extension of mouse cerebellar granule cells in culture with low or with high K+ under different combinations of drugs and then immunohistochemically stained the cells with an antibody against L1, a neural cell adhesion molecule on cerebellar granule cells. Quantitative analyses using parameters of the total neurite length, maximal neurite length and number of branches disclosed that aniracetam, in the presence of high K+ and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), significantly enhanced neurite extension of cultured granule neurons. Aniracetam alone also stimulated neurite extension of cerebellar granule cells at a longer period of culture with low K+ showing a bell-shaped dose response curve with maximal effects at 10 microM. Aniracetam may influence remodeling of the neural network after injury.
El-Labban, N G; Wood, R D
1982-11-01
Serial sections of the so-called membrane-coating granules have been examined in keratinized oral epithelium of lichen planus lesions. As with 'granules' apparent in non-keratinized epithelium, it is found they do not represent specialized intra-cytoplasmic organelles, but are the result of sectioning at different areas, levels and planes through the plasma membrane of interdigitating cell processes. Such 'granules' appear mostly in the superficial, but not deep, part of the cytoplasm of the upper prickle cells. This is considered to be due to topographic differences between the upper and under surfaces of these cells and the presence of narrower intercellular spaces than those between deeper epithelial cells. Such arrangement often results in cell processes in sections appearing free in the superficial part of the cell below. The appearance of 'granules' arises when the plane of section is not at right angles to the two plasma membranes surrounding these processes.
Accumulation of PHA granules in Cupriavidus necator as seen by confocal fluorescence microscopy.
Mravec, Filip; Obruca, Stanislav; Krzyzanek, Vladislav; Sedlacek, Petr; Hrubanova, Kamila; Samek, Ota; Kucera, Dan; Benesova, Pavla; Nebesarova, Jana
2016-05-01
Many bacteria are capable of accumulating intracellular granules of polyhydroxyalkanoates (PHA). In this work, we developed confocal microscopy analysis of bacterial cells to study changes in the diameters of cells as well as PHA granules during growth and PHA accumulation in the bacterium Cupriavidus necator H16 (formerly Ralstonia eutropha). The cell envelope was stained by DiD(®) fluorescent probe and PHA granules by Nile Red. Signals from both probes were separated based on their spectral and fluorescence life-time properties. During growth and PHA accumulation, bacterial cells increased their length but the width of the cells remained constant. The volume fraction of PHA granules in cells increased during PHA accumulation, nevertheless, its value did not exceed 40 vol. % regardless of the PHA weight content. It seems that bacterial cultures lengthen the cells in order to control the PHA volume portion. However, since similar changes in cell length were also observed in a PHA non-accumulating mutant, it seems that there is no direct control mechanism, which regulates the prolongation of the cells with respect to PHA granules volume. It is more likely that PHA biosynthesis and the length of cells are influenced by the same external stimuli such as nutrient limitation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Solar granulation and statistical crystallography: A modeling approach using size-shape relations
NASA Technical Reports Server (NTRS)
Noever, D. A.
1994-01-01
The irregular polygonal pattern of solar granulation is analyzed for size-shape relations using statistical crystallography. In contrast to previous work which has assumed perfectly hexagonal patterns for granulation, more realistic accounting of cell (granule) shapes reveals a broader basis for quantitative analysis. Several features emerge as noteworthy: (1) a linear correlation between number of cell-sides and neighboring shapes (called Aboav-Weaire's law); (2) a linear correlation between both average cell area and perimeter and the number of cell-sides (called Lewis's law and a perimeter law, respectively) and (3) a linear correlation between cell area and squared perimeter (called convolution index). This statistical picture of granulation is consistent with a finding of no correlation in cell shapes beyond nearest neighbors. A comparative calculation between existing model predictions taken from luminosity data and the present analysis shows substantial agreements for cell-size distributions. A model for understanding grain lifetimes is proposed which links convective times to cell shape using crystallographic results.
Castillo-Meléndez, Margie; Yan, Edwin; Walker, David W
2005-01-01
Asphyxia and hypoxia are common threats faced by the fetus in utero. In late-gestation fetal sheep, asphyxia produced by umbilical cord occlusion (UCO) results in widespread lipid peroxidation and apoptosis. Adaptive mechanisms that might limit fetal brain damage include induction of the hemopoietic cytokine, erythropoietin (EPO). In unanesthetized fetal sheep, we investigated if 1 or 2 bouts of brief asphyxia (UCO for 10 min) induced EPO and EPO type I receptor (EPO-R) expressions, with the second UCO repeated 48 h after the first. Fetal brains were recovered 48 h after either sham, 1 x or 2 x UCO at 129-133 (term approximately 147) days of gestation and prepared for immunocytochemistry. In age-matched control brain, low levels of EPO and EPO-R proteins were present in oligodendrocytes (OLs), periventricular and cortical white matter (WM), with no EPO and very low EPO-R expression in neurons. After 1 x UCO, EPO and EPO-R expressions were increased in astrocytes (periventricular and cortical WM, striatum, corpus callosum), choroid plexus epithelial cells, scattered neurons in cortical layers IV-VI, hippocampal CA1 neurons, and in the molecular and granule layers of the cerebellum. After 2 x UCO, higher levels of EPO and EPO-R occurred in the periventricular and cortical WM, corpus callosum, hippocampal CA1, and in neurons of all cortical layers. Paradoxically, EPO and EPO-R were now lower in hippocampal CA1 neurons and cerebellar molecular and granule cell layers. Few OLs expressed EPO or EPO-R after 1 x or 2 x UCO. Thus, brief asphyxia induces EPO and EPO-R in fetal astrocytes, but only after repeated asphyxial insult in neurons. Whether this is a response to increased injury, or represents an adaptive response that limits further cell death and brain damage awaits further investigation.
Takeda, Atsushi; Nakamura, Masatoshi; Fujii, Hiroaki; Uematsu, Chihiro; Minamino, Tatsuya; Adlard, Paul A.; Bush, Ashley I.; Tamano, Haruna
2014-01-01
We examined an idea that short-term cognition is transiently affected by a state of confusion in Zn2+ transport system due to a local increase in amyloid-β (Aβ) concentration. A single injection of Aβ (25 pmol) into the dentate gyrus affected dentate gyrus long-term potentiation (LTP) 1 h after the injection, but not 4 h after the injection. Simultaneously, 1-h memory of object recognition was affected when the training was performed 1 h after the injection, but not 4 h after the injection. Aβ-mediated impairments of LTP and memory were rescued in the presence of zinc chelators, suggesting that Zn2+ is involved in Aβ action. When Aβ was injected into the dentate gyrus, intracellular Zn2+ levels were increased only in the injected area in the dentate gyrus, suggesting that Aβ induces the influx of Zn2+ into cells in the injected area. When Aβ was added to hippocampal slices, Aβ did not increase intracellular Zn2+ levels in the dentate granule cell layer in ACSF without Zn2+, but in ACSF containing Zn2+. The increase in intracellular Zn2+ levels was inhibited in the presence of CaEDTA, an extracellular zinc chelator, but not in the presence of CNQX, an AMPA receptor antagonist. The present study indicates that Aβ-mediated Zn2+ influx into dentate granule cells, which may occur without AMPA receptor activation, transiently induces a short-term cognitive deficit. Extracellular Zn2+ may play a key role for transiently Aβ-induced cognition deficits. PMID:25536033
Takeda, Atsushi; Nakamura, Masatoshi; Fujii, Hiroaki; Uematsu, Chihiro; Minamino, Tatsuya; Adlard, Paul A; Bush, Ashley I; Tamano, Haruna
2014-01-01
We examined an idea that short-term cognition is transiently affected by a state of confusion in Zn2+ transport system due to a local increase in amyloid-β (Aβ) concentration. A single injection of Aβ (25 pmol) into the dentate gyrus affected dentate gyrus long-term potentiation (LTP) 1 h after the injection, but not 4 h after the injection. Simultaneously, 1-h memory of object recognition was affected when the training was performed 1 h after the injection, but not 4 h after the injection. Aβ-mediated impairments of LTP and memory were rescued in the presence of zinc chelators, suggesting that Zn2+ is involved in Aβ action. When Aβ was injected into the dentate gyrus, intracellular Zn2+ levels were increased only in the injected area in the dentate gyrus, suggesting that Aβ induces the influx of Zn2+ into cells in the injected area. When Aβ was added to hippocampal slices, Aβ did not increase intracellular Zn2+ levels in the dentate granule cell layer in ACSF without Zn2+, but in ACSF containing Zn2+. The increase in intracellular Zn2+ levels was inhibited in the presence of CaEDTA, an extracellular zinc chelator, but not in the presence of CNQX, an AMPA receptor antagonist. The present study indicates that Aβ-mediated Zn2+ influx into dentate granule cells, which may occur without AMPA receptor activation, transiently induces a short-term cognitive deficit. Extracellular Zn2+ may play a key role for transiently Aβ-induced cognition deficits.
NASA Astrophysics Data System (ADS)
Aramendia Zabaleta, Guillermo Jose
In our research on exploring the effects of 5 ns, high intensity electric pulses on neurosecretory adrenal chromaffin cells, cell modeling has played an important role in understanding and explaining the experimental results. Externally applied nanosecond-duration electric pulses (NEPs) can affect cells by creating nanopores in the cell and intracellular organelle membranes, making these membranes permeable to certain ions. A chromaffin cell contains, at a minimum, 7000 secretory granules plus other organelles such as mitochondria and the endoplasmic reticulum. In all the biological cell models constructed in the literature, there is no evidence of asymmetrical Transmembrane Potential (TMP) distribution in the intracellular membranes. However, these models do not include a realistic number of intracellular organelles. The goal of this research was to construct a more realistic cell model that incorporates a large number of secretory granules in the cytosol. To this end, a beta-version of the real-valued unstructured mesh Finite Element Method (FEM) electro-quasi-static module in Sim4life (SPEAG, Switzerland) has been used to model a chromaffin cell in which 1000 secretory granules are included in the cytosol. The model is, we believe, the most detailed geometrical cell model developed. It includes a spherical chromaffin cell (radius 8 mum), nucleus (radius 2.5 mum) located off-center, 500 granules (radius 200 nm) randomly located within a distance of 2 mum from the surface of the nucleus, and additional 500 granules randomly located in the remaining region of the cytosol. Cell and granule membrane thickness was set to 5 nm and nuclear membrane thickness to 10 nm. Dielectric properties of all constituents of the model were obtained from the literature or measured. Because the FEM Low Frequency solver is a quasi-static solver and not capable of accepting a time-varying pulse as input, all computations have been performed at single frequencies in the range DC to 60 MHz, sampled from the Fourier spectrum of the actual 5 ns pulse used in experiments. Electric field and TMP distributions have been computed in the cell model as a function of frequency, granule radius, and orientation of the applied E-field. Results show that granules located in the vicinity of the equatorial side of the nucleus had a higher TMP magnitude than the rest of the granules. In contrast, granules located in the vicinity of the poles of the nucleus had a lower TMP magnitude. The TMP distribution in the granules was strongly dependent on their location with respect to the nucleus and could exhibit asymmetries. Clearly, the nucleus had an influence on the TMP of the surrounding granules and the region of influence extended to a radial distance of 2 mu m from the nucleus. Creating a realistic model of a chromaffin cell is fundamental in order to estimate the TMP and electric field in a chromaffin cell. Such knowledge is important for understanding the impact of NEPs on the modulation of hormone secretion.
Parisot, Joséphine; Flore, Gemma; Bertacchi, Michele; Studer, Michèle
2017-06-01
Development of the dentate gyrus (DG), the primary gateway for hippocampal inputs, spans embryonic and postnatal stages, and involves complex morphogenetic events. We have previously identified the nuclear receptor COUP-TFI as a novel transcriptional regulator in the postnatal organization and function of the hippocampus. Here, we dissect its role in DG morphogenesis by inactivating it in either granule cell progenitors or granule neurons. Loss of COUP-TFI function in progenitors leads to decreased granule cell proliferative activity, precocious differentiation and increased apoptosis, resulting in a severe DG growth defect in adult mice. COUP-TFI-deficient cells express high levels of the chemokine receptor Cxcr4 and migrate abnormally, forming heterotopic clusters of differentiated granule cells along their paths. Conversely, high COUP-TFI expression levels downregulate Cxcr4 expression, whereas increased Cxcr4 expression in wild-type hippocampal cells affects cell migration. Finally, loss of COUP-TFI in postmitotic cells leads to only minor and transient abnormalities, and to normal Cxcr4 expression. Together, our results indicate that COUP-TFI is required predominantly in DG progenitors for modulating expression of the Cxcr4 receptor during granule cell neurogenesis and migration. © 2017. Published by The Company of Biologists Ltd.
Rayman, Joseph B; Karl, Kevin A; Kandel, Eric R
2018-01-02
Stress granules are non-membranous structures that transiently form in the cytoplasm during cellular stress, where they promote translational repression of non-essential RNAs and modulate cell signaling by sequestering key signal transduction proteins. These and other functions of stress granules facilitate an adaptive cellular response to environmental adversity. A key component of stress granules is the prion-related RNA-binding protein, T cell intracellular antigen-1 (TIA-1). Here, we report that recombinant TIA-1 undergoes rapid multimerization and phase separation in the presence of divalent zinc, which can be reversed by the zinc chelator, TPEN. Similarly, the formation and maintenance of TIA-1-positive stress granules in arsenite-treated cells are inhibited by TPEN. In addition, Zn 2+ is released in cells treated with arsenite, before stress granule formation. These findings suggest that Zn 2+ is a physiological ligand of TIA-1, acting as a stress-inducible second messenger to promote multimerization of TIA-1 and subsequent localization into stress granules. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells
Huang, Cheng-Chiu; Sugino, Ken; Shima, Yasuyuki; Guo, Caiying; Bai, Suxia; Mensh, Brett D; Nelson, Sacha B; Hantman, Adam W
2013-01-01
Cerebellar granule cells constitute the majority of neurons in the brain and are the primary conveyors of sensory and motor-related mossy fiber information to Purkinje cells. The functional capability of the cerebellum hinges on whether individual granule cells receive mossy fiber inputs from multiple precerebellar nuclei or are instead unimodal; this distinction is unresolved. Using cell-type-specific projection mapping with synaptic resolution, we observed the convergence of separate sensory (upper body proprioceptive) and basilar pontine pathways onto individual granule cells and mapped this convergence across cerebellar cortex. These findings inform the long-standing debate about the multimodality of mammalian granule cells and substantiate their associative capacity predicted in the Marr-Albus theory of cerebellar function. We also provide evidence that the convergent basilar pontine pathways carry corollary discharges from upper body motor cortical areas. Such merging of related corollary and sensory streams is a critical component of circuit models of predictive motor control. DOI: http://dx.doi.org/10.7554/eLife.00400.001 PMID:23467508
Giulianini, Piero Giulio; Bierti, Manuel; Lorenzon, Simonetta; Battistella, Silvia; Ferrero, Enrico Antonio
2007-01-01
The freshwater crayfish Astacus leptodactylus (Eschscholtz, 1823) is an important aquacultured decapod species as well as an invasive species in some European countries. In the current investigation we characterized the different classes of circulating blood cells in A. leptodactylus by means of light and electron microscopy analysis and we explored their reaction to different latex beads particles in vivo by total and differential cell counts at 0.5, 1, 2 and 4h after injections. We identified hemocytes by granule size morphometry as hyaline hemocytes with no or rare tiny granules, small granule hemocytes, unimodal medium diameter granule hemocytes and both small and large granule containing hemocytes. The latter granular hemocytes showed the strongest phenoloxidase l-DOPA reactivity both in granules and cytoplasm. A. leptodactylus respond to foreign particles with strong cellular immune responses. All treatments elicited a total hemocyte increase with a conspicuous recruitment of large granule containing hemocytes. All hemocyte types mounted some phagocytic response but the small granule hemocytes were the only ones involved in phagocytic response to all foreign particles with the highest percentages. These results (1) depict the variability in decapod hemocyte functional morphology; (2) identify the small granule hemocyte as the major phagocytic cell; (3) suggest that the rather rapid recruitment of large granule hemocyte in all treatments plays a relevant role by this hemocyte type in defense against foreign particles, probably in nodule formation.
Corrosion behavior of HVOF coated sheets
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Abdul-Aleem, B. J.; Khalid, M.
2003-12-01
High velocity oxygen-fuel (HVOF) thermal spray coating finds application in industry due to its superior resistance to corrosion and thermal loading. In the HVOF process, the metallic powders at elevated temperature are sprayed at supersonic speed onto a substrate material. The powder granules sprayed impact onto each other, forming a mechanical bonding across the coating layer. In most of the cases, the distances among the particles (powder granules sprayed) are not the same, which in turn results in inhomogeneous structure across the coating layer. Moreover, the rate of oxidation of the powder granules during the spraying process varies. Consequently, the electrochemical response of the coating layer surfaces next to the base material and free to atmosphere differs. In the current study, the electrochemical response of a coating sheet formed during HVOF thermal spraying was investigated. NiCrMoNb alloy (similar to Inconel 625) wass used for the powder granules. Thermal spraying was carried out onto a smooth surface of stainless steel workpiece (without grid blasting), and later the coating layer was removed from the surface to obtain the coating sheet for the electrochemical tests. It was found that the corrosion rate of the smooth surface (surface next to the stainless steel surface before its removal) is considerably larger than that corresponding to the rough surface (free surface) of the coating sheet, and no specific patterns were observed for the pit sites.
Turnover of pigment granules: cyclic catabolism and anabolism of ommochromes within epidermal cells.
Insausti, T C; Casas, J
2009-12-01
Ommochromes are end products of the tryptophan metabolism in arthropods. While the anabolism of ommochromes has been well studied, the catabolism is totally unknown. In order to study it, we used the crab-spider Misumena vatia, which is able to change color reversibly in a few days, from yellow to white and back. Ommochromes is the only pigment class responsible for the body coloration in this animal. The aim of this study was to analyze the fine structure of the epidermal cells in bleaching spiders, in an attempt to correlate morphological changes with the fate of the pigment granules. Central to the process of bleaching is the lysis of the ommochrome granules. In the same cell, intact granules and granules in different degradation stages are found. The degradation begins with granule autolysis. Some components are extruded in the extracellular space and others are recycled via autophagy. Abundant glycogen appears associated to granulolysis. In a later stage of bleaching, ommochrome progranules, typical of white spiders, appear in the distal zone of the same epidermal cell. Catabolism and anabolism of pigment granules thus take place simultaneously in spider epidermal cells. A cyclic pathway of pigment granules formation and degradation, throughout a complete cycle of color change is proposed, together with an explanation for this turnover, involving photoprotection against UV by ommochromes metabolites. The presence of this turnover for melanins is discussed.
Nam, Sunyoung; Won, Jong-Eun; Kim, Cheol-Hwan; Kim, Hae-Won
2011-01-01
Effects of three-dimensional (3D) calcium phosphate (CaP) porous granules on the growth and odontogenic differentiation of human dental pulp stem cells (hDPSCs) were examined for dental tissue engineering. hDPSCs isolated from adult human dental pulps were cultured for 3-4 passages, and populated on porous granules. Cell growth on the culture dish showed an ongoing increase for up to 21 days, whereas the growth on the 3D granules decreased after 14 days. This reduction in proliferative potential on the 3D granules was more conspicuous under the osteogenic medium conditions, indicating that the 3D granules may induce the odontogenic differentiation of hDPSCs. Differentiation behavior on the 3D granules was confirmed by the increased alkaline phosphatase activity, up-regulation of odontoblast-specific genes, including dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP1) by quantitative polymerase chain reaction, and greater level of dentin sialoprotein synthesis by western blot. Moreover, the cellular mineralization, as assessed by Alizarin red S and calcium quantification, was significantly higher in the 3D CaP granules than in the culture dish. Taken all, the 3D CaP porous granules should be useful for dental tissue engineering in combination with hDPSCs by providing favorable 3D substrate conditions for cell growth and odontogenic development. PMID:21772958
Anuracpreeda, Panat; Chawengkirttikul, Runglawan; Sobhon, Prasert
2016-07-01
Adult Orthocoelium parvipapillatum are common parasites that reside in the rumen and reticulum of ruminants, i.e., cattle, sheep, goats, and buffaloes. The fluke is conical-shaped and slightly concave ventrally and convex dorsally, and measures bout 2.4-3.9 mm in length and 1.0-2.3 mm in width across the mid-section. The tegument of the adult worm is examined using light microscopy (LM) and scanning (SEM) and transmission electron microscopy (TEM). Under LM, the tegument appears as a thick homogeneous layer containing folds alternated with grooves without spines. SEM revealed that the tegumental surface is highly corrugated with ridges and furrows and appears spineless. Two types of sensory papillae are observed, i.e., type 1 is bulbous in shape with nipple-like tips and type 2 has a similar shape with short cilia. In TEM, the tegument has a typical syncytial organization and is divided into four layers. The first layer of the tegument contains ridges and furrows covered by a trilaminate membrane coated externally with the glycocalyx. The second layer is a strait area of cytoplasm that includes numerous ovoid electron-lucent (TG1) and disc-shaped electron-dense (TG2) tegumental granules and lysosomes. The third layer is the widest middle area which contains several evenly distributed mitochondria, TG1 and TG2. The fourth layer rests on a thick basal lamina and contains numerous infoldings of the basal plasma membrane with closely associated mitochondria. Both granules are produced and transported to the tegument by one type of tegumental cells lying in rows below the muscular layers.
Huang, Hsiang-Ting; Maruyama, Jun-ichi; Kitamoto, Katsuhiko
2013-01-01
Stress granules are a type of cytoplasmic messenger ribonucleoprotein (mRNP) granule formed in response to the inhibition of translation initiation, which typically occurs when cells are exposed to stress. Stress granules are conserved in eukaryotes; however, in filamentous fungi, including Aspergillus oryzae, stress granules have not yet been defined. For this reason, here we investigated the formation and localization of stress granules in A. oryzae cells exposed to various stresses using an EGFP fusion protein of AoPab1, a homolog of Saccharomyces cerevisiae Pab1p, as a stress granule marker. Localization analysis showed that AoPab1 was evenly distributed throughout the cytoplasm under normal growth conditions, and accumulated as cytoplasmic foci mainly at the hyphal tip in response to stress. AoSO, a homolog of Neurospora crassa SO, which is necessary for hyphal fusion, colocalized with stress granules in cells exposed to heat stress. The formation of cytoplasmic foci of AoSO was blocked by treatment with cycloheximide, a known inhibitor of stress granule formation. Deletion of the Aoso gene had effects on the formation and localization of stress granules in response to heat stress. Our results suggest that AoSO is a novel component of stress granules specific to filamentous fungi. The authors would specially like to thank Hiroyuki Nakano and Kei Saeki for generously providing experimental and insightful opinions.
DYNAMICS OF TURBULENT CONVECTION AND CONVECTIVE OVERSHOOT IN A MODERATE-MASS STAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitiashvili, I. N.; Mansour, N. N.; Wray, A. A.
We present results of realistic three-dimensional (3D) radiative hydrodynamic simulations of the outer layers of a moderate-mass star (1.47 M {sub ⊙}), including the full convection zone, the overshoot region, and the top layers of the radiative zone. The simulation results show that the surface granulation has a broad range of scales, from 2 to 12 Mm, and that large granules are organized in well-defined clusters, consisting of several granules. Comparison of the mean structure profiles from 3D simulations with the corresponding one-dimensional (1D) standard stellar model shows an increase of the stellar radius by ∼800 km, as well as significantmore » changes in the thermodynamic structure and turbulent properties of the ionization zones. Convective downdrafts in the intergranular lanes between granulation clusters reach speeds of more than 20 km s{sup −1}, penetrate through the whole convection zone, hit the radiative zone, and form an 8 Mm thick overshoot layer. Contrary to semi-empirical overshooting models, our results show that the 3D dynamic overshoot region consists of two layers: a nearly adiabatic extension of the convection zone and a deeper layer of enhanced subadiabatic stratification. This layer is formed because of heating caused by the braking of the overshooting convective plumes. This effect has to be taken into account in stellar modeling and the interpretation of asteroseismology data. In particular, we demonstrate that the deviations of the mean structure of the 3D model from the 1D standard model of the same mass and composition are qualitatively similar to the deviations for the Sun found by helioseismology.« less
Lui, Jennifer; Castelli, Lydia M; Pizzinga, Mariavittoria; Simpson, Clare E; Hoyle, Nathaniel P; Bailey, Kathryn L; Campbell, Susan G; Ashe, Mark P
2014-11-06
The localization of mRNA to defined cytoplasmic sites in eukaryotic cells not only allows localized protein production but also determines the fate of mRNAs. For instance, translationally repressed mRNAs localize to P-bodies and stress granules where their decay and storage, respectively, are directed. Here, we find that several mRNAs are localized to granules in unstressed, actively growing cells. These granules play a key role in the stress-dependent formation of P-bodies. Specific glycolytic mRNAs are colocalized in multiple granules per cell, which aggregate during P-body formation. Such aggregation is still observed under conditions or in mutants where P-bodies do not form. In unstressed cells, the mRNA granules appear associated with active translation; this might enable a coregulation of protein expression from the same pathways or complexes. Parallels can be drawn between this coregulation and the advantage of operons in prokaryotic systems. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Pollreisz, Andreas; Messinger, Jeffrey D; Sloan, Kenneth R; Mittermueller, Tamara J; Weinhandl, Alexandra S; Benson, Emily K; Kidd, Grahame J; Schmidt-Erfurth, Ursula; Curcio, Christine A
2018-01-01
To assess serial section block-face scanning electron microscopy (SBFSEM) for retinal pigment epithelium (RPE) ultrastructure, we determined the number and distribution within RPE cell bodies of melanosomes (M), lipofuscin (L), and melanolipofuscin (ML). Eyes of 4 Caucasian donors (16M, 32F, 76F, 84M) with unremarkable maculas were sectioned and imaged using an SEM fitted with an in-chamber automated ultramicrotome. Aligned image stacks were generated by alternately imaging an epoxy resin block face using backscattered electrons, then removing a 125 nm-thick layer. Series of 249-499 sections containing 5-24 nuclei were examined per eye. Trained readers manually assigned boundaries of individual cells and x,y,z locations of M, L, and ML. A Density Recovery Profile was computed in three dimensions for M, L, and ML. The number of granules per RPE cell body in 16M, 32F, 76F, and 84M eyes, respectively, was 465 ± 127 (mean ± SD), 305 ± 92, 79 ± 40, and 333 ± 134 for L; 13 ± 9; 6 ± 7, 131 ± 55, and 184 ± 66 for ML; and 29 ± 19, 24 ± 12, 12 ± 7, and 7 ± 3 for M. Granule types were spatially organized, with M near apical processes. The effective radius, a sphere of decreased probability for granule occurrence, was 1 μm for L, ML, and M combined. In conclusion, SBFEM reveals that adult human RPE has hundreds of L, LF, and M and that granule spacing is regulated by granule size alone. When obtained for a larger sample, this information will enable hypothesis testing about organelle turnover and regulation in health, aging, and disease, and elucidate how RPE-specific signals are generated in clinical optical coherence tomography and autofluorescence imaging. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sekiguchi, Yuji; Takahashi, Hiroki; Kamagata, Yoichi; Ohashi, Akiyoshi; Harada, Hideki
2001-01-01
We previously showed that very thin filamentous bacteria affiliated with the division green non-sulfur bacteria were abundant in the outermost layer of thermophilic methanogenic sludge granules fed with sucrose and several low-molecular-weight fatty acids (Y. Sekiguchi, Y. Kamagata, K. Nakamura, A. Ohashi, H. Harada, Appl. Environ. Microbiol. 65:1280–1288, 1999). Further 16S ribosomal DNA (rDNA) cloning-based analysis revealed that the microbes were classified within a unique clade, green non-sulfur bacteria (GNSB) subdivision I, which contains a number of 16S rDNA clone sequences from various environmental samples but no cultured representatives. To investigate their function in the community and physiological traits, we attempted to isolate the yet-to-be-cultured microbes from the original granular sludge. The first attempt at isolation from the granules was, however, not successful. In the other thermophilic reactor that had been treating fried soybean curd-manufacturing wastewater, we found filamentous microorganisms to outgrow, resulting in the formation of projection-like structures on the surface of granules, making the granules look like sea urchins. 16S rDNA-cloning analysis combined with fluorescent in situ hybridization revealed that the projections were comprised of the uncultured filamentous cells affiliated with the GNSB subdivision I and Methanothermobacter-like cells and the very ends of the projections were comprised solely of the filamentous cells. By using the tip of the projection as the inoculum for primary enrichment, a thermophilic, strictly anaerobic, filamentous bacterium, designated strain UNI-1, was successfully isolated with a medium supplemented with sucrose and yeast extract. The strain was a very slow growing bacterium which is capable of utilizing only a limited range of carbohydrates in the presence of yeast extract and produced hydrogen from these substrates. The growth was found to be significantly stimulated when the strain was cocultured with a hydrogen-utilizing methanogen, Methanothermobacter thermautotrophicus, suggesting that the strain is a sugar-fermenting bacterium, the growth of which is dependent on hydrogen consumers in the granules. PMID:11722931
Harden, Scott W; Frazier, Charles J
2016-09-01
Delivery of exogenous oxytocin (OXT) to central oxytocin receptors (OXT-Rs) is currently being investigated as a potential treatment for conditions such as post-traumatic stress disorder (PTSD), depression, social anxiety, and autism spectrum disorder (ASD). Despite significant research implicating central OXT signaling in modulation of mood, affect, social behavior, and stress response, relatively little is known about the cellular and synaptic mechanisms underlying these complex actions, particularly in brain regions which express the OXT-R but lie outside of the hypothalamus (where OXT-synthesizing neurons reside). We report that bath application of low concentrations of the selective OXT-R agonist Thr4,Gly7-OXT (TGOT) reliably and robustly drives GABA release in the dentate gyrus in an action potential dependent manner. Additional experiments led to identification of a small subset of small hilar interneurons that are directly depolarized by acute application of TGOT. From a physiological perspective, TGOT-responsive hilar interneurons have high input resistance, rapid repolarization velocity during an action potential, and a robust afterhyperpolarization. Further, they fire irregularly (or stutter) in response to moderate depolarization, and fire quickly with minimal spike frequency accommodation in response to large current injections. From an anatomical perspective, TGOT responsive hilar interneurons have dense axonal arborizations in the hilus that were found in close proximity with mossy cell somata and/or proximal dendrites, and also invade the granule cell layer. Further, they have primary dendrites that always extend into the granule cell layer, and sometimes have clear arborizations in the molecular layer. Overall, these data reveal a novel site of action for OXT in an important limbic circuit, and represent a significant step towards better understanding how endogenous OXT may modulate flow of information in hippocampal networks. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Adsorption mechanism for xanthene dyes to cellulose granules.
Tabara, Aya; Yamane, Chihiro; Seguchi, Masaharu
2012-01-01
The xanthene dyes, erythrosine, phloxine, and rose bengal, were adsorbed to charred cellulose granules. The charred cellulose granules were preliminarily steeped in ionic (NaOH, NaCl, KOH, KCl, and sodium dodecyl sulfate (SDS)), nonionic (glucose, sucrose, and ethanol), and amphipathic sucrose fatty acid ester (SFAE) solutions, and adsorption tests on the dye to the steeped and charred cellulose granules were conducted. Almost none of the dye was adsorbed when the solutions of ionic and amphipathic molecules were used, but were adsorbed in the case of steeping in the nonionic molecule solutions. Thin-layer chromatography (TLC) and the Fourier transform infra-red (FT-IR) profiles of SFAE which was adsorbed to the charred cellulose granules and extracted by ethyl ether suggested the presence of hydrophobic sites on the surface of the charred cellulose granules. We confirmed that the xanthene dyes could bind to the charred cellulose granules by ionic and hydrophobic bonds.
Huelgas-Morales, Gabriela; Silva-García, Carlos Giovanni; Salinas, Laura S; Greenstein, David; Navarro, Rosa E
2016-04-07
In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline-the immortal cell lineage required for sexual reproduction-protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures. Copyright © 2016 Huelgas-Morales et al.
Huelgas-Morales, Gabriela; Silva-García, Carlos Giovanni; Salinas, Laura S.; Greenstein, David; Navarro, Rosa E.
2016-01-01
In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline—the immortal cell lineage required for sexual reproduction—protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures. PMID:26865701
Local and Long-Range Circuit Connections to Hilar Mossy Cells in the Dentate Gyrus
Sun, Yanjun; Grieco, Steven F.; Holmes, Todd C.
2017-01-01
Abstract Hilar mossy cells are the prominent glutamatergic cell type in the dentate hilus of the dentate gyrus (DG); they have been proposed to have critical roles in the DG network. To better understand how mossy cells contribute to DG function, we have applied new viral genetic and functional circuit mapping approaches to quantitatively map and compare local and long-range circuit connections of mossy cells and dentate granule cells in the mouse. The great majority of inputs to mossy cells consist of two parallel inputs from within the DG: an excitatory input pathway from dentate granule cells and an inhibitory input pathway from local DG inhibitory neurons. Mossy cells also receive a moderate degree of excitatory and inhibitory CA3 input from proximal CA3 subfields. Long range inputs to mossy cells are numerically sparse, and they are only identified readily from the medial septum and the septofimbrial nucleus. In comparison, dentate granule cells receive most of their inputs from the entorhinal cortex. The granule cells receive significant synaptic inputs from the hilus and the medial septum, and they also receive direct inputs from both distal and proximal CA3 subfields, which has been underdescribed in the existing literature. Our slice-based physiological mapping studies further supported the identified circuit connections of mossy cells and granule cells. Together, our data suggest that hilar mossy cells are major local circuit integrators and they exert modulation of the activity of dentate granule cells as well as the CA3 region through “back-projection” pathways. PMID:28451637
Kolmas, Joanna; Pajor, Kamil; Pajchel, Lukasz; Przekora, Agata; Ginalska, Grażyna; Oledzka, Ewa; Sobczak, Marcin
2017-01-01
Nanocrystalline hydroxyapatite containing selenite ions (SeHA; 9.6 wt.% of selenium) was synthesized using wet method and subject to careful physicochemical analysis by powder X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, solid-state nuclear magnetic resonance, wavelength dispersive X-ray fluorescence, and inductively coupled plasma optical emission spectrometry. SeHA was then used to develop the selenium-containing hydroxyapatite/alginate (SeHA/ALG) composite granules. Risedronate sodium (RIS) was introduced to the obtained spherical microgranules of a size of about 1.1-1.5 mm in 2 ways: during the granules' preparation (RIS solution added to a suspension of ALG and SeHA), and as a result of SeHA/ALG granules soaking in aqueous RIS solution. The analysis made using 13 C and 31 P cross-polarization magic angle spinning nuclear magnetic resonance confirmed the presence of RIS and its interaction with calcium ions. Then, the release of selenium (inductively coupled plasma optical emission spectrometry) and RIS (high-performance liquid chromatography) from microgranules was examined. Moreover, cytotoxicity of fabricated granules was assessed by MTT test. Selenium release was biphasic: the first stage was short and ascribed to a "burst release" probably from a hydrated surface layer of SeHA crystals, while the next stage was significantly longer and ascribed to a sustained release of selenium from the crystals' interior. The study showed that the method of obtaining microgranules containing RIS significantly affects its release profile. Performed cytotoxicity test revealed that fabricated granules had high antitumor activity against osteosarcoma cells. However, because of the "burst release" of selenium during the first 10 h, the granules significantly reduced viability of normal osteoblasts as well.
Díaz, Emiliano E; Stams, Alfons J M; Amils, Ricardo; Sanz, José L
2006-07-01
Methanogenic granules from an anaerobic bioreactor that treated wastewater of a beer brewery consisted of different morphological types of granules. In this study, the microbial compositions of the different granules were analyzed by molecular microbiological techniques: cloning, denaturing gradient gel electrophoresis and fluorescent in situ hybridization (FISH), and scanning and transmission electron microscopy. We propose here that the different types of granules reflect the different stages in the life cycle of granules. Young granules were small, black, and compact and harbored active cells. Gray granules were the most abundant granules. These granules have a multilayer structure with channels and void areas. The core was composed of dead or starving cells with low activity. The brown granules, which were the largest granules, showed a loose and amorphous structure with big channels that resulted in fractured zones and corresponded to the older granules. Firmicutes (as determined by FISH) and Nitrospira and Deferribacteres (as determined by cloning and sequencing) were the predominant Bacteria. Remarkably, Firmicutes could not be detected in the brown granules. The methanogenic Archaea identified were Methanosaeta concilii (70 to 90% by FISH and cloning), Methanosarcina mazei, and Methanospirillum spp. The phenotypic appearance of the granules reflected the physiological condition of the granules. This may be valuable to easily select appropriate seed sludges to start up other reactors.
1951-02-01
nd» generally, fifth layer "of theTefebläl cWte~x~fti jure ŕ-aj. It has"’& centrally located light nucleus with, a" well- marked nueleolus and...scanty linin structure. In the Cell body we find a clear arrangement of Nissl bodies near the nucleus and toward the base of the ce’llj where they are...eccen- tric. The Nissl bodies are composed, on the whole,, of finer granules, especially in the vi<- cinity of the nucleus , and arranged more dense
Cellular stress induces cytoplasmic RNA granules in fission yeast.
Nilsson, Daniel; Sunnerhagen, Per
2011-01-01
Severe stress causes plant and animal cells to form large cytoplasmic granules containing RNA and proteins. Here, we demonstrate the existence of stress-induced cytoplasmic RNA granules in Schizosaccharomyces pombe. Homologs to several known protein components of mammalian processing bodies and stress granules are found in fission yeast RNA granules. In contrast to mammalian cells, poly(A)-binding protein (Pabp) colocalizes in stress-induced granules with decapping protein. After glucose deprivation, protein kinase A (PKA) is required for accumulation of Pabp-positive granules and translational down-regulation. This is the first demonstration of a role for PKA in RNA granule formation. In mammals, the translation initiation protein eIF2α is a key regulator of formation of granules containing poly(A)-binding protein. In S. pombe, nonphosphorylatable eIF2α does not block but delays granule formation and subsequent clearance after exposure to hyperosmosis. At least two separate pathways in S. pombe appear to regulate stress-induced granules: pka1 mutants are fully proficient to form granules after hyperosmotic shock; conversely, eIF2α does not affect granule formation in glucose starvation. Further, we demonstrate a Pka1-dependent link between calcium perturbation and RNA granules, which has not been described earlier in any organism.
Moss, Fraser J; Dolphin, Annette C; Clare, Jeffrey J
2003-01-01
Background Stargazin (γ2) and the closely related γ3, and γ4 transmembrane proteins are part of a family of proteins that may act as both neuronal voltage-dependent calcium channel (VDCC) γ subunits and transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazoleproponinc (AMPA) receptor regulatory proteins (TARPs). In this investigation, we examined the distribution patterns of the stargazin-like proteins γ2, γ3, and γ4 in the human central nervous system (CNS). In addition, we investigated whether human γ2 or γ4 could modulate the electrophysiological properties of a neuronal VDCC complex transiently expressed in Xenopus oocytes. Results The mRNA encoding human γ2 is highly expressed in cerebellum, cerebral cortex, hippocampus and thalamus, whereas γ3 is abundant in cerebral cortex and amygdala and γ4 in the basal ganglia. Immunohistochemical analysis of the cerebellum determined that both γ2 and γ4 are present in the molecular layer, particularly in Purkinje cell bodies and dendrites, but have an inverse expression pattern to one another in the dentate cerebellar nucleus. They are also detected in the interneurons of the granule cell layer though only γ2 is clearly detected in granule cells. The hippocampus stains for γ2 and γ4 throughout the layers of the every CA region and the dentate gyrus, whilst γ3 appears to be localized particularly to the pyramidal and granule cell bodies. When co-expressed in Xenopus oocytes with a CaV2.1/β4 VDCC complex, either in the absence or presence of an α2δ2 subunit, neither γ2 nor γ4 significantly modulated the VDCC peak current amplitude, voltage-dependence of activation or voltage-dependence of steady-state inactivation. Conclusion The human γ2, γ3 and γ4 stargazin-like proteins are detected only in the CNS and display differential distributions among brain regions and several cell types in found in the cerebellum and hippocampus. These distribution patterns closely resemble those reported by other laboratories for the rodent orthologues of each protein. Whilst the fact that neither γ2 nor γ4 modulated the properties of a VDCC complex with which they could associate in vivo in Purkinje cells adds weight to the hypothesis that the principal role of these proteins is not as auxiliary subunits of VDCCs, it does not exclude the possibility that they play another role in VDCC function. PMID:14505496
Minami, Akira; Sakurada, Naomi; Fuke, Sayuri; Kikuchi, Kazuya; Nagano, Tetsuo; Oku, Naoto; Takeda, Atsushi
2006-01-01
Zinc exists in high densities in the giant boutons of hippocampal mossy fibers. On the basis of the evidence that zinc decreases extracellular glutamate concentration in the hippocampus, the presynaptic action of zinc released from mossy fibers during high-frequency (tetanic) stimulation was examined using hippocampal slices. The increase in zinc-specific fluorescent signals was observed in both extracellular and intracellular compartments in the mossy fiber terminals during the delivery of tetanic stimuli (100 Hz, 1 sec) to the dentate granule cell layer, suggesting that zinc released from mossy fibers is immediately retaken up by mossy fibers. When mossy fiber terminals were preferentially double-stained with zinc and calcium indicators and tetanic stimuli (100 Hz, 1 sec) were delivered to the dentate granule cell layer, the increase in calcium orange signal during the stimulation was enhanced in mossy fiber terminals by addition of CaEDTA, a membrane-impermeable zinc chelator, and was suppressed by addition of zinc. The decrease in FM4-64 signal (vesicular exocytosis) during tetanic stimulation (10 Hz, 180 sec), which induced mossy fiber long-term potentiation, was also enhanced in mossy fiber terminals by addition of CaEDTA and was suppressed by addition of zinc. The present study demonstrates that zinc released from mossy fibers may be a negative-feedback factor against presynaptic activity during tetanic stimulation.
Straub, Susanne G; Shanmugam, Geetha; Sharp, Geoffrey W G
2004-12-01
Electron microscopy and quantitative stereological techniques were used to study the dynamics of the docked granule pool in the rat pancreatic beta-cell. The mean number of granules per beta-cell was 11,136. After equilibration in RPMI containing 5.6 mmol/l glucose, 6.4% of the granules (approximately 700) were docked at the plasma membrane (also measured as [means +/- SE] 4.3 +/- 0.6 docked granules per 10 microm of plasma membrane at the perimeter of the cell sections). After a 40-min exposure to 16.7 mmol/l glucose, 10.2% of the granules (approximately 1,060) were docked (6.4 +/- 0.8 granules per 10 microm of plasma membrane). Thus, the docked pool increased by 50% during stimulation with glucose. Islets were also exposed to 16.7 mmol/l glucose in the absence or presence of 10 micromol/l nitrendipine. In the absence and presence of nitrendipine, there were 6.1 +/- 0.7 and 6.3 +/- 0.6 granules per 10 microm of membrane, respectively. Thus, glucose increased granule docking independently of increased [Ca2+]i and exocytosis. The data suggest a limit to the number of docking sites. As the rate of docking exceeded the rate of exocytosis, docking is not rate limiting for insulin release. Only with extremely high release rates, glucose stimulation after a 4-h incubation with a high concentration of fatty acid-free BSA, was the docked granule pool reduced in size.
Pfeiffer, Daniel; Wahl, Andreas; Jendrossek, Dieter
2011-11-01
A two-hybrid approach was applied to screen for proteins with the ability to interact with PHB synthase (PhaC1) of Ralstonia eutropha. The H16_A0141 gene (phaM) was identified in the majority of positive clones. PhaM (26.6 kDa) strongly interacted with PhaC1 and with phasin PhaP5 but not with PhaP1 or other PHB granule-associated proteins. A ΔphaM mutant accumulated only one or two large PHB granules instead of three to six medium-sized PHB granules of the wild type, and distribution of granules to daughter cells was disordered. All three phenotypes (number, size and distribution of PHB granules) were reversed by reintroduction of phaM. Purified PhaM revealed DNA-binding properties in gel mobility shift experiments. Expression of a fusion of the yellow fluorescent protein (eYfp) with PhaM resulted in formation of many small fluorescent granules that were bound to the nucleoid region. Remarkably, an eYfp-PhaP5 fusion localized at the cell poles in a PHB-negative background and overexpression of eYfp-PhaP5 in the wild type conferred binding of PHB granules to the cell poles. In conclusion, subcellular localization of PHB granules in R. eutropha depends on a concerted expression of at least three PHB granule-associated proteins, namely PhaM, PhaP5 and PHB synthase PhaC1. © 2011 Blackwell Publishing Ltd.
The biological significance of storage granules in rat parathyroid cells.
Setoguti, T; Inoue, Y; Wild, P
1995-10-01
Both prosecretory and storage granules are concomitantly formed at the trans Golgi network including the innermost Golgi cisterna. Prosecretory granules develop into small secretory granules that release their contents by exocytosis finely regulated by a complex mechanism for maintaining calcium homeostasis. In the rat parathyroid cells, storage granules are large secretory granules storing parathyroid hormone for an emergency supply. The hormone is rapidly discharged by exocytosis when serum calcium concentration is decreased. The granules are constantly produced even under conditions of low serum calcium concentration in the regions of 8 mg/dl. The granule content is constantly hydrolyzed when not discharged, leading to a decreased core and finally to the formation of vacuolar bodies. The fate of the vacuolar bodies is unknown. Hypercalcemic conditions accelerate hydrolysis. The threshold value of calcium concentration required for the release of storage granule contents is between 8.0 and 7.5 mg/dl and that of calcium concentration for accelerating degradation of storage granules is about 11.5 mg/dl. Sympathetic stimulation causes storage granules to be discharged regardless of hypercalcemia or hypocalcemia. Parasympathetic stimulation accelerates hydrolysis. The degradation of storage granules seems to be closely associated with an intracellular regulatory mechanism for parathyroid hormone secretion.
Granular cells in the presence of magnetic field
NASA Astrophysics Data System (ADS)
Jurčák, J.; Lemmerer, B.; van Noort, M.
2017-10-01
We present a statistical study of the dependencies of the shapes and sizes of the photospheric convective cells on the magnetic field properties. This analysis is based on a 2.5 hour long SST observations of active region NOAA 11768. We have blue continuum images taken with a cadence of 5.6 sec that are used for segmentation of individual granules and 270 maps of spectropolarimetric CRISP data allowing us to determine the properties of the magnetic field along with the line-of-sight velocities. The sizes and shapes of the granular cells are dependent on the the magnetic field strength, where the granules tend to be smaller in regions with stronger magnetic field. In the presence of highly inclined magnetic fields, the eccentricity of granules is high and we do not observe symmetric granules in these regions. The mean up-flow velocities in granules as well as the granules intensities decrease with increasing magnetic field strength.
Wang, Hao; Ishizaki, Ray; Xu, Jun; Kasai, Kazuo; Kobayashi, Eri; Gomi, Hiroshi; Izumi, Tetsuro
2013-02-01
Granuphilin, an effector of the small GTPase Rab27a, mediates the stable attachment (docking) of insulin granules to the plasma membrane and inhibits subsequent fusion of docked granules, possibly through interaction with a fusion-inhibitory Munc18-1/syntaxin complex. However, phenotypes of insulin exocytosis differ considerably between Rab27a- and granuphilin-deficient pancreatic β cells, suggesting that other Rab27a effectors function in those cells. We found that one of the putative Rab27a effector family proteins, exophilin7/JFC1/Slp1, is expressed in β cells; however, unlike granuphilin, exophilin7 overexpressed in the β-cell line MIN6 failed to show granule-docking or fusion-inhibitory activity. Furthermore, exophilin7 has no affinities to either Munc18-1 or Munc18-1-interacting syntaxin-1a, in contrast to granuphilin. Although β cells of exophilin7-knockout mice show no apparent abnormalities in intracellular distribution or in ordinary glucose-induced exocytosis of insulin granules, they do show impaired fusion in response to some stronger stimuli, specifically from granules that have not been docked to the plasma membrane. Exophilin7 appears to mediate the fusion of undocked granules through the affinity of its C2A domain toward the plasma membrane phospholipids. These findings indicate that the two Rab27a effectors, granuphilin and exophilin7, differentially regulate the exocytosis of either stably or minimally docked granules, respectively.
CCL11 elicits secretion of RNases from mouse eosinophils and their cell-free granules
Shamri, Revital; Melo, Rossana C. N.; Young, Kristen M.; Bivas-Benita, Maytal; Xenakis, Jason J.; Spencer, Lisa A.; Weller, Peter F.
2012-01-01
Rapid secretion of eosinophil-associated RNases (EARs), such as the human eosinophilic cationic protein (ECP), from intracellular granules is central to the role of eosinophils in allergic diseases and host immunity. Our knowledge regarding allergic inflammation has advanced based on mouse experimental models. However, unlike human eosinophils, capacities of mouse eosinophils to secrete granule proteins have been controversial. To study mechanisms of mouse eosinophil secretion and EAR release, we combined an RNase assay of mouse EARs with ultrastructural studies. In vitro, mouse eosinophils stimulated with the chemokine eotaxin-1 (CCL11) secreted enzymatically active EARs (EC50 5 nM) by piecemeal degranulation. In vivo, in a mouse model of allergic airway inflammation, increased airway eosinophil infiltration (24-fold) correlated with secretion of active RNases (3-fold). Moreover, we found that eosinophilic inflammation in mice can involve eosinophil cytolysis and release of cell-free granules. Cell-free mouse eosinophil granules expressed functional CCR3 receptors and secreted their granule proteins, including EAR and eosinophil peroxidase in response to CCL11. Collectively, these data demonstrate chemokine-dependent secretion of EARs from both intact mouse eosinophils and their cell-free granules, findings pertinent to understanding the pathogenesis of eosinophil-associated diseases, in which EARs are key factors.—Shamri, R., Melo, R. C. N., Young, K. M., B.-B, M., Xenakis, J. J., Spencer, L. A., Weller, P. F. CCL11 elicits secretion of RNases from mouse eosinophils and their cell-free granules. PMID:22294786
Hanner, R H; Ryan, G B
1980-01-01
Renal juxtaglomerular regions were examined in the axolotl (Ambystoma mexicanum and toad (Bufo marinus). Prominent granulated peripolar epithelial cells were found surrounding the origin of the glomerular tuft in the axolotl. These cells resembled the peripolar cells recently discovered in mammalian species. They contained multiple electron-dense cytoplasmic granules, some of which showed a paracrystalline substructure and signs of exocytoxic activity. Such cells were difficult to find and smaller in the toad. In contrast, granulated juxtaglomerular arteriolar myoephithelial cells were much more readily found and larger in the toad than in the axolotl. No consistent differences were noted in juxtaglomerular cells or their granules in response to changes in environmental chloride concentration. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:7410189
Constitutively polarized granules prime KHYG-1 NK cells.
Suck, Garnet; Branch, Donald R; Aravena, Paola; Mathieson, Mark; Helke, Simone; Keating, Armand
2006-09-01
The major mechanism for NK cell lysis of tumor cells is granule-mediated cytotoxicity. Polarization of granules is a prelude to the release of their cytotoxic contents in response to target-cell binding. We describe the novel observation of constitutive granule polarization in the cytotoxic NK cell line, KHYG-1. Continuous degranulation of KHYG-1 cells, however, does not occur and still requires target-cell contact. Disruption of microtubules with colcemid is sufficient to disperse the granules in KHYG-1 and significantly decreases cytotoxicity. A similar effect is not obtained by inhibiting extracellular signal-related kinase 2 (ERK2), the most distal kinase investigated in the cytolytic pathway. Disruption of microtubules significantly down-regulates activation receptors, NKp44 and NKG2D, implicating them as potential microtubule-trafficking receptors. Such changes in upstream receptor expression may have caused deactivation of ERK2, since NKG2D cross-linking also leads to receptor down-regulation and diminished ERK phosphorylation. Thus, a functional role for NKG2D in KHYG-1 cytotoxicity is demonstrated. Moreover, the novel primed state may contribute to the high cytotoxicity exhibited by KHYG-1.
Bougdour, Alexandre; Durandau, Eric; Brenier-Pinchart, Marie-Pierre; Ortet, Philippe; Barakat, Mohamed; Kieffer, Sylvie; Curt-Varesano, Aurélie; Curt-Bertini, Rose-Laurence; Bastien, Olivier; Coute, Yohann; Pelloux, Hervé; Hakimi, Mohamed-Ali
2013-04-17
After invading host cells, Toxoplasma gondii multiplies within a parasitophorous vacuole (PV) that is maintained by parasite proteins secreted from organelles called dense granules. Most dense granule proteins remain within the PV, and few are known to access the host cell cytosol. We identify GRA16 as a dense granule protein that is exported through the PV membrane and reaches the host cell nucleus, where it positively modulates genes involved in cell-cycle progression and the p53 tumor suppressor pathway. GRA16 binds two host enzymes, the deubiquitinase HAUSP and PP2A phosphatase, which exert several functions, including regulation of p53 and the cell cycle. GRA16 alters p53 levels in a HAUSP-dependent manner and induces nuclear translocation of the PP2A holoenzyme. Additionally, certain GRA16-deficient strains exhibit attenuated virulence, indicating the importance of these host alterations in pathogenesis. Therefore, GRA16 represents a potentially emerging subfamily of exported dense granule proteins that modulate host function. Copyright © 2013 Elsevier Inc. All rights reserved.
PtdIns(4,5)P2 is not required for secretory granule docking.
Omar-Hmeadi, Muhmmad; Gandasi, Nikhil R; Barg, Sebastian
2018-06-01
Phosphoinositides (PtdIns) play important roles in exocytosis and are thought to regulate secretory granule docking by co-clustering with the SNARE protein syntaxin to form a docking receptor in the plasma membrane. Here we tested this idea by high-resolution total internal reflection imaging of EGFP-labeled PtdIns markers or syntaxin-1 at secretory granule release sites in live insulin-secreting cells. In intact cells, PtdIns markers distributed evenly across the plasma membrane with no preference for granule docking sites. In contrast, syntaxin-1 was found clustered in the plasma membrane, mostly beneath docked granules. We also observed rapid accumulation of syntaxin-1 at sites where granules arrived to dock. Acute depletion of plasma membrane phosphatidylinositol (4,5) bisphosphate (PtdIns(4,5)P 2 ) by recruitment of a 5'-phosphatase strongly inhibited Ca 2+ -dependent exocytosis, but had no effect on docked granules or the distribution and clustering of syntaxin-1. Cell permeabilization by α-toxin or formaldehyde-fixation caused PtdIns marker to slowly cluster, in part near docked granules. In summary, our data indicate that PtdIns(4,5)P 2 accelerates granule priming, but challenge a role of PtdIns in secretory granule docking or clustering of syntaxin-1 at the release site. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Heterogeneous integration of adult-generated granule cells into the epileptic brain
Murphy, Brian L.; Pun, Raymund Y.K.; Yin, Hulian; Faulkner, Christian R.; Loepke, Andreas W.; Danzer, Steve C.
2011-01-01
The functional impact of adult-generated granule cells in the epileptic brain is unclear, with data supporting both protective and maladaptive roles. These conflicting findings could be explained if new granule cells integrate heterogeneously, with some cells taking neutral or adaptive roles, while others contribute to recurrent circuitry supporting seizures. Here, we tested this hypothesis by completing detailed morphological characterizations of age- and experience-defined cohorts of adult-generated granule cells from transgenic mice. The majority of newborn cells exposed to an epileptogenic insult exhibited reductions in dendritic spine number, suggesting reduced excitatory input to these cells. A significant subset, however, exhibited higher spine numbers. These latter cells tended to have enlarged cell bodies, long basal dendrites or both. Moreover, cells with basal dendrites received significantly more recurrent mossy fiber input through their apical dendrites, indicating that these cells are robustly integrated into the pathological circuitry of the epileptic brain. These data imply that newborn cells play complex – and potentially conflicting – roles in epilepsy. PMID:21209195
Analysis of carbohydrate storage granules in the diazotrophic cyanobacterium Cyanothece sp. PCC 7822
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welkie, David G.; Sherman, Debra M.; Chrisler, William B.
The unicellular diazotrophic cyanobacteria of the genus Cyanothece demonstrate oscillations in nitrogenase activity and H 2 production when grown under 12h light-12h dark cycles. We established that Cyanothece sp. PCC 7822 allows for the construction of knock-out mutants and our objective was to improve the growth characteristics of this strain and to identify the nature of the intracellular storage granules. We report the physiological and morphological effects of reduction in nitrate and phosphate concentrations in BG-11 media on this strain. We developed a series of BG-11-derived growth media and monitored batch culture growth, nitrogenase activity and nitrogenase-mediated hydrogen production, culturemore » synchronicity, and intracellular storage content. Reduction in NaNO3 and K 2HPO 4 concentrations from 17.6 and 0.23 mM to 4.41 and 0.06 mM, respectively, improved growth characteristics such as cell size and uniformity, and enhanced the rate of cell division. Cells grown in this low NP BG-11 were less complex, a parameter that related to the composition of the intracellular storage granules. Cells grown in low NP BG-11 had less polyphosphate, fewer polyhydroxybutyrate granules and many smaller granules became evident. Biochemical analysis and transmission electron microscopy using the histocytochemical PATO technique demonstrated that these small granules contained glycogen. The glycogen levels and the number of granules per cell correlated nicely with a 2.3 to 3.3-fold change from the minimum at L0 to the maximum at D0. The differences in granule morphology and enzymes between Cyanothece ATCC 51142 and Cyanothece PCC 7822 provide insights into the formation of large starch-like granules in some cyanobacteria.« less
Cerebellar Granule Cell Replenishment Post-Injury by Adaptive Reprogramming of Nestin+ Progenitors
Wojcinski, Alexandre; Lawton, Andrew K.; Bayin, N Sumru.; Lao, Zhimin; Stephen, Daniel N.; Joyner, Alexandra L.
2017-01-01
Regeneration of several organs involves adaptive reprogramming of progenitors, however, the intrinsic capacity of the developing brain to replenish lost cells remains largely unknown. In this study, we discovered that the developing cerebellum has unappreciated progenitor plasticity, since it undergoes near full growth and functional recovery following acute depletion of granule cells, the most plentiful neuron population in the brain. We demonstrate that following postnatal ablation of granule cell progenitors, Nestin-expressing progenitors (NEPs) specified during mid-embryogenesis to produce astroglia and interneurons, switch their fate and generate granule neurons in mice. Moreover, Hedgehog-signaling in two NEP populations is crucial not only for the compensatory replenishment of granule neurons but also to scale interneuron and astrocyte numbers. Thus we provide insights into the mechanisms underlying robustness of circuit formation in the cerebellum, and speculate that adaptive reprogramming of progenitors in other brain regions plays a greater role than appreciated in developmental regeneration. PMID:28805814
1989-01-01
Chicken embryo fibroblast (CEF) cells were microinjected with several different monoclonal antibodies that recognize certain nonmuscle isoforms of tropomyosin. Immediately after injection, cells were recorded with a time-lapse video imaging system; later analysis of the tapes revealed that particles in cells injected with one of these antibodies (CG1, specific for CEF tropomyosin isoforms 1 and 3) showed a dramatic decrease in instantaneous speed while moving, distance moved per saltation, and proportion of time spent in motion. Injection of Fab fragments of CG1 resulted in similar changes in the pattern of granule movement. This inhibition of granule movement by CG1 antibody was reversible; at 2.5 h after injection, granules in injected cells had already reached three-fourths of normal speed. The speed of granule movement in cells injected either with antibody specific for tropomyosin isoforms not present in CEF cells, or with CG1 antibody preabsorbed with tropomyosin, was not significantly different from the speed of granules in uninjected cells. When cells were injected with CG1 or Fab fragments of CG1, fixed, and counter-stained with rabbit antibodies to reveal the microtubule, microfilament, and intermediate filament systems, no obvious differences from the patterns normally seen in uninjected cells were observed. Examination of the ultrastructure of injected cells by EM confirmed the presence of apparently intact and normal microtubule, actin, and intermediate filament networks. These experiments suggest that tropomyosin may play an important role in the movement of vesicles and organelles in the cell cytoplasm. Also, we have shown previously that the CG1 determinant can undergo a motility-dependent change in reactivity, that may be important for the regulatory function of nonmuscle tropomyosin (Hegmann, T. E., J. L.-C. Lin, and J. J.-C. Lin. 1988. J. Cell Biol. 106:385-393). Therefore, in addition to postulated microtubule-based motors, microfilaments may play a critical role in regulating granule movement in nonmuscle cells. PMID:2670955
Zhang, Minggang; March, Michael E.; Lane, William S.; Long, Eric O.
2014-01-01
Cytotoxic lymphocyte skill target cells by polarized release of the content of perforin-containing granules. In natural killer cells, the binding of β2 integrin to its ligand ICAM-1 is sufficient to promote not only adhesion but also lytic granule polarization. This provided a unique opportunity to study polarization in the absence of degranulation, and β2 integrin signaling independently of inside-out signals from other receptors. Using an unbiased proteomics approach we identified a signaling network centered on an integrin-linked kinase (ILK)–Pyk2–Paxillin core that was required for granule polarization. Downstream of ILK, the highly conserved Cdc42–Par6 signaling pathway that controls cell polarity was activated and required for granule polarization. These results delineate two connected signaling networks induced upon β2 integrin engagement alone, which are integrated to control polarization of the microtubule organizing center and associated lytic granules toward the site of contact with target cells during cellular cytotoxicity. PMID:25292215
The Prohormone VGF Regulates β Cell Function via Insulin Secretory Granule Biogenesis.
Stephens, Samuel B; Edwards, Robert J; Sadahiro, Masato; Lin, Wei-Jye; Jiang, Cheng; Salton, Stephen R; Newgard, Christopher B
2017-09-05
The prohormone VGF is expressed in neuroendocrine and endocrine tissues and regulates nutrient and energy status both centrally and peripherally. We and others have shown that VGF-derived peptides have direct action on the islet β cell as secretagogues and cytoprotective agents; however, the endogenous function of VGF in the β cell has not been described. Here, we demonstrate that VGF regulates secretory granule formation. VGF loss-of-function studies in both isolated islets and conditional knockout mice reveal a profound decrease in stimulus-coupled insulin secretion. Moreover, VGF is necessary to facilitate efficient exit of granule cargo from the trans-Golgi network and proinsulin processing. It also functions to replenish insulin granule stores following nutrient stimulation. Our data support a model in which VGF operates at a critical node of granule biogenesis in the islet β cell to coordinate insulin biosynthesis with β cell secretory capacity. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Zanzottera, Emma C.; Messinger, Jeffrey D.; Ach, Thomas; Smith, R. Theodore; Freund, K. Bailey; Curcio, Christine A.
2015-01-01
Purpose. To seek pathways of retinal pigment epithelium (RPE) fate in age-related macular degeneration via a morphology grading system; provide nomenclature, visualization targets, and metrics for clinical imaging and model systems. Methods. Donor eyes with geographic atrophy (GA) or choroidal neovascularization (CNV) and one GA eye with previous clinical spectral-domain optical coherence tomography (SDOCT) imaging were processed for histology, photodocumented, and annotated at predefined locations. Retinal pigment epithelial cells contained spindle-shaped melanosomes, apposed a basal lamina or basal laminar deposit (BLamD), and exhibited recognizable morphologies. Thicknesses and unbiased estimates of frequencies were obtained. Results. In 13 GA eyes (449 locations), ‘Shedding,’ ‘Sloughed,’ and ‘Dissociated’ morphologies were abundant; 22.2% of atrophic locations had ‘Dissociated’ RPE. In 39 CNV eyes (1363 locations), 37.3% of locations with fibrovascular/fibrocellular scar had ‘Entombed’ RPE; ‘Sloughed,’ ‘Dissociated,’ and ‘Bilaminar’ morphologies were abundant. Of abnormal RPE, CNV and GA both had ∼35% ‘Sloughed’/‘Intraretinal,’ with more Intraretinal in CNV (9.5% vs. 1.8%). ‘Shedding’ cells associated with granule aggregations in BLamD. The RPE layer did not thin, and BLamD remained thick, with progression. Granule-containing material consistent with three morphologies correlated to SDOCT hyperreflective foci in the previously examined GA patient. Conclusions. Retinal pigment epithelium morphology indicates multiple pathways in GA and CNV. Atrophic/scarred areas have numerous cells capable of transcribing genes and generating imaging signals. Shed granule aggregates, possibly apoptotic, are visible in SDOCT, as are ‘Dissociated’ and ‘Sloughed’ cells. The significance of RPE phenotypes is addressable in longitudinal, high-resolution imaging in clinic populations. Data can motivate future molecular phenotyping studies. PMID:25813989
Jinde, Seiichiro; Zsiros, Veronika; Jiang, Zhihong; Nakao, Kazuhito; Pickel, James; Kohno, Kenji; Belforte, Juan E.; Nakazawa, Kazu
2012-01-01
Summary Although excitatory mossy cells of the hippocampal hilar region are known to project both to dentate granule cells and to interneurons, it is as yet unclear whether mossy cell activity’s net effect on granule cells is excitatory or inhibitory. To explore their influence on dentate excitability and hippocampal function, we generated a conditional transgenic mouse line, using the Cre/loxP system, in which diphtheria toxin receptor was selectively expressed in mossy cells. One week after injecting toxin into this line, mossy cells throughout the longitudinal axis were degenerated extensively, theta wave power of dentate local field potentials increased during exploration, and deficits occurred in contextual discrimination. By contrast, we detected no epileptiform activity, spontaneous behavioral seizures, or mossy-fiber sprouting 5–6 weeks after mossy cell degeneration. These results indicate that the net effect of mossy cell excitation is to inhibit granule cell activity and enable dentate pattern separation. PMID:23259953
NASA Astrophysics Data System (ADS)
Kobayashi, Takayoshi; Sundaram, Durga; Nakata, Kazuaki; Tsurui, Hiromichi
2017-03-01
Qualifications of intracellular structure were performed for the first time using the gray-level co-occurrence matrix (GLCM) method for images of cells obtained by resolution-enhanced photothermal imaging. The GLCM method has been used to extract five parameters of texture features for five different types of cells in mouse brain; pyramidal neurons and glial cells in the basal nucleus (BGl), dentate gyrus granule cells, cerebellar Purkinje cells, and cerebellar granule cells. The parameters are correlation, contrast, angular second moment (ASM), inverse difference moment (IDM), and entropy for the images of cells of interest in a mouse brain. The parameters vary depending on the pixel distance taken in the analysis method. Based on the obtained results, we identified that the most suitable GLCM parameter is IDM for pyramidal neurons and BGI, granule cells in the dentate gyrus, Purkinje cells and granule cells in the cerebellum. It was also found that the ASM is the most appropriate for neurons in the basal nucleus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baconnais, S.; Delavoie, F.; Zahm, J.M.
The absence or decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) induces increased Na{sup +} absorption and hyperabsorption of the airway surface liquid (ASL) resulting in a dehydrated and hyperviscous ASL. Although the implication of abnormal airway submucosal gland function has been suggested, the ion and water content in the Cystic Fibrosis (CF) glandular secretory granules, before exocytosis, is unknown. We analyzed, in non-CF and CF human airway glandular cell lines (MM-39 and KM4, respectively), the ion content in the secretory granules by electron probe X-ray microanalysis and the water content by quantitative dark field imaging on freeze-dried cryosections.more » We demonstrated that the ion content (Na{sup +}, Mg{sup 2+}, P, S and Cl{sup -}) is significantly higher and the water content significantly lower in secretory granules from the CF cell line compared to the non-CF cell line. Using videomicroscopy, we observed that the secretory granule expansion was deficient in CF glandular cells. Transfection of CF cells with CFTR cDNA or inhibition of non-CF cells with CFTR{sub inh}-172, respectively restored or decreased the water content and granule expansion, in parallel with changes in ion content. We hypothesize that the decreased water and increased ion content in glandular secretory granules may contribute to the dehydration and increased viscosity of the ASL in CF.« less
Ruitenberg, Marc J; Wells, Julia; Bartlett, Perry F; Harvey, Alan R; Vukovic, Jana
2017-06-01
Birth of new neurons in the hippocampus persists in the brain of adult mammals and critically underpins optimal learning and memory. The process of adult neurogenesis is significantly reduced following brain irradiation and this correlates with impaired cognitive function. In this study, we aimed to compare the long-term effects of two environmental paradigms (i.e. enriched environment and exercise) on adult neurogenesis following high-dose (10Gy) total body irradiation. When housed in standard (sedentary) conditions, irradiated mice revealed a long-lasting (up to 4 months) deficit in neurogenesis in the granule cell layer of the dentate gyrus, the region that harbors the neurogenic niche. This depressive effect of total body irradiation on adult neurogenesis was partially alleviated by exposure to enriched environment but not voluntary exercise, where mice were single-housed with unlimited access to a running wheel. Exposure to voluntary exercise, but not enriched environment, did lead to significant increases in microglia density in the granule cell layer of the hippocampus; our study shows that these changes result from local microglia proliferation rather than recruitment and infiltration of circulating Cx 3 cr1 +/gfp blood monocytes that subsequently differentiate into microglia-like cells. In summary, latent neural precursor cells remain present in the neurogenic niche of the adult hippocampus up to 8 weeks following high-dose total body irradiation. Environmental enrichment can partially restore the adult neurogenic process in this part of the brain following high-dose irradiation, and this was found to be independent of blood monocyte-derived microglia presence. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Amyloid-like aggregation of provasopressin in diabetes insipidus and secretory granule sorting.
Beuret, Nicole; Hasler, Franziska; Prescianotto-Baschong, Cristina; Birk, Julia; Rutishauser, Jonas; Spiess, Martin
2017-01-26
Aggregation of peptide hormone precursors in the trans-Golgi network is an essential process in the biogenesis of secretory granules in endocrine cells. It has recently been proposed that this aggregation corresponds to the formation of functional amyloids. Our previous finding that dominant mutations in provasopressin, which cause cell degeneration and diabetes insipidus, prevent native folding and produce fibrillar aggregates in the endoplasmic reticulum (ER) might thus reflect mislocalized amyloid formation by sequences that evolved to mediate granule sorting. Here we identified two sequences responsible for fibrillar aggregation of mutant precursors in the ER: the N-terminal vasopressin nonapeptide and the C-terminal glycopeptide. To test their role in granule sorting, the glycopeptide was deleted and/or vasopressin mutated to inactivate ER aggregation while still permitting precursor folding and ER exit. These mutations strongly reduced sorting into granules and regulated secretion in endocrine AtT20 cells. The same sequences - vasopressin and the glycopeptide - mediate physiological aggregation of the wild-type hormone precursor into secretory granules and the pathological fibrillar aggregation of disease mutants in the ER. These findings support the amyloid hypothesis for secretory granule biogenesis.
Ferrer, I; Zujar, M J; Admella, C; Alcantara, S
1992-01-01
To investigate the morphology and distribution of nonpyramidal neurons in the brain of insectivores, parvalbumin and calbindin 28 kDa immunoreactivity was examined in the cerebral cortex of the hedgehog (Erinaceus europaeus). Parvalbumin-immunoreactive cells were found in all layers of the isocortex, but in contrast to other mammals, a laminar organisation or specific regional distribution was not seen. Characteristic parvalbumin-immunoreactive neurons were multipolar cells with large ascending and descending dendrites extending throughout several layers. Calbindin-immunoreactive neurons were similar to those found in other species, although appearing in smaller numbers than in the cerebral cortex of more advanced mammals. The morphology and distribution of parvalbumin- and calbindin-immunoreactive cells in the piriform and entorhinal cortices were similar in hedgehogs and rodents. Parvalbumin-immunoreactive cells in the hippocampal complex were pyramidal-like and bitufted neurons, which were mainly found in the stratum oriens and stratum pyramidale of the hippocampus, and in the stratum moleculare and hilus of the fascia dentata. Heavily stained cells were found in the deep part of the stratum granulare. Intense calbindin immunoreactivity occurred mainly in the granule cell and molecular layers of the dentate gyrus and in the mossy fibre layer. The most outstanding feature in the hippocampal complex of the hedgehog was the extension of calbindin immunoreactivity to CA1 field of the hippocampus, suggesting, in agreement with other reports, that mossy fibres can establish synaptic contacts throughout the pyramidal cell layer. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:1452472
Sun, Wen-Wen; Dou, Jin-Xia; Zhang, Lin; Qiao, Li-Kui; Shen, Na; Zhao, Qiang; Gao, Wen-Yuan
2017-07-11
This study aims to compare the efficacy of different treatments for nude mice transplanted with HT-29 colon carcinoma cell line. BalB/C nude mice were transplanted with HT-29 colon carcinoma cell line and randomly divided into four groups, with 5 mice in each group: blank control group, DC-CIK group, Huaier Granule group, and Huaier Granule group combined with DC-CIK group (combined treatment group). For DC-CIK group and combined treatment group, 1×106 DC-CIK cells were injected via the tail vein 4 days after transplantation. The injection was performed twice weekly for a total of 2 weeks. For Huaier Granule group and combined treatment group, Huaier Granule was administered at the dose of 20 g/60 g, by dissolving 20 g of Huaier granules in 600 ml of pure water. Intragastric administration of 0.2 ml of granules was performed once daily for 3 weeks. For the blank control group, equal volume of normal saline was given. Tumor size and body weight of nude mice were measured every 2 days during the 3-week treatment. The mice were sacrificed at the end of treatment to harvest tumors. Key genes of the signaling pathway were detected by RT-PCR. At the end of treatment, mice in combined treatment group, DC-CIK group and Huaier Granule group remained stable emotionally with normal mobility and water and food intake. However, in the blank control group, the mobility was restricted starting from the third week and the mice were on the verge of dying. The expression of PI3KR1, Akt, Wnt1, CTTNB1, Notch1, Notch2 and Notch3 genes were all downregulated significantly in the combined treatment group compared with DC-CIK group and Huaier Granule group (P<0.05). Therefore, the combined treatment of Huaier Granule combined with DC-CIK achieved the best effect in nude mice transplanted with HT-29 colon carcinoma cell line.
Kumar, Ambrish; Singh, Chandra K.; LaVoie, Holly A.; DiPette, Donald J.
2011-01-01
In humans, ethanol exposure during pregnancy produces a wide range of abnormalities in infants collectively known as fetal alcohol spectrum disorders (FASD). Neuronal malformations in FASD manifest as postnatal behavioral and functional disturbances. The cerebellum is particularly sensitive to ethanol during development. In a rodent model of FASD, high doses of ethanol (blood ethanol concentration 80 mM) induces neuronal cell death in the cerebellum. However, information on potential agent(s) that may protect the cerebellum against the toxic effects of ethanol is lacking. Growing evidence suggests that a polyphenolic compound, resveratrol, has antioxidant and neuroprotective properties. Here we studied whether resveratrol (3,5,4′-trihydroxy-trans-stilbene), a phytoalexin found in red grapes and blueberries, protects the cerebellar granule neurons against ethanol-induced cell death. In the present study, we showed that administration of resveratrol (100 mg/kg) to postnatal day 7 rat pups prevents ethanol-induced apoptosis by scavenging reactive oxygen species in the external granule layer of the cerebellum and increases the survival of cerebellar granule cells. It restores ethanol-induced changes in the level of transcription factor nuclear factor-erythroid derived 2-like 2 (nfe2l2, also known as Nrf2) in the nucleus. This in turn retains the expression and activity of its downstream gene targets such as NADPH quinine oxidoreductase 1 and superoxide dismutase in cerebellum of ethanol-exposed pups. These studies indicate that resveratrol exhibits neuroprotective effects in cerebellum by acting at redox regulating proteins in a rodent model of FASD. PMID:21697273
Pten Knockdown in vivo Increases Excitatory Drive onto Dentate Granule Cells
Luikart, Bryan W.; Schnell, Eric; Washburn, Eric K.; Bensen, AeSoon L.; Tovar, Kenneth R.; Westbrook, Gary L.
2011-01-01
Some cases of autism spectrum disorder (ASD) have mutations in the lipid phosphatase, Pten (phosphatase and tensin homolog on chromosome 10). Tissue specific deletion of Pten in the hippocampus and cortex of mice causes anatomical and behavioral abnormalities similar to human autism. However, the impact of reductions in Pten on synaptic and circuit function remains unexplored. We used in vivo stereotaxic injections of lentivirus expressing an shRNA to knockdown Pten in mouse neonatal and young adult dentate granule cells. We then assessed the morphology and synaptic physiology between two weeks and four months later. Confocal imaging of the hippocampus revealed a marked increase in granule cell size and an increase in dendritic spine density. The onset of morphological changes occurred earlier in neonatal mice than in young adults. We used whole-cell recordings from granule cells in acute slices to assess synaptic function following Pten knockdown. Consistent with the increase in dendritic spines, the frequency of excitatory miniature and spontaneous postsynaptic currents increased. However, there was little or no effect on inhibitory postsynaptic currents. Thus Pten knockdown results in an imbalance between excitatory and inhibitory synaptic activity. Because reductions in Pten affected mature granule cells as well as developing granule cells, we suggest that the disruption of circuit function by Pten hypofunction may be ongoing well beyond early development. PMID:21411674
Diederen, J H; Vullings, H G
1995-03-01
The influence of flight activity on the formation of secretory granules and the concomitant membrane recycling by the trans-Golgi network in the peptidergic neurosecretory adipokinetic cells of Locusta migratoria was investigated by means of ultrastructural morphometric methods. The patterns of labelling of the trans-Golgi network by the exogenous adsorptive endocytotic tracer wheat-germ agglutinin-conjugated horse-radish peroxidase and by the endogenous marker enzyme acid phosphatase were used as parameters and were measured by an automatic image analysis system. The results show that endocytosed fragments of plasma membrane with bound peroxidase label were transported to the trans-Golgi network and used to build new secretory granules. The amounts of peroxidase and especially of acid phosphatase within the trans-Golgi network showed a strong tendency to be smaller in flight-stimulated cells than in non-stimulated cells. The amounts of acid phosphatase in the immature secretory granules originating from the trans-Golgi network were significantly smaller in stimulated cells. The number of immature secretory granules positive for acid phosphatase tended to be higher in stimulated cells. Thus, flight stimulation of adipokinetic cells for 1 h influences the functioning of the trans-Golgi network; this most probably results in a slight enhancement of the production of secretory granules by the trans-Golgi network.
Shah, Khyati H; Nostramo, Regina; Zhang, Bo; Varia, Sapna N; Klett, Bethany M; Herman, Paul K
2014-12-01
The cytoplasm of the eukaryotic cell is subdivided into distinct functional domains by the presence of a variety of membrane-bound organelles. The remaining aqueous space may be further partitioned by the regulated assembly of discrete ribonucleoprotein (RNP) complexes that contain particular proteins and messenger RNAs. These RNP granules are conserved structures whose importance is highlighted by studies linking them to human disorders like amyotrophic lateral sclerosis. However, relatively little is known about the diversity, composition, and physiological roles of these cytoplasmic structures. To begin to address these issues, we examined the cytoplasmic granules formed by a key set of signaling molecules, the protein kinases of the budding yeast Saccharomyces cerevisiae. Interestingly, a significant fraction of these proteins, almost 20%, was recruited to cytoplasmic foci specifically as cells entered into the G0-like quiescent state, stationary phase. Colocalization studies demonstrated that these foci corresponded to eight different granules, including four that had not been reported previously. All of these granules were found to rapidly disassemble upon the resumption of growth, and the presence of each was correlated with cell viability in the quiescent cultures. Finally, this work also identified new constituents of known RNP granules, including the well-characterized processing body and stress granule. The composition of these latter structures is therefore more varied than previously thought and could be an indicator of additional biological activities being associated with these complexes. Altogether, these observations indicate that quiescent yeast cells contain multiple distinct cytoplasmic granules that may make important contributions to their long-term survival. Copyright © 2014 by the Genetics Society of America.
Wang, Xiaohong; Li, Dan; Zhang, Yong; Wu, Shuang; Tang, Fang
2018-01-01
Ulcerative colitis is a chronic nonspecific inflammatory disease that occurs in the colon and rectum. Costus root is a type of traditional Chinese medicine that exhibits antibacterial properties and serves an inhibitory role in the regeneration of gut bacteria. However, the molecular mechanisms underlying Costus root-mediated improvements in ulcerative colitis remain unclear. A complex formula of Costus root granules was created and investigated in the present study for its therapeutic effects in a rat model of ulcerative colitis. Ingredient dissolution into a traditional water decoction was used as a control. The potential mechanism mediated by Costus root granules was also analyzed in colonic epithelial cells isolated from the experimental rats. The results of the present study demonstrated that Costus root granule treatment inhibited inflammation in colonic tissue. Costus root granule treatment also suppressed the apoptosis of colonic epithelial cells isolated from the rat model of ulcerative colitis. Analyses of the underlying mechanisms of these effects indicated that the administration of Costus root granules increased transforming growth factor β expression, which activated the phosphoinositide 3-kinase/RAC-α serine/threonine-protein kinase signaling pathway in colonic epithelial cells. Notably, the administration of Costus root granules improved stomachache, diarrhea and hematochezia in and increased the body weight of, the ulcerative colitis rats. In conclusion, these results indicate that Costus root granules markedly ameliorate inflammation of the colonic epithelium, decrease the apoptosis of colonic epithelial cells and improve colonic function, which suggests that Costus root granules are an efficient agent for the treatment of ulcerative colitis. PMID:29731832
DEPS-1 promotes P-granule assembly and RNA interference in C. elegans germ cells
Spike, Caroline A.; Bader, Jason; Reinke, Valerie; Strome, Susan
2008-01-01
P granules are germ-cell-specific cytoplasmic structures containing RNA and protein, and required for proper germ cell development in C. elegans. PGL-1 and GLH-1 were previously identified as critical components of P granules. We have identified a new P-granule-associated protein, DEPS-1, the loss of which disrupts P-granule structure and function. DEPS-1 is required for the proper localization of PGL-1 to P granules, the accumulation of glh-1 mRNA and protein, and germ cell proliferation and fertility at elevated temperatures. In addition, DEPS-1 is required for RNA interference (RNAi) of germline-expressed genes, possibly because DEPS-1 promotes the accumulation of RDE-4, a dsRNA-binding protein required for RNAi. A genome wide analysis of gene expression in deps-1 mutant germ lines identified additional targets of DEPS-1 regulation, many of which are also regulated by the RNAi factor RDE-3. Our studies suggest that DEPS-1 is a key component of the P-granule assembly pathway and that its roles include promoting accumulation of some mRNAs, such as glh-1 and rde-4, and reducing accumulation of other mRNAs, perhaps by collaborating with RDE-3 to generate endogenous short interfering RNAs (endo-siRNAs). PMID:18234720
DEPS-1 promotes P-granule assembly and RNA interference in C. elegans germ cells.
Spike, Caroline A; Bader, Jason; Reinke, Valerie; Strome, Susan
2008-03-01
P granules are germ-cell-specific cytoplasmic structures containing RNA and protein, and required for proper germ cell development in C. elegans. PGL-1 and GLH-1 were previously identified as critical components of P granules. We have identified a new P-granule-associated protein, DEPS-1, the loss of which disrupts P-granule structure and function. DEPS-1 is required for the proper localization of PGL-1 to P granules, the accumulation of glh-1 mRNA and protein, and germ cell proliferation and fertility at elevated temperatures. In addition, DEPS-1 is required for RNA interference (RNAi) of germline-expressed genes, possibly because DEPS-1 promotes the accumulation of RDE-4, a dsRNA-binding protein required for RNAi. A genome wide analysis of gene expression in deps-1 mutant germ lines identified additional targets of DEPS-1 regulation, many of which are also regulated by the RNAi factor RDE-3. Our studies suggest that DEPS-1 is a key component of the P-granule assembly pathway and that its roles include promoting accumulation of some mRNAs, such as glh-1 and rde-4, and reducing accumulation of other mRNAs, perhaps by collaborating with RDE-3 to generate endogenous short interfering RNAs (endo-siRNAs).
CSR-1 and P granules suppress sperm-specific transcription in the C. elegans germline
Campbell, Anne C.; Updike, Dustin L.
2015-01-01
Germ granules (P granules) in C. elegans are required for fertility and function to maintain germ cell identity and pluripotency. Sterility in the absence of P granules is often accompanied by the misexpression of soma-specific proteins and the initiation of somatic differentiation in germ cells. To investigate whether this is caused by the accumulation of somatic transcripts, we performed mRNA-seq on dissected germlines with and without P granules. Strikingly, we found that somatic transcripts do not increase in the young adult germline when P granules are impaired. Instead, we found that impairing P granules causes sperm-specific mRNAs to become highly overexpressed. This includes the accumulation of major sperm protein (MSP) transcripts in germ cells, a phenotype that is suppressed by feminization of the germline. A core component of P granules, the endo-siRNA-binding Argonaute protein CSR-1, has recently been ascribed with the ability to license transcripts for germline expression. However, impairing CSR-1 has very little effect on the accumulation of its mRNA targets. Instead, we found that CSR-1 functions with P granules to prevent MSP and sperm-specific mRNAs from being transcribed in the hermaphrodite germline. These findings suggest that P granules protect germline integrity through two different mechanisms, by (1) preventing the inappropriate expression of somatic proteins at the level of translational regulation, and by (2) functioning with CSR-1 to limit the domain of sperm-specific expression at the level of transcription. PMID:25968310
Weber, E; Voigt, K H; Martin, R
1978-05-01
Slices of unembedded rat anterior pituitaries, fixed with a periodate-lysine-paraformaldehyde (PLP) fixative, were incubated with guinea pig antiserum to ACTH and stained with a peroxidase-conjugated IgG fraction of anti-guinea pig gamma-globulin serum from rabbits. The fine structure of the stained cells was identical to that of the ACTH-secreting cell, as described by Siperstein and coworkers. Immunoreactive granules were mainly located at the periphery of the cell. Numerous granules of the inner cytoplasm and also the Golgi complex were nonreactive to the antiserum. The differential labeling for granules and Golgi apparatus peptide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Takayuki, E-mail: tkato@med.osaka-cu.ac.jp; Ikemoto, Masaru; Hato, Fumihiko
2009-04-10
Extracellular signal-regulated kinase and p38 have been shown to be cleaved in human neutrophils undergoing apoptosis induced by tumor necrosis factor-{alpha} and cycloheximide. However, the cleavage products of these molecules were undetected when apoptotic neutrophils were pretreated with phenylmethylsulfonyl fluoride or disrupted by nitrogen cavitation before preparation of cell lysates. The electron microscopy revealed that granules in apoptotic neutrophils were significantly swollen than those in control cells. These findings suggest that granule membrane may become destabilized during neutrophil apoptosis, leading to rapid proteolysis of these molecules by granule-derived serine proteases during preparation of cell lysates with the conventional lysis buffer.
NASA Astrophysics Data System (ADS)
Han, Y.; Chen, D. H.; Zhang, L.
2008-08-01
Novel photocatalytic coatings containing strontium hydroxyapatite (SrHA), strontium titanate (SrTiO3), and TiO2 were formed by micro-arc oxidation (MAO) in an aqueous electrolyte containing strontium acetate and β-glycerophosphate disodium at 530 V for 0.1-5 min. The structure evolution of the coatings was investigated as a function of processing time, and the photocatalytic activity of the coatings was evaluated by measuring the decomposition rate of methyl orange under ultraviolet irradiation. During the MAO processing of the coatings, it was observed that some granules appeared in the electrolyte adjacent to the anode and they increased in amount as the processing time was prolonged. The obtained results show that the granules are amorphous and poorly crystallized SrHA with negative charges. The coating prepared for 5 min presents a microporous structure of SrHA/SrHA-SrTiO3/SrTiO3-TiO2 multilayers, in which the SrHA outermost layer and the SrHA-SrTiO3 intermediate layer are nanocrystallized. It is suggested that formation of the granules, electro-migration of the granules onto the pre-formed layer, and crystallization of the adhered granules are possible mechanisms for the formation of a SrHA/SrHA-SrTiO3/SrTiO3-TiO2 multilayer coating. This coating shows much higher photocatalytic decomposition efficiency relative to the MAO-formed TiO2 coating, and is expected to have an important photocatalytic application.
Mast cells in atherosclerotic cardiovascular disease - Activators and actions.
Kovanen, Petri T; Bot, Ilze
2017-12-05
Mast cells are potent actors involved in inflammatory reactions in various tissues, including both in the intimal and the adventitial layers of atherosclerotic arteries. In the arterial intima, the site of atherogenesis, mast cells are activated to degranulate, and thereby triggered to release an abundance of preformed inflammatory mediators, notably histamine, heparin, neutral proteases and cytokines stored in their cytoplasmic secretory granules. Depending on the stimulus, mast cell activation may also launch prolonged synthesis and secretion of single bioactive molecules, such as cytokines and derivatives of arachidonic acid. The mast cell-derived mediators may impede the functions of different types of cells present in atherosclerotic lesions, and also compromise the structural and functional integrity of the intimal extracellular matrix. In the adventitial layer of atherosclerotic coronary arteries, mast cells locate next to peptidergic sensory nerve fibers, which, by releasing neuropeptides may activate mast cells to release vasoactive compounds capable of triggering local vasoconstriction. The concerted actions of arterial mast cells have the potential to contribute to the initiation and progression of atherosclerosis, and ultimately to destabilization and rupture of an advanced atherosclerotic plaque with ensuing atherothrombotic complications. Copyright © 2017 Elsevier B.V. All rights reserved.
Kroschwald, Sonja; Maharana, Shovamayee; Mateju, Daniel; Malinovska, Liliana; Nüske, Elisabeth; Poser, Ina; Richter, Doris; Alberti, Simon
2015-01-01
RNA-protein (RNP) granules have been proposed to assemble by forming solid RNA/protein aggregates or through phase separation into a liquid RNA/protein phase. Which model describes RNP granules in living cells is still unclear. In this study, we analyze P bodies in budding yeast and find that they have liquid-like properties. Surprisingly, yeast stress granules adopt a different material state, which is reminiscent of solid protein aggregates and controlled by protein disaggregases. By using an assay to ectopically nucleate RNP granules, we further establish that RNP granule formation does not depend on amyloid-like aggregation but rather involves many promiscuous interactions. Finally, we show that stress granules have different properties in mammalian cells, where they show liquid-like behavior. Thus, we propose that the material state of RNP granules is flexible and that the solid state of yeast stress granules is an adaptation to extreme environments, made possible by the presence of a powerful disaggregation machine. DOI: http://dx.doi.org/10.7554/eLife.06807.001 PMID:26238190
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, Joshua R.; Marty, M. Sue; Atchison, William D.
2005-11-01
The objective of the present study was to determine the relative effectiveness of methylmercury (MeHg) to alter divalent cation homeostasis and cause cell death in MeHg-resistant cerebellar Purkinje and MeHg-sensitive granule neurons. Application of 0.5-5 {mu}M MeHg to Purkinje and granule cells grown in culture caused a concentration- and time-dependent biphasic increase in fura-2 fluorescence. At 0.5 and 1 {mu}M MeHg, the elevations of fura-2 fluorescence induced by MeHg were biphasic in both cell types, but significantly delayed in Purkinje as compared to granule cells. Application of the heavy-metal chelator, TPEN, to Purkinje cells caused a precipitous decline in amore » proportion of the fura-2 fluorescence signal, indicating that MeHg causes release of Ca{sup 2+} and non-Ca{sup 2+} divalent cations. Purkinje cells were also more resistant than granule cells to the neurotoxic effects of MeHg. At 24.5 h after-application of 5 {mu}M MeHg, 97.7% of Purkinje cells were viable. At 3 {mu}M MeHg there was no detectable loss of Purkinje cell viability. In contrast, only 40.6% of cerebellar granule cells were alive 24.5 h after application of 3 {mu}M MeHg. In conclusion, Purkinje neurons in primary cultures appear to be more resistant to MeHg-induced dysregulation of divalent cation homeostasis and subsequent cell death when compared to cerebellar granule cells. There is a significant component of non-Ca{sup 2+} divalent cation released by MeHg in Purkinje neurons.« less
Wei, Wei-Chun; Huang, Wan-Chen; Lin, Yu-Ping; Becker, Esther B E; Ansorge, Olaf; Flockerzi, Veit; Conti, Daniele; Cenacchi, Giovanna; Glitsch, Maike D
2017-08-15
The proton sensing ovarian cancer G protein coupled receptor 1 (OGR1, aka GPR68) promotes expression of the canonical transient receptor potential channel subunit TRPC4 in normal and transformed cerebellar granule precursor (DAOY) cells. OGR1 and TRPC4 are prominently expressed in healthy cerebellar tissue throughout postnatal development and in primary cerebellar medulloblastoma tissues. Activation of TRPC4-containing channels in DAOY cells, but not non-transformed granule precursor cells, results in prominent increases in [Ca 2+ ] i and promotes cell motility in wound healing and transwell migration assays. Medulloblastoma cells not arising from granule precursor cells show neither prominent rises in [Ca 2+ ] i nor enhanced motility in response to TRPC4 activation unless they overexpressTRPC4. Our results suggest that OGR1 enhances expression of TRPC4-containing channels that contribute to enhanced invasion and metastasis of granule precursor-derived human medulloblastoma. Aberrant intracellular Ca 2+ signalling contributes to the formation and progression of a range of distinct pathologies including cancers. Rises in intracellular Ca 2+ concentration occur in response to Ca 2+ influx through plasma membrane channels and Ca 2+ release from intracellular Ca 2+ stores, which can be mobilized in response to activation of cell surface receptors. Ovarian cancer G protein coupled receptor 1 (OGR1, aka GPR68) is a proton-sensing G q -coupled receptor that is most highly expressed in cerebellum. Medulloblastoma (MB) is the most common paediatric brain tumour that arises from cerebellar precursor cells. We found that nine distinct human MB samples all expressed OGR1. In both normal granule cells and the transformed human cerebellar granule cell line DAOY, OGR1 promoted expression of the proton-potentiated member of the canonical transient receptor potential (TRPC) channel family, TRPC4. Consistent with a role for TRPC4 in MB, we found that all MB samples also expressed TRPC4. In DAOY cells, activation of TRPC4-containing channels resulted in large Ca 2+ influx and enhanced migration, while in normal cerebellar granule (precursor) cells and MB cells not derived from granule precursors, only small levels of Ca 2+ influx and no enhanced migration were observed. Our results suggest that OGR1-dependent increases in TRPC4 expression may favour formation of highly Ca 2+ -permeable TRPC4-containing channels that promote transformed granule cell migration. Increased motility of cancer cells is a prerequisite for cancer invasion and metastasis, and our findings may point towards a key role for TRPC4 in progression of certain types of MB. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bian, Xuting; Zhong, Hongyu; Li, Fen
Dexamethasone (DEX) exposure during early postnatal life produces permanent neuromotor and intellectual deficits and stunts cerebellar growth. The liver X receptor (LXR) plays important roles in CNS development. However, the effects of LXR on the DEX-mediated impairment of cerebellar development remain undetermined. Thus, mice were pretreated with LXR agonist TO901317 (TO) and were later exposed to DEX to evaluate its protective effects on DEX-mediated deficit during cerebellar development. The results showed that an acute exposure of DEX on postnatal day 7 resulted in a significant impairment in cerebellar development and decreased the proliferation of granule neuron precursors in the externalmore » granule layer of cerebellum. This effect was attenuated by pretreatment with TO. We further found that the decrease in the proliferation caused by DEX occurred via up-regulation of glucocorticoid receptor and p27kip1, which could be partially prevented by LXR agonist pretreatment. Overall, our results suggest that LXR agonist pretreatment could protect against DEX-induced deficits in cerebellar development in postnatal mice and may thus be perspective recruited to counteract such GC side effects.« less
Nitric oxide inhibits exocytosis of cytolytic granules from lymphokine-activated killer cells
Ferlito, Marcella; Irani, Kaikobad; Faraday, Nauder; Lowenstein, Charles J.
2006-01-01
NO inhibits cytotoxic T lymphocyte killing of target cells, although the precise mechanism is unknown. We hypothesized that NO decreases exocytosis of cytotoxic granules from activated lymphocytes. We now show that NO inhibits lymphokine-activated killer cell killing of K562 target cells. Exogenous and endogenous NO decreases the release of granzyme B, granzyme A, and perforin: all contents of cytotoxic granules. NO inhibits the signal transduction cascade initiated by cross-linking of the T cell receptor that leads to granule exocytosis. In particular, we found that NO decreases the expression of Ras, a critical signaling component within the exocytic pathway. Ectopic expression of Ras prevents NO inhibition of exocytosis. Our data suggest that Ras mediates NO inhibition of lymphocyte cytotoxicity and emphasize that alterations in the cellular redox state may regulate the exocytic signaling pathway. PMID:16857739
Schüller, Ulrich; Heine, Vivi M.; Mao, Junhao; Kho, Alvin T.; Dillon, Allison K.; Han, Young-Goo; Huillard, Emmanuelle; Sun, Tao; Ligon, Azra H.; Qian, Ying; Ma, Qiufu; Alvarez-Buylla, Arturo; McMahon, Andrew P.; Rowitch, David H.; Ligon, Keith L.
2008-01-01
Origins of the brain tumor, medulloblastoma, from stem cells or restricted progenitor cells are unclear. To investigate this, we activated oncogenic Hedgehog (Hh) signaling in multipotent and lineage-restricted CNS progenitors. We observed that normal unipotent cerebellar granule neuron precursors (CGNP) derive from hGFAP+ and Olig2+ RL progenitors. Hh activation in a spectrum of early and late stage CNS progenitors generated similar medulloblastomas, but not other brain cancers, indicating that acquisition of CGNP identity is essential for tumorigenesis. We show in human and mouse medulloblastoma that cells expressing the glia-associated markers Gfap and Olig2 are neoplastic and that they retain features of embryonic-type granule lineage progenitors. Thus, oncogenic Hh signaling promotes medulloblastoma from lineage-restricted granule cell progenitors. PMID:18691547
Kulinowski, Piotr; Woyna-Orlewicz, Krzysztof; Obrał, Jadwiga; Rappen, Gerd-Martin; Haznar-Garbacz, Dorota; Węglarz, Władysław P; Jachowicz, Renata; Wyszogrodzka, Gabriela; Klaja, Jolanta; Dorożyński, Przemysław P
2016-02-29
The purpose of the research was to investigate the effect of the manufacturing process of the controlled release hydrophilic matrix tablets on their hydration behavior, internal structure and drug release. Direct compression (DC) quetiapine hemifumarate matrices and matrices made of powders obtained by dry granulation (DG) and high shear wet granulation (HS) were prepared. They had the same quantitative composition and they were evaluated using X-ray microtomography, magnetic resonance imaging and biorelevant stress test dissolution. Principal results concerned matrices after 2 h of hydration: (i) layered structure of the DC and DG hydrated tablets with magnetic resonance image intensity decreasing towards the center of the matrix was observed, while in HS matrices layer of lower intensity appeared in the middle of hydrated part; (ii) the DC and DG tablets retained their core and consequently exhibited higher resistance to the physiological stresses during simulation of small intestinal passage than HS formulation. Comparing to DC, HS granulation changed properties of the matrix in terms of hydration pattern and resistance to stress in biorelevant dissolution apparatus. Dry granulation did not change these properties-similar hydration pattern and dissolution in biorelevant conditions were observed for DC and DG matrices. Copyright © 2015 Elsevier B.V. All rights reserved.
Liu, Na; He, Shan; Yu, Xiang
2012-01-01
The dentate gyrus is the primary afferent into the hippocampal formation, with important functions in learning and memory. Granule cells, the principle neuronal type in the dentate gyrus, are mostly formed postnatally, in a process that continues into adulthood. External stimuli, including environmental enrichment, voluntary exercise and learning, have been shown to significantly accelerate the generation and maturation of dentate granule cells in adult rodents. Whether, and to what extent, such environmental stimuli regulate the development and maturation of dentate granule cells during early postnatal development is largely unknown. Furthermore, whether natural stimuli affect the synaptic properties of granule cells had been investigated neither in newborn neurons of the adult nor during early development. To examine the effect of natural sensory stimulation on the dentate gyrus, we reared newborn mice in an enriched environment (EE). Using immunohistochemistry, we showed that dentate granule cells from EE-reared mice exhibited earlier morphological maturation, manifested as faster peaking of doublecortin expression and elevated expression of mature neuronal markers (including NeuN, calbindin and MAP2) at the end of the second postnatal week. Also at the end of the second postnatal week, we found increased density of dendritic spines across the entire dentate gyrus, together with elevated levels of postsynaptic scaffold (post-synaptic density 95) and receptor proteins (GluR2 and GABA(A)Rγ2) of excitatory and inhibitory synapses. Furthermore, dentate granule cells of P14 EE-reared mice had lower input resistances and increased glutamatergic and GABAergic synaptic inputs. Together, our results demonstrate that EE-rearing promotes morphological and electrophysiological maturation of dentate granule cells, underscoring the importance of natural environmental stimulation on development of the dentate gyrus.
Rahaman, Abdur; Miao, Wei; Turkewitz, Aaron P
2009-10-01
Dense core granules (DCGs) in Tetrahymena thermophila contain two protein classes. Proteins in the first class, called granule lattice (Grl), coassemble to form a crystalline lattice within the granule lumen. Lattice expansion acts as a propulsive mechanism during DCG release, and Grl proteins are essential for efficient exocytosis. The second protein class, defined by a C-terminal beta/gamma-crystallin domain, is poorly understood. Here, we have analyzed the function and sorting of Grt1p (granule tip), which was previously identified as an abundant protein in this family. Cells lacking all copies of GRT1, together with the closely related GRT2, accumulate wild-type levels of docked DCGs. Unlike cells disrupted in any of the major GRL genes, DeltaGRT1 DeltaGRT2 cells show no defect in secretion, indicating that neither exocytic fusion nor core expansion depends on GRT1. These results suggest that Grl protein sorting to DCGs is independent of Grt proteins. Consistent with this, the granule core lattice in DeltaGRT1 DeltaGRT2 cells appears identical to that in wild-type cells by electron microscopy, and the only biochemical component visibly absent is Grt1p itself. Moreover, gel filtration showed that Grl and Grt proteins in cell homogenates exist in nonoverlapping complexes, and affinity-isolated Grt1p complexes do not contain Grl proteins. These data demonstrate that two major classes of proteins in Tetrahymena DCGs are likely to be independently transported during DCG biosynthesis and play distinct roles in granule function. The role of Grt1p may primarily be postexocytic; consistent with this idea, DCG contents from DeltaGRT1 DeltaGRT2 cells appear less adhesive than those from the wild type.
Gargioni, R; Barracco, M A
1998-06-01
The hemocytes of two palaemonids and one penaeid were characterized using light and transmission electron microscopy (TEM). The blood cells in all three species were classified as hyaline hemocytes (HH), small granule hemocytes (SGH), and large granule hemocytes (LGH). The HH are unstable hemocytes with a characteristic high nucleo-cytoplasmic ratio. Their cytoplasm appears particularly dense and has from few to numerous granules that often exhibit a typical striated substructure. In both palaemonids, the great majority of the HH contain numerous granules, whereas in Penaeus paulensis, a small number of these cells have few or no granules. The cytoplasm of some HH of the penaeid exhibits typical electron-dense deposits. The granulocytes, LGH and SGH, contain abundant electron-dense granules that are usually smaller in the SGH. In both hemocyte types, the cytosol, but not the granules, is rich in carbohydrates (PAS positive) and numerous vesicles contain acid phosphatase (Gomori reactive). In all studied shrimps, the SGH and LGH were actively phagocytic when examined on blood cell monolayers incubated with the yeast Saccharomyces cerevisiae. A few mitotic figures (less than 1%) were observed in the granulocytes of P. paulensis, but not in the palaemonids. SGH is the main circulating blood cell type in both palaemonids, whereas HH is predominant in the penaeid. Based on morphological and functional features, it appears that the hyaline and the granular hemocytes of the three shrimp species represent different cell lineages.
McGlynn, Shawn E; Chadwick, Grayson L; O'Neill, Ariel; Mackey, Mason; Thor, Andrea; Deerinck, Thomas J; Ellisman, Mark H; Orphan, Victoria J
2018-04-06
Phylogenetically diverse environmental ANME archaea and sulfate-reducing bacteria cooperatively catalyze the anaerobic oxidation of methane oxidation (AOM) in multi-celled consortia within methane seep environments. To better understand these cells and their symbiotic associations, we applied a suite of electron microscopy approaches including correlative f luorescence i n s itu h ybridization - e lectron m icroscopy (FISH-EM), t ransmission e lectron m icroscopy (TEM), and s erial b lock face scanning e lectron m icroscopy 3D reconstructions (SBEM). FISH-EM of methane seep derived consortia revealed phylogenetic variability in terms of cell morphology, ultrastructure, and storage granules. Representatives of the ANME-2b clade, but not other ANME-2 groups, contained polyphosphate-like granules, while some bacteria associated with ANME-2a/2c contained two distinct phases of iron mineral chains resembling magnetosomes. 3D segmentation of two ANME-2 consortia types revealed cellular volumes of ANME and their symbiotic partners which were larger than previous estimates based on light microscopy. Phosphorous granule containing ANME (tentatively ANME-2b) were larger than both ANME with no granules and partner bacteria. This cell type was observed with up to 4 granules per cell and the volume of the cell was larger in proportion to the number of granules inside it, but the percent of the cell occupied by these granules did not vary with granule number. These results illuminate distinctions between ANME-2 archaeal lineages and partnering bacterial populations that are apparently unified in their capability of performing anaerobic methane oxidation. Importance Methane oxidation in anaerobic environments can be accomplished by a number of archaeal groups, some of which live in syntrophic relationships with bacteria in structured consortia. Little is known as to the distinguishing characteristics of these groups. Here we applied imaging approaches to better understand the properties of these cells. We found unexpected morphological, structural, and volume variability of these uncultured groups by correlating fluorescence labeling of cells with electron microscopy observables. Copyright © 2018 American Society for Microbiology.
Live cell imaging of Argonaute proteins in mammalian cells.
Pare, Justin M; Lopez-Orozco, Joaquin; Hobman, Tom C
2011-01-01
The central effector of mammalian RNA interference (RNAi) is the RNA-induced silencing complex (RISC). Proteins of the Argonaute family are the core components of RISC. Recent work from multiple laboratories has shown that Argonaute family members are associated with at least two types of cytoplasmic RNA granules: GW/Processing bodies and stress granules. These Argonaute-containing granules harbor proteins that function in mRNA degradation and translational repression in response to stress. The known role of Argonaute proteins in miRNA-mediated translational repression and siRNA-directed mRNA cleavage (i.e., Argonaute 2) has prompted speculation that the association of Argonautes with these granules may reflect the activity of RNAi in vivo. Accordingly, studying the dynamic association between Argonautes and RNA granules in living cells will undoubtedly provide insight into the regulatory mechanisms of RNA-based silencing. This chapter describes a method for imaging fluorescently tagged Argonaute proteins in living mammalian cells using spinning disk confocal microscopy.
Structure and function of the digestive system of solen grandis dunker
NASA Astrophysics Data System (ADS)
Sheng, Xiuzhen; Zhan, Wenbin; Ren, Sulian
2003-10-01
Structure and function of the digestive system of a bivalve mollusc, Solen grandis, were studied using light microscopy and histochemical methods. The wall of digestive tube consists of four layers: the mucosal epithelium, connective tissue, muscular and fibrosa or serosa (only in the portion of rectum) from the inner to the outer. The ciliated columnar epithelial cells, dispersed by cup-shaped mucous cells, rest on a thin base membrane. There are abundant blood spaces in connective tissue layer. The digestive diverticula are composed of multi-branched duct and digestive tubules. The digestive tubules are lined with digestive and basophilic secretory cells, and surrounded by a layer of smooth muscle fibers and connective tissues. Activities of acid and alkaline phosphatases, esterase and lipase are detected in the digestive cells, and the epithelia of stomach and intestine, suggesting that these cells are capable of intracellular digesting of food materials and absorbing. Besides, acid phosphatase and esterase activities are present in the posterior portion of esophagus. Phagocytes are abundant in blood spaces and the lumens of stomach and intestine, containing brown granules derived from the engulfed food materials. The present work indicates that phagocytes play important roles in ingestion and digestion of food materials, which is supported as well by the activities of acid phosphatase, esterase and lipase detected in blood spaces.
Small-scale Magnetic Flux Emergence in the Quiet Sun
NASA Astrophysics Data System (ADS)
Moreno-Insertis, F.; Martinez-Sykora, J.; Hansteen, V. H.; Muñoz, D.
2018-06-01
Small bipolar magnetic features are observed to appear in the interior of individual granules in the quiet Sun, signaling the emergence of tiny magnetic loops from the solar interior. We study the origin of those features as part of the magnetoconvection process in the top layers of the convection zone. Two quiet-Sun magnetoconvection models, calculated with the radiation-magnetohydrodynamic (MHD) Bifrost code and with domain stretching from the top layers of the convection zone to the corona, are analyzed. Using 3D visualization as well as a posteriori spectral synthesis of Stokes parameters, we detect the repeated emergence of small magnetic elements in the interior of granules, as in the observations. Additionally, we identify the formation of organized horizontal magnetic sheets covering whole granules. Our approach is twofold, calculating statistical properties of the system, like joint probability density functions (JPDFs), and pursuing individual events via visualization tools. We conclude that the small magnetic loops surfacing within individual granules in the observations may originate from sites at or near the downflows in the granular and mesogranular levels, probably in the first 1 or 1.5 Mm below the surface. We also document the creation of granule-covering magnetic sheet-like structures through the sideways expansion of a small subphotospheric magnetic concentration picked up and pulled out of the interior by a nascent granule. The sheet-like structures that we found in the models may match the recent observations of Centeno et al.
Stelmashook, E V; Weih, M; Zorov, D; Victorov, I; Dirnagl, U; Isaev, N
1999-07-30
Granule cells in a dissociated neuro-glial cell culture of cerebellum when exposed to ouabain (10(-3) M) for 25 min apparently swell, increase their [Ca2+]i with obvious depolarization of the mitochondrial membrane. In 3 h after ouabain was omitted from the solution, 62 +/- 3% of granule cells had pycnotic nuclei. The supplement of a solution with competitive specific antagonist of NMDA receptors, L-2-amino-7-phosphonoheptanoate (10(-4) M, APH) together with ouabain prevented cells from swelling, mitochondrial deenergization, neuronal death and increase of [Ca2+]i. These data suggest that cellular Na+/K+-ATPase inactivation in neuro-glial cell cultures of cerebellum leads to glutamate (Glu) accumulation, hyperstimulation of glutamate receptors, higher Ca2+ and Na+ influxes into the cells through the channels activated by Glu. This process leads to cell swelling, mitochondrial deenergization and death of granule cells. Possibly, the decrease of Na+/K+-ATPase activity in brain cells can lead to the onset of at least some chronic neurological disorders.
Towers, Emily R.; Kelly, John J.; Sud, Richa; Gale, Jonathan E.; Dawson, Sally J.
2011-01-01
The POU4 family of transcription factors are required for survival of specific cell types in different sensory systems. Pou4f3 is essential for the survival of auditory sensory hair cells and several mutations in human POU4F3 cause hearing loss. Thus, genes regulated by Pou4f3 are likely to be essential for hair cell survival. We performed a subtractive hybridisation screen in an inner-ear-derived cell line to find genes with differential expression in response to changes in Pou4f3 levels. The screen identified the stress-granule-associated protein Caprin-1 as being downregulated by Pou4f3. We demonstrated that this regulation occurs through the direct interaction of Pou4f3 with binding sites in the Caprin-1 5′ flanking sequence, and describe the expression pattern of Caprin-1 mRNA and protein in the cochlea. Moreover, we found Caprin-1-containing stress granules are induced in cochlear hair cells following aminoglycoside-induced damage. This is the first report of stress granule formation in mammalian hair cells and suggests that the formation of Caprin-1-containing stress granules is a key damage response to a clinically relevant ototoxic agent. Our results have implications for the understanding of aminoglycoside-induced hearing loss and provide further evidence that stress granule formation is a fundamental cellular stress response. PMID:21402877
Expression and subcellular localization of the Qa-SNARE syntaxin17 in human eosinophils.
Carmo, Lívia A S; Dias, Felipe F; Malta, Kássia K; Amaral, Kátia B; Shamri, Revital; Weller, Peter F; Melo, Rossana C N
2015-10-01
SNARE members mediate membrane fusion during intracellular trafficking underlying innate and adaptive immune responses by different cells. However, little is known about the expression and function of these proteins in human eosinophils, cells involved in allergic, inflammatory and immunoregulatory responses. Here, we investigate the expression and distribution of the Qa-SNARE syntaxin17 (STX17) within human eosinophils isolated from the peripheral blood. Flow cytometry and a pre-embedding immunonanogold electron microscopy (EM) technique that combines optimal epitope preservation and secondary Fab-fragments of antibodies linked to 1.4 nm gold particles for optimal access to microdomains, were used to investigate STX17. STX17 was detected within unstimulated eosinophils. Immunogold EM revealed STX17 on secretory granules and on granule-derived vesiculotubular transport carriers (Eosinophil Sombrero Vesicles-EoSVs). Quantitative EM analyses showed that 77.7% of the granules were positive for STX17 with a mean±SEM of 3.9±0.2 gold particles/granule. Labeling was present on both granule outer membranes and matrices while EoSVs showed clear membrane-associated labeling. STX17 was also present in secretory granules in eosinophils stimulated with the cytokine tumor necrosis factor alpha (TNF-α) or the CC-chemokine ligand 11 CCL11 (eotaxin-1), stimuli that induce eosinophil degranulation. The number of secretory granules labeled for STX17 was significantly higher in CCL11 compared with the unstimulated group. The level of cell labeling did not change when unstimulated cells were compared with TNF-α-stimulated eosinophils. The present study clearly shows by immunanonogold EM that STX17 is localized in eosinophil secretory granules and transport vesicles and might be involved in the transport of granule-derived cargos. Copyright © 2015 Elsevier Inc. All rights reserved.
CSR-1 and P granules suppress sperm-specific transcription in the C. elegans germline.
Campbell, Anne C; Updike, Dustin L
2015-05-15
Germ granules (P granules) in C. elegans are required for fertility and function to maintain germ cell identity and pluripotency. Sterility in the absence of P granules is often accompanied by the misexpression of soma-specific proteins and the initiation of somatic differentiation in germ cells. To investigate whether this is caused by the accumulation of somatic transcripts, we performed mRNA-seq on dissected germlines with and without P granules. Strikingly, we found that somatic transcripts do not increase in the young adult germline when P granules are impaired. Instead, we found that impairing P granules causes sperm-specific mRNAs to become highly overexpressed. This includes the accumulation of major sperm protein (MSP) transcripts in germ cells, a phenotype that is suppressed by feminization of the germline. A core component of P granules, the endo-siRNA-binding Argonaute protein CSR-1, has recently been ascribed with the ability to license transcripts for germline expression. However, impairing CSR-1 has very little effect on the accumulation of its mRNA targets. Instead, we found that CSR-1 functions with P granules to prevent MSP and sperm-specific mRNAs from being transcribed in the hermaphrodite germline. These findings suggest that P granules protect germline integrity through two different mechanisms, by (1) preventing the inappropriate expression of somatic proteins at the level of translational regulation, and by (2) functioning with CSR-1 to limit the domain of sperm-specific expression at the level of transcription. © 2015. Published by The Company of Biologists Ltd.
Nganga, Sara; Zhang, Di; Moritz, Niko; Vallittu, Pekka K; Hupa, Leena
2012-11-01
Glass-fiber-reinforced composites (FRCs), based on bifunctional methacrylate resin, have recently shown their potential for use as durable cranioplasty, orthopedic and oral implants. In this study we suggest a multi-component sandwich implant structure with (i) outer layers out of porous FRC, which interface the cortical bone, and (ii) inner layers encompassing bioactive glass granules, which interface with the cancellous bone. The capability of Bioglass(®) 45S5 granules (100-250μm) to induce calcium phosphate formation on the surface of the FRC was explored by immersing the porous FRC-Bioglass laminates in simulated body fluid (SBF) for up to 28d. In both static (agitated) and dynamic conditions, bioactive glass granules induced precipitation of calcium phosphate at the laminate surfaces as confirmed by scanning electron microscopy. The proposed dynamic flow system is useful for the in vitro simulation of bone-like apatite formation on various new porous implant designs containing bioactive glass and implant material degradation. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Jereb, Saša; Hwang, Hun-Way; Van Otterloo, Eric; Govek, Eve-Ellen; Fak, John J; Yuan, Yuan; Hatten, Mary E
2018-01-01
Alternative polyadenylation (APA) regulates mRNA translation, stability, and protein localization. However, it is unclear to what extent APA regulates these processes uniquely in specific cell types. Using a new technique, cTag-PAPERCLIP, we discovered significant differences in APA between the principal types of mouse cerebellar neurons, the Purkinje and granule cells, as well as between proliferating and differentiated granule cells. Transcripts that differed in APA in these comparisons were enriched in key neuronal functions and many differed in coding sequence in addition to 3’UTR length. We characterize Memo1, a transcript that shifted from expressing a short 3’UTR isoform to a longer one during granule cell differentiation. We show that Memo1 regulates granule cell precursor proliferation and that its long 3’UTR isoform is targeted by miR-124, contributing to its downregulation during development. Our findings provide insight into roles for APA in specific cell types and establish a platform for further functional studies. PMID:29578408
Udby, Lene; Calafat, Jero; Sørensen, Ole E; Borregaard, Niels; Kjeldsen, Lars
2002-09-01
Cysteine-rich secretory protein 3 (CRISP-3; also known as SGP28) was originally discovered in human neutrophilic granulocytes. We have recently developed a sensitive sandwich enzyme-linked immunosorbent assay for CRISP-3 and demonstrated the presence of CRISP-3 in exocrine secretions. To investigate the subcellular localization and mobilization of CRISP-3 in human neutrophils, we performed subcellular fractionation of resting and activated neutrophils on three-layer Percoll density gradients, release-studies of granule proteins in response to different secretagogues, and double-labeling immunogold electron microscopy. CRISP-3 was found to be localized in a subset of granules with overlapping characteristics of specific and gelatinase granules and mobilized accordingly, thus confirming the hypothesis that peroxidase-negative granules exist as a continuum from specific to gelatinase granules regarding protein content and mobilization. CRISP-3 was found to be a matrix protein, which is stored in granules as glycosylated and as unglycosylated protein. The subcellular distribution of the two forms of CRISP-3 was identical. In addition, CRISP-3 was found as a granule protein in eosinophilic granulocytes. The presence of CRISP-3 in peroxidase-negative granules of neutrophils, in granules of eosinophils, and in exocrine secretions indicates a role in the innate host defense.
2010-03-08
1992; Jung and McNaughton, 1993); (2) low incidence of recurrent excitatory synapses between granule cells (Molnar and Nadler, 1999; Okazaki et al...neurons, dentate granule cells have a relatively more negative resting membrane potential and exhibit low-frequency firing (Staley et al., 1992; Jung ...inhibition plays a dual role in brain function and possibly seizure occurrence through balancing excitation and synchronizing neuronal firing. An
Johnston, H S; McGadey, J; Thompson, G G; Moore, M R; Payne, A P
1983-01-01
The Harderian gland, its secretory duct and porphyrin content were examined in the mongolian gerbil (Meriones unguiculatus). The gland consisted of tubules lined by a single layer of epithelial cells and a myoepithelial network. The tubule cells were often binucleate and possessed lipid vacuoles in the apical half of the cell, a corona of granular endoplasmic reticulum surrounding the nucleus, and cytoplasmic 'slashes'. The latter are probably derived from dense membranous couplets and may be precursors of the lipid vacuoles. Holocrine and merocrine secretion was observed. Interstitial cells included plasma cells, mast cells and (predominantly) melanocytes which render the gland black. The gland was surrounded by a collagen capsule and an outer layer of highly attenuated (possibly endothelioid) cells. Within the gland, the secretory duct was lined by a single layer of normal tubule cells. Outside the gland, the duct enlarged to form an ampulla, from which clefts led off to deep crypts. The ampulla and clefts were lined by cells with small dense apical granules and stubby microvilli; some possessed lipid vacuoles. The crypts were lined by serous cells with active Golgi regions. At the duct opening, ampullary cells became squamous and goblet cells occurred. Geometric crystalloid deposits (with a layered structure of 7.6 nm periodicity) occurred at cleft-crypt junctions. Islets of extra-glandular ductal tissue were occasionally found within the gland. Porphyrins were detectable both by chemical assay and fluorescence microscopy. There was a trend for female glands to have a higher content than males. Solid intraluminal accretions of porphyrin and/or lipid were present. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 PMID:6654750
[A method for the primary culture of fibroblasts isolated from human airway granulation tissues].
Chen, Nan; Zhang, Jie; Xu, Min; Wang, Yu-ling; Pei, Ying-hua
2013-04-01
To establish a feasible method to culture primary fibroblasts isolated from human airway granulation tissues, and therefore to provide experimental data for the investigation of the pathogenesis of benign airway stenosis. The granulation tissues were collected from 6 patients during routine bronchoscopy at our department of Beijing Tiantan Hospital from April to June 2011. Primary fibroblasts were obtained by culturing the explanted tissues. Cell growth was observed under inverted microscope. All of these 6 primary cultures were successful. Fibroblast-like cells were observed to migrate from the tissue pieces 3 d after inoculation. After 9-11 d of culture, cells reached to 90% confluence and could be sub-cultured. After passage, the cells were still in a typical elongated spindle-shape and grew well. The cells could be sub-cultured further when they formed a monolayer. Explant culture is a reliable method for culturing primary fibroblasts from human airway granulation tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toso, Daniel B.; Javed, Muhammad Mohsin; Czornyj, Elizabeth
Inorganic storage granules have long been recognized in bacterial and eukaryotic cells but were only recently identified in archaeal cells. Here, we report the cellular organization and chemical compositions of storage granules in the Euryarchaeon, Archaeoglobus fulgidusstrain VC16, a hyperthermophilic, anaerobic, and sulfate-reducing microorganism. Dense granules were apparent inA. fulgiduscells imaged by cryo electron microscopy (cryoEM) but not so by negative stain electron microscopy. Cryo electron tomography (cryoET) revealed that each cell contains one to several dense granules located near the cell membrane. Energy dispersive X-ray (EDX) spectroscopy and scanning transmission electron microscopy (STEM) show that, surprisingly, each cell containsmore » not just one but often two types of granules with different elemental compositions. One type, named iron sulfide body (ISB), is composed mainly of the elements iron and sulfur plus copper; and the other one, called polyphosphate body (PPB), is composed of phosphorus and oxygen plus magnesium, calcium, and aluminum. PPBs are likely used for energy storage and/or metal sequestration/detoxification. ISBs could result from the reduction of sulfate to sulfide via anaerobic energy harvesting pathways and may be associated with energy and/or metal storage or detoxification. The exceptional ability of these archaeal cells to sequester different elements may have novel bioengineering applications.« less
Toso, Daniel B.; Javed, Muhammad Mohsin; Czornyj, Elizabeth; ...
2016-01-01
Inorganic storage granules have long been recognized in bacterial and eukaryotic cells but were only recently identified in archaeal cells. Here, we report the cellular organization and chemical compositions of storage granules in the Euryarchaeon, Archaeoglobus fulgidusstrain VC16, a hyperthermophilic, anaerobic, and sulfate-reducing microorganism. Dense granules were apparent inA. fulgiduscells imaged by cryo electron microscopy (cryoEM) but not so by negative stain electron microscopy. Cryo electron tomography (cryoET) revealed that each cell contains one to several dense granules located near the cell membrane. Energy dispersive X-ray (EDX) spectroscopy and scanning transmission electron microscopy (STEM) show that, surprisingly, each cell containsmore » not just one but often two types of granules with different elemental compositions. One type, named iron sulfide body (ISB), is composed mainly of the elements iron and sulfur plus copper; and the other one, called polyphosphate body (PPB), is composed of phosphorus and oxygen plus magnesium, calcium, and aluminum. PPBs are likely used for energy storage and/or metal sequestration/detoxification. ISBs could result from the reduction of sulfate to sulfide via anaerobic energy harvesting pathways and may be associated with energy and/or metal storage or detoxification. The exceptional ability of these archaeal cells to sequester different elements may have novel bioengineering applications.« less
Huard, Sylvain; Morettin, Alan; Fullerton, Morgan D.; Côté, Jocelyn
2017-01-01
Eukaryotic cells form stress granules under a variety of stresses, however the signaling pathways regulating their formation remain largely unknown. We have determined that the Saccharomyces cerevisiae lysine acetyltransferase complex NuA4 is required for stress granule formation upon glucose deprivation but not heat stress. Further, the Tip60 complex, the human homolog of the NuA4 complex, is required for stress granule formation in cancer cell lines. Surprisingly, the impact of NuA4 on glucose-deprived stress granule formation is partially mediated through regulation of acetyl-CoA levels, which are elevated in NuA4 mutants. While elevated acetyl-CoA levels suppress the formation of glucose-deprived stress granules, decreased acetyl-CoA levels enhance stress granule formation upon glucose deprivation. Further our work suggests that NuA4 regulates acetyl-CoA levels through the Acetyl-CoA carboxylase Acc1. Altogether this work establishes both NuA4 and the metabolite acetyl-CoA as critical signaling pathways regulating the formation of glucose-deprived stress granules. PMID:28231279
Nakamichi, Y; Nagamatsu, S
1999-06-24
To explore alpha-SNAP function in insulin exocytosis from either immature or mature secretory granules in pancreatic beta cells, we studied the effects of overexpression of adenovirus-mediated wild-type alpha-SNAP and C-terminally deleted alpha-SNAP mutant (1-285) on newly synthesized proinsulin and insulin release by rat islets and MIN6 cells. Rat islets overexpressing alpha-SNAP and mutant alpha-SNAP were pulse-chased. Exocytosis from immature and mature insulin secretory granules was measured as fractional (%) labeled-proinsulin release immediately after the pulse-labeling and percentage labeled-insulin release after a 3-h chase period, respectively. There was no difference in percentage labeled-proinsulin release between the control and alpha-SNAP or mutant alpha-SNAP-overexpressed islets. Although percentage labeled-insulin release after a 3-h chase period was significantly increased in alpha-SNAP-overexpressed islets, it was decreased in mutant alpha-SNAP-overexpressed islets. Thus, the results demonstrated that alpha-SNAP overexpression in rat islets primarily increased exocytosis from mature, but not immature insulin secretory granules. On the other hand, in MIN6 cells, alpha-SNAP overexpression scarcely affected glucose-stimulated insulin release; therefore, we examined the effect of mutant alpha-SNAP overexpression as the dominant-negative inhibitor on the newly synthesized proinsulin/insulin release using the same protocol as in the rat islet experiments. alpha-SNAP mutant (1-285) overexpression in MIN6 cells decreased the percentage labeled insulin release from mature secretory granules, but not percentage labeled proinsulin release from immature secretory granules. Thus, our data demonstrate that alpha-SNAP functions mainly in the mature insulin secretory granules in pancreatic beta cells. Copyright 1999 Academic Press.
Crivellato, Enrico; Nico, Beatrice; Travan, Luciana; Isola, Miriam; Ribatti, Domenico
2009-01-01
In the present investigation, we attempted to determine whether ultrastructural features indicative of a vesicle-mediated mode of cell secretion were detectable in chick chromaffin cells during embryo development. The adrenal anlagen of domestic fowls were examined at embryonic days (E) 12, 15, 19 and 21 by electron microscopy quantitative analysis. Morphometric evaluation revealed a series of granule and cytoplasmic changes highly specific for piecemeal degranulation (PMD), a secretory process based on vesicular transport of cargoes from within granules for extracellular release. At E19 and E21 we found a significant peak in the percentage of granules exhibiting changes indicative of progressive release of secretory materials, i.e. granules with lucent areas in their cores, reduced electron density, disassembled matrices, residual cores and membrane empty containers. A dramatic raise in the density of 30–80-nm-diameter, membrane-bound, electron-dense and electron-lucent vesicles – which were located either next to granules or close to the plasma membrane – was recognizable at E19, that is, during the prehatching phase. The cytoplasmic burst of dense and clear vesicles was paralleled by the appearance of chromaffin granules showing outpouches or protrusions of their profiles (‘budding features’). These ultrastructural data are indicative of an augmented vesicle-mediated transport of chromaffin granule products for extracellular release in chick embryo chromaffin cells during the prehatching stage. In conclusion, this study provides new data on the fine structure of chromaffin cell organelles during organ development and suggests that PMD may be part of an adrenomedullary secretory response that occurs towards the end of chicken embryogenesis. From an evolutionary point of view, this study lends support to the concept that PMD is a secretory mechanism highly conserved throughout vertebrate classes. PMID:19245498
Dewey, Colleen M; Cenik, Basar; Sephton, Chantelle F; Dries, Daniel R; Mayer, Paul; Good, Shannon K; Johnson, Brett A; Herz, Joachim; Yu, Gang
2011-03-01
TDP-43, or TAR DNA-binding protein 43, is a pathological marker of a spectrum of neurodegenerative disorders, including amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. TDP-43 is an RNA/DNA-binding protein implicated in transcriptional and posttranscriptional regulation. Recent work also suggests that TDP-43 associates with cytoplasmic stress granules, which are transient structures that form in response to stress. In this study, we establish sorbitol as a novel physiological stressor that directs TDP-43 to stress granules in Hek293T cells and primary cultured glia. We quantify the association of TDP-43 with stress granules over time and show that stress granule association and size are dependent on the glycine-rich region of TDP-43, which harbors the majority of pathogenic mutations. Moreover, we establish that cells harboring wild-type and mutant TDP-43 have distinct stress responses: mutant TDP-43 forms significantly larger stress granules, and is incorporated into stress granules earlier, than wild-type TDP-43; in striking contrast, wild-type TDP-43 forms more stress granules over time, but the granule size remains relatively unchanged. We propose that mutant TDP-43 alters stress granule dynamics, which may contribute to the progression of TDP-43 proteinopathies.
Qualitative investigation of fresh human scalp hair with full-field optical coherence tomography
NASA Astrophysics Data System (ADS)
Choi, Woo June; Pi, Long-Quan; Min, Gihyeon; Lee, Won-Soo; Lee, Byeong Ha
2012-03-01
We have investigated depth-resolved cellular structures of unmodified fresh human scalp hairs with ultrahigh-resolution full-field optical coherence tomography (FF-OCT). The Linnik-type white light interference microscope has been home-implemented to observe the micro-internal layers of human hairs in their natural environment. In hair shafts, FF-OCT has qualitatively revealed the cellular hair compartments of cuticle and cortex layers involved in keratin filaments and melanin granules. No significant difference between black and white hair shafts was observed except for absence of only the melanin granules in the white hair, reflecting that the density of the melanin granules directly affects the hair color. Anatomical description of plucked hair bulbs was also obtained with the FF-OCT in three-dimensions. We expect this approach will be useful for evaluating cellular alteration of natural hairs on cosmetic assessment or diagnosis of hair diseases.
Kolmas, Joanna; Pajor, Kamil; Pajchel, Lukasz; Przekora, Agata; Ginalska, Grażyna; Oledzka, Ewa; Sobczak, Marcin
2017-01-01
Nanocrystalline hydroxyapatite containing selenite ions (SeHA; 9.6 wt.% of selenium) was synthesized using wet method and subject to careful physicochemical analysis by powder X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, solid-state nuclear magnetic resonance, wavelength dispersive X-ray fluorescence, and inductively coupled plasma optical emission spectrometry. SeHA was then used to develop the selenium-containing hydroxyapatite/alginate (SeHA/ALG) composite granules. Risedronate sodium (RIS) was introduced to the obtained spherical microgranules of a size of about 1.1–1.5 mm in 2 ways: during the granules’ preparation (RIS solution added to a suspension of ALG and SeHA), and as a result of SeHA/ALG granules soaking in aqueous RIS solution. The analysis made using 13C and 31P cross-polarization magic angle spinning nuclear magnetic resonance confirmed the presence of RIS and its interaction with calcium ions. Then, the release of selenium (inductively coupled plasma optical emission spectrometry) and RIS (high-performance liquid chromatography) from microgranules was examined. Moreover, cytotoxicity of fabricated granules was assessed by MTT test. Selenium release was biphasic: the first stage was short and ascribed to a “burst release” probably from a hydrated surface layer of SeHA crystals, while the next stage was significantly longer and ascribed to a sustained release of selenium from the crystals’ interior. The study showed that the method of obtaining microgranules containing RIS significantly affects its release profile. Performed cytotoxicity test revealed that fabricated granules had high antitumor activity against osteosarcoma cells. However, because of the “burst release” of selenium during the first 10 h, the granules significantly reduced viability of normal osteoblasts as well. PMID:28848343
Bowman, G R; Turkewitz, A P
2001-12-01
The formation of dense core granules (DCGs) requires both the sorting of granule contents from other secretory proteins and a postsorting maturation process. The Tetrahymena thermophila strain SB281 fails to synthesize DCGs, and previous analysis suggested that the defect lay at or near the sorting step. Because this strain represents one of the very few mutants in this pathway, we have undertaken a more complete study of the phenotype. Genetic epistasis analysis places the defect upstream of those in two other characterized Tetrahymena mutants. Using immunofluorescent detection of granule content proteins, as well as GFP tagging, we describe a novel cytoplasmic compartment to which granule contents can be sorted in growing SB281 cells. Cell fusion experiments indicate that this compartment is not a biosynthetic intermediate in DCG synthesis. Sorting in SB281 is strongly conditional with respect to growth. When cells are starved, the storage compartment is degraded and de novo synthesized granule proteins are rapidly secreted. The mutation in SB281 therefore appears to affect DCG synthesis at the level of both sorting and maturation.
Bowman, G R; Turkewitz, A P
2001-01-01
The formation of dense core granules (DCGs) requires both the sorting of granule contents from other secretory proteins and a postsorting maturation process. The Tetrahymena thermophila strain SB281 fails to synthesize DCGs, and previous analysis suggested that the defect lay at or near the sorting step. Because this strain represents one of the very few mutants in this pathway, we have undertaken a more complete study of the phenotype. Genetic epistasis analysis places the defect upstream of those in two other characterized Tetrahymena mutants. Using immunofluorescent detection of granule content proteins, as well as GFP tagging, we describe a novel cytoplasmic compartment to which granule contents can be sorted in growing SB281 cells. Cell fusion experiments indicate that this compartment is not a biosynthetic intermediate in DCG synthesis. Sorting in SB281 is strongly conditional with respect to growth. When cells are starved, the storage compartment is degraded and de novo synthesized granule proteins are rapidly secreted. The mutation in SB281 therefore appears to affect DCG synthesis at the level of both sorting and maturation. PMID:11779800
Kamitakahara, Masanobu; Ohtoshi, Naohiro; Kawashita, Masakazu; Ioku, Koji
2016-05-01
Spherical porous granules of hydroxyapatite (HA) containing magnetic nanoparticles would be suitable for the hyperthermia treatment of bone tumor, because porous HA granules act as a scaffold for bone regeneration, and magnetic nanoparticles generate sufficient heat to kill tumor cells under an alternating magnetic field. Although magnetic nanoparticles are promising heat generators, their small size makes them difficult to support in porous HA ceramics. We prepared micrometer-sized composites of magnetic and HA nanoparticles, and then supported them in porous HA granules composed of rod-like particles. The spherical porous HA granules containing the composites of magnetic and HA nanoparticle were successfully prepared using a hydrothermal process without changing the crystalline phase and heat generation properties of the magnetic nanoparticles. The obtained granules generated sufficient heat for killing tumor cells under an alternating magnetic field (300 Oe at 100 kHz). The obtained granules are expected to be useful for the hyperthermia treatment of bone tumors.
Drosophila germ granules are structured and contain homotypic mRNA clusters
Trcek, Tatjana; Grosch, Markus; York, Andrew; Shroff, Hari; Lionnet, Timothée; Lehmann, Ruth
2015-01-01
Germ granules, specialized ribonucleoprotein particles, are a hallmark of all germ cells. In Drosophila, an estimated 200 mRNAs are enriched in the germ plasm, and some of these have important, often conserved roles in germ cell formation, specification, survival and migration. How mRNAs are spatially distributed within a germ granule and whether their position defines functional properties is unclear. Here we show, using single-molecule FISH and structured illumination microscopy, a super-resolution approach, that mRNAs are spatially organized within the granule whereas core germ plasm proteins are distributed evenly throughout the granule. Multiple copies of single mRNAs organize into ‘homotypic clusters' that occupy defined positions within the center or periphery of the granule. This organization, which is maintained during embryogenesis and independent of the translational or degradation activity of mRNAs, reveals new regulatory mechanisms for germ plasm mRNAs that may be applicable to other mRNA granules. PMID:26242323
NAADP Activates Two-Pore Channels on T Cell Cytolytic Granules to Stimulate Exocytosis and Killing
Davis, Lianne C.; Morgan, Anthony J.; Chen, Ji-Li; Snead, Charlotte M.; Bloor-Young, Duncan; Shenderov, Eugene; Stanton-Humphreys, Megan N.; Conway, Stuart J.; Churchill, Grant C.; Parrington, John; Cerundolo, Vincenzo; Galione, Antony
2012-01-01
Summary A cytotoxic T lymphocyte (CTL) kills an infected or tumorigenic cell by Ca2+-dependent exocytosis of cytolytic granules at the immunological synapse formed between the two cells. Although inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release from the endoplasmic reticulum activates the store-operated Ca2+-influx pathway that is necessary for exocytosis, it is not a sufficient stimulus [1–4]. Here we identify the Ca2+-mobilizing messenger nicotinic acid adenine dinucleotide phosphate (NAADP) and its recently identified molecular target, two-pore channels (TPCs) [5–7], as being important for T cell receptor signaling in CTLs. We demonstrate that cytolytic granules are not only reservoirs of cytolytic proteins but are also the acidic Ca2+ stores mobilized by NAADP via TPC channels on the granules themselves, so that TPCs migrate to the immunological synapse upon CTL activation. Moreover, NAADP activates TPCs to drive exocytosis in a way that is not mimicked by global Ca2+ signals induced by IP3 or ionomycin, suggesting that critical, local Ca2+ nanodomains around TPCs stimulate granule exocytosis. Hence, by virtue of the NAADP/TPC pathway, cytolytic granules generate Ca2+ signals that lead to their own exocytosis and to cell killing. This study highlights a selective role for NAADP in stimulating exocytosis crucial for immune cell function and may impact on stimulus-secretion coupling in wider cellular contexts. PMID:23177477
Li, Jingsong; Luo, Ruihua; Hooi, Shing Chuan; Ruga, Pilar; Zhang, Jiping; Meda, Paolo; Li, GuoDong
2005-03-22
Syncollin was first demonstrated to be a protein capable of affecting granule fusion in a cell-free system, but later studies revealed its luminal localization in zymogen granules. To determine its possible role in exocytosis in the intact cell, syncollin and a truncated form of the protein (lacking the N-terminal hydrophobic domain) were stably transfected in insulin-secreting INS-1 cells since these well-studied exocytotic cells appear not to express the protein per se. Studies by subcellular fractionation analysis, double immunofluorescence staining, and electron microscopy examination revealed that transfection of syncollin produced strong signals in the insulin secretory granules, whereas the product from transfecting the truncated syncollin was predominantly associated with the Golgi apparatus and to a lesser degree with the endoplasmic reticulum. The expressed products were associated with membranes and not the soluble fractions in either cytoplasm or the lumens of organelles. Importantly, insulin release stimulated by various secretagogues was severely impaired in cells expressing syncollin, but not affected by expressing truncated syncollin. Transfection of syncollin appeared not to impede insulin biosynthesis and processing, since cellular contents of proinsulin and insulin and the number of secretory granules were not altered. In addition, the early signals (membrane depolarization and Ca(2+) responses) for regulated insulin secretion were unaffected. These findings indicate that syncollin may be targeted to insulin secretory granules specifically and impair regulated secretion at a distal stage.
Timofeeva, Olga; Nadler, J Victor
2006-03-17
Recurrent mossy fiber synapses in the dentate gyrus of epileptic brain facilitate the synchronous firing of granule cells and may promote seizure propagation. Mossy fiber terminals contain and release zinc. Released zinc inhibits the activation of NMDA receptors and may therefore oppose the development of granule cell epileptiform activity. Hippocampal slices from rats that had experienced pilocarpine-induced status epilepticus and developed a recurrent mossy fiber pathway were used to investigate this possibility. Actions of released zinc were inferred from the effects of chelation with 1 mM calcium disodium EDTA (CaEDTA). When granule cell population bursts were evoked by mossy fiber stimulation in the presence of 6 mM K(+) and 30 microM bicuculline, CaEDTA slowed the rate at which evoked bursting developed, but did not change the magnitude of the bursts once they had developed fully. The effects of CaEDTA were then studied on the pharmacologically isolated NMDA receptor- and AMPA/kainate receptor-mediated components of the fully developed bursts. CaEDTA increased the magnitude of NMDA receptor-mediated bursts and reduced the magnitude of AMPA/kainate receptor-mediated bursts. CaEDTA did not affect the granule cell bursts evoked in slices from untreated rats by stimulating the perforant path in the presence of bicuculline and 6 mM K(+). These results suggest that zinc released from the recurrent mossy fibers serves mainly to facilitate the recruitment of dentate granule cells into population bursts.
Sharda, Anish; Kim, Sarah H.; Jasuja, Reema; Gopal, Srila; Flaumenhaft, Robert; Furie, Barbara C.
2015-01-01
Protein disulfide isomerase (PDI), secreted from platelets and endothelial cells after injury, is required for thrombus formation. The effect of platelet and endothelial cell granule contents on PDI-mediated thrombus formation was studied by intravital microscopy using a mouse model of Hermansky-Pudlak syndrome in which platelet dense granules are absent. Platelet deposition and fibrin generation were nearly absent, and extracellular PDI was significantly reduced in HPS6−/− mice after vascular injury. HPS6−/− platelets displayed impaired PDI secretion and impaired exocytosis of α granules, lysosomes, and T granules due to decreased sensitivity to thrombin, but these defects could be corrected by addition of subthreshold amounts of adenosine 5′-diphosphate (ADP). Human Hermansky-Pudlak syndrome platelets demonstrated similar characteristics. Infusion of wild-type platelets rescued thrombus formation in HPS6−/− mice. Human umbilical vein endothelial cells in which the HPS6 gene was silenced displayed impaired PDI secretion and exocytosis of Weibel-Palade bodies. Defective thrombus formation in Hermansky-Pudlak syndrome, associated with impaired exocytosis of residual granules in endothelial cells and platelets, the latter due to deficiency of ADP, is characterized by a defect in T granule secretion, a deficiency in extracellular PDI secretion, and impaired fibrin generation and platelet aggregation. Hermansky-Pudlak syndrome is an example of a hereditary disease whereby impaired PDI secretion contributes to a bleeding phenotype. PMID:25593336
Möhn, H; Le Cabec, V; Fischer, S; Maridonneau-Parini, I
1995-07-15
The src-family protein-tyrosine kinase p59hck is mainly expressed in neutrophils; however, its functional role in these cells is unknown. Several other src-family members are localized on secretory vesicles and have been proposed to regulate intracellular traffic. We have established here the subcellular localization of p59hck in human neutrophils. Immunoblotting of subcellular fractions showed that approx. 60% of the p59hck per cell is localized on the secretory granules; the other 40% is distributed equally between non-granular membranes and the cytosol. Immunofluorescence of neutrophils and HL60 cells suggests that the p59hck-positive granules are azurophil granules. Granular p59hck is highly susceptible to degradation by an azurophil-granule proteinase. Different forms of p59hck occur in the three subcellular compartments: a 61 kDa form is mainly found in the granules, a 59 kDa form is predominant in the non-granular membranes, whereas cytosolic p59hck migrates as a doublet at 63 kDa. During the process of phagocytosis-linked degranulation, induced by serum-opsonized zymosan in neutrophils or HL60 cells, granular p59hck translocates towards the phagosome. The subcellular localization of p59hck suggests that the enzyme could be involved in the regulation of the degranulation process.
Statistical properties of solar granulation from the SOUP instrument on Spacelab 2
NASA Astrophysics Data System (ADS)
Topka, K.; Title, A.; Tarbell, T.; Ferguson, S.; Shine, R.
1988-11-01
The Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 collected movies of solar granulation completely free from atmospheric blurring, and are not degraded by pointint jitter (the pointing stability was 0.003 sec root mean square). The movies illustrate that the solar five minute oscillation has a major role in the appearance of solar granulation and that exploding granules are a common feature of the granule evolution. Using 3-D Fourier filtering techniques the oscillations were removed and it was demonstrated that the autocorrelation lifetime of granulation is a factor of two greater in magnetic field regions than in field-free quiet sun. Horizontal velocities were measured and flow patterns were observed on the scale of meso- and super granulation. In quiet regions the mean flow velocity is 370 m/s while in the magnetic regions it is about 125 m/s. It was also found that the root mean square (RMS) fluctuating horizonal velocity field is substantially greater in quiet sun than in strong magnetic field regions. By superimposing the location of exploding granules on the average flow maps it was found that they appear almost exclusively in the center of mesogranulation size flow cells. Because of the nonuniformity of the distribution of exploding granules, the evolution of the granulation pattern in mesogranule cell centers and boundaries differs fundamentally. It is clear from this study there is neither a typical granule nor a typical granule evolution.
Statistical properties of solar granulation from the SOUP instrument on Spacelab 2
NASA Technical Reports Server (NTRS)
Topka, K.; Title, A.; Tarbell, T.; Ferguson, S.; Shine, R.
1988-01-01
The Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 collected movies of solar granulation completely free from atmospheric blurring, and are not degraded by pointint jitter (the pointing stability was 0.003 sec root mean square). The movies illustrate that the solar five minute oscillation has a major role in the appearance of solar granulation and that exploding granules are a common feature of the granule evolution. Using 3-D Fourier filtering techniques the oscillations were removed and it was demonstrated that the autocorrelation lifetime of granulation is a factor of two greater in magnetic field regions than in field-free quiet sun. Horizontal velocities were measured and flow patterns were observed on the scale of meso- and super granulation. In quiet regions the mean flow velocity is 370 m/s while in the magnetic regions it is about 125 m/s. It was also found that the root mean square (RMS) fluctuating horizonal velocity field is substantially greater in quiet sun than in strong magnetic field regions. By superimposing the location of exploding granules on the average flow maps it was found that they appear almost exclusively in the center of mesogranulation size flow cells. Because of the nonuniformity of the distribution of exploding granules, the evolution of the granulation pattern in mesogranule cell centers and boundaries differs fundamentally. It is clear from this study there is neither a typical granule nor a typical granule evolution.
Impaired neuronal maturation of hippocampal neural progenitor cells in mice lacking CRAF.
Pfeiffer, Verena; Götz, Rudolf; Camarero, Guadelupe; Heinsen, Helmut; Blum, Robert; Rapp, Ulf Rüdiger
2018-01-01
RAF kinases are major constituents of the mitogen activated signaling pathway, regulating cell proliferation, differentiation and cell survival of many cell types, including neurons. In mammals, the family of RAF proteins consists of three members, ARAF, BRAF, and CRAF. Ablation of CRAF kinase in inbred mouse strains causes major developmental defects during fetal growth and embryonic or perinatal lethality. Heterozygous germline mutations in CRAF result in Noonan syndrome, which is characterized by neurocognitive impairment that may involve hippocampal physiology. The role of CRAF signaling during hippocampal development and generation of new postnatal hippocampal granule neurons has not been examined and may provide novel insight into the cause of hippocampal dysfunction in Noonan syndrome. In this study, by crossing CRAF-deficiency to CD-1 outbred mice, a CRAF mouse model was established which enabled us to investigate the interplay of neural progenitor proliferation and postmitotic differentiation during adult neurogenesis in the hippocampus. Albeit the general morphology of the hippocampus was unchanged, CRAF-deficient mice displayed smaller granule cell layer (GCL) volume at postnatal day 30 (P30). In CRAF-deficient mice a substantial number of abnormal, chromophilic, fast dividing cells were found in the subgranular zone (SGZ) and hilus of the dentate gyrus (DG), indicating that CRAF signaling contributes to hippocampal neural progenitor proliferation. CRAF-deficient neural progenitor cells showed an increased cell death rate and reduced neuronal maturation. These results indicate that CRAF function affects postmitotic neural cell differentiation and points to a critical role of CRAF-dependent growth factor signaling pathway in the postmitotic development of adult-born neurons.
Impaired neuronal maturation of hippocampal neural progenitor cells in mice lacking CRAF
Götz, Rudolf; Camarero, Guadelupe; Heinsen, Helmut; Blum, Robert; Rapp, Ulf Rüdiger
2018-01-01
RAF kinases are major constituents of the mitogen activated signaling pathway, regulating cell proliferation, differentiation and cell survival of many cell types, including neurons. In mammals, the family of RAF proteins consists of three members, ARAF, BRAF, and CRAF. Ablation of CRAF kinase in inbred mouse strains causes major developmental defects during fetal growth and embryonic or perinatal lethality. Heterozygous germline mutations in CRAF result in Noonan syndrome, which is characterized by neurocognitive impairment that may involve hippocampal physiology. The role of CRAF signaling during hippocampal development and generation of new postnatal hippocampal granule neurons has not been examined and may provide novel insight into the cause of hippocampal dysfunction in Noonan syndrome. In this study, by crossing CRAF-deficiency to CD-1 outbred mice, a CRAF mouse model was established which enabled us to investigate the interplay of neural progenitor proliferation and postmitotic differentiation during adult neurogenesis in the hippocampus. Albeit the general morphology of the hippocampus was unchanged, CRAF-deficient mice displayed smaller granule cell layer (GCL) volume at postnatal day 30 (P30). In CRAF-deficient mice a substantial number of abnormal, chromophilic, fast dividing cells were found in the subgranular zone (SGZ) and hilus of the dentate gyrus (DG), indicating that CRAF signaling contributes to hippocampal neural progenitor proliferation. CRAF-deficient neural progenitor cells showed an increased cell death rate and reduced neuronal maturation. These results indicate that CRAF function affects postmitotic neural cell differentiation and points to a critical role of CRAF-dependent growth factor signaling pathway in the postmitotic development of adult-born neurons. PMID:29590115
Zhou, Jia-Heng; Zhang, Zhi-Ming; Zhao, Hang; Yu, Hai-Tian; Alvarez, Pedro J J; Xu, Xiang-Yang; Zhu, Liang
2016-09-01
A novel funnel-shaped internals was proposed to enhance the stability and pollutant removal performance of an aerobic granular process by optimizing granule size distribution. Results showed up to 68.3±1.4% of granules in novel reactor (R1) were situated in optimal size range (700-1900μm) compared to less than 29.7±1.1% in conventional reactor (R2), and overgrowth of large granules was effectively suppressed without requiring additional energy. Consequently, higher total nitrogen (TN) removal (81.6±2.1%) achieved in R1 than in R2 (48.1±2.7%). Hydraulic analysis revealed the existence of selectively assigning hydraulic pressure in R1. The total shear rate (τtotal) on large granules was 3.07±0.14 times higher than that of R2, while τtotal of small granules in R1 was 70.7±4.6% in R2. Furthermore, large granules in R1 with intact extracellular polymeric substances (EPS) outer layer structure entrapped hydroxyapatite at center, which formed a core structure and further enhanced the stability of aerobic granules. Copyright © 2016 Elsevier Ltd. All rights reserved.
Althaus, A L; Sagher, O; Parent, J M; Murphy, G G
2015-02-15
Hilar ectopic dentate granule cells (DGCs) are a salient feature of aberrant plasticity in human temporal lobe epilepsy (TLE) and most rodent models of the disease. Recent evidence from rodent TLE models suggests that hilar ectopic DGCs contribute to hyperexcitability within the epileptic hippocampal network. Here we investigate the intrinsic excitability of DGCs from humans with TLE and the rat pilocarpine TLE model with the objective of comparing the neurophysiology of hilar ectopic DGCs to their normotopic counterparts in the granule cell layer (GCL). We recorded from 36 GCL and 7 hilar DGCs from human TLE tissue. Compared with GCL DGCs, hilar DGCs in patient tissue exhibited lower action potential (AP) firing rates, more depolarized AP threshold, and differed in single AP waveform, consistent with an overall decrease in excitability. To evaluate the intrinsic neurophysiology of hilar ectopic DGCs, we made recordings from retrovirus-birthdated, adult-born DGCs 2-4 mo after pilocarpine-induced status epilepticus or sham treatment in rats. Hilar DGCs from epileptic rats exhibited higher AP firing rates than normotopic DGCs from epileptic or control animals. They also displayed more depolarized resting membrane potential and wider AP waveforms, indicating an overall increase in excitability. The contrasting findings between disease and disease model may reflect differences between the late-stage disease tissue available from human surgical specimens and the earlier disease stage examined in the rat TLE model. These data represent the first neurophysiological characterization of ectopic DGCs from human hippocampus and prospectively birthdated ectopic DGCs in a rodent TLE model. Copyright © 2015 the American Physiological Society.
Histological and Ultrastructural Studies on the Conjunctiva of the Barred Owl (Strix varia)
Jochems, Brian; Phillips, Thomas E.
2015-01-01
This report is the first characterization of the histology and ultrastructure of the barred owl conjunctiva. The inferior eyelid was dominated by a large disk-shaped plate covered by a non-keratinized stratified squamous or cuboidal epithelium of variable thickness. The apical surface of the plate epithelium varied from flat to long microvilli or even short cytoplasmic extensions similar to those seen in the third eyelid. All specimens had a few goblet cells filled with mucous secretory granules in the plate region. The underlying connective tissue was a dense fibroelastic stroma. Eosinophils were surprisingly common in the epithelial layer and underlying connective tissue in the plate and more distal orbital mucosal region. The orbital mucosa contained goblet cells with heterogeneous glycosylation patterns. The leading edge and marginal plait of the third eyelid are designed to collect fluid and particulate matter as they sweep across the surface of the eye. The palpebral conjunctival surface of the third eyelid was covered by an approximately five-cell-deep stratified squamous epithelium without goblet cells. The bulbar surface of the third eyelid was a bilayer of epithelial cells whose superficial cells have elaborate cytoplasmic tapering extensions reaching out 25 μm. Narrow cytofilia radiated outwards up to an additional 15–20 μm from the cytoplasmic extensions. Lectin labeling demonstrated heterogeneous glycosylation of the apical membrane specializations but only small amounts of glycoprotein-filled secretory granules in the third eyelid. PMID:26562834
Expression and subcellular localization of the Qa-SNARE syntaxin17 in human eosinophils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmo, Lívia A.S.; Dias, Felipe F.; Malta, Kássia K.
Background: SNARE members mediate membrane fusion during intracellular trafficking underlying innate and adaptive immune responses by different cells. However, little is known about the expression and function of these proteins in human eosinophils, cells involved in allergic, inflammatory and immunoregulatory responses. Here, we investigate the expression and distribution of the Qa-SNARE syntaxin17 (STX17) within human eosinophils isolated from the peripheral blood. Methods: Flow cytometry and a pre-embedding immunonanogold electron microscopy (EM) technique that combines optimal epitope preservation and secondary Fab-fragments of antibodies linked to 1.4 nm gold particles for optimal access to microdomains, were used to investigate STX17. Results: STX17more » was detected within unstimulated eosinophils. Immunogold EM revealed STX17 on secretory granules and on granule-derived vesiculotubular transport carriers (Eosinophil Sombrero Vesicles-EoSVs). Quantitative EM analyses showed that 77.7% of the granules were positive for STX17 with a mean±SEM of 3.9±0.2 gold particles/granule. Labeling was present on both granule outer membranes and matrices while EoSVs showed clear membrane-associated labeling. STX17 was also present in secretory granules in eosinophils stimulated with the cytokine tumor necrosis factor alpha (TNF-α) or the CC-chemokine ligand 11 CCL11 (eotaxin-1), stimuli that induce eosinophil degranulation. The number of secretory granules labeled for STX17 was significantly higher in CCL11 compared with the unstimulated group. The level of cell labeling did not change when unstimulated cells were compared with TNF-α-stimulated eosinophils. Conclusions: The present study clearly shows by immunanonogold EM that STX17 is localized in eosinophil secretory granules and transport vesicles and might be involved in the transport of granule-derived cargos. - Highlights: • First demonstration of the Qa-SNARE syntaxin-17 (STX17) in human eosinophils. • High resolution immunogold EM shows STX17 in granules and tubular vesicles. • Unstimulated, TNF-α or CCL11-stimulated eosinophils express STX17. • Our findings suggest a role for STX17 in the transport of granule-derived cargos.« less
Colchicine induced intraneuronal free zinc accumulation and dentate granule cell degeneration.
Choi, Bo Young; Lee, Bo Eun; Kim, Jin Hee; Kim, Hyun Jung; Sohn, Min; Song, Hong Ki; Chung, Tae Nyoung; Suh, Sang Won
2014-08-01
Colchicine has been discovered to inhibit many inflammatory processes such as gout, familial Mediterranean fever, pericarditis and Behcet disease. Other than these beneficial anti-inflammatory effects, colchicine blocks microtubule-assisted axonal transport, which results in the selective loss of dentate granule cells of the hippocampus. The mechanism of the colchicine-induced dentate granule cell death and depletion of mossy fiber terminals still remains unclear. In the present study, we hypothesized that colchicine-induced dentate granule cell death may be caused by accumulation of labile intracellular zinc. 10 μg kg(-1) of colchicine was injected into the adult rat hippocampus and then brain sections were evaluated at 1 day or 1 week later. Neuronal cell death was evaluated by H&E staining or Fluoro-Jade B. Zinc accumulation and vesicular zinc were detected by N-(6-methoxy-8-quinolyl)-para-toluene sulfonamide (TSQ) staining. To test whether an extracellular zinc chelator can prevent this process, CaEDTA was injected into the hippocampus over a 5 min period with colchicine. To test whether other microtubule toxins also produce similar effects as colchicine, vincristine was injected into the hippocampus. The present study found that colchicine injection induced intracellular zinc accumulation in the dentate granule cells and depleted vesicular zinc from mossy fiber terminals. Injection of a zinc chelator, CaEDTA, did not block the zinc accumulation and neuronal death. Vincristine also produced intracellular zinc accumulation and neuronal death. These results suggest that colchicine-induced dentate granule cell death is caused by blocking axonal zinc flow and accumulation of intracellular labile zinc.
Damodaran, Arun; Reston Saroja, Beyo; Kotharambath, Ramachandran; Mohammad Abdulkader, Akbarsha; Oommen, Oommen V; Lekha, Divya
2018-03-01
We adopted light and electron microscopy to understand the structure of the skin of two species of caecilians, Ichthyophis tricolor and Uraeotyphlus cf. oxyurus, from Western Ghats of Kerala, India. The surface of the skin of these caecilians contains an irregular pattern of microridges. Oval, round and polymorphic glandular openings are randomly distributed all over the skin surface. Most of the openings are funnel shaped. The epithelial cells along the rim of the opening descend into the tunnel of the duct. A few glandular openings protrude slightly above the epithelium of the duct. The skin is formed of epidermis and dermis. Small flat disk-like dermal scales, composed of a basal plate of several layers of unmineralized collagen fibers topped with a discontinuous layer of mineralized globular squamulae, are lodged in pouches in the transverse ridges of the skin. Each pouch contains 1-4 scales, which might differ in size. The scales are almost similar between species, yet the difference can be useful in distinguishing between the two species. Flask cells and Merkel cells are present in the epidermis. Two types of glands, mucous and granular, are present in the dermis. The mucous glands are densely packed with mucous vesicles. Darkly stained mucous producing cells are located around the periphery of the gland. Secretory mucous vesicles differ in their organization and distribution. The granular glands are located perpendicular to the skin surface. The granule producing cells of the gland are located near the periphery. There are differently stained spherical secretory granules of various sizes in the cytoplasm. Thus, the use of different microscopic techniques contributed fascinatingly to the first ever understanding of organization of the skin of two selected caecilian species from Western Ghats, revealing certain features to differ between them. Copyright © 2018 Elsevier Ltd. All rights reserved.
Immunology: Is Actin at the Lytic Synapse a Friend or a Foe?
Hammer, John A
2018-02-19
Cytotoxic T cells and natural killer cells defend us against disease by secreting lytic granules. Whether actin facilitates or thwarts lytic granule secretion has been an open question. Recent results now indicate that the answer depends on the maturation stage of the immune cell-target cell contact. Published by Elsevier Ltd.
Running reorganizes the circuitry of one-week-old adult-born hippocampal neurons.
Sah, Nirnath; Peterson, Benjamin D; Lubejko, Susan T; Vivar, Carmen; van Praag, Henriette
2017-09-07
Adult hippocampal neurogenesis is an important form of structural and functional plasticity in the mature mammalian brain. The existing consensus is that GABA regulates the initial integration of adult-born neurons, similar to neuronal development during embryogenesis. Surprisingly, virus-based anatomical tracing revealed that very young, one-week-old, new granule cells in male C57Bl/6 mice receive input not only from GABAergic interneurons, but also from multiple glutamatergic cell types, including mature dentate granule cells, area CA1-3 pyramidal cells and mossy cells. Consistently, patch-clamp recordings from retrovirally labeled new granule cells at 7-8 days post retroviral injection (dpi) show that these cells respond to NMDA application with tonic currents, and that both electrical and optogenetic stimulation can evoke NMDA-mediated synaptic responses. Furthermore, new dentate granule cell number, morphology and excitatory synaptic inputs at 7 dpi are modified by voluntary wheel running. Overall, glutamatergic and GABAergic innervation of newly born neurons in the adult hippocampus develops concurrently, and excitatory input is reorganized by exercise.
Localization and characterization of carbohydrates in adrenal medullary cells
1975-01-01
The localization and characterization of carbohydrates in adrenal medullary cells were studied by histochemical and cytochemical methods. Adrenaline (A)-and noradrenaline (N)-storing granules were argentaphobic when ultrathin sections of Araldite-embedded medullae were stained according to the periodic acid-thiocarbohydrazide-silver proteinate technique of Thiery. A small amount of glycogen in the form of single beta-particles as well as lysosomes were, however, visualized by this technique. The entire core of the A granules was markedly positive after ultrathin sections of glutaraldehyde-fixed, glycol methacrylate (GMA)-embedded medullae were stained with phosphotungstic acid (PTA) at low pH (0.3). The N granules, in contrast, were mostly unreactive. In the A cells, PTA stained a large part of the Golgi complex, whereas in the N cells the Golgi complex was mostly unstained. In both cell types, the cell coat, lysosomes, and multivesticular bodies reacted to PTA. The periodic acid-Schiff (PAS) technique showed A but not N granules in semithin sections of GMA- or Araldite-embedded medullae. The PTA and PAS stains were abolished by acetylation, restored by saponification, unchanged by methylation, and greatly diminished by sulfation. In ultrathin sections of GMA- or Araldite- embedded medullae incubated with colloidal iron according to various techniques, the cell coat and lysosomes of both cell types were stained, unlike all the other cytoplasmic organelles. These results indicate that A granules and the Golgi complex of A cells, unlike the same structures in N cells, are rich in glycoproteins which are probably not acidic. PMID:47862
Stereological studies of the effects of sodium benzoate or ascorbic acid on rats` cerebellum.
Noorafshan, Ali; Erfanizadeh, Mahboobeh; Karbalay-Doust, Saied
2014-12-01
To evaluate the cerebellar structure in sodium benzoate (NaB) or ascorbic acid (AA) treated rats. This experimental study was conducted between May and September 2013 in the Laboratory Animal Center of Shiraz University of Medical Sciences, Shiraz, Iran. The rats received distilled either water, NaB (200mg/kg/day), AA (100mg/kg/day), or NaB+AA. The hemispheres were removed after 28 days and underwent quantitative study. The total volume of the cerebellar hemisphere, its cortex, intracerebellar nuclei; the total number of the Purkinje, Bergman, granule, neurons, and glial cells of the molecular layer; and neurons and glial cells of the intracerebellar nuclei reduced by 21-52% in the NaB-treated rats compared with the distilled water group (p=0.004). The total number of the Purkinje, Bergman, Golgi, and granule cells was 29-45% higher in the AA-treated rats compared with the distilled water group (p=0.05). However, these measures reduced by 17-50% in the NaB+AA-treated rats compared with the distilled water group (p=0.004). The NaB+AA group did not induce any significant structural changes in comparison with the NaB group (p>0.05). The NaB exposure with or without AA treatment could alter the cerebellum. Yet, AA could prevent the loss of some cells in the cerebellum.
Giordano, T; Brigatti, C; Podini, P; Bonifacio, E; Meldolesi, J; Malosio, M L
2008-06-01
We investigated, in three beta cell lines (INS-1E, RIN-5AH, betaTC3) and in human and rodent primary beta cells, the storage and release of chromogranin B, a secretory protein expressed in beta cells and postulated to play an autocrine role. We asked whether chromogranin B is stored together with and discharged in constant ratio to insulin upon various stimuli. The intracellular distribution of insulin and chromogranin B was revealed by immunofluorescence followed by three-dimensional image reconstruction and by immunoelectron microscopy; their stimulated discharge was measured by ELISA and immunoblot analysis of homogenates and incubation media. Insulin and chromogranin B, co-localised in the Golgi complex/trans-Golgi network, appeared largely segregated from each other in the secretory granule compartment. In INS-1E cells, the percentage of granules positive only for insulin or chromogranin B and of those positive for both was 66, 7 and 27%, respectively. In resting cells, both insulin and chromogranin B were concentrated in the granule cores; upon stimulation, chromogranin B (but not insulin) was largely redistributed to the core periphery and the surrounding halo. Strong stimulation with a secretagogue mixture induced parallel release of insulin and chromogranin B, whereas with 3-isobutyl-1-methylxantine and forskolin +/- high glucose release of chromogranin B predominated. Weak, Ca(2+)-dependent stimulation with ionomycin or carbachol induced exclusive release of chromogranin B, suggesting a higher Ca(2+) sensitivity of the specific granules. The unexpected complexity of the beta cell granule population in terms of heterogeneity, molecular plasticity and the differential discharge, could play an important role in physiological control of insulin release and possibly also in beta cell pathology.
Obruca, Stanislav; Sedlacek, Petr; Mravec, Filip; Krzyzanek, Vladislav; Nebesarova, Jana; Samek, Ota; Kucera, Dan; Benesova, Pavla; Hrubanova, Kamila; Milerova, Miluse; Marova, Ivana
2017-10-25
Numerous prokaryotes accumulate polyhydroxybutyrate (PHB) intracellularly as a storage material. It has also been proposed that PHB accumulation improves bacterial stress resistance. Cupriavidus necator and its PHB non-accumulating mutant were employed to investigate the protective role of PHB under hypertonic conditions. The presence of PHB granules enhanced survival of the bacteria after exposure to hypertonic conditions. Surprisingly, when coping with such conditions, the bacteria did not utilize PHB to harvest carbon or energy, suggesting that, in the osmotic upshock of C. necator, the protective mechanism of PHB granules is not associated with their hydrolysis. The presence of PHB granules influenced the overall properties of the cells, since challenged PHB-free cells underwent massive plasmolysis accompanied by damage to the cell membrane and the leakage of cytoplasm content, while no such effects were observed in PHB containing bacteria. Moreover, PHB granules demonstrated "liquid-like" properties indicating that they can partially repair and stabilize cell membranes by plugging small gaps formed during plasmolysis. In addition, the level of dehydration and changes in intracellular pH in osmotically challenged cells were less pronounced for PHB-containing cultures, demonstrating the important role of PHB for bacterial survival under hyperosmotic conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Seress, L
1998-06-01
Jean Piaget's "stage theory" suggests that cognitive development proceeds in discrete steps, among which the first is the sensorimotor period that occupies the first two years. In recent years it became clear that an intact and mature hippocampus is necessary for memory formation both in experimental animals and in human. In the present experiments the perinatal morphological development of the human hippocampus was studied to describe structural changes that may correlate with the developmental changes of intellectual growth. Our results suggest that cell formation in the human hippocampus terminates several weeks before birth, but immature cells migrate to their final positions through the first six postnatal months. The newborn hippocampus contains all cell types and cell layers that are characteristic for the adult hippocampus. However, changes of the light microscopic features of the postsynaptic target neurons of hippocampal granule cells indicate that connections between granule cells and their target neurons are immature at birth and develop through an extended period of time that may last for three years. Since this neuronal connection is the first link in the chain of the main hippocampal synaptic circuitry, it may be suggested that human hippocampus is functionally impaired at birth. This period of light microscopic morphological maturation correlates well with the time period of Piaget's first stage of cognitive development. It can also be suggested that the prolonged postnatal development of some neuronal circuitries in the human hippocampus may be responsible for the psychological phenomenon of "infantile amnesia", that is the lack of memory traces from the early postnatal period.
Meireles, Elaine A.; Carneiro, Cíntia N. B.; DaMatta, Renato A.; Samuels, Richard I.; Silva, Carlos P.
2009-01-01
Scanning electron microscopy images were taken of starch granules from different sources following exposure in vivo and in vitro to gut α-amylases isolated from Tenebrio molitor L. (Coleoptera: Tenebrionidae) and Zabrotes subfasciatus Boheman (Coleoptera: Bruchidae). One α-amylase was isolated from whole larval midguts of T. molitor using non-denaturing SDS-PAGE, while two other α-amylase fractions were isolated from whole larval midguts of Z. subfasciatus using hydrophobic interaction chromatography., Digested starch granules from larvae fed on maize, potato or wheat were isolated from midgut contents. Combinations of starch granules with isolated α-amylases from both species showed similar patterns of granule degradation. In vitro enzymatic degradation of maize starch granules by the three different α-amylase fractions began by creating small holes and crater-like areas on the surface of the granules. Over time, these holes increased in number and area resulting in extensive degradation of the granule structure. Granules from potato did not show formation of pits and craters on their surface, but presented extensive erosion in their interior. For all types of starch, as soon as the interior of the starch granule was reached, the inner layers of amylose and amylopectin were differentially hydrolyzed, resulting in a striated pattern. These data support the hypothesis that the pattern of starch degradation depends more on the granule type than on the α-amylase involved. PMID:19619014
Jayasankar, Vidya; Vasudevan, Srinivasa Raghavan; Poulose, Suja C; Divipala, Indira
2018-06-12
Mantle tissue from the black-lip pearl oyster, Pinctada margaritifera, was cultured in vitro using sterilized seawater supplemented with 0.1% yeast extract as the culture medium. Granular and agranular epithelial cells, hyalinocytes, and fibroblast-like cells were observed in the initial stages of culture. Epithelial cells later formed pseudopodial cell networks containing clusters of granulated cells, which upon maturation released their colored granules. These granules induced formation of nacre crystal deposits on the bottom of the culture plate. Cultures comprised of only granulated epithelial cells were established through periodic sub-culturing of mantle cells and maintained for over 18 mo in a viable condition. Reverse transcriptase PCR of cultured cells demonstrated gene expression of the shell matrix protein, nacrein. To further evaluate the functional ability of cultured granulated epithelial cells, nuclear shell beads were incubated in culture medium containing these cells to induce nacre formation on the beads. Observation of the bead surface under a stereomicroscope at periodic intervals showed the gradual formation of blackish yellow colored nacre deposits. Examination of the bead surface by scanning electron microscopy and energy dispersive X-ray analysis at periodic intervals revealed a distinct brick and mortar formation characteristic of nacre, comprised of aragonite platelets and matrix proteins. Calcium, carbon, and oxygen were the major elements in all stages examined. Our study shows that mantle epithelial cells in culture retain the ability to secrete nacre and can therefore form the basis for future studies on the biomineralization process and its application in development of sustainable pearl culture.
Researching of the reduction of shock waves intensivity in the “pseudo boiling” layer
NASA Astrophysics Data System (ADS)
Pavlov, G. I.; Telyashov, D. A.; Kochergin, A. V.; Nakoryakov, P. V.; Sukhovaya, E. A.
2017-09-01
This article applies to the field of acoustics and deals with noise reduction of pulsating combustion chambers, in particular the reduction of the shock waves’ intensity with the help of pseudo boiling layer. In the course of work on a test stand that included a pulsator, a compressor with the receiver and a high pressure fan was simulated gas jet flowing from the chamber pulsating combustion and studied the effect of different types of fluidization on effect of reducing the sound pressure levels. Were obtained the experimental dependence of the sound pressure levels from parameters such as: height of the layer of granules; diameter of the used granules; amplitude of the pressure pulsations in the gas stream at the entrance to the camera; frequency of pressure pulsations. Based on the results of the study, it was concluded that the using of a pseudo boiling layer is promising for reducing shock wave noise.
Alibardi, L; Thompson, M B
2003-04-01
Differentiation and localization of keratin in the epidermis during embryonic development and up to 3 months posthatching in the Australian water python, Liasis fuscus, was studied by ultrastructural and immunocytochemical methods. Scales arise from dome-like folds in the skin that produce tightly imbricating scales. The dermis of these scales is completely differentiated before any epidermal differentiation begins, with a loose dermis made of mesenchymal cells beneath the differentiating outer scale surface. At this stage (33) the embryo is still unpigmented and two layers of suprabasal cells contain abundant glycogen. At Stage 34 (beginning of pigmentation) the first layers of cells beneath the bilayered periderm (presumptive clear and oberhautchen layers) have not yet formed a shedding complex, within which prehatching shedding takes place. At Stage 35 the shedding complex, consisting of the clear and oberhautchen layers, is discernible. The clear layer contains a fine fibrous network that faces the underlying oberhautchen, where the spinulae initially contain a core of fibrous material and small beta-keratin packets. Differentiation continues at Stage 36 when the beta-layer forms and beta-keratin packets are deposited both on the fibrous core of the oberhautchen and within beta-cells. Mesos cells are produced from the germinal layer but remain undifferentiated. At Stage 37, before hatching, the beta-layer is compact, the mesos layer contains mesos granules, and cells of the alpha-layer are present but are not yet keratinized. They are still only partially differentiated a few hours after hatching, when a new shedding complex is forming underneath. Using antibodies against chick scale beta-keratin resolved at high magnification with immunofluorescent or immunogold conjugates, we offer the first molecular confirmation that in snakes only the oberhautchen component of the shedding complex and the underlying beta cells contain beta-keratin. Initially, there is little immunoreactivity in the small beta-packets of the oberhautchen, but it increases after fusion with the underlying cells to produce the syncytial beta layer. The beta-keratin packets coalesce with the tonofilaments, including those attached to desmosomes, which rapidly disappear in both oberhautchen and beta-cells as differentiation progresses. The labeling is low to absent in forming mesos-cells beneath the beta-layer. This study further supports the hypothesis that the shedding complex in lepidosaurian reptiles evolved after there was a segregation between alpha-keratogenic cells from beta-keratogenic cells during epidermal renewal. Copyright 2003 Wiley-Liss, Inc.
Terazima, Masayo Noda; Harumoto, Terue
2004-08-01
The defense function of pigment granules in the red ciliate Blepharisma japonicum against two predatory protists, Amoeba proteus and Climacostomum virens, was investigated by (1) comparing normally-pigmented and albino mutant cells of B. japonicum as the prey of these predators and (2) comparing resistance of the predators to blepharismin, the toxic pigment contained in the pigment granules of B. japonicum. Normally pigmented cells which contained more blepharismin than albino cells were less vulnerable to A. proteus than albino cells, but not to C. virens. C. virens was more resistant than A. proteus to the lethal effect of blepharismin. The results indicate that pigment granules of B. japonicum function as defense organelles against A. proteus but not against C. virens and suggest that successful defense against a predator depends on the susceptibility of the predator to blepharismin.
HDAC6 regulates the dynamics of lytic granules in cytotoxic T lymphocytes
Núñez-Andrade, Norman; Iborra, Salvador; Trullo, Antonio; Moreno-Gonzalo, Olga; Calvo, Enrique; Catalán, Elena; Menasche, Gaël; Sancho, David; Vázquez, Jesús; Yao, Tso-Pang
2016-01-01
HDAC6 is a tubulin deacetylase involved in many cellular functions related to cytoskeleton dynamics including cell migration and autophagy. In addition, HDAC6 affects antigen-dependent CD4+ T cell activation. In this study, we show that HDAC6 contributes to the cytotoxic function of CD8+ T cells. Immunization studies revealed defective cytotoxic activity in vivo in the absence of HDAC6. Adoptive transfer of wild-type or Hdac6-/- CD8+ T cells to Rag1-/- mice demonstrated specific impairment in CD8+ T cell responses against vaccinia infection. Mechanistically, HDAC6-deficient cytotoxic T lymphocytes (CTLs) showed defective in vitro cytolytic activity related to altered dynamics of lytic granules, inhibited kinesin 1 – dynactin mediated terminal transport of lytic granules to the immune synapse and deficient exocytosis, but not to target cell recognition, T cell receptor (TCR) activation or interferon (IFNγ) production. Our results establish HDAC6 as an effector of the immune cytotoxic response that acts by affecting the dynamics, transport and secretion of lytic granules by CTLs. PMID:26869226
Tracheal replacement in rabbits with a new composite silicone-metallic prosthesis.
Dodge-Khatami, Ali; Niessen, Hans W M; Koole, Leo H; Klein, Marloes G; van Gulik, Thomas M; de Mol, Bas A J M
2003-09-01
A new composite silicone-metallic prosthesis was tested, studying the potential for respiratory epithelial covering over the biocompatible inner lining, in a rabbit survival model. Seven New Zealand White rabbits underwent near-total excision of their trachea and implantation of a sterile prosthesis. After 2 months, they were sacrificed and the prostheses were retrieved. Specimens were fixed and histologically examined for tissue reaction around the prosthesis, at the anastomotic lines, and particularly for the presence or absence of epithelialization of the inner lumen over the biocompatible surface. All rabbits survived the operation. At 2 months, the outer layer of the prosthesis was consistently covered with fibrosis and neutrophils. The inner layer showed necrotic cells and scant re-epithelialization over the biocompatible lining, up to 5 mm beyond the anastomosis, with no evidence of organized respiratory epithelium in the middle sections. The new prosthesis is a viable temporary solution for airway replacement in rabbits. Granulation tissue was not observed at the anastomosis, and re-epithelialization did occur, but failed to achieve full-length luminal covering. The potential for granulation tissue does not yet make this an ideal long-term solution. Improvements in prosthesis design or biocompatibility are required, and need to be re-evaluated before applicability for chronic use.
Lonchamp, Etienne; Dupont, Jean-Luc; Wioland, Laetitia; Courjaret, Raphaël; Mbebi-Liegeois, Corinne; Jover, Emmanuel; Doussau, Frédéric; Popoff, Michel R; Bossu, Jean-Louis; de Barry, Jean; Poulain, Bernard
2010-09-30
Epsilon toxin (ET) produced by C. perfringens types B and D is a highly potent pore-forming toxin. ET-intoxicated animals express severe neurological disorders that are thought to result from the formation of vasogenic brain edemas and indirect neuronal excitotoxicity. The cerebellum is a predilection site for ET damage. ET has been proposed to bind to glial cells such as astrocytes and oligodendrocytes. However, the possibility that ET binds and attacks the neurons remains an open question. Using specific anti-ET mouse polyclonal antibodies and mouse brain slices preincubated with ET, we found that several brain structures were labeled, the cerebellum being a prominent one. In cerebellar slices, we analyzed the co-staining of ET with specific cell markers, and found that ET binds to the cell body of granule cells, oligodendrocytes, but not astrocytes or nerve endings. Identification of granule cells as neuronal ET targets was confirmed by the observation that ET induced intracellular Ca(2+) rises and glutamate release in primary cultures of granule cells. In cultured cerebellar slices, whole cell patch-clamp recordings of synaptic currents in Purkinje cells revealed that ET greatly stimulates both spontaneous excitatory and inhibitory activities. However, pharmacological dissection of these effects indicated that they were only a result of an increased granule cell firing activity and did not involve a direct action of the toxin on glutamatergic nerve terminals or inhibitory interneurons. Patch-clamp recordings of granule cell somata showed that ET causes a decrease in neuronal membrane resistance associated with pore-opening and depolarization of the neuronal membrane, which subsequently lead to the firing of the neuronal network and stimulation of glutamate release. This work demonstrates that a subset of neurons can be directly targeted by ET, suggesting that part of ET-induced neuronal damage observed in neuronal tissue is due to a direct effect of ET on neurons.
Lonchamp, Etienne; Dupont, Jean-Luc; Wioland, Laetitia; Courjaret, Raphaël; Mbebi-Liegeois, Corinne; Jover, Emmanuel; Doussau, Frédéric; Popoff, Michel R.; Bossu, Jean-Louis; de Barry, Jean; Poulain, Bernard
2010-01-01
Epsilon toxin (ET) produced by C. perfringens types B and D is a highly potent pore-forming toxin. ET-intoxicated animals express severe neurological disorders that are thought to result from the formation of vasogenic brain edemas and indirect neuronal excitotoxicity. The cerebellum is a predilection site for ET damage. ET has been proposed to bind to glial cells such as astrocytes and oligodendrocytes. However, the possibility that ET binds and attacks the neurons remains an open question. Using specific anti-ET mouse polyclonal antibodies and mouse brain slices preincubated with ET, we found that several brain structures were labeled, the cerebellum being a prominent one. In cerebellar slices, we analyzed the co-staining of ET with specific cell markers, and found that ET binds to the cell body of granule cells, oligodendrocytes, but not astrocytes or nerve endings. Identification of granule cells as neuronal ET targets was confirmed by the observation that ET induced intracellular Ca2+ rises and glutamate release in primary cultures of granule cells. In cultured cerebellar slices, whole cell patch-clamp recordings of synaptic currents in Purkinje cells revealed that ET greatly stimulates both spontaneous excitatory and inhibitory activities. However, pharmacological dissection of these effects indicated that they were only a result of an increased granule cell firing activity and did not involve a direct action of the toxin on glutamatergic nerve terminals or inhibitory interneurons. Patch-clamp recordings of granule cell somata showed that ET causes a decrease in neuronal membrane resistance associated with pore-opening and depolarization of the neuronal membrane, which subsequently lead to the firing of the neuronal network and stimulation of glutamate release. This work demonstrates that a subset of neurons can be directly targeted by ET, suggesting that part of ET-induced neuronal damage observed in neuronal tissue is due to a direct effect of ET on neurons. PMID:20941361
NASA Astrophysics Data System (ADS)
Thong, P. S. P.; Watt, F.; Ponraj, D.; Leong, S. K.; He, Y.; Lee, T. K. Y.
1999-10-01
Parkinson's disease is a degenerative brain disease characterised by a loss of cells in the substantia nigra (SN) region of the brain and accompanying biochemical changes such as inhibition of mitochondrial function, increased iron concentrations and decreased glutathione levels in the parkinsonian SN. Though the aetiology of the disease is still unknown, the observed biochemical changes point to the involvement of oxidative stress. In particular, iron is suspected to play a role by promoting free radical production, leading to oxidative stress and cell death. The increase in iron in the parkinsonian SN has been confirmed by several research groups, both in human post-mortem brains and in brain tissue from parkinsonian animal models. However, the question remains as to whether the observed increase in iron is a cause or a consequence of the SN cell death process. Our previous study using unilaterally 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-lesioned monkeys in a time sequence experiment has shown that the increase in bulk iron concentrations follow rather than precede dopaminergic cell death. However, changes in the localised iron concentrations, which may play a more direct role in SN cell death, may not be reflected at the bulk level. Indeed, we have observed iron-rich granules in parkinsonian SNs. From this time sequence study into the iron content of iron-rich granules in the SNs of an untreated control and unilaterally MPTP-lesioned parkinsonian models, we present the following observations: (1) Iron-rich granules are found in both control and parkinsonian SNs and are variable in size and iron content in any one model. (2) These iron-rich granules may be associated with neuromelanin granules found in the SN and are known to accumulate transition metal ions such as iron. (3) The early onset of bulk SN cell loss (35%) was accompanied by a significant elevation of iron in granules found in the MPTP-injected SN compared to the contra-lateral SN. This shows that localised iron increase may be an early event contributing to cell death. (4) The iron content in granules found in both the MPTP-injected and contra-lateral SNs is correlated with the degree of bulk SN cell loss (assessed by TH-immunohistochemistry) in individual models. This indicates a correlation between localised iron increase and cell loss, at least at the whole SN level. Our results are consistent with the observation that in Parkinson's disease (PD), neuronal cell death seems to be related to their neuromelanin content and support the proposal that iron-melanin interaction may play a role in oxidative neuronal cell death. Indeed, iron-saturated neuromelanin granules may act as centres of free radical production, contributing to localised cell death.
Cai, Shuangfeng; Cai, Lei; Liu, Hailong; Liu, Xiaoqing; Han, Jing; Zhou, Jian
2012-01-01
The polyhydroxyalkanoate (PHA) granule-associated proteins (PGAPs) are important for PHA synthesis and granule formation, but currently little is known about the haloarchaeal PGAPs. This study focused on the identification and functional analysis of the PGAPs in the haloarchaeon Haloferax mediterranei. These PGAPs were visualized with two-dimensional gel electrophoresis (2-DE) and identified by matrix-assisted laser desorption ionization–tandem time of flight mass spectrometry (MALDI-TOF/TOF MS). The most abundant protein on the granules was identified as a hypothetical protein, designated PhaP. A genome-wide analysis revealed that the phaP gene is located upstream of the previously identified phaEC genes. Through an integrative approach of gene knockout/complementation and fermentation analyses, we demonstrated that this PhaP is involved in PHA accumulation. The ΔphaP mutant was defective in both PHA biosynthesis and cell growth compared to the wild-type strain. Additionally, transmission electron microscopy results indicated that the number of PHA granules in the ΔphaP mutant cells was significantly lower, and in most of the ΔphaP cells only a single large granule was observed. These results demonstrated that the H. mediterranei PhaP was the predominant structure protein (phasin) on the PHA granules involved in PHA accumulation and granule formation. In addition, BLASTp and phylogenetic results indicate that this type of PhaP is exclusively conserved in haloarchaea, implying that it is a representative of the haloarchaeal type PHA phasin. PMID:22247127
Park, Keiichi; Amano, Hideki; Ito, Yoshiya; Mastui, Yoshio; Kamata, Mariko; Yamazaki, Yasuharu; Takeda, Akira; Shibuya, Masabumi; Majima, Masataka
2018-06-01
Vascular endothelial growth factor (VEGF)-A facilitates wound healing. VEGF-A binds to VEGF receptor 1 (VEGFR1) and VEGFR2 and induces wound healing through the receptor's tyrosine kinase (TK) domain. During blood flow recovery and lung regeneration, expression of VEGFR1 is elevated. However, the precise mechanism of wound healing, especially granulation formation on VEGFR1, is not well understood. We hypothesized that VEGFR1-TK signaling induces wound healing by promoting granulation tissue formation. A surgical sponge implantation model was made by implanting a sponge disk into dorsal subcutaneous tissue of mice. Granulation formation was estimated from the weight of the sponge and the granulation area from the immunohistochemical analysis of collagen I. The expression of fibroblast markers was estimated from the expression of transforming growth factor-beta (TGF-β) and cellular fibroblast growth factor-2 (FGF-2) using real-time PCR (polymerase chain reaction) and from the immunohistochemical analysis of S100A4. VEGFR1 TK knockout (TK -/- ) mice exhibited suppressed granulation tissue formation compared to that in wild-type (WT) mice. Expression of FGF-2, TGF-β, and VEGF-A was significantly suppressed in VEGFR1 TK -/- mice, and the accumulation of VEGFR1 + cells in granulation tissue was reduced in VEGFR1 TK -/- mice compared to that in WT mice. The numbers of VEGFR1 + cells and S100A4 + cells derived from bone marrow (BM) were higher in WT mice transplanted with green fluorescent protein (GFP) transgenic WT BM than in VEGFR1 TK -/- mice transplanted with GFP transgenic VEGFR1 TK -/- BM. These results indicated that VEGFR1-TK signaling induced the accumulation of BM-derived VEGFR1 + cells expressing F4/80 and S100A4 and contributed to granulation formation around the surgically implanted sponge area in a mouse model.
Polyhydroxybutyrate particles in Synechocystis sp PCC 6803: facts and fiction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsang, TK; Roberson, RW; Vermaas, WFJ
Transmission electron microscopy has been used to identify poly-3-hydroxybutyrate (PHB) granules in cyanobacteria for over 40 years. Spherical inclusions inside the cell that are electron-transparent and/or slightly electron-dense and that are found in transmission electron micrographs of cyanobacteria are generally assumed to be PHB granules. The aim of this study was to test this assumption in different strains of the cyanobacterium Synechocystis sp. PCC 6803. Inclusions that resemble PHB granules were present in strains lacking a pair of genes essential for PHB synthesis and in wild-type cells under conditions that no PHB granules could be detected by fluorescence staining ofmore » PHB. Indeed, in these cells PHB could not be demonstrated chemically by GC/MS either. Based on the results gathered, it is concluded that not all the slightly electron-dense spherical inclusions are PHB granules in Synechocystis sp. PCC 6803. This result is potentially applicable to other cyanobacteria. Alternate assignments for these inclusions are discussed.« less
Biogenesis of zinc storage granules in Drosophila melanogaster.
Tejeda-Guzmán, Carlos; Rosas-Arellano, Abraham; Kroll, Thomas; Webb, Samuel M; Barajas-Aceves, Martha; Osorio, Beatriz; Missirlis, Fanis
2018-03-19
Membrane transporters and sequestration mechanisms concentrate metal ions differentially into discrete subcellular microenvironments for use in protein cofactors, signalling, storage or excretion. Here we identify zinc storage granules as the insect's major zinc reservoir in principal Malpighian tubule epithelial cells of Drosophila melanogaster The concerted action of Adaptor Protein-3, Rab32, HOPS and BLOC complexes as well as of the white-scarlet (ABCG2-like) and ZnT35C (ZnT2/ZnT3/ZnT8-like) transporters is required for zinc storage granule biogenesis. Due to lysosome-related organelle defects caused by mutations in the homologous human genes, patients with Hermansky-Pudlak syndrome may lack zinc granules in beta pancreatic cells, intestinal paneth cells and presynaptic vesicles of hippocampal mossy fibers. © 2018. Published by The Company of Biologists Ltd.
Dontsov, A E; Sakina, N L; Ostrovsky, M A
2017-08-01
The effect of superoxide radicals on melanin destruction and degradation of melanosomes isolated from cells of retinal pigment epithelium (RPE) of the human eye was studied. We found that potassium superoxide causes destruction of melanin in melanosomes of human and bovine RPE, as well as destruction of melanin from the ink bag of squid, with the formation of fluorescent decay products having an emission maximum at 520-525 nm. The initial kinetics of the accumulation of the fluorescent decay products is linear. Superoxide radicals lead simultaneously to a decrease in the number of melanosomes and to a decrease in concentration of paramagnetic centers in them. Complete degradation of melanosomes leads to the formation of a transparent solution containing dissolved proteins and melanin degradation products that do not exhibit paramagnetic properties. To completely degrade one melanosome of human RPE, 650 ± 100 fmol of superoxide are sufficient. The concentration of paramagnetic centers in a melanolipofuscin granule of human RPE is on average 32.5 ± 10.4% (p < 0.05, 150 eyes) lower than in a melanosome, which indicates melanin undergoing a destruction process in these granules. RPE cells also contain intermediate granules that have an EPR signal with a lower intensity than that of melanolipofuscin granules, but higher than that of lipofuscin granules. This signal is due to the presence of residual melanin in these granules. Irradiation of a mixture of melanosomes with lipofuscin granules with blue light (450 nm), in contrast to irradiation of only melanosomes, results in the appearance of fluorescent melanin degradation products. We suggest that one of the main mechanisms of age-related decrease in melanin concentration in human RPE cells is its destruction in melanolipofuscin granules under the action of superoxide radicals formed during photoinduced oxygen reduction by lipofuscin fluorophores.
Localization of α1-2 Fucose Glycan in the Mouse Olfactory Pathway.
Kondoh, Daisuke; Kamikawa, Akihiro; Sasaki, Motoki; Kitamura, Nobuo
2017-01-01
Glycoconjugates in the olfactory system play critical roles in neuronal formation, and α1-2 fucose (α1-2Fuc) glycan mediates neurite outgrowth and synaptic plasticity. Histochemical findings of α1-2Fuc glycan in the mouse olfactory system detected using Ulex europaeus agglutinin-I (UEA-I) vary. This study histochemically assessed the main olfactory and vomeronasal pathways in male and female ICR and C57BL/6J mice aged 3-4 months using UEA-I. Ulex europaeus agglutinin-I reacted with most receptor cells arranged mainly at the basal region of the olfactory epithelium. The olfactory nerve layer and glomerular layer of the main olfactory bulb were speckled with positive UEA-I staining, and positive fibers were scattered from the glomerular to the internal plexiform layer. The lateral olfactory tract and rostral migratory stream were also positive for UEA-I. We identified superficial short-axon cells, interneurons of the external plexiform layer, external, middle and internal tufted cells, mitral cells and granule cells as the origins of the UEA-I-positive fibers in the main olfactory bulb. The anterior olfactory nucleus, anterior piriform cortex and olfactory tubercle were negative for UEA-I. Most receptor cells in the vomeronasal epithelium and most glomeruli of the accessory olfactory bulb were positive for UEA-I. Our findings indicated that α1-2Fuc glycan is located within the primary and secondary, but not the ternary, pathways of the main olfactory system, in local circuits of the main olfactory bulb and within the primary, but not secondary, pathway of the vomeronasal system. © 2016 S. Karger AG, Basel.
Möhn, H; Le Cabec, V; Fischer, S; Maridonneau-Parini, I
1995-01-01
The src-family protein-tyrosine kinase p59hck is mainly expressed in neutrophils; however, its functional role in these cells is unknown. Several other src-family members are localized on secretory vesicles and have been proposed to regulate intracellular traffic. We have established here the subcellular localization of p59hck in human neutrophils. Immunoblotting of subcellular fractions showed that approx. 60% of the p59hck per cell is localized on the secretory granules; the other 40% is distributed equally between non-granular membranes and the cytosol. Immunofluorescence of neutrophils and HL60 cells suggests that the p59hck-positive granules are azurophil granules. Granular p59hck is highly susceptible to degradation by an azurophil-granule proteinase. Different forms of p59hck occur in the three subcellular compartments: a 61 kDa form is mainly found in the granules, a 59 kDa form is predominant in the non-granular membranes, whereas cytosolic p59hck migrates as a doublet at 63 kDa. During the process of phagocytosis-linked degranulation, induced by serum-opsonized zymosan in neutrophils or HL60 cells, granular p59hck translocates towards the phagosome. The subcellular localization of p59hck suggests that the enzyme could be involved in the regulation of the degranulation process. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7626033
Suzuki, Miki; Fujise, Yuki; Tsuchiya, Yuka; Tamano, Haruna; Takeda, Atsushi
2015-08-01
The influx of extracellular Zn(2+) into dentate granule cells is nonessential for dentate gyrus long-term potentiation (LTP) and the physiological significance of extracellular Zn(2+) dynamics is unknown in the dentate gyrus. Excess increase in extracellular Zn(2+) in the hippocampal CA1, which is induced with excitation of zincergic neurons, induces memory deficit via excess influx of Zn(2+) into CA1 pyramidal cells. In the present study, it was examined whether extracellular Zn(2+) induces object recognition memory deficit via excess influx of Zn(2+) into dentate granule cells. KCl (100 mM, 2 µl) was locally injected into the dentate gyrus. The increase in intracellular Zn(2+) in dentate granule cells induced with high K(+) was blocked by co-injection of CaEDTA and CNQX, an extracellular Zn(2+) chelator and an AMPA receptor antagonist, respectively, suggesting that high K(+) increases the influx of Zn(2+) into dentate granule cells via AMPA receptor activation. Dentate gyrus LTP induction was attenuated 1 h after KCl injection into the dentate gyrus and also attenuated when KCl was injected 5 min after the induction. Memory deficit was induced when training of object recognition test was performed 1 h after KCl injection into the dentate gyrus and also induced when KCl was injected 5 min after the training. High K(+)-induced impairments of LTP and memory were rescued by co-injection of CaEDTA. These results indicate that excess influx of Zn(2+) into dentate granule cells via AMPA receptor activation affects object recognition memory via attenuated LTP induction. Even in the dentate gyrus where is scarcely innervated by zincergic neurons, it is likely that extracellular Zn(2+) homeostasis is strictly regulated for cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fahrion, Jennifer K; Komuro, Yutaro; Li, Ying; Ohno, Nobuhiko; Littner, Yoav; Raoult, Emilie; Galas, Ludovic; Vaudry, David; Komuro, Hitoshi
2012-03-27
In the brains of patients with fetal Minamata disease (FMD), which is caused by exposure to methylmercury (MeHg) during development, many neurons are hypoplastic, ectopic, and disoriented, indicating disrupted migration, maturation, and growth. MeHg affects a myriad of signaling molecules, but little is known about which signals are primary targets for MeHg-induced deficits in neuronal development. In this study, using a mouse model of FMD, we examined how MeHg affects the migration of cerebellar granule cells during early postnatal development. The cerebellum is one of the most susceptible brain regions to MeHg exposure, and profound loss of cerebellar granule cells is detected in the brains of patients with FMD. We show that MeHg inhibits granule cell migration by reducing the frequency of somal Ca(2+) spikes through alterations in Ca(2+), cAMP, and insulin-like growth factor 1 (IGF1) signaling. First, MeHg slows the speed of granule cell migration in a dose-dependent manner, independent of the mode of migration. Second, MeHg reduces the frequency of spontaneous Ca(2+) spikes in granule cell somata in a dose-dependent manner. Third, a unique in vivo live-imaging system for cell migration reveals that reducing the inhibitory effects of MeHg on somal Ca(2+) spike frequency by stimulating internal Ca(2+) release and Ca(2+) influxes, inhibiting cAMP activity, or activating IGF1 receptors ameliorates the inhibitory effects of MeHg on granule cell migration. These results suggest that alteration of Ca(2+) spike frequency and Ca(2+), cAMP, and IGF1 signaling could be potential therapeutic targets for infants with MeHg intoxication.
Fahrion, Jennifer K.; Ohno, Nobuhiko; Littner, Yoav; Raoult, Emilie; Galas, Ludovic; Vaudry, David; Komuro, Hitoshi
2012-01-01
In the brains of patients with fetal Minamata disease (FMD), which is caused by exposure to methylmercury (MeHg) during development, many neurons are hypoplastic, ectopic, and disoriented, indicating disrupted migration, maturation, and growth. MeHg affects a myriad of signaling molecules, but little is known about which signals are primary targets for MeHg-induced deficits in neuronal development. In this study, using a mouse model of FMD, we examined how MeHg affects the migration of cerebellar granule cells during early postnatal development. The cerebellum is one of the most susceptible brain regions to MeHg exposure, and profound loss of cerebellar granule cells is detected in the brains of patients with FMD. We show that MeHg inhibits granule cell migration by reducing the frequency of somal Ca2+ spikes through alterations in Ca2+, cAMP, and insulin-like growth factor 1 (IGF1) signaling. First, MeHg slows the speed of granule cell migration in a dose-dependent manner, independent of the mode of migration. Second, MeHg reduces the frequency of spontaneous Ca2+ spikes in granule cell somata in a dose-dependent manner. Third, a unique in vivo live-imaging system for cell migration reveals that reducing the inhibitory effects of MeHg on somal Ca2+ spike frequency by stimulating internal Ca2+ release and Ca2+ influxes, inhibiting cAMP activity, or activating IGF1 receptors ameliorates the inhibitory effects of MeHg on granule cell migration. These results suggest that alteration of Ca2+ spike frequency and Ca2+, cAMP, and IGF1 signaling could be potential therapeutic targets for infants with MeHg intoxication. PMID:22411806
Rahaman, Abdur; Miao, Wei; Turkewitz, Aaron P.
2009-01-01
Dense core granules (DCGs) in Tetrahymena thermophila contain two protein classes. Proteins in the first class, called granule lattice (Grl), coassemble to form a crystalline lattice within the granule lumen. Lattice expansion acts as a propulsive mechanism during DCG release, and Grl proteins are essential for efficient exocytosis. The second protein class, defined by a C-terminal β/γ-crystallin domain, is poorly understood. Here, we have analyzed the function and sorting of Grt1p (granule tip), which was previously identified as an abundant protein in this family. Cells lacking all copies of GRT1, together with the closely related GRT2, accumulate wild-type levels of docked DCGs. Unlike cells disrupted in any of the major GRL genes, ΔGRT1 ΔGRT2 cells show no defect in secretion, indicating that neither exocytic fusion nor core expansion depends on GRT1. These results suggest that Grl protein sorting to DCGs is independent of Grt proteins. Consistent with this, the granule core lattice in ΔGRT1 ΔGRT2 cells appears identical to that in wild-type cells by electron microscopy, and the only biochemical component visibly absent is Grt1p itself. Moreover, gel filtration showed that Grl and Grt proteins in cell homogenates exist in nonoverlapping complexes, and affinity-isolated Grt1p complexes do not contain Grl proteins. These data demonstrate that two major classes of proteins in Tetrahymena DCGs are likely to be independently transported during DCG biosynthesis and play distinct roles in granule function. The role of Grt1p may primarily be postexocytic; consistent with this idea, DCG contents from ΔGRT1 ΔGRT2 cells appear less adhesive than those from the wild type. PMID:19684282
Bryceson, Yenan T; Ljunggren, Hans-Gustaf; Long, Eric O
2009-09-24
Natural killer (NK) cells provide innate control of infected and neoplastic cells. Multiple receptors have been implicated in natural cytotoxicity, but their individual contribution remains unclear. Here, we studied the activation of primary, resting human NK cells by Drosophila cells expressing ligands for receptors NKG2D, DNAM-1, 2B4, CD2, and LFA-1. Each receptor was capable of inducing inside-out signals for LFA-1, promoting adhesion, but none induced degranulation. Rather, release of cytolytic granules required synergistic activation through coengagement of receptors, shown here for NKG2D and 2B4. Although engagement of NKG2D and 2B4 was not sufficient for strong target cell lysis, collective engagement of LFA-1, NKG2D, and 2B4 defined a minimal requirement for natural cytotoxicity. Remarkably, inside-out signaling induced by each one of these receptors, including LFA-1, was inhibited by receptor CD94/NKG2A binding to HLA-E. Strong inside-out signals induced by the combination of NKG2D and 2B4 or by CD16 could overcome CD94/NKG2A inhibition. In contrast, degranulation induced by these receptors was still subject to inhibition by CD94/NKG2A. These results reveal multiple layers in the activation pathway for natural cytotoxicity and that steps as distinct as inside-out signaling to LFA-1 and signals for granule release are sensitive to inhibition by CD94/NKG2A.
The organization of plasticity in the cerebellar cortex: from synapses to control.
D'Angelo, Egidio
2014-01-01
The cerebellum is thought to play a critical role in procedural learning, but the relationship between this function and the underlying cellular and synaptic mechanisms remains largely speculative. At present, at least nine forms of long-term synaptic and nonsynaptic plasticity (some of which are bidirectional) have been reported in the cerebellar cortex and deep cerebellar nuclei. These include long-term potentiation (LTP) and long-term depression at the mossy fiber-granule cell synapse, at the synapses formed by parallel fibers, climbing fibers, and molecular layer interneurons on Purkinje cells, and at the synapses formed by mossy fibers and Purkinje cells on deep cerebellar nuclear cells, as well as LTP of intrinsic excitability in granule cells, Purkinje cells, and deep cerebellar nuclear cells. It is suggested that the complex properties of cerebellar learning would emerge from the distribution of plasticity in the network and from its dynamic remodeling during the different phases of learning. Intrinsic and extrinsic factors may hold the key to explain how the different forms of plasticity cooperate to select specific transmission channels and to regulate the signal-to-noise ratio through the cerebellar cortex. These factors include regulation of neuronal excitation by local inhibitory networks, engagement of specific molecular mechanisms by spike bursts and theta-frequency oscillations, and gating by external neuromodulators. Therefore, a new and more complex view of cerebellar plasticity is emerging with respect to that predicted by the original "Motor Learning Theory," opening issues that will require experimental and computational testing. © 2014 Elsevier B.V. All rights reserved.
Dauber, Bianca; Poon, David; Dos Santos, Theodore; Duguay, Brett A; Mehta, Ninad; Saffran, Holly A; Smiley, James R
2016-07-01
The herpes simplex virus (HSV) virion host shutoff (vhs) RNase destabilizes cellular and viral mRNAs, suppresses host protein synthesis, dampens antiviral responses, and stimulates translation of viral mRNAs. vhs mutants display a host range phenotype: translation of viral true late mRNAs is severely impaired and stress granules accumulate in HeLa cells, while translation proceeds normally in Vero cells. We found that vhs-deficient virus activates the double-stranded RNA-activated protein kinase R (PKR) much more strongly than the wild-type virus does in HeLa cells, while PKR is not activated in Vero cells, raising the possibility that PKR might play roles in stress granule induction and/or inhibiting translation in restrictive cells. We tested this possibility by evaluating the effects of inactivating PKR. Eliminating PKR in HeLa cells abolished stress granule formation but had only minor effects on viral true late protein levels. These results document an essential role for PKR in stress granule formation by a nuclear DNA virus, indicate that induction of stress granules is the consequence rather than the cause of the translational defect, and are consistent with our previous suggestion that vhs promotes translation of viral true late mRNAs by preventing mRNA overload rather than by suppressing eIF2α phosphorylation. The herpes simplex virus vhs RNase plays multiple roles during infection, including suppressing PKR activation, inhibiting the formation of stress granules, and promoting translation of viral late mRNAs. A key question is the extent to which these activities are mechanistically connected. Our results demonstrate that PKR is essential for stress granule formation in the absence of vhs, but at best, it plays a secondary role in suppressing translation of viral mRNAs. Thus, the ability of vhs to promote translation of viral mRNAs can be largely uncoupled from PKR suppression, demonstrating that this viral RNase modulates at least two distinct aspects of RNA metabolism. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Luciano, L; Reale, E; von Engelhardt, W
1980-01-01
The epithelium of the fundic region mucosa of the hind stomach in the Llama guanacoe has been studied using morphological and histochemical methods. Morphology suggests that solute and water absorption may occur in the epithelium of the surface and of the foveolae, although this absorption can not be estimated because of the extensive secretion of the gastric glands. The same cells of the surface and foveolar epithelium show numerous secretory granules. The glands reveal neck cells, chief cells, a large number of oxyntic cells, four types of endocrine cells (A-like, ECL, D and EC), brush cells and wandering cells. PAS and Alcian blue reactions for light microscopy suggest a secretion of neutral and acidic mucosubstances in the surface and foveolar epithelium, of neutral mucosubstances only in the neck cells. Periodic acid-thiocarbohydrazide silver proteinate (PA-TCH-SP) reaction for electron microscopy confirms the presence of neutral mucosubstances within the secretory granules of the surface, foveolar and neck epithelial cells. In all these cells, the reaction product is also evident within sacculi and vesicles of the maturing surface of the Golgi apparatus. A positive PA-TCH-SP reaction also occurs on the membrane (and not on the contents) of the Golgi apparatus (maturing surface) and of the secretory granules of the chief cells as well as on the membrane of the Golgi apparatus and of apical vesicles and tubules of the oxyntic cells. In addition, silver granules slightly enhance the electron desity of the contents of the secretory granules in the endocrine cells. Morphological and histochemical findings are discussed and compared with results described by others for monogastric mammals.
Down-regulation of zinc transporter 8 (SLC30A8) in pancreatic beta-cells promotes cell survival
USDA-ARS?s Scientific Manuscript database
The pancreatic islet contains high levels of zinc in granular vesicles of beta-cells where insulin is matured, crystallized, and stored before secretion. Zinc is an essential co-factor for insulin crystallization forming dense core in secretory granules. In insulin-containing secretory granules, zin...
Down-regulation of zinc transporter 8 (SLC30A8) in pancreatic beta-cells promotes cell survival.
USDA-ARS?s Scientific Manuscript database
The pancreatic islet contains high levels of zinc in granular vesicles of ß-cells where insulin is matured, crystallized, and stored before secretion. Zinc is an essential co-factor for insulin crystallization forming dense cores in secretory granules. In insulin-containing secretory granules, zinc ...
The functional morphology of color changing in a spider: development of ommochrome pigment granules.
Insausti, Teresita C; Casas, Jérôme
2008-03-01
Studies on the formation of ommochrome pigment granules are very few, despite their generalized occurrence as screening pigments in insect eyes. This is particularly true for ommochrome granules responsible for epidermal coloration. The aims of this study were to characterize the localization of major body pigments in a color changing mimetic spider, Misumena vatia (Thomisidae), and to describe the formation and location of ommochrome pigment granules responsible for the spider's color change from white to yellow. The unpigmented cuticula of this spider is transparent. Both the guanine localized in guanine cells in the opisthosoma and the uric acid localized in epidermis cells in the prosoma are responsible for the white coloration. The bright yellow color is due to the combination of ommochrome pigment granules and the white reflectance from coincident guanine and/or uric acid. The formation of ommochrome pigment granules in epidermis cells proceeds via three distinctive steps. Translucent, UV fluorescent, progranules (type I) are produced by a dense network of endoplasmic reticulum associated with numerous mitochondria and glycogen rosettes. These progranules are present in white spiders only, and regularly distributed in the cytoplasm. The merging of several progranules of type I into a transient state (progranule type II) leads to the formation of granules (type III) characterized by their lack of fluorescence, their spherical sections and their osmophilic-electron-dense contents. They are found in yellow spiders and in the red stripes on the body sides. Their color varies from yellow to red. Thus, white spiders contain only type I granules, yellow tinted spiders contain type II and III granules and bright yellow spiders contain only type III granules. We present a synthetic view of the ontogeny of ommochrome granules. We discuss the physiology of color changing and the nature of the chemical compounds in the different types of granules. Extended studies on the ultrastructural modification and physiological processes associated with color change are required before any statement about the adaptiveness of the color change can be made.
Mobarak, M S; Ryan, M F
1999-06-01
Light, scanning, and transmission electron microscopy were employed to provide further data on the putative origins of the immunogenic secretory-excretory product (ESP) of Strongylus vulgaris (Looss 1900). The sharply delineated but superficial attachment to the equine caecum by the mouth leaves behind an oval area devoid of epithelial cells. Attachment does not extend deeply enough to reach the muscularis mucosa layer of the equine intestine. The progressive digestion of the ingested plug of tissue (epithelial cells, blood cells and mucous) was visualized. The coelomocytes, floating cells and membranous structures located in the pseudocoelom and intimately associated with the digestive, excretory and reproductive systems, and with the somatic muscles are described. The secretory-excretory system comprises two, ventrally-located, secretory-excretory glands connected to tubular elements. These glands synthesize granules of various sizes and densities that are delineated.
Shp2 Acts Downstream of SDF-1α/CXCR4 in Guiding Granule Cell Migration During Cerebellar Development
Hagihara, Kazuki; Zhang, Eric E.; Ke, Yue-Hai; Liu, Guofa; Liu, Jan-Jan; Rao, Yi; Feng, Gen-Sheng
2009-01-01
Shp2 is a non-receptor protein tyrosine phosphatase containing two Src homology 2 (SH2) domains that is implicated in intracellular signaling events controlling cell proliferation, differentiation and migration. To examine the role of Shp2 in brain development, we created mice with Shp2 selectively deleted in neural stem/progenitor cells. Homozygous mutant mice exhibited early postnatal lethality with defects in neural stem cell self-renewal and neuronal/glial cell fate specification. Here we report a critical role of Shp2 in guiding neuronal cell migration in the cerebellum. In homozygous mutants, we observed reduced and less foliated cerebellum, ectopic presence of external granule cells and mispositioned Purkinje cells, a phenotype very similar to that of mutant mice lacking either SDF-1α or CXCR4. Consistently, Shp2-deficient granule cells failed to migrate toward SDF-1α in an in vitro cell migration assay, and SDF-1α treatment triggered a robust induction of tyrosyl phosphorylation on Shp2. Together, these results suggest that although Shp2 is involved in multiple signaling events during brain development, a prominent role of the phosphatase is to mediate SDF-1α/CXCR4 signal in guiding cerebellar granule cell migration. PMID:19635473
Environmental enrichment alters dentate granule cell morphology in oldest-old rat.
Darmopil, Sanja; Petanjek, Zdravko; Mohammed, Abdul H; Bogdanović, Nenad
2009-08-01
The hippocampus of aged rats shows marked age-related morphological changes that could cause memory deficits. Experimental evidence has established that environmental enrichment attenuates memory deficits in aged rats. We therefore studied whether environmental enrichment produces morphological changes on the dentate granule cells of aged rats. Fifteen male Sprague-Dawley rats, 24 months of age, were randomly distributed in two groups that were housed under standard (n = 7) or enriched (n = 8) environmental conditions for 26 days. Quantitative data of dendritic morphology from dentate gyrus granule cells were obtained on Golgi-Cox stained sections. Environmental enrichment significantly increased the complexity and size of dendritic tree (total number of segments increased by 61% and length by 116%), and spine density (88% increase). There were large interindividual differences within the enriched group, indicating differential individual responses to environmental stimulation. Previous studies in young animals have shown changes produced by environmental enrichment in the morphology of dentate gyrus granule cells. The results of the present study show that environmental enrichment can also produce changes in dentate granule cell morphology in the senescent brain. In conclusion, the hippocampus retains its neuroplastic capacity during aging, and enriched environmental housing conditions can attenuate age-related dendritic regression and synaptic loss, thus preserving memory functions.
Takeda, Atsushi; Koike, Yuta; Osaw, Misa; Tamano, Haruna
2018-03-01
An increased influx of extracellular Zn 2+ into neurons is a cause of cognitive decline. The influx of extracellular Zn 2+ into dentate granule cells was compared between young and middle-aged rats because of vulnerability of the dentate gyrus to aging. The influx of extracellular Zn 2+ into dentate granule cells was increased in middle-aged rats after injection of AMPA and high K + into the dentate gyrus, but not in young rats. Simultaneously, high K + -induced attenuation of LTP was observed in middle-aged rats, but not in young rats. The attenuation was rescued by co-injection of CaEDTA, an extracellular Zn 2+ chelator. Intracellular Zn 2+ in dentate granule cells was also increased in middle-aged slices with high K + , in which the increase in extracellular Zn 2+ was the same as young slices with high K + , suggesting that ability of extracellular Zn 2+ influx into dentate granule cells is greater in middle-aged rats. Furthermore, extracellular zinc concentration in the hippocampus was increased age-dependently. The present study suggests that the influx of extracellular Zn 2+ into dentate granule cells is more readily increased in middle-aged rats and that its increase is a cause of age-related attenuation of LTP in the dentate gyrus.
Morphometry of Hilar Ectopic Granule Cells in the Rat
Pierce, Joseph P.; McCloskey, Daniel P.; Scharfman, Helen E.
2014-01-01
Granule cell (GC) neurogenesis in the dentate gyrus (DG) does not always proceed normally. After severe seizures (e.g., status epilepticus [SE]) and some other conditions, newborn GCs appear in the hilus. Hilar ectopic GCs (EGCs) can potentially provide insight into the effects of abnormal location and seizures on GC development. Additionally, hilar EGCs that develop after SE may contribute to epileptogenesis and cognitive impairments that follow SE. Thus, it is critical to understand how EGCs differ from normal GCs. Relatively little morphometric information is available on EGCs, especially those restricted to the hilus. This study quantitatively analyzed the structural morphology of hilar EGCs from adult male rats several months after pilocarpineinduced SE, when they are considered to have chronic epilepsy. Hilar EGCs were physiologically identified in slices, intracellularly labeled, processed for light microscopic reconstruction, and compared to GC layer GCs, from both the same post-SE tissue and the NeuroMorpho database (normal GCs). Consistently, hilar EGC and GC layer GCs had similar dendritic lengths and field sizes, and identifiable apical dendrites. However, hilar EGC dendrites were topologically more complex, with more branch points and tortuous dendritic paths. Three-dimensional analysis revealed that, remarkably, hilar EGC dendrites often extended along the longitudinal DG axis, suggesting increased capacity for septotemporal integration. Axonal reconstruction demonstrated that hilar EGCs contributed to mossy fiber sprouting. This combination of preserved and aberrant morphological features, potentially supporting convergent afferent input to EGCs and broad, divergent efferent output, could help explain why the hilar EGC population could impair DG function. PMID:21344409
Hirashima, Rika; Michimae, Hirofumi; Takemoto, Hiroaki; Sasaki, Aya; Kobayashi, Yoshinori; Itoh, Tomoo; Tukey, Robert H; Fujiwara, Ryoichi
2016-09-01
Anticonvulsants can increase the risk of developing neurotoxicity in infants; however, the underlying mechanism has not been elucidated to date. Thyroxine [3,5,3',5'-l-tetraiodothyronine (T4)] plays crucial roles in the development of the central nervous system. In this study, we hypothesized that induction of UDP-glucuronosyltransferase 1A1 (UGT1A1)-an enzyme involved in the metabolism of T4-by anticonvulsants would reduce serum T4 levels and cause neurodevelopmental toxicity. Exposure of mice to phenytoin during both the prenatal and postnatal periods significantly induced UGT1A1 and decreased serum T4 levels on postnatal day 14. In the phenytoin-treated mice, the mRNA levels of synaptophysin and synapsin I in the hippocampus were lower than those in the control mice. The thickness of the external granule cell layer was greater in phenytoin-treated mice, indicating that induction of UGT1A1 during the perinatal period caused neurodevelopmental disorders. Exposure to phenytoin during only the postnatal period also caused these neurodevelopmental disorders. A T4 replacement attenuated the increase in thickness of the external granule cell layer, indicating that the reduced T4 was specifically associated with the phenytoin-induced neurodevelopmental disorder. In addition, these neurodevelopmental disorders were also found in the carbamazepine- and pregnenolone-16-α-carbonitrile-treated mice. Our study is the first to indicate that UGT1A1 can control neurodevelopment by regulating serum T4 levels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Hirashima, Rika; Michimae, Hirofumi; Takemoto, Hiroaki; Sasaki, Aya; Kobayashi, Yoshinori; Itoh, Tomoo; Tukey, Robert H.
2016-01-01
Anticonvulsants can increase the risk of developing neurotoxicity in infants; however, the underlying mechanism has not been elucidated to date. Thyroxine [3,5,3′,5′-l-tetraiodothyronine (T4)] plays crucial roles in the development of the central nervous system. In this study, we hypothesized that induction of UDP-glucuronosyltransferase 1A1 (UGT1A1)—an enzyme involved in the metabolism of T4—by anticonvulsants would reduce serum T4 levels and cause neurodevelopmental toxicity. Exposure of mice to phenytoin during both the prenatal and postnatal periods significantly induced UGT1A1 and decreased serum T4 levels on postnatal day 14. In the phenytoin-treated mice, the mRNA levels of synaptophysin and synapsin I in the hippocampus were lower than those in the control mice. The thickness of the external granule cell layer was greater in phenytoin-treated mice, indicating that induction of UGT1A1 during the perinatal period caused neurodevelopmental disorders. Exposure to phenytoin during only the postnatal period also caused these neurodevelopmental disorders. A T4 replacement attenuated the increase in thickness of the external granule cell layer, indicating that the reduced T4 was specifically associated with the phenytoin-induced neurodevelopmental disorder. In addition, these neurodevelopmental disorders were also found in the carbamazepine- and pregnenolone-16-α-carbonitrile–treated mice. Our study is the first to indicate that UGT1A1 can control neurodevelopment by regulating serum T4 levels. PMID:27413119
Mousa, Alyaa M; Al-Fadhli, Ameera S; Rao, Muddanna S; Kilarkaje, Narayana
2015-01-01
Lead (Pb), a known environmental toxicant, adversely affects almost all organ systems. In this study, we investigated the effects of maternal lead exposure on fetal rat cerebellum. Female Sprague-Dawley rats were given lead nitrate in drinking water (0, 0.5, and 1%) for two weeks before conception, and during pregnancy. Fetuses were collected by caesarian section on gestational day 21 and observed for developmental abnormalities. The fetal cerebellar sections from control and 1% lead group were stained with cresyl violet. Immunohistochemical expressions of p53, Bax, Bcl-2, and caspase 3 were quantified by AnalySIS image analyzer (Life Science, Germany). Lead exposure induced developmental abnormalities of eyes, ear, limbs, neck and ventral abdominal wall; however, these abnormalities were commonly seen in the 1% lead-treated group. In addition, lead also caused fetal mortality and reduced body growth in both dose groups and reduced brain weight in the 1% lead-treated group. The fetal cerebella from the 1% lead-treated group showed unorganized cerebellar cortical layers, and degenerative changes in granule and Purkinje cells such as the formation of clumps of Nissl granules. An increase in Bax and caspase 3, and a decrease in Bcl-2 (p < 0.05), but not in p53, showed apoptosis of the neurons. In conclusion, gestational lead exposure in rats induces fetal toxicity and developmental abnormalities. The lead exposure also impairs development of cerebellar layers, induces structural changes, and apoptosis in the fetal cerebellar cortex. These results suggest that lead exposure during gestation is extremely toxic to developing cerebellum in rats.
Tactile responses in the granule cell layer of cerebellar folium crus IIa of freely behaving rats
NASA Technical Reports Server (NTRS)
Hartmann, M. J.; Bower, J. M.
2001-01-01
We recorded activity from the granule cell layer (GCL) of cerebellar folium Crus IIa as freely moving rats engaged in a variety of natural behaviors, including grooming, eating, and free tactile exploration. Multiunit responses in the 1000-4500 Hz range were found to be strongly correlated with tactile stimulation of lip and whisker (perioral) regions. These responses occurred regardless of whether the stimulus was externally or self-generated and during both active and passive touch. In contrast, perioral movements that did not tactually stimulate this region of the face (e.g., chewing) produced no detectable increases in GCL activity. In addition, GCL responses were not correlated with movement extremes. When rats used their lips actively for palpation and exploration, the tactile responses in the GCL were not detectably modulated by ongoing jaw movements. However, active palpation and exploratory behaviors did result in the largest and most continuous bursts of GCL activity: responses were on average 10% larger and 50% longer during palpation and exploration than during grooming or passive stimulation. Although activity levels differed between behaviors, the position and spatial extent of the peripheral receptive field was similar over all behaviors that resulted in tactile input. Overall, our data suggest that the 1000-4500 Hz multiunit responses in the Crus IIa GCL of awake rats are correlated with tactile input rather than with movement or any movement parameter and that these responses are likely to be of particular importance during the acquisition of sensory information by perioral structures.
Kitahara, Yosuke; Ohta, Keisuke; Hasuo, Hiroshi; Shuto, Takahide; Kuroiwa, Mahomi; Sotogaku, Naoki; Togo, Akinobu; Nakamura, Kei-ichiro; Nishi, Akinori
2016-01-01
A selective serotonin reuptake inhibitor is the most commonly prescribed antidepressant for the treatment of major depression. However, the mechanisms underlying the actions of selective serotonin reuptake inhibitors are not fully understood. In the dentate gyrus, chronic fluoxetine treatment induces increased excitability of mature granule cells (GCs) as well as neurogenesis. The major input to the dentate gyrus is the perforant path axons (boutons) from the entorhinal cortex (layer II). Through voltage-sensitive dye imaging, we found that the excitatory neurotransmission of the perforant path synapse onto the GCs in the middle molecular layer of the mouse dentate gyrus (perforant path-GC synapse) is enhanced after chronic fluoxetine treatment (15 mg/kg/day, 14 days). Therefore, we further examined whether chronic fluoxetine treatment affects the morphology of the perforant path-GC synapse, using FIB/SEM (focused ion beam/scanning electron microscopy). A three-dimensional reconstruction of dendritic spines revealed the appearance of extremely large-sized spines after chronic fluoxetine treatment. The large-sized spines had a postsynaptic density with a large volume. However, chronic fluoxetine treatment did not affect spine density. The presynaptic boutons that were in contact with the large-sized spines were large in volume, and the volumes of the mitochondria and synaptic vesicles inside the boutons were correlated with the size of the boutons. Thus, the large-sized perforant path-GC synapse induced by chronic fluoxetine treatment contains synaptic components that correlate with the synapse size and that may be involved in enhanced glutamatergic neurotransmission. PMID:26788851
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakravarthy, Balu, E-mail: Balu.Chakravarthy@nrc-cnrc.gc.ca; Gaudet, Chantal; Menard, Michel
2012-10-12
Highlights: Black-Right-Pointing-Pointer A{beta} and tau-induced neurofibrillary tangles play a key role in Alzheimer's disease. Black-Right-Pointing-Pointer A{beta}{sub 1-42} and mutant tau protein together reduce the primary cilium length. Black-Right-Pointing-Pointer This shortening likely reduces cilium-dependent neurogenesis and memory function. Black-Right-Pointing-Pointer This provides a model of an A{beta}/tau targeting of a neuronal signaling organelle. -- Abstract: The hippocampal dentate gyrus is one of the two sites of continuous neurogenesis in adult rodents and humans. Virtually all dentate granule cells have a single immobile cilium with a microtubule spine or axoneme covered with a specialized cell membrane loaded with receptors such as the somatostatinmore » receptor 3 (SSTR3), and the p75 neurotrophin receptor (p75{sup NTR}). The signals from these receptors have been reported to stimulate neuroprogenitor proliferation and the post-mitotic maturation of newborn granule cells into functioning granule cells. We have found that in 6-24-months-old triple transgenic Alzheimer's disease model mice (3xTg-AD) producing both A{beta}{sub 1-42} and the mutant human tau protein tau{sub P301L,} the dentate granule cells still had immunostainable SSTR3- and p75{sup NTR}-bearing cilia but they were only half the length of the immunostained cilia in the corresponding wild-type mice. However, the immunostainable length of the granule cell cilia was not reduced either in 2xTg-AD mice accumulating large amounts of A{beta}{sub 1-42} or in mice accumulating only a mutant human tau protein. Thus it appears that a combination of A{beta}{sub 1-42} and tau protein accumulation affects the levels of functionally important receptors in 3xTg-AD mice. These observations raise the important possibility that structural and functional changes in granule cell cilia might have a role in AD.« less
Perovskites in the comb roof base of hornets: their possible function.
Ishay, J S; Joseph, Z; Galushko, D; Ermakov, N; Bergman, D J; Barkay, Z; Stokroos, I; van der Want, J
2005-04-01
On the ceiling of the Oriental hornet comb cell, there are mineral granules of polycrystalline material known to belong to the group of perovskites. In a comb cell intended to house a worker hornet, the roof base usually carries one or several such perovskite granules containing titanium (Ti), whereas in the roof base of a cell housing a developing queen, there are usually several granules containing a high percentage of silicon (Si), aluminum (Al), calcium (Ca), and iron (Fe), but very little if any Ti. In worker comb cells, Ti usually appears as ilmenite (FeTiO3). Besides documenting the above-mentioned facts, this report discusses possible reasons for the appearance of ilmenite crystals in worker cells only and not in queen cells. (c) 2005 Wiley-Liss, Inc.
Andralojc, Karolina M.; Kelly, Ashley L.; Tanner, Paige C.
2017-01-01
Germ cells contain non-membrane bound cytoplasmic organelles that help maintain germline integrity. In C. elegans they are called P granules; without them, the germline undergoes partial masculinization and aberrant differentiation. One key P-granule component is the Argonaute CSR-1, a small-RNA binding protein that antagonizes accumulation of sperm-specific transcripts in developing oocytes and fine-tunes expression of proteins critical to early embryogenesis. Loss of CSR-1 complex components results in a very specific, enlarged P-granule phenotype. In a forward screen to identify mutants with abnormal P granules, ten alleles were recovered with a csr-1 P-granule phenotype, eight of which contain mutations in known components of the CSR-1 complex (csr-1, ego-1, ekl-1, and drh-3). The remaining two alleles are in a novel gene now called elli-1 (enlarged germline granules). ELLI-1 is first expressed in primordial germ cells during mid-embryogenesis, and continues to be expressed in the adult germline. While ELLI-1 forms cytoplasmic aggregates, they occasionally dock, but do not co-localize with P granules. Instead, the majority of ELLI-1 aggregates accumulate in the shared germline cytoplasm. In elli-1 mutants, several genes that promote RNAi and P-granule accumulation are upregulated, and embryonic lethality, sterility, and RNAi resistance in a hypomorphic drh-3 allele is enhanced, suggesting that ELLI-1 functions with CSR-1 to modulate RNAi activity, P-granule accumulation, and post-transcriptional expression in the germline. PMID:28182654
Beta cells transfer vesicles containing insulin to phagocytes for presentation to T cells.
Vomund, Anthony N; Zinselmeyer, Bernd H; Hughes, Jing; Calderon, Boris; Valderrama, Carolina; Ferris, Stephen T; Wan, Xiaoxiao; Kanekura, Kohsuke; Carrero, Javier A; Urano, Fumihiko; Unanue, Emil R
2015-10-06
Beta cells from nondiabetic mice transfer secretory vesicles to phagocytic cells. The passage was shown in culture studies where the transfer was probed with CD4 T cells reactive to insulin peptides. Two sets of vesicles were transferred, one containing insulin and another containing catabolites of insulin. The passage required live beta cells in a close cell contact interaction with the phagocytes. It was increased by high glucose concentration and required mobilization of intracellular Ca2+. Live images of beta cell-phagocyte interactions documented the intimacy of the membrane contact and the passage of the granules. The passage was found in beta cells isolated from islets of young nonobese diabetic (NOD) mice and nondiabetic mice as well as from nondiabetic humans. Ultrastructural analysis showed intraislet phagocytes containing vesicles having the distinct morphology of dense-core granules. These findings document a process whereby the contents of secretory granules become available to the immune system.
Dendritic excitation–inhibition balance shapes cerebellar output during motor behaviour
Jelitai, Marta; Puggioni, Paolo; Ishikawa, Taro; Rinaldi, Arianna; Duguid, Ian
2016-01-01
Feedforward excitatory and inhibitory circuits regulate cerebellar output, but how these circuits interact to shape the somatodendritic excitability of Purkinje cells during motor behaviour remains unresolved. Here we perform dendritic and somatic patch-clamp recordings in vivo combined with optogenetic silencing of interneurons to investigate how dendritic excitation and inhibition generates bidirectional (that is, increased or decreased) Purkinje cell output during self-paced locomotion. We find that granule cells generate a sustained depolarization of Purkinje cell dendrites during movement, which is counterbalanced by variable levels of feedforward inhibition from local interneurons. Subtle differences in the dendritic excitation–inhibition balance generate robust, bidirectional changes in simple spike (SSp) output. Disrupting this balance by selectively silencing molecular layer interneurons results in unidirectional firing rate changes, increased SSp regularity and disrupted locomotor behaviour. Our findings provide a mechanistic understanding of how feedforward excitatory and inhibitory circuits shape Purkinje cell output during motor behaviour. PMID:27976716
Xin Zhao; Geng, Rong -Li; Tyagi, P. V.; ...
2010-12-30
Here, we report the results of surface characterizations of niobium (Nb) samples electropolished together with a single cell superconducting radio-frequency accelerator cavity. These witness samples were located in three regions of the cavity, namely at the equator, the iris and the beam-pipe. Auger electron spectroscopy (AES) was utilized to probe the chemical composition of the topmost four atomic layers. Scanning electron microscopy with energy dispersive X-ray for elemental analysis (SEM/EDX) was used to observe the surface topography and chemical composition at the micrometer scale. A few atomic layers of sulfur (S) were found covering the samples non-uniformly. Niobium oxide granulesmore » with a sharp geometry were observed on every sample. Some Nb-O granules appeared to also contain sulfur.« less
Zhi-Qiang, Chen; Jun-Wen, Li; Yi-Hong, Zhang; Xuan, Wang; Bin, Zhang
2012-01-01
The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs), two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates. PMID:22859954
Protease nexin-1 promotes secretory granule biogenesis by preventing granule protein degradation.
Kim, Taeyoon; Loh, Y Peng
2006-02-01
Dense-core secretory granule (DCG) biogenesis is a prerequisite step for the sorting, processing, and secretion of neuropeptides and hormones in (neuro)endocrine cells. Previously, chromogranin A (CgA) has been shown to play a key role in the regulation of DCG biogenesis in vitro and in vivo. However, the underlying mechanism of CgA-mediated DCG biogenesis has not been explored. In this study, we have uncovered a novel mechanism for the regulation of CgA-mediated DCG biogenesis. Transfection of CgA into endocrine 6T3 cells lacking CgA and DCGs not only recovered DCG formation and regulated secretion but also prevented granule protein degradation. Genetic profiling of CgA-expressing 6T3 versus CgA- and DCG-deficient 6T3 cells, followed by real-time reverse transcription-polymerase chain reaction and Western blotting analyses, revealed that a serine protease inhibitor, protease nexin-1 (PN-1), was significantly up-regulated in CgA-expressing 6T3 cells. Overexpression of PN-1 in CgA-deficient 6T3 cells prevented degradation of DCG proteins at the Golgi apparatus, enhanced DCG biogenesis, and recovered regulated secretion. Moreover, depletion of PN-1 by antisense RNAs in CgA-expressing 6T3 cells resulted in the specific degradation of DCG proteins. We conclude that CgA increases DCG biogenesis in endocrine cells by up-regulating PN-1 expression to stabilize granule proteins against degradation.
Protease Nexin-1 Promotes Secretory Granule Biogenesis by Preventing Granule Protein Degradation
Kim, Taeyoon; Loh, Y. Peng
2006-01-01
Dense-core secretory granule (DCG) biogenesis is a prerequisite step for the sorting, processing, and secretion of neuropeptides and hormones in (neuro)endocrine cells. Previously, chromogranin A (CgA) has been shown to play a key role in the regulation of DCG biogenesis in vitro and in vivo. However, the underlying mechanism of CgA-mediated DCG biogenesis has not been explored. In this study, we have uncovered a novel mechanism for the regulation of CgA-mediated DCG biogenesis. Transfection of CgA into endocrine 6T3 cells lacking CgA and DCGs not only recovered DCG formation and regulated secretion but also prevented granule protein degradation. Genetic profiling of CgA-expressing 6T3 versus CgA- and DCG-deficient 6T3 cells, followed by real-time reverse transcription-polymerase chain reaction and Western blotting analyses, revealed that a serine protease inhibitor, protease nexin-1 (PN-1), was significantly up-regulated in CgA-expressing 6T3 cells. Overexpression of PN-1 in CgA-deficient 6T3 cells prevented degradation of DCG proteins at the Golgi apparatus, enhanced DCG biogenesis, and recovered regulated secretion. Moreover, depletion of PN-1 by antisense RNAs in CgA-expressing 6T3 cells resulted in the specific degradation of DCG proteins. We conclude that CgA increases DCG biogenesis in endocrine cells by up-regulating PN-1 expression to stabilize granule proteins against degradation. PMID:16319172
Expression of Gas1 in Mouse Brain: Release and Role in Neuronal Differentiation.
Bautista, Elizabeth; Zarco, Natanael; Aguirre-Pineda, Nicolás; Lara-Lozano, Manuel; Vergara, Paula; González-Barrios, Juan Antonio; Aguilar-Roblero, Raúl; Segovia, José
2018-05-01
Growth arrest-specific 1 (Gas1) is a pleiotropic protein that induces apoptosis of tumor cells and has important roles during development. Recently, the presence of two forms of Gas1 was reported: one attached to the cell membrane by a GPI anchor; and a soluble extracellular form shed by cells. Previously, we showed that Gas1 is expressed in different areas of the adult mouse CNS. Here, we report the levels of Gas1 mRNA protein in different regions and analyzed its expressions in glutamatergic, GABAergic, and dopaminergic neurons. We found that Gas1 is expressed in GABAergic and glutamatergic neurons in the Purkinje-molecular layer of the cerebellum, hippocampus, thalamus, and fastigial nucleus, as well as in dopaminergic neurons of the substantia nigra. In all cases, Gas1 was found in the cell bodies, but not in the neuropil. The Purkinje and the molecular layers show the highest levels of Gas1, whereas the granule cell layer has low levels. Moreover, we detected the expression and release of Gas1 from primary cultures of Purkinje cells and from hippocampal neurons as well as from neuronal cell lines, but not from cerebellar granular cells. In addition, using SH-SY5Y cells differentiated with retinoic acid as a neuronal model, we found that extracellular Gas1 promotes neurite outgrowth, increases the levels of tyrosine hydroxylase, and stimulates the inhibition of GSK3β. These findings demonstrate that Gas1 is expressed and released by neurons and promotes differentiation, suggesting an important role for Gas1 in cellular signaling in the CNS.
Isolation of zymogen granules from rat pancreas.
Rindler, Michael J
2006-01-01
This unit describes methods for preparing zymogen granules from rat pancreas. Zymogen granules are storage organelles in pancreatic acinar cells containing digestive enzymes that are released into the pancreatic duct. The protocols in this unit take advantage of the large size (up to 1 microm diameter) and high density (>1.20 g/cm(3) on sucrose gradients) of the granules as compared to other cellular organelles. They use a combination of differential sedimentation and density gradient separation to accomplish the purification. Similar procedures can be used to isolate zymogen granules from mouse pancreas and canine pancreas. A protocol for preparing zymogen granules from dog pancreas is also included.
Activity-Induced Remodeling of Olfactory Bulb Microcircuits Revealed by Monosynaptic Tracing
Arenkiel, Benjamin R.; Hasegawa, Hiroshi; Yi, Jason J.; Larsen, Rylan S.; Wallace, Michael L.; Philpot, Benjamin D.; Wang, Fan; Ehlers, Michael D.
2011-01-01
The continued addition of new neurons to mature olfactory circuits represents a remarkable mode of cellular and structural brain plasticity. However, the anatomical configuration of newly established circuits, the types and numbers of neurons that form new synaptic connections, and the effect of sensory experience on synaptic connectivity in the olfactory bulb remain poorly understood. Using in vivo electroporation and monosynaptic tracing, we show that postnatal-born granule cells form synaptic connections with centrifugal inputs and mitral/tufted cells in the mouse olfactory bulb. In addition, newly born granule cells receive extensive input from local inhibitory short axon cells, a poorly understood cell population. The connectivity of short axon cells shows clustered organization, and their synaptic input onto newborn granule cells dramatically and selectively expands with odor stimulation. Our findings suggest that sensory experience promotes the synaptic integration of new neurons into cell type-specific olfactory circuits. PMID:22216277
Maternal dazap2 Regulates Germ Granules by Counteracting Dynein in Zebrafish Primordial Germ Cells.
Forbes, Meredyth M; Rothhämel, Sophie; Jenny, Andreas; Marlow, Florence L
2015-07-07
Primordial germ cells (PGCs) are the stem cells of the germline. Generally, germline induction occurs via zygotic factors or the inheritance of maternal determinants called germ plasm (GP). GP is packaged into ribonucleoprotein complexes within oocytes and later promotes the germline fate in embryos. Once PGCs are specified by either mechanism, GP components localize to perinuclear granular-like structures. Although components of zebrafish PGC germ granules have been studied, the maternal factors regulating their assembly and contribution to germ cell development are unknown. Here, we show that the scaffold protein Dazap2 binds to Bucky ball, an essential regulator of oocyte polarity and GP assembly, and colocalizes with the GP in oocytes and in PGCs. Mutational analysis revealed a requirement for maternal Dazap2 (MDazap2) in germ-granule maintenance. Through molecular epistasis analyses, we show that MDazap2 is epistatic to Tdrd7 and maintains germ granules in the embryonic germline by counteracting Dynein activity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Kulkova, Julia; Moritz, Niko; Huhtinen, Hannu; Mattila, Riina; Donati, Ivan; Marsich, Eleonora; Paoletti, Sergio; Vallittu, Pekka K
2017-11-01
In skeletal reconstructions, composites, such as bisphenol-A-glycidyldimethacrylate resin reinforced with glass fibers, are potentially useful alternatives to metallic implants. Recently, we reported a novel method to prepare bioactive surfaces for these composites. Surface etching by Excimer laser was used to expose bioactive glass granules embedded in the resin. The purpose of this study was to analyze two types of bioactive surfaces created by this technique. The surfaces contained bioactive glass and hydroxyapatite granules. The selected processing parameters were adequate for the creation of the surfaces. However, the use of porous hydroxyapatite prevented the complete exposure the granules. In cell culture, for bioactive glass coatings, the pattern of proliferation of MG63 cells was comparable to that in the positive control group (Ti6Al4V) while inferior cell proliferation was observed on the surfaces containing hydroxyapatite granules. Scanning electron microscopy revealed osteointegration of implants with both types of surfaces. The technique is suitable for the exposure of solid bioactive glass granules. However, the long-term performance of the surfaces needs further assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Okumura, Akihisa; Lee, Tsubasa; Ikeno, Mitsuru; Shimojima, Keiko; Kajino, Kazunori; Inoue, Yuka; Yoshikawa, Naomi; Suganuma, Hiroki; Suzuki, Mitsuyoshi; Hisata, Ken; Shoji, Hiromichi; Takanashi, Jun-ichi; Barkovich, A James; Shimizu, Toshiaki; Yamamoto, Toshiyuki; Hayashi, Masaharu
2012-11-01
Here we report a boy with epidermal nevus syndrome associated with brainstem and cerebellar malformations and neonatal medulloblastoma. The patient had epidermal nevi and complicated brain malformations including macrocephaly with polymicrogyria, dysmorphic and enlarged midbrain tectum, enlarged cerebellar hemispheres with small and maloriented folia. The patient died after surgical resection of medulloblastoma which was newly recognized on MRI at 51 days of age. Postmortem pathological examinations showed very unique and bizarre malformation of the midbrain and hindbrain. The cerebellar cortex exhibited a coarse, irregular and bumpy surface, blurred border between the Purkinje cell layer and internal granule cell layer, and many foci of heterotopia in the cerebellar white matter. The brainstem showed multiple anomalies, including enlargement of superior colliculi, hypoplasia of pyramidal tracts and dysplasia of inferior olivary nuclei. The unusual constellation of brain malformations of our patient will widen the spectrum of epidermal nevus syndrome. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Yu, Xiao; Zhao, Xiao-Dong; Bao, Rong-Qi; Yu, Jia-Yu; Zhang, Guo-Xing
2016-01-01
Sera from the rats with different drug treatments (atorvastatin, Tiaozhi granule, or its extracts) were collected. LO-2 cells or HepG2 cells were pretreated with different sera as the following groups randomly: (1) blank control group, (2) positive control group (atorvastatin group), (3) Tiaozhi granule water extract groups, (4) Tiaozhi granule alcohol extract groups, and (5) alcohol extracts for each component: Pollen Typhae Angustifoliae, Curcuma longa L., and Rhizoma Alismatis. LO-2 cells were cotransfected with plasmid carrying SR-BI and pRL-TK promoter genes. Promoter activity was measured by the luciferase reporter gene assay. The mRNA and protein expressions of SR-BI were examined using real-time PCR and western blot analyses. Our results show that promoter activity and mRNA and protein expression levels of the SR-BI were significantly upregulated by Tiaozhi granules alcohol or water extracts in a dose-dependent manner. Pollen Typhae Angustifoliae alcohol extract with a high dosage could also increase SR-BI activity and expression, but not the extracts from Curcuma longa L. and Rhizoma Alismatis. Both Tiaozhi granule alcohol and water extracts can upregulate SR-BI gene expression. Among the components, Pollen Typhae Angustifoliae are important for the regulatory effect coordinating with Curcuma longa L. and Rhizoma Alismatis. PMID:28050195
Synthesis and cytotoxicity evaluation of granular magnesium substituted β-tricalcium phosphate.
Tavares, Débora dos Santos; Castro, Leticia de Oliveira; Soares, Gloria Dulce de Almeida; Alves, Gutemberg Gomes; Granjeiro, José Mauro
2013-01-01
The aim of this study was to produce dense granules of tricalcium phosphate (β-TCP) and magnesium (Mg) substituted β-TCP, also known as β-TCMP (Mg/Ca=0.15 mol), in order to evaluate the impact of Mg incorporation on the physicochemical parameters and in vitro biocompatibility of this novel material. The materials were characterized using X-ray diffraction (XRD), infrared spectroscopy (FTIR), electron microscopy and inductively coupled plasma (ICP). Biocompatibility was assayed according to ISO 10993-12:2007 and 7405:2008, by two different tests of cell survival and integrity (XTT and CVDE). The XRD profile presented the main peaks of β-TCP (JCPDS 090169) and β-TCMP (JCPDS 130404). The characteristic absorption bands of TCP were also identified by FTIR. The ICP results of β-TCMP granules extract showed a precipitation of calcium and release of Mg into the culture medium. Regarding the cytotoxicity assays, β-TCMP dense granules did not significantly affect the mitochondrial activity and relative cell density in relation to β-TCP dense granules, despite the release of Mg from granules into the cell culture medium. β-TCMP granules were successfully produced and were able to release Mg into media without cytotoxicity, indicating the suitability of this promising material for further biological studies on its adequacy for bone therapy.
Morula-like cells in photo-symbiotic clams harboring zooxanthellae.
Nakayama, K; Nishijima, M; Maruyama, T
1998-06-01
Symbiosis is observed between zooxanthellae, symbiotic dinoflagellates, and giant clams and related clams which belong to the families Tridacnidae and Cardiidae. We have previously shown that a photo-symbiotic clam Tridacna crocea has three types of hemocytes, the eosinophilic granular hemocyte with phagocytic activity, the agranular cell with electron lucent granules, and the morula-like cell with large (ca. 2 mum in diameter) colorless granules. The function of the morula-like cell is not clear, but it has not been reported in any other bivalves except photo-symbiotic clams T. crocea and Tridacna maxima. In order to clarify whether it is specific to photo-symbiotic clams or not, we studied hemocytes in the photo-symbiotic clams Tridacna derasa (Tridacnidae), Hippopus hippopus (Tridacnidae) and Corculum cardissa (Cardiidae), and a closely related non-symbiotic clam Fulvia mutica (Cardiidae). The eosinophilic granular hemocytes and the agranular cells were found in all of the clams examined. However, the morula-like cells which were packed with many large electron dense granules (ca. 2 mum in diameter), were observed only in the photo-symbiotic clams. In F. mutica, a closely related non-symbiotic clam, this type of hemocyte was not found. Instead a hemocyte with vacuoles and a few large granules containing peroxidase activity was observed. The large granules of F. mutica varied in size from ca. 1-9 mum in diameter. Present data suggests that the presence of morula-like cells is restricted to photo-symbiotic clams and that the hemocytes associated with the morula-like cells may have some functional relationship to symbiosis with zooxanthellae.
Meuten, D. J.; Capen, C. C.; Kociba, G. J.; Chew, D. J.; Cooper, B. J.
1982-01-01
Adenocarcinomas derived from apocrine glands of the anal sac and associated with persistent hypercalcemia in dogs were composed of tumor cells with numerous profiles of rough endoplasmic reticulum, clusters of free ribosomes, and a prominent Golgi apparatus. Neoplastic cells contained microtubules, microfilaments, tonofibrils, and had two types of electron-dense granules. Large lysosomelike dense bodies ranged from 0.6 to 2.2 microns in diameter and had a poorly delineated limiting membrane. Small granules (150-400 nm in diameter) had a sharply delineated limiting membrane with a narrow submembranous space and a homogeneous dense core. These smaller granules usually were located near the apexes of neoplastic cells, whereas the larger granules were situated near the base of cells. Apocrine cells in glands of the anal sac from control dogs that were in the secretory phase were columnar and had large dilated profiles of rough endoplasmic reticulum. Membranes of the endoplasmic reticulum fused with the plasmalemma and appeared to secrete their product directly into the lumens of acini, characteristic of merocrine secretion. Apical blebs of electron-lucent cytoplasm pinched off from nonneoplastic aprocine cells and were released into glandular lumens. Similar electron-lucent cytoplasmic blebs were present at the apexes of tumor cells. Myoepithelial cells were present between the epithelial cells and basement membrane in normal apocrine glands and were absent in neoplasms derived from these glands. Identification of the contents of the secretory-like granules in tumor cells and characterization of the hypercalcemic factor in the plasma or tumor tissue from dogs with this syndrome will help explain the pathogenesis of hypercalcemia associated with malignancy in animals and man. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 PMID:7200729
Meuten, D J; Capen, C C; Kociba, G J; Chew, D J; Cooper, B J
1982-05-01
Adenocarcinomas derived from apocrine glands of the anal sac and associated with persistent hypercalcemia in dogs were composed of tumor cells with numerous profiles of rough endoplasmic reticulum, clusters of free ribosomes, and a prominent Golgi apparatus. Neoplastic cells contained microtubules, microfilaments, tonofibrils, and had two types of electron-dense granules. Large lysosomelike dense bodies ranged from 0.6 to 2.2 microns in diameter and had a poorly delineated limiting membrane. Small granules (150-400 nm in diameter) had a sharply delineated limiting membrane with a narrow submembranous space and a homogeneous dense core. These smaller granules usually were located near the apexes of neoplastic cells, whereas the larger granules were situated near the base of cells. Apocrine cells in glands of the anal sac from control dogs that were in the secretory phase were columnar and had large dilated profiles of rough endoplasmic reticulum. Membranes of the endoplasmic reticulum fused with the plasmalemma and appeared to secrete their product directly into the lumens of acini, characteristic of merocrine secretion. Apical blebs of electron-lucent cytoplasm pinched off from nonneoplastic aprocine cells and were released into glandular lumens. Similar electron-lucent cytoplasmic blebs were present at the apexes of tumor cells. Myoepithelial cells were present between the epithelial cells and basement membrane in normal apocrine glands and were absent in neoplasms derived from these glands. Identification of the contents of the secretory-like granules in tumor cells and characterization of the hypercalcemic factor in the plasma or tumor tissue from dogs with this syndrome will help explain the pathogenesis of hypercalcemia associated with malignancy in animals and man.
Stanton, P K; Mody, I; Heinemann, U
1989-01-01
Mechanisms of action of norepinephrine (NE) on dentate gyrus granule cells were studied in rat hippocampal slices using extra- and intracellular recordings and measurements of stimulus and amino acid-induced changes in extracellular Ca2+ and K+ concentration. Bath application of NE (10-50 microM) induced long-lasting potentiation of perforant path evoked potentials, and markedly enhanced high-frequency stimulus-induced Ca2+ influx and K+ efflux, actions blocked by beta-receptor antagonists and mimicked by beta agonists. Enhanced Ca2+ influx was primarily postsynaptic, since presynaptic delta [Ca2+]o in the stratum moleculare synaptic field was not altered by NE. Interestingly, the potentiation of both ionic fluxes and evoked population potentials were antagonized by the N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonovalerate (APV). Furthermore, NE selectively enhanced the delta [Ca2+]o delta [K+]o and extracellular slow negative field potentials elicited by iontophoretically applied NMDA, but not those induced by the excitatory amino acid quisqualate. These results suggest that granule cell influx of Ca2+ through NMDA ionophores is enhanced by NE via beta-receptor activation. In intracellular recordings, NE depolarized granule cells (4.8 +/- 1.1 mV), and increased input resistance (RN) by 34 +/- 6.5%. These actions were also blocked by either the beta-antagonist propranolol or specific beta 1-blocker metoprolol. Moreover, the depolarization and RN increase persisted for long periods (93 +/- 12 min) after NE washout. In contrast, while NE, in the presence of APV, still depolarized granule cells and increased RN, APV made these actions quickly reversible upon NE washout (16 +/- 9 min). This suggested that NE induction of long-term, but not short-term, plasticity in the dentate gyrus requires NMDA receptor activation. NE may be enhancing granule cell firing by some combination of blockade on the late Ca2+-activated K+ conductance and depolarization of granule cells, both actions that can bring granule cells into a voltage range where NMDA receptors are more easily activated. Furthermore, NE also elicited activity-independent long-lasting depolarization and RN increases, which required functional NMDA receptors to persist.
Lee, Vallent; MacKenzie, Georgina; Hooper, Andrew; Maguire, Jamie
2016-10-01
It is well established that stress impacts the underlying processes of learning and memory. The effects of stress on memory are thought to involve, at least in part, effects on the hippocampus, which is particularly vulnerable to stress. Chronic stress induces hippocampal alterations, including but not limited to dendritic atrophy and decreased neurogenesis, which are thought to contribute to chronic stress-induced hippocampal dysfunction and deficits in learning and memory. Changes in synaptic transmission, including changes in GABAergic inhibition, have been documented following chronic stress. Recently, our laboratory demonstrated shifts in EGABA in CA1 pyramidal neurons following chronic stress, compromising GABAergic transmission and increasing excitability of these neurons. Interestingly, here we demonstrate that these alterations are unique to CA1 pyramidal neurons, since we do not observe shifts in EGABA following chronic stress in dentate gyrus granule cells. Following chronic stress, there is a decrease in the expression of the GABAA receptor (GABAA R) δ subunit and tonic GABAergic inhibition in dentate gyrus granule cells, whereas there is an increase in the phasic component of GABAergic inhibition, evident by an increase in the peak amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). Given the numerous changes observed in the hippocampus following stress, it is difficult to pinpoint the pertinent contributing pathophysiological factors. Here we directly assess the impact of a reduction in tonic GABAergic inhibition of dentate gyrus granule cells on learning and memory using a mouse model with a decrease in GABAA R δ subunit expression specifically in dentate gyrus granule cells (Gabrd/Pomc mice). Reduced GABAA R δ subunit expression and function in dentate gyrus granule cells is sufficient to induce deficits in learning and memory. Collectively, these findings suggest that the reduction in GABAA R δ subunit-mediated tonic inhibition in dentate gyrus granule cells contributes, at least in part, to deficits in learning and memory associated with chronic stress. These findings have significant implications regarding the pathophysiological mechanisms underlying impairments in learning and memory associated with stress and suggest a role for GABAA R δ subunit containing receptors in dentate gyrus granule cells. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Pfeiffer, Daniel
2012-01-01
Poly(3-hydroxybutyrate) (PHB) granules are covered by a surface layer consisting of mainly phasins and other PHB granule-associated proteins (PGAPs). Phasins are small amphiphilic proteins that determine the number and size of accumulated PHB granules. Five phasin proteins (PhaP1 to PhaP5) are known for Ralstonia eutropha. In this study, we identified three additional potential phasin genes (H16_B1988, H16_B2296, and H16_B2326) by inspection of the R. eutropha genome for sequences with “phasin 2 motifs.” To determine whether the corresponding proteins represent true PGAPs, fusions with eYFP (enhanced yellow fluorescent protein) were constructed. Similar fusions of eYFP with PhaP1 to PhaP5 as well as fusions with PHB synthase (PhaC1), an inactive PhaC1 variant (PhaC1-C319A), and PhaC2 were also made. All fusions were investigated in wild-type and PHB-negative backgrounds. Colocalization with PHB granules was found for all PhaC variants and for PhaP1 to PhaP5. Additionally, eYFP fusions with H16_B1988 and H16_B2326 colocalized with PHB. Fusions of H16_B2296 with eYFP, however, did not colocalize with PHB granules but did colocalize with the nucleoid region. Notably, all fusions (except H16_B2296) were soluble in a ΔphaC1 strain. These data confirm that H16_B1988 and H16_B2326 but not H16_B2296 encode true PGAPs, for which we propose the designation PhaP6 (H16_B1988) and PhaP7 (H16_B2326). When localization of phasins was investigated at different stages of PHB accumulation, fusions of PhaP6 and PhaP7 were soluble in the first 3 h under PHB-permissive conditions, although PHB granules appeared after 10 min. At later time points, the fusions colocalized with PHB. Remarkably, PHB granules of strains expressing eYFP fusions with PhaP5, PhaP6, or PhaP7 localized predominantly near the cell poles or in the area of future septum formation. This phenomenon was not observed for the other PGAPs (PhaP1 to PhaP4, PhaC1, PhaC1-C319A, and PhaC2) and indicated that some phasins can have additional functions. A chromosomal deletion of phaP6 or phaP7 had no visible effect on formation of PHB granules. PMID:22923598
Pfeiffer, Daniel; Jendrossek, Dieter
2012-11-01
Poly(3-hydroxybutyrate) (PHB) granules are covered by a surface layer consisting of mainly phasins and other PHB granule-associated proteins (PGAPs). Phasins are small amphiphilic proteins that determine the number and size of accumulated PHB granules. Five phasin proteins (PhaP1 to PhaP5) are known for Ralstonia eutropha. In this study, we identified three additional potential phasin genes (H16_B1988, H16_B2296, and H16_B2326) by inspection of the R. eutropha genome for sequences with "phasin 2 motifs." To determine whether the corresponding proteins represent true PGAPs, fusions with eYFP (enhanced yellow fluorescent protein) were constructed. Similar fusions of eYFP with PhaP1 to PhaP5 as well as fusions with PHB synthase (PhaC1), an inactive PhaC1 variant (PhaC1-C319A), and PhaC2 were also made. All fusions were investigated in wild-type and PHB-negative backgrounds. Colocalization with PHB granules was found for all PhaC variants and for PhaP1 to PhaP5. Additionally, eYFP fusions with H16_B1988 and H16_B2326 colocalized with PHB. Fusions of H16_B2296 with eYFP, however, did not colocalize with PHB granules but did colocalize with the nucleoid region. Notably, all fusions (except H16_B2296) were soluble in a ΔphaC1 strain. These data confirm that H16_B1988 and H16_B2326 but not H16_B2296 encode true PGAPs, for which we propose the designation PhaP6 (H16_B1988) and PhaP7 (H16_B2326). When localization of phasins was investigated at different stages of PHB accumulation, fusions of PhaP6 and PhaP7 were soluble in the first 3 h under PHB-permissive conditions, although PHB granules appeared after 10 min. At later time points, the fusions colocalized with PHB. Remarkably, PHB granules of strains expressing eYFP fusions with PhaP5, PhaP6, or PhaP7 localized predominantly near the cell poles or in the area of future septum formation. This phenomenon was not observed for the other PGAPs (PhaP1 to PhaP4, PhaC1, PhaC1-C319A, and PhaC2) and indicated that some phasins can have additional functions. A chromosomal deletion of phaP6 or phaP7 had no visible effect on formation of PHB granules.
GABA-independent GABAA Receptor Openings Maintain Tonic Currents
Wlodarczyk, Agnieszka I.; Sylantyev, Sergiy; Herd, Murray B.; Kersanté, Flavie; Lambert, Jeremy J.; Rusakov, Dmitri A.; Linthorst, Astrid C.E.; Semyanov, Alexey; Belelli, Delia; Pavlov, Ivan; Walker, Matthew C.
2013-01-01
Activation of GABAA receptors (GABAARs) produces two forms of inhibition: ‘phasic’ inhibition generated by the rapid, transient activation of synaptic GABAARs by presynaptic GABA release, and tonic inhibition generated by the persistent activation of peri- or extrasynaptic GABAARs which can detect extracellular GABA. Such tonic GABAAR-mediated currents are particularly evident in dentate granule cells in which they play a major role in regulating cell excitability. Here we show that in rat dentate granule cells in ex-vivo hippocampal slices, tonic currents are predominantly generated by GABA-independent GABAA receptor openings. This tonic GABAAR conductance is resistant to the competitive GABAAR antagonist SR95531, which at high concentrations acts as a partial agonist, but can be blocked by an open channel blocker picrotoxin. When slices are perfused with 200 nM GABA, a concentration that is comparable to cerebrospinal fluid concentrations but is twice that measured by us in the hippocampus in vivo using zero-net-flux microdialysis, negligible GABA is detected by dentate granule cells. Spontaneously opening GABAARs, therefore, maintain dentate granule cell tonic currents in the face of low extracellular GABA concentrations. PMID:23447601
Convergent evolution of germ granule nucleators: A hypothesis.
Kulkarni, Arpita; Extavour, Cassandra G
2017-10-01
Germ cells have been considered "the ultimate stem cell" because they alone, during normal development of sexually reproducing organisms, are able to give rise to all organismal cell types. Morphological descriptions of a specialized cytoplasm termed 'germ plasm' and associated electron dense ribonucleoprotein (RNP) structures called 'germ granules' within germ cells date back as early as the 1800s. Both germ plasm and germ granules are implicated in germ line specification across metazoans. However, at a molecular level, little is currently understood about the molecular mechanisms that assemble these entities in germ cells. The discovery that in some animals, the gene products of a small number of lineage-specific genes initiate the assembly (also termed nucleation) of germ granules and/or germ plasm is the first step towards facilitating a better understanding of these complex biological processes. Here, we draw on research spanning over 100years that supports the hypothesis that these nucleator genes may have evolved convergently, allowing them to perform analogous roles across animal lineages. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Srivastava, Rupali; Kumar, Manoj; Peineau, Stéphane; Csaba, Zsolt; Mani, Shyamala; Gressens, Pierre; El Ghouzzi, Vincent
2013-04-01
Directing differentiation of embryonic stem cells (ESCs) to specific neuronal subtype is critical for modeling disease pathology in vitro. An attractive means of action would be to combine regulatory differentiation factors and extrinsic inductive signals added to the culture medium. In this study, we have generated mature cerebellar granule neurons by combining a temporally controlled transient expression of Math1, a master gene in granule neuron differentiation, with inductive extrinsic factors involved in cerebellar development. Using a Tetracyclin-On transactivation system, we overexpressed Math1 at various stages of ESCs differentiation and found that the yield of progenitors was considerably increased when Math1 was induced during embryonic body stage. Math1 triggered expression of Mbh1 and Mbh2, two target genes directly involved in granule neuron precursor formation and strong expression of early cerebellar territory markers En1 and NeuroD1. Three weeks after induction, we observed a decrease in the number of glial cells and an increase in that of neurons albeit still immature. Combining Math1 induction with extrinsic factors specifically increased the number of neurons that expressed Pde1c, Zic1, and GABAα6R characteristic of mature granule neurons, formed "T-shaped" axons typical of granule neurons, and generated synaptic contacts and action potentials in vitro. Finally, in vivo implantation of Math1-induced progenitors into young adult mice resulted in cell migration and settling of newly generated neurons in the cerebellum. These results show that conditional induction of Math1 drives ESCs toward the cerebellar fate and indicate that acting on both intrinsic and extrinsic factors is a powerful means to modulate ESCs differentiation and maturation into a specific neuronal lineage. Copyright © 2012 AlphaMed Press.
Chaves, Eduardo M; Aguilera-Merlo, Claudia; Cruceño, Albana; Fogal, Teresa; Piezzi, Ramón; Scardapane, Luis; Dominguez, Susana
2012-05-01
The viscacha is a seasonal rodent that exhibit an annual reproductive cycle with periods of maximum reproductive activity and gonadal regression. We studied seasonal variations in the morphology and cellular population of the seminal vesicles (SVs) during both periods and in impuber animals. Seminal vesicles were studied by light and electronic microscopy. Measurements of epithelial height, nuclear diameter, luminal diameter, and muscular layer were performed. Also, we studied the distribution of androgen receptors (AR) in this gland during the reproductive cycle and in impuber animal. During gonadal regression, principal and clear cells showed signs of reduced functional activity. These were characterized by an epithelium of smaller height, irregular nuclei, and cytoplasm with few organelles, dilated cisterns, and glycogen granules. In impuber animals, the principal cells showed large nuclei with chromatin lax and cytoplasm with small mitochondria, poorly developed Golgi apparatus, and granules of glycogen. On the other hand, the cells exhibited seasonal variations in the distribution and percentage of immunolabeled cells to AR throughout the annual reproductive cycle. During the gonadal regression period, glandular mucosa exhibited numerous epithelial cells with intense nuclear staining. However, fibromuscular stromal cells were weakly positive for AR in contrast to what was observed during the activity period. Considering that testosterone values are lower in adult animals during the period of gonadal regression and in impuber animals, our immunohistochemical results show a significant correlation with the percentage of AR-immunopositive cells. In conclusion, these results demonstrate that the structure of the SVs changes in the activity period of viscacha, probably because of elevated levels of testosterone leading to an increase in the secretory activity of epithelial cells. Copyright © 2012 Wiley Periodicals, Inc.
Xie, L; Zhu, D; Gaisano, H Y
2012-10-01
We have previously reported that the haplodeficient Munc13-1(+/-) mouse exhibits impaired biphasic glucose-stimulated insulin secretion (GSIS), causing glucose intolerance mimicking type 2 diabetes. Glucagon-like peptide-1 (GLP-1) can bypass these insulin-secretory defects in type 2 diabetes, but the mechanism of exocytotic events mediated by GLP-1 in rescuing insulin secretion is unclear. The total internal reflection fluorescence microscopy (TIRFM) technique was used to examine single insulin granule fusion events in mouse islet beta cells. There was no difference in the density of docked granules in the resting state between Munc13-1(+/+) and Munc13-1(+/-) mouse islet beta cells. While exocytosis of previously docked granules in Munc13-1(+/-) beta cells is reduced during high-K(+) stimulation as expected, we now find a reduction in additional exocytosis events that account for the major portion of GSIS, namely two types of newcomer granules, one which has a short docking time (short-dock) and another undergoing no docking before exocytosis (no-dock). As mammalian homologue of Caenorhabditis elegans unc-13-1 (Munc13-1) is a phorbol ester substrate, phorbol ester could partially rescue biphasic GSIS in Munc13-1-deficient beta cells by enhancing recruitment of short-dock newcomer granules for exocytosis. The more effective rescue of biphasic GSIS by GLP-1 than by phorbol was due to increased recruitment of both short-dock and no-dock newcomer granules. Phorbol ester and GLP-1 potentiation of biphasic GSIS are brought about by recruitment of distinct populations of newcomer granules for exocytosis, which may be mediated by Munc13-1 interaction with syntaxin-SNARE complexes other than that formed by syntaxin-1A.
A Method for Extracting Pigments from Squid Doryteuthis pealeii.
DiBona, Christopher W; Williams, Thomas L; Dinneen, Sean R; Jones Labadie, Stephanie F; Deravi, Leila F
2016-11-09
Cephalopods can undergo rapid and adaptive changes in dermal coloration for sensing, communication, defense, and reproduction purposes. These capabilities are supported in part by the areal expansion and retraction of pigmented organs known as chromatophores. While it is known that the chromatophores contain a tethered network of pigmented granules, their structure-function properties have not been fully detailed. We describe a method for isolating the nanostructured granules in squid Doryteuthis pealeii chromatophores and demonstrate how their associated pigments can be extracted in acidic solvents. To accomplish this, the chromatophore containing dermal layer is first manually isolated using a superficial dissection, and the pigment granules are removed using sonication, centrifugation, and washing cycles. Pigments confined within the purified granules are then extracted via acidic methanol solutions, leaving nanostructures with smaller diameters that are void of visible color. This extraction procedure produces a 58% yield of soluble pigments isolated from granules. Using this method, the composition of the chromatophore pigments can be determined and used to provide insight into the mechanism of adaptive coloration in cephalopods.
Tunicamycin impairs olfactory learning and synaptic plasticity in the olfactory bulb.
Tong, Jia; Okutani, Fumino; Murata, Yoshihiro; Taniguchi, Mutsuo; Namba, Toshiharu; Wang, Yu-Jie; Kaba, Hideto
2017-03-06
Tunicamycin (TM) induces endoplasmic reticulum (ER) stress and inhibits N-glycosylation in cells. ER stress is associated with neuronal death in neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease, and most patients complain of the impairment of olfactory recognition. Here we examined the effects of TM on aversive olfactory learning and the underlying synaptic plasticity in the main olfactory bulb (MOB). Behavioral experiments demonstrated that the intrabulbar infusion of TM disabled aversive olfactory learning without affecting short-term memory. Histological analyses revealed that TM infusion upregulated C/EBP homologous protein (CHOP), a marker of ER stress, in the mitral and granule cell layers of MOB. Electrophysiological data indicated that TM inhibited tetanus-induced long-term potentiation (LTP) at the dendrodendritic excitatory synapse from mitral to granule cells. A low dose of TM (250nM) abolished the late phase of LTP, and a high dose (1μM) inhibited the early and late phases of LTP. Further, high-dose, but not low-dose, TM reduced the paired-pulse facilitation ratio, suggesting that the inhibitory effects of TM on LTP are partially mediated through the presynaptic machinery. Thus, our results support the hypothesis that TM-induced ER stress impairs olfactory learning by inhibiting synaptic plasticity via presynaptic and postsynaptic mechanisms in MOB. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
The life cycle of platelet granules.
Sharda, Anish; Flaumenhaft, Robert
2018-01-01
Platelet granules are unique among secretory vesicles in both their content and their life cycle. Platelets contain three major granule types-dense granules, α-granules, and lysosomes-although other granule types have been reported. Dense granules and α-granules are the most well-studied and the most physiologically important. Platelet granules are formed in large, multilobulated cells, termed megakaryocytes, prior to transport into platelets. The biogenesis of dense granules and α-granules involves common but also distinct pathways. Both are formed from the trans -Golgi network and early endosomes and mature in multivesicular bodies, but the formation of dense granules requires trafficking machinery different from that of α-granules. Following formation in the megakaryocyte body, both granule types are transported through and mature in long proplatelet extensions prior to the release of nascent platelets into the bloodstream. Granules remain stored in circulating platelets until platelet activation triggers the exocytosis of their contents. Soluble N -ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, located on both the granules and target membranes, provide the mechanical energy that enables membrane fusion during both granulogenesis and exocytosis. The function of these core fusion engines is controlled by SNARE regulators, which direct the site, timing, and extent to which these SNAREs interact and consequently the resulting membrane fusion. In this review, we assess new developments in the study of platelet granules, from their generation to their exocytosis.
Action Potential Dynamics in Fine Axons Probed with an Axonally Targeted Optical Voltage Sensor.
Ma, Yihe; Bayguinov, Peter O; Jackson, Meyer B
2017-01-01
The complex and malleable conduction properties of axons determine how action potentials propagate through extensive axonal arbors to reach synaptic terminals. The excitability of axonal membranes plays a major role in neural circuit function, but because most axons are too thin for conventional electrical recording, their properties remain largely unexplored. To overcome this obstacle, we used a genetically encoded hybrid voltage sensor (hVOS) harboring an axonal targeting motif. Expressing this probe in transgenic mice enabled us to monitor voltage changes optically in two populations of axons in hippocampal slices, the large axons of dentate granule cells (mossy fibers) in the stratum lucidum of the CA3 region and the much finer axons of hilar mossy cells in the inner molecular layer of the dentate gyrus. Action potentials propagated with distinct velocities in each type of axon. Repetitive firing broadened action potentials in both populations, but at an intermediate frequency the degree of broadening differed. Repetitive firing also attenuated action potential amplitudes in both mossy cell and granule cell axons. These results indicate that the features of use-dependent action potential broadening, and possible failure, observed previously in large nerve terminals also appear in much finer unmyelinated axons. Subtle differences in the frequency dependences could influence the propagation of activity through different pathways to excite different populations of neurons. The axonally targeted hVOS probe used here opens up the diverse repertoire of neuronal processes to detailed biophysical study.
Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells
NASA Astrophysics Data System (ADS)
Han, Meng; Blindewald-Wittich, Almut; Holz, Frank G.; Giese, Günter; Niemz, Markolf H.; Snyder, Sarah; Sun, Hui; Yu, Jiayi; Agopov, Michael; La Schiazza, Olivier; Bille, Josef F.
2006-01-01
Degeneration of retinal pigment epithelial (RPE) cells severely impairs the visual function of retina photoreceptors. However, little is known about the events that trigger the death of RPE cells at the subcellular level. Two-photon excited autofluorescence (TPEF) imaging of RPE cells proves to be well suited to investigate both the morphological and the spectral characteristics of the human RPE cells. The dominant fluorophores of autofluorescence derive from lipofuscin (LF) granules that accumulate in the cytoplasm of the RPE cells with increasing age. Spectral TPEF imaging reveals the existence of abnormal LF granules with blue shifted autofluorescence in RPE cells of aging patients and brings new insights into the complicated composition of the LF granules. Based on a proposed two-photon laser scanning ophthalmoscope, TPEF imaging of the living retina may be valuable for diagnostic and pathological studies of age related eye diseases.
Development of the cascade inertial-confinement-fusion reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitts, J.H.
Caqscade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670 K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis andmore » experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.« less
Development of the cascade inertial-confinement-fusion reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitts, J.H.
Cascade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670/sup 0/K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis andmore » experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.« less
Antimicrobial-Coated Granules for Disinfecting Water
NASA Technical Reports Server (NTRS)
Akse, James R.; Holtsnider, John T.; Kliestik, Helen
2011-01-01
Methods of preparing antimicrobialcoated granules for disinfecting flowing potable water have been developed. Like the methods reported in the immediately preceding article, these methods involve chemical preparation of substrate surfaces (in this case, the surfaces of granules) to enable attachment of antimicrobial molecules to the surfaces via covalent bonds. A variety of granular materials have been coated with a variety of antimicrobial agents that include antibiotics, bacteriocins, enzymes, bactericides, and fungicides. When employed in packed beds in flowing water, these antimicrobial-coated granules have been proven effective against gram-positive bacteria, gram-negative bacteria, fungi, and viruses. Composite beds, consisting of multiple layers containing different granular antimicrobial media, have proven particularly effective against a broad spectrum of microorganisms. These media have also proven effective in enhancing or potentiating the biocidal effects of in-line iodinated resins and of very low levels of dissolved elemental iodine.
Tuli, Amit; Thiery, Jerome; James, Ashley M; Michelet, Xavier; Sharma, Mahak; Garg, Salil; Sanborn, Keri B; Orange, Jordan S; Lieberman, Judy; Brenner, Michael B
2013-12-01
Natural killer (NK) lymphocytes contain lysosome-related organelles (LROs), known as lytic granules, which upon formation of immune synapse with the target cell, polarize toward the immune synapse to deliver their contents to the target cell membrane. Here, we identify a small GTP-binding protein, ADP-ribosylation factor-like 8b (Arl8b), as a critical factor required for NK cell-mediated cytotoxicity. Our findings indicate that Arl8b drives the polarization of lytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells. Using a glutathione S-transferase pull-down approach, we identify kinesin family member 5B (KIF5B; the heavy chain of kinesin-1) as an interaction partner of Arl8b from NK cell lysates. Previous studies showed that interaction between kinesin-1 and Arl8b is mediated by SifA and kinesin-interacting protein (SKIP) and the tripartite complex drives the anterograde movement of lysosomes. Silencing of both KIF5B and SKIP in NK cells, similar to Arl8b, led to failure of MTOC-lytic granule polarization to the immune synapse, suggesting that Arl8b and kinesin-1 together control this critical step in NK cell cytotoxicity.
Tumors of the endocrine/neuroendocrine system: an overview.
Erlandson, R A; Nesland, J M
1994-01-01
For the sake of discussion, the markedly diversified tumors of the endocrine/neuroendocrine system are classified as those originating in classic epithelial endocrine organs (eg, adrenal cortical adenomas), from the diffuse endocrine cells (eg, jejunal carcinoid tumors), or from clusters of these cells (eg, islet cell tumors); and those arising from neurosecretory neurons (eg, neuroblastoma) or paraganglia (eg, carotid body tumor). Although traditional transmission electron microscopy is useful for identifying neurosecretory or endosecretory granules as such, with few exceptions (eg, insulin-containing granules with a complex paracrystalline core) it is not possible to ascribe a granule type (size, shape, or ultrastructure) to a distinct nosologic entity or secretory product because of their overlapping fine structures in different cell types. Immunoelectron microscopy methods utilizing colloidal gold-labeled secondary antibodies can be used to localize virtually any antigen (peptide or neuroamine) to a specific neurosecretory or endosecretory granule or other cell structure. General endocrine/neuroendocrine cell markers such as neuron-specific enolase, the chromogranins, and synaptophysin are useful in identifying neuroendocrine differentiation in a neoplasm using routine immunohistochemical procedures. The current relevance of the APUD concept of Pearse as well as the biologic importance of endocrine/neuroendocrine secretory products such as bombesin and insulinlike growth factors also are discussed.
Neuroligin-1 overexpression in newborn granule cells in vivo.
Schnell, Eric; Bensen, Aesoon L; Washburn, Eric K; Westbrook, Gary L
2012-01-01
Adult-born dentate granule cells integrate into the hippocampal network, extend neurites and form synapses in otherwise mature tissue. Excitatory and inhibitory inputs innervate these new granule cells in a stereotyped, temporally segregated manner, which presents a unique opportunity to study synapse development in the adult brain. To examine the role of neuroligins as synapse-inducing molecules in vivo, we infected dividing neural precursors in adult mice with a retroviral construct that increased neuroligin-1 levels during granule cell differentiation. By 21 days post-mitosis, exogenous neuroligin-1 was expressed at the tips of dendritic spines and increased the number of dendritic spines. Neuroligin-1-overexpressing cells showed a selective increase in functional excitatory synapses and connection multiplicity by single afferent fibers, as well as an increase in the synaptic AMPA/NMDA receptor ratio. In contrast to its synapse-inducing ability in vitro, neuroligin-1 overexpression did not induce precocious synapse formation in adult-born neurons. However, the dendrites of neuroligin-1-overexpressing cells did have more thin protrusions during an early period of dendritic outgrowth, suggesting enhanced filopodium formation or stabilization. Our results indicate that neuroligin-1 expression selectively increases the degree, but not the onset, of excitatory synapse formation in adult-born neurons.
Mellor, J R; Wisden, W; Randall, A D
2000-07-10
Electrophysiological investigation of cultured cerebellar murine granule cells revealed differences between the GABA(A) receptors at inhibitory synapses and those on the cell body. Specifically, mIPSCs decayed more rapidly than cell body receptors deactivated, the mean single channel conductance at the synapse (32 pS) was greater than that at cell body (21 pS) and only cell body receptors were sensitive to Zn(2+) (150 microM), which depressed response amplitude by 82+/-5% and almost doubled the rate of channel deactivation. The GABA(A) receptor alpha6 subunit is selectively expressed in cerebellar granule cells. Although concentrated at synapses, it is also found on extrasynaptic membranes. Using a mouse line (Deltaalpha6lacZ) lacking this subunit, we investigated its role in the somato-synaptic differences in GABA(A) receptor function. All differences between cell body and synaptic GABA(A) receptors observed in wild-type (WT) granule cells persisted in Deltaalpha6lacZ cells, thus demonstrating that they are not specifically due to the cellular distribution of the alpha6 subunit. However, mIPSCs from WT and Deltaalpha6lacZ cells differed in both their kinetics (faster decay in WT cells) and underlying single channel conductance (32 pS WT, 25 pS Deltaalpha6lacZ). This provides good evidence for a functional contribution of the alpha6 subunit to postsynaptic GABA(A) receptors in these cells. Despite this, deactivation kinetics of mIPSCs in WT and Deltaalpha6lacZ granule cells exhibited similar benzodiazepene (BDZ) sensitivity. This suggests that the enhanced BDZ-induced ataxia seen in Deltaalpha6lacZ mice may reflect physiological activity at extrasynaptic receptors which, unlike those at synapses, display differential BDZ-sensitivity in WT and Deltaalpha6lacZ granule cells (Jones, A.M., Korpi, E.R., McKernan, R.M., Nusser, Z., Pelz, R., Makela, R., Mellor, J.R., Pollard, S., Bahn, S., Stephenson, F.A., Randall, A.D., Sieghart, W., Somogyi, P., Smith, A.J.H., Wisden, W., 1997. Ligand-gated ion channel partnerships: GABA(A) receptor alpha(6) subunit inactivation inhibits delta subunit expression. Journal of Neuroscience 17, 1350-1362).
NASA Technical Reports Server (NTRS)
Donelan, Matthew J.; Morfini, Gerardo; Julyan, Richard; Sommers, Scott; Hays, Lori; Kajio, Hiroshi; Briaud, Isabelle; Easom, Richard A.; Molkentin, Jeffery D.; Brady, Scott T.;
2002-01-01
The specific biochemical steps required for glucose-regulated insulin exocytosis from beta-cells are not well defined. Elevation of glucose leads to increases in cytosolic [Ca2+]i and biphasic release of insulin from both a readily releasable and a storage pool of beta-granules. The effect of elevated [Ca2+]i on phosphorylation of isolated beta-granule membrane proteins was evaluated, and the phosphorylation of four proteins was found to be altered by [Ca2+]i. One (a 18/20-kDa doublet) was a Ca2+-dependent increase in phosphorylation, and, surprisingly, three others (138, 42, and 36 kDa) were Ca2+-dependent dephosphorylations. The 138-kDa beta-granule phosphoprotein was found to be kinesin heavy chain (KHC). At low levels of [Ca2+]i KHC was phosphorylated by casein kinase 2, but KHC was rapidly dephosphorylated by protein phosphatase 2B beta (PP2Bbeta) as [Ca2+]i increased. Inhibitors of PP2B specifically reduced the second, microtubule-dependent, phase of insulin secretion, suggesting that dephosphorylation of KHC was required for transport of beta-granules from the storage pool to replenish the readily releasable pool of beta-granules. This is distinct from synaptic vesicle exocytosis, because neurotransmitter release from synaptosomes did not require a Ca2+-dependent KHC dephosphorylation. These results suggest a novel mechanism for regulating KHC function and beta-granule transport in beta-cells that is mediated by casein kinase 2 and PP2B. They also implicate a novel regulatory role for PP2B/calcineurin in the control of insulin secretion downstream of a rise in [Ca2+]i.
Amegandjin, Clara A; Jammow, Wafaa; Laforest, Sylvie; Riad, Mustapha; Baharnoori, Moogeh; Badeaux, Frédérique; DesGroseillers, Luc; Murai, Keith K; Pasquale, Elena B; Drolet, Guy; Doucet, Guy
2016-08-15
EphA7 is expressed in the adult central nervous system (CNS), where its roles are yet poorly defined. We mapped its distribution using in situ hybridization (ISH) and immunohistochemistry (IHC) combined with light (LM) and electron microscopy (EM) in adult rat and mouse brain. The strongest ISH signal was in the hippocampal pyramidal and granule cell layers. Moderate levels were detected in habenula, striatum, amygdala, the cingulate, piriform and entorhinal cortex, and in cerebellum, notably the Purkinje cell layer. The IHC signal distribution was consistent with ISH results, with transport of the protein to processes, as exemplified in the hippocampal neuropil layers and weakly stained pyramidal cell layers. In contrast, in the cerebellum, the Purkinje cell bodies were the most strongly immunolabeled elements. EM localized the cell surface-expression of EphA7 essentially in postsynaptic densities (PSDs) of dendritic spines and shafts, and on some astrocytic leaflets, in both hippocampus and cerebellum. Perikaryal and dendritic labeling was mostly intracellular, associated with the synthetic and trafficking machineries. Immunopositive vesicles were also observed in axons and axon terminals. Quantitative analysis in EM showed significant differences in the frequency of labeled elements between regions. Notably, labeled dendrites were ∼3-5 times less frequent in cerebellum than in hippocampus, but they were individually endowed with ∼10-40 times higher frequencies of PSDs, on their shafts and spines. The cell surface localization of EphA7, being preferentially in PSDs, and in perisynaptic astrocytic leaflets, provides morphologic evidence that EphA7 plays key roles in adult CNS synaptic maintenance, plasticity, or function. J. Comp. Neurol. 524:2462-2478, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Updike, Dustin L.; Strome, Susan
2009-01-01
P granules are non-membrane-bound organelles found in the germ-line cytoplasm throughout Caenorhabditis elegans development. Like their “germ granule” counterparts in other animals, P granules are thought to act as determinants of the identity and special properties of germ cells, properties that include the unique ability to give rise to all tissues of future generations of an organism. Therefore, understanding how P granules work is critical to understanding how cellular immortality and totipotency are retained, gained, and lost. Here we report on a genomewide RNAi screen in C. elegans, which identified 173 genes that affect the stability, localization, and function of P granules. Many of these genes fall into specific classes with shared P-granule phenotypes, allowing us to better understand how cellular processes such as protein degradation, translation, splicing, nuclear transport, and mRNA homeostasis converge on P-granule assembly and function. One of the more striking phenotypes is caused by the depletion of CSR-1, an Argonaute associated with an endogenous siRNA pathway that functions in the germ line. We show that CSR-1 and two other endo-siRNA pathway members, the RNA-dependent RNA polymerase EGO-1 and the helicase DRH-3, act to antagonize RNA and P-granule accumulation in the germ line. Our findings strengthen the emerging view that germ granules are involved in numerous aspects of RNA metabolism, including an endo-siRNA pathway in germ cells. PMID:19805813
Jing, Zhaoqian; Li, Yu-You; Cao, Shiwei; Liu, Yuyu
2012-09-01
To improve trickling filters' denitrification efficiency, a biofilter with a trickling upper layer and a submerged lower layer was developed and applied in treating highly polluted river water. It was packed with porous coal fly ash ceramic granules. Its start-up characteristics, influence of hydraulic loading rates (HLR), carbon/nitrogen (C/N) ratio and filter depth on pollutants removal were investigated. The results indicated this biofilter was started quickly in 16 days with river sediment as inoculum. Alternating nitrification and denitrification were achieved when water flowed downwards. COD and nitrogen were mainly removed in the upper layer and the lower layer, respectively. With HLR of 4.0-5.0m(3)/(m(2)d), chemical oxygen demand (COD), ammonium (NH(4)(+)-N) and total nitrogen (TN) in the effluent were below 50, 5 and 15 mg/L, respectively. This biofilter removed more than 80% of COD, 85% of NH(4)(+)-N and 60% of TN with C/N ratios ranging from 6 to 10. Copyright © 2012 Elsevier Ltd. All rights reserved.
Iwaki, Aya; Kawai, Takao; Yamamoto, Yosuke; Izawa, Shingo
2013-03-01
Various forms of stress can cause an attenuation of bulk translation activity and the accumulation of nontranslating mRNAs into cytoplasmic messenger RNP (mRNP) granules termed processing bodies (P-bodies) and stress granules (SGs) in eukaryotic cells. Furfural and 5-hydroxymethylfurfural (HMF), derived from lignocellulosic biomass, inhibit yeast growth and fermentation as stressors. Since there is no report regarding their effects on the formation of cytoplasmic mRNP granules, here we investigated whether furfural and HMF cause the assembly of yeast P-bodies and SGs accompanied by translational repression. We found that furfural and HMF cause the attenuation of bulk translation activity and the assembly of cytoplasmic mRNP granules in Saccharomyces cerevisiae. Notably, a combination of furfural and HMF induced the remarkable repression of translation initiation and SG formation. These findings provide new information about the physiological effects of furfural and HMF on yeast cells, and also suggest the potential usefulness of cytoplasmic mRNP granules as a warning sign or index of the deterioration of cellular physiological status in the fermentation of lignocellulosic hydrolysates.
Iwaki, Aya; Kawai, Takao; Yamamoto, Yosuke
2013-01-01
Various forms of stress can cause an attenuation of bulk translation activity and the accumulation of nontranslating mRNAs into cytoplasmic messenger RNP (mRNP) granules termed processing bodies (P-bodies) and stress granules (SGs) in eukaryotic cells. Furfural and 5-hydroxymethylfurfural (HMF), derived from lignocellulosic biomass, inhibit yeast growth and fermentation as stressors. Since there is no report regarding their effects on the formation of cytoplasmic mRNP granules, here we investigated whether furfural and HMF cause the assembly of yeast P-bodies and SGs accompanied by translational repression. We found that furfural and HMF cause the attenuation of bulk translation activity and the assembly of cytoplasmic mRNP granules in Saccharomyces cerevisiae. Notably, a combination of furfural and HMF induced the remarkable repression of translation initiation and SG formation. These findings provide new information about the physiological effects of furfural and HMF on yeast cells, and also suggest the potential usefulness of cytoplasmic mRNP granules as a warning sign or index of the deterioration of cellular physiological status in the fermentation of lignocellulosic hydrolysates. PMID:23275506
Dynamin-related protein-1 controls fusion pore dynamics during platelet granule exocytosis.
Koseoglu, Secil; Dilks, James R; Peters, Christian G; Fitch-Tewfik, Jennifer L; Fadel, Nathalie A; Jasuja, Reema; Italiano, Joseph E; Haynes, Christy L; Flaumenhaft, Robert
2013-03-01
Platelet granule exocytosis serves a central role in hemostasis and thrombosis. Recently, single-cell amperometry has shown that platelet membrane fusion during granule exocytosis results in the formation of a fusion pore that subsequently expands to enable the extrusion of granule contents. However, the molecular mechanisms that control platelet fusion pore expansion and collapse are not known. We identified dynamin-related protein-1 (Drp1) in platelets and found that an inhibitor of Drp1, mdivi-1, blocked exocytosis of both platelet dense and α-granules. We used single-cell amperometry to monitor serotonin release from individual dense granules and, thereby, measured the effect of Drp1 inhibition on fusion pore dynamics. Inhibition of Drp1 increased spike width and decreased prespike foot events, indicating that Drp1 influences fusion pore formation and expansion. Platelet-mediated thrombus formation in vivo after laser-induced injury of mouse cremaster arterioles was impaired after infusion of mdivi-1. These results demonstrate that inhibition of Drp1 disrupts platelet fusion pore dynamics and indicate that Drp1 can be targeted to control thrombus formation in vivo.
Measuring changes in the mass of single subcellular organelles using x-ray microscopy
NASA Astrophysics Data System (ADS)
Goncz, Kaarin K.; Moronne, Mario M.; Lin, W.; Rothman, Stephen S.
1993-01-01
Using quantitative scanning transmission x-ray microscopy, zymogen granules isolated from pancreatic acinar cells were observed suspended in aqueous medium at 50 nm resolution. From 3.64 nm x-ray absorption data, the protein content and rate of protein efflux from individual granules were determined. This was accomplished with a specially designed silicon nitride based wet-cell that allowed continuous perfusion and monitoring of individual granules in a variety of different aqueous environments. Granules suspended in 300 mM sucrose, 5 mM phosphate buffer (pH 6.0) were observed to continuously decrease in size and protein content over a period of several hours. Sudden lysis of the granules was not observed. From the flux data, the apparent protein permeability coefficients for individual granules were determined to range from 1 - 10 X 10-10 cm/sec with an average of 4.78 +/- 3.0 X 10-10 cm/sec. We believe this is the first quantitative population profile determined for a subcellular organelle developed from measurements of individual members of the population.
Haralampus-Grynaviski, N M; Lamb, L E; Simon, J D; Krogmeier, J R; Dunn, R C; Pawlak, A; Rózanowska, M; Sarna, T; Burke, J M
2001-08-01
The emission spectra of single lipofuscin granules are examined using spectrally resolved confocal microscopy and near-field scanning optical microscopy (NSOM). The emission spectrum varies among the granules examined revealing that individual granules are characterized by different distributions of fluorophores. The range of spectra observed is consistent with in vivo spectra of human retinal pigment epithelium cells. NSOM measurements reveal that the shape of the spectrum does not vary with position within the emissive regions of single lipofuscin granules. These results suggest that the relative distribution of fluorophores within the emissive regions of an individual granule is homogeneous on the spatial scale approximately 150 nm.
Hervonen, H; Eränkö, O
1975-01-01
Lumbar sympathetic ganglia of 12-day-old chick embryos were cultured in organ cultures for 14 days with 1, 10 or 100 mg/l of hydrocortisone or without it. Catecholamines were demonstrated by the formaldehyde-induced fluorescence method. For electron microscopy, the cultures were fixed with glutarialdehyde and osmium tetroxide. Two types of cells with catecholamine fluoresecence were observed in the control cultures: (1) weakly fluorescent sympathetic neurons and sympathicoblasts with long nerve fibres, which were the most common cell type in the explant, and (2) brightly fluorescent cells with or without fluorescent processes, which were less common and were scattered in the explant. Hydrocortisone caused a great increase in the number of the brightly fluorescent cells. With 10 mg/l of hydrocortisone the increase was about ten-fold as compared with the control cultures. There was no change in the morphology of the cells, nor could any change be observed in the fluorescence intensity by eye. Electron microscopically the mature neurons were the most common cell type on the surface of the culture, while more immature sympathicoblasts were seen in the deeper layers. Cells were also found which contained large numbers of catecholamine-strong granular vesicles 105-275 nm in diameter. These cells were infrequent. They had round vesicular nuclei and resembled also in other respects sympathicoblasts or young nerve cells. One such cell was found in mitotic division by electron microscopy. Hydrocortisone caused a marked increase in the number of these granule-containing cells and their processes. Cells which could have been classified as the small intensely fluorescent cells of the mammalian ganglion type or their electron microscopic equivalent, the granule-containing cells were found neither in the control cultures nor in the hydrocortisone-containing cultures. It is concluded that most brightly fluorescent cells in cultured sympathetic ganglia of the chick are nerve cells or sympathicoblasts rich in amine-storing granular vesicles.
Ohara-Imaizumi, Mica; Nakamichi, Yoko; Tanaka, Toshiaki; Katsuta, Hidenori; Ishida, Hitoshi; Nagamatsu, Shinya
2002-04-01
The dynamics of exocytosis/endocytosis of insulin secretory granules in pancreatic beta-cells remains to be clarified. In the present study, we visualized and analysed the motion of insulin secretory granules in MIN6 cells using pH-sensitive green fluorescent protein (pHluorin) fused to either insulin or the vesicle membrane protein, phogrin. In order to monitor insulin exocytosis, pHluorin, which is brightly fluorescent at approximately pH 7.4, but not at approximately pH 5.0, was attached to the C-terminus of insulin. To monitor the motion of insulin secretory granules throughout exocytosis/endocytosis, pHluorin was inserted between the third and fourth amino acids after the identified signal-peptide cleavage site of rat phogrin cDNA. Using this method of cDNA construction, pHluorin was located in the vesicle lumen, which may enable discrimination of the unfused acidic secretory granules from the fused neutralized ones. In MIN6 cells expressing insulin-pHluorin, time-lapse confocal laser scanning microscopy (5 or 10 s intervals) revealed the appearance of fluorescent spots by depolarization after stimulation with 50 mM KCl and 22 mM glucose. The number of these spots in the image at the indicated times was counted and found to be consistent with the results of insulin release measured by RIA during the time course. In MIN6 cells expressing phogrin-pHluorin, data showed that fluorescent spots appeared following high KCl stimulation and remained stationary for a while, moved on the plasma membrane and then disappeared. Thus we demonstrate the visualized motion of insulin granule exocytosis/endocytosis using the pH-sensitive marker, pHluorin.
Li, Kairong; Leung, Alan W.; Guo, Qiuxia; Yang, Wentian
2014-01-01
Folding of the cortex and the persistence of radial glia (RG)-like cells called Bergmann glia (BG) are hallmarks of the mammalian cerebellum. Similar to basal RG in the embryonic neocortex, BG maintain only basal processes and continuously express neural stem cell markers. Past studies had focused on the function of BG in granule cell migration and how granule cell progenitors (GCP) regulate cerebellar foliation. The molecular control of BG generation and its role in cerebellar foliation are less understood. Here, we have analyzed the function of the protein tyrosine phosphatase Shp2 in mice by deleting its gene Ptpn11 in the entire cerebellum or selectively in the GCP lineage. Deleting Ptpn11 in the entire cerebellum by En1-cre blocks transformation of RG into BG but preserves other major cerebellar cell types. In the absence of BG, inward invagination of GCP persists but is uncoupled from the folding of the Purkinje cell layer and the basement membrane, leading to disorganized lamination and an absence of cerebellar folia. In contrast, removing Ptpn11 in the GCP lineage by Atoh1-cre has no effect on cerebellar development, indicating that Shp2 is not cell autonomously required in GCP. Furthermore, we demonstrate that Ptpn11 interacts with Fgf8 and is essential for ERK activation in RG and nascent BG. Finally, expressing constitutively active MEK1 rescues BG formation and cerebellar foliation in Shp2-deficient cerebella. Our results demonstrate an essential role of Shp2 in BG specification via fibroblast growth factor/extracellular signal-regulated protein kinase signaling, and reveal a crucial function of BG in organizing cerebellar foliation. PMID:24431450
Niki, Ichiro; Niwa, Tae; Yu, Wei; Budzko, Dorota; Miki, Takashi; Senda, Takao
2003-11-01
This study investigated mechanisms by which glucose increases readily releasable secretory granules via acting on preexocytotic steps, i.e., intracellular granule movement and granule access to the plasma membrane using a pancreatic beta-cell line, MIN6. Glucose-induced activation of the movement occurred at a substimulatory concentration with regard to insulin output. Glucose activation of the movement was inhibited by pretreatment with thapsigargin plus acetylcholine to suppress intracellular Ca2+ mobilization. Inhibitors of calmodulin and myosin light chain kinase also suppressed glucose activation of the movement. Simultaneous addition of glucose with Ca2+ channel blockers or the ATP-sensitive K+ channel opener diazoxide failed to suppress the traffic activation, and addition of these substances on top of glucose stimulation resulted in a further increase. Although stimulatory glucose had minimal changes in the intracellular granule distribution, inhibition of Ca2+ influx revealed increases by glucose of the granules in the cell periphery. In contrast, high K+ depolarization decreased the peripheral granules. Glucose-induced granule margination was abolished when the protein kinase C activity was downregulated. These findings indicate that preexocytotic control of insulin release is regulated by distinct mechanisms from Ca2+ influx, which triggers insulin exocytosis. The nature of the regulation by glucose may explain a part of potentiating effects of the hexose independent of the closure of the ATP-sensitive K+ channel.
Polli, Roberson S.; Malheiros, Jackeline M.; dos Santos, Renan; Hamani, Clement; Longo, Beatriz M.; Tannús, Alberto; Mello, Luiz E.; Covolan, Luciene
2014-01-01
Kainic acid (KA) or pilocarpine (PILO) have been used in rats to model human temporal lobe epilepsy (TLE) but the distribution and severity of structural lesions between these two models may differ. Magnetic resonance imaging (MRI) studies have used quantitative measurements of hippocampal T2 (T2HP) relaxation time and volume, but simultaneous comparative results have not been reported yet. The aim of this study was to compare the MRI T2HP and volume with histological data and frequency of seizures in both models. KA- and PILO-treated rats were imaged with a 2 T MRI scanner. T2HP and volume values were correlated with the number of cells, mossy fiber sprouting, and spontaneous recurrent seizures (SRS) frequency over the 9 months following status epilepticus (SE). Compared to controls, KA-treated rats had unaltered T2HP, pronounced reduction in hippocampal volume and concomitant cell reduction in granule cell layer, CA1 and CA3 at 3 months post SE. In contrast, hippocampal volume was unchanged in PILO-treated animals despite detectable increased T2HP and cell loss in granule cell layer, CA1 and CA3. In the following 6 months, MRI hippocampal volume remained stable with increase of T2HP signal in the KA-treated group. The number of CA1 and CA3 cells was smaller than age-matched CTL group. In contrast, PILO group had MRI volumetric reduction accompanied by reduction in the number of CA1 and CA3 cells. In this group, T2HP signal was unaltered at 6 or 9 months after status. Reductions in the number of cells were not progressive in both models. Notably, the SRS frequency was higher in PILO than in the KA model. The volumetry data correlated well with tissue damage in the epileptic brain, suggesting that MRI may be useful for tracking longitudinal hippocampal changes, allowing the assessment of individual variability and disease progression. Our results indicate that the temporal changes in hippocampal morphology are distinct for both models of TLE and that these are not significantly correlated to the frequency of SRS. PMID:25071699
Chandramohan, Yalini; Droste, Susanne K; Arthur, J Simon C; Reul, Johannes M H M
2008-05-01
The hippocampus is involved in learning and memory. Previously, we have shown that the acquisition of the behavioural immobility response after a forced swim experience is associated with chromatin modifications and transcriptional induction in dentate gyrus granule neurons. Given that both N-methyl-D-aspartate (NMDA) receptors and the extracellular signal-regulated kinases (ERK) 1/2 signalling pathway are involved in neuroplasticity processes underlying learning and memory, we investigated in rats and mice whether these signalling pathways regulate chromatin modifications and transcriptional events participating in the acquisition of the immobility response. We found that: (i) forced swimming evoked a transient increase in the number of phospho-acetylated histone H3-positive [P(Ser10)-Ac(Lys14)-H3(+)] neurons specifically in the middle and superficial aspects of the dentate gyrus granule cell layer; (ii) antagonism of NMDA receptors and inhibition of ERK1/2 signalling blocked forced swimming-induced histone H3 phospho-acetylation and the acquisition of the behavioural immobility response; (iii) double knockout (DKO) of the histone H3 kinase mitogen- and stress-activated kinases (MSK) 1/2 in mice completely abolished the forced swimming-induced increases in histone H3 phospho-acetylation and c-Fos induction in dentate granule neurons and the behavioural immobility response; (iv) blocking mineralocorticoid receptors, known not to be involved in behavioural immobility in the forced swim test, did not affect forced swimming-evoked histone H3 phospho-acetylation in dentate neurons; and (v) the pharmacological manipulations and gene deletions did not affect behaviour in the initial forced swim test. We conclude that the forced swimming-induced behavioural immobility response requires histone H3 phospho-acetylation and c-Fos induction in distinct dentate granule neurons through recruitment of the NMDA/ERK/MSK 1/2 pathway.
Morphometric studies of heavy ion damage in the brains of rodents
NASA Technical Reports Server (NTRS)
Kraft, L. M.; Cox, A. B.
1986-01-01
The relative biological effectiveness (RBE) of different heavy ions for the mammalian brain was determined in mice irradiated at 100 days of age with He-4, C-12, Ne-20, Fe-56, Ar-40, or Co-60 gamma photons (with the primary particle LET values ranging from 2 to 650). Brain preparations were examined 16 months later for volume changes in the external plexiform layer (P-zone) of the olfactory bulb and an internal region (G-zone), which consists of the granule cells, the internal plexiform layer, and the mitral cell layer. The result indicate that the volume changes did occur in the olfactory bulb, not only in absolute terms but also when expressed as the ratio of the structures to each other and to the bulb as a whole. While the observed increased neuronal loss in mice receiving 700 cGy of Co-60 support the earlier data from irradiated rabbits, the increases observed in bulbar volumes and in the volume ratios of the P and the G zones measured in the mice given lower doses (320 or 160 cGy of He or C), were not expected.
Forebrain neuroanatomy of the neonatal and juvenile dolphin (T. truncatus and S. coeruloalba)
Parolisi, Roberta; Peruffo, Antonella; Messina, Silvia; Panin, Mattia; Montelli, Stefano; Giurisato, Maristella; Cozzi, Bruno; Bonfanti, Luca
2015-01-01
Knowledge of dolphin functional neuroanatomy mostly derives from post-mortem studies and non-invasive approaches (i.e., magnetic resonance imaging), due to limitations in experimentation on cetaceans. As a consequence the availability of well-preserved tissues for histology is scarce, and detailed histological analyses are referred mainly to adults. Here we studied the neonatal/juvenile brain in two species of dolphins, the bottlenose dolphin (Tursiops truncatus) and the striped dolphin (Stenella coeruleoalba), with special reference to forebrain regions. We analyzed cell density in subcortical nuclei, white/gray matter ratio, and myelination in selected regions at different anterior–posterior levels of the whole dolphin brain at different ages, to better define forebrain neuroanatomy and the developmental stage of the dolphin brain around birth. The analyses were extended to the periventricular germinal layer and the cerebellum, whose delayed genesis of the granule cell layer is a hallmark of postnatal development in the mammalian nervous system. Our results establish an atlas of the young dolphin forebrain and, on the basis of occurrence/absence of delayed neurogenic layers, confirm the stage of advanced brain maturation in these animals with respect to most terrestrial mammals. PMID:26594155
Characterization of Pu-238 heat source granule containment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson Ii, P D; Thronas, D L; Romero, J P
2008-01-01
The Milliwatt Radioisotopic Thermoelectric Generator (RTG) provides power for permissive-action links. These nuclear batteries convert thermal energy to electrical energy using a doped silicon-germanium thermopile. The thermal energy is provided by a heat source made of {sup 238}Pu, in the form of {sup 238}PuO{sub 2} granules. The granules are contained in 3 layers of encapsulation. A thin T-111 liner surrounds the {sup 238}PuO{sub 2} granules and protects the second layer (strength member) from exposure to the fuel granules. The T-111 strength member contains the fuel under impact condition. An outer clad of Hastelloy-C protects the T-111 from oxygen embrittlement. Themore » T-111 strength member is considered the critical component in this {sup 238}PuO{sub 2} containment system. Any compromise in the strength member is something that needs to be characterized. Consequently, the T-111 strength member is characterized upon it's decommissioning through Scanning Electron Microscopy (SEM), and Metallography. SEM is used in Secondary Electron mode to reveal possible grain boundary deformation and/or cracking in the region of the strength member weld. Deformation and cracking uncovered by SEM are further characterized by Metallography. Metallography sections are mounted and polished, observed using optical microscopy, then documented in the form of photomicrographs. SEM may further be used to examine polished Metallography mounts to characterize elements using the SEM mode of Energy Dispersive X-ray Spectroscopy (EDS). This paper describes the characterization of the metallurgical condition of decommissioned RTG heat sources.« less
Direct conversion of injury-site myeloid cells to fibroblast-like cells of granulation tissue.
Sinha, Mithun; Sen, Chandan K; Singh, Kanhaiya; Das, Amitava; Ghatak, Subhadip; Rhea, Brian; Blackstone, Britani; Powell, Heather M; Khanna, Savita; Roy, Sashwati
2018-03-05
Inflammation, following injury, induces cellular plasticity as an inherent component of physiological tissue repair. The dominant fate of wound macrophages is unclear and debated. Here we show that two-thirds of all granulation tissue fibroblasts, otherwise known to be of mesenchymal origin, are derived from myeloid cells which are likely to be wound macrophages. Conversion of myeloid to fibroblast-like cells is impaired in diabetic wounds. In cross-talk between keratinocytes and myeloid cells, miR-21 packaged in extracellular vesicles (EV) is required for cell conversion. EV from wound fluid of healing chronic wound patients is rich in miR-21 and causes cell conversion more effectively compared to that by fluid from non-healing patients. Impaired conversion in diabetic wound tissue is rescued by targeted nanoparticle-based delivery of miR-21 to macrophages. This work introduces a paradigm wherein myeloid cells are recognized as a major source of fibroblast-like cells in the granulation tissue.
Antral G-cell in gastrin and gastrin-cholecystokinin knockout animals.
Friis-Hansen, Lennart; Wierup, Nils; Rehfeld, Jens F; Sundler, Frank
2005-07-01
The antral hormone gastrin is the key regulator of gastric acid secretion, mucosal growth and differentiation. Gastrin is synthesized in the endocrine G-cells in the antroduodenal mucosa. We have now examined the way in which the loss of gastrin alone or gastrin plus cholecystokinin (CCK) affects the antral G-cell. Immunohistochemistry, radioimmunoassay and quantitative real-time polymerase chain reaction techniques were employed to examine the expression of genes belonging to the G-cell secretory pathway in gastrin and gastrin-CCK knockout mice. Transmission electron microscopy was used to examine the ultrastructure of the G-cells. The number of G-cells increased but the secretory granules were few and abnormally small in the G-cells of both mouse models compared with wildtypes. Thus, gastrin is not necessary for the formation of G-cells as such but the lack of gastrin reduces the number and size of their secretory granules suggesting that gastrin is vital for the formation and/or maintenance of secretory granules in G-cells.
Accumulation of Poly(3-hydroxybutyrate) Helps Bacterial Cells to Survive Freezing
Krzyzanek, Vladislav; Mravec, Filip; Hrubanova, Kamila; Samek, Ota; Kucera, Dan; Benesova, Pavla; Marova, Ivana
2016-01-01
Accumulation of polyhydroxybutyrate (PHB) seems to be a common metabolic strategy adopted by many bacteria to cope with cold environments. This work aimed at evaluating and understanding the cryoprotective effect of PHB. At first a monomer of PHB, 3-hydroxybutyrate, was identified as a potent cryoprotectant capable of protecting model enzyme (lipase), yeast (Saccharomyces cerevisiae) and bacterial cells (Cupriavidus necator) against the adverse effects of freezing-thawing cycles. Further, the viability of the frozen–thawed PHB accumulating strain of C. necator was compared to that of the PHB non-accumulating mutant. The presence of PHB granules in cells was revealed to be a significant advantage during freezing. This might be attributed to the higher intracellular level of 3-hydroxybutyrate in PHB accumulating cells (due to the action of parallel PHB synthesis and degradation, the so-called PHB cycle), but the cryoprotective effect of PHB granules seems to be more complex. Since intracellular PHB granules retain highly flexible properties even at extremely low temperatures (observed by cryo-SEM), it can be expected that PHB granules protect cells against injury from extracellular ice. Finally, thermal analysis indicates that PHB-containing cells exhibit a higher rate of transmembrane water transport, which protects cells against the formation of intracellular ice which usually has fatal consequences. PMID:27315285
STUDIES ON RENAL JUXTAGLOMERULAR CELLS
Hartroft, Phyllis Merritt; Hartroft, W. Stanley
1953-01-01
Accumulation of granules in the juxtaglomerular cells occurred in rats which were maintained for 5 to 6 weeks on a diet low in sodium, chloride. Cytological evidence suggests that this was probably a storage phase of secretion following a decrease in the rate of liberation of the granules. Administration of DCA (desoxycorticosterone acetate) to salt-deficient rats did not alter this appearance of the juxtaglomerular cells. Two per cent sodium chloride taken in the drinking water consumed for 4 weeks by similar animals caused degranulation of the juxtaglomerular cells. This effect was enhanced by DCA. DCA administered to animals on a normal salt intake produced a lesser degree of degranulation. Cytological changes in degranulated cells suggested that these represent a stage of hyperactivity in the secretory cycle produced by an increase in the rate of liberation of granules. A hypothesis is suggested that the juxtaglomerular cells are involved in the hormonal regulation of sodium metabolism and/or blood pressure. PMID:13052809
Hatanaka, Masayuki; Tanabe, Katsuya; Yanai, Akie; Ohta, Yasuharu; Kondo, Manabu; Akiyama, Masaru; Shinoda, Koh; Oka, Yoshitomo; Tanizawa, Yukio
2011-04-01
Wolfram syndrome is an autosomal recessive disorder characterized by juvenile-onset insulin-dependent diabetes mellitus and optic atrophy. The gene responsible for the syndrome (WFS1) encodes an endoplasmic reticulum (ER) resident transmembrane protein. The Wfs1-null mouse exhibits progressive insulin deficiency causing diabetes. Previous work suggested that the function of the WFS1 protein is connected to unfolded protein response and to intracellular Ca(2+) homeostasis. However, its precise molecular function in pancreatic β-cells remains elusive. In our present study, immunofluorescent and electron-microscopic analyses revealed that WFS1 localizes not only to ER but also to secretory granules in pancreatic β-cells. Intragranular acidification was assessed by measuring intracellular fluorescence intensity raised by the acidotrophic agent, 3-[2,4-dinitroanilino]-3'-amino-N-methyldipropyramine. Compared with wild-type β-cells, there was a 32% reduction in the intensity in WFS1-deficient β-cells, indicating the impairment of granular acidification. This phenotype may, at least partly, account for the evidence that Wfs1-null islets have impaired proinsulin processing, resulting in an increased circulating proinsulin level. Morphometric analysis using electron microscopy evidenced that the density of secretory granules attached to the plasma membrane was significantly reduced in Wfs1-null β-cells relative to that in wild-type β-cells. This may be relevant to the recent finding that granular acidification is required for the priming of secretory granules preceding exocytosis and may partly explain the fact that glucose-induced insulin secretion is profoundly impaired in young prediabetic Wfs1-null mice. These results thus provide new insights into the molecular mechanisms of β-cell dysfunction in patients with Wolfram syndrome.
Bainton, D R; Golde, D W
1978-01-01
To study the various stages of human mononuclear phagocyte maturation, we cultivated bone marrow in an in vitro diffusion chamber with the cells growing in suspension and upon a dialysis membrane. At 2, 7, and 14 days, the cultured cells were examined by electron microscopy and cytochemical techniques for peroxidase and for more limited analysis of acid phosphatase and arylsulfatase. Peroxidase was being synthesized in promonocytes of 2- and 7-day cultures, as evidenced by reaction product in the rough-surfaced endoplasmic reticulum, Golgi complex, and storage granules. Peroxidase synthesis had ceased in monocytes and the enzyme appeared only in some granules. By 7 days, large macrophages predominated, containing numerous peroxidase-positive storage granules, and heterophagy of dying cells was evident. By 14 days, the most prevalent cell type was the large peroxidase-negative macrophage. Thus, peroxidase is present in high concentrations in immature cells but absent at later stages, presumably a result of degranulation of peroxidase-positive storage granules. Clusters of peroxidase-negative macrophages with indistinct borders (epithelioid cells), as well as obvious multinucleated giant cells, were noted. Frequently, the interdigitating plasma membranes of neighboring macrophages showed a modification resembling a septate junction--to our knowledge, representing the first documentation of this specialized cell contact between normal macrophages. We suggest that such junctions may serve as zones of adhesion between epithelioid cells. Images PMID:659615
Autophagy meets fused in sarcoma-positive stress granules.
Matus, Soledad; Bosco, Daryl A; Hetz, Claudio
2014-12-01
Mutations in fused in sarcoma and/or translocated in liposarcoma (FUS, TLS or FUS) are linked to familial cases of amyotrophic lateral sclerosis (ALS). Mutant FUS selectively accumulates into discrete cytosolic structures known as stress granules under various stress conditions. In addition, mutant FUS expression can alter the dynamics and morphology of stress granules. Although the link between mutant FUS and stress granules is well established, the mechanisms modulating stress granule formation and disassembly in the context of ALS are poorly understood. In this issue of Neurobiology of Aging, Ryu et al. uncover the impact of autophagy on the potential toxicity of mutant FUS-positive stress granules. The authors provide evidence indicating that enhanced autophagy activity reduces the number of stress granules, which in the case of cells containing mutant FUS-positive stress granules, is neuroprotective. Overall, this study identifies an intersection between the proteostasis network and alterations in RNA metabolism in ALS through the dynamic assembly and disassembly of stress granules. Copyright © 2014 Elsevier Inc. All rights reserved.
New Class of Cargo Protein in Tetrahymena thermophila Dense Core Secretory Granules
Haddad, Alex; Bowman, Grant R.; Turkewitz, Aaron P.
2002-01-01
Regulated exocytosis of dense core secretory granules releases biologically active proteins in a stimulus-dependent fashion. The packaging of the cargo within newly forming granules involves a transition: soluble polypeptides condense to form water-insoluble aggregates that constitute the granule cores. Following exocytosis, the cores generally disassemble to diffuse in the cell environment. The ciliates Tetrahymena thermophila and Paramecium tetraurelia have been advanced as genetically manipulatable systems for studying exocytosis via dense core granules. However, all of the known granule proteins in these organisms condense to form the architectural units of lattices that are insoluble both before and after exocytosis. Using an approach designed to detect new granule proteins, we have now identified Igr1p (induced during granule regeneration). By structural criteria, it is unrelated to the previously characterized lattice-forming proteins. It is distinct in that it is capable of dissociating from the insoluble lattice following secretion and therefore represents the first diffusible protein identified in ciliate granules. PMID:12456006
Ablation of Mouse Adult Neurogenesis Alters Olfactory Bulb Structure and Olfactory Fear Conditioning
Valley, Matthew T.; Mullen, Tanner R.; Schultz, Lucy C.; Sagdullaev, Botir T.; Firestein, Stuart
2009-01-01
Adult neurogenesis replenishes olfactory bulb (OB) interneurons throughout the life of most mammals, yet during this constant flux it remains unclear how the OB maintains a constant structure and function. In the mouse OB, we investigated the dynamics of turnover and its impact on olfactory function by ablating adult neurogenesis with an x-ray lesion to the sub-ventricular zone (SVZ). Regardless of the magnitude of the lesion to the SVZ, we found no change in the survival of young adult born granule cells (GCs) born after the lesion, and a gradual decrease in the population of GCs born before the lesion. After a lesion producing a 96% reduction of incoming adult born GCs to the OB, we found a diminished behavioral fear response to conditioned odor cues but not to audio cues. Interestingly, despite this behavioral deficit and gradual anatomical changes, we found no electrophysiological changes in the GC population assayed in vivo through dendro-dendritic synaptic plasticity and odor-evoked local field potential oscillations. These data indicate that turnover in the granule cell layer is generally decoupled from the rate of adult neurogenesis, and that OB adult neurogenesis plays a role in a wide behavioral system extending beyond the OB. PMID:20582278
Light and electron microscopic immunocytochemical localization of two major proteins in garlic bulb.
Wen, G Y; Mato, A; Wisniewski, H M; Malik, M N; Jenkins, E C; Sheikh, A M; Kim, K S
1995-08-01
Garlic is known as a potent spice and a medicine with broad therapeutic properties ranging from antibacterial to anticancer, antidiabetic, and anticoagulant. Two major proteins of 40 KD and 14 KD constituting approximately 96% of total garlic proteins have been recently purified at our Institute. This immunocytochemical and ultrastructural study revealed that the 40 KD protein was localized in the parenchyma sheath cells (PSC) of garlic bulbs, whereas the 14 KD protein was present in the cortical cells (CC). Immunogold electron microscopy study indicated that the 40 KD protein was specifically localized in the globular granules of the cytoplasmic area of PSC. Each globular granule was amorphous and homogenous with membrane limiting its outermost layer. The yellowish color of PSC in freshly cut slices of garlic bulb suggested that PSC may have sulfur-containing compounds such as allicin, the primary contributor of the pungency and medicinal properties of garlic. Ellman's reagent test quantitatively revealed that there were 17.8 n moles sulfhydryl (SH)/ml of 40 KD garlic protein. Microtubule tubulin in mitotic figures from PHA-stimulated human short-term whole blood cultures reacted strongly with antitubulin antibody but reacted negatively with anti-40 KD garlic protein antibodies and therefore was not related to the 40 KD garlic protein immunocytochemically.
Shabel'nikov, S V; Bystrova, O A; Martynova, M G
2008-01-01
By immunohistochemical and immunocytochemical methods localization of Substanse P (SP) and FMRFamide in the atrium of the snail Achatina fulica was investigated. Nerve fibers innervating the snail atrium contact tightly with the granular cells (GC) situated between muscle and endocardial cells, forming neuroendocrine units. Both neuromediators were found in the cells of the neuroendocrine units. By immunohistochemistry SP- and FMRFamide-immunoreactive material was revealed in the granules of the atrial GC. Elecrtonmicroscopical immunocytochemistry has confirmed the presence of SP- and FMRFamide-immunoreactive material in the granules of the GC and shown their presence in the neurosecretory granules of the nerve endings contacting both the atrial GC and cardiomyocytes.
Computational Architecture of the Granular Layer of Cerebellum-Like Structures.
Bratby, Peter; Sneyd, James; Montgomery, John
2017-02-01
In the adaptive filter model of the cerebellum, the granular layer performs a recoding which expands incoming mossy fibre signals into a temporally diverse set of basis signals. The underlying neural mechanism is not well understood, although various mechanisms have been proposed, including delay lines, spectral timing and echo state networks. Here, we develop a computational simulation based on a network of leaky integrator neurons, and an adaptive filter performance measure, which allows candidate mechanisms to be compared. We demonstrate that increasing the circuit complexity improves adaptive filter performance, and relate this to evolutionary innovations in the cerebellum and cerebellum-like structures in sharks and electric fish. We show how recurrence enables an increase in basis signal duration, which suggest a possible explanation for the explosion in granule cell numbers in the mammalian cerebellum.
Incorporation of a circulating protein into megakaryocyte and platelet granules
NASA Technical Reports Server (NTRS)
Handagama, P. J.; George, J. N.; Shuman, M. A.; McEver, R. P.; Bainton, D. F.
1987-01-01
To determine whether or not proteins circulating in plasma can be incorporated into megakaryocytes and platelets, horseradish peroxidase (HRP) was injected intravenously into guinea pigs and these cells were examined for its uptake by electron microscopy and cytochemistry. Enriched samples of megakaryocytes enabled ultrastructural analysis of large numbers of these rare cells. In megakaryocytes, 50% of alpha granules contained HRP between 75 min and 7 hr after injection. At 24 hr, 25% of the megakaryocyte granules were peroxidase-positive, less were positive by 48 hr, and there were none at 4 days. Thus, the findings demonstrate that a circulating protein can be endocytosed by megakaryocytes and rapidly packaged into alpha granules. Platelet granules also contain HRP by 7 hr after injection, and they can secrete it in response to thrombin. Unfortunately, our present studies do not allow us to distinguish between direct endocytosis by the platelet and/or shedding of new platelets from recently labeled megakaryocytes. It is concluded that while some alpha granule proteins are synthesized by megakaryocytes, others may be acquired from plasma by endocytosis. In addition to providing evidence that some of the proteins of alpha granules may be of exogenous origin, this study has allowed the definition of a pathway whereby plasma proteins may be temporarily sequestered in megakaryocytes before reentering the circulation in platelets.
Vega, Israel A.; Castro-Vazquez, Alfredo
2015-01-01
Hemocytes in the circulation and kidney islets, as well as their phagocytic responses to microorganisms and fluorescent beads, have been studied in Pomacea canaliculata, using flow cytometry, light microscopy (including confocal laser scanning microscopy) and transmission electron microscopy (TEM). Three circulating hemocyte types (hyalinocytes, agranulocytes and granulocytes) were distinguished by phase contrast microscopy of living cells and after light and electron microscopy of fixed material. Also, three different populations of circulating hemocytes were separated by flow cytometry, which corresponded to the three hemocyte types. Hyalinocytes showed a low nucleus/cytoplasm ratio, and no apparent granules in stained material, but showed granules of moderate electron density under TEM (L granules) and at least some L granules appear acidic when labeled with LysoTracker Red. Both phagocytic and non-phagocytic hyalinocytes lose most (if not all) L granules when exposed to microorganisms in vitro. The phagosomes formed differed whether hyalinocytes were exposed to yeasts or to Gram positive or Gram negative bacteria. Agranulocytes showed a large nucleus/cytoplasm ratio and few or no granules. Granulocytes showed a low nucleus/cytoplasm ratio and numerous eosinophilic granules after staining. These granules are electron dense and rod-shaped under TEM (R granules). Granulocytes may show merging of R granules into gigantic ones, particularly when exposed to microorganisms. Fluorescent bead exposure of sorted hemocytes showed phagocytic activity in hyalinocytes, agranulocytes and granulocytes, but the phagocytic index was significantly higher in hyalinocytes. Extensive hemocyte aggregates ('islets') occupy most renal hemocoelic spaces and hyalinocyte-like cells are the most frequent component in them. Presumptive glycogen deposits were observed in most hyalinocytes in renal islets (they also occur in the circulation but less frequently) and may mean that hyalinocytes participate in the storage and circulation of this compound. Injection of microorganisms in the foot results in phagocytosis by hemocytes in the islets, and the different phagosomes formed are similar to those in circulating hyalinocytes. Dispersed hemocytes were obtained after kidney collagenase digestion and cell sorting, and they were able to phagocytize fluorescent beads. A role for the kidney as an immune barrier is proposed for this snail. PMID:25893243
Cueto, Juan A; Rodriguez, Cristian; Vega, Israel A; Castro-Vazquez, Alfredo
2015-01-01
Hemocytes in the circulation and kidney islets, as well as their phagocytic responses to microorganisms and fluorescent beads, have been studied in Pomacea canaliculata, using flow cytometry, light microscopy (including confocal laser scanning microscopy) and transmission electron microscopy (TEM). Three circulating hemocyte types (hyalinocytes, agranulocytes and granulocytes) were distinguished by phase contrast microscopy of living cells and after light and electron microscopy of fixed material. Also, three different populations of circulating hemocytes were separated by flow cytometry, which corresponded to the three hemocyte types. Hyalinocytes showed a low nucleus/cytoplasm ratio, and no apparent granules in stained material, but showed granules of moderate electron density under TEM (L granules) and at least some L granules appear acidic when labeled with LysoTracker Red. Both phagocytic and non-phagocytic hyalinocytes lose most (if not all) L granules when exposed to microorganisms in vitro. The phagosomes formed differed whether hyalinocytes were exposed to yeasts or to Gram positive or Gram negative bacteria. Agranulocytes showed a large nucleus/cytoplasm ratio and few or no granules. Granulocytes showed a low nucleus/cytoplasm ratio and numerous eosinophilic granules after staining. These granules are electron dense and rod-shaped under TEM (R granules). Granulocytes may show merging of R granules into gigantic ones, particularly when exposed to microorganisms. Fluorescent bead exposure of sorted hemocytes showed phagocytic activity in hyalinocytes, agranulocytes and granulocytes, but the phagocytic index was significantly higher in hyalinocytes. Extensive hemocyte aggregates ('islets') occupy most renal hemocoelic spaces and hyalinocyte-like cells are the most frequent component in them. Presumptive glycogen deposits were observed in most hyalinocytes in renal islets (they also occur in the circulation but less frequently) and may mean that hyalinocytes participate in the storage and circulation of this compound. Injection of microorganisms in the foot results in phagocytosis by hemocytes in the islets, and the different phagosomes formed are similar to those in circulating hyalinocytes. Dispersed hemocytes were obtained after kidney collagenase digestion and cell sorting, and they were able to phagocytize fluorescent beads. A role for the kidney as an immune barrier is proposed for this snail.
NASA Astrophysics Data System (ADS)
Hurkman, William J.; Wood, Delilah F.
2010-06-01
High temperatures during wheat grain fill decrease starch and protein levels, adversely affecting wheat yield and flour quality. To determine the effect of high temperature on starchy endosperm cell development, grain (Triticum aestivum L. 'Butte 86') was produced under a 24/17°C or 37/28°C day/night regimen imposed from flowering to maturity and starch and protein deposition examined using scanning electron microscopy. The high temperature regimen shortened the duration of grain fill from 40 to 18 days. Under the 37/28°C regimen, A- and B-type starch granules decreased in size. A-type starch granules also exhibited pitting, suggesting enhanced action of starch degradative enzymes. Under both temperature regimens, protein bodies originated early in development and coalesced during mid to late development to form a continuous protein matrix surrounding the starch granules. Under the 37/28°C regimen, the proportion of protein matrix increased in endosperm cells of mature grain. Taken together, the changes in starch granule number and size and in protein matrix amount provide clues for understanding how high temperature during grain fill can affect end use properties of wheat flour.
Fitzgerald, Kerry D.; Semler, Bert L.
2013-01-01
Different types of environmental stress cause mammalian cells to form cytoplasmic foci, termed stress granules, which contain mRNPs that are translationally silenced. These foci are transient and dynamic, and contain components of the cellular translation machinery as well as certain mRNAs and RNA binding proteins. Stress granules are known to be induced by conditions such as hypoxia, nutrient deprivation, and oxidative stress, and a number of cellular factors have been identified that are commonly associated with these foci. More recently it was discovered that poliovirus infection also induces the formation of stress granules, although these cytoplasmic foci appear to be somewhat compositionally unique. Work described here examined the punctate pattern of SRp20 (a host cell mRNA splicing protein) localization in the cytoplasm of poliovirus-infected cells, demonstrating the partial co-localization of SRp20 with the stress granule marker protein TIA-1. We determined that SRp20 does not co-localize with TIA-1, however, under conditions of oxidative stress, indicating that the close association of these two proteins during poliovirus infection is not representative of a general response to cellular stress. We confirmed that the expression of a dominant negative version of TIA-1 (TIA-1-PRD) results in the dissociation of stress granules. Finally, we demonstrated that expression of wild type TIA-1 or dominant negative TIA-1-PRD in cells during poliovirus infection does not dramatically affect viral translation. Taken together, these studies provide a new example of the unique cytoplasmic foci that form during poliovirus infection. PMID:23830997
Lang, Thorsten
2008-01-01
This cell-free assay for exocytosis is particularly useful when spatial information about exocytotic sites and biochemical access to the plasma membrane within less than a minute is required. It is based on the study of plasma membrane lawns from secretory cells exhibiting secretory granules filled with neuropeptide Y-green fluorescent protein (NPY-GFP). The sample is prepared by subjecting NPY-GFP-expressing cells to a brief ultrasound pulse, leaving behind a basal, flat plasma membrane with fluorescent attached secretory organelles. These sheets can then be incubated in defined solutions with the benefit that complete solution changes can be achieved in less than 1 min. Individual secretory granules are monitored in the docked state and during exocytosis by video microscopy.
Pancreatic polypeptide cells of rat pancreas after chronic ethanol feeding.
Koko, V; Todorović, V; Drndarević, N; Glisić, R; Nedeljković, M; Nikolić, A
2001-05-01
Male Wistar rats, (2 months old) were randomly divided into two groups according to the diet offered (C-control and E-ethanol treated rats). Final body weight was significantly increased but pancreatic weight as a percentage of body weight was decreased in ethanol treated rats. Volume density, number of pancreatic poly peptide (PP)-cells per islet and per micron 2 of islet were significantly increased. PP-cells were abundant and occupied the whole periphery of islets in the splenic part of the pancreas. Those cells showed strong immunopositivity. At the ultrastructural level PP granules had predominantly less electron density. The mean diameter of PP granules was significantly increased and the number of granules of larger diameter was greater in the E group of rats, than in the controls.
In Vivo Anomalous Diffusion and Weak Ergodicity Breaking of Lipid Granules
NASA Astrophysics Data System (ADS)
Jeon, Jae-Hyung; Tejedor, Vincent; Burov, Stas; Barkai, Eli; Selhuber-Unkel, Christine; Berg-Sørensen, Kirstine; Oddershede, Lene; Metzler, Ralf
2011-01-01
Combining extensive single particle tracking microscopy data of endogenous lipid granules in living fission yeast cells with analytical results we show evidence for anomalous diffusion and weak ergodicity breaking. Namely we demonstrate that at short times the granules perform subdiffusion according to the laws of continuous time random walk theory. The associated violation of ergodicity leads to a characteristic turnover between two scaling regimes of the time averaged mean squared displacement. At longer times the granule motion is consistent with fractional Brownian motion.
Ramirez-Amaya, Victor; Angulo-Perkins, Arafat; Chawla, Monica K; Barnes, Carol A; Rosi, Susanna
2013-01-23
After spatial exploration in rats, Arc mRNA is expressed in ∼2% of dentate gyrus (DG) granule cells, and this proportion of Arc-positive neurons remains stable for ∼8 h. This long-term presence of Arc mRNA following behavior is not observed in hippocampal CA1 pyramidal cells. We report here that in rats ∼50% of granule cells with cytoplasmic Arc mRNA, induced some hours previously during exploration, also show Arc expression in the nucleus. This suggests that recent transcription can occur long after the exploration behavior that elicited it. To confirm that the delayed nuclear Arc expression was indeed recent transcription, Actinomycin D was administered immediately after exploration. This treatment resulted in inhibition of recent Arc expression both when evaluated shortly after exploratory behavior as well as after longer time intervals. Together, these data demonstrate a unique kinetic profile for Arc transcription in hippocampal granule neurons following behavior that is not observed in other cell types. Among a number of possibilities, this sustained transcription may provide a mechanism that ensures that the synaptic connection weights in the sparse population of granule cells recruited during a given behavioral event are able to be modified.
NASA Technical Reports Server (NTRS)
Rook, M. S.; Lu, M.; Kosik, K. S.
2000-01-01
The CaMKIIalpha mRNA extends into distal hippocampal dendrites, and the 3' untranslated region (3'UTR) is sufficient to mediate this localization. We labeled the 3'UTR of the CaMKIIalpha mRNA in hippocampal cultures by using a green fluorescent protein (GFP)/MS2 bacteriophage tagging system. The CaMKIIalpha 3'UTR formed discrete granules throughout the dendrites of transfected cells. The identity of the fluorescent granules was verified by in situ hybridization. Over 30 min time periods these granules redistributed without a net increase in granule number; with depolarization there is a tendency toward increased numbers of granules in the dendrites. These observations suggest that finer time resolution of granule motility might reveal changes in the motility characteristics of granules after depolarization. So that motile granules could be tracked, shorter periods of observation were required. The movements of motile granules can be categorized as oscillatory, unidirectional anterograde, or unidirectional retrograde. Colocalization of CaMKIIalpha 3'UTR granules and synapses suggested that oscillatory movements allowed the granules to sample several local synapses. Neuronal depolarization increased the number of granules in the anterograde motile pool. Based on the time frame over which the granule number increased, the translocation of granules may serve to prepare the dendrite for mounting an adequate local translation response to future stimuli. Although the resident pool of granules can respond to signals that induce local translation, the number of granules in a dendrite might reflect its activation history.
Reversal of hippocampal neuronal maturation by serotonergic antidepressants
Kobayashi, Katsunori; Ikeda, Yumiko; Sakai, Atsushi; Yamasaki, Nobuyuki; Haneda, Eisuke; Miyakawa, Tsuyoshi; Suzuki, Hidenori
2010-01-01
Serotonergic antidepressant drugs have been commonly used to treat mood and anxiety disorders, and increasing evidence suggests potential use of these drugs beyond current antidepressant therapeutics. Facilitation of adult neurogenesis in the hippocampal dentate gyrus has been suggested to be a candidate mechanism of action of antidepressant drugs, but this mechanism may be only one of the broad effects of antidepressants. Here we show a distinct unique action of the serotonergic antidepressant fluoxetine in transforming the phenotype of mature dentate granule cells. Chronic treatments of adult mice with fluoxetine strongly reduced expression of the mature granule cell marker calbindin. The fluoxetine treatment induced active somatic membrane properties resembling immature granule cells and markedly reduced synaptic facilitation that characterizes the mature dentate-to-CA3 signal transmission. These changes cannot be explained simply by an increase in newly generated immature neurons, but best characterized as “dematuration” of mature granule cells. This granule cell dematuration developed along with increases in the efficacy of serotonin in 5-HT4 receptor-dependent neuromodulation and was attenuated in mice lacking the 5-HT4 receptor. Our results suggest that serotonergic antidepressants can reverse the established state of neuronal maturation in the adult hippocampus, and up-regulation of 5-HT4 receptor-mediated signaling may play a critical role in this distinct action of antidepressants. Such reversal of neuronal maturation could affect proper functioning of the mature hippocampal circuit, but may also cause some beneficial effects by reinstating neuronal functions that are lost during development. PMID:20404165
Ohara-Imaizumi, Mica; Ohtsuka, Toshihisa; Matsushima, Satsuki; Akimoto, Yoshihiro; Nishiwaki, Chiyono; Nakamichi, Yoko; Kikuta, Toshiteru; Nagai, Shintaro; Kawakami, Hayato; Watanabe, Takashi; Nagamatsu, Shinya
2005-01-01
The cytomatrix at the active zone (CAZ) has been implicated in defining the site of Ca2+-dependent exocytosis of neurotransmitters. Here, we demonstrate the expression and function of ELKS, a protein structurally related to the CAZ protein CAST, in insulin exocytosis. The results of confocal and immunoelectron microscopic analysis showed that ELKS is present in pancreatic β cells and is localized close to insulin granules docked on the plasma membrane-facing blood vessels. Total internal reflection fluorescence microscopy imaging in insulin-producing clonal cells revealed that the ELKS clusters are less dense and unevenly distributed than syntaxin 1 clusters, which are enriched in the plasma membrane. Most of the ELKS clusters were on the docking sites of insulin granules that were colocalized with syntaxin 1 clusters. Total internal reflection fluorescence images of single-granule motion showed that the fusion events of insulin granules mostly occurred on the ELKS cluster, where repeated fusion was sometimes observed. When the Bassoon-binding region of ELKS was introduced into the cells, the docking and fusion of insulin granules were markedly reduced. Moreover, attenuation of ELKS expression by small interfering RNA reduced the glucose-evoked insulin release. These data suggest that the CAZ-related protein ELKS functions in insulin exocytosis from pancreatic β cells. PMID:15888548
Crivellato, Enrico; Solinas, Paola; Isola, Raffaella; Ribatti, Domenico; Riva, Alessandro
2010-01-01
In this study we used a modified osmium maceration method for high-resolution scanning electron microscopy to study some ultrastructural details fitting the schema of piecemeal degranulation in chromaffin cells. Piecemeal degranulation refers to a particulate pattern of cell secretion that is accomplished by vesicle-mediated extracellular transport of granule-stored material. We investigated adrenal samples from control and angiotensin II-treated rats, and identified a variable proportion of smooth, 30–60-nm-diameter vesicles in the cytoplasm of chromaffin cells. A percentage of these vesicles were interspersed in the cytosol among chromaffin granules but the majority appeared to be attached to granules. Remarkably, the number of unattached cytoplasmic vesicles was greatly increased in chromaffin cells from angiotensin II-treated animals. Vesicles of the same structure and dimension were detected close to or attached to the cytoplasmic face of the plasma membrane; these, too, were increased in number in chromaffin cells from rats stimulated with angiotensin II. In specimens shaken with a rotating agitator during maceration, the cytoplasmic organelles could be partially removed and the fine structure of the vesicular interaction with the inner side of the plasma membrane emerged most clearly. A proportion of chromaffin granules showed protrusions that we interpreted as vesicular structures budding from the granular envelope. In some instances, the transection plane intersected granules with putative vesicles emerging from the surfaces. In these cases, the protrusions of budding vesicles could be observed from the internal side. This study provides high-resolution scanning electron microscopy images compatible with a vesicle-mediated degranulation mode of cell secretion in adrenal chromaffin cells. The data indicating an increase in the number of vesicles observed in chromaffin cells after stimulation with the chromaffin cell secretagogue angiotensin II suggests that this secretory process may be susceptible to fine regulation. PMID:20136671
Jansen, Chad; Speck, Mark; Greineisen, William E; Maaetoft-Udsen, Kristina; Cordasco, Edward; Shimoda, Lori MN; Stokes, Alexander J; Turner, Helen
2018-01-01
Objective Secretory granules (SG) and lipid bodies (LB) are the primary organelles that mediate functional responses in mast cells. SG contains histamine and matrix-active proteases, while LB are reservoirs of arachidonic acid and its metabolites, precursors for rapid synthesis of eicosanoids such as LTC4. Both of these compartments can be dynamically or ontologically regulated, with metabolic and immunological stimuli altering lipid body content and granule numbers responding to contextual signals from tissue. We previously described that chronic in vitro or in vivo hyperinsulinemia expands the LB compartment with a concomitant loss of SG capacity, suggesting that this ratio is dynamically regulated. The objective of the current study is to determine if chronic insulin exposure initiates a transcriptional program that biases model mast cells towards a lipogenic state with accompanying loss of secretory granule biogenesis. Methods We used a basophilic leukemic cell line with mucosal mast cell-like features as a model system. We tested the hypothesis that chronic insulin exposure initiates a transcriptional program that biases these model mast cells towards a lipogenic state with accompanying loss of secretory granule biogenesis. Transcriptional arrays were used to map gene expression patterns. Biochemical, immunocytochemical and mediator release assays were used to evaluate organelle numbers and functional responses. Results In a mucosal mast cell model, the rat basophilic leukemia line RBL2H3, mast cell granularity and SG numbers are inversely correlated with LB numbers. Chronic insulin exposure appears to modulate gene networks involved in both lipid body biogenesis and secretory granule formation. Western blot analysis confirms upregulation of protein levels for LB proteins, and decreases in proteins that are markers for SG cargo. Conclusions The levels of insulin in the extracellular milieu may modify the phenotype of mast cell-like cells in vitro. PMID:29430572
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abe, Hajime; Tanaka, Takeshi; Kimura, Masayuki
2015-09-15
Developmental exposure to cuprizone (CPZ), a demyelinating agent, impairs intermediate-stage neurogenesis in the hippocampal dentate gyrus of rat offspring. To investigate the possibility of alterations in adult neurogenesis following postpubertal exposure to CPZ in a framework of general toxicity studies, CPZ was orally administered to 5-week-old male rats at 0, 120, or 600 mg/kg body weight/day for 28 days. In the subgranular zone (SGZ), 600 mg/kg CPZ increased the number of cleaved caspase-3{sup +} apoptotic cells. At ≥ 120 mg/kg, the number of SGZ cells immunoreactive for TBR2, doublecortin, or PCNA was decreased, while that for SOX2 was increased. Inmore » the granule cell layer, CPZ at ≥ 120 mg/kg decreased the number of postmitotic granule cells immunoreactive for NEUN, CHRNA7, ARC or FOS. In the dentate hilus, CPZ at ≥ 120 mg/kg decreased phosphorylated TRKB{sup +} interneurons, although the number of reelin{sup +} interneurons was unchanged. At 600 mg/kg, mRNA levels of Bdnf and Chrna7 were decreased, while those of Casp4, Casp12 and Trib3 were increased in the dentate gyrus. These data suggest that CPZ in a scheme of 28-day toxicity study causes endoplasmic reticulum stress-mediated apoptosis of granule cell lineages, resulting in aberrations of intermediate neurogenesis and late-stage neurogenesis and following suppression of immediate early gene-mediated neuronal plasticity. Suppression of BDNF signals to interneurons caused by decreased cholinergic signaling may play a role in these effects of CPZ. The effects of postpubertal CPZ on neurogenesis were similar to those observed with developmental exposure, except for the lack of reelin response, which may contribute to a greater decrease in SGZ cells. - Highlights: • Effect of 28-day CPZ exposure on hippocampal neurogenesis was examined in rats. • CPZ suppressed intermediate neurogenesis and late-stage neurogenesis in the dentate gyrus. • CPZ suppressed BDNF signals to interneurons by decrease of cholinergic signaling. • CPZ suppressed immediate–early gene-mediated neuronal plasticity in dentate GCL. • Lack of reelin response may be responsible for severe effects on neurogenesis.« less
Monsuur, Hanneke N.; van den Broek, Lenie J.; Jhingoerie, Renushka L.; Vloemans, Adrianus F. P. M.
2017-01-01
The majority of full-thickness burn wounds heal with hypertrophic scar formation. Burn eschar most probably influences early burn wound healing, since granulation tissue only forms after escharotomy. In order to investigate the effect of burn eschar on delayed granulation tissue formation, burn wound extract (BWE) was isolated from the interface between non-viable eschar and viable tissue. The influence of BWE on the activity of endothelial cells derived from dermis and adipose tissue, dermal fibroblasts and adipose tissue-derived mesenchymal stromal cells (ASC) was determined. It was found that BWE stimulated endothelial cell inflammatory cytokine (CXCL8, IL-6 and CCL2) secretion and migration. However, BWE had no effect on endothelial cell proliferation or angiogenic sprouting. Indeed, BWE inhibited basic Fibroblast Growth Factor (bFGF) induced endothelial cell proliferation and sprouting. In contrast, BWE stimulated fibroblast and ASC proliferation and migration. No difference was observed between cells isolated from dermis or adipose tissue. The inhibitory effect of BWE on bFGF-induced endothelial proliferation and sprouting would explain why excessive granulation tissue formation is prevented in full-thickness burn wounds as long as the eschar is still present. Identifying the eschar factors responsible for this might give indications for therapeutic targets aimed at reducing hypertrophic scar formation which is initiated by excessive granulation tissue formation once eschar is removed. PMID:28820426
Killingsworth, Murray C; Lai, Ken; Wu, Xiaojuan; Yong, Jim L C; Lee, C Soon
2012-11-01
Quantum dot nanocrystal probes (QDs) have been used for detection of somatostatin hormone in secretory granules of somatostatinoma tumor cells by immunofluorescence light microscopy, super-resolution light microscopy, and immunoelectron microscopy. Immunostaining for all modalities was done using sections taken from an epoxy resin-embedded tissue specimen and a similar labeling protocol. This approach allowed assessment of labeling at light microscopy level before examination at super-resolution and electron microscopy level and was a significant aid in interpretation. Etching of ultrathin sections with saturated sodium metaperiodate was a critical step presumably able to retrieve some tissue antigenicity masked by processing in epoxy resin. Immunofluorescence microscopy of QD-immunolabeled sections showed somatostatin hormone localization in cytoplasmic granules. Some variable staining of tumor gland-like structures appeared related to granule maturity and dispersal of granule contents within the tumor cell cytoplasm. Super-resolution light microscopy demonstrated localization of somatostatin within individual secretory granules to be heterogeneous, and this staining pattern was confirmed by immunoelectron microscopy.
Enterovirus 71 induces anti-viral stress granule-like structures in RD cells.
Zhu, Yuanmei; Wang, Bei; Huang, He; Zhao, Zhendong
2016-08-05
Stress granules (SGs) are dynamic cytoplasmic granules formed in response to a variety of stresses, including viral infection. Several viruses can modulate the formation of SG with different effects, but the relationship between SG formation and EV71 infection is poorly understood. In this study, we report that EV71 inhibits canonical SGs formation in infected cells and induces the formation of novel RNA granules that were distinguished from canonical SGs in composition and morphology, which we termed 'SG like structures'. Our results also demonstrated that EV71 triggered formation of SG-like structures is dependent on PKR and eIF2α phosphorylation and requires ongoing cellular mRNA synthesis. Finally, we found that SG-like structures are antiviral RNA granules that promote cellular apoptosis and suppress EV71 propagation. Taken together, our findings explain the formation mechanism of SG-like structures induced by EV71 and shed light on virus-host interaction and molecular mechanism underlying EV71 pathogenesis. Copyright © 2016. Published by Elsevier Inc.
Lai, Ken; Wu, Xiaojuan; Yong, Jim L. C.; Lee, C. Soon
2012-01-01
Quantum dot nanocrystal probes (QDs) have been used for detection of somatostatin hormone in secretory granules of somatostatinoma tumor cells by immunofluorescence light microscopy, super-resolution light microscopy, and immunoelectron microscopy. Immunostaining for all modalities was done using sections taken from an epoxy resin-embedded tissue specimen and a similar labeling protocol. This approach allowed assessment of labeling at light microscopy level before examination at super-resolution and electron microscopy level and was a significant aid in interpretation. Etching of ultrathin sections with saturated sodium metaperiodate was a critical step presumably able to retrieve some tissue antigenicity masked by processing in epoxy resin. Immunofluorescence microscopy of QD-immunolabeled sections showed somatostatin hormone localization in cytoplasmic granules. Some variable staining of tumor gland-like structures appeared related to granule maturity and dispersal of granule contents within the tumor cell cytoplasm. Super-resolution light microscopy demonstrated localization of somatostatin within individual secretory granules to be heterogeneous, and this staining pattern was confirmed by immunoelectron microscopy. PMID:22899862
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujita-Yoshigaki, Junko; Katsumata, Osamu; Matsuki, Miwako
Secretory granules (SGs) are considered to be generated as immature granules and to mature by condensation of their contents. In this study, SGs of parotid gland were separated into low-, medium-, and high-density granule fractions by Percoll-density gradient centrifugation, since it was proposed that the density corresponds to the degree of maturation. The observation with electron microscopy showed that granules in the three fractions were very similar. The average diameter of high-density granules was a little but significantly larger than that of low-density granules. Although the three fractions contained amylase, suggesting that they are all SGs, distribution of membrane proteinsmore » was markedly different. Syntaxin6 and VAMP4 were localized in the low-density granule fraction, while VAMP2 was concentrated in the high-density granule fraction. Immunoprecipitation with anti-syntaxin6 antibody caused coprecipitation of VAMP2 from the medium-density granule fraction without solubilization, but not from Triton X-100-solubilized fraction, while VAMP4 was coprecipitated from both fractions. Therefore, VAMP2 is present on the same granules, but is separated from syntaxin6 and VAMP4, which are expected to be removed from immature granules. These results suggest that the medium-density granules are intermediates from low- to high-density granules, and that the membrane components of SGs dynamically change by budding and fusion during maturation.« less
Kim, Yong-Sik; Harry, G Jean; Kang, Hong Soon; Goulding, David; Wine, Rob N; Kissling, Grace E; Liao, Grace; Jetten, Anton M
2010-09-01
Previously, deficiency in the expression of the nuclear orphan receptor TAK1 was found to be associated with delayed cerebellar granule cell migration and Purkinje cell maturation with a permanent deficit in foliation of lobules VI–VII, suggesting a role for TAK1 in cerebellum development. In this study, we confirm that TAK1-deficient (TAK1(−/−)) mice have a smaller cerebellum and exhibit a disruption of lobules VI–VII. We extended these studies and show that at postnatal day 7, TAK1(−/−) mice exhibit a delay in monolayer maturation of dysmorphic calbindin 28K-positive Purkinje cells. The astrocyte-specific glutamate transporter (GLAST) was expressed within Bergmann fibers and internal granule cell layer at significantly lower levels in the cerebellum of TAK1(−/−) mice. At PND21, Golgi-positive Purkinje cells in TAK1(−/−) mice displayed a smaller soma (18%) and shorter distance to first branch point (35%). Neuronal death was not observed in TAK1(−/−) mice at PND21; however, activated microglia were present in the cerebellum, suggestive of earlier cell death. These structural deficits in the cerebellum were not sufficient to alter motor strength, coordination, or activity levels; however, deficits in acoustic startle response, prepulse startle inhibition, and social interactions were observed. Reactions to a novel environment were inhibited in a light/dark chamber, open-field, and home-cage running wheel. TAK1(−/−) mice displayed a plateau in performance on the running wheel, suggesting a deficit in learning to coordinate performance on a motor task. These data indicate that TAK1 is an important transcriptional modulator of cerebellar development and neurodevelopmentally regulated behavior.
α-Synuclein binds the KATP channel at insulin-secretory granules and inhibits insulin secretion
Geng, Xuehui; Lou, Haiyan; Wang, Jian; Li, Lehong; Swanson, Alexandra L.; Sun, Ming; Beers-Stolz, Donna; Watkins, Simon; Perez, Ruth G.
2011-01-01
α-Synuclein has been studied in numerous cell types often associated with secretory processes. In pancreatic β-cells, α-synuclein might therefore play a similar role by interacting with organelles involved in insulin secretion. We tested for α-synuclein localizing to insulin-secretory granules and characterized its role in glucose-stimulated insulin secretion. Immunohistochemistry and fluorescent sulfonylureas were used to test for α-synuclein localization to insulin granules in β-cells, immunoprecipitation with Western blot analysis for interaction between α-synuclein and KATP channels, and ELISA assays for the effect of altering α-synuclein expression up or down on insulin secretion in INS1 cells or mouse islets, respectively. Differences in cellular phenotype between α-synuclein knockout and wild-type β-cells were found by using confocal microscopy to image the fluorescent insulin biosensor Ins-C-emGFP and by using transmission electron microscopy. The results show that anti-α-synuclein antibodies labeled secretory organelles within β-cells. Anti-α-synuclein antibodies colocalized with KATP channel, anti-insulin, and anti-C-peptide antibodies. α-Synuclein coimmunoprecipitated in complexes with KATP channels. Expression of α-synuclein downregulated insulin secretion at 2.8 mM glucose with little effect following 16.7 mM glucose stimulation. α-Synuclein knockout islets upregulated insulin secretion at 2.8 and 8.4 mM but not 16.7 mM glucose, consistent with the depleted insulin granule density at the β-cell surface membranes observed in these islets. These findings demonstrate that α-synuclein interacts with KATP channels and insulin-secretory granules and functionally acts as a brake on secretion that glucose stimulation can override. α-Synuclein might play similar roles in diabetes as it does in other degenerative diseases, including Alzheimer's and Parkinson's diseases. PMID:20858756
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akane, Hirotoshi; Saito, Fumiyo; Shiraki, Ayako
2014-09-01
We previously found that the 28-day oral toxicity study of glycidol at 200 mg/kg/day in rats resulted in axonopathy in both the central and peripheral nervous systems and aberrations in the late-stage of hippocampal neurogenesis targeting the process of neurite extension. To capture the neuronal parameters in response to glycidol toxicity, these animals were subjected to region-specific global gene expression profiling in four regions of cerebral and cerebellar architectures, followed by immunohistochemical analysis of selected gene products. Expression changes of genes related to axonogenesis and synaptic transmission were observed in the hippocampal dentate gyrus, cingulate cortex and cerebellar vermis atmore » 200 mg/kg showing downregulation in most genes. In the corpus callosum, genes related to growth, survival and functions of glial cells fluctuated their expression. Immunohistochemically, neurons expressing gene products of immediate-early genes, i.e., Arc, Fos and Jun, decreased in their number in the dentate granule cell layer, cingulate cortex and cerebellar vermis. We also applied immunohistochemical analysis in rat offspring after developmental exposure to glycidol through maternal drinking water. The results revealed increases of Arc{sup +} neurons at 1000 ppm and Fos{sup +} neurons at ≥ 300 ppm in the dentate granule cell layer of offspring only at the adult stage. These results suggest that glycidol suppressed neuronal plasticity in the brain after 28-day exposure to young adult animals, in contrast to the operation of restoration mechanism to increase neuronal plasticity at the adult stage in response to aberrations in neurogenesis after developmental exposure. - Highlights: • Neuronal toxicity parameters after 28-day glycidol treatment were examined in rats. • Region-specific global gene expression profiling was conducted in brain regions. • Cortical tissues downregulated genes on axonogenesis and synaptic transmission. • Cortical tissues decreased immunoreactive neurons for Arc, Fos or Jun. • The results suggest that 28-day glycidol treatment suppressed neuronal plasticity.« less
Identification of SNAREs that mediate zymogen granule exocytosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickett, James A.; Campos-Toimil, Manuel; Thomas, Paul
2007-08-03
A secretagogue-stimulated pancreatic acinar cell releases digestive enzymes from its apical pole. We attempted to identify the SNAREs involved in zymogen granule exocytosis. Antibodies against syntaxins 2 and 3, SNAP-23 and VAMP 8, and the corresponding recombinant SNAREs, inhibited amylase secretion from streptolysin O-permeabilised acini; other anti-SNARE antibodies and SNAREs had no effect. Botulinum neurotoxin C, which cleaved syntaxin 2 and (to a lesser extent) syntaxin 3, but not syntaxins 4, 7 or 8, also inhibited exocytosis. We propose that syntaxin 2, SNAP-23 and VAMP 8 mediate primary granule-plasma membrane fusion. Syntaxin 3 may be involved in secondary granule-granule fusion.
Tuli, Amit; Thiery, Jerome; James, Ashley M.; Michelet, Xavier; Sharma, Mahak; Garg, Salil; Sanborn, Keri B.; Orange, Jordan S.; Lieberman, Judy; Brenner, Michael B.
2013-01-01
Natural killer (NK) lymphocytes contain lysosome-related organelles (LROs), known as lytic granules, which upon formation of immune synapse with the target cell, polarize toward the immune synapse to deliver their contents to the target cell membrane. Here, we identify a small GTP-binding protein, ADP-ribosylation factor-like 8b (Arl8b), as a critical factor required for NK cell–mediated cytotoxicity. Our findings indicate that Arl8b drives the polarization of lytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells. Using a glutathione S-transferase pull-down approach, we identify kinesin family member 5B (KIF5B; the heavy chain of kinesin-1) as an interaction partner of Arl8b from NK cell lysates. Previous studies showed that interaction between kinesin-1 and Arl8b is mediated by SifA and kinesin-interacting protein (SKIP) and the tripartite complex drives the anterograde movement of lysosomes. Silencing of both KIF5B and SKIP in NK cells, similar to Arl8b, led to failure of MTOC-lytic granule polarization to the immune synapse, suggesting that Arl8b and kinesin-1 together control this critical step in NK cell cytotoxicity. PMID:24088571
Morishita, Kota; Tatsukawa, Eri; Shibata, Yasuaki; Suehiro, Fumio; Kamitakahara, Masanobu; Yokoi, Taishi; Ioku, Koji; Umeda, Masahiro; Nishimura, Masahiro; Ikeda, Tohru
2016-07-15
Foreign body giant cells (FBGCs) and osteoclasts are multinucleated giant cells (MNGCs), both of which are formed by the fusion of macrophage-derived mononuclear cells. Osteoclasts are distinct from FBGCs due to their bone resorption ability; however, not only morphological, but also functional similarities may exist between these cells. The characterization and diversity of FBGCs that appear in an in vivo foreign body reaction currently remain incomplete. In the present study, we investigated an in vivo foreign body reaction using an extraskeletal implantation model of hydroxyapatite (HA) with different microstructures. The implantation of HA granules in rat subcutaneous tissue induced a foreign body reaction that was accompanied by various MNGCs. HA granules composed of rod-shaped particles predominantly induced cathepsin K (CTSK)-positive FBGCs, whereas HA granules composed of globular-shaped particles predominantly induced CTSK-negative FBGCs. Plasma, which was used as the binder of ceramic granules, stimulated the induction of CTSK-positive FBGCs more strongly than purified fibrin. Furthermore, the implantation of HA composed of rod-shaped particles with plasma induced tartrate-resistant acid phosphatase (TRAP)-positive MNGCs in contrast to HA composed of globular-shaped particles with purified fibrin, which predominantly induced CTSK-negative and TRAP-negative typical FBGCs. These results suggest that CTSK-positive, TRAP-positive, and CTSK- and TRAP-negative MNGCs are induced in this subcutaneous implantation model in a manner that is dependent on the microstructure of HA and presence or absence of plasma. We attempted to elucidate the mechanisms responsible for the foreign body reaction induced by the implantation of hydroxyapatite granules with different microstructures in rat subcutaneous tissue with or without plasma components as the binder of ceramic granules. By analyzing the expression of two reliable osteoclast markers, we detected tartrate-resistant acid phosphatase-positive multinucleated giant cells, cathepsin K-positive multinucleated giant cells, and tartrate-resistant acid phosphatase- and cathepsin K-negative multinucleated giant cells. The induction of tartrate-resistant acid phosphatase-positive multinucleated giant cells was plasma component-dependent while the induction of cathepsin K-positive multinucleated giant cells was influenced by the microstructure of hydroxyapatite. This is the first study to show the conditions dividing the three kinds of multinucleated giant cells in the foreign body reaction. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Owoeye, Olatunde; Adedara, Isaac A; Bakare, Oluwafemi S; Adeyemo, Oluwatobi A; Egun, Christa; Farombi, Ebenezer O
2014-06-01
Phenytoin (PHT), an anticonvulsant agent, widely used for the treatment of epilepsy has been reported to exhibit toxic side effects. The present study investigated the protective effects of kolaviron and vitamin E on hematotoxicity and neurotoxicity induced by phenytoin, in prepubertal male rats. The animals were treated with PHT (75 mg/kg) separately or in combination with either kolaviron (200 mg/kg) or vitamin E (500 mg/kg) for 14 days. Phenytoin treatment significantly decreased the hemoglobin, white blood cells, lymphocytes and mean corpuscular volume levels without affecting red blood cell, packed cell volume, neutrophils, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration when compared with the control rats. There was a significant increase in lipid peroxidation and hydrogen peroxide levels with marked depletion in antioxidant status in brains of PHT-treated rats when compared with the control. Although PHT treatment had no effect on the granular layer, widest diameter of Purkinje cells and Purkinje layer of the cerebellum, it significantly reduced its molecular layer and the density of Purkinje cell. Administration of PHT significantly reduced the densities of the granule cells of the dentate gyrus and the pyramidal neurons of the cornu ammonis of hippocampus proper. Co-treatment with kolaviron and vitamin E effectively reversed the PHT-mediated alterations in the hematology, brain antioxidant status and histomorphometry when compared to PHT only. Taken together, the present data indicate the abilities of kolaviron and vitamin E to ameliorate phenytoin-induced hematotoxicity and oxidative stress in brains of rats.
Impact of regulated secretion on anti-parasitic CD8 T cell responses
Grover, Harshita Satija; Chu, H. Hamlet; Kelly, Felice D.; Yang, Soo Jung; Reese, Michael L.; Blanchard, Nicolas; Gonzalez, Federico; Chan, Shiao Wei; Boothroyd, John C.; Shastri, Nilabh; Robey, Ellen A.
2014-01-01
Summary CD8 T cells play a key role in defense against the intracellular parasite Toxoplasma but why certain CD8 responses are more potent than others is not well understood. Here, we describe a parasite antigen ROP5 that elicits a modest CD8 T cell response in genetically susceptible mice. ROP5 is secreted via parasite organelles termed rhoptries that are injected directly into host cells during invasion, whereas the protective, dense granule antigen, GRA6, is constitutively secreted into the parasitophorous vacuole. Transgenic parasites in which the ROP5 antigenic epitope was targeted for secretion through dense granules led to enhanced CD8 T cell responses, whereas targeting the GRA6 epitope to rhoptries led to reduced CD8 responses. CD8 T cell responses to the dense granule-targeted ROP5 epitope resulted in reduced parasite load in the brain. These data suggest that the mode of secretion impacts the efficacy of parasite-specific CD8 T cell responses. PMID:24857659
Li, Yun; Yang, Shu-Fang; Zhang, Jian-Jun; Li, Xiao-Yan
2014-01-01
In this study, gelation-facilitated biofilm formation as a new mechanism is proposed for the phenomenon of aerobic granulation in biological wastewater treatment. To obtain an experimental proof for the gelation-based theory, the granulation process was simulated in a chemical system using latex particles for bacterial cells and organic polymers (alginate and peptone) for extracellular polymeric substances (EPS) in a solution with the addition of cations (Ca²⁺, Mg²⁺ and Fe³⁺). The results showed that at a low alginate content (70 mg g⁻¹ mixed liquid suspended solids (MLSS)) flocculation was observed in the suspension with loose flocs. At a higher alginate content (180 mg g⁻¹ MLSS), together with discharge of small flocs, formation of artificial gel granules was successfully achieved leading to granulation. The artificial granules show a morphological property similar to that of actual microbial granules. However, if the protein content increased, granulation became difficult with little gel formation. The experimental work demonstrates the importance of the bonding interactions between EPS functional groups and cations in gel formation and granulation. The laboratory results on the formation of artificial granules provide a sound proof for the theory of gelation-facilitated biofilm formation as the main mechanism for aerobic granulation in sludge suspensions.
Mechanisms of mucus release in exposed canine gastric mucosa.
Zalewsky, C A; Moody, F G
1979-10-01
Mucus release was studied in the exposed gastric mucosa of anesthetized fasted dogs using scanning and transmission microscopy as well as histochemical and autoradiographic techniques. Under unstimulated conditions, the gastric epithelium was composed of both nonsecreting and mucus-secreting epithelial cells, with the former being predominant. Nonsecreting cells were characterized by an intact apical mucus package of granules and a continuous plasma membrane. The secreting mucus cell population was found in the foveolar (pit region) as well as interfoveolar areas. Three mechanisms of mucus release were observed: (a) exocytosis, (b) apical expulsion, and (c) cell exfoliation. Evidence for exocytosis was found in all mucus cells, especially in the sulfated glycoprotein-rich foveolar cells. Exocytosis involved only a few granules at a time; this mode of secretion is likely slow and continuous. In contrast, apical expulsion resulted in an explosive release of the entire apical mucus package followed by in situ degeneration of the cell itself. This occurred in the oldest cells forming mucosal crests in the interfoveolar area, whose mucus predominantly stains for neutral glycoproteins. Cell exfoliation, in which the entire cell was extruded into the lumen, was rarely observed and may provide, in addition to apical expulsion, a second mechanism to rid the mucosa of senescent epithelial cells. Mucus secretion is a complex function of the gastric epithelium. The mechanism of secretion and the histochemically defined type of mucus secreted are variables which are dependent on the age of the cell, its position on the foveolae, and the microenvironment within the gastric lumen. The mucus-containing surface and pit cells of gastric epithelium have been described morphologically and ultrastructurally in a number of studies. These cells are highly differentiated, forming a layer which is dynamic and responsive to conditions present in the gastric lumen. Mucus cells arise from multipotent progenitor cells which differentiate in the course of migration up the gastric pits and are involved in the complex macromolecular synthesis of glycoproteins. Although mucus release occurs throughout cell life, very little attention has been given to the cellular ultrastructural changes that deal with mucus secretion. As a result, the mucus-containing surface and pit cells have been described primarily in terms of their nonsecreting functional state. Exceptions to this are a few transmission and scanning electron microscopy studies which describe loss of intact mucus granules, cell extrusion, and in situ degeneration. These previous ultrastructural studies describe cellular patterns, in both normal and injured mucosa, which we fell are related to mucus release. Because of a paucity of knowledge concerning the normal mechanisms of mucus secretion, it was the purpose of this study to define the ultrastructural changes which result in and accompany the production of mucus in canine gastric epithelium.
Lymphatic involvement in the histopathogenesis of mucous retention cyst.
Kundu, Sukalyan; Cheng, Jun; Maruyama, Satoshi; Suzuki, Makoto; Kawashima, Hiroyuki; Saku, Takashi
2007-01-01
Mucous retention cyst results from extravasation of saliva. Our intent was to study the role of lymphatics in its pathogenesis. Twenty-three surgical specimens of mucous retention cyst of the lip were examined for involvement of lymphatic vessels by a comparative immunohistochemical demonstration of lymphatic and blood vascular endothelial cells, as well as lymphatic and salivary contents. Mucous retention cysts were histopathologically classified into three stages: early, intermediate, and advanced. In the early stage, there was diffuse extravasation of mucous material in the interstitium of the lamina propria or the submucosal layer of the oral mucosa. In the intermediate stage, lymphatics, which were clearly revealed and immunohistochemically distinguished from blood vessels by monoclonal antibody D2-40, were dilated and finally ruptured, leaving fragments of lymphatic walls in the periphery of mucous pools. In the advanced stage, thick cyst walls of granulation tissue were formed around mucous retention. Lymphatics were no longer involved in the granulation tissue wall, which was actively driven by blood vessel formation. The results suggest that the lymphatic rupture seems to contribute to the enlargement in the pathogenesis of mucous retention cyst.
Synthesis of high-performance Li4Ti5O12 and its application to the asymmetric hybrid capacitor
NASA Astrophysics Data System (ADS)
Lee, Byunggwan; Yoon, Jung Rag
2013-11-01
In this work, granule Li4Ti5O12 was successfully synthesized by spray drying a precursor slurry, followed by the solid-state reaction method. The precursor slurry was prepared from a solution of lithium carbonate (Li2CO3) and titanium dioxide (TiO2) in deionized water. A hybrid capacitor was fabricated which comprised a granule Li4Ti5O12 anode and activated carbon cathode. For comparison, an electrical double-layer capacitor (EDLC) cell was fabricated by using activated carbon electrodes in the same way. The electrochemical performance of the hybrid capacitor and the EDLC was characterized by constant current charge/discharge curves and cycle performance testing. The electrochemical testing results showed that the capacitance of the hybrid capacitor is approximately 2.5 times higher than that of the EDLC. Furthermore, the capacitance of the EDLC and the hybrid capacitor barely decreased after 1,000 cycles. The results of this study demonstrate that the hybrid capacitor has the advantages of the high rate capability of a supercapacitor (EDLC) and high battery capacity.
ERIC Educational Resources Information Center
Jessberger, Sebastian; Clark, Robert E.; Broadbent, Nicola J.; Clemenson, Gregory D., Jr.; Consiglio, Antonella; Lie, D. Chichung; Squire, Larry R.; Gage, Fred H.
2009-01-01
New granule cells are born throughout life in the dentate gyrus of the hippocampal formation. Given the fundamental role of the hippocampus in processes underlying certain forms of learning and memory, it has been speculated that newborn granule cells contribute to cognition. However, previous strategies aiming to causally link newborn neurons…
Ni, Lixiao; Li, Danye; Hu, Shuzhen; Wang, Peifang; Li, Shiyin; Li, Yiping; Li, Yong; Acharya, Kumud
2015-12-01
To safely and effectively apply artemisinin sustained-release granules to control and prevent algal water-blooms, the effects of artemisinin and its sustained-release granules on freshwater alga (Scenedesmus obliquus (S. obliquus) and Microcystis aeruginosa (M. aeruginosa)), as well as the production and release of microcystins (MCs) were studied. The results showed that artemisinin sustained-release granules inhibited the growth of M. aeruginosa (above 95% IR) and S. obliquus (about 90% IR), with M. aeruginosa more sensitive. The artemisinin sustained-release granules had a longer inhibition effect on growth of pure algae and algal coexistence than direct artemisinin dosing. The artemisinin sustained-release granules could decrease the production and release of algal toxins due to the continued stress of artemisinin released from artemisinin sustained-release granules. There was no increase in the total amount of MC-LR in the algal cell culture medium.
Prabhu, Nimali N; Santimano, Maria Celisa; Mavinkurve, Suneela; Bhosle, Saroj N; Garg, Sandeep
2010-01-01
A rapidly growing marine derived Bacillus sp. strain NQ-11/A2, identified as Bacillus megaterium, accumulated 61% polyhydroxyalkanoate by weight. Diverse carbon sources served as substrates for the accumulation of short chain length polyhydroxyalkanoate. Three to nine granules either single or attached as buds could be isolated intact from each cell. Maximum activity of polyhydroxyalkanoate synthase was associated with the granules. Granule-bound polyhydroxyalkanoate synthase had a K(m) of 7.1 x 10(-5) M for DL-beta-hydroxybutyryl-CoA. Temperature and pH optima for maximum activity were 30 degrees C and 7.0, respectively. Sodium ions were required for granule-bound polyhydroxyalkanoate synthase activity and inhibited by potassium. Granule-bound polyhydroxyalkanoate synthase was apparently covalently bound to the polyhydroxyalkanoate-core of the granules and affected by the chaotropic reagent urea. Detergents inhibited the granule-bound polyhydroxyalkanoate synthase drastically whilst glycerol and bovine serum albumin stabilized the synthase.
On the origins of the universal dynamics of endogenous granules in mammalian cells.
Vanapalli, Siva A; Li, Yixuan; Mugele, Frieder; Duits, Michel H G
2009-12-01
Endogenous granules (EGs) that consist of lipid droplets and mitochondria have been commonly used to assess intracellular mechanical properties via multiple particle tracking microrheology (MPTM). Despite their widespread use, the nature of interaction of EGs with the cytoskeletal network and the type of forces driving their dynamics--both of which are crucial for the interpretation of the results from MPTM technique--are yet to be resolved. In this report, we study the dynamics of endogenous granules in mammalian cells using particle tracking methods. We find that the ensemble dynamics of EGs is diffusive in three types of mammalian cells (endothelial cells, smooth muscle cells and fibroblasts), thereby suggesting an apparent universality in their dynamical behavior. Moreover, in a given cell, the amplitude of the mean-squared displacement for EGs is an order of magnitude larger than that of injected particles. This observation along with results from ATP depletion and temperature intervention studies suggests that cytoskeletal active forces drive the dynamics of EGs. To elucidate the dynamical origin of the diffusive-like nonthermal motion, we consider three active force generation mechanisms--molecular motor transport, actomyosin contractility and microtubule polymerization forces. We test these mechanisms using pharmacological interventions. Experimental evidence and model calculations suggest that EGs are intimately linked to microtubules and that microtubule polymerization forces drive their dynamics. Thus, endogenous granules could serve as non-invasive probes for microtubule network dynamics in mammalian cells.
An automated perfusion bioreactor for the streamlined production of engineered osteogenic grafts.
Ding, Ming; Henriksen, Susan S; Wendt, David; Overgaard, Søren
2016-04-01
A computer-controlled perfusion bioreactor was developed for the streamlined production of engineered osteogenic grafts. This system automated the required bioprocesses, from the initial filling of the system through the phases of cell seeding and prolonged cell/tissue culture. Flow through chemo-optic micro-sensors allowed to non-invasively monitor the levels of oxygen and pH in the perfused culture medium throughout the culture period. To validate its performance, freshly isolated ovine bone marrow stromal cells were directly seeded on porous scaffold granules (hydroxyapatite/β-tricalcium-phosphate/poly-lactic acid), bypassing the phase of monolayer cell expansion in flasks. Either 10 or 20 days after culture, engineered cell-granule grafts were implanted in an ectopic mouse model to quantify new bone formation. After four weeks of implantation, histomorphometry showed more bone in bioreactor-generated grafts than cell-free granule controls, while bone formation did not show significant differences between 10 days and 20 days of incubation. The implanted granules without cells had no bone formation. This novel perfusion bioreactor has revealed the capability of activation larger viable bone graft material, even after shorter incubation time of graft material. This study has demonstrated the feasibility of engineering osteogenic grafts in an automated bioreactor system, laying the foundation for a safe, regulatory-compliant, and cost-effective manufacturing process. © 2015 Wiley Periodicals, Inc.
Men, Yuqin; Zhang, Aizhen; Li, Haixiang; Jin, Yecheng; Sun, Xiaoyang; Li, Huashun; Gao, Jiangang
2015-11-09
The Liver Kinase B1 (LKB1) gene plays crucial roles in cell differentiation, proliferation and the establishment of cell polarity. We created LKB1 conditional knockout mice (LKB1(Atoh1) CKO) to investigate the function of LKB1 in cerebellar development. The LKB1(Atoh1) CKO mice displayed motor dysfunction. In the LKB1(Atoh1) CKO cerebellum, the overall structure had a larger volume and more lobules. LKB1 inactivation led to an increased proliferation of granule cell precursors (GCPs), aberrant granule cell migration and overproduction of unipolar brush cells. To investigate the mechanism underlying the abnormal foliation, we examined sonic hedgehog signalling (Shh) by testing its transcriptional mediators, the Gli proteins, which regulate the GCPs proliferation and cerebellar foliation during cerebellar development. The expression levels of Gli genes were significantly increased in the mutant cerebellum. In vitro assays showed that the proliferation of cultured GCPs from mutant cerebellum significantly increased, whereas the proliferation of mutant GCPs significantly decreased in the presence of a Shh inhibitor GDC-0049. Thus, LKB1 deficiency in the LKB1(Atoh1) CKO mice enhanced Shh signalling, leading to the excessive GCP proliferation and the formation of extra lobules. We proposed that LKB1 regulates cerebellar development by controlling GCPs proliferation through Shh signalling during cerebellar development.
Men, Yuqin; Zhang, Aizhen; Li, Haixiang; Jin, Yecheng; Sun, Xiaoyang; Li, Huashun; Gao, Jiangang
2015-01-01
The Liver Kinase B1 (LKB1) gene plays crucial roles in cell differentiation, proliferation and the establishment of cell polarity. We created LKB1 conditional knockout mice (LKB1Atoh1 CKO) to investigate the function of LKB1 in cerebellar development. The LKB1Atoh1 CKO mice displayed motor dysfunction. In the LKB1Atoh1 CKO cerebellum, the overall structure had a larger volume and morelobules. LKB1 inactivationled to an increased proliferation of granule cell precursors (GCPs), aberrant granule cell migration and overproduction of unipolar brush cells. To investigate the mechanism underlying the abnormal foliation, we examined sonic hedgehog signalling (Shh) by testing its transcriptional mediators, the Gli proteins, which regulate the GCPs proliferation and cerebellar foliation during cerebellar development. The expression levels of Gli genes were significantly increased in the mutant cerebellum. In vitro assays showed that the proliferation of cultured GCPs from mutant cerebellum significantly increased, whereas the proliferation of mutant GCPs significantly decreased in the presence of a Shh inhibitor GDC-0049. Thus, LKB1 deficiency in the LKB1Atoh1 CKO mice enhanced Shh signalling, leading to the excessive GCP proliferation and the formation of extra lobules. We proposed that LKB1 regulates cerebellar development by controlling GCPs proliferation through Shh signalling during cerebellar development. PMID:26549569
Behesti, Hourinaz; Bhagat, Heeta; Dubuc, Adrian M.; Taylor, Michael D.; Marino, Silvia
2013-01-01
SUMMARY BMI1 is a potent inducer of neural stem cell self-renewal and neural progenitor cell proliferation during development and in adult tissue homeostasis. It is overexpressed in numerous human cancers – including medulloblastomas, in which its functional role is unclear. We generated transgenic mouse lines with targeted overexpression of Bmi1 in the cerebellar granule cell lineage, a cell type that has been shown to act as a cell of origin for medulloblastomas. Overexpression of Bmi1 in granule cell progenitors (GCPs) led to a decrease in cerebellar size due to decreased GCP proliferation and repression of the expression of cyclin genes, whereas Bmi1 overexpression in postmitotic granule cells improved cell survival in response to stress by altering the expression of genes in the mitochondrial cell death pathway and of Myc and Lef-1. Although no medulloblastomas developed in ageing cohorts of transgenic mice, crosses with Trp53−/− mice resulted in a low incidence of medulloblastoma formation. Furthermore, analysis of a large collection of primary human medulloblastomas revealed that tumours with a BMI1high TP53low molecular profile are significantly enriched in Group 4 human medulloblastomas. Our data suggest that different levels and timing of Bmi1 overexpression yield distinct cellular outcomes within the same cellular lineage. Importantly, Bmi1 overexpression at the GCP stage does not induce tumour formation, suggesting that BMI1 overexpression in GCP-derived human medulloblastomas probably occurs during later stages of oncogenesis and might serve to enhance tumour cell survival. PMID:23065639
Sayers, T J; Wiltrout, T A; Sowder, R; Munger, W L; Smyth, M J; Henderson, L E
1992-01-01
We have purified a protein from the granules of the rat NK leukemia cell line (RNK) that is cytostatic to a variety of tumor cells. This protein shows no species specificity because certain tumor cell lines of mouse, rat, and human origin were equally sensitive to its growth inhibitory effects. Treatment of sensitive cells resulted in a rounding of the cells followed by homotypic aggregation into large aggregates. The granule protein was distinct from cytolysin, Na-Cbz-Lys-thiobenzylester-esterase, or leukolexin. It had a molecular mass of 29 to 31 kDa, bound strongly to heparin, was inactivated by heating at 70 degrees C for 5 min or reduction, but was stable to trypsin treatment. By using molecular sieve chromatography, heparin agarose chromatography, and reverse phase HPLC, this protein was purified to homogeneity. The first 33 amino acids of the N-terminal amino acid sequence showed complete identity to the sequence predicted from a rat serine protease gene recently cloned and designated RNKP-1. Therefore we have purified a novel serine protease and demonstrated that it has effects on the growth and morphology of certain tumor cells. Other serine proteases that were structurally related and have substantial homology with RNKP-1 at the amino acid level showed neither growth inhibitory properties nor affected the morphology of the tumor target cells we used.
Aberg, Elin; Perlmann, Thomas; Olson, Lars; Brené, Stefan
2008-01-01
Both vitamin A deficiency and high doses of retinoids can result in learning and memory impairments, depression as well as decreases in cell proliferation, neurogenesis and cell survival. Physical activity enhances hippocampal neurogenesis and can also exert an antidepressant effect. Here we elucidate a putative link between running, retinoid signaling, and neurogenesis in hippocampus. Adult transgenic reporter mice designed to detect ligand-activated retinoic acid receptors (RAR) or retinoid X receptors (RXR) were used to localize the distribution of activated RAR or RXR at the single-cell level in the brain. Two months of voluntary wheel-running induced an increase in hippocampal neurogenesis as indicated by an almost two-fold increase in doublecortin-immunoreactive cells. Running activity was correlated with neurogenesis. Under basal conditions a distinct pattern of RAR-activated cells was detected in the granule cell layer of the dentate gyrus (DG), thalamus, and cerebral cortex layers 3-4 and to a lesser extent in hippocampal pyramidal cell layers CA1-CA3. Running did not change the number of RAR-activated cells in the DG. There was no correlation between running and RAR activation or between RAR activation and neurogenesis in the DG of hippocampus. Only a few scattered activated retinoid X receptors were found in the DG under basal conditions and after wheel-running, but RXR was detected in other areas such as in the hilus region of hippocampus and in layer VI of cortex cerebri. RAR agonists affect mood in humans and reduce neurogenesis, learning and memory in animal models. In our study, long-term running increased neurogenesis but did not alter RAR ligand activation in the DG in individually housed mice. Thus, our data suggest that the effects of exercise on neurogenesis and other plasticity changes in the hippocampal formation are mediated by mechanisms that do not involve retinoid receptor activation. (c) 2008 Wiley-Liss, Inc.
Fitzgerald, Kerry D; Semler, Bert L
2013-09-01
Different types of environmental stress cause mammalian cells to form cytoplasmic foci, termed stress granules, which contain mRNPs that are translationally silenced. These foci are transient and dynamic, and contain components of the cellular translation machinery as well as certain mRNAs and RNA binding proteins. Stress granules are known to be induced by conditions such as hypoxia, nutrient deprivation, and oxidative stress, and a number of cellular factors have been identified that are commonly associated with these foci. More recently it was discovered that poliovirus infection also induces the formation of stress granules, although these cytoplasmic foci appear to be somewhat compositionally unique. Work described here examined the punctate pattern of SRp20 (a host cell mRNA splicing protein) localization in the cytoplasm of poliovirus-infected cells, demonstrating the partial co-localization of SRp20 with the stress granule marker protein TIA-1. We determined that SRp20 does not co-localize with TIA-1, however, under conditions of oxidative stress, indicating that the close association of these two proteins during poliovirus infection is not representative of a general response to cellular stress. We confirmed that the expression of a dominant negative version of TIA-1 (TIA-1-PRD) results in the dissociation of stress granules. Finally, we demonstrated that expression of wild type TIA-1 or dominant negative TIA-1-PRD in cells during poliovirus infection does not dramatically affect viral translation. Taken together, these studies provide a new example of the unique cytoplasmic foci that form during poliovirus infection. Copyright © 2013 Elsevier B.V. All rights reserved.
Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations
2011-01-01
Background Previous one-dimensional network modeling of the cerebellar granular layer has been successfully linked with a range of cerebellar cortex oscillations observed in vivo. However, the recent discovery of gap junctions between Golgi cells (GoCs), which may cause oscillations by themselves, has raised the question of how gap-junction coupling affects GoC and granular-layer oscillations. To investigate this question, we developed a novel two-dimensional computational model of the GoC-granule cell (GC) circuit with and without gap junctions between GoCs. Results Isolated GoCs coupled by gap junctions had a strong tendency to generate spontaneous oscillations without affecting their mean firing frequencies in response to distributed mossy fiber input. Conversely, when GoCs were synaptically connected in the granular layer, gap junctions increased the power of the oscillations, but the oscillations were primarily driven by the synaptic feedback loop between GoCs and GCs, and the gap junctions did not change oscillation frequency or the mean firing rate of either GoCs or GCs. Conclusion Our modeling results suggest that gap junctions between GoCs increase the robustness of cerebellar cortex oscillations that are primarily driven by the feedback loop between GoCs and GCs. The robustness effect of gap junctions on synaptically driven oscillations observed in our model may be a general mechanism, also present in other regions of the brain. PMID:22330240
Osinski, Bolesław L.
2016-01-01
Odors evoke gamma (40–100 Hz) and beta (20–30 Hz) oscillations in the local field potential (LFP) of the mammalian olfactory bulb (OB). Gamma (and possibly beta) oscillations arise from interactions in the dendrodendritic microcircuit between excitatory mitral cells (MCs) and inhibitory granule cells (GCs). When cortical descending inputs to the OB are blocked, beta oscillations are extinguished whereas gamma oscillations become larger. Much of this centrifugal input targets inhibitory interneurons in the GC layer and regulates the excitability of GCs, which suggests a causal link between the emergence of beta oscillations and GC excitability. We investigate the effect that GC excitability has on network oscillations in a computational model of the MC-GC dendrodendritic network with Ca2+-dependent graded inhibition. Results from our model suggest that when GC excitability is low, the graded inhibitory current mediated by NMDA channels and voltage-dependent Ca2+ channels (VDCCs) is also low, allowing MC populations to fire in the gamma frequency range. When GC excitability is increased, the activation of NMDA receptors and other VDCCs is also increased, allowing the slow decay time constants of these channels to sustain beta-frequency oscillations. Our model argues that Ca2+ flow through VDCCs alone could sustain beta oscillations and that the switch between gamma and beta oscillations can be triggered by an increase in the excitability state of a subpopulation of GCs. PMID:27121582
Creutzfeldt-Jakob disease with severe involvement of cerebral white matter and cerebellum.
Berciano, J; Berciano, M T; Polo, J M; Figols, J; Ciudad, J; Lafarga, M
1990-01-01
We describe a patient with Creutzfeldt-Jakob disease (CJD) of the ataxic and panencephalopathic type. Postmortem examination revealed the characteristic lesions of CJD in the grey matter and profound white matter involvement was seen with immunocytochemical techniques. Ultrastructural white matter lesions were identical to those described in experimentally transmitted CJD. There was marked loss of cerebellar granule cells with virtual disappearance of parallel fibres, but Purkinje cells were only slightly reduced. Electron microscopic studies revealed extensive degenerative changes including cytoplasmic vacuoles in both cell types. Silver methods disclosed massive impregnation of white matter and striking abnormalities of Purkinje cells consisting of hypertrophy and flattening of thick dendritic branches, reduction in the number of terminal branchlets, segmentary loss of spines and polymorphic spines. These findings show the extensive involvement of all three cerebellar cortical layers and the reactive plasticity of Purkinje cells to deafferentiation. They favour the hypothesis that demyelination represents a primary lesion of the white matter.
NASA Technical Reports Server (NTRS)
Schneegurt, M. A.; Sherman, D. M.; Nayar, S.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)
1994-01-01
It has been shown that some aerobic, unicellular, diazotrophic cyanobacteria temporally separate photosynthetic O2 evolution and oxygen-sensitive N2 fixation. Cyanothece sp. ATCC strain 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that fixes N2 during discrete periods of its cell cycle. When the bacteria are maintained under diurnal light-dark cycles, N2 fixation occurs in the dark. Similar cycling is observed in continuous light, implicating a circadian rhythm. Under N2-fixing conditions, large inclusion granules form between the thylakoid membranes. Maximum granulation, as observed by electron microscopy, occurs before the onset of N2 fixation, and the granules decrease in number during the period of N2 fixation. The granules can be purified from cell homogenates by differential centrifugation. Biochemical analyses of the granules indicate that these structures are primarily carbohydrate, with some protein. Further analyses of the carbohydrate have shown that it is a glucose polymer with some characteristics of glycogen. It is proposed that N2 fixation is driven by energy and reducing power stored in these inclusion granules. Cyanothece sp. strain ATCC 51142 represents an excellent experimental organism for the study of the protective mechanisms of nitrogenase, metabolic events in cyanobacteria under normal and stress conditions, the partitioning of resources between growth and storage, and biological rhythms.
Peroxisomes in the nervous system of Aplysia californica: a cytochemical study.
Beard, M E; Holtzman, E
1985-08-01
We have studied the distribution of peroxisomes in the abdominal ganglion of Aplysia californica using electron microscopic cytochemical methods. Reaction product for catalase was observed in small ovoid or dumb-bell-shaped bodies in the perikarya of many of the neurons. The abundance of these catalase-reactive peroxisomes is considerably greater than is the case in vertebrate neurons. While the non-neuronal cells of the Aplysia abdominal ganglion do contain appreciable peroxisome populations, there were few peroxisomes in glial cytoplasm directly adjacent to the perikarya, again contrasting with vertebrate ganglia in which the satellite cells are a principal site of peroxisomes. Peroxisomes are present throughout the perikaryal cytoplasm. In the regions in which lipochrome granules abound, peroxisomes are frequently seen closely associated with these granules; glycogen is abundant nearby. The association of peroxisomes, lipochrome granules and glycogen is interesting in view of the propinquities of peroxisomes to lipid droplets and lipofuscin granules reported for non-neuronal vertebrate tissues, and in view of the growing evidence indicating that some of the roles of peroxisomes are in lipid metabolism and in gluconeogenesis. Some of the lipochrome granules themselves show reaction product in ganglia incubated to demonstrate catalase activity and some react in tissue incubated to demonstrate acid phosphatase activity. Such observations suggest that the enzymatic capacities of the lipochrome granules merit further studies, and that the granules may be of complex or heterogeneous nature.
Mossy cells in epilepsy: rigor mortis or vigor mortis?
Ratzliff, Annad d H; Santhakumar, Vijayalakshmi; Howard, Allyson; Soltesz, Ivan
2002-03-01
Mossy cells are bi-directionally connected through a positive feedback loop to granule cells, the principal cells of the dentate gyrus. This recurrent circuit is strategically placed between the entorhinal cortex and the hippocampal CA3 region. In spite of their potentially pro-convulsive arrangement with granule cells, mossy cells have not been seriously considered to promote seizures, because mossy cells, allegedly one of the most vulnerable cell types in the entire mammalian brain, have long been 'known' to die en masse in epilepsy. However, new data suggest that rumors of the rapid demise of the mossy cells might have been greatly exaggerated.
Aponte, Maria; Ungaro, Francesca; d'Angelo, Ivana; De Caro, Carmen; Russo, Roberto; Blaiotta, Giuseppe; Dal Piaz, Fabrizio; Calignano, Antonio; Miro, Agnese
2018-05-30
This study reports novel food-grade granules for co-delivery of L. plantarum 299v and a standardized extract of Olea europaea leaves (Phenolea®) as oral carrier of probiotics and hydroxytyrosol. Different granule formulations containing either L. plantarum 299v (Lac), or the olive leave extract (Phe) or their combination (Lac-Phe) have been successfully produced through wet granulation employing excipients generally regarded as safe as granulating/binding agents. L. plantarum cells withstood the manufacturing process and were stable upon storage at 4 °C for more than 6 months. In vitro dissolution studies in simulated gastro-intestinal fluids showed the capability of the granules to rapidly dissolve and deliver both olive leave phenols and living L. plantarum cells. In simulated digestion conditions, Lac and Lac-Phe granules protected L. plantarum against the harsh environment of the gastro-intestinal tract. Co-administration of Lac and Phe oral granules to healthy mice provided for higher amounts of hydroxytyrosol in urines as compared to Phe granules alone, suggesting that L. plantarum 299v boosted in vivo conversion of oleuropein to hydroxytyrosol. On the other hand, PCR-assisted profiling of the Lactobacillus population in faeces obtained from mice treated with Lac or Lac plus Phe confirmed that the probiotic arrived alive to colon and was there able to exert a sort of perturbing effect on the climax colonic microflora. Overall, these results pave the way towards the development of a nutraceutical useful for combined delivery of bioactive hydroxytyrosol and probiotics to colon site. Copyright © 2018 Elsevier B.V. All rights reserved.
Lefranc, G; Chung, Y T; Barrière, P; Pradal, G
1980-01-01
The thiocarbohydrazide-silver proteinate (TCH SP) method was applied to the study of cat, rabbit and mouse gastric mucosa endocrine cells. After 24-h treatment with thiocarbohydrazide (TCH), glycogen was seen in the hyaloplasm of X, D, P, A and O cells but not in EC, EC-like or D1 cells. With flotation times as short as 30 to 40 min glycogen was readily detected in X cells. Secretory granules of EC cells were constantly stained, while those of D1 cells failed to react. In most experiments granules of X, A and O cells showed peripheral "staining", while in others staining of variable intensity affected the entire granular cross-section in X, D and P cells. With 72-h exposure to TCH, EC and EC-like cells showed particles resembling glycogen, even staining or only peripheral staining of certain EC cell granules. From the results of this and previous studies, EC cell staining is believed to be due wholly or partly, according to exposure times, to the action of silver proteinate, while that of certain non-EC cells is probably a specific indicator of complexed carbohydrates.
Koshimizu, Hisatsugu; Kim, Taeyoon; Cawley, Niamh X; Loh, Y Peng
2010-11-30
Chromogranin A (CgA), a member of the granin family serves several important cell biological roles in (neuro)endocrine cells which are summarized in this review. CgA is a "prohormone" that is synthesized at the rough endoplasmic reticulum and transported into the cisternae of this organelle via its signal peptide. It is then trafficked to the Golgi complex and then to the trans-Golgi network (TGN) where CgA aggregates at low pH in the presence of calcium. The CgA aggregates provide the physical driving force to induce budding of the TGN membrane resulting in dense core granule (DCG) formation. Within the granule, a small amount of the CgA is processed to bioactive peptides, including a predicted C-terminal peptide, serpinin. Upon stimulation, DCGs undergo exocytosis and CgA and its derived peptides are released. Serpinin, acting extracellularly is able to signal the increase in transcription of a serine protease inhibitor, protease nexin-1 (PN-1) that protects DCG proteins against degradation in the Golgi complex, which then enhances DCG biogenesis to replenish those that were released. Thus CgA and its derived peptide, serpinin, plays a significant role in granule formation and regulation of granule biogenesis, respectively, in (neuro) endocrine cells. Copyright © 2010. Published by Elsevier B.V.
Koshimizu, Hisatsugu; Kim, Taeyoon; Cawley, Niamh X.; Loh, Y. Peng
2014-01-01
Chromogranin A (CgA), a member of the granin family serves several important cell biological roles in (neuro) endocrine cells which are summarized in this review. CgA is a “prohormone” that is synthesized at the rough endoplasmic reticulum and transported into the cisternae of this organelle via its signal peptide. It is then trafficked to the Golgi complex and then to the trans-Golgi network (TGN) where CgA aggregates at low pH in the presence of calcium. The CgA aggregates provide the physical driving force to induce budding of the TGN membrane resulting in dense core granule (DCG) formation. Within the granule, a small amount of the CgA is processed to bioactive peptides, including a predicted C-terminal peptide, serpinin. Upon stimulation, DCGs undergo exocytosis and CgA and its derived peptides are released. Serpinin, acting extracellularly is able to signal the increase in transcription of a serine protease inhibitor, protease nexin-1 (PN-1) that protects DCG proteins against degradation in the Golgi complex, which then enhances DCG biogenesis to replenish those that were released. Thus CgA and its derived peptide, serpinin, plays a significant role in granule formation and regulation of granule biogenesis, respectively, in (neuro) endocrine cells. PMID:20920534
Chromogranin A: a new proposal for trafficking, processing and induction of granule biogenesis.
Koshimizu, Hisatsugu; Kim, Taeyoon; Cawley, Niamh X; Loh, Y Peng
2010-02-25
Chromogranin A (CgA), a member of the granin family serves several important cell biological roles in (neuro)endocrine cells which are summarized in this review. CgA is a "prohormone" that is synthesized at the rough endoplasmic reticulum and transported into the cisternae of this organelle via its signal peptide. It is then trafficked to the Golgi complex and then to the trans-Golgi network (TGN) where CgA aggregates at low pH in the presence of calcium. The CgA aggregates provide the physical driving force to induce budding of the TGN membrane resulting in dense core granule (DCG) formation. Within the granule, a small amount of the CgA is processed to bioactive peptides, including a predicted C-terminal peptide, serpinin. Upon stimulation, DCGs undergo exocytosis and CgA and its derived peptides are released. Serpinin, acting extracellularly is able to signal the increase in transcription of a serine protease inhibitor, protease nexin-1 (PN-1) that protects DCG proteins against degradation in the Golgi complex, which then enhances DCG biogenesis to replenish those that were released. Thus CgA and its derived peptide, serpinin, plays a significant role in granule formation and regulation of granule biogenesis, respectively, in (neuro) endocrine cells. Published by Elsevier B.V.
Yang, Yan; Gillis, Kevin D
2004-12-01
We have used membrane capacitance measurements and carbon-fiber amperometry to assay exocytosis triggered by photorelease of caged Ca(2+) to directly measure the Ca(2+) sensitivity of exocytosis from the INS-1 insulin-secreting cell line. We find heterogeneity of the Ca(2+) sensitivity of release in that a small proportion of granules makes up a highly Ca(2+)-sensitive pool (HCSP), whereas the bulk of granules have a lower sensitivity to Ca(2+). A substantial HCSP remains after brief membrane depolarization, suggesting that the majority of granules with high sensitivity to Ca(2+) are not located close to Ca(2+) channels. The HCSP is enhanced in size by glucose, cAMP, and a phorbol ester, whereas the Ca(2+)-sensitive rate constant of exocytosis from the HCSP is unaffected by cAMP and phorbol ester. The effects of cAMP and phorbol ester on the HCSP are mediated by PKA and PKC, respectively, because they can be blocked with specific protein kinase inhibitors. The size of the HCSP can be enhanced by glucose even in the presence of high concentrations of phorbol ester or cAMP, suggesting that glucose can increase granule pool sizes independently of activation of PKA or PKC. The effects of PKA and PKC on the size of the HCSP are not additive, suggesting they converge on a common mechanism. Carbon-fiber amperometry was used to assay quantal exocytosis of serotonin (5-HT) from insulin-containing granules following preincubation of INS-1 cells with 5-HT and a precursor. The amount or kinetics of release of 5-HT from each granule is not significantly different between granules with higher or lower sensitivity to Ca(2+), suggesting that granules in these two pools do not differ in morphology or fusion kinetics. We conclude that glucose and second messengers can modulate insulin release triggered by a high-affinity Ca(2+) sensor that is poised to respond to modest, global elevations of [Ca(2+)](i).
Corticosterone Facilitates Fluoxetine-Induced Neuronal Plasticity in the Hippocampus
Kobayashi, Katsunori; Ikeda, Yumiko; Asada, Minoru; Inagaki, Hirofumi; Kawada, Tomoyuki; Suzuki, Hidenori
2013-01-01
The hippocampal dentate gyrus has been implicated in a neuronal basis of antidepressant action. We have recently shown a distinct form of neuronal plasticity induced by the serotonergic antidepressant fluoxetine, that is, a reversal of maturation of the dentate granule cells in adult mice. This “dematuration” is induced in a large population of dentate neurons and maintained for at least one month after withdrawal of fluoxetine, suggesting long-lasting strong influence of dematuration on brain functioning. However, reliable induction of dematuration required doses of fluoxetine higher than suggested optimal doses for mice (10 to 18 mg/kg/day), which casts doubt on the clinical relevance of this effect. Since our previous studies were performed in naive mice, in the present study, we reexamined effects of fluoxetine using mice treated with chronic corticosterone that model neuroendocrine pathophysiology associated with depression. In corticosterone-treated mice, fluoxetine at 10 mg/kg/day downregulated expression of mature granule cell markers and attenuated strong frequency facilitation at the synapse formed by the granule cell axon mossy fiber, suggesting the induction of granule cell dematuration. In addition, fluoxetine caused marked enhancement of dopaminergic modulation at the mossy fiber synapse. In vehicle-treated mice, however, fluoxetine at this dose had no significant effects. The plasma level of fluoxetine was comparable to that in patients taking chronic fluoxetine, and corticosterone did not affect it. These results indicate that corticosterone facilitates fluoxetine-induced plastic changes in the dentate granule cells. Our finding may provide insight into neuronal mechanisms underlying enhanced responsiveness to antidepressant medication in certain pathological conditions. PMID:23675498
Regulation of platelet granule exocytosis by S-nitrosylation
Morrell, Craig N.; Matsushita, Kenji; Chiles, Kelly; Scharpf, Robert B.; Yamakuchi, Munekazu; Mason, Rebecca J. A.; Bergmeier, Wolfgang; Mankowski, Joseph L.; Baldwin, William M.; Faraday, Nauder; Lowenstein, Charles J.
2005-01-01
Nitric oxide (NO) regulates platelet activation by cGMP-dependent mechanisms and by mechanisms that are not completely defined. Platelet activation includes exocytosis of platelet granules, releasing mediators that regulate interactions between platelets, leukocytes, and endothelial cells. Exocytosis is mediated in part by N-ethylmaleimide-sensitive factor (NSF), an ATPase that disassembles complexes of soluble NSF attachment protein receptors. We now demonstrate that NO inhibits exocytosis of dense granules, lysosomal granules, and α-granules from human platelets by S-nitrosylation of NSF. Platelets lacking endothelial NO synthase show increased rolling on venules, increased thrombosis in arterioles, and increased exocytosis in vivo. Regulation of exocytosis is thus a mechanism by which NO regulates thrombosis. PMID:15738422
Böttger, Angelika; Doxey, Andrew C; Hess, Michael W; Pfaller, Kristian; Salvenmoser, Willi; Deutzmann, Rainer; Geissner, Andreas; Pauly, Barbara; Altstätter, Johannes; Münder, Sandra; Heim, Astrid; Gabius, Hans-Joachim; McConkey, Brendan J; David, Charles N
2012-01-01
The single-cell layered ectoderm of the fresh water polyp Hydra fulfills the function of an epidermis by protecting the animals from the surrounding medium. Its outer surface is covered by a fibrous structure termed the cuticle layer, with similarity to the extracellular surface coats of mammalian epithelia. In this paper we have identified molecular components of the cuticle. We show that its outermost layer contains glycoproteins and glycosaminoglycans and we have identified chondroitin and chondroitin-6-sulfate chains. In a search for proteins that could be involved in organising this structure we found PPOD proteins and several members of a protein family containing only SWT (sweet tooth) domains. Structural analyses indicate that PPODs consist of two tandem β-trefoil domains with similarity to carbohydrate-binding sites found in lectins. Experimental evidence confirmed that PPODs can bind sulfated glycans and are secreted into the cuticle layer from granules localized under the apical surface of the ectodermal epithelial cells. PPODs are taxon-specific proteins which appear to have entered the Hydra genome by horizontal gene transfer from bacteria. Their acquisition at the time Hydra evolved from a marine ancestor may have been critical for the transition to the freshwater environment.
Böttger, Angelika; Doxey, Andrew C.; Hess, Michael W.; Pfaller, Kristian; Salvenmoser, Willi; Deutzmann, Rainer; Geissner, Andreas; Pauly, Barbara; Altstätter, Johannes; Münder, Sandra; Heim, Astrid; Gabius, Hans-Joachim; McConkey, Brendan J.; David, Charles N.
2012-01-01
The single-cell layered ectoderm of the fresh water polyp Hydra fulfills the function of an epidermis by protecting the animals from the surrounding medium. Its outer surface is covered by a fibrous structure termed the cuticle layer, with similarity to the extracellular surface coats of mammalian epithelia. In this paper we have identified molecular components of the cuticle. We show that its outermost layer contains glycoproteins and glycosaminoglycans and we have identified chondroitin and chondroitin-6-sulfate chains. In a search for proteins that could be involved in organising this structure we found PPOD proteins and several members of a protein family containing only SWT (sweet tooth) domains. Structural analyses indicate that PPODs consist of two tandem β-trefoil domains with similarity to carbohydrate-binding sites found in lectins. Experimental evidence confirmed that PPODs can bind sulfated glycans and are secreted into the cuticle layer from granules localized under the apical surface of the ectodermal epithelial cells. PPODs are taxon-specific proteins which appear to have entered the Hydra genome by horizontal gene transfer from bacteria. Their acquisition at the time Hydra evolved from a marine ancestor may have been critical for the transition to the freshwater environment. PMID:23300632
Changes in the oviducal epithelium during the estrous cycle in the marsupial Monodelphis domestica
Kress, Annetrudi; Morson, Gianni
2007-01-01
The Monodelphis oviduct can be divided into four anatomical segments: preampulla (comprising fimbriae and infundibulum), ampulla, isthmus with crypts and uterotubal junction. Ovaries are enclosed in a periovarial sac, the bursa, and in some specimens tubules of an epoophoron could be identified. In both structures non-ciliated cells develop small translucent vesicles, which accumulate in the cell apices and presumably produce fluid as often seen in the bursa and in the tubules of the epooophoron. These vesicles do not stain with Alcian blue or PAS. The same applies also to the non-ciliated cells of the fimbriae. The oviducal epithelium of ampulla and the surface epithelium of the isthmus consisting of ciliated and non-ciliated, secretory cells undergo considerable changes during the estrous cycle. Proestrus shows low numbers of ciliated cells, some are in the process of neo-ciliogenesis, non-ciliated cells carry solitary cilia and few remnant secretory granules from the previous cycle may be found. At estrus the amount of ciliated cells in ampulla and isthmus has increased, most non-cililated cells lost the solitary cilia, developed longer microvilli and formed numerous secretory granules in their cell apices. At postestrus secretory products, often surrounded by membranes, are extruded into the oviducal lumen and contribute towards egg coat formation. First signs of deciliation processes are apparent. Solitary cilia reappear. At metestrus only few secretory cells are left with some secretory material. The lumen is often filled with shed cilia and cell apices. Proliferation of basal bodies within non-secretory cells indicate the formation of new ciliated cells. The non-ciliated epithelial cells of the isthmic crypts form no secretory granules but accumulate a great number of translucent vesicles, which in contrast to the secretory granules do not stain with Alcian blue or PAS. PMID:17883438
ERIC Educational Resources Information Center
Spanswick, Simon C.; Sutherland, Robert J.
2010-01-01
Chronic adrenalectomy (ADX) causes a gradual and selective loss of granule cells in the dentate gyrus (DG) of the rat. Here, we administered replacement corticosterone to rats beginning 10 wk after ADX. We then tested them in three discrimination tasks based on object novelty, location, or object/context association. Only during testing of the…
Snapshot 3D tracking of insulin granules in live cells
NASA Astrophysics Data System (ADS)
Wang, Xiaolei; Huang, Xiang; Gdor, Itay; Daddysman, Matthew; Yi, Hannah; Selewa, Alan; Haunold, Theresa; Hereld, Mark; Scherer, Norbert F.
2018-02-01
Rapid and accurate volumetric imaging remains a challenge, yet has the potential to enhance understanding of cell function. We developed and used a multifocal microscope (MFM) for 3D snapshot imaging to allow 3D tracking of insulin granules labeled with mCherry in MIN6 cells. MFM employs a special diffractive optical element (DOE) to simultaneously image multiple focal planes. This simultaneous acquisition of information determines the 3D location of single objects at a speed only limited by the array detector's frame rate. We validated the accuracy of MFM imaging/tracking with fluorescence beads; the 3D positions and trajectories of single fluorescence beads can be determined accurately over a wide range of spatial and temporal scales. The 3D positions and trajectories of single insulin granules in a 3.2um deep volume were determined with imaging processing that combines 3D decovolution, shift correction, and finally tracking using the Imaris software package. We find that the motion of the granules is superdiffusive, but less so in 3D than 2D for cells grown on coverslip surfaces, suggesting an anisotropy in the cytoskeleton (e.g. microtubules and action).
Hattiangady, Bharathi; Shuai, Bing; Cai, Jingli; Coksaygan, Turhan; Rao, Mahendra S; Shetty, Ashok K
2007-08-01
Neurogenesis in the dentate gyrus (DG) declines severely by middle age, potentially because of age-related changes in the DG microenvironment. We hypothesize that providing fresh glial restricted progenitors (GRPs) or neural stem cells (NSCs) to the aging hippocampus via grafting enriches the DG microenvironment and thereby stimulates the production of new granule cells from endogenous NSCs. The GRPs isolated from the spinal cords of embryonic day 13.5 transgenic F344 rats expressing human alkaline phosphatase gene and NSCs isolated from embryonic day 9 caudal neural tubes of Sox-2:EGFP transgenic mice were expanded in vitro and grafted into the hippocampi of middle-aged (12 months old) F344 rats. Both types of grafts survived well, and grafted NSCs in addition migrated to all layers of the hippocampus. Phenotypic characterization revealed that both GRPs and NSCs differentiated predominantly into astrocytes and oligodendrocytic progenitors. Neuronal differentiation of graft-derived cells was mostly absent except in the dentate subgranular zone (SGZ), where some of the migrated NSCs but not GRPs differentiated into neurons. Analyses of the numbers of newly born neurons in the DG using 5'-bromodeoxyuridine and/or doublecortin assays, however, demonstrated considerably increased dentate neurogenesis in animals receiving grafts of GRPs or NSCs in comparison with both naïve controls and animals receiving sham-grafting surgery. Thus, both GRPs and NSCs survive well, differentiate predominantly into glia, and stimulate the endogenous NSCs in the SGZ to produce more new dentate granule cells following grafting into the aging hippocampus. Grafting of GRPs or NSCs therefore provides an attractive approach for improving neurogenesis in the aging hippocampus. Disclosure of potential conflicts of interest is found at the end of this article.
Pascual, Marta; Abasolo, Ibane; Mingorance-Le Meur, Ana; Martínez, Albert; Del Rio, José A; Wright, Christopher V E; Real, Francisco X; Soriano, Eduardo
2007-03-20
We report in this study that, in the cerebellum, the pancreatic transcription factor Ptf1a is required for the specific generation of Purkinje cells (PCs) and interneurons. Moreover, granule cell progenitors in the external GCL (EGL) appear to be unaffected by deletion of Ptf1a. Cell lineage analysis in Ptf1a(Cre/Cre) mice was used to establish that, in the absence of Ptf1a expression, ventricular zone progenitors, normally fated to produce PCs and interneurons, aberrantly migrate to the EGL and express typical markers of these cells, such as Math1, Reelin, and Zic1/2. Furthermore, these cells have a fine structure typical of EGL progenitors, indicating that they adopt an EGL-like cell phenotype. These findings indicate that Ptf1a is necessary for the specification and normal production of PCs and cerebellar interneurons. Moreover, our results suggest that Ptf1a is also required for the suppression of the granule cell specification program in cerebellar ventricular zone precursors.
Homologs of PROTEIN TARGETING TO STARCH Control Starch Granule Initiation in Arabidopsis Leaves[OPEN
David, Laure C.; Abt, Melanie; Lu, Kuan-Jen
2017-01-01
The molecular mechanism that initiates the synthesis of starch granules is poorly understood. Here, we discovered two plastidial proteins involved in granule initiation in Arabidopsis thaliana leaves. Both contain coiled coils and a family-48 carbohydrate binding module (CBM48) and are homologs of the PROTEIN TARGETING TO STARCH (PTST) protein; thus, we named them PTST2 and PTST3. Chloroplasts in mesophyll cells typically contain five to seven granules, but remarkably, most chloroplasts in ptst2 mutants contained zero or one large granule. Chloroplasts in ptst3 had a slight reduction in granule number compared with the wild type, while those of the ptst2 ptst3 double mutant contained even fewer granules than ptst2. The ptst2 granules were larger but similar in morphology to wild-type granules, but those of the double mutant had an aberrant morphology. Immunoprecipitation showed that PTST2 interacts with STARCH SYNTHASE4 (SS4), which influences granule initiation and morphology. Overexpression of PTST2 resulted in chloroplasts containing many small granules, an effect that was dependent on the presence of SS4. Furthermore, isothermal titration calorimetry revealed that the CBM48 domain of PTST2, which is essential for its function, interacts with long maltooligosaccharides. We propose that PTST2 and PTST3 are critical during granule initiation, as they bind and deliver suitable maltooligosaccharide primers to SS4. PMID:28684429
Large-scale horizontal flows from SOUP observations of solar granulation
NASA Technical Reports Server (NTRS)
November, L. J.; Simon, G. W.; Tarbell, T. D.; Title, A. M.; Ferguson, S. H.
1987-01-01
Using high resolution time sequence photographs of solar granulation from the SOUP experiment on Spacelab 2, large scale horizontal flows were observed in the solar surface. The measurement method is based upon a local spatial cross correlation analysis. The horizontal motions have amplitudes in the range 300 to 1000 m/s. Radial outflow of granulation from a sunspot penumbra into surrounding photosphere is a striking new discovery. Both the supergranulation pattern and cellular structures having the scale of mesogranulation are seen. The vertical flows that are inferred by continuity of mass from these observed horizontal flows have larger upflow amplitudes in cell centers than downflow amplitudes at cell boundaries.
Nonlinear electrokinetic phenomena in microfluidic devices
NASA Astrophysics Data System (ADS)
Ben, Yuxing
This thesis addresses nonlinear electrokinetic mechanisms for transporting fluid and particles in microfluidic devices for potential applications in biomedical chips, microelectronic cooling and micro-fuel cells. Nonlinear electrokinetics have many advantages, such as low voltage, low power, high velocity, and no significant gas formation in the electrolyte. However, they involve new and complex charging and flow mechanisms that are still not fully understood or explored. Linear electrokinetic fingering that occurs when a fluid with a lower electrolyte concentration advances into one with a higher concentration is first analyzed. Unlike earlier miscible fingering theories, the linear stability analysis is carried out in the self-similar coordinates of the diffusing front. This new spectral theory is developed for small-amplitude gravity and viscous miscible fingering phenomena in general and applied to electrokinetic miscible fingering specifically. Transient electrokinetic fingering is shown to be insignificant in sub-millimeter micro-devices. Nonlinear electroosmotic flow around an ion-exchange spherical granule is studied next. When an electric field is applied across a conducting and ion-selective porous granule in an electrolyte solution, a polarized surface layer with excess counter-ions is created. The flux-induced polarization produces a nonlinear slip velocity to produce micro-vortices around this sphere. This polarization layer is reduced by convection at high velocity. Two velocity scalings at low and high electric fields are derived and favorably compared with experimental results. A mixing device based on this mechanism is shown to produce mixing efficiency 10-100 times higher than molecular diffusion. Finally, AC nonlinear electrokinetic flow on planar electrodes is studied. Two double layer charging mechanisms are responsible for the flow---one due to capacitive charging of ions from the bulk electrolyte and one due to Faradaic reactions at the electrode that consume or produce ions in the double layer. Faradaic charging is analyzed for specific reactions. From the theory, particular electrokinetic flows above the electrodes are selected for micropumps and bioparticle trapping by specifying the electrode geometry and the applied voltage and frequency.
Chen, Nan; Zhang, Jie; Xu, Min; Wang, Yu Ling; Pei, Ying Hua
2013-01-01
Airway granulation tissue and scar formation pose a challenge because of the high incidence of recurrence after treatment. As an emerging treatment modality, topical application of mitomycin C has potential value in delaying the recurrence of airway obstruction. Several animal and clinical studies have already proven its feasibility and efficacy. However, the ideal dosage has still not been determined. To establish a novel method for culturing primary fibroblasts isolated from human airway granulation tissue, and to investigate the dose-effect of mitomycin C on the fibroblast proliferation in vitro, so as to provide an experimental reference for clinical practitioners. Granulation tissues were collected during the routine bronchoscopy at our department. The primary fibroblasts were obtained by culturing the explanted tissues. The cells were treated with different concentrations of mitomycin C (0.1, 0.2, 0.4, 0.8 and 1.6 mg/ml) for 5 min followed by additional 48-hour culture before an MTT assay was performed to measure cell viability. MTT assay showed that mitomycin C reduced cell viability at all tested concentrations. The inhibitory ratios were 10.26, 26.77, 32.88, 64.91 and 80.45% for cells treated with mitomycin C at 0.1, 0.2, 0.4, 0.8 and 1.6 mg/ml, respectively. Explant culture is a reliable method for culturing primary fibroblasts from human airway granulation tissue, and mitomycin C can inhibit proliferation of the fibroblasts in vitro. Copyright © 2013 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Nakamura, Hideki; Lee, Albert A.; Afshar, Ali Sobhi; Watanabe, Shigeki; Rho, Elmer; Razavi, Shiva; Suarez, Allister; Lin, Yu-Chun; Tanigawa, Makoto; Huang, Brian; Derose, Robert; Bobb, Diana; Hong, William; Gabelli, Sandra B.; Goutsias, John; Inoue, Takanari
2018-01-01
Some protein components of intracellular non-membrane-bound entities, such as RNA granules, are known to form hydrogels in vitro. The physico-chemical properties and functional role of these intracellular hydrogels are difficult to study, primarily due to technical challenges in probing these materials in situ. Here, we present iPOLYMER, a strategy for a rapid induction of protein-based hydrogels inside living cells that explores the chemically inducible dimerization paradigm. Biochemical and biophysical characterizations aided by computational modelling show that the polymer network formed in the cytosol resembles a physiological hydrogel-like entity that acts as a size-dependent molecular sieve. We functionalize these polymers with RNA-binding motifs that sequester polyadenine-containing nucleotides to synthetically mimic RNA granules. These results show that iPOLYMER can be used to synthetically reconstitute the nucleation of biologically functional entities, including RNA granules in intact cells.
Mineral-bearing vesicle transport in sea urchin embryos.
Vidavsky, Netta; Masic, Admir; Schertel, Andreas; Weiner, Steve; Addadi, Lia
2015-12-01
Sea urchin embryos sequester calcium from the sea water. This calcium is deposited in a concentrated form in granule bearing vesicles both in the epithelium and in mesenchymal cells. Here we use in vivo calcein labeling and confocal Raman spectroscopy, as well as cryo-FIB-SEM 3D structural reconstructions, to investigate the processes occurring in the internal cavity of the embryo, the blastocoel. We demonstrate that calcein stained granules are also present in the filopodial network within the blastocoel. Simultaneous fluorescence imaging and Raman spectroscopy show that these granules do contain a calcium mineral. By tracking the movements of these granules, we show that the granules in the epithelium and primary mesenchymal cells barely move, but those in the filopodial network move long distances. We could however not detect any unidirectional movement of the filopodial granules. We also show the presence of mineral containing multivesicular vesicles that also move in the filopodial network. We conclude that the filopodial network is an integral part of the mineral transport process, and possibly also for sequestering calcium and other ions. Although much of the sequestered calcium is deposited in the mineralized skeleton, a significant amount is used for other purposes, and this may be temporarily stored in these membrane-delineated intracellular deposits. Copyright © 2015 Elsevier Inc. All rights reserved.
Yau, Kah Wai; Schätzle, Philipp; Tortosa, Elena; Pagès, Stéphane; Holtmaat, Anthony; Kapitein, Lukas C; Hoogenraad, Casper C
2016-01-27
In cultured vertebrate neurons, axons have a uniform arrangement of microtubules with plus-ends distal to the cell body (plus-end-out), whereas dendrites contain mixed polarity orientations with both plus-end-out and minus-end-out oriented microtubules. Rather than non-uniform microtubules, uniparallel minus-end-out microtubules are the signature of dendrites in Drosophila and Caenorhabditis elegans neurons. To determine whether mixed microtubule organization is a conserved feature of vertebrate dendrites, we used live-cell imaging to systematically analyze microtubule plus-end orientations in primary cultures of rat hippocampal and cortical neurons, dentate granule cells in mouse organotypic slices, and layer 2/3 pyramidal neurons in the somatosensory cortex of living mice. In vitro and in vivo, all microtubules had a plus-end-out orientation in axons, whereas microtubules in dendrites had mixed orientations. When dendritic microtubules were severed by laser-based microsurgery, we detected equal numbers of plus- and minus-end-out microtubule orientations throughout the dendritic processes. In dendrites, the minus-end-out microtubules were generally more stable and comparable with plus-end-out microtubules in axons. Interestingly, at early stages of neuronal development in nonpolarized cells, newly formed neurites already contained microtubules of opposite polarity, suggesting that the establishment of uniform plus-end-out microtubules occurs during axon formation. We propose a model in which the selective formation of uniform plus-end-out microtubules in the axon is a critical process underlying neuronal polarization. Live-cell imaging was used to systematically analyze microtubule organization in primary cultures of rat hippocampal neurons, dentate granule cells in mouse organotypic slices, and layer 2/3 pyramidal neuron in somatosensory cortex of living mice. In vitro and in vivo, all microtubules have a plus-end-out orientation in axons, whereas microtubules in dendrites have mixed orientations. Interestingly, newly formed neurites of nonpolarized neurons already contain mixed microtubules, and the specific organization of uniform plus-end-out microtubules only occurs during axon formation. Based on these findings, the authors propose a model in which the selective formation of uniform plus-end-out microtubules in the axon is a critical process underlying neuronal polarization. Copyright © 2016 the authors 0270-6474/16/361072-15$15.00/0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bortolon, A.; Maingi, R.; Mansfield, D. K.
Experiments have been conducted on DIII-D investigating high repetition rate injection of non-fuel pellets as a tool for pacing Edge Localized Modes (ELMs) and mitigating their transient divertor heat loads. Effective ELM pacing was obtained with injection of Li granules in different H-mode scenarios, at frequencies 3–5 times larger than the natural ELM frequency, with subsequent reduction of strike-point heat flux. However, in scenarios with high pedestal density (~6 × 10 19 m –3), the magnitude of granule triggered ELMs shows a broad distribution, in terms of stored energy loss and peak heat flux, challenging the effectiveness of ELM mitigation.more » Furthermore, transient heat-flux deposition correlated with granule injections was observed far from the strike-points. As a result, field line tracing suggest this phenomenon to be consistent with particle loss into the mid-plane far scrape-off layer, at toroidal location of the granule injection.« less
Bortolon, A.; Maingi, R.; Mansfield, D. K.; ...
2017-03-23
Experiments have been conducted on DIII-D investigating high repetition rate injection of non-fuel pellets as a tool for pacing Edge Localized Modes (ELMs) and mitigating their transient divertor heat loads. Effective ELM pacing was obtained with injection of Li granules in different H-mode scenarios, at frequencies 3–5 times larger than the natural ELM frequency, with subsequent reduction of strike-point heat flux. However, in scenarios with high pedestal density (~6 × 10 19 m –3), the magnitude of granule triggered ELMs shows a broad distribution, in terms of stored energy loss and peak heat flux, challenging the effectiveness of ELM mitigation.more » Furthermore, transient heat-flux deposition correlated with granule injections was observed far from the strike-points. As a result, field line tracing suggest this phenomenon to be consistent with particle loss into the mid-plane far scrape-off layer, at toroidal location of the granule injection.« less
Shariff, Khairul Anuar; Tsuru, Kanji; Ishikawa, Kunio
2017-06-01
β-Tricalcium phosphate (β-TCP) has attracted much attention as an artificial bone substitute owing to its biocompatibility and osteoconductivity. In this study, osteoconductivity of β-TCP bone substitute was enhanced without using growth factors or cells. Dicalcium phosphate dihydrate (DCPD), which is known to possess the highest solubility among calcium phosphates, was coated on β-TCP granules by exposing their surface with acidic calcium phosphate solution. The amount of coated DCPD was regulated by changing the reaction time between β-TCP granules and acidic calcium phosphate solution. Histomorphometry analysis obtained from histological results revealed that the approximately 10mol% DCPD-coated β-TCP granules showed the largest new bone formation compared to DCPD-free β-TCP granules, approximately 2.5mol% DCPD-coated β-TCP granules, or approximately 27mol% DCPD-coated β-TCP granules after 2 and 4weeks of implantation. Based on this finding, we demonstrate that the osteoconductivity of β-TCP granules could be improved by coating their surface with an appropriate amount of DCPD. Copyright © 2017 Elsevier B.V. All rights reserved.
Zinc sulfide in intestinal cell granules of Ancylostoma caninum adults
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gianotti, A.J.; Clark, D.T.; Dash, J.
1991-04-01
A source of confusion has existed since the turn of the century about the reddish brown, weakly birefringent 'sphaerocrystals' located in the intestines of strongyle nematodes, Strongylus and Ancylostoma. X-ray diffraction and energy dispersive spectrometric analyses were used for accurate determination of the crystalline order and elemental composition of the granules in the canine hookworm Ancylostoma caninum. The composition of the intestinal pigmented granules was identified unequivocally as zinc sulfide. It seems most probable that the granules serve to detoxify high levels of metallic ions (specifically zinc) present due to the large intake of host blood.
Strowbridge, Ben W
2010-02-11
In this issue of Neuron, Abraham et al. report a direct connection between inhibitory function and olfactory behavior. Using molecular methods to alter glutamate receptor subunit composition in olfactory bulb granule cells, the authors found a selective modulation in the time required for difficult, but not simple, olfactory discrimination tasks. Copyright 2010 Elsevier Inc. All rights reserved.
Yatsuzuka, Kenji; Sato, Shin-Ichi; Pe, Kathleen Beverly; Katsuda, Yousuke; Takashima, Ippei; Watanabe, Mizuki; Uesugi, Motonari
2018-06-08
Here, we developed two pairs of high-contrast chemical probes and their RNA aptamers with distinct readout channels that permitted simultaneous live-cell imaging of endogenous β-actin and cortactin mRNAs. Application of this technology allowed the direct observation of the formation process of stress granules, protein-RNA assemblies essential for cellular response to the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collin, Ludovic; Doretto, Sandrine; Department of Psychiatry and Human Behavior, University of California Irvine, 3226 Gillespie Neuroscience Research Facility, Irvine CA 92697
2007-08-01
Oligodendrocytes (OLs) are the glial cells of the central nervous system (CNS) classically known to be devoted to the formation of myelin sheaths around most axons of the vertebrate brain. We have addressed the role of these cells during cerebellar development, by ablating OLs in vivo. Previous analyses had indicated that OL ablation during the first six postnatal days results into a striking cerebellar phenotype, whose major features are a strong reduction of granule neurons and aberrant Purkinje cells development. These two cell types are highly interconnected during cerebellar development through the production of molecules that help their proliferation, differentiationmore » and maintenance. In this article, we present data showing that OL ablation has major effects on the physiology of Purkinje (PC) and granule cells (GC). In particular, OL ablation results into a reduction of sonic hedgehog (Shh), Brain Derived Neurotrophic Factor (BDNF), and Reelin (Rln) expression. These results indicate that absence of OLs profoundly alters the normal cerebellar developmental program.« less
Yan, Xing; Hai, Bo; Sun, Yi-lin; Zhang, Chun-mei; Wang, Song-ling
2009-02-01
To study the ultrastructure of parotid glands, lacrimal glands and pituitary glands between miniature pig and mouse. Five adult miniature pigs and 5 mice were studied. Ultrastructure of their parotid glands, lacrimal glands, and pituitary glands was observed. The secretary granules in acinar cell of miniature pig parotid glands showed higher density and more aequalis than those of mice. The cell apparatus in acinar cell of mouse parotid glands were more plentiful than those of miniature pigs. The secretary granules on blood vessel wall were richer in parotid gland of miniature pigs compared with mouse parotid gland. Lacrimal gland had the similar ultrastructure to parotid gland in these two animals. Many blood vessel antrum were found in pituitary glands of these two animals. Compared with mouse parotid glands, there are more secretary granules in acinar cells and vascular endothelial cells in miniature pig parotid glands, which might enter blood stream and have function of endocrine secretion.
Login, G R; Galli, S J; Morgan, E; Arizono, N; Schwartz, L B; Dvorak, A M
1987-11-01
We defined the ultrastructural localization of chymase in rat peritoneal mast cells using standard aldehyde fixation and a newly described microwave fixation method (Login GR, Dvorak AM: Microwave energy fixation for electron microscopy. Am J Pathol 120: 230, 1985; Login GR, Stavinoha WB, Dvorak AM: Ultrafast microwave energy fixation for electron microscopy. J Histochem Cytochem 34:381, 1986) and postembedding immunogold labeling. Thin sections were exposed first to goat IgG anti-rat chymase and second to gold-conjugated rabbit Ig directed against goat IgG. By transmission electron microscopy, gold particles were localized to the matrix of cytoplasmic granules. Control sections treated with nonimmune sera did not exhibit labeling of mast cells. Thin sections treated simultaneously with purified rat mast cell chymase and anti-chymase antibody in competition studies, showed a marked reduction in granule staining. These findings demonstrate that a microwave fixation method can be used to rapidly fix cell suspensions for postembedding immunocytochemical studies.
Common spectrum of polypeptides occurs in secretion granule membranes of different exocrine glands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cameron, R.S.; Cameron, P.L.; Castle, J.D.
1986-10-01
A highly purified membrane preparation from rat parotid secretion granules has been used as a comparative probe to examine the extent of compositional overlap in granule membranes of three other exocrine secretory tissues - pancreatic, lacrimal, and submandibular - from several standpoints. First, indirect immunofluorescent studies using a polyclonal polyspecific anti-parotid granule membrane antiserum has indicated a selective staining of granule membrane profiles in all acinar cells of all tissues. Second, highly purified granule membrane subfractions have been isolated from each exocrine tissue; comparative two-dimensional (isoelectric focusing; SDS) PAGE of radioiodinated granule membranes has identified 10-15 polypeptides of identical pImore » and apparent molecular mass. These species are likely to be integral membrane components since they are not extracted by either saponin-sodium sulfate or sodium carbonate (pH 11.5) treatments, and they do not have counterparts in the granule content. Finally, the identity among selected parotid and pancreatic radioiodinated granule membrane polypeptides has been documented using two-dimensional peptide mapping of chymotryptic and tryptic digests. These findings clearly indicate that exocrine secretory granules, irrespective of the nature of stored secretion, comprise a type of vesicular carrier with a common (and probably refined) membrane composition. Conceivably, the polypeptides identified carry out general functions related to exocrine secretion.« less
Smith, Jarrett; Calidas, Deepika; Schmidt, Helen; Lu, Tu; Rasoloson, Dominique; Seydoux, Geraldine
2016-01-01
RNA granules are non-membrane bound cellular compartments that contain RNA and RNA binding proteins. The molecular mechanisms that regulate the spatial distribution of RNA granules in cells are poorly understood. During polarization of the C. elegans zygote, germline RNA granules, called P granules, assemble preferentially in the posterior cytoplasm. We present evidence that P granule asymmetry depends on RNA-induced phase separation of the granule scaffold MEG-3. MEG-3 is an intrinsically disordered protein that binds and phase separates with RNA in vitro. In vivo, MEG-3 forms a posterior-rich concentration gradient that is anti-correlated with a gradient in the RNA-binding protein MEX-5. MEX-5 is necessary and sufficient to suppress MEG-3 granule formation in vivo, and suppresses RNA-induced MEG-3 phase separation in vitro. Our findings suggest that MEX-5 interferes with MEG-3’s access to RNA, thus locally suppressing MEG-3 phase separation to drive P granule asymmetry. Regulated access to RNA, combined with RNA-induced phase separation of key scaffolding proteins, may be a general mechanism for controlling the formation of RNA granules in space and time. DOI: http://dx.doi.org/10.7554/eLife.21337.001 PMID:27914198
Isolation of new polar granule components in Drosophila reveals P body and ER associated proteins
Thomson, Travis; Liu, Niankun; Arkov, Alexey; Lehmann, Ruth; Lasko, Paul
2008-01-01
Germ plasm, a specialized cytoplasm present at the posterior of the early Drosophila embryo, is necessary and sufficient for germ cell formation. Germ plasm is rich in mitochondria and contains electron dense structures called polar granules. To identify novel polar granule components we isolated proteins that associate in early embryos with Vasa (VAS) and Tudor (TUD), two known polar granule associated molecules. We identified Maternal expression at 31B (ME31B), eIF4A, Aubergine (AUB) and Transitional Endoplasmic Reticulum 94 (TER94) as components of both VAS and TUD complexes and confirmed their localization to polar granules by immuno-electron microscopy. ME31B, eIF4A and AUB are also present in processing (P) bodies, suggesting that polar granules, which are necessary for germ line formation, might be related to P bodies. Our recovery of ER associated proteins TER94 and ME31B confirms that polar granules are closely linked to the translational machinery and to mRNP assembly. PMID:18590813
Arikawa, K; Kawamata, K; Suzuki, T; Eguchi, E
1987-08-01
The compound eye of the crab hemigrapsus sanguineus undergoes daily changes in morphology as determined by light and electron microscopy, both in the quantity of chromophore substances studied by HPLC and in visual sensitivity as shown by electrophysiological techniques. 1. At a temperature of 20 degrees C, the rhabdom occupation ratio (ROR) of an ommatidial retinula was 11.6% (maximum) at midnight, 8.0 times larger than the minimum value at midday (1.4%). 2. Observations by freeze-fracture revealed that the densities of intra-membranous particles (9-11 nm in diameter) of rhabdomeric membrane were ca. 2000/microns 2 and ca. 3000/microns 2 for night and daytime compound eyes, respectively. 3. Screening pigment granules migrated longitudinally and aggregated at night, but dispersed during the day. Reflecting pigment granules migrate transversally in the proximal half of the reticula layer i.e. cytoplasmic extensions containing reflecting pigment granules squeeze between neighbouring retinula cells causing optical isolation (Fig. 4). Thus the screening pigment granules within the retinula cells show longitudinal migration and radial movement so that the daytime rhabdoms are closely surrounded by the pigment granules. 4. At 20 degrees C, the total amount of chromophore of the visual pigment (11-cis and all-trans-retinal) was 1.4 times larger at night than during the day i.e. 46.6 pmol/eye at midnight and 33.2 pmol/eye at midday. Calculations of the total surface area of rhabdomeric membrane, total number of intra-membranous particles in rhabdomeric membrane and the total number of chromophore molecules in a compound eye, indicate that a considerable amount of chromophore-protein complex exists outside the rhabdom during the day. 5. The change in rhabdom size and quantity of chromophore were highly dependent on temperature. At 10 degrees C both rhabdom size and amount of chromophore stayed close to daytime levels throughout the 24 hours. 6. The intracellularly determined relative sensitivity of the dark adapted night eye to a point source of light was about twice as high as the dark-adapted day eye. Most of the increase in the sensitivity is attributed primarily to the effect of reflecting pigment migration around the basement membrane and, secondarily, to the changes in the amount and properties of the photoreceptive membrane. The results form the basis of a detailed discussion as to how an apposition eye can function possibly as a night-eye.
Jo, Junghyun; Xiao, Yixin; Sun, Alfred Xuyang; Cukuroglu, Engin; Tran, Hoang-Dai; Göke, Jonathan; Tan, Zi Ying; Saw, Tzuen Yih; Tan, Cheng-Peow; Lokman, Hidayat; Lee, Younghwan; Kim, Donghoon; Ko, Han Seok; Kim, Seong-Oh; Park, Jae Hyeon; Cho, Nam-Joon; Hyde, Thomas M; Kleinman, Joel E; Shin, Joo Heon; Weinberger, Daniel R; Tan, Eng King; Je, Hyunsoo Shawn; Ng, Huck-Hui
2016-08-04
Recent advances in 3D culture systems have led to the generation of brain organoids that resemble different human brain regions; however, a 3D organoid model of the midbrain containing functional midbrain dopaminergic (mDA) neurons has not been reported. We developed a method to differentiate human pluripotent stem cells into a large multicellular organoid-like structure that contains distinct layers of neuronal cells expressing characteristic markers of human midbrain. Importantly, we detected electrically active and functionally mature mDA neurons and dopamine production in our 3D midbrain-like organoids (MLOs). In contrast to human mDA neurons generated using 2D methods or MLOs generated from mouse embryonic stem cells, our human MLOs produced neuromelanin-like granules that were structurally similar to those isolated from human substantia nigra tissues. Thus our MLOs bearing features of the human midbrain may provide a tractable in vitro system to study the human midbrain and its related diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Molnár, P; Nadler, J V
2001-05-01
The recurrent mossy fiber pathway of the dentate gyrus expands dramatically in the epileptic brain and serves as a mechanism for synchronization of granule cell epileptiform activity. It has been suggested that this pathway also promotes epileptiform activity by inhibiting GABA(A) receptor function through release of zinc. Hippocampal slices from pilocarpine-treated rats were used to evaluate this hypothesis. The rats had developed status epilepticus after pilocarpine administration, followed by robust recurrent mossy fiber growth. The ability of exogenously applied zinc to depress GABA(A) receptor function in dentate granule cells depended on removal of polyvalent anions from the superfusion medium. Under these conditions, 200 microM zinc reduced the amplitude of the current evoked by applying muscimol to the proximal portion of the granule cell dendrite (23%). It also reduced the mean amplitude (31%) and frequency (36%) of miniature inhibitory postsynaptic currents. Nevertheless, repetitive mossy fiber stimulation (10 Hz for 1 s, 100 Hz for 1 s, or 10 Hz for 5 min) at maximal intensity did not affect GABA(A) receptor-mediated currents evoked by photorelease of GABA onto the proximal portion of the dendrite, where recurrent mossy fiber synapses were located. These results could not be explained by stimulation-induced depletion of zinc from the recurrent mossy fiber boutons. Negative results were obtained even during exposure to conditions that promoted transmitter release and synchronized granule cell activity (6 mM [K(+)](o), nominally Mg(2+)-free medium, 33 degrees C). These results suggest that zinc released from the recurrent mossy fiber pathway did not reach a concentration at postsynaptic GABA(A) receptors sufficient to inhibit agonist-evoked activation.
Cellular Functions of the Autism Risk Factor PTCHD1 in Mice.
Tora, David; Gomez, Andrea M; Michaud, Jean-Francois; Yam, Patricia T; Charron, Frédéric; Scheiffele, Peter
2017-12-06
The gene patched domain containing 1 ( PTCHD1 ) is mutated in patients with autism spectrum disorders and intellectual disabilities and has been hypothesized to contribute to Sonic hedgehog (Shh) signaling and synapse formation. We identify a panel of Ptchd1-interacting proteins that include postsynaptic density proteins and the retromer complex, revealing a link to critical regulators of dendritic and postsynaptic trafficking. Ptchd1 knock-out (KO) male mice exhibit cognitive alterations, including defects in a novel object recognition task. To test whether Ptchd1 is required for Shh-dependent signaling, we examined two Shh-dependent cell populations that express high levels of Ptchd1 mRNA: cerebellar granule cell precursors and dentate granule cells in the hippocampus. We found that proliferation of these neuronal precursors was not altered significantly in Ptchd1 KO male mice. We used whole-cell electrophysiology and anatomical methods to assess synaptic function in Ptchd1-deficient dentate granule cells. In the absence of Ptchd1, we observed profound disruption in excitatory/inhibitory balance despite normal dendritic spine density on dentate granule cells. These findings support a critical role of the Ptchd1 protein in the dentate gyrus, but indicate that it is not required for structural synapse formation in dentate granule cells or for Shh-dependent neuronal precursor proliferation. SIGNIFICANCE STATEMENT The mechanisms underlying neuronal and cellular alterations resulting from patched domain containing 1 ( Ptchd1 ) gene mutations are unknown. The results from this study support an association with dendritic trafficking complexes of Ptchd1. Loss-of-function experiments do not support a role in sonic hedgehog-dependent signaling, but reveal a disruption of synaptic transmission in the mouse dentate gyrus. The findings will help to guide ongoing efforts to understand the etiology of neurodevelopmental disorders arising from Ptchd1 deficiency. Copyright © 2017 the authors 0270-6474/17/3711993-13$15.00/0.
Effects of mild hyperthyroidism on levels of amino acids in the developing Lurcher cerebellum.
Messer, A; Eisenberg, B; Martin, D L
1989-01-01
This study examines the question of whether intrinsically defective mutant Lurcher Purkinje cells, which degenerate during postnatal weeks two to five, followed by later loss of granule cells are competent to respond to neonatal hyperthyroidism, which is known to cause premature differentiation of Purkinje cells and an acceleration of the peak of proliferation in granule cells in normal rodent cerebellum. Both total amounts and concentrations (per mg wet weight) of Tau, Glu, Asp and GABA were assayed as markers of cell function in Lurcher and wild-type mice made very mildly hyperthyroid by feeding nursing dams high-thyroxine food. Tau, which is present in relatively high concentrations in Purkinje cells, was affected by hyperthyroid treatment in the Lurcher in a manner that is most consistent with an acceleration of the degenerative process in Purkinje cells. The acidic amino acids Glu and Asp show later changes and response to hormone which seem to be a reaction to the Purkinje cell pattern, probably in the granule cells. We conclude that the Lurcher cerebellum is particularly sensitive to thyroid hormone, and that it responds to low levels of hyperthyroidism in a distinct way.
Imaging of zymogen granules in fully wet cells: evidence for restricted mechanism of granule growth.
Hammel, Ilan; Anaby, Debbie
2007-09-01
The introduction of wet SEM imaging technology permits electron microscopy of wet samples. Samples are placed in sealed specimen capsules and are insulated from the vacuum in the SEM chamber by an impermeable, electron-transparent membrane. The complete insulation of the sample from the vacuum allows direct imaging of fully hydrated, whole-mount tissue. In the current work, we demonstrate direct inspection of thick pancreatic tissue slices (above 400 mum). In the case of scanning of the pancreatic surface, the boundaries of intracellular features are seen directly. Thus no unfolding is required to ascertain the actual particle size distribution based on the sizes of the sections. This method enabled us to investigate the true granule size distribution and confirm early studies of improved conformity to a Poisson-like distribution, suggesting that the homotypic granule growth results from a mechanism, which favors the addition of a single unit granule to mature granules.
Properties of single NMDA receptor channels in human dentate gyrus granule cells
Lieberman, David N; Mody, Istvan
1999-01-01
Cell-attached single-channel recordings of NMDA channels were carried out in human dentate gyrus granule cells acutely dissociated from slices prepared from hippocampi surgically removed for the treatment of temporal lobe epilepsy (TLE). The channels were activated by l-aspartate (250–500 nm) in the presence of saturating glycine (8 μm). The main conductance was 51 ± 3 pS. In ten of thirty granule cells, clear subconductance states were observed with a mean conductance of 42 ± 3 pS, representing 8 ± 2% of the total openings. The mean open times varied from cell to cell, possibly owing to differences in the epileptogenicity of the tissue of origin. The mean open time was 2.70 ± 0.95 ms (range, 1.24–4.78 ms). In 87% of the cells, three exponential components were required to fit the apparent open time distributions. In the remaining neurons, as in control rat granule cells, two exponentials were sufficient. Shut time distributions were fitted by five exponential components. The average numbers of openings in bursts (1.74 ± 0.09) and clusters (3.06 ± 0.26) were similar to values obtained in rodents. The mean burst (6.66 ± 0.9 ms), cluster (20.1 ± 3.3 ms) and supercluster lengths (116.7 ± 17.5 ms) were longer than those in control rat granule cells, but approached the values previously reported for TLE (kindled) rats. As in rat NMDA channels, adjacent open and shut intervals appeared to be inversely related to each other, but it was only the relative areas of the three open time constants that changed with adjacent shut time intervals. The long openings of human TLE NMDA channels resembled those produced by calcineurin inhibitors in control rat granule cells. Yet the calcineurin inhibitor FK-506 (500 nm) did not prolong the openings of human channels, consistent with a decreased calcineurin activity in human TLE. Many properties of the human NMDA channels resemble those recorded in rat hippocampal neurons. Both have similar slope conductances, five exponential shut time distributions, complex groupings of openings, and a comparable number of openings per grouping. Other properties of human TLE NMDA channels correspond to those observed in kindling; the openings are considerably long, requiring an additional exponential component to fit their distributions, and inhibition of calcineurin is without effect in prolonging the openings. PMID:10373689